

REV-03.18.2016.0

TwinOps: Digital Twins Meets DevOps
Jérôme Hugues

Joe Yankel

John Hudak

Anton Hristozov

March 2022

TECHNICAL REPORT

CMU/SEI-2022-TR-001

DOI: 10.1184/R1/19184915

Software Solutions Division

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not

be construed as an official Government position, policy, or decision, unless designated by other

documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,

MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely

distributed in written or electronic form without requesting formal permission. Permission is required for

any other external and/or commercial use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM22-0259

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table of Contents

Executive Summary iv

Abstract v

1 Summary 1
1.1 Context and Objectives of the TwinOps Project 1
1.2 Delivered Contributions 2

2 ModDevOps: Coupling Model-Based Engineering and DevOps 3
2.1 Technology Overview 3

2.1.1 DevOps 3
2.1.2 Perspectives On Modeling 3
2.1.3 Modeling Cyber-Physical Systems 4
2.1.4 Models and Processes 5
2.1.5 Conclusion 6

2.2 MBS2E Overview 6
2.3 ModDevOps, a Primer 8

2.3.1 ModDevOps Definition 8
2.3.2 ModDevOps “Infinity Loop” 9
2.3.3 ModDevOps ⊄ Dev(*)Ops 10

2.4 ModDevOps Defined as SysML model 10
2.4.1 ModDevOps Use Cases 11
2.4.2 ModDevOps Blocks 12
2.4.3 ModDevOps Activities 12

2.5 Conclusion 15

3 TwinOps Defined: ModDevOps for CPS 16
3.1 TwinOps Introduction 16
3.2 The SensorProcessing Demonstrator 17
3.3 ModDevOps Applied to SensorProcessing: Models 17

3.3.1 TwinOps Solution #1: Use Containers for Delivering Modeling Environments 17
3.3.2 TwinOps Solution #2: Perform Virtual Integration from Models 18
3.3.3 TwinOps Lessons Learned 18

3.4 ModDevOps Applied to SensorProcessing: Implementation 19
3.4.1 TwinOps Solution #3: Multiple Targets Code Generation 20
3.4.2 TwinOps Solution #4: Integration as a DevOps CI/CD Pipeline 21
3.4.3 TwinOps Solution #5: System Analytics 21

3.5 Conclusion 22

4 TwinOps: The SensorProcessing IoT Demo 23
4.1 Step 1: Defining the Modeling Process 23
4.2 Step 2: System Model / SysML 24
4.3 Step 3: Embedded Software and Hardware Mode / AADL 24

4.3.1 Setting Up the Modeling Environment 25
4.3.2 Modeling the System Requirements Using ALISA 25
4.3.3 Modeling the System Architecture Using AADL 26

4.4 Step 4: IoT Concerns and Implementation of C Functions 27
4.5 Step 5: ModDevOps: A Model-Level CI/CD Pipeline 27

4.5.1 Model-Only CI/CD Pipeline 27
4.5.2 Model-to-Code-to-Target CI/CD 28
4.5.3 Conclusion 28

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.6 Step 4 Revisited: Modeling the Environment / Modelica 28
4.6.1 About Modelica 29
4.6.2 Setting Up the Modelica IDE and Tools 29
4.6.3 Modeling the SensorProcessing environment 29

4.7 Step 5 Revisited: TwinOps: A ModDevOps Specialization for CPS Simulation 30
4.7.1 About the FMI Standard 30
4.7.2 Coupling FMI and AADL 31

5 Conclusion: TwinOps: A ModDevOps Pipeline for CPS 32

References 34

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Figures

Figure 1: MBS2E Overview Created Using Papyrus 7

Figure 2: ModDevOps Infinity Loop 9

Figure 3: ModDevOps Use Cases 11

Figure 4: ModDevOps Blocks 12

Figure 5 ModDevOps Activities 14

Figure 6: ModDevOps Activities Traced to Its Use Cases 15

Figure 7: SensorProcessing / AADL Model 18

Figure 8: Modeling Pipeline for SensorProcessing 19

Figure 9: Runtime Monitoring Points 19

Figure 10: ModDevOps Code Generation Pipeline 20

Figure 11: Deployment Pipeline 21

Figure 12: Feedback from (Ops) to (Mod/Dev) 22

Figure 13: SensorProcessing SysML Architecture Breakdown 24

Figure 14: SensorProcessing / AADL Model 26

Figure 15: SensorProcessing: Execution of ALISA Verification Plan 28

Figure 16: SensorProcessing: Model of the Environment 30

Figure 17: ModDevOps Pipeline 32

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Executive Summary

This technical report summarizes the findings of the TwinOps project, a one-year project executed

during FY20.

TwinOps researched the engineering of cyber-physical systems (CPSs). CPSs exhibit multiple en-

gineering, validation and verification (V&V), and testing challenges. In this project, we aimed at

reducing the time to deliver a software-intensive system by improving engineering and testing ac-

tivities.

TwinOps explored the interplay between three core technologies:

• Model-based engineering (MBE): An engineering approach that relies on models as first-

class abstractions of a system to support engineering activities.

• DevOps: An organizational effort to support continuous delivery of software through a better

coupling between development and operations activities.

• Digital twins: An infrastructure to support system monitoring and diagnosis in real time to

enable continuous system improvement.

By the conclusion of FY20, the SEI achieved the following outcomes through its research on

TwinOps:

• The SEI delivered a ModDevOps example that extends DevOps by incorporating MBE and

V&V capabilities. We demonstrated how MBE model processing capabilities enable rapid

system prototyping.

• The SEI created an enhanced analysis and testing process for systems architects who build

software-intensive CPSs by defining the TwinOps process.

• The SEI used TwinOps to build on ModDevOps and digital twins to collect data on a system

at runtime and compares it to other engineering artifacts: model simulation and analysis.

This comparison enables rapid system diagnosis.

Both ModDevOps and TwinOps processes are documented as SysML models. These models sup-

port a full definition of the process. Hence, these processes can be reviewed and adapted to other

project needs.

Two case studies using a combination of modeling languages (SysML, Architecture Analysis and

Design Language [AADL], and Modelica [in addition to C programming]) illustrate these two

contributions. We used Azure IoT and GitLab forge as supporting DevOps infrastructure.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Abstract

This report summarizes the contributions of the TwinOps project, a one-year project funded by

the Software Engineering Institute and executed during FY20. The contributions of this research

are twofold. First, it introduced ModDevOps as an innovative approach to bridging model-based

engineering and software engineering using DevOps concepts and code generation from models.

ModDevOps smooths the transition from model-level verification and validation (V&V) to soft-

ware production. Second, the research developed TwinOps, a specific ModDevOps pipeline that

equips system engineers with new analysis capabilities through the careful combinations of model

artifacts as they are built.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Summary

In this chapter, we provide a summary of the TwinOps project, its context, and its key results.

1.1 Context and Objectives of the TwinOps Project

The increased complexity of cyber-physical systems (CPSs) is causing a wide range of undefined

behaviors. Harmful issues, such as imprecise component characterization (in the functional, tim-

ing, or safety viewpoints), or emergent system behaviors, such as system deadlocks or erratic be-

haviors, often emerge during testing or after system deployment. These unwanted behaviors cause

significant and costly rework and delay system delivery.

DevOps for software systems, and digital twins for CPSs, have recently emerged as two interest-

ing technologies for improving CPS engineering. Our initial research objective was to ease the de-

ployment of simulations or instrumented CPS through DevOps, which uses continuous integra-

tion, deployment, and real-time monitoring of the whole system, while leveraging the digital

twins concept to review the software-centric view of monitored data with actual physical parame-

ters. Yet, the connection between DevOps and digital twins relies on specific engineering artifacts

and processes. The TwinOps project aimed to define them.

The SEI MBE team advocates for model-based technologies. We claim that models can address

some of these concerns. To do so, we want to combine multiple classes of models:

• systems engineering models to capture system requirements, interfaces, and the system’s

functional decomposition into subsystems

• simulation models to evaluate the system general behavior

• engineering models for the system’s design, and then model transformations towards analyti-

cal models (e.g., for model checking, performance evaluation) and, finally, code generation.

We note these classes of models are usually considered in isolation and developed concurrently.

We claim that these models can be combined in a uniform process to improve the whole engineer-

ing process.

In this report, we first define ModDevOps, an extension of DevOps that leverages model-based-

engineering approaches to improve system continuous integration/continuous delivery (CI/CD).

ModDevOps is defined as a generic process.

TwinOps is a specialization of ModDevOps aimed at CPS engineering, verification and validation

(V&V), and deployment. TwinOps combines DevOps practice and model-based code generation

practice to facilitate system deployments for multiple targets to build the simulation testbench,

validation platform, and digital twins of a cyber-physical system.

The TwinOps project builds on the foundations of DevOps and digital twins infrastructures.

DevOps is a software development process that relies on an iterative workflow combining the de-

velopment and operation of software, from coding to deployment on a monitored runtime infra-

structure, either simulated or on an actual platform. DevOps is supported by a collection of cloud

technologies to encourage automation in building, testing, and deployment activities. Digital

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

twins combine the simulation of engineering models (using the Functional Mock-up Interface

[FMI] standard) with run-time system monitoring to analyze deployed CPS [Blochwitz 2012].

The concept of digital twins has been used in various domains to improve system quality

(e.g., manufacturing and automotive). Digital twins rely heavily on Internet of Things (IoT) and

cloud-based technologies to collect and propagate data.

1.2 Delivered Contributions

TwinOps aims at expediting the testing phase of system development by generating most of the

software that can be deduced from a system’s architectural model, and its testbench, in a single

unified process. System architecture virtual integration (SAVI) studies demonstrated that a signif-

icant number of errors are discovered and mitigated during the integration and acceptance phases

of a project. This phenomenon is reflected in an increase in the required testing and/or retesting

effort [Feiler 2009].

By relying extensively on code generation and linking it to a test bench or a digital twin, TwinOps

reduces the number of faults leaking through to later phases of CPS engineering at design time, so

engineers will have more confidence in the system under construction, and also at runtime, to al-

low the instrumentation to improve system verifiability.

In the following chapters, we present the following contributions:

• Definition and example of a ModDevOps process (see Section 3): We define ModDevOps,

an extension DevOps that incorporates MBE engineering and V&V capabilities. We demon-

strate how MBE model processing capabilities enable rapid system prototyping.

• Definition of TwinOps process (see Sections 4 and 5): TwinOps builds on ModDevOps and

digital twins to collect data on a system at runtime and compare it to other engineering arti-

facts: model simulation and analysis. This comparison enables rapid system diagnosis. We

detail the TwinOps process as follows:

− In Section 4, we introduce an instantiation of ModDevOps to engineer and deploy a CPS

using a DevOps pipeline, and we illustrate this process with a case study that highlights

the key steps of ModDevOps to provide a “systems engineer view” of the process.

− In Section 5, we present this case study in more depth. We introduce all the models built

and the specific configuration of the CI/CD pipeline we implemented.

We evaluate the contributions of TwinOps first by the capability to synthesize required code to

deploy systems, their simulations, and their corresponding digital twin; and second, by the capa-

bility to collect runtime execution traces.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 ModDevOps: Coupling Model-Based Engineering and

DevOps

In this section, we first introduce the main contribution of the TwinOps project: ModDevOps, a

coupling of model-based engineering and DevOps.

In Section 2.1, we review relevant technologies to the research. Section 2.2 presents model-based

systems and software engineering. In Section. 2.3, we introduce ModDevOps as a high-level con-

cept.

2.1 Technology Overview

The TwinOps line of work addresses the general context of model-based systems engineering and

model-based software engineering applied to CPSs. We consider systems engineering different

from software engineering, because each of these disciplines has different objectives and pro-

cesses.1

“Model” is a term used in many different settings. So is the term “system.” There are models

trained for artificial intelligence (AI), models built for systems engineering (model-based systems

engineering [MBSE] such as SysML), models built for architecting a system and assessing its

non-functional properties (e.g., Architecture Analysis & Design Language [AADL]), models of

algorithms, and many more. Many of these models support aspects of the development process,

while very few are deployed in the operations phase of the system.

In this section, we analyze various topics related to models and the modeling process. These con-

cepts will allow us to define ModDevOps.

2.1.1 DevOps

DevOps has been codified as a set of practices that combines software development (Dev) and IT

operations (Ops). These practices have been combined as a process that aims to shorten the sys-

tems development lifecycle and provide continuous delivery with high software quality [Wikipe-

dia 2020]. DevOps is defined more precisely as a “collaborative and multidisciplinary effort

within an organization to automate continuous delivery of new software versions while guarantee-

ing their correctness and reliability” [Leite 2019].

The DevOps processes uses automation to expedite specific steps, such as software building, test-

ing, or deployment. Beyond the human organization, DevOps focuses primarily on automation to

discharge engineers from error-prone tasks (so that they can focus on core activities, such as fea-

ture update or debugging) and to monitor the system execution to debug or update the software.

2.1.2 Perspectives On Modeling

The specification, design, and V&V of CPSs rely on a common set of modeling capabilities:

1 Fairley discusses this dichotomy in great detail [Fairley 2019].

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• Modeling capabilities that lay out the foundations of the system, its components, interfaces,

and behaviors. Following Rauzy’s thesis on the foundations of MBSE, we acknowledge

Rauzy’s first thesis that “The diversity of models is irreducible” [Rauzy 2019]. One needs to

combine models with heterogeneous notations and semantics to cover all of the system’s ex-

ecution scenarios. In our research, we restrict modeling to the capability to capture the se-

mantics of the system in some form.

• Analysis capabilities to infer properties from the system’s model. Analysis capabilities are

inherently linked to the model itself.

• The set of analyses that can be executed (the questions that can be answered) depends on the

model itself. As Marvin L. Minsky noted: “To an observer B, an object A* is a model of an

object A to the extent that B can use A* to answer questions that interest him about A. The

model relation is inherently ternary. Any attempt to suppress the role of the intentions of the

investigator B leads to circular definitions or to ambiguities about ‘essential features’ and the

like” [Minksy 1965].

• Synthesis capabilities to transform a model into another formalism. These capabilities can be

an analytical model used for analysis or source code that can be used for simulating the sys-

tem or deployed on the target. Typical examples of the latter are AADL-to-code or Simulink-

to-code.

These capabilities have been defined and led to the definition of many model-based initiatives,

such as Object Management Group (OMG) Unified Modeling Language (OMG UML), OMG

SysML, Society of Automotive Engineers (SAE) AADL, Simulink, Safety-Critical Application

Development Environment (SCADE), Modelica, and International Telecommunication Union

Specification and Description Language (ITU SDL). Each language supports its own set of mod-

eling objectives, analysis support, and synthesis capabilities.

2.1.3 Modeling Cyber-Physical Systems

As stated by Minsky, models and analysis are linked. In addition, the collection of models reveals

other intrinsic properties [Minksy 1965]:

• As expressed in systems, CPS engineering relies on model-based systems engineering to

capture systems requirements, functions, and stakeholders. These models are capturing rela-

tionships between elements and delegating to other models more precise details (e.g., behav-

iors and performance). They are pragmatic models per Rauzy’s definition.

• As expressed in cyber and physical entities, CPS engineering is also better described by a

collection of formal models, each of which supports different analyses. This is Rauzy’s first

thesis.

During the execution of the TwinOps project, we retained the following taxonomy of modeling

languages, based on their primary concern area:

• At a system-level: OMG SysML [OMG 2019]

• At a software architectural level: SAE AADL [SAE 2017]

• At a software level: Matlab Simulink, ANSYS SCADE, and traditional programming lan-

guages such as C, Ada, etc.

• Other domains: physics (Modelica), cyber-physical modeling (Ptolemy), etc.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

In addition, Rauzy’s second thesis states, “There is an epistemic gap between pragmatic and for-

mal models.” Because they have different natures and purposes, deriving a formal model from a

pragmatic one requires an engineering process that cannot generally be automated. In Rauzy’s

definition, a formal model is a model with precise semantics from which one can derive analysis

results automatically.

To revisit the previous list: SysML and C are pragmatic models, they either do not fully specify

system internals, like SysML, or are subject to interpretation like C and its undefined behaviors.

On the other hand, the SAE AADL, Matlab Simulink, and others might be considered formal

models. From these formal models, one can derive an automated process to perform analysis, gen-

erate code, or run simulations.

2.1.4 Models and Processes

The previous considerations call for a careful definition of model-supported engineering pro-

cesses. It has been established that it is necessary to have multiple modeling notations and that

they must be combined. In some cases, models are amenable to some automation, such as analysis

or simulation.

In this section, we review two relevant Department of Defense (DoD) initiatives: digital thread

and digital engineering.

2.1.4.1 Digital Thread

In their paper “Untangling the Digital Thread: The Challenge and Promise of Model-Based Engi-

neering in Defense Acquisition,” Timothy D. West and Art Pyster introduce the digital thread

concept as “a framework for merging the conceptual models of the system (the traditional focus of

MBSE) with the discipline-specific engineering models of various system elements” [West 2015].

This vision supports data interchange between the various design stages of an aircraft to consoli-

date the acquisition process within the U.S. Air Force.

The concept of a digital thread relies on simulation and high-performance computing to support

the engineering of full aircraft. The key relevant domains are physical, such as mechanics, electri-

cal, and manufacturing. Yet, digital thread is also relevant for software-intensive systems, consid-

ering software engineering and its delivery.

2.1.4.2 Digital Engineering

The DoD defines digital engineering as “an integrated digital approach that uses authoritative

sources of system data and models as a continuum across disciplines to support lifecycle activities

from concept through the disposal” [DoD 2018]. It builds on the concept of “an end-to-end enter-

prise. This will enable the use of models throughout the lifecycle to digitally represent the system

of interest (i.e., a system of systems, systems, processes, equipment, products, parts) in the virtual

world.”

Digital engineering is defined as a strategy rather than as a process. As mentioned in the final

words of his foreword to the Department of Defense Digital Engineering Strategy, Michael D.

Griffen, then Undersecretary of Defense for Research and Engineering, noted, “This strategy de-

scribes the ‘what’ necessary to foster the use of digital engineering practices. Those implementing

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

the practices must develop the ‘how’—the implementation steps necessary to apply digital engi-

neering in each enterprise” [DoD 2018].

Hence, digital engineering must be adapted to unique project needs. The Architecture Centric Vir-

tual Integration Process (ACVIP) proposes a declination of the digital engineering strategy for the

avionics system built on top of AADL [Boydston 2019]. Other declinations are being designed

across the DoD.

In addition, it is significant that both digital thread and digital engineering insist on defining an

Agile development process with automation at its core. This resonates with DevOps practices.

2.1.5 Conclusion

This quick survey of relevant technology highlighted some key aspects of modeling. First and

foremost among them is the need for a diverse range of models and the need to combine models

in efficient ways. As of the time of writing of this report, there is no unified definition of digital

engineering, digital thread, or ACVIP.

Through its definition of ModDevOps, the TwinOps project is contributing to this general reflec-

tion on how to deliver systems faster and with increased confidence.

2.2 MBS2E Overview

Under model-based systems and software engineering (MBS2E), systems are defined as a collec-

tion of models and source code artifacts. Their combination covers all steps of the engineering cy-

cle, from high-level requirements to the delivery of the source code.

An overview of the interplay between abstract activities and the corresponding supporting nota-

tion is shown in Figure 1.2 It covers only the embedded software side of a CPS and the languages

selected in the previous section. The SysML activity diagram formalism is used to capture the

general process attached to it.

2 The diagram was created using Papyrus, an SysML editor that is part of the Eclipse ecosystem.

https://www.eclipse.org/papyrus/

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 1: MBS2E Overview Created Using Papyrus

1. First, the system is specified and designed. A first high-level model of the system is captured

using SysML, along with a set of system constraints that will serve as requirements for the

next step. At this stage, the model of the system is informative and covers its requirements,

high-level breakdown structure, and a high-level description of each component interface

and behavior.

2. Second, the system’s architecture is defined. It is derived from the SysML representation and

associated constraints. AADL allows for a more precise definition of the system architecture

as a collection of components that captures regular software or hardware behaviors (thread,

device, processor, etc.) and can precisely address the runtime aspects of the system.

3. Finally, the system parts can be engineered. From the AADL model definition, we can derive

the software low-level requirements (e.g., the subprogram interfaces to be implemented).

Then, these parts can be generated automatically from Simulink or other models, or engi-

neers may select UML to capture more precisely the model of the software to be imple-

mented first or implement it directly in their language of choice.

Note that each modeling technology provides automated processes to perform model analysis or

code synthesis. The following lists the accepted role of each formalism:

• SysML provides some capabilities to perform trade-off analysis and semantics checks

[Leserf 2019]. SysML supports requirements engineering and will provide a mechanism to

assess that all requirements are traced to system constituents.

• AADL provides more capabilities to support performance, safety, or security analysis. In ad-

dition, one can define project-specific analysis to assess some structural properties, such as

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

conformance to some modeling guidelines [Delange 2016]. This specificity allows designers

to assess most of the non-functional properties and ensure partial functional correctness.

• UML supports semantics checks to validate that the model is sound, just like compilers. The

benefits of a modeling approach pertain to the ability to master the complexity of software

functions.

• Programming languages now propose a variety of tools to assert software correctness based

on SMT solvers, such as ACSL for the C language or SPARK2014 for Ada.

These formalisms can be embedded into larger system engineering processes or included in a soft-

ware production environment.

2.3 ModDevOps, a Primer

In the previous sections, we introduced various considerations on models and how they can be in-

terconnected. In this section, we define ModDevOps, an extension of DevOps that incorporates

models.

We noted earlier that one desirable feature of models, beyond their advanced analysis capabilities,

is their ability to accelerate system delivery. This consideration is echoed by the DevOps ap-

proach for software. DevOps has been codified as a set of practices that combines software devel-

opment (Dev) and IT operations (Ops). It aims to shorten the systems development lifecycle and

provide continuous delivery with high software quality [Wikipedia 2020]. DevOps relies on the

idea of CI/CD and infrastructure-as-code as central pillars.

We introduce ModDevOps as an extension of DevOps, embracing model-based systems and soft-

ware engineering.

2.3.1 ModDevOps Definition

Model-based engineering relies on models as first-class abstractions of a system under study [Ro-

drigues da Silva 2015]. In the NASA paper “Survey on Model-Based Software Engineering and

Auto-Generated Code,” the authors show how automated code generation in the engineering of

embedded software both increased confidence in produced software and accelerated delivery

[Goseva-Popstojanova 2016]. Yet, this is usually a one-way process in which debugging gener-

ated software and informing model updates pose challenges.

The U.S. Air Force proposed a definition of DevOps that insists on the whole system lifecycle

[Air Force 2022]. We extend this definition and define ModDevOps as follows, with our additions

in bold:

ModDevOps is a systems/software co-engineering culture and practice that aims to unify

model-based systems engineering (Mod), software development (Dev), and software opera-

tion (Ops). The main characteristic of the ModDevOps movement is to strongly advocate ab-

straction, automation, and monitoring at all steps of system construction, from integra-

tion, testing, and releasing to deployment and infrastructure management.

ModDevOps is built on the premise that model-based engineering is the natural complement to

software engineering. By providing machine-processable models, one can increase automation to

improve system V&V and to generate code, whether it is application code or infrastructure code.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3.2 ModDevOps “Infinity Loop”

ModDevOps extends DevOps by refining how specific steps can be supported by model-based

techniques. ModDevOps refines the typical DevOps “infinite loop” steps as shown in Figure 2.

Figure 2: ModDevOps Infinity Loop

Modeling encompasses physical, architectural, and software modeling aspects and source code

definition. Source code is the ultimate machine-processable model of the function to be imple-

mented. This step encompasses the following activities of ModDevOps:

1. Planning, requirements definition, and properties (identification/definition): Define the sys-

tems engineering models of the system, along with a validation plan.

2. Modeling architecture and parts: Refine the models and define domain-specific models to

cover the various parts. Models address specific concerns captured in the previous phases

(e.g., need to model the environment, or control, or the architecture of an embedded system).

3. Virtual Integration: Define the interaction points between these models (e.g., how the reali-

zation of an architecture executes specific functions or associated engineering models and

the environment model).

Test bench/system realization is an automated software factory that builds the various artifacts:

simulation code, executables.

4. Code generation produces code from models with multiple objectives: generating functional

and middleware code to run on the target; generating simulation elements. Also, glue code is

generated to (1) monitor properties, such as resource consumption or data exchange, and (2)

detect specific execution patterns.

5. Software Assembly combines the various pieces to build multiple targets.

“Ops” deploys and executes the generated software.

6. Monitor collects data.

7. Data Analysis confronts the various data for accuracy and consistency.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8. Analysis will inform updates to the system requirements, properties, and updates to the sys-

tem design.

As defined, ModDevOps extends DevOps with MBE. The ModDevOps processes appear mostly

during the Dev phase, aggregating engineering artifacts.

2.3.3 ModDevOps ⊄ Dev(*)Ops

Recently, the U.S. Air Force wrote a note on the risk of stacking terms between (Dev) and (Ops)

[Tanner 2022]. Starting with security (Sec), the author mentions that many other concerns could

be stacked.

We agree that (Dev) must embed the right engineering principles to deliver expected software and

its associated attributes, such as security, performance, and reliability. Therefore, DevOps should

be self-sufficient.

Yet, this claim provides an incomplete assessment of the engineering issues at stake. Model-based

techniques have demonstrated their added value in defining proper abstractions to conduct early

analysis and virtual system integration. Modeling encompasses activities well beyond software

development. They touch all engineering domains, including systems engineering, mechanical en-

gineering, and electrical engineering. This characteristic calls for a larger view of a DevOps-like

process that embraces modeling activities as an integral part of the engineering of software-inten-

sive systems. This point will be refined in Section 4, in which we illustrate the benefits of a

ModDevOps approach for the engineering of CPSs.

2.4 ModDevOps Defined as SysML model

In this section, we propose a comprehensive definition of ModDevOps. To do so, we use SysML

to document the key stakeholders and components of ModDevOps.3

Note: In the following section, models reference TwinOps. This is a reference to the name of the

project itself.

3 All models have been built using Cameo Enterprise Architecture 19.0.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.1 ModDevOps Use Cases

Figure 3: ModDevOps Use Cases

The ModDevOps process has five stakeholders. The following overview highlights their respec-

tive roles and associated use cases (see Figure 3 for details).

• Systems engineers capture the high-level aspects of the systems as a collection of models.

These models represent hardware and software architecture, component and system simula-

tions, and data models. The associated use cases cover all modeling activities.

• Hardware/software engineers implement the system by writing C code or designing and/or

building the hardware platform. Depending on the project, software engineers may also per-

form precise Simulink or AADL modeling activities with the objective of performing code

generation.

• V&V engineers are responsible for the V&V of the system: They develop testing approaches,

perform analysis, collect execution logs, and generate reports.

• DevOps engineers provide and maintain the infrastructure-as-code DevOps platform used to

federate all activities.

These stakeholders use a common repository to manage artifacts. These artifacts are processed in

a DevOps pipeline. To some extent, this DevOps pipeline facilitator acts as a fifth team member

to support other stakeholders.

• The DevOps pipeline automates various tasks, such as building the system, execution of

tests, or deployment.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.2 ModDevOps Blocks

Figure 4: ModDevOps Blocks

We can now review the ModDevOps blocks and how they interact with the defined stakeholders.

This is shown in Figure 4.

ModDevOps is made of four blocks and two supporting stakeholders:

• SCM is the source configuration management. Usually, it is a Git repository supporting

CI/CD capabilities. It is usually deployed in a cloud-based infrastructure. In our case studies,

we use a GitLab instance hosted on Amazon Web Services (AWS).

• CI/CD is the infrastructure supporting continuous integration/continuous deployment. It is

also a Cloud-based node, or alternatively executed directly on the target running a GitLab

runner.

• Modeling Tools is the collection of modeling tools used for building models.

• Target is the deployment target, such as an x86/64 computer or Raspberry Pi board.

Formally speaking, the Hardware/software engineer and the DevOps engineer “belong” to the

ModDevOps process: They provide services to the user of the process. The systems engineer and

V&V engineer are the users of the process. They will interact with its parts to build, integrate, and

deploy a system.

2.4.3 ModDevOps Activities

The block diagrams from the previous section provide a static view of the process; namely, its

parts and stakeholders. In this section, we provide a definition of the dynamic of ModDevOps.

First, each block has a collection of activities it can support. These activities capture the services

it supports:

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• SCM: Support SCM configuration

• CI/CD pipeline: Configure CI/CD pipeline and Trigger CI/CD pipeline

• Modeling tools: Verify Models

• Target: Setup Target and Run Target

Stakeholders will be in charge of other activities, such as “build model” or “store/fetch elements

from SCM.” This mapping is straightforward.

These atomic actions are the building blocks of the ModDevOps process. To do so, we use a

SysML activity diagram to mention how activities (attached to each block) are sequenced, as

shown in Figure 5. First, the SCM is configured. Next, the target and the CI/CD pipeline are con-

figured. Modeling tools are packaged as containers and used to build models. Models can eventu-

ally be verified prior to implementing the system. When the models and code are ready, the

CI/CD platform is triggered, leading to the integration of the software elements and their deploy-

ment on the target. Upon successful deployment, the system starts its execution. Logs are col-

lected and analyzed. This leads to a new modeling phase that will repeat the whole process.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 5 ModDevOps Activities

Finally, we can use a SysML traceability matrix to relate all activities from the previous activity

diagram to elements from the initial use case we presented as shown in Figure 6. This matrix

guarantees that all use cases have been properly covered by the definition of the ModDevOps pro-

cess.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 6: ModDevOps Activities Traced to Its Use Cases

2.5 Conclusion

In this section, we provided a full definition of ModDevOps. ModDevOps extends DevOps by

recognizing the role of modeling activities in the engineering of systems, especially cyber-physi-

cal systems. ModDevOps was gradually defined: first informally, then formally using SysML.

This formalization allows us to better characterize the various steps of the process.

As we have defined it, ModDevOps remains a generic process that can be tailored. In the follow-

ing sections, we illustrate various instances of ModDevOps to support the engineering of CPSs.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 TwinOps Defined: ModDevOps for CPS

In this chapter, we give a concrete realization of ModDevOps in a cyber-physical setting. We de-

fine the first part of TwinOps, a ModDevOps process geared towards the engineering of CPSs. We

concentrate on the ModDev part of the process.

3.1 TwinOps Introduction

The coupling of model-based techniques and DevOps is an emerging research topic. Contempo-

rary to the definition of the TwinOps research agenda, Combemale et al. presented a roadmap for

model-based DevOps for CPS [Combemale 2019]. The authors propose a collection of challenges

to be addressed to better couple MBE and DevOps. They list research challenges rather than ac-

tual solutions for adapting DevOps to the engineering of cyber-physical systems. Following a typ-

ical DevOps cycle, they list two main challenges that apply to the first half of the process, Dev-to-

Ops:

1. Integration of model-driven techniques to DevOps: The authors propose code generation

from models to be integrated to a DevOps pipeline. Code generation is triggered by model

updates and subsequent deployment for running the code on a simulation platform or the ac-

tual system. They also call for specific languages for defining the corresponding CI/CD pipe-

line.

2. Integration of heterogeneous artefacts: The authors highlight the need for semantics interop-

erability across different modeling techniques, where a computer-aided design (CAD) model

will be used to test a controller implemented using another modeling technology.

TwinOps provides a solution to these two challenges by leveraging well-established model pro-

cessing capabilities. TwinOps builds on one core idea: using engineering models from other do-

mains (mechanics, electronics, etc.) to validate software-intensive systems against faithful repre-

sentations of the environment. TwinOps extends ModDevOps and builds on two central

technologies:

• ModDevOps: rapid fielding of software capabilities with confidence, using models as inputs.

We leverage code generation from models in addition to typical DevOps pipeline definition.

• Digital twins: through code generation, one can generate a digital mock-up of a system, fully

synchronized with the actual system.

By combining digital twins and DevOps to engineer CPS, the TwinOps process aims to show the

conformance of a system to its high-level objectives (e.g., system requirements). The TwinOps

process incorporates increasingly refined models of the system, its environment, and the mission

description and objectives, down to the final deployment. This is made possible by the integration

of model-based assets through AADL models, extensive code generation, and parallel execution

of the CPS.

In the following section, we provide a hands-on introduction to TwinOps through a case study: an

IoT sensor processing unit known as “SensorProcessing.”

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2 The SensorProcessing Demonstrator

Let us assume we want to build a monitoring system for a building. The system will monitor and

collect environmental conditions to ensure the proper operation of an air conditioning system. The

system participates in a digital twin of the building. We elicit the following requirements:

• R1: The system shall monitor the humidity and temperature in multiple points of a building

every 10 minutes during office hours or every 30 minutes thereafter.

• R2: The system shall store humidity, temperature, and timestamp data in a central repository.

• R3: The system shall detect and report any error in the reported data, such as out-of-range

values or a sudden surge in values.

• R4: The system shall monitor its health status and report issues.

From these considerations, an industrial survey shows that a platform built on the Azure IoT

Cloud platform for data management, and a Raspberry Pi platform with a BME280 sensor device,

could deliver the expected functionalities [Microsoft 2021]. The Azure IoT framework associated

with a Raspberry Pi board supports the implementation of a digital twin of the building to monitor

and control its temperature.

Several open-source projects propose a full description of such a system down to software imple-

mentation of sensor reading, but they do not cover the error detection and logging/reporting. In

the following sections, we illustrate how model-based engineering and ModDevOps could be

combined to support the definition and engineering of this system. We also illustrate how combin-

ing MBE code generation and CI/CD techniques allows for the automated deployment of a solu-

tion.

3.3 ModDevOps Applied to SensorProcessing: Models

In the following sections, we illustrate how ModDevOps, which was introduced in Section 2.3,

can be used to design, analyze, and then deploy the SensorProcessing system. For each step, we

provide an overview of the provided solution. The implementation details are discussed in Section

4.

In the first step, “Plan requirements and properties,” we define the requirements of the system,

their decomposition as subfunctions, and use case scenarios attached to it.

3.3.1 TwinOps Solution #1: Use Containers for Delivering Modeling Environments

According to the DevOps philosophy, the first concern is to ensure all team members use the

same baseline for the modeling environment. We propose to use docker containers to build a re-

producible modeling environment [Boettiger 2014]. The “TwinOps DevOps engineer” role de-

fined a container with the Eclipse baseline for modeling environment, comprised of Papyrus

SysML 1.6, OSATE AADL toolchain, and Modelica Development Tooling (MDT) tools. Their

use scenarios are detailed below.

Using this environment, the first set of models of the system can be captured: a collection of

OMG SysML 1.6 diagrams that capture the high-level requirements of the system, use cases, and

first-level system decomposition [OMG 2019].

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

In the second step, “Modeling architecture and parts,” these models are refined as AADL models

as shown in Figure 7. AADL models capture the embedded system architecture as a collection of

processors, buses, devices, and software attached to it. Our choice for AADL has been dictated by

the classes of analyses and code generation capabilities.

Figure 7: SensorProcessing / AADL Model

3.3.2 TwinOps Solution #2: Perform Virtual Integration from Models

We leveraged the Architecture-Led Incremental System Assurance (ALISA) Domain-Specific

Language (DSL) [Delange 2016] to refine requirements into verifiable items attached to target

metrics. An ALISA verification plan binds requirements to verification methods to be executed,

usually a verification plug-in, and reports on any discrepancy. This virtual integration ensures that

the model, as currently engineered, can be integrated on the target platform and meet stated per-

formance metrics.

The AADL model combined with an ALISA verification plan supports the evaluation of some

key metrics, such as the number of messages processed per unit of times and energy consumption.

An ALISA verification plan can be executed from within Eclipse or integrated as tests in a regular

test suite environment such as JUnit.

It is important to note that both AADL and ALISA are amenable to continuous integration using

the Civis tool by Adventium Labs [Smith 2018]. Using Civis, a designer may run an ALISA veri-

fication plan and report on performance indicators or other metrics.

3.3.3 TwinOps Lessons Learned

TwinOps builds on a model-based CI/CD pipeline that contains both models and a reproducible

modeling environment. Model-level analysis and evaluation of some metrics are performed, and

discrepancies can lead to model refactoring. These steps result in the modeling pipeline (see Fig-

ure 8). Initially, SysML and AADL modeling steps are performed, then ALISA verification may

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

either detect an error or continue to the next step. SysML covers use cases definition and require-

ments capture, whereas AADL covers architecture modeling activities.

Figure 8: Modeling Pipeline for SensorProcessing

This pipeline forms the first level of ModDevOps, closing the loop at model-level.

3.4 ModDevOps Applied to SensorProcessing: Implementation

This second step addresses dual objectives: support V&V activities and deliver the final system.

One limit in the previous MBE CI/CD pipeline is that not all properties may be assessed at model-

levels. Figure 9 illustrates some contributors to issues that can only be evaluated at runtime: tim-

ing budgets for end-to-end flows (highlighted flow in yellow) may not be respected by the imple-

mentation or communication bus, devices may experience some bias at runtime (in blue) that must

be detected and mitigated, or loss of the connection to the logging facility (in orange).

Figure 9: Runtime Monitoring Points

In this second step, the system is implemented and enriched it with monitoring probes. Existing

models are leveraged to perform extensive code generation from the architectural model descrip-

tion (Figure 10). First, software probes are implemented. Probes either validate input data or

measure the execution time of functions. Second, we implement the core logic of our application.

Then, we use the Ocarina AADL code generator to generate code [Lasnier 2009]. These three

source code elements are combined to produce the final binary.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 10: ModDevOps Code Generation Pipeline

3.4.1 TwinOps Solution #3: Multiple Targets Code Generation

From an AADL model, Ocarina generates minimal middleware that supports the execution of the

model (tasks, communication buffers, ports, etc.). The targeted language can be C (running on a

variety of real-time operating systems [RTOS] or the Portable Operating System Interface

[POSIX]), Ada, or formal languages for simulation and model-checking, such as LNT (a member

of the Language Of Temporal Ordering Specification [LOTOS] family of formal description tech-

niques) [Mkaouar 2020]. This multiplicity in targets allows for diverse means to evaluate the sys-

tem as follows:

• LNT supports executing functional C code embedded in a formal model of the system and

state-space exploration for safety or liveness properties.

• C allows for direct execution on the target using devices drivers or a mock-up of the device

implemented as a Functional Mockup Unit [Hugues 2018].

This process allows us to build three different targets:

1. The LNT target enables model-checking capabilities, weaving an abstract model of the envi-

ronment and the execution platform with actual functional code. This process allows for a

systematic evaluation of the functional side of the system but may be limited to some plat-

form-specific aspects: error in sensors, timing issues, etc.

2. The C/FMI target with device mockups leverages the FMI standard to build a simulated en-

vironment using a Modelica model to capture the physical environment. For our sensor

demo, we used a first-principles model of the sensor device and the generation of tempera-

ture and pressure from a meteorological simulation. Using FMI allows us to define specific

use scenarios by adjusting physical variables while evaluating the actual execution on the

target.

3. The C/Azure target, with execution on the target platform, allows for the execution of the

system and its monitoring. We generated specific monitoring probes to collect all data,

which is then sent to an Azure IoT digital twin of the system. The digital twin is a represen-

tation of the system in terms of its state properties, telemetry events, commands, compo-

nents, and relationships. This provides a data stream that can be queried and analyzed.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.2 TwinOps Solution #4: Integration as a DevOps CI/CD Pipeline

In the previous sections, we presented a mapping of modeling, model transformation, and code

generation activities to a notional DevOps pipeline. We integrated these steps in a CI/CD pipeline

using the GitLab platform. This pipeline supports all steps that could be automated: model trans-

formation or code generation, compilation, testing activities, containerization, and deployment on

targets.

Figure 11: Deployment Pipeline

To facilitate deployment, a docker container is built that hosts the binary along with its dependen-

cies. This container is then stored in a container registry that provides versioning and future acces-

sibility. This process supports a reproducible runtime environment across multiple targets. The

final step in our pipeline is the deployment of the container on the target. We leveraged the Azure

IoT capability to send a request to all targets to deploy and run the latest released version from the

container registry.

The current configuration of the GitLab pipeline involves a manual process. Future work will con-

sider linking the GitLab configuration to a model that configures the CI/CD pipeline and the set of

deployment targets in a uniform way.

3.4.3 TwinOps Solution #5: System Analytics

All targets are ultimately combined to improve the system through data analytics: The LNT or

C/FMI targets use data collected from the C/Azure targets to replay specific execution traces.

Since all targets share the same code base, they provide representations of the same system at var-

ious levels of fidelity.

Finally, the same data can lead to model improvements. For instance, timing traces can be com-

pared to theoretical time budgets used for latency or scheduling analyses, and sensor biases can

lead to a different mitigation policy, for instance, to force specific recalibration. Hence, such a

comparison between execution traces and the initial model can inform updates of the system to

improve its accuracy.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 12: Feedback from (Ops) to (Mod/Dev)

Model transformation and code generation, combined with the automated integration of monitor-

ing probes, support the feedback loop prescribed by DevOps philosophy: the capability to monitor

the system at “Ops-time” to inform updates during “Dev-time” as shown in Figure 12.

3.5 Conclusion

In this chapter, we provided an overview of TwinOps, a declination of ModDevOps tailored for

the engineering of CPS. We provided a high-level description, insisting on the key steps of the

process and how they are articulated. In the next chapter, we will provide a more detailed review

of the SensorProcessing example.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 TwinOps: The SensorProcessing IoT Demo

In this chapter, we review the SensorProcessing IoT demo in more detail.

Note: Our objective is to demonstrate how to combine models using ModDevOps/TwinOps.

Therefore, each model provides a basic solution to engineering problems. We took the decision to

use the project effort on defining ModDevOps rather than doing unitary modeling activities.

4.1 Step 1: Defining the Modeling Process

In the previous chapter, we introduced the SensorProcessing IoT demo as follows:

Let us assume we want to build a monitoring system for a building. The system will monitor and

collect environmental conditions to ensure the proper operation of an air conditioning system. The

system participates in a digital twin of the building. We elicit the following requirements:

• R1: The system shall monitor the humidity and temperature in multiple points of a building

every 10 minutes during office hours or every 30 minutes thereafter.

• R2: The system shall gather all data in a central repository.

• R3: The system shall detect and report any error in the reported data, such as out-of-range

values or a sudden surge in values.

• R4: The system shall monitor its health status and report issues.

From these considerations, an industrial survey shows that a platform built on the Azure IoT

Cloud platform for data management and a Raspberry Pi platform with a BME280 sensor device

could deliver the expected functionalities [Microsoft 2021]. The Azure IoT framework associated

with a Raspberry Pi board supports building a digital twin of the building to control its tempera-

ture.

The system under consideration is a cyber-physical system doubled with an IoT system. This dual

nature is calling for a specific implementation path that demonstrates that both the supporting ar-

chitecture and the software artifacts meet all requirements.

We plan to use the following technologies:

• OMG SysML: to capture the high-level model of the system: its requirements, its break-

down structure, and use case scenarios

• SAE AADL: to capture the architecture of the embedded platform supporting the execution

of the system

• C language: to implement the embedded system on top of the Linux operating system

• Azure IoT middleware and cloud platform: to automate the deployment of the system and

the collection of data

• Modelica: to build a mock-up of the environment and test the behavior of the system

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

In the following sections, we first introduce each modeling stage, then show how we implemented

a ModDevOps pipeline to support automated generation and deployment of the system on target

and as a simulation.

4.2 Step 2: System Model / SysML

Let us first recall the objectives of the SysML modeling activity:

1. Support the elicitation of the system requirements, an initial breakdown structure, and com-

ponents.

2. Perform the initial allocation of functions to hardware/software elements.

From these requirements, one can derive requirements on the embedded platform itself and a first

architecture that shows how the parts contribute to the system realization.

As we mentioned, a survey shows that a platform built on the Azure IoT Cloud platform for data

management, and a Raspberry Pi platform with a BME280 sensor device, could deliver the ex-

pected functionalities. This is captured in the following block diagram.

Figure 13: SensorProcessing SysML Architecture Breakdown

Additional SysML modeling steps have been performed to define system requirements and how

they are allocated to this architecture. These are discussed at the end of this chapter.

4.3 Step 3: Embedded Software and Hardware Mode / AADL

Through AADL, we aim to expand the SysML modeling activity and do the following:

1. Model the system requirements and the system architecture and its subcomponents, their in-

terfaces, configuration parameters, etc.

2. Evaluate the system performance: latency analysis, schedulability analysis.

3. Synthesize the system.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.1 Setting Up the Modeling Environment

Setting up a modeling environment, which involves the installation of software and plug-ins (and

their proper configuration), can be perceived as a tedious process.

Following DevOps principles, we first built a docker container that hosts all required modeling

software. In this occurrence, a complete installation of the OSATE AADL toolchain and compan-

ion plugins for schedulability analysis.

4.3.2 Modeling the System Requirements Using ALISA

Verification activities connect requirements to model elements. This process uses the ALISA tool-

set, which is part of the OSATE AADL toolset.4 ALISA combines requirements (captured to

ReqSpec) architecture models, verification techniques, and assurance case traceability [Delange

2016]. For each requirement, a claim must be implemented that verifies it. Verification methods

can be existing AADL verification plug-ins, user-defined methods using Resolute, or manual re-

view methods of generated reports, such as a fault tree [Gacek 2014].

Note: In the following, we performed a “vertical” modeling of the system: We only captured min-

imal concepts at each level to demonstrate how they complement each other. A larger case study

would have more elements at each stage.

First, we define the system goals. This is a high-level description of the set of goals the system

must fulfill. We restricted it to performance objectives.

stakeholder goals Goals_SensorProcessing_Stakeholder

 for SensorProcessing::SensorProcessing.impl [

 goal sensorprocessing_performance [

 category Metrics.Performance

 description "The system meets expected performance"

 stakeholder CPS_Roles.Engineer

]

]

From this objective on system performance, we selected timing performance. This objective trans-

lates into a requirement on end-to-end processing time (or latency) from sampling to sending the

data to the central repository. This process is captured in the model below: one high-level require-

ment that mandates the maximum time to process a sample.

system requirements Reqs_SensorProcessing for

SensorProcessing::SensorProcessing.impl [

 description "High-level requirements for the SensorProcessing demo,

software part"

 see goals Goals_SensorProcessing_Stakeholder requirement LatencyCheck :

 "Sensor data processing response time is less than 1 second"

 for SensorDataProcessing [

 category Metrics.Performance

 see goal

Goals_SensorProcessing_Stakeholder.sensorprocessing_performance

]

]

4 This section corresponds to the content of the alisa folder.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Then, ALISA allows one to define assurance cases and plans that indicate for each requirement

how they are verified. In this case, we use the OSATE Latency Analysis feature presented in

“Flow Latency Analysis with the Architecture Analysis and Design Language (AADL)” [Feiler

2008]. This analysis is controlled by a verification plan that indicates how the requirement La-

tencyCheck is verified. On this occurrence, it is by executing the corresponding analysis plugin.

verification plan VerificationPlan_SensorProcessing for

Reqs_SensorProcessing [

 claim LatencyCheck [

 activities

 responsetime : Plugins.EndToEndFlowLatencyAnalysis ()

]

]

4.3.3 Modeling the System Architecture Using AADL

In parallel to the ALISA requirement capture, the architecture of the system is captured using

AADL.5 Figure 14 illustrates the model we built.

Figure 14: SensorProcessing / AADL Model

This model is built around typical AADL concepts:

• A system component acts as the boundary of the system we design. Its subcomponents host

all parts.

• A processor and device connected through a bus capture the hardware platform con-

sisting of a Raspberry Pi computer and a sensor.

• A process hosts the software part of the system.

Note: We dedicated most of the modeling effort to the software itself to capture the functions to

be executed, the interfaces, and the connection to software implementation.

5 This section corresponds to the content of the aadl folder.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

We connect AADL model elements such as data types or subprograms to existing source code us-

ing the Data modeling annex to describe data types [SAE 2019], and the Code generation annex

[SAE 2015] to link C code to AADL models.

 --- BME280_Initialize: initialize the device

 subprogram BME280_Initialize

 properties

 Source_Language => (C);

 Source_Name => "bme280_initialize_entrypoint";

 Source_Text => ("../c/aadl_bme280.c", "../c/bme280.c");

 end BME280_Initialize;

 --- Calibration data (internal opaque type)

 data BME280_Calib_Data

 -- This type is wrapped in types.h to its original definition through a C

typedef.

 properties

 Source_Language => (C);

 Type_Source_Name => "bme280_calib_data";

 Source_Text => ("../c/bme280");

 end BME280_Calib_Data;

4.4 Step 4: IoT Concerns and Implementation of C Functions

This step is concerned with the implementation of C functions that will support the execution of

the system. Recall that code generated from AADL covers threads, communication, etc.

The user should implement the logic of the application itself: device drivers, data processing, and

storage.

Each part is implemented as C functions, with the following considerations:

• Original device drivers for the sensors are used. These drivers are wrapped into utility func-

tions that provide the relevant data structures.

• Data processing is a basic step that turns data into time-stamped artifacts.

• Data storage is implemented using the Azure IoT middleware. AzureIoT provides cloud con-

nectivity and data storage capabilities. We will elaborate on this part later in this chapter.

4.5 Step 5: ModDevOps: A Model-Level CI/CD Pipeline

4.5.1 Model-Only CI/CD Pipeline

From the combination of AADL models and ALISA verification plans, one may contemplate

building a CI/CD pipeline to check the model. This has been investigated by Adventium Labs

[Smith 2018]. Using the Civis tool, a designer may run an ALISA verification plan and report on

other metrics, such as performance indicators. We consider this activity as mature and did not in-

vestigate using this tool during the execution of the TwinOps project.

Instead, we run the ALISA verification plan (as shown in Figure 15) and confirm the system is

feasible.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 15: SensorProcessing: Execution of ALISA Verification Plan

4.5.2 Model-to-Code-to-Target CI/CD

We investigated how to go further and complement model-level CI/CD with a model-to-code

pipeline that expands the envelope of CI/CD automation. Leveraging code generation from

AADL using the Ocarina toolset [Lasnier 2009], we defined a pipeline that combines AADL

models and C code artifacts and produces a binary for a specific target.

This pipeline is made of three stages:

• A code generation stage transforms AADL models into C compilation units. This stage uses

the Ocarina AADL code generator.

• A compilation stage combines all C compilation units and compile a binary for a specific tar-

get. This stage uses a regular C compiler and the required libraries and headers (e.g., for con-

currency and communication). The outcome of this stage is a docker container stored in one

shared docker registry.

• A deployment stage deploys the binary to its execution platform. We use the Azure IoT plat-

form to trigger the deployment on the target platform. On each deployment node, an Azure

IoT node waits for a trigger message and pulls the latest container from the registry.

This pipeline is executed as an orchestrated CI/CD pipeline by a GitLab instance hosted in AWS.

Note: All configuration scripts, docker containers, and build scripts are bundled with this demon-

stration.

4.5.3 Conclusion

With this demonstration, we illustrated one possible ModDevOps pipeline. This pipeline relies on

a set of modeling tools for the early stages. This part cannot be automated and relies on particular

project guidance. Then, when all models were complete, we illustrated how a full CI/CD pipeline

could be created to trigger model transformation, produce code, compile it, and deploy it.

Hence, ModDevOps is a particular instance of a DevOps process with additional verifications per-

formed on models and code generated from. These additional steps increase the confidence in the

software that is ultimately deployed. Such early verification capabilities have been evaluated in

the context of another study by the SEI [Hansson 2018]. Automation, in particular code genera-

tion from AADL, reduces the gap between models and software by automating coding steps [Las-

nier 2009].

4.6 Step 4 Revisited: Modeling the Environment / Modelica

To capture the environment of the system, we use Modelica [Fritzson 2011]. Modelica is a lan-

guage that allows modeling of complex physics-based systems as mathematical models. Modelica

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

is defined as an object-oriented, equation-based programming language to model all types of

physics phenomena (e.g., mechanics, thermodynamics, and electromagnetism).

4.6.1 About Modelica

The Modelica language is a nonproprietary, object-oriented, equation-based language to model

complex physical systems that combine mechanics, electrics, hydraulics, and other types of physi-

cal systems. It is developed by the Modelica Association.

A Modelica modeling environment supports model editing, compiling, and model translation to-

wards C to later perform a simulation of the model. In the following case study, we use the open-

source OpenModelica environment, compiler, and translator.

Modelica is a modeling language as much as a programming language. It supports an acausal way

of describing a system (i.e., as a set of equations). A Modelica system translator will compile the

model into a causal imperative program to be executed.

Modelica is based on four idioms: connectors, variables, equations (including derivative opera-

tors), and connections. In the following section, we list only relevant elements for this study.

More details can be found in the book Principles of Object-Oriented Modeling and Simulation

with Modelica 3.3: A Cyber-Physical Approach, 2nd ed. [Fritzson 2015].

A model is the entry point of a Modelica component. Parameters denote constant values used by

the system (e.g., its mass). The equation part of a system comprises the equations that control the

dynamics of the system. The following example illustrates a basic model of a resistor.

model Resistor

 Pin r1, r2;

 parameter Real Resistance = 1000;

equation

 0 = r1.i + r2.i;

 0 = r1.v - r2.v - Resistance * r1.i;

end Resistor;

4.6.2 Setting Up the Modelica IDE and Tools

We propose a docker container that embeds one installation of the OpenModelica toolset, similar

to the one provided for OSATE. OpenModelica allows for model edition, simulation, and code

generation targeting the FMI.

4.6.3 Modeling the SensorProcessing environment

We used Modelica to provide a basic model of the environment illustrated in Figure 16. This

model has two internal sources that set the temperature and pressure of a system.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 16: SensorProcessing: Model of the Environment

The model has no input. Internal sources control the temperature and pressure of an ideal room.

Two output parameters report measured values for the pressure and temperature parameters.

These values can also be displayed during the simulation.

Note: For simplicity, we captured a very basic system with no variations in the physical parame-

ters. Our objective in this exercise is to demonstrate model interoperability. A more representative

physical system is introduced in the next section.

4.7 Step 5 Revisited: TwinOps: A ModDevOps Specialization for CPS
Simulation

In this section, we revisit this demo with the objective of building a simulator rather than the ac-

tual system. The simulator would execute a model of the environment that interacts with the soft-

ware elements. To do so, we leverage the FMI standard to connect models and perform co-simulation.

4.7.1 About the FMI Standard

Modelica provides a large set of simulation capabilities. In this project, we were interested in the

capability to export a Modelica model to FMI.

FMI is the main result of the MODELISAR ITEA 2 European project [Blochwitz 2011]. FMI was

first designed to improve vehicles embedded systems modeling and simulation. FMI usage and

research investigations now spread over a variety of domains and industries.

FMI defines an interface to be implemented by an executable called a Functional Mockup Unit

(FMU). The FMI functions are used (called) by a simulation environment to create one or more

instances of the FMU and to simulate them, typically in combination with other models. An FMU

may either have its own solver (FMI for Co-Simulation) or requires the simulation environment to

perform numerical integration (FMI for Model Exchange).

Each model has an FMU. An FMU is a compressed archive that contains a binary file (actually a

dynamic library) that embeds a simulator or the model and an XML file that describes the model

contents/properties (its associated model variables). Both FMI for Model-Exchange and Co-Simu-

lation support the design and execution of

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• discrete-time systems (e.g., describing a sampled-data controller)

• continuous-time systems (e.g., describing continuous behaviors with DAE)

• a combination of the systems above (e.g., describing hybrid system)

In the following demo, we considered only the Co-Simulation case. It enables interoperability

across heterogeneous models. Co-simulation is a technique used for the simulation of coupled

models. A coupled model is a model that describes a system as a network of (logically or physi-

cally) coupled (or connected) components. In the coupled model formalism, the connections be-

tween subsystems are represented with connectors, or mathematical equalities. Formally, a cou-

pled model may be represented as a graph structure.

For non-causal and continuous models, the graph is undirected. For causal models, the graph is

directed. A coupled model is valid if the type and causalities of connected ports are compatible

[Gomes 2017].

4.7.2 Coupling FMI and AADL

FMI 2.0 for Co-Simulation supports the connection of causal models only. The data exchange be-

tween subsystems is performed at discrete communication points. In the interval between two

communication points, the subsystems are solved independently by their respective solvers. Pri-

mary algorithms control exchanges of data between the subsystems and the synchronization be-

tween secondary algorithms. We have previously demonstrated how to leverage AADL to import

FMUs as AADL components and use AADL semantics to define this primary algorithm [Hugues

2018]. We rely on the following assumptions.

Actual sensors and actuators are connected to a CPS to provide data and means of actuation. The

CPS interacts with those sensors and actuators at a precise time. A Modelica model produces sen-

sor data as output or reacts to actuators’ inputs, whereas an AADL model captures the processing

chain from sensor data inputs to actuators. The AADL model also specifies when data should

flow. The times of these interactions provide the basis to define communication points so that the

AADL and Modelica simulation engines can run in parallel.

Hence, we use AADL in two different but complementary ways. First, as a model of a CPS; and

second, as a master algorithm to couple an architectural description and other models transformed

into an FMU. This approach allows bringing new modeling formalisms to AADL: Modelica, Sim-

ulink, or SCADE Suite.

For each FMU, we generate an AADL model that captures the interface of the component, and we

support C code to interact with this FMU. This component can then be integrated directly. This

model is then integrated into a variant of the model we used for code generation; first as a variant

of the device in BME280_FMU; and then fully integrated into the SensorProcessingExam-

ple_FMU.x86 system. The latter combines the functional processing with the simulation of the

environment provided by Modelica as a binary that can be executed on x86 platforms.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Conclusion: TwinOps: A ModDevOps Pipeline for CPS

In the previous sections, we presented our modeling process comprising several modeling and

model transformation steps. These steps are combined through a ModDevOps pipeline (as shown

in Figure 17). Per construction, all interactions between stages are interactions through the project

SCM repository that stores artifacts.

Figure 17: ModDevOps Pipeline

We have organized a traditional CI/CD pipeline that will consider any update at the model or code

level to produce a binary that will be deployed on the final platform. This combination of model-

based systems and software engineering and DevOps, which we call ModDevOps, provides a

seamless composition of analyses at model level, model simulation, and deployment on the final

targets. It leverages the complete ecosystem of model-based tools to bring increased automation.

We have demonstrated one instance of ModDevOps on the SensorProcessing demo, an IoT sys-

tem. It leverages SysML, AADL, Modelica, and the C language. First, we illustrated how one can

combine SysML and AADL for the development of the embedded component of the system.

Next, we showed how code generation and the Azure IoT platform enables a model-to-code pipe-

line. Finally, we demonstrated the capability to a model-to-simulation pipeline and achieved co-

simulation of the AADL and Modelica models.

The capability to generate a simulation of a system from AADL and Modelica, and the actual sys-

tem from AADL and C, enables a digital twin capability. The AADL models used in both cases

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

only differ in their interfaces to the sensors and actuators: C for the actual system and Modelica

for the simulated one. All other components are shared. This means that the simulation of the sys-

tem could be faithfully compared to the actual system running, and that we produced an actual

digital twin of a CPS.

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References

URLs are valid as of the publication date of this document.

[Air Force 2022]

United States Air Force. DevOps. United States Air Force. January 11, 2022 [accessed].

https://software.af.mil/training/devops/

[Blochwitz 2011]

Blochwitz, T. et al. The functional mockup interface for tool independent exchange of simulation

models. Pages 105–114. In Proceedings of the 8th International Modelica Conference. Dresden,

Germany. March 2011. https://ep.liu.se/ecp/063/013/ecp11063013.pdf

[Blochwitz 2012]

Blochwitz, T. et al. Functional Mockup Interface 2.0: The Standard for Tool independent Ex-

change of Simulation Models. Pages 173–184. In 9th International Modelica Conference. Mu-

nich. Germany. November 2012. https://ep.liu.se/ecp/076/017/ecp12076017.pdf

[Boettiger 2014]

Boettiger, C. An introduction to docker for reproducible research, with examples from the r envi-

ronment. ACM SIGOPS Operating Systems Review. Volume. 49. Number 1. January 25. Pages

71-79. https://dl.acm.org/doi/pdf/10.1145/2723872.2723882

[Boydston 2019]

Boydston, A.; Feiler, P.; Vestal, S.; & Lewis, B. Architecture Centric Virtual Integration Process

(ACVIP): A Key Component of the DoD Digital Engineering Strategy. In Proceedings of the

22nd Annual Systems and Mission Engineering Conference. Tampa, Florida. October 2019.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=634965

[Combemale 2019]

Combemale, B. & Wimmer, W. Towards a Model-Based DevOps for Cyber-Physical Systems.

Pages 84-89. In Software Engineering Aspects of Continuous Development and New Paradigms of

Software Production and Deployment - Second International Workshop, DEVOPS 2019 (revised

selected papers, 2019.Volume 12055). Château de Villebrumier, France. May 2019. DOI:

10.1007/978-3-030-39306-9_6

[Delange 2014]

Delange, J.; Feiler, P.; Gulch, D.; & Hudak, J. AADL Fault Modeling and Analysis Within an

ARP4761 Safety Assessment. CMU/SEI-2014-TR-020. Software Engineering Institute. Carnegie

Mellon University. 2014. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=311884

[Delange 2016]

Delange, J.; Feiler, P.; & Neil, E. Incremental Life Cycle Assurance of Safety-Critical Systems. In

8th European Congress on Embedded Real Time Software and Systems (ERTS 2016). Toulouse,

France. January 2016. https://hal.archives-ouvertes.fr/hal-01289468

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[DoD 2018]

Office of the Deputy Assistant Secretary of Defense for Systems Engineering. Digital Engineering

Strategy. Department Of Defense. 2018. https://ac.cto.mil/digital_engineering/

[Fairley 2019]

Fairley, R. E. Systems Engineering of Software-Enabled Systems. John Wiley & Sons, Inc. 2019.

ISBN-13 978-1119535010.

[Feiler 2008]

Feiler, P. H. & Hansson, J. Flow Latency Analysis with the Architecture Analysis and Design Lan-

guage (AADL). CMU/SEI-2007-TN-010. Software Engineering Institute. Carnegie Mellon Uni-

versity. January 2008. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8229

[Feiler 2009]

Feiler, P. H.; Hansson, J.; de Niz, D.; & Wrage, L. System Architecture Virtual Integration: An

Industrial Case Study. CMU/SEI-2009-TR-017. Software Engineering Institute. Carnegie Mellon

University. November 2009. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9145

[Feiler 2016]

Feiler, P.; Delange, J.; Gluch, D.; & McGregor, J. D. Architecture-Led Safety Process. CMU/SEI-

2016-TR-012. Software Engineering Institute. Carnegie Mellon University. December 2016.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484826

[Fritzson 2011]

Fritzson, P. Introduction to Modeling and Simulation of Technical and Physical Systems with

Modelica. Wiley-IEEE Press. 2011. ISBN 978-1-118-01068-6.

[Fritzson 2015]

Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-

Physical Approach, 2nd edition. Wiley-IEEE Press. 2015. ISBN: 978-1-118-85912-4.

[Gacek 2014]

Gacek, A.; Backes, J.; Cofer, D.; Slind, K.; & Whalen, M. Resolute: An Assurance Case Lan-

guage for Architecture Models. Pages 19-28. In Proceedings of the 2014 ACM Sigada Annual

Conference On High Integrity Language Technology. Portland, Oregon. October 2014.

https://dl.acm.org/doi/10.1145/2663171.2663177

[Gomes 2017]

Gomes, C.; Thule, C.; Broman, D.; Larsen, P.G.; & Vangheluwe, H. Co-simulation: State of the

art. CoRR. February 17, 2017. http://arxiv.org/abs/1702.00686

[Goseva-Popstojanova 2016]

Goseva-Popstojanova, K.; Kahsai, T.; Knudson, M.; Kyanko, T.; Nkwocha, N.; & Schumann, J.

Survey on Model-Based Software Engineering and Auto-Generated Code. NASA/TM–2016–

219443. National Aeronautics and Space Administration. October 2016.

https://ti.arc.nasa.gov/publications/36691/download/

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Hansson 2018]

Hansson, J.; Helton, S.; & Feiler, P. ROI Analysis of the System Architecture Virtual Integration

Initiative. Software Engineering Institute. Carnegie Mellon University. CMU/SEI-2018-TR-002.

April 2018. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=517157

[Hugues 2018]

Hugues, J.; Gauthier, J.; & Faudou, R. Integrating AADL and FMI to Extend Virtual Integration

Capability. In Proceedings of 9th European Congress on Embedded Real Time Software and Sys-

tems (ERTSS) 2018. Toulouse, France. January 2018. https://dblp.org/rec/bib/journals/corr/abs-

1802-05620

[Lasnier 2009]

Lasnier, G.; Zalila, B.; Pautet, L.; & Hugues, J. Ocarina: An Environment for AADL Models

Analysis and Automatic Code Generation for High Integrity Applications. Pages 237-250. In Pro-

ceedings of Reliable Software Technologies—Ada-Europe 2009, 14th Ada-Europe International

Conference. Brest, France. June 2009. DOI: 10.1007/978-3-642-01924-1_17

[Leite 2019]

Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; & Meirelles, P. A Survey of DevOps Concepts and

Challenges. ACM Computing Surveys. Volume 52. Number 6. November 2019. DOI:

10.1145/3359981

[Leserf 2019]

Leserf, P.; de Saqui-Sannes, P.; & Hugues, J. Trade-off Analysis for SysML Models Using Deci-

sion Points and CSPS. Software and Systems Modeling. Volume 18. Number 6. 2019. Pages

3265–3281. DOI: 10.1007/s10270-019-00717-0

[Microsoft 2021]

Microsoft. Connect Raspberry Pi to Azure IoT Hub (C). Microsoft. June 20, 2021. https://docs.mi-

crosoft.com/en-us/azure/iot-hub/iot-hub-raspberry-pi-kit-c-get-started

[Minksy 1965]

Minksy, Marvin L. Matter, Mind and Models. Pages 45-49. In Proceedings of the International

Federation of Information Processing Congress 1965, Volume 1. New York, New York. May

1965. https://web.media.mit.edu/~minsky/papers/MatterMindModels.html

[Mkaouar 2020]

Mkaouar, H.; Zalila, B.; Hugues, J.; & Jmaiel, M. A Formal Approach to AADL Model-Based

Software Engineering. International Journal on Software Tools for Technology Transfer. Volume

22. Number 2. April 2020. Pages 219–247. DOI: 10.1007/s10009-019-00513-7.

[OMG 2019]

OMG. OMG Systems Modeling Language (OMG SysML) Version 1.6. OMG. December 2019.

https://www.omg.org/spec/SysML/1.6/About-SysML/

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Rauzy 2019]

Rauzy, A.B. & Haskins, C. Foundations for Model-Based Systems Engineering and Model-Based

Safety Assessment. Systems Engineering. Volume 22. Number 2. March 2019. Pages 146–155.

DOI: 10.1002/sys.21469

[Rodrigues da Silva 2015]

Rodrigues da Silva, A. Model-Driven Engineering: A Survey Supported by the Unified Concep-

tual Model. Computer Languages, Systems & Structures. Volume 43. October 2015. Pages 139–

155. DOI: https://doi.org/10.1016/j.cl.2015.06.001

[SAE 2015]

SAE International. Aerospace Standard AS5506/1A. SAE Architecture Analysis and Design Lan-

guage (AADL) Annex Volume 1: Annex A: ARINC653 Annex, Annex C: Code Generation An-

nex, Annex E: Error Model Annex SAE International, Standard AS5506/1A. SAE International.

September 3, 2015. https://saemobilus.sae.org/content/as5506/1a

[SAE 2017]

SAE International. Aerospace Standard AS5506C. Architecture Analysis & Design Language

v2.2. SAE International. January 2017. https://saemobilus.sae.org/content/as5506c

[SAE 2019]

SAE International. Aerospace Standard AS5506/2. SAE Architecture Analysis and Design Lan-

guage (AADL) Annex Volume 2: Annex B: Data Modeling Annex, Annex D: Behavior Model

Annex, Annex F: ARINC653. SAE International. February 18, 2019. DOI: 10.4271/AS5506/2

[SEI 2017]

Software Engineering Institute. AADL and OSATE: A Tool Kit to Support Model-Based Engi-

neering [SEI fact sheet]. Software Engineering Institute. March 2017. https://re-

sources.sei.cmu.edu/library/asset-view.cfm?assetid=495278

[Smith 2018]

Smith, T.; Whillock, R.; Edman, R.; Lewis, B.; & Vestal, S. Lessons Learned in Inter-Organiza-

tion Virtual Integration. Presented at the Aerospace Systems and Technology Conference. Octo-

ber 2018. DOI: 10.4271/2018-01-1944

[Tanner 2022]

Tanner, Michael. DevStar. United States Air Force. January 7, 2022 [accessed].

https://software.af.mil/dsop/dsop-devstar/

[West 2015]

West, T.D. & Pyster, A. Untangling the Digital Thread: The Challenge and Promise of Model-

Based Engineering in Defense Acquisition. INSIGHT. Volume 18. Number 2. August 2015. Pages

45–55. DOI: 10.1002/inst.12022

[Wikipedia 2020]

Wikipedia. DevOps. Wikipedia. January 11, 2022 [accessed]. https://en.wikipe-

dia.org/wiki/DevOps

 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2022

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

TwinOps: Digital Twins Meets DevOps

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Jérôme Hugues

Joe Yankel

John Hudak

Anton Hristozov

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report summarizes the contributions of the TwinOps project, a one-year project funded by the Software Engineering Institute and

executed during FY20. The contributions of this research are twofold. First, it introduced ModDevOps as an innovative approach to

bridging model-based engineering and software engineering using DevOps concepts and code generation from models. ModDevOps

smooths the transition from model-level verification and validation (V&V) to software production. Second, the research developed Twin-

Ops, a specific ModDevOps pipeline that equips system engineers with new analysis capabilities through the careful combinations of

model artifacts as they are built.

14. SUBJECT TERMS

model-based engineering, digital twins, DevOps, DevSecOps, system modeling, MBSE, MBE

15. NUMBER OF PAGES

45

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

