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Abstract 

High resolution, 1-km chemical transport modeling of ultrafine particulate matter 
over Pittsburgh 

The lack of widespread ambient monitoring, their high spatial variability, and 

correlations with multiple co-emitted pollutants make long-term health impacts studies of 

ultrafine particles (UFPs), particles with diameters less than 100 nm (0.1 μm), difficult. 

Consequently, chemical transport models (CTMs) can help evaluate scientific 

understanding of UFPs and quantify human exposure.  

In this work, we deploy a state-of-the-science CTM, PM-CAMx-UF at high 

resolution (1 km) over Pittsburgh in winter and summer to simulate UFP concentrations 

and explore the model’s ability to resolve intraurban spatial and temporal variability in 

UFP concentrations. We evaluate model predictions against an extensive intraurban 

network of ~30 long-term UFP and ~50 other pollutant observations sites. Simulations 

quantify the sources of UFPs within an urban area, and we assess the value-added 

from increasing model resolution to 1 km. Model inputs include particle number 

emissions derived from source-specific particle size distributions. Moreover, for traffic 

sources, we derive spatially resolved emissions from a traffic model for Pittsburgh.  

Baseline simulations for February and July 2017 indicate predicted particle 

number concentrations (PNC) in Pittsburgh vary by more than a factor of two at 1-km 

resolution, with similar levels of intraurban and urban-rural variability in both winter and 

summer. Comparisons to a network of 27 long-term (~1 month) winter observation sites 

in Pittsburgh show model spatial agreement with MFB = -42% and MFE = 42% with 

better agreement at local road or urban background sites than sites impacted by local 

sources or topography. Temporally, the model matches winter diurnal variability in PNC 

at 12 sites with r2 values of monthly average observations and predictions exceeding 

0.28 spread across all site types. While on-road traffic contributes to intraurban UFP 

concentrations in both seasons (~16% winter, ~4% summer), other primary sources 

such as off-road mobile sources and stationary combustion rival traffic’s contribution.  

Primary emissions largely govern the spatial variability in predicted UFP 

concentration at the 1-km scale. Modeling at 1-km resolution resolves similar human 

exposure as 4-km resolution, but more than 12-km and 36-km resolutions. The 1st-99th 
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percentiles of population were estimated to be exposed to 3,200-9,600 cm-3 at 1 km 

resolution and 3,200-9,700 cm-3 at 4 km resolution, but 3,300-8,100 cm-3 at 12 km 

resolution, and 3,400-5,500 cm-3 at 36 km resolution.  However, coarser resolutions fail 

to capture intraurban variability at observation sites like 1-km resolution. Lastly, while 

higher resolution and 1 km CTM can resolve more variability in human exposure than 

coarser model resolutions, we see evidence of unresolved sub-1-km variability. 

Consequently, future efforts to resolve exposure for chronic UFP health impacts 

quantifications must account for this variability. 

National policy interventions in current Indian power generation produce 
disparate, state-level carbon and sulfur emission impacts 

Current, coal-heavy electricity generation contributes to India’s greenhouse gas 

emissions and premature mortality from air pollution. Electricity generation and capacity 

vary by state in India. This implies heterogenous emissions impacts from policy 

interventions not captured by national, aggregate analyses. We develop a reduced-

order dispatch model of Indian power generation to assess state-level, spatial CO2 and 

SO2 emission impacts of potential policy interventions. We present the first state-level 

consumption-based average annual CO2 emission factors for today’s Indian grid. 

Among states with 96% national electricity demand, emission factors vary between 521-

879 kg CO2/MWh, heterogeneity not reflected in a nationwide average of 711 kg/MWh. 

Carbon taxes up to $100/metric ton CO2, without new investments in low-carbon 

infrastructure, cause CO2 reductions of 3% in the current Indian grid due to a low-

carbon capacity unable to fully displace coal. A carbon tax nonetheless spatially shifts 

SO2 emissions, which increase at 47 plants and decrease at 95 plants. Simulating 

nationwide implementation of SO2 control to meet upcoming regulations shows 88% of 

plants see changes in plant capacity factor less than 5%, informing SO2 control 

investment decisions. Regional sulfur control may shift emissions away from target 

areas because of state-wise dispatch in India and plants with sulfur control penalized in 

the dispatch order. Lastly, regional dispatch, not state-wise, results in 3% and 2% 

increases in CO2 and SO2 emissions, respectively. Predicted emissions increase at 97 

plants and decrease at 32 plants because regional dispatch incentivizes generation 

from cheaper, less efficient plants closer to coal mining areas with lower transportation 
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costs. 

PM2.5 mortality burden of power generation in India under current and future 
policies 

There is spatial variability between electricity generation fuel mixes, electricity 

demand, and associated air pollution deaths among states in India, the world’s third 

largest electricity generator. However, no study has quantified this variability in 

associated air pollution deaths within the context of power sector operations accounting 

for the exchange of electricity between states. Here we pair a reduced-form power 

dispatch model of Indian power generation with a reduced-form air quality model and 

associated risk-exposure relationships to quantify the mortality from PM2.5 attributable to 

power generation in India. In addition to quantifying PM2.5 mortality associated with 

electricity consumption and production in each Indian state, we also evaluate the impact 

on power sector operations and associated mortalities from a range of policy scenarios 

including greater sulfur emissions controls, carbon taxes ($10-$100/ton CO2) and 

market integration.  

We estimate ~71,000 deaths per year associated with PM2.5 attributable to 

electricity generation in India. Furthermore, we find distinct differences in the net burden 

of electricity PM2.5 deaths among states in India: coal-mining states in eastern India face 

a disproportionate higher burden of deaths than high renewable energy states in 

western and southern India which face a disproportionate lower burden. Enforcing sulfur 

control emission regulations at Indian power plants results in ~42,000 fewer annual 

deaths, spread across states through the country. Progressively increasing carbon 

taxes result in 9,400-14,000 fewer annual PM2.5 deaths due to reductions in ambient 

PM2.5 concentrations. Under carbon taxes, generation shifts and emissions reduce at 

more plants than at which they increase. Consequently, reductions in risk from ambient 

PM2.5 concentration reductions are greater than increases in risk from ambient PM2.5 

concentration increases. Finally, coordinating power dispatch across states by 

dispatching plants at regional and national levels results in 1,800 and 6,900 fewer 

annual deaths, respectively, due to concentrations reducing at areas furthest away from 

coal mining areas, where plants with the most expensive electricity sit. 
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Current and future estimated marginal emission factors for Indian power 
generation 

Emission factors from Indian power generation remain poorly characterized, 

despite known spatial and temporal variability. Lack of publicly available emissions and 

generation data at sufficient detail make quantification for the world’s third largest power 

grid difficult. Here, we use reduced-form and full-form power scheduling and dispatch 

models to quantify current (2017-2018) and future (2030-2031) marginal CO2, SO2, 

NOX, and PM2.5 emission factors, which represent the Indian power system’s emissions 

changes due to small demand changes. For 2017-2018, we find spatial variability in 

system-wide, all-source marginal CO2 emission factors ranging three orders of 

magnitude across states in India. Moreover, there is limited seasonal variability or 

variability between times-of day in marginal emissions with coal generation likely to 

meet changes in demand most of the time (> 50%) in most ( > 50%) states. For 2030-

2031 greater renewable generation consistent with Government of India targets 

decreases median marginal CO2 emission factors by approximately a factor of two, but 

emission factors still span three orders of magnitude across all states. Moreover, under 

these 2030-2031 assumptions there is greater seasonal (factor of ~2) and time-of-day 

(factor of ~4)S variability in marginal emissions. Greater shares of average zero-

emission generation, the focus of policy efforts, are associated with lower marginal 

emission factors, indicating that increasing average renewable generation is more likely 

to fulfill new power demand in India. These estimates provide policymakers, analysts, 

and researchers representative emission factors useful to evaluate interventions that 

cause changes in power demand between seasons and times-of-day such as electric 

vehicles, increased air conditioning, and energy efficiency.  
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1 Introduction 

Air pollution is largely a regional physical phenomenon, but a global societal 

problem. In 2017, nearly three million deaths worldwide (approximately 5% of all 

deaths) can be associated with ambient air pollution from solid or liquid particles with 

diameters less than 2.5 µm (PM2.5) suspended in the atmosphere. While most of those 

deaths occur in India (~980,000 deaths) and China (~1.42 million deaths), they also 

occur in developed countries such as the United States (~47,800 deaths) (Abbafati et 

al., 2020; Institute, 2020; Pandey et al., 2021). The particles responsible for these 

health impacts largely come directly from the burning of fossil fuels or from reactions in 

the atmosphere of precursor gases emitted from fossil fuel use. Consequently, the 

burden of PM2.5 and any public policy efforts to reduce this burden must consider both 

energy use and the physical and chemical processes governing PM2.5 concentrations in 

the atmosphere.  

Developed countries such as the United States have made strides in reducing 

PM2.5 exposure (Cohen et al., 2017; Wang et al., 2017; Zhang et al., 2018). However, 

PM2.5 is not homogenous but rather a complex mixture of particles composed of 

different chemical species and across size ranges as small as 1 nm. While the health 

impacts of PM2.5 are well documented (Dockery et al., 1993; Hoek et al., 2013; Laden et 

al., 2006; Lipsett et al., 2011; Pope et al., 2002), the health effects of ultrafine particles 

(UFP), particles with diameters less than 100 nm (0.1 μm) are not as well understood 

(Baldauf et al., 2016; HEI Review Panel, 2013). Consequently, the first chapter of this 

thesis explores UFPs and the variability in their concentrations within cities using 

Pittsburgh as a case study. The aim of this section is to understand intraurban variability 

in concentrations to ultimately inform health effects studies of UFPs. 

As opposed to the United States where PM2.5 exposure has decreased and the 

focus of public policy-relevant scientific study has shifted to further exploring smaller 

classes of particles such as UFPs, PM2.5 exposure has steadily increased in India since 

1990 with average population-weighted concentrations to be approximately seven times 

that of the United States (Cohen et al., 2017; Pandey et al., 2021). Furthermore, if 

current trends under a “do-nothing” scenario continue, PM2.5 exposure is estimated to 

increase 40% by 2050 (GBD MAPS Working Group, 2018).  
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PM2.5 and associated greenhouse gas emissions have increased because India 

is a rapidly developing country with growing energy needs. It is the world’s third largest 

economy (World Bank, 2018a), but per capita GDP remains a fraction of other large 

economies (World Bank, 2018b). As of 2019, while the Government of India has made 

considerable progress in delivering electricity to 26 million previously unelectrified 

households, there is potential to improve quality of electricity supply in the future 

(Ministry of Power, 2020c). Electricity demand from 2015 could roughly double or triple 

by 2030 depending on economic growth rates and demand sector composition (Ali, 

2018; Spencer and Awasthy, 2019). As the Indian power grid grows, it could exacerbate 

both local and global environmental challenges: greenhouse gas (GHG) emissions and 

local and regional air pollution.  

Indian power generation remains a significant source of GHG emissions and air 

pollution emissions which lead to premature deaths from PM2.5 exposure. Coal-fired 

power stations form 74% of electricity generation and 55% of installed capacity (Central 

Electricity Authority, 2019b, 2020a; Centre for Social and Economic Progress, 2019). In 

addition to contributing to close to 40% of India’s GHG emissions (Mohan et al., 2019), 

Indian coal power stations release uncontrolled PM2.5 precursors. They are responsible 

for about 50% of sulfur dioxide (SO2) and 40% of nitrogen oxides (NOX) emissions, 

which lead to an estimated 7-21% of premature deaths (Apte and Pant, 2019; Conibear 

et al., 2018; GBD MAPS Working Group, 2018; Guo et al., 2018; Lelieveld et al., 2015). 

However, coal power alone will not meet increased future demand; the 

Government of India plans to increase renewable generation so that it will constitute 

40% of all capacity by 2030 (Government of India, 2015). Other policy efforts by the 

Government of India include stricter limits on SO2 and NOX emissions from power 

stations in 2015 (Ministry of Environment Forest and Climate Change, 2015), and 

planned market reforms to coordinate and economically dispatch power on a limited 

basis at the national level (Power System Operation Corporation Limited, 2020). 

Future scenarios point to the power sector to remain an significant source of 

GHG emissions and air pollution in India (International Energy Agency, 2021; Peng et 

al., 2020; Venkataraman et al., 2018). Expected increases in electricity demand from 

economic growth may drive emissions increase due to expansions of coal generation 
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capacity even at lower rates than the past (Guttikunda and Jawahar, 2014, 2018; Sahu 

et al., 2017; Sehgal and Tongia, 2016). However, decarbonization efforts to reduce coal 

generation in favor of renewables may blunt those emissions increases. Consequently, 

even if emissions from the Indian power sector do not increase, they may plateau to 

remain a sizable portion of the country’s total emissions. 

Given the power sector’s critical role in India’s current and future energy system, 

climate and air pollution control policies for the Indian power sector remain an active 

area of research. In the remaining chapters of this thesis, we quantify at higher spatial 

and temporal resolution air pollution and climate impacts of Indian power generation 

under current and future policies. These efforts hope to address present shortcomings 

on the lack of detailed work that explores how these impacts vary by Indian state. This 

ultimately helps to inform policy by providing additional granularity at the subnational 

level.  
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2 High resolution, 1-km chemical transport modeling of ultrafine particulate 
matter over Pittsburgh 

2.1 Introduction 

While the health impacts of PM2.5 are well documented (Dockery et al., 1993; 

Hoek et al., 2013; Laden et al., 2006; Lipsett et al., 2011; Pope et al., 2002), the health 

effects of ultrafine particles (UFP), generally defined as particles with diameters less 

than 100 nm (0.1 μm) are not as well understood (Baldauf et al., 2016; HEI Review 

Panel, 2013). Toxicological evidence suggests UFPs translocate from the lungs to other 

organs. UFPs also show cardiovascular and respiratory effects like those associated 

with PM2.5.  (Kreyling et al. 2006; HEI Review Panel 2013). The lack of widespread 

ambient monitoring, their high spatial variability, and correlations between multiple co-

emitted pollutants make long-term health impacts studies of UFPs difficult (Baldauf et 

al., 2016). Health impacts of UFPs may come with traffic pollution exposure, given 

elevated UFP concentrations near roadways (Karner et al. 2010). Several studies have 

linked traffic pollution exposure to health (Hoek et al., 2002; Hoffmann et al., 2007; 

Lanki et al., 2006; Laumbach et al., 2010; McCreanor et al., 2007; Peters et al., 2004; 

Weichenthal et al., 2011; Zuurbier et al., 2011). The modest increase in PM2.5 

concentrations near roadways explain only a portion of observed impacts (Hoek et al. 

2002; Karner et al. 2010). UFPs along with other factors such as noise and 

demographic characteristics could also explain health effects observed with traffic 

pollution exposure. Co-emitted traffic pollutants also complicate a definitive association 

with UFPs. Coupled with this is the unresolved question of whether UFPs have any 

independent or additional health impacts beyond those associated with PM2.5, 

especially if there is spatial correlation between PM2.5 and UFP concentrations. 

Weichenthal et al. (2017) assigned UFP exposure to 1.1 million adults in Toronto using 

an empirical land-use regression (LUR) model to yield inconclusive results on the 

associations between UFPs and respiratory illness separate from those of other 

pollutants such as NO2 or PM2.5. Likewise, Downward et al. (2018) use a LUR model to 

assign UFP exposure to a much smaller cohort of approximately 34,000 adults in the 

Netherlands to find positive, statistically significant associations between UFPs and 

cardiovascular disease, heart attacks and heart failure, but insignificant positive 



5 

associations with stroke. These positive associations hold when accounting for both 

UFPs and PM2.5. To date, studies have yet to reach sufficient conclusions on the long-

term health impacts of UFPs (Ohlwein et al., 2019).  

Given the spatial variability in observed UFP number concentrations, lack of 

widespread measurements, and the need to quantify any UFP health impacts separate 

from those of PM2.5, chemical transport models (CTM) can help evaluate scientific 

understanding of UFPs and quantify human exposure. Previous CTM analyses at the 

regional scale to assess UFP scientific understanding have generally focused on source 

apportionment or the influence of microphysical processes, and not human exposure. 

Posner and Pandis (2015) conducted zero-out source apportionment CTM simulations 

for July 2001 over the eastern United States at 36 km resolution to find nucleation and 

gasoline and diesel combustion contribute significantly to domain-averaged UFP 

number concentrations. Jung et al. (2010) simulates a similar time period and domain at 

36 km to find CTMs must accurately capture nucleation to reproduce observations of 

UFPs in July 2001 in Pittsburgh. Subsequent work by Fountoukis et al. (2012) and 

Patoulias et al. (2018) using CTMs to simulate UFPs over Europe at 36 km resolution 

confirm the importance of simulating nucleation as well as incorporating condensation of 

organic vapors into models.  

To extend CTM capabilities to quantify UFP human exposure, several studies 

simulate UFP concentrations at higher spatial resolution and perform associated health 

analyses. Ostro et al. (2015) use a CTM to generate spatial and temporally resolved 

UFP exposure fields at the 4-km scale. Using predicted UFP mass concentrations along 

with multi-year demographic data, Ostro and colleagues estimate health impacts from 

both PM2.5 and UFPs by chemical composition and source. Their results indicate a 

positive association between UFP mass and ischemic heart disease mortality, but few 

distinct differences between estimated effects of PM2.5 and UFP mass concentrations. 

While the model used by Ostro et al. (2015) lacks nucleation, Ostro et al. (2015) 

illustrate that model-generated concentration exposure fields can reproduce estimated 

health impacts from previous methods which use observed PM2.5 and UFP 

measurements.  

Continued efforts to use CTMs to simulate UFPs at finer spatial resolutions 
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include Venecek et al. (2019) and Yu et al. (2019). Venecek et al. (2019) simulate UFPs 

at 4-km resolution in selected U.S. cities during peak ozone events in 2010 with a CTM 

capable of online source apportionment. They find as expected, on-road traffic to 

contribute significantly (~23%) to simulated, population-weighted UFP concentrations, 

but also the influence of natural gas combustion which contributes to 33% of population-

weighted PM0.1 concentrations in the United States. However, Venecek et al. (2019) do 

not simulate longer periods to quantify chronic UFP exposure and use measurements of 

ozone and PM2.5, but not PM0.1, to evaluate their model. Yu et al. (2019) use the same 

CTM to simulate regions in California at 4-km resolution for selected months in 2012, 

2015, and 2016. They find that nucleation followed by natural gas combustion are the 

largest contributors to particle number concentrations, and low spatial correlation (r2 = 

0.35) between particle number concentration and PM2.5 mass concentration, which 

suggests future epidemiological studies may disentangle the health impacts of PM2.5 

and UFPs.  

Previous analyses (Fountoukis et al., 2012; Jung et al., 2010; Ostro et al., 2015; 

Patoulias et al., 2018; Posner and Pandis, 2015; Venecek et al., 2019; Yu et al., 2019) 

to simulate UFPs with CTMs lack finer spatial resolution, leaving room for further 

development in deploying CTMs to evaluate UFP human exposure and source 

apportionment at intraurban resolutions. First, there is an outstanding question of the 

appropriate resolution to model UFPs. Several studies focus on coarse, 36-km 

resolution (Fountoukis et al., 2012; Jung et al., 2010; Patoulias et al., 2018; Posner and 

Pandis, 2015) while others go to the finer 4-km resolution (Ostro et al., 2015; Venecek 

et al., 2019; Yu et al., 2019), and 250-m resolution (limited simulations over Oakland, 

CA, by Yu et al., 2019). However, no analysis has systematically evaluated whether 

higher (e.g. 1 km) resolutions are required to capture intraurban spatial variability or 

compared exposure estimates from different resolutions to each other. Second, there 

has been limited evaluation of model predictions because of lack of data. Coupled with 

evaluation of spatial scales is the need to have an adequate number of intraurban 

observations sites to validate any spatial variability predicted by a CTM. Yu et al. (2019) 

evaluated the model with data from a network of ten sites to analyze interurban, not 

intraurban, differences in UFP concentrations. Lastly, while Venecek et al. (2019) and 
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Yu et al., (2019) conduct source apportionment and Yu et al., (2019) present limited 

intraurban source apportionment in Oakland, CA, no analysis has investigated UFP 

source apportionment at a finer, intraurban scale and whether previous conclusions 

about the contribution of natural gas to UFP number concentration extends to finer, sub 

4-km resolution and to other locations. 

In this work we apply a state-of-the-science CTM, PM-CAMx-UF at high, 1-km 

resolution over Pittsburgh in winter and summer to simulate UFP concentrations and 

investigate the model’s ability to resolve intraurban spatial and temporal variability in 

UFP concentrations. We evaluate model predictions against an extensive intraurban 

network of long-term observations sites. Simulations quantify the sources of UFPs 

driving concentrations within an urban area, and we assess the value-added from 

increasing model resolution to 1 km. 

2.2 Methods 

2.2.1 Model description 

Particulate Matter CAMx Ultrafine (PM-CAMx-UF) is a state-of-the-science CTM 

that explicitly simulates mass and number concentration of particles across diameters, 

Dp, from 0.8 nm to 10 μm. Like its predecessor models CAMx (Environ, 2003) and PM-

CAMx (Gaydos et al., 2007; Karydis et al., 2007), PM-CAMx-UF simulates advection, 

deposition, diffusion, and dispersion of particles in the atmosphere. In addition, it 

incorporates the Dynamic Model for Aerosol Nucleation (DMAN) model (Jung et al., 

2010) which uses the Two-Moment Aerosol Sectional (TOMAS) algorithm of Adams and 

Seinfeld (2002), itself an application to aerosols of a numerical method first developed 

for cloud microphysics (Tzivion et al., 1987, 1989). The model discretizes particle size 

into 41 size bins defined by dry mass per particle, with the first 21 bins for particles with 

Dp < ~100 nm. Dry mass doubles between bins with the lower boundary of the first bing 

at 3.75 × 10-25 kg per particle. Microphysical processes in the model include 

coagulation, condensation, and nucleation. Model treatment of coagulation follows that 

of Adams and Seinfeld (2002). Condensation treatment incorporates the updated model 

DMANx developed by Patoulias et al. (2015), which simulates condensation of sulfuric 

acid, ammonia, and organic vapors according to the Volatility Basis Set (VBS) 
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framework of Donahue et al., (2006). This version of PM-CAMx-UF incorporating 

DAMNx, however, treats only the condensation, and not the evaporation, of semi-

volatile organic vapors. The model uses the ternary H2SO4-NH3-H2O nucleation 

parametrization of Napari et al. (2002) with a tuning factor of 10-6  to the predicted rate, 

similar to previous studies that have used this parametrization (Fountoukis et al., 2013; 

Posner and Pandis, 2015; Westervelt et al., 2014; Yu et al., 2019). Particle species 

simulated in the model include sulfate, nitrate, ammonium, sodium, chloride, elemental 

carbon (EC), crustal material, primary organic aerosol (POA) and secondary organic 

aerosol (SOA) separated into four volatility bins according to the VBS. Multiple studies 

have applied PM-CAMx-UF at coarser resolutions to areas over North America and 

Europe (Jung et al. 2010; Posner and Pandis 2015; Patoulias et al. 2015; Fountoukis et 

al. 2012) with Patoulias et al. (2018) applying the most updated version over Europe.  

2.2.2 Simulation period, nested modeling domain, and model settings 

We simulate two periods to capture differences between winter and summer: 

February 1-28, 2017, and July 1-31, 2017, with the first three days of each simulation 

omitted as model spin-up. Figure 1 shows the modeling domain at 1 km resolution, 

which we focus on for most of this analysis. 

 
Figure 1  
1-km modeling domain with Pittsburgh, Allegheny County and surrounding counties are shown with 
locations of distributed observation sites available for model evaluation. Every site had CO, NO2, and 
PM2.5 RAMP observations, with additional sites having CPC and SMPS observations for particle number 
concentration and size distribution, respectively. 
 

This domain consists of 72 × 72 1-km grid cells covering the entire city of Pittsburgh and 
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the majority of Allegheny County. Vertically, there are 14 levels extending to 

approximately 6.7 km on average in February and 7.1 km in July. Surrounding counties 

include those in southwestern Pennsylvania and neighboring Ohio and West Virginia 

also gridded at 1-km resolution. We conduct simulations in a one-way nested fashion 

with coarser resolutions feeding boundary conditions into finer resolutions. These 

nested domains are the continental United States at 36 km resolution and two 

successive domains in southwestern Pennsylvania at 12 km and 4 km (Figure 29-31). 

The default treatment of nucleation described above greatly over-predicted the 

frequency of nucleation events in the February simulation. Therefore, for February only, 

we turn off nucleation in the model resulting in better agreement with observations as 

nucleation events were not observed in Pittsburgh during this time (Saha et al., 2018). 

2.2.3 Inputs 

2.2.3.1 Meteorology 

The Weather Research and Forecasting (WRF) model version 3.6.1 provided 

meteorological inputs of temperature, wind velocity, water vapor, and vertical diffusivity. 

The WRF modeling system uses ERA-Interim global climate re-analysis data along with 

terrestrial data from United States Geological Survey (USGS) and simulates at 12-km 

resolution. We direct readers to Gilliam and Pleim (2010) for further details. 

2.2.3.2 Emissions and particle size distributions 

The U.S. Environmental Protection Agency (EPA) National Emissions Inventory 

(NEI) 2011 projected to 2017 provided emissions for the simulations. We direct the 

reader to technical support documents for discussion of EPA’s process to estimate 

emissions resolved by sector, chemical species, space and time (U.S. Environmental 

Protection Agency, 2016). For this study we make two modifications to the default 

emissions of NEI: (1) we specify particle size distributions to emissions inputs and (2) 

modify spatial surrogates for on-road traffic emissions and cooking emissions based on 

more specific location data sources. The default NEI 2011 emissions resolve particle 

mass emissions into two size categories: fine (Dp  ≤ 2.5 µm) and coarse (Dp > 2.5 µm). 

To distribute these two modes into the 41 size bins required by the model and to 

convert particle mass emissions to particle number emissions, we apply sector-specific 
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number size distributions detailed in Table 2 to mass totals from NEI 2011 (Asmi et al., 

2011; Ban-weiss et al., 2010; Dennekamp et al., 2001; Elleman and Covert, 2010; 

Hennigan et al., 2012; Kaltsonoudis et al., 2017). In these conversions, we assume a 

particle density of 1.8 g cm-3 and the size distribution for each sector applies uniformly 

to all particle species emitted by that sector. Applying an assumed size distribution to 

the mass emissions estimates from NEI has the effect of converting mass emissions 

estimates to number emissions estimates. Figure 2 shows the results of this mass-to-

number conversion for the entire domain, resolved by simulation month and sector.  

 
Figure 2  
Domain-wide (1-km domain), monthly number emissions totals by sector serve as inputs into the model 
calculated by applying sector-specific number size distributions to NEI emissions totals. Miscellaneous 
sources include dust, rail, cooking, marine vessel, industrial and oil and gas sources. 
 

Overall, for both February and July, number emissions are very nearly equal; however, 

the sectoral distribution differs somewhat. In February, on-road road traffic, off-road 

mobile, non-point (a combination of stationary fuel combustion, industrial wood 

combustion, and waste incineration, with natural gas combustion forming 2% of mass 

emissions but 88% of number emissions in this sector), power plants, and residential 

wood combustion dominate total number emissions. Miscellaneous sectors include 

dust, agricultural fire, cooking, oil and gas, marine vessels, rail, and industrial point 
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sources contribute less than 10% of total number emissions. Meanwhile in July, on-road 

traffic and non-point sources remain about the same, with increases in off-road mobile 

sources and power plants offsetting decreased residential wood combustion.  

In addition to redistributing mass emissions to number emissions with size 

distributions, we allocate emissions according to the model grid using spatial surrogates 

from NEI 2011. However, for cooking emissions, which contribute less than 1% of total 

number emissions, we allocate emissions according to restaurant density obtained from 

Google Maps (Google, 2019). For traffic emissions, we modify the EPA-default, 

temporally static spatial surrogate for on-road traffic by combining it with a traffic model 

specifically simulated for Pittsburgh (Ma and Qian, 2015). This traffic model simulates 

traffic counts and speed by hour-of-day (1-24) for weekdays using observations from 

Pennsylvania Department of Transportation sites throughout Pittsburgh. The model 

simulates all major and minor roads inside the city, but it consolidates smaller roads 

with similar speed limits (e.g. neighborhood roads) for computational tractability and 

accuracy. Consequently, the model captures traffic patterns within the city at higher 

resolution than patterns outside the city.  

To construct the mixed surrogate, we first hold constant the fraction of emissions 

allocated by the EPA default surrogate only over the grid cells covering Pittsburgh. The 

EPA default surrogate allocates 19% of on-road traffic emissions to grid cells over the 

city, while the traffic model allocates 47% of emissions over these same grid cells. Then 

we reallocate this total emission fraction representing city emissions (19%) using the 

relative fractions estimated by the traffic model to make the final mixed traffic spatial 

surrogate. 

We also run two additional PM-CAMx-UF simulations with the traffic model and 

EPA-default spatial surrogates for on-road traffic emissions. Figure 32 shows the 

change in number emissions for on-road traffic for these surrogates relative to the 

mixed traffic surrogate. Relative to the mixed spatial surrogate, the traffic model pushes 

total traffic emissions in the model domain from outside the city into the city. Meanwhile, 

because EPA-default surrogate is based on road density, it weights emissions over grid 

cells with larger roads (e.g. highways or arterial roads) than smaller local roads which 

may see comparable traffic density according to the mixed spatial surrogate.  
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2.2.4 Sensitivity simulations 

To assess the impact of different sources on UFP concentration, we undertake 

several sector-based zero-out sensitivity simulations for non-point, off-road mobile, on-

road traffic, power plants, and residential wood combustion sources (Figure 2). To 

preserve coagulation sinks and therefore to obtain sector-specific contributions that 

generally sum to the base case, we apply the procedure used by Posner and Pandis 

(2015) to zero out the majority of number emissions for a sector while still maintaining 

the majority of its mass emissions, and therefore, its contribution to the coagulation sink 

(Pierce and Adams, 2007; Westervelt et al., 2013, 2014). For each sector, we zero-out 

the emissions in TOMAS/DMAN bins corresponding to approximately 90% of number 

emissions. Table 2 details the exact percent of number zeroed and mass preserved for 

each sector. We zero-out emissions for on-road traffic, off-road mobile, non-point, 

power plants, and residential wood combustion sectors. Furthermore, we conduct an 

additional sensitivity simulation where we zero-out the natural gas combustion portions 

of the non-point and power plant sectors. Likewise to quantify the impacts of nucleation 

in July 2017 (we assume no nucleation in February 2017), we conduct on sensitivity 

simulation with nucleation turned during this time period. 

2.2.5 Observation Network 

To evaluate model predictions, we compare simulations to measured data from a 

network of intraurban sites in Pittsburgh (Figure 1). Up to 81 sites provide a rich dataset 

for model evaluation and improves upon previous work to simulate UFPs with CTMs, 

which limit observation sites to handful of sites at interurban scale (Fountoukis et al., 

2012; Jung et al., 2010; Patoulias et al., 2018; Posner and Pandis, 2015; Yu et al., 

2019) We direct readers to references for detailed descriptions, but briefly summarized 

available measurements here: 

 

Condensation particle counters (CPC): 30 sites, measuring particle number 

concentration with Dp ≥ 5 nm (N5) in winter 2017 and 2018 (Saha et al., 2019). 

We use these measurements to evaluate model predictions of N5. Due to better 
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data quality and to maximize the number of sites to spatially evaluate model 

predictions, we compare February 2017 model predictions to seasonal winter 

averages for sites sampled in January-March 2017, December 2017, and 

January-March 2018. Each site was sampled for approximately three weeks 

each during those winter months using 12 water-based CPCs (Aerosol Devices 

Inc.; MAGIC 200P model) rotated through each site. These instruments did not 

perform well during summer months, so we do not have summer data. Saha et 

al. (2019) conclude the three-week sampling period captures seasonal averages 

of N5 at each site.  

 

Real-time, Affordable Multi-Pollutant (RAMP) monitors: up to 50 sites measuring 

a suite of species (CO, PM2.5, NO2) in February and July 2017 and 2018 (Malings 

et al., 2019; Rose Eilenberg et al., 2020; Tanzer et al., 2019; Zimmerman et al., 

2018). For model evaluation, we average observations at each site for each 

month across both years to maximize number of sites available for comparison. 

Of available species we focus our analysis on NO2 as tracer for the spatial 

distribution of intraurban on-road traffic emissions.  

 

Scanning mobility particle sizer: one site at Carnegie Mellon University (CMU) 

measuring particle size distribution for particles Dp > 10 nm (Saha et al., 2018)  
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2.3 Results 

Figure 3 illustrates predicted, time-averaged N5 concentrations (Dp ≥ 5 nm) for 

February and July 2017.  

 
Figure 3  
Simulation period-averaged predicted concentrations of N5 concentration  in (a) February 2017 and (b) 
July 2017 show similar levels of spatial variability, but higher concentrations in July 2017 due to higher 
regional background (boundary conditions) and regional nucleation. Standard deviations (SD) describe 
spatial variability. 
 

We use ground-level number concentration to describe UFP burden because UFPs 

dominate number concentration (~90%) while a small fraction of total PM2.5 mass 

concentration (~10%). In February 2017 (Figure 3a), predicted concentrations average 
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4,600 cm-3 across the 1-km modeling domain, with particle number concentrations 

increasing 65% to 7,600 cm-3 within the city of Pittsburgh, outlined in the middle of the 

domain. The level of spatial variability however is higher within the city than across the 

modelling domain, with standard deviations of 1,400 cm-3 and 1,000 cm-3, respectively. 

Concentrations within the city vary with the highest concentrations in the downtown area 

of the city, a heavily-trafficked area. Elevated concentrations occur within the city, within 

Allegheny County generally, and along highways extending from the city to surrounding 

counties. Spatial patterns largely follow the patterns of primary emissions inputs. In the 

northwest corner of the domain, the model predicts elevated concentrations in a plume 

emitted by a metal smelter. In July 2017 (Figure 3b), concentrations on average within 

the city are more than twice as high. In these predictions, an additional power plant 

plume in the southwest corner of the domain occurs where SO2 emissions coupled with 

nucleation increase N5 concentrations. Like February 2017, the model predicts higher 

concentrations within the city, Allegheny County, and highways extending to 

surrounding counties. Primary particle number emissions for both February and July are 

approximately equal with similar sectoral contributions (Figure 2), and therefore spatial 

distributions are similar across both months. Likewise, in both months, the change in 

average predicted N5 concentrations between the city and the entire modeling domain 

are about the same (3,000 cm-3 in both February and July), implying similar urban-rural 

spatial differences in both months. Moreover, the predicted intraurban spatial variability 

in both months is similar, with standard deviation 1,400 cm-3 in February and 2,000 cm-3 

in July. 

2.3.1 Spatial and temporal comparisons to observation sites 

Figure 4 shows the comparisons of February 2017 model predictions against 

observations at 30 sites throughout Pittsburgh further detailed in Saha et al. (2019). 
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Figure 4  
Monthly averaged February 2017 N5 predictions versus seasonally averaged observed N5 concentrations 
from winter 2017 and 2018 (see text). Solid lines represent 1:1, dashed lines are ±50%, and red line is the 
best fit line for all points except three points to the extreme right. 
 
Each point represents a monthly averaged N5 concentration prediction at one site 

plotted against a seasonally averaged (November-February) N5 concentration 

observation at the same site. At 27 sites (all but three sites located to the extreme right), 

the model predicts observed average N5 concentrations within a factor of two (dashed 

lines on plot), with r2 of 0.35, mean fractional bias (MFB) of -42% and mean fractional 

error (MFE) of 42%. The three extreme sites represent observations highly impacted by 

sources near the observation site, emissions plumes finer than the 1 km modeling here 

can resolve. The downtown site is located next to a restaurant vent. The industrial site is 

located ~500 m directly downwind of Clairton Coke Works, the largest coke 

manufacturing facility in the United States. The highway site is located ~10 m from the 

edge of Interstate 376, a large highway connecting Pittsburgh to its eastern suburbs. 

Within the 27 sites predicted within a factor of two, at 13 sites urban background or local 

roads influenced concentrations (Saha et al., 2019). At these sites, the model performs 

well with MFB = -29% and MFE = 30% with points clustered at or below 10,000 cm-3. 

Meanwhile, at remaining 14 sites local sources or topography influenced 

concentrations: higher traffic volumes (arterial road or highway), restaurants, street 

canyons (downtown), or an industrial source. February 2017 predictions show poorer 

agreement with MFB of -55% and MFE of 55% at these sites. These 14 more polluted 

sites drive the overall agreement of all 27 sites as indicated by the solid, red line of best 
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fit in Figure 4 with slope less than one. Overall, Figure 4 suggests that the model 

reproduces UFP concentrations in the urban background, that it captures intraurban 

variation in UFP concentrations but tends to underpredict concentration hot spots. 

Figure 5 and Figure 6 show diurnal comparisons between model N5 predictions 

in February 2017 and seasonally averaged observations for the 27 sites in Figure 4.  

 
Figure 5  
Diurnal averages of February 2017 N5 model predictions (solid line) and all-winter observed N5 
concentrations (red points) at 13 urban background or local road sites. 
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Figure 6  
Diurnal averages of February 2017 N5 model predictions (solid line) and all-winter observed N5 
concentrations (red points) at 14 sites influenced by local sources or topography. 
 
Overall, in both figures we see the model N5 concentration predictions in solid black 

lines have visible diurnal peaks compared to the observations in red. Figure 5 shows 

the 13 local road and urban background sites; Figure 6 shows the 14 remaining sites 

where local sources or topography influence observations. Due to limited 

measurements in July 2017, we show temporal evaluations for these simulations in 

Figure 33. Overall, at six of 13 sites categorized as local road or background, temporal 

correlation between model predictions and observed N5 concentrations range between 

r2 = 0.28 and r2 = 0.66 (Figure 5a, d, e, i, k, m). For two of these 13 sites, Coal Valley 
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and Curry Court (Figure 5b and c), while categorized as local road and urban 

background sites, respectively, are located near large sources that significant increase 

concentrations in those areas. Coal Valley is located between two large industrial 

sources: approximately 1.5 km from Irvin works, a steel manufacturing facility and 

approximately 3 km away from Clairton Coke Works. Both sources increase N5 

concentrations at those locations and increase sub-1-km variability in concentrations. 

Likewise, Curry Court is located ~3 km downwind of Pittsburgh International Airport, 

where emissions increase observed number concentrations (Agarwal et al., 2019; 

Mazaheri et al., 2009). Aircraft emissions in our emissions inputs are contained within 

the industrial point source sector and include emissions from aircraft takeoff, landing, 

and airport operations such as vehicles on the runway (U.S. Environmental Protection 

Agency, 2016). For the remaining five sites (Figure 5, g, h, j, and l), all are located at 

residential locations; however, two sites, Hatfield and Marlborough (Figure 5h and l), are 

in denser residential locations within the city with MFB and MFE values closer to zero. 

Meanwhile, Woodstock, Homeridge, and Goodman (Figure 5f, g, and j) are in more 

suburban residential locations have elevated observed N5 concentrations before 

evening hours of the day.  

Despite consistent underprediction for more polluted sites influenced by local 

sources or topography in Figure 6, temporally, the model predicts relative diurnal 

patterns in N5 concentrations well. At six of 14 sites (Figure 6a, f, g, j, l, and m), r2 

values range between 0.29 and 0.57 much like the local road and urban background 

sites in Figure 5. All these six sites are less than 50 m from a major roadway, which 

drives these high temporal correlations, despite other nearby sources such as 

restaurants at some sites (e.g. Figure 6f, g, and m). Meanwhile, at sites such as 

Braddock, Convention Center, or Lehigh Ave (Figure 6b, e and i), diurnal correlation 

degrades with distinct observed elevated concentrations after noon. Here industrial 

sources, topography, or nearby restaurants, respectively, dominate. At several sites that 

do not have as high temporal correlation (e.g. Figure 6c, d, h, k, and n), distinct diurnal 

peaks either in the morning or afternoon show up in both the observations and model 

predictions.  

We provide evaluations of predicted particle number and mass size distribution 
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against observed size distributions in Figures 40-43. These comparisons show the 

model predicting number size distribution modes at lower diameters than observations. 

We also compare estimated daily average PM2.5 against four regulatory sites in Figures 

44-45 to find the model predicting PM2.5 concentrations at arterial road and rural sites 

well, but like particle number concentration, underpredicting concentrations near 

industrial sources.  

2.3.2 Source apportionment 

Figure 7 depicts the source apportionment of time-averaged predicted N5 

concentration spatially averaged over the City of Pittsburgh from February and July 

2017 sensitivity simulations.  

 
Figure 7  
Source apportionment within the City of Pittsburgh sensitivity simulations show on-road traffic, off-road 
mobile, and non-point sources dominate local UFP concentrations. Red boxes around nucleation and 
regional background represent non-local sources within the city. 
 

Black points show the baseline mean concentration over the city. Red boxes outline 

regional, spatially uniform sources as opposed to more spatially variable local sources 

in the city. To derive this apportionment, we find the difference between the mean 

predicted N5 concentration over the city in the baseline simulation and the mean 
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predicted N5 concentration over the same area from each zero-out sensitivity 

simulation. To determine regional background, we find the minimum predicted N5 

concentration from entire modeling domain, assuming boundary conditions largely 

determine these rural concentrations. For February 2017, this procedure results in a 

sum (6,800 cm-3) 11% lower than the predicted mean N5 concentration over the city 

(7,600 cm-3) due to coagulational losses of particles. Regional background contributes 

to the plurality of this total (43%), followed by non-point sources (22%), on-road traffic 

(16%), off-road mobile sources (12%), wood combustion (4%), and power plants (3%). 

We note that in NEI 2011, the inventory encodes natural gas combustion into both the 

non-point sector and power plants, so there is a degree of double counting. Natural gas 

combustion contributes to 88% of non-point sector number emissions and 9% of power 

plant number emissions. For July 2017, the source apportionment procedure also does 

not achieve closure with the baseline mean N5 predictions over Pittsburgh (20,000 cm-3 

vs. 17,000 cm-3). Regional background once again contributes to the majority of 

predicted N5 concentration (54%) followed by nucleation (31%), non-point sources (6%), 

off-road mobile sources (5%), on-road traffic (4%). Power plants contribute a negligible 

amount to this first-order, linear source apportionment for July. Comparing across both 

simulation months, we see nucleation driving much of the difference between seasons 

through its contribution to in-domain nucleation in July (dark black bar). Likewise, while 

we do not directly test the contribution of nucleation to out-of-domain concentrations, it 

does contribute to some portion of regional background (light gray bar). Moreover, when 

comparing local, intraurban sources, the absolute magnitude of their contributions to N5 

concentration is similar in both months. This similarity is consistent with the similar 

levels of spatial variability within the city and between the city and suburban and rural 

areas shown in Figure 3. This is expected given that local emissions sources are 

comparable in both months (Figure 2). 

2.3.3 Evaluation of on-road traffic emissions 

According to these simulations, on-road traffic contributes to 16% of predicted 

mean N5 concentrations in Pittsburgh in February and 4% in July. Moreover, a fraction 

of N5 concentrations attributed to regional background likely comes from on-road traffic 

outside the modeling domain. Our sensitivity simulations test the effect of different 
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spatial surrogates for on-road traffic emissions to simulate this source of urban UFPs. 

Figure 8 compares predicted and observed NO2, a key tracer for traffic in urban areas, 

for the baseline and two traffic sensitivity simulations (see section 2.2.4).  

 
Figure 8  
Predicted NO2 versus observed NO2 monthly averages at distributed sites in February and July for 
baseline simulations with mixed traffic spatial surrogates and sensitivity simulations using traffic model 
and EPA default spatial surrogates for on-road traffic emissions show better agreement in February than 
July. There is overall similar agreement in NO2 predictions with the traffic model compared to the default 
EPA spatial surrogate and the mixed surrogate. Solid lines are 1:1 and dashed lines are ±50% 
 

Each point represents the monthly average value at one of 50 sites in February and 37 

sites in July. Spatially, the February 2017 baseline simulation (Figure 8a) reproduces 

NO2 concentrations well with r2 = 0.35, MFB = -10%, and MFE = 19%. The traffic model 
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and EPA default spatial surrogates (Figure 8c, e) overpredict and underpredict NO2 

concentrations, respectively: r2 = 0.37, 0.37, MFB = 11%, -9%, and MFE = 26%, 19%. 

In July meanwhile, baseline simulations predict NO2 observations at 37 sites (Figure 

8b), with MFB = 28%. For July simulations, using the traffic model spatial surrogate 

results in overprediction between NO2 predictions and observations, with higher MFB 

values of 53% (Figure 8b). Using the EPA default spatial surrogate in this month results 

in similar agreement between NO2 predictions and observations as the baseline 

simulation: MFB = 29% and MFE = 41% (Figure 8f).  

 The traffic model and EPA default traffic spatial surrogates result in similar spatial 

agreement between predicted and observed NO2 concentrations compared to the 

baseline, mixed traffic surrogate model simulation, and this similarity extends to the 

sensitivity simulation predictions of N5 concentrations. Figure 9 depicts the predicted 

and observed N5 concentrations at the 27 sites shown in Figure 4 in February 2017, but 

for the simulations with the traffic model (Figure 9a) and EPA default (Figure 9b) spatial 

surrogates.  

 
Figure 9  
Comparison of predicted N5 concentrations from mixed and EPA default traffic spatial surrogate 
simulations against observations shows less predicted spatial variability than baseline simulations with 
the traffic model spatial surrogate. Extreme observed sites are omitted in this plot. 
 
The three industrial oriented sites in Figure 4 are omitted in this figure. These two 

surrogates result in similar, r2 values of 0.35 and 0.37 than the baseline simulation. 

However, the traffic model spatial surrogate simulation result in better agreement in N5 
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concentrations with MFB = -26% and MFE = 29%. The EPA default surrogate results in 

similar agreement with MFB = -42% and MFE = 43%. 

Temporally for February simulation, the traffic model spatial surrogate 

overpredicts at background and local road sites compared to the mixed and EPA default 

spatial surrogates, but with similar diurnal correlations. However, at background and 

local road sites, the traffic model spatial surrogate show higher spikes in concentration 

during rush hour periods (Figures 34-37). 

2.3.4 Modeling resolution and human exposure 

To address the question of how well various modeling resolutions captures 

variability in UFP exposures, we compare outdoor concentrations predicted by different 

model resolutions (Figure 10), model resolution’s effect on reproducing observations 

(Figure 38), and model resolution on average N5 concentration over the modeling 

domain (Figure 39). In Figure 10, the vertical axis shows time-averaged predicted N5 

concentration for February 2017.  

 
Figure 10  
Population-weighted spatial N5 exposure distributions show 1-km modeling resolution resolves higher 
exposure variability than 4-km resolution. Whisker endpoints represent 1st and 99th percentiles of 
population exposure, box ends represent 25th and 75th percentiles population exposure, and center line 
represents 50th percentile (median) population exposure. Black points show 5th and 95th percentiles and 
red points are population-weighted mean concentrations. 
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Each boxplot shown is a population-weighted spatial distribution of UFP exposure using 

U.S. Census grided population estimates (U.S. Census Bureau, 2017). We show four 

boxplots representing the different resolutions used to nest the model: 36 km, 12 km, 4 

km, and 1 km. The endpoints of the boxplot tails represent the 1st and 99th percentile of 

exposure. The ends of the boxes represent the 25th and 75th percentiles of exposure, 

and the solid line in the middle is the 50th percentile (median) exposure. The 1 km 

simulation resolves more spatial variability, with a 1st-99th percentile range of 3,200-

9,600 cm-3. Coarser resolutions quantify similar or less variability with 1st-99th percentile 

ranges of 3,200-9,700 cm-3 (4 km), 3,300-8,100 cm-3 (12 km), and 3,400-5,500 cm-3 (36 

km). Overall, Figure 10 shows that there is considerable variation in UFP concentrations 

and exposures on the intraurban scale and that, at each step explored here, higher 

spatial resolution up to 4 km and 1 km resolution is important for resolving the 

exposures of the upper quartile of the area’s population. Figure 39 furthermore shows 

this lack of spatial resolution from coarser model resolutions. Moreover, Figure 38 

shows that coarser model resolutions lower than 1 km are not capable of reproducing 

observations to the degree seen in Figure 4 with r2 values lower than 0.05 for all 

resolutions. It is particularly noteworthy that the r2 of the model increases from 0.04 to 

0.35 as resolution is increased from 4 km to 1 km, highlighting the importance of very 

high resolution in resolving intraurban UFP concentrations. 

2.4 Discussion and Conclusions 

This study deployed a state-of-the-science chemical transport model, PM-CAMx-

UF, for winter and summer seasons over Pittsburgh at 1-km resolution to simulate UFP 

concentrations and explore the model’s ability to resolve intraurban spatial and temporal 

variability in UFP concentrations. Model inputs include source-resolved particle number 

emissions estimated from U.S. EPA NEI particle mass estimates combined with 

representative particle size distributions and 1-km spatial surrogates. To spatially 

disaggregate on-road traffic emissions we use predictions from a traffic model based off 

observed traffic counts and speeds in Pittsburgh and combine them with EPA-default 

traffic emissions spatial surrogates. We compare model predictions temporally and 
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spatially to an extensive network of 30 long-term observation sites measuring particle 

number concentration, and up to 50 sites measuring NO2 concentrations and PM2.5 

concentrations. Sensitivity, zero-out simulations assess the source-apportionment of 

major UFP sources in Pittsburgh. We further evaluate our assumptions about the spatial 

distribution of on-road traffic emissions inputs by comparing baseline simulation results 

to simulations using the traffic model only and default EPA spatial surrogates. Lastly, we 

evaluate the impact of modeling resolution on the variability of predicted UFP human 

exposure. Combined, these efforts address present shortcomings in using CTMs to 

quantify UFP exposure and ultimately support efforts to quantify chronic health impacts 

of UFPs. 

Predicted N5 concentrations are elevated within the city of Pittsburgh, especially 

near heavily trafficked downtown. Overall, simulation period-averaged predicted 

concentrations of N5 in February and July 2017 show the same degree of spatial 

variability, but overall higher concentrations in July 2017 due to higher regional 

background (boundary conditions) and nucleation in the domain. Predicted spatial 

variability, both intraurban and urban-rural, in winter and summer is similar mainly 

stemming from similar magnitudes and sectoral distribution of primary particle number 

emissions. Spatially, the model reproduces (within a factor of 2) measurements at 27 

sites characterized by urban background and local roads better than those impacted by 

a local source such as restaurant or topography such as urban street canyons where 

the model underpredicts.   

Mean predicted N5 concentrations in both summer and winter largely match 

those reported by Yu et al. (2019) who use a CTM at 4-km model resolution in California 

and compare to a network of ten interurban sites. The focus of these results is to 

explain model performance at the intraurban scale and a portion of our performance 

statistics describe spatial agreement across a network of sites. Yu et al. (2019) however 

present performance statistics by individual site. An appropriate comparison to these 

statistics is our performance statistics for temporal evaluations at each site, which range 

from MFE = 12% to MFE = 66% for 27 sites in February 2017. Yu et al. (2019) report 

MFE values between 8-38% for the sites evaluated. However, performance reported by 

Yu et al. (2019) represent comparisons between observed N7 (Dp ≥ 7 nm) and predicted 
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N10 (Dp ≥ 10 nm) concentrations and are “best-fit” model results which represent the 

closest fit within three grid cells of an observation site. 

Evaluations at sites impacted by local sources or topography suggests that while 

the model resolves substantial intraurban variability in UFP concentrations, further 

intraurban, sub-grid variability exists and is unresolved by the model even at 1 km 

resolution. Whether the very fine-scale spatial variability in UFP concentrations is 

important to exposure and health, given that individuals move throughout the city is a 

different question. Temporally at sites located by roadways, while the model does not 

agree absolutely with observations, it does reproduce winter average diurnal patterns in 

N5 concentrations. This is similar to Yu et al. (2019) who reproduce average December 

diurnal patterns in observations. Diurnal correlations degrade at sites where other 

sources such as restaurants, industrial sources, airports, or residential areas influence 

observations. These degradations along with general underpredictions at these sites 

furthermore are consistent with sub-grid variability in concentrations not captured by the 

1-km model. 

Traffic is an important source of intraurban variability in UFP concentrations, and 

our results show the location of these emissions in model inputs matter to improve 

model performance for UFP concentration prediction. Spatially, the mixed traffic 

emissions surrogate combining both traffic model and EPA-default surrogates performs 

similarly to the EPA-default surrogate only. Meanwhile the traffic model surrogate 

allocates a greater portion of emissions over the city than the mixed surrogate (Figure 

32). This results in the traffic model simulation predictions have poorer absolute 

agreement at local road and urban background sites than the baseline (mixed) and 

EPA-default simulations, especially during rush hour peaks where the traffic model 

predicts higher number concentrations. We see further evidence of the traffic model 

pushing emissions over the city when comparing NO2 predictions versus observations 

at the distributed sites. Its allocation of emissions over the city versus outside the city 

may compensate for any source of number emissions not captured by the model. In 

sum, the simulations of the traffic emissions spatial surrogates show that while traffic 

does explain much of intraurban spatial variability, other sources can also drive 

variability, especially after accounting for sub-grid variability. Modeling efforts thus must 
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account for both the relative importance of spatial distribution of on-road traffic 

emissions inputs and other sources when deploying high-resolution CTMs to simulate 

UFPs over urban areas.  

Furthermore, along with sub-grid concentration variability and traffic emissions 

spatial patterns, source apportionment analysis shows that other, non-traffic sources of 

ultrafine particles are just as relevant as traffic in driving urban ultrafine particle 

concentrations. We use traffic as an indicator for intraurban variability driven by primary 

emissions, and our attribution of on-road traffic to particle number concentrations (16% 

in winter, 4% in summer) is also consistent with Saha et al. (2018) who find annual local 

traffic to contribute ~16% of annual particle number concentration in Pittsburgh in 2016-

2017. Our source apportionment simulations suggest non-point sources such as natural 

gas combustion and restaurants and off-road mobile sources make contributions to N5 

concentrations like that from traffic. Natural gas combustion dominates our non-point 

source number emissions inputs (88%), so using this sector as proxy for natural gas 

combustion, our analysis attributes a smaller percentage of N5 concentration to natural 

gas combustion (~6-22%) than those found in previous analyses in California (ranging 

28-45% for N10 in 10 cities) (Yu et al., 2019). Summertime, nationwide source model-

based source apportionment for PM0.1 likewise find a large source of mass from natural 

gas combustion in many cities in the United States (Venecek et al., 2019). While 

Venecek et al. (2019) did not examine Pittsburgh specifically, upwind cities such as 

Cincinnati, Detroit, and Cleveland, showed much smaller contributions from natural gas 

to predicted PM0.1. Consequently, differing emission mixes between cities modeled in 

California and Pittsburgh modeled here explain the differing attributions to natural gas 

combustion. Yu et al. (2019) also found noticeable differences in source apportionment 

with model resolution, which may be another factor contributing to differences between 

this work and prior work. 

 Moreover, source apportionment shows that sources that are spatially 

homogenous, such as regional background and nucleation, do contribute to absolute 

UFP concentrations in magnitudes similar to or greater than primary sources like traffic. 

A substantial portion of our source apportionment attribute concentrations to regional 

background (43% in February and 54% in July). Moreover, these attributions are lower 
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than Saha et al. (2018) who attribute more than 75% of average annual observed N10 

concentrations in Pittsburgh to background values, a combination of both the “true” rural 

regional background and urban background since the observations were in the middle 

of the city. Nucleation contributes to a substantial fraction of predicted N5 concentrations 

(31%) in July with a higher fraction than those reported by both (Yu et al., 2019) in 

California, and Saha et al. (2018) in Pittsburgh. This suggests model overprediction due 

to nucleation and future model improvement to reproduce the substantial decrease in 

nucleation frequency in Pittsburgh between 2001-2002 and 2016-2017 from SO2 

emissions controls (Saha et al., 2018). 

This analysis shows the value-added in resolving UFP human exposure by 

deploying CTMs at higher 1-km resolution. Previous analyses used CTMs to model 

UFPs at 4 km resolution. While 1-km modeling resolves similar exposure variability as 

4-km modeling, higher resolution model reproduces substantially better the intraurban 

variability in observations than 4-km modeling. However, these higher resolutions do not 

resolve sub-1-km variability in observed UFP concentrations in sites impacted by heavy 

traffic, restaurants, or topography. Resolving the highest percentiles in the exposure 

distribution requires higher resolution exposure estimates such as empirical land-use 

regression models which can resolve these sub-1-km variations.  However, they are 

limited by the observations used to develop the models and yield incomplete information 

on the sources driving urban exposure. These methods must therefore consider 

covariates for primary sources from traffic and non-traffic. Previous health impacts 

studies that use empirical models to assign exposure have come to inconclusive results 

on the impacts of UFPs (Downward et al., 2018; Weichenthal et al., 2017). Given the 

limitations of both mechanistic and empirical methods to estimate human exposure, 

future estimates of exposure will most likely need to combine both to construct an 

aggregate exposure metric for UFPs. 

 In sum, the use of CTMs to estimate UFP human exposure remains an active 

area of development. This analysis yields conclusions that a CTM can resolve some of 

the intraurban spatial variability in UFP concentrations; moreover, CTMs can provide 

information on source apportionment of UFPs. On-road traffic remains an important 

source of local, intraurban concentration, but many other sources contribute to 
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concentrations as well. This is especially relevant because, while a 1 km CTM can 

resolve more variability in human exposure than coarser model resolutions, it cannot 

resolve sub-1-km variability that empirical models such as land-use regression. Both 

traffic and non-traffic sources influence both intraurban variability and this sub-1-km 

variability. Consequently, future efforts to resolve exposure for chronic UFP health 

impacts quantifications must account for this variability by accounting for the spatial 

patterns of various sectors at appropriate resolutions.  
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3 National policy interventions in current Indian power generation produce 
disparate, state-level carbon and sulfur emission impacts 

3.1 Introduction  

India is a growing country with growing energy needs. It is the world’s third 

largest economy (World Bank, 2018a), but per capita GDP remains a fraction of other 

large economies (World Bank, 2018b). As of 2019, while the Government of India has 

made considerable progress in delivering electricity to 26 million previously unelectrified 

households, there is potential to improve quality of electricity supply in the future 

(Ministry of Power, 2020c). Electricity demand from 2015 could roughly double or triple 

by 2030 depending on economic growth rates and demand sector composition (Ali, 

2018; Spencer and Awasthy, 2019). As the Indian power grid grows, it could exacerbate 

both local and global environmental challenges: greenhouse gas (GHG) emissions and 

local and regional air pollution.  

Like GDP, India’s total GHG emissions rank third in the world (Carbon Brief, 

2019; World Resources Institute, 2019). When measured by World Health Organization 

(WHO) standards for PM2.5, suspended particles in the atmosphere less than 2.5 

microns in diameter, 99.9% of India’s population breathes polluted air (Apte et al., 2015; 

GBD MAPS Working Group, 2018). This exposure caused by emissions from fossil fuel 

and biomass combustion led to an estimated 570,000 to 1.1 million premature deaths in 

India (Conibear et al., 2018; GBD MAPS Working Group, 2018; Ghude et al., 2016; Guo 

et al., 2018) with premature deaths projected to triple by 2050 if no action is taken to 

reduce air pollution emissions (GBD MAPS Working Group, 2018).  

Indian power generation remains a significant source of GHG emissions and air 

pollution emissions which lead to premature deaths from PM2.5 exposure. Coal-fired 

power stations form 74% of electricity generation and 55% of installed capacity (Central 

Electricity Authority, 2019b, 2020a; Centre for Social and Economic Progress, 2019). In 

addition to contributing to close to 40% of India’s GHG emissions (Mohan et al., 2019), 

Indian coal power stations release uncontrolled PM2.5 precursors, sulfur dioxide (SO2) 

and nitrogen oxides (NOX) emissions, which lead to an estimated 7-21% of premature 

deaths (Apte and Pant, 2019; Conibear et al., 2018; GBD MAPS Working Group, 2018; 

Guo et al., 2018; Lelieveld et al., 2015). 
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Planned expansions of coal generation capacity even at lower rates than the past 

will lead to increases in coal consumption, air pollutant, and GHG emissions 

(Guttikunda and Jawahar, 2014, 2018; Sahu et al., 2017; Sehgal and Tongia, 2016). 

However, coal power alone will not meet increased future demand; the Government of 

India plans to increase renewable generation so that it will constitute 40% of all capacity 

by 2030 (Government of India, 2015), an increase from approximately 14% non-fossil 

generation in 2017-2019 (Central Electricity Authority, 2019b; Tongia and Gross, 2019). 

The growth of non-hydroelectric (non-hydro) renewable generation though in the last 

decade has largely replaced hydro generation, not thermal generation, on a percentage 

basis. Thermal (mostly coal) generation has largely stayed constant at approximately 

80%, hydro decreased from 15% to 10%, and non-hydro renewables has increase from 

4% to 8% (Central Electricity Regulatory Commission, 2018d). This suggests that while 

capacity additions govern the available fuel mix for generation, how this capacity is 

operated and dispatched largely determines the actual fuel mix for generation, and 

consequently air pollutant and GHG emissions. 

Previous efforts to analyze Indian power generation with environmental or energy 

policy relevance generally either lack any treatment of power sector operations and 

markets or any treatment or air pollutant and GHG emissions. Atmospheric modeling 

studies have motivated the need for public policy interventions to reduce power sector 

air pollution emissions, but do not consider how such emissions reductions could occur 

within the context of Indian power system operations (Gao et al., 2018; GBD MAPS 

Working Group, 2018; Guttikunda and Jawahar, 2014, 2018). Meanwhile, Indian power 

system schedule and dispatch modeling studies mainly lack any consideration of air 

pollutant emissions from power system operations: estimates of actual emissions, 

internalizing the external social costs imposed from such emissions, or the costs 

incurred from installing technology to reduce emissions. This includes studies that 

explicitly analyze increased penetrations of renewable generation, a zero-emission 

source (Central Electricity Regulatory Commission, 2018a, 2018b; Palchak et al., 

2017a, 2017b; Phadke et al., 2016; Spencer et al., 2020). See Appendix B for a detailed 

summary of previous modeling efforts. 

Several analyses (Cropper et al., 2017, 2019; Srinivasan et al., 2018), 
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specifically examine the costs and avoided PM2.5 premature mortality benefits from 

installing SO2 control at Indian coal power stations. India has planned stringent sulfur 

emissions norms (Table 4) for coal power plants, but these are delayed (Ramanathan et 

al., 2020). These analyses generally find premature mortality benefits of SO2 control 

exceed costs but have yet to explore how the Indian electricity sector could 

operationalize these regulations in the short-term or near-term. Cropper et al., (2019) 

analyze locational aspects by quantifying the cost and benefits associated with a 

hypothetical generator with SO2 control located in eight locations in India. They find net 

benefits largely scale with population density at a location. Likewise, Cropper et al., 

(2017) examine the cost-effectiveness (dollars spent per life saved) of flue-gas 

desulfurization installation in the 2009 Indian coal generation fleet to find that cost-

effectiveness varies by plant location. Both Cropper et al., (2019) and Cropper et al. 

Cropper et al., (2017) assume benchmark, normative plant operations without 

considering power system operations and dispatch. Srinivasan et al., (2018) lastly 

quantify the benefits and costs of sulfur control in the 2015 and projected 2030 Indian 

coal generation fleet to meet the upcoming Indian SO2 control regulations. They take a 

generator unit-level, spatially resolved approach where the current and future 

generation fleet meets electricity demand. However, Srinivasan et al., (2018) do not 

emphasize how control regulations affect locational aspects of power system dispatch 

and operations.  

To date, only Kumar et al., (2020), Power System Operation Corporation Limited, 

(2020) and Spencer et al., (2020) use dispatch modeling to mechanistically assess the 

emissions impacts of altering power dispatch in India. Kumar et al., (2020) find 

approximately 10% CO2 emission reductions possibilities between cost minimizing and 

emissions minimizing dispatch cases; however, they do not consider scenarios for other 

policies such as emissions regulations or taxes. Meanwhile, POSOCO (Power System 

Operation Corporation Limited, 2020) finds minimal CO2 emission reductions of 0.2% for 

May 2019 with only interstate generators (~20% of total national capacity) economically 

dispatched. Spencer et al., (2020) model scenarios of the integrating increased variable 

renewable electricity into the Indian grid in 2030. They find total CO2 emissions could 

increase between 3-17% while emissions intensity of electricity could decrease 30-38% 



34 

compared to present day. However, they do not consider differences in emissions 

between states or locations. 

Locational aspects remain important for policies pertaining to both carbon 

emissions and air pollution. With a federal system of government, each state in India 

largely schedules and dispatches its own power from capacity fuel mixes which vary by 

state (Safiullah et al., 2017). There are planned market reforms to coordinate and 

economically dispatch on a limited basis at the national level as opposed to the state 

level (Power System Operation Corporation Limited, 2020). Moreover, states also 

deliver power to consumers (Safiullah et al., 2017) and own a plurality of monitored 

capacity (Ministry of Power, 2020b). With 82% of renewable capacity concentrated in 

eight of 32 states and territories (Ministry of Power, 2020b), heterogenous capacity fuel 

mixes among states imply differing emissions impacts from generation and 

consumption.  

In sum, no study has yet mechanistically quantified the expected spatial 

heterogeneity arising from a federal Indian power sector, i.e. which states emit more or 

less and from which plants based on the electricity they consume. Moreover, none have 

explored the potential spatial or state-level differences in emissions from policy 

interventions in Indian power sector operations. Analyzing current spatial or state-level 

differences in emissions becomes increasingly relevant as the Indian power sector 

faces policies on multiple fronts: more stringent sulfur emissions control regulations 

(Ramanathan et al., 2020), increased penetration of renewable energy (Government of 

India, 2015), and planned market reforms (Power System Operation Corporation 

Limited, 2020).  

In this paper we develop and present a reduced-order dispatch model of Indian 

power generation to assess CO2 and SO2 emission impacts of policy interventions to 

address this gap. We focus near-term on the current Indian grid to analyze how policies 

could induce spatial differences in emissions between states in India. It is the first to 

present state-level, consumption-based average annual emission factors for India 

arising from power sector operations. While previous work has used dispatch modeling 

to simulate Indian power generation (Central Electricity Regulatory Commission, 2018c, 

2018b; Kumar et al., 2020; Palchak et al., 2017a; Phadke et al., 2016; Spencer et al., 
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2020), this work uses a flexible, computationally simplified method that is both 

accessible to researchers and policymakers and capable of evaluating policy 

interventions that affect power sector operations, e.g. greater renewable generation, 

emissions taxes, emissions regulations, and market reforms like larger load balancing 

areas. We first evaluate the model’s simulations against reported generation data. Then 

we use the model to simulate several national policy intervention scenarios: stricter 

sulfur control regulations, progressively increasing carbon taxes, and regional 

scheduling and dispatch among groups of states.  

3.2 Methods 

We adopt the approach presented by Deetjen and Azevedo (2019) to develop the 

reduce-order dispatch model for Indian power generation. Let G1h, G2h, G3h, …, Gnh 

represent a group of n dispatchable, non-renewable generators (i.e. nuclear, hydro, 

coal, and gas) with capacity G in MW during hour h: 
  

(1) 𝐺𝐺1ℎ,𝐺𝐺2ℎ,𝐺𝐺3ℎ,⋯ ,𝐺𝐺𝑛𝑛ℎ 
 
These capacities can be allocated during h to a state s according to fractions fnsh: 
 

(2) 𝑓𝑓1𝑠𝑠ℎ𝐺𝐺1ℎ,𝑓𝑓2𝑠𝑠ℎ𝐺𝐺2ℎ,𝑓𝑓3𝑠𝑠ℎ𝐺𝐺3ℎ,⋯ ,𝑓𝑓𝑛𝑛𝑠𝑠ℎ𝐺𝐺𝑛𝑛ℎ 
 
We can order the generators by their variable cost of generation Pnsh in ₹/kWh such that  
 

(3) 𝑃𝑃1𝑠𝑠ℎ ≤  𝑃𝑃2𝑠𝑠ℎ ≤  𝑃𝑃3𝑠𝑠ℎ ≤ ⋯ ≤ 𝑃𝑃𝑛𝑛𝑠𝑠ℎ 

 

This order f1shG1h, f2shG2h, f3shG3h, …, fnshGnh represents the merit-order curve of 

dispatchable, non-renewable generators ordered by variable cost of generation for each 

hour. State s during hour h has an electricity demand Dsh in MWh and non-dispatchable 

generation (e.g. wind and solar) Rsh in MWh. Consequently, to meet net demand Dsh - 

Rsh during hour h for state s, the first y generators G1h, G2h, G3h, …, Gyh with respective 

fractions will be dispatched to generate electricity such that: 
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(4)∑ 𝑓𝑓𝑛𝑛𝑠𝑠ℎ𝐺𝐺𝑛𝑛ℎ ≤ (𝐷𝐷𝑠𝑠ℎ − 𝑅𝑅𝑠𝑠ℎ)𝑦𝑦
𝑛𝑛=1 ) 

 

The model repeats this process for multiple hours and Indian states adjusting available 

generators with outage information from daily generation reports. We assume no 

transmission constraints nor any constraints on the ramping or minimum capacity factor 

capabilities of generators. Likewise, in case the equality condition does not hold in 

Expression 4, we do not explicitly model interstate electricity transfers to meet any 

shortfalls in demand.  See Appendix B for a detailed discussion of the uncertainty 

associated with these assumptions.  
To compile generators in Expression 1, we combine a publicly available 

database of all non-variable-renewable generators in India with capacity greater than 25 

MW with fossil unit-specific modeled, reported, and calculated net heat rates (Central 

Electricity Authority, 2015; Ministry of Power, 2020b; Oberschelp et al., 2019) for 2014-

2018. We fill in missing heat rates with a log-fit of existing heat rates for units as a 

function of capacity differing by coal and gas units (Figure 46). To compile variable cost 

of generation, Pnsh, we take differing approaches according to generator fuel type. For 

coal generators, we calculate production-weighted variable cost of power with the 

Government of India’s coal dispatch database (Coal India, 2019) which reports grade-

wise coal amounts sold to individual power stations. We combine these amounts with 

grade-wise fixed prices of coal from Coal India and state-wise coal transport costs (Coal 

India, 2018; Kamboj and Tongia, 2018). For plants without any reported sold coal 

amounts, we fill in using state- and ownership- (central, state, or private) wise median 

calculated variable cost of power. Calculated variable costs of power for coal units 

largely match 1:1 to reported variable costs of power from the MERIT India database 

(Ministry of Power, 2020a) which reports variable cost of generation according to long-

term power purchase agreements between generators and states (Figure 47).  For gas 

plants, we use a region-based approach with domestic and imported gas prices and 

applicable state taxes (Ministry of Petroleum and Natural Gas, 2019; National Thermal 

Power Corporation, 2017). For nuclear and hydro plants, we assume the reported 

variable cost of generation in the MERIT India database (Ministry of Power, 2020a). 
For intrastate generating plants, 100% of capacity is generally allocated to 
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respective states, i.e. fnsh = 1; for interstate generation states, fnsh < 1, and capacity 

allocations to multiple states come from the MERIT India database and capacity 

allocations from CEA. Our model captures 75-85% of installed capacity based off 

reported capacity allocations (Central Electricity Authority, 2020b; Ministry of Power, 

2020a) (Figure 48).  
We estimate net demand Dsh - Rsh from various sources. We first estimate total 

hourly demand at the state level by decomposing total daily demand reported at the 

state level from POSOCO (Power System Operation Corporation Limited, 2018) by 

state-level diurnal load profiles of demand disaggregated at the monthly level from 

Energy Analytics Lab (Energy Analytics Lab, 2019). The daily demand reported by state 

represents the power injected into the state at the state boundary. We estimate average 

monthly diurnal renewable generation profiles by first disaggregating nationwide 

renewable generation data for 2018-2019 (Centre for Social and Economic Progress, 

2019) to obtain diurnal profiles of renewable generation and then applying these profiles 

to actual monthly renewable generation for each state from September 2017 to August 

2018 (Central Electricity Authority, 2018c) (Figure 49). We estimate net demand for 

each hour of year for each state by subtracting average monthly diurnal renewable 

generation from estimated total hourly demand for a given hour. 
We structure the model by making SO2 and CO2 emission factors as functions of 

unit heat rate for fossil plants. We assume domestic Indian production-weighted 

average coal composition (Ministry of Coal, 2018) for all plants and use the mass-

balance approach presented by Srinivasan et al., (2018). We assume domestic Indian 

coal only with no imported coal, which disproportionately is used in handful of coastal 

locations. For gas plants, we assume standard natural gas for CO2 emissions (U.S. 

Energy Information Administration, 2020) and zero SO2 emissions.  
We test a total of eight policies to spatially estimate their impacts on SO2 and 

CO2 emissions (Table 1)  
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Scenario Description 

State Dispatch (Base Case) Dispatch plants by individual states with fixed allocations of 
interstate plants 

Sulfur Control Impose sulfur control variable costs to meet emission 
regulations 

Carbon Tax -10 Impose a CO2 tax of $10 USD/ton 
Carbon Tax - 35 Impose a CO2 tax of $35 USD/ton 
Carbon Tax - 50 Impose a CO2 tax of $50 USD/ton 
Carbon Tax - 100 Impose a CO2 tax of $100 USD/ton 
Sulfur Control + Carbon Tax -
35 

Impose sulfur control variable costs with a CO2 tax of $35 
USD/ton 

Region Dispatch Dispatch plants by power region (North, South, East, West, 
Northeast) 

Table 1 
Policy scenarios evaluated with the reduced-order model. 
 
Currently dispatch practices in India are hybrid combining pure economic dispatch 

based on variable cost of generation with heuristics based on historical practices. 

Heuristic practices vary by state because each state schedules and dispatches its own 

power with some regional and national coordination (Central Electricity Regulatory 

Commission, 2018c; Safiullah et al., 2017). These heuristic practices include using 

hydro capacity during non-monsoon months (generally January through May and 

November through December) as marginal generators, placing gas generators more 

expensive than coal generators after this hydro capacity, and dispatching coal and 

remaining gas generators by merit order. Moreover, hydro reservoirs in India serve 

other purposes besides power generation, e.g. drinking water, irrigation, flood control, 

etc. On a diurnal basis, hydro generation highly correlates with net demand (Figure 50) 

reflecting hydro’s load-following nature. Consequently, we structure the model to 

dispatch power according to increasing variable cost, putting hydro before coal and gas 

plants. However, to incorporate hydro generation’s load-following behavior and to reflect 

the availability of water in reservoirs, we first constrain daily hydro capacity from 

reported daily hydro generation. Then we disaggregate that generation to the hourly 

level according to diurnal profiles for hydro generation (Figure 50). Finally, we compare 

the capacity available to produce that much amount of electricity for the hour, we scale 

the available hydro capacity for the hour accordingly to represent the effective hydro 

capacity available to run at 100% capacity for the hour. 
The state dispatch scenario represents the current base case of operations in the 
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Indian power sector where each state schedules and dispatches its own power. 

Accordingly, we structure the model to run 32 Indian states and union territories 

individually with fixed state allocation of interstate generation capacity. The sulfur 

control scenarios represents the minimal control and costs needed to meet upcoming 

SO2 emission regulations in India (Srinivasan et al., 2018). As of December 2019, only 

13.75 GW of capacity (~ 5% of monitored capacity) in India have any operational sulfur 

control (Ramanathan et al., 2020), and we cannot verify if installed control runs regularly 

due to a lack of publicly available continuous emissions monitoring data. Therefore, for 

simplicity we assume no sulfur control at any plants in the base case scenario. 

Assumptions on control technologies and variable costs come from Srinivasan et al., 

(2018). For this scenario, we first calculate the percentage reduction required for each 

unit to meet Indian sulfur control regulations. Then we assume the minimal, least cost 

control technology required to meet that reduction from those presented in Srinivasan et 

al (Srinivasan et al., 2018). For 368 units totaling 72 GW capacity, we assume dry 

limestone rejection to reduce sulfur emissions ~60% at cost ₹6,000/ton SO2 removed 

($85/ton). For remaining 279 units totaling 129 GW requiring reductions more than 60% 

we assume wet flue gas desulfurization at cost ₹7,000/ton SO2 ($99/ton). These costs 

only include reagent costs and increase capacity-weighted variable cost of power by 1-

2%. All other associated control costs in fixed costs according to Indian regulations; 

they do not influence dispatch by variable cost of generation (Srinivasan et al., 2018). 

For the carbon tax scenarios, we assume $1 USD = ₹71 INR, which adds approximately 

300% to the average variable cost of coal generation with a $100/ton tax. For the region 

dispatch scenario, the model dispatches power based on geographical Indian power 

region by pooling state-level capacities. For each scenario we operate the model at 

hourly resolution for September 2017 to August 2018 to obtain annual results. 

3.3 Results 

In Figure 11 we show the annual electricity generation by fuel type for each 

Indian power regions and for each of our scenarios as well as for reported generation. 

The state scenario (second column) represents the base case for our simulations. 

Overall, results for this scenario agree largely with reported generation for most fuel-

region generation shares (e.g. coal generation in the northern region, hydro generation 
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in the eastern generation, etc.) within 30%, except for gas generation in the northern 

region where gas generation underprediction is 51%. We explain this subsequently in 

the Discussion. We also show monthly resolved results compared to reported 

generation for the base case in Figure 51 of the Appendix B, with agreement with 

reported generation at the monthly resolution largely mirroring agreement at the annual 

resolution. Likewise, we report state-level comparison of the base case simulation with 

reported generation for intrastate capacity in Figures 52-56. We compare only intrastate 

capacity because reported generation from Government of India do not report state-

level shares for interstate capacity (see Methods for explanation of interstate versus 

intrastate capacity). State-level annual comparisons show simulated generation largely 

agrees with reported generation. 

 
Figure 11 
Predicted annual generation in each region from all dispatch scenarios simulated and reported 
generation. 
 

Progressive carbon taxes of $10, 35, 50 and 100 USD/metric ton CO2 yield little 

changes in gross generation mixes. For reference, coal in India today has an implicit 

carbon tax of under $6/ton CO2, through a coal cess (tax) of ₹400/ton coal (International 

Institute for Sustainable Development, 2020). For the $35, $50, and $100 taxes, 

simulated gas generations increase by 8-175% relative to the base case but still form a 

small portion of total generation in all regions except the northeast region. This is due to 

both capacity constraints as well as unavailability of relatively inexpensive gas. Under 



41 

the $100 tax, simulated gas generation increases to 6% from 2% in the northern region, 

from 2% to 4% in the southern region, from 6% to 11 % in the western region, and from 

44% to 50% in the northeastern region. Three other scenarios: sulfur control, sulfur 

control with a $35/ton tax, and regional dispatch yield little changes in overall generation 

mix compared to the base case.  
The lack of significant changes in generation fuel mixes for each scenario also 

affects overall estimated CO2 emissions with little changes between each scenario 

(Figure 57). Due to a lack of directly reported CO2 emission data, we apply our 

estimated generator-level emission factors to both reported and simulated generations. 

The base case scenario estimates nationwide power sector CO2 emissions to be 22% 

lower than reported generation. Nationwide, the highest $100 carbon tax reduces 

emissions by 3% compared to the base case, with progressively higher taxes lowering 

emissions in all regions except the northeast region. In this region, emissions decrease 

the most with the $35 tax (7%) and not at higher tax values due to higher predicted 

intraregional coal dispatched at the highest carbon tax values. Scenarios with sulfur 

control which account for the small increase in CO2 emissions from additional energy 

consumption of control equipment change simulated nationwide emissions by 

approximately 1%. The region scenario induces the most changes in both nationwide 

and regional simulated CO2 emissions. At the national scale, estimated CO2 emissions 

increase by 3%, with regional emissions increasing in range between 2-6%. As 

discussed subsequently, market changes lead to cost savings, not necessarily 

emissions reductions as locational fuel price differentials outweigh efficiency gains from 

regional dispatch. 
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Figure 12 
Average annual predicted emission factors for Indian states from the state simulation (base case). Violin 
plot (left) shows spread of emission factors of electricity consumed in each state (see Table 3 for 
abbreviations) with density plot of annual demand. 
 

Given the base case’s (state dispatch) general agreement with reported 

generation, we report average consumption-based annual CO2 emission factors for 

each state of India in Figure 12. Consumption-based emission factors consider inter-

state electricity transfers that production-based emission factors from plants within 

geographic boundaries would not consider. In Figure 12, the right panel shows the 

geographic location of each state by its estimated consumption-based emission factor, 

and the left panel shows the spread of emission factors with a density plot of annual 

electricity demand. We also present the data underlying this plot in Table 3. Overall, the 

national generation-weighted average CO2 emission factor for all states is 711 kg/MWh, 

but considerable heterogeneity exists (left panel). Two distinct clusters form in the 

spread of state-level emission factors. At the lower range of state-level emission factors 

are 11 low annual demand states (~4% of total nationwide demand), primarily 

Himalayan and Northeastern states, where considerable hydro capacity exists. At the 

minimum within this group, Himachal Pradesh (HP) reports an average emission factor 

of 87 kg/MWh with Uttarakhand (UK) at the greatest at 372 kg/MWh. Within this cluster 
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of low-demand states, those with higher emission factors tend to depend on 

combination of coal and gas paired with hydro. The second cluster of states are the 

remaining 21 states simulated, forming 96% of total annual demand. Among this group 

average annual CO2 emission factors vary considerably with Assam (AS) and 

Karnataka (KA) at the lower end of this group (521 kg/MWh  and 530 kg/MWh) with the 

highest emission factor among all states from Jharkhand (879 kg/MWh). While 

Karnataka, Madhya Pradesh (MP), Tamil Nadu (TN), Maharashtra (MH), Gujarat (GJ), 

Rajasthan (RJ), Andhra Pradesh (AP) and Telangana (TG) have the highest amounts of 

renewable capacity, they also use considerable amounts of coal capacity, putting them 

in the highest cluster of states. We discuss the uncertainty associated with the base 

case simulation and state-level estimated annual CO2 emission factors in Appendix B.  
To assess differences between states, we report simulated state-level 

consumption emissions, production emissions, annual demand, and differences in 

consumption-based emission factors and production-based emission factors (Figure 

13). We calculate consumption-based emissions by summing the emissions from 

interstate and intrastate generation associated with meeting demand for a state.  

 
Figure 13 
(A) Consumption and (B) production-based simulated total emissions from the Indian power sector by 
state. Additionally, (C) annual power demand reported and (D) difference in emission factors between 
consumption-based emission factors and production-based emission factors. 
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The highest consumption-based emissions occur in Maharashtra (120 Mt), the lowest in 

Mizoram (MZ, 0.10 Mt) with an average across states at 26 Mt. We calculate 

production-based emissions by summing the emissions associated with generation 

within a state’s borders only. State-to-state variability in production-based emission 

(Figure 13b) mirror those for consumption-based emissions; however, several states 

(e.g. Goa, Manipur, Meghalaya) report zero production-based emissions due to zero-

carbon capacity installed in those states. Likewise, Maharashtra reports production-

based emission of 104 Mt and average production-based emissions across all states is 

26 Mt. The interstate differences in both consumption-based and production-based 

emissions (Figure 13a, b) mainly arise from differing annual demand by state (Figure 

13c). States having the lowest consumption-based emission factors also have the 

lowest annual demands (e.g. Jammu and Kashmir (JK), Sikkim (SK), Arunachal 

Pradesh (AR)). Lastly, in Figure 13d we report the difference between consumption-

based emission factors for each state (Figure 2) and production-based emission factors. 

We calculate these latter factors by dividing the total emissions within the geographic 

boundary of each states by the total generation from generators within the state. This 

analysis produces distinct differences due to interstate electricity exchanges. For 

example, in Kerala, while little fossil generation capacity is within the state, the state 

imports fossil generation from neighboring states, yielding a difference of over 500 

kg/MWh between consumption-based and production-based emission factors. A similar 

pattern holds for a state like Odisha (OR) in the coal belt: its consumption-based 

emission factor is less than the production-based emission factor, with a difference of 

109 kg/MWh. 

Figure 14 shows the results of the sulfur control scenario. In Figure 14, overall, 

we see an 79% decrease in annual nationwide sulfur emissions from 6,100 kt in the 

base case to 1,300 kt in the sulfur control scenario (Figure 14a). These decreases 

represent the minimal control needed to meet upcoming Indian SO2 emission standards 

for coal generators (Table 4). Likewise, minimal nationwide control yields little change (< 

5%) in plant load factor (PLF), i.e. capacity factor of plants (Figure 14b). Only 19 of 162 

coal plants dispatched see appreciable changes in PLF with 88% of plants showing no 

change. These 19 plants sit throughout the country. 
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Figure 14 
(A) Decrease in SO2 emissions from implementing minimal sulfur control to meet Indian emissions norms. 
Decrease is difference in model predictions between the base case, state scenario and the sulfur control 
scenario. (B) Changes in coal plant load factor (PLF) from sulfur control. Only coal plants with a more 
than 5% change in PLF are shown. 
 

Figure 15 shows the results of the $100/ton CO2 tax scenario. Only 12 states see 

appreciable decreases (> 5%) in average annual emission factors (Figure 15a): Assam 

(6% decrease), Gujarat (9%), Kerala (9%) Punjab (10%), Arunachal Pradesh (11%), 

Meghalaya (11%), Jammu and Kashmir (12%), Manipur (15%), Chandigarh (16%), 

Nagaland (18%), Mizoram (23%), and Uttarakhand (27%).  

 
Figure 15 
(A) Changes in average annual emission factors by state for a $100 USD/ton CO2 tax. (B) Change in SO2 
emissions induced from a $100 USD/ton CO2 tax. 
 

These states, accounting for approximately 20% of annual nationwide demand, are 

generally Himalayan or Northeastern states except for Gujarat, Punjab, and Kerala 
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which dominate at 16% of total annual demand. Consequently, the annual average 

nationwide CO2 emission factor decreases from 711 kg/MWh to 686 kg/MWh, a 

decrease of 4%. The $100 tax also affects the spatial distribution of SO2 emissions from 

plants by decreasing total emissions and concentrating emissions to a fewer number of 

plants (Figure 15b). Total SO2 emissions decrease 11% from 6,100 kt to 5,400 kt in this 

scenario, and 47 plants see increases in SO2 emissions, 20 see no change, and 95 see 

decreases in estimated SO2 emissions. Moreover, the emissions-weighted standard 

distance of plant emissions with respect to their spatial center of emissions decreases 

from 769 km in the base case to 740 km in the $100 tax scenario, indicating decreased 

spatial variability. See Appendix B for a detailed discussion of calculating standard 

distance. In the other four carbon tax scenarios, similar spatial patterns emerge as the 

$100 tax scenario (Figure 60). 

Figure 16 shows the changes between the regional dispatch scenario and the 

base case. Regional dispatch increases the average nationwide CO2 emission factor 

from 711 kg/MWh to 720 kg/MWh, an increase of approximately 1%.  

 
Figure 16 
(A) Changes in average annual emission factors by state for regional dispatch (B) Change in SO2 
emissions induced from regional dispatch. 
 
However, the state-level impacts of this regional pooling produces are disparate (Figure 

16a) in terms of emission factors. Of 32 states, 13 states see decreases in average 

emission factors with average percentage decrease of 9%, and 19 states see increases 

with an average percentage increase of 87% with the highest increases for states with 

the lowest emission factors in the base case (e.g. Jammu and Kashmir, Himachal 
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Pradesh, Sikkim). The SO2 impacts of this simulation show once again SO2 emissions 

concentrated in different spatial patterns (Figure 16b). Nationwide SO2 emissions 

increase to 6,200 kt in this scenario from the base case scenario, an increase of 2%. 

The number of plants seeing increases or decreases compared to the base case differ. 

Of 162 plants, 97 see increases in SO2 emissions, 31 see decreases, and 34 see no 

change. In this scenario emissions-weighted standard distance decreases to 740 km 

from 769 km in the base case. However, clear clusters emerge: plants the furthest away 

from coal mining areas (e.g. Haryana, Gujarat, and Tamil Nadu) see decreases in SO2 

emissions, while plants closer to mines see increases due to closer plants having lower 

variable cost with total fuel costs heavily dependent on coal transportation costs.  

3.4 Discussion and Conclusions 

In this paper we develop and present a reduced-order dispatch model of Indian 

power generation to assess state-level CO2 and SO2 emission impacts of policy 

interventions. We specifically focus on how policies in the current Indian grid could 

induce spatial differences in emissions between states in India. We take this approach 

because Indian power sector operations, capacity, and generation vary by Indian state. 

Previous analyses have yet to mechanistically quantify which states emit more or less 

and from which plants, based on the electricity they consume. Increased penetration of 

renewable energy, the need to control air pollution, and planned market reforms warrant 

analysis beyond national, aggregate metrics of CO2 and SO2 emissions from Indian 

power generation. We use a flexible, computationally simplified method that is both 

accessible to researchers and policymakers. We simulate the Indian power sector from 

September 2017 to August 2018 and evaluate several scenarios: state-level dispatch, 

sulfur control, CO2 taxes, and regional dispatch with plants dispatched in order of 

variable cost. In this section, we discuss the validity of the model by comparing its 

output to other studies. Then we discuss the CO2 and SO2 results and what they reveal 

about spatial, state-level emissions patterns in the Indian power sector. 

Our model scenario of state-level dispatch matches reported generation 

accurately for most regions and fuel categories. These results qualitatively match 

Palchak et al. (Palchak et al., 2017a) who report simulations results for 2014; however, 

they do not report quantitative comparisons of model simulations to observations. 
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Because the model captures 75-85% of generating capacity (Figure 48) simulated 

generation is less than reported generation. The model does not capture 100% of 

generating capacity for two reasons. First, the Government of India data portal we use 

shows state generation portfolios associated with long-term power purchase 

agreements (PPA) states have entered with generators. Reporting of these PPAs on the 

portal varies by state with larger, high demand states reporting better data and not all 

generators enter PPAs (Ministry of Power, 2020a). Second, states share capacity of 

interstate generating capacity based on fixed shares from historical demand, but 

generally up to 85% of a generating unit’s capacity is in fixed allocations to states. 

Capacity not dispatched according to long-term PPAs participate in shorter-term 

bilateral contracts between states or in short-term spot exchanges. Consequently, our 

modeling approach and results are consistent with these long-term PPAs that govern 

90% of generation in India (Central Electricity Authority, 2020b). This discrepancy also 

explains where simulations otherwise suggest lack of generation meeting demand; 

surplus capacity in other states is available to bridge this gap, as has occurred in recent 

years (see Appendix B for detailed discussion). Furthermore, our approach is similar to 

Palchak et al. (Palchak et al., 2017a) who do not simulate bilateral exchanges between 

states. However, our approach differs because 1) our model explicitly considers 

allocation of centrally owned plants (ISGS) to each respective state, 2) does not 

consider intrastate, interstate, interregional, or international transmission constraints 

and 3) the export and import of power with neighboring countries.  

Likewise, if we use total CO2 emissions as a proxy for total generation, our 

results are consistent with total CO2 error rates reported by Deetjen and Azevedo 

(Deetjen and Azevedo, 2019) who develop the reduced-order dispatch method for North 

American power regions. In this analysis, they find the method reproduces total CO2 

emissions within 20% error, compared to our base case error rate of 22%. Higher data 

quality and a greater degree of full economic dispatch among North American 

generators than that of Indian generators yields confidence in the accuracy of this 

method applied to Indian generators. 

To our knowledge, we are the first to present subnational, state-level emission 

factors for India arising from power sector operations. Our nationwide average emission 
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factor of 711 kg/MWh largely agree with 2016-2017 estimates of 750 kg/MWh from 

Soman et al. (Soman et al., 2019), 2019-2020 estimates of 710 kg/MWh from Spencer 

et al. (Spencer et al., 2020), and 2017-2018 estimates of 820 kg/MWh from Central 

Electricity Authority (Central Electricity Authority, 2018a). After accounting for 

uncertainty (Figure 58), our estimated nationwide average CO2 emission factor ranges 

between 693 and 721 kg/MWh. Furthermore, total CO2 emissions estimated from the 

base case of the model, 820 Mt, are consistent with 920 Mt reported by Central 

Electricity Authority (Central Electricity Authority, 2018a), more so after accounting for 

the gap in capacity coverage as described above, which is more likely to be coal-based. 

In addition to this capacity coverage gap,  differences in estimated emission factor and 

total emissions mainly arise from assumptions about CO2 emission per unit heat in for 

coal power stations. Central Electricity Authority (Central Electricity Authority, 2018a) 

assumes 90 g CO2/MJ coal with 98% carbon oxidation. This analysis assumes 82 g 

CO2/MJ with a 95% oxidation factor based off production-weighted average composition 

and energy density of domestic Indian coal from Srinivasan et al. (Srinivasan et al., 

2018) and Ministry of Coal (Ministry of Coal, 2018).  

Minimal interregional electricity exchanges (Palchak et al., 2017a) mean 

calculation of average annual emission factors at the regional (North, South, East, 

West, Northeast) level is possible using reported generation and emission factors. 

However, the lack of easily accessible generation shares for interstate generators mean 

calculating consumption-based emission factors at the state-level is difficult without 

some mechanistic understanding of interstate electricity transfers. Our results are 

consistent with Ryan et al. (Ryan et al., 2016)  and de Chalendar et al. (de Chalendar et 

al., 2019) who both show for the United States that emission factors vary by whether 

they incorporate electricity exchange across geographic boundaries. Moreover Ryan et 

al. (Ryan et al., 2016) argue with appropriate uncertainty analysis mechanistic methods 

such as dispatch models can provide policy-relevant estimates of emission factors not 

possible with empirical methods using historical data.  

Consequently, using generators located with geographic boundaries of states will 

yield inaccurate results. As seen in Figure 13d, while for some states with the largest 

demands such as Maharashtra, Tamil Nadu, or Gujarat the difference between 
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consumption-based and production-based emission factors is less than ±10%, for other 

states with large demands such as Karnataka or Uttar Pradesh, the difference can be 

excess of ±10-20%. The difference is most pronounced in states with smaller demand 

which are more likely to import electricity from neighboring states.  This increases their 

consumption-based emission factors over their production-based emission factors, e.g. 

Himalayan or Northeastern states. State-level consumption-based emission factors here 

provide more detailed, accurate information for policy analyses than both national-level 

emission factors and regional-level factors.  

This analysis furthermore quantifies and defines the spatial CO2 and SO2 impacts 

from policy interventions in the current Indian power sector: (1) minimum sulfur control 

to meet current Indian regulations (2) increasing carbon taxes (3) regionally coordinated 

dispatch instead of at the state-level. Our results show that despite quite similar 

aggregate CO2 emissions and fuel-generation mixes in each scenario compared to the 

base case (Figure 11), spatial CO2 and SO2 patterns differ between scenarios. 

For sulfur control, we assume implementation of two control technology options, 

dry limestone injection or wet flue gas desulfurization, from Srinivasan et al. (Srinivasan 

et al., 2018), which analyzes an entire suite of possible control technologies. Our base 

case sulfur emissions estimates (6,100 kt), sulfur control scenario emission (1,300 kt), 

the percentage reduction (79%), and coal generation-weighted emission factor changes 

(7.0 kg/MWh to 1.5 kg/MWh) are consistent with previous analyses of sulfur control at 

Indian power stations. Srinivasan (Srinivasan et al., 2018) report 95% reductions to 650 

kt with SO2 emission factors decreasing from 7.9 kg/MWh to 0.4 kg/MWh with more 

stringent control under a wider range of control technologies. Likewise previous 

analyses estimating total SO2 emissions from the Indian power sector range from 3,500-

10,100 kt (Guttikunda and Jawahar, 2018; Li et al., 2017a; Lu et al., 2013a; Oberschelp 

et al., 2019; Tong et al., 2018). While the capital costs of control technology differ, 

Srinivasan et al. (Srinivasan et al., 2018) report similar variable costs of operation 

across all sulfur control technologies analyzed. Consequently, under these 

assumptions, results from the sulfur control case are less sensitive to the choice of 

technology than to simply the presence of any technology at a given generator. Our 

results show most plants see minimal changes in PLF from implementation of sulfur 
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control, but PLF changes can guide capital investment decisions. Specifically, for plants 

that see more than 5% decreases in PLF, capital costs may exceed the required PLF to 

recoup these costs during plant operation. It remains to be seen if Indian regulators 

allow a pass-through of such costs even in lowered PLF cases. This may impact which 

plants ultimately do or do not undergo sulfur control installation (Ramanathan et al., 

2020). Moreover, we assume all plants implement sulfur control. If policymakers target 

specific plants in a regional manner, the potential for shifting emissions away from 

target areas to other areas is possible because of the decentralized manner of power 

dispatch in India and additional marginal cost of sulfur control, penalizing plants in the 

dispatch order. Indeed, no clear patterns about plant age, size or location emerge for 

the plants that do see appreciable changes in PLF in our sulfur control scenario. 

According to this analysis, progressively stringent carbon taxes fail to yield 

significant CO2 emission reductions in the current Indian grid with fixed generation 

capacity. As seen in Figure 15a, most states show little changes in CO2 emissions 

intensity of their electricity consumption under a CO2 tax of high $100 per ton. For 

states that do see changes (e.g. Kerala, Punjab, and Northeastern states), increases in 

CO2 compared to the base case scenario occur due to previously expensive gas plants 

become cheaper than coal plants under a tax. On average in this dispatch analysis, the 

tax required on a coal generator to achieve parity in variable cost with a gas generator 

is approximately $66/ton. Consequently, in the current Indian grid, to displace coal 

generation with gas generation, either a tax imposed must increase to this value, the 

average variable cost of gas must decrease, or the average cost of coal must increase. 

Our analysis yields evidence of this increased role of gas generation in Figure 11 and 

Figure 15b, where we see both an increase in gas generation and a shift in SO2 

emissions from 95 plants where emissions decrease to 47 plants where emissions 

increase. This decrease in the spatial variability of possible SO2 emissions shows clear 

policy relevance because locations of power plant SO2 emissions impact costs 

associated with ambient PM2.5 (Cropper et al., 2019) as opposed to CO2, where location 

of emissions is largely irrelevant to damages, but not control efforts.  

Regionally coordinated dispatch slightly increases, approximately 3% and 2%, 

both SO2 and CO2 emissions, respectively, from the Indian power sector with changes 
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in the spatial patterns of SO2 emissions. This behavior is consistent with Kumar et al. 

(Kumar et al., 2020) who find a 10% difference in cost and emissions minimizing 

scenarios for nationwide dispatch in India. However, changes in state-level emission 

factors vary as expected by state, especially for states with the lowest emission factors 

in the base case. Regionally coordinated dispatch furthermore shifts the spatial patterns 

of SO2 emissions by shifting emissions from distant plants to plants closer to eastern 

coal mining regions in Chhattisgarh, Odisha, Jharkhand, Bihar, and West Bengal. 

Likewise, SO2 emissions become more spatially disperse with the number plants seeing 

SO2 emission increases greater than those seeing decreases. This behavior is 

consistent with findings from Kamboj and Tongia (Kamboj and Tongia, 2018) who find 

coal transport costs to predominantly determine the variable cost of electricity for Indian 

power stations. We use coal transport costs from Kamboj and Tongia (Kamboj and 

Tongia, 2018). Pooled dispatch across state lines penalizes plants in states with the 

highest transport costs, e.g. Gujarat, Haryana, and Tamil Nadu. Coupled with increased 

CO2 and SO2 emissions this suggests that in general regionally coordinated dispatch 

shifts generation to plants in coal-mining areas with lower transport costs. These plants 

can be less efficient, more polluting than those further away, often a function of age.  

We recognize limitations with our estimates of near-term, policy-induced spatial, 

state-level emissions differences, which derive from the current capacity in the Indian 

electricity sector. By focusing on the near-term, as opposed to longer-term or future, our 

results highlight current spatial differences. Of the policy interventions we evaluate, the 

carbon tax is most sensitive to our assumption of a fixed set of available generation 

capacity. A carbon tax would likely spur future investment in lower carbon generation 

capacity in India, lowering both electricity GHG and sulfur emissions over time. 

Moreover, the other policy scenarios including those we evaluate, sulfur control and 

regional dispatch, could influence capacity expansion to change the future mix of 

available generation capacity. However, we hypothesize that spatial, state-level patterns 

our results illustrate may qualitatively apply to a future Indian grid. Spencer et al 

(Spencer et al., 2020) find with varying scenarios of increasing renewable generation in 

the 2030 Indian grid, coal generation could still form at least 50% of national generation, 

with percentages of hydro and gas generation staying at similar values in 2030 as they 
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do now. Consequently, with coal potentially playing a significant role in future Indian 

generation, our results can serve as a basis to test this hypothesis. Future analysis will 

need to spatially analyze emissions from deploying similar dispatch modeling to 

hypothetical future Indian grids. 

In sum, this analysis presents a reduced-order dispatch model of Indian power 

generation capable of providing insight into the CO2 and SO2 emissions impacts of 

policy interventions in the current Indian power sector. We quantify the average annual 

consumption-based CO2 emission factors of Indian states which provides more detail 

than regional or national emission factors. Furthermore, these consumption-based 

factors are different than production-based factors calculated with reported generation 

and plants located within political boundaries. Implementation of sulfur control to meet 

upcoming regulations yields evidence that small fraction of plants will see their PLFs 

change; however, region-focused dispatch coupled with decentralized dispatch in India 

yield the possibility of SO2 emissions shifting to other locations. Differences between the 

average variable cost of coal and the average variable cost of gas along with insufficient 

gas capacity to displace coal capacity make the current Indian power system insensitive 

to progressively higher carbon taxes. However, such taxes induce changes in the 

spatial pattern of SO2 emissions by decreasing emissions in more plants than those 

plants seeing increases. This pattern of changes in SO2 emission patterns reverses for 

regionally coordinated dispatch versus state-level dispatch with cheaper, less efficient 

plants near coal mining generating more. We acknowledge limitations with our 

approach, i.e. mainly that our conclusions apply to today’s Indian grid. However, future 

word may evaluate whether these state-level, spatial emissions patterns hold in a future 

Indian grid where coal generation will likely still form a large fraction despite increased 

renewable generation. Our analysis shows that policies that have modest or negligible 

emissions impacts at the aggregate, national level nonetheless have disparate, state-

level, spatial emissions impacts.  
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4 PM2.5 mortality burden of power generation in India under current and future 
policies 

4.1 Introduction 

India is the world’s third largest emitter of greenhouse gases (GHG) (BP, 2020; 

Carbon Brief, 2019; World Resources Institute, 2019), with 40% of its emissions coming 

from coal-dominated power generation(Mohan et al., 2019). Likewise, largely 

uncontrolled emissions of conventional air pollutants (CAP) sulfur dioxide (SO2) and 

nitrogen oxides (NOX) from Indian power generation contribute to poor ambient air 

quality in the country. Between 7-21% of the estimated 1.1 million premature deaths in 

Indian associated with PM2.5, solid or liquid particles suspended in the atmosphere, 

come from power generation (Apte and Pant, 2019; Conibear et al., 2018; Gao et al., 

2018; GBD MAPS Working Group, 2018; Guo et al., 2018; Guttikunda and Jawahar, 

2014, 2018; Lelieveld et al., 2015). With increasing economic growth, power generation  

remains a source of GHGs and CAPs poised for growth and consequently control 

policies (Peng et al., 2020; Venkataraman et al., 2018). The Government of India has 

targets to increase zero-emission generation to 40% of all power capacity by 2030 

(Government of India, 2015) and announced stricter limits on SO2 and NOX emissions in 

2015.(Ministry of Environment Forest and Climate Change, 2015) Consequently, 

climate and air pollution control policies for the Indian power sector remain an active 

area of research due to a sector in flux. 

Previous efforts to quantify the premature mortality from Indian power generation 

under current and future policies largely pair simulations of air quality models with 

exposure-response functions and mortality rates. Cropper et al., (2021) estimate 

approximately 78,000 deaths (~9.2% of all PM2.5 premature mortality) associated with 

Indian coal power plants in 2018 with most deaths in the most populous states of Uttar 

Pradesh and Maharashtra. They estimate annual mortality increases to 112,000 deaths 

from planned construction of new coal power stations. Gao et al., (2018) likewise 

estimate 270,000 (~33%) annual deaths associated with Indian power generation, with 

most deaths in states in the Indo-Gangetic Plain where exposure levels are the highest. 

Peng et al., (2020) quantify tradeoffs to find failing to enforce emission control 

regulations at Indian power stations results in 2.5x more deaths in 2040 than failing to 
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enforce zero-emission energy targets. Overall previous analyses quantifying the impact 

of power generation have found the sector to be a large contributing sector that will 

remain important as India meets multiple objectives of development, industrialization, 

and decarbonization (International Energy Agency, 2021). 

However, no study has analyzed control policies within Indian power sector 

operations accounting for the exchange of electricity between states. Both central 

government and state governments have federal jurisdiction over the Indian power 

sector. Moreover, each state individually contracts and schedules generating capacity to 

meet demand within their borders. Consequently, not only is there state-to-state 

heterogeneity in power generation impacts on ambient air quality as previous analyses 

quantify, but also fuel mixes and emissions from the electricity consumed by each state 

(Power System Operation Corporation Limited, 2020; Safiullah et al., 2017). To analyze 

premature mortality of policies such as carbon taxes or further integration of wholesale 

power markets between states, a representative accounting of power sector operations 

and associated emissions is needed. Likewise quantifying the PM2.5 premature mortality 

embedded in power consumed by each state in addition to power produced by each 

state can inform emissions reductions policies at the state-level because states choose 

which plants where will generate electricity to meet demand. 

Here, we feed emissions estimates from reduced-form model of Indian power 

generation as inputs into a reduced-form air quality model to 1) quantify the PM2.5 

premature mortality associated with power produce and consumed by each Indian state 

in 2017-2018 and 2) analyze the impact on PM2.5 premature mortality of emission 

control, market integration, and carbon tax policies in the Indian power sector. Our 

approach improves upon previous work by accounting for electricity exchanged 

between states to understand the import and export of air pollution between states as 

well as power sector operations.  

4.2 Methods 

We use a reduced-form power sector model and a reduced-form air quality 

model to quantify PM2.5 premature mortality from Indian power generation under current 

(2017-2018) and future policies. The first, a reduced-form dispatch (production-cost) 

model estimates the hourly dispatch and generation of power generators in each Indian 
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state based on electricity demand (Sengupta et al., 2021). States are primarily 

responsible for procuring and dispatching power based on demand in India, with some 

regional coordination (Safiullah et al., 2017). For each state, the model orders 

contracted supply by variable cost from publicly available data (Ministry of Power, 

2020a). Then it determines the generating units called to generate by matching the 

cumulative supply to reported demand, net renewable generation (Central Electricity 

Authority, 2018c; Energy Analytics Lab, 2019; Power System Operation Corporation 

Limited, 2018). Output includes explicit hourly generation values for units tied to 

consumption by each state. We pair simulated generation with estimated emission 

factors (Oberschelp et al., 2019; Srinivasan et al., 2018) to estimate SO2, NOX, and 

PM2.5 emissions from each generating unit. We simulate power generation from 

September 2017 to August 2018. We do not simulate transmission constraints, but 

implicitly simulate interstate exchange of electricity with fractional capacity allocations of 

interstate generating units, consistent with current Indian power sector operations 

(Ministry of Power, 2020a; Srinivasan et al., 2018). We direct readers section 3.2 and 

cited papers for further details about the reduced-form dispatch model and estimation of 

emissions.  

 We feed our estimates of SO2, NOX, and primary PM2.5 emissions into a reduced-

form air quality model, the Intervention Model for Air Pollution (InMAP) (Gilmore et al., 

2019; Tessum et al., 2015, 2017). Previous analyses have used this model to evaluate 

mortality associated with power sector emissions in the United States (Thind et al., 

2019) We use the global version of the model which uses outputs of the GEOS-Chem 

chemical transport model to approximate steady-state ambient PM2.5 concentrations 

(Thakrar et al., 2021). The reduced-form model uses simplified parametrizations of 

advection, diffusion, deposition, and chemical reactions based on underlying GEOS-

Chem simulations (Hammer et al., 2020). Grid definitions and emissions and 

meteorology inputs for the underlying GEOS-Chem simulations follow Hammer et al., 

(2020) who largely use Emissions Database for Global Atmospheric Research 

(EDGAR) (Crippa et al., 2016) and Modern-era Retrospective Analysis for Research 

and Applications (MERRA-2) (Gelaro et al., 2017) emissions inputs. However, Global 

InMAP deviates from this setup by simulating with variable grid cell size based on 0.01º 
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gridded 2020 global population estimates, increasing spatial resolution (smaller cells) in 

areas of higher population and population density. Grid cell size varies between 5º × 4º 

(~500 km at equator) in remote areas to 0.04° × 0.03° (~4 km at equator) in urban 

areas. Global InMAP takes annual emissions estimates of PM2.5 precursors gases to 

directly estimate annual-average ambient PM2.5 concentrations chemical resolved by 

sulfate, nitrate, ammonium, elemental carbon, and secondary organic components. 

 We use a similar risk-exposure relationship used in previous analyses (Apte et 

al., 2015; GBD MAPS Working Group, 2018) to quantify premature mortality attributable 

(mi,j,power) to the power sector (annual deaths from power sector PM2.5) and total 

premature mortality (mi,j, annual deaths from all source PM2.5) for each disease endpoint 

j (e.g. heart disease, lung cancer, etc) in each grid cell i simulated by InMAP: 

(1) 𝑚𝑚𝑖𝑖,𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑀𝑀2.5,𝑖𝑖,𝑝𝑝𝑜𝑜𝑤𝑤𝑒𝑒𝑟𝑟

𝑃𝑃𝑀𝑀2.5,𝑖𝑖

𝐼𝐼𝑠𝑠,𝑗𝑗

𝑅𝑅𝑅𝑅����𝑠𝑠,𝑗𝑗
𝑃𝑃𝑖𝑖�𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗�𝑃𝑃𝑀𝑀2.5,𝑖𝑖� − 1� 

(2) 𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝐼𝐼𝑠𝑠,𝑗𝑗

𝑅𝑅𝑅𝑅����𝑠𝑠,𝑗𝑗
𝑃𝑃𝑖𝑖�𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗�𝑃𝑃𝑀𝑀2.5,𝑖𝑖� − 1� 

(3) 𝑅𝑅𝑅𝑅����𝑠𝑠,𝑗𝑗 =
∑ 𝑃𝑃𝑖𝑖×𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗�𝑃𝑃𝑀𝑀2.5,𝑖𝑖�𝑁𝑁
𝑖𝑖=1

∑ 𝑃𝑃𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

Here Is,j is the mortality rate for each disease endpoint (annual deaths per capita from 

each PM2.5-related disease) in each Indian state, s, Pi refers to the population in each 

grid cell i, and RRi,j refers to the relative risk of mortality from each disease in each grid 

cell as a function of annual average concentrations of PM2.5,i . We omit subscripts for 

sex and age for clarity, but all variables except for PM2.5,i vary by sex and age as well. 

We scale the mortality rates Is,j by a population-weighted average relative risk, 𝑅𝑅𝑅𝑅����𝑠𝑠,𝑗𝑗 

because estimated mortality rates vary by state and not grid cell. However, reported 

mortality rates for each state do vary by location within each state because mortality 

rates account for deaths associated with and without PM2.5 exposure. Consequently, to 

account for this variability, we scale mortality rates by a weighted average relative risk 

of PM2.5 exposure (Apte et al., 2015; GBD MAPS Working Group, 2018). This approach 

differs from several previous analyses (Gao et al., 2018; Guo et al., 2018; Peng et al., 

2020) which scale mortality rates by relative risk in each grid cell and not a weighted 

average of grid cells in each state. Furthermore, we direct readers to previous analyses 

that derive this fractional attribution approach that quantifies the PM2.5 mortality 
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attributable to power generation by scaling total PM2.5 mortality by the portion of PM2.5 

exposure attributable to power generation (Gao et al., 2018; GBD MAPS Working 

Group, 2018; Health Effects Institute, 2016).  

 We use InMAP estimates for the absolute contribution of PM2.5 from the power 

sector, PM2.5,i,power and population, Pi. Because global InMAP takes emissions estimates 

as perturbations on top of the emissions in its underlying GEOS-Chem simulations, we 

assume the model’s estimates of annual average ambient PM2.5 concentrations 

represent the absolute contribution of PM2.5 from the power sector. To account for other 

sources in PM2.5 exposure we use 2018 global grided PM2.5 estimates at 0.01º  

resolution from Hammer et al., (2020) aggregated to the InMAP modeling grid as inputs 

for PM2.5,i. These estimates represent PM2.5 from all sources harmonized from satellite 

measurements, model estimates, and ground measurements. We note the underlying 

GEOS-Chem simulations are the same in both InMAP and global gridded PM2.5 

estimates (Thakrar et al., 2021). We obtain mortality rates, Ii, and relative risk curves, 

RR(PM2.5,i) from the Global Burden of Disease (GBD) for six disease endpoints, j: 

ischemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower 

respiratory infections, lung cancer, and type 2 diabetes. GBD reports relative risk 

estimates with high and low uncertainty bounds (Global Burden of Disease 

Collaborative Network, 2021; Indian Council of Medical Research et al., 2017; Pandey 

et al., 2021). Mortality rates are specific to Indian states split by age (5-year intervals 

from 0-95+ years), sex (male and female), and disease endpoint (Indian Council of 

Medical Research et al., 2017).   

We run the model in a business as usual (BAU), 2017-2018 case where equation 

1 represents the PM2.5 mortality attributable to power generation. We also run InMAP to 

estimate the mortality associated with each Indian state by running the model for each 

state with only the state’s BAU emissions. We take both a (1) a production-oriented 

view with emissions from plants located within the borders of a state and a (2) 

consumption-oriented view with emissions from plants supplying power to meet a 

state’s demand. In the latter case, these plants can be within a state or outside a state.  

We denote the mortality associated with an individual state (production or consumption) 

as: 
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(3) 𝑚𝑚𝑖𝑖,𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 = 𝑃𝑃𝑀𝑀2.5,𝑖𝑖,𝑝𝑝𝑜𝑜𝑤𝑤𝑒𝑒𝑟𝑟,𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒

𝑃𝑃𝑀𝑀2.5,𝑖𝑖

𝐼𝐼𝑠𝑠,𝑗𝑗

𝑅𝑅𝑅𝑅����𝑠𝑠,𝑗𝑗
𝑃𝑃𝑖𝑖�𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗�𝑃𝑃𝑀𝑀2.5,𝑖𝑖� − 1� 

Here PM2.5,i,power,state represents the InMAP estimate of PM2.5 in a grid cell from the 

emissions associated with each individual state. Consequently, using equation 3 these 

simulations quantify the burden of deaths associated either production of electricity 

within a state or consumption of electricity within a state. 

Lastly, we modify inputs to equation 2 to run several policy scenarios (denoted by 

prime) by modifying total PM2.5: 

(3) 𝑚𝑚′𝑖𝑖,𝑗𝑗 = 𝐼𝐼𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖 �1−
1

𝑅𝑅𝑅𝑅′𝑖𝑖(𝑃𝑃𝑀𝑀′2.5,𝑖𝑖)
� 

 (4) 𝑃𝑃𝑀𝑀′2.5,𝑖𝑖 = 𝑃𝑃𝑀𝑀2.5,𝑖𝑖 − 𝑃𝑃𝑀𝑀2.5,𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃𝑃𝑀𝑀′
2.5,𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Here PM2.5,i,power are InMAP estimates for BAU power generation PM2.5, and 

PM2.5,i are total PM2.5 exposure estimates from Hammer et al. (2020), PM’2.5,i,power are 

the InMAP estimates for power generation PM2.5 in each scenario, and m’i,j  is the total 

mortality estimate of PM2.5 exposure given changes in exposure from the power 

generation policy scenario (Hammer et al., 2020). We run a total of eight scenarios 

across three categories of policies. We refer readers to section 3.2 on the reduced-form 

model describing each policy scenario in more detail (Sengupta et al., 2021). We first 

examine sulfur control policies with scenarios quantifying sulfur control to meet current 

Indian sulfur control regulations and the sulfur control levels with a $35 per metric ton 

carbon tax. We then examine carbon taxes only at $10, $35, $50, and $100 per metric 

ton CO2. Lastly, we examine market integration policies which move away from 

individual states procuring and dispatching power: dispatching power by geographic 

region (north, south, east, west, and northeast, see Figure 82), and dispatching power 

nationally as one market. We estimate the change in mortality, Δmi,j, from each policy 

as: 
(5) ∆𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑚𝑚′𝑖𝑖,𝑗𝑗 − 𝑚𝑚𝑖𝑖,𝑗𝑗 

4.3 Results 

We show the results of our state-wise attribution of PM2.5 premature mortality 

associated with power generation in India in Figures 17-18. We adopt a similar 

approach used by (Thind et al., 2019) for attributing electricity generation deaths in the 

United States. We derive these estimates from our BAU InMAP simulation and 



60 

simulations with only BAU emissions associated with power production or consumption 

in each state. We find that in each grid cell, the sum of the PM2.5 estimates of all the 

state-by-state simulations equals the PM2.5 estimate from the BAU simulation, achieving 

closure with equation 3.  We find an annual population-weighted ambient PM2.5 

concentration of 77 µg m-3 and an annual population-weighted fraction attributable to 

power generation PM2.5 concentration of 4.3 µg m-3. In total for 2017-2018, across all 

grid cells, we estimate that electricity generation is associated with ~71,000 (uncertainty 

58,000-82,000) of the annual ~1.1 million (uncertainty 900,000-1.3 million) premature 

deaths from ambient PM2.5 in India. (Figure 61-64). We discuss best estimates without 

uncertainty ranges for the remaining results presented.  

In Figure 17a, we show annual electricity generation deaths from all power 

generation in India by each state. The data underlying Figure 17a are shown in Figure 

64 and Table 5. We find Tamil Nadu in south India to have the highest burden of 

electricity PM2.5 deaths: 18,400 deaths due high sulfur-emitting lignite power plants in 

the state. This is higher than the next two highest states combined: Maharashtra in 

western India (8,000 deaths), and West Bengal in eastern India (6,400 deaths).  Other 

large states facing high burdens include Uttar Pradesh (6,100 deaths), Andhra Pradesh 

(5,200 deaths), and Gujarat (3,800). Small northeastern states (Sikkim, Mizoram, 

Nagaland, Tripura, Assam, Arunachal Pradesh, Manipur, Meghalaya)  and 

predominantly Himalayan states in north India (Jammu and Kashmir, Himachal 

Pradesh, Uttarakhand, Delhi, Punjab, and Haryana), face little or no burden from 

electricity generation deaths (0-700 deaths).  
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Figure 17  
(A) Total PM2.5 mortality occurring in a state from all power generation in India. (B) Total attributable PM2.5 
mortality in each state from power production within that state. (C) Total attributable PM2.5 mortality 
outside each state from power production within that state. (D) Net deaths (A-B-C) in each state 
associated with power production. Boxed numbers show estimated deaths. Positive numbers mean that a 
state is a net importer of mortality, and negative numbers mean that a state is a net exporter of mortality 
to other states. 
 

In Figure 17b, shows annual electricity generation deaths occurring within each 

state’s borders from annual electricity production within that state. Here the highest 

deaths occur in Tamil Nadu (17,200 deaths) followed by Maharashtra (5,500 deaths), 

West Bengal (4,000), Andhra Pradesh (3,100 deaths), Gujarat (2,900 deaths), Uttar 

Pradesh (2,000 deaths), and Chhattisgarh (1,000 deaths). Northeastern states remain 

relatively unaffected because of few emitting power plants (coal and gas) located within 

those states. Likewise, north Indian states located in in the Himalayas show low in-state 

death burdens. 

In Figure 17c shows annual electricity generation deaths occurring outside each 

state’s borders from annual electricity production within that state. Here the relative 

burden of out-of-state deaths differs: Gujarat (3,400 deaths) and Uttar Pradesh (3,400 

deaths) both lead in terms of out-of-state deaths from electricity generated within the 

state. Madhya Pradesh (3,200 deaths), Tamil Nadu (3,000 deaths), Rajasthan (2,900 
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deaths), Maharashtra (2,800 deaths), Chhattisgarh (2,500 deaths), Andhra Pradesh 

(1,900 deaths), West Bengal (1,600 deaths), Haryana (1,500 deaths), Telangana 

(1,200), Punjab (1,000 deaths), and Karnataka (700 deaths) follow them. Once again, 

northeastern and norther, Himalayan states remain relatively unaffected. 

Lastly, Figure 17d shows the unequal mortality burden from electricity production 

between states in India. To derive these estimates, we first take the mortality burden for 

each state from all electricity generation in India (Figure 17a) and subtract from it the 

sum of deaths associated with in-state and out-of-state electricity production for each 

state (Figure 17b and Figure 17c). If all states shared equal mortality burdens tied to 

their electricity production, values in Figure 17d would be approximately zero, i.e. the 

deaths associated with a state’s electricity production would be proportional to the 

state’s deaths associated with all electricity generation in India. However, here, distinct 

spatial patterns emerge, estimates are net negative for states predominately in western, 

southern, and central India. This means the electricity these states produce is tied to a 

greater number of deaths than what we would expect if this production were 

proportional to nationwide electricity deaths (“production death exporters”). That is, the 

power plants in these states are disproportionately responsible for electricity-associated 

deaths. For example, electricity production in Gujarat results in 2,500 more total deaths 

than deaths in Gujarat from overall nationwide, electricity generation. Likewise, other 

states who produce electricity associated with higher deaths include Tamil Nadu (-1,800 

deaths), Rajasthan (-1,500 deaths), Haryana (-1,100 deaths), and Punjab (-800 deaths). 

Estimates are net positive for states predominately in northern and eastern India, except 

for one state in the south (Karnataka). This means these states face a disproportionate 

burden of electricity-associated deaths because they face a higher burden from 

nationwide electricity-associated deaths than the deaths the deaths associated with 

electricity produced within these states (“production death importers”). States include 

Bihar (2,400 deaths), Karnataka (1,600 deaths), Jharkhand (1,000 deaths), West 

Bengal (800 deaths), Odisha (800 deaths), and Uttar Pradesh (700 deaths). 
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Figure 18 
(A) Total attributable PM2.5 mortality in each state from all power generation in India. (B) Total attributable 
PM2.5 mortality in each state from power consumption by that state. (C) Total attributable PM2.5 mortality 
outside each state from power consumption by that state. (D) Net deaths (A-B-C) in each state 
associated with power consumption. Boxed numbers show estimated deaths. Positive numbers mean 
that a state is a net importer of mortality, and negative numbers mean that a state is a net exporter of 
mortality to other states. 
 
 

In an analogous figure to Figure 17, Figure 18b shows annual electricity 

generation deaths occurring within each state’s borders from each respective state’s 

annual power consumption. In Figure 18a, we show the same values as Figure 17a. We 

present results for each state by consumption because states are responsible for 

choosing and contracting the plants from which they procure power for their consumers, 

showing a potential lever for emissions control policies. States can procure power from 

plants within their borders our outside their borders, so these values incorporate deaths 

imbedded in electricity imports and exports. Northern, Himalayan states and 

northeastern states show again the lowest in-state deaths (0-200 deaths). Similar 

patterns emerge as Figure 18b, with the highest in-state deaths tied to consumption 

occurring in Tamil Nadu (14,000 deaths), Maharashtra (5,400 deaths), West Bengal 

(3,400 deaths). However, here Gujarat (2,700 deaths) faces higher in-state deaths than 

Andhra Pradesh (2,000 deaths) and Uttar Pradesh (1,400).  
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Figure 18c shows annual electricity generation deaths occurring outside each 

state’s borders from each respective state’s annual power consumption. Here clearer 

geographic patterns emerge where the highest out-of-state deaths occur in western, 

southern, and northern India, but the lowest out-of-state deaths occur in coal-mining, 

eastern states. Northeastern areas remain unchanged. Here, the highest out-of-state 

deaths occur from electricity consumption in Gujarat (4,100 deaths) followed by 

Maharashtra (3,700 deaths), Tamil Nadu (3,500 deaths), Rajasthan (3,500 deaths), 

Uttar Pradesh (2,900 deaths), Karnataka (2,600 deaths), and Telangana (2,300 deaths). 

States in eastern Indian meanwhile see fewer out-of-state deaths: West Bengal (1,300 

deaths), Chhattisgarh (800 deaths), Bihar (700 deaths), Odisha (500 deaths), and 

Jharkhand (300 deaths). 

Lastly, Figure 18d shows the unequal mortality burden from electricity 

consumption between states in India. We derive these estimates in a similar manner as 

Figure 17d, where we first take the mortality burden for each state from all electricity 

generation in India (Figure 18a) and subtract from it the sum of deaths associated with 

in-state and out-of-state electricity consumption for each state (Figure 18b and Figure 

18c). Again, if all states shared equal mortality burdens tied to their electricity 

consumption, values in Figure 18d would be approximately zero, i.e. the deaths 

associated with a state’s electricity consumption would be proportional to the state’s 

deaths associated with all electricity consumption in India. However, here, distinct 

spatial patterns emerge, estimates are net negative for states predominately in western, 

southern, and northern India. This means the electricity these states consume is tied to 

a greater number of deaths than what we would expect if this consumption was 

proportional to nationwide electricity deaths (“consumption death exporters”). Using 

Gujarat as an example again, electricity consumption in Gujarat results in 2,900 more 

total deaths than deaths in Gujarat from overall nationwide, electricity consumption. 

Likewise, other states who consume electricity associated with higher deaths include 

Rajasthan (-2,200 deaths), Haryana (-1,700 deaths), Kerala, (-1,600 deaths), Punjab (-

1,500 deaths), and Delhi (-1,300 deaths). Estimates are net positive for states 

predominately in eastern and central India. This means the electricity these states 

consume is tied to a fewer number of deaths than what we would expect if this 
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consumption was proportional to nationwide electricity deaths (“consumption death 

importers”). That is, these states face a disproportionate burden of deaths associated 

with electricity consumption. States include Bihar (2,700 deaths), Uttar Pradesh (1,900 

deaths), West Bengal (1,700 deaths), Andhra Pradesh (1,400 deaths), Madhya Pradesh 

(1,200 deaths), Jharkhand (1,200 deaths), and Chhattisgarh (1,100 deaths). 

 
Figure 19 
(A) Estimated decreases in PM2.5 concentration, (B) decreases in associated mortality and (C) state-wise 
breakdown of mortality reductions from sulfur control (top panel) and sulfur control and $35/ton carbon tax 
(bottom panel) policy scenarios. 
 

Figure 19 shows the PM2.5 decreases and associated mortality reductions from 

adopting widespread sulfur control policies in India. The top panel shows results for 

adopting minimal sulfur control to meet announced, but unimplemented, SO2 control 

regulations in India. Figure 14 shows the SO2 emissions decreases that result in these 

decreases. We discuss these results in detail as results for SO2 control regulations with 

a $35/ton carbon tax (Figure 19, bottom panel) result in very similar mortality reductions 

as the scenario without the carbon tax. The first column (Figure 19a, top) shows the 

decrease in estimated ambient PM2.5 from implementing sulfur control regulations 

predicted by InMAP. The estimated annual population-weighted average ambient PM2.5 

concentration decreases to 73 µg m-3. We see widespread decreases of 1-5 µg m-3 
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throughout India with highest decreases around plants. In areas around plants, InMAP 

estimates decreases of between 50-100 µg m-3. Sulfur control causes sulfate PM2.5 to 

decrease, which results in reductions in total annual PM2.5 exposure (Figure 19b, top). 

Consequently, total annual PM2.5 mortality decreases (∑ ∑ 𝛥𝛥𝑚𝑚𝑖𝑖,𝑗𝑗𝑖𝑖𝑗𝑗 ) by approximately 

42,000 fewer deaths per year. These mortality reductions occur throughout India except 

in parts of north India, northeastern India, and southwestern India. When looking at the 

state-wise breakdown of where these reductions (Figure 19c, top), we see Tamil Nadu 

leads with the most mortality reductions (13,000 deaths), followed by Maharashtra 

(4,500 deaths), Andhra Pradesh (3,500 deaths), West Bengal (2,100 deaths), Uttar 

Pradesh (2,000 deaths), Karnataka (2,000 deaths), Gujarat (1,900 deaths), Madhya 

Pradesh (1,800 deaths), and Chhattisgarh (1,300 deaths). 

 
Figure 20 
(A) Estimated decreases in PM2.5 concentration, (B) decreases in associated mortality, and (C) state-wise 
breakdown of mortality reductions from progressively increasing carbon taxes on power generation in 
India. For deaths, only areas that see changes in mortality shown. 
 

Figure 20 shows the PM2.5 decreases and associated mortality reductions from 

imposing carbon taxes from $10/ton to $100/ton on power generation in India. Figure 

20a shows the decreases in annual ambient PM2.5 concentration from InMAP. Figure 60 

and Figure 15 shows the locations of emissions increases and decreases that result in 
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these concentration changes. Under carbon taxes, emissions decrease at a greater 

number of less efficient plants and increase at a fewer number of more efficient plants. 

Higher carbon taxes concentrate emissions further. Consequently, estimated annual 

population-weighted average ambient PM2.5 concentration stays about the same at 75-

76 µg m-3 in each of these scenarios, with higher carbon taxes decreasing this average. 

However, we see on average a decrease of ~1 µg m-3 predicted by InMAP due to the 

emissions decreases at plants spread throughout the country. Only an isolated area in 

north India sees an increase of ~1 µg m-3 (Figure 20a). These concentration decreases 

translate to reductions in annual mortality in several areas throughout the country 

(Figure 20b). For the $10/ton tax, total annual mortality decreases by approximately 

9,400 deaths per year. Decrease in annual mortality number 11,000 deaths, 12,000 

deaths, and 14,000 deaths for the $35/ton, $50/ton, and $100/ton taxes, respectively. 

Several states see the bulk of these decreases in mortality under all carbon taxes 

(Figure 20c). Here, Tamil Nadu sees the most decreases (1,400-3,200 annual deaths), 

followed by Andhra Pradesh (1,000-1,200 deaths), Maharashtra (800-1,200 deaths), 

Gujarat (200-700 deaths), and Chhattisgarh (200-300 deaths). 

 

 
Figure 21 
(A) Estimated decreases in PM2.5 concentration, (B) decreases in associated mortality, and (C) state-wise 
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breakdown of mortality reductions from market reform policy scenarios. For deaths, only areas that see 
changes in mortality shown.  
 

Figure 21 shows the PM2.5 decreases and associated mortality reductions from 

reforming dispatch markets in India. Further integrating dispatch markets in India shifts 

generation and emissions from plants furthest away in southern, western and northern 

India to plants in eastern India closes to coal mining areas. The top panel of Figure 21a 

shows the resulting changes in PM2.5 concentration and mortality when all power plants 

in India participate in a single dispatch order to meet national power demand. Under 

national dispatch, estimated annual nationwide population-weighted average ambient 

PM2.5 concentration stays approximately the same as state-wise dispatch in current 

Indian power sector operations at 77 µg m-3 The greatest decreases in concentration 

happen in southern India in Tamil Nadu from emissions reductions at a cluster of  high 

sulfur-emitting lignite power plants. Consequently, under national dispatch which moves 

power generation away from this cluster, estimated annual ambient PM2.5 

concentrations decrease by up to 90 µg m-3 in southern India. Increases in estimate 

ambient PM2.5 concentration occur in certain areas of north India around plants by up to 

14 µg m-3. Translating these concentration changes to changes in mortality, we estimate 

national dispatch results in approximately 6,900 fewer net total annual deaths compared 

to state-wise-dispatch (Figure 21b, top). Almost all these mortality reductions occur in 

Tamil Nadu with negligible mortality increases in Andhra Pradesh from increased 

concentrations (Figure 21c, top). 

 The bottom panel of Figure 21 shows estimate changes in PM2.5 concentrations 

and associated mortalities from regional dispatch, i.e. plants participate in merit order by 

geographic region (north, south, east, west, northeast) instead by each state. Here we 

see concentration decreases in three different clusters in northern, western, and 

southern India (Figure 21a, bottom). Figure 16 shows the locations of emissions 

increases and decreases that result in these concentration changes. Like national 

dispatch, we see the highest decrease in southern India in Tamil Nadu, but here 

concentration decreases are at most approximately 32 µg m-3. Other decreases occur in 

western India in Gujarat, where concentrations decrease by up to 11 µg m-3 and in 

northern India in Haryana, Delhi, and Uttar Pradesh, where concentrations decrease by 
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up to 12 µg m-3. Concentration increases occur in isolated areas around plants in 

central and eastern India with the highest increases (32 µg m-3)  happening near a 

coastal plant in Andhra Pradesh. These concentration changes largely yield mostly 

mortality reductions in southern and western India (Figure 21b bottom panel). The total 

net mortality reductions from regional dispatch are 1,800 deaths per year. Like the 

national dispatch scenario, Tamil Nadu sees the most mortality reductions (1,700 

deaths) followed by Gujarat (200 deaths). Andhra Pradesh meanwhile sees slight 

mortality increases of 500 deaths from the increased concentrations at the coastal plant. 

4.4 Discussion and Conclusions 

In this work we use InMAP, a reduced-complexity air quality model, to evaluate 

annual PM2.5 mortalities associated with electricity production and consumption in India. 

We evaluate electricity associated mortalities by each Indian state because states are 

largely responsible for scheduling and dispatching power in India. Moreover, under a 

federal system, states in India along with the central government share overlapping 

jurisdiction over power sector policies. Consequently, considerable heterogeneity exists 

between Indian states in terms of electricity demand, generation fuel mix, and emissions 

of greenhouse gases and PM2.5 precursors. We evaluate this heterogeneity by further 

resolving the premature mortality embedded in the production and consumption of 

electricity in each state. Furthermore, we test several policy scenarios including 

emissions control, carbon taxes and market integration to understand how changes in 

power sector operations in the current Indian grid affect ambient PM2.5 concentrations 

and associated mortality. 

 Overall, our baseline 2017-2018 estimates of PM2.5 mortality attributable to power 

generation are consistent with previous estimates. We find approximately 71,000 PM2.5 

deaths (~6.5% of total PM2.5  mortality) attributable to power generation. Most recent 

2018 estimates from Cropper et al. (2021) find approximately 113,000 PM2.5 deaths 

(~9.1% of total PM2.5 mortality) attributable to the power sector in India, assuming 

exposure to only outdoor, ambient PM2.5 as we have done here. Previous analyses 

quantifying PM2.5 mortality attributable to power generation in India since 2011 find best 

estimates of 71,000-270,000 deaths with most analyses finding ~100,000 deaths (Apte 

and Pant, 2019; Conibear et al., 2018; Gao et al., 2018; GBD MAPS Working Group, 
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2018; Guo et al., 2018; Guttikunda and Jawahar, 2014, 2018; Lelieveld et al., 2015) 

Estimates differ due to differences in assumptions of emission estimates (from power 

and non-power sectors), PM2.5  exposure estimates predicted by chemical transport 

models at varying spatial resolutions, and risk-exposure relationships. 

Likewise our state wise mortality estimates attributable to power generation are 

fairly consistent with those from Cropper et al., (2021). Differences arise because we 

assume higher total emissions from power generation and higher baseline total PM2.5 

exposure from Hammer et al., (2020) which on balance decrease the fraction of total 

PM2.5 mortality attributable to power generation. Our state-wise breakdowns of total 

PM2.5  mortality from all sources are in closer agreement to those reported Cropper et al. 

(2021) because despite differences in total PM2.5 exposure, both our estimates produce 

similar relative risk values, i.e. both our analyses end up the on flatter part of the 

exposure curve at higher concentrations (Global Burden of Disease Collaborative 

Network, 2021). The largest deviation in state-wise estimates occur in Tamil Nadu, 

which we estimate to have very high PM2.5 concentrations due to a cluster of high sulfur-

emitting lignite power plants. While other modeling and empirical, satellite-based 

analyses have identified this SO2 emission hotspot (Fioletov et al., 2016; Guo et al., 

2018; Li et al., 2017a; Lu et al., 2013b; Srinivasan et al., 2018), our baseline total PM2.5 

estimates Hammer et al., (2020) do not show this cluster. Consequently, our estimates 

likely represent an upper bound on impacts from this cluster, and we hypothesize that 

variability in spatial resolution along with variability in emissions estimates likely drive 

discrepancies between different analyses. Previous nationwide analyses for the United 

States quantifying air pollution damages from multiple sectors using chemical transport 

models have shown the impact of spatial resolution on mortality and damage estimate 

(Goodkind et al., 2019; Paolella et al., 2018) Consequently this warrants further scrutiny 

and investigation for India because it is unclear how varying assumptions on source 

emissions, chemical transport model spatial resolution, and risk-exposure affect the 

range of estimates for PM2.5 mortality source attribution. 

Our analysis of net deaths associated with electricity production and 

consumption in India further show spatial inequities among states with respect to 

climate and air pollution impacts. In the case of both production and consumption, we 
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see states in eastern India predominately coal-mining areas with plants that provide the 

cheapest power near mines (Kamboj and Tongia, 2018) disproportionately face the 

burden of PM2.5 mortality from electricity in India. This difference becomes even more 

prominent in the consumption case where we see the states that are net death 

exporters are also those with the highest amounts of renewable capacity and generation 

(e.g. Gujarat, Rajasthan, Karnataka, Maharashtra, and Telangana). This suggests that 

as these states have adopted more renewable generation, they have shifted their 

emitting coal generation to predominately eastern areas, shifting associated PM2.5 

mortalities as well. As renewable energy continues to grow disproportionately in India in 

a handful of states and states individually contract for and schedule power, these 

inequities may grow in the future. 

Sulfur control policies to meet currently unimplemented emissions regulations in 

India show the potential to dramatically decrease PM2.5 mortality associated with 

electricity. We find sulfur control results in widespread mortality decreases in several 

large Indian states, mainly Tamil Nadu, Maharashtra, Andhra Pradesh, Karnataka, 

Gujarat, Madhya Pradesh, and West Bengal. Our estimate of approximately 42,000 

fewer annual deaths from implementing sulfur control regulations is consistent with 

Srinivasan et al., (2018) who estimate approximately 30,000 fewer annual deaths, 

Guttikunda and Jawahar (2018) who estimate 39,000–63,000 fewer annual deaths, and 

Sugathan et al., (2018) who estimate 45,000 fewer annual deaths. Moreover, our state-

wise apportionment of this mortality reductions largely agree with Srinivasan et al., 

(2018)  who find Tamil Nadu seeing the most reductions followed by West Bengal, 

Maharashtra, Andhra Pradesh, and Uttar Pradesh. The benefits of reductions in PM2.5 

mortality likely exceed the costs associated implementing stricter power plant emissions 

regulations in India (Cropper et al., 2017, 2019; Srinivasan et al., 2018), but limited 

finance has impeded widespread implementation and installation of emission control 

equipment at Indian power plants. The Government of India has recently announced 

plans to delay implementation again (Government of India, 2021), and analysis to 

prioritize installation at plants base prioritization solely on SO2 concentrations near 

plants, despite this and other analyses showing the secondary formation of PM2.5  from 

SO2 oxidation leading to mortality impacts beyond immediate vicinities of plants. While 
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InMAP predictions of SO2 and PM2.5 concentration attributable to electricity are 

moderately correlated (r = 0.7) in grid cells with plants, using SO2 solely as an indicator 

underestimates the extent of impacts from plants due to transport and oxidation. 

Increasing carbon taxes in the current Indian grid reduces emissions at several 

plants spread throughout the country, which in turn reduces ambient PM2.5 

concentrations and associated mortality. While carbon taxes do increase emissions at a 

fewer number of plants, the impact of these increase are not enough to offset estimated 

decreases. While high carbon taxes will likely spur the longer-term installation of new 

lower-emitting electricity capacity (outside the focus of this work), our results potentially 

show the shorter-term induced emissions and associated concentration and mortality 

changes from operational interventions that make less efficient, costlier, and higher 

emission plants less likely to run, e.g. greater renewable energy or taxes on health 

damages. However, fuel transport costs along with efficiency determine variable cost of 

electricity in India with plants closer to coal mines in eastern states providing cheaper 

power, even if they are less efficient than plants further away. Peng et al., (2020) find an 

additional 5,900 to 8,700 more PM2.5 -related deaths in 2040 from failing to enforce 

renewable energy targets in India, i.e. additional annual PM2.5 deaths from increased 

electricity generation that would have come from renewables. While Peng at al. (2020) 

assume stringent pollution control at existing power station in 2040, our results being 

the same order of magnitude as theirs suggest our results provide an additional line of 

evidence of what happens to power sector emissions in India in the shorter term when 

renewable generation increases. Given the complexities in power market contracting 

and pricing in India, this requires further analyses. 

 Lastly, market integration policy scenarios show regional and national dispatch 

decreases emissions, concentrations, associated mortalities in areas furthest away from 

coal mines in eastern India because these plants have costlier electricity due to higher 

fuel transportation costs. Like the carbon tax scenarios, these decreases largely offset 

any impacts from emissions increases at plants from shifting dispatch. Our changes in 

mortality estimates are likely overestimates because the bulk of changes come from the 

cluster of high sulfur emitting plants in Tamil Nadu. Because these plants burn lignite 

from mines nearby, they likely have lower fuel transportation costs (and total variable 
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cost) than what we assume for all plants in Tamil Nadu. Moreover, the market 

integration scenarios show that despite emissions increases, associated PM2.5 

concentrations and mortality do not increase by appreciable amounts. This is consistent 

with a non-linear risk-exposure relationship for PM2.5 mortality where ambient PM2.5 

concentration in many parts of India are already in ranges where additional exposure 

does not induce much change in corresponding risk, and consequently mortality.  

 In sum, this analysis presents the first quantifications of changes in PM2.5 and 

associated mortality from polices that induce changes in power sector operations in 

India. While much work has focused on the longer-term impacts of capacity expansion 

and meeting of policy targets in the Indian power sector, we choose to focus on shorter-

term impacts to understand how characteristics of power sector operations and 

heterogeneity between states in India influence the PM2.5 mortality burden from power 

generation. Our results shed light on the spatial patterns in PM2.5 mortality burden that 

will likely exist as long as coal forms a bulk of electricity generation in India.  
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5 Current and future estimated marginal emission factors for Indian power 
generation 

5.1 Introduction 

As the world’s third-largest emitter of greenhouse gases (GHG) (BP, 2020; 

Carbon Brief, 2019; World Resources Institute, 2019), India’s current emissions are 

consequential to global efforts to mitigate climate change and improve air quality. 

Current per capita emissions remain a fraction of the world average meaning future 

emissions are similarly consequential (International Energy Agency, 2021). Forty 

percent of the country’s GHG emissions come from its coal-heavy power sector (Mohan 

et al., 2019), the world’s third-largest by generation (BP, 2020). Likewise, uncontrolled 

sulfur dioxide (SO2) and nitrogen oxide (NO2) emissions from Indian power generation 

contribute to 7-21% of up to 1.1 million premature deaths in India associated with 

ambient PM2.5 pollution, solid or liquid particles suspended in the atmosphere (Apte and 

Pant, 2019; Conibear et al., 2018; Gao et al., 2018; GBD MAPS Working Group, 2018; 

Guo et al., 2018; Guttikunda and Jawahar, 2014, 2018; Lelieveld et al., 2015). 

Future scenarios point to the power sector as a growing source of GHG 

emissions and air pollution (International Energy Agency, 2021; Peng et al., 2020; 

Venkataraman et al., 2018). Expected increases in electricity demand from economic 

growth drive these emissions increases. Consequently, power generation with its 

relatively fewer, concentrated sources and growing role, provide policymakers a focus 

for emissions control policies. The power sector remains a focus of Indian policymakers 

through the Government of India’s 2030 target to increase renewable and other zero-

emission capacity to 40% of the country’s electricity mix (Government of India, 2015). 
Emissions factors from the Indian power grid remain poorly characterized despite 

its large potential for emissions reductions and size relative to other national grids. 

These emission factors provide policymakers and analysts a basis to evaluate 

decarbonization efforts and other interventions. A number of studies have characterized 

GHG and air pollutant emissions nationally or by individual plants India as well as their 

impacts on ambient air quality (Cropper et al., 2021; Gao et al., 2018; GBD MAPS 

Working Group, 2018; Guttikunda and Jawahar, 2014; Lu et al., 2013a; Lu and Streets, 

2012; Oberschelp et al., 2019; Tong et al., 2018; Venkataraman et al., 2018). However, 
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none have characterized emission factors spatially and temporally based on electricity 

consumption, i.e., the emissions associated with power used in different areas of the 

country.  
Complicating efforts are the lack of widely available continuous emissions 

monitoring data from Indian power plants and the decentralized, federal system of 

power scheduling and dispatch in India. Individual states contract with and schedule 

power from various portfolios of plants owned by central and state governments and the 

private sector. Moreover, the central government and state governments have 

overlapping jurisdiction over the Indian power sector. Consequently, not only do fuel 

mixes and emissions of electricity consumed vary by state, but so do policies governing 

emissions from the power sector (Power System Operation Corporation Limited, 2020; 

Safiullah et al., 2017).  
While it is possible to characterize the emissions of the Indian power sector 

spatially and temporally based on generation location using daily reported power 

generation (Ministry of Power, 2020b), finer sub-daily scale consumption-based 

estimates require some account of power transfers between states and a diurnal 

patterns in power consumption. Moreover, currently reported data can only provide 

estimates of average emission factors, i.e. total emissions divided by total generation, 

which give an overall estimate of how emission intensive electricity is. However, they 

are poor estimates of changes in emissions from small changes in electricity demand 

(Donti et al., 2019; Hawkes, 2010). Instead, marginal emission factors (MEF) are a 

better representation. These factors estimate the change in emissions from marginal 

generation, i.e. the electricity generation that increases or decreases to meet a change 

in demand. These factors provide more accurate assessments especially when analysts 

or policymakers evaluate interventions that cause changes in electricity demand likely to 

vary seasonally or time-of-day, e.g. electric vehicles, air conditioning, energy efficiency. 

Estimating MEF’s likewise require sub-daily accounting of diurnal demand and 

generation patterns because different mixes of generators and fuels may respond to 

changes in demand depending on season and time-of-day (Siler-Evans et al., 2012). 
Dispatch or production-cost models provide one way to address current 

limitations to characterize Indian power sector emissions factors. These models 
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simulate scheduling and dispatch of power generators at finer hourly or minute 

resolution based on power demand (Ryan et al., 2016). Sengupta et al (2021) use a 

reduced-form dispatch model to derive production and consumption-based, 2017-2018 

average emission factors for CO2 and SO2 from Indian power generation. They find 

heterogeneity in contracted capacity mixes between states results in differences of up to 

26% in average CO2 emission factors for certain Indian states than estimated by a 

single national emission factor. However, they do not quantify MEFs.  
Previous work has quantified MEFs in the United States, United Kingdom, 

Canada, and China (Cai et al., 2013; Deetjen and Azevedo, 2019; Donti et al., 2019; 

Gai et al., 2019; Hawkes, 2010; Li et al., 2017b; Siler-Evans et al., 2012; Thind et al., 

2017), but detailed estimates for India remain absent. The only estimate available for 

India is a single, national operating margin emission estimate for CO2 (Central Electricity 

Authority, 2018a) developed as part of the Clean Development Mechanism (CDM) of 

the United Nations Framework Convention on Climate Change (UNFCC). The CDM is a 

way for developed countries to offset emissions in developing countries. This value 

represents the displaced CO2 emissions for any CDM infrastructure projects, and the 

United Nations and other international organizations use this value to calculate resulting 

carbon offsets (United Nations Framework Convention on Climate Change, 2015). 

Current estimates used in analysis do not adequately reflect subnational variability in 

marginal emissions from power sector interventions in India. This becomes increasingly 

relevant as countries around the world set net-zero emissions targets and climate 

finance efforts look to fund climate mitigation efforts in developing countries such as 

India. 
Consequently, here we use scheduling and dispatch (production cost) models to 

spatially, temporally, and seasonally quantify CO2, SO2, NOX, and primary (directly 

emitted) PM2.5 MEFs in current (2017-2018) and future Indian power generation (2030-

2031). Our MEFs represent the first analysis to characterize a growing and changing 

Indian power sector. They provide policymakers, analysts, and researchers emission 

factors more representative of Indian power system operations.  
 



77 

5.2 Methods 

We calculate CO2, SO2, NOX, and PM2.5 MEFs using two sets of dispatch models: 

(1) a reduced-form model (Sengupta et al., 2021) developed for Indian power 

generation to simulate 2017-2018 and (2) a full-form model (Spencer et al., 2020) to 

simulate 2030-2031. The reduced-form model estimates MEFs based on the 

decentralized, state-wise dispatch of power in current grid operations. Moreover, the 

model incorporates current installed capacity mixes and fixed allocations of interstate 

generating capacity, implicitly modeling the transfer of electricity across state lines 

through these allocations. Demand estimates derive from daily demand data and 

monthly, diurnal demand distributions (Energy Analytics Lab, 2019; Power System 

Operation Corporation Limited, 2018). The full-form dispatch model quantifies 2030-

2031 grid operations, along with transmission and generator constraints (Spencer et al., 

2020). This model incorporates planned Government of India capacity allocations, 

especially build-out of increased renewable capacity. It also explicitly simulates the 

transfer of electricity across state lines and simultaneously optimizes dispatch to meet 

future estimated power demand.  

For each generating unit in the models, we estimate unit-specific emission 

factors based on fuel combustion analysis using methods presented by Srinivasan et al 

(2018). For the baseline, we assume no SO2 or NOX control, and 90% control of PM2.5 

emissions. We provide further details of both simulations sets in Appendix D, and we 

direct readers to cited papers for further details. 
We calculate MEFs and marginal fuel shares of generation for each state using 

two methods: linear regression (Donti et al., 2019; Hawkes, 2010; Li et al., 2017b; Siler-

Evans et al., 2012; Thind et al., 2017) and differentiation of emissions-generation curves 

(Deetjen and Azevedo, 2019).  
To calculate marginal emission factors using linear regression we first calculate 

the hour-to-hour (h) change in emissions (E) and generation (G) associated with 

meeting demand for each state (s) predicted by the dispatch model: 
 

∆𝑬𝑬𝒔𝒔,𝒉𝒉 =  𝑬𝑬𝒔𝒔,𝒉𝒉 − 𝑬𝑬𝒔𝒔,𝒉𝒉−𝟏𝟏 (kg) 
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∆𝑮𝑮𝒔𝒔,𝒉𝒉 =  𝑮𝑮𝒔𝒔,𝒉𝒉 − 𝑮𝑮𝒔𝒔,𝒉𝒉−𝟏𝟏 (MWh) 

 
Here ΔEs,h and ΔGs,h are marginal emissions and marginal generation, respectively. The 

marginal emission factor (βs) in kg/MWh for each state takes the functional form: 
∆𝑬𝑬𝒔𝒔,𝒉𝒉 =  𝜷𝜷𝒔𝒔∆𝑮𝑮𝒔𝒔,𝒉𝒉 + 𝜶𝜶𝒔𝒔 + 𝜺𝜺𝒔𝒔 

with αs and εs as the regression intercept and error term, respectively. Likewise, to 

calculate the fractional share of marginal generation by various fuel types (e.g. coal, 

hydro, renewables, etc) we define the hourly change in generation from each fuel type, 

f: 
∆𝑮𝑮𝒔𝒔,𝒉𝒉,𝒇𝒇 =  𝑮𝑮𝒔𝒔,𝒉𝒉,𝒇𝒇 − 𝑮𝑮𝒔𝒔,𝒉𝒉−𝟏𝟏,𝒇𝒇 

The marginal fuel share (γs,f) from fuel f takes the functional form: 
∆𝑮𝑮𝒔𝒔,𝒉𝒉,𝒇𝒇 =  𝜸𝜸𝒔𝒔,𝒇𝒇∆𝑮𝑮𝒔𝒔,𝒉𝒉 + 𝜶𝜶𝒔𝒔,𝒇𝒇 + 𝜺𝜺𝒔𝒔,𝒇𝒇 

and αs,f and εs,f  are regression intercept and error term, respectively. Marginal fuel share 

quantifies the frequency each fuel type meets marginal generation. Because marginal 

generation is met by the sum of marginal generation from each fuel type, this implies: 
 

�∆𝑮𝑮𝒔𝒔,𝒉𝒉,𝒇𝒇
𝒇𝒇

=  ∆𝑮𝑮𝒔𝒔,𝒉𝒉 

�𝜸𝜸𝒔𝒔,𝒇𝒇
𝒇𝒇

=  𝟏𝟏 

Each annual model simulation produces approximately 8,760 hours of emissions, 

generation, and fuel shares for each state. We partition the data for each state into two 

seasons: monsoon (June-October) and dry (January-May; November-December). For 

each season, we further divide the data into five demand periods based on time-of-day: 

morning peak (6:00 AM to 10:00 AM), midday (10:00 AM to 2:00 PM), afternoon (2:00 

PM to 6:00 PM), evening peak (6:00 PM to 10:00 PM), and overnight (10:00 PM to 6:00 

AM). We define hours in each period based on visual inspection of the average diurnal 

national demand profile in each season (Centre for Social and Economic Progress, 

2019; Parray et al., 2019). Consequently, we have ten marginal emission factors for 

each state: five for each season (monsoon and dry). 
We also calculate MEFs using differentiation of total emission-total generation 



79 

curves. While regression-based marginal emission factors show average changes in 

emissions per unit change in demand for specified time periods, differentiation-based 

MEFs can show MEFs as a continuous function of demand. We use the method 

described by Deetjen and Azevedo (2019). First, we order by increasing demand (ds,n) 

the hourly time series of emissions (Es,h) and generation (Gs,h)  for each state with n 

data points. Then, then we take rolling means of emissions and generation with 5% 

subsets of the data. This constructs the total emissions (Es,total)-total generation (Gs,total) 

curve for each state. Then we calculate difference quotients of this curve as an 

approximation of the curve’s derivative to estimate MEF as a function of demand: 
 

𝑴𝑴𝑬𝑬𝑴𝑴�𝒅𝒅𝒔𝒔,𝒏𝒏� =
𝑬𝑬𝒔𝒔,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏) − 𝑬𝑬𝒔𝒔,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏−𝟏𝟏)
𝑮𝑮𝒔𝒔,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏) − 𝑮𝑮𝒔𝒔,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏−𝟏𝟏)

 

 
To construct the MEF-demand curve, we calculate rolling means with 5% subsets of the 

MEFs calculated by difference quotient. Note Gs,total = ds,n  because generation meets all 

demand. 
Similarly, we estimate the share of marginal generation of each fuel type MSf 

using similar methods. Instead of emissions, we take rolling means of generation from 

each fuel type, Gs,f,total:  

𝑴𝑴𝑺𝑺𝒇𝒇�𝒅𝒅𝒔𝒔,𝒏𝒏� =
𝑮𝑮𝒔𝒔,𝒇𝒇,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏) − 𝑮𝑮𝒔𝒔,𝒇𝒇,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏−𝟏𝟏)
𝑮𝑮𝒔𝒔,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏) − 𝑮𝑮𝒔𝒔,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒅𝒅𝒔𝒔,𝒏𝒏−𝟏𝟏)

 

 

�𝑴𝑴𝑺𝑺𝒇𝒇�𝒅𝒅𝒔𝒔,𝒏𝒏�
𝒇𝒇

=  𝟏𝟏 

To explicitly estimate the shares of each generator to each state’s demand for 

the 2030-2031 model, we use the “downstream-looking” power tracing algorithm 

presented by Bialek (1996). The 2017-2018 reduced-form model explicitly estimates 

each hour the share of each generator unit supplying electricity to meet demand in each 

state. The 2030-2031 full-form model on the other hand simulates power flows between 

states in its optimization to determine which units generate to meet demand at each 

state. The algorithm of Bialek (1996) assumes perfectly mixed nodes where power flow 
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out of a state is proportional to power flow into a state from respective sources. It traces 

power flow for each estimated hour to apportion generation and emissions from each 

generating unit to each state’s demand. This results in an explicit time series of 

generation and emissions tied to generating unit for each state.  

5.3 Results 

In Figure 22, we show the time-of-day resolved marginal CO2 emission factors for 

dry and monsoon seasons for electricity consumed in each Indian state based on the 

2017-2018 reduced form dispatch model (Sengupta et al., 2021).  

 
Figure 22 
2017-2018 regression-based, marginal CO2 emission factors for dry and monsoon seasons in each Indian 
state. Panels separate the time-of-day in each season. Size of dots scale to annual electricity demand in 
each state. Vertical lines from left to right indicate generation-weighted CO2 emission factors for zero-
emission, gas, and coal generators, respectively.  
 

See Figure 82 for a map of India with states. We present SO2, NOX, and PM2.5 MEFs for 

the same time periods in Figure 68, Figure 70, and Figure 72. MEFs for these other 

pollutants show similar trends as those for CO2 (due to unit-specific emission factors 

that are functions of fuel composition) so we focus our presentation on CO2 MEFs. Size 

of points scale to annual electricity demand consumed in each state. Vertical lines from 

left to right show the generation-weighted emission factors of zero-emission, gas, and 
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coal generators, respectively. Negative marginal emission factors mean emissions 

decrease with increases in marginal power consumption. Tables 7-8 show the data 

underlying Figure 22 along with regression standard error and coefficients. In general, r2 

values decrease as CO2 emission factors decrease, indicating the weaker relationship 

between marginal generation and marginal CO2 emissions due to increasing hydro and 

renewable marginal generation. 
Marginal emission factors for CO2 span three orders of magnitude across 32 

states. Overall, two broad groups of states emerge in both seasons and all periods: 16 

higher emission states with higher electricity demand (larger points) and 16 lower 

emission states with lower electricity demand (smaller points). There are some 

exceptions to these general groupings, e.g. Gujarat and Punjab are lower emission but 

higher demand, and Puducherry and Goa are higher emission but lower demand. For 

higher emission states Puducherry to Maharashtra (in order from top to bottom in Figure 

1), CO2 MEFs sit around the emission factor line for coal generators (930 kg/MWh) with 

median 860 kg/MWh across all seasons and times-of-day. For lower emission states, 

Odisha to Himachal Pradesh CO2 MEFs sit around the emission factor line for gas 

generators (410 kg/MWh) and zero-emission generators (0 kg/MWh), with median 460 

kg/MWh for all seasons and times-of-day.  
In general, we see little seasonal temporal variability in CO2 MEFs between 

monsoon and dry seasons with monsoon MEFs slightly higher than dry MEFs. 

Moreover, lower emission states show more variability than higher emission states. 

Seasonally, across all times of the day, the median absolute difference between 

monsoon and dry CO2 MEFs in 16 lower emission states is 140 kg/MWh. The same 

value is 100 kg/MWh for the 16 higher emission states. 
When analyzing intraday temporal variability, we see similar levels of variability 

between times of day in both high emission and low emission states across both 

seasons. Monsoon season sees more time-of-day variability than dry season. Across 

low emission states, the median time-of-day CO2 MEF ranges from 420 kg/MWh 

(overnight) to 620 kg/MWh (evening peak) during monsoon season and 350 kg/MWh 

(overnight) to 460 kg/MWh (afternoon) during dry season. Likewise, across high 

emission states, the median time-of-day CO2 MEF in ranges from 800 kg/MWh 
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(afternoon) to 980 kg/MWh (morning peak) during monsoon season and 800 kg/MWh 

(overnight) to 890 kg/MWh (morning peak) during dry season.  
Figure 23 shows the frequency at which different fuels form marginal generation 

in each state and demand period in the dry season for 2017-2018. Here marginal 

renewable generation includes solar and wind.  

 
Figure 23 
2017-2018 regression-based, marginal fuel frequency for each Indian state during dry season. Negative 
percentages in each period indicate fuel source generation decreases with increases in marginal power 
demand in each state, requiring increase in generation from other fuels to meet demand. The sum of 
each bar is 100%. 
 

In this figure, negative percentages in each period indicate generation from a particular 

fuel decreases with increases in marginal power consumption in each state, requiring 

increases in generation from other fuels to meet demand. The sum of each bar in Figure 

23 is 100%. Because of little inter-seasonal variability, we show the comparable 

monsoon season estimates in Figure 67. 
In the lower emission states (Odisha to Himachal Pradesh), we see more hydro 

and/or gas marginal generation than coal marginal generation driving lower CO2 MEFs. 

In these states, median hydro generation across all states ranges between 31% 

(afternoon) and 47% (overnight), and marginal gas generation ranges between 16% 
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(overnight) and 29% (afternoon). Meanwhile dry season marginal coal generation 

numbers between 19% (afternoon) to 27% (evening peak). We similar trends in 

monsoon season (Figure 67) with slightly more marginal coal generation than dry 

season. Overall, these higher percentages of marginal generation from gas and hydro 

drive lower MEFs in these states. 
Oppositely, in high emission states (Puducherry to Maharashtra) coal dominates 

marginal generation, which drive higher emissions. During the dry season, median coal 

marginal generation varies between 75% (afternoon) to 87% (morning peak) of the time 

across these states. Similar patterns emerge during the monsoon season (Figure 67). 

Moreover, in these higher emission states, median time-of-day marginal hydro 

generation is higher during the dry season (2-14%) than the monsoon season (3-9%). 
However, among higher demand states, considerable renewable marginal 

generation exists, especially in eight high renewable states: Maharashtra, Gujarat, 

Tamil Nadu, Madhya Pradesh, Rajasthan, Karnataka, Telangana, and Andhra Pradesh. 

In these states, during morning peak and midday hours, marginal renewable generation 

generally falls below zero, ranging from as low as -56% (morning peak hours during 

monsoon in Tamil Nadu) to -2% (midday hours during monsoon in Telangana). This 

means that marginal renewable generation decreases during these hours to meet 

increases in demand. Consequently, other fuels, most likely carbon-emitting gas or coal, 

must increase marginal generation to meet the increases in demand. Marginal 

renewable generation largely is greater than zero during afternoon hours in these high 

renewable states where it ranges between 8% (monsoon season in Madhya Pradesh) 

to 58% (dry season in Karnataka). 
Figure 24 shows the dispatch (merit) order of capacity during the annual 

maximum hourly demand for the previously mentioned eight high renewable states from 

the 2017-2018 reduced-form model. The top panel shows the capacity ordered by price 

(variable cost) in ₹/kWh and the bottom panel shows the emissions intensity of that 

ordered capacity in kg/MWh. We show the annual maximum hourly demand to show the 

high capacity amounts available to meet demand in each state.  
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Figure 24 
Hourly dispatch (merit) order for maximum hourly demand in eight high renewable states. Top panel 
shows capacity ordered by variable cost and bottom panel shows CO2 emissions intensity of the same 
capacity. Capacity is ordered by renewable capacity and nuclear capacity first which are must run. Then 
hydro, coal, and gas capacity contracted with the state are ordered by variable cost. Lastly, leftover 
capacity not used by contracted states is ordered at the regional and national level.  
 

We order the capacity by price at three levels: state, regional and national to reflect the 

three levels of successive dispatch the reduced form dispatch model assumes. Capacity 

available to the right of the dispatch orders at lower prices than capacity to the left show 

dispatch at regional and national levels after state level dispatch. Overall coal 

dominates dispatch in these states, despite high renewable capacity, especially for 

states where maximum annual demand occurs at during midday or afternoon hours 

when renewable capacity available is the highest, e.g. Karnataka and Andhra Pradesh. 

A caveat with these dispatch orders is that renewable and hydro capacity may change 

from hour to hour and thus contribute to meeting changes in demand. Indeed, the 

frequency of marginal renewable or hydro generation can be positive or negative during 

these hours (Figure 23, Figure 67). Thus, the more than one fuel type may meet 

marginal demand and determine marginal CO2 emissions. Nonetheless, because coal 

capacity dominates dispatch order in these states, it meets marginal demand much of 

the time (Figure 23, Figure 67).  
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In Figure 25, we show the time-of-day resolved marginal CO2 emission factors for 

dry and monsoon seasons for electricity consumed in Indian state based on the 2030-

2031 full form dispatch model. Table 9-10 show the data underlying this figure.  

 
Figure 25 
2030-2031 regression-based, marginal CO2 emission factors for dry and monsoon seasons in each Indian 
state. Panels separate the time-of-day in each season. Size of dots scale to annual electricity demand in 
each state. Vertical lines from left to right indicate generation-weighted CO2 emission factors for zero-
emission, gas, and coal generators, respectively. 
 

These future simulations treat the low-demand, northeastern states of Sikkim, Assam, 

Mizoram, Tripura, Arunachal Pradesh, Nagaland, Manipur, and Meghalaya as one 

Northeast state. Likewise, these simulations treat territories of Chandigarh in north India 

and Puducherry in south India as part of neighboring states (Spencer et al., 2020). To 

simplify comparisons between 2030-2031 and 2017-2018 estimates, we ignore these 

territories and Northeastern states, which form 1-2% of annual national demand during 

respective simulation periods. We present SO2, NOX, and PM2.5 MEFs for the same time 

period in Figure 69, Figure 71, and Figure 73. Each panel shows same five time-of-day 

demand periods in each season as Figure 22. Likewise, size of points scale to annual 

projected electricity demand consumed in each state in 2030-2031. Vertical lines from 

left to right show the generation-weighted emission factors of zero-emission, gas, and 
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coal generators, respectively, using estimated generation from the full-form dispatch 

model. 
Figure 25 shows that under 2030-2031 assumptions, estimated marginal CO2 

emission factors are generally lower than those in 2017-2018 but show similar variability 

between states. Emission factors once against vary across three orders of magnitude 

between states, with the same, higher emission, higher demand states in 2017-2018 

(Chhattisgarh, Rajasthan, Madhya Pradesh, Bihar, West Bengal, Jharkhand, Goa, Uttar 

Pradesh, Telangana, Karnataka, Tamil Nadu, Delhi, Andhra Pradesh, Haryana, and 

Maharashtra) having relatively higher emission factors as 2017-2018. In these states, 

2030-2031 CO2 MEFs largely sit to the left of the coal generator emission factor line 

(910 kg/MWh) with median 420 kg/MWh among seasons and times-of-day. For the 

remaining lower emission, lower demand states in 2017-2017, 2030-2031 marginal CO2 

MEFs decrease further with median 160 kg/MWh. 
Furthermore, we see more seasonal variability in both high emission and low 

emission states in 2030-2031. Like 2017-2018, lower emission states show more 

difference between dry and monsoon seasons than higher emission states. The median 

absolute seasonal difference in CO2 MEFs across all times-of-day in lower emission 

states increases to 320 kg/MWh in 2030-2031. For higher emission states, this median 

value increases to 150 kg/MWh. 
Under 2030-2031 assumptions we also see more temporal variability between 

times-of-day in CO2 MEFs. In low emission states, the median time-of-day CO2 MEF in 

both seasons ranges from 20 kg/MWh (afternoon) to 160 kg/MWh (midday) during 

monsoon season and -330 kg/MWh (evening peak) to 470 kg/MWh (midday) during dry 

season. Likewise, across high emission states, the median time-of-day CO2 MEF in 

ranges from 150 kg/MWh (afternoon) to 680 kg/MWh (morning peak) during monsoon 

season and 380 kg/MWh (afternoon) to 590 kg/MWh (morning peak) during dry season.  
Greater marginal generation from renewables and hydro relative to coal marginal 

generation explain lower, more temporally variable CO2 MEFs in 2030-2031 for both 

higher and emission and lower emission states. In Figure 26, we show an analogous 

figure to Figure 23 where we show the frequency of marginal generation from each fuel 

type for the 2030-2031 dry season. We show the same plot for monsoon season in  



87 

 
Figure 26 
2030-2031 regression-based, marginal fuel frequency for each Indian state during dry season. Negative 
percentages in each period indicate fuel source generation decreases with increases in marginal power 
demand in each state, requiring increase in generation from other fuels to meet demand. The sum of 
each bar is 100%. 
 

Figure 74 where similar trends emerge. Here we see marginal renewable generation 

predominately during midday and afternoon hours.  Across all states, median marginal 

renewable generation frequency numbers 40% and 37% during midday and afternoon 

dry seasons hours, respectively. During morning peak, evening peak and overnight 

hours, it numbers -5%, 5%, and 6% respectively. Marginal hydro generation meanwhile 

dominates during evening peak and overnight hours with median 57% and 47% 

respectively, across all states. Lastly, marginal coal generation is the highest in most 

states during all times-of-day except afternoon hours, when median frequency across all 

states decreases to 5%. During other times-of-day median frequency ranges between 

32-62%. 
There is a 1:1 relation between decreasing CO2 marginal emission intensities 

and increasing non-emitting marginal generation, i.e., increased hourly generation to 

meet new hourly load. However, the relationship between increased average zero-

emission generation and marginal CO2 emission factors is not as direct because 
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average non-emitting generation may not change when there is an increase or 

decrease in electricity demand. We explore this relationship in Figure 27.  
Figure 27 shows marginal CO2 emissions in each demand period against 

average percent zero emission generation (renewables, hydro and nuclear), in dry and 

monsoon seasons, for both 2017-2018 and 2030-2031.  

 
Figure 27 
Marginal CO2 emissions versus average zero emission (hydro, renewables, and nuclear) generation in 
each demand period in dry and monsoon seasons for 2017-2018 and 2030-2031. Each dot represents 
one state and the size of dots scales to annual demand for each state. Lines are lines of best fit.   
 

Each dot represents a state, and size of dots scale to annual demand in each simulation 

period. Lines are lines of best fit. 
In the dry season in 2017-2018 (violet points, top panel Figure 27), average zero-

emission generation shares and marginal CO2 emission factors are the most correlated 

during afternoon and overnight periods with r2 values 0.75 and 0.72, respectively. 

During evening peak periods, correlation decreases to r2 = 0.66. The relationship 

weakens the most during morning peak and midday periods when r2 values decrease to 

0.49 in both periods.  
In 2030-2031 dry season, during all periods except midday afternoon, the 

relationship strengthens (green points, top panel Figure 27). Increasing average zero 
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emission generation is associated with decreasing marginal CO2 emission factors. 

During morning peak, evening peak, and overnight hours, r2 values increase to 0.61, 

0.73, and 0.88, respectively. In midday and afternoon hours, r2 in 2030-2031 however 

decreases to 0.00 and 0.4, respectively.  
In the monsoon season in 2017-2018 (violet points, bottom panel Figure 27), 

increasing average zero-emission generation is most correlated with decreasing 

marginal emission factors during afternoon and overnight hours, r2 = 0.79, 0.66, 

respectively. During morning peak, midday, and evening peak hours, r2 = 0.27, 0.23, 

and 0.65, respectively.  
In the 2030-2031 monsoon season (green points, bottom panel Figure 27), 

correlation increases in all periods except afternoon and evening peak hours. Morning 

peak sees r2 = 0.37, midday sees r2 = 0.32, and overnight r2 = 0.74. However, during 

afternoon and evening periods correlation decreases, r2 = 0.34 and 0.59, respectively. 

 
Figure 28 
2017-2018 and 2030-2031 dry and monsoon season marginal CO2 emission factors as a function of 
demand in eight high variable renewable energy (solar, wind) states. In 2017-2018, these eight states 
collectively form 85% of all variable renewable energy generation. In 2030-2031, these eight states 
collectively form 60% of all variable renewable energy generation. 
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Figure 28 shows marginal CO2 emission factors as functions of electricity 

demand for both dry and monsoon seasons for 2017-2018 and 2030-2031. We illustrate 

eight high renewable capacity states with collectively generate 85% of annual 

renewable generation in 2017-2018 and 60% in 2030-2031. We show similar curves for 

SO2, NOX, and PM2.5 in Figures 79-81. We order states by decreasing electricity 

demand, i.e. Maharashtra has highest demand, and Andhra Pradesh has lowest 

demand. In all states except Maharashtra, Madhya Pradesh, and Karnataka, we see 

significant overlap in electricity demand between seasons, indicating little difference in 

demand between seasons. Emission factors differ by season and vary as function of 

demand, increasing and decreasing depending on demand conditions. For example, in 

Maharashtra during dry season, between 14.7 and 18.6 GWh, CO2 marginal emission 

factors decrease from 1014 to 99 kg/MWh, but then increase at loads greater than 18.6 

GWh. For these same demand range in the monsoon period, marginal CO2 emission 

factors oscillate between -147 and 1240 kg/MWh. These differences stem from 

differences in renewable and coal marginal generation as function of demand illustrated 

in Figures 75-76. 

In 2030-2031, we see higher electricity demand in line with future demand 

assumptions for 2030-2031 simulations. Gujarat, Karnataka, and Madhya Pradesh 

show seasonal differences in demand with less overlap in demand between curves for 

each season. Overall, we see much more intra-seasonal and inter-seasonal variability in 

MEFs. For example, in Gujarat dry season marginal CO2 emissions vary between -1880 

and 701 kg/MWh between electricity demand 21.4 GWh and 27 GWh. Likewise, in the 

monsoon season in Gujarat, marginal CO2 emissions vary between -625 and 1500 

kg/MWh while demand spans 17.7 GWh to 26.9 GWh. Greater amounts of renewable 

generation at the margin and at different demand levels cause this variability (Figure 77-

Figure 78).  

5.4 Discussion and Conclusions 

In this analysis we use dispatch models to quantify the spatial and temporal 

patterns of marginal CO2, SO2, NOX, and PM2.5 emission factors in current and future 

Indian power generation. These emission factors are based on power consumed in 

each state because our estimates account for imports and exports between states. Due 
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to a lack of readily available continuous emissions monitoring data or sub-daily power 

generation data, no analysis has well quantified from which states, during which 

seasons, and during which hours of the day Indian power generation emits due to 

changes in demand. Moreover, given increasing shares of renewable energy and 

increasing power demand from economic growth, no analysis has quantified potential 

emissions intensities of the Indian grid in the future. This analysis is especially relevant 

because policy efforts to decarbonize Indian power generation happen at both central 

and state-levels so subnational estimates provide more accurate emission intensities 

than commonly used national estimates. Consequently, our estimates are useful to 

policymakers, analysts, or researchers who may seek to quantify the emissions impacts 

of new interventions of electricity demand, e.g. electric vehicles, air conditioning, or 

energy efficiency. The MEFs presented here are more representative than average 

emission factors of the various types of generation meeting demand during different 

seasons and times-of-day. 
In the current, 2017-2018 Indian grid CO2 MEFs vary considerably across states. 

Despite renewables and hydro decreasing MEFs in lower emission, lower demand 

states, coal dominates marginal generation and emissions in higher emission, higher 

demand states. Further inspection of the merit order under which we simulate plants to 

generate shows the dominance of coal at the margin. Even in the high renewable 

energy states we illustrate, where the merit order would fluctuate due to change 

renewable and hydro generation throughout the day, coal still forms the bulk of the 

available capacity throughout the day. Consequently, coal individually or in combination 

with other fuels forms the bulk of marginal generation. 
Furthermore, while we see little seasonal differences in CO2 MEFs in the current 

Indian grid, slightly increased MEFs during monsoon season than the dry season is 

consistent with current operation of hydro generating units in India. Because of 

increased rainfall during the monsoon, operators use hydro generation as baseload 

capacity during this season. During the dry season when there are further constraints 

on the amount of water available to generate electricity, e.g. irrigation, drinking water, 

etc., hydro units are more likely to act as peaking plants that ramp up and down quickly. 

Our analysis shows higher marginal hydro generation during the dry season. Thus, 
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hydro plants play a greater role in meeting marginal demand and decrease marginal 

emissions during dryer months.  
Our analysis shows that incorporation of greater shares of renewable energy by 

2030 in line with the Government of India’s targets will increase the likelihood that 

renewable generation meets marginal demand, decreasing median CO2 MEFs across 

all states by approximately a factor of two. Higher marginal renewable generation 

(mostly from solar) during the middle of the day drive this potential future decrease. 

Moreover, this is consistent with CO2 MEFs from the United States where marginal CO2 

emissions decrease with increasing marginal wind generation during the middle of the 

day (Thind et al., 2017).  
A future Indian grid with more renewables will also show more variability in 

marginal emissions estimates, both seasonally and between hours of the day. Median 

absolute seasonal difference increases by approximately a factor of two. Likewise, time-

of-day variability increases: differences between lowest and highest median time-of-day 

MEFs increases by up to a factor of approximately four. Nonetheless, under projected 

capacity expansions to 2030, coal generation will still form a sizable portion of marginal 

generation during times other than the middle of the day especially in larger, higher 

demand states. This results in higher marginal emissions during these times of the day.  
Comparing current and future estimates, we show stronger relationships between 

greater shares of average zero emission generation (mostly renewables) and lower 

marginal emission factors. This implies that long-term policy targets to increase 

renewable generation do have short-term impacts on emissions from new additional 

loads. Less emissions-intensive generation is more likely to meet these new loads 

which may not be uniformly spread across all seasons and times-of-day. 
Analyzing marginal emissions as a function of current and future demand 

assumptions in high renewable states indicate variability and non-monotonic 

relationships between demand and marginal emissions. This is consistent with the 

increased variability in regression-based MEFs we see from increased marginal 

renewable generation. Moreover, while all states see increases in demand from 2017-

2018 to 2030-2031, no clear patterns emerge on whether marginal emissions from 

future demand are distinctly lower than those from current demand. For example, in 
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Madhya Pradesh, 2030-2031 marginal emissions-demand curves show comparable 

emission intensity as those for 2017-2018. On the other hand, Telangana shows 

decreases in dry seasons for both modeling periods. A limitation with estimating 

marginal emissions as a function of demand is that these curves remove the temporal 

aspect associated with demand at different levels by ordering demand of different hours 

as a continuous series of data.  
We identify two limitations to this analysis: the lack of observed continuous 

emissions monitoring data to compare our 2017-2018 emissions estimates, and 

assumptions about installed capacity, demand, and market structure in our 2030-2031 

estimates. We discuss the 2017-2018 model simulation’s ability to capture temporal and 

spatial trends with comparisons to reported generation data in Appendix D. Overall, the 

reduced-form model captures spatial and temporal trends in generation well, with 

weakest agreement during monsoon season when uncertainty from renewable 

generation decreases performance. This increases uncertainty in our MEF estimates, 

but is consistent with previous estimates from the United States of grids with marginal 

renewable generation (Li et al., 2017b; Thind et al., 2017) and high marginal gas 

generation (Siler-Evans et al., 2012). Indeed our estimates for the lowest MEFs are the 

most uncertain with low regression r2 values and wide standard errors (see Table 7-

Table 10). However, this is consistent with limitations from regression-based MEFs: 

because we regress changes in emissions against change in generation, if a particular 

generation sources has zero emissions, the correlation between emissions changes 

and generation changes weakens. 
Another limitation of this analysis stem from our 2030-2031 estimates, which 

assume increased electricity demand, capacity expansion from all fuels to meet this 

demand, transmission capacity expansion, and further integrated power markets 

between states in India and the absence of current decentralized state-wise dispatch. 

This means the future 2030-2031 India grid analyzed here has more ability than the 

current 2017-2018 grid to transfer power between states having heterogenous electricity 

mixes. Consequently, our 2030-2031 estimates likely characterize an upper bound in 

terms of the MEF decreases we see between 2017-2018 and 2030-2031 estimate. 

Greater electricity sharing between states is incumbent upon policy reforms and 
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increased transmission capacity. These estimates show an Indian grid with higher 

renewable generation, but several exogenous factors such as economic growth and 

access to capital to finance capacity and transmission expansion will likely determine 

the Indian electricity fuel mix in 2030. Moreover, the speed of current policy efforts to 

coordinate dispatch (Power System Operation Corporation Limited, 2020) between 

states in India will determine how the Indian power system will adopt the centralized 

dispatch simulated by the full-form model. If states stay fragmented in their scheduling 

decisions, then zero-emission energy is less likely to move to emissions intensive 

states. 
In conclusion, we present first-ever spatially and temporally resolved marginal 

CO2, SO2, NOX and PM2.5 emission factors for current and future Indian power 

generation. Our results are broadly applicable to energy researchers, policy analysts 

and decision makers when evaluating any interventions that change power demand in 

India. Given the country’s growing power demand, expansion of renewable generating 

capacity, and state-level heterogeneity in fuel mixes and power sector operations, a 

detailed evaluation of emissions from new loads is critical to understanding emissions 

trajectories for India. Moreover, as both developed and developing countries look to net-

zero targets to reduce climate-warming emissions, MEFs presented here provide once 

piece of information to accurately assess policies to meet these targets.  
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6 Conclusion 

This thesis explored the interactions between air pollution, climate, and energy 

across a developed country, the United States, and a developing country, India. In the 

United States, we use high-resolution chemical transport models to understand the 

variability and sources of urban ultrafine particles within Pittsburgh. We find that high 

resolution simulations can resolve variability and attribute urban UFP concentrations to 

sources. However, considerable variability at finer spatial resolutions still exists. 

Empirical models capable of resolving this finer spatial variability will likely need to pair 

with mechanistic models in future work to full resolve UFP exposure and consequently 

constrain health effects quantifications for UFPs. 

In India, we analyze power generation, a sector crucial to India’s energy 

transition as well as global air quality and climate change. Due to the Indian power 

sector’s size and importance in efforts to improve air quality and mitigate climate 

change, we present quantifications of the sector’s air pollution and climate impacts at 

higher spatial and temporal resolution than previous analyses. Crucial to this added 

granularity are India’s states, which act as underappreciated nodes of energy and 

environmental decision making in the country. We quantify the emissions impacts 

associated with each state’s power production and consumption under current and 

future policy scenarios to find considerable differences between high renewable energy 

states in southern and western India, coal-mining states in central and eastern India, 

and hydro-rich states in northeastern India and the Himalayas. These differences 

likewise extend to the mortality associated with emissions from power generation in 

India. Coal generation underscores this variability between states, many times inducing 

differences in emissions and associated mortality. As renewable energy grows in the 

Indian power sector, it will add an additional of variability in emissions between states, 

times-of-day, and seasons. Ultimately the added granularity we resolve here can inform 

policy efforts by provide more accurate values characterizing the air quality and climate 

impacts of the Indian power sector.  



96 

7 References 

Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., 

Abdollahpour, I., Abegaz, K. H., Abolhassani, H., Aboyans, V., Abreu, L. G., Abrigo, M. R. M., 

Abualhasan, A., Abu-Raddad, L. J., Abushouk, A. I., Adabi, M., Adekanmbi, V., Adeoye, A. M., 

Adetokunboh, O. O., Adham, D., Advani, S. M., Afshin, A., Agarwal, G., Aghamir, S. M. K., 

Agrawal, A., Ahmad, T., Ahmadi, K., Ahmadi, M., Ahmadieh, H., Ahmed, M. B., Akalu, T. Y., 

Akinyemi, R. O., Akinyemiju, T., Akombi, B., Akunna, C. J., Alahdab, F., Al-Aly, Z., Alam, K., 

Alam, S., Alam, T., Alanezi, F. M., Alanzi, T. M., Alemu, B. W., Alhabib, K. F., Ali, M., Ali, S., 

Alicandro, G., Alinia, C., Alipour, V., Alizade, H., Aljunid, S. M., Alla, F., Allebeck, P., Almasi-

Hashiani, A., Al-Mekhlafi, H. M., Alonso, J., Altirkawi, K. A., Amini-Rarani, M., Amiri, F., Amugsi, 

D. A., Ancuceanu, R., Anderlini, D., Anderson, J. A., Andrei, C. L., Andrei, T., Angus, C., 

Anjomshoa, M., Ansari, F., Ansari-Moghaddam, A., Antonazzo, I. C., Antonio, C. A. T., Antony, C. 

M., Antriyandarti, E., Anvari, D., Anwer, R., Appiah, S. C. Y., Arabloo, J., Arab-Zozani, M., 

Aravkin, A. Y., Ariani, F., Armoon, B., Ärnlöv, J., Arzani, A., Asadi-Aliabadi, M., Asadi-Pooya, A. 

A., Ashbaugh, C., Assmus, M., Atafar, Z., Atnafu, D. D., Atout, M. M. d. W., Ausloos, F., Ausloos, 

M., Ayala Quintanilla, B. P., Ayano, G., Ayanore, M. A., Azari, S., Azarian, G., Azene, Z. N., 

Badawi, A., et al.: Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a 

systematic analysis for the Global Burden of Disease Study 2019, Lancet, 396(10258), 1223–

1249, doi:10.1016/S0140-6736(20)30752-2, 2020. 

Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, 

J. Geophys. Res. Atmos., 107(19), 1–23, doi:10.1029/2001JD001010, 2002. 

Agarwal, A., Speth, R. L., Fritz, T. M., Jacob, S. D., Rindlisbacher, T., Iovinelli, R., Owen, B., Miake-Lye, 

R. C., Sabnis, J. S. and Barrett, S. R. H.: SCOPE11 Method for Estimating Aircraft Black Carbon 

Mass and Particle Number Emissions, Environ. Sci. Technol., 53(3), 1364–1373, 

doi:10.1021/acs.est.8b04060, 2019. 

Ali, S.: Indian electricity demand How much, by whom, and under what conditions?, New Delhi. [online] 

Available from: https://www.brookings.edu/research/the-future-of-indian-electricity-demand-how-

much-by-whom-and-under-what-conditions/, 2018. 

Apte, J. S. and Pant, P.: Toward cleaner air for a billion Indians, Proc. Natl. Acad. Sci., 201905458, 

doi:10.1073/pnas.1905458116, 2019. 

Apte, J. S., Marshall, J. D., Cohen, A. J. and Brauer, M.: Addressing Global Mortality from Ambient PM 

2.5, Environ. Sci. Technol., 49(13), 8057–8066, doi:10.1021/acs.est.5b01236, 2015. 

Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A., Sellegri, K., Birmili, W., Weingartner, E. and 

Baltensperger, U.: and Physics Number size distributions and seasonality of submicron particles 

in Europe 2008 – 2009, , 5505–5538, doi:10.5194/acp-11-5505-2011, 2011. 

Baldauf, R. W., Devlin, R. B., Gehr, P., Giannelli, R., Hassett-sipple, B., Jung, H., Martini, G., Mcdonald, 

J., Sacks, J. D. and Walker, K.: Ultrafine Particle Metrics and Research Considerations : Review 



97 

of the 2015 UFP Workshop, , (December 2012), 1–21, doi:10.3390/ijerph13111054, 2016. 

Ban-weiss, G. A., Lunden, M. M., Kirchstetter, T. W. and Harley, R. A.: Size-resolved particle number and 

volume emission factors for on-road gasoline and diesel motor vehicles, J. Aerosol Sci., 41(1), 5–

12, doi:10.1016/j.jaerosci.2009.08.001, 2010. 

Bialek, J.: Tracing the flow of electricity, IEE Proc. - Gener. Transm. Distrib., 143(4), 313, doi:10.1049/ip-

gtd:19960461, 1996. 

Blair, N., Diorio, N., Freeman, J., Gilman, P., Janzou, S., Neises, T. W. and Wagner, M. J.: System 

Advisor Model (SAM) General Description, , (NREL/TP-6A20-70414) [online] Available from: 

https://www.nrel.gov/docs/fy18osti/70414.pdf, 2018. 

BP: Statistical Review of World Energy. [online] Available from: 

https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-

economics/statistical-review/bp-stats-review-2020-full-report.pdf, 2020. 

Brown, T., Hörsch, J. and Schlachtberger, D.: PyPSA: Python for Power System Analysis, J. Open Res. 

Softw., 6, doi:10.5334/jors.188, 2018. 

Cai, W., Wang, C., Jin, Z. and Chen, J.: Quantifying baseline emission factors of air pollutants in China’s 

regional power grids, Environ. Sci. Technol., 47(8), 3590–3597, doi:10.1021/es304915q, 2013. 

Carbon Brief: The Carbon Brief Profile: India, [online] Available from: https://www.carbonbrief.org/the-

carbon-brief-profile-india, 2019. 

Central Electricity Authority: Annual Performance of Review of Thermal Power Stations 2014-15, New 

Delhi., 2015. 

Central Electricity Authority: CO2 Baseline Database for the Indian Power Sector, New Delhi, India. 

[online] Available from: 

http://www.cea.nic.in/reports/others/thermal/tpece/cdm_co2/user_guide_ver14.pdf, 2018a. 

Central Electricity Authority: National Electricity Plan - Volume I: Generation, New Delhi., 2018b. 

Central Electricity Authority: Renewable Energy Generation Data, 2018c. 

Central Electricity Authority: All India Electricity Statistics: General Review 2019., 2019a. 

Central Electricity Authority: Annual Generation Programme 2019-20. [online] Available from: 

http://cea.nic.in/reports/others/god/opm/generation19_20.pdf, 2019b. 

Central Electricity Authority: Flexible Operation of Thermal Power Plant for Integration, New Delhi., 2019c. 

Central Electricity Authority: Executive Summary on Power Sector May 2020, New Delhi., 2020a. 

Central Electricity Authority: Power Allocation from Central Sector, [online] Available from: 

http://www.cea.nic.in/monthlypowersupply.html, 2020b. 

Central Electricity Regulatory Commission: Consultation Paper On Security Constrained Economic 

Despatch of Inter State Generating Stations pan India., 2018a. 

Central Electricity Regulatory Commission: Discussion Paper on Market Based Economic Dispatch of 

Electricity : Re-designing of Day-ahead Market (DAM) in India., 2018b. 

Central Electricity Regulatory Commission: Discussion Paper on Re-designing Real Time Electricity 



98 

Markets in India., 2018c. 

Central Electricity Regulatory Commission: Report on Short-term Power Market in India : 2017-19, 2018d. 

Centre for Social and Economic Progress: Centre for Social and Economic Progress Electricity and 

Carbon Tracker, [online] Available from: https://carbontracker.in/, 2019. 

de Chalendar, J. A., Taggart, J. and Benson, S. M.: Tracking emissions in the US electricity system, Proc. 

Natl. Acad. Sci. U. S. A., 116(51), 25497–25502, doi:10.1073/pnas.1912950116, 2019. 

Coal India: Price Notification, Kolkata, India. [online] Available from: 

https://www.coalindia.in/DesktopModules/DocumentList/documents/Price_Notification_dated_08.

01.2018_effective_from_0000_Hrs_of_09.01.2018_09012018.pdf, 2018. 

Coal India: Koyla Grahak Seva, [online] Available from: https://elib.cmpdi.co.in/SEVA/index.php 

(Accessed 24 February 2020), 2019. 

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., 

Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., 

Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, 

G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L. and Forouzanfar, 

M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air 

pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 

389(10082), 1907–1918, doi:10.1016/S0140-6736(17)30505-6, 2017. 

Conibear, L., Butt, E. W., Knote, C., Arnold, S. R. and Spracklen, D. V.: Stringent Emission Control 

Policies Can Provide Large Improvements in Air Quality and Public Health in India, GeoHealth, 

2(7), 196–211, doi:10.1029/2018gh000139, 2018. 

Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van 

Dingenen, R. and Granier, C.: Forty years of improvements in European air quality: Regional 

policy-industry interactions with global impacts, Atmos. Chem. Phys., 16(6), 3825–3841, 

doi:10.5194/acp-16-3825-2016, 2016. 

Cropper, M., Cui, R., Guttikunda, S., Hultman, N., Jawahar, P., Park, Y., Yao, X. and Song, X. P.: The 

mortality impacts of current and planned coal-fired power plants in India, Proc. Natl. Acad. Sci. U. 

S. A., 118(5), 1–7, doi:10.1073/pnas.2017936118, 2021. 

Cropper, M. L., Guttikunda, S., Jawahar, P., Malik, K. and Partridge, I.: Costs and Benefits of Installing 

Flue-Gas Desulfurization Units at Coal-Fired Power Plants in India, in Disease Control Priorities, 

Third Edition (Volume 7): Injury Prevention and Environmental Health, pp. 239–248, The World 

Bank., 2017. 

Cropper, M. L., Guttikunda, S., Jawahar, P., Lazri, Z., Malik, K., Song, X. P. and Yao, X.: Applying 

Benefit-Cost Analysis to Air Pollution Control in the Indian Power Sector, J. Benefit-Cost Anal., 

10(May), 185–205, doi:10.1017/bca.2018.27, 2019. 

Deetjen, T. A. and Azevedo, I. L.: Reduced-Order Dispatch Model for Simulating Marginal Emissions 

Factors for the United States Power Sector, Environ. Sci. Technol., 53(17), 10506–10513, 



99 

doi:10.1021/acs.est.9b02500, 2019. 

Dennekamp, M., Howarth, S., Dick, C. A. J., Cherrie, J. W., Donaldson, K. and Seaton, A.: Ultrafine 

particles and nitrogen oxides generated by gas and electric cooking Ultrafine particles and 

nitrogen oxides generated by gas and electric cooking, Occup. Environ. Med., 58(2), 511–516, 

doi:10.1136/oem.58.8.511, 2001. 

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G. and Speizer, F. 

E.: An Association between Air Pollution and Mortality in Six U.S. Cities, N. Engl. J. Med., 

329(24), 1753–1759, doi:10.1056/NEJM199312093292401, 1993. 

Donahue, N. M., Robinson, A. L., Stanier, C. O. and Pandis, S. N.: Coupled partitioning, dilution, and 

chemical aging of semivolatile organics, Environ. Sci. Technol., 40(8), 2635–2643, 

doi:10.1021/es052297c, 2006. 

Donti, P. L., Kolter, J. Z. and Azevedo, I. L.: How Much Are We Saving after All? Characterizing the 

Effects of Commonly Varying Assumptions on Emissions and Damage Estimates in PJM, 

Environ. Sci. Technol., 53(16), 9905–9914, doi:10.1021/acs.est.8b06586, 2019. 

Downward, G. S., van Nunen, E. J. H. M., Kerckhoffs, J., Vineis, P., Brunekreef, B., Boer, J. M. A., 

Messier, K. P., Roy, A., Verschuren, W. M. M., van der Schouw, Y. T., Sluijs, I., Gulliver, J., Hoek, 

G. and Vermeulen, R.: Long-Term Exposure to Ultrafine Particles and Incidence of 

Cardiovascular and Cerebrovascular Disease in a Prospective Study of a Dutch Cohort, Environ. 

Health Perspect., 126(12), 127007, doi:10.1289/EHP3047, 2018. 

Elleman, R. A. and Covert, D. S.: Aerosol size distribution modeling with the Community Multiscale Air 

Quality modeling system in the Pacific Northwest : 3 . Size distribution of particles emitted into a 

mesoscale model, , 115, 1–14, doi:10.1029/2009JD012401, 2010. 

Energy Analytics Lab: Average System Load Profile, Kanpur, India. [online] Available from: 

https://eal.iitk.ac.in/download/system_load_profile.php, 2019. 

Environ: User’s guide to the comprehensive air quality model with extensions (CAMx), version 4.02, 

Novato, CA. [online] Available from: http://www.camx.com/, 2003. 

Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S. and Moran, M. D.: A 

global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring 

Instrument, Atmos. Chem. Phys., 16(18), 11497–11519, doi:10.5194/acp-16-11497-2016, 2016. 

Fountoukis, C., Riipinen, I., Denier Van Der Gon, H. A. C., Charalampidis, P. E., Pilinis, C., Wiedensohler, 

A., O ’dowd, C., Putaud, J. P., Moerman, M. and Pandis, S. N.: Simulating ultrafine particle 

formation in Europe using a regional CTM: contribution of primary emissions versus secondary 

formation to aerosol number concentrations, Atmos. Chem. Phys. Atmos. Chem. Phys., 12, 

8663–8677, doi:10.5194/acp-12-8663-2012, 2012. 

Fountoukis, C., Koraj, D., Denier van der Gon, H. A. C., Charalampidis, P. E., Pilinis, C. and Pandis, S. 

N.: Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model, 

Atmos. Environ., 68, 24–32, doi:10.1016/j.atmosenv.2012.11.008, 2013. 



100 

Gai, Y., Wang, A., Pereira, L., Hatzopoulou, M. and Posen, I. D.: Marginal Greenhouse Gas Emissions of 

Ontario’s Electricity System and the Implications of Electric Vehicle Charging, Environ. Sci. 

Technol., 53(13), 7903–7912, doi:10.1021/acs.est.9b01519, 2019. 

Gao, M., Beig, G., Song, S., Zhang, H., Hu, J., Ying, Q., Liang, F., Liu, Y., Wang, H., Lu, X., Zhu, T., 

Carmichael, G. R., Nielsen, C. P. and McElroy, M. B.: The impact of power generation emissions 

on ambient PM2.5 pollution and human health in China and India, Environ. Int., 121(June), 250–

259, doi:10.1016/j.envint.2018.09.015, 2018. 

Gaydos, T. M., Pinder, R., Koo, B., Fahey, K. M., Yarwood, G. and Pandis, S. N.: Development and 

application of a three-dimensional aerosol chemical transport model, PMCAMx, Atmos. Environ., 

41(12), 2594–2611, doi:10.1016/j.atmosenv.2006.11.034, 2007. 

GBD MAPS Working Group: Burden of Disease Attributable to Major Air Pollution Sources in India, 

Boston., 2018. 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., 

Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, 

V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, 

J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M. and 

Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 

(MERRA-2), J. Clim., 30(14), 5419–5454, doi:10.1175/JCLI-D-16-0758.1, 2017. 

Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., Pfister, G. G., Fadnavis, S. and 

Pithani, P.: Premature mortality in India due to PM 2.5 and ozone exposure, Geophys. Res. Lett., 

43(9), 4650–4658, doi:10.1002/2016GL068949, 2016. 

Gilliam, R. C. and Pleim, J. E.: Performance Assessment of New Land Surface and Planetary Boundary 

Layer Physics in the WRF-ARW, J. Appl. Meteorol. Climatol., 49(4), 760–774, 

doi:10.1175/2009JAMC2126.1, 2010. 

Gilmore, E. A., Heo, J., Muller, N. Z., Tessum, C. W., Hill, J., Marshall, J. and Adams, P. J.: An inter-

comparison of air quality social cost estimates from reduced-complexity models, Environ. Res. 

Lett., 2, 1–2, doi:10.1088/1748-9326/ab1ab5, 2019. 

Global Burden of Disease Collaborative Network: Global Burden of Disease Study 2019 (GBD 2019) 

Particulate Matter Risk Curves, Seattle. [online] Available from: https://doi.org/10.6069/KHWH-

2703, 2021. 

Goodkind, A. L., Tessum, C. W., Coggins, J. S., Hill, J. D. and Marshall, J. D.: Fine-scale damage 

estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of 

emissions, Proc. Natl. Acad. Sci. U. S. A., 116(18), 8775–8780, doi:10.1073/pnas.1816102116, 

2019. 

Google: Google Maps Platform Documentation, [online] Available from: 

https://developers.google.com/maps/documentation/, 2019. 

Government of India: India’s Intended Nationally Determined Contribution. [online] Available from: 



101 

http://www4.unfccc.int/submissions/INDC/Published Documents/India/1/INDIA INDC TO 

UNFCCC.pdf, 2015. 

Government of India: Gazette of India CG-DL-E-01042021-226335., 2021. 

Guo, H., Kota, S. H., Chen, K., Sahu, S. K., Hu, J., Ying, Q., Wang, Y. and Zhang, H.: Source 

contributions and potential reductions to health effects of particulate matter in India, Atmos. 

Chem. Phys., 18(20), 15219–15229, doi:10.5194/acp-18-15219-2018, 2018. 

Guttikunda, S. K. and Jawahar, P.: Atmospheric emissions and pollution from the coal-fired thermal 

power plants in India, Atmos. Environ., 92, 449–460, doi:10.1016/j.atmosenv.2014.04.057, 2014. 

Guttikunda, S. K. and Jawahar, P.: Evaluation of Particulate Pollution and Health Impacts from Planned 

Expansion of Coal-Fired Thermal Power Plants in India Using WRF-CAMx Modeling System, 

Aerosol Air Qual. Res., 18(12), 3187–3202, doi:10.4209/aaqr.2018.04.0134, 2018. 

Hammer, M. S., Van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M. 

J., Kalashnikova, O. V., Kahn, R. A., Brauer, M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., 

Ford, B., Pierce, J. R. and Martin, R. V.: Global Estimates and Long-Term Trends of Fine 

Particulate Matter Concentrations (1998-2018), Environ. Sci. Technol., 54(13), 7879–7890, 

doi:10.1021/acs.est.0c01764, 2020. 

Hawkes, A. D.: Estimating marginal CO2 emissions rates for national electricity systems, Energy Policy, 

38(10), 5977–5987, doi:10.1016/j.enpol.2010.05.053, 2010. 

Health Effects Institute: Special Report 20 Burden of Disease Attributable to Coal-Burning and Other 

Major Sources of Air Pollution in China, Boston, MA., 2016. 

HEI Review Panel: Understanding the Health Effects of Ambient Ultrafine Particles, Heal. Eff. Inst., 

(January), 122 [online] Available from: http://pubs.healtheffects.org/view.php?id=394, 2013. 

Hennigan, C. J., Westervelt, D. M., Riipinen, I., Engelhart, G. J., Lee, T., Jr, J. L. C., Pandis, S. N., 

Adams, P. J. and Robinson, A. L.: New particle formation and growth in biomass burning plumes : 

An important source of cloud condensation nuclei, , 39, 1–5, doi:10.1029/2012GL050930, 2012. 

Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P. and Van Den Brandt, P. A.: Association between 

mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study, Lancet, 

360(9341), 1203–1209, doi:10.1016/S0140-6736(02)11280-3, 2002. 

Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B. and Kaufman, J. D.: Long-

term air pollution exposure and cardio- respiratory mortality: a review, Environ. Heal., 12(1), 43, 

doi:10.1186/1476-069X-12-43, 2013. 

Hoffmann, B., Moebus, S., Möhlenkamp, S., Stang, A., Lehmann, N., Dragano, N., Schmermund, A., 

Memmesheimer, M., Mann, K., Erbel, R. and Jöckel, K. H.: Residential exposure to traffic is 

associated with coronary atherosclerosis, Circulation, 116(5), 489–496, 

doi:10.1161/CIRCULATIONAHA.107.693622, 2007. 

Indian Council of Medical Research, Public Health Foundation of India and Institute for Health Metrics 

and Evaluation: GBD India Compare Data Visualization, New Delhi., 2017. 



102 

Institute, H. E.: State of Global Air 2020, Boston, MA., 2020. 

International Energy Agency: India Energy Outlook 2021. [online] Available from: 

http://www.worldenergyoutlook.org/media/weowebsite/2015/IndiaEnergyOutlook_WEO2015.pdf, 

2021. 

International Institute for Sustainable Development: The Evolution of the Clean Energy Cess on Coal 

Production in India. [online] Available from: 

https://www.iisd.org/sites/default/files/publications/stories-g20-india-en.pdf, 2020. 

Jung, J. G., Fountoukis, C., Adams, P. J. and Pandis, S. N.: Simulation of in situ ultrafine particle 

formation in the eastern United States using PMCAMx-UF, J. Geophys. Res. Atmos., 115(3), 

D03203, doi:10.1029/2009JD012313, 2010. 

Kaltsonoudis, C., Kostenidou, E., Louvaris, E., Psichoudaki, M., Tsiligiannis, E., Florou, K., Liangou, A. 

and Pandis, S. N.: Characterization of fresh and aged organic aerosol emissions from meat 

charbroiling, , 7143–7155, 2017. 

Kamboj, P. and Tongia, R.: Indian Railways and Coal: An Unsustainable Interdependency, New Delhi, 

India., 2018. 

Karner, A. A., Eisinger, D. S. and Niemeier, D. E. B. A.: Near-Roadway Air Quality : Synthesizing the 

Findings from Real-World Data, Environ. Sci. Technol., 44(14), 5334–5344, 

doi:10.1021/es100008x, 2010. 

Karydis, V. A., Tsimpidi, A. P. and Pandis, S. N.: Evaluation of a three-dimensional chemical transport 

model (PMCAMx) in the eastern United States for all four seasons, J. Geophys. Res., 112(D14), 

D14211, doi:10.1029/2006JD007890, 2007. 

Kreyling, W. G., Semmler-Behnke, M. and Mo?ller, W.: Ultrafine particle - Lung interactions: Does size 

matter?, J. Aerosol Med. Depos. Clear. Eff. Lung, 19(1), 74–83, doi:10.1089/jam.2006.19.74, 

2006. 

Kumar, P., Banerjee, R. and Mishra, T.: A framework for analyzing trade-offs in cost and emissions in 

power sector, Energy, 195, 116949, doi:10.1016/j.energy.2020.116949, 2020. 

Laden, F., Schwartz, J., Speizer, F. E. and Dockery, D. W.: Reduction in fine particulate air pollution and 

mortality: Extended follow-up of the Harvard Six Cities Study, Am. J. Respir. Crit. Care Med., 

173(6), 667–672, doi:10.1164/rccm.200503-443OC, 2006. 

Lanki, T., Pekkanen, J., Aalto, P., Elosua, R., Berglind, N., D’Ippoliti, D., Kulmala, M., Nyberg, F., Peters, 

A., Picciotto, S., Salomaa, V., Sunyer, J., Tiittanen, P., Von Klot, S. and Forastiere, F.: 

Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: 

The HEAPSS study, Occup. Environ. Med., 63(12), 844–851, doi:10.1136/oem.2005.023911, 

2006. 

Laumbach, R. J., Rich, D. Q., Gandhi, S., Amorosa, L., Schneider, S., Zhang, J., Ohman-Strickland, P., 

Gong, J., Lelyanov, O. and Kipen, H. M.: Acute Changes in Heart Rate Variability in Subjects 

With Diabetes Following a Highway Traffic Exposure, J. Occup. Environ. Med., 52(3), 324–331, 



103 

doi:10.1097/JOM.0b013e3181d241fa, 2010. 

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. and Pozzer, A.: The contribution of outdoor air 

pollution sources to premature mortality on a global scale, Nature, 525(7569), 367–371, 

doi:10.1038/nature15371, 2015. 

Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X., Li, Z. and 

Dickerson, R. R.: India Is Overtaking China as the World’s Largest Emitter of Anthropogenic 

Sulfur Dioxide, Sci. Rep., 7(1), 14304, doi:10.1038/s41598-017-14639-8, 2017a. 

Li, M., Smith, T. M., Yang, Y. and Wilson, E. J.: Marginal Emission Factors Considering Renewables: A 

Case Study of the U.S. Midcontinent Independent System Operator (MISO) System, Environ. Sci. 

Technol., 51(19), 11215–11223, doi:10.1021/acs.est.7b00034, 2017b. 

Lipsett, M. J., Ostro, B. D., Reynolds, P., Goldberg, D., Hertz, A., Jerrett, M., Smith, D. F., Garcia, C., 

Chang, E. T. and Bernstein, L.: Long-term exposure to air pollution and cardiorespiratory disease 

in the California teachers study cohort, Am. J. Respir. Crit. Care Med., 184(7), 828–835, 

doi:10.1164/rccm.201012-2082OC, 2011. 

Lu, Z. and Streets, D. G.: Increase in NOx emissions from indian thermal power plants during 1996-2010: 

Unit-based inventories and multisatellite observations, Environ. Sci. Technol., 46(14), 7463–7470, 

doi:10.1021/es300831w, 2012. 

Lu, Z., Streets, D. G., Foy, B. De and Krotkov, N. A.: Ozone Monitoring Instrument Observations of 

Interannual Increases in SO 2 Emissions from Indian Coal-Fired Power Plants during 2005 − 

2012, , doi:10.1021/es4039648, 2013a. 

Lu, Z., Streets, D. G., De Foy, B. and Krotkov, N. A.: Ozone monitoring instrument observations of 

interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012, 

Environ. Sci. Technol., 47(24), 13993–14000, doi:10.1021/es4039648, 2013b. 

Ma, W. and Qian, S.: Traffic impact of the Greenfield Bridge closure (AM Peak)., 2015. 

Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B. and Presto, A. A.: 

Development of a general calibration model and long-term performance evaluation of low-cost 

sensors for air pollutant gas monitoring, Atmos. Meas. Tech., 12(2), 903–920, doi:10.5194/amt-

12-903-2019, 2019. 

Mazaheri, M., Johnson, G. R. and Morawska, L.: Particle and Gaseous Emissions from Commercial 

Aircraft at Each Stage of the Landing and Takeoff Cycle, Environ. Sci. Technol., 43(2), 441–446, 

doi:10.1021/es8013985, 2009. 

McCreanor, J., Cullinan, P., Nieuwenhuijsen, M. J., Stewart-Evans, J., Malliarou, E., Jarup, L., Harrington, 

R., Svartengren, M., Han, I.-K., Ohman-Strickland, P., Chung, K. F. and Zhang, J.: Respiratory 

Effects of Exposure to Diesel Traffic in Persons with Asthma, N. Engl. J. Med., 357(23), 2348–

2358, doi:10.1056/NEJMoa071535, 2007. 

Ministry of Coal: Provisional Coal Statistics 2017-2018, Kolkata, India. [online] Available from: 

file:///C:/Users/sseng/Downloads/ProvisionalCoalStat2017-18.pdf, 2018. 



104 

Ministry of Environment Forest and Climate Change: Gazette of India REGD. NO. D. L.-33004/99., 2015. 

Ministry of Petroleum and Natural Gas: State/UT-wise Sales Tax Rates Applicable on Crude Oil, Natural 

Gas and Select Major Petroleum Products As on 1 April, 2018, [online] Available from: 

https://data.gov.in/resources/stateut-wise-sales-tax-rates-applicable-crude-oil-natural-gas-and-

select-major-petroleum (Accessed 24 February 2020), 2019. 

Ministry of Power: Merit Order Despatch of Electricity for Rejuvenation of Income and Transparency 

(MERIT), [online] Available from: http://meritindia.in/, 2020a. 

Ministry of Power: National Power Portal, [online] Available from: https://npp.gov.in/publishedReports 

(Accessed 24 February 2020b), 2020. 

Ministry of Power: Pradhan Mantri Sahaj Bijli Har Ghar Yojana, [online] Available from: 

https://saubhagya.gov.in/, 2020c. 

Mitchell, A.: The ESRI Guide to GIS Analysis, Volume 2, ESRI Press., 2005. 

Mohan, R. R., Dharmala, N., Ramakrishnan, M., Kumar, P. and Bose, A.: Greenhouse Gas Emission 

Estimates from the Energy Sector in India at the Sub-national Level (Version/edition 2.0), New 

Delhi. [online] Available from: http://www.ghgplatform-india.org/methodology-electricityenergy-

sector, 2019. 

Napari, I., Noppel, M., Vehkamaki, H. and Kulmala, M.: Parametrization of ternary nucleation rates for 

H2SO4-NH3-H2O vapors, J. Geophys. Res. Atmos., 107(19), 2–7, doi:10.1029/2002JD002132, 

2002. 

National Thermal Power Corporation: Delivered Cost of Gas, 2017. 

Oberschelp, C., Pfister, S., Raptis, C. E. and Hellweg, S.: Global emission hotspots of coal power 

generation, Nat. Sustain., 2(2), 113–121, doi:10.1038/s41893-019-0221-6, 2019. 

Ohlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N. and Hoffmann, B.: Health effects of ultrafine 

particles: a systematic literature review update of epidemiological evidence, Int. J. Public Health, 

7(Hei 2013), doi:10.1007/s00038-019-01202-7, 2019. 

Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L. and Kleeman, M. J.: Associations of 

mortality with long-term exposures to fine and ultrafine particles, species and sources: results 

from the california teachers study cohort., Environ. Health Perspect., 123(6), 549–56, 

doi:10.1289/ehp.1408565, 2015. 

Palchak, D., Cochran, J., Ehlen, A., McBennett, B., Milligan, M., Chernyakhoviskiy, I., Deshmukh, R., 

Abhyankar, N., Soonee, S. K., Narasimhan, S. R., Joshi, M. and Sreedharan, P.: Greening the 

Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy Into India’s Electric Grid: Vol I., 

2017a. 

Palchak, D., Cochran, J., Ehlen, A., McBennett, B., Milligan, M., Chernyakhoviskiy, I., Deshmukh, R., 

Abhyankar, N., Soonee, S. K., Narasimhan, S. R., Joshi, M. and Sreedharan, P.: Greening the 

Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy Into India’s Electric Grid: Vol II., 

2017b. 



105 

Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., Turkgulu, B., Kumar, G. A., 

Khare, M., Beig, G., Gupta, T., Krishnankutty, R. P., Causey, K., Cohen, A. J., Bhargava, S., 

Aggarwal, A. N., Agrawal, A., Awasthi, S., Bennitt, F., Bhagwat, S., Bhanumati, P., Burkart, K., 

Chakma, J. K., Chiles, T. C., Chowdhury, S., Christopher, D. J., Dey, S., Fisher, S., Fraumeni, B., 

Fuller, R., Ghoshal, A. G., Golechha, M. J., Gupta, P. C., Gupta, R., Gupta, R., Gupta, S., 

Guttikunda, S., Hanrahan, D., Harikrishnan, S., Jeemon, P., Joshi, T. K., Kant, R., Kant, S., Kaur, 

T., Koul, P. A., Kumar, P., Kumar, R., Larson, S. L., Lodha, R., Madhipatla, K. K., Mahesh, P. A., 

Malhotra, R., Managi, S., Martin, K., Mathai, M., Mathew, J. L., Mehrotra, R., Mohan, B. V. M., 

Mohan, V., Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Pandian, J. D., Pant, P., 

Perianayagam, A., Prabhakaran, D., Prabhakaran, P., Rath, G. K., Ravi, S., Roy, A., Sabde, Y. 

D., Salvi, S., Sambandam, S., Sharma, B., Sharma, M., Sharma, S., Sharma, R. S., Shrivastava, 

A., Singh, S., Singh, V., Smith, R., Stanaway, J. D., Taghian, G., Tandon, N., Thakur, J. S., 

Thomas, N. J., Toteja, G. S., Varghese, C. M., Venkataraman, C., Venugopal, K. N., Walker, K. 

D., Watson, A. Y., Wozniak, S., Xavier, D., Yadama, G. N., Yadav, G., Shukla, D. K., Bekedam, 

H. J., et al.: Health and economic impact of air pollution in the states of India: the Global Burden 

of Disease Study 2019, Lancet Planet. Heal., 5(1), e25–e38, doi:10.1016/S2542-5196(20)30298-

9, 2021. 

Paolella, D. A., Tessum, C. W., Adams, P. J., Apte, J. S., Chambliss, S., Hill, J., Muller, N. Z. and 

Marshall, J. D.: Effect of Model Spatial Resolution on Estimates of Fine Particulate Matter 

Exposure and Exposure Disparities in the United States, Environ. Sci. Technol. Lett., 5(7), 436–

441, doi:10.1021/acs.estlett.8b00279, 2018. 

Parray, M. T., Dalal, U. and Tongia, R.: Brookings India Electricity and Carbon Tracker. [online] Available 

from: https://www.brookings.edu/research/insights-from-the-brookings-india-electricity-and-

carbon-tracker/, 2019. 

Patoulias, D., Riipinen, I. and Pandis, S. N.: The role of organic condensation on ultrafine particle growth 

during nucleation events, Atmos. Chem. Phys., 15(11), 2259, doi:10.5194/acp-15-6337-2015, 

2015. 

Patoulias, D., Fountoukis, C., Riipinen, I., Asmi, A., Kulmala, M. and Pandis, S. N.: Simulation of the size-

composition distribution of atmospheric nanoparticles over Europe, Atmos. Chem. Phys., 18(18), 

13639–13654, doi:10.5194/acp-18-13639-2018, 2018. 

Peng, W., Dai, H., Guo, H., Purohit, P., Urpelainen, J., Wagner, F., Wu, Y. and Zhang, H.: The Critical 

Role of Policy Enforcement in Achieving Health, Air Quality, and Climate Benefits from India’s 

Clean Electricity Transition, Environ. Sci. Technol., doi:10.1021/acs.est.0c01622, 2020. 

Peters, A., von Klot, S., Heier, M., Trentinaglia, I., Hörmann, A., Wichmann, H. E. and Löwel, H.: 

Exposure to Traffic and the Onset of Myocardial Infarction, N. Engl. J. Med., 351(17), 1721–1730, 

doi:10.1056/NEJMoa040203, 2004. 

Phadke, A., Abhyankar, N. and Deshmukh, R.: Techno-Economic Assessment of Integrating 175GW of 



106 

Renewable Energy into the Indian Grid by 2022., 2016. 

Pierce, J. R. and Adams, P. J.: Efficiency of cloud condensation nuclei formation from ultrafine particles, 

Atmos. Chem. Phys., 7, 1367–1379, doi:10.5194/acpd-6-10991-2006, 2007. 

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D. and Thurston, G. D.: to Fine Particulate 

Air Pollution, J. Am. Med. Assoc., 287(9), 1132–1141, doi:10.1001/jama.287.9.1132, 2002. 

Posner, L. N. and Pandis, S. N.: Sources of ultrafine particles in the Eastern United States, Atmos. 

Environ., 111, 103–112, doi:10.1016/j.atmosenv.2015.03.033, 2015. 

Power System Operation Corporation Limited: Daily Power Supply Position Report, New Delhi, India. 

[online] Available from: https://posoco.in/reports/daily-reports/, 2018. 

Power System Operation Corporation Limited: Security Constrained Economic Dispatch of Inter-state 

Generating Stations pan-India: Detailed Feedback Report on Pilot, New Delhi., 2020. 

Ramanathan, S., Arora, S. and Trivedi, V.: Coal-Based Power Norms: Where do we stand today?, New 

Delhi. [online] Available from: https://www.cseindia.org/coal-based-power-norms-coal-based-

10125, 2020. 

Rose Eilenberg, S., Subramanian, R., Malings, C., Hauryliuk, A., Presto, A. A. and Robinson, A. L.: Using 

a network of lower-cost monitors to identify the influence of modifiable factors driving spatial 

patterns in fine particulate matter concentrations in an urban environment, J. Expo. Sci. Environ. 

Epidemiol., 30(6), 949–961, doi:10.1038/s41370-020-0255-x, 2020. 

Ryan, N. A., Johnson, J. X. and Keoleian, G. A.: Comparative Assessment of Models and Methods to 

Calculate Grid Electricity Emissions, Environ. Sci. Technol., 50(17), 8937–8953, 

doi:10.1021/acs.est.5b05216, 2016. 

Safiullah, H., Hug, G. and Tongia, R.: Design of load balancing mechanism for Indian electricity markets, 

Energy Syst., 8(2), 309–350, doi:10.1007/s12667-016-0199-3, 2017. 

Saha, P. K., Robinson, E. S., Shah, R. U., Apte, J. S., Robinson, A. L. and Presto, A. A.: Reduced 

Ultrafine Particle Concentration in Urban Air : Changes in Nucleation and Anthropogenic 

Emissions, , doi:10.1021/acs.est.8b00910, 2018. 

Saha, P. K., Zimmerman, N., Malings, C., Hauryliuk, A., Li, Z., Snell, L., Subramanian, R., Lipsky, E., 

Apte, J. S., Robinson, A. L. and Presto, A. A.: Quantifying high-resolution spatial variations and 

local source impacts of urban ultrafine particle concentrations, Sci. Total Environ., 655, 473–481, 

doi:10.1016/j.scitotenv.2018.11.197, 2019. 

Sahu, S. K., Ohara, T. and Beig, G.: The role of coal technology in redefining India’s climate change 

agents and other pollutants, Environ. Res. Lett., 12(10), doi:10.1088/1748-9326/aa814a, 2017. 

Sehgal, A. and Tongia, R.: Coal Requirement in 2020 : A Bottom-up Analysis., 2016. 

Sengupta, S., Deetjen, T. A., Kumboj, P., D’Souza, S., Adams, P. J., Tongia, R. and Azevedo, I. L.: 

National Policy Interventions in Current Indian Power Generation Produce Disparate, State-Level 

Carbon and Sulfur Emission Impacts., 2021. 

Siler-Evans, K., Azevedo, I. L. and Morgan, M. G.: Marginal emissions factors for the U.S. electricity 



107 

system, Environ. Sci. Technol., 46(9), 4742–4748, doi:10.1021/es300145v, 2012. 

Soman, A., Ganesan, K. and Kaur, H.: India’s Electric Vehicle Transition, , (October), 2019. 

Spencer, T. and Awasthy, A.: Analysing and Projecting Indian Electricity Demand to 2030, New Delhi. 

[online] Available from: https://www.teriin.org/sites/default/files/2019-02/Analysing and Projecting 

Indian Electricity Demand to 2030.pdf, 2019. 

Spencer, T., Rodrigues, N., Pachouri, R., Thakre, S. and Renjith, G.: Renewable Power Pathways: 

Modelling the Integration of Wind and Solar in India by 2030, New Delhi., 2020. 

Srinivasan, S., Roshna, N., Guttikunda, S., Kanudia, A., Saif, S. and Asundi, J.: Benefit Cost Analysis of 

Emissions Standards for Coal-Based Thermal Power Plants in India, Bangalore. [online] Available 

from: (CSTEP-Report-2018-06), 2018. 

Sugathan, A., Bhangale, R., Kansal, V. and Hulke, U.: How can Indian power plants cost-effectively meet 

the new sulfur emission standards? Policy evaluation using marginal abatement cost-curves, 

Energy Policy, 121(June), 124–137, doi:10.1016/j.enpol.2018.06.008, 2018. 

Tanzer, R., Malings, C., Hauryliuk, A., Subramanian, R. and Presto, A. A.: Demonstration of a Low-Cost 

Multi-Pollutant Network to Quantify Intra-Urban Spatial Variations in Air Pollutant Source Impacts 

and to Evaluate Environmental Justice, Int. J. Environ. Res. Public Health, 16(14), 2523, 

doi:10.3390/ijerph16142523, 2019. 

Tessum, C. W., Hill, J. D. and Marshall, J. D.: InMAP: a new model for air pollution interventions, Geosci. 

Model Dev. Discuss., 8(10), 9281–9321, doi:10.5194/gmdd-8-9281-2015, 2015. 

Tessum, C. W., Hill, J. D. and Marshall, J. D.: InMAP: A model for air pollution interventions, edited by J. 

A. Añel, PLoS One, 12(4), e0176131, doi:10.1371/journal.pone.0176131, 2017. 

Thakrar, S. K., Tessum, C. W., Apte, J. S., Balasubramanian, S., Millet, D. B., Pandis, S. N., Marshall, J. 

D. and Hill, J. D.: Global, high-resolution, reduced-complexity air quality modeling using InMAP 

(Intervention Model for Air Pollution), ChemRxiv [online] Available from: 

https://doi.org/10.26434/chemrxiv.14330375.v1, 2021. 

Thind, M. P. S., Wilson, E. J., Azevedo, I. L. and Marshall, J. D.: Marginal Emissions Factors for 

Electricity Generation in the Midcontinent ISO, Environ. Sci. Technol., 51(24), 14445–14452, 

doi:10.1021/acs.est.7b03047, 2017. 

Thind, M. P. S., Tessum, C. W., Azevedo, I. L. and Marshall, J. D.: Fine Particulate Air Pollution from 

Electricity Generation in the US: Health Impacts by Race, Income, and Geography, Environ. Sci. 

Technol., 53(23), 14010–14019, doi:10.1021/acs.est.9b02527, 2019. 

Tong, D., Zhang, Q., Davis, S. J., Liu, F., Zheng, B., Geng, G., Xue, T., Li, M., Hong, C., Lu, Z., Streets, 

D. G., Guan, D. and He, K.: Targeted emission reductions from global super-polluting power plant 

units, Nat. Sustain., 1(1), 59–68, doi:10.1038/s41893-017-0003-y, 2018. 

Tongia, R. and Gross, S.: Coal in India: Adjusting to transition, , (March) [online] Available from: 

https://www.brookings.edu/wp-

content/uploads/2019/03/Tongia_and_Gross_2019_Coal_In_India_Adjusting_To_Transition.pdf, 



108 

2019. 

Tzivion, S., Feingold, G. and Levin, Z.: An Efficient Numerical Solution to the Stochastic Collection 

Equation, J. Atmos. Sci., 44(21), 3139–3149, doi:10.1175/1520-

0469(1987)044<3139:AENSTT>2.0.CO;2, 1987. 

Tzivion, S., Feingold, G. and Levin, Z.: The Evolution of Raindrop Spectra. Part II: Collisional 

Collection/Breakup and Evaporation in a Rainshaft, J. Atmos. Sci., 46(21), 3312–3328, 

doi:10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2, 1989. 

U.S. Census Bureau: TIGER / Line Shapefiles Technical Documentation. [online] Available from: 

https://www.census.gov/geo/maps-data/data/pdfs/tiger/tgrshp2012/TGRSHP2012_TechDoc.pdf, 

2017. 

U.S. Energy Information Administration: How much carbon dioxide is produced when different fuels are 

burned?, [online] Available from: https://www.eia.gov/tools/faqs/faq.php?id=73&t=11, 2020. 

U.S. Environmental Protection Agency: Technical Support Document (TSD) Preparation of Emissions 

Inventories for the Version 6.3 , 2011 Emissions Modeling Platform. [online] Available from: 

https://www.epa.gov/sites/production/files/2016-

09/documents/2011v6_3_2017_emismod_tsd_aug2016_final.pdf, 2016. 

U.S. EPA: The Emissions & Generation Resource Integrated Database (eGRID) Technical Support 

Document, US Environ. Prot. Agency, 2018. 

United Nations Framework Convention on Climate Change: Methodological Tool: Tool to calculate the 

emission factor for an electricity system., 2015. 

Venecek, M. A., Yu, X. and Kleeman, M. J.: Predicted ultrafine particulate matter source contribution 

across the continental United States during summertime air pollution events, Atmos. Chem. 

Phys., 19(14), 9399–9412, doi:10.5194/acp-19-9399-2019, 2019. 

Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen, A., Chaliyakunnel, S., 

Frostad, J., Klimont, Z., Martin, R. V., Millet, D. B., Philip, S., Walker, K. and Wang, S.: Source 

influence on emission pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. 

Chem. Phys., 18(11), 8017–8039, doi:10.5194/acp-18-8017-2018, 2018. 

Wang, J., Xing, J., Mathur, R., Pleim, J. E., Wang, S., Hogrefe, C., Gan, C.-M., Wong, D. C. and Hao, J.: 

Historical Trends in PM 2.5 -Related Premature Mortality during 1990–2010 across the Northern 

Hemisphere, Environ. Health Perspect., 125(3), 400–408, doi:10.1289/EHP298, 2017. 

Weichenthal, S., Kulka, R., Dubeau, A., Martin, C., Wang, D. and Dales, R.: Traffic-related air pollution 

and acute changes in heart rate variability and respiratory function in urban cyclists, Environ. 

Health Perspect., 119(10), 1373–1378, doi:10.1289/ehp.1003321, 2011. 

Weichenthal, S., Bai, L., Hatzopoulou, M., Van Ryswyk, K., Kwong, J. C., Jerrett, M., van Donkelaar, A., 

Martin, R. V., Burnett, R. T., Lu, H. and Chen, H.: Long-term exposure to ambient ultrafine 

particles and respiratory disease incidence in in Toronto, Canada: a cohort study, Environ. Heal., 

16(1), 64, doi:10.1186/s12940-017-0276-7, 2017. 



109 

Westervelt, D. M., Pierce, J. R., Riipinen, I., Trivitayanurak, W., Hamed, A., Kulmala, M., Laaksonen, A., 

Decesari, S. and Adams, P. J.: Formation and growth of nucleated particles into cloud 

condensation nuclei: Model-measurement comparison, Atmos. Chem. Phys., 13(15), 7645–7663, 

doi:10.5194/acp-13-7645-2013, 2013. 

Westervelt, D. M., Pierce, J. R. and Adams, P. J.: Analysis of feedbacks between nucleation rate, survival 

probability and cloud condensation nuclei formation, Atmos. Chem. Phys., 14(11), 5577–5597, 

doi:10.5194/acp-14-5577-2014, 2014. 

World Bank: GDP, PPP (current international $), [online] Available from: 

https://data.worldbank.org/indicator/ny.gdp.mktp.pp.cd, 2018a. 

World Bank: GDP per capita, PPP (current international $), [online] Available from: 

https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD, 2018b. 

World Resources Institute: CAIT Climate Data Explorer, [online] Available from: http://cait.wri.org/, 2019. 

Yu, X., Venecek, M., Kumar, A., Hu, J., Tanrikulu, S., Soon, S. T., Tran, C., Fairley, D. and Kleeman, M. 

J.: Regional sources of airborne ultrafine particle number and mass concentrations in California, 

Atmos. Chem. Phys., 19(23), 14677–14702, doi:10.5194/acp-19-14677-2019, 2019. 

Zhang, Y., West, J. J., Mathur, R., Xing, J., Hogrefe, C., Roselle, S. J., Bash, J. O., Pleim, J. E., Gan, C.-

M. and Wong, D. C.: Long-term trends in the ambient PM2.5- and O3-related mortality burdens in 

the United States under emission reductions from 1990 to 2010, Atmos. Chem. Phys., 18(20), 

15003–15016, doi:10.5194/acp-18-15003-2018, 2018. 

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L. 

and Subramanian, R.: A machine learning calibration model using random forests to improve 

sensor performance for lower-cost air quality monitoring, , 291–313, 2018. 

Zuurbier, M., Hoek, G., Oldenwening, M., Meliefste, K., Krop, E., van den Hazel, P. and Brunekreef, B.: 

In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy 

adults, Environ. Health Perspect., 119(10), 1384–1389, doi:10.1289/ehp.1003151, 2011.  



110 

8 Appendix A 

Sector Size Distribution Reference Number Emissions 
Zeroed Out 

Mass Emissions 
Preserved 

Dust 100% dust  Asmi et al. (2011) - - 
Agricultural Fire 100% biomass  Hennigan et al. 

(2012) 
- - 

Marine Vessels 100% diesel Ban-Weiss et al. 
(2010) 

- - 

Cooking 100% meat cooking Kaltsonoudis et al. 
(2017) 

- - 

Non-Point 95% biomass + 2% 
natural gas 

combustion + 1 % 
diesel + 2% coal 

Hennigan et al. 
(2012), Dennekamp 
et al. (2001), Ban-

Weiss et al. (2010), 
Elleman and Covert 

(2010) 

90% 98% 

Off-Road Mobile 55% diesel + 45% 
gasoline 

Ban-Weiss et al. 
(2010) 

92% 86% 

Oil & Gas 100% diesel Ban-Weiss et al. 
(2010) 

- - 

On-Road Traffic 52% diesel + 48% 
gasoline 

Ban-Weiss et al. 
(2010) 

93% 86% 

Oil & Gas Point 100% diesel Ban-Weiss et al. 
(2010) 

- - 

Power Plants 99.7% coal + 0.3% 
natural gas  

Elleman and Covert 
(2010), Dennekamp 

et al. (2001) 

91% 92% 

Industrial Point 100% diesel Ban-Weiss et al. 
(2010) 

- - 

Rail 100% diesel Ban-Weiss et al. 
(2010) 

- - 

Residential Wood 
Combustion 

100% biomass Hennigan et al. 
(2012) 

92% 59% 

Table 2  
Size distributions applied to convert mass emissions to number emissions along with sensitivity zero out 
values. 
 

 

 

 

 

 

 

 

 



111 

 
Figure 29  
36-km resolution modeling domain over the continental United States with the location of Pittsburgh. 

 
Figure 30  
12-km modeling domain over southwestern Pennsylvania with location of Pittsburgh noted in center. 
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Figure 31  
4-km modeling domain over southwestern Pennsylvania with location of Pittsburgh noted in center. 
 

 
Figure 32  
Change in on-road traffic number emissions for the EPA-default and traffic model on-road traffic emission 
spatial surrogate relative to the traffic model. 
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Figure 33  
Diurnal averages of July 2017 N10 model predictions (solid line) and N10 observations at Carnegie Mellon 
University (red points). 
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Figure 34  
Diurnal averages of February 2017 N5 model predictions (solid line) and all-winter observed N5 
concentrations (red points) at 13 urban background or local road sites using the traffic model on-road 
traffic emissions spatial surrogate. Sites are the same sites as Figure 5. 
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Figure 35  
Diurnal averages of February 2017 N5 model predictions (solid line) and all-winter observed N5 
concentrations (red points) at 14 influenced by local sources or topography using the mixed on-road 
traffic emissions spatial surrogate. Sites are the same sites as Figure 6. 
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Figure 36  
Diurnal averages of February 2017 N5 model predictions (solid line) and all-winter observed N5 
concentrations (red points) at 13 urban background or local road sites using the EPA-default on-road 
traffic emissions spatial surrogate. Sites are the same sites as Figure 5. 
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Figure 37  
Diurnal averages of February 2017 N5 model predictions (solid line) and all-winter observed N5 
concentrations (red points) at 14 influenced by local sources or topography using the EPA-default on-road 
traffic emissions spatial surrogate. Sites are the same sites as Figure 6. 
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Figure 38  
Monthly averaged predicted February 2017 N5 concentrations versus seasonally averaged observed 
Winter 2017, 2018 N5 concentrations at coarser model resolutions show these resolutions are not capable 
of capturing the spatial variability in observations as well as the 1-km resolution. Solid lines represent 1:1 
and dashed lines are ±50%. 

 
Figure 39  
Predicted time-averaged N5 concentration in February 2017 for different modeling resolutions. 
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Figure 40  
Number size distribution at the CMU site for February 2017. 
 
 

 
Figure 41  
Mass size distribution at the CMU site for February 2017 assuming particle density 1.8 g cm-3 
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Figure 42  
Number size distribution at the CMU site for July 2017. 
 
 

 
Figure 43  
Mass size distribution at the CMU site for July 2017 assuming particle density 1.8 g cm-3 
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Figure 44  
Daily averaged predicted February 2017 PM2.5 concentrations versus observed PM2.5 concentrations from 
February 2017. Solid lines represent 1:1, dashed lines are ±50%, and red line is the best fit line for all 
points. 
 
 

 
Figure 45  
Daily averaged predicted July 2017 PM2.5 concentrations versus observed PM2.5 concentrations from 
February 2017. Solid lines represent 1:1, dashed lines are ±50%, and red line is the best fit line for all 
points.  
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9 Appendix B 

Previous efforts to model Indian power sector operations 
Previous efforts to model the Indian power sector have largely focused on the 

cost savings from economic dispatch of plants in the future. To analyze the impacts of 

impending market reforms, the Central Electricity Regulatory Commission (CERC) has 

simulated the scheduling and dispatch of centrally owned power stations based on 

variable cost (Central Electricity Regulatory Commission, 2018c, 2018b). Further 

modeling efforts from the Power System Operation Corporation of India (POSOCO), the 

nationwide power system operator, where power from centrally owned power stations 

only (~20% of installed capacity) would be pooled and dispatched according to least 

variable cost yield the possibility of savings of ₹2.4 crore per day (~$350,000 per day or 

~1.3% in production costs) compared to the current practice of siloed procurement and 

no uniform market clearing price (Central Electricity Regulatory Commission, 2018a). 

Further analysis from POSOCO on economic dispatch of interstate stations yield similar 

estimates of economic dispatch of interstate stations: reduction in ~1.5% in production 

costs (Power System Operation Corporation Limited, 2020).  Recent modeling by 

Palchak et al. (Palchak et al., 2017a) analyzing the future integration of 175 GW of 

renewable capacity into the Indian grid, in line with the Government of India’s policy 

goals, show the possibility of reduction in annual costs of ₹6,300 crore ($980 million) 

from greater pooling and economic dispatch of both state-owned and centrally owned 

power stations. This along with the explicit goals of greater renewable generation 

suggests the possibility of GHG and air pollutant emissions reductions from operational 

changes to the Indian power sector; however Palchak et al. (Palchak et al., 2017a) do 

not consider emissions impacts of the power systems they simulate. Likewise, in a 

companion study to Palchak et al. (Palchak et al., 2017a), Palchak et al. (Palchak et al., 

2017b) present sub-national variability with results for several Indian states, but no 

emissions impacts for each state. Similar efforts from Phadke et al. (Phadke et al., 

2016) present regional level capacity expansion and dispatch modeling for India to 

assess integrating greater amounts of renewable energy into the Indian grid. These 

efforts conclude that 175 GW renewables will lead to marginal increases (~4%) in 

wholesale electricity price, but Phadke et al. (Phadke et al., 2016) do not explicitly 
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consider the environmental benefits of greater renewables.  

Indian power stations impact on ambient air quality and premature mortality  
Atmospheric modeling studies have quantified the specific health impacts of the 

Indian coal power stations. While quantifications are approximately the same order of 

magnitude, they differ due to modeling assumptions and data inputs. Guttikunda and 

Jawahar (Guttikunda and Jawahar, 2014) model the emissions of coal power stations 

using an atmospheric chemical transport model and PM2.5 exposure relationships to find 

between 80,000 to 115,000 premature deaths attributed coal power stations in 2011-

2012. Despite only considering emissions from coal power stations and no other 

sources such as vehicles in their model, these estimates compare similarly to those in 

analyses from the Global Burden of Disease, which found approximately 82,000 

premature deaths from coal power stations (GBD MAPS Working Group, 2018). Recent 

estimates from Gao et al. (Gao et al., 2018) estimate approximately 300,000 premature 

deaths from power generation in India. Subsequent modeling from Guttikunda and 

Jawahar (Guttikunda and Jawahar, 2018) specifically look at the application of flue gas 

desulfurization in Indian coal power stations to meet Indian SO2 emissions regulations. 

They show reductions in attributable premature deaths between 39,000 and 63,000 in 

2017, with higher reductions as coal power generation expands to 2030.  

Wholesale Indian electricity market structure 
Over 90% of wholesale power transactions in India happen through relatively 

inflexible long-term power purchase agreements. Generally, distribution companies 

schedule and dispatch power from generators according to the companies’ respective 

portfolios of long-term (typically 25-year) contracts. Not all distribution companies have 

contracts with all generators (especially those owned by state governments) and when 

reporting their schedules to power system operators, distribution companies need not 

report the variable cost of the power they plan to purchase. This market structure with 

no market clearing prices of power, where wholesale power buyers and sellers operate 

in silos, leaves the possibility of distribution companies procuring higher priced power 

when available cheaper options exist (Central Electricity Regulatory Commission, 

2018c, 2018b, 2018a). The central government, state governments, or private 

producers own generators; however, generally generators owned by the central 
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government or private producers send power across state lines, with each state having 

an allocation of total capacity from each of these respective interstate generating 

stations (ISGS) (Safiullah et al., 2017). 

Uncertainty in simulated generation, estimated SO2 emissions, and estimated 
state annual CO2 emission factors 

With the incorporated capacity allocations (Figure 48), we calculate the 

percentage annual demand met for each state from model predictions (Table 3). We do 

not explicitly model interstate electricity transfers, but model estimates implicitly 

incorporate interstate generator capacity allocations to each state. Consequently, for 

certain hours for certain states, demand is not met with simulated generation. To ensure 

consistency, we calculate these generation shortfalls for each hour and each state and 

find that unused capacity in the model will meet these shortfalls for most hours 

simulated if we explicitly assume interstate electricity transfers occur. For 131 hours 

(1.1%) of 8,640 simulated (360 days), unused capacity would still not meet generation 

shortfall even after assuming interstate electricity transfers. Of these 131 hours, the 

maximum hourly generation shortfall was 4.1 GWh, which capacity not incorporated into 

the model (Figure 48) could meet.  

Unmet state demand from simulated generation would also affect estimated 

plant-level SO2 emissions. To assess the uncertainty associated with estimated SO2 

emissions, we first find the nationwide, annual total unmet demand for each scenario, 

approximately 3% of nationwide, annual total demand in the state-wise dispatch 

scenarios and 0.7% in the region-wise dispatch scenarios. Then we reorder model-

estimated annual plant load factor (PLF), i.e. capacity factor, of each plant in order of 

decreasing PLF to find which plants are more likely to be dispatched to meet this annual 

unmet demand. Plants would meet this unmet demand through estimated remaining 

generation capacity. This bounding exercise resulted in approximately 3% increase in 

nationwide, annual SO2 emissions in the state-wise dispatch scenarios and 0.7% in the 

region-wise dispatch scenario, corresponding to the percentage shortfalls in annual 

demand. The relative spatial patterns of plant emissions remain similar with an 

emissions-weighted standard distance decreasing to 763 km from 768 km (see 

Appendix B on quantifying spatial distribution of emissions estimates); however, 42 
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plants see annual SO2 emission increases of up to 20%.  

While the model is self-consistent with interstate electricity transfers, the 

estimated average annual emission factors for each state (Figure 12; Table S1) would 

vary according to how much of annual demand simulated generation meets. To assess 

this variability, we present minimum-maximum ranges of average annual emission 

factors for each state in Figure 56. For these ranges, we assume either zero-carbon 

generation sources or average coal generation (~1,100 kg CO2/MWh) meets the 

generation shortfall for each state to calculate the minimum and maximum average 

annual emission factors, respectively. Demand met for each state varies between 78% 

(Jharkhand) to 98-100% for multiple states (e.g. Maharashtra, Karnataka, etc.). This 

uncertainty estimation shows the average emission factors vary the most for eight 

states: Himachal Pradesh, Chandigarh, Jammu and Kashmir, Assam, Odisha, Haryana, 

Bihar, and Jharkhand, which collectively form 14% of total annual demand. This 

uncertainty estimation results in a nationwide average emission factor, ranging from 693 

kg/MWh to 721 kg/MWh compared to the model estimate of 711 kg/MWh. 

Coal ramping and minimum capacity constraints 
Typical full-complexity dispatch models incorporate constraints on minimum 

capacity and ramping of coal generators. Coal generators do not operate below a 

certain percentage of their nameplate capacity, a technical minimum officially regulated 

at 55% in India (Central Electricity Authority, 2019c). This requires a constraint which 

we do not incorporate in our reduced-complexity model. Likewise, coal generators have 

a limit on hourly rate of change in electricity they can generate, typically 1% nameplate 

capacity per minute (Central Electricity Authority, 2019c), which we also do not explicitly 

incorporate in our model. We estimate how frequently the model violates these 

constraints in simulations. Sixty-two of 556 coal units, 22 GW capacity (15% allocated 

capacity) violate a 55% technical minimum constraint more than 5% of the time, with the 

Chhabra-4 unit violating the constraint the most frequently at 24% of the time (Figure 

59a). Likewise, 11 of 556 coal units, 3.4 GW (2% allocated capacity), violate a ±1% 

ramp rate constraint more than 5% of the time with Chhabra-3 violating the constraint 

most frequently at 13% of the time (Figure 59b). In addition to leading to small shifts 

between plants, any additional ramping beyond today’s existing cycling is also likely to 
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result in higher emissions due to heat rate penalties, as well as impacts on NOx 

emissions (sulfur emissions being largely dependent on fuel throughput). 

 

Quantifying spatial distribution of emissions estimates 
To quantify the spatial distribution of SO2 emissions from plants in each scenario we 

use the emissions-weighted standard distance, SDw (Mitchell, 2005). This metric is 

analogous to emissions-weighted standard deviation.  

(1) 𝑆𝑆𝐷𝐷𝑝𝑝 = �∑ 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖−𝑋𝑋�𝑤𝑤)2𝑛𝑛
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖

+ ∑ 𝑝𝑝𝑖𝑖(𝑦𝑦𝑖𝑖−𝑌𝑌�𝑤𝑤)2𝑛𝑛
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖

 

Here, n is the number of plants, ei is the annual emissions from each plant estimated by 

each scenario, and (xi, yi) is the location of the plant in space. Xw and Yw are the 

emissions-weighted center of plants: 

(2) (𝑋𝑋�𝑝𝑝,𝑌𝑌�𝑝𝑝 ) = �∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖

, ∑ 𝑝𝑝𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖

� 

A lower SDw indicates decreased spatial variability either through a lower scatter of 

points, emissions hotspots, or both.  
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State or Union 
Territory 

Abbreviation 
Average CO2 
Emission Factor 
(kg/MWh) 

Annual 
Demand 
(TWh) 

Percentage 
Annual 
Demand 

Percentage 
Annual Demand 
Met 

Himachal Pradesh HP 87 9.2 0.8% 79% 

Meghalaya ML 164 1.9 0.2% 99% 

Manipur MN 209 0.8 0.1% 100% 

Mizoram MZ 211 0.5 0.04% 100% 

Chandigarh CH 294 1.5 0.1% 89% 

Tripura TR 297 1.4 0.1% 100% 

Jammu & Kashmir JK 316 14.8 1.3% 87% 

Sikkim SK 320 0.5 0.04% 100% 

Nagaland NL 352 0.8 0.1% 99% 

Arunachal Pradesh AR 357 0.8 0.1% 98% 

Uttarakhand UK 372 13.3 1.1% 99% 

Assam AS 521 9.3 0.8% 91% 

Karnataka* KA 530 66.7 5.6% 98% 

Kerala KL 563 23.8 2.0% 99% 

Punjab PB 621 53.8 4.5% 97% 

Tamil Nadu* TN 667 106.3 9.0% 98% 

Andhra Pradesh* AP 675 59.6 5.0% 100% 

Rajasthan* RJ 710 73.5 6.2% 100% 

Odisha OR 714 29.1 2.5% 87% 

Puducherry PY 716 2.6 0.2% 100% 

Gujarat* GJ 719 113.9 9.6% 99% 

Haryana HR 746 50.7 4.3% 92% 

Telangana* TG 760 61.4 5.2% 99% 

Uttar Pradesh UP 767 116.5 9.8% 99% 

Madhya Pradesh* MP 770 69.5 5.9% 99% 

Maharashtra* MH 792 153.8 13.0% 100% 

Delhi DL 797 31.5 2.7% 98% 

West Bengal WB 828 49.8 4.2% 97% 

Bihar BR 872 28.0 2.4% 80% 

Goa GA 873 3.5 0.3% 99% 

Chhattisgarh CG 878 28.3 2.4% 97% 

Jharkhand JH 879 8.3 0.7% 78% 

Table 3 
State abbreviations, annual CO2 emission factors, annual demand, percentage annual demand and 
percentage annual demand met with simulated generation. Asterisks denote high renewable state 
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Installation Period Unit Capacity (MW) SO2 Standard (mg/Nm3) 

Before 2003 
< 500 600 

≥ 500 200 

2003-2016 
< 500 600 

≥ 500 200 

2017-Present All Units 100 

Table 4 
Upcoming SO2 emission standards for Indian coal power stations from Srinivasan et al. (Srinivasan et al., 
2018) at normal temperature and pressure: 0º C and 1 atm pressure. 
 

 
Figure 46 
Coal unit-wise heat rate-capacity relationship using data from Central Electricity Authority (Central 
Electricity Authority, 2015) and Oberschelp et al. (Oberschelp et al., 2019) (A). Gas unit-wise heat rate-
capacity relationship using gas consumption data from Ministry of Power (Ministry of Power, 2020b) (B). 
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Figure 47 
Unadjusted comparison of calculated variable cost of power using data on coal dispatched to individual 
plants (Coal India, 2019) and transport costs (Kamboj and Tongia, 2018) to reported variable cost from 
Government of India MERIT database (Ministry of Power, 2020a) with lines of best fit (dashed) and 1:1 
line (solid). Each point represents annual average of grade-weighted monthly prices at one coal plant. 
First, we compare plants in the coal purchase data to those in the MERIT database (A). Then for any 
missing plants not in the coal purchase data, we fill in with state-sector-wise medians of calculated coal 
prices plus transport costs (B). Then for any remaining plants without calculated variable cost, we fill in 
with state-wise medians of calculated coal prices plus transport costs (C). We calculate variable cost of 
power to verify reported MERIT database prices and adjust calculated variable cost of power by 
₹0.66/kWh to close gap between lines of best fit and 1:1 line.  
 

 
Figure 48 
Reported, monitored capacity from Government of India generation reports and capacity incorporated into 
model from dashboard of long-term power contracts for each state. Reported, monitored capacity is less 
than total installed capacity (Ministry of Power, 2020a). 
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Figure 49  
Diurnal national renewable generation profiles for each month from Brookings India Electricity and 
Carbon Tracker (Centre for Social and Economic Progress, 2019) used to temporally disaggregate 
reported monthly renewable generation for each state and calculate net demand. 
 

 
Figure 50 
Diurnal average national hydro generation (dotted line) and average net demand (solid line) from 
Brookings India Electricity and Carbon Tracker (Centre for Social and Economic Progress, 2019) used to 
constrain hydro capacity. 
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Figure 51 
Monthly simulated and reported generations for the state scenario (base case) separated by Indian power 
region. 
 

 
Figure 52 
State-level reported and base case simulated generation for intrastate capacity for the Northern region.  
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Figure 53 
State-level reported and base case simulated generation for intrastate capacity for the Southern region.  
 
 

 
Figure 54 
State-level reported and base case simulated generation for intrastate capacity for the Eastern region.  
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Figure 55 
State-level reported and base case simulated generation for intrastate capacity for the Western region.  
 

 
Figure 56 
State-level reported and base case simulated generation for intrastate capacity for the Northeastern 
region.  
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Figure 57 
Estimated annual CO2 emissions from reported and simulated generation for each scenario. 
 

 
Figure 58 
Uncertainty ranges for state average CO2 emission factors assuming zero-carbon generation sources 
(minimum) or average Indian coal generation (maximum) meet demand not met by simulated generation. 
Percentage of total annual demand in the bottom row and dot sizes are proportional to percentage annual 
demand. Dashed lines show nationwide average. 
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Figure 59 
Frequency of plant load factor of Chhabra-4 (250 MW), unit with highest fraction of time under technical 
minimum capacity, 24% (A) and frequency of ramping rate of Chhabra-3 (250 MW), unit with highest 
fraction of time with ramp rate exceeding ±1% /min, 13% (B).  
 

 
Figure 60 
Change in SO2 emissions induced from a $10/ton CO2 tax with emissions-weighted standard distance 
760 km (A). Change in SO2 emissions induced from a $35/ton CO2 tax with emissions-weighted standard 
distance 748 km (B). Change in SO2 emissions induced from a $50/ton CO2 tax with emissions-weighted 
standard distance 746 km (C). Change in SO2 emissions induced from a $35/ton CO2 tax and uniform 
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sulfur control with emissions-weighted standard distance 728 km (D)  
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10 Appendix C 

 
Figure 61 
InMAP-estimated PM2.5 concentrations attributable to emissions from power generation. 
 

 
Figure 62 
Estimated PM2.5 mortality attributable to electricity generation. 
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Figure 63 
Total estimate mortality attributable to electricity generation broken up by disease endpoint. 
 

 
Figure 64 
State-wise mortality burden from all electricity generation. Percentages show fraction of total national 
deaths attributable to electricity generation. 
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State or Union Territory Electricity PM2.5 deaths Low Estimate High Estimate 

Tamil Nadu 18088 14626 20933 

Maharashtra 7999 6421 9370 

West Bengal 6374 5332 7283 

Uttar Pradesh 6197 5209 7096 

Andhra Pradesh 5144 4108 6038 

Gujarat 3814 3111 4427 

Bihar 3733 3108 4282 

Madhya Pradesh 3613 2941 4218 

Karnataka 3166 2467 3769 

Rajasthan 2324 1901 2717 

Chhattisgarh 2190 1779 2554 

Telangana 1742 1396 2040 

Jharkhand 1568 1290 1815 

Odisha 1420 1138 1670 

Haryana 656 555 744 

Other Union Territories 487 393 566 

Assam 399 317 472 

Uttarakhand 396 320 464 

Punjab 364 305 412 

Kerala 263 207 312 

Delhi 256 216 290 

Jammu & Kashmir and Ladakh 125 97 149 

Himachal Pradesh 71 56 84 

Tripura 68 55 78 

Manipur 35 27 43 

Meghalaya 30 24 36 

Nagaland 17 13 21 

Goa 15 11 18 

Arunachal Pradesh 12 9 15 

Sikkim 11 8 14 

Mizoram 9 7 11 

Table 5 
Best, high and low estimates of nationwide, electricity-associated PM2.5 death burdens for each Indian 
state  
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2017-2018 Reduced-form dispatch model 
The 2017-2018 reduced-form model (Sengupta et al., 2021) is based off similar 

methods developed for U.S. power generation (Deetjen and Azevedo, 2019). This 

model creates a supply curve of available generating capacity by first ordering 

generating units by variable cost of power (fuel and fuel transport costs (Coal India, 

2018, 2019; Kamboj and Tongia, 2018; National Thermal Power Corporation, 2017) and 

then summing cumulatively to find generating capacity available at or below variable 

cost of power for each unit. It then takes net demand for the hour (electricity demand 

minus renewable generation) and chooses generators whose cumulative sum based on 

the supply curve meets net demand. This is equivalent to minimizing the hourly total 

system cost of electricity to meet net demand. This method assumes no other 

constraints or costs including those from transmission, generator ramp limits, or startup 

costs.  
The reduced-form model simulates each hour between September 2017 to 

August 2018 using all dispatchable generators (coal, gas, nuclear and hydro) based on 

inventories of power plants in India from daily generation reports with outages (Ministry 

of Power, 2020b). Table S1 shows the fuel-wise capacity incorporated in the reduced-

form model. Sengupta et al (2021) structure the model as individual models for each 

Indian state to mirror the decentralized manner of Indian power dispatch. Each state 

self-schedules generators to meet demand based on a portfolio of long-term power 

purchase agreements (PPA) entered by the state. The reduced-form model 

incorporates this reported capacity tied into PPAs (Central Electricity Authority, 2020b; 

Ministry of Power, 2020a), which govern 90%+ generation in India (Central Electricity 

Regulatory Commission, 2018a, 2018b, 2018c). Note that 2017-2018 reduced-form 

model does not include all installed capacity but only those modeled from reported 

capacity in long-term contracts (Ministry of Power, 2020a). Likewise, it allocates 

intrastate capacity (owned by state governments) 100% to each respective state, and 

interstate capacity (owned by central government and private sector) to beneficiary 

states by reported fractional capacity allocations < 100% (Central Electricity Authority, 

2020b). To reflect season constraints on hydro, the model constrains hydro capacity 
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available in each hour using reported hydro generation by plant (Ministry of Power, 

2020b) and diurnal hydro generation profiles for each month (Centre for Social and 

Economic Progress, 2019). 
Inputs for demand come from reported daily demand (Power System Operation 

Corporation Limited, 2018) disaggregated by diurnal monthly demand profiles (Energy 

Analytics Lab, 2019). We pair these demand values with monthly reported renewable 

generation for each state  (Central Electricity Authority, 2018c) disaggregated by diurnal 

renewable generation profiles for each month (Centre for Social and Economic 

Progress, 2019) to estimate net demand.  
To estimate emissions associated with simulated generation, the reduced-form 

models use CO2, SO2, NOX and PM2.5 emission factors for each generating unit 

estimated by heat rate (Central Electricity Authority, 2015; Oberschelp et al., 2019) and 

weighted-average Indian coal composition (Ministry of Coal, 2018; Srinivasan et al., 

2018). We assume no sulfur or NOX control at coal power stations, but 90% control of 

PM2.5 emissions. For gas plants, we assume zero sulfur and PM2.5 emissions, and a 

constant NOX emission factor of 2.95 kg/MWh from U.S. EPA (2018). 
The model presented by Sengupta et al (2021) only simulates each individual 

state, implicitly modeling interstate electricity transfers through fractional allocations of 

interstate generation capacity. This method results in approximately 3% annual national 

demand (varying by hour and state) not met due to idle capacity. Idle capacity is 

contracted capacity in state not being available to an outside state should the model 

determine it is not needed to meet demand within the state. For example, if 60% of a 

500 MW unit is only needed to satisfy demand in a contracted state, the remaining 40% 

(200 MW) would not generate. This 40% would likely participate in bilateral exchanges 

with other states or short term power market (Central Electricity Regulatory 

Commission, 2018c, 2018b). To simulate this interstate exchange of power and to meet 

the 3% shortfall in annual demand, we rerun the reduced-form model each hour at 

regional and national levels by ordering leftover capacity by variable cost and 

dispatching accordingly to meet unmet net demand. This procedure results in 4 of 8,592 

simulated (seven days throughout the year do not have reported demand data) with 

unmet net demand anywhere in the country. The highest deficit in generation among 
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these hours was 1.0 GWh, easily met by capacity not incorporated into the model.  
2030-2031 Full-form dispatch model 

The 2030-2031 full-form model (Spencer et al., 2020) uses open-source Python 

for Power System Analysis (PyPSA) (Brown et al., 2018) customized for India, PyPSA-

India. Spencer et al (2020) configure PyPSA-India to be a unit commitment and 

dispatch model which finds the combination of generators that minimizes total system 

costs to meet demand in an hour. There are additional constraints and costs on 

generator minima, ramp rates, startup and transmission included in this optimization. 

Additionally, PyPSA-India accounts for generator outages probabilistically by defining 

the likelihood a generator is out in each hour, based on historical data and interviews 

with Indian power sector experts.  
The full-form model simulates April 2030 to March 2031 generator capacity mixes 

exogenously defined by the National Electricity Plan developed by the Government of 

India (Central Electricity Authority, 2018b). These generators have marginal costs from 

similar reported and estimated sources as the reduced-form model (Ministry of Power, 

2020a) The capacity mixes shown in Table S1 shows differences in the full-form model 

from the reduced-form model in thermal capacity (50%) as well as differences in hydro 

(100%), renewables (380%) in line with Government of India targets to expand non-

fossil capacity by 2030 (Government of India, 2015). The model assumes integrated 

markets, that is capacity anywhere in the country can meet demand anywhere 

assuming sufficient transmission. This contrasts with the fragmented, decentralized way 

the Indian power system currently operates, and incorporated into the reduced-form 

model. Like the reduced-form model, the model enforces daily constraints on hydro 

generation to reflect seasonal water availability. To produce renewable generation   
The full-form model estimates future 2030-2031 electricity demand by assuming 

the same rates of demand growth in each state from 2008 to 2017, projecting out to 

2030. It uses renewable capacity sited by estimates of resource potential, and pairs 

these with renewable generation profiles estimated by National Renewable Energy 

Laboratory’s System Advisory Model (Blair et al., 2018). 
To estimate emissions associated with simulate generation from the full-form 

model, we take a similar as the reduced-form model. Where reported heat rates were 
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not available for new units, we estimate their heat rates based off a log fit of heat rates 

versus capacity from existing plants in our data set. 
Comparisons of 2017-2018 model simulation estimates to reported generation 
data 

Figure S1 shows the time series of national, annual CO2 emissions (Figure 1a), 

SO2 emissions (Figure 1b), NOX emissions (Figure 1c), PM2.5 emissions (Figure 1d), 

and annual demand (Figure 1e) as predicted by our 2017-2018 model and those 

reported by Carbon Tracker (Centre for Social and Economic Progress, 2019). Modeled 

values span September 2017 to August 2018. Observed values span November 2018 

to October 2018 due to unavailability of reported generation before this time. Publicly 

available emissions data from plants are not available in India, so we infer emission 

from reported generation by applying generation-weighted emission factors to reported 

data. Each point represents an hourly value, and the solid lines are rolling 24-hour 

averages. We plot time series and compare to reported values to evaluate the model’s 

ability to capture general temporal trends. The gray shaded region (June-October) 

spans monsoon months we assume. The remaining (January-May, November-

December) months are dry months. Overall, modeled and observed hourly CO2 

emissions correlate annually, with r = 0.61, with higher correlation during dry months, r 

= 0.73, than monsoon months, r = 0.37. Similar correlations emerge for SO2 emissions, 

annually (r = 0.64), and seasonally (dry r = 0.7, monsoon r = 0.41). Similar patterns 

emerge for NOX emissions (annual r = 0.61, dry r = 0.73 , monsoon r = 0.37) and PM2.5 

emissions (annual r = 0.58, dry r = 0.73 , monsoon r = 0.33). Observed demand and 

demand assumed by the model likewise correlate, annually (r = 0.82) and seasonally 

(dry r = 0.9, monsoon r = 0.66), despite representing separate years. In Figure S2, we 

further evaluate reduced-order dispatch model performance by comparing estimated 

fractions of annual generation located within a state (in-state) and outside a state (out-

of-state) against those reported in official statistics  (Central Electricity Authority, 

2019a). We find root mean square error (RMSE) of 0.16 and mean absolute error 

(MAE) of 0.11 for out-of-state generation fractions among all states. 
 

Fuel 2017-2018 Reduced-Form Model 2030-2031 Full-Form Model 
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(GW) (GW) 

Coal + Lignite 159 
263* 

Gas 17 

Hydro 42 84 

Renewables (solar, wind, 

biomass, waste) 
71 341 

Nuclear 6 17 

Table 6 
Capacities by fuel type in reduced-form and full-form models 
*reported as thermal: coal, gas and lignite combined, majority of which is coal 
 

 
Figure 65 
Annual comparisons of national observed and 2017-2018 modeled CO2 emissions (A), SO2 emissions 
(B), NOX emissions (C), PM2.5 emissions (D), and electricity generation (E). Observed values are from 
Brookings India Carbon Tracker (Nov 2018-Oct 2019), and modeled values are from reduced-order 
dispatch model (September 2017-August 2018). Each point is an hourly value, and solid line is a rolling 
24-hour average. Gray shaded region are monsoon months: June-October. 
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Figure 66 
In-state and out-of-state modeled and reported fractions of annual generation for each Indian state. 
Modeled fractions come from reduced-order dispatch model, and reported fractions come from Central 
Electricity Authority (2019). States are in order of largest to smallest annual demand. 

 
Figure 67 
2017-2018 regression-based, marginal fuel frequency for each Indian state during monsoon season. 
Negative percentages in each period indicate fuel source generation decreases with increases in unit 
power consumption in each state, requiring increases in generation from other fuels to meet marginal 
demand. The sum of each bar is 100% 
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Figure 68 
2017-2018 marginal SO2 emission factors for dry and monsoon seasons. Panels separate the time-of-day 
in each season. Size of dots scale to annual electricity demand in each state. Vertical lines from left to 
right indicate generation-weighted SO2 emission factors for gas and coal generators, respectively.  

 
Figure 69 
2030-2031 marginal SO2 emission factors for dry and monsoon seasons Panels separate the time-of-day 
in each season. Size of dots scale to annual electricity demand in each state. Vertical lines from left to 
right indicate generation-weighted SO2 emission factors for gas and coal generators, respectively.  
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Figure 70 
2017-2018, marginal NOX emission factors for dry and monsoon seasons. Panels separate the time-of-
day in each season. Size of dots scale to annual electricity demand in each state. Vertical lines from left 
to right indicate generation-weighted NOX emission factors for gas and coal generators, respectively. 

 
Figure 71 
2030-2031 marginal NOX emission factors for dry and monsoon seasons. Panels separate the time-of-day 
in each season. Size of dots scale to annual electricity demand in each state. Vertical lines from left to 
right indicate generation-weighted NOX emission factors for gas and coal generators, respectively.  
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Figure 72 
2017-2018 marginal PM2.5 emission factors for dry and monsoon seasons. Panels separate the time-of-
day in each season. Size of dots scale to annual electricity demand in each state. Vertical lines from left 
to right indicate generation-weighted PM2.5 emission factors for gas and coal generators, respectively.  

 
Figure 73 
2030-2031 marginal PM2.5 emission factors for dry and monsoon seasons. Panels separate the time-of-
day in each season. Size of dots scale to annual electricity demand in each state. Vertical lines from left 
to right indicate generation-weighted PM2.5 emission factors for gas and coal generators, respectively.
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Table 7 
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2017-2018 dry season regression-based, marginal CO2 emission factors with regression fit parameters for each Indian state. 

 Morning Peak Midday Afternoon Evening Peak Overnight 
State MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 

Puducherry 987 ± 7 0.99 1046 ± 10 0.98 1006 ± 9 0.98 1011 ± 10 0.98 984 ± 11 0.95 
Chhattisgarh 1049 ± 11 0.98 909 ± 12 0.96 946 ± 11 0.97 940 ± 5 0.99 936 ± 4 0.99 

Rajasthan 988 ± 12 0.97 1019 ± 45 0.71 688 ± 36 0.63 876 ± 10 0.98 850 ± 5 0.99 
Madhya Pradesh 892 ± 15 0.95 956 ± 27 0.86 1081 ± 29 0.87 841 ± 10 0.97 755 ± 8 0.95 

Bihar 929 ± 9 0.98 925 ± 10 0.98 937 ± 6 0.99 927 ± 11 0.97 918 ± 8 0.97 
West Bengal 770 ± 21 0.86 833 ± 6 0.99 863 ± 7 0.99 820 ± 13 0.95 826 ± 14 0.89 

Jharkhand 752 ± 25 0.81 865 ± 18 0.92 888 ± 13 0.96 886 ± 17 0.93 852 ± 12 0.92 
Goa 840 ± 14 0.95 855 ± 20 0.90 831 ± 11 0.96 835 ± 10 0.97 876 ± 4 0.99 

Uttar Pradesh 910 ± 11 0.97 754 ± 25 0.81 819 ± 13 0.95 759 ± 14 0.94 799 ± 8 0.96 
Telangana 977 ± 13 0.96 814 ± 50 0.56 502 ± 50 0.33 848 ± 16 0.93 801 ± 9 0.95 
Karnataka 943 ± 31 0.82 584 ± 93 0.16 497 ± 99 0.11 753 ± 27 0.79 689 ± 30 0.56 

Tamil Nadu 810 ± 29 0.79 813 ± 76 0.36 371 ± 72 0.11 521 ± 28 0.62 643 ± 13 0.85 
Delhi 769 ± 9 0.97 810 ± 8 0.98 715 ± 11 0.95 702 ± 13 0.93 769 ± 5 0.98 

Andhra Pradesh 756 ± 46 0.56 576 ± 37 0.54 870 ± 33 0.77 819 ± 15 0.93 785 ± 13 0.90 
Haryana 937 ± 25 0.87 770 ± 23 0.85 680 ± 15 0.91 575 ± 16 0.86 700 ± 12 0.89 

Maharashtra 672 ± 24 0.78 458 ± 21 0.70 594 ± 28 0.68 683 ± 23 0.81 634 ± 13 0.85 
Odisha 486 ± 26 0.63 675 ± 16 0.89 663 ± 17 0.88 665 ± 31 0.69 542 ± 25 0.52 

Nagaland 543 ± 37 0.51 659 ± 29 0.71 611 ± 32 0.64 561 ± 33 0.59 425 ± 11 0.78 
Gujarat 592 ± 20 0.80 559 ± 24 0.73 653 ± 32 0.66 597 ± 16 0.87 559 ± 14 0.78 
Punjab 432 ± 35 0.43 614 ± 23 0.78 80 ± 51 0.01 331 ± 29 0.39 352 ± 13 0.63 

Mizoram 391 ± 25 0.54 540 ± 44 0.42 788 ± 89 0.28 636 ± 80 0.23 347 ± 17 0.51 
Kerala 238 ± 89 0.03 167 ± 43 0.07 407 ± 41 0.32 457 ± 31 0.51 222 ± 19 0.24 

Arunachal Pradesh 291 ± 24 0.41 462 ± 48 0.31 444 ± 26 0.58 517 ± 38 0.47 370 ± 22 0.40 
Assam 346 ± 15 0.71 366 ± 27 0.46 567 ± 12 0.91 539 ± 20 0.77 382 ± 12 0.71 

Manipur 526 ± 16 0.85 480 ± 23 0.68 575 ± 18 0.83 452 ± 70 0.17 437 ± 10 0.82 
Sikkim 577 ± 24 0.74 486 ± 50 0.31 519 ± 56 0.29 448 ± 76 0.14 487 ± 13 0.76 

Chandigarh 244 ± 39 0.16 302 ± 52 0.14 313 ± 49 0.16 193 ± 55 0.06 126 ± 16 0.14 
Tripura 335 ± 4 0.96 328 ± 9 0.85 401 ± 9 0.91 378 ± 14 0.77 315 ± 5 0.92 

Uttarakhand 222 ± 19 0.40 230 ± 14 0.57 -257 ± 44 0.14 97 ± 46 0.02 310 ± 22 0.32 
Jammu & Kashmir -22 ± 75 0.00 217 ± 60 0.06 -626 ± 90 0.19 348 ± 69 0.11 335 ± 29 0.24 

Meghalaya 217 ± 27 0.24 211 ± 35 0.15 263 ± 42 0.16 393 ± 69 0.13 125 ± 18 0.10 
Himachal Pradesh 394 ± 34 0.39 168 ± 41 0.08 -834 ± 102 0.24 290 ± 80 0.06 197 ± 26 0.12 

 Morning Peak Midday Afternoon Evening Peak Overnight 
State MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 

Puducherry 1126 ± 11 0.99 1154 ± 11 0.99 1115 ± 10 0.99 1127 ± 11 0.99 1096 ± 19 0.92 
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Chhattisgarh 1050 ± 51 0.74 904 ± 21 0.93 966 ± 18 0.95 920 ± 10 0.98 920 ± 9 0.97 
Rajasthan 1116 ± 32 0.89 1220 ± 58 0.75 748 ± 23 0.88 961 ± 10 0.98 891 ± 9 0.97 

Madhya Pradesh 983 ± 31 0.87 1010 ± 25 0.91 800 ± 31 0.82 937 ± 7 0.99 861 ± 19 0.87 
Bihar 896 ± 19 0.94 858 ± 84 0.42 876 ± 17 0.94 945 ± 19 0.94 867 ± 22 0.83 

West Bengal 980 ± 23 0.92 834 ± 28 0.86 923 ± 9 0.99 917 ± 7 0.99 978 ± 15 0.94 
Jharkhand 889 ± 80 0.45 929 ± 71 0.53 845 ± 26 0.88 932 ± 21 0.93 882 ± 33 0.71 

Goa 856 ± 12 0.97 877 ± 15 0.96 833 ± 9 0.98 836 ± 9 0.98 875 ± 6 0.98 
Uttar Pradesh 974 ± 13 0.97 870 ± 23 0.91 846 ± 8 0.99 817 ± 13 0.96 902 ± 16 0.91 

Telangana 912 ± 18 0.94 938 ± 34 0.84 529 ± 53 0.40 856 ± 21 0.92 858 ± 15 0.92 
Karnataka 1171 ± 56 0.75 1131 ± 113 0.40 473 ± 73 0.22 919 ± 12 0.98 867 ± 19 0.87 

Tamil Nadu 1417 ± 109 0.53 1245 ± 106 0.48 460 ± 224 0.03 747 ± 37 0.73 827 ± 20 0.85 
Delhi 870 ± 17 0.95 847 ± 21 0.92 810 ± 28 0.85 771 ± 16 0.94 776 ± 16 0.89 

Andhra Pradesh 1018 ± 191 0.16 480 ± 49 0.39 443 ± 41 0.44 1067 ± 16 0.97 956 ± 18 0.90 
Haryana 753 ± 39 0.71 916 ± 92 0.40 686 ± 23 0.86 734 ± 28 0.82 879 ± 37 0.66 

Maharashtra 981 ± 63 0.62 803 ± 31 0.82 650 ± 38 0.67 826 ± 21 0.92 871 ± 12 0.94 
Odisha 827 ± 43 0.72 761 ± 41 0.70 661 ± 35 0.71 730 ± 19 0.91 530 ± 48 0.29 

Nagaland 685 ± 57 0.49 440 ± 11 0.92 643 ± 15 0.92 656 ± 12 0.96 469 ± 18 0.69 
Gujarat 486 ± 34 0.58 605 ± 31 0.72 422 ± 31 0.55 637 ± 20 0.87 568 ± 21 0.71 
Punjab 955 ± 53 0.68 735 ± 35 0.75 629 ± 52 0.50 633 ± 43 0.59 725 ± 20 0.82 

Mizoram 474 ± 22 0.76 408 ± 28 0.59 619 ± 15 0.92 621 ± 17 0.90 226 ± 13 0.52 
Kerala 888 ± 40 0.77 757 ± 54 0.57 463 ± 28 0.64 694 ± 20 0.89 707 ± 21 0.80 

Arunachal Pradesh 540 ± 38 0.58 718 ± 49 0.59 584 ± 12 0.94 616 ± 12 0.95 415 ± 41 0.26 
Assam 399 ± 46 0.34 575 ± 49 0.48 586 ± 19 0.86 581 ± 28 0.75 523 ± 36 0.42 

Manipur 370 ± 14 0.83 266 ± 13 0.73 666 ± 22 0.86 609 ± 25 0.80 238 ± 12 0.56 
Sikkim 204 ± 29 0.25 126 ± 34 0.09 818 ± 20 0.92 799 ± 23 0.89 35 ± 13 0.02 

Chandigarh 617 ± 61 0.41 883 ± 109 0.31 646 ± 41 0.62 591 ± 40 0.60 481 ± 31 0.45 
Tripura 400 ± 16 0.81 453 ± 27 0.65 421 ± 8 0.94 493 ± 14 0.90 412 ± 12 0.79 

Uttarakhand 483 ± 35 0.56 396 ± 48 0.32 24 ± 46 0.00 295 ± 37 0.30 269 ± 33 0.19 
Jammu & Kashmir 274 ± 47 0.19 371 ± 59 0.21 54 ± 38 0.01 316 ± 29 0.44 272 ± 23 0.31 

Meghalaya 70 ± 18 0.09 34 ± 18 0.02 95 ± 24 0.09 28 ± 17 0.02 27 ± 18 0.01 
Himachal Pradesh 301 ± 34 0.35 114 ± 34 0.08 -25 ± 17 0.02 44 ± 19 0.03 61 ± 15 0.05 

Table 8 
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2017-2018 monsoon season regression-based, marginal CO2 emission factors with regression fit parameters for each Indian state.  
 

 Morning Peak Midday Afternoon Evening Peak Overnight 
State MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 

Madhya Pradesh 945 ± 23 0.89 905 ± 63 0.49 1406 ± 106 0.46 602 ± 34 0.6 530 ± 32 0.39 
Chhattisgarh 807 ± 55 0.50 555 ± 77 0.20 440 ± 53 0.25 804 ± 19 0.89 749 ± 22 0.73 

Goa 648 ± 35 0.62 498 ± 53 0.29 618 ± 49 0.42 842 ± 12 0.96 790 ± 13 0.90 
Rajasthan 799 ± 29 0.78 1009 ± 93 0.36 377 ± 105 0.06 575 ± 31 0.62 431 ± 19 0.54 

Bihar 763 ± 63 0.41 647 ± 73 0.27 476 ± 24 0.65 672 ± 32 0.68 721 ± 24 0.68 
Uttar Pradesh 731 ± 43 0.58 758 ± 59 0.44 165 ± 64 0.03 579 ± 25 0.71 527 ± 27 0.48 

Odisha 610 ± 54 0.37 441 ± 79 0.13 290 ± 47 0.15 501 ± 37 0.46 578 ± 33 0.43 
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2030-2031 dry season regression-based, marginal CO2 emission factors with regression fit parameters for each Indian state. 
 

 

 

 

 

 

Gujarat 650 ± 113 0.14 714 ± 143 0.10 336 ± 125 0.03 577 ± 40 0.50 547 ± 56 0.18 
Andhra Pradesh 719 ± 77 0.29 296 ± 130 0.02 721 ± 130 0.13 471 ± 42 0.38 465 ± 27 0.41 

Jharkhand 382 ± 110 0.05 271 ± 85 0.05 -58 ± 98 0.00 391 ± 92 0.08 442 ± 85 0.06 
Maharashtra 423 ± 134 0.05 0 ± 113 0.00 1124 ± 122 0.28 94 ± 87 0.01 200 ± 50 0.04 
West Bengal 594 ± 97 0.15 206 ± 63 0.05 54 ± 38 0.01 294 ± 65 0.09 445 ± 47 0.17 

Tamil Nadu 455 ± 95 0.10 645 ± 163 0.07 -451 ± 180 0.03 206 ± 65 0.04 91 ± 44 0.01 
Telangana 566 ± 63 0.28 -229 ± 122 0.02 933 ± 138 0.18 378 ± 57 0.17 376 ± 36 0.21 
Karnataka 360 ± 132 0.03 468 ± 112 0.08 46 ± 116 0.00 407 ± 41 0.32 -144 ± 80 0.01 

Delhi 262 ± 66 0.07 502 ± 55 0.28 -271 ± 101 0.03 171 ± 82 0.02 392 ± 28 0.31 
Punjab 306 ± 60 0.11 442 ± 64 0.18 -227 ± 101 0.02 -56 ± 53 0.01 181 ± 32 0.07 

Northeast 849 ± 161 0.12 659 ± 91 0.20 -654 ± 115 0.13 -397 ± 219 0.02 -251 ± 87 0.02 
Haryana -132 ± 180 0.00 607 ± 89 0.18 -589 ± 128 0.09 -636 ± 113 0.13 -519 ± 86 0.08 

Himachal Pradesh -281 ± 73 0.06 530 ± 59 0.27 -293 ± 177 0.01 -358 ± 81 0.08 -380 ± 45 0.15 
Uttarakhand -332 ± 92 0.06 500 ± 51 0.31 -548 ± 177 0.04 -894 ± 169 0.12 -701 ± 94 0.12 

Kerala -2032 ± 283 0.20 364 ± 97 0.06 -177 ± 172 0.00 -296 ± 91 0.05 -536 ± 115 0.05 
Jammu & Kashmir -284 ± 207 0.01 378 ± 97 0.07 -820 ± 320 0.03 -449 ± 166 0.03 -873 ± 159 0.07 

Table 9 

 Morning Peak Midday Afternoon Evening Peak Overnight 
State MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 MEF CO2 ± 2σ r2 

Madhya Pradesh 794 ± 108 0.26 850 ± 84 0.4 730 ± 96 0.27 652 ± 35 0.69 687 ± 50 0.38 
Chhattisgarh 824 ± 164 0.14 343 ± 150 0.03 480 ± 69 0.24 797 ± 31 0.81 802 ± 49 0.46 

Goa 621 ± 64 0.38 432 ± 96 0.12 521 ± 66 0.29 821 ± 18 0.93 713 ± 18 0.84 
Rajasthan 928 ± 97 0.37 436 ± 101 0.11 273 ± 83 0.07 546 ± 36 0.6 454 ± 34 0.36 

Bihar 407 ± 89 0.12 239 ± 92 0.04 456 ± 37 0.50 638 ± 16 0.91 767 ± 22 0.80 
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2030-2031 monsoon season regression-based, marginal CO2 emission factors with regression fit parameters for each Indian state.

Uttar Pradesh 458 ± 77 0.19 760 ± 80 0.37 221 ± 71 0.06 475 ± 27 0.68 667 ± 34 0.56 
Odisha 547 ± 95 0.18 617 ± 140 0.11 395 ± 56 0.25 419 ± 33 0.51 518 ± 47 0.28 

Gujarat 145 ± 145 0.01 630 ± 150 0.1 310 ± 135 0.03 457 ± 64 0.25 458 ± 49 0.23 
Andhra Pradesh 1063 ± 188 0.17 83 ± 117 0.00 -179 ± 159 0.01 325 ± 45 0.25 408 ± 47 0.2 

Jharkhand 289 ± 119 0.04 393 ± 109 0.08 226 ± 87 0.04 470 ± 36 0.53 559 ± 53 0.27 
Maharashtra 1420 ± 231 0.20 -65 ± 171 0.00 -171 ± 173 0.01 -191 ± 79 0.04 418 ± 54 0.17 
West Bengal 362 ± 71 0.15 86 ± 111 0.00 147 ± 41 0.08 287 ± 36 0.29 686 ± 56 0.33 

Tamil Nadu 997 ± 162 0.20 222 ± 69 0.06 -108 ± 218 0.00 142 ± 47 0.06 266 ± 32 0.18 
Telangana 676 ± 108 0.20 -344 ± 178 0.02 -339 ± 129 0.04 144 ± 52 0.05 179 ± 51 0.04 
Karnataka 720 ± 125 0.18 87 ± 56 0.02 -14 ± 87 0.00 128 ± 24 0.15 209 ± 33 0.12 

Delhi 154 ± 68 0.03 335 ± 66 0.14 -99 ± 105 0.01 442 ± 57 0.28 317 ± 48 0.13 
Punjab 165 ± 104 0.02 177 ± 76 0.03 -88 ± 91 0.01 248 ± 40 0.20 194 ± 33 0.10 

Northeast 348 ± 206 0.02 52 ± 196 0.00 83 ± 91 0.01 97 ± 33 0.05 97 ± 42 0.02 
Haryana 140 ± 153 0.01 448 ± 102 0.11 -5 ± 125 0.00 194 ± 45 0.11 322 ± 61 0.08 

Himachal Pradesh -71 ± 68 0.01 -6 ± 73 0.00 -150 ± 89 0.02 2 ± 3 0.00 -8 ± 11 0.00 
Uttarakhand -65 ± 136 0.00 147 ± 65 0.03 -74 ± 137 0.00 -26 ± 63 0.00 -20 ± 66 0.00 

Kerala 76 ± 178 0.00 183 ± 93 0.02 213 ± 102 0.03 -2 ± 27 0.00 137 ± 28 0.07 
Jammu & Kashmir -43 ± 61 0.00 41 ± 50 0.00 -35 ± 103 0.00 0 ± 1 0.00 -1 ± 6 0.00 

Table 10 
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Figure 74 
2030-2031 regression-based, marginal fuel frequency for each Indian state during monsoon season. 
Negative percentages in each period indicate fuel source generation decreases with increases in 
marginal power demand in each state, requiring increase in generation from other fuels to meet demand. 
The sum of each bar is 100%. 

 
Figure 75 
2017-2018 dry season marginal fuel shares as functions of demand in eight high variable renewable 
energy (solar, wind)  states.  
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Figure 76 
2017-2018 monsoon season marginal fuel shares as functions of demand in eight high variable 
renewable energy (solar, wind)  states.  

 
Figure 77 
2030-2031 dry season marginal fuel shares as functions of demand in eight high variable renewable 
energy (solar, wind) states. 
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Figure 78 
2030-2031 monsoon season marginal fuel shares as functions of demand in eight high variable 
renewable energy (solar, wind)  states. 

 
Figure 79 
2017-2018 and 2030-2031 dry and monsoon season marginal SO2 emission factors as a function of 
demand in eight high variable renewable energy (solar, wind) states. 
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Figure 80 
2017-2018 and 2030-2031 dry and monsoon season marginal NOX emission factors as a function of 
demand in eight high variable renewable energy (solar, wind) states. 

 
Figure 81 
Figure S17. 2017-2018 and 2030-2031 dry and monsoon season marginal PM2.5 emission factors as a 
function of demand in eight high variable renewable energy (solar, wind) states. 
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Figure 82 
Map of India with states and state abbreviations. 
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