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Abstract

Autonomous systems are envisioned to increasingly co-exist with humans in
our daily lives, from household service to large-scale warehouse logistics, agri-
culture environment sampling, and smart city. Among them, networked cooper-
ative systems such as autonomous multi-robot systems have been widely studied
given their capability of accomplishing complex tasks through cooperative behav-
iors. Reliable interactions among robots as networked safety-critical systems often
require provably correct guarantees about safety (e.g. collision avoidance) and
resilience (e.g. capability of maintaining communication and operating in an un-
known environment). As we strive to design and control such a large-scale sys-
tem, robots are often assumed to have perfect information (e.g. ground-truth state,
system dynamics, and environment model information), unconstrained inter-robot
communication, and fault-free operation. However, the precomputed guarantees
based on these assumptions could be easily broken when deploying robots in the
real world that is uncertain, rapidly changing, and inherently stochastic.

In this thesis, we seek to develop and validate mathematically grounded algo-
rithms to assure safe and resilient interactions among robots that adapt to uncertain
and possibly hostile dynamic environments. To achieve the design objective, we
discuss three research topics, including (1) safe control and learning under uncer-
tainty, (2) resilient multi-robot interaction through networking, and (3) data-driven
multi-robot coordination adapting to the unknown environment.

For (1), we first propose a reactive safe control framework for multi-robot sys-
tems under known robotic system dynamics with localization and motion noise.
The framework generates multi-robot motions through centralized or decentralized
computation to formally satisfy the collision-avoidance with lower bounded prob-
ability guarantee, while respecting the original robot behaviors for task efficiency.
When the robotic system dynamics is unknown and partially modelled, we then
develop a sample efficient safe learning framework for control that allows the robot
to locally learn the unknown dynamics online while achieving sample efficiency in
optimizing task performance with bounded regret and safety guarantee.

For (2), we design provably correct connectivity control frameworks utilizing
the graph theoretic and control theoretic approaches for a team of robots to sat-
isfy various global and local interaction network requirements while progressing
towards mission goals. This allows the robot team to maintain, recover, or enhance
user-defined network connectivity for smooth information exchange under possi-
ble adversaries and minimally deviate from their original behaviors. The proposed
frameworks prove to be minimally restrictive towards maintaining the robots’ orig-
inal task-prescribed controllers subject to the connectivity requirements, thus opti-
mally balancing between the required network redundancy and task performance.
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With the assurance of safety and resilience in terms of retaining integrity of
multi-robot systems through reliable networking, for (3) we address the problem
of data-driven multi-robot coordination in the application of sensor coverage to
achieve resilient cooperative behaviors in unknown environments. Specifically, a
learning-enabled multi-robot control framework is proposed for robots to explore
in the unknown environment and simultaneously optimize the task performance
regarding sensor coverage using environment model learned online. This allows
the robots to share locally collected data or model-related parameters through con-
nected multi-robot network to learn a global environment model and develop task-
related coverage controllers with this model to optimize the coverage performance.

Our approaches of safe control and resilient networking for multi-robot sys-
tems share a unified optimization-based control framework in real time, thus en-
abling the synthesis of certified control modules for different task-prescribed multi-
robot behaviors with safety and connectivity guarantees. With our approach of
sample efficient safe learning for control, we further extend the model-based safety
analysis to partially modelled dynamical systems with learning-based behaviors,
which enables strong synergies between learning and control with safety guaran-
tee. The integration of data-driven methods into cooperative multi-robot control
facilitates the design of adaptive multi-robot coordination behaviors for improved
performance in unknown environments. The effectiveness of the proposed methods
is demonstrated and evaluated through a set of simulations and realistic simulated
robotic platforms.
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Chapter 1

Introduction

1.1 Multi-Robot Systems: Motivation and Challenges

Multi-robot systems have been widely studied for extending its capability of ac-
complishing complex tasks. Such systems are often comprised of a number of
agents that collaborate autonomously in diverse applications through cooperative
behaviors, e.g. environmental sampling [1, 2, 3], area coverage [4, 5, 6], search
and rescue [7]. In those tasks, the robots are often assumed to be able to commu-
nicate and coordinate their individual actions to invoke collective behaviors as the
overall missions evolve. To ensure successful mission execution, the robot team is
expected to operate reliably from both individual and system perspectives: First,
each robot as a safety-critical system should remain safe during movements. Sec-
ond, the robot team functions as a system and requires integrity through robust
networking to connect distributed robot components for information propagation
and collective task executions. Third, in order to reliably operate in unknown en-
vironment, the robot team need to adapt their coordination behaviors as more data
are observed during interaction with the environment.

(a) (b) (c)

Figure 1.1: Examples of multi-robot systems.
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Chapter 1. Introduction

To achieve these capabilities, it is critical to develop algorithms along with
mission-oriented design for the multi-robot system to satisfy these fundamental
requirements while respecting the original tasks. For robot safety, existence of
possible uncertainty and adversaries in the environment should be addressed when
designing the safe robot controllers. For example, consider the problem of build-
ing an automatic collision avoidance system (ACAS) for aerial robots that would
scale up as the autonomous aerial traffic increases. Such a system will override the
robots original controllers to avoid potential collisions. While the pre-computed
safety guarantees by design often relies on accurate perception and model infor-
mation to derive reasonable actions that are safe in the predictable future, it could
be easily broken when deploying robots to the physical world, e.g. self-driving
car crash due to inaccurately localized obstacles. Thus it demands for more rig-
orous safe behavior designs that are robust to various real-world factors including
uncertainty, non-determinism and approximations made in the formulation of the
system. On the other hand, safety under unmodelled uncertainty remains chal-
lenging given the unstructured unknown components that are difficult to reason.
Learning-enabled decision making process [8, 9, 10, 11, 12] has been widely used
to characterize the uncertainty in the partially modelled system dynamics and un-
known environments with safety analysis. This introduces new challenges about
how to properly trade off between robust safety assurance (conservativeness) and
optimal task performance (aggressiveness) during learning that could often inher-
ently contradict each other.

Resilience in terms of 1) preserving the integrity of the multi-robot system it-
self through communication maintenance and 2) adapting robot behaviors to the
unknown environment is another challenge when deploying robots to perform a
set of tasks over long periods of time in unknown environment. As coordinated
multi-robot behaviors are often achieved through proximity-based multi-robot
information-exchange networks with limited communication range, the robots
need to keep connected by staying close to each other while spreading out to per-
form their original tasks. Moreover, robots in adversarial environment will suffer
from the risk of losing robot members due to attacks or increasing robot failures
over time that pose additional difficulty for them to stay connected as a cohesive
group. How to effectively retain the ability for the robots to recover network con-
nectivity from faults while efficiently maintaining their original task-prescribed
behaviors remains challenging. Besides, in presence of unknown environment it
is necessary to integrate learning component to the standard model-based multi-
robot behavior design such that robots could dynamically adjust their plans based
on the data observed during interaction with the environment for improved task
performance.

Hence, these fundamental challenges motivate the objective of research work
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Section 1.2. Thesis Overview

in this thesis, which is to develop and validate formally provable multi-robot
frameworks under uncertainty and adversaries to assure safe and resilient
networked interactions among robots to accomplish mission goals. In particu-
lar, we strive to address the following challenging research questions.

(1) How to ensure provable safety in terms of collision avoidance for multi-robot
system with modelled dynamics under uncertainty, e.g. with localization and
motion noises?

(2) How to ensure provable safety, sample efficiency and task performance when
the dynamics of a robotic system is only partially modelled and needs to in-
teract with the possibly risky environment to learn to perform a task opti-
mally?

(3) How to optimally constrain robot motions during mission operation to ensure
connectivity for successful networking within a moving multi-robot systems
while respecting the original multi-robot behavior?

(4) In presence of possible robot failures, how to design a resilient framework
for the robots to recover and increase network connectivity by optimal re-
configuration in a minimally disruptive manner to their primary tasks?

(5) How to develop adaptive model-based multi-robot coordination behaviors
that allow robots to learn from interaction with an unknown environment
and simultaneously optimize its primary task performance?

1.2 Thesis Overview

In light of the mentioned research questions, we have developed a set of method-
ologies in this thesis work contributing towards a safe and resilient multi-robot
framework with literature review provided in Chapter 2.

As depicted in Fig. 1.2, the remainder of the thesis is organized as follows:
Chapter 3-4 provide discussions of the proposed safe control and learning for au-
tonomous robotic systems. Chapter 3 discusses centralized and decentralized safe
behavior design for multi-robot systems. Chapter 4 provides a safe learning frame-
work for a single robot nonlinear control task with partially modelled dynamics
and shows how such systems could operate safely and optimally despite the model
uncertainty. Chapter 5-6 propose connectivity control algorithms that enable robots
to stay connected as one integrated group for smooth coordination. Chapter 5 de-
velops an optimal method to preserve different levels of connectivity among robot
members in a group, and Chapter 6 extends that to a resilient setting where the robot

3



Chapter 1. Introduction

team stay connected in presence of adversaries to maintain or enhance the desired
multi-robot network connectivity. With the fulfilled assumptions of safety and con-
nectivity, Chapter 7 discusses the learning-enabled multi-robot sensor coverage as
an application of data-driven multi-robot coordination where cooperative multi-
robot behaviors adapt to an initially unknown environment as mission evolves.

Contents and notations in each chapter are intended to be self-contained. The
relationship among different chapters are shown in Fig. 1.2. Some of the discussed
work have been published in [3, 6, 13, 14, 15, 16, 17, 18]. Next, we will give an
overview of each chapter to briefly introduce the main ideas behind the work.

Figure 1.2: Thesis outline.

1.2.1 Multi-Robot Safe Control under Uncertainty

The focus of this part of the thesis work in Chapter 3 is on a safe control algorithm
for homogeneous multi-robot system under uncertainties, addressing the Research
Question 1. In particular, we are dealing with collision avoidance that accounts
for both measurement and motion uncertainty over the multi-robot systems. While
many prior approaches have attempted to address these different aspects of the
problem, a complete solution addressing all the above aspects has been elusive.
Many methods that attempt to address the measurement uncertainty often make
restrictive assumptions, such as Gaussian representation of the uncertainties [19,
20, 21, 22, 23]. Approaches that consider bounded localization or control distur-
bance using conservative bounding volumes [24, 25, 26, 27] often overestimate the
probability of collisions.
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Section 1.2. Thesis Overview

Our work proposes a novel approach that provides chance-constrained
collision-free guarantees for crowded multi-robot team operating in a realistic en-
vironment. Akin to real-world we consider scenarios with both the measurement
uncertainty as well as incomplete information about the dynamics. At the heart
of the method is the idea of probabilistic safety barrier certificates (PrSBC) that
enforces the chance constrained collision avoidance with deterministic constraints
over controllers. With PrSBC constraints, the safety controller can be achieved by
minimally modifying the existing controllers in real-time as done by other control
barrier function approaches [28, 29]. This hence formally satisfy the collision-
avoidance chance-constraints while staying as close to the original robot behav-
iors. Our goal here is to provide a real-time safety envelope around any existing
controller that accounts for uncertainties and non-determinism in a probabilistic
settings. The key assumption here is the finite support of the uncertainties arising
due to sensor measurements, incomplete dynamics and other exogenous variables.

1.2.2 Sample-efficient Safe Learning for Control

In Chapter 4, we consider the safe reinforcement learning (safe RL) problem for a
partially modelled dynamical system in nonlinear control tasks. Traditional model-
based safe design [28, 29, 30, 31] are not applicable here due to the imperfect
unmodelled information of the system dynamics. Safe RL approaches [32, 33, 34,
35] with constraints satisfaction have been proposed to encode safety consideration
in a modified optimality criterion or in the constrained policy exploration process
with external knowledge, e.g. an accurate probabilistic system model [35, 36].
However, the effectiveness in preventing risky behaviors relies on the sufficient
period of policy learning where the unsafe situations could happen in the early
learning stage. The key idea is to develop a learning method that encourages the
robot to take actions that safely and efficiently explore the unknown while seeking
to optimize the primary control task with the learned dynamics over time.

In this part of work, we propose a provably correct method that handles both
sample efficient safe learning and online nonlinear control task in partially un-
known system dynamics. In particular, we develop an Optimism-based Safe Learn-
ing for Control framework that integrates 1) stochastic discrete-time control barrier
functions (CBF) to ensure forward invariant safety under uncertainty, and 2) an
optimism-based exploration strategy that enjoys a formally provable regret bound.
To leverage between safe exploration and exploitation, the framework utilizes an
optimism-based exploration strategy in face of uncertainty [37] to encourage ef-
ficient dynamics exploration and simultaneously synthesizes with model-based
nonlinear control algorithms to safely optimize the policy performance under the
learned dynamics. Such framework is proved to be safe and near optimal with
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Chapter 1. Introduction

bounded regret, quantifying the sample efficiency and control performance. Com-
pared to other existing works on safe learning or safe RL [8, 11, 12, 38, 39], our
framework is able to simultaneously guarantee safety (remain in safe set during
learning and execution), performance (task rewards maximization), and sample ef-
ficiency (near-optimal regret bound).

1.2.3 Multi-Robot Networking with Global and Subgroup Connectiv-
ity Maintenance

Chapter 5 addresses the problem of multi-robot networking in the context of con-
nectivity control for a robotic team consisting of multiple task-oriented subgroups.
The key idea is to develop a optimization-based multi-robot control framework that
1) select the optimal connectivity topology to constrain the robot motions that sat-
isfy various connectivity requirements for successful networking while providing
the greatest flexibility for the original mission operation, and 2) minimally modify
the robot original task-related controllers subject to the invoked connectivity con-
straints so as to preserve the mission evolution at best. In particular, we consider the
global and subgroup connectivity maintenance in this work for multi-robot behav-
ior mixing, where robots simultaneously performing multiple behaviors in different
subgroups while remaining connected. To ensure efficient collaboration and coor-
dination, it is necessary for the multi-robot network to ensure connectivity within
each subgroup and across subgroups as well as global connectivity.

We develop a generalized behavior mixing framework with minimum global
and subgroup connectivity maintenance. Such framework is based on a bilevel op-
timization process that 1) incorporates a novel distributed Minimum Connectivity
Constraint Spanning Tree (MCCST) to compute real-time minimum connectivity
constraints, and 2) minimizes the revision to the original controllers subject to our
invoked connectivity constraints and collision avoidance constraints formulated by
the barrier certificates with control barrier functions (CBF) [28, 40]. In particular,
MCCST computes the provably optimal set of communication links for the robots
to maintain, which (a) has minimum number of links, and (b) invokes the connec-
tivity constraints for global and subgroup connectivity least likely to be violated
by the original controllers. Minimum connectivity maintenance is thus achieved
by minimally modifying the original controllers to preserve these dynamic least
constraining communication links and avoid collisions. This framework provides
a way to characterize feasible control space for the robot team with guaranteed net-
working capabilities, and hence will be overarching with other safety and mission-
oriented constraints so that the robots are able to interact with other robots at all
times.
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Section 1.2. Thesis Overview

1.2.4 Resilient Multi-Robot Connectivity Maintenance

As the scale of the multi-robot team grows, the increasing number of unexpected
robot failures necessities the recent research on robust multi-robot networking [16,
41, 42, 43] that seeks to ensure resilient inter-robot interaction in presence of ad-
versaries. This is due to that some robot failures on the key robot nodes within
multi-robot network could easily disconnect the whole system and hence prevent
the robots from executing information exchange and collective behaviors. More-
over, considering the adversarial scenarios where the robot team is under continu-
ous attacks and keeps losing members, it is critical to have a resilient algorithm that
improves the connectivity among robots so that they can stay reliably connected at
all times.

In Chapter 6, we have developed algorithms to maintain and enhance the con-
nectivity of a multi-robot system with minimal disruption to the primary tasks that
the robots are performing. In contrast to many existing work that can only maintain
the current connectivity of the multi-robot graph, we propose a generalized connec-
tivity control framework that allows for reconfiguration of the multi-robot system
to provably satisfy any connectivity demand, while minimally disrupting the exe-
cution of their original tasks. In particular, we propose a novel k−Connected Mini-
mum Resilient Graph (k-CMRG) algorithm to compute an optimal k−connectivity
graph that minimally constrains the robots original task-related motion. The orig-
inal controllers are then minimally modified to drive the robots and form the k-
CMRG. This is an extension to the connectivity framework in Section 1.2.3 with
resilience property adjustable based on human operator’s input. Thus far, we com-
pleted the basic framework for multi-robot systems allowing for provably safety
and resilient networking capabilities.

1.2.5 Learning-enabled Multi-Robot Sensor Coverage

Multi-robot sensor coverage is a classic distributed multi-robot coordination prob-
lem where a group of robots are deployed in an environment to coordinate their
motions such that the sensing performance by the robot team over the environmen-
tal phenomenon from their final positions is maximized. Successful coordination
strategy relies on the knowledge of the distribution of environmental phenomenon
[44]. However, when such information is unknown beforehand, the robots need
to explore in the environment and take observations to learn this model, which
could be time-consuming. Hence, assuming assured multi-robot safety and net-
work connectivity from our previous framework, the idea of this part of the work
in Chapter 7 is to develop efficient multi-robot task-prescribed controllers that en-
able robots to take as few samples for efficient environmental modeling while ap-
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proaching to their estimated optimal sensing locations in a coordinated manner.
We propose adaptive coverage control strategies with online data-driven en-

vironmental modeling for robots to take samples for leaning while approaching
to the estimated optimal locations. To model significantly different components
of the environmental phenomenon that is sensed locally by individual robots, we
employ non-parametric inference methods such as Mixture of Gaussian Processes
that provide good estimation of the environmental phenomenon distribution over
the field from data collected at selected locations by the robots. Depending on the
communication constraints, we develop both centralized and decentralized design
for the learning-enabled multi-robot coverage controllers that integrate an infor-
mation theoretic criterion to balance between model learning and coverage opti-
mization, allowing robots to predict and move to the optimal sensing locations
with improved performance. With the decentralized design, we propose a dis-
tributed mixture of Gaussian Processes algorithm that enables robots to collabora-
tively learn the global distribution of interests by exchanging only model-related
parameters whose size is independent from the number of collected samples, and
hence avoiding the transmission of all local data from every robot for communi-
cation efficiency. We empirically demonstrate the effectiveness of our algorithm
via evaluation on real-world data gathered from agricultural field robot and indoor
static sensors.

1.3 Contributions

This thesis provides the following contributions:

• Multi-Robot Collision Avoidance with Probabilistic Safety Guarantee
under Localization and Motion Uncertainty: Chapter 3 proposes a Prob-
abilistic Safety Barrier Certificates (PrSBC) method to define the space of
admissible control actions for the robot team that are probabilistically safe
with theoretical guarantee under uncertainty on localization and motion. The
key advantage of the approach is that no assumptions about the form of
uncertainty are required other than finite support, also enabling worst-case
guarantees. We also derive a formal proof of existence of PrSBC in a closed
form rendering feasible safety controller with probabilistic safety guarantee.

• Sample-efficient Safe Learning for Control: Chapter 4 proposes 1) a prov-
ably sample efficient episodic online learning framework that integrates safe
model-based nonlinear control approaches with optimism-based exploration
strategy to simultaneously achieve safe learning and policy optimization for
online nonlinear control tasks, and 2) provides rigorous theoretical analy-
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sis of guaranteed safety under learned uncertainty and near-optimal online
learning and policy performance with proved regret bound.

• Multi-Robot Networking with Global and Subgroup Connectivity Main-
tenance: Chapter 5 proposes a generalized bilevel optimization based multi-
robot networking framework to enable simultaneous execution of different
behaviors and sequences of behaviors within a single robot team, while en-
suring global and subgroup connectivity and collision avoidance. A real-
time distributed Minimum Connectivity Constraint Spanning Tree (MCCST)
algorithm is developed to select the minimum inter-robot connectivity con-
straints preserving subgroup and global connectivity that are least likely to
be violated by the original controllers, hence providing greatest flexibility
for original multi-robot task operations. The algorithm is computationally
efficient and scalable to large number of robots.

• Resilient Multi-Robot Connectivity Maintenance: Chapter 6 proposes
an algorithm to maintain and enhance the connectivity of a multi-robot sys-
tem with minimal disruption to the primary tasks that the robots are per-
forming. This algorithm is useful in a supervisory control setting when an
operator wants to enhance the connectivity of the robot team to any desired
value. A novel k−CMRG method is also developed to compute the optimal
weighted k−node connected resilient graph for arbitrary initially connected
multi-robot graph, imposing least connectivity constraints to the robots. We
derive theoretical analysis and proof of the optimality of our algorithm with
guaranteed, user-specified network resilient connectivity in presence of con-
tinuous robot failures.

• Learning-enabled Multi-Robot Sensor Coverage: Chapter 7 proposes
an adaptive coverage controller that couples the adaptive sampling with
information-theoretic criterion for efficient distributed model learning and
coverage optimization with a reduced number of samples. This allows the
robots in bandwidth-constrained environment to share model-related param-
eters learned from their own data to maintain important characteristics of
local data distribution and eventually converge to consensus of global model
parameters describing the learned environment in a uniform manner. It pro-
vides a principle information sharing strategy that can be easily embedded
to other distributed multi-agent learning applications.

9



Chapter 2

Related Work

2.1 Multi-Robot Safe Control under Uncertainty

Safe control in terms of collision avoidance for robots operating in dynamic en-
vironments have been studied for safety consideration over the years. To avoid
static and/or moving obstacles with perception uncertainty or motion disturbance,
safe control and planning approaches such as [19, 45, 46] have been proposed
to generate a sequence of tracking controllers over finite time horizon to achieve
guaranteed probabilistic collision avoidance at run-time. In multi-robot applica-
tions, however, this could be computationally intractable due to the large scale of
the multi-robot system. To address multi-robot collision avoidance, reactive meth-
ods such as reciprocal velocity obstacles (RVO) [47, 48, 49, 50], safety barrier
certificates (SBC) [10, 29, 51], and buffered Voronoi cells [52] are presented to
compute on-line multi-robot collision-free motions in a distributed manner. While
all of them scale very well in large scale multi-robot team, they require perfect state
information and/or accurate dynamics of the robots and the moving obstacles. In
many practical cases, highly accurate state information and motion model may not
be accessible to the robots.

To account for uncertainties associated to the robot state information and mo-
tion model, the mentioned collision avoidance methods have been extended to
probabilistic representations. For example, to handle the bounded localization un-
certainty, the concept of velocity obstacles is adopted to develop enlarged conser-
vative bounding volumes around the robot [24, 25, 26, 27]. As mentioned in [20],
this could often overestimate the probability of collisions. In other works [20, 21,
53], chance constraints are often employed to explicitly consider the collision prob-
ability. Similar ideas of probabilistic buffered Voronoi cells are utilized in [21, 53]
to modify the buffered Voronoi boundary [52] based on the measurement uncer-
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tainty of the other robots, so that the robots will never come across the designated
Voronoi cell and so to avoid collisions. In those works, the chance constraints
explicitly depend on the position level uncertainty of the robots. Probabilistic rep-
resentation of reciprocal velocity obstacles [49, 50] are introduced in [22, 54] to
develop first order constraint accounting for both measurement and actuation un-
certainties. Key to the success of most of these chance constrained methods is the
common assumption of Gaussian representation of uncertainties. It remains chal-
lenging when prior knowledge of the uncertainty model is not available or it is not
necessarily Gaussian, e.g. readings from an on-board GPS sensor that only have
an expected value with an finite support as accuracy.

Another family of reactive collision avoidance approaches is the recent
optimization-based safety control using control barrier function [10, 28, 29, 31, 55,
56]. The safety controller is able to minimally revise the nominal controller in the
context of quadratic programming and ensures the robots remain in the safety set at
all time, leading to a minimally invasive safe control behavior. In [29], the control
barrier function is employed to develop the Safety Barrier Certificates (SBC) for
multi-robot systems, depicting a non-conservative safety envelope for the multi-
robot controller from which the robots stay collision-free at all time. Extensions
to higher order nonlinear system dynamics using SBC and Exponential Control
Barrier Function (ECBF) have been introduced in [10, 31, 38]. In [38], the online
safe learning and SBC-based collision avoidance is achieved by utilizing Gaus-
sian Process to learn the motion disturbance while assuming perfect localization
information. In this thesis, we propose the probabilistic safety barrier certificates
(PrSBC), which extends the deterministic SBC [29] to a probabilistic setting to
account for both localization and motion uncertainties of the ego robot and other
robots/obstacles. No assumptions about the uncertainty model are required other
than finite support. We show the PrSBC could handle other uncertainty models as
well.

2.2 Safe Learning for Control

The control of safety-critical system such robotic systems is a difficult challenge
under uncertainty and lack of complete information in the real world applications.
While Reinforcement Learning (RL) algorithms that seek for long-term reward
maximization has achieved significant results in many continuous control tasks
[57, 58], it has not yet been widely applied to safety-critical control tasks as the
rigorous safety requirements may be easily violated by intermediate policies dur-
ing policy learning. Safe RL approaches [32, 33, 34, 35] with constraints satisfac-
tion have been proposed to encode safety consideration in a modified optimality
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criterion or in the constrained policy exploration process with external knowledge,
e.g. an accurate probabilistic system model [35, 36]. However, the effectiveness in
preventing risky behaviors relies on the sufficient period of policy learning where
the unsafe situations could happen in the early learning stage.

Model-based approaches utilizing Model Predictive Control (MPC) or
Lyapunov-based methods have seen a number of success in demanding control
tasks under different constraints with accurate system models [20, 30, 59] or ap-
proximated dynamics [60]. For provable long-term safety guarantee, safety in
terms of set forward invariance has become an active research area using Lyapunov
functions [8] and control barrier functions (CBFs) with perfect system model [28,
30, 55, 56] or noisy model with known distributions [13, 61, 62, 63]. However,
these control-based approaches still require known system model uncertainty and
could be overly conservative for system behaviors in presence of large uncertainty.
Consider an autonomous mobile robot operating in an unknown environment, it is
desired to have a strategic exploration strategy that enables the robots to safely col-
lect data for modelling the uncertainty and improve the control performance over
time.

For this purpose, very recently integrating data-driven learning-based approach
with model-based safe control approaches has received significant attention to
achieve model uncertainty reduction while ensuring provable safety [8, 9, 11, 12,
38, 39, 64, 65]. The process often involves safe policy exploration with data col-
lection from a nominal dynamics model and iteratively reduce learned model un-
certainty over time to expand certified safety region of the system’s state space [8,
11, 38, 39, 64]. However, such exhaustive data collection for safe learning could
suffer from poor scalability and low efficiency for primary task. For example, in-
stead of densely sampling over the space, it may be more beneficial to guide the
safe exploration process towards task-prescribed policy optimization. Recent work
[12] incorporates the safe learning using Gaussian Process (GP) and CBF into a
model-free RL framework (RL-CBF) so that the guided exploration process will
not only learn model uncertainty impacting safe behaviors but also optimizing the
policy performance. Nevertheless, there is no theoretical guarantee on the learn-
ing performance in terms of sample efficiency or the control performance for the
primary task. In this thesis, we propose a provably correct method that handles
both sample efficient safe learning and online nonlinear control task in partially
unknown system dynamics.
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2.3 Multi-Robot Connectivity Maintenance

The general problem of connectivity maintenance has been widely studied in the
past decade due to its importance in enabling local information sharing and col-
laboration for multi-robot systems in performing complex tasks. Given an initially
connected multi-robot spatial communication graph, the goal of continual connec-
tivity control is to couple the task-related controllers of robots with a connectivity
controller such that the communication graph over time remains connected. There
have been two major classes of connectivity control methods: 1) local methods
that seek to preserve the initial connectivity graph topology over time [66, 67, 68],
and 2) global methods that aim to preserve the global algebraic connectivity of the
communication graph by deriving controllers to keep the second smallest eigen-
value of the graph Lapacian positive at all times [69, 70, 71, 72]. While the global
connectivity control provides better flexibility over local methods as it allows for
changing network topology, neither of them is able to deal with flexible global
connectivity and subgroup connectivity maintenance at the same time. Moreover,
for both of the methodologies there is no guarantee that the perturbation from the
connectivity controllers is minimum over the original robot controllers.

To achieve more flexible connectivity control with multiple behaviors, i.e. si-
multaneously exploring different regions, recent work [73, 74, 75] have explored
the idea of redeploying a certain number of robots to act as communication relays,
while aiming to allow the rest of the robots to perform their original tasks. In par-
ticular, the communication relays can be derived by following certain structured
behaviors such as lattice-based formations [74, 76], or by separate optimization
process that explicitly assigns some of the robots as connectors [73, 75]. In or-
der to find a more flexible communication relay structure with quantified pairwise
connectivity, [77] proposed to employ minimum spanning tree topology and uses
pairwise distance as heuristic to provide better freedom of robot motion, i.e. robots
closer to each other are less restrictive. However, these heuristic methods have no
theoretical guarantee that the selected connectivity constraints are minimum to the
original task-related robot controllers.

For minimally invasive multi-robot control revision with constraint satisfac-
tion, control barrier functions [28] have been employed to encode a variety of
inter-robot constraints and the resulting constrained control outputs lead to for-
ward invariance of the satisfying set, i.e. robots remain collision free and con-
nected. However, these capabilities are achieved by predefining the connectivity
constraints so as to preserve fixed predefined communication topology [40, 78].
This could weaken the minimal invasiveness to robots controllers and limit the
motion of the robots during execution. On the contrary, we do not define communi-
cation topology to preserve beforehand, but instead calculate the optimal topology
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online during execution. In our work, we are optimizing both the real-time con-
nectivity constraints to enforce and the modifications to the original controllers to
achieve minimum connectivity maintenance, thus rendering the least perturbation
to the original multi-robot behaviors.

2.4 Multi-Robot Robust and Resilient Connectivity Main-
tenance

The problem of k−connectivity control or k−redundancy control has also been
studied [79, 80, 81, 82]. [81] introduced distributed algorithms for detecting
k−connectivity of multi-robot graph. Work in [79] addressed the k−hop con-
nectivity control where the robots stay connected with its k−hop neighbors at all
time. In [80, 82] the robots are tasked to reconfigure their positions for meeting
certain redundant connectivity constraints. These approaches often consider the
connectivity maintenance as a separate optimization problem and hence has no op-
timal guarantee over the original robot’s controllers. For less restrictive multi-robot
control with constraint satisfaction, control barrier functions have been employed
to encode a variety of inter-robot constraints and the resulting constrained control
outputs lead to forward invariance of the satisfying set, i.e. robots remain collision
free and connected under predefined fixed communication topology [29, 40, 78].
Although the resultant control outputs are optimized to stay as close to the original
controllers with constraints, the predefined fixed communication topology has no
guarantee regarding its optimality to the robot behaviors. In our work, we are opti-
mizing both the activated k−connectivity constraints together with the controllers
with proven optimality guarantees, so that the control revision with the invoked
connectivity constraints is minimally invasive to the original behavior-prescribed
controllers, thus allowing for flexible multi-robot behaviors with required network
redundancy.

2.5 Multi-Robot Coordination in Sensor Coverage

In the multi-robot sensor coverage problem [4, 44], the sensing performance to op-
timize is determined by the distance between each robot and its assigned point to
sense assuming negative correlation as well as the density function of the points.
Solutions of such a locational optimization problem are known as the centroid of
the Voronoi tessellation [83] and the algorithm is often referred to as the move-
to-centroids controller navigating the robots towards the centroids of their Voronoi
cells. However, most of them assume the prior knowledge of either the environ-
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mental phenomenon distribution (often modelled as density function) [4, 84], or
basis functions consisting of density function [85], which could be impractical in
real-world application. To allow for online density function learning and adaptive
coverage control, recent works [86] proposed to use two-stage decoupled processes
that embed an on-line sampling process to first obtain an estimate of the density
function and then follow the move-to-centroid control law in performing the multi-
robot coverage. As mentioned in [1], this approach could demand unnecessarily
larger number of samples to take before reaching the optimal locations.

To improve sampling efficiency, GP-based adaptive sampling methods [1, 87,
88] with Bayesian optimization framework [89] have been studied for information
gathering to maximize the total value (e.g. utility or informativeness) of sequen-
tially collected samples. [90, 91] extends adaptive sampling in multi-robot systems
where the robots make sequential decisions regarding the next best waypoint to
sample and then perform the path planning. The sampling criterion is often deter-
mined by predicted utility using GP model or information-theoretic criterion such
as mutual information gain [92, 93] to maximize the sampled utility or model un-
certainty reduction respectively. Besides GP-based adaptive sampling approaches,
ergodic control methods have been proposed in [94, 95] to track the unknown spa-
tial distribution by using ergodicity metrics to optimize time averaged trajectory in
accordance with the expected spatial distribution, with the final trajectory statistics
matching to the initially unknown distribution.

A recent work [1] proposed an efficient voronoi-based multi-robot informative
adaptive sampling, where each robot only takes the best samples within its as-
signed partitioned region. [87] developed input-dependent model using the general
approach of mixture of GPs [96] to accurately represent complex distributions with
the linear combination of different GP models learned on-line. However, these ap-
proaches still require global information of the collected samples by all the robots.
[97] proposed a distributed EM algorithm for classification tasks with Gaussian
mixture model. Inspired by this work, in this thesis we first propose a central-
ized learning method to model the environment and employ the distributed EM
algorithm with consensus learning as a heuristic method to develop a distributed
learning framework using mixture of GPs to improve the local prediction accuracy,
which leads to better multi-robot coverage performance.
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Part I

Safe Control and Learning
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Safety for large-scale autonomous system is critical yet challenging under real-
world factors such as uncertainty, non-determinism and lack of complete informa-
tion. Current model-based safe design often assumes perfect sensing and dynamics
modeling in order to derive provable safety assurance [28, 29, 30, 31]. However,
the pre-computed guarantees could be easily broken when deploying the system
to the physical world, e.g. self-driving car crash due to inaccurately localized ob-
stacles. On the other hand, learning-enabled decision making process [8, 9, 10,
11, 12] has been widely used to characterize the uncertainty with safety analysis
for planning and control in presence of incomplete information, e.g. with par-
tially modelled system dynamics and unknown environments. This introduces new
challenges about how to properly trade off among robust safety assurance, optimal
task performance (exploitation), and sample efficient exploration for leaning that
inherently contradict each other.

In this part, we will focus on two problems as follows:

• Robust safety assurance under uncertainty (Chapter 3) by explicitly rea-
soning about the chance-constrained safety analysis that incorporates mea-
surement and motion uncertainties into the multi-robot safe control design.

• Sample efficient safe reinforcement learning (Chapter 4) by leveraging the
existing knowledge of partially modeled system dynamics for safe optimism-
based model exploration and control with bounded learning efficiency and
optimality guarantee.
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Chapter 3

Multi-Robot Safe Control under
Uncertainty

Safe operation is one of the most important task that needs to be addressed in
the realm of autonomous systems. In real-world implementation, safe control in
terms of collision avoidance for a large-scale multi-robot systems is a difficult
challenge under uncertainty, non-determinism and lack of complete information.
For example, consider the problem of building an automatic collision avoidance
system (ACAS) for aerial robots that would scale up as the autonomous aerial
traffic increases. Such a system needs to be computationally efficient for execu-
tion in real-time and robust to various real-world factors that include uncertainty,
non-determinism and approximations made in the formulation of the system. Mea-
surement uncertainty in the system arises from various estimation or prediction
procedures in real-world that rely on sensory information ( e.g. LIDARS, on-board
GPS) being collected in real-time to get robots state information. On the other
hand, non-determinism often arises from our in-ability to model various exoge-
nous variables that are part of our operating environment, e.g. phenomena such
as wind gusts. Ability to pro-actively deal with such measurement and motion
uncertainty is fundamental in the safety considerations.

In this chapter, we develop a collision avoidance method for centralized and
decentralized multi-robot systems that accounts for both measurement uncertainty
and motion uncertainty. In particular, we propose Probabilistic Safety Barrier Cer-
tificates (PrSBC) using Control Barrier Functions [28] (See Section 3.2) to define
the space of possible control actions that are probabilistically safe with theoretical
guarantee. By formulating the chance constrained safety set into deterministic con-
trol constraints with PrSBC, the safety controllers can be computed by minimally
modifying the existing unconstrained controller via a quadratic program subject
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to the PrSBC constraints. This hence formally satisfies the collision-avoidance
chance-constraints while staying as close to the original robot behaviors as possi-
ble. The key advantage of the approach is that no assumptions about the form of
uncertainty are required other than finite support, also enabling worst-case guaran-
tees.

Our work is most closely related to the work on safety barrier certificates (SBC)
for multi-robot collision avoidance [29] using permissive control barrier functions
(CBF) [28, 55]. While the prior work focused on deterministic settings, our goal
here is to provide a safety envelope around an existing controller that accounts
for uncertainties and non-determinism in a probabilistic setting. There are several
advantages of the proposed PrSBC. First, in contrast of other probabilistic colli-
sion avoidance approaches that directly constrain the inter-robot distance [20, 21,
53], the proposed method produces a more permissive set for the controllers with
a tighter bound. Second, the PrSBC naturally inherits the forward invariance from
CBF, e.g. robots staying in the collision-free set at all time, and thus enabling us
to prove guarantees throughout the continuous time scale. Finally, it is natural to
apply the chance constrained collision avoidance with PrSBC under both central-
ized and decentralized settings to bridge learning based methodologies and model
based safety-critical control with provable safety guarantee. For example, one may
use learning techniques such as Gaussian Processes [98] to learn one or more par-
tially unknown dynamical systems with noisy uncertainties and use our PrSBC
approach to compute certified probablistically safe policies to collect more data for
further improving models. We believe integrating dynamical system learning with
our PrSBC framework to guarantee safe learning to control is an important future
direction (See Chapter 4).

The key underlying assumption in our method is that the uncertainties arising
due to sensor measurements, incomplete dynamics and other exogenous variables
have finite support. This is a reasonable assumption for many of the multi-robot
scenarios. For example, we can safely assume that true positions of robots, or
the amount of wind gusts etc. are bounded within certain sensor specifications or
physical parameters respectively. We use the task similar to automatic collision
avoidance system for aerial robots as a motivating application. Our experiments
explore the proposed computation of PrSBC controller in both centralized and de-
centralized settings, which can handle both the uncertainties as well as environ-
mental disturbances while continuously guaranteeing safety. In summary, the core
contributions of this chapter are as follows:

• A novel chance-constrained collision avoidance method with Probabilistic
Safety Barrier Certificates (PrSBC) ensuring provable forward invariance
under uncertainties with bounded support.

19



Chapter 3. Multi-Robot Safe Control under Uncertainty

• Formal proof of existence of PrSBC in a closed form.

• Experimental results on the task similar to automatic collision avoidance for
aerial robots that demonstrate efficiency, scalability and distributed compu-
tation.

3.1 Chance-Constrained Multi-Robot Collision Avoid-
ance Problem

Consider a team of N robots moving in a shared d-dimensional workspace. Each
robot i ∈ I = {1, . . . , N} is centered at the position xi ∈ Xi ⊂ Rd and enclosed
with a uniform safety radius Ri ∈ R. The stochastic dynamical system ẋi in
control affine form with noise and the noisy observation x̂i ∈ Rd of each robot i
are described as follows.

ẋi = fi(xi,ui) + wi = Fi(xi) +Gi(xi)ui + wi , wi ∼ U(−∆wi,∆wi)

x̂i = xi + vi , vi ∼ U(−∆vi,∆vi)

(3.1)

where ui ∈ Ui ⊆ Rm denotes the control input. Fi and Gi are locally Lipschitz
continuous. The deterministic system dynamics fi(xi,ui) = Fi(xi) + Gi(xi)ui
in control affine form is general and could describe a large family of nonlinear
systems, e.g. 3-dof differential drive vehicles with unicycle dynamics ([29, 99]),
12-dof quadrotors with underactuated system ([38, 100]), bipedal robots, automo-
tive vehicle, and Segway robots [11, 28]. wi,vi ∈ Rd are the uniformly distributed
process noise and the measurement noise respectively and considered as continu-
ous independent random variables with finite support. A uniform distribution is a
natural choice for these noise processes, however, most of our analysis does not
require the exact form except that the support is finite. This finite support can vary
at each time-point and come from a perception module, a state estimator or other
physical parameters of the system.
Obstacle Model: Similar to the robots, other static or moving obstacles k ∈
O = {1, . . . ,K} are also modeled as a rigid sphere located at xk ∈ Rd with
the safety radius Rk ∈ R. The measurement of obstacle location via robot sen-
sor is modeled as x̂k = xk + vk ∈ Rd with bounded uniformly distributed noise
vk ∼ U(−∆vk,∆vk). As commonly assumed in other collision avoidance work
([20, 22, 101]), we consider the piece-wise constant obstacle’ velocity to be de-
tected by the robots as ûk with a bounded noise, rendering the obstacle dynamics
as ẋk = uk = ûk + wk ∈ Rd, wk ∼ U(−∆wk,∆wk). The finite supports of
vk,wk are also assumed to be known by the robots.
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Denote the joint robot states as x = {x1, . . . ,xN} ∈ X ⊂ Rd×N and the joint
obstacle states as xo = {x1, . . . ,xK} ∈ Xo ∈ Rd×K . For any pair-wise inter-
robot or robot-obstacle collision avoidance between robots i, j ∈ I and obstacles
k ∈ O, the following condition define the safety of x.

hsi,j(x) = ‖xi − xj‖2 − (Ri +Rj)
2, ∀i > j

hsi,k(x,xo) = ‖xi − xk‖2 − (Ri +Rk)
2, ∀i, k (3.2)

Hsi,j = {x ∈ Rd×N : hsi,j(x) ≥ 0} ∀i > j

Hsi,k = {x ∈ Rd×N : hsi,k(x,xo) ≥ 0}, ∀i, k (3.3)

The condition of ∀i > j ensures each pairwise collision will be considered only
once for the robot team. The sets of Hsi,j and Hsi,k indicate the safety set from
which robots i and j, robot i and obstacle k will never collide. For the entire
robotic team, the safety set is hence determined by the intersection of allHsi,j ,Hsi,k
as follows

Hs =
⋂
i,j∈I
i>j

Hsi,j
⋂
i∈I
k∈O

Hsi,k (3.4)

As the robots only have access to the noisy measurements on the states of
the robots and obstacles, the positions of the robots and obstacles are modeled as
random variables with a finite support. The collision avoidance constraints can
then be considered in a chance-constrained setting for each pairwise robots i, j and
robot-obstacle i, k. Formally, given the minimum admissible probability of safety
σ, σo ∈ [0, 1] predefined by the user, it is required that:

Pr(xi,xj ∈ Hsi,j) ≥ σ , ∀i > j

Pr(xi,xk ∈ Hsi,k) ≥ σo , ∀i, k
(3.5)

Pr(·) indicates the probability of an event. Note that when σ, σo are set to 1, the con-
ditions naturally lead to the worst-case collision avoidance with enlarged bounded
volume as discussed in Section 3.3. Such worst-case guarantees can lead to a con-
servative behavior, thus often there are advantages in maintaining a probabilistic
safety.

Assume that each robot has a task-related controller u∗i ∈ Rm. We consider the
chance-constrained collision avoidance as an one-step optimization problem that
minimally modifies u∗i for each robot i, while satisfying the desired probabilistic
safety in Eq. (3.5). Formally we solve the following Quadratic Program (QP) under
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the safety constraints:

min
u∈RmN

N∑
i=1

‖ui − u∗i ‖
2 (3.6)

s.t. Pr(xi,xj ∈ Hsi,j) ≥ σ , ∀i > j (3.7)

Pr(xi,xk ∈ Hsi,k) ≥ σo , ∀i, k (3.8)

‖ui‖ ≤ αi,∀i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (3.9)

where u ∈ U ⊂ RmN is the joint control inputs of all the robots with bounded
magnitude αi, ∀i. Next, we briefly describe the background of Safety Barrier Cer-
tificates (SBC) [29]. Section 3.3 then presents our method of Probabilistic Safety
Barrier Certificates (PrSBC) that utilizes control barrier functions [28] to remap
the probabilistic safety set constraints Eq. (3.5) from the state space X ⊂ Rd×N to
the control space U ⊂ RmN .

3.2 Background: Safety Barrier Certificates using Con-
trol Barrier Functions

Recent advances in permissive control barrier functions [28, 29, 55] enable mecha-
nisms that guarantee forward invariance of desired safety sets for robots, e.g. robots
staying collision-free at all times by constraining the controllers. Here we first de-
scribe the formulation of the deterministic safety constraints utilizing the safety
barrier certificates [29]. Without loss of generality, we can represent the desired
safety setHs in Eq. (3.4) using the function hs(x) from Eq. (3.2) as:

Hs = {x ∈ Rd×N | hs(x) ≥ 0} (3.10)

First, we summarize the conditions on controllers u ∈ U ⊆ RmN based on Zeroing
Control Barrier Functions (ZCBF) [55] and the Safety Barrier Certificates (SBC)
[29] to guarantee forward invariance of safety. Formally, a safety condition is
forward-invariant if x(t = 0) ∈ Hs implies x(t) ∈ Hs for all t > 0 with the
designed satisfying controller at each time step. Readers are referred to [29, 55] for
details. The Theorem of ZCBF and forward invariance from [29, 55] is summarized
as the following Lemma.

Lemma 1. Given the dynamical system in Eq. (3.1) without uncertainties, i.e.
wi = 0, ∀i ∈ I and the set Hs defined by Eq. (3.10) for the continuously differ-
entiable function hs : Rd×N → R. The function hs is a ZCBF and the admissible
control space S(x) for each time step can be defined as

S(x) = {u ∈ U | ḣs(x,u) + κ(hs(x)) ≥ 0}, x ∈ X , (3.11)
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where κ is an extended class-K function. Then any Lipschitz continuous controller
satisfying u ∈ S(x) at each time step for the system Eq. (3.1) renders the set Hs
forward invariant, i.e. robots stay collision-free at all times.

As described in [29], the extended class-K function κ such as κ(r) = rP with
any positive odd integer P leads to different behaviors of the state of the system
approaching the boundary of safety set Hs in Eq. (3.10). Similar to [29], in our
case we use the particular choice of κ(hs(x)) = γhs(x) with γ > 0. In order to
render a larger admissible control space S(x), a very large value of γ >> 0 will
be adopted. Thus the admissible control space in Eq. (3.11) induces the following
pairwise constraints over the controllers, referred as Safety Barrier Certificates
(SBC) [29]:

Bs(x) = {u ∈ RmN : ḣsi,j(x,u) + γhsi,j(x) ≥ 0, ∀i > j}
Bo(x,xo) = {u ∈ RmN : ḣsi,k(x,xo,u,u

o) + γhsi,k(x,xo) ≥ 0, ∀i, k}
(3.12)

where uo ∈ RdK is the joint control input of all the obstacles not controllable by
the robots. Here Bs(x),Bo(x,xo) define the SBC for the inter-robot and robot-
obstacle collision avoidance respectively, rendering the safety set Hs forward in-
variant: the robots will always stay safe, i.e. satisfying Eq. (3.3) at all times if
they are initially collision free and the robots’ joint control input u lies in the set
Bs(x) ∩ Bo(x,xo). One of the useful properties of Eq. (3.12) is that they induce
linear constraints over both the pair-wise control inputs ui and uj (inter-robot) and
control input ui (robot-obstacle).

3.3 Probabilistic Safety Barrier Certificates (PrSBC)

We seek a probabilistic version of Lemma 1 that implies the SBC in Eq. (3.12) as
a sufficient condition for the forward invariance of Hs in Eq. (3.10). Given the
assumption that each pairwise robots are initially collision-free, i.e. xi,xj ∈ Hsi,j
at t = 0 and the sufficiency condition in Lemma 1, we have ui,uj ∈ Bsi,j(x) =⇒
xi,xj ∈ Hsi,j and ui,uj /∈ Bsi,j(x) 6=⇒ xi,xj /∈ Hsi,j . Hence it is straight-
forward to show that Pr(ui,uj ∈ Bsi,j(x)) ≤ Pr(xi,xj ∈ Hsi,j) and Pr(ui,uk ∈
Boi,k(x,xo)) ≤ Pr(xi,xk ∈ Hsi,k). Consequently, we can derive the following
inter-robot and robot-obstacle probabilistic collision free sufficiency conditions
corresponding to Eq. (3.5):

Pr(ui,uj ∈ Bsi,j(x)) ≥ σ =⇒ Pr(xi,xj ∈ Hsi,j) ≥ σ, ∀i > j

Pr(ui,uk ∈ Boi,k(x,xo)) ≥ σo =⇒ Pr(xi,xk ∈ Hsi,k) ≥ σo, ∀i, k
(3.13)
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Intuitively, these conditions allow us to translate the probabilistic safety constraints
from the state-space directly to the the controls, thereby enabling consideration of
safety when reasoning about the next control action. Note that the above condition
is over the joint control space of multiple robots, hence far less restrictive than
other methods that only constrain ego robots motion.

Given these reformulated collision-free chance constraints over controllers, we
now formally define the Probabilistic Safety Barrier Certificates (PrSBC):

Definition 2. Probabilistic Safety Barrier Certificates (PrSBC): Given a confi-
dence level σ ∈ [0, 1], PrSBC determines the admissible control space Sσu at each
time-step guaranteeing the chance-constrained safety condition in Eq. (3.5) and
are defined as the intersection of n different half-spaces where n is the total num-
ber of pairwise deterministic inter-robot constraints.

Sσu = {u ∈ RmN | Aσiju ≤ bσij , ∀i > j, Aσ ∈ Rn×mN , bσ ∈ Rn} (3.14)

Here we first introduce the definition and form of PrSBC. The computation
of Aσ ∈ Rn×mN , bσ ∈ Rn determined by σ will be given in the latter part of
Eq. (3.24) and (3.25) for inter-robot and robot-obstacle collision avoidance. The
PrSBC hence characterizes the admissible safe control space for the multi-robot
team with probabilistic safety guarantee.
Theoretical Analysis of PrSBC Next, we provide theoretical analysis that dis-
cusses existence of PrSBC, justifies representation of PrSBC as intersection of half-
spaces, and shows how they can be computed and enable us to derive probabilistic
safe controllers.

Theorem 3. Existence of PrSBC: Assuming all pairwise robots are initially
collision-free at t = 0, i.e. Eq. (3.2) holds true for all possible value of ran-
dom state variables xi ∈ [x̂i −∆vi, x̂i + ∆vi],∀i ∈ I, then the PrSBC defined in
Eq. (3.14) is guaranteed to exist for any given confidence level σ ∈ [0, 1].

Proof. We start by proving the existence of PrSBC between each pairwise robots
i and j with any user-defined confidence level σ ∈ [0, 1]. Consider the sufficiency
condition of Pr(ui,uj ∈ Bsi,j(x)) ≥ σ in Eq. (3.13) with pairwise version of
Eq. (3.12) that renders desired chance constrained safety Pr(xi,xj ∈ Hsi,j) ≥ σ.

With ḣsi,j(x,u) =
∂hsi,j
∂x (x)(∆Fi,j(x)+Gi,j(x)ui,j+∆wi,j) , we can then re-write

the sufficiency condition Pr(ui,uj ∈ Bsi,j(x)) ≥ σ in Eq. (3.13) using Eq. (3.12)
as follows:

Pr(ui,uj ∈ Bsi,j(x)) ≥ σ :

⇐⇒ Pr
(
∂hsi,j
∂x

(x)Gi,j(x)ui,j ≥ −γhsi,j(x)−
∂hsi,j
∂x

(x)
(
∆Fi,j(x) + ∆wi,j

))
≥ σ

(3.15)
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where

∂hsi,j
∂x

(x)Gi,j(x)ui,j = 2(xi − xj)
T

(
Gi(xi)ui −Gj(xj)uj

)
∂hsi,j
∂x

(x)

(
∆Fi,j(x) + ∆wi,j

)
= 2(xi − xj)

T

(
Fi(xi)− Fj(xj) + wi −wj

)
Let’s denote the process noise difference ∆wi,j = wi −wj ∼ Qi,j with the finite

support supp(Qi,j) =

[
− (∆wi + ∆wj), (∆wi + ∆wj)

]
and state difference

∆xi,j = xi− xj ∼ Ti,j with the finite support supp(Ti,j) =

[
(x̂i− x̂j)− (∆vi +

∆vj), (x̂i − x̂j) + (∆vi + ∆vj)

]
. Moreover, given the assumed uniform distri-

butions of wi,wj ,xi,xj , the distributions Ti,j , Qi,j are hence two different sym-
metric trapezoid distributions with finite supports. Then by substituting Eq. (3.16)
into Eq. (3.15) and after re-organization, we have

Pr
([

∆xi,j+

ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2

≥ R2
ij+

[ ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2)
≥ σ

(3.16)
where

Gi,jui,j = Gi(xi)ui−Gj(xj)uj ,∆Fi,j = Fi(xi)−Fj(xj) , Rij = Ri+Rj > 0
(3.17)

Thus consider the following set of random variable ∆xi,j from its own finite sup-
port and Eq. (3.16):

Ωi,j(∆xi,j) = supp(Ti,j)

=

[
(x̂i − x̂j)− (∆vi + ∆vj), (x̂i − x̂j) + (∆vi + ∆vj)

]

Ωu
i,j(∆xi,j) =

{
∆xi,j ∈ Rd

∣∣∣∣ [∆xi,j +

ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2

≥ R2
ij +

[ ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2}
(3.18)
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Note that the set of Ωu
i,j(∆xi,j) representing the space outside a (d − 1)−sphere

for ∆xi,j in d−dimensional space. It is determined by the pairwise value of ui,uj
through Gi,jui,j = Gi(xi)ui − Gj(xj)uj as defined in Eq. (3.17). It is thus
straightforward to show that the condition in Eq. (3.16) is equivalent to:

Pr
(

∆xi,j ∈ Ωi,j ∩ Ωu
i,j

)
≥ σ (3.19)

To prove the guaranteed existence of PrSBC, we need to show there always exists
at least one solution of pairwise ui,uj such that Eq. (3.19) holds for any given
value of σ ∈ [0, 1]. First let’s consider any pairwise ui = u0

i ,uj = u0
j leading to

the joint control inputs u0 such that ẋi − ẋj = 0 in Eq. (3.18), then we have the
following condition representing the space outside the (d− 1)−sphere for ∆xi,j :

Ωu0

i,j (∆xi,j) =

{
∆xi,j ∈ Rd

∣∣∣∣ ∆x2
i,j ≥ R2

ij

}
(3.20)

Recall that all pairwise robots are assumed to be initially collision-free, i.e.
∆x2

i,j ≥ R2
ij , thus Eq. (3.19) holds true at all times for any given σ ∈ [0, 1]

since Pr
(

∆xi,j ∈ Ωi,j ∩ Ωu0

i,j

)
= 1 under one possible solution of joint control

inputs u = u0 that leads to ẋi− ẋj = 0. More generally, as the value of ||ẋi− ẋj ||
grows from 0 with other value of u 6= u0, the corresponding (d − 1)−sphere
of Ωu

i,j(∆xi,j) in Eq. (3.18) will continuously shift from the origin and gradually
intersect with the bounding box of Ωi,j(∆xi,j) = supp(Ti,j) in Eq. (3.18). This

leads to Pr
(

∆xi,j ∈ Ωi,j∩Ωu
i,j

)
continuously decrease from 1 to 0. Hence for any

given value σ ∈ [0, 1], it is always feasible to solve for at least a particular pairwise

ui,uj such that Pr
(

∆xi,j ∈ Ωi,j ∩ Ωu
i,j

)
= σ, or Pr

(
∆xi,j ∈ Ωi,j ∩ Ωu

i,j

)
> σ

so that Eq. (3.19) holds true. This pairwise ui,uj could then serve as a hyperplane
dividing the corresponding subspace of joint control space of u with one side in the
form of Eq. (3.14) rendering the satisfying probabilistic safety between robot i, j.
And by repeatedly updating the hyperplane at each time step in Eq. (3.14), the con-
strained step-wise controllers ui,uj ensure the probabilistic safety is guaranteed at
all times given the forward invariance in Eq. (3.13). It is then straightforward to ex-
tend to all pairwise inter-robot collision avoidance constraints and thus concludes
the proof.

Computation of PrSBC With the proved existence of PrSBC from Theorem 3, we
will provide computation of PrSBC that yields the solution in Eq. (3.24). Lets con-
sider inter-robot collision avoidance first. Given any confidence level σ ∈ [0, 1],
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the equivalent chance constraint of Pr(ui,uj ∈ Bsi,j(x)) ≥ σ in Eq. (3.15) and its
re-written form in Eq. (3.16) can be transformed into a deterministic linear con-
straint over pairwise controllers ui,uj in the form of Eq. (3.14). While it is com-
putationally intractable to get closed form solutions from Eq. (3.16), we obtain an
approximate solution by considering the condition on each individual dimension
∆xli,j ∈ {∆x1

i,j , . . . ,∆xdi,j} ⊂ Rd of ∆xi,j , ∀l = 1, . . . , d for Eq. (3.16). Hence,
we introduce a sufficiency condition to Eq. (3.16) in each dimension as follows, so
that ensuring Eq. (3.21) =⇒ Eq. (3.16).

Pr
(

(∆xli,j)
2 + 2 ·

(Gi,jui,j)l + ∆F li,j
γ

∆xli,j ≥ R2
ij −Bl

i,j

)
≥ σ (3.21)

where (Gi,jui,j)l = (Giui − Gjuj)l ∈ R and ∆F li,j = F li − F lj ∈ R
denote the lth element of Gi,jui,j ∈ Rd×1 and ∆Fi,j ∈ Rd×1 respectively.
Bl
i,j = − 2

γ max ||∆wl
i,j || · ||∆xli,j || ∈ R with ∆wl

i,j ∈ R as the lth element
in ∆wi,j ∈ Rd. To simplify the discussion we assume piece-wise Gi, Gj ∈
Rd×m, Fi, Fj ∈ Rd×1 in Eq. (3.1) can be approximated by Taylor theorem at points
x̂i, x̂j respectively. Then, we have equivalent condition of Eq. (3.21) as follows

Pr
(

∆xli,j ≤ −
(Gi,jui,j)l + ∆F li,j

γ
−Dl

i,j OR ∆xli,j ≥ −
(Gi,jui,j)l + ∆F li,j

γ
+Dl

i,j

)
≥ σ

(3.22)
where

Dl
i,j =

√(
(Gi,jui,j)l + ∆F li,j

)2
γ2

+R2
ij −Bl

i,j

Recall the finite support of ∆xi,j with its symmetric trapezoid distribution Ti,j in
Eq. (3.18), we can find alternative condition to enforce either of the condition in
Eq. (3.22), e.g. Pr(∆xli,j ≤ ·) ≥ σ or Pr(∆xli,j ≥ ·) ≥ σ so that Eq. (3.22) is

definitely lower bounded by σ. We assume σ > 0.5 and denote el,1i,j = Φ−1(σ)

and el,2i,j = Φ−1(1− σ) with Φ−1(·) as the inverse cumulative distribution function
(CDF) of the random variable ∆xli,j = xli−xlj in Eq. (3.16) along each lth dimen-

sion. We have σ > 0.5 =⇒ el,1i,j > el,2i,j . Thus, we derive a formal sufficiency
condition for Eq. (3.22) as follows.

∃l = 1, . . . , d : −2eli,j(Gi,jui,j)l/γ ≤ (eli,j)
2 −R2

ij +Bl
ij + 2eli,j∆F

l
i,j/γ
(3.23)

where

eli,j =


el,2i,j , el,2i,j > 0

el,1i,j , el,1i,j < 0

0, el,2i,j ≤ 0 and el,1i,j ≥ 0
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Note that eli,j = 0 implies the two robots i and j overlap along the lth dimension,
e.g. two drones flying to the same 2D locations but with different altitudes. As
it is assumed any pairwise robots are initially collision free and from the forward
invariance property discussed above, eli,j = 0 only happens along at most d − 1
dimensions. To that end, we can formally construct the PrSBC as follows in the
closed form of Eq. (3.14), by adding up the linear constraints in Eq. (3.23) for all
d dimensions.

Sσu = {u ∈ RmN |−2eTi,j(Giui−Gjuj)/γ ≤ ||ei,j ||2−d·R2
ij+Bij+2eTi,j∆Fi,j/γ, ∀i > j}

(3.24)
where ei,j = [e1

i,j , . . . , e
d
i,j ]

T ∈ Rd×1 and Bij = Σd
l=1B

l
ij . This invokes a set of

pairwise linear constraints over the robot controllers such that the inter-robot proba-
bilistic collision avoidance in Eq. (3.5) holds true at all times. Note the PrSBC con-
straint in Eq. (3.24) is a conservative approximation of Eq. (3.23) by adding up the
constraints for each dimension, and therefore guarantee Pr(ui,uj ∈ Bsi,j(x)) ≥ σ.

Remark 1. For other forms of distribution than uniform but with finite support for
the noise models, the only change is the computation of inverse CDF to specify
different el,1i,j , e

l,2
i,j and the rest of the derivations of PrSBC still holds and ensure

chance-constrained safety. For Gaussian distribution with infinite support, we can
still compute a finite support based on the corresponding inverse CDF from σ for
∆xi,j at each dimension.

Proposition 4. PrSBC for Robot-Obstacle Collision Avoidance: Consider the dy-
namic obstacle model and the PrSBC for pairwise robots in Eq. (3.24), the PrSBC
for robot-obstacle collision avoidance with a given confidence level σo ∈ [0, 1] can
be defined as follows.

Sσou = {u ∈ RmN | − 2e′Ti,kGiui/γ ≤ −2e′Ti,kûk/γ + ||e′i,k||2 − d ·R2
ik

+Bik + 2e′Ti,kFi/γ,∀i, k}
(3.25)

where the intermediate variables of e′i,k, Bik are computed the same way as for
inter-robot case Eq. (3.24).

Proposition 5. PrSBC in Eq. (3.24) can be considered as a generalized SBC when
the dynamics model in Eq. (3.1) is deterministic and without any uncertainty, i.e.
w,v = 0. In this case, we have ei,j = ∆xi,j = ∆x̂i,j = x̂i − x̂j and Bij = 0
in Eq. (3.24), and then it degenerates to the constraint in Eq. (3.12) same as SBC
([29]).

Proposition 6. Worst-case Collision Avoidance: when confidence level is set to
be σ = 1, the PrSBC in Eq. (3.24) hence leads to the worst-case driven collision
avoidance with ei,j specified by the boundary of finite support of ∆xi,j , yielding
most conservative motions of u for all of the robots.
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3.4 Optimization-based Controllers with Probabilistic
Safety

The constrained control space specified by PrSBC in Eq. (3.24) and (3.25) ensures
the forward invariance of probabilistic safety in Eq. (3.13). Hence, we can re-
formulate the original QP problem in Eq. (3.6) with the PrSBC constraints. The
probabilistic safety controller can thus obtained by minimally modifying the orig-
inal controller u∗ that the system wished to execute. Formally, we can write this
as:

u = arg min
u∈RmN

N∑
i=1

‖ui − u∗i ‖
2 (3.26)

s.t. u ∈ Sσu
⋂
Sσou , ‖ui‖ ≤ αi, ∀i = 1, . . . , N (3.27)

As mentioned the PrSBC constraints Eq. (3.27) invoke a set of linear
constraints over robot controllers and hence the probabilistic safety controller
Eq. (3.26) can be solved efficiently in real-time with guaranteed specified proba-
bility of safety. The resulting safe controller per time step ensures for all t ∈ [0, τ ],
u ∈ Sσu

⋂
Sσou , then our approach guarantees chance constrained safety along the

entire time horizon [0, τ ].

Remark 2. (Probability of collision for the full trajectory) Denoting nt as the
total number of time steps during execution, the probability of collision avoidance

between robot i, j for the whole trajectory is lower bounded as Pr
( nt⋂
t=1

(xti,x
t
j ∈

Hsi,j(t))
)

=
∏nt
t=1Pr(xti,x

t
j ∈ Hsi,j(t)) ≥ σnt . Here we assume the probability

of collision avoidance at each time step is independent for practical purposes as
done in [20]. In theory, by selecting σ = exp( lnσall

nt
) one could achieve a lower

bounded joint collision free threshold of σall for the full trajectory. However, it
could be over-conservative in the long run, and hence we use step-wise threshold
to construct local collision constraints. An alternative is to impose discounting
factor β < 1 so that the penalty of future violation probabilities is relaxed, i.e. step-
wise threshold σ renders the same bounded joint threshold for the whole trajectory∑nt

t=1(β)tPr(xti,x
t
j ∈ Hsi,j(t)) ≥ σ if given discounting factor β > 0.5 (see [20]).

While the controller in Eq. (3.26) is in a centralized setting, we can also derive
a decentralized version of the PrSBC and the controllers. The mechanism is similar
to [29] which was originally applied to deterministic SBC.

Consider the PrSBC in Eq. (3.24) and denote bσij = ||ei,j ||2 − d ·R2
ij +Bij +

2eTi,j∆Fi,j/γ. We can then separate the linear pairwise PrSBC constraint between
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robot i and j in the following two inequalities:

−2eTi,jGi/γ · ui ≤ pij/(pij + pji) · bσij , 2eTi,jGj/γ · uj ≤ pji/(pij + pji) · bσij
(3.28)

Here pij , pji ∈ [0, 1] represents the responsibility that each of the two robot takes
regarding satisfying this pairwise probabilistic safety constraint. The knowledge
of pij , pji can be either predefined and assumed known by all robots, in which
case each robot does not need to communicate and simply avoid collision in a
reciprocal manner, or can be communicated locally between pairwise robots in a
more cooperative manner. Note that Eq. (3.28) is a sufficient condition of Eq.
(3.24) and hence still guarantees the required probabilistic safety.

With such decentralized constraints, we have the decentralized probabilistic
safety controller for each robot i as follows.

ui = arg min
ui∈Rm

‖ui − u∗i ‖
2 (3.29)

s.t. ui ∈ Sσui
⋂
Sσoui , ‖ui‖ ≤ αi (3.30)

with Sσui = {ui ∈ Rm| − 2eTi,jGi/γ · ui ≤ pij/(pij + pji) · bσij , ∀j ∈ Ni} and
Sσoui = {ui ∈ Rm| − 2e′Ti,kGiui/γ ≤ −2e′Ti,kûk/γ + ||e′i,k||2 − R2

ik + Bik +

2e′Ti,kFi/γ,∀k ∈ K}. Ni denotes the set of neighboring robots around robot i.
This decentralized PrSBC controller does not require centralized optimization

process as for Eq. (3.26), but may thus lead to more conservative motion of robots
or infeasible solution in extreme cases. In this case the robots will simply decel-
erate to zero velocities to ensure safety, which may cause the deadlock preventing
the robots from achieving the goals. Some deconfliction policies for deterministic
SBC can thereby be employed, such as the one suggested in [102]. Readers are
referred to [102] for detailed solutions.

3.5 Results

To evaluate the performance of our PrSBC method with optimization-based con-
trollers, we designed four sets of experiments in Matlab simulation and a near-
realistic simulation environment: i) a simulation example using 6 simulated mobile
robots with unicycle dynamics to show inter-robot probabilistic collision avoidance
in a centralized manner, ii) a simulation example using 7 simulated mobile robots
with unicycle dynamics to show inter-robot and robot-obstacle probabilistic colli-
sion avoidance in a decentralized manner, iii) 50 random trials of simulations with
various number of mobile robots to show the guaranteed probabilistic safety, and
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(a) Time Step = 234 (PrSBC) (b) Time Step = 675 (PrSBC) (c) Time Step = 2037 (PrSBC)

(d) Minimum true inter-robot
distance

(e) Time Step = 234 (SBC) (f) Time Step = 669 (SBC)

(g) Time Step = 2015 (SBC)

(h) Minimum inter-robot probabilistic
safety

Figure 3.1: Simulation example of 6 robots swapping positions while maintain the collision-free
confidence level σ = 0.9. Each labeled robot is covered with a red bounded error box implying the
bounded real-time measurement uncertainty. The dashed black circle on each robot represents the
real-time measurement of the robot and solid circle with the robot color as the ground-truth robot
position surrounded by the safety radius. Labels in red are the final goal positions for the robots.
Robot trajectories are covered by points in the same color from all past noisy measurements. (a)-(c)
and (e)-(g) are results from our proposed PrSBC and SBC [29] respectively, with numerical results
shown in (d) and (h).
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(a) Time Step = 169 (b) Final Configurations

(c) Minimum true inter-distance (d) Minimum probabilistic safety

Figure 3.2: Decentralized PrSBC with 7 robots. Robots 6 and 7 marked in black serve as passive
moving obstacles without interaction to other robots.

iv) an experiment in a near-realistic simulation environment [103] with 11 simu-
lated drones driven by Unity physical engine to demonstrate collision avoidance
performance.
Simulation Example: Fig. 3.1 demonstrates the first set of simulations performed
on a team of N = 6 mobile robots constrained by the unicycle dynamics using
our PrSBC from Eq. (3.26) and the comparing deterministic SBC from [29], with
both in centralized setting. We employ nonlinear inversion method [99] to map the
desired velocity to the unicycle dynamics of mobile robots without compromising
the safety guarantee. All of the robots employ the gradient based controller u∗i =
−Kp(xi − xi,goal) to swap their positions with the robot on the opposite side, e.g.
robot 1 with 2, 3 with 4, and 5 with 6 shown in Fig. 3.1a. Locations indexed in red
are the goal positions for the corresponding robots. The robot safety radius is set
to be Ri = 0.2m and has bounded uniformly distributed localization error denoted
by the red error box accounting for the safety radius. At each time step, each robot
only has access to the noisy measurement marked by dashed black circle covering
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each robot. Maximum velocity limit is 0.1m/sec for the robots and robots motion is
disturbed by randomly generated bounded noise with magnitude up to 0.07m/sec.
The inter-robot collision-free confidence level σ set to be 0.9.

As the SBC [29] is designed for a deterministic system, here it takes the noisy
measurement of the robots directly as the robot states to compose the SBC for col-
lision avoidance controller. We observe from Fig. 3.1f that collisions occur (robot
1 and 5) due to uncertainty in measured robot states as well as the motion dis-
turbances. While with our PrSBC controller in Eq. (3.26), robots safely navigate
through the work space (Fig. 3.1d) (but not too conservatively as it still allows in-
teraction between bounding error box shown in Fig. 3.1b for probabilistic safety).
In particular, results in Fig. 3.1h indicates our PrSBC method successfully ensures
the satisfying probabilistic safety (σ = 0.9). This is computed by the minimum ra-
tio between non-overlapping area and the whole area within each robot’s bounding
error box shown in red.
Scenario with Dynamic Obstacles: To account for dynamic obstacles, we add
robot 7 to the previous scenario and make robot 6 and 7 serve as the non-
cooperating passive moving obstacles. Fig. 3.2 highlights our observations from
this experiment. We assume robots can identify them as obstacles instead of coop-
erating robots. With the same set-up except for the two obstacles, we demonstrate
the performance of our controller based on decentralized PrSBC in Eq. (3.29) and
set the inter-robot, robot-obstacle collision-free confidence σ = σo = 0.8 to en-
courage more flexible motion. In the decentralized settings, robots are set to as-
sume equal responsibility in collision avoidance, i.e. pij = pji = 0.5 in Eq. (3.28)
for each robot, and thus no communication is needed between robots. Results in
Fig. 3.2c and 3.2d indicate the inter-robots and robot-obstacle are collision free and
with a satisfying probabilistic safety close to σ = 0.8 (thus not overly conserva-
tive). From Fig. 3.2b it is noted that robot 5 with light blue trajectory took a large
detour before reaching the goal position. This is caused by the non-cooperating
obstacle robot 6 and 7 in the way, where the PrSBC for obstacles Eq. (3.25) forces
the robot 5 to obey the more restrictive constraints to adapt to the momentum in
order to guarantee the satisfying probabilistic collision avoidance performance.
Quantitative Results: We performed 50 random trials with different number of
robots under a required confidence σ = 0.9 to validate the effectiveness of our
decentralized PrSBC controller in presence of random measurement and motion
noise. Fig. 3.3a and 3.3b shows that the robots are always safe and satisfy the
probabilistic safety guarantee using PrSBC.
Experimental Results: Finally, as shown in Fig. 3.4, we carried out experiments
with 11 simulated drones in AirSim [103], an open-source near-realistic simulation
environment. The primary task for the drones is to sequentially form the letters of
M-S-F-T while avoiding collisions with each other with the minimum probability
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(a) Minimum true inter-distance (b) Minimum probabilistic safety

Figure 3.3: Quantitative results summary of PrSBC from 50 random trials.

(a) Drones forming ”M” in
AirSim

(b) Drones forming ”S” in
AirSim

(c) Minimum true inter-robot distance

(d) Drones forming ”F” in
AirSim

(e) Drones forming ”T” in
AirSim

(f) Average Computation Time per
Robot

Figure 3.4: AirSim [103] experiment snapshot with 11 drones using our PrSBC for collision
avoidacne.

of 0.9. Each of the drones has the pre-defined target position in the letter forma-
tion and they execute the gradient based controller to move towards it. The safety
radius between pairwise drones is 1m and the state estimation noise is between
[−0.2m, 0.2m]. We then employ our PrSBC controller to compute the linear ve-
locity for each drone and feed it to the drone controller in the simulator. During
the task, no collisions are observed as shown in Fig. 3.4c. The simulations are on
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personal laptop with Intel Core i7-8750H CPU of 2.20 GHz. The average com-
putation time per robot is below 2ms as reported in Fig. 3.4f, demonstrating the
efficiency of our PrSBC in real-time computation.

3.6 Conclusions and Discussions

We presented a probabilistic approach to address chance constrained collision
avoidance for a system of multiple robots in real-world settings. We address the
complexities that arise due to uncertainty in perception and incompleteness in mod-
eling the underlying dynamics of the system. The key idea is to induce probabilistic
constraints via safety barriers, which are then used to minimally modify an existing
controller via a constrained quadratic program. We formally define Probabilisitc
Safety Barrier Certificates that guarantee forward-invariance in time continuously
and also can be decomposed so as to enable de-centralized computation of the safe
controllers. Note that the proposed safe control method in this chapter is step-
wise and reactive as other control barrier function based methods (e.g. [28, 29]),
thus could be sub-optimal in terms of optimality for the entire mission period. Al-
though the minimized deviation from a nominal controller in context of quadratic
programming could reflect the minimal invasion nature to the task-prescribed robot
behaviors, the step-wise optimization-based safe control in Eq. (3.26) does not op-
timize the primary task directly over the entire trajectories of the robots. In order
to derive optimal and safe multi-robot behaviors over the entire mission time, one
could combine planning algorithms or Model Predictive Control (MPC) frame-
works with our PrSBC constraints to search for an optimal sequence of control
actions within the safe envelope of robot controllers defined by PrSBC. In Chap-
ter 4, we will discuss the example that optimizes a particular objective function
over a finite time horizon while ensuring safety and task performance.

Future work entails extensions to model-based and model-free controllers
trained via Reinforcement Learning and implementation to solve real-world tasks,
such as Automatic Collision Avoidance System for manned and unmanned aircraft.
We plan to employ variants of CBF such as ECBF [31] to explicitly handle higher
relative degree system. On the other hand, extending the expressivity of the PrSBC
formulation with different forms of the safe set hs(x) to address other uncertainty-
aware safety consideration beyond collision avoidance is also an important future
direction, e.g. limiting the number of drones within a volume, and adapting to
temporal safety tasks using signal temporal logic (STL) formulations.
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Chapter 4

Sample-efficient Safe Learning
for Control

Reinforcement Learning (RL) and continuous nonlinear control have been suc-
cessfully deployed in multiple domains of complicated sequential decision-making
tasks. However, given the exploration nature of the learning process and the pres-
ence of model uncertainty, it is challenging to apply them to safety-critical control
tasks due to the lack of safety guarantee. In Chapter 3 we have discussed how
to provide safety assurance for autonomous systems under given uncertainty mod-
els. When the uncertainty information is unknown beforehand or overly conser-
vative using prior knowledge, e.g. system dynamics is only partially modelled,
then one would expect robots to safely explore and interact with the environment
to learn the unknown dynamics and simultaneously improve task performance, of-
ten known as safe Reinforcement Learning (RL) problem [32]. While combining
control-theoretical approaches with learning algorithms has shown promise in safe
RL applications, the sample efficiency of safe data collection process for control is
not well addressed.

In this chapter, we propose a provably sample efficient episodic safe learning
framework for online control tasks that leverages safe exploration and exploitation
in an unknown, nonlinear dynamical system. In particular, the framework 1) ex-
tends control barrier functions (CBF) in a stochastic setting to achieve provable
safety under uncertainty during model learning and 2) integrates an optimism-
based exploration strategy to efficiently guide the safe exploration process with
learned dynamics for near optimal control performance. We provide formal anal-
ysis on the episodic regret bound against the optimal controller and probabilistic
safety with theoretical guarantees.
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4.1 Safe Learning for Control Problem

Consider the following partially unknown discrete-time control-affine system dy-
namics with state x ∈ X ⊂ Rn and control input u ∈ U ⊂ Rm for a discrete time
index h ∈ N

xh+1 = f̂(xh, uh) + d(xh, uh) + εh, εh ∼ N (0,Σσ) (4.1)

where f̂ : X × U 7→ Rn is the known nominal discrete dynamics affine in the
control input as f̂(xh, uh) = F̂ (xh) + Ĝ(xh)uh. We assume F̂ : Rn 7→ Rn, Ĝ :
Rn 7→ Rn×m are locally Lipschitz continuous and the relative degrees of the nom-
inal model and the actual system are the same, which are common assumptions
as in [11, 39]. d : X × U 7→ Rn denotes the unmodelled part of the system
dynamics which is unknown, and εh is i.i.d noise sampled from a known Multi-
variate Gaussian distribution with the covariance matrix Σσ = diag(σ2

1, . . . , σ
2
n),

i.e., σ1, . . . , σn are known to the learner. For notation simplicity, we denote the
stochastic state transition as P (·|x, u).

The unmodelled part d(x, u) could represent state (action)-dependent exter-
nal motion disturbances [38] or system model error due to parameter mismatch
[11, 12]. With the partially unknown system dynamics, in order to control the
system to achieve some tasks and also satisfy some safety constraints, we need
data-driven approaches to safely learn the unknown part of the dynamical system
d(x, u) by collecting data as the system executes the task. In particular, we assume
that d(x, u) is modelled by the following nonlinear model, d(x, u) := W ?φ(x, u)
where φ : X × U 7→ Rr is a known nonlinear feature mapping and the linear
mapping W ? ∈ Rn×r is the unknown system parameters that need to be learned.
Such model has been studied in [37] for unconstrained online control and in [104]
for pure system identification. The model is flexible enough to describe the classic
linear dynamical systems, nonlinear dynamical systems such as high order polyno-
mials, and piece-wise linear systems [104].

The control task is described by a cost function. Given an immediate cost
function c : X ×U 7→ R+, the primary task-prescribed objective can be defined as

min
π∈Π

Jπ(x0; c,W ?) = E
[H−1∑
h=0

c(xh, uh)|π, x0,W
?

]
(4.2)

where x0 ∈ X is a given starting state and Π is some set of pre-defined feasible
controllers. Each controller (or a policy) is a mapping π ∈ Π : X 7→ U . We denote
Jπ(x; c,W ) as the expected total cost of a policy π under cost function c, initial
state x0, and the dynamical system in Eq. (4.1) whose d(x, u) is parameterized
by W . To achieve optimal task performance, we need to learn the unmodelled
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d(x, u) by taking samples to approximate the true linear mapping W ?. On the
other hand, simply optimizing the cost function is not enough for safety critical
application. Below we consider a specific formulation that uses Control Barrier
Functions (CBF) [28] to enforce safety constraints during learning.

4.2 Discrete-time Control Barrier Functions For Gaus-
sian Dynamical Systems

To ensure safe control and learning, we introduce CBFs in this section that are
specialized to discrete-time Gaussian stochastic dynamics and prove the forward
invariant safety guarantee in a stochastic setting. Note that most existing contin-
uous or discrete-time CBFs are defined only for deterministic system, e.g. [11,
12, 28, 38, 39, 105]. For stochastic system, we introduce a new CBF definition
and show that it satisfies forward invariance with high probability where the high
probability is corresponding to the system Gaussian noise (Proposition 8).

Consider a stochastic Gaussian discrete-time dynamics described in Eq. (4.1).
A desired safety set x ∈ S ⊂ X can be denoted by the following safety function
hs : Rn 7→ R

S = {x ∈ Rn : hs(x) ≥ 0} (4.3)

Formally, a safety condition is forward invariant if xh=0 ∈ S implies xh ∈ S for
all h > 0 with some designed controller u ∈ U . Control barrier functions (CBF)
[28] are often used to derive such designed controllers that enforce the forward
invariance of a set of the system state space. Due to the stochasticity of the dynam-
ics, we need to take the noise into consideration and thus we define a stochastic
discrete-time Control Barrier Function hs(·) if the following condition holds.

Definition 7. [Discrete-time Control Barrier Function under Known Gaussian Dy-
namics] Assume hs(·) is L-Lipschitz continuous when x ∈ X is bounded. Given
δ ∈ (0, 1) and horizon H , let S be the 0-superlevel set of hs : Rn → R which
is a continuously differentiable function. We call hs(·) a stochastic discrete-time
control barrier function (CBF) for dynamical system Eq. (4.1) if there exists a
η ∈ (0, 1), such that for all time steps h = 0, . . . ,H − 1, given any x ∈ S:

sup
u∈U

[
hs
(
f̂(x, u) + d(x, u)

)
− Lσ̄

√
2n ln

(
Hn

δ

)
− hs(x)

]
≥ −ηhs(x) (4.4)

where σ̄ = max{σ1, . . . , σn}. Note that different from conventional CBF [12,
28] that is defined with respect to deterministic transition, the above definition takes
the stochasticity into consideration. Also note that when σ̄ → 0, i.e., the Gaussian

38



Section 4.2. Discrete-time Control Barrier Functions For Gaussian Dynamical
Systems

dynamical system in Eq. (4.1) becomes a near deterministic system, then the above
definition converges to the usual discrete-time CBF definition [12, 30]. We now
show that under Definition 7, the state S is forward invariant with probability at
least 1− δ.

Proposition 8 (Forward Invariant with High Probability). Consider a control bar-
rier function hs(·) in Definition 7. Given x0 ∈ S, consider any policy π : X → U
such that at any state x, this policy outputs an action u = π(x) that satisfies
the constraint Eq. (4.4). Then executing π to generate a trajectory starting at x0:
τ = {x0, u0, . . . , xH−1, uH−1}, with probability at least 1−δ we have hs(xh) ≥ 0
for all h ∈ [H], i.e., all states on the trajectory belong to the safe set S .

Proof. For notation simplicity, let us denote f(x, u) := f̂(x, u) + d(x, u). First
consider the event: ∃h ∈ [H], i ∈ [n] such that εt[i] ≥ p. Via union bound and the
normal distribution’s property, we have:

P (∃h ∈ [H], i ∈ [n], s.t., εt[i] ≥ p) ≤ Hn exp(−p2/(2σ̄2)).

Let us set the failure probability to be δ, i.e., Hn exp(−p2/(2σ̄2)) = δ. Solve for

p and we indeed have p := σ̄
√

2 ln
(
Hn
δ

)
. Below we conditioned the event that for

all h ∈ [H] and i ∈ [n], we have |εh[i]| ≤ p. Note that this event happens with
probability at least 1− δ.

Due to the Lipschitz assumption with a Lipshcitz constant L and the assump-
tion that hs(·) is differentiable, we have that for the system xh+1 = f(xh, uh) + εh
at any time h ∈ [H],

hs(xh+1) = hs(f(xh, uh)) +∇hs(ξ)>εh ≥ hs(f(xh, uh))− Lσ̄

√
2n ln

(
Hn

δ

)
Since the control policy satisfies the control barrier function constraint in Eq. (4.4),
we must have:

hs(xh+1)−hs(xh) ≥

[
hs(f(xh, uh))− Lσ̄

√
2n ln

(
Hn

δ

)
−hs(xh)

]
≥ −ηhs(xh)

Namely, we have:

hs(xh+1) ≥ (1− η)hs(xh) ≥ (1− η)h+1hs(x0) ≥ 0,

under the condition that hs(x0) ≥ 0. The above argument holds for all h ∈ [H]
which thus concludes the proof.
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Remark 3. In general for nonlinear function hs(·) and nonlinear dynamical sys-
tem, the constraint in Eq. (4.4) is nonlinear with respect to the control u. Similar
to [12], one special case have been considered where hs(·) is linear with respect
to x (affine barrier functions), and both f̂ and d are affine control functions in the
form of g1(x) + g2(x)u, though our method could apply to more general barrier
functions. In this case, the constraint in Eq. (4.4) becomes linear with respect to u.

Proof. Here we discuss how to derive the control constraints with nonlinear con-
trol barrier function hs(·) from Eq. (4.8) that fulfills Eq. (4.4) (and hence fulfills
Proposition 8). Recall the constraint Eq. (4.8) as follows (we have uh = π(xh)).

hs
(
f̂(xh, uh) + d(xh, uh)

)
− Lσ̄

√
2n ln

(
Hn

δ

)
− hs(xh) ≥ −ηhs(xh) (4.5)

Given that both the known nominal discrete dynamics f̂ and the unknown part
d are affine in control as f̂(xh, uh) = F̂ (xh) + Ĝ(xh)uh and d(xh, uh) =
g1(xh) + g2(xh)uh, where F̂ , Ĝ, g1, g2 are assumed locally Lipschitz con-
tinuous. Then with the continuously differentiable function hs(·), we have
hs
(
f̂(xh, uh) + d(xh, uh)

)
− hs(xh) = L∆

F̂+g1
hs(xh) + L∆

Ĝ+g2
hs(xh)uh and

hence Eq. (4.5) can be re-written as

L∆
F̂+g1

hs(xh) + L∆
Ĝ+g2

hs(xh)uh ≥ −ηhs(xh) + Lσ̄

√
2n ln

(
Hn

δ

)
(4.6)

where L∆
F̂+g1

hs(xh) and L∆
Ĝ+g2

hs(xh) are discrete-time Lie-derivatives of hs(xh)

obtained through Taylor’s theorem along F̂ (xh) + g1(xh) and Ĝ(xh) + g2(xh)
respectively. To that end, the condition in Eq. (4.4) and Eq. (4.8) hold by enforcing
the linear control constraint Eq. (4.6) on uh. Thus, we conclude the proof.

4.3 Learning Objective

If we had knew the unmodelled dynamics d(·), i.e., the whole stochastic Gaussian
dynamical system in Eq. (4.1) is known, then the safe nonlinear control problem
can be modeled as follows:

min
π∈Π

Jπ(x0; c), (4.7)

s.t. hs
(
f̂(x, π(x)) + d(x, π(x))

)
− Lσ̄

√
2n ln

(
Hn

δ

)
− hs(x) ≥ −ηhs(x),

∀x ∈ X (4.8)
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Assume the above constrained optimization problem is feasible, and denote π? as
the optimal policy. Then, via Proposition 8, we know that with probability at least
1−δ, π? generates a trajectory whose states are all in the safe set S . However, as the
unmodelled part d(x, u) is initially unknown, we cannot directly solve the above
constrained optimization program using standard RL or MPC approaches. Instead
we need to learn d (more specifically, the unknown linear mapping W ? ∈ Rn×r)
online using data-driven approach for safety guarantee as well as cost minimiza-
tion.

In our episodic finite horizon learning framework, we start with some initial-
ization W 0 which is used to parameterize d0(x, u) := W 0φ(x, u) (we will discuss
conditions on W 0 in Section 4.4 that can ensure safety during the entire learning
process). At every episode t, the learner will propose a policy πt ∈ Π (probably
based on the current guess dt(x, u) with W t), execute πt in the real system to gen-
erate one trajectory {xt0, ut0, . . . , xtH−1, u

t
H−1} for H time steps; the learner then

incrementally updates model parameter toW t+1 using observations from all of the
past trajectories, and move to the next episode t + 1 starting from the same initial
state x ← x0. The ideal goal of the learner is to ensure that πt is safe (with high
probability) in terms of satisfying CBF constraint Eq. (4.4), and also optimize the
cost function over episodes:

RegretT :=

T−1∑
t=0

H−1∑
h=0

c(xth, u
t
h)−

T−1∑
t=0

Jπ
?
(x0; c) = o(T ) (4.9)

Namely, comparing to the best policy π? (i.e., the optimal solution of the con-
strained optimization program in Eq. (4.7) if assuming perfect model information),
the cumulative regret grows sublinearly with respect to the number of episodes T .
This goal implies that when T → ∞ in a long run, the average episodic cost in-
curred by the learner is the same as the episodic cost incurred by the best policy π?.
In other words, the policy generated with the learned dynamics model over time
performs as good as the optimal policy generated with the ground-truth dynamics
Eq. (4.1) in a long run.

To that end, the goal is to minimize the cumulative regret in Eq. (4.9) subject to
safety constraint in Eq. (4.8) at all times in each episode. Next, we will discuss how
to enforce such safety constraint with d learned online and provide the episodic safe
learning algorithm to achieve bounded regret in Eq. (4.9) with rigorous analysis.

4.4 Calibrated Model and Approximate Safety Guarantee

Due to the unknown d, our initial guess d0 using W 0 estimated from some pre-
collected data could be arbitrarily bad, and hence it is impossible to achieve safe
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learning while simultaneously optimizing the regret without further assumptions.
Note that ensuring small regret as Eq. (4.9) requires us to perform optimism-based
exploration (e.g., multi-armed bandits and PAC/no-regret learning in RL), while
ensuring safety under model uncertainty requires us to be conservative.* Intu-
itively, exploration via optimism and safety via conservativeness are contradict to
each other. While existing safe learning work often made the required standard
assumption that the prior model of d could yield initial safe policy to start the ex-
ploration process (e.g. [8, 11, 12, 38]), it is non-trivial to characterize the initial
uncertainty region over d to enforce safety guarantee for an optimism-based explo-
ration. Hence it is challenging to derive a safe exploration strategy with small regret
for efficient sampling and high control performance. In this work, we will first give
the assumption of a calibrated model W 0 that derives a reasonable initial estimate
of d, as typically assumed in [8, 12, 38, 39], and also we characterize the data pre-
collection to derive such W 0 that fulfills this assumption for safe optimism-based
exploration discussed in Section 4.5.

Given N triples (xi, ui, x
′
i)
N
i=1 with x′ ∼ P (·|x, u) as the set of pre-collected

initial training data , we can computeW 0— the initialization parameters of d(x, u)
via ridge linear regression under known feature mapping φ : X × U 7→ Rr:

W 0 = arg min
W

N∑
i=1

∥∥∥Wφ(xi, ui)− (x′i − f̂(xi, ui))
∥∥∥2

2
+ λ‖W‖2F (4.10)

where λ is a regularizer parameter and ‖W‖F is the Frobenius norm of the model
parameter matrix W ∈ Rn×r. Denote the initial empirical regularized covariance
matrix as

V0 =
N∑
i=1

φ(xi, ui)φ(xi, ui)
> + λI (4.11)

To initialize safe learning, the following assumption shows that by using polyno-
mially number of samples drawn from an appropriate distribution µ as the initial
training data, we will have d0(x, u) = W 0φ(x, u) as a reasonable good estimate of
d(x, u) = W ?φ(x, u) for all x, u ∈ X ×U (note that however we cannot guarantee
W 0 will be close to W ? in terms of `2 norm).

Assumption 9. (Calibrated model from pre-collected data) Fix a pair (ε, δ) with
ε, δ ∈ (0, 1). DrawN triples {xi, ui, x′i}Ni=1 from some distribution µ with xi, ui ∼
µ, x′i ∼ P (·|xi, ui), and set W 0 =

∑N
i=1(x′i − f̂(xi, ui))φ(xi, ui)

>V −1
0 with

*Achieving safety via conservative behavior is easy: the robot can stay still and it will be safe
during this episode, e.g. avoiding static obstacles for a mobile robot. However this does not optimize
the task’s cost function. From simple multi-arm bandit problems, it is not hard to show an example
where being conservative rather than optimistic fails to optimize the reward.
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V0 =
∑N

i=1 φ(xi, ui)φ(xi, ui)
> + λI . Then with probability at least 1 − δ, we

have:

∀x, u ∈ X × U ,
∥∥(W 0 −W ?)φ(x, u)

∥∥
2

= O(ε),

with polynomially number of samples, i.e., N scaling polynomially with respect to
the relevant parameters:

N = O
(r‖W ?‖2λ+ rσ̄2n+ ln(1/δ) + r2σ̄2

ε2
+
‖W ?‖2r2 ln(r/δ)

ε4

)
(4.12)

After deriving W 0, V0 from the initial data (xi, ui, x
′
i)
N
i=1, we can build the

initial confidence ball describing the uncertain region of W ? as follows:

Ball0 =
{
W :

∥∥(W −W 0)V0

∥∥
2
≤ β, ‖W‖2 ≤ ‖W ?‖2

}
(4.13)

where β is the confidence radius as β :=
√
λ‖W ?‖2 +

σ̄
√

8n ln(5) + 8d ln (1 +N/λ) + 8 ln(1/δ).

Proof. Here we discuss how to find the distribution µ using John’s ellipsoid [106]
for sampling initial training data and deriving W 0 that fulfills Assumption 9.

Denote Φ ∈ Rr×N where each column of Φ corresponds to the fea-
ture vector φ(x, u) for (x, u) ∈ X × U . Assume span(Φ) = r. Via
John’s theorem, denote B ⊂ X × U as the core set of John’s ellipsoid, and
µ as the corresponding sampling distribution with support on B defined by
µ = arg maxρ∈∆(X×U) ln det

(
Ex,u∼ρφ(x, u)φ(x, u)>

)
from John’s ellipsoid.

Then draw N triples D = {xi, ui, x′i}Ni=1 as pre-collected offline dataset with
xi, ui ∼ µ, x′i ∼ P (·|xi, ui), and compute the initialization W 0 =

∑N
i=1(x′i −

f̂(xi, ui))φ(xi, ui)
>V −1

0 with V0 =
∑N

i=1 φ(xi, ui)φ(xi, ui)
> + λI .

First note that we can compute the exact difference between the least square
solution W 0 and W ?:

W 0 −W ? = −λW ? (V0)−1 +

N∑
i=1

εiφ(xi, ui)
>V −1

0 .

Continue, we have∥∥∥(W 0 −W ?)V
1/2

0

∥∥∥
2
≤
∥∥∥λW ?V

−1/2
0

∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

εiφ(xi, ui)
>V
−1/2

0

∥∥∥∥∥
2

≤
√
λ‖W ?‖2 + σ̄

√
8n ln(5) + 8 ln (det(1 + V0/λ)) + 8 ln(1/δ)

≤
√
λ‖W ?‖2 + σ̄

√
8n ln(5) + 8r ln (1 +N/λ) + 8 ln(1/δ)︸ ︷︷ ︸

:=β
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Denote Σ = Ex,u∼µφ(x, u)φ(x, u)>. Via matrix Bernstein’s inequality, we get
that with probability at least 1− δ, for any x with ‖x‖2 ≤ 1,∣∣∣∣∣x>

(
N∑
i=1

φ(xi, ui)φ(xi, ui)
>/N − Σ

)
x

∣∣∣∣∣ ≤ 2 ln(8r/δ)

3N
+

√
2 ln(8r/δ)

N
:= ε.

Thus we will have that for any x with ‖x‖2 ≤ 1 and with the standard assumption
of bounded norm ‖W ?‖2 ≤W :

x>(W 0 −W ?)V0(W 0 −W ?)>x ≥ x>(W 0 −W ?)(ΣN + λ)(W 0 −W ?)>x− 2εNW,

which means that:∥∥∥(W 0 −W ?)(Σ + λ/N)1/2
∥∥∥2

2
≤β2/N + 2Wε

≤λW
2

N
+
σ̄2(n+ r ln(1 +N/λ+ ln(1/δ))

N
+

2W
√

ln(8r/δ)√
N

For any x, u, we have:∣∣(W 0 −W ?)φ(x, u)
∣∣2 ≤ ∥∥∥(W 0 −W ?)(Σ + λ/N)1/2

∥∥∥2

2

∥∥∥(Σ + λ/N)−1/2φ(x, u)
∥∥∥2

2

Note that for any x, we have:

x>Σ−1x ≥ x>(Σ + λ/N)−1x.

Using the John’s theorem, we get that:

φ(x, u)>(Σ + λ/N)−1φ(x, u) ≤ φ(x, u)>Σ−1φ(x, u) ≤ r

Hence, we have:

∣∣(W 0 −W ?)φ(x, u)
∣∣ ≤√(β2

N
+ 2Wε

)
r

≤
√
rλW 2

N
+

√
rσ̄2(n+ r ln(1 +N/λ+ ln(1/δ))

N
+

√
2Wr

√
ln(8r/δ)√
N

Now setting N = O
(
r‖W ?‖2λ+rσ̄2n+ln(1/δ)+r2σ̄2

ε2
+ ‖W ?‖2r2 ln(r/δ)

ε4

)
, we ensure

that: ∣∣(W 0 −W ?)φ(x, u)
∣∣ ≤ O(ε).

This concludes the proof.
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Section 4.4. Calibrated Model and Approximate Safety Guarantee

Then in the following we can show that for any W̃ ∈ Ball0, its prediction
d̃(x, u) = W̃φ(x, u) for any given x, u is close to the true prediction d(x, u) =
W ?φ(x, u) from W ?.

Lemma 10. Consider the setting in Assumption 9 and Ball0 defined in Eq. (4.13).
For all W̃ ∈ Ball0, we have that with probability at least 1− δ:

∀x, u ∈ X × U :
∣∣∣(W̃ −W ?

)
φ(x, u)

∣∣∣ ≤ O (ε) .

Proof. Starting from triangle inequality, we get:∣∣∣(W̃ −W ?)φ(x, u)
∣∣∣ ≤ ∣∣∣(W̃ −W 0)φ(x, u)

∣∣∣+
∣∣(W 0 −W ?)φ(x, u)

∣∣
≤
∥∥∥(W̃ −W 0)(Σ + λ/N)1/2

∥∥∥
2

∥∥∥(Σ + λ/N)−1/2φ(x, u)
∥∥∥

2

+
∥∥∥(W 0 −W ?)(Σ + λ/N)1/2

∥∥∥
2

∥∥∥(Σ + λ/N)−1/2φ(x, u)
∥∥∥

2

≤
∥∥∥(W̃ −W 0)(Σ + λ/N)1/2

∥∥∥
2

√
r +

∥∥∥(W 0 −W ?)(Σ + λ/N)1/2
∥∥∥

2

√
r

We also know that for any two W1 and W0 with ‖Wi‖2 ≤ W with i ∈ {1, 2}, we
have:

x>(W1 −W2)V0(W1 −W2)>x ≥ x>(W1 −W2)(ΣN + λ)(W1 −W2)>x− 2εNW,

which means that:∥∥∥(W 0 − W̃ )(Σ + λ/N)1/2
∥∥∥2

2
≤ β2/N + 2Wε,∥∥∥(W 0 −W ?)(Σ + λ/N)1/2

∥∥∥
2
≤ β2/N + 2Wε.

This implies that: ∣∣∣(W̃ −W ?)φ(x, u)
∣∣∣ ≤ 2

√
r
√
β2/N + 2Wε.

Now recall the setup of N , β, and ε in Assumption 9 and its proof, we conclude
the proof.

The calibrated initial model from pre-collected data (xi, ui, x
′
i)
N
i=1 and confi-

dence region Ball0 ensure that when we control our dynamical system using CBF
with any model W̃ ∈ Ball0, we can ensure safety update to O(ε).
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Chapter 4. Sample-efficient Safe Learning for Control

Theorem 11 (Policy for Approximate Safety Guarantee with Learned Dynamics).
Suppose the conditions in Assumption 9 hold. Consider any W̃ ∈ Ball0, and define
any policy πs : X 7→ U that satisfies the CBF constraint parameterized by W̃ , i.e.,

∀x ∈ X : πs(x) ∈ Ux :=

{
u : hs

(
f̂(x, u) + W̃φ(x, u)

)
− Lσ̄

√
2n ln

(
Hn

δ

)
≥ (1− η)hs(x)

}
(4.14)

Then with probability at least 1−δ, starting at any safe initial state hs(x0) ≥ 0, πs
generates a safe trajectory {x0, u0, . . . , xH−1, uH−1}, such that for all time steps
h ∈ [H], hs(xh) ≥ −O(Lεη ), where L is the Lipschitz constant of hs(·) under
bounded x ∈ X .

Proof. Start from Lemma 10, we know that for any W̃ ∈ Ball0, we have:∣∣∣(W̃ −W ?
)
φ(x, u)

∣∣∣ ≤ O(ε), ∀x, u ∈ X × U .

From Eq. (4.14) the policy selects action uh for all time steps h ∈ [H] such that:

hs(f̂(xh, uh) + W̃φ(xh, uh))− Lσ̄

√
2n ln

(
Hn

δ

)
≥ (1− η)hs(xh)

This means that for W ?, we have:

hs(xh+1) = hs(f̂(xh, uh) +W ?φ(xh, uh) + εh)

≥ hs(f̂(xh, uh) + W̃φ(xh, uh))− L
∥∥∥(W̃ −W ?)φ(xh, uh)

∥∥∥
2
− L‖εh‖2

≥ (1− η)hs(xh) + Lσ̄

√
2n ln

(
Hn

δ

)
− Lε− L‖εh‖2

≥ (1− η)hs(xh)− Lε ≥ (1− η)2hs(xh−1)− L (ε+ (1− η)ε)

≥ (1− η)h+1hs(x0)− L

η
ε

Using the initial condition that hs(x0) ≥ 0, we conclude the proof.

Thus we narrow down the search region for W ? and have W ? ∈ Ball0 with
probability at least 1 − δ. Later on, when we improve our model during iterative
learning, as long as we restrict our model W̃ to Ball0, we ensure that any policy that
satisfies the CBF constraint under W̃ (Eq. 4.14) is guaranteed to be approximately
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Section 4.5. Optimism-based Safe Learning for Control with Regret Analysis

safe in the sense of Theorem 11. Next we move to iterative learning where we aim
to search for a policy using an optimism-based algorithm that performs as good as
the best benchmark π? in the sense of minimizing regret defined in Eq. (4.9) and
subject to Eq. (4.14).

4.5 Optimism-based Safe Learning for Control with Re-
gret Analysis

To achieve no-regret performance for efficient safe learning for control, we lever-
age the LC3 algorithm developed in [37] for strategic exploration. However, the
original LC3 is designed for unconstrained optimization and hence not suitable
for safety-critical applications. Here we modify the policy selection step in LC3 to
take our CBF constraint Eq. (4.14) into consideration and thus ensures approximate
safety (i.e., Theorem 11). Meanwhile, similar to LC3, we also need to leverage the
principle of optimism in the face of uncertainty to achieve small regret and with
safety guarantee. We propose the following framework of Optimism-based Safe
Learning for Control (Algorithm 1) that seeks to minimize the cumulative regret
for optimal online control performance with safety guarantee.

Algorithm 1 Optimism-based Safe Learning for Control

Input: CBF hs, cost function c, initial data (xi, ui, x
′
i)
N
i=1, initial confidence re-

gion Ball0 withW 0,Σ0, number of training episodes T , horizonH , regularizer
λ, initial state x0

Output: a sequence of policies for t = 0, ..., T
1: for t = 0, . . . , T do
2: xt0 ← x0

3: Sample W̃t ∼ N (W t,Σ
−1
t ) # Thompson Sampling for

Exploration
4: πts ← arg minπ∈Π

W̃
Jπ(xt0; c, W̃t) # Safe MPC Planning

5: Execute πts to sample a trajectory τ t := {xth, uth, cth, xth+1}
H−1
h=0 #

Execution and Data Collection
6: W t+1,Σt+1 ← Update Ballt+1 # Model Update
7: end for
8: Return a sequence of policies for t = 0, ..., T

At the beginning of each episode t, given all previous trajectories, τ i =
{xi0, ui0, . . . , xiH−1, u

i
H−1, x

i
H} from i = 0 to t − 1, we perform ridge linear re-
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gression to find W t in Line 6, i.e.,

W t = arg min
W

N∑
i=1

(
Wφ(xi, ui)− (x′i − f̂(xi, ui))

)2

+
t−1∑
i=0

H−1∑
h=0

(
Wφ(xih, u

i
h)− (xih+1 − f̂(xih, u

i
h))
)2

+ λ‖W‖2F (4.15)

and we have the shape of the estimate region as

Σt = V0 +

t−1∑
i=0

H−1∑
h=0

φ(xih, u
i
h)φ(xih, u

i
h)> (4.16)

where we use the data from trajectories {τ i}t−1
i=0 and also the initial data

(xi, ui, x
′
i)
N
i=1 for computing Ball0. Then the confidence region of W is defined

as:

Ballt = Ball0 ∩
{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ β′

}
and the confidence radius parameter β′ is defined as:

β′ :=
√
λ‖W ?‖2 + σ̄

√
8n ln(5) + 8r ln (1 + (TH +N)/λ) + 8 ln(1/δ) (4.17)

LC3 [37] shows that with probability 1 − δ, for all t, W ? ∈ {W : ‖(W −
W t)Σ

1/2
t ‖2 ≤ βt}:

Lemma 12. (Confidence Ball [37, Proof of Lemma B.5]) For any 0 < δ < 1, it
holds with probability at least 1− δ that for all t,

W ? ∈ {W : ‖(W −W t)Σ
1/2
t ‖2 ≤ βt} (4.18)

and the confidence radius parameter βt is defined as:

βt :=
√
λ‖W ?‖2 + σ̄

√
8n ln(5) + 8r ln (1 + (tH +N)/λ) + 8 ln(1/δ) (4.19)

Under proved Assumption 9 we show that with probability at least 1−δ,W ? ∈
Ball0. Hence it is not hard to see that with probability at least 1 − 2δ, we have
W ? ∈ Ball0∩

{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt

}
:= Ballt regarding the intersection

of the confidence intervals:
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Proposition 13. [High Probability of Intersection of the Confidence Intervals]
Given the uncertainty regions W ? ∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt} (Lemma 12)

and Ball0 (Eq. 4.13) with the probability of Pr(W ? ∈ {W : ‖(W −W t)Σ
1/2
t ‖2 ≤

βt}) ≥ 1− δ and Pr(W ? ∈ Ball0) ≥ 1− δ, then for all t we have

Pr
(
W ? ∈ Ballt := Ball0 ∩

{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt

})
≥ 1− 2δ (4.20)

Proof. By definition,

Pr
(
W ? /∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt}

)
≤ δ

Pr (W ? /∈ Ball0) ≤ δ

Thus, we have

Pr
(
W ? ∈ Ballt := Ball0 ∩

{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt

})
=1− Pr

(
W ? /∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt} Or W ? /∈ Ball0

)
≥1− 2δ

which concludes the proof.

Hence for all episode t with the updated uncertain region Ballt where W ? lives
with high probability (Proposition 13) and any model W̃ ∈ Ballt, we are able to
construct the safe policy class Π based on the CBF constraint under W̃ (Eq. 4.14),
i.e., we denote Π

W̃
as follows:

Π
W̃

=

{
πs ∈ Π : ∀x ∈ X , πs(x) ∈

{
u : hs

(
f̂(x, u) + W̃φ(x, u)

)
−Lσ̄

√
2n ln

(
Hn

δ

)
≥ (1− η)hs(x)

}} (4.21)

With this now we select our model and policy optimistically at each episode t, i.e.,(
Wt, π

t
)

:= arg min
W̃∈Ballt

arg min
π∈Π

W̃

Jπ(xt0; c, W̃ ). (4.22)

Similar to [37], in face of uncertainty this optimization problem could be solved by
using reasonable approximation algorithms, e.g. Thompson Sampling [107] for a
W̃ and then computing the safe optimal policy with MPC planning oracle such as
MPPI [60] under W̃ subject to the safety constraint Eq. (4.21). In this way, we build
upon the achievable Bayesian regret bound for the Thompson sampling and the
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Chapter 4. Sample-efficient Safe Learning for Control

optimal control performance from MPC algorithms under the sampled dynamics
by W̃ , with approximate safety guarantee.

Then given Eq. (4.22) and conditioned on the high probability event thatW ? ∈
Ballt, and π? ∈ ΠW ? by definition of π?, we can easily show optimism in the sense
that:

Jπ
t (
xt0; c,Wt

)
≤ Jπ?(x0; c,W ?).

Below we briefly summarize the theorem of LC3 regret from [37] as follows.

Theorem 14. (LC3 Regret for finite dimensional, bounded features [37, Theorem
1.1]) Consider the finite dimension of φ as dφ and that φ is uniformly bounded
with ‖φ(x, u)‖2 ≤ B. The LC3 algorithm [37, Algorithm 1] enjoys the following
expected regret bound:

ELC3 [RegretT ] ≤ Õ
(√

dφ(dφ + dX +H)H3T · log

(
1 +

B2‖W ?‖22
σ2

))
(4.23)

where Õ(·) notation drops logarithmic factors in T and H.

By revisiting this result, we provide our main statement as follows.

Theorem 15. [Main Result] Set λ = σ̄2/‖W ?‖22. Our algorithm learns a sequence
of policies π0, . . . , πT−1 in T episodes, such that in expectation, we have:

E [RegretT ] ≤ Õ
(
H
√
Hr(r + n+H)T

)
.

Also with probability at least 1 − O(δ), we have that for all t ∈ [T ], h ∈ [H],
h(xth) ≥ −O(Lε/η).

Proof. For safety consideration, we proved that the sequence of policies learned
from our Algorithm 1 satisfying Eq. (4.21) are all approximately safe, i.e.
hs(xth) ≥ −O(Lε/η), with probability at least 1 − O(δ) for all t ∈ [T ], h ∈ [H]
(See Theorem 11 and Proposition 13).

For the regret analysis, our proof mainly follows Theorem 14 for LC3 algo-
rithm and its proofs in [37]. Readers are encouraged to refer to [37] for more
details. One key assumption that allows for regret bound in Eq. (4.23) lies in the
setting of optimism in the face of uncertainty that computes the optimal policy
from unconstrained policy class Π

πt := arg min
π∈Π

min
W∈Ballt

Jπ(xt0; c,W ) (4.24)
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Similarly, in our analysis, by considering the constrained policy class Π
W̃

defined
in Eq. (4.21) and our optimism setup in Eq. (4.22) analogous to Eq. (4.24), our
regret analysis naturally follows LC3 regret in Eq. (4.23) and enjoys the regret
bound with safety guarantee as follows

E [RegretT ] ≤ Õ
(
H
√
Hr(r + n+H)T

)
where Õ(·) notation drops logarithmic factors. Thus we conclude the proof of
Theorem 15.

4.6 Results

We evaluate our Optimism-based Safe Learning framework on two simulation plat-
forms: inverted pendulum and mobile robot navigation. In the implementation, we
use Random Fourier Features (RFF) [108] to represent the known feature mapping
φ(x, u), model predictive path integral control (MPPI) [60] to obtain control se-
quence under a learned system dynamics, and posterior reshaping with scaling of
posterior covariance for Thompson Sampling during exploration process. The cu-
mulative rewards (negative cost) are used for evaluations, i.e. the higher the better.

(a) (b) (c)

Figure 4.1: Performance curves of (a) cumulative rewards, (b) maximum theta angle, and (c)
minimum theta angle in Inverted Pendulum environment testing under the same initial condition.

Inverted Pendulum

First we use the inverted pendulum modified from the OpenAI gym environment
[109] with additive disturbance of 0.05 cos(θt − 3) on state update to demon-
strate the learning performance for control task. The pendulum has ground truth
mass m = 1 and length l = 1, and is controlled by the limited torque input
u ∈ [−15, 15]. The standard cost function c = θ2 + 0.1θ̇2 + 0.001 is used to learn
the optimal policy keeping the pendulum upright (i.e. θ = 0). The control barrier
functions hs1 = θ+ 1/8π ≥ 0 and hs2 = 5/4π− θ ≥ 0 are designed to describe the
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(a) (b) (c)

Figure 4.2: Performance curves of (a) cumulative rewards, (b) maximum theta angle, and (c)
minimum theta angle in Inverted Pendulum environment with different initial conditions.

safety constraint θ ∈ [−1/8π,+5/4π] radians. We define the true system dynam-
ics as θt+1 = θt+θ̇t+1∆t+0.05 cos(θt − 3) and θ̇t+1 = θ̇t+

3g
2l sin θt∆t+

3
ml2

u∆t.
To describe the partially known system dynamics, we assume a nominal model

as θt+1 = θt + θ̇t+1∆t and θ̇t+1 = θ̇t + 3g
2l′ sin θt∆t + 3

m′l2u∆t with incorrect
model parameters m′ = 1.8, l′ = 1.8 available to the learner (hence 80% error
in model parameters). Using the same and different initial conditions respectively,
Figure 4.1 and Figure 4.2 compare the cumulative rewards, maximum and mini-
mum theta angle achieved during testing after each training episode by using (1)
MPPI [60] with ground-truth dynamics model (GT-MPPI), (2) MPPI with nominal
dynamics model and CBF (Nom-MPPI-CBF), (3) our method of optimism-based
safe learning (Algorithm 1), (4) our method with exploitation only, i.e. replace
Line 3 in Algorithm 1 by W̃t ← W t (Nom-MPPI-CBF-Exploitation), and (5) un-
constrained Lower Confidence-based Continuous Control algorithm (LC3) [37].
The last three learning-based algorithms are trained for 50 episodes with 20 testing
trials after each training episode averaged from four random seeds. It is observed
that our method quickly increased cumulative reward in early stage while satisfy-
ing the safety constraints as learning process evolves, and our method using explo-
ration behavior (our method) is able to increase reward even faster than our method
using exploitation behavior (Nom-MPPI-CBF-Exploitation), empirically implying
sample efficiency. In contrast, GT-MPPI and LC3 severely violate angle limitation
due to lack of safety consideration, and safe MPPI using CBF with nominal model
(Nom-MPPI-CBF) still violates safety constraints with lower cumulative rewards
due to the inaccurate nominal model with large error.

Mobile Robot Navigation

To compare our method with exploration behavior (Algorithm 1) against exploita-
tion (Nom-MPPI-CBF-Exploitation) in terms of sample efficiency, consider a mo-
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bile robot navigation task simulated in Matlab where the unicycle robot moves in
a wind field without safety concerns. Here we assume the unicycle dynamics is
directly available as the nominal model for the learner but suffers from unknown
wind field defined by d?(x) := [cos(x1− 4)(x2− 3), sin(x1− 4)(x2− 3)]> ∈ R2

with x = [x1, x2]> as the position of the robot. In particular, there is a rectangle
area [−2, 3]× [−2.6,−0.2] in Figure 4.3(a) where the wind d?(x) has uniform di-
rections (East pointing) with larger magnitude. We use standard quadratic normal-
ized cost c = (x− xgoal)>Q(x− xgoal) + u>Ru where Q,R are positive-definite
to reflect the cost to go and to learn the optimal policy driving the robot towards
the goal. As shown in Figure 4.3(a), with the ground-truth wind model, GT-MPPI
[60] is able to plan the trajectory that takes advantage of the wind field to enjoy
the lowest cost (highest reward). It is observed that our method with optimism-
based exploration behavior (Algorithm 1) in Figure 4.3(b) is able to quickly find
a near-optimal trajectory after data collection during training in 10 episodes. The
predicted wind field correctly reflect the significant different wind distribution in
the rectangle area due to the exploration process. This outperforms our method
using only exploitation behavior in Figure 4.3(c) that quickly converges to a lo-
cal minima without much exploration in the unknown wind field. Thus it fails to
find the different wind field below in the rectangle area that could potentially yield
improved solution, and has a large prediction error compared to the ground truth
in Figure 4.3(a). This empirically validated the sample efficiency and the control
performance of our method (Algorithm 1).

(a) (b) (c)

Figure 4.3: Mobile robot navigation trajectories in an unknown wind field. (a) ground-truth wind
field and trajectories from GT-MPPI (rewards: -117.57) and Nom-MPPI (rewards: -159.54), (b)
predicted wind field and trajectories from our method (Algorithm 1) during training and testing
after 10 episodes (rewards: -118.64), (c) predicted wind field and trajectories from our method
using exploitation behavior during training and testing after 10 episodes (rewards: -152.01).
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4.7 Conclusion and Discussions

In this chapter, we address the problem of episodic safe learning for online nonlin-
ear control tasks. Compared to existing safe learning and control approaches that
exhaustively expanding safety region or optimizing policy performance without ef-
ficiency guarantee, we propose an optimism-based online safe learning framework
that simultaneously achieve sample efficient learning for safe behaviors and nonlin-
ear control optimization with bounded regret guarantee. We believe our presented
work is an important first step to bridge provably efficient learning based methods
and model based safety-critical control with formal guarantees.

To relax the limitation on the relative degree of safety constraint hs, future
work include extending our sample efficient learning for complex dynamical sys-
tems with higher relative degree safety constraints, e.g. using Exponential Control
Barrier Functions [31].
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Part II

Resilient Multi-Robot
Networking
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Resilience in terms of preserving the integrity of the multi-robot system itself
through communication maintenance is another challenge when deploying robots
to perform a set of tasks over long periods of time. In most cooperative robotic
applications, the robotic members need to communicate or take observations from
other robots for collective decision making and coordinated behaviors, which is of-
ten achieved through proximity-based information-exchange networks. One com-
mon assumption is the presence of sufficiently connected networks within the co-
herent multi-robot systems, which could be easily broken when the robot team
spreads out over multiple widely separated task areas. Standard approaches of-
ten enforce a predefined network topology for robots to follow [40] or switching
to cohesive behaviors when the network is about to disconnect [67, 70, 71, 110,
111], which could unnecessarily dominate the original robot behaviors and are not
able to handle continuous robot failures. How to effectively retain the ability for
the robots to 1) satisfy connectivity requirements across different levels and 2) re-
cover network connectivity from faults while efficiently maintaining their original
task-prescribed behaviors remain challenging.

To address these challenges, in this part we will focus on the following two
problems.

• Multi-Robot Networking with Global and Subgroup Connectivity Mainte-
nance (Chapter 5) by combining graph-theoretic and control-theoretic ap-
proaches to derive computationally-efficient control framework for multi-
robot connectivity maintenance accounting for global communication as
well as required local subgroup communication.

• Resilient Multi-Robot Networking in presence of Robot Failures (Chap-
ter 6) by incorporating robustness and resilience graph design into the multi-
robot connectivity control framework with provably correct convergence to
the desired robust multi-robot network. This enables the robot team to satisfy
any connectivity requirements demanded by human operators, providing the
capability of recovering or enhancing system integrity through proximity-
based networking in presence of continuous robot failures.
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Chapter 5

Multi-Robot Networking with
Global and Subgroup
Connectivity Maintenance

Multi-robot systems are well known for the capabilities of accomplishing chal-
lenging tasks via cooperative behaviors or collaborations as a system. In many
situations, it may be more appropriate and efficient to have the multi-robot sys-
tems simultaneously performing multiple behaviors in different subgroups while
remaining connected. For example, having a robot team split into multiple op-
erating subgroups flocking to multiple task areas at the same time as shown in
Fig. 5.1. As subgroups may be formed based on the particular combinations of
robots with heterogeneous capabilities, when the robot team spreads out over mul-
tiple widely separated task areas, robots in the same subgroup for a designated
task area are expected to stay locally connected by themselves as one coherent
component for efficient local collaboration. Global connectivity is still required
to allow for global coordination among different subgroups, e.g. redistribution of
robots due to dynamic task reallocation over time. Thus it is also necessary to
ensure connectivity within each subgroup and across subgroups as well as global
connectivity. We call this ability of multi-robot systems to accommodate different
behaviors simultaneously within a single connected robot team while maintaining
safety (collision avoidance with other robots and possibly obstacles) and within
and across subgroup connectivity Behavior Mixing.

To the best of our knowledge, there is no existing work on connectivity main-
tenance that can ensure both global connectivity and subgroup connectivity at the
same time for behavior mixing. The problem of behavior mixing with the global
and subgroup connectivity constraints faces many challenges: (a) possible com-
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Maintenance

Figure 5.1: Example of multi-robot behavior mixing with global and subgroup connectivity
maintenance.

munication disconnection due to performing multiple and potentially conflicting
tasks at the same time; (b) the additional constraints imposed on robots with dif-
ferent tasks by the subgroup connectivity maintenance may lead to task failure,
for example dead locks that might prevent the desired execution of behaviors; and
(c) conservative robots motion incurred by the perturbation of connectivity on con-
trol outputs between different task groups.

To address these challenges, we propose a novel distributed Minimum Connec-
tivity Constraint Spanning Tree (MCCST) method [15] to compute the set of com-
munication links for the robots to maintain, which (a) has minimum cardinality, and
(b) invokes the connectivity constraints for global and subgroup connectivity that
would be least likely to be violated by the original controllers. With that, we then
employ the control barrier functions (CBF) [40] to formulate our invoked connec-
tivity constraints and collision avoidance constraints with respect to the controllers.
Minimum connectivity maintenance is thus achieved by minimally modifying the
original controllers subject to the constraints. Our work in this chapter presents the
following contributions: (1) a generalized constrained behavior mixing framework
to enable simultaneous execution of different behaviors and sequences of behav-
iors within a single robot team, while ensuring global and subgroup connectivity
and collision avoidance; (2) a novel distributed MCCST method with quantified
relationship between original task-related controllers and connectivity constraints
to efficiently select real-time minimum behavior mixing connectivity constraints
with provably optimality guarantee, (3) computationally efficient construction of
MCCST that is scalable to large number of robots and suitable for real-time com-
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putation to accommodate dynamic changes in the environment.

5.1 Global and Subgroup Connectivity Maintenance
Problem

Consider a robotic team S consisting ofN mobile robots in a planar space, with the
position and single integrator dynamics of each robot i ∈ {1, . . . , N} denoted by
xi ∈ R2 and ẋi = ui ∈ R2 respectively. Each robot can connect and communicate
directly with other robots within its spatial proximity. The communication graph
of the robotic team is defined as G = (V, E) where each node v ∈ V represents
a robot. If the spatial distance between robots vi, vj ∈ V is less or equal to the
communication radius Rc (i.e. ‖xi − xj‖ ≤ Rc), then we assume the two can
communicate and edge (vi, vj) ∈ E is undirected (i.e. (vi, vj) ∈ E ⇔ (vj , vi) ∈
E).

The joint robot states can be represented by x = {x1, . . . , xN} ∈ R2N and we
define the minimum inter-robot safe distance as Rs ∈ R, for any pair-wise inter-
robot collision avoidance constraint between robots i and j. We have the following
condition defining the safe set of x.

hsi,j(x) = ‖xi − xj‖2 −R2
s, ∀i > j

Hsi,j = {x ∈ R2N : hsi,j(x) ≥ 0}
(5.1)

The set ofHsi,j indicates the safety set from which robot i and j will never collide.
For the entire robotic team, the safety set can be composed as follows.

Hs =
⋂

{vi,vj∈V:i>j}

Hsi,j (5.2)

[29] proposed the safety barrier certificates Bs(x) using control barrier functions
hsi,j(·) that map the constrained safety set Eq. (5.2) of x to the admissible joint con-
trol space u ∈ R2N for ensuring hsi,j(·) ≥ 0 at all time. The result is summarized
as follows.

Bs(x) = {u ∈ R2N : ḣsi,j(x) + γhsi,j(x) ≥ 0,∀i > j} (5.3)

where γ is a user-defined parameter to confine the available sets. It is proven in
[29] that the forward invariance of the safety set Hs is ensured as long as the joint
control input u stays in set Bs(x). In other words, the robots will always stay safe
if they are initially inter-robot collision free and the control input lies in the set
Bs(x). The constrained control space in Eq. (5.3) corresponds to a class of linear
constraints over pair-wise control inputs ui and uj .
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Likewise, if the connectivity constraint is enforced between pair-wise robots i
and j to ensure inter-robot distance not larger than communication range Rc, we
have

hci,j(x) = R2
c − ‖xi − xj‖

2

Hci,j = {x ∈ R2N : hci,j(x) ≥ 0}
(5.4)

The set of Hci,j indicates the feasible set on x from which robot i and j will never
lose connectivity. Consider any connectivity spanning graph Gc = (V, Ec) ⊆ G to
enforce, the corresponding constrained set can be composed as follows.

Hc(Gc) =
⋂

{vi,vj∈V:(vi,vj)∈Ec}

Hci,j (5.5)

Similar to the safety barrier certificates in Eq. (5.3), the connectivity barrier
certificates [40] are defined as follows indicating another class of linear constraints
over pair-wise control inputs ui and uj for (vi, vj) ∈ Ec at any time point t.

Bc(x,Gc) = {u ∈ R2N : ḣci,j(x) + γhci,j(x) ≥ 0,∀(vi, vj) ∈ Ec} (5.6)

In behavior mixing, we assume the robotic team is tasked withM simultaneous
behaviors and has been partitioned into M sub-groups S = {S1, . . . ,SM}, with
each robot i already assigned to a sub-group Sm and with original task-related
controller ui = ûi. To ensure successful behavior mixing, the global connectivity
graph G and the induced subgroup connectivity graph Gm = G[Vm] ⊆ G where
Vm ⊆ V containing robots within the same sub-group Sm for all m = 1, . . . ,M
should be connected at all time. We assume these connectivity constraints are
satisfied initially. With the defined forms of safety and connectivity constraints
in Eq. (5.3) and Eq. (5.6), we formally define the behavior mixing problem as a
bilevel optimization process at each time step as follows.

u∗ = arg min
Gc,u

N∑
i=1

‖ui − ûi‖2 (5.7)

s.t. Gc = (Vc, Ec) ⊆ G is connected

Gm = Gc[Vm] is connected ∀m = 1, . . . ,M (5.8)

u ∈ Bs(x)
⋂
Bc(x,Gc), ‖ui‖ ≤ αi, ∀i = 1, . . . , N (5.9)

This bilevel optimization problem can be solved by two-steps: find 1) the opti-
mal connectivity spanning graph Gc∗ ⊆ G to preserve, and 2) the one-step control
inputs u∗ ∈ R2N bounded by maximum velocities {αi} and minimally deviated
from ûi subject to constraints in Eq. (5.9) with Gc = Gc∗.
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5.2 Behavior Mixing using Minimum Connectivity Con-
straints

5.2.1 Minimum Connectivity Constraint Spanning Tree (MCCST)

First we consider the sub-problem of selecting optimal connectivity spanning graph
Gc∗ ⊆ G in Eq. (5.7) that introduces minimum connectivity constraints. As each
edge (vi, vj) ∈ Ec in a candidate graph Gc enforces one constraint between robot
i, j in Eq. (5.6), the graph Gc∗ whose edges define the minimum connectivity con-
straints must exist among the set of all spanning trees T of G that have the mini-
mum number of edges (i.e. N − 1) for Gc∗ to stay connected.

Hence, the problem boils down to find the optimal spanning tree Gc∗ = T c∗ ∈
T of G whose edges invoke the minimum connectivity constraints in the form of
Eq. (5.6) over the robots’ controllers. To quantify the strength of connectivity
constraint by an edge (vi, vj) ∈ E , we introduce the weight assignment defined as
follows.

wi,j = ḣci,j(x, ûi, ûj) + γhci,j(x),∀(vi, vj) ∈ E (5.10)

Compared to the connectivity constraint in Eq. (5.6), wi,j indicates the violation
of the pair-wise connectivity constraint between the two robots under the original
controllers ûi, ûj , with the higher value of wi,j the less violated the connectivity
constraint is. This quantifies how likely the existing connectivity link is going to
break if no revision made to the controller. It is desired to preserve those links
with larger wi,j implying smaller revision needed for the controllers to keep the
links connected. With that, each candidate spanning tree T c ∈ G is redefined as
a weighted spanning tree T cw = (V, ET ,WT ) with WT = {−wi,j}. Hence the
optimal connectivity graph Gc∗ with constraints in Eq. (5.8) can be obtained as
follows.

Gc∗ = arg max
T cw∈T

∑
(vi,vj)∈ET

wi,j = arg min
T cw∈T

∑
(vi,vj)∈ET

−wi,j

s.t. Tm = T cw[Vm] is connected ∀m = 1, . . . ,M

(5.11)

The optimal solution of Eq. (5.11) is the Minimal Spanning Tree (MST) weighted
by {−wi,j} and constrained by sub-group connectivity requirements. We propose
to define another class of spanning trees as follows and relate its unconstrained
MST to the solution of the constrained MST in Eq. (5.11).

Definition 16. Given a connectivity graph G and for all edges (vi, vj) ∈ E on G,
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redefine their weights by the following.

w′i,j =

{
λ · wi,j , if vi and vj are in the same sub-group

wi,j , if vi and vj are in different sub-groups
(5.12)

where λ ∈ {λ� 1 : λ ·wi,j � wi′,j′ ,∀vi, v′i, vj , v′j ∈ V} is a unique user-defined
constant for the entire graph G. The weight-modified graph is denoted as G′. Then
we call the redefined spanning tree T c′w = (V, ET ,WT ′) as the Connectivity Con-
straint Spanning Tree (CCST).

The Definition 16 introduces a new class of spanning trees (CCST) T c′w equiv-
alent to the original spanning trees T cw with inflated weights over the edges con-
necting robots in the same sub-group. In particular, the designed parameter λ in
Eq. (5.12) ensures that after inflation the new weights−w′i,j over edges connecting
different subgroups are always larger than any edges within all the subgroups for
T c′w . As we will prove by the following Lemma 18 and Theorem 19, this guar-
antees that the computed MST T c′w becomes the solution of constrained MST T cw
in Eq. (5.11), namely, the MST T c′w contains the MST of each subgroup as well,
ensuring that the subgroups are also connected in an optimal way. We review some
useful definitions in graph theory [112]:

• fragment: a subtree of Minimum Spanning Tree;

• outgoing edge: a edge of a fragment if one adjacent node is in the fragment
and the other is not.

The first definition describes that a connected set of nodes and edges of the MST is
called a fragment. By this definition, a single node is also a fragment by itself. In
the following discussion, we focus on minimum-weight outgoing edge (MWOE),
which is the edge with minimum weight among all outgoing edge of a fragment.

Lemma 17. Let emin be a minimum-weight outgoing edge (MWOE) of a fragment.
Connecting emin and its adjacent node in a different fragment yields another frag-
ment in MST.

The proof of Lemma 17 can be found in both [112] and [113].
With Lemma 17, the process of constructing MST is as follows [112]:

• Each node starts as a fragment by itself

• Each fragment iteratively connects with MWOE fragment

This process will result in the MST of the given graph.
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Lemma 18. By following the process above on G′ in Definition 16, all nodes within
the same sub-group will form a MST fragment before connecting to other sub-
group.

Proof. We prove by contradiction. Suppose the node vi from sub-group graph G′i
connects with node vj first, which belongs to sub-group graph G′j , i 6= j. From
the MST construction process we know that, at each iteration, the edge added is
the minimum-weight outgoing edge of the connecting fragment. In this case, the
weight wi,j of the edge between vi and vj is the minimum of all outgoing edges
of vi. Let vi′ ∈ G′i where there exists an outgoing edge between vi and vi′ , then
we know that the weight w′i,j < w′i,i′ . This contradicts with the property of G′ in
Eq. 5.12.

Theorem 19. Given the redefined Connectivity Constraint Spanning Tree (CCST)
T c′w = (V, ET ,WT ′) in Definition 16 and denote minimum weight CCST as T̄ c′w =
arg minT c′w ∈T

∑
(vi,vj)∈ET −w

′
i,j , we have: T̄ c′w = Gc∗ in Eq. (5.11). Namely, the

Minimum Spanning Tree T̄ c′w of G′ is the optimal solution of Gc∗ in Eq. (5.11)
and we call the graph T̄ c′w as Minimum Connectivity Constraint Spanning Tree
(MCCST) of the original connected graph G.

Proof. From Lemma 18, edges between sub-groups will be connected only when
edges within each sub-groups are connected. By definition, the MST of graph G′i
within subgroup Si is optimal with minimum total weight, which means

¯T c′w (i) = arg min
T c′w (i)∈T (i)

∑
(vi,vj)∈ET (i)

−w′i,j

= arg min
T c′w (i)∈T (i)

λ ·
∑

(vi,vj)∈ET (i)

−wi,j

= arg min
T c′w (i)∈T (i)

∑
(vi,vj)∈ET (i)

−wi,j

(5.13)

The equality holds since λ > 0. Then we consider vi and vj in different subgroups,
i.e. S(vi) 6= S(vj), while (vi, vj) is the edge in spanning tree edges ET (i) connect-
ing two subgroups. Then for the next step, connecting the minimum-weighted
outgoing edge between different sub-groups, yields

¯T c′w = arg min
T c′w ∈T

∑
(vi,vj)∈ET (i)

−w′i,j , S(vi) 6= S(vj)

= arg min
T c′w ∈T

∑
(vi,vj)∈ET

−wi,j
(5.14)

With the same form as in Eq. (5.11), this concludes the proof.
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In this way, we relax the constrained MST optimization problem in Eq. (5.11)
into unconstrained MST problem with the same optimality guarantee. The con-
nectivity constraints from the obtained MCCST T̄ c′w are thus minimally violated
by the current task-related controllers, implying the least restriction due to global
and subgroup connectivity requirements. Such MCCST T̄ c′w therefore specifies the
optimal connectivity graph Gc∗ ⊆ G to enforce for behavior mixing in Eq. (5.8).
Next, we will present a distributed method for computing MCCST.

Algorithm 2 Distributed MCCST Construction
Input: a: adjacency edge weight list of the original weighted graph
Output: edge list of MCCST

1: function CONSTRUCTDISTRIBUTEDMCCST(A)
2: A← empty adjacency matrix
3: A← updated from input a
4: while msg← getNewMessage(msg pool) do
5: if not initialized then
6: A← initialRound(msg, A)
7: else
8: A← processRound(msg, A)
9: end if

10: if isConnected(A) then
11: return getEdgeList(A)
12: end if
13: end while
14: if isEmpty(msg pool) then
15: resetRound()
16: end if
17: end function

5.2.2 Construction of Distributed Minimum Connectivity Constraint
Spanning Tree (MCCST)

Here we propose a distributed construction of MCCST of G. For our problem
setting, the topology and weights could change over time, thus a time-optimal real-
time algorithm is needed. We develop our algorithm based on the work from [112,
113, 114], but reduce the computation time while sacrificing message optimality.
Different from most of the network algorithms such as [113, 114], our algorithm
does not require synchronization, which also reduces the total time. Note that MST
is unique for a graph with unique edge weights. Therefore the result is the same
from centralized and decentralized construction.

A detailed description of the algorithm is as follows:
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Overview

Given a graph G′ = {V, E}with weights defined in Definition 16 where |V| = N is
the number of robots, the initial state of the system is a singleton graph where each
vertex is an individual isolated node without any outgoing edge, and each node is
given a distinct id. This gives N fragments and each consists of one vertex. Then
each fragment finds the minimum-weight outgoing edge (MWOE) and connect with
neighboring fragments. Iteratively, the forest of fragments will join as a spanning
tree connecting all vertices of the graph, resulting as the MCCST.

As shown in Algorithm 2, each robot takes an input of neighboring edge
weights and connectivity information, then outputs the computed MCCST edge
list. The incoming message is processed according to whether the node is being
initialized or not. The process will reset when there is no new message in the mes-
sage pool, which implies all the fragments finish updating within themselves and
new MWOE need to be connected and a new round begins.

Initial Round

Algorithm 3 Initial Round of MST Construction
Input: msg: incoming messages, A: current adjacency matrix
Output: A: updated adjacency matrix

1: function INITIALROUND(msg, A)
2: connect with neighbor with MWOE
3: leader id← min(self id, neighbor id)
4: A← update with msg
5: if no new information in msg then
6: finish initial round
7: end if
8: send init message to msg pool
9: return A

10: end function

In the initial round, as shown in Algorithm 3, each fragment initially only con-
tains one vertex. Each node directly connect with the neighbor with MWOE. How-
ever, to keep information within a fragment consistent and avoid additional com-
putation, the node with the smallest id is selected as fragment leader. Information
keeps updating within the fragment until every node has the same adjacency matrix
of its fragment tree.
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Processing Round

Algorithm 4 Processing Round of MCCST Construction
Input: msg: incoming messages, A: current adjacency matrix
Output: A: updated adjacency matrix

1: function PROCESSROUND(msg, A)
2: if leader id is self id then
3: MWOE cache list← wait(fragment node)
4: MWOE ← min(MWOE cache list)
5: if all fragment node reported then
6: inform the one with MWOE to connect
7: end if
8: end if
9: if not reported to leader then

10: if no MWOE info then
11: msg pool[MWOE]← get info message
12: end if
13: if get information from MWOE neighbor then
14: msg pool[leader id]← report message
15: end if
16: end if
17: A← update with msg
18: return A
19: end function

At each processing round, the fragment leader will determine the minimum-
weight outgoing edge (MWOE) in its fragment after receiving all MWOE informa-
tion from each fragment node (including itself). Since each node in the fragment
only has the local knowledge within its own fragment, it will ask the MWOE neigh-
bor for their fragment information, i.e. adjacency matrix, leader id. Whenever a
node receives a request to give information, it will reply accordingly. Once each
node receives information from MWOE neighbor, it will report to the fragment
leader. All connect requests will be accepted and this, by lemma 17, always yields
a fragment. When a new connection is made, the two fragments will combine their
information and update all the nodes within the fragment with the new informa-
tion. Iteratively, the construction process will end when every node receives the
same updated adjacency matrix representing the MST of the graph. Since only the
leader of each fragment updates the adjacency matrix within the fragment, eventu-
ally when the algorithm terminates, there will be only one fragment, i.e. the MST,
with one leader, marking the convergence of the distributed algorithm. The con-
vergence speed of our distributed MCCST algorithm is dependent on the topology
of the original communication graph and edge weights, ranging from one iteration
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to O(logN) iterations with a worst case time complexity of O(N logN).
Once the final MCCST is obtained as the optimal connectivity graph Gc = Gc∗

in Eq. (5.9), we can specify the safety and connectivity barrier certificates Eq. (5.3)
and Eq. (5.6) to invoke a set of linear constraints. Thus the original quadratic
programming (QP) problem in Eq. (5.7) could be efficiently solved to get optimal
revised robot controllers satisfying safety and global and subgroup connectivity
constraints for behavior mixing.

5.3 Results

Simulation Example

The first set of experiments are performed on a team of N = 40 mobile robots
with unicycle dynamics as shown in Figure 5.2. The robot team is divided into
M = 4 subgroups with different colors and is tasked with 4 parallel behaviors.
In the figures, robots in blue subgroup 1 and red subgroup 2 execute biased ren-
dezvous behaviors towards the blue task site 1 and red task site 2 respectively, while
robots in green subgroup 3 and magenta subgroup 4 perform circle formation be-
haviors around the green task site 3 and magenta task site 4 respectively. For our
MCCST method, we apply the minimally revised controllers from Eq. (5.7) with
single-integrator dynamics to the robots with unicycle dynamics using kinemat-
ics mapping from [29]. As shown in Figure 5.2a-c, our distributed MCCST ap-
proach is able to generate real-time minimum connectivity graph (red edges) from
the present connectivity graph (grey edges) so that the invoked connectivity con-
straints are minimally restrictive to the original behavior controllers. Most of the
target behavior configurations have been accomplished as shown in Figure 5.2c.
The communication relays connecting different subgroups are implicitly formed
to provide greater flexibility for the rest of the robots without the need of explicit
robots roles assignment as done in [73, 75]. This is because our algorithm enforces
provably minimum connectivity graph that is least restrictive to the robots.

In comparison, we present converged results of other two methods with static
connectivity graph in Figure 5.2e and Figure 5.2f respectively: i) always preserv-
ing communication edges in the initial MST (red) depicted in Figure 5.2d, and
ii) always preserving edges in initial connectivity graph (grey) in Figure 5.2a as
done in [68]. Since the invoked connectivity graph is fixed as the robots move,
they can hardly achieve circle formation (Figure 5.2e) or could fall into deadlock
(Figure 5.2f). Numerical results are provided in Figure 5.3 showing our method
ensures safety and connectivity, while having minimal control perturbation due to
connectivity and maximum task performance (very close to designated target area
as shown from Figure 5.3d). Note that in Figure 5.2e the provided comparison
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(a) Time Step = 0 (b) Time Step = 540 (MCCST)

(c) Time Step = 1290 (MCCST, Converged) (d) Time Step = 0

(e) Time Step = 1290 (Fixed Initial MST,
Converged)

(f) Time Step = 1290 (Fixed Initial Connectivity,
Converged)

Figure 5.2: Simulation example of 40 robots tasked to four different places with behaviour mixing.
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(a) Minimum inter-robot distance (b) Algebraic connectivity

(c) Average control perturbation (d) Average distance to target region

Figure 5.3: Performance comparison of simulation example in Figure 5.2 w.r.t. different metrics:
(a) Minimum inter-robot distance (safety distance is 0.02m), (b) Algebraic connectivity evaluated
by second smallest eigenvalue of mutli-robot laplacian matrix. Positive meaning connectivity
ensured, (c) Control perturbation computed by 1

N

∑N
i=1 ‖u

∗
i − ûi‖2, (d) Average distance between

robots to tasked region (the smaller the better).

method of preserving initial MST from our MCCST without updating in real-time
is already better than other barrier certificate based connectivity controllers [29,
78] that impose predefined fixed connectivity graph not necessarily as optimal for
the tasks.

Quantitative Results

For validating the computation efficiency and scalabiltiy of our algorithm, we run
experiments with up to 100 robots and 4 parallel behaviors (four robots subgroups
simultaneously rendezvous to four different places with safety and connectivity
constraints). For Figure 5.4a and 5.4b, the experiment is done by computing the
distributed MCCST 1500 to 3000 times, depending on the iterations for the system
to converge, which varies with the number of robots and graph topology. The
complexity of the worst case for both message and time is O(N logN). However,
the average case, as shown in the figure, is better than O(N logN). Figure 5.4b
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(a) Number of messages exchanged (b) Computation Time

(c) Average Distance to targets (d) Average Control Perturbation

Figure 5.4: Quantitative results summary. (a)-(b) are results from our proposed Distributed MCCST
approach. (c)-(d) are comparison results with ours and the other two approaches with static
connectivity graph but the same controller (5.7). (a) Number of messages exchanged during the
distribute MCCST construction. The error bar shows the maximum and minimum number of
messages exchanged. (b) Computation time of constructing the distributed MCCST. The error bar
shows the standard deviation. (c) Average distance from robot to target location after converged. (d)
Average control perturbation.

shows the time duration for computing the distributed MCCST, which shows that
computing distributed MCCST could be done in real time with large number of
robots.

The average distance to target region and perturbation after convergence is cal-
culated from 10 runs for each batch of robots with up to 100 robots. In Figure 5.4c,
the average distance to target with MCCST is significantly smaller (closer to tar-
get region) than with static connectivity graph. The distance also decreases as
the number of robots increases, since only a limited number of robots are needed
to maintain connectivity, which enables more robots to rendezvous to the target
locations. However, for the other two methods with imposed static connectivity
topology, the average distance increases with the number of robots. Figure 5.4d
shows the result of average perturbation. Our method gives much smaller pertur-
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bation on average. Note that the result from preserving initial MST gives much
worse result than the other two, because the initial MST edges could give huge
deviation from the optimal control outputs as behaviors progressed, while the full
connectivity graph gives larger number of constrain edges to keep, so that some are
canceled out with each other. Nevertheless, our distributed MCCST method always
computes the minimum connectivity constraints, thus outperforming the other two
methods significantly.

5.4 Conclusion and Discussions

In this chapter, we developed a bilevel optimization based minimum connectivity
maintenance framework for behavior mixing. We proposed a distributed Minimum
Connectivity Constraint Spanning Tree (MCCST) algorithm to compute provably
minimum global and subgroup connectivity constraints in real-time. By formu-
lating the invoked connectivity constraints and safety constraints using safety and
connectivity barrier certificates, the robots controllers are minimally modified from
the original controllers with dynamic and possibly discontinuous communication
topology. Experimental results show that our method is scalable and computation
efficient to large number of robots.

Our proposed framework could be combined with any nominal multi-robot
controllers to provide the desired global and local connectivity guarantee while
respecting their original behaviors. However, given the step-wise computation
process of the optimization-based controllers, the method may not render opti-
mal solution in terms of optimizing the primary multi-robot task over a particular
mission time. In order to derive optimal multi-robot behaviors, one could inte-
grate our connectivity control constraints into planning or MPC algorithms with
the primary objective functions and then search for the optimal sequence of con-
trollers respecting the connectivity requirements. On the other hand, while the
resulting connectivity-aware multi-robot behavior could ensure the robot team stay
connected as one group, the minimum connectivity nature could lead to vulnera-
ble network topology of the robot team. For example, the failure of a single robot
may disconnect the entire team. In Chapter 6 we will discuss resilient multi-robot
connectivity maintenance designs with increased network redundancy to address
potential adversaries from the environment.
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Chapter 6

Resilient Multi-Robot
Connectivity Maintenance

In Chapter 5 we have presented how to integrate the graph theory such as minimum
spanning tree with optimization based control framework to guarantee multi-robot
network connectivity during operation. In real-world applications, there are pos-
sible adversarial situations where the robotic team could suffer from unexpected
robot failures, or continuously losing members under adversarial external attacks.
Such adversaries could easily break the connectivity among robots and thus jeop-
ardize the task operation of the entire team. This demands for a resilient strategy
for connectivity maintenance so that the robots could be able to reconfigure their
movements to maintain, recover, and increase the network connectivity in response
to the faulty situations.

This is particular challenging for most existing work since (a) the resilience and
robustness of the multi-robot network leads to increasing complexity over conven-
tional connectivity control methods [67, 70, 71, 110] due to the possible discontinu-
ity from dynamic topology changes as pointed out in [72], (b) conventional connec-
tivity metrics such as algebraic connectivity is not suitable to explicitly model the
network robustness as found by [42, 43], (c) there are often no optimality guarantee
over the imposed connectivity constraints for original robot tasks [40, 78, 115] nor
the perturbation from the connectivity controller to the robot original controllers
[42, 43, 77], and (d) the network robustness is maintained in absence of robot fail-
ures [16, 42] and hence could be vulnerable to increasing number of robot failures
over time.

Motivated by the challenges, in this chapter we aim to develop provably op-
timal algorithms for minimally disruptive and resilient connectivity maintenance
for a team of connected robots. We assume the robots have been provided with
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their original task-related controllers and seek to revise their controllers as nec-
essary to achieve the desired resilient network connectivity and avoid collisions
between robots and with obstacles. In particular, we propose a minimally dis-
ruptive resilient connectivity maintenance framework that, by inputting any de-
sired value k of graph connectivity, the framework will first compute the provably
optimal k−node connected minimum resilient graph (k-CMRG) whose edges in-
voke min-size pairwise connectivity constraints least violated by the robot original
controllers. With the rendered optimal pairwise connectivity constraints, we em-
ploy the Finite-time Convergence Barrier Function (FCBF) from [78] to map the
invoked pairwise spatial connectivity constraints to those over the robot original
controllers, and minimally modify those controllers in the context of quadratic
programming to respect the original tasks.

The thesis work in this chapter presents the following contributions: (1) a gen-
eralized resilient connectivity maintenance framework that jointly optimizes both
the topological resilient connectivity graph and the constrained robot motions to
minimally disrupt the original robot tasks, (2) a novel k−CMRG method to com-
pute the optimal weighted k−node connected resilient graph for arbitrary initially
connected multi-robot graph, imposing least connectivity constraints to the robots,
(3) theoretical analysis and proof of the optimality of our k-CMRG with guaran-
teed, user-specified network resilient connectivity in presence of continuous robot
failures.

(a) Initial 1-connected (k=1) graph (b) Improved 2-connected (k=2)
graph with red existing connectivity
edges to preserve and one augmented

edge (red dash edge) to form

(c) Robots perform their original
task while ensuring the existing red

edges stay connected and the
augmented edge(s) are formed (i.e.

robot 3 and 10 gets closer)

Figure 6.1: Simple example of resilient connectivity maintenance problem, where 10 robots are
executing their original behaviors while preserving and forming the red connectivity edges defined
by k-CMRG to achieve the desired connectivity (e.g. k=2 here). Connectivity edges (gray dash line)
exist when two robots are within the limited communication range. Red solid edge are selected
from existing gray connectivity edges and augmented with the selected red dash edge from
non-exist connectivity edges to compose a k-CMRG with desired graph connectivity.
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6.1 Resilient Connectivity Maintenance Problem

Consider a robotic team S consisting of n mobile robots in a planar space, with the
position and single integrator dynamics of each robot i ∈ {1, . . . , n} denoted by
xi ∈ R2 and ẋi = ui ∈ R2 respectively. Each robot can connect and communicate
directly with other robots within its spatial proximity. The communication graph
of the robotic team is defined as G = (V, E) where each node v ∈ V represents
a robot. If the spatial distance between robot vi ∈ V and robot vj ∈ V is less or
equal to the communication radius Rc ∈ R (i.e. ‖xi − xj‖ ≤ Rc), then we assume
the two can communicate and edge (vi, vj) ∈ E is undirected (i.e. (vi, vj) ∈ E ⇔
(vj , vi) ∈ E).

We assume the robotic team has been tasked with m simultaneous behaviors,
partitioning the set of robots into m sub-groups. To simplify our discussion, we
assume the sub-group partitions and behavior controllers are given or already de-
rived from other multi-robot task allocation algorithms, namely, each robot i has
been assigned to a sub-group with some behavior-prescribed controller ui = ûi.
We also assume the current communication/connectivity graph G for the robots is
connected as one component. Here the multi-robot network resilience is quantified
by the network connectivity defined as follows [116].

Definition 20. (k-node connected graph) A connected graph G = (V, E) is said
to be k-node connected (or k-connected) if it has more than k nodes and remains
connected whenever fewer than k nodes are removed.

The objective is, given any user defined desired connectivity k ∈ R+, how to
develop control laws for the robots to achieve and maintain it over time, even if
the current connectivity graph is not k−node connected. This differentiates our
work from most of the connectivity maintenance literature [15, 16, 40, 67, 78, 115]
and thus provides greater freedom to enable flexible resilient connectivity mainte-
nance. In the rest of the thesis, we will use k−connectivity to represent k−node
connectivity. Then we would like to enforce such constraint as robots execute
their behavior-prescribed controllers, so that the resulting time-varying connec-
tivity graph G becomes and stays k−connected at all time. It is straightforward
that n ≥ k + 1 should be followed in order for the problem to be solvable [117,
118]. In presence of the above connectivity constraints as well as the physical
constraints of the robots such as inter-robot collision avoidance and velocity lim-
its, each robot i may have to modify their primary task-related controller ûi to
accommodate the constraints. To that end, the objective is to 1) coordinately in-
voke active constraints to follow (particularly the connectivity constraints imposed
between pair-wise robots), such that the modification to the primary controller is
minimum for the robotic team, and 2) compute the modified controllers for robots
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task execution. In the remaining of this section, we will discuss the formulation
of the mentioned constraints in the form of Control Barrier Function (CBF) [28,
40, 55] and Finite-Time Convergence Control Barrier Function (FCBF) [78] on the
controllers followed by the optimization problem formulation.

Safety Constraints using Safety Barrier Certificates

During movements of multi-robot systems, the robots should avoid collisions with
each other to remain safe. Consider the joint robot states x = {x1, . . . , xn} ∈ R2n

and define the minimum safe distance as Rs for any pair-wise inter-robot collision
avoidance constraint. We have the following condition defining the safe set of x.

hsi,j(x) = ‖xi − xj‖2 −R2
s, ∀i > j

Hsi,j = {x ∈ R2n : hsi,j(x) ≥ 0}
(6.1)

The set ofHsi,j indicates the safety set from which robot i and j will never collide.
For the entire robotic team, the safety set can be composed as follows.

Hs =
⋂

{vi,vj∈V:i>j}

Hsi,j (6.2)

[29, 51] proposed the safety barrier certificates Bs(x) using control barrier func-
tions (CBF) [55] that map the constrained safety set Eq. (6.2) of x to the admissible
joint control space u ∈ R2n. The result is summarized as follows.

Bs(x) = {u ∈ R2n : ḣsi,j(x) + γhsi,j(x) ≥ 0,∀i > j} (6.3)

where γ is a user-defined parameter to confine the available sets. It is proven in
[51] that the forward invariance of the safety set Hs is ensured as long as the joint
control input u stays in set Bs(x). In other words, the robots will always stay
safe if they are initially inter-robot collision free and the control input lies in the
set Bs(x). Note that at any time point t with known current robot states x(t), the
constrained control space in Eq. (6.3) corresponds to a class of linear constraints
over pair-wise control inputs ui and uj for ∀i > j. Note that static obstacles may
also be modelled in the same manner if treated as robots with zero velocity.

Connectivity Constraints using Finite-Time Control Barrier Function

Similar to safety barrier certificates for collision avoidance, pairwise connectivity
constraints can also be mapped to the admissible set for control input in the same
manner [40]. However, the forward invariance from CBF requires the system al-
ready in the desired set, e.g. robots are initially collision free and so to stay safe.
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To enforce connectivity constraints used to form new edges, [78] proposed the
Finite-Time Convergence Control Barrier Functions (FCBF) that could drive the
robots from outside to the admissible set and stay inside the desired states. This
has been applied to form and then preserve new connectivity edges predefined by
the tasks [78]. Here we briefly introduce the mapping from a particular pairwise
connectivity constraint to the admissible set for controllers using FCBF.

To enforce a connectivity constraint between pair-wise robots i and j to limit
the inter-robot distance not larger than communication range Rc, we have the fol-
lowing condition.

hci,j(x) = R2
c − ‖xi − xj‖

2

Hci,j = {x ∈ R2n : hci,j(x) ≥ 0}
(6.4)

The set of Hci,j indicates the feasible set on x from which robot i and j will never
lose connectivity. Then for any connectivity graph Gc = (V, Ec) to enforce, the
corresponding constrained set can be composed as follows.

Hc(Gc) =
⋂

{vi,vj∈V:(vi,vj)∈Ec}

Hci,j (6.5)

The connectivity barrier certificates are hence defined as follows using FCBF [78]
that indicates another class of linear constraints over pair-wise control inputs ui
and uj for (vi, vj) ∈ Ec at any time point t.

Bc(x,Gc) = {u ∈ R2n :ḣci,j(x) + γ · sign(hci,j(x)) · |hci,j(x)|ρ ≥ 0,

∀(vi, vj) ∈ Ec}
(6.6)

where ρ ∈ [0, 1) determines how fast the system is driven towards the set of Hci,j .
It has been proved in [78] that for any initial condition x0, any controller sub-
ject to Eq. (6.6) will drive the system to the set Hc in a finite time bounded by

T =
|hci,j(x)|1−ρ

γ(1−ρ) . This property ensures that for any pairwise connectivity con-
straint that is not currently satisfied, we can allocate a time period larger than T for
the constraint to render the new connectivity edges. Note that the FCBF takes as
inputs a given graph Gc which is predefined in [78]. We will use this sub-routine to
enforce the construction of desired k−CMRG in our resilient connectivity mainte-
nance framework in the following.

Objective Function

Consider that a task-related primary behavior control input ûi ∈ R2 has been com-
puted for each robot i before considering the mentioned constraints. The objective
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is to minimally modify the primary controllers subject to connectivity and safety
constraints. Different from other optimization-based framework with CBF [40]
or FCBF [78] with predefined connectivity constraints, here we extend to the re-
silient connectivity maintenance framework, where the robots are optimizing both
the k−connectivity constraints to enforce and the controllers to revise. With the
defined forms of constraints in Eq. (6.3) and Eq. (6.6), we formally define the min-
imally disruptive resilient k−connectivity maintenance problem with any given
k ≤ n− 1 at each time point t as follows.

u∗ = arg min
Gc,u

n∑
i=1

‖ui − ûi‖2 (6.7)

s.t. Gc = (V, Ec) is k−connected (6.8)

u ∈ Bs(x)
⋂
Bc(x,Gc), ‖ui‖ ≤ αi, ∀i = 1, . . . , n (6.9)

The above Quadratic Programming (QP) optimization problem is to find the op-
timal active k−connectivity graph Gc to enhance and the revised control inputs
u∗ ∈ R2n bounded by maximum velocityαi for each robot, so that k−connectivity,
safety and velocity constraints described in Eq. (6.8) and Eq. (6.9) are always guar-
anteed while ensuring minimally disruption to the primary controller as shown in
Eq. (6.7). While the robust connectivity maintenance problem [16] has similar
formulation, it requires Gc ⊆ G and hence can only preserve the current connec-
tivity and the subgraph from the existing graph. Here we relax this assumption
and allow connectivity enhancement with any desired connectivity k, thus making
[16] a special case in our formulation when the current connectivity of G is larger
than desired connectivity k. Note that as information regarding the primary task
is not required other than ûi, the objective of the original controller may not be
guaranteed in form of Eq. (6.7) especially when it conflicts with connectivity or
safety constraints, e.g. dispersing robots to different goal locations where robots
get disconnected due to limited communication range. In this case, the objective
of Eq. (6.7) first ensures constraints are satisfied at all time and then minimizes
the deviation from original controller, e.g. dispersing robots towards assigned goal
locations as much as possible while keeping them safe and k-connected.

The optimization problem in Eq. (6.7) can be decoupled into two dependent
sub-problems: 1) compute provably optimal k−CMRG graph Gc∗ = G∗k that in-
vokes least violated connectivity constraints over multi-robot behaviors, and then
2) solve the optimization problem Eq. (6.7) with the obtained optimal graph G∗k .
In this way, it enables the robot team to form connectivity enhancement provably
satisfying any demanded connectivity k while minimizing the disruption to their
original tasks.
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6.2 Maintaining Minimally Disruptive Resilient
k−Connectivity

6.2.1 Min-Size k−Node Connected Spanning Subgraph (k−NCSS)

We consider the first sub-problem of computing optimal k−CMRG Gc∗ =
G∗k(V, E∗k ) in Eq. (6.7) that introduces minimum k−connectivity constraints for
any given connectivity demand k. Recall that each edge (vi, vj) ∈ Ec in a candi-
date graph Gc enforces one pair-wise linear constraint over primary control inputs
ûi and ûj for robot i and j, as shown in Eq. (6.4). Thus it is straightforward that op-
timal graph Gc∗ should have minimum number of edges that satisfy k-connectivity.

Denote the connectivity of a graph by κ(·). Let us first consider the special
case when κ(G) ≥ k, and then the k−CMRG boils down to finding a min-size
k−Node Connected Spanning Subgraph (k−NCSS) with Gc∗ ⊆ G. This has been
known as NP-hard for even k = 2 [118]. From graph theory, there exists a heuristic
algorithmic framework, k−Node Connected Spanning Subgraph (k−NCSS) [117,
118] that finds the approximate min-size k-connected subgraph with uniform edge
cost. Briefly, given an undirected connected graph G(V, E) and k where k ≤ κ(G),
the min-size k−connected spanning subgraph G∗k can be found by the following
summarized algorithm.

Algorithm 5 Minimum-size k−node connected spanning subgraph (k−NCSS)
Input: G(V, E), k
Output: G∗k

1: find a min-size k − 1 edge cover M ← arg min{|M | : degM (v) ≥ k − 1,∀v ∈
V,M ⊆ E}

2: find an inclusionwise minimal edge set F ⊆ E \ M such that (V,M ∪ F ) is
k−connected

3: return G∗k ← (V,M ∪ F )

With the Algorithm 5, we have the following Lemma regarding its known ap-
proximation of the derived k−connected spanning subgraph G∗k .

Lemma 21. ([117, 118]) Let G(V, E) be a graph of node connectivity ≥ k. Then
the Algorithm 5 finds a k−node connected spanning subgraph (V,M ∪ F ) such
that |M ∪ F | ≤ (1 + 1

k )|Eopt|, where |Eopt| denotes the cardinality of the optimal
solution.

Hence Algorithm 5 provides a bounded solution to find a k−NCSS G∗k ⊆ G
with minimum number of edges that could be used to define active pairwise
k−connectivity constraints when κ(G) ≥ k. However, such solution could not
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handle the situation when κ(G) ≤ k and it is more desirable to consider each edge
differently due to their impact over the robots original controllers. For example,
candidate connectivity constraint whose two robots are getting closer due to their
original motion should be preferred, since maintaining such constraint will lead to
less disruption over the original robot controllers. In the next section, we will pro-
pose a novel k−CMRG method to construct the optimal k−connected graph with
any demanded connectivity k ≤ n− 1 and with consideration of the original robot
controllers/motions.

6.2.2 k−Connected Minimum Resilient Graph (k−CMRG)

In general cases with arbitrary demanded connectivity k, each pairwise robots
within the robotic team compose one candidate edge for determining k−CMRG
Gc∗, which further increases the computation complexity of computing the optimal
k−CMRG. Here we propose a new heuristic to evaluate any given candidate edge
connecting pairwise robots vi, vj ∈ V as follows.

wi,j = −ḣci,j(x, ûi, ûj)− γ · sign(hci,j(x)) · |hci,j(x)|ρ (6.10)

This heuristic takes inspiration from the FCBF constraint in Eq. (6.6) and substi-
tute with the original robot controllers ûi, ûj . Note that the smaller value of wi,j
indicates forming/preserving the connectivity edges between vi, vj is less likely to
be violated given the robot original controller. For example, wi,j < 0 implies the
FCBF constraint for preserving the corresponding edge is already satisfied by the
original robot controllers without need of revision. Instead of checking for each
pairwise candidate edges between any two robots in S, we augment the current
connectivity graph with their weight defined by Eq. (6.10) and render a weighted
connectivity graph Ĝ = (V, E ,W) with wi,j ∈ W . Next, we propose the fol-
lowing Algorithm 6 framework of our k−CMRG, a variant of Algorithm 5 with
any connectivity demands k. For the rest of the chapter, we use k−CMRG in-
terchangeably to refer to the optimal k−connectivity graph or the algorithm to
compute k−CMRG.

In Algorithm 6, there are several modifications compared to Algorithm 5. In
Line 1 of Algorithm 6, it directly augmented 2-hop edges to the existing graph so
that the minimum degree deg(v) of each robot node is at least k. The reason lies
in that for a k−connected graph, each robot has at least k edges and any one node
will never be isolated with the removal of at most k − 1 neighboring nodes.

In Line 2 of Algorithm 6, we redefine the min-size (k − 1) edge cover from
Algorithm 5 to be M ′ by the following.

M ′ = arg min
M ′⊆E ′

β · |M ′|+ Σ(vi,vj)∈M ′{wi,j} (6.11)
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Algorithm 6 Outline of k−connected minimum resilient graph (k−CMRG)

Input: Ĝ′(V ′, E ′,W ′)← Ĝ(V, E ,W), k
Output: Ĝ∗k

1: Expand G′ by adding edges connecting robots with 2-hop neighbors until
min{deg(v)} ≥ k

2: find a min-size k−1 edge coverM ′ = arg minM ′⊆E′ β · |M ′|+Σ(vi,vj)∈M ′{wi,j}
3: find an inclusionwise minimal edge set F ′ ⊆ E ′ \ M ′ such that (V,M ′ ∪ F ′) is
k−connected, if not, expand Ĝ′ by adding edges connecting robots with 2-hop neigh-
bors until F stay unchanged.

4: return Ĝ∗k ← (V,M ′ ∪ F ′)

where β is a pre-defined parameter and we assume β >> 2 · Σ∀wi,j∈W ′ |wi,j |, so
that the selected edge cover set M ′ has minimum number of edges. And if there
are multiple solutions with same number of edges, it will break ties by comparing
the total weights and then select the one with minimum total weights. This implies
least constrained edges to preserve with the original robot controllers. In the end
(line 3), the inclusionwise minimal edge set is found by iterative expanding graph
Ĝ′ until κ(Ĝ′) ≥ k. With the new condition above for finding (k − 1) edge cover
set M ′, a new weighted k−connected minimum resilient graph (k−CMRG) can
be derived as Ĝ∗k = (V, E ′k,W ′k) with E ′k = M ′ ∪ F ′ ⊆ E ′. In particular, we have
the following Theorem on bounded cardinality of edge set E ′k of the k−CMRG Ĝ∗k .

Theorem 22. Given weighted undirected graph Ĝ = (V, E ,W) and the de-
manded augmented connectivity k. Then the Algorithm 6 with redefined condition
Eq. (6.11) finds the k−CMRG Ĝ∗k = (V, E ′k,W ′k) such that |E ′k| ≤ (1 + 1

k )|E ′opt|,
where E ′opt denotes the cardinality of the optimal solution required for such k, as
in Lemma 21.

Proof. We first prove that the solution Ĝ∗k = (V,M ′ ∪ F ′) from Algorithm 6 with
Eq. (6.11) and G∗k = (V,M ∪F ) from original Algorithm 5 have the same number
of edges, if Algorithm 5 takes as inputs the expanded graph G′ from Algorithm 6
(both satisfy κ(Ĝ′) ≥ k after graph expansion). By contradiction, we assume they
have different number of edges inM ′ andM , namely, the following two conditions
must be true at the same time.

β · |M ′|+ Σ(vi,vj)∈M ′{wi,j} < β · |M |+ Σ(vi,vj)∈M{wi,j}
|M ′| > |M |

(6.12)

Recall that β >> 2 ·Σ∀wi,j∈W |wi,j |, hence it is straightforward that the two equa-
tions contradicts to each other, proving that |M ′| = |M |. Then since the compu-
tation of the inclusionwise minimal edge set is the same in both of the algorithms,
we conclude that |E ′k| ≤ (1 + 1

k )|Eopt|.
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With the minimum number of edges and total weights for the obtained
k−CMRG, it thus invokes the least k−connectivity constraints that are minimally
violated by the current behavior-prescribed robots controllers. The resulting Ĝ∗k
therefore specifies the optimal k−connectivity graph Gc∗ = Ĝ∗k for the given con-
nectivity demand k to enforce in the optimization problem Eq. (6.8). For complete-
ness, we provide a detailed algorithm framework of our k−CMRG method from
Algorithm 6 in Algorithm 7.

Algorithm 7 k−Connected Minimum Resilient Graph (k−CMRG)

Input: Ĝ′(V ′, E ′,W ′)← Ĝ = (V, E ,W), k
Output: Ĝ∗k

1: while min{deg(v)} < k, ∀v ∈ V do
2: Ĝ′ ←ExpandGraphOneHopNeighbor(Ĝ′)
3: end while
4: for all v ∈ V do b(v)← deg(v) + 1− k
5: end for
6: Get b−matching edge set: M̄ ′ ← b−Suitor(Ĝ′, b)
7: while F ′ 6= ∅ do
8: M ′ ← Ĝ′ \ M̄ ′, F ′ ← ∅, Gt ← Ĝ′
9: for all e ∈ M̄ ′ do

10: G′t ← CreateDigraph(Gt, unit capacities)
11: num disjoint path← max flow(G′t, esource, esink)
12: if num disjoint path> k then
13: Gt.remove(e)
14: else
15: F ′ ← F ′ ∪ e
16: end if
17: end for
18: Ĝ′ ←ExpandGraphOneHopNeighbor(Ĝ′)
19: end while
20: return Ĝ∗k ← (V,M ′ ∪ F ′)

From Line 1-6 in Algorithm 7, the min-size (k−1) edge coverM ′ in Eq. (6.11)
is obtained by first solving for its complementary edge set M̄ ′ with the following
condition.

M̄ ′ = arg max
M̄ ′⊆E

β · |M ′|+ Σ(vi,vj)∈M ′{wi,j}

s.t. degM̄ ′(v) ≤ deg(v) + 1− k ∀v ∈ V
(6.13)

The above problem is known as a weighted b−matching problem [117, 118] and
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we implement a subroutine b−Suitor [119] to solve it efficiently. When computing
for the inclusionwise minimal edge set F ′ in Line 7-18, we start with empty set F ′

and initialize the current graph to be the present connectivity graph Ĝ. Then each
candidate edge e not in the k − 1 edge cover set M ′ is checked by finding if there
are at least (k + 1)-node disjoint paths in the current graph Gt. This is done by
creating a directed graph from Gt and run a max flow algorithm (Line 10-11) using
sub-routine from [120]. If yes, then the current candidate edge e is not critical (see
[118]) and hence removed from current graph. Otherwise, the edge is critical and
shall be inserted into the set F ′ to consist of final k−CMRG Ĝ∗k . This comes from
the fact that for an optimal k−CMRG with least number of edges, each edge is
critical and there will be no more than k + 1 disjoint paths between the two end
nodes for the edge [118]. As mentioned, in case that κ(Ĝ′) ≤ k, we keep looping
from Line 7 to Line 18 and expanding the current graph, until no more critical
edges are found.

Thus, with the final k−CMRG Ĝ∗k obtained from our Algorithm 7 as the op-
timal k−connectivity graph Gc∗ = Ĝ∗k in Eq. (6.9), we can specify the safety and
connectivity barrier certificates Eq. (6.3) and Eq. (6.6) to invoke linear constraints
and efficiently solve the original quadratic programming (QP) problem in Eq. (6.7).
The resultant controllers satisfy safety and k−connectivity constraints and mini-
mally disrupted from the original controllers.

6.3 Results

To evaluate our proposed k−CMRG and the resilient connectivity maintenance
framework, we designed three sets of experiments in simulation: i) N = 11 robots
driven by uniform original task controller ûi = 0 and to keep re-configuring for
achieving the increased connectivity demands over time, ii) N = 20 robots driven
by the same task controller ûi = 0 with desired connectivity maintenance in pres-
ence of continuous loss of robots, and iii) N = 20 robots tasked to perform ren-
dezvous and dynamic circling formation around three predefined task areas, while
achieving dynamic connectivity demands and staying resilient in presence of re-
moval of robots due to failures. In all of the experiments, we are assuming limited
sensing for collision avoidance, limited communication range, and bounded veloc-
ity for the robots. We apply the resilient optimization-based controller in Eq. (6.7)
with single-integrator dynamics to the unicycle mobile robots using kinematics
mapping in [29].
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(a) Time Step = 1, k = 1 (b) Time Step = 51, k = 2

(c) Time Step = 101, k = 3 (d) Time Step = 127, k = 3 (Converged)

Figure 6.2: Simulation example of 11 robots reconfigure to achieve increasing connectivity
demands. Grey dash edges are real-time connectivity edges when the connected pairwise robots
stay within the limited communication range. Red solid edges are the computed k−CMRG edges
exist in the current connectivity graph. Red dashed edges are the edges of k−CMRG to form (not
belong to the current grey connectivity graph) and thus to reach the desired connectivity.

(a) Control perterbation (b) Subgraph Algebraic Connectivity

Figure 6.3: Performance of resilient connectivity maintenance with k−CMRG for Fig. 6.2. (a)
Control perturbation computed by 1

n

∑N
i=1 ‖u

∗
i − ûi‖2. (b) Minimum subgraph algebraic

connectivity evaluated by second smallest eigenvalue of laplacian assuming k − 1 robots being
taken out. > 0 means graph remain connected.
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Reconfiguration of static robot team with increasing connectivity demands

Fig. 6.2 shows the simulation example of 11 robots with zero task-related con-
trol inputs and our k−CMRG method for connectivity enhancement. At initial
configuration Fig. 6.2a, the robots are tasked to maintain 1−connectivity and
the k−CMRG returns the minimum spanning tree invoking the least number of
connectivity constraints with the smallest weights, reflecting the minimum efforts
required to maintain the connectivity. At time step t = 50 in Fig. 6.2b, the connec-
tivity demand increases to k = 2 that is higher than the current graph connectivity.
In this case, our k−CMRG returns a 2−connectivity graph with one new edges be-
tween robot 2 and 11 and with such specified constraint, our resilient connectivity
control framework employs FCBF to drive the robots to form the connectivity edge
as shown in Fig. 6.2c at t = 101. Likewise, the new demand of 3−connectivity
invokes two more edges to form, which enforces the robots to reconfigure and
quickly converge to the states with satisfying connectivity (Fig. 6.2d). The per-
formance of the maintained connectivity is plotted in Fig. 6.3, showing the con-
vergence of the robots after reconfiguration. In absence of actual robot removal,
Fig. 6.3b demonstrates the algebraic connectivity of the subgraph of current con-
nectivity graph if randomly taking out k − 1 robots. As seen from the figure for
t = 50 − 60, multi-robot network will get disconnected if removing one robot
from the currently 1-connected graph. After achieving the connectivity k = 2 at
t = 60, the resilience of the network is improved and hence robust to the removal
of the robots. Note that the robots remain collision-free due to the employed safety
barrier certificates in Eq. (6.3).

Connectivity Enhancement in presence of continuous loss of robots

One of the advantage of the proposed k−CMRG is to enable increased connectivity
over time for resilient robot team under faulty situation, as shown in Fig. 6.4. In
this experiment, 2 randomly selected robots will stop connecting other robots every
50 time steps starting from t = 50 (Fig. 6.4d). The robots are tasked to maintain
k = 3 connectivity in presence of robot losses. With the proposed k−CMRG,
the connectivity of multi-robot network is preserved and actively recovered even if
robots keep failing with a total of 8 failing robots (Fig. 6.4b). In comparison, we
implemented the robust connectivity approach [16] that seek to preserve the robust
connectivity of the current graph. As shown in Fig. 6.4c and Fig. 6.4d, although
the robotic team could stay connected with the removal of a few robots, the robot
team is not able to recover the decreased connectivity over time and hence gets
disconnected eventually.
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(a) Time Step = 1 with k−CMRG (b) Time Step = 312 with k−CMRG

(c) Time Step = 102 with k−CMCS
(d) Algebraic Connectivity

Figure 6.4: Simulation example of 20 initially static robots in presence of continuous robot failures.
Red edges from (a)-(b) are defined by computed k−CMRG and robots with cyan index indicates
the faulty robots that are no longer involved in the connectivity graph. Red edges in (c) shows the
failure cases of robust connectivity maintenance method [16] due to the lack of resilience
consideration. (d) plots the actual algebraic connectivity λ2 of the real-time connectivity graph from
k−CMRG and k−CMCS [16]. Connectivity preserves if λ2 > 0. It shows k−CMRG (red curve) is
able to keep the graph connected and recover the connectivity in presence of loss of robots).
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(a) Time Step=1 with k = 4 (b) Time Step=254 with k = 5

(c) Time Step=346 with k = 5 (d) Time Step=1200 with k = 1

Figure 6.5: Simulation example of 20 robots executing multiple behaviors with changing
connectivity demands and robot failures: green robots 1, 6, 7, 8, 10, 12, 13, 14, 17, 18, 20 and
magenta robots 2, 3, 4, 15, 19 are tasked to circle around task 2 and task 3 area respectively. Red
robot 5, 9, 11 are tasked to rendezvous towards task 1 area. Grey dash edges are real-time
connectivity edges. Red solid edges are the computed k−CMRG edges exist in the current
connectivity graph. Red dashed edges are the edges of k−CMRG to be formed by the robots for
increased connectivity.
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(a) Control perturbation (b) Algebraic connectivity

Figure 6.6: Performance of k−CMRG from simulation example in Fig. 6.5. Control perturbation
quickly converges to zero due to minimally disruptive connectivity maintenance from k−CMRG
and network connectivity is always satisfied and recovered despite robot failures.

Reconfiguration of moving robot team
In this task, 20 robots have been divided into 3 subgroups and each performing
an individual behavior with the k−CMRG in presence of 2 static obstacles and
robot failures. The connectivity demands are randomly chosen to be k = 4 for t =
0−250, k = 5 for t = 250−500 and k = 1 for 500−1200. Robot 6, 10 and 13 are
removed at t = 250 in Fig. 6.5b to simulate faulty situation. As shown in Fig. 6.5d,
the goal for magenta robots and green robots are to circle around assigned task area
3 and 2 respectively, while red robots are to rendezvous to red task 1 area. Without
connectivity maintenance, the robot team could get disconnected easily. Robots
start from Fig. 6.5a to reconfigure and achieve the higher demand of connectivity
k = 4 while executing their original behaviors (the control error reduced to almost
zero quick after t = 0 as shown in Fig. 6.6a). At t = 250, the connectivity
demand further increases to k = 5 and three robots are lost, resulting in largely
reduced network connectivity as observed in Fig. 6.6b. The k−CMRG is able to
quickly reconfigure the robots to reach the desired connectivity as shown in Fig.
6.5c, where all k− CMRG edges are established as solid red edges. Meanwhile,
the original behaviors of the robots are preserved as the control perturbation to
the original controller reduced to almost zero soon after t = 400. And with the
decreased connectivity demand to k = 1 after t = 500, the robots are able to
stay as close to their tasks while ensuring the required connectivity in Fig. 6.5d,
demonstrating the flexibility of our resilient connectivity maintenance method with
k−CMRG.

6.4 Conclusion and Discussions

In this chapter, we propose resilient connectivity maintenance algorithms to ensure
minimally disruptive connectivity enhancement for multiple robots during the exe-
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cution of their primary tasks. In particular, we propose a k−Connected Minimum
Resilient Graph (k−CMRG) to allow for reconfiguration of the multi-robot system
to provably achieve any connectivity demand, while ensuring the robot original
behaviors are minimally modified in the context of quadratic programming with
the control barrier fucntions (CBF) and Finite-Time Convergence Control Barrier
Functions (FCBF). Such algorithms improve resilience of connectivity reduction
for open robot team with continuous robots arrival and removal. Simulation exam-
ples are demonstrated to validate our algorithm in various challenging scenarios.

The increasing of network redundancy by keeping robots closer could indeed
improve the robustness and resilience of the robot team against external attacks or
internal failures. However, how to determine the proper level of redundant connec-
tivity for the group remains challenging. In our current design, the k−connectivity
is assumed given by the user and although it could be changed manually overtime,
it may not reflect the actual situation. For example, when the risk of losing robots
is low, the robots are desired to maintain a relatively low network redundancy and
allow themselves to spread out wider as needed by the primary task. And if they
run into more risky situation, e.g. increasing loss of robots in a short amount of
time, the robots should be able to monitor and detect such changes so that they
can adaptively increase the k−connectivity by maintaining or forming more inter-
robot edges for potential threats. To develop a method for adaptive resilient con-
nectivity maintenance is an interesting future direction. On the other hand, finding
the k−connected minimum resilient graph requires computation and information
sharing in a centralized manner. How to decentralize the process to make the com-
putation scalable for distributed multi-robot systems is another important future
direction to pursue.
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Part III

Resilient Multi-Robot
Coordination
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Thus far, we have discussed how to ensure safety and resilience in terms of
preserving the integrity of the multi-robot system through communication main-
tenance for effective multi-robot coordination. In many multi-robot applications,
the design of cooperative robot control laws depends on not only the evolving state
of the robotic team but also the task-related information from the environment
model. For example, in environment sampling or monitoring tasks, the robots need
to move to the best locations that maximize the task performance, and the opti-
mal locations are often determined by the underlying distribution of environment
phenomenon of interest in the environment. However, when robots are deployed
to an unknown environment, such information is not known beforehand, and thus
learning is necessary for robots to adapt their behaviors over an extended period of
time as they model the environment with data collected online. This will provide
robots with the capability of resilience in terms of adapting to the unknown and
uncertain environment with improved performance over time.

In this part, we will discuss some data-driven multi-robot coordination algo-
rithms in the application of multi-robot sensor coverage task as an example to
demonstrate the learning-enabled resilient coordination in an unknown environ-
ment.
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Chapter 7

Learning-enabled Multi-Robot
Sensor Coverage in Unknown
Environment

We consider the problem of online environmental sampling and modeling for
multi-robot sensor coverage shown in Fig. 7.1, where a group of networked robots
are deployed in an environment from given starting configurations and move to
the final optimal placements such that the overall sensing performance over the
environmental phenomenon (e.g. temperature) from those particular locations is
maximized, also known as the Locational Optimization problem [121]. However,
when the environment is initially unknown and the robots have no prior knowledge
of the distribution of temperature, namely the density function, then they have to
learn such distribution of interests first by exploring in the environment and taking
samples, which could be time-consuming. To that end, it is desired for the robots
to take as few samples for efficient environmental modeling while approaching to
its estimated optimal sensing locations.

In this chapter, we proposes a data-driven coordination framework that enables
the robots to efficiently learn a model of the unknown density function on-line
using adaptive sampling and non-parametric inference such as Gaussian Process
(GP). To capture significantly different components of the environmental phe-
nomenon, we propose a new approach with mixture of locally learned GPs for
collective model learning and an information-theoretic criterion for adaptive sam-
pling in multi-robot coverage that balances between exploration (i.e. moving to
locations with most informative samples) and exploitation (i.e. moving to loca-
tions with best predicted sensor coverage performance). The resulting GP mix-
ture model provides improved prediction accuracy and reduced model uncertainty
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for complex distributions with significantly distinctive components, and hence in-
creases the multi-robot coverage performance. Moreover, we propose a distributed
consensus learning algorithm for the mixture of GPs with local data only. At each
round of sampling, each robot first employs the Gaussian Mixture Model (GMM)
to classify its collected samples and extract the local GMM parameters. With the
distributed consensus learning algorithm, the consensus on global GMM param-
eters is reached that best classifies the local data for each robot to locally fit a
mixture of GPs and predict the density function on its own. In this way, only local
GMM parameters are exchanged among robots whose size is independent from the
number of collected samples, and hence we avoid the transmission of all local data
from every robot. Then the locally learned density function is used to construct
the decentralized adaptive coverage controller with the information-theoretic cri-
terion for adaptive sampling that drives each robot towards its updated estimated
optimal location, which could reduce the actual sensing cost (increase sensing per-
formance) and also the model uncertainty for the learned density function with new
samples collected on the location.

The main contribution of our novel approach is three-fold. First, we couple the
adaptive sampling with information-theoretic criterion into the multi-robot cov-
erage control framework for efficient model learning and simultaneous locational
optimization with a reduced number of samples in an initially unknown environ-
ment. Second, we present a fully distributed algorithm that allows for collabora-
tively learning the generalized non-parametric mixture of GPs model of density
function with local data only. This could also be very useful for other decentral-
ized data-driven multi-robot adaptive sampling and informative sampling tasks as
most literature still assume the transmission of global data from all the robots for
learning and evaluating the environment phenomenon, which is not scalable and
may not be practical. Third, extensive empirical results are provided using real-
world dataset including the agricultural field data collected by agricultural robot
[122] and a public dataset [123] from Intel Berkeley Research Lab to demonstrate
the superior performance of our approach.

7.1 Multi-Robot Sensor Coverage Problem

Consider a set of n robots moving in a bounded environment Q ⊂ R2 and assume
the environment can be discretized into a set of point q ∈ Q, with the position
of each robot i ∈ {1, 2, . . . , n} denoted by xi ∈ Q. We assume the environment
is free of obstacles and can be partitioned into n Voronoi cells, as done in most
multi-robot sensor coverage algorithm [4, 44, 84].

Vi = {q ∈ Q|‖q − xi‖ ≤ ‖q − xj‖,∀j 6= i} (7.1)
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Figure 7.1: Three robots are deployed and navigate to locations that maximize the sensing/coverage
performance over environmental phenomenon such as temperature in the map. The upper layer
represents the actual temperature distribution interpolated from 54 deployed stationary sensors in
the Intel Berkeley Lab [123]. The lower layer represents the 2D multi-robot sensor coverage
scenario with projected heat map of the temperature distribution.

where ‖·‖ is the l2-norm. Each Voronoi cell Vi corresponds to its generator robot
xi who will be responsible for sensing the points inside the cell q ∈ Vi.

Regarding the distribution of environmental phenomenon on each point of in-
terest q, there exists an unknown density function φ(·) : Q → R+ that maps the
location information q to the scalar value of the phenomenon φ(q). Intuitively, in
environmental monitoring task we want each robot to stay close to the area with
higher phenomenon value φ(·) since the sensing performance usually degrades as
the distance between the robot and the point to sense increases. As (see (Eq. 7.1))
each point is assigned to one robot, the cost function of static multi-robot coverage
can be formally defined as follows [4, 44].

H(xi, . . . , xn) =
n∑
i=1

∫
q∈Vi
‖q − xi‖2φ(q)dq (7.2)

Hence the lowerH(xi, . . . , xn) the better. Then by taking the gradient of Eq. (7.2),
we have the local optimal solutions for minimizing H(·) for all i ∈ {1, . . . , n} as
follows.

x∗i = arg minH(xi, . . . , xn) =

∫
Vi
qφ(q)dq∫

Vi
φ(q)dq

= CVi (7.3)

whereCVi ∈ R2 is also referred to as the centroid of each Voronoi cell Vi. Although
this critical point ofH is a local minimum, due to the intractable solution (NP-hard)
to the global optimum H the local optimal solution x∗i is often considered optimal
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(see [44, 84]). The decentralized gradient-based move-to-centroid controller [4]
has been proven to navigate the robots to the local optimal locations.

ẋi = kp(CVi − xi) (7.4)

where kp is a user-defined control gain. Note that the realization of φ(q) will
not be available to the robots unless q = xi and without loss of generality we
ignore the intermediate visited points between consecutive waypoints by the robots.
To that end, the objective is to drive the robot towards the locations with high
predicted value of the phenomenon and informativeness so as to efficiently learn
the distribution φ(·) while simultaneously optimizingH(·) with Eq. (7.4). In other
words, we will use the optimal controller with the same form as in Eq. (7.4), but
with a different specification of CVi .

7.2 Gaussian Process regression for single robot environ-
ment modeling

In this section, we introduce the modeling of density function by a single robot
with its locally sampled training data set.

Gaussian Process Regression

A common approach for modeling spatial phenomena is GP regression. Such a
natural non-parametric generalization of linear regression allows for modeling the
hidden mapping from training data to the target phenomenon with consideration
of uncertainty [98]. Assume the target phenomenon, such as temperature in our
case, satisfies a multivariate joint Gaussian distribution [89, 124]. The learned GP
model from training data outputs the Gaussian probability distribution of the phe-
nomenon φ(q) specified by mean function µ(q) = E[φ(q)] and covariance function
k(q, q′) = E[(φ(q)− µ(q))T (φ(q′)− µ(q′))] for any query data.

Formally, let Ṽi = [qi1, . . . , q
i
Ni

]T be the set of Ni collected samples associ-
ated with observed noisy values of temperature yi = [yi1, . . . , y

i
Ni

]T by robot i.
Each observation is noisy y = φ(q) + ε with ε ∼ N(0, σ2

n) assuming the mean
function to be zero without loss of generality. To that end, given a testing loca-
tion qtest ∈ Q, we have the conditional posterior mean µqtest|Ṽi,yi

and variance
σ2
qtest|Ṽi,yi

as follows from the learned GP model describing the Gaussian distribu-
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tion of φ(qtest) ∼ N (µqtest|Ṽi,yi
, σ2

qtest|Ṽi,yi
).

µqtest|Ṽi,yi
= k(qtest)

T (KṼi
+ σ2

nI)
−1yi

σ2
qtest|Ṽi,yi

= k(qtest, qtest)− k(qtest)
T (KṼi

+ σ2
nI)
−1 · k(qtest)

(7.5)

where k(qtest) = [k(qi1, qtest), . . . , k(qiNi , qtest)]
T with the covariance (kernel)

function k(q, q′) that captures the correlation between q and q′. KṼi
is the pos-

itive definite symmetric kernel matrix [k(q, q′)]q,q′∈Ṽi∪qtest . In particular, we use
the following squared-exponential kernel function to specify the inter-sample cor-
relation.

k(q, q′) = σ2
fe
− (q−q′)T (q−q′)

2l2 (7.6)

where the hyper-parameters l and σf are length-scale and scale factor, respec-
tively. Hence, each robot imaintains its own GP model learned from local samples
{Ṽi,yi} and the hyper-parameters of (σ2

n, σ
2
f , l) are optimized from the local train-

ing data {Ṽi,yi}, which will be introduced next.

Estimation of Hyper-Parameters

The GP model of each robot i is determined by its local training data set {Ṽi,yi}
and local hyper-parameters denoted by θi = {σ2

n, σ
2
f , l}. In particular, the hyper-

parameters are desired to be the optimizer such that the kernel function can accu-
rately describe the underlying phenomena. In order to improve computation effi-
ciency, we assume the hyper-parameters for each robot are optimized using the lo-
cal training data of the robot itself, regardless of the GP mixture process which we
discuss in Section 7.3.1. One common approach for learning the hyper-parameters
in a Bayesian framework is to maximize the log of the marginal likelihood as fol-
lows.

θ∗i = arg max
θi

log p(yi|Ṽi, θi)

= −1

2
yi
T K̃−1

Ṽi
yi −

1

2
log |K̃Ṽi

| − Ni

2
log 2π

(7.7)

where K̃Ṽi
= KṼi

+ σ2
nI. The maximizer of Eq. (7.7) can be computed by tak-

ing the partial derivatives of the marginal likelihood p(yi|Ṽi, θi) w.r.t. the hyper-
parameters θi as described in [125].
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7.3 Learning-enabled Coverage Control: Centralized De-
sign

Given the local GP model learned by each robot, in this section, we introduce the
centralized learning step of mixture of GPs for every robot, assuming knowledge
of all the robots’ data available through inter-robot communication, and then com-
pute the corresponding decentralized control and sampling strategy built on the GP
mixture model.

7.3.1 Mixture of Gaussian Process Models and Adaptive Sampling
Strategy

The mixture of GP models proposed in [96] is a linear combination of multiple
GP models. We have a set of locally learned GP models {GP1, . . . ,GPn} from
all n robots as aforementioned and denote P (z(q) = i) as the probability of any
random point q ∈ Q being best described by the ith GP model from robot i. Then
we have the GP mixture model defined by the conditional posterior mean µ∗

q|Ṽ ,Y
and variance σ∗2

q|Ṽ ,Y for any location q ∈ Q as follows.

µ∗
q|Ṽ ,Y =

n∑
i=1

P (z(q) = i) · µq|Ṽi,yi

σ∗2
q|Ṽ ,Y =

n∑
i=1

P (z(q) = i) · (σ2
q|Ṽi,yi

+ (µq|Ṽi,yi − µ
∗
q|Ṽ ,Y)2)

(7.8)

where {Ṽ ,Y} represents the set of collected samples by all the robots with
Ṽ = {Ṽ1, . . . , Ṽn} and Y = {y1, . . . ,yn}. To that end, for any point q
its actual temperature φ(q) is assumed to be sampled from the Gaussian distri-
bution N (µ∗

q|Ṽ ,Y, σ
∗2
q|Ṽ ,Y). And the common approach for efficient sampling

and modeling is to navigate the robots to the point q∗ = arg maxµ∗
q∗|Ṽ ,Y or

q∗ = arg maxσ∗2
q|Ṽ ,Y to maximize the sampled value of phenomenon or mini-

mize the prediction uncertainty.
In our problem, we want to simultaneously sample the area with high value of

phenomenon to get closer towards the Voronoi centroid CVi while reducing the un-
certainty for the learned model of the density function φ(·). Here we use the Gaus-
sian Process Upper Confidence Bound (GP-UCB) [126], a sequential stochastic
optimization strategy that trades off between exploration (reduce prediction uncer-
tainty) and exploitation (maximize sampled value). Each location q is evaluated
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with the information-theoretic criterion defined as follows.

h(q) = µ∗
q|Ṽ ,Y + βσ∗2

q|Ṽ ,Y (7.9)

where β is a parameter relates to the current sampling iteration number and regret
bound [126]. When β is specified by a much higher value, then our solution be-
comes similar to the informative sampling [86] in which we want to reduce the
model uncertainty before switching to the static coverage optimization. The GP-
UCB strategy works by sequentially sampling point q that maximizes Eq. (7.9)
and immediately update the GP model accordingly, such that we will be able to
reach a balance by such an adaptive sampling strategy between reducing future GP
model uncertainty and maximizing sampled value. However, our primary goal is
to minimize the sensing cost function H(·) in Eq. (7.2) by approaching unknown
centroid of Voronoi cell CVi for each robot i. Thus, we modify the optimal solution
in Eq. (7.4) by replacing unknown density function realization with the GP-UCB
evaluation Eq. (7.9), which yields our adaptive sampling strategy for each robot i
as follows.

q∗i =

∫
Vi
qh(q)dq∫

Vi
h(q)dq

= C̃Vi (7.10)

And the local coverage control law for each robot i becomes

ẋi = kp(C̃Vi − xi) (7.11)

In this case, the robots are able to simultaneously consider density function learn-
ing and sensing performance optimization. To solve for the feedback control law
Eq. (7.11), it boils down to optimize the mixture of GP model by 1) finding the
appropriate weight distribution P (z(q) = ·), and 2) modifying local GP model
with training data from other robots for generalizing the overall regression model.
To simplify our discussion, we assume the robots are always connected as in [93]
and are able to share their sampled data by communicating with its direct Voronoi
neighbors [86].

7.3.2 GP Mixture Model Learning with Expectation-Maximization
(EM) for Prediction

The EM algorithm [96, 127] has been widely used for estimating hidden and ob-
servable variables, such as the weight distribution of Gaussian Mixture Models
for unsupervised learning. It consists of two stages such as the estimation (E) stage
and the maximization (M) stage and it keeps looping until convergence under some
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threshold [96]. In our problem, we initialize the probability of weight distribution
for any given query data point qj by setting

P (z(qj) = i) ≈

{
1 if qj ∈ Ṽi
0 Otherwise

∀ i = 1, . . . , n (7.12)

Then in the E-stage, the algorithm updates the probability P (z(qj) = i) by
computing the marginal likelihood of each data qj for all GP models. To simplify
the notation we use Ni(qj) to define the probability of observation of qj regarding
the local GP model GP i. Then we have the P (z(qj) = i) update rule over the
previous one as follows.

P (z(qj) = i) :=
P (z(qj) = i) · Ni(qj)∑n
k=1 P (z(qj) = k) · Nk(qj)

(7.13)

Then in the M-stage, the local GP models will be modified by embedding the
updated probability of each query point qj to the GP model updates steps Eq. (7.5).
Here we present the main result for updating model GP i from [96, 127] as follows.

µqtest|Ṽi,yi
= k(qtest)

T (KṼi
+ ΨiI)−1yi

σ2
qtest|Ṽi,yi

= k(qtest, qtest)− k(qtest)
T (KṼi

+ ΨiI)−1 · k(qtest)
(7.14)

where

Ψi
jj =

σ2
n

P (z(qj) = i)
(7.15)

It is noted that by modifying the value of diagonal hyper-parameter Ψi
jj from local

value of σ2
n the effects of each training data to the local GP models are adjusted

so as to account for the observations for the points outside the local traning data
set. Once the EM algorithm converges, we will have the new training data set
consisting of {qj} and the corresponding weight distribution P (z(qj) = i) for
each updated GP model i. With such training data set and the updated GP model,
for any new query data q∗j , we can predict its corresponding weight distribution
P (z(q∗j ) = i) as well as the expected value from local GP models Eq. (7.14), and
then feed into the GP mixture model Eq. (7.8) to further yield the updated control
law Eq. (7.10)-(7.11) to govern the motion of the robots.
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7.4 Learning-enabled Coverage Control: Decentralized
Design

In this section, we introduce the distributed consensus learning of mixture of GPs
for every robot i and the overall learning and adaptive coverage control algorithm
that runs on each robot with the knowledge of only local data. Different from the
centralized design in Section 7.3 that requires robots share all of their collected
data to do the computation in a centralized manner, the decentralized design will
allow the robots to share only model-related parameters in fixed size and perform
all computation in a fully distributed manner.

7.4.1 Local Training Data Classification with Distributed
Expectation-Maximization (EM)

Here we assume the environmental phenomenon can be described by a set of GP
models {GP1, . . . ,GPm} with m as the number of Gaussian components, and
denote P (z(q) = ig) as the probability of any random point q ∈ Q being best
described by the igth GP model. Ṽ

ig
i ⊂ Ṽi is the subset of collected data by

robot i that can be best described by the igth GP model. Recalling the mix-
ture of GPs in Eq. (7.8) for each robot i to predict µ∗

q|Ṽi,yi
and σ∗2

q|Ṽi,yi
at any

query point q, similarly here it requires the knowledge of 1) classified local data
set Ṽi = {Ṽ 1

i , . . . , Ṽ
m
i } and 2) predicted weight distribution P (z(q) = ig) for

ig = 1, . . . ,m where q /∈ Ṽi, also known as the gating function. To get such
information, the EM algorithm consists of two stages such as the estimation (E)
stage for computing the weight distribution P (z(qj) = ig) where qj ∈ Ṽi and the
maximization (M) stage for updating the GP models, and it keeps looping until
convergence under some threshold [96]. In order to relax the assumption of global
data needed for EM computation in Section 7.3, we propose to first employ Gaus-
sian Mixture Models (GMM) with distributed EM algorithm [97] via peer-to-peer
inter-robot communication for local training data classification and computation of
weight distribution P (z(qj) = ig) for collected points qj ∈ Ṽi. Then we use the
corresponding labeled local data Ṽi with weight distribution for training the mix-
ture of GPs, which will be described in our distributed mixture of GPs algorithm
in Section 7.4.2.

Although a GP model is an infinite dimension object, the real-world phe-
nomenon can often be characterized by a finite number of Gaussian components
[86, 127]. Here we assume the value of environmental phenomenon φ(q) is drawn
from m Gaussian components (corresponding to m GP models) with each compo-
nent described by a set of unknown model parameters Θig = {αig , µig ,Σig , ig =
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1, . . . ,m} where αig is the probability of φ(q) drawn from the igth Gaussian com-
ponentNig(µig ,Σig). Then we can rewrite the global summary quantities for each
Gaussian component Nig as follows.

αig =
1

n

n∑
i=1

|yi|αi,ig , λig =
1

n

n∑
i=1

|yi|λi,ig

γig =
1

n

n∑
i=1

|yi|γi,ig , µig =
λig
αig

, Σig =
γig
αig

(7.16)

where {αi,ig , λi,ig , γi,ig} are the local summary quantities for each robot i that
can be computed locally as follows, given the information of its current estimated
global model parameter Θ̃i,ig = {α̃i,ig , µ̃i,ig , Σ̃i,ig} for ig = 1, . . . ,m (obtained
via dynamic consensus in Eq. (7.18)) and the observed value yi = {yj}, j =
1, . . . , |yi| of local data set Ṽi.

p(z(qj) = ig|yj , Θ̃i,ig) =
α̃i,ig · p(yj |µ̃i,ig , Σ̃i,ig)∑m
h=1 α̃i,h · p(yj |µ̃i,h, Σ̃i,h)

αi,ig =
1

|yi|

|yi|∑
j=1

p(z(qj) = ig|yj , Θ̃i,ig)

λi,ig =

|yi|∑
j=1

yj · p(z(qj) = ig|yj , Θ̃i,ig)

γi,ig =

|yi|∑
j=1

p(z(qj) = ig|yj , Θ̃i,ig) · (yj − µ̃i,ig)(yj − µ̃i,ig)T

(7.17)

in which the probability p(yj |µ̃i,ig , Σ̃i,ig) can be directly computed from the Gaus-
sian distribution defined by Ñig(µ̃i,ig , Θ̃i,ig). Then for each robot i, we define
xi,ig ∈ R3 as its local estimate of the global summary quantities αig , λig , γig and
define its own statistics ui,ig = [|yi|αi,ig , λi,ig , γi,ig ]T as the local summary quan-
tities. A consensus filter can be designed with convergence and stability guarantee
[97], so that each robot i will agree on the similar value of Gaussian components
Θig via peer-to-peer communication through connected network graph.

ẋi,ig =
∑

j∈neighbor of i

(xj,ig − xi,ig) + (ui,ig − xi,ig) (7.18)

where the neighbors of robot i are specified by all robots located spatially within
a predefined distance to the robot i. It is noted that the above computation only
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relies on the robot’s local data set yi and their communication packets of model
information xi,ig (related to Θ̃i,ig ) only. With the converged estimated Gaussian
Mixture Model parameters Θig for all ig = 1, . . . ,m, we are able to compute the
weight distribution P (z(qj) = ig) = p(z(qj) = ig|yj ,Θig) w.r.t. each Gaussian
component ig for each training data {qj ; yj} of robot i and obtained the training
data classifications as follows.

Ṽ
ig
i : {qj ∈ R2|ig = arg maxP (z(qj) = ig)},∀ig = 1, . . . ,m (7.19)

Intuitively, Eq. (7.16)-(7.19) indicate the process that the robots exchange model-
related parameters to dynamically form an estimated and converged global statis-
tics Θig of GMM, and hence to gradually readjust the classification of its local data
in Eq. (7.19) as more samples are collected. As noted in [97], the standard EM with
centralized computing has the complexity of communication in bytes as O(n3/2)
and O(n2) for the worst case, while with the distributed EM in Eq. (7.16)-(7.19),
the complexity is O(n) that is linear to the number of robots n. In the following
Section 7.4.2, we will provide a complete distributed algorithm for computing the
mixture of GPs with the classified local data.

7.4.2 Distributed Mixture of GPs in Adaptive Coverage Control

With the classified training dataset Ṽ ig
i ,∀ig = 1, . . . ,m from Eq. (7.19) for each

robot i and weight distribution P (z(qj) = ig) of each collected data therein, then
the robots only need the knowledge of the predicted weight distribution (gating
function) P (z(q) = ig) for ig = 1, . . . ,m that defines the likelihood each query
data q belongs to the igth GP, so as to complete the modeling of mixture of GPs
in form of Eq. (7.8) but with m GP models. Such gating function mapping from q
to P (z(q) = ig) can be learned using another GP for each robot i by considering
the already obtained training data {qj ;P (z(qj) = ig)},∀qj ∈ Ṽi in the similar
form as Eq. (7.5). To that end, for any new data q sensed by robot i (inside robot
i’s Voronoi cell), it can compute the prediction Eq. (7.8) using Eq. (7.19) and the
learned gating function P (z(q) = ig), which further yields the updated control law
Eq. (7.10)-(7.11) to govern the motion of the robots.

Finally, our algorithm of distributed mixture of GPs in adaptive coverage con-
trol running on each robot i is summarized as follows.

Step 1: Take one sample from robot’ current location and update its local data
set {Ṽi;yi}. Recompute its Voronoi region.

Step 2: Compute local GMM parameter ui,ig = [|yi|αi,ig , λi,ig , γi,ig ]T using
Eq. (7.17) and current belief of global GMM parameters Θ̃i,ig on current local data
set {Ṽi;yi}.
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Step 3: Exchange local GMM model information of xi,ig with neighbors and
compute the consensus using Eq. (7.18) till convergence and get updated GMM
parameters Θ̃i,ig from converged xi,ig for all ig = 1, . . . ,m.

Step 4: Classify local data set Ṽ ig
i and weight distribution P (z(qj) = ig) of

each training data using Eq. (7.19) with Θ̃i,ig for all ig = 1, . . . ,m.
Step 5: Train gating function P (z(q) = ig) with training data {qj ;P (z(qj) =

ig)} and together with the classified local data set Ṽ ig
i , ∀ig = 1, . . . ,m, locally fit

mixture of GPs using Eq. (7.8) with m GP models.
Step 6: With the learned mixture of GPs, predict the posterior mean and vari-

ance of density function φ(q) over its Voronoi region and evaluate each h(q) in the
region using Eq. (7.9).

Step 7: Compute local adaptive coverage control law with Eq. (7.11), execute,
and go back to Step 1.

7.5 Results

Centralized Learning

In this section, we present several simulation results on the benchmark real-world
dataset from Intel Berkeley Lab [123] with MATLAB toolboxes: the GPML [125].
The dataset contains sensory data collected from 54 sensors in an office area be-
tween Feb 28th and Apr 5th, 2004. The data includes the time-stamped read-
ings such as sensor 2D locations, temperature, humidity, light, and voltage. In
our particular tasks, we use the 2D location information (meters) of each sensor
with the temperature readings (degrees Celsius) as the ground truth of the environ-
mental phenomenon over map and compare our algorithm performance to other
approaches.

First we consider an example where we have 3 robots deployed from random
starting points (19.78, 6.84), (10.22, 11.89) and (15.09, 29.90) to find the optimal
final configurations for stationary sensing as shown earlier in Fig. 7.1, where the
temperature distribution has two peaks around the top corners. Once deployed the
robots are governed by our adaptive coverage controller (7.11) with mixture of GPs
(kp = 0.5, β = 10) to simultaneously learn the environmental model and try to ap-
proach the actual centroid of each Voronoi cell based on its own model inference.
As shown in Fig. 7.2(a) and (d) the robots first assume a uniform distribution of
temperature over the map based on the data collected from the initial configura-
tions with little uncertainties. Note that the temperature from each discrete point
can only be acquired when the robot chooses it as the next point to visit (sample)
except for the initial configuration. The converged results are shown in Fig. 7.2(b)
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(a) Initial configurations (b) Converged final
configurations

(c) Actual temperature
distribution

(d) Initial prediction variance by
GP mixture model

(e) Final prediction variance by
GP mixture model

(f) Final prediction variance by
uni-model GP

(g) Prediction from uni-model
GP

(h) Prediction from GP mixture
model (i) RMS error comparison

Figure 7.2: An example of the multi-robot sensor coverage and environment modeling results by
using GP mixture model with comparison to uni-model GP. (a) Initial and (b) final configurations of
the robots (marked by blue circles) with history footprints by controller using GP mixture model.
The background heatmap indicates the predicted temperature distribution based on the sampled
data. Edge of Voronoi cells and the optimal locations (centroids of Voronoi cells from actual
temperature distribution) are represented by red dashed lines and red stars, respectively. (c) Actual
temperature distribution over map. (d) Initial and (e) final predicted variance distribution by GP
mixture model. (f) Converged prediction variance from uni-model GP. (g)-(h) Temperature
prediction comparison with standard deviation from (g) uni-model GP and (h) GP mixture model.
(i) RMS error comparison.
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(a) (b)

(c) (d)

Figure 7.3: Comparisons of RMS error, sensing cost, average prediction variance and maximum
prediction error occurred v.s. different number of robots.

in comparison with the actual temperature distribution in Fig. 7.2(c) and the pre-
diction variance is also given in Fig. 7.2(e). It is noted that the converged configu-
ration is very close to the optimal one from the actual temperature distribution due
to our adaptive sampling algorithm that trades off between uncertainty reduction
and centroid approaching. Moreover, although none of the robots actually visited
the top corner areas with much higher temperature, the mixture of GPs is able to
identify the prediction differences among the robots over similar areas and adjust
the mixture accordingly to best fit the various local features, by predicting a higher
temperature with higher uncertainties over those areas in Fig. 7.2(e). In contrast,
using uni-model GP could ignore the local features and hence the prediction vari-
ance is almost the same over any unvisited areas as shown in Fig. 7.2(f).

To better understand the performance, we provide the comparisons on local
temperature prediction as shown in Fig. 7.2(g)-(h). Note that although the uni-
model GP can have accurate prediction over places close to the sampled points,
it fails to recognize the peak temperature in areas surrounding the robots, which
can be identified by the mixture of GPs. We also compare the root-mean-square
error (RMS) in Fig. 7.2(i), where the mixture of GPs shows a better performance
with lower prediction error. To further compare our algorithms with other sam-
pling approaches, we run the simulations with different number of robots under
different algorithms, including the aforementioned uni-model GP and the Entropy
minimization algorithm [1] that seeks to find the point in Voronoi cell which best
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(a) Agricultural Data: Stalk Count (b) Office Data: Temperature

Figure 7.4: Prediction performance comparison between mixture of GPs and uni-model GP on two
real-world dataset.

reduces the model prediction uncertainty. The results are shown in Fig. 7.3 and our
Mixture of GPs algorithm always outperforms the uni-model GP algorithm. Al-
though the algorithm in [1] has a better sampling performance w.r.t. model uncer-
tainty, the resultant sensing cost is much higher in Fig. 7.3(b) and hence it cannot
be directly applied to our problem. The reason lies in that it prefers areas with
higher uncertainty to the ones with higher predicted value, and due to the greedy
based coverage control law it could converge to the locations that are further away
from the areas with peak temperature.

Decentralized Learning

In this section, we present several empirical results on two real-world datasets from
the agricultural robotic sampling application [122] and Intel Berkeley Lab [123]
with MATLAB toolboxes: the GPML [125]. The agricultural dataset contains data
of the number of stalks counted per grid over the 21 × 45 = 945 distinct grids
collected in August 2017 over a sorghum field. In our particular tasks, we use the
2D location information with the stalk count and temperature readings (degrees in
Celsius) respectively as the ground truth of the environmental phenomenon over
map and compare our algorithm performance to other approaches.

Before implementing our multi-robot sensor coverage task, we first provide
the empirical results for static prediction of the two environmental phenomenon
using centralized mixture of GPs (m = 3) and centralized uni-model GP respec-
tively. For each dataset, we randomly select a growing number of data from 10 to
100 to serve as the training data and use the rest of the unselected data as testing
data. After 10 random trials at each training sample setting, the prediction per-
formance on the Root Mean Square (RMS) error are plotted in Fig. 7.4 with solid
lines as the mean RMS error covered by the maximum-minimum error bar show-
ing the maximum and minimum predictive RMS error in each 10 trials. The results
suggest as the number of training samples grow, the mixture of GPs outperforms
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(a) Initial (b) Distributed Mixture of
GPs (c) Local GPs (d) Uni-model GP

(e) Control with known
model

(f) Variance by Distributed
Mixture of GPs (g) Variance by local GPs

(h) Variance by uni-model
GP

Figure 7.5: An simulation example of 3 robots covering an agricultural field and the modeling
results using our distributed mixture of GP model in comparison to 1) local GPs with local data and
2) uni-model GP with global knowledge of collected data from all robots. Robots’ current positions
are marked by blue circles with dark blue history footprints in (a)-(e). The background heatmap in
(a)-(d) indicates the predicted stalk count distribution based on the collected data and (e) the true
distribution. The background heatmap in (f)-(h) represents the predicted variance over the map.
Edge of Voronoi cells and the ground-truth optimal locations for that particular configurations are
represented by red dashed lines and red stars, respectively.

the uni-model GP in both datasets, indicating that for the considered real-world
non-smooth data the mixture of GPs can better characterize the distribution of en-
vironmental phenomenon.

Simulation Example with Agricultural Dataset

For multi-robot sensor coverage task, we consider the example in Fig. 7.5 where
we have 3 robots deployed from random starting points shown in Fig. 7.5(a) to
find the optimal final configurations for stationary sensing, where the distribution
of stalk count has multiple peaks around the top right corners.

As shown in Fig. 7.5(a), the robots initially have little knowledge about the
true distribution with only 13 randomly chosen prior training data points over the
map. With our distributed mixture of GPs algorithm in Fig. 7.5(b), the robots are
governed by our proposed adaptive coverage controller Eq. (7.11) with distributed
learning of mixture of GPs (kp = 0.5, β = 1,m = 3) to simultaneously learn the
environmental model and try to approach the actual centroid of each Voronoi cell
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(a) RMS error (b) Sensing cost

Figure 7.6: Prediction and coverage performance comparison.

based on its own model inference. We assume any robot pairs sharing the same
Voronoi edge could communicate to each other. The converged results of config-
urations under adaptive coverage controllers with other modeling approaches are
shown in Fig. 7.5(c)-(e), where the local GPs (Fig. 7.5(c)) are trained by each robot
with its own local collected data without communication and the uni-model GP
(Fig. 7.5(d)) assumes global knowledge of all robots’ collected data. The known
model (Fig. 7.5(e)) is the ground truth controller with full knowledge of the den-
sity function as done in [4]. They have different modeling of φ(q) but use the same
form of our adaptive coverage control laws Eq. (7.4). Quantitative prediction and
coverage performance on the same map are also provided in Fig. 7.6 and evalu-
ated by the metrics of 1) Root Mean Square (RMS) error between predicted stalk
count and ground truth stalk count on all unvisited locations, and 2) the actual sens-
ing cost computed by Eq. (7.2). Besides the mentioned comparison algorithms, in
Fig. 7.6 we also introduce the result from centralized mixture of GPs modeling al-
gorithm [3] with the same parameter settings (kp = 0.5, β = 1,m = 3), but use the
training data from all robots. It is noted from Fig. 7.6 that when assuming global
knowledge of all robot’s data, the centralized mixture of GPs has better prediction
performance over uni-model GP. When the global information is not available,
our proposed distributed mixture of GPs has a better prediction performance w.r.t.
RMS error than local GPs and the best coverage performance level.

In particular, it is also noted from Fig. 7.5(b) that the robots with a distributed
GP mixture can successfully identify the top right corner with 3 distinguished peak
areas by exchanging model information, while in Fig. 7.5(c) robot 3 falsely pre-
dicts a larger peak area due to no information exchange. With the uni-model GP
shown in Fig. 7.5(d), the robots fail to identify significantly different components
due to its uni-model inference (although it performs better in prediction RMS er-
ror compared to the distributed algorithms due to its global knowledge of all the
collected data). Results of prediction variance are shown in Fig. 7.5(f)-(h) and
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(a) RMS error (b) Sensing cost (c) Maximum prediction error

Figure 7.7: Comparisons of RMS error, sensing cost, and maximum prediction error occurred v.s.
different number of robots for different algorithms.

our distributed mixture of GPs has smoother prediction due to the consensus of
environment model but are still able to capture the prediction uncertainty differ-
ences over the area. Local GP method in Fig. 7.5(g) has much larger prediction
variance among different robots as they are sampling in different places with sig-
nificantly distinct components without information exchanging. Using uni-model
GP in Fig. 7.5(h) ignores the local features and hence the prediction variance is
almost the same over any unvisited areas. It is noted that even with only a few
samples collected from the map, the converged configurations are very close to the
optimal ones from the actual temperature distribution due to our adaptive sampling
criterion and algorithm that trades off between uncertainty reduction and centroid
approaching.

Quantitative Results

To further compare our algorithms performance in other environmental phe-
nomenon, we run 40 trials on 5 different sets of data from Intel Berkeley dataset
[123] with 3 to 10 robots respectively in Fig. 7.7. Note that as the complexity
of communication for our distributed mixture of GPs is linear to the number of
robots and each robot only computes on the local data only, our algorithm is also
scalable to a larger number of robots. The other modeling algorithms we are com-
paring includes the mentioned local GPs, uni-model GP, known model coverage
control, as well as the Expectation maximization (β = 0) and Entropy minimiza-
tion algorithm (β > 20) coupled with the same form of coverage controller in
Eq. (7.4). Expectation maximization algorithm seeks to find the area with high-
est value of predicted environmental phenomenon while the Entropy minimization
algorithm seeks to find the area with highest prediction variance to reduce model
uncertainty. The centralized uni-model GP has the best performance w.r.t. RMS
error and prediction error due to its global knowledge of data. In particular, the En-
tropy minimization has the best prediction performance w.r.t. the RMS error and
maximum prediction error, but the worst coverage performance since it only prefers
high uncertainty area to the place with higher density value, and thus lead to infe-
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rior suboptimal configurations due to local minima nature of the move-to-centroid
controller (finding global optimal config is NP hard). Our distributed Mixture of
GPs has the best coverage performance even with only local data (considering the
scale of the cost) and in general the second best performance in prediction (follow-
ing Entropy minimization) due to the GP-UCB criteria in our algorithm that trades
off between uncertainty reduction and prediction maximization. As the number
of robots increases, our algorithm outperforms the local GPs w.r.t. RMS error and
maximum prediction error as our distributed Mixture of GPs is able to approximate
global statistics via the consensus algorithm.

7.6 Conclusion and Discussions

In this chapter, we present adaptive sampling algorithms for learning the density
function in multi-robot sensor coverage problem using Mixture of Gaussian Pro-
cesses models. By using the information-theoretic sampling criterion we are able
to modify the traditional coverage control law to consider the uncertainty as well
as the potential environmental phenomenon inferred from the environmental model
learned on-line. Besides, considering significantly different components that may
exist in the real-world environmental phenomenon, we propose to employ the mix-
ture of GP models to capture local features for the global distribution by optimizing
the linear combination of GP models locally learned by the robots. Simulation re-
sults have shown the effectiveness of our algorithm compared to other approaches.

For both centralized and decentralized learning, they rely on the communica-
tion between robots to exchange information. Although this chapter does not ex-
plicitly discuss how to enforce connectivity maintenance constraints to achieve the
assumption, it is straightforward that one could use the adaptive coverage controller
as the nominal controller and pass it to our connectivity and resilient connectivity
maintenance framework in Chapter 5-6. An example of using Voronoi-based cov-
erage control together with our connectivity maintenance framework is provided in
[6]. On the other hand, the communication topology in the robot team could affect
the convergence rate of the consensus algorithm for the distributed learning, and
hence how to address such additional topology consideration to further improve
the computation performance is another important future direction.
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7.7 Conclusions

In this thesis, we discussed the fundamental problems of robot behavior design to
account for safety and resilience for large-scale networked autonomous systems
under uncertainty and developed computationally-efficient and provably-correct
decision-making algorithms. We first present an explicit behavior design for com-
putationally efficient safety assurance under uncertainty on large-scale autonomous
systems, such as a team of drones. In the presence of unknown robot models and
uncertain environments, we then proposed a sample efficient safe reinforcement
learning framework that integrates control-theoretic safe design into a learning-
based approach for a robot to learn to optimally perform a task with safety guaran-
tee.

To address the resilience autonomy, we discussed the effective multi-robot co-
ordination with desired inter-robot information exchange capability through coor-
dinated networking behaviors against defective robots. Then with safety and com-
munication assurance, we discussed how these results lead to reliable multi-robot
behaviors design with guaranteed performance for practical applications such as
data-driven environmental sampling and monitoring. Finally, I will discuss future
challenges and new ideas to build long-term autonomy that is correct by design
for robots to safely and reliably collaborate with humans and each other in a va-
riety of real-world applications. We believe the presented work in this thesis will
facilitate new application domains for a future of human-cyber-physical systems
(h-CPS), such as collaborative human-robot manufacturing and mixed autonomy
in semi-autonomous driving.

7.8 Future Research Directions

7.8.1 Safety Assurance for Human-Centered Autonomous Systems

Recent advances in AI and robotics rapidly expand the robotic technologies from
factory floors to the shared space where human and robots are working much more
closely with each other, e.g. in autonomous driving and massive warehouse man-
agement. While decision making algorithms such as deep RL methods have started
emerging and shown success in complex robotic tasks, the optimization process is
often like a “black-box“ and verifiable safety-critical consideration is in desperate
need, especially in the face of uncertainty from the environment and human behav-
iors. In my recent work [13, 14], I have studied provably correct method to ensure
safety for multi-robot systems under uncertainties and address safe exploration and
exploitation in learning for control. When it comes to interaction with unknown
systems and humans, it requires reasoning over not only the robot’s own uncer-
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tainty, but also the uncertainty of other agents and humans in the shared space,
and how actions impact the evolving uncertainties. In the future work, I will draw
inspirations from machine learning, control theory, and cognitive science to char-
acterize the human behavioral models and the mutual influence between robots’
decisions and those of humans or other unknown agents for effective safety assur-
ance and coordination in various applications, e.g. mixed transportation networks
with human-driven and self-driving cars, and collaborative human-robot manufac-
turing.

7.8.2 Emergent and Resilient Teamwork for Long Term Autonomy

The current state of the art algorithms in collaborative robotic teamwork often
focus on static objectives with predefined roles, structures, and constraints given
by humans from domain knowledge—a setting where robots solve one or a fix
sequence of explicitly defined optimization problems with constraints. However,
the increasing scale of interplay among robots from different groups with diverse
capabilities makes the coordination process far more complex and often unpre-
dictable. The objectives, team configurations and constraints may change over
time as mission and inter-robot relationship evolves. For example, if some robots
fail to fulfill their roles in coordination, how can we let the other robots decide on
their own which ones to take over those roles and how to modify the behaviors for
the others? My research on resilient communication maintenance [15, 16, 17] and
task allocation [128] are examples for emergent communication topology in robot
teaming. The design goal is to keep robots connected and resilient to failures, but
we allow the robots themselves to compute the optimal dynamic communication
topology and improvise the connectivity constraints to enforce that are in favor of
the overall task performance. Building upon this, in the future I am interested in
bringing multi-agent learning, network science and control theoretic approaches
to 1) model and formalize emergent inter-robot relationships with design features
for diversity and heterogeneity, and 2) automate the synthesis of emerging spatial
and temporal behaviors in long-term resilient collaboration.

In the near future, robotic systems could increasingly co-exist with humans in
our daily lives, from household service to large-scale warehouse logistics, agricul-
ture environment sampling, and smart city. Among these applications, robots and
humans as networked heterogeneous components will frequently interact with each
other in a variety of interactions in uncertain, rapidly-changing, and possibly hos-
tile environment. With the development of technology, cooperative autonomous
systems will play a more significant role in our future life that safely operate in
close proximity to human presence, going beyond mere teleoperation.
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