
On Designing Resource-Constrained CNNs Efficiently

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Ting-Wu Chin

B.S., Computer Science, National Chiao Tung University
M.S., Computer Science and Engineering, National Chiao Tung University

Carnegie Mellon University
Pittsburgh, PA

August 2021

© Ting-Wu Chin, 2021
All rights reserved.

iii

Acknowledgements

Pursuing a doctorate degree in Electrical and Computer Engineering at Carnegie Mellon University is one

of my best decisions in life. It has been a challenging, life-changing, wonderful, and fulfilling journey and

it would not have been possible for me to begin writing this thesis without the tremendous support and

guidance from my advisors, mentors, friends, and family.

First and foremost, I would like to express my best gratitude to my advisor, Prof. Diana Marculescu.

Diana has been a truly amazing mentor to me and has never failed to support and encourage me through-

out the journey of my program. Specifically, she has given me freedom in exploring new ideas and new

directions for research, she has always been present in our weekly meetings to guide me along the way,

she shared her connections with me, leading to an internship at Facebook Reality Labs, and she has always

had my back when facing rejections and negative results. Dealing with rejections can be hard especially

when they come in a row. One of my papers has faced four consecutive rejections before it was accepted

at CVPR as an oral presentation. Diana has shown her great support in those hard times by letting me

know that great work eventually gets recognized and our work is great. I am very fortunate and grateful

to have Diana as my advisor.

I would also like to thank my co-advisor, Prof. Gauri Joshi, who has been willing to co-advise me when

Diana moved from CMU to UT Austin. Gauri has been a great mentor who cares a lot about her students.

The weekly meeting with Gauri’s research group (OPAL) has been inspiring and fun amid the COVID-19

pandemic. I am very fortunate and thankful to be a part of OPAL and I greatly appreciate all the insightful

feedback Gauri has given me to improve my work further. Specifically, I really appreciate the feedback

of encouraging me to understand the problems from a more theoretical aspect and encouraging me to

assess the problem of interest with varying metrics, which have played an important role in shaping my

thoughts for my later projects.

I would like to thank both Dr. Cha Zhang and Prof. Virginia Smith for serving as my thesis committee

members. I greatly appreciate the affirmations and the invaluable feedback throughout the process.

I would like to thank my mentors at industry, Dr. Cha Zhang from Microsoft, Dr. Pierce Chuang from

Facebook Reality Labs, and Dr. Ari Morcos from Facebook AI Research. I am extremely grateful that Cha

took me as a research intern at Microsoft even though I did not have relevant publication records at the

time of application. Cha has contributed greatly to shaping my research skills throughout and after the

internship and I aspire to be a great critical thinker like him. I am very grateful to get to know Pierce,

who has taught me a lot in the field of network quantization and hardware implementation. Pierce has

been a very friendly mentor and I am fortunate to learn from him. Last but not least, I would like to thank

iv

Ari for being such a great and supportive mentor. Even though I have only worked with Ari in a virtual

format, it does not stop me to feel strongly about Ari’s empathetic, enthusiastic, and inclusive personality.

Ari’s curiosity has greatly influenced me to pay attention to the details of my empirical results and I am

very grateful for Ari taking the time to guide me and provide me tips in my academic writings.

I would like to thank my collaborators: Dr. Zhuo Chen, Dr. Dimitrios Stamoulis, Dr. Ruizhou Ding,

Dr. Zeye Liu, Dr. Dilin Wang, Mr. Ahmet Inci, Ms. Natasha Frumkin, and Mr. Yang Zhou, for the fruitful

discussions and their contributions. I am very fortunate to work with all these talented people. Especially,

I would like to thank Ruizhou for being a great mentor and collaborator, who has contributed a lot in

helping me improve my research skills during the early stage of my PhD.

I would like to thank all the friends and colleagues I have met along the way who have made my life

as a PhD student filled with fun and energy: Dr. Kai-Chiang Wu, Dr. Da-Cheng Juan, and Dr. Ermao Cai

from EnyAC. Mr. Jianyu Wang, Mr. Ankur Mallick, Mr. Samarth Gupta, Mr. Tuhinangshu Choudhury,

Ms. Yae Jee Cho, and Mr. Divyansh Jhunjhunwala from OPAL. Dr. Chieh Lo, Dr. Kartikeya Bhardwaj, Dr.

Kai-Chun Lin, Dr. Xi He, Dr. Qicheng Huang, Dr. Chenlei Fang, Mr. Ching-Yi Lin, Mr. Tyler Vuong, Mr.

Yi-Chung Lin, and Mr. Jin-Dong Dong from CMU ECE.

Additionally, I would like to thank all members of CMU Street Styles and CMU Dancer’s Symposium,

and special thanks to Mr. Daniel See and Mr. Randal Miller for getting me into knowing the dance scene

at Pittsburgh. Dancing with you all was fun and amazing and it has been very helpful for me to get out

of the stress incurred during my PhD.

I would also like to acknowledge the funding support received from National Science Foundation,

Pittsburgh Supercomputing Center, and Carnegie Mellon University. They have been critical in making

my research possible.

Lastly, I sincerely thank my wife, Hsuan-Yi Hsu, who has been a critical support for me throughout

the entire process. Hsuan-Yi has been a truly amazing, empathetic, and supportive partner. It took

tremendous courage and love for her to move away from her family and life just to accompany me to

the United States to pursue a doctorate degree and I can not thank her enough for her dedication and

understanding along the way.

v

Abstract

Deep Convolutional Neural Networks (CNNs) have been adopted in many computer vision applications

to achieve high performance. However, the growing computational demand of CNNs has made it increas-

ingly difficult to deploy state-of-the-art CNNs onto resource-constrained platforms. As a result, model

compression/acceleration has emerged to be an important field of research. In this thesis, we intend to

make CNNs more friendly for resource-limited platforms from two perspectives. The first perspective is

to introduce novel ways of compressing/accelerating CNNs and the second perspective is to reduce the

overhead of existing methodologies for constructing resource-constrained CNNs.

In the first perspective, we propose one novel technique for model acceleration and another for model

compression. First, we propose AdaScale which is an algorithm that automatically scales the resolution

of input images to improve both the speed and accuracy of a video object detection system. Second, we

identify the Winning-Bitwidth phenomenon, where we found some weight bitwidth is more efficient than

others for model compression when the filter counts of the CNNs are allowed to change.

In the second perspective, we propose three novel algorithms for accelerating existing filter pruning

methods for constructing resource-constrained CNNs. First, we propose LeGR, an algorithm that aims to

learn a global ranking among filters of a pre-trained CNN so that compressing the CNN to different target

constraint levels using filter pruning can be done efficiently by greedily pruning the filters following the

learned ranking. Second, we improve upon LeGR and propose Joslim, which is an algorithm that trains

a CNN from scratch by jointly optimizing its weights and filter counts such that the trained CNN can

be pruned without fine-tuning. Joslim improves upon LeGR in terms of efficiency as LeGR requires

the pruned models to be fine-tuned to be usable. Lastly, we propose Width Transfer, which improves

the efficiency for filter pruning methods that are derived from a neural architecture search perspective.

Width Transfer assumes that the optimized filter counts are regular across depths and widths of a CNN

architecture and are invariant to the size and the resolution of the training dataset. As a result, Width

Transfer performs neural architecture search for filter counts by solving a proxy problem that has a much

lower overhead.

Contents

Contents vi

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Organization . 4

2 Background 5

2.1 Convolutional Neural Networks (CNNs) . 5

2.2 Model Compression/Acceleration . 6

3 AdaScale: Scale Inputs Adaptively for Improved Speed and Accuracy 10

3.1 Motivation . 10

3.2 Adaptive Scaling . 12

3.3 Experiments . 14

3.4 Discussion . 22

3.5 Carbon Footprint Analysis . 22

4 Winning-Bitwidth: Beyond Quantization for Fixed CNNs 23

4.1 Motivation . 23

4.2 Experiments . 25

4.3 Discussion . 34

4.4 Carbon Footprint Analysis . 35

5 LeGR: Towards Efficient Filter Pruning 36

vi

CONTENTS vii

5.1 Motivation . 36

5.2 Learned Global Ranking . 38

5.3 Experiments . 42

5.4 Ablation Study . 47

5.5 Discussion . 49

5.6 Carbon Footprint Analysis . 49

6 Joslim: Efficient Filter Pruning without Fine-tuning 50

6.1 Motivation . 50

6.2 Methodology . 52

6.3 Experiments . 57

6.4 Discussion . 62

6.5 Carbon Footprint Analysis . 62

7 Width Transfer: On the (In)variance of Filter Count Optimization 64

7.1 Motivation . 64

7.2 Width Optimization . 67

7.3 Approach . 68

7.4 Experiments . 70

7.5 Discussion . 76

7.6 Carbon Footprint Analysis . 76

8 Synergies and Discussion of Presented Approaches 77

8.1 LeGR, Joslim, and Width Transfer . 77

8.2 Robustness to Distributional Shifts . 81

8.3 Relation to Neural Architecture Search . 81

8.4 Applicability to Networks besides CNNs . 82

9 Related Work 84

9.1 Model Compression/Acceleration . 84

9.2 Efficient Model Compression . 86

9.3 Object Detection . 87

10 Conclusions 90

Bibliography 93

A Appendix for Chapter 4 110

A.1 Network Architectures . 110

A.2 Proof For Proposition 4.2.1 . 111

B Appendix for Chapter 5 113

B.1 Optimization Interpretation Of LeGR . 113

B.2 LeGR-DDPG . 114

C Appendix for Chapter 6 116

C.1 Width Parameterization . 116

C.2 Width Differences . 117

C.3 Training Hyperparameters . 117

C.4 Theoretical Analysis For Temporal Sharing . 118

C.5 Inference Memory Footprint Calculation . 119

C.6 Comparisons With AutoSlim . 120

List of Tables

3.1 Evaluation of the proposed method. We denote methods by their approach of training and

testing, e.g., MS/SS stands for multi-scale (MS) training and single-scale (SS) testing. Blue text

and red text indicate ≥ 1 AP improvement and degradation compared to SS/SS, respectively. . 16

3.2 mAP and runtime for different multi-scale training settings. 20

3.3 mAP and runtime for different regressor architectures. 22

4.1 Quantizing depth-wise convolution introduces large accuracy degradation across model sizes.

∆AccQ = Acc1bit − Acc4bit denotes the accuracy introduced by quantization and ∆AccG =

Acc1bit,2× − Acc1bit denotes the accuracy improvement by increasing channel counts. The CNN

is VGG variant C with and without quantizing the depth-wise convolutions from 4 bits to 1 bit. 30

viii

4.2 bitwidth ordering for MobileNetV2 and ResNet50 with the model size aligned to the 0.25× 8 bits

models on ImageNet. Each cell reports the top-1 accuracy of the corresponding model. The

trend for the optimal bitwidth is similar to that of CIFAR-100 (4 bit for MobileNetV2 and 1 bit

for ResNet). 33

4.3 The optimal bitwidth selected in Table 4.2 is indeed better than 8 bit when scaled to larger

model sizes and more surprisingly, it is better than mixed-precision quantization. All the

activations are quantized to 8 bits. 34

5.1 Comparison with prior art on CIFAR-10. We group methods into sections according to different

FLOP counts. Values for our approaches are averaged across three trials and we report the

mean and standard deviation. We use boldface to denote the best numbers and use ∗ to denote

our implementation. The accuracy is represented in the format of pre-trained 7→ pruned-and-

fine-tuned. 45

5.2 Summary of pruning on ImageNet. The sections are defined based on the FLOP count left. The

accuracy is represented in the format of pre-trained 7→ pruned-and-fine-tuned. 46

6.1 Comparing the top-1 accuracy among Slim, BigNAS, and Joslim on ImageNet. Bold represents

the highest accuracy of a given FLOPs. 59

7.1 Compound width transfer for other CNNs. Width optimization overhead measured with 8

NVIDIA V100 GPUS on a single machine. 74

8.1 Comparing the overhead of different channel searching methods. WT stands for Width Transfer. 78

A.1 ResNet20 to ResNet56 . 110

A.2 Inv-ResNet26 . 111

A.3 VGGs . 112

ix

LIST OF FIGURES x

List of Figures

2.1 Finding best ai for different precision values empirically through simulation using Gaussian

with various σ2. 9

3.1 Examples where down-sampled images have better detection results. Blue boxes are the de-

tection results, and the numbers are the confidence. The detector is trained on a single scale

(pixels of the shortest side) of 600. Column (a) and (c) are tested at scale 600. Column (b) is

tested at scale 240 and column (d) is tested at scale 480. 11

3.2 The AdaScale methodology. 12

3.3 Optimal scale determination. First, the same number of predicted foregrounds from four scales

are selected as Am,i. Then, the scale with the lowest loss L̂m
i is selected as the optimal scale. . . 13

3.4 The scale regressor module. 13

3.5 Precision-Recall curves for categories that MS/AdaScale has (a)(b)(c) better performance, (d)

on-par performance, and (e)(f) worse performance compared to SS/SS. 18

3.6 Normalized true positives and false positives for different methods across all the images in

validation set for three selected categories. 19

3.7 mAP and speed comparison with prior art on ImageNet VID dataset. Applying our AdaScale

to RFCN [35], DFF [216] and SeqNMS [65] can further improve both speed and accuracy. 20

3.8 Comparing the results of SS/SS and MS/AdaScale qualitatively. Column (a) and (c) are results

produced by SS/SS; column (b) and (d) are results produced by MS/AdaScale. The scales used

in MS/AdaScale are labeled in black rectangle with white text. 21

3.9 The investigation of the dynamics of AdaScale. The scales of the images are labeled in bottom-

right. 21

3.10 The regressed scale distribution of AdaScale tested on ImageNet VID validation set. (a)-(d) use

different Strain. 22

LIST OF FIGURES xi

4.1 Some bitwidth is consistently better than other bitwidths across model sizes. Csize denotes

model size. xWyA denotes x-bit weight quantization and y-bit activation quantization. The

experiments are done on the CIFAR-100 dataset. For each network, we sweep the width-

multiplier to cover points at multiple model sizes. For each dot, we plot the mean and standard

deviation of three random seeds. The standard deviation might not be visible due to little

variances. 27

4.2 The optimal bitwidth for ResNet26 changes from 1 bit (a) to 4 bit (b) when the building blocks

change from basic blocks (c) to inverted residual blocks (d). Csize in (a) and (b) denotes model

size. (Cout, Cin, K, K) in (c) and (d) indicate output channel count, input channel count, kernel

width, and kernel height of a convolution. 28

4.3 The optimal bitwidth for VGG shifts from 1 bit to 4 bit as more convolutions are replaced with

depth-wise separable convolutions (DWSConv), i.e., from (a) to (c). Variant A, B, and C have

30%, 60%, and 90% of the convolution layers replaced with DWSConv, respectively. As shown

in (d), the optimal bitwidth changes back to 1 bit if we only quantize point-wise convolution

but not depth-wise convolutions. 29

4.4 Visualization of our accuracy decomposition, which is used for analyzing depth-wise convolu-

tions. 30

4.5 The average estimate Var(¯|w|) for each depth-wise convolution under different d = (Cin ×

Kw × Kh) values. 31

4.6 d negatively correlates with the variance and positively correlates with the accuracy difference

induced by quantization ∆AccQ = Acc1bit − Acc4bit. 32

5.1 Using filter pruning to optimize CNNs for embodied AI applications. Instead of producing

one CNN for each pruning procedure as in prior art, our proposed method produces a set of

CNNs for practitioners to efficiently explore the trade-offs. 37

5.2 The flow of LeGR-Pruning. ‖Θ‖2
2 represents the filter norm. Given the learned layer-wise

affine transformations, i.e., the α-κ pair, LeGR-Pruning returns filter masks that determine

which filters are pruned. After LeGR-Pruning, the pruned network will be fine-tuned to obtain

the final network. 40

LIST OF FIGURES xii

5.3 (a) The trade-off curve of pruning ResNet-56 and MobileNetV2 on CIFAR-100 using various

methods. We average across three trials and plot the mean and standard deviation. (b) Training

cost for seven CNNs across FLOP counts using various methods targeting ResNet-56 on CIFAR-

100. We report the average cost considering seven FLOP counts, i.e., 20% to 80% FLOP count

in a step of 10% on NVIDIA GTX 1080 Ti. The cost is normalized to the cost of LeGR. 43

5.4 Results for ImageNet. LeGR is better or comparable compared to prior methods. Furthermore,

its goal is to output a set of CNNs instead of one CNN. 45

5.5 Results for Bird-200. 46

5.6 Robustness to the hyper-parameter ζ̂l . Prior art is plotted as a reference (c.f. Figure 5.3a). 47

5.7 Pruning ResNet-56 for CIFAR-100 with LeGR by learning α and κ using different τ̂ and FLOP

count constraints. 48

5.8 Latency reduction vs. FLOP count reduction. FLOP count reduction is indicative for latency

reduction. 48

6.1 Schematic overview comparing our proposed method with existing alternatives and channel

pruning. Channel pruning has a fundamentally different goal compared to ours, i.e., training

slimmable nets. Joslim jointly optimizes both the widths and the shared weights. 52

6.2 Comparisons among Slim, BigNAS, and Joslim. C10 and C100 denote CIFAR-10/100. We

perform three trials for each method and plot the mean and standard deviation. 58

6.3 Comparisons among Slim, BigNAS, and Joslim on ImageNet. 59

6.4 A latency-vs.-error view of Fig. 6.3a. 59

6.5 Prediction error vs. inference memory footprint for MobileNetV2 and ResNet18 on ImageNet. . 59

6.6 Ablation study for the introduced binary search and the number of gradient descent updates

per full iteration using ResNet20 and CIFAR-100. Experiments are conducted three times and

we plot the mean and standard deviation. 60

7.1 The top row shows the conventional width optimization approach, which takes a training

dataset and a seed network, and outputs a network with optimized widths. The bottom row

depicts our idea of width transfer, where width optimization operates on the down-scaled

dataset and seed network. We then use a simple function to extrapolate the optimized archi-

tecture to match the original network. Compared to direct width optimization, our empirical

findings suggest that width transfer has similar performance, but has the benefit of drastically

lower overhead. 65

7.2 The two width optimization strategies proposed in prior art. 67

LIST OF FIGURES xiii

7.3 An example for extrapolation. The projected network has fewer layers and channel counts per

layer compared to the original network. After width optimization on the projected network, we

propose two methods, i.e., stack-last-block and stack-average-block, to match the layer counts

to the original network. Finally, we match the FLOPs to the original network with a width

multiplier. 68

7.4 Experiments for width transfer under network projection. We plot the ImageNet top-1 accuracy

for uniform baseline, width transfer, and direct optimization (the leftmost points). On the x-

axis, we plot the width optimization overhead saved by using width transfer. 71

7.5 The average optimized width for ResNet18 and MobileNetV2. They are averaged across the

optimized widths. We plot the mean in solid line with shaded area representing standard

deviation. 72

7.6 We compare the two layer-stacking strategies using DMCP for both ResNet18 and MobileNetV2.

We can observe that both stack-average-block and stack-last-block perform similarly. 73

7.7 Experiments for width transfer under dataset projection. We plot the ImageNet top-1 accuracy

for uniform baseline, width transfer, and direct optimization (the leftmost points). On the

x-axis, we plot the width optimization overhead saved by using width transfer. 74

7.8 Width transfer with compound projection. 75

7.9 Comparing the proposed using DMCP with width transfer, DMCP, and network slimming. . . 76

8.1 (a,c) The trade-off curve of pruning ResNet-56 on CIFAR-100 using various methods. (b,d)

Training cost and its scaling with respect to the number of target compression ratios for dif-

ferent methods targeting ResNet-56 on CIFAR-100. The cost is calculated using the number of

forward passes for a ResNet-56 while approximating one backward pass as two forward passes.

Fig. a and b are for optimizing many target networks while Fig. c and d are for optimizing

weight-sharing networks. 79

8.2 The mean corruption errors for different number of target compression ratios of different meth-

ods targeting ResNet-56 on CIFAR-100. Note that the networks are optimized with CIFAR-100

and test using CIFAR-100-C. 80

B.1 Comparison between searching the layer-wise filter norms and searching the layer-wise fil-

ter percentage. (a) compares the searching progress for 50% FLOP count ResNet-56 and (b)

compares the final performance for ResNet-56 with various constraint levels. 115

LIST OF FIGURES xiv

C.1 Comparing the width-multipliers between Joslim and Slim. The title for each plot denotes the

relative differences (Joslim - Slim) and the numbers in the parenthesis are for Joslim. 117

C.2 Comparing Joslim and AutoSlim on ResNet18. Since ResNet18 has similar FLOPs across differ-

ent layers, greedy pruning used by AutoSlim perform comparably to Joslim. However, Joslim

outperforms AutoSlim when it comes to optimizing for memory consumption since the greedy

pruning procedure adopted by AutoSlim is not multi-objective. 120

Chapter 1

Introduction

Convolutional neural networks (CNNs) have become the state-of-the-art model for tasks in vision, in-

cluding recognition [68], detection [149], segmentation [21], image generation [85], and tasks that involve

multiple modalities, such as visual question answering [3], visual-language navigation [2], and image

generation based on language cues [142]. A common trend among the advances in these various tasks is

to scale up the CNNs in terms of model sizes to achieve increased predictive power [68, 81, 199]. While it

is effective in improving the predictive performance, it makes deployment of these CNNs onto resource-

constrained devices such as embedded platforms or mobile phones increasingly challenging. Deploying

CNNs to resource-constrained devices has gained surged interests from the research community [41].

Directly running CNNs on edge devices allows the inputs (e.g., images, texts, or sound waves) to stay

locally on the devices. This is in stark contrast to the Machine-Learning-as-a-Service paradigm where one

uploads inputs to the cloud and receives the predicted outputs from the cloud. Deploying models onto

edge devices has the following advantages:

• Better privacy as the user data never leaves their devices.

• Better control over the latency of the service as it is not dependent on the network connectivity.

While the advantages are desirable, deploying CNNs onto resource-constrained devices also poses

several challenges:

• Embedded devices are usually battery-powered while CNNs are power-hungry [165, 188]. Hence, it

is desirable to reduce the power consumption of CNNs.

• Embedded devices have low memory capacity while CNNs introduce large memory footprint [33,

98]. Hence, it is desirable to reduce the memory consumption of CNNs.

1

CHAPTER 1. INTRODUCTION 2

• Embedded devices have limited compute capability while CNNs are compute intensive [68, 54].

Hence, it is desirable to reduce the number of operations for CNNs to meet the latency constraints

posed by real-time applications.

Toward addressing these challenges, model compression [63, 33, 99] and hardware-aware neural archi-

tecture search (NAS) [159, 183, 37, 16, 15, 133] have emerged to be active fields of research. While methods

from model compression and hardware-aware NAS have introduced better ways to meet the resource-

constraints of the embedded devices without losing much accuracy, they typically have large design-time

overhead. Specifically, most approaches treat compression as a hyperparameter optimization problem,

which requires large runtimes. Additionally, many approaches look for a specific solution that meets the

resource constraints posed by a certain device, which makes the solution not reusable for other constraint

levels. This makes it costly for designing models that will be deployed to many different devices with

different constraint levels.

1.1 Contributions

In light of the aforementioned challenges in deploying CNNs onto resource-constrained devices, in this

thesis we propose novel ways to compress and accelerate CNNs and novel ways to accelerate the model

compression process.

Novel methods for model compression and acceleration

• Chapter 3 – AdaScale for Improved Video Object Detection: Complementary to conventional ap-

proaches for model compression and acceleration such as pruning [99], quantization [33, 86], and

neural architecture search [162], we propose AdaScale, which adapts input resolution for different

images to achieve better speed and accuracy. More specifically, we propose to learn the optimal

resolution for the current frame and apply the output resolution for the next frame in a video object

detection setting. We show that the proposed approach can improve R-FCN object detector [35] by

1.3 mAP and achieve 1.6× speedup on the ImageNet VID dataset [152]. This chapter is published at

the Conference of Machine Learning and Systems (MLSys) 2019 [24].

• Chapter 4 – Tuning Channel Counts for Better Weight Quantization: We identify a novel finding

that weight quantization [98] benefits from some neural architectures more than others. More specif-

ically, as opposed to studying weight quantization by fixing the neural architecture of the model to

be quantized, we propose to study the setting where the channel counts of a neural architecture

CHAPTER 1. INTRODUCTION 3

can be altered when considering weight quantization. Under this setting, we show that even a sin-

gle bitwidth throughout the network can outperform mixed precision (i.e., having different weight

bitwidths for different layers) quantization methods that do not take network architectures into con-

siderations. Additionally, we characterize how weight quantization depends on neural architectures.

Specifically, we show that the quantization error negatively correlates with the fan-in channel counts

for the convolutional layers being quantized. Quantitatively, one can improve the top-1 accuracy

by 1.8% for MobileNetV2 [154] on the ImageNet dataset [152] when jointly considering channel

counts and weight quantization compared to conventional mixed precision quantization methods

at the same model size. This chapter is published at the European Conference on Computer Vi-

sion Workshops (ECCVW) 2020 [23] and has received the best paper award at the Embedded Vision

Workshop.

Novel methods for accelerating model compression

• Chapter 5 – Learned Global Ranking for Efficient Filter Pruning: While filter pruning is one of

the dominant approaches for compressing and accelerating CNNs [99], discovering which filters to

prune to lead to good performance often requires costly searching procedures [71, 59, 60, 193, 115].

More importantly, the results of the search procedures can not be reused across different levels of

compression ratios, which makes filter pruning less scalable if targeting many compression ratios.

In light of this inefficiency, we proposed LeGR, which learns a ranking of all the filters in a pre-

trained CNN to determine which filters should be pruned first greedily. We show empirically that

the proposed algorithm prunes networks up to 3× faster than prior work while having comparable

or better performance when targeting seven pruned ResNet-56 [68] with different accuracy and

computational requirement profiles on the CIFAR-100 dataset [93]. Moreover, the performance of

the pruned ResNet-50 [68] and MobileNetV2 [154] achieve accuracy that are comparable to the state-

of-the-art on the ImageNet dataset [152]. This chapter is published at the Conference on Computer

Vision and Pattern Recognition (CVPR) 2020 [25] as oral presentation.

• Chapter 6 – More Efficient Filter Pruning without Fine-tuning: While LeGR [25] finds the pruned

architectures fast across different compression ratios, each of the pruned models still requires a fine-

tuning procedure to recover its accuracy, which can still be costly for certain applications. To remove

fine-tuning altogether, we propose Joslim, which aims to find jointly the many filter configurations

and the weights shared among the configurations using a unified optimization procedure. We show

empirically that the proposed method outperforms existing alternatives that aims at the same goal

CHAPTER 1. INTRODUCTION 4

on the ImageNet dataset [152] across modern CNNs such as ResNet-18 [68] and MobileNetV2 [154].

This chapter is published at the European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML-PKDD) 2021 [27].

• Chapter 7 – Efficient Filter Counts Optimization: Treating filter pruning as a neural architecture

search problem has gained increased interest [116]. However, existing approaches for doing so re-

quire an overhead equivalent to 2× training time of the input model. This can be costly when the

input model is large. To reduce such an overhead, we propose Width Transfer, which performs exist-

ing algorithms on a more efficient proxy problem. More specifically, we propose to project the CNNs

to be optimized to a shallower and narrower instance and project the training dataset to another with

smaller resolution and fewer samples. Then, we perform existing algorithms to find optimal filter

counts in the proxy setting. Finally, we transfer the found solution to the original space. We show

empirically that the proposed procedure can achieve up to 320× overhead reduction without com-

promising the top-1 accuracy improvement obtained by performing filter counts optimization on the

ImageNet dataset [152] for various modern CNNs. This chapter is published at the Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW) 2021 [26].

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the necessary background for

the thesis. Chapter 3 and Chapter 4 introduce novel methods for model acceleration and compression.

Chapter 5 introduces a novel method, dubbed LeGR, for accelerating the model compression process that

targets many compression ratios. Chapter 6 introduces a novel method to further get rid of the fine-tuning

overhead in LeGR. Chapter 7 introduces a novel architecture transfer method for accelerating the process

of filter counts optimization. Chapter 8 provides discussions for the proposed methods, their relationship

to neural architecture search, and their applicability to architectures besides CNNs. Chapter 9 discusses

the related work. Finally, Chapter 10 concludes this thesis and discusses future research directions.

Chapter 2

Background

2.1 Convolutional Neural Networks (CNNs)

Convolutional neural networks, or CNNs, are fundamental building blocks for state-of-the-art computer

vision algorithms. At its core, a CNN is a deep neural network that is built by stacking many consecutive

convolutional layers. A convolution operator is defined as follows:

(W ∗ X)i,j
def
= ∑

m∈[Kw]
∑

n∈[Kh]

Wm,nX
i+m− Kw

2 ,j+n− Kh
2
∀ i, j, (2.1)

where ∗ denotes the convolution operator, W ∈ RKw×Kh denotes the weights of the convolutional layers

where Kw and Kh are the kernel size of the convolution, X ∈ RW×H denotes the input tensor where H and

W are the height and width of the input image, and (i, j) are 2-D indices of the location to be convolved.

With this notion, we can define several types of convolution adopted in modern deep neural networks.

Standard convolution A standard convolutional layer O = Conv(X, W) takes in an input tensor X ∈

RCin×W×H , has a trainable weight tensor W ∈ RCout×Cin×Kw×Kh , and has an output tensor O ∈ RCout×W×H ,

Conv(W , X)i
def
= ∑

c∈[Cin]

Wi,c ∗ Xc ∀ i ∈ [Cout], (2.2)

where Cin denotes the number of input channels and Cout denotes the number of output channels or also

known as the number of filters. The number of floating-point operations (FLOPs) required for a forward

pass of a standard convolution is given by W ′H′KwKhCinCout, where H′ and W ′ is the height and width of

the output feature maps. On the other hand, the number of trainable parameters in a standard convolution

is characterized as KwKhCinCout. Note that if we use a width-multiplier [77] to control the width of the

CNN, i.e., Cinw and Coutw, the overall FLOPs and parameter counts of the CNN scale about quadratically

with the width-multiplier w.

5

CHAPTER 2. BACKGROUND 6

Group convolution A group convolution structurally eliminates some of the connections between input

and output channels. Specifically, a group convolution splits input and output channels into G groups of

equal size and the convolution is done by executing G standard convolutions in parallel and concatenating

their respective results to form the output of the group convolution.

The FLOPs of a group convolution is characterized by
(

WHKwKh
Cin
G

Cout
G

)
G while the number of

trainable parameters is characterized KwKh
Cin
G

Cout
G .

Depth-wise convolution Depth-wise convolution is a special case of group convolution where Cin =

Cout = G. As a result, the FLOPs of a depth-wise convolution is given by WHKwKhCout while its parameter

counts is characterized as KwKh.

Point-wise convolution Point-wise convolution is a special case of standard convolution where Kw =

Kh = 1. As a result, the FLOPs of a depth-wise convolution is given by WHCinCout while its parameter

counts is characterized as CinCout.

To incorporate the non-linearity into deep neural networks, activation functions (Act) are inserted after

convolutional layers. In modern CNNs, batch normalization (BN) layers [84] are often adopted to enable

better trainability. As a result, when referring to a single layer of the CNN, we mean Act(·) ◦ BN(·) ◦

Conv(·).

There are many successful architectures for CNNs, including the VGG network that stacks convo-

lutional layers [157], ResNet that stacks convolutional layers with skip connections [68], DenseNet [79]

that has dense connections among convolutional layers, MobileNet that factorizes a standard convolution

layer into depth-wise convolution and point-wise convolution [77], and ShuffleNet [201] that replaces the

point-wise convolutional layers with a group convolution and a channel shuffling operation for more a

efficient computation. Instead of designing CNNs manually, neural architecture search has emerged to be

a promising direction for automatically finding a high accuracy CNN configuration [52] .

2.2 Model Compression/Acceleration

Model compression and acceleration is an emerging field of research for deep learning [41] given the

need to put deep models onto resource-constrained devices to enhance the applicability of deep neural

networks. In this section, we discuss the compression and acceleration techniques that are closely related

to this thesis.

CHAPTER 2. BACKGROUND 7

2.2.1 Pruning

Pruning removes redundant connections of an existing neural network to compress and/or accelerate the

execution of the neural network. Pruning was originally proposed as a means to combat overfitting [94].

With the success of deep learning, pruning has evolved to become a means for removing redundancies

to improve efficiency [64]. Typically, pruning can be either unstructured or structured. In unstructured

pruning the pruned unnecessary connections do not obey specific structures that can be exploited by the

underlying software and hardware. To accelerate the execution of a sparse CNN derived from unstruc-

tured pruning, sparse computation software and hardware support is necessary. On the other hand, in

structured pruning the connections are removed in a structural fashion such that the resulting pruned

network can be accelerated without specialized software or hardware implementation; in this case, the

dominant structure pruning directions address channel or filter pruning [99, 130]. To exploit existing

software and hardware implementation, we mainly consider filter pruning in this thesis.

In general, we are interested in finding the weights of a neural network θ that minimizes the expected

loss L over the training data x and label y such that the cost of executing a neural network with such

weights C(θ) is below a desired budget δ:

min
θ

Ex,y L(θ, x, y) s.t. C(θ) ≤ δ. (2.3)

In filter pruning, C(θ̂) < C(θ) only if θ̂ has fewer non-zero filters than θ. The cost function can be different

for different application scenarios. Some use the number of floating operations (FLOPs) while others use

measured latency. Note that equation 2.3 does not restrict the algorithms to use a notion of a pre-trained

model. However, solving it is hard as C is not smooth. In the literature, there are two families of methods

to approach equation 2.3. The first family of approaches relaxes the cost function C to be a convex upper-

bound and the notable approach is to add group-Lasso regularization on filters [181] or on the weight of

the BatchNorm layer [59]. The second family of approaches tries to approximate a pre-trained model with

a discrete optimization problem. Specifically, one first trains a neural network without any constraints

and obtains a pre-trained model θpre. Then, one tries to find a vector of binary masks m, which has the

dimension of the total number of filters, such that when the mask is applied to the pre-trained model

θpre �m, it results in the least loss degradation minm Ex,yL(θpre �m, x, y)− L(θpre, x, y) while satisfying

the constraint C(θpre � m) < δ. To satisfy the constraint, one can resort to a greedy algorithm that

stops once the constraint is satisfied [99, 130, 129, 72, 69], black-box optimization methods [71, 180, 122],

sampling methods [105, 95], and differentiable approximation methods [56].

CHAPTER 2. BACKGROUND 8

2.2.2 Quantization

Weight quantization is an effective method for reducing the model size of a CNN [211, 98, 208, 76, 43].

The key idea of weight quantization is to constrain the value of network weights to a fixed set of discrete

values that admit low-bit representations. To train networks with quantization, one has to overcome

the challenge of the quantization function not being differentiable. In quantization-aware training, the

straight-through estimator [11] is often adopted to approximate the gradient of the quantization function.

Specifically, for bitwidth values no less than 2 bit (b ≥ 2), the following quantization function is used for

weights during the forward pass:

Q(Wi,:) = b
clamp(Wi,:,−ai, ai)

ri
e × ri, ri =

ai

2b−1 − 1
(2.4)

where

clamp(w, min, max) =

w, if min ≤ w ≤ max

min, if w < min

max if w > max

and b·e denotes the round-to-nearest-neighbor function, W ∈ RCout×d, d = CinKwKh denotes the real-

value weights for the ith output filter of a convolutional layer that has Cin channels and Kw × Kh kernel

size. a ∈ RCout denotes the vector of clipping factors which are selected to minimize ‖Q(Wi,:)−Wi,:‖2
2 by

assuming Wi,: ∼ N (0, σ2 I) as suggested in [97].

If we denote

¯|Wi,:| =
1
d

d

∑
j=1
|Wi,j|, (2.5)

with the normal distribution assumption, prior work [97] suggests that one can determine ai based on

the estimation of ¯|Wi,:|. We run simulations for weights drawn from a zero-mean Gaussian distribution

with several variances and identify the best a∗i = arg minai‖Qai (Wi,:) −Wi,:‖2
2 empirically. Indeed, we

find that one can infer ai from the sample mean ¯|Wi,:|, which is shown in Figure 2.1. As a result, for the

different bitwidth values considered, we find c =
¯|Wi,: |

a∗i
via simulation and use the obtained c to calculate

ai on-the-fly throughout training.

For special cases such as 1 bit, we follow DoReFaNets [211] and define the quantization function as

follows:

Q(Wi,:) = sign(Wi,:)×
(¯|Wi,:|

)
. (2.6)

CHAPTER 2. BACKGROUND 9

Figure 2.1: Finding best ai for different precision values empirically through simulation using Gaussian
with various σ2.

For the backward pass for all the bitwidths, we use a straight-through estimator as in prior literature

to make the training differentiable. That is,

∂Q(Wi,:)

∂Wi,:
= I. (2.7)

With these definitions, prior work has shown great success in training low-precision CNNs [144, 214,

87, 89, 198, 76, 31].

Chapter 3

AdaScale: Scale Inputs Adaptively for Improved

Speed and Accuracy

In this chapter, we focus on improving both the speed and accuracy of a video object detection system

by introducing a novel algorithm dubbed AdaScale. We first demonstrate the motivation behind scaling

the input images for different inputs. Then, we propose AdaScale, which is a methodology to equip

existing object detectors with the capability to scale the input resolutions adaptively to improve both

speed and accuracy for the video object detection setting. The effectiveness of AdaScale is demonstrated

by experiments on ImageNet VID [152] and Youtube-BoundingBox datasets [146].

3.1 Motivation

Video object detection acts as a fundamental building block for visual cognition in future autonomous

agents such as autonomous cars, drones, and robots. Therefore, to build systems with reliable perfor-

mance, it is critical for the detectors to be fast and accurate. Though object detection is well-studied for

static images [35, 57, 67, 112, 149], there are unique challenges in the case of video object detection, in-

cluding motion blur caused by the moving objects, failure of camera focus [216], and also real-time speed

constraints when it comes to autonomous agents. Besides these challenges, however, video object detection

also brings new opportunities to be exploited. Some of the prior work that focuses on video object detection

tries to improve average precision by leveraging a unique characteristic of video [216, 55, 91], which is the

temporal consistency (i.e., consecutive frames have similar content). On the other hand, from a speed per-

spective, prior work [217, 218, 14] counts on the temporal consistency to reduce the computation needed

for a standalone object detector. Similarly, we aim to leverage temporal consistency, but to improve both

speed and accuracy of the standalone object detectors with a novel technique called adaptive-scale testing,

10

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 11

(a) 600 (b) 240 (c) 600 (d) 480

Figure 3.1: Examples where down-sampled images have better detection results. Blue boxes are the
detection results, and the numbers are the confidence. The detector is trained on a single scale (pixels of
the shortest side) of 600. Column (a) and (c) are tested at scale 600. Column (b) is tested at scale 240 and
column (d) is tested at scale 480.

or AdaScale.

The scale of input image affects both the speed and accuracy of modern CNN-based object detec-

tors [80]. Prior work related to image scaling addresses two directions: (i) multi-scale testing for better

accuracy, and (ii) down-sampling images for higher speed. Examples from the first category include

re-sizing images to various scales (image pyramid) and pushing them through the CNN for feature ex-

traction at various scales [35, 57, 67], as well as fusing feature maps from different layers generated by a

single-scale input image [109, 18, 9]. However, these approaches introduce extra computational overhead

compared to object detectors with single-scale inputs. Examples from the second category include Pareto

optimal search by tuning the input image scale [110, 112, 147, 80] and dynamically re-sizing the image

according to the input image [28]. However, results for these approaches demonstrate that higher speed

comes at the cost of lower accuracy when it comes to image scaling.

In contrast with prior work, we find that down-sampling images is sometimes beneficial in terms

of accuracy. Specifically, there are two sources of improvement brought by image down-sampling: (i)

Reducing the number of false positives that may be introduced by focusing on unnecessary details. (ii)

Increasing the number of true positives by scaling the objects that are too large to a size at which the object

detector is more confident. Fig. 3.1 shows images that are better when down-sampled in our experiments

using Region-based Fully Convolutional Network (R-FCN) [35] object detector on ImageNet VID dataset.

Motivated by this, our goal is to re-size the images to their best scale aiming for both higher speed and

accuracy. In this chapter, we propose AdaScale to boost both the accuracy and the speed of the standalone

object detector. Specifically, we use the current frame to predict the optimal scale for the next frame.

Our results on ImageNet VID and mini YouTube-BB datasets demonstrate 1.3 points and 2.7 points mAP

improvement with 1.6× and 1.8× speedup, respectively. Moreover, by combining with the state-of-the-art

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 12

video acceleration work [217], we improve its speed by an an extra 25% with a slight mAP increase on

ImageNet VID dataset.

3.2 Adaptive Scaling

To adaptively scale the input resolution, we propose to learn a scale regressor given the current image

content and apply its output to resize the next frame based on the temporal consistency assumption

in video object detection. Fig. 3.2 provides an overview for AdaScale methodology. It includes fine-

tuning the object detector, using the resulting detector to generate the optimal scale labels, training the

scale regressor with the generated labels, and the deployment of AdaScale in video object detection. We

discuss each component in detail in the following sections.

Figure 3.2: The AdaScale methodology.

3.2.1 Optimal Scale

To define the optimal scale (pixels of the shortest side) of a given image, we need to first define a finite set

of scales S (e.g., in our case S = {600, 480, 360, 240}) and we must have a metric that evaluates the quality

of the detection results at these different scales. Naïvely, we can use the commonly used mean average

precision (mAP) to compare different scales, and define the scale with the largest mAP as the optimal

scale. However, the mAP evaluated for a single image is sparse due to limited number of ground truths

per image. Hence, we opt to count on the loss function that is used to train the object detector as the

metric to compare results at different scales. In general, the loss function for an object detector used in

training often includes the bounding box regression loss and classification loss [57, 149, 35]:

L(p, u, t, t̂) = Lcls(p, u) + λ[u ≥ 1]Lreg(t, t̂), (3.1)

where p is a vector of predicted probability for each pre-defined class, u is the ground truth class label (0

means background), t̂ is a four-dimension vector that indicates the location information of the bounding

box [57], and t is also a four-dimension vector that represents the ground truth location of the bounding

box. Noted that [u ≥ 1] indicates that regression loss only applies to the bounding box whose ground

truth label is not background. Practically [35, 110], a predicted bounding box is assigned to foreground

when there is at least one ground truth bounding box that has over 0.5 Jaccard overlap (intersection over

union) [53] with it; otherwise, it is assigned to background. However, since this loss function naturally

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 13

Figure 3.3: Optimal scale determination. First, the same number of
predicted foregrounds from four scales are selected as Am,i. Then,
the scale with the lowest loss L̂m

i is selected as the optimal scale.

Figure 3.4: The scale regressor
module.

assumes that the regression loss for background is 0, directly using it to assess different image scales will

favor the image scale with fewer foreground bounding boxes.

Hence, to deal with this, we devise a new metric that focuses only on the same number of foreground

bounding boxes to compare different image scales. To explain our proposed metric, we denote Lm
i,a, m ∈ S

as the loss of predicted bounding box a of image i at scale m using (3.1), and denote L̂m
i , m ∈ S for

image i at scale m, as our proposed metric. To obtain L̂m
i , we first compute the number of predicted

foreground bounding boxes, nm,i, for image i at each scale m ∈ S, then let nmin,i = minm(nm,i). Concretely,

the proposed metric can be computed as: L̂m
i = ∑a∈Am,i

Lm
i,a, where Am,i is a set of predicted foreground

bounding boxes of image i at scale m and |Am,i| = nmin,i. To obtain Am,i, for each scale, we sort the

predicted foreground bounding boxes of image i with respect to Lm
i,a in ascending order and pick the first

nmin,i predictions into the set Am,i. The visual illustration of the process is shown in Fig. 3.3. With the

proposed metric, we define optimal scale mopt,i for image i as:

mopt,i = argminm L̂m
i . (3.2)

3.2.2 Scale Regressor

Now that we understand which scale is better for a given image, we may be able to predict the optimal

scale for the image. Intuitively, if the object is large or has simple texture, it is likely that we would

down-sample the image to let the object detector focus on the salient objects rather than the distracting

details. On the other hand, if the object is small or there are many salient objects, the image should remain

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 14

in a large scale. Since R-FCN head [35] counts on the deep features (i.e., the last convolutional layer of

the backbone feature extractor) to regress bounding box locations, we think that the channels of the deep

features already contain size information. As a result, we build a scale regressor using deep features to

predict the optimal scale, as shown in Fig. 3.4. Specifically, we use a 1x1 convolutional layer to capture

the size information from different feature maps. Additionally, we use a parallel 3x3 convolutional layer

to capture the complexity of each 3x3 patch in the feature maps. After the non-linear unit, we use global

pooling that acts as a voting process. Lastly, we combine the two streams with a fully connected layer

to regress the output scale. To be precise, we define the deep features as X ∈ RC×H×W , where C is

number of channels, H and W are height and width of the deep feature maps. We define our regressor

as g : RC×H×W → R. It is important to note that we do not regress the optimal scale mopt directly since

what matters is the content instead of the image size itself. Hence, we regress a relative scale so that

the module learns to react (up-sample, down-sample, or stay the same) given the current content of the

image. Specifically, the target of the regressed scale for image i is defined as:

t(mi, mopt,i) = 2×
mopt,i/mi −mmin/mmax

mmax/mmin −mmin/mmax
− 1, (3.3)

where mi is the current scale of the image i, mmin is the minimum defined scale, e.g., 128, while mmax is

the maximum defined scale, e.g., 600. That is, we are regressing to normalized, i.e., [-1, 1], relative scales.

To generate labels for the regressor, we calculate (3.2) over the training data to obtain mopt,i ∀i ∈ Dtrain,

where Dtrain is the training data. As commonly used in regression problems, we adopt mean square error

(3.4) as the loss function to train the regressor:

Lscalereg =
1

|Dtrain| ∑
i∈Dtrain

(g(Xi)− t(mi, mopt,i))
2. (3.4)

To incorporate adaptive scaling, or AdaScale, in the video setting, we impose a temporal consistency

assumption. More precisely, we assume that the optimal scales for the two consecutive frames are similar;

our results empirically justify this assumption. Algorithm 1 shows an example of leveraging AdaScale for

video object detection, which is elaborated in section 3.3.2.

3.3 Experiments

3.3.1 Setup

All of our experiments are done using Nvidia GTX 1080 Ti. We base our implementation on the code

released by prior work [217], where MXNet [22] is used as the deep learning framework. We conduct

our experiments mainly on the ImageNet VID dataset [153], which contains 3862 and 555 training and

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 15

Input: detector, video, S: pre-defined scale set
1 image = video.next_frame();
2 targetScale = 600; // Initialize image scale
3 while image do
4 image = resize(image, targetScale);
5 base_size = minimum(image.height, image.width);
6 // Regress t of Eq. (3.3)
7 bboxes, scores, targetScale = detector.detect(image);
8 // Invert Eq. (3.3)
9 targetScale = decode(targetScale, base_size, S);

10 targetScale.clip_(min(S), max(S)).round_();
11 image = video.next_frame();
12 end

Algorithm 1: Pseudo-code for using AdaScale in the testing phase.

validation video snippets, respectively. We use a pre-trained R-FCN model [217], which is trained on both

ImageNet DET and ImageNet VID training set. For DET dataset, only the 30 categories that overlap with

the VID dataset are selected for training. The evaluation of ImageNet VID is performed on validation

set, which follows prior work [217]. In addition to ImageNet VID, we also evaluate our performance on

the recently released YouTube-BB dataset [146], which contains 23 categories and around 380,000 video

segments. Due to resource and time limitation, we randomly sample 100 segments per category and cut

20 frames per segment to form our mini training set. We also sample 10 segments per category for the

validation set to form our mini testing set. To train the model for mini Youtube-BB dataset, we use the

model trained on ImageNet VID and DET as a pre-trained model to further fine-tune on mini Youtube-BB.

3.3.2 Training and Testing

Object Detector: First, to avoid the object detector to be biased toward a single scale, we fine-tune the R-

FCN model pre-trained at scale 600, for four epochs using multi-scale training [57]. The hyperparameters

used follow prior work [217]. Specifically, we use a learning rate of 0.00025 and divide it by 10 after 1.3

and 2.6 epochs, respectively. We use two GPUs with a single image per GPU. Therefore, the training

batch size is two. In a addition, we pick the scale (the shortest side of the image) from the set Strain =

{600, 480, 360, 240}, and use the maximum bound for the longer side as 2000. Our re-sizing protocol

follows Fast R-CNN [57]. In the following sections, we will refer to the shortest side size as the image scale.

All the detection results in this work use Non-Maximum Suppression (NMS) with threshold 0.3 [35]. For

each image, the top-300 confident bounding boxes after NMS are selected as the final output. Note that

in terms of data augmentation, we add multi-scale training as an additional data augmentation strategy.

Scale Regressor: With the multi-scale trained object detector, we generate the scale label for each frame

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 16

Table 3.1: Evaluation of the proposed method. We denote methods by their approach of training and
testing, e.g., MS/SS stands for multi-scale (MS) training and single-scale (SS) testing. Blue text and red
text indicate ≥ 1 AP improvement and degradation compared to SS/SS, respectively.

(a) ImageNet VID

Method ai
rp

la
ne

an
te

lo
pe

be
ar

bi
ke

bi
rd

bu
s

ca
r

ca
ttl

e

do
g

ca
t

el
ep

ha
nt

fo
x

g.
pa

nd
a

ha
m

st
er

ho
rs

e

SS/SS 88.9 84.5 86.0 65.8 72.2 76.1 58.3 71.0 69.4 76.0 76.4 87.2 81.6 89.8 69.6
MS/SS 88.5 86.2 75.3 62.8 74.2 74.5 55.4 71.2 72.1 75.8 77.1 87.5 82.1 87.5 74.4

MS/AdaScale 88.2 87.0 80.2 67.4 73.7 75.3 57.8 73.4 74.1 81.7 77.7 89.1 81.5 93.5 75.6

lio
n

liz
ar

d

m
on

ke
y

m
ot

or
cy

cl
e

ra
bb

it

r.p
an

da

sh
ee

p

sn
ak

e

sq
ui

rr
el

tig
er

tr
ai

n

tu
rt

le

w
at

er
cr

af
t

w
ha

le

ze
br

a

mAP(%) Runtime(ms)
51.9 79.1 51.2 84.0 63.4 76.8 56.3 75.6 53.9 89.5 82.4 79.0 65.1 74.5 91.3 74.2 75
57.1 78.7 51.2 83.8 61.0 58.7 61.5 68.9 57.3 89.8 81.4 78.2 64.5 74.3 89.2 73.3 75
62.6 78.7 52.2 84.6 63.6 66.4 62.2 73.0 61.0 90.7 82.3 79.7 65.6 75.6 90.4 75.5 47

(b) Mini YouTube-BB

Method pe
rs

on

bi
rd

bo
at

bi
ke

bu
s

be
ar

co
w

ca
t

gi
ra

ffe

p.
pl

an
t

ho
rs

e

m
ot

or
cy

cl
e

kn
ife

ai
rp

la
ne

sk
at

eb
oa

rd

tr
ai

n

tr
uc

k

ze
br

a

to
ile

t

do
g

el
ep

ha
nt

um
br

el
la

ca
r

mAP(%) Runtime(ms)
SS/SS 24.9 45.3 39.3 49.1 83.1 67.8 71.8 86.5 83.7 55.0 74.4 51.8 65.1 89.9 54.2 86.7 87.1 88.5 79.7 53.5 82.8 61.1 83.5 68.0 75
MS/SS 22.4 49.4 42.0 61.7 84.2 71.0 71.3 85.1 85.9 49.5 69.3 52.1 62.1 88.8 56.1 88.1 86.8 89.2 83.1 52.5 79.9 61.5 83.4 68.5 75

MS/AdaScale 26.2 53.2 41.9 63.6 83.4 72.6 72.0 87.6 86.8 57.8 75.4 59.0 70.4 89.7 52.5 86.7 87.2 89.0 83.8 53.3 81.4 66.4 85.7 70.7 41

in the training data with a set of pre-defined scales using the proposed metric in section 3.2.1. To enable

adaptive scaling, the regressor needs to learn to scale up or down according to the current content. To

best train the regressor, we should scale the image to every possible scales for the regressor to learn the

dynamics. That is, when training the regressor, the input image scale is randomly drawn from a uniform

distribution of the pre-defined scale set Sreg. In practice, we find Sreg = {600, 480, 360, 240, 128} is enough

to cover the dynamics between 600 and 128. Note that we pick 128 since it is the scale of smallest pre-

defined bounding box or anchor used in the Region Proposal Network [149] inside R-FCN and we want

to push the image to an as small as possible scale for the largest potential speed improvement. With

the generated label, we then train our scale regressor using the training data and freeze the weights of

the entire network, except for the scale regressor module. We train the scale regressor for two epochs

with an initial learning rate of 10−4 and divide by 10 after 1.3 epoch. For the testing phase, as shown in

Algorithm 1, we begin every video snippet by re-sizing the first frame to 600. Then, we use the decoded

regressed scale for the next frame. As for decoding the regressed scale, we first count on the inverse of

(3.3) to obtain a scale in floating point. Then, we round it to an integer, and clip it to the range [Smin, Smax].

3.3.3 Evaluation

To evaluate the proposed AdaScale, we progressively compare the three methods: (i) SS/SS - a detector

trained and tested at 600, which is usually adopted by prior art [149, 35, 217, 216, 55], (ii) MS/SS - a

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 17

detector trained at Strain and tested at 600, and (iii) MS/AdaScale - a detector trained at Strain and tested

on an adaptively changing scale between 128 and 600, given the range of Sreg. Note that the scale for

MS/AdaScale can be any integer value within this range since it is predicted by the scale regressor. The

evaluation results are shown in Table 3.1. From this point on, for the sake of simplicity, we base our

analysis on ImageNet VID only. The analysis holds for mini YouTube-BB as well.

Accuracy: Compared to the baseline SS/SS, MS/AdaScale increases mAP by 1.3 points. For better

visualization, blue numbers in Table 3.1 indicate ≥ 1 AP improvement while red numbers represent ≥ 1

AP degradation. Our approach achieves ≥ 1 AP improvements in half of the categories with only three

categories having ≥ 1 AP degradation. In general, multi-scale training can enrich the training data and

achieve better generalization of the model. However, this is not always the case. For categories like red

panda and bear, there is a huge AP degradation for all the multi-scale training-based approaches. We find

that multi-scale training could potentially lead to some confusion for certain categories. We leave the

in-depth study of this phenomena to future work.

We further dive into the precision-recall curve to understand the dynamics of precision and recall for

all the methods. Fig. 3.5 shows that precision-recall curves for three most improved categories (a)-(c), one

on-par category (d), and two most degraded categories (e)-(f). To give a more comprehensive analysis,

we add multi-scale training and multi-scale testing (MS/MS) here for comparison. In addition, we also

compare with multi-scale training and random testing scenario, which selects one of the five scales in Sreg

randomly at test time. Compared to random scaling, MS/AdaScale clearly learns the dynamics of when

and how to scale to be able to have consistently higher average precision. Additionally, we can tell from

the figure that irrespective of getting better or worse compared to SS/SS, MS/AdaScale follows the curve

of MS/MS closely.

Speed: Our scale regressor incurs only 2ms of overhead, which is 3% of the runtime of R-FCN. To see

the speed improvement brought by the MS/AdaScale, Fig. 3.10(a) shows the size distribution produced

by the scale regressor on ImageNet VID validation dataset and we conduct speed sensitivity analysis on

scale set Strain in section 3.3.7. We note that, to profile the runtime, we warm up the GPU memory in

order to remove the impact of memory allocation overhead of MXNet [22].

3.3.4 Higher Precision with AdaScale

We further dig into what our method actually improves - precision or recall. As mentioned earlier in

section 3.2.2, adaptive scaling could possibly increase true positives by scaling the object into a better

scale for the detector or reduce false positives by not focusing too much on unnecessary details. To

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 18

(a) Lion (b) Squirrel (c) Horse

(d) Airplane (e) Red panda (f) Bear

Figure 3.5: Precision-Recall curves for categories that MS/AdaScale has (a)(b)(c) better performance, (d)
on-par performance, and (e)(f) worse performance compared to SS/SS.

conduct this analysis, we compute the number of true positives and false positives across all the images

in the validation set for method SS/SS, MS/SS, MS/MS, MS/AdaScale, as well as MS/Random. Fig. 3.6

shows the number of true positives and the number of false positives normalized to method SS/SS. First,

by comparing SS/SS and MS/SS, we can observe that multi-scale training is able to lower the number

of false positives dramatically. This is reasonable since multi-scale training reduces the chance that the

classifier counts on scale information as a discriminating feature. The results of MS/SS and MS/Random

show that simply down-sampling images can also reduce false positive, but it reduces true positives as

well. In addition to the false positive reduction brought by multi-scale training and image down-sampling,

MS/AdaScale manages to reduce even more false positives, with true positives comparable to SS/SS. In

general, MS/AdaScale is able to increase precision at a slight cost of recall degradation.

3.3.5 Qualitative Results

In Fig. 3.8, we show some example images for the detection results of both the baseline SS/SS and

MS/AdaScale. First, we observe that the regressor learns to down-sample the image when there is a

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 19

(a) Lion (b) Squirrel (c) Horse

(d) Airplane (e) Red Panda (f) Bear

Figure 3.6: Normalized true positives and false positives for different methods across all the images in
validation set for three selected categories.

large object in the image. On the other hand, it stays in higher scales if there is a small object in the image.

Also, we notice that the regressor learns to scale to the right size to avoid false positives and even correct

predictions with false classes.

To understand AdaScale more in terms of the sequential decisions, Fig. 3.9 shows the AdaScale dy-

namics of three clips. Specifically, it shows that (i) it stably down-samples images with a large object; (ii)

it stably scales the images into larger scales when the object is small; and (iii) it jitters when there are

multiple objects with varying sizes. The scale jittering in the third clip indicates that if there are size-

varying multiple objects in the frame, it is harder to decide what constitutes a better size, which can also

be observed in the watercraft of Fig. 3.8. To enhance the current design, it is possible to apply AdaScale

recursively on the attention of the given image, to obtain results from multiple regressed scales. We leave

improvements of the current design to future work.

3.3.6 Comparison with Prior Work

To our best knowledge, our work is the first to exploit the use of images with smaller scales for improving

both speed and accuracy, rather than treating them as a trade-off [80, 35, 147, 28, 110]. For video object

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 20

Figure 3.7: mAP and speed comparison with prior art on ImageNet VID dataset. Applying our AdaScale
to RFCN [35], DFF [216] and SeqNMS [65] can further improve both speed and accuracy.

detection, our work is complementary to some of the prior work that tries to benefit from the detection

results of multiple frames to improve accuracy or speed.

In Fig. 3.7, the baseline object detector is R-FCN [35] with 74.2 mAP and 13.3 frame-per-second (FPS).

We run the prior work approaches [216, 217, 65, 55] that provide source code for our experiment setup

to profile both speed and mAP. Additionally, we combine our work with SeqNMS [65] and Deep Feature

Flow (DFF) [217] to further push the Pareto frontier by maintaining the accuracy while speeding up testing

by an additional 61% and 25%, respectively.

3.3.7 Ablation Study

Table 3.2: mAP and runtime for different multi-scale training settings.

Strain {600,480,360,240} {600,480,360} {600,360} {600}
testing method SS Ada. SS Ada. SS Ada. SS Ada.

mAP (%) 73.3 75.5 73.3 74.8 73.4 74.8 74.2 74.2
runtime (ms) 75 47 75 55 75 57 75 68

Training Scales of Object Detector: To understand how multi-scale training affects the performance of

AdaScale, we try different sets of training scales Strain and the results are shown in Table 3.2 and Fig. 3.10.

We find that a larger set of Strain improves both the mAP and speed of AdaScale. From Fig. 3.10(a)-(d),

we can also observe higher speed with smaller training scales. We postulate that it is due to two reasons:

(i) Multi-scale trained object detector is able to generate more meaningful labels for the regressor to learn

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 21

(a) SS/SS (b) MS/AdaScale (c) SS/SS (d) MS/AdaScale

Figure 3.8: Comparing the results of SS/SS and MS/AdaScale qualitatively. Column (a) and (c) are
results produced by SS/SS; column (b) and (d) are results produced by MS/AdaScale. The scales used in
MS/AdaScale are labeled in black rectangle with white text.

Figure 3.9: The investigation of the dynamics of AdaScale. The scales of the images are labeled in bottom-
right.

since it is less biased toward some scales. (ii) The object detector becomes good at multiple scales that

could be better exploited by the scale regressor.

Regressor Architectures: We try using different sizes of filter for the regressor module and we show the

results in Table 3.3. Interestingly, since the accuracy of the regressor directly affects the speed of the object

detector, both regressor’s accuracy and the overhead of the module affect the final overall speed.

CHAPTER 3. ADASCALE: SCALE INPUTS ADAPTIVELY FOR IMPROVED SPEED AND ACCURACY 22

(a) {600,480,360,240} (b) {600,480,360} (c) {600,360} (d) {600}

Figure 3.10: The regressed scale distribution of AdaScale tested on ImageNet VID validation set. (a)-(d)
use different Strain.

Table 3.3: mAP and runtime for different regressor architectures.

kernel size 1 1&3 1&3&5
mAP (%) 75.3 75.5 75.5

runtime (ms) 51 47 50

3.4 Discussion

In this chapter, we present a thorough study of the possibility of improving both speed and accuracy

in video object detection with adaptive scaling. Our contributions are three-fold: (i) to the best of our

knowledge, our work is the first work to demonstrate the use of down-sampled images for improving

both speed and accuracy for video object detection, (ii) we provide comprehensive empirical results that

demonstrate improvement in both ImageNet VID as well as mini YouTube-BB datasets, and (iii) we com-

bine our technique with state-of-the-art video object detection acceleration techniques and further improve

the speed by an additional 25% with the added benefit of slightly higher accuracy.

3.5 Carbon Footprint Analysis

When compared to standard object detectors, our methodology saves carbon footprint during inference

but increases it during training. During training, in addition to obtaining standard object detectors,

we conduct multi-scale fine-tuning for object detectors and multi-scale training for the scale regressor.

Training the baseline object detector takes 120k iterations [35] and it takes extra 60k iterations for our

proposed method. That is, we have increased the training overhead by 1.5×. According to our analysis

on ImageNet VID with R-FCN, we have reduced the inference latency by 1.6×. According to a recent

study by Patterson et al. [139], the ratio of training and inference is roughly nine to one in current cloud

providers. With the above calculation, adopting the AdaScale methodology can reduce the total carbon

footprint by 29% compared to using a standard object detector.

Chapter 4

Winning-Bitwidth: Beyond Quantization for

Fixed CNNs

In this chapter, we describe our finding that model compression via weight quantization benefits some

neural architectures more than others. More specifically, if we allow the number of channels to be changed

for the network to be quantized, one can achieve better a trade-off between accuracy and compression rate.

4.1 Motivation

Recent success of CNNs in computer vision applications such as image classification and semantic seg-

mentation has fueled many important applications in storage-constrained devices, e.g., virtual reality

headsets, drones, and IoT devices. As a result, improving the parameter-efficiency (the top-1 accuracy to

the parameter counts ratio) of CNNs while maintaining their attractive features (e.g., accuracy for a task)

has gained tremendous research momentum recently.

Among the efforts of improving CNNs’ efficiency, weight quantization was shown to be an effective

technique [211, 208, 76, 43]. The majority of research efforts in quantization has targeted quantization

algorithms for finding the lowest possible weight bitwidth without compromising the figure-of-merit

(i.e., accuracy). Mixed-precision quantization methods, which allow different bitwidths to be selected

for different layers in the network, have recently been proposed to further compress deep CNNs [176,

185, 50]. Nevertheless, having different bitwidths for different layers greatly increases the neural network

implementation complexity from both hardware and software perspectives. For example, hardware and

software implementations optimized for executing an 8 bits convolution are sub-optimal for executing a

4 bits convolution, and vice versa.

To minimize the efforts of hardware and software support, it is natural to wonder: “Is some weight

23

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 24

bitwidth better than others?” However, this is an ill-posed problem as one cannot decide optimality

between two bitwidths if one has smaller model size while the other has better accuracy. This work takes

a first step towards understanding if some bitwidth is better than other bitwidths under a given model

size constraint. Given the multi-objective nature of the problem, we need to align different bitwidths to

the same model size to further decide the optimality for the bitwidth selection. To realize model size

alignment for different bitwidths, we relax the commonly adopted notion that the network architecture

stays orthogonal to weight quantization. In more details, we propose to change the network architecture

so that different bitwidths can have the same model size and we use the width-multiplier1 [77] as a tool

to compare the performance of different weight bitwidths under the same model size.

With this setting, we find that there exists some weight bitwidth that consistently outperforms others

across different model sizes when all are considered under a given model size constraint. This suggests

that one can decide the optimal bitwidth for small model sizes to save computing cost and the result

generalizes to large model sizes2. Additionally, we show that the optimal bitwidth of a convolutional layer

negatively correlates to the convolutional kernel fan-in. As an example, depth-wise convolutional layers

turn to have optimal bitwidth values that are higher than that of all-to-all convolutions. We further provide

a theoretical reasoning for this phenomenon. These findings suggest that architectures such as VGG and

ResNets are more parameter-efficient when they are wide and use binarized weights. On the other hand,

networks such as MobileNets [77] might require different weight bitwidths for all-to-all convolutions

and depth-wise convolutions. Somewhat surprisingly, we find that on ImageNet, under a given model

size constraint, a single bitwidth for both ResNet-50 and MobileNetV2 can outperform mixed-precision

quantization using reinforcement learning [176] that targets minimum total bitwidth without accuracy

degradation. This suggests that searching for the minimum bitwidth configuration while holding the

network architecture to be fixed is a sub-optimal strategy. Our results suggest that when the number of

channels becomes one of the hyperparameters under consideration, a single weight bitwidth throughout

the network shows great potential for model compression.

In summary, we systematically analyze the model size and accuracy trade-off considering both weight

bitwidths and the number of channels for various modern networks architectures (variants of ResNet,

VGG, and MobileNet) and datasets (CIFAR and ImageNet) and have the following contributions:

• We empirically show that when allowing the network width to vary, lower weight bitwidths outper-

form higher ones in a Pareto sense (accuracy vs. model size) for networks with standard convolu-

1Width-multiplier grows or shrinks the number of channels across the layers with identical proportion for a certain network,
e.g., grow the number of channels for all the layers by 2×.

2Note that we use width-multiplier to scale model across different sizes.

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 25

tions. This suggests that for such CNNs, further research on wide binary weight networks is likely

to identify better network configurations which will require further hardware/software platform

support.

• We empirically show that the optimal bitwidth of a convolutional layer negatively correlates to the

convolutional kernel fan-in and provide theoretical reasoning for such a phenomenon. This suggests

that one could potential categorize CNNs based on the convolutional kernel fan-in when designing

the corresponding bitwidth support from both software and hardware.

• We empirically show that one can achieve a more accurate model (under a given model size) by using

a single bitwidth when compared to mixed-precision quantization that uses deep reinforcement

learning to search for layer-wise weight precision values. Moreover, the results are validated on a

large-scale dataset, i.e., ImageNet.

The remainder of this chapter is organized as follows. Section 4.2 discusses our experiments for all our

findings. In particular, Section 4.2.2 shows that some bitwidth can outperform others consistently across

model sizes when both are compared under the same model size constraint using width-multipliers. Sec-

tion 4.2.3 discusses how fan-in channel count per convolutional kernel affects the resilience of quantiza-

tion for convolution layers, which further affects the optimal bitwidth for a convolution layer. Section 4.2.4

scales up our experiments to ImageNet and demonstrates that a single weight bitwidth manages to out-

perform mixed-precision quantization given the same model size. Section 4.3 concludes the chapter.

4.2 Experiments

We conduct all our experiments on image classification datasets including CIFAR-100 [93] and ImageNet.

All experiments are trained from scratch to ensure different weight bitwidths are trained equally long.

While we do not start from a pre-trained model, we note that our baseline fixed-point models (i.e., 4 bits

for CIFAR and 8 bits for ImageNet) have accuracy comparable to their floating-point counterparts. For

all the experiments on CIFAR, we run the experiments three times and report the mean and standard

deviation.

4.2.1 Training hyper-parameters

For CIFAR, we use a learning rate of 0.05, cosine learning rate decay, linear learning rate warmup (from 0

to 0.05) with 5 epochs, batch size of 128, total training epoch of 300, weight decay of 5e−4, SGD optimizer

with Nesterov acceleration and 0.9 momentum.

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 26

For ImageNet, we have identical hyper-parameters as CIFAR except for the following hyper-parameters

batch size of 256, 120 total epochs for MobileNetV2 and 90 for ResNets, weight decay 4e−5, and 0.1 label

smoothing.

4.2.2 Bitwidth comparisons

In this subsection, we are primarily interested in the following question:

When taking network width into account, does one bitwidth

consistently outperform others across model sizes?

To our best knowledge, this is an open question and we take a first step to answer this question

empirically. If the answer is affirmative, it may be helpful to focus the software/hardware support on

the better bitwidth when it comes to parameter-efficiency. We consider three kinds of commonly adopted

CNNs, namely, ResNets with basic block [68], VGG [157], and MobileNetV2 [154]. These networks differ

in the convolution operations, connections, and filter counts. For ResNets, we explored networks from 20

to 56 layers in six layer increments. For VGG, we investigate the case of eleven layers. Additionally, we

also study MobileNetV2, which is a mobile-friendly network. We note that we modify the stride count in

of the original MobileNetV2 to match the number of strides of ResNet for CIFAR. The architectures that

we introduce for the controlled experiments are discussed in detail in Appendix A.1.

For CIFAR-100, we only study weight bitwidths below 4 since this configuration achieves performance

comparable to its floating-point counterpart. Specifically, we consider 4 bits, 2 bits, and 1 bit weights.

To compare different weight bitwidths, we use the width-multiplier to align the model size among them.

For example, one can make a 1-bit CNN twice as wide to match the model size of a 4-bit CNN 3. For

each of the networks we study, we sweep the width-multiplier to consider points at multiple model sizes.

Specifically, for ResNets, we investigate seven depths, four model sizes for each depth, and three bitwidths,

which results in 7× 4× 3× 3 experiments. For both VGG11 and MobileNetV2, we consider eight model

sizes and three bitwidths, which results in 2× 8× 3× 3 experiments.

As shown in Figure 4.1, across the three types of networks we study, there exists some bitwidth that is

better than others. That is, the answer to the question we raised earlier in this subsection is affirmative.

For ResNets and VGG, this value is 1 bit. In contrast, for MobileNetV2, it is 4 bits. The results for ResNets

and VGG are particularly interesting since lower weight bitwidths are better than higher ones. In other

words, binary weights in these cases can achieve the best accuracy and model size trade-off. On the other

3Increase the width of a layer increases the number of output filters for that layer as well as the number of channels for
the subsequent layer. Thus, number of parameters and number of operations grow approximately quadratically with the width-
multiplier.

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 27

(a) ResNets (20 to 56 layers in incre-
ments of 6)

(b) VGG11 (c) MobileNetV2

Figure 4.1: Some bitwidth is consistently better than other bitwidths across model sizes. Csize denotes
model size. xWyA denotes x-bit weight quantization and y-bit activation quantization. The experiments
are done on the CIFAR-100 dataset. For each network, we sweep the width-multiplier to cover points at
multiple model sizes. For each dot, we plot the mean and standard deviation of three random seeds. The
standard deviation might not be visible due to little variances.

hand, MobileNetV2 exhibits a different trend where higher bitwidths are better than lower bitwidths up

to 4 bits4.

4.2.3 CNN architectures and quantization

While there exists an ordering among different bitwidths as shown in Fig. 4.1, it is not clear what de-

termines the optimal weight bitwidth. To further uncover the relationship between CNN’s architectural

parameters and its optimal weight bitwidth, we ask the following questions.

What architectural components determine the MobileNetV2

optimal weight bitwidth of 4 bits as opposed to 1 bit?

As it can be observed in Fig. 4.1, MobileNetV2 is a special case where the higher bitwidth is better

than lower ones. When comparing MobileNetV2 to the other two networks, there are many differences,

including how convolutions are connected, how many convolutional layers are there, how many filters in

each of them, and how many channels for each convolution. To narrow down which of these aspects result

in the reversed trend compared to the trend exhibits in ResNets and VGG, we first consider the inverted

residual blocks, i.e., the basic component in MobileNetV2. To do so, we replace all basic blocks (two

consecutive convolutions) of ResNet26 with the inverted residual blocks as shown in Fig. 4.2c and 4.2d.

We refer to this new network as Inv-ResNet26. As shown in Fig. 4.2a and 4.2b, the optimal bitwidth shifts

from 1 bit to 4 bit once the basic blocks are replaced with inverted residual blocks. Thus, we can infer that

the inverted residual block itself or its components are responsible for such a reversed trend.

4However, not higher than 4 bits since the 4-bit model has accuracy comparable to the floating-point model.

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 28

(a) ResNet26 (b) Inv-ResNet26 (c) Basic block (d) Inverted residual block

Figure 4.2: The optimal bitwidth for ResNet26 changes from 1 bit (a) to 4 bit (b) when the building blocks
change from basic blocks (c) to inverted residual blocks (d). Csize in (a) and (b) denotes model size. (Cout,
Cin, K, K) in (c) and (d) indicate output channel count, input channel count, kernel width, and kernel
height of a convolution.

Since an inverted residual block is composed of a point-wise convolution and a depth-wise separable

convolution, we further consider the case of depth-wise separable convolution (DWSConv). To identify

whether DWSConv can cause the inverted trend, we use VGG11 as a starting point and gradually replace

each of the convolutions with DWSConv. We note that doing so results in architectures that gradually

resemble MobileNetV1 [77]. Specifically, we introduce three variants of VGG11 that have an increasing

number of convolutions replaced by DWSConvs. Starting with the second layer, variant A has one layer

replaced by DWSConv, variant B has four layers replaced by DWSConvs, and variant C has all of the layers

except for the first layer replaced by DWSConvs (the architectures are detailed in Appendix A.1).

As shown in Fig. 4.3, as the number of DWSConv increases (from variant A to variant C), the optimal

bitwidth shifts from 1 bit to 4 bits, which implies that depth-wise separable convolutions or the layers

within it are affecting the optimal bitwidth. To identify which of the layers of the DWSConv (i.e., the

depth-wise convolution or the point-wise convolution) has more impact on the optimal bitwidth, we keep

the bitwidth of depth-wise convolutions fixed at 4 bits and quantize other layers. As shown in Fig. 4.3d,

the optimal curve shifts from 4 bits being the best back to 1 bit, with a similarly performing 2 bits. Thus,

depth-wise convolutions appear to directly affect the optimal bitwidth trends.

Is depth-wise convolution less resilient to quantization or

less sensitive to channel increase?

After identifying that depth-wise convolutions have a different characteristic in optimal bitwidth com-

pared to standard all-to-all convolutions, we are interested in understanding the reason behind this. In our

setup, the process to obtain a lower bitwidth network that has the same model size as a higher bitwidth

network can be broken down into two steps: (1) quantize a network to lower bitwidth and (2) grow the

network with width-multiplier to compensate for the reduced model size. As a result, the fact that depth-

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 29

(a) Variant A (b) Variant B

(c) Variant C (d) Variant C without quantizing depth-wise convo-
lutions

Figure 4.3: The optimal bitwidth for VGG shifts from 1 bit to 4 bit as more convolutions are replaced
with depth-wise separable convolutions (DWSConv), i.e., from (a) to (c). Variant A, B, and C have 30%,
60%, and 90% of the convolution layers replaced with DWSConv, respectively. As shown in (d), the
optimal bitwidth changes back to 1 bit if we only quantize point-wise convolution but not depth-wise
convolutions.

wise convolution has higher weight bitwidth better than lower weight bitwidth might potentially be due

to the large accuracy degradation introduced by quantization or the small accuracy improvements from

the use of more channels.

To further diagnose the cause, we decompose the accuracy difference between a lower bitwidth but

wider network and a higher bitwidth but narrower network into accuracy differences incurred in the

aforementioned two steps as shown in Fig. 4.4. Specifically, let ∆AccQ denote the accuracy difference

incurred by quantizing a network and let ∆AccG denote the accuracy difference incurred by increasing

the channel count of the quantized network.

We analyze ∆AccG and ∆AccQ for networks with and without quantizing depth-wise convolutions, i.e.,

Fig. 4.3c and Fig. 4.3d. In other words, we would like to understand how depth-wise convolutions affect

∆AccG and ∆AccQ. On one hand, ∆AccQ is evaluated by comparing the accuracy of the 4-bit model and

the corresponding 1-bit model. On the other hand, ∆AccG is measured by comparing the accuracy of the 1-

bit model and its 2× grown counterpart. As shown in Table 4.1, when quantizing depth-wise convolutions,

∆AccQ becomes more negative such that ∆AccQ + ∆AccG < 0. This implies that the main reason for the

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 30

Figure 4.4: Visualization of our accuracy decomposition, which is used for analyzing depth-wise convo-
lutions.

Table 4.1: Quantizing depth-wise convolution introduces large accuracy degradation across model sizes.
∆AccQ = Acc1bit − Acc4bit denotes the accuracy introduced by quantization and ∆AccG = Acc1bit,2× −
Acc1bit denotes the accuracy improvement by increasing channel counts. The CNN is VGG variant C with
and without quantizing the depth-wise convolutions from 4 bits to 1 bit.

Width-multiplier 1.00× 1.25× 1.50× 1.75× 2.00× Average
Variant C ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG

w/o Quantizing DWConv -1.54 +2.61 -2.76 +2.80 -1.77 +1.74 -1.82 +1.64 -1.58 +1.55 -1.89 +2.07
Quantizing DWConv -8.60 +4.39 -7.60 +3.41 -7.74 +3.19 -8.61 +4.09 -7.49 +2.25 -8.01 +3.47

optimal bitwidth change is that quantizing depth-wise convolutions introduce more accuracy degradation

than it can be recovered by increasing the channel count when going below 4 bits compared to all-to-

all convolutions. We note that it is expected that quantizing the depth-wise convolutions would incur

smaller ∆AccQ compared to their no-quantization baseline because we essentially quantized more layers.

However, depth-wise convolutions only account for 2% of the model size but incur on average near 4×

more accuracy degradation when quantized.

We would like to point out that Sheng et al. [156] also find that quantizing depth-wise separable

convolutions incurs large accuracy degradation. However, their results are based on post-training layer-

wise quantization. As mentioned in their work [156], the quantization challenges in their setting could

be resolved by quantization-aware training, which is the scheme considered in this chapter. Hence, our

observation is novel and interesting.

Why is depth-wise convolution less resilient to quantization?

Having uncovered that depth-wise convolutions introduce large accuracy degradation when weights

are quantized below 4 bits, in this section, we investigate depth-wise convolutions from a quantization

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 31

Figure 4.5: The average estimate Var(¯|w|) for each depth-wise convolution under different d = (Cin ×
Kw × Kh) values.

perspective. When comparing depth-wise convolutions and all-to-all convolutions in the context of quan-

tization, they differ in the number of elements to be quantized, i.e., Cin = 1 for depth-wise convolutions

and Cin >> 1 for all-to-all convolutions.

Why does the number of elements matter? In quantization-aware training, one needs to estimate some

statistics of the vector to be quantized (i.e., a in Equation 2.4 and ¯|w| in Equations 2.6) based on the

elements in the vector. The number of elements affect the robustness of the estimate that further decides

the quantized weights. More formally, we provide the following proposition.

Proposition 4.2.1 Let w ∈ Rd be the weight vector to be quantized where wi is characterized by normal distribu-

tion N (0, σ2) ∀ i without assuming samples are drawn independently and d = CinKwKh. If the average correlation

of the weights is denoted by ρ, the variance of ¯|w| can be written as follows:

Var(¯|w|) = σ2

d
+

(d− 1)ρσ2

d
− 2σ2

π
. (4.1)

The proof is in Appendix A.2. This proposition states that, as the number of elements (d) increases,

the variance of the estimate can be reduced (due to the first term in equation (4.1)). The second term

depends on the correlation between weights. Since the weights might not be independent during training,

the variance is also affected by their correlations.

We empirically validate Proposition 4.2.1 by looking into the sample variance of ¯|w| across the course

of training5 for different d values by increasing (Kw, Kh) or Cin. Specifically, we consider the 0.5× VGG

variant C and change the number of elements of the depth-wise convolutions. Let d = (Cin×Kw×Kh) for

a convolutional layer, we consider the original depth-wise convolution, i.e., d = 1× 3× 3 and increased

channels with d = 4 × 3 × 3 and d = 16 × 3 × 3, and increased kernel size with d = 1 × 6 × 6 and

d = 1× 12× 12. The numbers are selected such that increasing the channel count results in the same d

5We treat the calculated ¯|w| at each training step as a sample and calculate the sample variance across training steps.

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 32

Figure 4.6: d negatively correlates with the variance and positively correlates with the accuracy difference
induced by quantization ∆AccQ = Acc1bit − Acc4bit.

compared to increasing the kernel sizes. We note that when the channel count (Cin) is increased, it is no

longer a depth-wise convolution, but rather a group convolution.

In Fig. 4.5, we analyze layer-level sample variance by averaging the kernel-level sample variance in

the same layer. First, we observe that results align with Proposition 4.2.1. That is, one can reduce the

variance of the estimate by increasing the number of elements along both the channel (Cin) and kernel

size dimensions (Kw, Kh). Second, we find that increasing the number of channels (Cin) is more effective in

reducing the variance than increasing kernel size (Kw, Kh), which could be due to the weight correlation,

i.e., intra-channel weights have larger correlation than inter-channel weights.

Nonetheless, while lower variance suggests a more stable value during training, it might not neces-

sarily imply lower quantization error for the quantized models. Thus, we conduct an accuracy sensitivity

analysis with respect to quantization for different d values. More specifically, we want to understand

how d affects the accuracy difference between lower bitwidth (1 bit) and higher bitwidth (4 bits) models

(∆AccQ). As shown in Fig. 4.6, we empirically find that d positively correlates with ∆AccQ, i.e., the larger

the d, the smaller the accuracy degradation is. On the other hand, when comparing channel counts and

kernel sizes, we observe that increasing the number of channels is more effective than increasing the ker-

nel size in reducing accuracy degradation caused by quantization. This analysis sheds light on the two

different trends observed in Fig. 4.1.

4.2.4 Remarks and scaling up to ImageNet

We have two intriguing findings so far. First, there exists some bitwidth that is better than others across

model sizes when compared under a given model size. Second, the optimal bitwidth is architecture-

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 33

Table 4.2: bitwidth ordering for MobileNetV2 and ResNet50 with the model size aligned to the 0.25× 8 bits
models on ImageNet. Each cell reports the top-1 accuracy of the corresponding model. The trend for the
optimal bitwidth is similar to that of CIFAR-100 (4 bit for MobileNetV2 and 1 bit for ResNet).

Weight bitwidth for MobileNetV2 ResNet50
Convs \ DWConvs 8 bits 4 bits 2 bits 1 bit None

8 bits 52.17 53.89 50.51 48.78 71.11
4 bits 56.84 59.51 57.37 55.91 74.65
2 bits 53.89 57.10 55.26 54.04 75.12
1 bit 54.82 58.16 56.90 55.82 75.44

dependent. More specifically, the optimal weight bitwidth negatively correlates with the fan-in channel

counts per convolutional kernel. These findings show promising results for the hardware and software

researchers to support only a certain set of bitwidths when it comes to parameter-efficiency. For example,

use binary weights for networks with all-to-all convolutions.

Next, we scale up our analysis to the ImageNet dataset. Specifically, we study ResNet50 and Mo-

bileNetV2 on the ImageNet dataset. Since we keep the bitwidth of the first and last layer quantized at

8 bits, scaling them in terms of width will grow the number of parameters much more quickly than other

layers. As a result, we keep the number of channels for the first and last channel fixed for the ImageNet

experiments. As demonstrated in Section 4.2.2, the bit ordering is consistent across model sizes, we con-

duct our analysis for ResNet50 and MobileNetV2 by scaling them down with a width-multiplier of 0.25×

for computational considerations. The choices of bitwidths are limited to {1, 2, 4, 8}.

As shown in Table 4.2, we can observe a trend similar to the CIFAR-100 experiments, i.e., for networks

without depth-wise convolutions, the lower weight bitwidths the better, and for networks with depth-wise

convolutions, there are sweet spots for depth-wise and other convolutions. Specifically, the final weight

bitwidth selected for MobileNetV2 is 4 bits for both depth-wise and standard convolutions. On the other

hand, the selected weight bitwidth for ResNet50 is 1 bit. If bit ordering is indeed consistent across model

sizes, these results suggest that the optimal bitwidth for MobileNetV2 is 4 bit and it is 1 bit for ResNet50.

However, throughout our analysis, we have not considered mixed-precision, which makes it unclear if the

so-called optimal bitwidth (4 bit for MobileNetV2 and 1 bit for ResNet-50) is still optimal when compared

to mixed-precision quantization.

As a result, we further compare with mixed-precision quantization that uses reinforcement learning

to find the layer-wise bitwidth [176]. Specifically, we follow [176] and use a reinforcement learning ap-

proach to search for the lowest bitwidths without accuracy degradation (compared to the 8 bits fixed point

models). To compare the searched model with other alternatives, we use width-multipliers on top of the

searched network match the model size of the 8 bit quantized model. We consider networks of three sizes,

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 34

Table 4.3: The optimal bitwidth selected in Table 4.2 is indeed better than 8 bit when scaled to larger
model sizes and more surprisingly, it is better than mixed-precision quantization. All the activations are
quantized to 8 bits.

Width-multiplier for 8-bit model 1× 0.5× 0.25×

Networks Methods Top-1 (%) Csize (106) Top-1 (%) Csize (106) Top-1 (%) Csize (106)

ResNet50

Floating-point 76.71 816.72 74.71 411.48 71.27 255.4
8 bits 76.70 204.18 74.86 102.87 71.11 63.85

Flexible [176] 77.23 204.18 76.04 102.90 74.30 63.60
Optimal (1 bit) 77.58 204.08 76.70 102.83 75.44 63.13

MobileNetV2

Floating-point 71.78 110.00 63.96 61.76 52.79 47.96
8 bits 71.73 27.50 64.39 15.44 52.17 11.99

Flexible [176] 72.13 27.71 65.00 15.54 55.20 12.10
Optimal (4 bit) 73.91 27.56 68.01 15.53 59.51 12.15

i.e., the size of 1×, 0.5× and 0.25× 8-bit fixed point models. As shown in Table 4.3, we find that a single

bitwidth (selected via Table 4.2) outperforms both 8 bit quantization and mixed-precision quantization by

a significant margin for both networks considered. This results suggest that searching for the bitwidth

without accuracy degradation is indeed a sub-optimal strategy and can be improved by incorporating

channel counts into the search space and reformulate the optimization problem as maximizing accuracy

under storage constraints. Moreover, our results also imply that when the number of channels are al-

lowed to be altered, a single weight bitwidth throughout the network shows great potential for model

compression, which has the potential of greatly reducing the software and hardware optimization costs

for quantized CNNs.

4.3 Discussion

In this chapter, we provide the first attempt to understand the ordering between different weight bitwidths

by allowing the channel counts of the considered networks to vary using the width-multiplier. If there

exists such an ordering, it may be helpful to focus on software/hardware support for higher-ranked

bitwidth when it comes to parameter-efficiency, which in turn reduces software/hardware optimization

costs. To this end, we have three findings: (1) there exists a weight bitwidth that is better than others across

model sizes under a given model size constraint, (2) the optimal weight bitwidth of a convolutional layer

negatively correlates to the fan-in channel counts per convolutional kernel, and (3) with a single weight

bitwidth for the whole network, one can find configurations that outperform model-oblivious layer-wise

mixed-precision quantization using reinforcement learning when compared under a given same model

size constraint. Our results suggest that when the CNNs to be quantized are allowed to be altered archi-

tecturally, a single weight bitwidth throughout the network shows great potential for model compression.

CHAPTER 4. WINNING-BITWIDTH: BEYOND QUANTIZATION FOR FIXED CNNS 35

Additionally, our results show that it may be promising to conduct neural architecture search (NAS)

jointly with network quantization. While Wang et al. [178] have conducted a similar study, their architec-

ture search space does not include the number of groups for convolutional kernel, which is the crucial

aspect for quantization as hinted by the analysis in this chapter. Hence, it would be desirable for fu-

ture work to explore joint NAS and quantization while specifically taking the convolutional groups into

consideration.

4.4 Carbon Footprint Analysis

Without assuming specialized hardware that can benefit from quantized representation, our approach

incurs extra carbon footprint. More specifically, we grow the network wider and use lower weight bitwidth

during training and inference. Compared to an 8-bit model, our approach makes the model 1-bit and

2.83× wider for ResNets and 4-bit and 2× wider for MobileNets. This effectively introduces additional

8× and 4× carbon footprint for ResNets and MobileNets. However, if we assume the underlying hardware

can benefit from lower precision during inference and assume that the training to inference ratio is one to

nine [139], then our method improves the top-1 accuracy by incurring 1.7× and 1.3× carbon footprint for

ResNets and MobileNets, respectively.

Chapter 5

LeGR: Towards Efficient Filter Pruning

Starting with this chapter, we switch gears from proposing novel ways for model compression to propos-

ing novel ways to scale model compression across many target compression ratios. In this chapter, we

propose to make filter pruning more efficient across multiple target compression ratios by introducing a

new way to formulate the problem. Specifically, we propose to learn a global ranking among filters in a

pre-trained network such that a greedy pruning procedure, which is efficient for many target compression

ratios, can be effective.

5.1 Motivation

Building on top of the success of visual perception [150, 66, 68], natural language processing [38, 42],

and speech recognition [30, 138] with deep learning, researchers have started to explore the possibility

of embodied AI applications. In embodied AI, the goal is to enable agents to take actions based on

perceptions in some environments [155]. We envision that next generation embodied AI systems will run

on mobile devices such as autonomous robots and drones, where compute resources are limited and thus,

will require model compression techniques for bringing such intelligent agents into our lives.

In particular, pruning the convolutional filters in CNNs, also known as filter pruning, was shown to be

an effective technique [190, 114, 181, 99] for trading accuracy for inference speed improvements. The core

idea of filter pruning is to find the least important filters to prune by minimizing the accuracy degradation

and maximizing the speed improvement. State-of-the-art filter pruning methods [59, 71, 114, 213, 140, 34]

require a target model complexity of the whole CNN (e.g., total filter count, FLOP count1, model size,

inference latency, etc.) to obtain a pruned network. However, deciding a target model complexity for

optimizing embodied AI applications can be hard. For example, considering delivery with autonomous

1The number of floating-point operations to be computed for a CNN to carry out an inference.

36

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 37

Figure 5.1: Using filter pruning to optimize CNNs for embodied AI applications. Instead of producing
one CNN for each pruning procedure as in prior art, our proposed method produces a set of CNNs for
practitioners to efficiently explore the trade-offs.

drones, both inference speed and precision of object detectors can affect the drone velocity [13], which

in turn affects the inference speed and precision2. For an user-facing autonomous robot that has to

perform complicated tasks such as MovieQA [166], VQA [3], and room-to-room navigation [2], both

speed and accuracy of the visual perception module can affect the user experience. These aforementioned

applications require many iterations of trial-and-error to find the optimal trade-off point between speed

and accuracy of the CNNs.

More concretely, in these scenarios, practitioners would have to determine the sweet-spot for model

complexity and accuracy in a trial-and-error fashion. Using an existing filter pruning algorithm many

times to explore the impact of the different accuracy-vs.-speed trade-offs can be time-consuming. Fig-

ure 5.1 demonstrates the usage of filter pruning for optimizing CNNs in aforementioned scenarios. With

prior approaches, one has to go through the process of finding constraint-satisfying pruned-CNNs via

a pruning algorithm for every model complexity considered until practitioners are satisfied with the

accuracy-vs.-speedup trade-off. Our work takes a first step toward alleviating the inefficiency in the afore-

mentioned paradigm. We propose to alter the objective of pruning from outputting a single CNN with

pre-defined model complexity to producing a set of CNNs that have different accuracy/speed trade-offs,

while achieving comparable accuracy with state-of-the-art methods (as shown in Figure 5.4). In this fash-

ion, the model compression overhead can be greatly reduced, which results in a more practical usage of

2Higher velocity requires faster computation and might cause accuracy degradation due to the blurring effect of the input video
stream.

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 38

filter pruning.

To this end, we propose learned global ranking (or LeGR), an algorithm that learns to rank convolutional

filters across layers such that the CNN architectures of different speed/accuracy trade-offs can be obtained

easily by dropping the bottom-ranked filters. The obtained architectures are then fine-tuned to generate

the final models. In such a formulation, one can obtain a set of architectures by learning the ranking

once. We demonstrate the effectiveness of the proposed method with extensive empirical analyses using

ResNet and MobileNetV2 on CIFAR-10/100, Bird-200, and ImageNet datasets. The main contributions of

this chapter are as follows:

• We propose learned global ranking (LeGR), which produces a set of pruned CNNs with different ac-

curacy/speed trade-offs. LeGR is shown to be faster than prior art in CNN pruning, while achieving

comparable accuracy with state-of-the-art methods on three datasets and two types of CNNs.

• Our formulation towards pruning is the first work that considers learning to rank filters across dif-

ferent layers globally, which addresses the limitation of prior art in magnitude-based filter pruning.

5.2 Learned Global Ranking

The core idea of the proposed method is to learn a ranking for filters across different layers such that a

CNN of a given complexity can be obtained easily by pruning out the bottom rank filters. In this section,

we discuss our assumptions and formulation toward achieving this goal.

As mentioned earlier in Section 5.1, often both accuracy and latency of a CNN affect the performance

of the overall application. The goal for model compression in these settings is to explore the accuracy-

vs.-speed trade-off for finding a sweet-spot for a particular application using model compression. Thus,

in this chapter, we use FLOP count for the model complexity to sample CNNs. As we will show in

Section 5.4.3, we find FLOP count to be predictive for latency.

5.2.1 Global Ranking

To obtain pruned-CNNs with different FLOP counts, we propose to learn the filter ranking globally

across layers. In such a formulation, the global ranking for a given CNN just needs to be learned once and

can be used to obtain CNNs with different FLOP counts. However, there are two challenges for such a

formulation. First, the global ranking formulation enforces an assumption that the top-performing smaller

CNNs are a proper subset of the top-performing larger CNNs. As there are many ways to set the filter

counts across different layers to achieve a given FLOP count, it implies that there are opportunities where

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 39

the top-performing smaller network can have more filter counts in some layers but fewer filter counts in

others compared to a top-performing larger CNN. Nonetheless, this assumption enables the idea of global

filter ranking, which can generate pruned CNNs with different FLOP counts efficiently. In addition, the

experiment results in Section 5.4.1 show that the pruned CNNs under this assumption are competitive

in terms of performance with the pruned CNNs obtained without this assumption. We state the subset

assumption more formally below.

Assumption 5.2.1 (Subset Assumption) We assume there are many local optima for a pruned CNN with FLOP

count f . Let F (f) be a set pruned architectures with FLOP count f that achieve similar local optima. Let A ∈ F (f),

the subset assumption states that one can find an architecture B ∈ F (f ′) where f ′ ≤ f by only reducing the channel

counts of A.

Another challenge for learning a global ranking is the hardness of the problem. Obtaining an optimal

global ranking can be expensive, i.e., it requires O(K × K!) rounds of network fine-tuning, where K is

the number of filters. Thus, to make it tractable, we assume the filter norm is able to rank filters locally

(within layer) but not globally (across layers).

Assumption 5.2.2 (Norm Assumption) `2 norm can be used to compare the importance of a filter within each

layer, but not across layers.

We note that the norm assumption is adopted and empirically verified by prior art [99, 189, 71]. For filter

norms to be compared across layers, we propose to learn layer-wise affine transformations over filter

norms. Specifically, the importance of filter i is defined as follows:

Ii = αl(i) ‖Θi‖2
2 + κl(i), (5.1)

where l(i) is the layer index for the ith filter, ‖·‖2 denotes `2 norms, Θi denotes the weights for the ith

filter, and α ∈ RL, κ ∈ RL are learnable parameters that represent layer-wise scale and shift values, and L

denotes the number of layers. We will detail in Section 5.2.2 how α-κ pairs are learned so as to maximize

overall accuracy.

Based on these learned affine transformations from Eq. (5.1) (i.e., the α-κ pair), the LeGR-based pruning

proceeds by ranking filters globally using I and prunes away bottom-ranked filters, i.e., smaller in I, such

that the FLOP count of interest is met, as shown in Figure 5.2. This process can be done efficiently without

the need of training data (since the knowledge of pruning is encoded in the α-κ pair).

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 40

Figure 5.2: The flow of LeGR-Pruning. ‖Θ‖2
2 represents the filter norm. Given the learned layer-wise

affine transformations, i.e., the α-κ pair, LeGR-Pruning returns filter masks that determine which filters
are pruned. After LeGR-Pruning, the pruned network will be fine-tuned to obtain the final network.

5.2.2 Learning Global Ranking

To learn α and κ, one can consider constructing a ranking with α and κ and then uniformly sampling

CNNs across different FLOP counts to evaluate the ranking. However, CNNs obtained with different

FLOP counts have drastically different validation accuracy, and one has to know the Pareto curve3 of

pruning to normalize the validation accuracy across CNNs obtained with different FLOP counts. To

address this difficulty, we propose to evaluate the validation accuracy of the CNN obtained from the

lowest considered FLOP count as the objective for the ranking induced by the α-κ pair. Concretely, to

learn α and κ, we treat LeGR as an optimization problem:

arg max
α,κ

Accval(Θ̂l) (5.2)

where

Θ̂l = LeGR-Pruning(α, κ, ζ̂l). (5.3)

LeGR-Pruning prunes away the bottom-ranked filters until the desired FLOP count is met as shown in

Figure 5.2. ζ̂l denotes the lowest FLOP count considered. As we will discuss later in Section 5.4.1, we have

also studied how ζ̂ affects the performance of the learned ranking, i.e., how the learned ranking affects

the accuracy of the pruned networks.

Specifically, to learn the α-κ pair, we rely on approaches from hyper-parameter optimization literature.

While there are several options for the optimization algorithm, we adopt the regularized evolutionary

algorithm (EA) proposed in [145] for its effectiveness in the neural architecture search space. The pseudo-

code for our EA is outlined in Algorithm 2. We have also investigated policy gradients for solving for the
3A Pareto curve describes the optimal trade-off curve between two metrics of interest. Specifically, one cannot obtain improve-

ment in one metric without degrading the other metric. The two metrics we considered in this chapter are accuracy and FLOP
count.

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 41

Input: model Θ, lowest constraint ζ̂l , random walk size σ, total search iterations E, sample size S,
mutation ratio u, population size P, fine-tune iterations τ̂
Output: α, κ
Initialize Pool to a size P queue
for e = 1 to E do

α = 1, κ = 0
if Pool has S samples then

V = Pool.sample(S)
α, κ = argmaxFitness(V)

end if
Layer= Sample u% layers to mutate
for l ∈ Layer do

stdl=computeStd([Mi ∀ i ∈ l])
αl = αl × α̂l , where α̂l ∼ eN (0,σ2)

κl = κl + κ̂l , where κ̂l ∼ N (0,stdl)
end for
Θ̂l = LeGR-Pruning-and-fine-tuning(α, κ, ζ̂l , τ̂, Θ)
Fitness = Accval(Θ̂l)
Pool.replaceOldestWith(α, κ, Fitness)

end for
Algorithm 2: Learning α, κ with regularized EA

α-κ pair, which is shown in Appendix B.2. We can equate each α-κ pair to a network architecture obtained

by LeGR-Pruning. Once a pruned architecture is obtained, we fine-tune the resulting architecture by τ̂

gradient steps and use its accuracy on the validation set4 as the fitness (i.e., validation accuracy) for the

corresponding α-κ pair. We note that we use τ̂ to approximate τ (fully fine-tuned steps) and we empirically

find that τ̂ = 200 gradient updates work well under the pruning settings across the datasets and networks

we study. More concretely, we first generate a pool of candidates (α and κ values) and record the fitness

for each candidate, and then repeat the following steps: (i) sample a subset from the candidates, (ii)

identify the fittest candidate, (iii) generate a new candidate by mutating the fittest candidate and measure

its fitness accordingly, and (iv) replace the oldest candidate in the pool with the generated one. To mutate

the fittest candidate, we randomly select a subset of the layers Layer and conduct one step of random-walk

from their current values, i.e., αl , κl ∀ l ∈ Layer.

We note that our layer-wise affine transformation formulation (Eq. 5.1) can be interpreted from an op-

timization perspective. That is, one can upper-bound the loss difference between a pre-trained CNN and

its pruned-and-fine-tuned counterpart by assuming Lipschitz continuity on the loss function, as detailed

in Appendix B.1.

4We split 10% of the original training set to be used as validation set.

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 42

5.3 Experiments

5.3.1 Datasets and Training Setting

Our work is evaluated on various image classification benchmarks including CIFAR-10/100 [93], Ima-

geNet [153], and Birds-200 [170]. CIFAR-10/100 consists of 50k training images and 10k testing images

with a total of 10/100 classes to be classified. ImageNet is a large scale image classification dataset that

includes 1.2 million training images and 50k testing images with 1k classes to be classified. Also, we

benchmark the proposed algorithm in a transfer learning setting since in practice, we want a small and

fast model on some target datasets. Specifically, we use the Birds-200 dataset that consists of 6k training

images and 5.7k testing images covering 200 bird species.

For Bird-200, we use 10% of the training data as the validation set used for early stopping and to avoid

over-fitting. The training scheme for CIFAR-10/100 follows [70], which uses stochastic gradient descent

with nesterov [134], weight decay 5e−4, batch size 128, 1e−1 initial learning rate with decrease by 5× at

epochs 60, 120, and 160, and train for 200 epochs in total. For control experiments with CIFAR-100 and

Bird-200, the fine-tuning after pruning is done as follows: we keep all training hyper-parameters the same

but change the initial learning rate to 1e−2 and train for 60 epochs (i.e., τ ≈ 21k). We drop the learning

rate by 10× at 30%, 60%, and 80% of the total epochs, i.e., epochs 18, 36, and 48. To compare numbers

with prior art on CIFAR-10 and ImageNet, we follow the number of iterations in [219]. Specifically, for

CIFAR-10 we fine-tuned for 400 epochs with initial learning rate 1e−2, drop by 5× at epochs 120, 240, and

320. For ImageNet, we use pre-trained models and we fine-tuned the pruned models for 60 epochs with

initial learning rate 1e−2, drop by 10× at epochs 30 and 45.

For the hyper-parameters of LeGR, we select τ̂ = 200, i.e., fine-tune for 200 gradient steps before

measuring the validation accuracy when searching for the α-κ pair. We note that we do the same for

AMC [71] for a fair comparison. Moreover, we set the number of architectures explored to be the same

with AMC, i.e., 400. We set mutation rate u = 10 and the hyper-parameter of the regularized evolutionary

algorithm by following prior art [145]. In the following experiments, we use the smallest ζ considered as

ζ̂l to search for the learnable variables α and κ. The found α-κ pair is used to obtain the pruned networks

at various FLOP counts. For example, for ResNet-56 with CIFAR-100 (Figure 5.3a), we use ζ̂l = 20% to

obtain the α-κ pair and use the same α-κ pair to obtain the seven networks (ζ = 20%, ..., 80%) with the

flow described in Figure 5.2. The ablation of ζ̂l and τ̂ are detailed in Sec. 5.4.2.

We prune filters across all the convolutional layers. We group dependent channels by summing up their

importance measure and prune them jointly. The importance measure refers to the measure after learned

affine transformations. Specifically, we group a channel in depth-wise convolution with its corresponding

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 43

(a)
(b)

Figure 5.3: (a) The trade-off curve of pruning ResNet-56 and MobileNetV2 on CIFAR-100 using various
methods. We average across three trials and plot the mean and standard deviation. (b) Training cost for
seven CNNs across FLOP counts using various methods targeting ResNet-56 on CIFAR-100. We report
the average cost considering seven FLOP counts, i.e., 20% to 80% FLOP count in a step of 10% on NVIDIA
GTX 1080 Ti. The cost is normalized to the cost of LeGR.

channel in the preceding layer. We also group channels that are summed together through residual

connections.

5.3.2 CIFAR-100 Results

In this section, we consider ResNet-56 and MobileNetV2 and we compare LeGR mainly with four filter

pruning methods, i.e., MorphNet [59], AMC [71], FisherPruning [167], and a baseline that prunes filters

uniformly across layers. Specifically, the baselines are determined such that one dominant approach is

selected from different groups of prior art. We select one approach [59] from pruning-while-learning

approaches, one approach [71] from pruning-by-searching methods, one approach [167] from continuous

pruning methods, and a baseline extending magnitude-based pruning to various FLOP counts. We note

that FisherPruning is a continuous pruning method where we use 0.0025 learning rate and perform 500

gradient steps after each filter pruned following [167].

As shown in Figure 5.3a, we first observe that FisherPruning does not work as well as other methods

and we hypothesize the reason for it is that the small fixed learning rate in the fine-tuning phase makes

it hard for the optimizer to get out of local optima. Additionally, we find that FisherPruning prunes away

almost all the filters for some layers. On the other hand, we find that all other approaches outperform

the uniform baseline in a high-FLOP-count regime. However, both AMC and MorphNet have higher

variances when pruned more aggressively. In both cases, LeGR outperforms prior art, especially in the

low-FLOP-count regime.

More importantly, our proposed method aims to alleviate the cost of pruning when the goal is to

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 44

explore the trade-off curve between accuracy and inference latency. From this perspective, our approach

outperforms prior art by a significant margin. More specifically, we measure the average time of each

algorithm to obtain the seven pruned ResNet-56 across the FLOP counts in Figure 5.3a using our hardware

(i.e., NVIDIA GTX 1080 Ti). Figure 5.3b shows the efficiency of AMC, MorphNet, FisherPruning, and the

proposed LeGR. The cost can be broken down into two parts: (1) pruning: the time it takes to search for

a network that has some pre-defined FLOP count and (2) fine-tuning: the time it takes for fine-tuning

the weights of a pruned network. For MorphNet, we consider three trials for each FLOP count to find

an appropriate hyper-parameter λ to meet the FLOP count of interest. The numbers are normalized

to the cost of LeGR. In terms of pruning time, LeGR is 7× and 5× faster than AMC and MorphNet,

respectively. The efficiency comes from the fact that LeGR only searches the α-κ pair once and re-uses

it across FLOP counts. In contrast, both AMC and MorphNet have to search for networks for every

FLOP count considered. FisherPruning always prune one filter at a time, and therefore the lowest FLOP

count level considered determines the pruning time, regardless of how many FLOP count levels we are

interested in.

5.3.3 Comparison with Prior Art

Although the goal of this chapter is to develop a model compression method that produces a set of CNNs

across different FLOP counts, we also compare our method with prior art that focuses on generating a

CNN for a specified FLOP count.

CIFAR-10 In Table 5.1, we compare LeGR with prior art that reports results on CIFAR-10. First, for

ResNet-56, we find that LeGR outperforms most of the prior art in both FLOP count and accuracy dimen-

sions and performs similarly to [70, 219]. For VGG-13, LeGR achieves significantly better results compared

to prior art.

ImageNet Results For ImageNet, we prune ResNet-50 and MobileNetV2 with LeGR to compare with

prior art. For LeGR, we learn the ranking using 47% FLOP count for ResNet-50 and 50% FLOP count for

MobileNetV2, and use the learned ranking to obtain CNNs for other FLOP counts of interest. We have

compared to 17 prior methods that report pruning performance for ResNet-50 and/or MobileNetV2 on

the ImageNet dataset. While our focus is on the fast exploration of the speed and accuracy trade-off curve

for filter pruning, our proposed method is better or comparable compared to the state-of-the-art methods

as shown in Figure 5.4. The detailed numerical results are in Table 5.2. We would like to emphasize that

to obtain a pruned-CNN with prior methods, one has to run the pruning algorithm for every FLOP count

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 45

Table 5.1: Comparison with prior art on CIFAR-10. We group methods into sections according to different
FLOP counts. Values for our approaches are averaged across three trials and we report the mean and
standard deviation. We use boldface to denote the best numbers and use ∗ to denote our implementation.
The accuracy is represented in the format of pre-trained 7→ pruned-and-fine-tuned.

Network Method Acc. (%) MFLOP count

ResNet-56

PF [99] 93.0 −→ 93.0 90.9 (72%)
Taylor [130]∗ 93.9 −→ 93.2 90.8 (72%)

LeGR 93.9 −→ 94.1±0.0 87.8 (70%)
DCP-Adapt [219] 93.8 −→ 93.8 66.3 (53%)

CP [74] 92.8 −→ 91.8 62.7 (50%)
AMC [71] 92.8 −→ 91.9 62.7 (50%)
DCP [219] 93.8 −→ 93.5 62.7 (50%)
SFP [70] 93.6±0.6 −→ 93.4±0.3 59.4 (47%)
LeGR 93.9 −→ 93.7±0.2 58.9 (47%)

VGG-13

BC-GNJ [118] 91.9 −→ 91.4 141.5 (45%)
BC-GHS [118] 91.9 −→ 91 121.9 (39%)
VIBNet [34] 91.9 −→ 91.5 70.6 (22%)

LeGR 91.9 −→ 92.4±0.2 70.3 (22%)

Figure 5.4: Results for ImageNet. LeGR is better or comparable compared to prior methods. Furthermore,
its goal is to output a set of CNNs instead of one CNN.

considered. In contrast, our proposed method learns the ranking once and uses it to obtain CNNs across

different FLOP counts.

5.3.4 Transfer Learning: Bird-200

We analyze how LeGR performs in a transfer learning setting where we have a model pre-trained on a

large dataset, i.e., ImageNet, and we want to transfer its knowledge to adapt to a smaller dataset, i.e.,

Bird-200. We prune the fine-tuned network on the target dataset directly following the practice in prior

art [207, 121]. We first obtain fine-tuned MobileNetV2 and ResNet-50 on the Bird-200 dataset with top-1

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 46

Table 5.2: Summary of pruning on ImageNet. The sections are defined based on the FLOP count left. The
accuracy is represented in the format of pre-trained 7→ pruned-and-fine-tuned.

Network Method Top-1 Top-1 Diff Top-5 Top-5 Diff FLOP count (%)

ResNet-50

NISP [197] - −→ - -0.2 - −→ - - 73
LeGR 76.1 −→ 76.2 +0.1 92.9 −→ 93.0 +0.1 73

SSS [82] 76.1 −→ 74.2 -1.9 92.9 −→ 91.9 -1.0 69
ThiNet [121] 72.9 −→ 72.0 -0.9 91.1 −→ 90.7 -0.4 63

C-SGD-70 [45] 75.3 −→ 75.3 +0.0 92.6 −→ 92.5 -0.1 63
Variational [202] 75.1 −→ 75.2 +0.1 92.8 −→ 92.1 -0.7 60

GDP [107] 75.1 −→ 72.6 -2.5 92.3 −→ 91.1 -1.2 58
SFP [70] 76.2 −→ 74.6 -1.6 92.9 −→ 92.1 -0.8 58

FPGM [72] 76.2 −→ 75.6 -0.6 92.9 −→ 92.6 -0.3 58
LeGR 76.1 −→ 75.7 -0.4 92.9 −→ 92.7 -0.2 58

GAL-0.5 [108] 76.2 −→ 72.0 -4.2 92.9 −→ 91.8 -1.1 57
AOFP-C1 [46] 75.3 −→ 75.6 +0.3 92.6 −→ 92.7 +0.1 57

NISP [197] - −→ - -0.9 - −→ - - 56
Taylor-FO-BN [129] 76.2 −→ 74.5 -1.7 - −→ - - 55

CP [74] - −→ - - 92.2 −→ 90.8 -1.4 50
SPP [175] - −→ - - 91.2 −→ 90.4 -0.8 50

LeGR 76.1 −→ 75.3 -0.8 92.9 −→ 92.4 -0.5 47
CCP-AC [140] 76.2 −→ 75.3 -0.9 92.9 −→ 92.6 -0.3 44

RRBP [213] 76.1 −→ 73.0 -3.0 92.9 −→ 91.0 -1.9 45
C-SGD-50 [45] 75.3 −→ 74.5 -0.8 92.6 −→ 92.1 -0.5 45

DCP [219] 76.0 −→ 74.9 -1.1 92.9 −→ 92.3 -0.6 44

MobileNetV2

AMC [71] 71.8 −→ 70.8 -1.0 −→ - - 70
LeGR 71.8 −→ 71.4 -0.4 −→ - - 70
LeGR 71.8 −→ 70.8 -1.0 −→ - - 60

DCP [219] 70.1 −→ 64.2 -5.9 −→ - - 55
MetaPruning [115] 72.7 −→ 68.2 -4.5 −→ - - 50

LeGR 71.8 −→ 69.4 -2.4 −→ - - 50

accuracy 80.2% and 79.5%, respectively. These are comparable to the reported values in prior art [101, 123].

As shown in Figure 5.5, we find that LeGR outperforms Uniform and AMC, which is consistent with

previous analyses in Section 5.3.2.

Figure 5.5: Results for Bird-200.

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 47

5.4 Ablation Study

5.4.1 Ranking Performance and ζ̂l

Figure 5.6: Robustness to the hyper-parameter ζ̂l . Prior art is plotted as a reference (c.f. Figure 5.3a).

To learn the global ranking with LeGR without knowing the Pareto curve in advance, we use the

minimum considered FLOP count (ζ̂l) during learning to evaluate the performance of a ranking. We are

interested in understanding how this design choice affects the performance of LeGR. Specifically, we try

LeGR targeting ResNet-56 for CIFAR-100 with ζ̂l ∈ {20%, 40%, 60%, 80%}. As shown in Figure 5.6, we first

observe that rankings learned using different FLOP counts have similar performances, which empirically

supports Assumption 5.2.1. More concretely, consider the network pruned to 40% FLOP count by using

the ranking learned at 40% FLOP count. This case does not take advantage of the subset assumption

because the entire learning process for learning α-κ is done only by looking at the performance of the

40% FLOP count network. On the other hand, rankings learned using other FLOP counts but employed

to obtain pruned-networks at 40% FLOP count have exploited the subset assumption (e.g., the ranking

learned for 80% FLOP count can produce a competitive network for 40% FLOP count). We find that LeGR

with or without employing Assumption 5.2.1 results in similar performance for the pruned networks.

5.4.2 Fine-tuned Iterations

Since we use τ̂ to approximate τ when learning the α-κ pair, it is expected that the closer τ̂ to τ, the

better the α-κ pair LeGR can find. We use LeGR to prune ResNet-56 for CIFAR-100 and learn α-κ at three

FLOP counts ζ̂l ∈ {10%, 30%, 50%}. We consider ζ to be exactly ζ̂l in this case. For τ̂, we experiment with

{0, 50, 200, 500}. We note that once the α-κ pair is learned, we use LeGR-Pruning to obtain the pruned

CNN, fine-tune it for τ steps, and plot the resulting test accuracy. In this experiment, τ is set to 21120

gradient steps (60 epochs). As shown in Figure 5.7, the results align with our intuition in that there are

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 48

Figure 5.7: Pruning ResNet-56 for CIFAR-100 with LeGR by learning α and κ using different τ̂ and FLOP
count constraints.

diminishing returns in increasing τ̂. We observe that τ̂ affects the accuracy of the pruned CNNs more

when learning the ranking at a lower FLOP count level, which means in low-FLOP-count regimes, the

validation accuracy after fine-tuning a few steps might not be representative. This makes sense since

when pruning away a lot of filters, the network can be thought of as moving far away from the local

optimal, where the gradient steps early in the fine-tuning phase are noisy. Thus, more gradient steps are

needed before considering the accuracy to be representative of the fully-fine-tuned accuracy.

5.4.3 FLOP count and Runtime

Figure 5.8: Latency reduction vs. FLOP count reduction. FLOP count reduction is indicative for latency
reduction.

We demonstrate the effectiveness of filter pruning in wall-clock time speedup using ResNet-50 and

MobileNetV2 on PyTorch 0.4 using two types of CPUs. Specifically, we consider both a desktop level

CPU, i.e., Intel i7, and an embedded CPU, i.e., ARM A57, and use LeGR as the pruning methodology.

The input is a single RGB image of size 224x224 and the program (Python with PyTorch) is run using a

CHAPTER 5. LEGR: TOWARDS EFFICIENT FILTER PRUNING 49

single thread. As shown in Figure 5.8, filter pruning can produce near-linear acceleration (with a slope of

approximately 0.6) without specialized software or hardware support.

5.5 Discussion

To alleviate the bottleneck of using model compression in optimizing the CNNs in a large system, we

propose LeGR, a novel formulation for practitioners to explore the accuracy-vs.-speed trade-off efficiently

via filter pruning. More specifically, we propose to learn layer-wise affine transformations over filter norms

to construct a global ranking of filters. This formulation addresses the limitation that filter norms cannot

be compared across layers in a learnable fashion and provides an efficient way for practitioners to obtain

CNN architectures with different FLOP counts. Additionally, we provide a theoretical interpretation of

the proposed affine transformation formulation. We conduct extensive empirical analyses using ResNet

and MobileNetV2 on datasets including CIFAR, Bird-200, and ImageNet and show that LeGR has less

training cost to generate the pruned CNNs across different FLOP counts compared to prior art while

achieving comparable performance to state-of-the-art pruning methods.

5.6 Carbon Footprint Analysis

When compared to standard training of a neural network (i.e., without pruning), LeGR saves carbon foot-

print during inference but increases it during training. During training, in addition to standard training,

we conduct ranking learning and fine-tuning. If we take ImageNet as an example, it takes an extra 30%

overhead for training. Considering an iso-accurate pruned ResNet-50, the pruned model reduces the com-

putational overhead by 27%. According to a recent study by Patterson et al. [139], the ratio of training

and inference is roughly nine to one in current cloud providers. With the above calculation, adopting the

LeGR methodology can reduced the total carbon footprint by 21% compared to using a standard model.

On the other hand, when compared to other pruning methods, LeGR reduces the carbon footprint during

the training time while having similar inference overhead. More specifically, LeGR reduces the carbon

footprint by 3× compared to AMC [71] during the training time.

Chapter 6

Joslim: Efficient Filter Pruning without

Fine-tuning

In Chapter 5, we have proposed LeGR to improve the scalability of filter pruning. However, LeGR still

requires fine-tuning each of the pruned models after pruning, which can be costly. In this chapter, we

aim to remove the overhead of fine-tuning by sharing the weights among the pruned networks. From this

perspective, we propose to jointly optimize a set of filter configurations, which have different accuracy and

FLOPs profiles, and the weights that are shared among the configurations using alternating minimization.

6.1 Motivation

While LeGR can be efficient for filter pruning that aims for multiple compression ratios, it requires each

of the pruned networks to be fine-tuned to achieve good performance. This can be limiting for various

applications. For example, model compression is a useful tool to allow the designer to traverse the trade-

off between accuracy and speed of the model. This characteristic can be useful if model compression can

be carried out in an online fashion. More specifically, a real system might run multiple tasks at the same

time, which makes it hard to guarantee the latency of a model since the information regarding other tasks

are often unknown apriori. In this case, having a model that can be pruned at run-time without fine-tuning

is beneficial for meeting the desired latency constraint. On the other hand, the fine-tuning process in LeGR

not only adds overhead as the number of target compression ratios grows, but it also adds maintenance

cost as the machine learning practitioner has to maintain n models for n target constraint levels and each

of which have different weights. More specifically, this adds engineering costs if the training data is later

improved and there will be n models to be fine-tuned or re-trained.

One idea to cope with the above drawbacks of LeGR is to train a weight-sharing network whose

50

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 51

weights are shared across all pruned models. Such a weight-sharing network can be pruned in an online

fashion and only a single set of weights needs to be maintained. Along the direction of sharing weights

across different networks that have different filter configurations, slimmable neural networks [196] have

been proposed with the promise of enabling multiple neural networks with different trade-offs between

prediction error and the FLOPs, all at the storage requirement of only a single neural network. This is in stark

contrast to filter pruning methods [12, 193, 60] that aim for a small standalone model.

A slimmable neural network is trained by simultaneously considering networks with different widths

(or filter counts) using a single set of shared weights. The width of a child network is specified by a real

number between 0 and 1, which is known as the “width-multiplier” [77]. Such a parameter specifies how

many filters per layer to use proportional to the full network. For example, a width-multiplier of 0.35×

represents a network with 35% of the channel counts of the full network for all the layers. While specifying

child networks using a single width-multiplier for all the layers has shown empirical success [194, 196],

such a specification neglects that different layers affect the network’s output differently [200] and have

different FLOPs and memory footprint requirements [59], which may lead to sub-optimal results. As

an alternative, neural architecture search (NAS) methods such as BigNAS [195] optimizes the layer-wise

widths for slimmable networks, however, a sequential greedy procedure is adopted to optimize the widths

and weights. As a result, the optimization of weights is not adapted to the optimization of widths, thereby

leaving rooms for improvement by joint width and weight optimization.

In this chapter, we propose a framework for optimizing slimmable nets by formalizing it as minimizing

the area under the trade-off curve between prediction error and some metric of interest, e.g., memory foot-

print or FLOPs, with alternating minimization. Our framework subsumes both the universally slimmable

networks [194] and BigNAS [195] as special cases. The framework is general and provides us with insights

to improve upon existing alternatives and justifies our new algorithm Joslim, the first approach that jointly

optimizes both shared-weights and widths for slimmable nets. To this end, we demonstrate empirically

the superiority of the proposed algorithm over existing methods using various datasets, networks, and ob-

jectives. We visualize the algorithmic differences between the proposed method and existing alternatives

in Fig. 6.1.

The contributions of this chapter are as follows:

• We propose a general framework that enables the joint optimization of the widths and their cor-

responding shared weights of a slimmable net. The framework is general and subsumes existing

algorithms as special cases.

• We propose Joslim, an algorithm that jointly optimizes the widths and weights of slimmable nets.

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 52

Universally
Slimmable Training BigNAS Joslim (Ours)

Weight Training
Sample

Data
Sample

Arch SGD

Width Searching

Fixed weights, optimize arch

Weight Training
Sample

Data
Use 𝒄 as

arch SGD

Width Searching

Fixed weights, optimize for 𝒄

Channel Pruning

Pruning and training

…

Shared weights, widths specified by a
single global width multiplier

Weight Training
Sample

Data
Sample

Arch SGD

…

Shared weights, widths specified by random
layer-wise width multipliers

…

Shared weights, widths learned by
joint optimization

One model for one target
sparsity

Multiple networks with
weight sharing

Width optimization

Joint shared-weights and
width optimization

<latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X

<latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X <latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X
<latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X

<latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X
<latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X

<latexit sha1_base64="XICB327XPl/lB3eF2nLQxUIGA7Y=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMFW4ttKJvtpF2yuwm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+ndLK6tr6RnmzsrW9s7tX3T9o6yRTFFs04YnqhEQjZxJbhhmOnVQhESHHhzC+mfoPT6g0S+S9GacYCDKULGKUGCs99ugIaSyIivvVmlf3ZnCXiV+QGhRo9qtfvUFCM4HSUE607vpeaoKcKMMox0mll2lMCY3JELuWSiJQB/ns4ol7YpWBGyXKljTuTP09kROh9ViEtlMQM9KL3lT8z+tmJroKcibTzKCk80VRxl2TuNP33QFTSA0fW0KoYvZWl46IItTYkCo2BH/x5WXSPqv7F3Xv7rzWuC7iKMMRHMMp+HAJDbiFJrSAgoRneIU3RzsvzrvzMW8tOcXMIfyB8/kDp5SQ5w==</latexit>X

Figure 6.1: Schematic overview comparing our proposed method with existing alternatives and channel
pruning. Channel pruning has a fundamentally different goal compared to ours, i.e., training slimmable
nets. Joslim jointly optimizes both the widths and the shared weights.

We show empirically that Joslim outperforms existing methods on various networks, datasets, and

objectives. Quantitatively, improvements up to 1.7% and 8% in top-1 accuracy on ImageNet are

attained for MobileNetV2 considering FLOPs and memory footprint, respectively.

6.2 Methodology

In this chapter, we are interested in jointly optimizing the network widths and network weights. Ul-

timately, when evaluating the performance of a slimmable neural network, we care about the trade-off

curve between multiple objectives, e.g., theoretical speedup and accuracy. This trade-off curve is formed

by evaluating the two objectives at multiple width configurations using the same shared-weights. Viewed

from this perspective, both the widths and shared-weights should be optimized in such a way that the

resulting networks have a better trade-off curve (i.e., larger area under curve). This section formalizes this

idea and provides an algorithm to solve it in an approximate fashion.

6.2.1 Problem formulation

Our goal is to find both the weights and the width configurations that optimize the area under the trade-

off curve between two competing objectives, e.g., accuracy and inference speed. Without loss of generality,

we use cross entropy loss as the accuracy objective and FLOPs as the inference speed objective throughout

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 53

the text for clearer context. Note that FLOPs can also be replaced by other metrics of interest such as

memory footprint. Since in this case both objectives are better when lower, the objective for optimizing

the slimmable nets becomes to minimize the area under curve. To quantify the area under curve, we start

with a Riemann integral. Let w(c) be a width configuration of c FLOPs, one can quantify the Riemann

integral by evaluating the cross entropy loss LS on the training set S using the shared weights θ for the

architectures that spread uniformly on the FLOPs-axis between a lower bound l and an upper bound u of

FLOPs: {a|a = w(c), c ∈ [l, u]}. More formally, the area under curve A for the widths w(·) and weights

θ is characterized as

A(θ, w)
def
=
∫ u

l
LS (θ, w(c)) dc (6.1)

≈
N

∑
i=0

LS (θ, w(ci)) δ, (6.2)

where equation 6.2 approximates the Riemann integral with the Riemann sum using N architectures that

spread uniformly on the FLOPs-axis with a step size δ. With a quantifiable area under curve, our goal for

optimizing slimmable neural networks becomes finding both the shared-weights θ and the architecture

function w to minimize their induced area under curve:

arg min
θ,w

A(θ, w) ≈ arg min
θ,w

N

∑
i=0

LS (θ, w(ci)) δ (6.3)

= arg min
θ,w

1
N

N

∑
i=0

LS (θ, w(ci)) (6.4)

≈ arg min
θ,w

Ec∼U(l,u)LS (θ, w(c)) , (6.5)

where U(l, u) denotes a uniform distribution over a lower bound l and an upper bound u. Note that the

solution to equation 6.5 is the shared-weight vector and a set of architectures, which is drastically different

from the solution to the formulation used in the NAS literature [111, 162], which is an architecture.

6.2.2 Proposed approach: Joslim

Since both the shared-weights θ and the architecture function w are optimization variables of two natural

groups, we start by using alternating minimization:

w(t+1) = arg min
w

Ec∼U(l,u)LS
(

θ(t), w(c)
)

(6.6)

θ(t+1) = arg min
θ

Ec∼U(l,u)LS
(

θ, w(t+1)(c)
)

. (6.7)

In equation 6.6, we maintain the shared-weights θ fixed and for each FLOPs between l and u, we search

for a corresponding architecture that minimizes the cross entropy loss. This step can be seen as a multi-

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 54

objective neural architecture search given a fixed set of pre-trained weights, and can be approximated us-

ing smart algorithms such as multi-objective Bayesian optimization [137] or evolutionary algorithms [39].

However, even with smart algorithms, such a procedure can be impractical for every iteration of the

alternating minimization.

In equation 6.7, one can use stochastic gradient descent by sampling from a set of architectures that

spread uniformly across FLOPs obtained from solving equation 6.6. However, training such a weight-

sharing network is practically 4× the training time of the largest standalone subnetwork [194] (it takes

6.5 GPU-days to train a slimmable ResNet18), which prevents it from being adopted in the alternating

minimization framework.

To cope with these challenges, we propose targeted sampling, local approximation, and temporal

sharing to approximate both equations.

Targeted sampling

We propose to sample a set of FLOPs to approximate the expectation in equations 6.6 and 6.7 with empir-

ical estimates. Moreover, the sampled FLOPs are shared across both steps in the alternating minimization

so that one does not have to solve for the architecture function w (needed for the second step), but only

solve for a set of architectures that have the corresponding FLOPs. Specifically, we approximate the ex-

pectation in both equations 6.6 and 6.7 with the sample mean:

c(t)i ∼ U(l, u) ∀ i = 1, . . . , M (6.8)

w(t+1) ≈ arg min
w

1
M

M

∑
i=1

LS
(

θ(t), w(c(t)i)
)

(6.9)

θ(t+1) ≈ arg min
θ

1
M

M

∑
i=1

LS
(

θ, w(t+1)(c(t)i)
)

. (6.10)

From equation 6.9 and 6.10, we can observe that at any timestamp t, we only query the architecture

function w(t) and w(t+1) at a fixed set of locations ci ∀ i = 1, . . . , M. As a result, instead of solving for the

architecture function w, we can solve for a fixed set of architecturesW (t+1) at each timestamp as follows:

W (t+1) := {w(t+1)(ci), . . . , w(t+1)(cM)} (6.11)

where

w(t+1)(ci) = arg min
a

LS
(

θ(t), a
)

s.t. FLOPs(a) = ci. (6.12)

With these approximations, for each iteration in the alternating minimization, we solve for M architectures

with targeted FLOPs as opposed to solving for the entire approximate trade-off curve.

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 55

Local approximation

To reduce the overhead for solving equation 6.10, we propose to approximate it with a few steps of

gradient descent. Specifically, instead of training a slimmable neural network with sampled architectures

until convergence in each iteration of alternating minimization (equation 6.10), we propose to perform K

steps of gradient descent:

x0def
= θ(t)

x(k+1)def
= x(k) − η

1
M

M

∑
i=1
∇x(k) LS

(
x(k),W (t+1)

i

)
θ(t+1) ≈ x(K),

(6.13)

where η is the learning rate. Larger K indicates better approximation with higher training overhead.

Temporal sharing

Since we use local approximation, θ(t+1) and θ(t) would not be drastically different. As a result, instead

of performing constrained neural architecture search from scratch (i.e., solving for equation 6.12) in every

iteration of the alternating minimization, we propose to share information across the search procedures

in different iterations of the alternation.

To this end, we propose to perform temporal sharing for multi-objective Bayesian optimization with

random scalarization (MOBO-RS) [137] to solve equation 6.12. MOBO-RS itself is a sequential model-

based optimization algorithm, where one takes a set of architectures H, builds models (typically Gaussian

Processes [143]) to learn a mapping from architectures to cross entropy loss gCE and FLOPs gFLOPs, scalar-

izes both models into a single objective with a random weighting λ (λ controls the preference for cross

entropy and FLOPs), and finally optimizes the scalarized model to obtain a new architecture and stores

the architecture back to the set H. This entire procedure repeats for T iterations for one MOBO-RS.

To exploit temporal similarity, we propose MOBO-TS2, which stands for multi-objective Bayesian

optimization with targeted scalarization and temporal sharing. Specifically, we propose to let T = 1

and share H across alternating minimization. Importantly, we replace the random scalarization with tar-

geted scalarization where we use binary search to search for the λ that results in the desired FLOPs. As

such, H grows linearly with the number of alternations. In such an approximation, for each MOBO in the

alternating optimization, we reevaluate the cross-entropy loss for each a ∈ H to build faithful GPs. We

further provide theoretical analysis for approximation via temporal similarity for Bayesian optimization

in Appendix C.4.

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 56

Input : Model parameters θ, lower bound for width-multipliers w0 ∈ [0, 1], number of full iterations F,
number of gradient descent updates K, number of λ samples M

Output: Trained parameter θ, approximate Pareto front N
1 H = {} (Historical minimizers a)
2 for i = 1...F do
3 x, y = sample_data()
4 uCE, uFLOPs = LCE(H; θ, x, y), FLOPs(H)
5 gCE, gFLOPs = GP_UCB(H, uCE, uFLOPs)
6 widths = []
7 for m = 1...M do
8 a = MOBO_TS2(gCE, gFLOPs,H) (Algorithm 4)
9 widths.append(a)

10 end
11 H = H ∪ widths (update historical data)
12 widths.append(w0)
13 for j = 1...K do
14 SlimmableTraining(θ, widths)
15 (line 3-16 of Algorithm 1 in [194])
16 end
17 N=nonDominatedSort(H, uCE, uFLOPs)
18 end

Algorithm 3: Joslim

Input : Acquisition functions gCE, gFLOPs, historical data H, search precision ε
Output: channel configurations a

1 c = Uniform(l, u) (Sample a target FLOPs)
2 λFLOPs, λmin, λmax = 0.5, 0, 1

3 while | FLOPs(a)−c
FullModelFLOPs | > ε do // binary search

4 c =arg minc Scalarize(λFLOPs, gCE, gFLOPs)
5 if FLOPs(a) > c then
6 λmin = λFLOPs
7 λFLOPs = (λFLOPs + λmax)/2
8 else
9 λmax = λFLOPs

10 λFLOPs = (λFLOPs + λmin)/2
11 end
12 end

Algorithm 4: MOBO-TS2

Joslim

Based on this preamble, we present our algorithm, Joslim, in Algorithm 3. In short, Joslim has three

steps: (1) build surrogate functions (i.e., GPs) and acquisition functions (i.e., UCBs) using historical data

H and their function responses, (2) sample M target FLOPs and solve for the corresponding widths

(i.e., a) via binary search with the scalarized acquisition function and store them back to H, and (3)

perform K gradient descent steps using the solved widths. The first two steps solve equation 6.12 with

targeted sampling and temporal sharing, and the final step solves equation 6.10 approximately with local

approximation. In the end, to obtain the best widths, we use non-dominated sorting based on the training

loss and FLOPs for a ∈ H.

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 57

6.2.3 Relation to existing approaches

For direct comparisons with our method we consider the universally slimmable neural networks [194],

which uses a single width multiplier to specify the widths of a slimmable network and NAS-based ap-

proaches such as OFA [15] and BigNAS [195], which use a sequential greedy process for weights and

widths optimization. To demonstrate the generality of the proposed framework, we show how these

previously published works are special cases of our framework.

Slim

Universally slimmable networks [194], or Slim for short, is a special case of our framework where the

widths are not optimized but pre-specified by a single global width multiplier. This corresponds to

solving equation 6.5 with w given as a function that returns the width that satisfies some FLOPs by

controlling a single global width multiplier. Our framework is more general as it introduces the freedom

for optimizing the widths of slimmable nets.

OFA and BigNAS

OFA and BigNAS use the same approach when it comes to the channel search space1. They are also a

special case of our framework where the optimization of the widths and the shared-weights are carried

out greedily. Specifically, BigNAS first trains the shared-weights by random layer-wise width multipliers.

After convergence, BigNAS performs evolutionary search to optimize the layer-wise width multipliers

considering both error and FLOPs. This greedy algorithm can be seen as performing one iteration of

alternating minimization by solving equation 6.7 followed by solving equation 6.6. From this perspective,

one can observe that the shared-weights θ are not jointly optimized with the widths. Our framework is

more general and enables joint optimization for both widths and weights.

As we demonstrate in Section 6.3.2, our comprehensive empirical analysis reveals that Joslim is supe-

rior to either approach when compared across multiple networks, datasets, and objectives.

6.3 Experiments

6.3.1 Experimental setup

For all the Joslim experiments in this sub-section, we set K such that Joslim only visits 1000 width configu-

rations throughout the entire training (|H| = 1000). Also, we set M to be 2, which follows the conventional

1Since we only search for channel counts, the progressive shrinking strategy proposed in OFA does not apply. As a result, both
OFA and BigNAS have the same approach.

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 58

(a) ResNet20 C10 (b) ResNet32 C10 (c) ResNet44 C10 (d) ResNet56 C10

(e) ResNet20 C100 (f) ResNet32 C100 (g) ResNet44 C100 (h) ResNet56 C100

(i) 2×ResNet20 C100 (j) 3×ResNet20 C100 (k) 4×ResNet20 C100 (l) 5×ResNet20 C100

Figure 6.2: Comparisons among Slim, BigNAS, and Joslim. C10 and C100 denote CIFAR-10/100. We
perform three trials for each method and plot the mean and standard deviation.

slimmable training method [194] that samples two width configurations in between the largest and the

smallest widths. As for binary search, we conduct at most 10 binary searches with ε set to 0.02, which

means that the binary search terminates if the FLOPs difference is within a two percent margin relative to

the full model FLOPs. On average, the procedure terminates by using 3.4 binary searches for results on

ImageNet. The dimension of a is network-dependent and is specified in Appendix C.1 and the training

hyperparameters are detailed in Appendix C.3. To arrive at the final set of architectures for Joslim, we use

non-dominated sort based on the training loss and FLOPs for a ∈ H.

6.3.2 Performance gains introduced by Joslim

We consider three datasets: CIFAR-10, CIFAR-100, and ImageNet. To provide informative comparisons,

we verify our implementation for the conventional slimmable training with the reported numbers in [194]

using MobileNetV2 on ImageNet. Our results follow closely to the reported numbers as shown in Fig. 6.3a,

which makes our comparisons on other datasets convincing.

We compare to the following baselines:

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 59

(a) MobileNetV2 (b) MobileNetV3 (c) ResNet18

Figure 6.3: Comparisons among Slim, BigNAS, and Joslim on ImageNet.

MobileNetV2 MobileNetV3 ResNet18
MFLOPs Slim BigNAS Joslim MFLOPs Slim BigNAS Joslim MFLOPs Slim BigNAS Joslim

59 61.4 61.3 61.5 43 65.8 66.3 65.9 339 61.5 61.5 61.8
84 63.0 63.1 64.6 74 68.1 68.1 68.8 513 63.4 64.2 64.5

102 64.7 65.5 65.5 85 69.1 70.0 70.0 650 64.7 65.6 66.5
136 67.1 67.5 68.2 118 71.0 71.4 71.4 718 65.1 66.1 67.5
149 67.6 68.2 69.1 135 71.5 71.5 72.1 939 66.5 67.3 68.5
169 68.2 68.8 69.9 169 72.7 72.0 72.8 1231 68.0 68.4 69.4
212 69.7 69.6 70.6 184 73.0 72.5 73.2 1659 69.3 69.3 69.9
300 71.8 71.5 72.1 217 73.5 73.1 73.7 1814 69.6 69.7 70.0

Table 6.1: Comparing the top-1 accuracy among Slim, BigNAS, and Joslim on ImageNet. Bold represents
the highest accuracy of a given FLOPs.

Figure 6.4: A latency-vs.-error
view of Fig. 6.3a.

Figure 6.5: Prediction error vs. inference memory footprint for
MobileNetV2 and ResNet18 on ImageNet.

• Slim: the conventional slimmable training method (the universally slimmable networks by [194]).

We select 40 architectures uniformly distributed across FLOPs and run a non-dominated sort using

training loss and FLOPs.

• BigNAS: disjoint optimization that first trains the shared-weights, then uses search methods to find

architectures that work well given the trained weights (similar to OFA [15]). To compare fairly with

Joslim, we use MOBO-RS for the search. After optimization, we run a non-dominated sort for all the

visited architectures H using training loss and FLOPs.

The main results for the CIFAR dataset are summarized in Fig. 6.2 with results on ImageNet sum-

marized in Figure 6.3 and Table 6.1. Compared to Slim, the proposed Joslim has demonstrated much

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 60

(a) Impact of binary search
(BS).

(b) Histogram of FLOPs
for H w/ and w/o BS.

(c) Performance for differ-
ent K.

(d) Additional overhead
over Slim for different K.

Figure 6.6: Ablation study for the introduced binary search and the number of gradient descent updates
per full iteration using ResNet20 and CIFAR-100. Experiments are conducted three times and we plot the
mean and standard deviation.

better results across various networks and datasets. This suggests that channel optimization can indeed

improve the efficiency of slimmable networks. Compared to BigNAS, Joslim is better or comparable across

networks and datasets. This suggests that joint widths and weights optimization leads to better overal

performance for slimmable nets. From the perspective of training overhead, Joslim introduced minor over-

head compared to Slim due to the temporal similarity approximation. More specifically, on ImageNet,

Joslim incurs approximately 20% extra overhead compared to Slim.

Note that the performance among these three methods are similar for the CIFAR-10 dataset. This is

plausible since when a network is more over-parameterized, there are many solutions to the optimization

problem and it is easier to find solutions with the constraints imposed by weight sharing. In contrast, when

the network is relatively less over-parameterized, compromises have to be made due to the constraints

imposed by weight sharing. In such scenarios, Joslim outperforms Slim significantly, as it can be seen

in CIFAR-100 and ImageNet experiments. We conjecture that this is because Joslim introduces a new

optimization variable (width-multipliers), which allows better compromises to be attained. Similarly,

from the experiments with ResNets on CIFAR-100 (Fig. 6.2e to Fig. 6.2h), we find that shallower models

tend to benefit more from joint channel and weight optimization than their deeper counterparts.

Interestingly, while it might be intuitive that larger models are more amenable to pruning without

accuracy degradation, we find that ResNet18, MobileNetV2, and MobileNetV3 dropped their accuracy

similarly while ResNet18 has much more parameters than MobileNetV2 and MobileNetV3 as can be seen

from Figure 6.3. This suggests that we may be able to build training algorithms to better utilize the

parameter counts of a model.

As FLOPs may not necessarily reflect latency improvements since FLOP does not capture memory

accesses, we in addition plot latency-vs.-error for the data in Fig. 6.3a in Fig. 6.4. The latency is measured

on a single V100 GPU using a batch size of 128. When visualized in latency, Joslim still performs favorably

compared to Slim and BigNAS for MobileNetV2 on ImageNet.

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 61

Lastly, we consider another objective that is critical for on-device machine learning, i.e., inference

memory footprint [196]. Inference memory footprint decides whether a model is executable or not on

memory-constrained devices. Since Joslim is general, we can replace the FLOPs calculation with memory

footprint calculation to optimize for memory-vs.-error. As shown in Fig. 6.5, Joslim significantly outper-

form other alternatives. Notably, Joslim outperforms Slim by up to 8% top-1 accuracy for MobileNetV2.

Such a drastic improvement comes from the fact that memory footprint depends mostly on the largest

layers. As a result, slimming all the layers equally to arrive at networks with smaller memory footprint

(as done in Slim) is less than ideal since only one layer contributes to the reduced memory. In addition,

when comparing Joslim with BigNAS, we can observe significant improvements as well, i.e., around 2%

top-1 accuracy improvements for MobileNetV2, which demonstrates the effectiveness of joint width and

weights optimization.

6.3.3 Ablation studies

In this subsection, we ablate the hyperparameters that are specific to Joslim to understand their impact.

We use ResNet20 and CIFAR-100 for the ablation with the results summarized in Fig. 6.6.

Binary search

Without binary search, one can also consider sampling the scalarization weighting λ uniformly from [0, 1],

which does not require any binary search and is easy to implement. However, the issue with this sampling

strategy is that uniform sampling λ does not necessarily imply uniform sampling in the objective space,

e.g., FLOPs. As shown in Fig. 6.6a and Fig. 6.6b, sampling directly in the λ space results in non-uniform

FLOPs and worse performance compared to binary search.

Number of gradient descent steps

In the approximation, the number of architectures (|H|) is affected by the number of gradient descent

updates K. In previous experiments for CIFAR, we have K = 313, which results in |H| = 1000. Here,

we ablate K to 156, 626, 1252, 3128 such that |H| = 2000, 500, 250, 100, respectively. Given a fixed training

epoch and batch size, Joslim produces a better approximation for equation 6.10 but a worse approximation

for equation 6.9 with larger K. The former is because of the local approximation while the latter is because

there are overall fewer iterations put into Bayesian optimization due to temporal sharing. As shown in

Fig. 6.6c, we observe worse results with higher K. On the other hand, the improvement introduced by

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 62

lower K saturates quickly. The overhead of Joslim as a function of K compared to Slim is shown in Fig. 6.6d

where the dots are the employed K.

6.4 Discussion

In this chapter, we are interested in developing a method for filter pruning without fine-tuning. To

achieve this goal, we consider training a network such that its weights are shared across various pruned

models. We formalize this idea by searching for both the shared weights and the width configurations

that minimize the area under the trade-off curve between cross entropy and FLOPs (or memory footprint)

with alternating minimization. We further show that the proposed framework subsumes existing methods

as special cases and provides flexibility for devising better algorithms. To this end, we propose Joslim, an

algorithm that jointly optimizes the weights and widths of slimmable nets, which empirically outperforms

existing alternatives that either neglect width optimization or conduct widths and weights optimization

independently. We extensively verify the effectiveness of Joslim over existing techniques on 15 dataset

and network combinations and two types of objectives, i.e., FLOPs and memory footprint. Our results

highlight the feasibility of removing fine-tuning in filter pruning.

6.5 Carbon Footprint Analysis

When compared to standard training of a neural network (i.e., without pruning), our methodology saves

carbon footprint during inference but increases it during training. During training, in contrast to standard

training, we conduct joint width and weight optimization. If we take ImageNet as an example, it takes an

extra 4.2× overhead for training. An iso-accurate pruned MobileNetV2, model reduces the computational

overhead by 20%. According to a recent study by Patterson et al. [139], the ratio of training and inference

is roughly nine to one in current cloud providers. This leads to a 14% increased in carbon footprint.

However, Joslim trains a weight-sharing model which may in turn reduce the frequency of training. Joslim

ends up saving overall carbon footprint compared to standard training if we assume training a weight-

sharing network can reduce the training frequency of a standard model by 4× (i.e., instead of training

four standalone models of different sizes, we can now train a single slimmable model). More specifically,

adopting the Joslim methodology can reduce the total carbon footprint by 11% compared to using a

standard model. On the other hand, when compared to other weight-sharing methods (i.e., BigNAS),

Joslim increases carbon footprint at training but reduces it during inference since Joslim can produce a

smaller model compared BigNAS when compared at the same top-1 accuracy. More specifically, with the

CHAPTER 6. JOSLIM: EFFICIENT FILTER PRUNING WITHOUT FINE-TUNING 63

nine-to-one ratio for training and inference, Joslim ends up saving 20% carbon footprint when considering

ResNet18 on ImageNet with the top-1 accuracy being 69%.

Chapter 7

Width Transfer: On the (In)variance of Filter

Count Optimization

Inspired by Liu et al. [116], many filter pruning approaches are developed from a neural architecture

search perspective [60, 160, 12, 193]. More specifically, Liu et al. have found that the resulting neural

architecture after filter pruning play an important role in the effectiveness of filter pruning. That is, the

goal is to identify layer-wise filter counts as opposed to finding the redundant weights to prune. Inspired

by this perspective, in this chapter, we design a novel method for optimizing the filter counts of a neural

network efficiently by assuming some invariance properties for the filter count (or width) optimization

problem.

7.1 Motivation

Better designs for the number of filters for each layer of a CNN can lead to improved test performance for

image classification without requiring additional FLOPs during the forward pass at test time. Specifically,

by optimizing the channel widths, improvements of up to 2% top-1 accuracy for image classification on

ImageNet can be achieved without additional FLOPs [60, 59, 193, 27, 103]. However, designing the layer

by layer width multipliers for efficient CNNs is a non-trivial task that often requires intuition and domain

expertise together with trial-and-error to do well. To alleviate the labor-intensive trial-and-error procedure,

width optimization algorithms have been proposed [115, 71, 60, 49, 59] to automatically determine the

width of a convolutional neural network. A width optimization algorithm takes as input an initial network

and a training dataset, and outputs a set of optimized widths for each layer. When these optimized widths

are applied to the initial network and train the network from scratch, one can achieve better validation

accuracy compared to training a network of the original widths without incurring additional test-time

64

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 65

Resolution

Depth

Width

Dataset
size

Width
optimization

(costly)

Width
optimization

(cheap) Extrapolation

Dataset
projection

Network
projection

Comparable in
FLOPs and accuracy

when trained from
scratch

Conventional width optimization

Width transfer

Figure 7.1: The top row shows the conventional width optimization approach, which takes a training
dataset and a seed network, and outputs a network with optimized widths. The bottom row depicts our
idea of width transfer, where width optimization operates on the down-scaled dataset and seed network.
We then use a simple function to extrapolate the optimized architecture to match the original network.
Compared to direct width optimization, our empirical findings suggest that width transfer has similar
performance, but has the benefit of drastically lower overhead.

FLOPs. Such algorithms can be seen as neural architecture search algorithms that search for layer-wise

channel counts that maximizes validation accuracy subject to test-time FLOPs constraints.

However, these methods often add a large computational overhead necessary for the width optimiza-

tion procedure. Concretely, even for efficient methods that use differentiable parameterization [60], width

optimization takes an additional 2× the training time. To contextualize this overhead, using distributed

training on 8 V100 GPUs, it takes approximately 100 GPU hours to train a ResNet50 on the ImageNet

dataset [141]. Including the width optimization overhead, it therefore takes 300 GPU hours for both

width optimization using differentiable methods [60] and training the optimized ResNet50. Reducing the

overhead for width optimization, therefore, would have material practical benefits.

Fundamentally, one of the key reasons why width optimization is so costly is due to its limited under-

standing by the community. Without assuming or understanding the structure of the problem, the best

hope is to conduct black-box optimization whenever training configurations, datasets, or architectures

are changed. In this work, we take the first step to systematically and empirically understand the struc-

ture underlying the width optimization problem by changing network architectures and the properties of

training datasets, and observing how they affect width optimization.

If similar inputs to the width optimization algorithms result in similar outputs, one can exploit this

commonality to reduce the width optimization overhead, especially if the two input configurations have

markedly different FLOPs requirements. As a concrete example, if optimizing the widths of a wide CNN

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 66

(high FLOPS) and a narrow CNN (low FLOPs) results in widths that differ only by a multiplier, one

can reduce the computational overhead of width optimization by computing widths for the low FLOPS,

narrow CNN and adjusting them to accommodate the high FLOPs, wide CNN. In particular, we assume

the following invariances for the optimized widths and validate them empirically:

1. Sample size: The optimized widths are minimally affected by the size of the dataset when the

dataset’s distribution is approximately identical (i.e., uniform down-sampling in a class-balanced

fashion).

2. Spatial resolution: The optimized widths are merely affected by the image resolutions.

3. Channel magnitude: The ratios between the optimized widths and the un-optimized ones are

roughly constant regardless of the absolute channel counts of the un-optimized network.

4. Within-stage channel counts: The optimized widths are similar when they belong to the same stage

of a network where stage is defined by grouping the blocks with the same input resolution [68].

We further propose Width Transfer, a novel paradigm for efficient width optimization that harnesses

the above assumed invariances. In width transfer, one first projects the network and the dataset to their

smaller counterparts, then one executes width optimization with the smaller network and dataset, and

finally one extrapolates the optimized result back as shown schematically in Figure 7.1.

Based on a comprehensive empirical analysis, we provide the following contributions:

• We systematically study the four assumed invariances with comprehensive experiments. Our find-

ings suggest that the four invariances largely hold for the optimized widths.

• We propose Width Transfer, a novel paradigm for efficient width optimization. Additionally, we

propose two novel layer-stacking methods to transfer width across networks with different layer

counts.

• We demonstrate a practical implication of the previous finding by showing that one can achieve 320×

reduction in width optimization overhead for a scaled-up MobileNetV2 and ResNet18 on ImageNet

with similar accuracy improvements, effectively making the cost of width optimization negligible

relative to initial model training.

• With controlled hyperparameters over multiple random seeds on a large-scale image classification

dataset, we verify the effectiveness of width optimization methods proposed in prior art. This is in

contrast with prior work which borrows numbers from other papers that might not have the same

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 67

training hyperparameters. However, we also find that, for a deeper ResNet on ImageNet, width

optimization has limited benefits (Fig. 7.4c).

7.2 Width Optimization

The layer-by-layer widths of a deep CNN are often regarded as a hyperparameter optimized to improve

classification accuracy [71, 60, 160]. A width optimization algorithm, A, takes in a training configuration,

C = (D,N), and outputs a set of optimized widths, w∗. C consists of initial network, N , and training

dataset, D. Concretely, the goal of A is to solve the following optimization problem:

w∗ = arg max
w

Accval (θ(N �w,D),N �w)

s.t. FLOPs(N) = FLOPs(N �w),

(7.1)

where w is a width vector with L dimensions, where L is the number of convolutional layers. N �w

is applying width w to a network N by scaling the number of channels for layer i from Fi to wiFi. θ() is

the standard training procedure that takes in a CNN and a training dataset and outputs trained weights,

e.g., stochastic gradient descent with a fixed training epoch. Lastly, Accval is a function that evaluates the

validation accuracy given the trained weights and the CNN architecture.

Figure 7.2: The two width optimization strategies proposed in prior art.

To optimize the width of a CNN, there are in general two approaches proposed in prior art: Prune-

then-Grow and Grow-then-Prune. Prune-then-Grow uses channel pruning methods to arrive at a down-sized

CNN with non-trivial layer-wise channel counts followed by re-growing the CNN to its original FLOPs

using the width multiplier method [59]. On the other hand, Grow-then-Prune first uses the width multiplier

method to enlarge the CNN followed by channel pruning methods to trim down channels to match its

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 68

Figure 7.3: An example for extrapolation. The projected network has fewer layers and channel counts
per layer compared to the original network. After width optimization on the projected network, we pro-
pose two methods, i.e., stack-last-block and stack-average-block, to match the layer counts to the original
network. Finally, we match the FLOPs to the original network with a width multiplier.

pre-grown FLOPs [193, 60]. The aim of both of these methods is to improve accuracy of the network while

maintaining a given FLOPs count. The schematic view of the two approaches is visualized in Figure 7.2.

While there are many papers on channel pruning [99, 129], they mostly focus their analysis on de-

creasing the inference-time FLOPs of pre-trained models whereas we focus on improving the classifica-

tion accuracy of a network by optimizing its width while holding inference-time FLOPs constant. While

one can use either the Prune-then-Grow or Grow-then-Prune strategies to arrive at a CNN of equivalent

FLOPs, it is not clear if such strategies generally improve performance over the un-optimized baseline

as it is not verified in most channel pruning papers. As a result, in this chapter, we focus on analyzing

algorithms that have demonstrated the effectiveness over the baseline (uniform) width configurations in

either Prune-then-Grow or Grow-then-Prune settings.

7.3 Approach

7.3.1 Width optimization methods

Theoretically, we only care about algorithms A that “solve” the width optimization problem (equation 7.1).

However, the problem is inherently combinatorially hard. As a result, we use state-of-the-art width

optimization algorithms as probes to understand the width optimization problem. More specifically,

we consider methods that have reported improved accuracy compared to the un-optimized network given

the same test-time FLOPs, and have publicly available code to ensure correctness of implementation.

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 69

With these criteria, we consider MorphNet [59], AutoSlim [193], and DMCP [60]. Note that we use these

algorithms to find the “network architecture" which will be trained from scratch using the normal training

configurations with randomly initialized weights.

7.3.2 Projection and extrapolation

Projection In projection, there are two aspects: network projection and dataset projection. For network

projection, we propose to use the width multiplier to uniformly shrink the channel counts for all the layers

to arrive at a narrower model. Additionally, we also propose to use the depth multiplier to uniformly

shrink the block counts per each stage of a neural network to arrive at a shallower model. For dataset

projection, on the one hand, we propose to sub-sample the training sample in a dataset in a class-balanced

way. On the other hand, we propose to sub-sample the spatial dimension of the training images to arrive

at images with lower resolutions. When keeping the width optimization algorithm fixed, i.e., training the

input network with a certain batch size and training epochs using the input dataset, all the aforementioned

projections immediately result in width optimization overhead reduction.

Extrapolation We consider two aspects for extrapolation: dimension-matching and FLOPs-matching,

which are schematically shown in Figure 7.3. First, we want the extrapolated network to have the same

number of layers as the original network. This is particularly crucial when the original network is projected

in the depth dimension, in which case we propose two layer stacking strategies:

• Stack-last-block: Stack the width multipliers of the last block of each stage until the desired depth

is met. A stage includes convolutional blocks with the same output resolution in the original net-

work. A convolutional block consists of several convolutional layers such as the bottleneck block in

ResNet [68] and the inverted residual block in MobileNetV2 [154].

• Stack-average-block: To avoid mismatches among residual connection, we exclude the first block

of each stage and compute the average of the width multipliers across all the rest blocks in a stage,

then stack the average width multipliers until the desired depth is met.

Note that since existing network designs share the same channel widths for all the blocks in each stage,

the above two layer stacking strategies will have the same results when applied to networks with un-

optimized widths.

Second, we want to extrapolate the optimized projected network to a larger one such that it has the

FLOPs of the original network. To do so, we propose to use the width multiplier to widen the optimized

width. This procedure basically assumes that what determines the optimized widths is the ratio among

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 70

layers and we show that this assumption is largely correct in Section 7.4 as the optimized widths are

largely transferable across network’s initial widths.

7.4 Experiments

In this section, we empirically investigate the transferability of the optimized widths across different pro-

jection and extrapolation strategies. Specifically, we study projection across architectures by evaluating

different widths and depths as well as across dataset properties by dataset sub-sampling and resolution

sub-sampling. In addition to analyzing each of these four settings independently, we also investigate a

compound projection that involves all four jointly. To measure the transferability, we plot the ImageNet

top-1 accuracy of network obtained by direct optimization and width transfer across different projection

scales that have different width optimization overhead. Width optimization overhead refers to the FLOPs

needed to carry out width optimization. If transferable, we should observe a horizontal line across dif-

ferent width optimization overheads, suggesting that performance is not compromised by deriving the

optimized widths from a smaller FLOP configuration. Moreover, we also plot the ImageNet top-1 accu-

racy for the un-optimized baseline to characterize whether width optimization or width transfer is even

useful for some configurations.

7.4.1 Experimental Setup

We used the ImageNet dataset [40] throughout the experiments. Unless stated otherwise, we use 224 input

resolution. For CNNs, we considered the meta-architecture of ResNet18 [68] and MobileNetV2 [154]. Note

that we adjusted the depth and width of ResNet-18 and MobileNetV2 to arrive at a wide variety of models

for our width transfer study. Models were each trained on a single machine with 8 V100 GPUs for all

the experiments. The width multiplier method applies to all the layers in the CNNs while the depth-

multiplier excludes the first and the last stage of MobileNetV2 as there is only one block for each of them.

After we obtained the optimized architecture, we trained the corresponding network from scratch with

random initialization using the same hyperparameters to analyze their performance. We repeated each

experiment three times with different random seeds and reported the mean and standard deviation.

7.4.2 Projection: width

Here, we focus on answering the following question: “Do optimized widths obey the channel magnitude

invariance?” The answer to this question is unclear from existing literature as the current practice is to

re-run the optimization across different networks [60, 59, 115]. If the optimized widths are similar across

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 71

0 20 40 60 80 100
Width Optimization Overhead Saved (%)
75.0

75.2

75.4

75.6

To
p-

1
Ac

cu
ra

cy
 (%

)
Uniform
DMCP

AutoSlim
MorphNet

(a) Res18, width

0 20 40 60 80 100
Width Optimization Overhead Saved (%)

75.5

76.0

76.5

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(b) MBv2, width

0 20 40 60
Width Optimization Overhead Saved (%)

76.8

76.9

77.0

77.1

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(c) Res18, depth

0 20 40 60
Width Optimization Overhead Saved (%)

75.5

76.0

76.5

77.0

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(d) MBv2, depth

Figure 7.4: Experiments for width transfer under network projection. We plot the ImageNet top-1 accuracy
for uniform baseline, width transfer, and direct optimization (the leftmost points). On the x-axis, we plot
the width optimization overhead saved by using width transfer.

different initial widths, this suggests that the quality of the vector of channel counts are scale-invariant

given the current practice of training deep CNNs and the dataset. Additionally, it also has practical

benefits where one can use width transfer to reduce the overhead incurred in width optimization. On the

other hand, if the optimized widths are dissimilar, this suggests that not only the direction of the vector

of channel counts is important, but also its magnitude. That is, for different magnitudes, we may need

different orientations. In other words, this suggests that existing practice, though costly, is empirically

proved to be necessary.

To empirically study the aforementioned question, we considered the source width multipliers of

{0.312, 0.5, 0.707, 1, 1.414, 1.732} and the target width multiplier of 1.732, and we analyzed if the source

optimized architecture transfers to the target architecture. The set of initial width multipliers is chosen

based on square roots of width optimization overhead. We analyzed the transferability in the accuracy

space. In Figure 7.4a and 7.4b, we plot the ImageNet top-1 accuracy for the baseline (a 1.732× wide

network) and networks obtained by direct optimization and width transfer. For ResNet18, the width

optimization overhead can be saved by up to 96% for all three algorithms without compromising the

accuracy improvements gained by the width optimization.

On MobileNetV2, AutoSlim and MorphNet can transfer well and save up to 80% width optimization

overhead. While DMCP for MobileNetV2 results in 0.4% top-1 accuracy loss when using width transfer,

the transferred width can still outperform the uniform baseline, which is encouraging for applications that

allow such accuracy degradation in exchange for 83% width optimization overhead savings. More specifi-

cally, that would reduce compute time from 160 GPU-hours all the way to 30 GPU-hours for MobileNetV2

measured using a batch size of 1024, a major saving. Our results suggest that a good orientation for the

optimized channel vector continues to be suitable across a wide range of magnitudes.

Since the optimized widths are highly transferable, we are interested in the resulting widths for both

CNNs. We find that the later layers tend to increase a lot compared to the un-optimized ones. Concretely,

in un-optimized networks, ResNet18 has 512 channels in the last layer and MobileNetV2 has 1280 channels

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 72

(a) ResNet18 (b) MobileNetV2

Figure 7.5: The average optimized width for ResNet18 and MobileNetV2. They are averaged across the
optimized widths. We plot the mean in solid line with shaded area representing standard deviation.

in the last layer. In contrast, the average optimized width has 1300 channels for ResNet18 and 3785

channels for MobileNetV2. We visualize the average widths for ResNet18 and MobileNetV2 (average

across optimized widths) in Figure 7.5.

7.4.3 Projection: depth

Next, we asked whether networks with different initial depths share common structure in their opti-

mized widths. Specifically, “Do the optimized widths obey the within-stage channel counts invariance?" Because

making a network deeper will add new layers with no corresponding optimized width, we will need

a mechanism to map the vector optimized widths to a vector with far more elements. Here, we first

compared the two layer-stacking methods proposed in Section 7.3.2 using DMCP for ResNet18 and Mo-

bileNetV2. As shown in Figure 7.6, both stack-last-block and stack-average-block layer stacking strategies

perform similarly. As a result, we use stack-average-block for all other experiments. We considered {1, 2, 3,

4} as the source depth multipliers and use 4 as the target depth multiplier. Similar to the analysis done in

Section 7.4.2, we analyzed the similarity in the accuracy space.

As shown in Figure 7.4c and 7.4d, we find that the optimized widths stay competitive via simple layer

stacking methods and up to 75% width optimization overhead can be saved if we were to optimize the

width using width transfer for all three algorithms and two networks. This finding also suggests that the

relative values of optimized widths share common structure across networks that differ in depth. In other

words, the pattern of width multipliers across depth is scale-invariant. Interestingly, we find that width

transfer improves direct optimization in terms of accuracy when it comes to AutoSlim and MorphNet

as we see a positive slope for these two methods on both networks. We conjecture that this is due to

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 73

0 20 40 60
Width Optimization Overhead Saved (%)

76.8

76.9

77.0

77.1

To
p-

1
Ac

cu
ra

cy
 (%

)
Uniform
Stack-average-block
Stack-last-block

(a) ResNet18

0 20 40 60
Width Optimization Overhead Saved (%)

76.50

76.75

77.00

77.25

77.50

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
Stack-average-block
Stack-last-block

(b) MobileNetV2

Figure 7.6: We compare the two layer-stacking strategies using DMCP for both ResNet18 and Mo-
bileNetV2. We can observe that both stack-average-block and stack-last-block perform similarly.

both AutoSlim and MorphNet being affected more by the dimensionality1 of the problem (the number of

widths to be learned), and that the within-stage channel invariance largely holds.

7.4.4 Projection: resolution

The input resolution and the channel counts of a CNN are known to be related when it comes to the test

accuracy of a CNN. As an example, it is known empirically that a wider CNN can benefit from inputs

with a higher resolution than a narrower net can [164]. As a result, it is not clear if the optimized widths obey

the spatial resolution invariance. If the optimized widths indeed obey the spatial resolution invariance, this

suggests that although wider networks benefit more from a higher resolution inputs, the non-uniform

widths that result in better performance are similar. On the other hand, if the optimized widths are

different, it suggests that, when it comes to the test accuracy, the relationship between channel counts and

input resolution is more involved than the level of over-parameterization.

To study the aforementioned question, we considered the input resolution for the source to be {64,

160, 224, 320} and choose a target of 320. As shown in Figure 7.7a and 7.7b, we find that except for

MorphNet targeting ResNet18, all other algorithm and network combinations can achieve up to 96%

width optimization overhead savings with the optimized widths that are still better than the uniform

baseline. By saving 75% width optimization overhead, we can stay close to the performance obtained

via direct optimization. Interestingly, we find that MorphNet had a very different optimized widths

when transferred from resolution 64 for ResNet18, which leads to the worse performance for ResNet18

compared to direct optimization.

1Width depth projection, we effectively reduce the dimensionality of the search problem.

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 74

0 20 40 60 80 100
Width Optimization Overhead Saved (%)

70

72

74
To

p-
1

Ac
cu

ra
cy

 (%
)

Uniform
DMCP

AutoSlim
MorphNet

(a) Res18, resolution

0 20 40 60 80 100
Width Optimization Overhead Saved (%)
73.0

73.5

74.0

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(b) MBv2, resolution

0 20 40 60 80
Width Optimization Overhead Saved (%)

70.5

71.0

71.5

72.0

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(c) Res18, dataset size

0 20 40 60 80
Width Optimization Overhead Saved (%)

71.5

72.0

72.5

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(d) MBv2, dataset size

Figure 7.7: Experiments for width transfer under dataset projection. We plot the ImageNet top-1 accuracy
for uniform baseline, width transfer, and direct optimization (the leftmost points). On the x-axis, we plot
the width optimization overhead saved by using width transfer.

Network Baseline DMCP Width transfer Overhead (direct→width transfer)
ResNet50 77.97± 0.09 78.23± 0.11 78.07± 0.12 37.4→ 1.3

ResNet101 79.43± 0.07 79.70± 0.05 79.54± 0.07 66.7→ 2.7
EfficientNetB3 80.02± 0.09 80.24± 0.02 80.19± 0.10 80→ 3

Table 7.1: Compound width transfer for other CNNs. Width optimization overhead measured with 8
NVIDIA V100 GPUS on a single machine.

7.4.5 Projection: dataset size

The dataset size is often critical for understanding the generalization performance of a learning algorithm.

Here, we would like to understand if the optimized widths obey the sample size invariance. We considered sub-

sampling the ImageNet dataset to result in a source of {5%, 10%, 20%, 50%, 100%} of the original training

data. Similar to previous analysis, we tried to transfer the optimized widths obtained using the smaller

configurations to the largest configuration, i.e., 100% of the original training data. As shown in Figure 7.7c

and 7.7d, widths optimized for smaller dataset sizes transfer well to large dataset sizes. That is, 95% width

optimization overhead can be saved and still outperforms the uniform baseline for both networks. On the

other hand, 90% width optimization overhead can be saved and can still match the performance of direct

optimization for DMCP. This suggests that the amount of training data barely affects width optimization,

especially for DMCP, which is surprising.

7.4.6 Compound projection

From previous analyses, we find that the optimized widths are largely transferable across various pro-

jection methods independently. Here, we further empirically analyzed if the optimized width can be

transferable across compound projection. To do so, we considered linearly interpolating all four projec-

tion methods and analyzed if the width optimized using cost-efficient settings can transfer to the most

costly setting. Specifically, let a tuple (width, depth, resolution, dataset size) denote a training configura-

tion. We considered the source to be {(0.312,1,64,5%), (0.707,1,160,10%), (1,1,224,50%), (1.414,2,320,100%)}

and the target to be (1.414,2,320,100%). As shown in Figure 7.8, the optimized width is transferable across

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 75

100 101 102 103 104

Width Optimization Overhead Reduction (×)

77.50

77.75

78.00

78.25

78.50

To
p-

1
Ac

cu
ra

cy
 (%

)
Uniform
DMCP

AutoSlim
MorphNet

(a) ResNet18

100 101 102 103 104

Width Optimization Overhead Reduction (×)

77.75

78.00

78.25

78.50

78.75

To
p-

1
Ac

cu
ra

cy
 (%

)

Uniform
DMCP

AutoSlim
MorphNet

(b) MobileNetV2

Figure 7.8: Width transfer with compound projection.

compound projection. Specifically, we can achieve up to 320× width optimization overhead reduction

with width transfer for the best performing algorithm, DMCP. Additionally, it also suggests that the four

projection dimensions are not tightly coupled for width optimization.

Applications to other target CNNs We considered using compound width transfer for ResNet50, ResNet101,

and EfficientNetB3. For projection, we consider the width, depth, resolution and dataset size to be 0.707,

0.5, 160, and 20%, respectively. As shown in Table 7.1, up to 30× wall-clock time reduction is achieved

with less than 0.2% top-1 accuracy degradation. Consider a scenario where one wants to optimize the

width of a network and train such a network for deployment. Width optimization reduces the overall

training cost from 3× to 1.06×. Such a huge optimization cost reduction can enable fast exploration for

the benefits of width optimization for large models without paying considerable costs.

7.4.7 Comparing to cheap pruning methods

While adopting state-of-the-art channel optimization directly can be costly, one may consider using cheap

pruning methods and adopt a Prune-then-Grow strategy to carry out width optimization. We compare

to magnitude-based channel pruning: network slimming (NS) [114] that prunes channels based on the

magnitude of γ of the batch normalization layer. NS-xw-ye follows a three-step procedure: train an x×

wider network for y epochs, prune the network with global γ ranking, and re-train the pruned network

using full training schedule. The induced overhead for width optimization lies in the first step. The

comparisons with NS for ResNet18 on ImageNet is shown in Fig. 7.9. Using DMCP directly is indeed the

most expensive one, but it has the best performance. Our width transfer achieves similar performance

compared to DMCP with overhead lower than magnitude-based pruning.

CHAPTER 7. WIDTH TRANSFER: ON THE (IN)VARIANCE OF FILTER COUNT OPTIMIZATION 76

0.0 0.5 1.0 1.5 2.0
Overhead

69.0
69.5
70.0
70.5
71.0
71.5

To
p-

1
Ac

cu
ra

cy

Ours
ResNet18

NS-1.1w-20e
NS-1.1w-50e
NS-1.1w-100e
NS-1.3w-20e
NS-1.5w-20e
Uniform
DMCP (Fig. 7c, x=0)
WT (Ours, Fig. 7c, x=95%)

Figure 7.9: Comparing the proposed using DMCP with width transfer, DMCP, and network slimming.

Channel pruning Channel pruning is an active research topic for efficient network design. More specif-

ically, channel pruning determines how we can prune an existing network in the channel dimension so as

to retain the most accuracy [25, 70, 71, 99, 129, 102]. A channel pruning procedure often has the weights

and the optimized channel counts coupled together. Inspired by Liu et al. [116], who has empirically

shown the importance of the optimized channel counts, we take a step further by understanding the

transferability of the searched channel counts across different input network and dataset transformations.

7.5 Discussion

In this chapter, we take a first step in understanding the transferability of the optimized widths across

different width optimization algorithms and invariance dimensions. Our empirical analysis sheds light

on the structure of the width optimization problem, which can be used to design better optimization

methods. More specifically, by exploiting the channel magnitude and within-stage channel counts invari-

ances, we not only can reduce the computational cost needed to width optimization, but also reduce the

dimension of the optimization variables2. Per our analysis, we can achieve up to 320× reduction in width

optimization overhead without compromising the top-1 accuracy on ImageNet.

7.6 Carbon Footprint Analysis

When compared to methods that incorporate width optimization in the training time, our methodology

saves carbon footprint during the training time. Applying Width Transfer to DMCP is practically about

3× faster than DMCP, which means Width Transfer saves 3× carbon footprint than alternatives when it

comes to training.

2In the channel search space, we have one optimization variable for each layer.

Chapter 8

Synergies and Discussion of Presented

Approaches

8.1 LeGR, Joslim, and Width Transfer

While all three aforementioned algorithms contribute to advancing the efficiency of filter counts optimiza-

tion, they have different competitive edges depending on different application scenarios. In this section,

we quantitatively compare and contrast the three proposed algorithms in various application scenarios to

shed some light on their relationship.

We consider the following two application scenarios:

• Trying to optimize the filter counts of a CNN to obtain a family of efficient networks. More specif-

ically, the use case focuses on outputting many optimized networks with the objective of achieving

Pareto-optimality.

• Trying to obtain a weight-sharing network of which the filter counts of the sub-networks are opti-

mized to achieve Pareto-optimality. The weight-sharing network can be used in an online adaptive

setting.

Note that Width Transfer is complementary to LeGR and Joslim as Width Transfer can operate on any

width optimization algorithm. As a result, we perform Width Transfer for both LeGR and Joslim in this

section. To compare the three algorithms in two application scenarios, we use the CIFAR-100 dataset [93]

and compare the overhead of the algorithms and the resulting accuracy of the trained networks. For

CNNs, we adopt ResNet-56 [68] for this analysis.

77

CHAPTER 8. SYNERGIES AND DISCUSSION OF PRESENTED APPROACHES 78

Searching Cost Training Cost

Uniform None Training the uniform architectures

LeGR • Training the unpruned model Fine-tuning the pruned models• Learning global ranking

WT-LeGR • Training the unpruned model with proxies Training the optimized architectures• Learning global ranking with proxies
Joslim • Joint widths and weights optimization None

WT-Joslim • Joint widths and weights optimization with proxies Training the optimized architectures

Table 8.1: Comparing the overhead of different channel searching methods. WT stands for Width Transfer.

8.1.1 Optimizing for Many Target Networks

In this task, we focus on searching for many optimized networks pruned from ResNet-56. Specifically,

we consider models of FLOP counts ratios of the original model that range from 20% to 80% in a step of

10%. For this task, the overhead of the algorithms includes finding the set of pruned networks, which we

call searching, and fine-tuning or training the found networks, which we call training. One straightforward

baseline for this task is to use the uniform width multiplier to arrive at networks of different FLOPs and

train them using standard training procedures, which we call Uniform.

For Uniform, searching cost is effectively zero and the training cost is the overhead to train the seven

models from scratch until convergence. For LeGR, the searching cost includes training the unpruned

model and learning the global ranking. While LeGR has higher searching cost than Uniform, LeGR has

much lower training cost as LeGR fine-tunes the pruned model instead of training each of the pruned

model from scratch. For Joslim, the searching cost includes the joint optimization of both widths and

weights while the training cost is effectively zero. For Width Transfer, the searching cost is greatly reduced

compared to LeGR and Joslim due to the usage of proxy networks and datasets. However, the training cost

is increased as Width Transfer only transfer the widths (or the architectures) but not the weights, which

makes its training cost similar to that of Uniform. The overhead comparisons are detailed in Table 8.1.

Figure 8.1a and 8.1b show the results for different methods and their overhead analysis. We can

observe that Joslim achieves the best prediction error vs. FLOPs trade-off compared to other methods

while being the most expensive method when the number of target compression ratios is below ten. The

second competitive approach is LeGR, which has a much lower overhead compared to that of Joslim when

the number of target compression ratios. Lastly, Width Transfer scales similarly compared to Uniform in

terms of overhead while being able to provide better architectures than Uniform. Width Transfer is more

attractive when the number of target compression ratios is low and when the model under optimized

is large. The better performance of Joslim and LeGR compared to their Width Transfer counterparts

indicates that not only the architectures matter for pruning, but also their weights, which aligns with the

CHAPTER 8. SYNERGIES AND DISCUSSION OF PRESENTED APPROACHES 79

(a) (b)

(c) (d)

Figure 8.1: (a,c) The trade-off curve of pruning ResNet-56 on CIFAR-100 using various methods. (b,d)
Training cost and its scaling with respect to the number of target compression ratios for different methods
targeting ResNet-56 on CIFAR-100. The cost is calculated using the number of forward passes for a
ResNet-56 while approximating one backward pass as two forward passes. Fig. a and b are for optimizing
many target networks while Fig. c and d are for optimizing weight-sharing networks.

recent findings by Ye et al. [191].

8.1.2 Optimizing for a Weight-sharing Network

This task is similar to previous task with the difference being we would like to obtain a weight-sharing

model. That is, we only use a single set of weights for all the target compression ratios. For methods other

than Joslim, we simply follow the procedures in previous tasks while training the obtained architectures

with weight-sharing training [194]. Figure 8.1c and 8.1d show our results. From the results, we can observe

that Joslim generally performs the best, which is expected as Joslim is designed for this particular task

by jointly optimizing both the weights and the width configurations. Interestingly, Joslim performs worse

than LeGR and Width Transfer for the smallest target compression ratio, which is because the smallest

target compression ratio in Joslim has an uniform architecture while it has a non-uniform architecture for

LeGR and Width Transfer. This implies that one can further improve Joslim by having the widths of the

CHAPTER 8. SYNERGIES AND DISCUSSION OF PRESENTED APPROACHES 80

(a) Severity: 1 (b) Severity: 3

Figure 8.2: The mean corruption errors for different number of target compression ratios of different
methods targeting ResNet-56 on CIFAR-100. Note that the networks are optimized with CIFAR-100 and
test using CIFAR-100-C.

smallest model being searched as well. Lastly, we find that the gap between LeGR and Uniform close

as we move from no weight-sharing to weight-sharing, which suggest that LeGR benefits a lot from its

pre-trained weights and the architectures found by LeGR are not drastically better than Uniform. In terms

of overhead, Joslim has the largest overhead while all methods require constant overhead across various

target compression ratios thanks to the weight-sharing training.

8.1.3 Extending to Transfer Learning

Extending the proposed pruning methods to transfer learning is straightforward if the source dataset is

available. Specifically, we conduct both LeGR, Joslim, and Width Transfer on the source dataset and fine-

tune the pruned models on the target dataset. However, it is less clear if the source dataset is not available.

If we do not have access to the source dataset and only have access to a pre-trained model that is trained

on the source dataset, we need to adapt the methodology a little. The key problem that might arise in

this scenario is that pruning might lead to forgetting important features that are only learnable through

the large-scale source dataset. To combat this issue, we can add feature distillation loss to the pre-trained

model [29, 100] for the training and fine-tuning procedures during the pruning methodology.

Overall, we find that Joslim performs the best in terms of the performance if the overhead can be

accepted. On the other hand, Width Transfer gives the lowest overhead with minor improvements over

Uniform if only targeting a few compression ratios. As an alternative, LeGR provides a nice balance

between Joslim and Width Transfer when considering a moderate number of target compression ratios.

All methods can be extended to target transfer learning easily.

CHAPTER 8. SYNERGIES AND DISCUSSION OF PRESENTED APPROACHES 81

8.2 Robustness to Distributional Shifts

In addition to the standard accuracy metric, we further analyze the performance of the pruned models

on CIFAR-100-C [75] to understand how filter counts affect networks’ robustness in distribution shifts.

Specifically, CIFAR-100-C perturbs the images in CIFAR-100 with various natural perturbations such as

Gaussian Blur, Motion Blur, Frost, and Zoom Blur just to name a few. For each of the perturbation, the

dataset provides severity from level 1 to 5. In this subsection, we report the mean corruption error for

level 1 and level 3 for all kinds of perturbations provided in the dataset. As shown in Figure 8.2, we find

that the ranking among methods stay roughly the same. Interestingly, when it comes to Joslim, we find

that the best model in mean corruption error is not necessarily the best model in clean error, which means

that it might be desirable to do pruning for improved robustness. While standard pruning has shown in

prior work to be harmful for the out-of-distribution setting [104], a weight-sharing training approach (e.g.,

Joslim [27], Slimmable Nets [196], and BigNAS [195]) might behave differently.

8.3 Relation to Neural Architecture Search

Filter counts search is closely related to neural architecture search (NAS). In filter pruning, one typically

starts with a pre-trained model and tries to identify redundant filters to prune away, which is followed

by a fine-tuning procedure to improve the accuracy of the pruned model. The resulting model has both

the neural architecture and the weights that are different from the pre-trained ones. Hence, filter pruning

algorithms can be recognized as a variant of NAS where the search space is the number of filters for

each layer. In light of this, Liu et al. [116] conduct empirical analysis on various filter pruning algorithms

to understand the performance of the pruned architectures by re-initializing the weights of the pruned

models and train them from scratch. They conclude that the main sources of effectiveness of the studied

pruning algorithms comes from the resulting architecture. Later, Ye et al. [191] prove both empirically and

theoretically that not only the architectures, but also the pre-trained weights are useful. Hence, effective

filter pruning algorithms play a role in identifying not only a good neural architecture, but also good

weights.

Due to the importance of the neural architecture in filter pruning, various NAS techniques have been

adopted in filter pruning to develop new filter pruning methods. For example, both the one-shot supernet

method [12, 193, 27, 60, 160] and the Gumbel relaxation method [171] are explored in filter pruning. It is

worth noting that the choices for the number of filters is large for each searchable variable compared to the

commonly studied neural architecture search space [111, 162, 183, 16] (i.e., hundreds vs. less then ten). As

a result, the differentiable categorical formulation adopted in DARTS [111] or SNAS [186] is less suitable

CHAPTER 8. SYNERGIES AND DISCUSSION OF PRESENTED APPROACHES 82

for the filter pruning space. To use those formulation, FBNetV2 [171] discretizes the filter counts into at

most 14 choices per layer. Due to the large number of choices per layer, the one-shot neural architecture

search method is more popular in filter pruning.

In this thesis, we discuss three approaches to make filter pruning more efficient across multiple target

constraint levels. Our proposed methods are also closely related to efficient neural architecture search

methods that aim at the same goal. Specifically, Once-for-all (OFA) networks [15] and BigNAS [195] both

try to search for resource-constrained architectures efficiently across different constraint levels. Besides

the difference in the search space in our methods compared to theirs, our methods are also fundamentally

different. In LeGR, we essentially propose to learn to rank different architectures such that the ranking

generates a continuum trade-off between accuracy and compute resources. Such an idea has not been

explored in the neural architecture search space. In Joslim, our algorithm shares some similarity with OFA

and BigNAS. As discussed in Chapter 6, our proposed Joslim generalizes OFA and BigNAS by having a

multi-objective formulation, which we approach with alternating minimization. Both OFA and BigNAS

can be seen as greedy methods that sequentially train the supernet and search for resource-constrained

architectures while Joslim alternate between the two. In Width Transfer, we propose a novel proxy for the

filter pruning search space to drastically reduce the search overhead. While ECO-NAS [209], which is the

closest related idea in the NAS literature, has also explored various proxy settings for NAS, our proposed

Width Transfer adds dimensionality reduction of the optimization variable into the picture.

8.4 Applicability to Networks besides CNNs

In this thesis, we mainly discuss approaches to improve the efficiency of CNNs, which is the dominant

neural architectures for visual tasks. Since Transformers have recently achieved great success in various

computer vision tasks [51, 19, 10, 177, 206, 92, 169, 148], we discuss the applicability of the methods

proposed in this thesis to neural architectures other than CNNs.

In AdaScale, we propose to apply different image resolutions for different images to improve both

speed and accuracy. This exploits one characteristic of modern CNNs that they are faster with smaller

image resolutions. Fortunately, this characteristic also holds for Visual Transformers [51]. More specifi-

cally, instead of partitioning images into 16× 16 patches, we can partition them into larger patches, which

reduces the total input tokens for transformers, which in turn lead to reduction in end-to-end latency. This

idea is recently explored by Wang et al. [179], which demonstrates the potential usefulness of AdaScale in

Transformers.

By equating the number of filters per layer in a CNN to the number of hidden units per layer in a

CHAPTER 8. SYNERGIES AND DISCUSSION OF PRESENTED APPROACHES 83

Transformer, all three methods proposed in this thesis regarding efficient filter pruning (LeGR, Joslim,

and Width Transfer) can be directly applied to Transformers. Similarly, the theoretical analysis provided

in Winning-Bitwidth (Chapter 4) still holds for Transformer networks. One key characteristic of CNNs

these methods build upon is that having non-trivial filter counts per layer improves the performance of a

CNN without increasing the computational overhead. Fortunately, various papers have shown structural

pruning to be effective for Transformers [8, 125, 174], which demonstrates the potential usefulness of

Winning-Bitwidth, LeGR, Joslim, and Width Transfer for Transformers.

Chapter 9

Related Work

9.1 Model Compression/Acceleration

Various methods have been developed to compress and/or accelerate CNNs including weight quantiza-

tion [144, 214, 87, 89, 198, 76, 44, 31], efficient convolution operators [77, 73, 184, 78, 205], neural archi-

tecture search [212, 37, 16, 47, 162, 159, 158, 62, 183], adjusting image resolution [163, 24, 164], and filter

pruning [99, 130, 129, 71, 69, 181, 105, 193, 114, 59, 189].

9.1.1 Filter Pruning

In filter pruning, we are interested in finding out redundant channels to remove such that the CNN

can be accelerated without hurting its predictive performance. Some methods attack this problem by

trying to remove filters to minimize the loss difference between the pruned model and the pre-trained

model. These methods typically use some metric for approximating filters’ impact on the loss function.

Examples include using the norm of filter weights [99, 124, 71], Taylor expansion [130, 129, 167, 172],

learned criteria [25, 69], random sampling to gauge the importance [95, 105], and greedily probing each

channel to measure the loss [191]. On the other hand, methods that directly seek for a network with fewer

channel counts are also proposed. Specifically, these methods include adding a regularization term to

introduce filter-level sparsity during standard training [181, 114, 59, 119, 83, 213], and making the channel

counts differentiable with approximation methods [168, 135]. Liu et al. [116] found that the architectures

of the pruned models (the non-trivial channel counts per layer) may be the main source of effectiveness

for filter pruning, which leads to a family of methods that aim to perform channel counts search using

one-shot neural architecture search [60, 12, 193, 27].

84

CHAPTER 9. RELATED WORK 85

9.1.2 Quantization

Quantization for neural networks allows one to store the weights of the neural networks in a lower

precision format, which leads to model compression. Additionally, with activation being quantized, low-

precision computation can achieve energy and latency reduction. There are in general two directions

for quantization in prior literature, post-training quantization [132, 127, 203, 156] and quantization-aware

training [144, 214, 87, 89, 198, 76, 31]. The former assumes training data is not available when quantization

is applied. While being fast and training-data-free, its performance is worse compared to quantization-

aware training.

In post-training quantization, Sung et al. propose to optimize for the clipping location for quantization

that minimizes the L2-norm of the quantization error [161]. Banner et al. provide the analytical solutions

to optimal clipping point assuming the parameters to be quantized follow a Gaussian or Laplace distri-

bution [7]. Zhao et al. propose to expand the network in the channel dimension by splitting existing

channels to reduce the outliers in quantization [204]. Nagel et al. show that rounding to the nearest neigh-

bor for quantization can be sub-optimal and propose to optimize the rounding decision to achieve better

results [131].

In quantization-aware training, Rastegari et al. [144] introduce binary neural networks, which lead to

significant efficiency gain by replacing multiplications with XNOR operations at the expense of significant

accuracy degradation. Later, Zhu et al. [214] propose ternary quantization while others [211, 87, 98] bridge

the gap between floating-point and binarized neural networks by introducing fixed-point quantization.

Building upon prior art, the vast majority of existing work focuses on reducing the accuracy degradation

by improving the training strategy [208, 187, 117, 43] and developing better quantization schemes [89, 176,

198].

There are also efforts that try to bridge the gap between the two family by leveraging knowledge

distillation [32, 17].

Additionally, deciding which layer to use which bit-widths is also an important research direction. In

particular, HAQ [176] uses reinforcement learning to conduct the search, HAWQv2 [50] uses the trace of

the Hessian to perform layer-level sensitivity analysis, and differentiable NAS methods are also adopted

in various papers [192, 185, 58].

Related to our findings in Chapter 4, Mishra et al. [128] have also considered the impact of channel

count in quantization. In contrast, our work has the following novel features. First, we find that in

ConvNets with standard convolutions, a lower bitwidth outperforms higher ones under a given model size

constraint. Second, we find that the Pareto optimal bitwidth negatively correlates to the convolutional

CHAPTER 9. RELATED WORK 86

kernel fan-in and we provide theoretical insights for it. Last, we show that a single weight bitwidth can

outperform mixed-precision quantization on ImageNet for ResNet50 and MobileNetV2.

9.1.3 Hardware-aware neural architecture search

To achieve better efficiency, one can consider searching for neural architectures while subject to some hard-

ware constraints. In particular, DPPNet [48], ProxylessNAS [16] and MnasNet [162] are the early methods

for hardware-aware neural architecture search. Later methods focus on different search spaces [37, 171,

106, 6, 178], a more efficient search procedure [183, 159, 62, 15, 195], different ways to conduct weight-

sharing [173, 96], or uses a constrained formulation [133]. It is worth noting that the search space in these

methods usually do not include the channel counts per layer [16, 183, 159, 61, 15, 133], or include very

small variation in the channel counts [195, 173]. The only exceptions are ChamNet [37], FBNetv2 [171],

MnasNet [162], and MCUNet [106]. However, the channel counts space in these methods is relatively

coarse-grained (per-stage variables or a per-network variable) compared to the filter pruning literature.

Hence, combining filter pruning methods together with neural architecture search may be worth exploring

to unleash the full potential of hardware-aware NAS. APQ [178] is the only recent attempt of combining

filter pruning, quantization, and NAS.

9.2 Efficient Model Compression

9.2.1 Search once and reuse for multiple constraint levels

Model compression techniques usually comes with a hyperparameter to determine the trade-offs be-

tween the accuracy and the compression level. Examples include having different reward formulation

when searching for the optimal compressed models [176, 71, 162], having different weights for combining

conflicting objectives [59, 114, 181], having different constraint level in optimization [189, 12], or having

different condition for the greedy compression procedure to stop [129, 1, 167, 172]. Besides the greedy

methods, other methods require the constraint level to be an input to a costly optimization process, which

means searching for compressed models over a large set of constraint levels is going to be a prohibitively

expensive procedure. To address the scalability of optimization given many constraint levels of interest,

various methods were proposed. For example, we proposed LeGR [25] that builds learning on top of a

greedy procedure and Joslim [27] that directly uses a multi-objective formulation to solve for a trade-off

front with weight-sharing. In addition to our efforts, slimmable neural networks [196] enable multiple

sub-networks with different compression ratios to be generated from a single network with one set of

weights. While slimmable networks only vary the channel counts in the networks to arrive at different

CHAPTER 9. RELATED WORK 87

networks, once-for-all network [15] and BigNAS [195] extend the search space to kernel size, expansion

ratios, and depths of a neural network. Similarly, AdaBit [88] and BatchQuant [4] present weight-sharing

networks for quantization such that quantization to different bit-width can be done online efficiently

without re-training.

9.2.2 Transferrability of neural architectures

In light of the findings of Liu et al [116], which demonstrate that the effectiveness of filter pruning mainly

lies in the neural architecture, efficient neural architecture search (NAS) methods hence provide the means

for efficient filter pruning. Our findings in Chapter 7 are tightly connected to understanding the transfer-

ability of the searched results from NAS algorithms where the search space is determined by the layer-wise

channel counts of a seed network. The transferability of NAS has been recently explored in several papers

considering different search spaces and perspectives. Zoph et al.[220] have proposed to search the best cell

on a small dataset and use the searched cell on a large dataset. Panda et al.[136] have analyzed the trans-

ferability of the solutions of various NAS algorithms in the DARTS search space [111] and have concluded

that the design of the proxy datasets for the search has a great impact on the transferability of the searched

result. Critically however, prior work has neglected to include the channel width multipliers in the search

space, instead only focusing on proxy datasets [136, 220]. Consequentially, the relationship between opti-

mized widths across different architectures has not been examined previously. Others [182, 20, 120] have

analyzed the transferability of the search processes as opposed to the searched solutions. The key differ-

ence among the two is that the transfer of the search processes is algorithm-dependent while the transfer

of the searched solutions is not. EcoNAS [209] is closely related to our Chapter 7 as it also systematically

investigated several proxy training configurations for neural architecture search. However, the crucial

difference between EcoNAS and ours is that, in our study, the number of channels is not only a projection

dimension, but also the optimization variable. As a result, the extrapolation step is necessary for our

study but not for EcoNAS. Consequentially, the proposed width transfer has a dimensionality reduction

effect for hyperparameter optimization while EcoNAS does not. Lastly, the search space for EcoNAS is

the cell-based search space while our channel search space is orthogonal to theirs and can be applied to

any network for architectural fine-tuning.

9.3 Object Detection

Chapter 3 focuses on applying adaptive scaling to video object detection in order to improve both speed

and accuracy of object detectors. In the sequel we discuss prior work in scale-related object detection and

CHAPTER 9. RELATED WORK 88

video object detection.

9.3.1 Image Scale for Object Detection

We discuss two categories of scale-related object detection work: (i) single-shot detection by exploiting

feature maps from various layers of the CNN with inherently different scales, and (ii) multi-shot detection

with input images at multiple scales.

Single-Shot: In this category, object detectors are designed to take an input image once and detect

objects at various scales. That is, this category of prior work treats deep CNNs as scale-invariant. Prior

work [9] uses features from different layers in the CNN and merge them with normalization and scaling.

A similar idea is also adopted by other work [112, 18, 109, 210]. From a different viewpoint, prior art [113]

proposes to use a recurrent network to approximate feature maps produced by images at different scales.

Though single-shot approaches have shown great promise in better detecting various scales, the scale-

invariant design philosophy generally requires a large model capacity [90, 113]. We note that, without

perfect scale-invariance, different image scales will result in different accuracy, and prior art often uses

a fixed single scale, e.g., 600 pixels on the smallest side of the image. Hence, this line of work could be

further improved in terms of speed and accuracy when augmented to adaptive scaling.

Multi-shot: This refers to scaling a single input image to various scales, forwarding each scaled image

through the object detector, and merging the obtained results. Some work [67, 57, 151, 68, 35] forwards

multiple scales of images to obtain feature maps with various scales. More recently, prior work [36] lever-

ages multiple scales of images to infer multiple detection results and merge them using Non-Maximum

Suppression. While multi-shot object detection alleviates the problem of imperfect scale-invariance, it

incurs significant extra computation overhead, i.e., up to 4× [57].

In contrast to the above work, Chapter 3 is aiming to alleviate the imperfect scale-invariance by se-

lecting the best scale for each image, and hence, improves the accuracy compared to single-shot methods.

Moreover, to improve the speed in the meantime, we consider down-sampling rather than up sampling.

We note that our method could possibly be extended to multi-shot version, i.e., adaptively select multiple

scales for a given image, and we leave it for the future work.

9.3.2 Video Object Detection

We discuss prior work that aims at improving speed and/or accuracy of video object detection.

Speed: Optical flow was proposed to reduce detection overhead previously [217]. Similar to our idea,

some prior art [28] proposes to adaptively scale the image to improve the detection speed. However,

CHAPTER 9. RELATED WORK 89

both works improve speed at the expense of accuracy loss. Accuracy: Prior work [91] proposes to leverage

contextual and temporal information across the video while some work [216] uses the idea from Deep Fea-

ture Flow (DFF) [217] to incorporate temporal information across consecutive frames. Another study [55]

proposes to integrate detection with tracking into an end-to-end trainable deep CNN. Both: Some prior

work [215] extends [216] and [217] to use both feature aggregation and propagation. Additionally, they

propose to regress a quality metric of the optical flow to decide when and how to propagate the features.

Compared to the aforementioned related work, the main contribution that sets our Chapter 3 apart is

that we focus on fixing the problem where existing object detectors use fixed single scale for each of the

image while the object detectors are not scale-invariant, which is different from most of the prior work

that focuses on exploiting the relationship of the detection results among the neighboring frames [91, 217,

216, 55, 215]. Moreover, we show that our work is complementary to state-of-the-art video object detection

acceleration technique [217].

Chapter 10

Conclusions

While deep convolutional neural networks (CNNs) have shown their impact in various computer vision

tasks, their growing complexity makes it hard to run them directly on embedded or mobile devices

that have resource constraints. Moreover, there are a wide variety of devices with different hardware

constraints and it is critical to design methods that can scale to many different resource constraint levels.

In this thesis, we aim to design methods for improving the deployment of CNNs onto resource-constrained

devices from two perspective.

In the first perspective, we propose new ways to conduct model acceleration and compression for

CNNs. Specifically, we propose AdaScale and WinningBitwidth. While image resolution is often consid-

ered as a design knob to trade-off speed and accuracy of CNNs, in AdaScale, we identify that, for some

images, smaller resolutions do not necessarily lead to lower mean average precision for object detection.

This provides us the motivation to harness this phenomenon to improve both the speed and accuracy of

video object detection by properly learning what image to down-sample and to what extent. By learning

to adaptively down-sample the input images, our results demonstrate 1.6× speedup in wall-clock time

can be achieved with 1.2 points mAP improvement on the ImageNet VID dataset. AdaScale provides a

new means to accelerate CNNs and is a step towards real-time video object detection. On the other hand,

quantization is a general technique to compress CNNs. As opposed to the commonly adopted formula-

tion where the architecture of the CNN to be quantized is treated as fixed input, we propose to optimize

the network architecture together with weight quantization to achieve better compression rates. Specif-

ically, we show that by allowing the channel counts of a CNN to vary at the time of quantization, one

can find better models. Moreover, by taking channel counts into consideration, a single weight-bitwidth

throughout the networks can outperform conventional mixed-precision quantization that treats neural

architecture as fixed inputs. More interestingly, we identify that a wider CNN with a lower bit-width can

90

CHAPTER 10. CONCLUSIONS 91

lead to better performance compared to a narrower CNN with a higher bit-width. We further characterize

this phenomenon and show that the quantization error is negatively correlated with the fan-in channel

counts of the convolutional layer to be quantized. Overall, our findings suggest that one can achieve better

model compression when taking the neural architectures into consideration.

In the second perspective, we aim to accelerate the process of model compression to achieve better

scalability across different constraint levels impose by various embedded devices. Specifically, we propose

LeGR, Joslim, and Width Transfer. In LeGR, we propose to learn a global ranking among filters in a CNN

so that one can adopt greedy pruning to quickly prune models to various resource constraint levels. This

is in stark contrast to existing methods that search for a compressed network that satisfies some resource

constraint after a costly optimization procedure. The learned global ranking in LeGR can be reused for

multiple constraint levels while other methods have to carry out the heavy optimization for every target

constraint. In this fashion, LeGR can be up to 3× faster than prior work while having comparable or

better performance when targeting seven pruned ResNet-56 with different accuracy/FLOPs profiles on

the CIFAR-100 dataset. Moreover, the performance of the pruned ResNet-50 and MobileNetV2 achieve

accuracy that are comparable to the state-of-the-art on the ImageNet dataset.

However, LeGR does not address all efficiency problems. Specifically, even though one can find pruned

CNNs fast, each of them needs to be fine-tuned to re-gain its accuracy, which can still be costly. Hence, we

further remove the fine-tuning cost by introducing Joslim. In Joslim, our goal is to obtain a CNN that can

be pruned to various resource constraint levels without needing any re-training. This can greatly broaden

the application scenarios of pruning. One such example is adapting a CNN online based on the latency

profiles of the CNN at run-time to meet some latency deadline. Since the latency of a CNN is a variable

that depends on many things including the chip temperature and the background processes, adapting the

CNN at run-time provides a means for meeting the deadline. To achieve the goal of pruning without fine-

tuning, we introduce a multi-objective formulation to jointly optimize the channel counts as well as the

shared-weights using alternating minimization. While the accuracy of the networks produced by Joslim

are slightly lower than LeGR for MobileNetV2 on ImageNet, no re-training is needed for Joslim, which

makes it more scalable when targeting many constraint levels. Moreover, Joslim achieves up to 1.7% top-1

accuracy improvement on the ImageNet dataset for MobileNetV2 compared to existing alternatives that

aim to achieve the same goal.

Lastly, inspired by prior work [116] that shows the effectiveness of model compression mainly lies in

the compressed neural architecture, we aim to find the compressed architecture efficiently and propose

Width Transfer. In Width Transfer, we can obtain the compressed network architecture without training

the largest model. To do so, we assume the optimized (compressed) channel counts are regular across

CHAPTER 10. CONCLUSIONS 92

depths and widths of the network architectures and are invariant to the resolution and the size of the

dataset. We empirically demonstrate that the assumed regularity and invariances largely hold and can

lead to 320× overhead reduction in the cost of searching for the optimized channel counts without losing

top-1 accuracy on the ImageNet dataset for large MobileNetV2 and large ResNet-18 when comparing

Width Transfer to existing optimization methods.

While all of above three contributions are related to speeding up the procedure of model compression

that uses channel optimization, they are characterized by a different competitive edge as we discussed

in Chapter 8. Overall, we find that Joslim performs the best but with higher optimization overhead

compared to LeGR. While Width Transfer is generally applicable to any width optimization algorithms, it

only transfers the architectures but not the weights, which makes it less desirable if targeting many target

compression ratios. That said, Width Transfer is efficient and effective when considering only a few target

compression ratios.

Future work in efficient model compression can explore ways to combine the two perspective studied

in this thesis. More specifically, to better accelerate or compress models, one can harness the temporal

redundancy as in AdaScale. While AdaScale uses the input resolution as a knob to control efficiency by

exploiting the temporal redundancy, one can imagine to morph the network architecture to harness the

temporal redundancy. To achieve this, one needs some weight-sharing network such as the one introduced

in Joslim to be able to adapt the architecture online according to temporal cues without needing any re-

training. It is unclear how one can train such a weight-sharing network to best leverage the temporal

redundancy. On the other hand, due to the rising awareness of data privacy, it is desirable to conduct

training on resource-constrained devices. One natural future direction is to tackle the challenges posed

by on-device training. More interestingly, as the data distribution changes online in embedded devices,

it is unclear how to better adapt the model architectures on-device to reduce the cost of running CNNs

to better fit the online distribution without labels. Lastly, with the rising importance of Transformers for

visual tasks [51], efficient compression for Transformers is also a natural extension for future work.

Bibliography

[1] Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and Lihi Zelnik. Knapsack pruning with inner distilla-

tion. arXiv preprint arXiv:2002.08258, 2020. 86

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould,

and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation in-

structions in real environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 3674–3683, 2018. 1, 37

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi

Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international conference on computer vision,

pages 2425–2433, 2015. 1, 37

[4] Haoping Bai, Meng Cao, Ping Huang, and Jiulong Shan. Batchquant: Quantized-for-all architecture search with

robust quantizer. arXiv preprint arXiv:2105.08952, 2021. 87

[5] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson,

and Eytan Bakshy. Botorch: Programmable bayesian optimization in pytorch. arXiv preprint arXiv:1910.06403,

2019. 117

[6] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay

Janapa Reddi, Matthew Mattina, and Paul Whatmough. Micronets: Neural network architectures for deploying

tinyml applications on commodity microcontrollers. Proceedings of Machine Learning and Systems, 3, 2021. 86

[7] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Aciq: Analytical clipping for integer quantization

of neural networks. 2018. 85

[8] Maximiliana Behnke and Kenneth Heafield. Losing heads in the lottery: Pruning transformer attention in neural

machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 2664–2674, 2020. 83

[9] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Girshick. Inside-outside net: Detecting objects in context

with skip pooling and recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2874–2883, 2016. 11, 88

[10] Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint

arXiv:2102.08602, 2021. 82

93

BIBLIOGRAPHY 94

[11] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. 8

[12] Maxim Berman, Leonid Pishchulin, Ning Xu, Gérard Medioni, et al. Aows: Adaptive and optimal network

width search with latency constraints. Proceedings IEEE CVPR, 2020. 51, 64, 81, 84, 86

[13] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra Faust, and Vijay Reddi.

Mavbench: Micro aerial vehicle benchmarking. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 894–907. IEEE, 2018. 37

[14] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson. Eva²: Exploiting temporal redundancy in live com-

puter vision. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pages

533–546, June 2018. 10

[15] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network and

specialize it for efficient deployment. In International Conference on Learning Representations, 2020. 2, 57, 59, 82,

86, 87

[16] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and

hardware. arXiv preprint arXiv:1812.00332, 2018. 2, 81, 84, 86

[17] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel

zero shot quantization framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13169–13178, 2020. 85

[18] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A unified multi-scale deep convolutional

neural network for fast object detection. In European Conference on Computer Vision, pages 354–370. Springer,

2016. 11, 88

[19] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.

End-to-end object detection with transformers. In European Conference on Computer Vision, pages 213–229.

Springer, 2020. 82

[20] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture search. arXiv

preprint arXiv:1902.05116, 2019. 87

[21] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Se-

mantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE

transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017. 1

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed

systems. In Proceedings of LearningSys, 2015. 14, 17

[23] Ting-Wu Chin, Pierce I-Jen Chuang, Vikas Chandra, and Diana Marculescu. One weight bitwidth to rule them

all. In Adrien Bartoli and Andrea Fusiello, editors, Computer Vision – ECCV 2020 Workshops, pages 85–103,

Cham, 2020. Springer International Publishing. 3

BIBLIOGRAPHY 95

[24] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. Adascale: Towards real-time video object detection using

adaptive scaling. In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and Systems,

volume 1, pages 431–441, 2019. 2, 84

[25] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model compression via

learned global ranking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 1518–1528, 2020. 3, 76, 84, 86

[26] Ting-Wu Chin, Diana Marculescu, and Ari S. Morcos. Width transfer: On the (in)variance of width optimization.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages

2990–2999, June 2021. 4

[27] Ting-Wu Chin, Ari S Morcos, and Diana Marculescu. Joslim: Joint widths and weights optimization for

slimmable neural networks. In European Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases, 2021. 4, 64, 81, 84, 86

[28] T. W. Chin, C. L. Yu, M. Halpern, H. Genc, S. L. Tsao, and V. J. Reddi. Domain-specific approximation for object

detection. IEEE Micro, 38(1):31–40, January 2018. 11, 19, 88

[29] Ting-Wu Chin, Cha Zhang, and Diana Marculescu. Renofeation: A simple transfer learning method for im-

proved adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 3243–3252, 2021. 80

[30] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli

Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Gonina, et al. State-of-the-art speech recognition with sequence-

to-sequence models. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4774–4778. IEEE, 2018. 36

[31] Jungwook Choi, Pierce I-Jen Chuang, Zhuo Wang, Swagath Venkataramani, Vijayalakshmi Srinivasan, and

Kailash Gopalakrishnan. Bridging the accuracy gap for 2-bit quantized neural networks (qnn). arXiv preprint

arXiv:1807.06964, 2018. 9, 84, 85

[32] Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon Lee. Data-free network quantization with adversar-

ial knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops, pages 710–711, 2020. 85

[33] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks

with binary weights during propagations. arXiv preprint arXiv:1511.00363, 2015. 1, 2

[34] Bin Dai, Chen Zhu, and David Wipf. Compressing neural networks using the variational information bottleneck.

arXiv preprint arXiv:1802.10399, 2018. 36, 45

[35] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully convolutional

networks. In Advances in neural information processing systems, pages 379–387, 2016. x, 2, 10, 11, 12, 14, 15, 16, 19,

20, 22, 88

BIBLIOGRAPHY 96

[36] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolutional networks. In 2017 IEEE

International Conference on Computer Vision (ICCV), volume 00, pages 764–773, Oct. 2018. 88

[37] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu,

Yiming Wu, Yangqing Jia, et al. Chamnet: Towards efficient network design through platform-aware model

adaptation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. 2, 84, 86

[38] Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-

nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860,

2019. 36

[39] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective genetic

algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 2002. 54

[40] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. 70

[41] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware acceleration for

neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020. 1, 6

[42] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 36

[43] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution for training

binarized deep networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

8, 23, 85

[44] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution for training

binarized deep networks. 2019. 84

[45] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep convolu-

tional networks with complicated structure. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4943–4953, 2019. 46

[46] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan. Approximated oracle filter

pruning for destructive cnn width optimization. arXiv preprint arXiv:1905.04748, 2019. 46

[47] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-net: Device-aware progressive

search for pareto-optimal neural architectures. arXiv preprint arXiv:1806.08198, 2018. 84

[48] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Ppp-net: Platform-aware progressive

search for pareto-optimal neural architectures, 2018. 86

[49] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In Advances in Neural

Information Processing Systems, pages 759–770, 2019. 64

[50] Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.

Hawq-v2: Hessian aware trace-weighted quantization of neural networks. arXiv preprint arXiv:1911.03852, 2019.

23, 85

BIBLIOGRAPHY 97

[51] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 82, 92

[52] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search: A survey. J. Mach. Learn.

Res., 20(55):1–21, 2019. 6

[53] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov. Scalable object detection using

deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2147–2154, 2014. 12

[54] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6202–6211, 2019. 2

[55] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and track to detect. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3038–3046, 2017. 10, 16, 20, 89

[56] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. Discrete model compression with resource constraint

for deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 1899–1908, 2020. 7

[57] Ross Girshick. Fast r-cnn. In Computer Vision (ICCV), 2015 IEEE International Conference on, pages 1440–1448.

IEEE, 2015. 10, 11, 12, 15, 88

[58] Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z Pan. Mixed precision neural

architecture search for energy efficient deep learning. In 2019 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 1–7. IEEE, 2019. 85

[59] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Morphnet: Fast

& simple resource-constrained structure learning of deep networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1586–1595, 2018. 3, 7, 36, 43, 51, 64, 67, 69, 70, 84, 86

[60] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differentiable markov channel pruning for

neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

1539–1547, 2020. 3, 51, 64, 65, 67, 68, 69, 70, 81, 84

[61] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path

one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420, 2019. 86

[62] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path

one-shot neural architecture search with uniform sampling. In European Conference on Computer Vision, pages

544–560. Springer, 2020. 84, 86

[63] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. In International Conference on Learning Representations, 2016.

2

BIBLIOGRAPHY 98

[64] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural

network. In Advances in neural information processing systems, pages 1135–1143, 2015. 7

[65] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh, Honghui Shi, Jianan

Li, Shuicheng Yan, and Thomas S Huang. Seq-nms for video object detection. arXiv preprint arXiv:1602.08465,

2016. x, 20

[66] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE interna-

tional conference on computer vision, pages 2961–2969, 2017. 36

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep convolutional

networks for visual recognition. In european conference on computer vision, pages 346–361. Springer, 2014. 10, 11,

88

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 1, 2, 3, 4, 6, 26,

36, 66, 69, 70, 77, 88, 110

[69] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter pruning criteria

for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020. 7, 84

[70] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep

convolutional neural networks. In IJCAI, pages 2234–2240, 2018. 42, 44, 45, 46, 76

[71] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression

and acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision (ECCV), pages

784–800, 2018. 3, 7, 36, 39, 42, 43, 45, 46, 49, 64, 67, 76, 84, 86, 114, 115

[72] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep

convolutional neural networks acceleration. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4340–4349, 2019. 7, 46

[73] Yihui He, Xianggen Liu, Huasong Zhong, and Yuchun Ma. Addressnet: Shift-based primitives for efficient

convolutional neural networks. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages

1213–1222. IEEE, 2019. 84

[74] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In

Proceedings of the IEEE International Conference on Computer Vision, pages 1389–1397, 2017. 45, 46

[75] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and

perturbations. In International Conference on Learning Representations, 2019. 81

[76] Lu Hou and James T. Kwok. Loss-aware weight quantization of deep networks. In International Conference on

Learning Representations, 2018. 8, 9, 23, 84, 85

[77] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

BIBLIOGRAPHY 99

arXiv preprint arXiv:1704.04861, 2017. 5, 6, 24, 28, 51, 84

[78] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q Weinberger. Condensenet: An efficient

densenet using learned group convolutions. group, 3(12):11, 2017. 84

[79] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017. 6

[80] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer,

Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-offs for modern convolutional

object detectors. In IEEE CVPR, 2017. 11, 19

[81] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,

Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using pipeline

parallelism. arXiv preprint arXiv:1811.06965, 2018. 1

[82] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In The

European Conference on Computer Vision (ECCV), September 2018. 46

[83] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 304–320, 2018. 84

[84] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 6

[85] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional

adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125–

1134, 2017. 1

[86] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,

and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only

inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

2

[87] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,

and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only

inference. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. 9, 84, 85

[88] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network quantization with adaptive bit-widths. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. 87

[89] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by optimizing quantization intervals with task loss. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 9, 84, 85

[90] Angjoo Kanazawa, Abhishek Sharma, and David Jacobs. Locally scale-invariant convolutional neural networks.

In NIPS workshop, 2014. 88

BIBLIOGRAPHY 100

[91] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui

Wang, Xiaogang Wang, et al. T-cnn: Tubelets with convolutional neural networks for object detection from

videos. IEEE Transactions on Circuits and Systems for Video Technology, 2017. 10, 89

[92] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim, and Hyunwoo J Kim. Hotr: End-to-end human-object

interaction detection with transformers. arXiv preprint arXiv:2104.13682, 2021. 82

[93] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report,

Citeseer, 2009. 3, 25, 42, 77

[94] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information processing

systems, pages 598–605, 1990. 7

[95] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient neural

network pruning. In European Conference on Computer Vision, pages 639–654. Springer, 2020. 7, 84

[96] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:

Exploring hybrid cnn-transformers with block-wisely self-supervised neural architecture search. arXiv preprint

arXiv:2103.12424, 2021. 86

[97] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711, 2016. 8

[98] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training quantized nets: A

deeper understanding. arXiv preprint arXiv:1706.02379, 2017. 1, 2, 8, 85

[99] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.

arXiv preprint arXiv:1608.08710, 2016. 2, 3, 7, 36, 39, 45, 68, 76, 84

[100] Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Zeyu Chen, and Jun Huan. Delta: Deep

learning transfer using feature map with attention for convolutional networks. arXiv preprint arXiv:1901.09229,

2019. 80

[101] Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, and Jun Huan. DELTA: DEEP LEARNING

TRANSFER USING FEATURE MAP WITH ATTENTION FOR CONVOLUTIONAL NETWORKS. In Interna-

tional Conference on Learning Representations, 2019. 46

[102] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. Dhp: Differentiable meta pruning via

hypernetworks. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer

Vision – ECCV 2020, pages 608–624, Cham, 2020. Springer International Publishing. 76

[103] Yawei Li, Wen Li, Martin Danelljan, Kai Zhang, Shuhang Gu, Luc Van Gool, and Radu Timofte. The hetero-

geneity hypothesis: Finding layer-wise dissimilated network architecture. arXiv preprint arXiv:2006.16242, 2020.

64

[104] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in pruning: The effects

of pruning neural networks beyond test accuracy. Proceedings of Machine Learning and Systems, 3, 2021. 81

[105] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning for

efficient neural networks. In International Conference on Learning Representations, 2020. 7, 84

BIBLIOGRAPHY 101

[106] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep learning on iot

devices. arXiv preprint arXiv:2007.10319, 2020. 86

[107] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. Accelerating convo-

lutional networks via global & dynamic filter pruning. In IJCAI, pages 2425–2432, 2018. 46

[108] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and David

Doermann. Towards optimal structured cnn pruning via generative adversarial learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 2790–2799, 2019. 46

[109] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, volume 1, page 4, 2017. 11, 88

[110] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2980–2988, 2017. 11, 12, 19

[111] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 53, 81, 87

[112] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016.

10, 11, 88

[113] Yu Liu, Hongyang Li, Junjie Yan, Fangyin Wei, Xiaogang Wang, and Xiaoou Tang. Recurrent scale approxima-

tion for object detection in cnn. In IEEE International Conference on Computer Vision, 2017. 88

[114] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Computer Vision (ICCV), 2017 IEEE International Conference

on, pages 2755–2763. IEEE, 2017. 36, 75, 84, 86

[115] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Tim Kwang-Ting Cheng, and Jian Sun.

Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2019. 3, 46, 64, 70

[116] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network

pruning. In International Conference on Learning Representations, 2019. 4, 64, 76, 81, 84, 87, 91

[117] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Relaxed quantiza-

tion for discretized neural networks. In International Conference on Learning Representations, 2019. 85

[118] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In Advances in

Neural Information Processing Systems, pages 3288–3298, 2017. 45

[119] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through l_0 regular-

ization. arXiv preprint arXiv:1712.01312, 2017. 84

[120] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2:

Evolutionary multi-objective surrogate-assisted neural architecture search. arXiv preprint arXiv:2007.10396, 2020.

87

BIBLIOGRAPHY 102

[121] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network

compression. arXiv preprint arXiv:1707.06342, 2017. 45, 46

[122] Xingchen Ma, Amal Rannen Triki, Maxim Berman, Christos Sagonas, Jacques Cali, and Matthew B Blaschko.

A bayesian optimization framework for neural network compression. In Proceedings of the IEEE International

Conference on Computer Vision, pages 10274–10283, 2019. 7

[123] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. 46

[124] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Exploring the

regularity of sparse structure in convolutional neural networks. arXiv preprint arXiv:1705.08922, 2017. 84

[125] Jiachen Mao, Huanrui Yang, Ang Li, Hai Li, and Yiran Chen. Tprune: Efficient transformer pruning for mobile

devices. ACM Transactions on Cyber-Physical Systems, 5(3):1–22, 2021. 83

[126] Bertil Matérn. Spatial variation, volume 36. Springer Science & Business Media, 2013. 117

[127] Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but different: Recovering

neural network quantization error through weight factorization. In Kamalika Chaudhuri and Ruslan Salakhut-

dinov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of

Machine Learning Research, pages 4486–4495, Long Beach, California, USA, 09–15 Jun 2019. PMLR. 85

[128] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. WRPN: Wide reduced-precision networks. In

International Conference on Learning Representations, 2018. 85

[129] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for neural

network pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 11264–

11272, 2019. 7, 46, 68, 76, 84, 86

[130] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural networks

for resource efficient inference. International Conference on Learning Representation (ICLR), 2017. 7, 45, 84

[131] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?

adaptive rounding for post-training quantization. In International Conference on Machine Learning, pages 7197–

7206. PMLR, 2020. 85

[132] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through weight

equalization and bias correction. arXiv preprint arXiv:1906.04721, 2019. 85

[133] Niv Nayman, Yonathan Aflalo, Asaf Noy, and Lihi Zelnik-Manor. Hardcore-nas: Hard constrained differentiable

neural architecture search. arXiv preprint arXiv:2102.11646, 2021. 2, 86

[134] Yurii E Nesterov. A method for solving the convex programming problem with convergence rate o (1/kˆ 2). In

Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983. 42

[135] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang. Dsa: More efficient

budgeted pruning via differentiable sparsity allocation. In Proceedings of the European Conference on Computer

Vision (ECCV), 2020. 84

BIBLIOGRAPHY 103

[136] Rameswar Panda, Michele Merler, Mayoore Jaiswal, Hui Wu, Kandan Ramakrishnan, Ulrich Finkler, Chun-Fu

Chen, Minsik Cho, David Kung, Rogerio Feris, et al. Nastransfer: Analyzing architecture transferability in large

scale neural architecture search. arXiv preprint arXiv:2006.13314, 2020. 87

[137] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-objective bayesian

optimization using random scalarizations. In Amir Globerson and Ricardo Silva, editors, Proceedings of the

Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, page 267.

AUAI Press, 2019. 54, 55, 119

[138] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V

Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint

arXiv:1904.08779, 2019. 36

[139] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David

So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv preprint

arXiv:2104.10350, 2021. 22, 35, 49, 62

[140] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for deep net-

works. In International Conference on Machine Learning, pages 5113–5122, 2019. 36, 46

[141] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing network design

spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10428–10436,

2020. 65

[142] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya

Sutskever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021. 1

[143] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine Learning, pages

63–71. Springer, 2003. 55

[144] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification

using binary convolutional neural networks. In European Conference on Computer Vision, pages 525–542. Springer,

2016. 9, 84, 85

[145] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier

architecture search. arXiv preprint arXiv:1802.01548, 2018. 40, 42

[146] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke. Youtube-boundingboxes:

A large high-precision human-annotated data set for object detection in video. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 7464–7473. IEEE, 2017. 10, 15

[147] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Computer Vision and Pattern Recognition

(CVPR), 2017 IEEE Conference on, pages 6517–6525. IEEE, 2017. 11, 19

[148] Bin Ren, Hao Tang, Fanyang Meng, Runwei Ding, Ling Shao, Philip HS Torr, and Nicu Sebe. Cloth interactive

transformer for virtual try-on. arXiv preprint arXiv:2104.05519, 2021. 82

BIBLIOGRAPHY 104

[149] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object detection

with region proposal networks. In Advances in Neural Information Processing Systems (NIPS), 2015. 1, 10, 12, 16

[150] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with

region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015. 36

[151] Shaoqing Ren, Kaiming He, Ross Girshick, Xiangyu Zhang, and Jian Sun. Object detection networks on convo-

lutional feature maps. IEEE transactions on pattern analysis and machine intelligence, 39(7):1476–1481, 2017. 88

[152] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. 2, 3, 4, 10

[153] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. Interna-

tional Journal of Computer Vision, 115(3):211–252, 2015. 14, 42

[154] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:

Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4510–4520, 2018. 3, 4, 26, 69, 70, 110, 116

[155] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,

Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai research. arXiv preprint

arXiv:1904.01201, 2019. 36

[156] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Mickey Aleksic. A quantization-

friendly separable convolution for mobilenets. In 2018 1st Workshop on Energy Efficient Machine Learning and

Cognitive Computing for Embedded Applications (EMC2), pages 14–18. IEEE, 2018. 30, 85

[157] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014. 6, 26

[158] Dimitrios Stamoulis, Ting-Wu Rudy Chin, Anand Krishnan Prakash, Haocheng Fang, Sribhuvan Sajja, Mitchell

Bognar, and Diana Marculescu. Designing adaptive neural networks for energy-constrained image classification.

In Proceedings of the International Conference on Computer-Aided Design, page 23. ACM, 2018. 84

[159] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Di-

ana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4 hours. arXiv preprint

arXiv:1904.02877, 2019. 2, 84, 86

[160] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Locally free weight

sharing for network width search. In International Conference on Learning Representations, 2021. 64, 67, 81

[161] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep neural networks under quantization.

arXiv preprint arXiv:1511.06488, 2015. 85

[162] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le.

Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on

BIBLIOGRAPHY 105

Computer Vision and Pattern Recognition, pages 2820–2828, 2019. 2, 53, 81, 84, 86

[163] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In Ka-

malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learning Research, pages 6105–6114, Long Beach, California, USA,

09–15 Jun 2019. PMLR. 84

[164] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 73, 84

[165] Raphael Tang, Weijie Wang, Zhucheng Tu, and Jimmy Lin. An experimental analysis of the power consumption

of convolutional neural networks for keyword spotting. In 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 5479–5483. IEEE, 2018. 1

[166] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and Sanja Fidler.

Movieqa: Understanding stories in movies through question-answering. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4631–4640, 2016. 37

[167] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with dense networks

and fisher pruning. arXiv preprint arXiv:1801.05787, 2018. 43, 84, 86

[168] Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak K Gupta. Chipnet: Budget-aware pruning with

heaviside continuous approximations. arXiv preprint arXiv:2102.07156, 2021. 84

[169] Jeya Maria Jose Valanarasu, Poojan Oza, Ilker Hacihaliloglu, and Vishal M Patel. Medical transformer: Gated

axial-attention for medical image segmentation. arXiv preprint arXiv:2102.10662, 2021. 82

[170] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-

2011 dataset. 2011. 42

[171] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao

Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. 81, 82, 86

[172] Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning in the

kronecker-factored eigenbasis. In International Conference on Machine Learning, pages 6566–6575. PMLR, 2019.

84, 86

[173] Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, and Vikas Chandra. Alphanet: Improved training of supernet

with alpha-divergence. arXiv preprint arXiv:2102.07954, 2021. 86

[174] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat: Hardware-

aware transformers for efficient natural language processing. arXiv preprint arXiv:2005.14187, 2020. 83

[175] Huan Wang, Qiming Zhang, Yuehai Wang, and Haoji Hu. Structured probabilistic pruning for convolutional

neural network acceleration. In Proceedings of the British Machine Vision Conference (BMVC), 2018. 46

BIBLIOGRAPHY 106

[176] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quantization

with mixed precision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

8612–8620, 2019. 23, 24, 33, 34, 85, 86

[177] Ning Wang, Wengang Zhou, Jie Wang, and Houqaing Li. Transformer meets tracker: Exploiting temporal

context for robust visual tracking. arXiv preprint arXiv:2103.11681, 2021. 82

[178] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han. Apq: Joint

search for network architecture, pruning and quantization policy. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2078–2087, 2020. 35, 86

[179] Yulin Wang, Ruida Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth 16x16 words:

Dynamic vision transformers with adaptive sequence length. 2021. 82

[180] Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao. Towards evolutionary compression. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2476–

2485, 2018. 7

[181] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural

networks. In Advances in Neural Information Processing Systems, pages 2074–2082, 2016. 7, 36, 84, 86

[182] Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. Transfer learning with neural automl. In

Advances in Neural Information Processing Systems, pages 8356–8365, 2018. 87

[183] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,

Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable neural

architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10734–10742, 2019. 2, 81, 84, 86

[184] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad, Joseph

Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial convolutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9127–9135, 2018. 84

[185] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed precision

quantization of convnets via differentiable neural architecture search. arXiv preprint arXiv:1812.00090, 2018. 23,

85

[186] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search. In Interna-

tional Conference on Learning Representations, 2019. 81

[187] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and Xian-sheng Hua.

Quantization networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 85

[188] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural networks using

energy-aware pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

5687–5695, 2017. 1

BIBLIOGRAPHY 107

[189] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and Hartwig

Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 285–300, 2018. 39, 84, 86

[190] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative assumption in

channel pruning of convolution layers. International Conference on Learning Representation (ICLR), 2018. 36

[191] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good subnetworks provably

exist: Pruning via greedy forward selection. arXiv preprint arXiv:2003.01794, 2020. 79, 81, 84

[192] Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang Cheng, and Bin Fan. Search what you want: Barrier

panelty nas for mixed precision quantization. In European Conference on Computer Vision, pages 1–16. Springer,

2020. 85

[193] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers. arXiv

preprint arXiv:1903.11728, 8, 2019. 3, 51, 64, 68, 69, 81, 84, 120

[194] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages 1803–1811, 2019. 51, 54, 56, 57, 58, 59, 79,

116, 118

[195] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang,

Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architecture search with big single-stage

models. arXiv preprint arXiv:2003.11142, 2020. 51, 57, 81, 82, 86, 87

[196] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. In International

Conference on Learning Representations, 2019. 51, 61, 81, 86, 119

[197] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin,

and Larry S. Davis. Nisp: Pruning networks using neuron importance score propagation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2018. 46

[198] Xin Yuan, Liangliang Ren, Jiwen Lu, and Jie Zhou. Enhanced bayesian compression via deep reinforcement

learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 9, 84, 85

[199] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016. 1

[200] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? arXiv preprint arXiv:1902.01996,

2019. 51

[201] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional

neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 6848–6856, 2018. 6

[202] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational convolutional

neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2780–2789, 2019. 46

BIBLIOGRAPHY 108

[203] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network quantization

without retraining using outlier channel splitting. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning

Research, pages 7543–7552, Long Beach, California, USA, 09–15 Jun 2019. PMLR. 85

[204] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network quantization

without retraining using outlier channel splitting. In International conference on machine learning, pages 7543–7552.

PMLR, 2019. 85

[205] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Building efficient deep neural

networks with unitary group convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 11303–11312, 2019. 84

[206] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng,

Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective

with transformers. arXiv preprint arXiv:2012.15840, 2020. 82

[207] Yang Zhong, Vladimir Li, Ryuzo Okada, and Atsuto Maki. Target aware network adaptation for efficient

representation learning. arXiv preprint arXiv:1810.01104, 2018. 45

[208] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards

lossless cnns with low-precision weights. In International Conference on Learning Representations, 2017. 8, 23, 85

[209] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang.

Econas: Finding proxies for economical neural architecture search. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 11396–11404, 2020. 82, 87

[210] Huajun Zhou, Zechao Li, Chengcheng Ning, and Jinhui Tang. Cad: Scale invariant framework for real-time

object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 760–768,

2017. 88

[211] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low

bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016. 8,

23, 85

[212] Yanqi Zhou, Siavash Ebrahimi, Sercan Ö Arık, Haonan Yu, Hairong Liu, and Greg Diamos. Resource-efficient

neural architect. arXiv preprint arXiv:1806.07912, 2018. 84

[213] Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn via recursive bayesian pruning. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 3306–3315, 2019. 36, 46, 84

[214] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In International

Conference on Learning Representations, 2017. 9, 84, 85

[215] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high performance video object detection. In IEEE

CVPR, 2018. 89

BIBLIOGRAPHY 109

[216] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature aggregation for video

object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 408–417,

2017. x, 10, 16, 20, 89

[217] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow for video recognition. In

Proc. CVPR, volume 2, page 7, 2017. 10, 12, 14, 15, 16, 20, 88, 89

[218] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough. Euphrates: Algorithm-soc co-design for low-power

mobile continuous vision. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

(ISCA), pages 547–560, June 2018. 10

[219] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and

Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. In Advances in Neural Information

Processing Systems, pages 883–894, 2018. 42, 44, 45, 46

[220] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for scalable

image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June

2018. 87

Appendix A

Appendix for Chapter 4

A.1 Network Architectures

For the experiments in Section 4.2.2, the ResNets used are detailed in Table A.1. Specifically, for the points

in Fig. 4.1a, we consider ResNet20 to ResNet56 with width-multipliers of 0.5×, 1×, 1.5×, and 2× for the

4-bit case. Based on these values, we consider additional width-multipliers 2.4× and 2.8× for the 2-bit

case and 2.5×, 3×, 3.5×, and 3.9× for the 1-bit case. We note that the right-most points in Fig. 4.1a is a

10× ResNet26 for the 4 bits case. On the other hand, VGG11 is detailed in Table A.3 for which we consider

width-multipliers from 0.25× to 2× with a step of 0.25 for the 4 bits case (blue dots in Fig. 4.1b). The

architecture of MobileNetV2 used in the CIFAR-100 experiments follows the original MobileNetV2 (Table

2 in [154]) but we change the stride of all the bottleneck blocks to 1 except for the fifth bottleneck block,

which has a stride of 2. As a result, we down-sample the image twice in total, which resembles the ResNet

design for the CIFAR experiments [68]. Similar to VGG11, we consider width-multipliers from 0.25× to

2× with a step of 0.25 for MobileNetV2 for the 4 bits case (blue dots in Fig. 4.1c).

Table A.1: ResNet20 to ResNet56

Layers 20 26 32 38 44 50 56

Stem Conv2d (16,3,3) Stride 1

Stage 1 3×
{

Conv2d(16, 3, 3) Stride 1
Conv2d(16, 3, 3) Stride 1

4× 5× 6× 7× 8× 9×

Stage 2 3×
{

Conv2d(32, 3, 3) Stride 2
Conv2d(32, 3, 3) Stride 1

4× 5× 6× 7× 8× 9×

Stage 3 3×
{

Conv2d(64, 3, 3) Stride 2
Conv2d(64, 3, 3) Stride 1

4× 5× 6× 7× 8× 9×

110

APPENDIX A. APPENDIX FOR CHAPTER 4 111

Table A.2: Inv-ResNet26

Stem Conv2d (16,3,3) Stride 1

Stage 1 4×

Conv2d(16× 6, 1, 1) Stride 1
DWConv2d(16× 6, 3, 3) Stride 1
Conv2d(16, 1, 1) Stride 1

Stage 2 4×

Conv2d(32× 6, 1, 1) Stride 1
DWConv2d(32× 6, 3, 3) Stride 2
Conv2d(32, 1, 1) Stride 1

Stage 3 4×

Conv2d(64× 6, 1, 1) Stride 1
DWConv2d(64× 6, 3, 3) Stride 2
Conv2d(64, 1, 1) Stride 1

A.2 Proof For Proposition 4.2.1

Based on the definition of variance, we have:

Var(
1
d

d

∑
i=1
|wi|) := E

(1
d

d

∑
i=1
|wi|

)2

−
(

E
1
d

d

∑
i=1
|wi|

)2

= E

(1
d

d

∑
i=1
|wi|

)2

− 2σ2

π

=

1
d2 E

(
d

∑
i=1
|wi|

)2

− 2σ2

π

=
σ2

d
+

d− 1
d

ρσ2 − 2σ2

π
.

APPENDIX A. APPENDIX FOR CHAPTER 4 112

Table A.3: VGGs

VGG11 Variant A Variant B Variant C

Conv2d (64,3,3)

MaxPooling

Conv2d (128,3,3)

{
Conv2d(128, 1, 1)
DWConv2d(128, 3, 3)

{
Conv2d(128, 1, 1)
DWConv2d(128, 3, 3)

{
Conv2d(128, 1, 1)
DWConv2d(128, 3, 3)

MaxPooling

Conv2d (256,3,3) Conv2d (256,3,3)

{
Conv2d(256, 1, 1)
DWConv2d(256, 3, 3)

{
Conv2d(256, 1, 1)
DWConv2d(256, 3, 3)

Conv2d (256,3,3) Conv2d (256,3,3)

{
Conv2d(256, 1, 1)
DWConv2d(256, 3, 3)

{
Conv2d(256, 1, 1)
DWConv2d(256, 3, 3)

MaxPooling

Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)
DWConv2d(512, 3, 3)

{
Conv2d(512, 1, 1)
DWConv2d(512, 3, 3)

Conv2d (512,3,3) Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)
DWConv2d(512, 3, 3)

MaxPooling

Conv2d (512,3,3) Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)
DWConv2d(512, 3, 3)

Conv2d (512,3,3) Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)
DWConv2d(512, 3, 3)

MaxPooling

Appendix B

Appendix for Chapter 5

B.1 Optimization Interpretation Of LeGR

LeGR can be interpreted as minimizing a surrogate of a derived upper bound for the loss difference

between (1) the pruned-and-fine-tuned CNN and (2) the pre-trained CNN. Concretely, we would like to

solve for the filter masking binary variables z ∈ {0, 1}K, with K being the number of filters. If a filter k is

pruned, the corresponding mask will be zero (zk = 0), otherwise it will be one (zk = 1). Thus, we have

the following optimization problem:

min
z

L(θ� z− η
τ

∑
j=1

∆w(j) � z)−L(θ)

s.t. C(z) ≤ ζ,

(B.1)

where θ denotes all the filters of the CNN, L(θ) = 1
|D| ∑(x,y)∈D L(f (x|θ), y) denotes the loss function of

filters where x and y are the input and label, respectively. D denotes the training data, f is the CNN model

and L is the loss function for prediction (e.g., cross entropy loss). η denotes the learning rate, τ denotes

the number of gradient steps, ∆w(j) denotes the gradient with respect to the filter weights computed at

step j, and � denotes element-wise multiplication. On the constraint side, C(·) is the modeling function

for FLOP count and ζ is the desired FLOP count constraint. By fine-tuning, we mean updating the filter

weights with stochastic gradient descent (SGD) for τ steps.

Let us assume the loss function L is Ωl-Lipschitz continuous for the l-th layer of the CNN, then the

113

APPENDIX B. APPENDIX FOR CHAPTER 5 114

following holds:

L(θ� z− η
τ

∑
j=1

∆w(j) � z)−L(θ)

≤ L(θ� z) +
K

∑
i=1

Ωl(i)η

∥∥∥∥∥ τ

∑
j=1

∆w(j)
i � zi

∥∥∥∥∥−L(θ)

≤
K

∑
i=1

Ωl(i) ‖θi‖ hi +
K

∑
i=1

Ω2
l(i)ητzi

=
K

∑
i=1

(Ωl(i) ‖θi‖ −Ω2
l(i)ητ)hi + Ω2

l(i)ητ,

(B.2)

where l(i) is the layer index for the i-th filter, h = 1− z, and ‖·‖ denotes `2 norms.

On the constraint side of equation (B.1), let Rl(i) be the FLOP count of layer l(i) where filter i resides.

Analytically, the FLOP count of a layer depends linearly on the number of filters in its preceding layer:

Rl(i) = ul(i)
∥∥{z : zj ∀j ∈ P(l(i)}

∥∥
0 , ul(i) ≥ 0, (B.3)

where P(l(i)) returns a set of filter indices for the layer that precedes layer l(i) and ul(i) is a layer-

dependent positive constant. Let R̂l(i) denote the FLOP count for layer l(i) for the pre-trained network

(z = 1), one can see from equation (B.3) that Rl(i) ≤ R̂l(i) ∀i, z. Thus, the following holds:

C(1− h) =
K

∑
i

Rl(i)(1− hi) ≤
K

∑
i

R̂l(i)(1− hi). (B.4)

Based on equations (B.2) and (B.4), instead of minimizing equation (B.1), we minimize its upper bound

in a Lagrangian form. That is,

min
h

K

∑
i=1

(
αl(i) ‖θi‖+ κl(i)

)
hi, (B.5)

where αl(i) = Ωl(i) and κl(i) = ητΩ2
l(i) − λR̂l(i). To guarantee the solution will satisfy the constraint, we

rank all filters by their scores si = αl(i) ‖θi‖ + κl(i) ∀ i and threshold out the bottom ranked (small in

scores) filters such that the constraint C(1− h) ≤ ζ is satisfied and ‖h‖0 is maximized. That is, LeGR

can be viewed as learning to estimate α and κ by assuming that better estimates of α-κ produce a better

solution for the original objective (B.1) by solving the surrogate of the upper bound (B.5).

B.2 LeGR-DDPG

We have also tried learning the layer-wise affine transformations with actor-critic policy gradient (DDPG),

which is adopted in prior art [71]. We use DDPG in a sequential fashion that follows [71]. LeGR requires

two continuous actions (i.e., αl and κl) for layer l while AMC needs only one action (i.e., percentage).

APPENDIX B. APPENDIX FOR CHAPTER 5 115

(a) (b)

Figure B.1: Comparison between searching the layer-wise filter norms and searching the layer-wise filter
percentage. (a) compares the searching progress for 50% FLOP count ResNet-56 and (b) compares the
final performance for ResNet-56 with various constraint levels.

We conduct the comparison of pruning ResNet-56 to 50% of its original FLOP count targeting CIFAR-

100 with τ̂ = 0 and hyper-parameters following [71]. As shown in Fig. B.1a, while both LeGR and

AMC outperform random search (iterations before the vertical black-dotted line), LeGR converges faster

to a better solution. Beyond comparing the progress of searching, we also compare the performance of

the final pruned networks. As shown in Fig. B.1b, searching layer-wise affine transformations is more

efficient and effective compared to searching the layer-wise filter percentages. Comparing LeGR using

the two policy improvement methods, we empirically find that DDPG incurs larger variance on the final

network than evolutionary algorithm.

Appendix C

Appendix for Chapter 6

C.1 Width Parameterization

For ResNets with CIFAR, a has six dimensions and is denoted by a1:6 ∈ [0.316, 1], i.e., one parameter for

each stage and one for each residual connected layers in three stages. More specifically, the network is

divided into three stages according to the output resolution, and as a result, there are three stages for all

the ResNets designed for CIFAR. For example, in ResNet20, there are 7, 6, and 6 layers for each of the

stages, respectively. Also, the layers that are added together via residual connection have to share the

same width-multiplier, which results in one width-multiplier per stage for the layers that are connected

via residual connections.

For MobileNetV2, a1:25 ∈ [0.42, 1], and therefore there is one dimension for each independent convo-

lutional layer. Note that while there are in total 52 convolutional layers in MobileNetV2, not all of them

can be altered independently. More specifically, for layers that are added together via residual connection,

their widths should be identical. Similarly, the depth-wise convolutional layer should have the same width

as its preceding point-wise convolutional layers. The same logic applies to MobileNetV3, which has 47

convolutional layers (excluding squeeze-and-excitation layers) and a1:22 ∈ [0.42, 1]. In MobileNetV3, there

are squeeze-and-excitation (SE) layers and we do not alter the width for the expansion layer in the SE

layer. The output width of the SE layer is set to be the same as that of the convolutional layer where the

SE layer is applied to. Note that there is no concept of expansion ratio for the inverted residual block in

MobileNets in our width optimization. More specifically, the convolutional layer that acts upon expansion

ratio is in itself just a convolutional layer with tunable width. Also, we do not quantize the width to be

multiples of 8 as adopted in the previous work [154, 194]. Due to these reasons, our 0.42× MobileNetV2

has 59 MFLOPs, which has the same FLOPs as the 0.35× MobileNetV2 in [194, 154].

116

APPENDIX C. APPENDIX FOR CHAPTER 6 117

C.2 Width Differences

In Fig. C.1, we visualize the widths learned by Joslim and contrast them with Slim for MobileNetV2 and

MobileNetV3. Note that both Joslim and Slim are slimmable networks with shared weights and from the

top row to the bottom row represent three points on the trade-off curve for Fig. 6.3a and Fig. 6.3c.

(a) MobileNetV2 ImageNet (b) MobileNetV3 ImageNet

Figure C.1: Comparing the width-multipliers between Joslim and Slim. The title for each plot denotes the
relative differences (Joslim - Slim) and the numbers in the parenthesis are for Joslim.

C.3 Training Hyperparameters

We use PyTorch as our deep learning framework and we use BoTorch [5] for the implementation of MOBO-

RS, which works seamlessly with PyTorch. More specifically, for the covariance function of Gaussian Pro-

cesses, we use the commonly adopted Matérn Kernel [126] without changing the default hyperparameters

provided in BoTorch. Similarly, we use the default hyperparameter provided in BoTorch for the Upper

Confidence Bound acquisition function. To perform the optimization of line 6 in Algorithm 4, we make

use of the API “optimize_acqf " provided in BoTorch. As a reference, with a single 1080Ti GPU, one can

APPENDIX C. APPENDIX FOR CHAPTER 6 118

train a Joslim-ResNet20 on CIFAR-100 with around 3 hours. On the other hand, with 8 V100 GPUs on a

single machine, one can train a Joslim-ResNet18 on ImageNet with 19 hours.

CIFAR The training hyperparameters for the independent models are 0.1 initial learning rate, 200 train-

ing epochs, 0.0005 weight decay, 128 batch size, SGD with nesterov momentum, and cosine learning rate

decay. The accuracy on the validation set is reported using the model at the final epoch. For slimmable

training, we keep the same exact hyperparameters but train 2× longer compared to independent models,

i.e., 400 epochs.

ImageNet Our training hyperparameters follow that of [194]. Specifically, we use initial learning rate of

0.5 with 5 epochs linear warmup (from 0 to 0.5), linear learning rate decay (from 0.5 to 0), 250 epochs, 4e−5

weight decay, 0.1 label smoothing, and we use SGD with 0.9 nesterov momentum. We use a batch size of

1024. For data augmentation, we use the “RandomResizedCrop” and “RandomHorizontalFlip” APIs in

PyTorch. For MobileNetV2 we follow [194] and use random scale between 0.25 to 1. For MobileNetV3, we

use the default scale parameters, i.e., from 0.08 to 1. The input resolution we use is 224. Besides scaling

and horizontal flip, we follow [194] and use color and lighting jitters data augmentataion with parameter

of 0.4 for brightness, contrast, and saturation; and 0.1 for lighting. These augmentations can be found in

the official repository of [194]1. The hyperparamters for training ResNet18 is identical to MobileNetV2

except that we train it for 100 epochs only. The training for ImageNet is done using 8 NVIDIA V100 GPUs.

C.4 Theoretical Analysis For Temporal Sharing

The intuition behind the proposed approximation in Section 6.2.2 is the similarity for θ across alternating

minimization. In an extreme case, if we hold θ constant throughout the training procedure, the approx-

imation is equivalent to the original multi-objective BO. With that said, θ changes gradually throughout

training. To proceed with further theoretical understanding, we assume the loss LS (θ) is L-Lipschitz.

More formally,

LS (θt)− LS (θt+1) ≤ L‖θt − θt+1‖1, ∀θt, θt+1. (C.1)

Now, consider using stochastic gradient descent to update the weights θ, i.e., θt+1 = θt − ηtgt where

gt is the gradient of loss with respect to the weights and ηt is the learning rate at iteration t. Since LS

is L-Lipschitz, we have ‖g‖1 ≤ L. Assuming using an exponential decaying learning rate with a factor

γ < 1, we can further upper bound the functional differences across K iterations of gradient descents as

1https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#L43

https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#L43

APPENDIX C. APPENDIX FOR CHAPTER 6 119

follows:

LS (θt)− LS (θt+n) ≤
t+K

∑
i=t

ηi‖gi‖ ≤ KηtL. (C.2)

Aligning with our intuition, the analysis reveals that larger K implies poorer approximation for

Bayesian optimization to share history. In multi-objective Bayesian optimization [137], the hyperparame-

ter is searched over stationary objectives. In our case, due to temporal approximation, our cross entropy

changes over time and the change is upper-bounded by KηtL. As a result, we can plug such an upper

bound in the regret bound analysis of Bayesian optimization [137] to understand how K, η, and γ affect

the optimality of Bayesian optimization. Specifically, we upper bound LS (θt) with LS (θt+K) + KηtL and

use it in Lemma 2 and Lemma 3 from [137] in Appendix B.1. With such a technique, a regret bound will

have the following overhead in addition to the original regret bound in equation (14) of [137]:

2η0

1− γ
KLE[Lλ]K′, (C.3)

where we have utilized the geometric progression of the exponential learning rate decay and L, E[Lλ],

and K′ are the notations used by [137]. In other words, without a decaying learning rate, the overhead

can be unbounded. This analysis reveals that larger initial learning rate η0 and K results in a worse regret

bound.

C.5 Inference Memory Footprint Calculation

To demonstrate the generality of proposed Joslim, we in addition consider optimizing for the trade-off

curve between prediction error and inference memory footprint. The inference memory footprint is a

critical factor when it comes to deploying deep CNNs onto resource-constrained devices such as mobile

phones or micro-controllers as motivated in the original slimmable neural network paper [196]. We use a

single image per batch to calculate the memory footprint. Specifically the inference memory footprint is

characterized as follows:

FMl
in = W l

in × Hl
in × Cl

in

FMl
out = W l

out × Hl
out × Cl

out

Weightsl = Kl
w × Kl

h × Cl
in × Cl

out/Gl

Skipl = W l
out × Hl

out × Cl
skip

MEM = max
l

(
FMl

in + FMl
out + Weightsl + Skipl

)
,

(C.4)

where FMl
in and FMl

out denote the input and output feature map sizes of layer l, Weightsl denotes the

size of the weights in layer l, and Skipl denotes the memory requirement of storing the feature maps from

APPENDIX C. APPENDIX FOR CHAPTER 6 120

(a) Error vs. FLOPs (b) Error vs. Memory

Figure C.2: Comparing Joslim and AutoSlim on ResNet18. Since ResNet18 has similar FLOPs across
different layers, greedy pruning used by AutoSlim perform comparably to Joslim. However, Joslim out-
performs AutoSlim when it comes to optimizing for memory consumption since the greedy pruning
procedure adopted by AutoSlim is not multi-objective.

skip connections. W and H represent the width and height of the feature map. Kw and Kh denote the

kernel size. Lastly, Cin, Cout and G denote the input channel, output channel, and the number of groups

for convolutional layer l.

C.6 Comparisons With AutoSlim

AutoSlim [193] is a NAS method proposed to do channel search for standalone models. While it also

provides non-uniform widths for different layers, it is not a method derived to solve for equation 6.5.

Specifically, AutoSlim first perform weight-sharing training (equation 6.7) for a short amount of period,

i.e., 10% to 20% of the full training epochs. Then, AutoSlim conducts greedy pruning to greedily remove a

fixed amount of channels from the layer that affects the loss the least. Such a greedy procedure naturally

results in a sequence of models of different computational requirements. Crucially, this greedy pruning

procedure is not solving equation 6.12 since the computational requirement (FLOPs or memory footprint)

does not affect the ranking among filters to be pruned. Nonetheless, we can adopt AutoSlim to obtain a

sequence of models and train them via weight-sharing to form a slimmable network. We compared with

AutoSlim using ResNet18 on ImageNet with both FLOPs and memory footprint. As shown in Fig. C.2,

Joslim performs similarly with AutoSlim when it comes to FLOPs, and this is because ResNet18 has

balanced FLOPs for all the layers. On the other hand, when it comes to memory footprint, AutoSlim

performs much worse compared to Joslim. In hindsight, this result is not surprising as Joslim is designed

to solve equation 6.5 while AutoSlim is not.

	Contents
	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Organization

	Background
	Convolutional Neural Networks (CNNs)
	Model Compression/Acceleration

	AdaScale: Scale Inputs Adaptively for Improved Speed and Accuracy
	Motivation
	Adaptive Scaling
	Experiments
	Discussion
	Carbon Footprint Analysis

	Winning-Bitwidth: Beyond Quantization for Fixed CNNs
	Motivation
	Experiments
	Discussion
	Carbon Footprint Analysis

	LeGR: Towards Efficient Filter Pruning
	Motivation
	Learned Global Ranking
	Experiments
	Ablation Study
	Discussion
	Carbon Footprint Analysis

	Joslim: Efficient Filter Pruning without Fine-tuning
	Motivation
	Methodology
	Experiments
	Discussion
	Carbon Footprint Analysis

	Width Transfer: On the (In)variance of Filter Count Optimization
	Motivation
	Width Optimization
	Approach
	Experiments
	Discussion
	Carbon Footprint Analysis

	Synergies and Discussion of Presented Approaches
	LeGR, Joslim, and Width Transfer
	Robustness to Distributional Shifts
	Relation to Neural Architecture Search
	Applicability to Networks besides CNNs

	Related Work
	Model Compression/Acceleration
	Efficient Model Compression
	Object Detection

	Conclusions
	Bibliography
	Appendix for Chapter 4
	Network Architectures
	Proof For Proposition 4.2.1

	Appendix for Chapter 5
	Optimization Interpretation Of LeGR
	LeGR-DDPG

	Appendix for Chapter 6
	Width Parameterization
	Width Differences
	Training Hyperparameters
	Theoretical Analysis For Temporal Sharing
	Inference Memory Footprint Calculation
	Comparisons With AutoSlim

