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Abstract

Over the past few decades, we have experienced the permeation of commodity wireless devices into

every facet of our existence: our lives at home, our commutes and community infrastructure, and our

workplaces. Wireless devices are already on board many sensing platforms, thus making them appealing

to explore for adding sensing capabilities without increasing bulk. For example, consider the ability

to use WiFi, already aboard a UAV for transmitting video data, to additionally provide information on

the environment. In this dissertation, we explore opportunities in re-engineering these already widely

deployed technologies (specifically, WiFi, mmWave RADAR, and cameras) for sensing object material and

long-range depth imaging – challenges that traditionally require large additional sensor loads (e.g., X-band

and K-band RADAR) and struggle with occlusions like fog and walls (in the case of cameras and LIDAR).

The ability to sense object material and image depth, in both line-of-sight and non-light-of-sight settings,

would enable future vehicles and cities to better respond to environmental obstacles. For example, we

envision a future disaster-response drone that can navigate a scene with responses guided by awareness

of occlusion type – e.g., detecting a tree and flying lower to avoid getting caught in branches, or detecting

a human under rubble sending a distress call. Beyond object type, the ability to image at a long range

is also helpful for responding quickly to objects in the environment, reducing the flight path (and thus,

battery) necessary to survey a scene, and providing environment dimensions to better guide rescue crews

on equipment needs.

We approach this vision first from the perspective of exploring novel sensing capabilities of WiFi, since

it is comparatively less studied than RADAR and vision. Specifically, we develop and evaluate a WiFi-

based approach to both localize and identify object type (specifically composing material) of obstacles in

the environment in our system IntuWition. IntuWition uses polarimetry – the measurement of how the

polarization of signals is changed as it passes through or reflects off objects – as a position- and orientation-

robust way to measure the material type of objects in the environment. This leaves the challenge of

imaging objects in a scene, ideally at a long range and at high resolutions. mmWave RADAR and cameras

emerge as the best candidates for this, but they individually face some challenges: mmWave RADAR has

extremely poor angular resolution (about 1 degree in azimuth and about 11 degrees in elevation for a

top-of-the-line model), while cameras have poor depth resolution, particularly at long ranges. We present

the development and evaluation of a hybrid mmWave/camera system, Metamoran, that uses camera

information to guide the de-noising, angular positioning, detection, and imaging by a mmWave RADAR.

These approaches help to demonstrate that new approaches to sensing that exploit the proliferation of

wireless devices can enable increased environmental awareness.
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Chapter 1

Introduction

Commodity wireless devices have permeated our daily lives, continuing to change how we work, com-

mute, and live. In 2020, the average number of connected devices per household in the United States was

10.37 [10]– coupled with growing industrial and infrastructural connectivity, we see connected devices

truly becoming widely deployed.

We ask the question – "What opportunities exist in re-engineering commodity wireless devices, with-

out changing their hardware, to enable new capabilities?" The prevalence of these wireless devices makes

them appealing to explore as a sensing modality – after all, they are already deployed with such density.

If they could additionally be exploited to sense as well as communicate, they could provide additional

functionality without additional hardware and infrastructure cost. In addition to the advantage of its

availability, wireless has additional advantages over common sensing modalities. It is less power con-

sumptive than RADAR or LIDAR. Unlike camera/visible light-based sensing solutions, wireless signals

operate well in occluded environments – including through-wall to through-fog sensing, depending on

the frequency. As a result, commodity wireless for sensing has been explored significantly in the litera-

ture, including for localization[54], tracking[108], and health applications [117]. The benefits of being a

commercially available device, produced at a large scale for everyday consumers, is also important: the

large scale and competition with which commodity wireless devices are produced for communication

quickly encourages both technological improvement and cost reduction strategies, and regulators are in-

centivised by widespread use to maintain and expand upon the wireless spectrum available for unlicensed

use[30]. Over time, these trends would drive down the cost of commodity wireless sensing systems while

increasing the bandwidth available to them, thus improving their resolution and performance.

In Fig. 1.1, we show some of the spectrum with commodity wireless devices on the market, as well

as the strengths of each of these frequency bands. In general, the larger the wavelength, the wider the

1
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Figure 1.1: Benefits and downsides of commodity wireless spectrum in the US.

obstacles it can ignore (rule of thumb is an object an order of magnitude smaller than the wavelength

can be ignored). More bandwidth provides more range resolution, and bandwidth is more available at

higher frequencies. We note the region around 1GHz-10GHz, commonly referred to as the "microwave

window"[4], has the most ideal noise characteristics: lower frequencies include galaxy noise, and higher

frequencies face noise due to atmospheric absorption of water and oxygen. However, unlicensed bands in

this range are sensitive to noise sources such as microwave ovens and electrical noise. Finally, we consider

how widely distributed the given frequency already is – with technologies such as WiFi, Bluetooth, and

cameras already widely deployed in many homes and workplaces.

There are many possible frequencies to choose from, as well as many possible new approaches to

using object-specific characteristics for identification. For our work, we chose three frequency bands of

electromagnetic spectrum to explore further based on current and projected prevalence: WiFi, Automotive

mmWave RADAR (77GHz), and cameras. These frequencies also benefit from substantial past research

to form a foundation. WiFi has the benefit of propagating through and around walls due to its lower

frequency, but suffers from limited range and resolution. Automotive mmWave has excellent range res-

olution, but struggles in the angular domain. It can work well in partially occluded environments, as

well as penetrate very small obstacles such as fog and smoke. Camera has the best angular resolution –

each pixel can provide a fraction of a degree – but it can only work in unoccluded environments and it

struggles with providing depth.

We explore two questions in the context of these three most prevalent electromagnetic sensing tech-

nologies: (1) What new properties would be beneficial to sense that cannot already be sensed? (2) What
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Figure 1.2: There are many challenges that a drone at a disaster site might face: in particular, we con-
sider navigating a cluttered environment and detecting survivors. Existing sensing hardware for these
challenges space have significant limitations, including not working in occluded environments or being
bulky.

missed opportunities have yet to be explored in commodity wireless sensing? These questions are each

expanded upon further in the following sections. The exploration of missed opportunities in section (2)

further outlines the two systems whose design, implementation, and evaluation form the core contribu-

tions of this dissertation.

1.1 Vision: New Sensing Capabilities of Commodity Wireless

Some challenges that today’s UAVs face, such as navigating cluttered environments and detecting objects

in non-line-of-sight, are shown in Fig. 1.2. We envision a future UAV tasked with searching for survivors at

a disaster site. It can navigate an area without human control, even in visually occluded environments like

smoke and fog. It can respond to obstacles beyond just avoiding collisions: with object-specific responses,

the UAV might fly lower near a tree to avoid getting caught in its branches, quickly swerve to avoid

collision with another UAV, or give a person a large berth to avoid startling them. The UAV has the ability

to sense survivors even under collapsed building materials, and can even provide information on the

location, shape, dimensions of the collapsed building to inform rescue teams of what type of equipment

is necessary to respond to this situation, shown in Fig. 1.3. The ability to sense the environment despite



CHAPTER 1. INTRODUCTION 4

Figure 1.3: We envision new sensing capabilities that can provide navigational guidance based on object
type, detect reflectors even in non-line-of-sight, and image the environment to help rescue teams.

occlusions, to sense object type, and to image objects from a long distance are the three goals that motivate

this dissertation. They can be expanded beyond disaster relief to applications such as package delivery,

surveillance, and autonomous vehicles.

To work toward this vision, this thesis explores opportunities in using wireless communication chan-

nels as a sensing modality, both in isolation and hybridized with existing dominant sensing modalities.

Specifically, our goal is to enable and enhance object type detection and imaging, via three capabilities:

1. Localization of objects, including behind obstructions

2. Material sensing the determine the type of objects

3. z-location and contour sensing for a 3-D depth map of the obstructed environment

These capabilities can provide autonomous vehicles with more environmental knowledge.

Consider a scene as depicted in Fig. 1.4, being imaged with a combination of common sensors: a

camera, WiFi, and an automotive mmwave RADAR. In this scene, we seek to determine the position of

reflectors, the object type of reflectors, and a contour map of the area. How can we leverage these sensors

and process this image to address this challenge? We note that one approach is to simply collect data

from all three sensors and fuse via machine learning model. To preserve simplicity and transparency, we

instead address this open problem in parts.
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Figure 1.4: Above, we show the vision for our project. This envisioned system can detect the position,
depth profile (contour map), and object type of objects in its environment. Such a system would enable
autonomous vehicles to make obstacle-specific responses to objects in its environment.

1.2 Technique: New Sensing Approaches to Commodity Wireless

In this dissertation, we focus on two missed opportunities in commodity wireless sensing. The first is

inspiration from traditional radar techniques, specifically RADAR Polarimetry, to develop a WiFi sensing

system that can detect material-specific properties and distinguish materials. The second is a hybrid ap-

proach to commodity wireless sensing with camera sensing – currently the most prevalent electromagnetic

sensing technology – which takes advantage of physical properties to improve long-range depth sensing

and imaging.

1.2.1 Polarimetry for WiFi-Based Material Sensing

First we consider the question: what can we do with just WiFi alone? WiFi is a widely available technology

whose frequency makes it suitable for propagating around corners and through thin (few centimeters)

objects. This makes it an attractive platform for localization of objects in non-line-of-sight at decimeter-

scale. For our project IntuWition, we further build on WiFi’s inherent sensing opportunities to determine

material type of an object using RADAR polarimetry, detailed further in Ch. 3.

For IntuWition, resilience to objects fully and partially occluded by fog is critical for system perfor-

mance. For thinner reflectors, this is a capability intrinsically available to WiFi. However, this is compli-

cated by the need to have sensors aboard a single system. Because our sensing system must exist upon a

single platform – e.g., a drone – the environment must be sensed using signals reflected from the environ-

ment, akin to RADAR or LIDAR. This is in contrast to other wireless sensing approaches, which might
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sense material of an object penetratively [27] or image an area using devices set up on both sides of the

scene [48]. This complicates how to isolate individual target objects, as commodity wireless devices are

not typically designed transmit and received from a specific direction as RADAR and LIDAR samples do.

We describe our approach for isolating individual objects based on measured time-of-flight windows in

Sec. 3.5.

Another challenges is, when using a wireless signal to image an object, very small adjustments can

significantly modify the signal at the receiver. How can we take advantage of this to sense composing

material in a way independent of factors like position and orientation? For example, a small positioning

difference in orientation/location could be the difference between constructive interference, destructive

interference, or even reflections that redirect the majority of the signal away from our device. Other

qualities of a material, such as surface texture, also affect the reflected signal received. And indeed, there

are many cases where it is difficult to decouple positioning characteristics from object characteristics – how

might a strong reflector (e.g. a metal sheet) be distinguished from a weaker reflector (e.g. a wooden sheet)

that is larger, or positioned closer, or oriented at a more favorable cross-sectional area? We present in Sec.

3.4 an approach that takes advantage of polarimetry of the reflecting object to provide positioning-agnostic

material identification.

1.2.2 Combining mmWave and Camera sensing for long-range depth imaging

Next, we consider sensing opportunities for two devices that are already commonly available in advanced

driver assistance systems: camera and mmwave. Using cameras provide access to the tools created in

the well-developed field of camera vision, for techniques including segmentation. Furthermore, cameras

have pixel-scale angular resolution and can detect object position to a tenth of a degree. However, it

struggles with depth resolution. mmWave, in contrast, provides the ability to image and detect objects

several tens of meters away at a cm-scale while struggling with angular resolution (1.4 degrees in azimuth

and 18 degrees in elevation for a top-of-the-line model). The natural complementary abilities of these two

sensing modalities, in addition to their joint prevalence in vehicles, makes this an interesting hybridization

to explore. We discuss this in Ch. 4.

One challenge is that a fundamental physics limitation of commodity wireless is resolution. Bandwidth

is limited, and even with additional antennas, state-of-the-art commodity wireless RADARs are limited

to degree-scale angular resolution. Compare this to a camera, which can easily provide tens of pixels per

degree. Cameras, however, struggle with depth detection – and indeed, there remains a gap for a depth

imaging, at high resolution, and at a long range. We discuss our approach for a long-range depth imaging
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solution, a hybrid mmwave/camera sensing system, in Sec. 4.4.

Finally, we consider the open challenge of how to best hybridize different technologies. We approach

this using the simplest case of two technologies with complementary capabilities – selecting mmwave and

camera. Most sensor fusion occurs at higher levels – i.e., cross-referencing objects that have already been

detected by RADARs and cameras to confirm their existence and pair depth and angular information.

We instead ask – can we do better if we use one sensor to inform the others’ processing? Specifically,

we consider the case of a known angular breadth and position of objects-of-interest – as identified by

computer vision algorithms – to better identify which reflector on our mmwave RADAR is a given object-

of-interest. This is further discussed in Sec. 4.6.

1.3 Thesis Statement and Contributions

Our objective for this work is to explore new capabilities for existing wireless infrastructure. The com-

modity wireless sensing techniques we explore in this work, as well as their deployment and evaluation,

supports the following thesis:

New approaches to sensing using existing, widely deployed wireless devices can enable increased environmental

awareness for future cities.

Our contributions, the sensing paradigms explored and evaluated to serve as evidence for this thesis,

are as follows.

1. We develop and evaluate a novel system that sensing modality to extend capabilities of commodity

wireless sensing to include material identification.

• Development of, to our knowledge, the first system that explores the use of commodity Wi-Fi

radios in discerning objects in the environment using polarization.

• Demonstration of a system that detects the material and location of occluded obstacles, opening

up applications for autonomous UAVs and beyond.

• System implemented and evaluated indoors and outdoors.

2. Fusion of wireless sensing with camera for improved depth resolution

• Development of a novel approach to integrating mmWave and camera sensing to expand be-

yond each sensor’s individual capabilities

• System implemented and evaluated on 151 outdoor scenes

These contributions will be further highlighted in the rest of this thesis.
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Figure 1.5: A system overview of our project, which takes as input WiFi, Camera, and mmWave to localize,
determine object type, and image depth.

1.4 Thesis Overview and Outline

In this thesis, we will explore the scenario in Fig. 1.4. For a sensing system outfitted with some of the

most ubiquitous wireless communication and sensing technologies: mmWave, WiFi, and cameras, how

do we approach the challenges of determining the location of occluded objects, determining the type of

an object, and developing depth maps for both a scene and objects-of-interest in the environment. In Fig.

1.5, we show a block diagram with the inputs and outputs of our scenario.

The rest of this thesis is organized as follows. Chapter 2 provides background information about ca-

pabilities of WiFi as a sensor and mmWave as a sensor to lay the foundation for this thesis and provides

context for this work with respect to existing literature. In Chapter 3, we present our development and

evaluation of IntuWition, a WiFi sensing system inspired by polarimetry to identify the composing mate-

rial of objects in the environment. In Section 4, we present our development and evaluation of Metamoran,

a mmWave and camera hybrid sensor that can provide long-range depth imaging of a scene. Finally, in

Sections 5 and 6, we present our discussion, conclusions and future work.



Chapter 2

Background & Related Work

Though wireless signals are ubiquitous for communication, we instead explore these same signals for

sensing. In this section, I provide some context on how wireless signals have generally been used for

sensing.

2.1 The Communication Channel

A channel is the medium through which a transmitted signal is mapped to a given received signal. It has

certain measurable properties, including noise, power attenuation due to distance, and other impairments.

We define the communication channel h(t), for a given transmitted signal x(t), received signal y(t), and

noise n(t), as follows:

y(t) = h(t) ∗ x(t) + n(t) (2.1)

One channel impairment particularly relevant to this dissertation is multipath. Multipath occurs when

a transmitted signal undergoes multiple paths – that is, reflects off objects in the environment for paths of

different lengths and attenuation. At the receiver, this results in the same signal received multiple times at

different delays and different magnitudes, analogous to an echo. When considering multipath in isolation,

the channel can be regarded as an impulse response:

h(t) = δ (t) + a× δ (t− α) + b× δ (t− β) + ... (2.2)

Where attenuation factors a, b, ... are less than one and delay constants α, β, ... are positive. Of course,

the typical channel might be significantly more complex due to additional impairments beyond multipath.

9
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The channel model applies regardless of the type of signal that is transmitted, and indeed even regard-

less of what the communication medium is: for example, multipath can occur due to internal reflections in

a copper wire as well as due to environmental obstacles in a wireless channel, such as walls or vehicles. In

this dissertation, we focus on the wireless channel, specifically for two technologies: WiFi and mmWave.

2.2 WiFi as a Sensor

WiFi is defined in the IEEE 802.11 family of standards. For our work, we specifically use IEEE 802.11ac,

which provides high-throughput communication in the 5GHz band. In the 5GHz band, there is 150MHz

of bandwidth available for communication, typically split into 20MHz channels[33]. Using these measured

received wireless channels, relative position can be determined for a given transmitter/receiver pair. One

common flavor of relative position is fingerprinting, where a receiver’s position relative to a stationary

access point is measured using known information about the environment – either from past measure-

ments or modeling of waves. The disadvantage of this approach is its struggles with new and changed

environments: to develop a new model takes some time. A helpful reference to better understand how

fingerprinting works for WiFi systems is the WiFi system RADAR [11].

Another approach to positioning is angle-of-arrival (AOA), which is the relative angle between a trans-

mitter and a receiver. AOA can be calculated using phase offsets between each element of a receiving

antenna array. This receiving array can be multiple antennas connected to a single card or otherwise

synchronized in some way, or a synthetic array emulated by motion (SAR). The use of beamforming

algorithms, such as Bartlett[13] and MUSIC[88], further improve the performance of angle-of-error mea-

surements. Multiple measurements need to be calculated to determine position rather than just an angle,

through a process called triangulation. The disadvantage of this approach is that the antenna arrays for

WiFi can become large and bulky: with an optimal antenna separation distance of λ/2, each antenna

would have to be spaced a few cm apart (more is more accurate), and the distance traversed to calculate

AOA via SAR might be fuel-consumptive depending on the vehicle. Arraytrack[114] and Ubicarse[54] are

two contrasting WiFi systems that implement WiFi-based AoA, which would be helpful to better under-

stand WiFi AoA in practice. Arraytrack uses a stationary array and the MUSIC algorithm, while Ubicarse

uses SAR and a multipath power-based approach for determining angle-of-arrival. SpotFi [53] develops

an approach to measuring AoA that relies on treating each WiFi subcarrier as a separate antenna element,

with likelihood estimations assisted by time-of-flight.

Time-of-flight/time-of-arrival (TOF/TOA) is a approach to positioning that calculates the distance be-

tween a transmitter and a receiver. It has the advantage of requiring the least infrastructure and set-up
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time of these approaches, requiring only one transmitter-receiver pair. The naive approach to time-of-

flight: directly measuring how long it takes for a signal to reach an object and bounce back, typically

requires synchronization much higher than a typical WiFi card is able, particularly at short indoor dis-

tances. Consider that detecting a sub-meter displacement would require measuring a time difference of a

few nanoseconds – on a device that can take up to 122 µ S to transmit a single packet. Thus, WiFi localiza-

tion systems often use intra-pulse modulation to measure time-of-flight. The resolution of time-of-flight

using intra-pulse modulation is limited by bandwidth: resolution = c(speed o f light)
2∗Bandwidth . For a single 20MHz

WiFi channel, this is a resolution of only 7.5m – much too coarse for most indoor applications. There have

been many different approaches to improving time-of-flight performance in WiFi systems. Tonetrack [115]

hops across 80MHz, uses multiple access points to improve performance, and develops MUSIC algorithm

in the time domain. Chronos [105] uses a single access point but sweeps across all WiFi bands, developing

how to handle non-consecutive WiFi bands.

The deployment and evaluation of WiFi-based sensing systems is further complicated by other factors,

such as hardware offsets. In particular, even slight differences in timing and phase between devices

can be a significant source of error in calculated distance. Some sources of error are constant sources

of phase error, such as the time necessary to physically propagate through a wire and antenna, which

can be removed with calibration. Other sources of error vary over time, such as carrier frequency offset,

which occurs due to a transmitter and receiver having slightly different clocks. This is very common in

WiFi cards, and indeed, in commodity wireless overall, since highly accurate clocks are expensive and

bulky. Due to parameters such as temperature and intrinsic physical differences, crystal oscillators (a

common cheap clock) vary in frequency within their given tolerance bounds. This small difference in

timing becomes huge differences in distance measured when multiplied by the speed of light, and worse,

the error accumulates over time. Most WiFi localization papers (included those cited above) will discuss

how to accommodate these hardware offsets, but common solutions include using a reference antenna

and using a forward-backward channel.

The ability to localize using WiFi has opened a wide variety of applications. Past work has leveraged

variations in Wi-Fi signals for activity recognition [80, 107], occupancy sensing [26, 25, 6], imaging [42,

84, 48] and location tracking [47, 5, 113, 112, 53]. Indeed, a range of device-free applications have been

proposed by fine-grained motion tracking of users, sensitive enough for even keystroke sensing [9] and

UAV identification [69]. Much of this related work assumes multiple access points or bulky infrastructure

in the environment and are therefore ill-suited for our application. Our work instead seeks to discover

the location and material of multiple potentially occluded objects in the environment using moving Wi-

Fi radios on a mobile platform without supporting infrastructure. Key to our approach is the use of
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polarization of reflected signals to detect the material of objects using commodity Wi-Fi radios.

2.3 mmWave radar as a Sensor

The mmWave radar we use is in the automotive band – 77GHz. It transmits a frequency-modulated

continuous wave (FMCW), or ’chirp.’ This is a signal whose frequency varies with time. To detect range

with an FMCW signal, a chirp is transmitted, reflected off an object in the environment, and then mixed

with the original signal to get an "intermediate frequency" (IF) signal, which is a single tone. The initial

frequency of the IF signal is the difference between the initial phase of the received signal first received

at time t and the phase of the transmitted signal at the same time t. This phase difference, φ = 2π f τ,

can be used to calculate the time of flight τ to objects of interest, given initial frequency f . FMCW

has the same bandwidth limit to resolution: resolution = c(speed o f light)
2∗Bandwidth , but because mmWave has much

more bandwidth available (4GHz at the 77GHz band), this translates to a resolution of 3.75cm. The

full-duplex nature of FMCW radar removes offsets as an issue since the signal is received by the same

device that is transmitting, at the same time that it is transmitting, making it a straightforward solution

to ranging. Velocity can also be measured by transmitting multiple chirps and calculating how much

range has changed in a known amount of time. Finally, angle-of-arrival is less bulky to calculate than

is the case with WiFi, since antenna elements need to be spaced only a couple millimeters apart for an

mmWave array. The principles of FMCW for radar have been largely unchanged for several decades, but

this guide[19] released by TI might be helpful for understanding the basics of mmWave radar sensing.

Because mmWave radar already builds on a strong body of radar sensing principles and is well-

developed as an approach, related research in this space tends to be focused on novel mmWave systems to

address new applications. For example, recent work has explored mm-wave radars to sense the immediate

environment of UAVs and autonomous cars [46, 124]. mmWave has also been explored for location track-

ing [108, 72] and breath/heart rate tracking [117]. Additional prior work has also explored high-resolution

mmWave radar systems for through-obstruction imaging [34], security scanning [96] and predictive main-

tenance [66]. While complementary, these solutions are not designed to measure high-resolution depth

images at extended distances, primarily due to the limited azimuth resolution of radar platforms.

2.4 Past work in Material Identification

Additional past work exists that uses commodity wireless devices [106, 27] that can detect material by

sensing how signals are attenuated by objects placed between the transmitter and receiver. We distinguish

ourselves from this work by focusing on reflection-based versus penetrative sensing, which makes our
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approach easier to deploy on a single platform. WiFi has also been used to detect metal [110] by sensing

how signals are reflected by environmental objects, though this is limited exclusively to metallic and

non-metallic objects.

Our approach in is inspired by polarimetry, the measurement of how polarization of a signal changes

upon interaction with objects in the environment. RADAR systems use synthetic aperture radar po-

larimetry for topography imaging [78, 90, 89, 16]. Aircraft and satellites can even use polarization of

received RADAR signals to measure soil moisture of farmland [93]. Recent years has seen the persistence

of polarimetry largely unchanged as a sensing modality but used with new materials [56] and for new

applications [119]. In contrast to this rich literature, our approach seeks to bring radar polarimetry to

light-weight commodity Wi-Fi cards. For this, we overcome many challenges such as the near-far effect

and imperfections of such radios. We further distinguish ourselves from existing polarimetric systems in

that our proximity is much closer than an airplane or a satellite, where polarimetry systems are commonly

deployed. We choose this approach over other radar-based object recognition techniques, such as Project

Soli, Google’s RADAR-based system for object & material recognition [118] which assumes extremely

close proximity between the object and the RADAR system.

2.5 Past work in Long-Range Depth Imaging

Current vision-based imaging solutions include Cameras [65], LIDARs [82] and depth imaging [41], which

are often used in diverse outdoor 3-D imaging applications. Some depth camera systems (e.g. monocular

depth estimation [15]) struggle at extended distances, some (e.g. stereo-vision [94]) require extended

baselines for high accuracy, while others (e.g. IR structured light [85]) function poorly under ambient light.

More broadly, systems struggle to measure depth at a high resolution at long range, with about meter-

scale accuracy at up to 80m range in monocular depth estimation cases [122] and only operating up to

around 20m in the case of depth cameras [98]. Some LIDAR systems [76] offer higher accuracy at extended

ranges, however face other significant limitations stemming from the power consumption of the laser as

well as robustness to dust, weather conditions and coexistence with other LIDAR platforms [17, 51]. There

also exist infrastructure-based solutions [55, 31, 81] which we seek to avoid to preserve simplicity.

For our approach, we draw from past work in Camera/RF fusion for our hybrid system, Meta-

moran. Camera and RF fusion has been proposed for automatic re-calibration [116], industrial work-

place [86], localization [7], person identification [29] and fall detection [50]. Radar-Camera fusion has

also been studied for diverse vehicular applications including attention selection to identify objects-of-

interest [123, 37, 20], tracking mobile objects [63, 92, 121] better object perception and classification under
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poor weather [49, 45, 38], detecting vehicles and guard rails [99, 8, 44] and generating obstruction-resilient

2D images [57]. Vision-based sensing has also been used for more effective communication using mmWave

[35, 70]. Beyond radar and vision, prior work has used multi-modal fusion across a variety of sensors for

tracking human activity [58], autonomous driving [22] and beyond. We distinguish ourselves from this

body of work by focusing on combining mmWave radars and camera for high-resolution depth imaging

at long ranges, including under partial occlusions.



Chapter 3

IntuWition: On the Feasibility of WiFi-Based

Material Sensing

IntuWition addresses the vision of this thesis from the perspective of: what can we do with WiFi alone?

Cameras and RADAR have comparatively well-explored capabilities, given decades of research in large

fields of study. WiFi as a sensing modality has been less explored, although as discussed in Ch. 2, it

has also been explored for our first desired output: localization. So, how can we expand WiFi’s sensing

capabilities to address our second two desired outputs: object type identification and depth imaging?

Unfortunately, the resolution we can provide with WiFi (around a meter), makes it impractical for depth

imaging. So in this chapter, we present our approach to sensing object type via detecting material. The

parts of our overall vision contributed by IntuWition are shown in Fig. 3.1. It takes as input the measured

Figure 3.1: IntuWition is a first attempt to achieve our vision of localization and object type identification
using WiFi alone.

15
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Figure 3.2: IntuWition helps detect the type of material of an object hidden from view. This could assist,
say a drone’s path planning algorithm, to change its planned path (blue) to a new path (purple). For
example, it could swerve upwards to avoid another drone, but would give a human a wide berth.

WiFi channels of a scene, and produces an output of the location of objects in the environment, as well as

assigning the object one of three type labels: human, wood, or metal.

3.1 Motivation and Approach

Recent years have seen an explosion in wireless sensing and tracking research, from people to emotions

to objects. However, most existing work in the wireless sensing space do not sense the precise material

composition of the objects they track. Yet, in many occasions wireless radios may need to be aware of

the type of objects in the environment, beyond their location. For instance, consider autonomous UAVs

that may choose to use their onboard Wi-Fi radios to detect if an object around the corner is a person

or another drone. This could allow it to respond differently in either case – for example by giving the

human a larger berth versus moving up vertically to avoid the drone (see Fig. 1). Beyond UAVs, object

type sensing could transform ordinary Wi-Fi devices into sensors that identify objects around the corner,

with applications in search-and-rescue, smart occupancy sensing, vehicular safety and beyond.

Unfortunately, state-of-the-art sensing solutions fall short of localizing and discerning occluded obsta-

cles. For instance, cameras can both localize and identify objects, but operate solely in line-of-sight. This

could be addressed with high-resolution aircraft RADARs; however, these bulky devices are not portable

and are highly expensive [3]. Further, newer radars designed for flight are often at high frequencies for

higher resolution, but this comes at the cost of reduced ability to propagate through and around materials

and 6x the power consumption over a typical Wi-Fi router [2]. Wi-Fi based sensing systems [5, 80] can

penetrate walls and obstacles unlike light to track hidden objects, but have not been comprehensively
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explored for material sensing. In this chapter, we ask: “Can commodity Wi-Fi radios sense the location

and type of moving objects?”

We present IntuWition, a system that explores the feasibility of identifying both the material and

location of surrounding objects using commodity Wi-Fi. We envision IntuWition as a complementary

sensing modality to add non-line-of-sight and materials-sensing capabilities to existing sensing systems.

We deploy Wi-Fi radios indoors and outdoors on a college campus to explore the materials sensing ca-

pabilities of WiFi. IntuWition processes wireless channels between pairs of commodity Wi-Fi radios to

accurately estimate and track the location and material of different objects in its surroundings, including

wooden, metal, and human obstacles. We further present a proof-of-concept application demonstrating

IntuWition’s performance on autonomous UAVs in distinguishing between occluded humans vs. other

drones both indoors and outdoors.

At the heart of IntuWition is an approach that infers material properties of objects in the environment

by measuring the wireless signals that reflect off them. In particular, it captures a specific property: the

polarization of the reflected waves from an object. When a polarized incident wireless signal reflects off

the surface of different objects, it behaves differently based on the texture and material of the objects.

Specifically, metal absorbs and re-emits the wave, resulting in a change of polarization pattern; smooth

surfaces reflect the waves with polarization intact; and rough surfaces scatter the waves and diffuse polar-

ization. In effect, this causes a change in the observed polarization of the reflected wave. We demonstrate

that by measuring the polarization of reflected waves from surrounding objects, one can infer the material

they are composed of. We draw inspiration from the remote sensing community, where aircrafts image

the topography using RADAR polarimetry [78, 93] to distinguish between trees, open fields and even

infer soil moisture using reflected signals.

To bring RADAR polarimetry to commodity Wi-Fi radios, IntuWition measures the Wi-Fi signal from a

vertically-polarized transmitter antenna to three mutually-perpendicular polarized receiving antennas, all

of which are atop a Wi-Fi enabled device. We then compare the measured power of the signal across these

antennas to infer its material composition. IntuWition builds a multi-layer perceptron model to achieve

this independent of other parameters that influence received signals such as the size, thickness, texture,

distance, and angle of an object. A key challenge in IntuWition’s design is the ability to detect and discard

signals that are reflected and scattered by multiple objects sequentially and therefore experience a hybrid

change in polarization that corresponds to none of their underlying materials. IntuWition achieves this by

reverse-engineering and recognizing the unique ways in which a Wi-Fi signal’s polarization compounds

when it bounces off many objects (see Sec. 3.4).

A second challenge IntuWition addresses is to separate the signals that reflect exclusively off each
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individual object in the environment in 3-D space, prior to analyzing its material composition. IntuWition

does so by processing these signals to measure the time-of-flight they experience as they reflect off each

obstacle over brief slices of time. Additionally, mobility of the sensing autonomous systems can allow for

views the same object from multiple perspectives. These samples further allow us to triangulate its 3-D

physical position and to filter out the object’s reflected signal for material classification. A key challenge

in doing so pertains to the hardware non-idealities of commodity wireless radios that induce random

errors in the measured time-of-flight owing to arbitrary timing offsets between the Wi-Fi transmitter

and receiver, both of which are two distinct radio chips with different clocks. IntuWition addresses this

challenge by simultaneously sending signals from the transmitter along two pathways: a wired pathway

and a wireless pathway, only the latter of which is impacted by the environment. We then estimate

timing offsets from the wired pathway to correct for its effect on the wireless pathway. The rest of

this chapter describes how IntuWition addresses this and other hardware non-idealities such as carrier

frequency offsets, sampling offsets, and phase shifts between the transmitting and receiving RF chains.

Further, we discuss the limitations of IntuWition in Sec. 4.10: It often misses small, fast-moving or well-

shielded objects, and cannot tell apart materials with similar polarization characteristics (e.g. two different

humans).

We implement IntuWition on Intel Galileo boards equipped with commodity Intel 5300 Wi-Fi cards [36].

We perform a detailed feasibility study in large indoor and outdoor spaces in a university campus and

distinguish between common material types: copper, aluminum, humans, plywood and birch, in a variety

of line-of-sight, non-line-of-sight, stationary, and mobile settings. We further mount our Wi-Fi platform

on a UAV (DJI Matrice 100) to classify between humans and drones for indoor and outdoor testing. Our

results reveal the following:

• Our system classifies between 5 types of material (copper, aluminum, plywood, birch, and human) of

a variety of sizes and orientations at an accuracy of 95% in line-of-sight and 92% in non-line-of-sight

settings.

• Our system can classify objects that are 0.42 m apart in line-of-sight and 0.55 m apart in non-line-of-

sight.

• Our system classifies between humans and drones with accuracy averaging 89% at UAV speeds of

up to 2 m/s in dynamic indoor and outdoor settings.

Contributions: This chapter presents IntuWition, to our knowledge, the first system that explores the

use of commodity Wi-Fi radios in discerning objects in the environment using polarization. We demon-
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Figure 3.3: Scattering off (A) a smooth surface, (B) a smooth metallic surface, and (C) a rough surface
produces differently polarized signals.

strate how IntuWition detects the material and location of occluded obstacles, opening up applications for

autonomous UAVs and beyond. IntuWition is fully implemented and evaluated indoors and outdoors.

3.2 Polarimetry

This section provides a brief primer on how capturing the polarization of signals that scatter off an object

provides information about the material it is made of. Fig. 3.3 illustrates three extreme instances of

scattering responses for a perfectly polarized incident wave: (A) The incident wave reflects off a perfectly

smooth non-metallic surface, maintaining linear polarization. (B) The incident wave reflects off a perfectly

smooth metallic surface, eliminating linear polarization [52]. (C) The incident wave scatters off a perfectly

rough surface, which may or may induce polarization based on the material. Hence, by measuring the

polarization and power of the received waves, we can distinguish objects based on texture and material

(metallic or otherwise).

To better understand this phenomenon, we consider a 2-D case for simplicity, a surface defined by

parallel and perpendicular vectors p and s, respectively. As described in [39], an incident s-polarized

signal can be denoted as Es(t) = Aejωt ês. Upon reflection off a surface, amplitude, phase, and orientation

can all be affected, resulting in a reflected signal Er(t) = Aejωt(rss ês + rsp êp), where rss and rsp are complex

numbers describing how the s-oriented incident wave has changed in phase and power along each of the

s and p components. Note that depending on the two phase value shifts, the locus of our signal might

change from linear polarization to circular or elliptical – if they change by the same amount, or by a factor

of π, linearly polarization is preserved.

Because of perpendicular linearly-polarized receiving antennas, IntuWition measures ês and êp sepa-

rately, thus being able to measure material-specific parameters rss and rsp. Having antennas that allow

us to receive different polarizations of data opens the door to polarimetry. Furthermore, receiving these
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signals separately allows us to take the ratio of these signals to remove power and phase shifts due to

propagation, which affects signals similarly regardless of their orientation.

Consider the incident vector EI(t) = acos(2π f t+φa)x̂+ bsin(2π f t+φb)ŷ, where a and b are amplitude

quantities, f is our frequency, t represents time, and φa and φb are phase offsets that determine the locus

of our signal – that is, its polarization. Because the incident signal is vertically polarized, this simplifies

our form to EI(t) = bsin(2 + φb)ŷ. Upon interaction with a material, the transmitted signal

Mathematically, we capture the effect of scattering using vertically (V) and horizontally (H) polarized

antennas at the transmitter and receiver [28]. Let the channels between the two transmit and receive

antennas be hHH , hHV , hVH and hVV forming a matrix:

H = hHHhHVhVHhVV

The above matrix captures the polarization of the received signal, for instance should polarization be

perfectly preserved the H matrix would have close to zero off-diagonal elements, while an unpolarized

signal has elements of similar power on average. Polarimetry captures this effect using a quantity α

which is defined as the weighted mean of the orientation of the eigenvectors of the covariance matrix of

H weighted by its eigenvalues (see [79] for a detailed definition and derivation). Intuitively, α measures

the angle of how far the scattering mechanism is from an ideally smooth non-metallic reflector. A small

α indicates a smooth non-metallic reflector, α = π/2 indicates an ideal metallic reflector, while α takes

intermediate values for all other materials.

We note that in practice this property is influenced by the location, geometry, orientation and texture of

reflecting surfaces in the environment besides material composition. The following sections present mod-

els to process wireless channels to decouple the reflector’s material composition from all the remaining

quantities.

3.3 Overview

IntuWition’s objective is to allow a Wi-Fi enabled mobile devices to obtain both the 3-D location and the

material composition of surrounding objects, including those occluded from view. It aims to do this using

existing commodity Wi-Fi radios on the drone, without requiring supporting wireless infrastructure in

the environment. In other words, an IntuWition device must both transmit and receive Wi-Fi signals and

analyze them to report the location and material of surrounding reflectors. Fig. 3.4 presents an illustrative

workflow of IntuWition.
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Figure 3.4: IntuWition Workflow: An example in 2-D (for simplicity) shows how IntuWition isolates
locations of two objects and compares powers across horizontally and vertically polarized antennas to
infer material type.

3.3.1 Learning Material Composition

IntuWition determines the material composition of any object-of-interest in the environment by studying

the polarization of the signal reflected from it. Specifically, IntuWition first uses the known time-of-flight

of the reflected signal from an object to develop a filter that outputs the wireless channel component that

corresponds solely to the reflected path. It then processes this signal component on a horizontal and verti-

cally polarized receiving antenna and measures their ratio to determine the extent to which the reflection

impacted the polarization of the transmitted signal. IntuWition measures this ratio across a range of fre-

quency bands, developing a vector that captures the impact of the material on signal polarization. We then

build a model based on multi-layer perceptrons to classify the material and type of the object-of-interest.

We also compare our model with five other typical machine learning models.

Extracting Features: Among the key challenges in material classification is identifying the best features

that are unique to materials. IntuWition relies on the change in polarization of the received signal from

the transmitted signal across different frequencies. Specifically, we filter different subsets of the wireless

channels, each spanning a different range of frequencies to obtain the wireless channel component re-

flected from the object-of-interest. We then compare these channels at the horizontal and vertical antennas

to study their polarization across subsets of frequency bands. Finally, we feed the ratio between channels

at the horizontal and vertical antennas into our model. IntuWition leverages a Multi-Layer Perceptron

model to process this feature vector and infer the object material and type, while remaining robust to
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device movement and signal multipath. Sec. 3.4.1 details IntuWition’s learning models.

Sensing Mobile Objects over Time: Perhaps the most challenging objects to track are objects that are

themselves moving with time. For instance, consider two objects whose trajectories intersect. While

IntuWition can identify an approximate relative location of each moving object along their respective

trajectories, it may erroneously swap the trajectories of the two when they intersect. Sensing materials

of objects provides a natural solution to this problem. Specifically, IntuWition can use the polarization

of reflected signals from each object to identify it and accurately track its position over time without

ambiguity. Sec. 3.4.2 describes how we exploit the synergy between localization and material sensing to

improve each other’s performance.

3.3.2 Locating Surrounding Objects

To accurately locate surrounding objects, IntuWition analyzes the wireless channel-state-information avail-

able at a compact commodity 3-antenna Wi-Fi receiver from a co-located Wi-Fi transmitter on the drones.

These channels are a combination of signals propagating along different paths as they reflect off various

surrounding objects, as well as the direct path between the transmitter and receiver. IntuWition processes

these wireless channels across Wi-Fi frequency bands and measures the time-of-flight experienced by the

signals along each path. When multiplied by the speed of light, this provides the distance traversed by

the signal from the transmitter to the reflector and then back to the receiver. By computing these distances

from multiple perspectives as the drone flies in the 3-D space, IntuWition triangulates the 3-D position of

the object-of-interest.

While there has been much work on localizing surrounding objects using RADAR [32, 105] and recent

work on wireless material sensing applications [110, 106, 27], bringing it to inexpensive and commod-

ity Wi-Fi radios on mobile systems without external supporting infrastructure brings forth several new

challenges that IntuWition must address:

Disentangling Signal Paths: First, IntuWition must separate signal paths from various objects surround-

ing the mobile device. IntuWition achieves this by actively exploiting the mobility of the device itself (e.g.

a moving UAV or tablet). Sec. 3.5.1 shows how by processing the received wireless channels across spatial

locations and frequency of operation of Wi-Fi radios, one can simultaneously obtain time-of-flight and

angle-of-arrival of surrounding objects.

Locating Occluded Objects: Second, IntuWition must develop algorithms that can analyze weak reflec-

tions from distant objects and those that are occluded by other objects (e.g. walls, trees, etc.). IntuWition

achieves this by sensing changes in the wireless channels from weak reflections to detect the presence of
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Figure 3.5: IntuWition transmits signals from a vertically polarized antenna to 3 mutually perpendicular
receive antennas and processes polarization changes due to reflections from materials.

the moving objects that produce them. A key challenge in implementing this is to filter out the movement

of the drone itself, as it also changes wireless channels, over and above the movement of the object-

of-interest. IntuWition therefore develops a novel background subtraction algorithm that eliminates the

effect of the drone’s movement in the wireless channels to detect the movement of surrounding objects.

Sec. 3.5.2 describes our approach in greater detail.

3.4 Material Sensing using WiFi

This section describes how IntuWition senses the material properties of a surrounding object. We assume

the received signal has been pre-processed to localize and isolate the signal component from a specific

object of interest (detailed in Sec. 3.5). We describe how we bring RADAR polarimetry to the Wi-Fi context,

while mitigating the limitations of commodity Wi-Fi radios.

Hardware Setup: IntuWition’s setup consists of four Wi-Fi radios – a transmitting device broadcasts

packets from a vertically polarized antenna to three receiving light-weight Wi-Fi chips, each with a mutu-

ally perpendicularly polarized receiver antenna on port one. Note that inexpensive omni-directional whip

antennas can be used as vertically polarized antennas because of their natural propagation pattern. We

connect a wire to the transmitter and, via a splitter and attenuated cable, connect this to antenna port 2 on

each receiving chip. This provides resilience to phase errors from hardware offsets (details in Sec. 3.5.1).

Fig. 3.5 shows an illustration of how the polarization pattern of signal is changed after reflections

from a material. If no reflector is present in the environment, the three mutually perpendicular receiver

antennas RX1, RX2, RX3 will only receive the single signal polarization pattern of the direct path (Path1).

In the presence of a reflector, the receive antennas also obtain signals along Path2 whose pattern of
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polarization depends on the material of the reflector.

IntuWition uses three receiving antennas instead of two as is used in the traditional RADAR polarime-

try because our transmitter and receiver are at about the same elevation level of the obstacle we are

sensing. As a result, modeling the sensed object as a 2-D reflecting plate (as is the case from a satellite or

a high plane) is no longer valid. Even when movement is along four controllable degrees of freedom (say

on a quadcopter drone), three antennas are sufficient to collect information about scattering from various

surrounding objects (including the floor), despite the movement of the platform itself.

Approach: IntuWition employs Multi Layer Perceptrons to classify different materials for a given object.

Our system takes as input the polarization of the reflected signal from a given object across frequencies. It

then extracts features via a multi-layer perceptron that closely correlate with material composition of the

object. A key challenge we face in designing our material classification algorithm is to decouple various

other factors that influence the wireless channels, such as object size, texture and orientation. The rest

of this section details our solutions to deal with these challenges as well as our choice of features and

classification algorithm.

3.4.1 Building the Machine Learning Model

Prior to extracting features, IntuWition uses its object localization algorithm (details in Sec. 3.5) to filter

the wireless channel from an object of interest. In particular, it measures this channel at all receive

antennas across OFDM subcarriers. Further, IntuWition repeats the localization algorithm over many

different subsets of Wi-Fi operating frequencies to obtain the wireless channel component reflected off the

object. In doing so, IntuWition retrieves a vector of wireless channels per-antenna from the object versus

frequency – both across different subsets of frequency bands and subcarriers.

Next, IntuWition computes the ratios of the channel received between pairs of antennas (Fig. 3.5). By

doing so, we eliminate the effect of distance of the object on signal power and focus instead on polarization,

which is highly correlated with the material composition of the object. The resulting three channel ratios

sampled across frequencies form a vector of over a thousand elements. Feeding all of these as features

into our machine learning model would be counter-productive, given that it requires a complex higher-

dimensional classification model that is highly susceptible to over-fitting.

However, we find that channel ratios sampled across all frequencies are not all equally important as

features, owing to differences in the quality of channels (e.g. channel fading and interference on some

frequencies) or the number of measurements available. Hence, IntuWition selects a subset of features

from the wireless channel ratios across frequencies. We use a greedy algorithm to rank features according
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to number of successful measurements across the whole channel and select the top 200 ones. Then we

remove the samples which have missing values among those 200 features. In doing so, we can reduce the

number of features to avoid over-fitting.

While a range of machine learning classification models are available, IntuWition employs Multi-Layer

Perceptrons (MLPs) to train its classifier based on a theoretical analysis and an empirical comparison.

MLPs have been widely observed to generalize well compared to hand-crafted features in recent deep

learning literature [95], since they automatically learn features from input data. We construct two versions

of MLPs which take raw feature values as input and outputs either the material class or an object type. The

latter pertains to our proof-of-concept demonstration of our system on a UAV, which classifies between

two classes of objects – drones and humans who may have multiple (yet different) classes of materials on

their surface.

Besides MLP, we considered alternative machine learning models. Sec. 4.9 presents an empirical com-

parison of various machine learning models: MLP, RBF-SVM, k-NN, PCA, and Naïve Bayes, and shows

that MLPs provide the maximum classification accuracy for us.

Training and Testing: We train the model by feeding the top 200 features to Multi-Layer Perceptrons.

These features were selected as the most impactful out of all the power ratios between pairs of antennas

captured at frequencies across large bandwidth. To avoid the overfitting of the training model, we collect

the training data in different radio environments (indoor and outdoor), across multiple days. We collect

the data of both sheets of different materials and different textures of real objects like chairs. We train the

model for 500 epochs, where one epoch is a full pass of the data through the neural net. We randomly

shuffle the training data after each epoch. Our batch size is 32 and we randomly select one batch at a

time from the training data sets to feed into the neural nets. We divide the entire dataset into separate

training and testing dataset to evaluate the classification network. Our MLP contains three hidden layers

with each layer having 200 units and using a rectified linear unit as the activation function. The network

is trained to optimize for cross-entropy loss using the Adadelta algorithm [120].

3.4.2 Tracking and Sensing Multiple Objects

Our discussion so far has exploited localization to isolate and find the material that objects in the en-

vironment are made of. However, sensing the materials of objects can also improve the performance

of localization of these objects. To see how, we consider a challenging problem in device-free location

tracking: tracking multiple objects whose trajectories intersect.

Ambiguous Trajectories: Fig. 3.6 shows an example of two objects – a pedestrian and a bicycle whose
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Figure 3.6: IntuWition can track objects with ambiguous intersecting paths by tagging objects with their
respective materials.

trajectories intersect at a crosswalk. Traditional wireless device-free localization systems struggle to dis-

tinguish between the two trajectories in Fig. 3.6(a) and Fig. 3.6(b) – both of which result in an identical set

of observed times-of-flight of reflectors.

IntuWition can resolve this challenge by exploiting a very simple property – while the location of

an object can change over time, its material composition cannot. As a result, IntuWition can use the

measured material composition of the two objects that are tracked to distinguish between the trajectories

in Fig. 3.6(a) and (b). An important limitation of this approach is that it cannot disambiguate objects of

precisely the same material. We believe that sensing other properties (e.g. size, shape, etc.) along with

material can help address this limitation – a task for future work.

Spurious Multi-Object Reflections: A second challenge that IntuWition resolves is to eliminate spurious

reflections off multiple objects before reaching the receiver. The resulting polarization observed is a com-

bination of the properties of all materials through which the signals reflect. Specifically, the phase shift of

rss and rs p values of the signal received (see Sec. 3.2) that captures signal polarization is the sum of the rss

and rs p values of each material. We note that signal absorptions cause limited impact on polarization [21].

IntuWition addresses this challenge by actively modeling multi-object polarization. In particular, In-

tuWition sorts objects based on their observed-value of time-of-flight (i.e. a measure of distance) relative

to the vehicle. It then progressively labels each object as legitimate, only marking objects as spurious if

its phase shift is the sum of subsets of legitimate phase shifts. At a high level, this is because the only

propagation effects that affect the horizontally and vertically polarized signals asymmetrically at the re-
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ceiver are due to reflections from obstacles, and the effect of the final received signal can be modeled as

the product of the transmitted signal along with each reflector. This translates to a sum in phase effects.

Thus, IntuWition quickly eliminates spurious reflections off multiple objects.

3.4.3 Material Properties vs. Other Effects

From atop a mobile platform, our system must deal with materials at various ranges, sizes, orientations,

and textures. Our system must therefore extract the effect of material properties of the object from wireless

channels from the variety of other properties of surfaces that influence channels: object size, orientation,

texture and location.

Effect of Location: In handling objects of different sizes, ranges and orientations, measuring changes

in polarization actually emerges as an advantageous approach when compared with measuring pure

power. While reflected power could certainly distinguish a wooden and metal sheet at the same distance,

it remains vulnerable to multipath and is subject to ambiguity, e.g. between a nearby wooden sheet and

distant metal sheet. We instead use power ratios of the channels from a vertically polarized transmitter

received by three perpendicular linearly polarized antennas. This ensures that the distance traversed to

the reflector is effectively factored out of our ratio reading.

Effect of Object Size and Orientation: The challenges of varying reflector sizes and angular orientations

would pose a similar issue for power-based material identification. These properties are captured in radar

ranging by a property σ which they call the Radar Cross Section (RCS). Also known as the effective area,

RCS is the value associated with what size an object’s reflection, independent of what its dimensions

actually are, appears to a radar sensing system. Angle of orientation and physical size of this object both

affect this, as intuitively, a 4’x4’ sheet oriented at 30 degrees would appear larger than one oriented at

45 degrees. Our multi-antenna approach to measuring rotations in polarization would be affected by the

same effective area across all three antennas, thus removing the effect of size and angular orientation from

isolating the material.

Effect of Surface Texture: We note that surface texture and material composition can be decoupled by

looking at a window of reflected values, instead of a single point. Polished surfaces show a distinct peak

at the time of flight of the reflected object (along with a few later peaks due to multipath effects). On the

other hand, in rough volume reflectors, signals transmitted through the initial surface but have multiple

opportunities to reflect through the width of the object, resulting in a shorter, wider peak.

Given the entire spectrum of possible surface textures, we could not exhaustively test this space, but

to help account for this effect, we train our machine learning models (Multi-Layer Perceptron) on diverse
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textures per material - such as different finishes of metal, or a wooden sheet sanded by different grit

sandpaper. We present our results in 3.8.3.

Effect of Incident Angle: The incident angle affects polarization by the well-studied Fresnel Equations.[52].

We train our models with many different angles to help account for this effect.

3.5 Localization using WiFi

Prior to sensing the material of an object-of-interest in the environment, IntuWition needs to process

the received wireless channel to separate the wireless signal component reflected off this object alone.

IntuWition achieves this by first finding the location of the object-of-interest, using signals from an object,

collected from different perspectives, to triangulate its position.In the case of multiple objects, we remove

peaks using successive interference calculation and then remove spurious multi-object reflections based

on their rss and rsp values, as described in 3.4.2. IntuWition then develops a filter to extract the wireless

signal component that emerges from that particular location. The rest of this section describes IntuWition’s

approach to locate surrounding objects.

3.5.1 Separating Signal Paths in Mobile Settings

IntuWition’s first task is to separate the signal components arriving along multiple paths as they reflect off

each object in the environment. At first blush, IntuWition may achieve this using prior work on RF local-

ization using commodity Wi-Fi radios [105]. Specifically, past systems seek to separate the time-of-flight

of different signal paths from the received signal, as they reflect off various objects in the environment.

An important factor that determines the resolution of measured time-of-flight of various signal paths is

the available bandwidth (20 MHz for Wi-Fi). To mitigate this, past work [105] stitches together wireless

channel measurements across multiple frequency bands to emulate signals from a wide-band receiver.

However, an important challenge in combining frequency bands in mobile contexts such as the UAV is

that the device moves in the 3-D space so that its location changes significantly between channel mea-

surements. Hence, channels across packets change both due to change in Wi-Fi frequency as well as the

change in device location between measurements.

IntuWition addresses this challenge by actively modeling both the frequency of operation and the

movement of the device (e.g. on a drone) in its analysis of the wireless channels. In doing so, it retrieves

both the angle-of-arrival and the time-of-flight of reflecting surfaces simultaneously. The rest of this

analysis makes two simplifying assumptions for ease of exposition, which we relax later in this section:

(1) The device moves in 2-D space; (2) phase errors due to frequency and timing offsets are accounted for.
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Figure 3.7: (a) IntuWition measures the distance and orientation of objects of interest using the wireless
channels that reflect off them. (b) Notation for device (e.g. on a UAV) location along curved trajectories.

Mathematically, assume that the device (Fig. 3.7) moves on a 2-D trajectory that is at a distance li

relative to its initial position, ψi relative to its initial orientation and on frequency fi when receiving packet

i. We assume that the distance between the reflector and the device is much greater than the displacement

of the vehicle across packets, allowing for us to approximate that the angle of the reflector does not

change. To recover the time-of-flight and location of objects in the environment, IntuWition builds upon

the Bartlett algorithm [54] in 2-dimensions. Specifically, we can write the power of the wireless channel

received along a distance r and angle-of-arrival θ as: P(r, θ) =

∣∣∣∣∑i hie
2π j fi

(
2r
c +

li cos(θ−ψi)
c

)∣∣∣∣2
The above power-profile will have peaks corresponding to the polar coordinates (r, θ) of various objects

in the environment relative to the vehicle. We can then extract the wireless channels corresponding to any

specific object of interest at (r, θ) as: h(r, θ) = ∑i hie
2π j fi

(
2r
c +

li cos(θ−ψi)
c

)
We show in Sec. 3.4 how one can

detect the material of an object at (r, θ) by analyzing h(r, θ) at the horizontally and vertically polarized

antennas across frequency.

While the above analysis assumes that the available Wi-Fi frequencies and distances moved by the

device between packets are uniformly spaced, in practice, this may not be true, leading to spurious peaks

in P(r, θ). IntuWition builds on past work on wireless localization [105] to eliminate these peaks by

leveraging the sparsity of signal multipath. Specifically, we assume that the signals that reflect off the

environment emerge from a small number of dominant paths, leading to a sparse P(r, θ) with a few

distinct peaks. Mathematically: min{∀p:Ap} ∑p |Ap|,

∑i

∣∣∣hi −∑p Apwp

∣∣∣2 = 0

wi,p = e
−2π j fi

(
τp+

li cos(θp−ψi)
c

)
This optimization resembles a non-convex 2-D Non-Uniform Discrete Fourier

transform (2-D NDFT). IntuWition solves it numerically using proximal gradient descent algorithms [40]
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generalized to 2-D to accurately localize objects, without being misled by spurious artifacts.

We make a few important generalizations of our approach: (1) While the above optimization assumes

the reflector is far from the object, IntuWition solves the equivalent problem for close reflectors through a

maximum likelihood approach that iterates over coordinates of closeby reflectors. As we only care about

nearby objects, the search space is relatively small, enabling efficient optimization. (2) To mitigate the

effect of hardware offsets, we draw from past works [91, 115] which connects two Wi-Fi chips by a wired

pathway (via RF attenuators) to enable synchronization. Specifically, we connect a cable from pin 3 of

the transmitter, split to pin 3 of each of the three receivers, and divide each communication channel by

the reference cable channel. We then use this ratio of the wireless channels between wireless and wired

pathways, across both horizontal and vertical antennas, to eliminate frequency and timing offsets. (3) It is

easy to see that our analysis readily generalizes to 3-D by iterating over the polar angle φp of any reflector

p in the optimization as well, i.e setting: wi,p = e
−2π j fi

(
τp+

li cos(θp−ψi) sin φp
c

)
.

3.5.2 Detecting Occluded Objects

Among the most significant challenges IntuWition faces is detecting occluded objects, whose signals are

received very weakly at receiver. More problematically, the weak signals of these objects are often over-

whelmed by reflections from the object in front of them. This is the classic problem of the near-far effect

faced by several wireless sensing solutions [6, 80]. Past solutions address this problem in several ways

for moving objects in the environment, the most common of which is background subtraction [6, 5],

where these systems subtract the observed wireless channels between two time instances to filter out

what changed between them.

While IntuWition can benefit from these past solutions if the device is static, they do not apply when

the device moves. This is because the wireless channels between measurements change both due to

changes in the environment and the movement of the device itself.

IntuWition addresses this challenge by developing a background subtraction algorithm that accounts

for the movement of the device itself. Specifically, let us assume that h(r, θ) and h′(r, θ) are the wireless

channels along any given direction (r, θ) measured at two time instances where the device is displaced by

a distance ∆d and re-oriented by ∆θ. It follows that any object at (r, θ) at the first time instance is now at

(r− ∆d cos θ, θ − ∆θ) (provided r � ∆d). As a result, if the reflector at (r, θ) remain static, it is easy to see

that h(r, θ) = h′(r− ∆dcosθ, θ− ∆θ). One can therefore perform background subtraction to detect moving

object at each (r, θ) by subtracting the channels as follows:

∆h(r, θ) = h(r, θ)− h′(r− ∆d cos θ, θ − ∆θ)
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IntuWition can then process ∆h(r, θ) for each (r, θ) to detect the material of moving objects at each location,

even if their signals are weakened due to occlusion.

3.5.3 Role Of Localization

Localization plays an enabling role to material sensing in our system. It is not our primary technical con-

tribution, but localization is what allows us to isolate objects in the environment for materials classification

and determines the resolution of the system. Localization also removes occlusions and determines the op-

erational range of our system. After the object is isolated, it is passed to the material sensing algorithms

described in §3.4 to isolate object characteristics.

3.6 Limitations of IntuWition

Given that our system is a feasibility study, we note some important limitations of IntuWition(see §4.9

for evaluation): It performs poorly when detecting weak reflectors whose signals are attenuated due to

distance or size. Its resolution in separating multiple objects is limited by the total aggregate bandwidth of

Wi-Fi: about 0.4 m in our experiments. This means that a human leaning on a wall may be misclassified. It

often misses fleeting reflections due to fast moving objects. It cannot tell apart certain materials that have

similar polarization characteristics or objects composed of the same material (e.g. two different humans).

We are also limited in our ability to resolve a signal after significant multibounce effects, as each reflection

significantly reduces the power at the receiver.

In addition, our system as a material classifier may respond most strongly to surface characteristics

and misclassify clothing as humans, for example. In cases of extensive attenuation, such as around-the-

corner coupled with through-wall sensing, our localization accuracy drops further. Finally, we note that

because of the use of background subtraction, our system is most effective for systems where an object is

introduced or where an object is moving. However, objects of sufficient size, reflectivity, and/or visibility

can still be detected without background subtraction.

3.7 Implementation

System Setup: We implement IntuWition using four WiFi cards, one for transmission and three for re-

ceiving. Each includes a linearly polarized antenna (Ettus Vert2450) connected to each Intel 5300AGN card

on the Intel Galileo Boards, which run the Linux 802.11n CSI tool [36] to obtain channel state information

(Fig. 3.8). The transmitter also has an SMA splitter and wire on the first port of the 5300AGN card that
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Figure 3.8: Setup: (A) 3 receiving and (B) 1 transmitting antennas, (C) Augmented UAV setup. Indoor
(left) & outdoor testbeds (right)

carries a reference signal to the second port of the receivers to synchronize all radios and remove phase

errors caused by hardware impediments (see Sec. 3.5.1). The wired line is attenuated by 50 dB to avoid

saturation. To measure the polarimetry in 3D space, the three receiving antennas are oriented perpen-

dicular to each other. Note that we chose to use three Wi-Fi cards, instead of one which would suffice

in principle, because we observed that the first port of the Intel 5300AGN card had a consistently higher

receive gain on average when compared to the other ports (a peculiarity of the chip). The overall weight of

our sensing system is 439g, which can be significantly reduced (to just the antennas) should future Wi-Fi

cards on mobile platforms (e.g. onboard Wi-Fi on drones) report wireless channels as the Intel 5300 does.

We place our WiFi receiver and transmitter, pictured in 3.8A and B, on two setups for testing: a rolling

cart, with a separation of 42cm, and atop a drone as shown in 3.8C, with a separation of 31cm.

We note that the use of WiFi chips with a future sensing feature could reduce the chips needed to

two (if one chip could accept three receivers), would eliminate the need for the Galileo boards, and could

speed our channel hopping process. Further, as we are only using channel measurements for sensing, our

transmissions are arbitrary packets which could instead be data for the autonomous system.

Software and Run-Time: We implement IntuWition’s algorithms in MATLAB/C++ (MLP implemented

in Python) in the cloud and track location at the rate of 8 Hz and sense materials at the rate of 2 Hz. The

main bottleneck in ensuring faster, real-time analysis is the amount of time it takes to sweep through all

available WiFi channels in the ISM band supported by the Intel 5300 including 5-GHz bands – a problem

that may be remedied by future chipsets. In its current state, a full frequency sweep for each receiver
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radio results in, at most, a file 18.9kB. This requires a backhaul of 37.8kBps for material sensing. For

localization, the radios hop across 1/4th of the channels, so the backhaul required is the same.

Experimental Evaluation: Unless stated otherwise, our evaluation across experiments are conducted

in settings as described below. We evaluate the system in a 225 sq.m outdoor garage space, a 500 sq.m

outdoor plaza, and four different indoor spaces ranging from 43-400 sq.m in a large university campus

(see Fig. 3.8).

Our evaluation consists of diverse types of objects of various shapes, sizes and thicknesses. For

our material tests, we use sheets of copper(3’x3’), aluminum(2’x3’, 3’x3’), birch(2’x4’), plywood(4’x2’),

maple(4’x4’x.25", 4’x4’x.5", 4’x4’x.75"). The wooden sheets also include a variety of textures: semi-gloss,

roughed up with steel wool, and sanded by 80 and 220 grit. Furthermore, we additionally test more

realistic objects in our evaluation, including a chair, a table, a filing cabinet, and a car. We also recruited

ten human volunteers of different body types, with half our testing performed in summer clothing (thin

t-shirts and shorts) and half of it performed in a winter clothing (jackets/coats). We collected data at

different orientations (40 to 150 degrees of tilt) and distances (2m to 10m away from our setup), indoors

and outdoors. We perform thirty trials for each material at each configuration. All our experiments are

in indoor/outdoor multipath-rich settings (walls, furniture etc.), including non line-of-sight where objects

were behind wooden partitions. We emphasize that for each experiment, we train and test our system on

completely different subsets of both materials and testbed locations. All of our experiments consider the

presence of multiple objects whose location and material we explicitly track (up to four). We explicitly

evaluate the effect of mobility of the system in Sec. 3.8.5, which describes a proof-of-concept evaluation of

our system to sense obstacles hidden from view around a UAV. Our UAV was measured to hover at 0.05

m/s by default and moves at speeds up to 2 m/s (fast walking human). Note that graph error bars show

standard deviation of location/sensing accuracy across multiple experiments.

3.8 Evaluation

In this section, we describe the methods and results for our experiments. We note that localization is a

precondition for material sensing, and both material sensing and localization are required for object track-

ing, so the results are inherently integrated but have been separated into material sensing and localization

to observe trends.

3.8.1 Microbenchmarks

IntuWition relies on two hypotheses: that polarimetry can provide significant gain over spatial diversity
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Figure 3.9: Three vertical antennas vs. three mutually perpendicular antennas, compared in material iden-
tification accuracy across 5 common classifiers. Note significantly higher performance for perpendicular
antennas across the board, showing importance of polarization.

as a material sensing modality, and that Multi-Layer Perceptrons are the best model for our application

due to their analysis of higher-dimensional features (compared to say, kNN) and their deep architecture

(allowing for more efficient and intelligent behavior than shallow ones [14].)

To test these hypotheses, we ran a preliminary experiment. To confirm polarimetry, rather than spatial

diversity, was contributing to material sensing gain, we ran identical trials with three vertical receiving

antennas as well as three perpendicularly oriented antennas. We collected data (specifically, power ratios

of receiving antennas) in a line-of-sight lab setting to distinguish between three material types: birch,

aluminum, and human, at a variety of angles and distances, to create our training set. Then, we rearranged

the setup and background furniture in the lab to create the test set. Using this training and test data, we

found material classification accuracy for five different common machine learning models, as shown in

3.9.

From this experiment, we draw two major takeaways: The use of perpendicularly oriented antennas

significantly increases material sensing accuracy across all machine learning models, and that Multi-Layer

Perceptrons are indeed the ideal model for our experiment. We chose to build the Multi-Layer Perceptron

to have three hidden layers based on our experimental analysis.

3.8.2 Object Localization

While localization is not the main focus of our chapter, we include localization accuracy to isolate different

materials and distances in Fig. 3.10 for completeness. For ground truth, we affix fiducial markers to

objects and implement a camera-based fiducial tracking system using ARToolKit [1], which reports a sub-

millimeter baseline accuracy. The primary takeaway from our localization results is that our system can

typically isolate a line-of-sight (LOS) or non-line-of-sight (NLOS) object that is at least a meter separated
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Figure 3.10: (a) Effect of Material Type on Localization Error: We observe our system localizes wood and
metal best, which we expect is due to the larger surface areas of our material samples on average when
compared to humans, for an overall mean error of 0.49m. (b) Effect of system to reflector one-way distance
on Localization Error: we see error increase with distance, which we expect is due to less power being
received from reflectors as distance increases.

Figure 3.11: This confusion matrix shows our efficacy in classifying between five different materials using
our Multi-layer Perceptron Classifier.

from other reflectors.

3.8.3 Material Sensing

In this section, we discuss our core material sensing results and polarimetry’s robustness to material

thickness, surface area, range, and texture.

(1) Overall Observations In fig. 3.12(a), we can see IntuWition has overall classification accuracies of

95% in LOS and 92% in NLOS. The confusion matrix in fig. 3.11 further shows that our system tends most

often to confuse objects of the same class– metals copper and aluminum, for example. We surmise our

system can only distinguish them at all due to the thin layer of oxide that forms on the surface of a metal

– aluminum oxide is an insulator, while copper oxide is a semiconductor, or perhaps due to polymer

coatings used to prevent rusting. We don’t anticipate this confusion to be of concern in some contexts
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Figure 3.12: (a) The effect of material type on classification accuracy: we see an average accuracy of
93.5%, with higher errors for copper and aluminum (since they are more easily confused). (b) The effect
of thickness of wood on classification accuracy: we see lower accuracy as thickness decreases and fewer
layers of material exists to reflect its signature. (c) Material Sensing vs. Surface Area: we see accuracy
increases with surface area as scattering occurs at a larger scale.

such as UAV path planning, since the exact type of metal isn’t critical to the functionality of the system.

When comparing system performance with multiple tracked objects, we see a negligible performance

decrease for the two-object case, a 5% decrease in classification accuracy in the three-object case, and a 6%

decrease in classification accuracy in the four-object case.

(2) Material Sensing vs. Thicknesses We use wood to evaluate our system’s robustness to thickness, as

metal only has a skin depth of roughly 1µm at Wi-Fi frequencies (mostly acting as a surface reflector) and

the material composition of humans is heterogeneous.

In Fig. 3.12(b), we observe that while 0.25" wood has less layers of water to refract compared to

the other two, our system still maintains a robust classification accuracy higher than 89% even in the

NLOS scenario. Further, we observe that a thickness increase of half an inch resulted in a 7% increase

in classification accuracy in line-of-sight settings. We surmise that this is because there is more available

material to reflect and refract its unique polarization signature. This leads us to believe that for non-

metallic objects, the material that composes the largest part of a reflector may impart the most significant

share of signature, as would be necessary for identifying humans regardless of clothing.

(3) Material Sensing vs. Surface Area We use a variety of material surface areas to evaluate our system’s

resilience to different sizes. Specifically, we used various sizes of aluminum, copper, maple, and birch, as

well as a human. These ranged in surface area from 4ft2 to 16 ft2 at distances ranging from 0-15 m.

Fig. 3.12(c), shows that as surface area increases from 4ft2 to 16ft2, the classification accuracy increases

from 88% to 93% in NLOS and from 92% to 98% in LOS scenarios. That is, reflective surfaces with larger

cross-sectional areas are easier to detect and classify, as expected. Note that lower surface areas will

progressively lower accuracy (a limitation of IntuWition).

(4) Material Sensing vs. Range To evaluate our system’s robustness to range, we collected measure-
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Figure 3.13: Effect of Round-trip Distance on Material Sensing: we see accuracy slightly increases with
distance at the beginning, as the reflector becomes more distinguishable from the strong line-of-sight
signal, and eventually falls with distance.

Figure 3.14: (a) We show our classification network accuracy dealing with different surface textures of the
same material (wood). (b) We show our classification network accuracy dealing with real objects used in
our daily life of different material (wood is showed as red, metal is showed as blue). (c) We show the
boards, furniture, and objects used for these experiments.

ments at up to 20 m in round-trip distance from the system to the sensed object.

As shown in Fig. 3.13, we observe a slight increase in our system’s accuracy in the beginning, which

we surmise is due to the increased ability of our system to resolve the reflector given the strong line-of-

sight signal. Then, there is minimal impact in our system’s performance with up to a round-trip distance

of 12 m, following which we see a gradual decrease as expected due to the reflector’s signal being received

more weakly.

(5) Material Sensing vs. Surface Texture Finally, to evaluate our system’s robustness to texture, we col-

lect measurements from five surface textures of plywood of fixed size and thickness: unfinished, roughed

up with steel wool, painted with semi-gloss, sanded to 80 grit (particle size of 201 µm), and sanded to 220

grit (particle size of 70 µm).

As shown in Fig. 3.14a, the surface texture of wood does not play a statistically significant role in

classification accuracy.



CHAPTER 3. INTUWITION: ON THE FEASIBILITY OF WIFI-BASED MATERIAL SENSING 38

Figure 3.15: Measures the accuracy of (a) Object recognition (drone vs. human); and (b) Localization at
varying UAV speeds.

3.8.4 Object Recognition of Real-Life Obstacles

To test our system’s coarse applicability to real-life objects, we train a new model to classify wood from

metal using all collected test and training data up until this point to create the best model possible. We

test this on new, unseen objects. These include five of each wooden and metal objects of varied material

types (various wood and metal types): A rough chipboard sheet, a table, a chair, an easel, and a bookshelf;

a filing cabinet, a shelving grate, a mesh furniture stand, a matte PC tower, and the passenger-side-door

of a car. These were collected in a lab setting using a 4’x4’x1" wooden sheet to occlude the setup for NLOS

settings, with the exception of the car which was collected in a yet-unseen parking garage environment

and was occluded by a 2’ concrete wall for NLOS readings.

As seen in Fig. 3.14 we see relatively high accuracy across the board given that our system had only

been trained on metal and wooden sheets and these new objects were unseen. We note that classification

accuracy for the metals appears to be slightly higher, with the exception of the metal grate, whose structure

likely introduces a lot of destructive interference.

3.8.5 Application: Object Recognition from a Mobile UAV

In this experiment, we demonstrate our system’s utility in avoiding two types of obstacles: humans and

other UAVs for a proof-of-concept application: a delivery drone navigating indoor and outdoor spaces.

We are particularly interested in capturing how the drone’s speed and vibrations affect our system (see

Sec. 3.4.2). Fortunately, recall that IntuWition only needs the relative trajectory of the UAV, not its absolute

location at any point. Further, IntuWition applies a sliding window filter (N=6) on the output of inertial

and motion sensors on UAVs across multiple measurements to mitigate spurious readings. Since our

drone is operating around 100 revolution per second which can be translated to 100 Hz of the vibration of
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the drone [59], we additionally apply a high-pass filter to remove this noise. We classify between drones

and humans from atop a drone at a few different speeds: 0, 0.5, 1.0, 1.5 and 2.0 meter per second along a

circular trajectory with a 5 m radius. Note that we do not test at higher speeds owing to limitations of the

UAV platform and to ensure user safety. We further localize the reflector using 3-D MUSIC to measure

localization error in three dimensions.

We notice that increasing UAV speed decreases the accuracy of material sensing. One hypothesis is

that because the rate of sweeping Wi-Fi frequencies is around 2 Hz, increased vibration of the propellers

impacts our error in localization which in turn influences material sensing accuracy. Our MLP model has

a prediction latency around 0.04 second (25 Hz). We observe that our accuracy falls off with speed, but

we are still able to achieve 89% mean accuracy in classifying between humans and drones at speeds of up

to 2 m/s and mean localization accuracy of 0.87 m.

3.9 Summary

This chapter presents IntuWition, a system that explores sensing the material and location of hidden

objects in the environment using commodity Wi-Fi radios. IntuWition analyzes the change in polarization

of the wireless signals as they reflect off different objects surrounding a Wi-Fi device to infer their material

composition. A detailed evaluation demonstrates promising accuracy in both localization and material

identification.

While IntuWition categorizes between five types of materials, we believe future work can take this

much further. We believe high-bandwidth radios such as 802.11ad can greatly improve material sensing

resolution. We also leave for future work developing optimized hardware that performs all material

processing on-board the device, as opposed to the cloud. In the context of UAVs, fusing information

with on-board cameras and dealing with object recognition system design challenges on robotic platforms

remains an important task for future work.



Chapter 4

Metamoran: A Hybrid mmWave and Camera

System for Long-Range Depth Imaging

After considering opportunities in improving WiFi as a sensor towards the vision in Fig. 1.4, we turn our

attention to opportunities in the other two sensing modalities. Because RADAR and camera are so thor-

oughly developed as sensors individually, we instead focus on exploring opportunities at their intersection

for high-resolution (both angular and depth) imaging of a scene, our third system output target. We note

that localization and object type identification are largely implicit to these sensors: mmWave RADAR is

well developed to detecting the location of objects, and camera vision techniques can provide object labels

for obstacles in a scene. We exploit both of these capabilities to image obstacles in the environment with

Figure 4.1: IntuWition is a first attempt to achieve our vision of localization and object type identification
using WiFi alone.

40
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a depth metric. The parts of our overall vision contributed by Metamoran are shown in Fig. 4.1. It takes

as input the camera capture and mmWave I/Q values of a scene, and produces an output of the location

of objects in the environment, a semantic label of object type, and a depth profile for the given object.

4.1 Motivation and Approach

One of the most appealing features of mmWave radar systems arises from its high bandwidth and carrier

frequency, which enables precise depth estimation at long depth ranges, often as large of 60 meters, and at

cm-scale resolutions. This finds application in a wide range of areas, including security [18], automobile

safety [109], industrial sensing and control [24]. For comparison, most RGB camera solutions of the same

physical form-factor (e.g. monocular depth estimation [15], depth cameras [98], stereo-vision [94], etc.)

struggle to reach such resolutions for objects at extended distances and are about an order-of-magnitude

worse. Yet, mmWave radars, by themselves, are not a capable 3-D imaging solution as their angular

resolution along both azimuth and elevation is extremely poor — with the best radars of the market at least

10× poorer than camera systems. This has led to mmWave radars being restricted to niche applications

– for instance, in airport security [18] or physical collision sensing [109] — where their impressive depth

range and resolutions are not fully utilized. This naturally leads us to the question: Can we fuse cameras

and mmWave radar sensor data to provide the best of both worlds and build a rich 3-D depth imaging solution?. In

doing so, we seek a 3-D imaging system that can be readily deployed from a single fixed vantage point to

enable applications as long-range road-side safety systems, surveillance and security applications, wide-

area mapping and occupancy sensing.

This chapter presents Metamoran1, a hybrid mmWave and camera-based sensing system that achieves

high angular and depth resolution for objects at significant distances – up to 60 meters (see Fig. 4.2).

It achieves this through a novel specular radar processing algorithm that takes information from computer

vision algorithms such as deep neural network-based image segmentation as input. While efforts have

been made to fuse radar and camera data in the past, primarily for short range object detection and

tracking [20], imaging under physical [73] or weather-related occlusions [62], this chapter considers the

unique problem of hybrid mmWave/camera sensing for long-range outdoor depth imaging.

A key contribution in our system is improving depth sensing capabilities beyond what is typically

achievable by a mmWave radar alone using a novel radar processing algorithm that provides high depth

resolution (along the z-axis) guided by computer vision techniques that have high spatial resolution (in x

and y). First, we detect and identify an object using a camera-based image segmentation algorithm, which

1A fictional race from the Dragon Ball Universe that taught Son Goku the Fusion technique [103].
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Figure 4.2: Metamoran devises a novel mmWave specular beamforming algorithm that forms high resolu-
tion depth-images 60 m away from objects-of-interest, using inputs from vision techniques such as image
segmentation.

gives us the angular position (in the x-y plane) of objects in the environment as well as their spatial outline.

Our key technical contribution is a novel specular radar beamforming algorithm (see Sec. 4.6) that returns

high-resolution depth estimates by processing radar signals along the angular span and shape outline

for each object in the image identified using segmentation. We then show how such a system could be

combined with dense monocular depth estimates to create robust depth images of individual objects,

capturing depth variation within the object itself, even at extended distances away from the radar-camera

platform. In other words, we show how semantic inferences on vision data collected by the camera

can help declutter and provide useful priors to obtain high-resolution depth images that are better than

standalone radar or camera algorithms.

Our second contribution is to address various challenges in making Metamoran robust in case of

cluttered environments, unfavorable object orientation, extended distances and partial occlusions that

impede the radar, camera, or both. We address this problem specifically for stationary objects: this form

radar’s worst-case scenario (Doppler can help to detect moving objects) as objects that are not moving (e.g.

traffic signs, parked cars, children at a bus stop) can also be important to detect. We narrow down objects

whose spatial bounds are consistent across both camera and radar images, thereby allowing for increased

robustness by reducing clutter. We also observe strong reflections from out-of-spatial bound reflectors

leak into our spatial bound of interest and design cancellation techniques to detect weak reflections which

would otherwise be masked by spurious objects. Further, we design and show how Metamoran continues

to operate well, even amid partial occlusions, e.g. due to fog or partial occlusion from other objects. We

document instances where radar systems can actively be used to improve camera image segmentation by
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identifying objects that were initially missed by segmentation.

We implement Metamoran with a TI MMWCAS-RF-EVM radar and a FLIR Blackfly S 24.5MP color

camera. Due to the relative lack of rich public mmWave radar I/Q datasets over long distances, we

collected extensive data (200 scenes totalling 100 GB of I/Q samples and camera data) in diverse scenes

outdoors at a major U.S. city. A few highlights from our results include:

• An evaluation of the effective median depth of an object-of-interest at distances of up to 60 meters, in

diverse outdoor settings, at a median error of 28 cm. This is an improvement of about 23× versus state-

of-the-art monocular depth estimation and 13× versus a naive camera + radar beamforming solution.

• Dense estimation of the azimuthal/depth profile of a single object-of-interest, for an imaging error of 80

cm at distances up to 60 meters. This is an improvement of about 4× versus state-of-the-art monocular

depth estimation and 6× versus a naive camera + radar beamforming solution.

• A demonstration of resilience to various classes of partial occlusions and blockages.

Contributions: We makes the following contributions.

• Metamoran, a novel system that combines camera and mmWave sensing to achieve high resolution

depth images at long ranges.

• A specular beamforming algorithm that leverages the output of image segmentation algorithms from

computer vision to declutter and retrieve depths of objects-of-interest from radar I/Q samples.

• A detailed implementation and evaluation of Metamoran in varied environments to demonstrate sub-

stantial improvements in long range depth imaging.

Limitations: We concede that our system is limited by more significant occlusions that impact camera

observations and discuss the limitations of our system in Sec. 4.10 as well as present an evaluation of both

successful and failure modes with various types of occlusions in our results in Sec. 4.9.

4.2 mmWave and Camera Fusion

Radars, once only limited to military applications, are today used ubiquitously in a variety of applications

from airport security [18], automotive applications [102], human-computer interfaces [60] and industrial

automation [64]. A key factor which enabled this trend was the usage of mmWave frequencies which

allowed for compact antenna arrays and wide bandwidths, both of which are crucial for radars’ target

ranging and imaging capabilities. mmWave radars, as the name suggests, use radio waves of millimeter
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scale wavelengths in either 60 GHz or 77-81 GHz by first actively illuminating an environment and then

processing the reflections from various objects in the environment. This is noticeably different from

modern image sensors which purely rely on passively sensing rays which make their way to the sensor.

The reflections from the objects encode useful information such as objects’ range, azimuth, elevation and

velocity with respect to radar. The transmitted illumination and radar hardware are the main factors

which limit the radars’ ability to generate high resolution 3D images of the scene.

Advantages of mmWave Radar: Most commodity radars transmit a Frequency Modulated Continuous

Wave (FMCW) signal which is a waveform that continuously changes its frequency over time to span a

significant bandwidth B. A radar’s range resolution is fundamentally limited by this effective bandwidth

of the transmitted signal as c
2B (c is speed of light). In the 77 GHz band, we have a theoretical range

resolution of 3.75 cm over tens of meters. In this regard, radars are on par with time of flight LIDARs

which report a similar range accuracies. However, unlike LIDARs, radars work in all weather conditions

(rain, snow, fog) and extreme ambient lighting (sunlight) [67].

Limitations of mmWave Radar: However, radars unfortunately have worse azimuth and elevation

resolutions compared to both cameras and LIDARs. While range resolution is limited by the bandwidth

of the radar signal, angular resolutions are dictated by the number of antenna elements that are packed

on a radar. As the number of antenna elements increases, so too does the resolution. The best state-of-

the-art commercial mmWave radar available [100] with as many as 86x4 antenna elements has a 1.4◦x18◦

angular resolution. In contrast, state of the art LIDARs today achieve 0.1◦x2◦, atleast 10x better angular

resolution than radars [61]. With a poor angular resolution, 3D radar images look very coarse and blobby

in the angular domain. While more antenna elements can be added, they come at significant increases in

device cost and form-factor – bridging the 10× gap is simply not an option with today’s state-of-the-art

hardware. We make the observation that even commodity cameras, because of their dense focal planar

array image sensors, are better than radars in terms of angular resolution at about 0.02◦x0.02◦ [68]. This

observation leads us to study combining the high angular resolution of camera systems with the high

depth resolution of mmWave radar – an approach we describe in the next section.

4.3 Overview

4.4 Metamoran’s Approach

Metamoran at a high level, takes as input camera and 77 GHz mmWave radar data from a scene. We use

these inputs to fuse and return a high-resolution depth image for specific objects-of-interest at distances
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of several tens of meters away. We specifically consider cars and persons – key to surveillance, industrial

and occupancy sensing applications. Our key contribution is a novel radar processing algorithm that

produces refined depth estimates for specific objects-of-interest, based on priors obtained through image

segmentation of camera images. We choose a radar-based processing approach rather than an exclusive

deep-learning based approach on all underlying data (images + raw I/Q), due to better explainability of

the inferences. Besides, the resolution obtained from our system in depth is close to the physical limits

that can be obtained owing to the bandwidth of the radar. Nevertheless, our solution benefits heavily

from state-of-the-art deep neural network based image segmentation algorithms that operate on image

data.

System Architecture and Outline: Fig. 4.2 depicts the architecture of our system that we elaborate

upon in the following sections. First, we apply two state-of-the-art pre-processing steps that operate

on image data (Sec. 4.5): (1) image segmentation, i.e. identify the spatial (x and y) bounds of objects-

of-interest – cars, people and traffic signs; (2) Monocular depth estimation to obtain an approximate

estimate for the shape of these objects, albeit prone to error at large distances. We then design a novel

specular beamforming algorithm in Sec. 4.6 that uses priors along one dimension (x and y) from image

segmentation and monocular depth estimation which provide a coarse shape of the object of interest to

then obtain a fine-grained depth image. (3) Our final step (Sec. 4.7) is to build resilience to occlusions and

clutter into our system, to improve performance in a variety of circumstances.

4.5 Image Pre-Processing

Metamoran’s first step is to process camera image data to learn about the approximate span in azimuth

and elevation of objects-of-interest, as well as an approximate silhouette or outline along the x-y plane,

i.e. parallel to the depth axis. We specifically consider three specific classes of objects-of-interest that are

ubiquitous in outdoor sensing – cars, pedestrians and roadside infrastructure (traffic signs). As mentioned

in Sec. 3.2, we exploit the high angular resolution of camera systems that are at about 0.02◦x0.02◦ [68] –

orders-of-magnitude better than mmWave radar systems. ’s vision pre-processing steps below are there-

fore crucial in providing prior information on the shape and location of objects-of-interest along the x-y

plane so that mmWave data can be used to focus on these objects and improve resolution along the z-axis.

4.5.1 Image Segmentation

To find the spatial bounds (along x-y) of objects of interest, we perform state-of-the-art image segmentation

which labels objects by their type and creates masks that capture the outline of these objects (see Fig. 4.3
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Figure 4.3: Image Segmentation: Metamoran uses image segmentation to identify the spatial bounds
along the x-y axes of objects-of-interest – cars, pedestrians, traffic signs – with semantic labels assigned.

for an example).

We perform image segmentation using Detectron2 [111] trained with KITTI dataset. This model has

been previously trained on several objects including cars, pedestrians and traffic signs in outdoor environ-

ments. We use these types of objects as our primary test subjects without additional model tuning. This

image segmentation combines the best of both worlds from semantic segmentation and instance segmen-

tation, by providing a segmentation mask (outline), a semantic label for the mask and instance ID for each

detected object as shown in Fig. 4.3. The segmentation mask directly provides the spatial bounds and

precise shape of the object along the x-y plane and is fed as a prior for mmWave specular beamforming

in Sec. 4.6 below.

4.5.2 Monocular Depth Estimation

As a second step, we perform state-of-the-art monocular depth estimation specifically on objects-of-

interest filtered through image segmentation above. We use this scheme both as a baseline for comparison

and to provide a coarse range of depths (depth profile) that the object spans. We use AdaBins [15] for

monocular depth estimation of the objects-of-interest as detected by the image segmentation step. We note

that state-of-the-art monocular depth estimation is poor in terms of accuracy and resolution at extended

distances, with errors of about 19.5 meters for objects that are 60 meters away (see Fig. 4.13). Nevertheless,

we see that monocular depth estimation provides useful prior information on the approximate range of

depths that the object spans and combined with image segmentation provides a rough 3-D shape (outline)

of the object that serve as inputs for our mmWave specular beamforming algorithm in Sec. 4.6 below.
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Figure 4.4: Metamoran vs. Radar Beamforming and Monocular Estimation: A qualitative comparison of
the depth images shows standard radar beamforming to be very coarse in azimuth resolution, monocular
to have significant absolute depth offsets but great azimuth diversity, and Metamoran which leverages
rich shape information from image pre-processing to generate an accurate, dense depth image.

4.6 mmWave Specular Beamforming

Metamoran’s specular beamforming algorithm processes the complex I/Q samples received from the

mmWave radar platform, coupled with the shape outlines of objects-of-interest in the scene, obtained

from the image pre-processing steps in Sec. 4.5 above. In traditional mmWave beamforming [97], received

I/Q samples are effectively projected along all spatial angles (azimuth and elevation) to obtain the signal

time-of-arrival between the object to the radar. This quantity, when multiplied by the speed of light,

obtains the depth of the object. Unfortunately, this approach relies on the azimuth resolution of the radar,

which is fundamentally limited by the number of antennas on the radar itself – at best 1.4◦ in state-of-the-

art radar systems. The end result is a coarse radar image.

4.6.1 Depth Super-Resolution

Metamoran’s key technical contribution is a novel specular beamforming solution, a super-resolution

algorithm that overcomes the poor azimuth resolution of mmWave radars by using priors from the image

pre-processing steps in Sec. 4.5. At a high level, Metamoran attempts to build a mmWave wireless signal

called the object template that captures the influence of an object of a particular shape (as determined by

camera pre-processing) on mmWave radar receptions. Further, Metamoran also knows the precise azimuth

and elevation angle that this object template appears at, owing to the high angular resolution of camera

systems. Metamoran then identifies the best-possible depth one could apply to this object template to best

fit the observed radar signals. The end result is a finer resolution depth image of the object-of-interest as

shown in Fig. 4.4(b).
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Detailed Algorithm: Mathematically, Metamoran’s algorithm extracts the approximate shape contour

inferred from image pre-processing, coupled with a mmWave ray-tracing model to estimate the expected

I/Q samples of reflections from such an object – i.e. the object template. Essentially, the object-template

is obtained by modeling each point on the surface of the shape of the object S(x, y, z) as a point reflector

shifted to some depth value d that results in an overall distance of d relative to the radar. In its simplest

form, one can then obtain this point’s contribution to the received signal as at each wavelength λ as [104]:

htemplate(d) =
1
d

e−j4πd/λ

Where the 4π rather than the traditional 2π stems from the fact that radar signals are reflected or scat-

tered back round-trip. We can then denote htemplate(d) as the total channel experienced across the entire

bandwidth over all the points in the template. Metamoran then applies a matched-filter to obtain P(d)

– the correlation of the object template at each possible depth d relative to the radar by processing the

received signals across frequencies. Mathematically, if h is the received channel, we have:

P(d) = h∗template(d)h

We then report the depth estimate of this object as the value of d that corresponds to the maximum of

P(d), i.e.

d∗ = arg max
d

P(d)

Algorithm 1 provides a more elaborate description of the steps of Metamoran for FMCW mmWave radar

signals.

Metamoran’s design of object templates overcomes the azimuth and elevation resolution limits of

mmWave radar. To see why, note that one could intuitively view our design of templates as effectively

performing a form of sparse recovery – i.e., Metamoran assumes that objects of a particular shape are

unique at a certain range of azimuth and elevation in the radar reception. This sparsity assumption is key

to Metamoran’s super-resolution properties.

4.6.2 Intra-Object Depth Profiling

We note our current description of Metamoran’s algorithm provides only one depth value per object

template, i.e. one depth per object. In practice, we deal with extended objects and we would require

multiple depth values across the object. We could use local peaks from the specular beamforming output

near the peak depth value. But, the point cloud so obtained is very sparse and only becomes sparser

with increasing object distances. In an ideal world, we would like an output similar to monocular depth

estimation (see Fig. 4.5 for an example). In monocular depth estimation, pixel color and other image
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Algorithm 1: Specular Beamforming Algorithm
Input : Image Segmentation Object Mask, P

Monocular Depth Estimation, M
Raw I/Q Radar capture, h

1 S = M · P // Approximate 3D shape of object
2 C(x, z) = GetShapeContour(S(x, y, z))
3 for depth d do
4 htemplate(d) =ShiftByDepth(C(x, z), d)
5 P(d) = h∗template(d)h // Matched Filtering

6 d∗ = dargmaxP(d) // Depth Estimate
/* Choose local peaks near d∗ to generate Metamoran’s sparse point cloud */

7 MMsparse = GenerateSparseImage(d∗, P(d))
/* Nullify large absolute errors from monocular estimation */

8 C = ShiftToDepth(C, d∗)
/* Reject outliers which occur along the edges of the image */

9 C∗ = RejectOutliers(C)
10 MMdense = Fuse(MMsparse, C∗)

Output: MMdense(x, z) // Dense Depth Image

Figure 4.5: Monocular depth estimation gives a dense RGB-D depth image which is promising for fusing
with sparse Metamoran’s specular beamforming point clouds.

features are used to identify objects at various depth levels resulting in a dense RGB-D image as shown

in Fig. 4.5. Our key idea is to make use of the dense monocular depth estimation in conjunction with

the sparse point cloud from specular beamforming described so far. However two problems persist in

realizing this fusion: (1) First, while monocular depth estimation may often correctly return the relative

depths between different parts of a large object such as a car, it often makes large errors in absolute depths,

particularly for objects at extended distances [87, 83]. (2) Second, monocular depth estimation often

struggles with objects that do not have significant variation in color with respect to the background or

sharp edges that intuitively simplifies depth estimation [87, 83]. The rest of this section describes how

we address both these challenges to fuse Metamoran’s depth images with off the shelf monocular depth

estimates (see Fig. 4.5) that offer superior accuracy to monocular depth estimation.
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Correcting Absolute Errors: To address the first challenge, we can simply shift the monocular depth

estimates for any given object-of-interest so that they line up with the sparse point cloud obtained from

Metamoran’s specular beamforming algorithm. This ensures that absolute errors for any given object-of-

interest are minimized. A key point to note is that for large objects (e.g. a car), there may be some ambigu-

ity on which exact point on the monocular depth estimate should be shifted to line up with Metamoran’s

estimate. To remedy this, we correlate the object template used in Sec. 4.6.1 from image segmentation

with the image that resulted from monocular depth estimation. Recall that this very object template was

used to estimate the object’s depth in Metamoran’s super-resolution algorithm. The correlation process

therefore allows us to identify the pixel on the image that best corresponds with the depth estimates from

Metamoran’s super-resolution algorithm.

Correcting Relative Errors: After aligning the monocular depth estimates with the sparse point cloud

from Metamoran’s beamforming, a naive way to fuse this would be consider all points from both modal-

ities. But, as seen in Fig. 4.4(b), edges of monocular estimates tend to deviate a lot from the primary

contour outline of the object. If fused as is, one would experience errors expected from monocular depth

estimation. It’s therefore important to select points from the aligned monocular depth estimates that only

lie along the primary contour outline and reject outliers. We note that the number of points detected per

azimuth bin in monocular estimates fall off sharply at the edges where our outliers of interest lie. By

using a simple threshold based outlier detection, we identify points which actually lie along the primary

contour. Upon fusing selected monocular depth estimate points and sparse point cloud from Sec. 4.6.1,

we obtain a depth image that outperforms different algorithms using either of the two modalities in terms

of depth and azimuth resolution and depth accuracy.

4.7 Resilience

The effective imaging of a reflector relies first on effective detection of the desired object. Improving the

ability of a mmWave radar to detect and find the depth of a given reflector in cluttered conditions thus

becomes a critical enabling piece. This falls into three broad categories: reducing false positive rate from

spurious peaks and unwanted reflectors, increasing the ability of our system to detect weak reflectors,

and providing resilience to occlusions. We discuss how the introduction of a camera allows Metamoran

to improve in all of these categories when compared to radar alone.
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Figure 4.6: Metamoran vs. Clutter: Metamoran can help identify objects-of-interest despite environmental
clutter. (a) shows our scene, a narrow parking lot bound by buildings with a lot of cars, as well as our
target, a car that is 50m away. (b) shows the raw radar beamforming of the area, with very prominent
out-of-span peaks from nearby cars and buildings. (c) shows the slice of the radar beamforming bound
by azimuth span determined from image segmentation of the image. (d) shows the same azimuthal slice
with side lobes of out-of-span reflectors removed, with only one peak remaining that corresponds to the
reflected power profile of a car.

4.7.1 Reducing Clutter

To improve the robustness of Metamoran’s algorithm, we present a key optimization that was pivotal in

identifying the true depth of objects-of-interest. In particular, our focus is in cluttered environments where

reflections from a large number of objects impede identifying the depth of the true object. At first blush,

one might assume that even with a large number of objects in the environment, the number of objects at

the desired azimuth angle – as specified by image segmentation, would be relatively few. Further, given

that the object is in direct line-of-sight of the camera, it can also be expected to correspond to the first

peak observed along this 3-D angle.

However, we observe in practice that peaks from extremely strong reflectors leak significantly in az-

imuth as well, often into our desired angle. This is due to the poor angular resolution of the radar. This is

a problem due to two factors: (1) these leaks can appear as a false peak closer to our detector, corrupting

a first peak approach, and (2) these strong reflectors are often three orders of magnitude larger than our

desired reflector, and thus have leaks that can dwarf our targets-of-interest. One must therefore perform

a declutter phase prior to applying Metamoran’s specular beamforming algorithm that discounts and

eliminates spurious results at depths that correspond to these spurious peaks. Doing so would prevent

Metamoran’s algorithm from being misled by such peaks. Fig. 4.6 provides a qualitative comparison of

the impact of Metamoran’s algorithm in decluttering the radar image and identifying the true peak. The

plots (b)-(c) is this figure represent P(d, θ), which we call radar profiles, that represent the power of signals

received at different depths d and azimuth values θ, measured through the standard Bartlett-based radar

beamforming algorithm [77]. Our objective is to remove unwanted clutter in these profiles to focus on the

object’s of interest by masking out unwanted regions. This allows us then apply Metamoran’s mmWave
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super-resolution algorithm from Sec. 4.6 by ignoring unwanted clutter.

Specifically, in Metamoran we look for peaks in the regions of our radar profile that fall outside of

the azimuth span of our target, as expected from image segmentation. For each peak, we generate an

object template that is the scale and position of that peak – including its side lobes – and subtract it from

our profile. We iterate many times until the magnitude of the peaks in the area outside of our focus are

comparable to the expected magnitude of the target reflector. This is analogous to successive interference

cancellation in wireless communications [74], or the CLEAN algorithm in radio-astronomy [23], with the

distinction that we only remove peaks outside of our desired sensing azimuthal span. What this process

accomplishes is the removal of side lobes from very large peaks in our azimuth of interest – which is

critical for the performance of our system.

4.7.2 Addressing Weak Reflections

In this section, we explore ways to amplify extremely weak reflections from objects-of-interest, either due

to their material properties, poor orientation or extended range from the radar. Indeed, the precise level

to which radar reflections weaken depends on a combination of all of these properties and we evaluate

this further for a diverse set of objects in Sec. 4.9.1. While radar typically uses Doppler to detect weak

reflectors that are mobile, in varied applications (surveillance, mapping, security, etc.) it is important to

detect objects that are not moving as well (e.g. a parked car or road sign). While doppler can of course

still be a practical solution for detecting relatively few moving objects, we instead focus on what can be

done to improve a single capture.

We note that while background subtraction is a naive solution to this problem, because of the the

many orders of magnitude larger a noise reflector might be than our given target, even slight positional

or power fluctuations between captures can leave very large peaks that make our target difficult to find.

Further, background subtraction only addresses this problem for moving objects, not stationary objects

that might also be dangerous.

Our approach instead relies on the fact that – because of image segmentation – we are certain that

the object we are looking for exists in a given azimuth span, and we also know its object type (e.g. car

or person). As a result, we can determine a received-signal-strength upper bound based on the object

type and each distance. Thus, in-span reflectors that are significantly higher than expected (and their side

lobes) can also be removed as clutter as described in 4.7.1 and target peaks can be detected.
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Figure 4.7: Metamoran vs. Partial Occlusions: Metamoran can help identify objects-of-interest despite
partial occlusions. (a) shows an image of our scene, a person behind a cart, located approximately 45m
away. (b) shows Metamoran’s capture of the person and the occluding (left) half of the cart. Since image
segmentation detected both an unlabeled object and a partially covered person, Metamoran takes the
farther reflector as the target.

4.7.3 Impact of Partial Occlusions

Metamoran is also designed to be robust to – and even account for – partial occlusions such as fog or

physical obstructions. In the case of physical obstructions, such as the cart in front of a person pictured

in Fig. 4.7, image segmentation will generate a mask for both the obstruction and the target. For a known

obstruction type, the obstruction can be detected as a target object and then removed as clutter, using

techniques explained in 4.7.1 and 4.7.2. In the case of an unknown obstruction, we instead look for two

peaks in our azimuth span and take the farther one as our target.

While in some instances of partial obstructions, image segmentation can be fairly robust, it could fail

in other instances. However, mmWave radars are known to be fairly resilient to partial occlusions [34] –

and we evaluate instances where Metamoran can leverage radar peaks to actively improve segmentation

in Sec. 4.9.3. Our discussion in Sec. 4.10 also captures failure modes of this approach, especially for severe

occlusions (e.g. heavy fog).

4.8 Implementation

System Hardware: Metamoran is implemented using a FLIR Blackfly S 24.5MP color camera and a TI

MMWCAS-RF-EVM RADAR (see Fig. 4.8). We operate the radar at 77-81 GHz with a theoretical range

resolution of 3.75-17.8 cm, depending on max range. The radar also has 86 virtual antennas spaced out

along the azimuth axis which provides a theoretical azimuth resolution of 1.4◦. As explained in Sec. 3.2,

this is at least an order of magnitude worse than cameras and lidars. Unlike fusion approaches which rely

on processed point clouds [71], this radar supports logging raw complex I/Q samples which is critical for

our processing.

Testbed and Data Collection: We test this system in a variety of 200 outdoor scenes such as parking
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Figure 4.8: Metamoran’s Sensing Platform: Metamoran is implemented using a FLIR Blackfly S 24.5MP
color camera and a TI MMWCAS-RF-EVM mmWave radar. Evaluation: Metamoran was evaluated in
outdoor spaces like roads and parking lots with rich multipath from buildings, fences, lamp posts, other
cars.

lots and roads at distances ranging from 1 m to 60 m from objects-of-interest. These environments have

rich multipath arising due to buildings, street lamps, fences, out-of-interest parked cars and pedestrians.

Fig. 4.8 shows two candidate locations in the area surrounding a university campus in a major U.S. city.

Ground Truth: We collect ground truth data using a Velodyne Puck LIDAR (VLP-16), which generates

3D point clouds, with fine azimuth and elevation resolutions and 3 cm ranging error. While this lidar is

rated for up to 100 m, in practice, on a sunny day, we found the Puck collected data with sufficient point

cloud density only until about 30 m. Therefore, for ranges beyond 30 m, we surveyed a point closer to the

object-of-interest and placed the lidar at that point.

Baselines: We compare Metamoran with two baselines that use the same hardware platforms: (1)

Naive fusion of Camera and Radar: We use image pre-processing to obtain the azimuth spanned by object-

of-interest. We perform standard radar beamforming for FMCW radar, and bound the output to the

azimuth span and then pick the strongest reflector as the target. (2) Monocular Depth Estimation: We use

state-of-the-art monocular depth estimation algorithm [15] trained to report depth values up to 80 m.

Objects-of-interest Selection: We select a car, a person, and a stop sign for use as our targets, because

these are useful for a variety of applications, including smart city and surveillance. Further, these provide

a variety of reflectors in size, shape, and reflectivity to evaluate our system. We note that while it is

necessary to sense people and cars while they are moving, they are also important to sense when they

are stationary – in the case of a delivery truck, an uber, or a child at a bus stop, for example. Indeed,
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static objects are much more challenging versus moving objects to detect in radar processing because

Doppler-based filtering or background subtraction cannot be used to remove clutter. We therefore focus

our evaluation on imaging static objects.

Calibration: We note that Metamoran requires both internal calibration of the components as well

as external calibration between the camera and the radar. Internally, our mmWave radar is calibrated

using a corner reflector placed at 5m, as described in the TI’s mmWave Studio Cascade User Guide

[43]. The camera intrinsics are measured by taking many photos of a checkerboard to remove fisheye

distortion (using Matlab’s Computer Vision Toolbox [101]) and for image segmentation and monocular

depth estimation.

Externally, Metamoran requires a consistent understanding of object shapes between the mmWave

platform system and the camera system. While both of these are co-located in Metamoran, they are at

a small relative distance of 15 cm, which could lead to inconsistencies in the images produced by the

two modalities. Metamoran accounts for this using a joint calibration of the mmWave radar and camera

using a feature-rich metallic surface that is viewed from both the camera and radar platform to capture

a Euclidean transform between their frames of reference. The object is chosen to be feature-rich for both

platforms, with stark differences in both color and the presence/absence of strong mmWave reflectors

(metallic structures). We note that the transform obtained from calibration is applied, prior to fusing

measurements from either platform to ensure consistency.

4.9 Results

4.9.1 Microbenchmarks

Comparing Object Reflectivity

Method: To empirically determine expected power thresholds for detecting target objects in an occluded

object, we measure the peak value from radar beamforming for our three target reflectors: car, person,

and a road sign, across different distances in 81 line of sight settings.

Results: Our results for this are shown in Fig. 4.9. We observe that power falls off significantly with

distance. From about 10 m to 50 m, the reflections attenuate: 16.7× for a car, 63× for a person, and 4.4×

for a sign. We note that the sign is a significantly weaker reflector than a person despite being a .762m ×

.762m metal sheet outfitted with optical retro-reflectors: past work indicates that this may be due to the

majority of incident signal being reflected specularly off planes and thus not received by our radar [12].
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Figure 4.9: Range Attenuation: Reflectivity of an object in line-of-sight conditions after out-of-span SIC
has been applied.

Figure 4.10: Orientation: The magnitude of reflected signal varies with the orientation of our planar
targets (sign and car), with peaks at the highest effective area

Impact of Object Orientation

Method: To evaluate the impact of orientation on the reflectivity of our more planar reflectors, we

collected data across 7 angles of the front of a stop sign and 8 angles of a car. This data was measured at

a fixed 4m away from the object.

Results: The peak values from radar beamforming at different orientation are shown in Fig. 4.10. We

find that the peaks correspond, as expected, with the largest effective area: the face of the stop sign, and

the side of the car. We find the stop sign peak reflectivity degrades 1.68× at poor orientation, and the car

can degrade 21× depending on orientation.
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Figure 4.11: Across all algo-
rithms, we see car with the
lowest depth error, followed by
person, followed by sign. This
correlates with each object’s
reflectivity.
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Figure 4.12: Across all algo-
rithms, we see degraded per-
formance in PLOS compared to
LOS, particularly in our naive
fusion baseline.
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Figure 4.14: CDF of absolute error shows Metamoran is superior to our two baselines in median accuracy.

4.9.2 Depth Resolution

Method: For our range results, we collected 146 data samples in varying lighting conditions at 2 obstacle-

rich sites. We collected both line-of-sight (LOS) captures of targets as well as captures of partial line-of-

sight (PLOS) occluded by carts, fog, and other environmental objects. Targets were positioned from 3 m

to 58 m.

Data was collected in 2 range/resolution buckets: 4.2cm at 0-20m, 11.6cm at 20-60m. The primary

bottleneck of range resolution for this system is the TDA2SX SoC capture card that is on the MMWCAS

board – it can handle at most a data width of 4096, corresponding to 512 complex samples per receiver.

This may be improved with hardware research and advancements, but improvements in that domain are

complementary to our approach.

Depth error is measured from one point in each of these approaches (Peak value obtained with naive

fusion of radar beamforming and camera, Metamoran estimate and, most repeated value over an object

mask for monocular depth estimation) to the depth span provided by the LIDAR.
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We compare median error in depth across objects-of-interest for Metamoran and the two baseline

systems: naive fusion and monocular depth estimation. We include error bars corresponding to +/- the

standard deviation of our collected data. We note that we present median over mean due to the long tail

often found in RF localization and sensing that affects both Metamoran and the baseline: slight variances

in noise and power can result in disproportionately large errors if the second-largest peak overtakes the

first. For systems with a low median error, this effect can be ameliorated by taking multiple snapshots

and removing outliers.

We represent three sets of results: (1) three different reflector objects; (2) Partial occlusions including

fog and other objects preventing a complete direct view of the object; (3) three different range buckets.

Across all experiments, we find that Metamoran significantly outperforms the baselines. We elaborate the

performance across each axis below.

Object Results: Fig. 4.11 shows the median error in depth across objects-of-interest for Metamoran and

the two baseline systems. We see lowest error for the car across the board due to a combination of factors:

the car is our strongest reflector and also offers multiple points on its surface to reflect radar signals due

to its size (4.66m x 1.795m). We see performance further degrade with the progressively weak reflectors

as measured in Sec. 4.9.1: person is the next most accurate, followed by the sign.

Occlusion Results: Fig. 4.12 shows the median error in depth in line-of-sight (LOS) and partial-line-of-

sight (PLOS) for Metamoran and the two baseline systems. We see a particularly significant degradation in

our naive fusion baseline for PLOS, which frequently takes the occluding object as the strongest reflector,

unlike Metamoran, which can detect and account for occlusions using image segmentation.

Range Results: Fig. 4.13 shows the median error in depth across range for Metamoran and the

baselines. As expected, accuracy across all approaches, objects, and occlusion settings deteriorates with

range due to weaker received signals.

CDF Results: Fig. 4.14 shows CDF of the median error in depth for Metamoran and the baselines.

Metamoran has a median error of 0.28m across all collected data, compared to 6.5m for monocular depth

estimation and 3.75m for naive radar and camera fusion. These correspond to mean values of 1.42m,

8.48m, and 7.89m respectively due to long tail effects.

4.9.3 Depth Imaging

Method: To compute high resolution depth images, we implement the method in Sec. 4.6.2. In contrast

to Sec. 4.9.2 which only computed depth errors, here we want to characterize system performance for

a point cloud obtained from the baselines monocular depth estimation and naive fusion of camera and
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Figure 4.15: Imaging Errors in-
crease with decreasing object
reflectivity across algorithms.
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Figure 4.16: Imaging Errors are
degraded in partial line of sight
scenarios across all algorithms.
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Figure 4.17: Imaging Errors vs.
increasing range.
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Figure 4.18: This CDF shows that Meta-
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baselines. The tail in the case of Meta-
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baselines.

Figure 4.19: Similarly colored boxes con-
tain similar objects across segmentation
and radar. While cars in the red boxes are
missed by camera, radar still detects them.

radar, and our system against lidar point clouds. Data collection is as similar to that explained in Sec.

4.9.2.

To compare two point clouds A and B, we use a modified version of Hausdorff distance [75] as follows:

min

{
a ∈ Amedian

{
b ∈ Bmin{d(a, b)}

}
, b ∈ Bmedian

{
a ∈ Amin{d(b, a)}

}}
where d(a, b) is the distance

between points a and b. Hausdorff distance is popularly used in obtaining similarity scores between point

clouds. Intuitively, this metric measures the median distance between any two points in the point cloud.

The lower the distance, the more similar the point clouds are. We report this distance as imaging error in

meters.

Results: Trends in imaging results largely follow those in depth imaging, as problems with detection

propagate through the system. We note that shape error is larger than the depth error across the board due

to additional pairwise distances being calculated. Figure 4.15 shows the imaging errors against different

object types for the 3 different algorithms, Figure 4.16 shows the median error in imaging in line-of-sight

and partial-line-of-sight for Metamoran and the two baseline systems, and Figure 4.17 shows the median



CHAPTER 4. METAMORAN: A HYBRID MMWAVE AND CAMERA SYSTEM FOR LONG-RANGE
DEPTH IMAGING 60

Median Error Long Range

0.13
0.34

1.09

1.96

1.1

1.98

Depth Error Imaging Error
0

1

2

3

4

5

M
ed

ia
n 

A
bs

ol
ut

e 
E

rr
or

 (
m

)

0-30 m
30-60 m
60-90 m

Figure 4.20: This shows median errors for Metamoran depth estimation and imaging performance up to
90m.

error in depth across range for Metamoran and the two baseline systems. Metamoran outperforms both

baselines across all categories. We note that in these baselines, monocular depth estimation outperforms

naive fusion unlike in 4.9.2. This is because Monocular depth estimation benefits from our metric due

to its large azimuth span of many points that are thus more likely to be close to a point in the LIDAR

baseline, versus the fewer, and clustered profiles given by naive fusion.

Fig. 4.18 shows CDF of the median error in depth for Metamoran and the two baseline systems.

Metamoran has a median error of 0.8m across all collected data, compared to 3.4m for monocular depth

estimation and 5.04m for naive radar and camera fusion. These correspond to mean values of 1.82m,

6.59m, and 8.27m respectively due to long tail effects.

Improving segmentation in PLOS: A point to note that improves our accuracy in partial line-of-sight

in Fig. 4.16 is the ability to detect objects that image segmentation misses or offers low confidence on due

to occlusions due to obstructions. Fig. 4.19 shows one representative example of this effect for a partial

line-of-sight image where an object that was occluded and low-confidence in the camera image was clearly

detected based on radar processing.

4.9.4 Range Extension

Method: In addition to the data collected for Sec.4.9.2, we further collect 17 scenes at 2 sites for a large

reflector (car) with an additional resolution/range bucket: 17.8 cm at 60-90m. At these extended ranges,

car depth is no longer measurable with our baselines, and the sign and person are no longer detectable

even with the assistance of Metamoran. We do not collect distances above 90m: since we already observed

at 90m that the entire car appears as a single pixel on our radar, distances above this become unreliable.

Results: We show the results for depth resolution and imaging of Metamoran compared to the lidar
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Figure 4.21: Limitations of Metamoran: Metamoran can struggle when vision algorithms fail significantly
such as complete occlusions (e.g. fog), such as above.

ground truth in Fig. 4.20. We see slight degradation with the increased distance, although it is minimal.

We note that the performance degradation in practice is that the reflector is detected less often, particularly

in the presence of clutter. At 90m, our 1.4◦ of azimuth resolution is spaced at 2.2m, and imaging relies

very heavily on the successful reception of single pixels.

4.10 Limitations

An important limitation of our system is that its reliance on a camera makes vulnerable to excessive dark-

ness and fully occlusive environmental conditions (e.g. very thick fog). Fig. 4.21 shows one such instance

where our system mis-identifies an object (a person) due to heavy fog. We note, in these circumstances,

the mmWave RADAR continues to operate and can continue to provide range information for objects in

the environment, albeit with attenuated range and with poor angular resolution. For instance, despite

the object type in Fig. 4.21 being labeled incorrectly, the depth value reported from mmWave radar is
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approximately correct.

Further improvements to calibration could further refine our system and improve results – in particular,

an ideal calibration device would be only a pixel large on our camera and also a very strong reflector in

mmWave. In practice, this balance is difficult to strike, and we leave further experimentation of calibration

materials to future work.

4.11 Summary

This chapter develops Metamoran, a hybrid mmWave and camera based system that achieves high-

resolution depth images for objects at extended distances. Metamoran’s secret sauce is a novel specular

radar processing system that identifies the spatial bounds in azimuth and elevation of objects-of-interest

using image segmentation on camera data to improve radar processing along the depth dimension. The

resulting system is evaluated on real-world data sets that will be made openly available to obtain depth

images of objects-of-interest including pedestrians and cars at distances of up to 60 m. We believe there

is rich scope for future work in extending fused mmWave and camera-based depth imaging to broader

classes of objects and ensuring resilience to severe occlusions.



Chapter 5

Discussion

5.1 Next Steps

For these projects specifically, the goal for both of these projects were to evaluate whether or not each

approach was technically feasible and possibly useful. As such, we did not test our systems exhaustively

in every possible environment, obstacle type, obstacle orientation, and so on – in fact, to do so would

likely be impossible. However, there could be interesting next steps considering these sensing modalities

for specific use cases: disaster relief, autonomous navigation, surveillance, etc. Specific applications could

limit the number of specific object types that are of interest, thus requiring less data to set up the system.

Furthermore, specific applications would contribute interesting challenges for what might be most of

interest, such as non-line-of-sight sensing, mobility, and so on. This could be a rich and interesting

space to explore, and each specific set of materials and deployment priorities could provide additional

information about the sensing capabilities of these modalities.

5.2 Barriers to Adoption

Beyond technical challenges, we note that despite the ubiquity of WiFi, cameras, and mmWave radar in

our society, there exist quite a few barriers to adoption for our proposed system architectures. Though

most of these are likely resolvable with some effort, this was not an area we extensively developed. In this

section, we discuss some potential pitfalls for widespread use of our systems.

5.2.1 IntuWition

For IntuWition, a few challenges exist as barriers to adoption. For one, the overall setup is a bit bulky for

a UAV to carry around for a long time: it is a stack of four Intel Galileo boards attached to four fairly large
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antennas, kept in place with foam and duct tape. Volumetrically, of course, the system can be reduced with

the use of non-prototype hardware. We also note that with three receiver ports, a single Intel 5300 card

should be perfectly able of receiving all antenna polarization orientations with a single card, which would

halve the number of Intel Galileo boards necessary for this system. In practice, however, we found that

the second and third antenna ports of these cards were scaled by some indeterminate quantity – perhaps

a hardware artifact, coupling, or some sort of independent automatic gain control. Thus, our results were

much more consistent using the first antenna for three individual Intel 5300 cards. We also note that

Intel’s 9000 series of WiFi cards use M.2 rather than PCIe, which could further miniaturize the footprint

(though its channel state information is not openly accessible for the public). For mass deployment, of

course, a dedicated board would still provide the smallest form factor. Form factor could also be further

reduced by using dedicated 5.8GHz antennas rather than the dual band 2.54/5.8GHz antennas which we

found more widely available.

Another challenge for adoption is the threat of interference from environmental objects. Indeed, the

2.54 and 5.8GHz bands are already famously crowded with a variety of connected devices and technolo-

gies. While we did not run into any problems with collisions for our experiments, which took place on

an urban college campus, this is likely a problem that would be exacerbated as the number of connected

devices continues to increase, particularly in urban areas. Furthermore, since IntuWition jumps across

many frequencies to improve its performance, this further increases the system’s reliance on relatively

available channels. We note that the packets used for IntuWition are very short ( 50 Bytes), which can

reduce load on a channel or can be sent multiple times to increase reliability in congested scenarios. Since

IntuWition relies on the metadata of wireless packets to operate, it can also function during the transmis-

sion of useful data, for example, a video stream from a drone over WiFi. However, the need for channel

hopping to function well can complicate this.

5.2.2 Metamoran

Metamoran also faces a few potential barriers to adoption. For one, though mmWave is widely deployed

today, the angular resolution of most systems (wireless docking stations, driver-assistance technologies) is

quite coarse in practice. For most practical mmWave systems that exist today, it can be argued that angular

resolution is not critical for functionality: a car that is nearby while parallel parking, for example, requires

essentially the same next steps regardless of whether it is at 12 degrees or 16 degrees. This might limit the

large-scale production of mmWave radars available at a low price point, if no killer applications for higher-

resolution mmWave radars emerge. Though market factors are of course difficult to predict, because TI has
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already developed the MMWCAS-RF-EVM module that we used which offers 1.4◦ azimuthal elevation, we

are optimisitic that industrial research will be able to push forward new applications with the technology

now available to them.

Another major challenge to adoption for Metamoran is the difficulties that mobility would introduce,

which we did not evaluate. First, of course, there is pretty extensive computation that needs to be simpli-

fied to achieve real time: semantic segmentation and depth completion, which both require depth maps,

as well as our template simulation approach to removing noise from a radar capture, which has not been

optimized at all by runtime. Currently, we run it using MATLAB with 12 threads on a 3.7GHz processor,

with 256GB of RAM, and each capture takes a minute or two to process. This could of course be fur-

ther optimized by improving parallelization of our code, using GPUs, moving it off MATLAB to a more

efficient language, etc. These were out of scope for our project, however.



Chapter 6

Conclusions and Future Work

As the world develops to become more connected, it is interesting to consider possibilities that exist

for using existing and widely deployed wireless infrastructure. In this thesis, we have explored two

such possibilities. The first, IntuWition, explores how WiFi can sense the location and object material of

obstacles in the environment. Metamoran takes this a step further, by building on the known angular

location and object type of obstacles to be able to determine their depth and imaging profile at high

resolution.

There remains a large breadth of future work related to my vision, and for sensing using commodity

wireless as a whole. In the context of my vision, there is a glaring piece of future work that is yet

to be explored: the intersection of Metamoran and Intuwition. How can WiFi, camera, and mmWave

all be explored to provide the most effective imaging of a scene? What opportunities in hybridization

exist between WiFi and mmWave, and WiFi and cameras? This is an interesting area of work since WiFi

brings much more resilience in NLOS environments than is available to either cameras or mmWave, due

to its longer wavelength. Furthermore, this area of research has not been well explored, since there

are few sensing environments presently that combine mmwave radar and cameras (both common on

autonomous vehicles, for example), with WiFi. One limitation as to why this might be the case is that

WiFi as a communication modality naturally suits indoor environments, with a limited range of a few

tens of meters in the 5GHz band (what IntuWition uses exclusively). To hybridize WiFi with mmWave

and cameras, range extension of WiFi-based sensing would likely be a critical part of problem. Range can

be extended a bit by using both the 2.54GHz and the 5GHz ranges, and might also be extended further

by correlating received packets with an expected packet. This could be an interesting avenue to explore

for future work.

More broadly, I think fusion is likely the way forward for commodity wireless as a sensing modality
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to be adopted. Not only is wireless concerning and confusing to the general public – recent 5G skepticism

is evidence of that – but it is also foreign to many electrical and computer engineers as well. To be able

to present wireless hybridized with familiar sensing systems used by roboticists and computer vision

researchers – who are largely the ones developing the sensing technology for self-driving cars, etc. –

might encourage the adoption of wireless as a sensing modality in more practical scenarios. This would

need to occur in parallel with transparent code and functionality, with specific examples of use cases, to

support usability. The adoption of commodity wireless for sensing is further complicated by the different

properties present in each frequency band, distinct from advances in other areas of research (camera

resolution for example) in that an entirely new set of advantages and challenges occur with each new

standard and each new frequency.

Regarding future directions in using commodity wireless as a sensor, I think it is difficult to predict

what communication technologies will ultimately be ubiquitous enough to take advantage of for sensing.

There is already controversy, for example, that LTE-U might overpower WiFi and other technologies to

emerge as the dominant player in unlicensed spectrum. We can look at trends – for example, increasing

interest in networks of satellites – as potential new areas to explore using commodity wireless as a sensor.

However, a fundamental challenge exists in researching commodity wireless as a sensing modality in

academic settings: the reliance on commercially available devices to already be available. Thus, for long-

term relevance of this space, I think it is important for future work to be framed around contributions in

fundamental sensing approaches that can be applied to other technologies, as well as close collaboration

with industrial research.
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