
Semantic Mapping for Autonomous
Navigation and Exploration

Daniel Maturana

CMU-RI-TR-21-55

August 5th, 2021

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Thesis Committee:

Sebastian Scherer, Ph.D, Chair
Martial Hebert, Ph.D
Abhinav Gupta, Ph.D

Raquel Urtasun, Ph.D, University of Toronto and Waabi

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2021 Daniel Maturana

The author gratefully acknowledges the support from the United Technologies Research Center, the Office of Naval
Research, the Yamaha Motor Corporation, and the Qualcomm Innovation Fellowship.





Abstract
The last two decades have seen enormous progress in the sensors and algorithms

for 3D perception, giving robots the means to build accurate spatial maps and lo-
calize themselves in them in real time. The geometric information in these maps
is invaluable for navigation while avoiding obstacles, but insufficient, by itself, for
robots to robustly perform tasks according to human goals and preferences. Semantic
mapping is a promising framework to provide robots with a richer representation
of their environment by augmenting spatial maps with semantic labels – in other
words, a map of what is where. However, for semantic maps to fulfill their potential
to improve robotic capabilities, we need systems capable of building and continuously
updating these maps from noisy and ambiguous sensor streams with acceptable levels
of accuracy and latency. In this thesis, we make several contributions to address these
challenges and demonstrate their benefits in real-world scenarios.

First, we introduce a system for real-time semantic mapping from low-altitude
aerial lidar that explicitly models the ground surface to extract more robust point
cloud features. We show this approach improves the classification accuracy of rele-
vant categories for safe navigation of an autonomous helicopter in human-populated
environments.

Second, we advance the state of the art in point cloud classification bymoving away
from hand-engineered features with VoxNet, a novel deep learning architecture based
on 3D Convolutional Neural Networks (CNNs) that learns features and classifiers
directly from a volumetric representation. VoxNet outperforms various baselines for
the task of mapping safe landing zones for a helicopter in cluttered terrain, and sets
the state of the art in 3D object recognition benchmarks from three different domains.

Third, we develop two systems for multimodal semantic mapping with camera
imagery and lidar point clouds. The first system implements a fast decoupled strategy,
where image and lidar are used to infer semantic labels and elevationmaps, respectively.
The second system learns to fuse both modalities with a novel joint 2D/3D CNN
architecture for semantic segmentation. We apply these systems to the task of off-road
navigation with an autonomous all-terrain vehicle, allowing it to traverse cluttered
and narrow trails in off-road environments.

Finally, we develop a lightweight semantic mapping system for Micro-Aerial
Vehicles (MAVs) with payload constraints that preclude lidar and high-powered
computing platforms. We propose a novel 2.5D mapping system that takes advantage
of publicly available digital elevation maps and priors of object height to achieve
real-time mapping of distant objects using camera imagery. We show this system
enables significant time savings in the task of autonomously gathering information
for semantic classes of interest with MAVs.

Overall, our work – which spans three robotic platforms, four different tasks, and
a wide range of sensing and computing capabilities – shows that semantic mapping is
a versatile and pragmatic framework to extend and improve robotic abilities.



iv



Acknowledgments
I would like to thank my advisor, Sebastian Scherer, who many years ago took a

chance on me as the first doctoral student in his nascent lab. It has been amazing to
see the growth and consolidation of the AirLab over the years, and I am honored to
be one of its founding members. Without Sebastian’s support, advice, and guidance
this thesis would have never come to fruition.

I would also like to thank Abhinav Gupta, Martial Hebert, and Raquel Urtasun for
serving on my committee. As superstar researchers with many commitments inside
and outside of academia, their time is extremely valuable, and I am deeply grateful
that they set aside some of it for me.

Throughout my PhD, I was fortunate to work with many brilliant and hard-working
collaborators. Without the help of Sankalp Arora, Geetesh Dubey, Dong-Ki Kim,
Po-Wei Chou, Sezal Jain, Yu Song, Uenoyama Masashi, Greg Armstrong and Adam
Stambler, many results in this thesis would not have been possible. Outside of my
thesis work, I also learned a great deal collaborating with Ratnesh Madaan, Shichao
Yang, Kristen Holz, Xiangwei Wang, David Fouhey, and Alyosha Efros, among others.

I must also acknowledge some of the many mentors who helped me get started
in my academic journey, without whose help I would have likely not have started a
PhD in the first place: my undergraduate advisor, Álvaro Soto, as well as my early
collaborators Domingo Mery, Nick Roy, Abe Bachrach and Albert Huang.

I would also like to thank the many friends that enriched my life inside and outside
the lab: David Fouhey, Michael Shomin, Sankalp Arora, Geetesh Dubey, Paul Vernaza,
Shervin Javdani, JP Mendoza, Cristóbal de Araujo, JF Winkles, Marie Zimmerman,
and too many others to list here; you know who you are1.

Finally, I would like to thank my family and loved ones that were always there
for me throughout this process. I especially would like to thank my parents Gina and
Sergio, as well as my siblings, who have always been supportive and encouraging
in all my endeavors; my wife Kathryn, who has always been endlessly patient and
loving; and my cat Babette, who always kept me company during long nocturnal
coding sessions.

1If you are in doubt, rest assured I consider you a friend.



Contents

1 Introduction 1
1.1 A critique of pure geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Towards a richer inner world: semantic mapping . . . . . . . . . . . . . . . . . . 3
1.3 Contributions and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Tools for spatial perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The spatial information we need . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 3D sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 3D localization and mapping . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 3D map representations and temporal fusion . . . . . . . . . . . . . . . . 17

2.2 Tools for semantic perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Tasks in semantic perception . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Current approaches to 2D semantic perception . . . . . . . . . . . . . . 20
2.2.3 Current approaches to 3D semantic perception . . . . . . . . . . . . . . 21
2.2.4 Relation to semantic mapping and our thesis . . . . . . . . . . . . . . . 22
2.2.5 A note on recent progress in semantic perception . . . . . . . . . . . . . 22

3 Ground surface-aware semantic mapping 23
3.1 Semantic awareness for an autonomous helicopter . . . . . . . . . . . . . . . . . 24
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Sufficient statistics and map representations . . . . . . . . . . . . . . . . 30
3.3.5 Ground surface estimation . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 Semantic label prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Deep learning for efficient and robust point cloud classification 47

vi



4.1 A deeper look at point cloud data . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Volumetric occupancy grids . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 3D Convolutional Neural Network architectures . . . . . . . . . . . . . . 55

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Exploration of architectures . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Landing Zone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.3 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Multimodal semantic mapping with image and point cloud data 79
5.1 Helping an autonomous All-Terrain Vehicle find its way . . . . . . . . . . . . . . 80
5.2 Joint 2D-3D CNN for multimodal semantic segmentation . . . . . . . . . . . . . 82

5.2.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 2D image network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3 3D point cloud network . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.4 Projection modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.5 Joint 2D-3D network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Decoupled multimodal approach to 2.5D semantic mapping . . . . . . . . . . . . 92
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Semantic segmentation architectures . . . . . . . . . . . . . . . . . . . . 94
5.3.3 2.5D semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.4 Reactive path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Long-range semantic mapping for semantic exploration 105
6.1 Looking forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Lightweight semantic segmentation for aerial data . . . . . . . . . . . . 109
6.3.2 Mapping with digital elevation maps and prior knowledge . . . . . . . . 113
6.3.3 System implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.1 Semantic segmentation evaluation . . . . . . . . . . . . . . . . . . . . . 117
6.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.3 Field Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vii



7 Conclusions and future directions 127

References 131

List of Figures

1.1 Robots featured in this thesis and their sensor data . . . . . . . . . . . . . . . . . 2
1.2 Spatial map versus semantic map . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 INS and IMU used in our platforms . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Lidar scanning configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Lidar sensors used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Example of lidar failing to capture a non-diffuse surface . . . . . . . . . . . . . . 14
2.5 Stereo rig and structured lighting sensor . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Examples of classification and semantic segmentation tasks used in this thesis . . 19
2.7 Deep representation learning in CNNs . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The Unmanned Little Bird platform performing an autonomous landing . . . . . 24
3.2 Semantic awareness enables safer planning . . . . . . . . . . . . . . . . . . . . . 25
3.3 Ground surface-aware semantic segmentation system overview . . . . . . . . . . 27
3.4 Motivation for ground surface estimation . . . . . . . . . . . . . . . . . . . . . . 29
3.5 3D point cloud voxelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Steps in ground surface estimation . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Illustration of multiple lidar returns in solid and porous objects . . . . . . . . . . 35
3.8 Visualization of selected point cloud features . . . . . . . . . . . . . . . . . . . 37
3.9 Example scene from our labeled point cloud dataset. . . . . . . . . . . . . . . . 39
3.10 Confusion matrix of classifications in the test set . . . . . . . . . . . . . . . . . 41
3.11 Point cloud feature importance ranking . . . . . . . . . . . . . . . . . . . . . . . 41
3.12 Screen captures of our system performing labeling in real time . . . . . . . . . . 43
3.13 Ground surface interpolation for active sensing of landing zones . . . . . . . . . 44

4.1 Point clouds for two candidate landing zones, one of them unsafe . . . . . . . . . 48
4.2 3D data sources used in object recognition experiments . . . . . . . . . . . . . . 49
4.3 VoxNet architecture and data flow . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Occupancy grids versus Hit grids . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Occupancy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Validation of simulated laser scanner . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Steps in autonomous landing zone detection . . . . . . . . . . . . . . . . . . . . 61
4.8 Synthetic point clouds with obstacles . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9 Semisynthetic point cloud scene generation . . . . . . . . . . . . . . . . . . . . 63

viii



4.10 Images of the vegetation present in our lidar data. . . . . . . . . . . . . . . . . . 63
4.11 Possible outcomes for landing zone safety prediction . . . . . . . . . . . . . . . 64
4.13 Example outputs for landing zone safety prediction . . . . . . . . . . . . . . . . 66
4.15 Screen capture of integrated system operating in real time . . . . . . . . . . . . . 68
4.16 Object instances from the Sydney Objects, NYUv2 and ModelNet40 datasets . . 69
4.17 Visualization of first layer filters and feature maps in object detection datasets . . 73
4.18 Learned rotational invariance in fully connected layers. . . . . . . . . . . . . . . 74
4.19 Interactive VoxNet demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.20 Issues with fixed-size bounding boxes for point cloud classification . . . . . . . . 76

5.1 Example point cloud and its mesh representation used for spatial mapping on the
ATV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 The ATV platform and its sensors . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Challenging scenarios for path following . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Trail images captured within a single day at the Gascola site near Pittsburgh, PA . 82
5.5 A motivating example for multimodal CNNs . . . . . . . . . . . . . . . . . . . . 83
5.6 Overview of multimodal network architecture . . . . . . . . . . . . . . . . . . . 84
5.7 Modules used in our networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.8 Visualization of roughness and porosity feature . . . . . . . . . . . . . . . . . . 85
5.9 Our multimodal network architecture . . . . . . . . . . . . . . . . . . . . . . . . 87
5.10 GPS coordinates of paths for different datasets . . . . . . . . . . . . . . . . . . . 87
5.11 The point cloud ground-truth generation procedure . . . . . . . . . . . . . . . . 88
5.12 Predicted semantic segmentation examples . . . . . . . . . . . . . . . . . . . . . 91
5.13 Feature map visualization for each projection module’s output. . . . . . . . . . . 92
5.14 Outline of decoupled semantic mapping and trail following system . . . . . . . . 93
5.15 Architecture of our 2D semantic segmentation networks. . . . . . . . . . . . . . 95
5.16 Projecting the 2D semantic segmentation on the 2.5D map . . . . . . . . . . . . 96
5.17 Example output of semantic map in a live field run . . . . . . . . . . . . . . . . 96
5.18 The reactive path planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.19 Montage of frames from the YCOR dataset. . . . . . . . . . . . . . . . . . . . . 98
5.20 Visualization of dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.21 Montage of predictions from the evaluated networks . . . . . . . . . . . . . . . . 100
5.22 Action shots of autonomous off-road driving in our testing site. . . . . . . . . . . 102
5.23 Example failures in field tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Overview of the scouting task . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 System outline of semantic mapping for scouting . . . . . . . . . . . . . . . . . 109
6.3 The ScoutNet architecture with example input and output . . . . . . . . . . . . . 110
6.4 Visualization of clusters in our data . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Example images from our datasets . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Our MAV platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Block diagram of the MAV scouting system . . . . . . . . . . . . . . . . . . . . 116
6.8 Example predictions from our network . . . . . . . . . . . . . . . . . . . . . . . 118
6.9 Screen captures of field results on a human-piloted flight. . . . . . . . . . . . . . 119

ix



6.10 Analysis of our mapping method in a representative scenario . . . . . . . . . . . 120
6.11 Autonomous scouting mission . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.12 Larger scale autonomous scouting mission . . . . . . . . . . . . . . . . . . . . . 122
6.13 Multiclass semantic labeling in 2D and 3D . . . . . . . . . . . . . . . . . . . . . 123
6.14 Learning to correct noisy and sparse stereo disparity . . . . . . . . . . . . . . . 124
6.15 Detecting vehicles at long distance without DEMs by using VSLAM and learned

depth refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 Issues in manual labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

List of Tables

3.1 Point cloud features used in our system . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Per-voxel semantic class statistics of our dataset . . . . . . . . . . . . . . . . . . 39
3.3 Quantitative evaluation of ground surface-aware segmentation . . . . . . . . . . 40
3.4 Latency analysis of our system . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Simulation parameter sweep for synthetic datasets. . . . . . . . . . . . . . . . . 58
4.2 Search space for 3D CNN architecture . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Area under curve (AUC) of evaluated methods . . . . . . . . . . . . . . . . . . . 65
4.4 Effect of rotation augmentation and occupancy models . . . . . . . . . . . . . . 71
4.5 Comparison with baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Quantitative results on Summer test (mean and standard deviation) . . . . . . . . 89
5.2 Quantitative results on Winter test (mean and standard deviation) . . . . . . . . . 90
5.3 Quantitative evaluation of semantic segmentation in the DeepScene dataset . . . 99
5.4 Quantitative evaluation of semantic segmentation in the YCOR dataset . . . . . . 99

6.1 Data members of grid cell Cij for class c. . . . . . . . . . . . . . . . . . . . . . 114
6.2 Performance on Pascal-Context Validation . . . . . . . . . . . . . . . . . . . . . 117
6.3 Quantitative evaluation on the MAVCAR and FIELD datasets . . . . . . . . . . . 118

x



Chapter 1

Introduction

1.1 A critique of pure geometry

Ubiquitous mapping and GPS localization, inexpensive high-quality cameras and depth sensors,
and increasingly fast and accurate 3D reconstruction technology have made it feasible for modern
robots to have a detailed, real-time sense of the spatial geometry of their surroundings. This
information is a key input to most of the planning algorithms that allow robots to find efficient
routes and safely avoid obstacles.

However, the performance of robots based purely on this information is often disappointing.
Consider these scenarios, based on the work in this thesis (Figure 1.1):
• A lidar-equipped autonomous helicopter that selects suitable landing zones by finding
planar or near-planar surfaces in the point cloud may decide that a building’s roof top is
a preferable landing zone to a nearby, less planar, location on the ground. A human pilot
would usually choose the latter, as most roof tops are not permissible landing zones. Without
any knowledge of which surfaces may be roof or ground, the helicopter is ill-equipped to
make the right choice.

• An autonomous all-terrain vehicle (ATV) that encounters a small patch of grass along its
intended path stops to halt, as it appears to its depth sensors as an obstacle or extremely
rough terrain. A human driver, knowing the grass is soft, would have decided to drive over
it, perhaps after slowing down.

• An autonomous Micro Aerial Vehicle (MAV) is tasked with finding and capturing high-
resolution imagery of objects belonging to a specific semantic category, such as cars. In
this situation, a human pilot with a first-person camera view can take advantage of their
knowledge of what cars look like (and where they are likely to be located) to find and fly
towards cars to capture close-up images. In contrast, a MAV with no semantic awareness
of the environment must resort to an exhaustive aerial survey of the area, at a significantly
higher cost in flight time.

These examples illustrate that representations of the world based purely on spatial information
do not provide a sufficiently expressive basis for robots to effectively carry out tasks according to
human goals and preferences.

1



(a) The Unmanned Little Bird autonomous helicopter (chapter 3, chapter 4)

(b) The Erik autonomous All-Terrain Vehicle (chapter 5)

(c) The MAVScout autonomous quadrotor (chapter 6)

Figure 1.1: Robots featured in this thesis and their sensor data.
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1.2 Towards a richer inner world: semantic mapping
The biologist von Uëxkull introduced the notion of Umwelt for the study of animal behavior,
defined roughly as the world as experienced by the animal, and often translated as “self-world”
or “subjective inner world” [52]. The animal’s Umwelt depends on its sense organs, and more
importantly, on its own biological needs; it represents “the set of things in the world that matter
to it and which it needs to discriminate and anticipate as best as its can”, in the words of the
philosopher D. Dennett [46, p. 11]. Each animal will build an Umwelt that carries the specific
meanings — i.e., semantics — about the environment it needs to act in an adaptive way, and the
scope of the animal’s Umwelt sets the limits of its behavior.

Figure 1.2: Spatial map versus semantic map. In addition to representing spatial geometry of the
environment, semantic maps represent other semantic attributes, such as object categories.

Applying this view to robots, what “semantics” should their Umwelt carry? If we assume that
for robots, acting adaptively means accomplishing human-specified goals, then semantics that
relate to a human’s own view of the environment are a natural choice. While a representation of the
environment that matches human levels of nuance are still out of reach, the examples above suggest
that even a simple step beyond purely spatial maps — spatial maps annotated with category-level
semantics — can significantly extend the capabilities of robots. Such a representation is often
known as a semantic map [65, 133, 96, 178, 104], and the process of creating this map as semantic
mapping.

In this thesis, we investigate semantic mapping as a framework to extend and improve the
capabilities of robots across different tasks and scenarios. In general, the goal of a semantic
mapping system is to create a map that represents not only information about the spatial geometry
of the environment, but also some type of “meaning” — i.e., semantics — associated with the
spatial features. In this work, we will restrict ourselves to semantic maps defined by two design
choices: First, we will assume that spatial information will be in the form of three-dimensional
metric maps; second, we assume the semantic information will correspond to a fixed set of
categories chosen a priori, based on the needs of each task. Figure 1.2 shows such a map.

Both of these choices are rooted in the same assumption: that we are designing robots to
accomplish tasks that are useful for humans, and thus, we are tailoring their inner world in a
way that is transparent for humans. Metric representations, while certainly not the only spatial
representation that is interpretable for humans, are — by design — a universal, objective way for
humans to conceptualize and communicate about space. In robotics, metric representations are
heavily used in mapping, planning, and control, especially in the temporal and spatial scales that
concern the robotic tasks we target in this thesis. Likewise, we argue that categories are also an
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effective and pragmatic way to represent a semantic interpretation of the world that is shared by
the robot and humans. While less objective than spatial units of measurement, humans can usually
agree on how to categorize various entities [150]. In addition, using category-level predictions
allows us to leverage the large body of machine learning research and computer vision that adopts
this paradigm in the form of classification and semantic segmentation. Naturally, these design
choices have certain drawbacks, which we discuss further in chapter 7.

Before we summarize the contributions in this thesis, let us return to our example scenarios to
illustrate how semantic maps can be used in practice:
• In the helicopter scenario, we create a 3D voxel map that predicts a semantic label for
each occupied voxel, where the possible labels include roof, ground, tree canopy, etc. This
representation can be readily used by the planner to avoid roofs as a landing zone.

• Similarly, in the ATV scenario, we create a local 3D voxel map where each voxel is labeled
as one of trail, low vegetation, etc.; using these predictions, a planner can create a more
natural route through rough terrain.

• In the MAV scenario, we use camera imagery to maintain a global elevation map with
probabilistic estimates for the presence and coarse location of cars (or any given class of
interest) around the robot. This map is used by the MAV’s viewpoint-aware planner to create
trajectories that enable the MAV to search for the class of interest and capture high-quality
images for instances of the class whenever it is detected.

1.3 Contributions and overview
Implementing semantic mapping systems that significantly extend robotic capabilities presents
several challenges. The systems must be able to make predictions with sufficient accuracy for each
task in the presence of low interclass variability and high intraclass variability, and be robust to
noise and outliers in the sensor data. Moreover, they must make these predictions with low enough
latency to provide the planning system with the relevant information to choose the next action.

In this thesis, we propose several contributions to the state of the art in semantic mapping
with image and point cloud data. For each contribution, we demonstrate its benefits for real-world
robotic applications:
Ground surface-aware semantic mapping (chapter 3). As our first contribution, we develop

a real-time semantic mapping system for low-altitude aerial point clouds, which predicts
various prominent classes in urban and suburban environments, such as ground, tree, building
roof, building wall, etc.
Our semantic mapping pipeline builds on the prior state of the art in semantic segmentation
for point cloud segmentation, but improves on this baseline in two ways. First, motivated
by the importance of the ground surface as a discriminative cue for semantic inference, we
propose a specialized 2.5D ground surface estimation method resistant to the significant
occlusion and sparsity present in aerial lidar point clouds, and use it to improve semantic
classification. Second, we implement an intermediate grid-based representation encoding
sufficient statistics for point clouds that enables efficient incremental updates and extraction
of features for semantic classification.
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Our motivating application is to provide an autonomous full-sized helicopter with semantic
awareness of classes relevant for the planning of low-altitude flight trajectories and landing.
We evaluate our approach on a custom dataset captured with a lidar-equipped helicopter, and
show the benefits of incorporating ground surface estimation in the pipeline. In addition, we
demonstrate real-time operation of our pipeline on streaming point clouds.

Deep learning for robust and efficient point cloud classification (chapter 4). Our second con-
tribution aims to overcome a shortcoming of the earlier state-of-the-art in point cloud labeling
systems, including our first contribution. These systems often struggle to discriminate be-
tween categories that appear highly similar in point clouds, despite using a diverse set of
features designed to capture various kind of relevant cues for classification tasks. Under
the hypothesis that the hand-engineered point cloud features used by these systems do not
encode sufficient task-specific information, we developed VoxNet, a novel end-to-end deep
learning approach for point cloud classification that integrates volumetric occupancy maps
with spatially 3D Convolutional Neural Networks (CNNs). Like other deep learning ap-
proaches, this approach can learn how to extract discriminative features at multiple levels of
abstraction from the data, enabling higher classification accuracy and easing the burden of
feature design.
We evaluate this system in the challenging task of safe landing zone detection for helicopters,
showing real-time performance and a significant improvement over systems with hand-
engineered features. Furthermore, we show the benefits of our architecture in more generic
object recognition tasks by improving over the state of the art in three benchmarks, each
using a different source of 3D data (lidar, RGBD sensing, and CAD models).

Multimodal semantic mapping with image and point cloud data (chapter 5). In our third con-
tribution, we investigate the fusion of camera imagery and point cloud data for semantic
mapping. While we showed point cloud data from lidar can be used effectively for semantic
as well as spatial inference, acquiring point clouds with the density and accuracy required
to discriminate certain classes may be infeasible with lower end sensors. On the other
hand, image sensors that provide high-resolution color and texture data are widely available
at a relatively low cost and footprint. Thus, we are interested in taking advantage of the
complementary information provided by these two modalities to improve semantic mapping.
In the first part of the contribution, we investigate how to use point cloud and image data
jointly for semantic inference. We propose a novel multimodal CNN architecture that
learns to fuse sensor information from image and point cloud data. The network features
a 2D CNN stream and a 3D CNN stream, and the two are interconnected with learned
projection modules. We apply this architecture to the problem of 2D semantic segmentation
for autonomous off-road navigation from image and lidar data, and show its accuracy benefits
over various baselines in offline experiments.
In the second part of this contribution, we propose a multimodal semantic mapping system
that uses a decoupled approach to fusing the information from point cloud and image
data, with the aim of obtaining real-time operation. Based on the cost/accuracy trade-
offs we observed in our initial approach, we opt to exploit the relative strengths of each
modality, using images for semantic segmentation with a custom 2D CNN and lidar for
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spatial mapping with a 2.5D elevation map. We apply the system to the problem of robust
path following in off-road environments for an autonomous All-Terrain Vehicle (ATV). We
evaluate the performance of our 2D CNN in offline experiments on two datasets, including a
custom dataset gathered with our platform, and show comparable accuracy to state-of-the-art
approaches at lower latency. We also demonstrate autonomous operation of our system
in the field, where the semantic maps enable the ATV to follow a variety of challenging
off-road trails.

Long-range semantic mapping for semantic exploration (chapter 6). Our prior contributions
in this thesis rely on range sensors to acquire the spatial information for our semantic maps.
However, a drawback of this approach is that current range sensors quickly become sparse,
inaccurate, or both at longer distance ranges.
In our final contribution, we investigate how to create long-range semantic maps in real
time for based on high-resolution camera imagery and global positioning estimates. We
are motivated by a novel task, semantic exploration, where the goal is to enable the robot
to efficiently acquire high-resolution sensor data for a given class of interest within a large
area. This requires the robot to locate the objects of interest with onboard sensing before
approaching them for high-resolution data acquisition. This task is relevant to applications
such as inspection, search and rescue, surveillance, etc.
Our hypothesis is that we can use a forward-facing camera to estimate the presence and
location of potentially distant instances of the class of interest, and use these estimates to
guide the robot towards these locations to gather high-quality data. Due to their agility and
ability to easily capture camera imagery from different viewpoints and altitudes, Micro-
Aerial Vehicles (MAVs) are an attractive platform to explore this approach. However, their
relatively low payload capacity restricts us to relatively limited computing platforms and
precludes the use of lidar.
To enable effective semantic exploration within these constraints, we propose a system
combining a lightweight 2D segmentation CNN with a coarse 2.5D height mapping system
that uses global positioning estimates and preexisting Digital Elevation Maps (DEMs) to
predict the location of objects of interest. We evaluate the performance of the semantic
segmentation and mapping modules on two custom datasets, and demonstrate successful
semantically exploration in the field.

Together, the contributions in this thesis – which spans three robotic platforms, four different tasks,
and a wide range of sensing and computing capabilities – show that semantic mapping is a versatile
and pragmatic framework that allows us to extend and improve robotic abilities by providing them
with a rich human-compatible representation of their environment in real time.
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Chapter 2

Background

The goal of the semantic mapping systems in this thesis is to provide robots with a coherent,
real-time representation of their environment encoding the spatial and semantic structure they
need for effective action. To meet this goal, these systems must fuse information from multiple
sources into a global metric representation that is suitable for use with the robot’s navigation
planning systems, online and in real time. To handle the complexity of this task, we adopt a
modular approach, with separate subsystems for spatial mapping and semantic inference, and the
fusion of the respective outputs of these systems into a semantic map. This allows us to adopt and
build on the prior state of the art for each of these tasks, whenever possible.

In this chapter, we will introduce the tools that we build on for these subsystems and how
we use them in our semantic mapping pipeline. Section 2.1 briefly surveys the technologies and
algorithms in spatial perception that we rely on for our semantic maps. Section 2.2 discusses the
most common tasks in computer vision and machine learning that relate to semantic mapping, and
summarizes relevant prior work in these areas.

2.1 Tools for spatial perception

As we discussed in chapter 1, the technology and algorithms for spatial perception have made
enormous strides in the past two decades, and currently provide several mature tools that simplify
the task of estimating the robot’s pose and acquiring spatial maps of the environment in real time.
As a consequence, for the most part we will rely on existing solutions for spatial localization
and mapping, and focus on improving the inference of semantic properties. However, given their
importance to the work in this thesis, we will briefly introduce the tools we utilize and how we use
their outputs for semantic mapping.

2.1.1 The spatial information we need

For the work in this thesis we assume, unless otherwise stated, that we have access to the following
(somewhat idealized) pieces of knowledge regarding spatial state:
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• A real-time stream of 6-degree of freedom1 pose measurements of the robot, time-stamped
and aligned to a geocentric frame2

• A real-time stream of 3D point clouds, temporally synchronized with the pose stream, and
aligned to the same geocentric frame

These are relatively specific requirements, and in practice can be partially relaxed for some of
our applications. For example, with the exception of the system in chapter 6, we do not explicitly
depend on the geocentric alignment of our spatial frame of reference; any fixed, gravity-aligned
frame is sufficient. Likewise, we don’t necessarily depend on the point clouds being aligned to the
same frame as the pose, as long as we have the necessary information to transform the point clouds
(or spatial data that can be converted into point clouds, such as depth maps) to be in a globally
consistent frame.

We have not made any explicit requirements on the accuracy or precision of these measurements.
In practice, throughout these thesis we simply use the highest-quality spatial information available
to us in the various robotic platforms we use, and engineer our semantic pipeline as needed in
each case. The quality of the spatial measurements is primarily constrained by the sensors and
computational capacity that each platform has at its disposal, and there is a wide variation in
quality, as we discuss below.

While stating these requirements is simple, fulfilling them is far from trivial. In the next
sections we survey the hardware and software technologies that have made it possible to obtain
this spatial information our semantic mapping systems depend on.

2.1.2 3D sensing

As part of a robot’s perception system, the design of any semantic mapping system will naturally
be deeply influenced by the robot’s sensors, as they provide the starting point for both spatial and
semantic perception of the environment. Nowadays, robot engineers have a vast array of sensors at
their disposal, allowing robots to perceive a wide variety of properties of the environment. Despite
their differences in size, function, and operating environment, the robots that we encounter in
this thesis use many of the same sensing technologies. In particular, they use different types of
inertial sensors, global positioning sensors, and range sensors; together, these sensors enable the
robots to build metric 3D representations of the world in real time, the availability of which is an
assumption that we make throughout this thesis.

Here we briefly introduce these sensors, their different trade-offs, and how they impact the
semantic mapping in this thesis. For a comprehensive textbook on INS and GNSS, see Groves
[72]. Kelly [89, chap. 6 and 8] provides a useful introduction to inertial sensing systems and range
sensing for robotics. Szeliski [168, chap. 11] for an introduction to stereo vision, and Zollhöfer
[193] for an introductory survey of RGB-D sensors.

1Three translational degrees of freedom and three rotational degrees of freedom; for example,
(x, y, z, roll, pitch, yaw).

2An earth-centric coordinate frame; in practice, this means a frame that we can use as an “absolute” and unam-
biguous frame of reference on the planet where our research takes place.
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Inertial Sensors and global positioning

Broadly speaking, inertial sensors allow the robot to perceive its own pose and/or motion relative
to an inertial frame of reference. The most well-known sensors of these type are accelerometers
and gyroscopes. Accelerometers measure external forces acting on the vehicle (including gravity),
which can be used to estimate linear acceleration. Gyroscopes measure angular velocity relative
to an inertial frame of reference. Most modern robots will use Micro-Electro-Mechanical Systems
(MEMS) versions of these sensors, integrated into a single package known as Inertial Measurement
Units (IMUs). Most IMUs used in robotics will have three accelerometers and three gyroscopes,
arranged to provide measurements for six degrees of freedom (three of linear motion and three of
rotational motion).

By integrating the gyroscopic and accelerometer measurements over time, it is possible to
estimate the robot’s attitude (pitch and roll relative to gravity) as well as its 6-dof pose relative
to an arbitrary fixed frame. Systems that perform this estimate with IMUs are often known as
Inertial Navigation Systems or INS. While the term is often used to describe integrated packages
that include sensors and embedded processors for state estimation, it can be applied more broadly
to systems that perform the same functionality with independent sensing and processing hardware.

INS typically provide high-rate (>50 Hz) pose estimates that are critical for robotic control,
and an important cue towards estimating the robot’s pose in a global frame. However, this estimate
will drift over time, as small errors in integration of the rotational and linear motions, plus other
sources of noise, compound. The rate at which this happens will depend on the IMU performance,
for which there is a wide range, but for most practical purposes the pose estimates of an IMU will
be useless for 3D mapping by themselves.

To mitigate this problem, many IMUs include additional sensors. A common additional sensor
is a 3-axis magnetometer (compass), which provides an absolute reference for orientation in the
yaw axis. Another is a barometer, which can be used to estimate altitude, specially useful for aerial
robots. IMUs with these sensors are sometimes referred to as 9-dof and 10-dof IMUs, respectively.
For wheeled vehicles, wheel encoders are often used to estimate motion. When used for INS,
these sensors are sometimes referred to as aiding sensors.

Even these additional sensors are not a solution to the issue of drift; not only are they often
noisy, but still do not provide an absolute reference for 3D position. The most common solution
to this problem, at least in outdoor scenarios, are Global Satellite Navigation Systems (GNSS),
of which the most well known is the Global Positioning System (GPS). GNSS are based on the
computation of time delays between radio signals from a set of satellites orbiting Earth; when
sufficient signals are received, the vehicle can fix its position on the Earth surface to within 5 m to
20 m, depending on the quality and quantity of the signals.

The combination of GPS and IMU is extremely useful for robots operating in outdoor en-
vironments, as it allows the robot to estimate its 6-dof pose in a global geocentric frame using
compact, lightweight hardware and with a computational cost that is negligible by modern stan-
dards. However, depending on the application and the INS performance, the accuracy obtained by
this solution is still insufficient. To improve the accuracy of the estimated position at the cost of
additional infrastructure, Differential GPS (DGPS) and Real-Time-Kinematic (RTK) systems use
additional radio communication with ground stations with known positions. These systems can
achieve centimeter-level accuracy.
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However, in practice, even systems with this level of accuracy usually need to supplement
their positioning systems with other sources of information. Even if the robot knows its position
with perfect accuracy, the position of the objects (and potential obstacles) around it are likely not
known with the same level of accuracy, or in many cases not known at all (e.g., a self-driving
car may have a road map in GPS coordinates, but will probably not know the GPS coordinates
of pedestrians or other cars). Moreover, in the real world, these systems are often disrupted in
various ways. As examples, in urban environments or GPS radio signals may be blocked or affected
by multipath interference; accelerometer measurements may be highly inaccurate under high-
frequency vibration; compass measurements may be disturbed by the presence of large amounts
of metal in the environment 3. As we discuss in subsection 2.1.3, INS is usually supplemented
with mapping and localization algorithms based on other sensor modalities.

Figure 2.1: Left: integrated INS used in the ATV platform of of chapter 5. Right: the IMU
mounted on the Micro Aerial Vehicle platform of chapter 6.

All the robotic systems featured in this thesis use INS with these sensors, albeit with a wide
range of performance characteristics, ranging from the aerospace-grade INS in the helicopter
of chapter 3 to the compact consumer-grade sensors of the Micro-Aerial Vehicle in chapter 6,
with the automotive-grade INS of the All-Terrain Vehicle from chapter 5 falling in between these
extremes. Figure 2.1 depicts the hardware components of the INS systems used in chapter 5 and
chapter 6, minus the antennas that improve their reception of GNSS signals.

Range sensing

The last section discussed sensors that help the robot estimate its own position, and thus, at least in
theory, can cover the first requirement we specified in the beginning of this chapter. But building
spatial maps also requires perceiving the position and shape of surfaces in its surroundings.

Various types of sensors have emerged to achieve this purpose; collectively, they are often
referred to as range sensors or depth sensors, as they measure distance or range from the sensor to
each surface. The measurements of range and depth sensors are often aggregated in the form of
point clouds; thus, in this thesis we often use the term “point cloud data” as a shorthand for the
kind of data that is created by these different sensors.

3Interference from metals may come from unexpected places. We learned this lesson first-hand, when we saw the
iron-rich soil in one of our testing locations in Pittsburgh — known as the “steel city” for a reason — wreak havoc
with our magnetometers .
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The range sensor that will feature most prominently in our work is lidar, but we will also
encounter structured light sensors and stereo sensors. In recent years, these sensors have seen
dramatic improvements in sensing quality, as well as size and cost, making them extremely useful
for robotic applications. Many results in this thesis are enabled by the availability of high-quality
3D range sensing, which simplifies the construction of detailed 3D maps of the environment.

However, while much work has been done in taking advantage of these sensors for spatial
mapping tasks (subsection 2.1.3), there is still relatively little research on semantic perception
tasks with these sensors, which is one of the gaps this thesis aims to address. We briefly introduce
these sensors below.

Lidar Lidar – an abbreviation of LIght Detection And Ranging4 – has seen a massive increase
in adoption over the last few years, largely fueled by its applications in autonomous self-driving.

Lidar is an active range sensor that works with a time-of-flight principle on emitted light (laser)
signals. The laser signal is modulated (usually as pulses) and the distance from the sensor to the
surface it is pointing at is estimated by measuring the time the modulated signal is reflected back
to the sensor.

Most lidar devices are “single-pixel” devices, i.e., they measure range for a single direction at
any given time. However, the beam width of this measurement (also known as the instantaneous
field of view) is typically very narrow, and the time it takes to perform a single measurement is
very short — for example, the lidar sensor used in the helicopter platform from chapter 3 has
a beam width of 0.35 mrad and can make between 30 000 to 240 000 measurements per second.
Therefore, point clouds with a wider view can be created by rotating the sensor along one or more
axes. If the sensor is moving at high speeds relative to the scanning motion, it is necessary to
correct for this motion to avoid distorted point clouds.

When the scanning happens along a single axis, the result is a 2D “scan line”, a series of range
measurements made along a (possibly 360◦) arc. Such single scan-line measurements have been
commonly used for obstacle detection and 2D mapping in ground robots. To create fully 3D point
clouds, some lidar rigs, such as the one shown in Figure 2.3b, consist of stacked lidar sensors that
simultaneously capture scan lines that, when combined, form a 3D point cloud. Another option is
to rotate the lidar along two axes simultaneously; for example, the lidar in Figure 2.3a can operate
in a “nodding” mode, capturing scan lines at various angles (Figure 2.2a). It is also common to
use translational motion in a direction approximately orthogonal to the plane spanned by each
scan line, which is usually known as a “push-broom” configuration (Figure 2.2b). Finally, some
newer types of lidar sensors use a 2D array of sensors — like cameras — instead of a single sensor,
allowing it to capture 3D point clouds with no moving parts. Some versions of these sensors are
known as time-of-flight sensors.

Lidar has several advantages that have made it extremely useful in robotic applications. It is
capable of capturing 3D measurements with a combination of accuracy, range and speed that is
still out of reach for other methods; for example, the lidar sensor on the aerial platform of chapter 3
(Figure 2.3a) features sub-centimeter accuracy up to range of 200 m. Moreover, its active nature

4There are several different variations of this term, including LiDAR, LIDAR, and LADAR (from LAser Detection
And Ranging). Following the recommendation of Deering and Stoker [43], we adopt “lidar”, which is consistent with
similar abbreviations such as sonar and radar.
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(a) (b)

Figure 2.2: Lidar scanning configurations. (a): Nodding lidar configuration. (b) “Push-broom”
configuration.

makes it practically invariant to ambient lighting conditions, including the absence of light. The
more powerful lidar sensors, such as the one used in chapter 3, are also able to partially penetrate
vegetation and other obscurants, a useful capability in certain applications.

On the other hand, lidar sensors have certain downsides. They are relatively expensive, large,
and heavy compared to sensors such as cameras. The latter two factors, in particular, are obstacles
to their deployment in some robots, such as the micro-aerial vehicle we use in chapter 6. Lidar
measurements are also relatively spatially sparse compared to those of high-resolution cameras,
and in most sensors they lack visible-spectrum information such as color, which can be especially
useful for semantic classification. For this reason, we supplement lidar measurements in camera
imagery in chapter 5. Another issue with lidar is that it often yields incorrect or incomplete
measurements for non-lambertian surfaces, such as transparent and specular surfaces. Examples
include glass, water, mirrors, etc. Figure 2.4 shows an example captured from our aerial platform,
where lidar fails to capture the stream in the center of the scene. While this thesis does not deal
with this problem, using semantic inference to mitigate this issue — especially with multiple
modalities, as in chapter 5 — is an interesting avenue for further research.

Stereo and structured lighting Structured lighting sensors and stereo image sensors both
operate on the principle of triangulation of a signal from two (or more) viewpoints. In stereo
sensors, this triangulation is performed by comparing image pairs captured by cameras in a
binocular configuration. By matching the 2D projections of points that are visible in both images
of the pair, the distance of each point to the camera can be inferred using simple geometry. If this
inference is done for every pixel in the image array, i.e., dense stereo, the result can be seen as
a depth image which can be readily converted into a point cloud. The custom stereo rig used in
the Micro-Aerial Vehicle (MAV) of chapter 6 is shown in Figure 2.5a, where the leftmost and
rightmost cameras form a stereo pair.

Structured light sensors, unlike stereo, are active sensors. In structured lighting, one of the
cameras is replaced by a projector that projectors a structured light pattern. The pattern is usually
outside the visible spectrum, but visible to the remaining camera. By matching the structures
of the pattern to their corresponding origin in the projector, structured light can triangulate the
position of points using similar geometric principles to those used by stereo. The output, as in
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(c)

Figure 2.3: Lidar sensors used in this thesis. (a) The lidar and nodding enclosure of the aerial
platform used in chapter 3. (b) The lidar of the ATV platform used in chapter 5. (c) Time-of-flight
sensor used for live system demonstration in chapter 4.
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Figure 2.4: Example of lidar failing to capture a non-diffuse surface. The stream in the middle of
the image is largely invisible to lidar.

(a) (b)

Figure 2.5: (a): Stereo sensing rig used in MAV from chapter 6. The leftmost and rightmost
camera are used as a stereo pair. (b): Structured lighting sensor similar to the sensor used for the
RGBD dataset [129] evaluated in chapter 4.
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stereo, is a depth image. Inexpensive, mass-produced structured lighting sensors have recently
gained wide adoption in indoor robotics and other applications. One such sensor (Figure 2.5b)
was used for to capture the the experiments of chapter 4. Since commonly used structured lighting
sensors usually capture RGB images along with depth (D) images, they are also known as RGBD
sensors.

Stereo sensors and structured lighting sensors have different trade-offs. In stereo sensing, the
main difficulty is finding pixel correspondences between the two images in the stereo pair; this is
not only a computationally expensive process, but it is error prone, particularly in images that have
a repetitive structure or that lack texture. Structured lighting sensors avoid the need for elaborate
matching algorithms by using a pattern that is easy to detect and has a known structure. Therefore,
structured lighting sensors are usually faster and more accurate. On the other hand, they are less
robust to conditions which affect visibility of the structured pattern. For example, many structured
lighting sensors use patterns in the infrared spectrum, which cannot be detected reliably under
sunlight. Moreover, their range is usually limited by the intensity of the projector, and like lidar,
they are adversely affected by non-diffusive surfaces.

Compared to lidar, both stereo and structured lighting have the important advantage of being
comparatively inexpensive, small, and lightweight. However, they are also much less accurate and
noisy. Their accuracy varies widely according to several factors, including their baseline (distance
between the two cameras in the stereo pair or the projector and camera), the sensor resolution,
algorithmic quality, the quality of the calibration, and distance from the sensor. The latter, in
particular, is highly significant; due to the geometry of triangulation, range measurement precision
decreases quadratically with distance. This limits the usefulness of these sensors for long-range
measurements; for example, with the stereo sensor used in chapter 6, measurements beyond 20 m
exhibited a standard deviation of more than two meters, despite using a relatively wide baseline
configuration.

2.1.3 3D localization and mapping
So far, we have discussed sensing systems that allow the robot to estimate its pose and to capture
point clouds of its environment, which brings us close to satisfying the requirements laid out
in the beginning of this section. However, this sense data is not sufficient by itself to create
consistent global 3D map. The range sensors we have described provide local measurements in an
egocentric frame; as the robot moves around the world, measurements from these sensors must be
integrated, taking into account the robot’s motion, to create a coherent global representation of its
surroundings, i.e., a map. In many cases, the robot’s own pose in the map will be estimated at the
same time as the map itself, which is often known as localization; in this case, the task is usually
referred to as Simultaneous Localization and Mapping (SLAM).

Localization, mapping and SLAM have been some of the most active areas in robotics in the
last three decades. A comprehensive survey of the literature on this problem is out of scope; see
Thrun, Burgard, and Fox [170] and Barfoot [6] for introductions to state estimation and SLAM
from a robotics perspective, and see Cadena et al. [21] for a survey of more recent work on SLAM.

If we assume that the data from the sensors described in the last section is perfectly accurate
(or nearly so), then a SLAM capable of fulfilling our spatial perception needs becomes a relatively
simple problem. Localization in a global, geocentric frame can be performed by fusing GPS and
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IMU measurements. Then, given accurate and instantaneous localization estimates, the egocentric
3D measurements from a range sensor can be transformed into a global frame. Accumulating
these measurements over time then leads to a global 3D map.

Naturally, the assumption of perfect sensing is unrealistic, but given the high quality achievable
by modern sensors, the method we have we have just outlined constitutes an effective starting
point, and in fact is the basis for the localization and mapping systems used by the robots in this
thesis.

One of the main issues with this baseline method is that it requires very precise pose estimation
in order to transform 3D measurements in the egocentric frame to the global frame, as small
perturbations in the pose (especially in attitude) can result in large changes to the transformed 3D
measurements.

We note that errors in this case can stem not just from inaccuracy in pose estimation per se,
but also time synchronization issues; for a mobile robot, using a pose estimate from two seconds
ago to transform a point cloud captured one second ago will usually lead to highly noisy maps.
Moreover, when range sensors move at high speed — because of a scanning motion, as used for
lidar, or because the vehicle itself is moving at high speed, or both — it is usually insufficient to
treat point clouds as a rigid constellation, and it is necessary to transform points individually to
compensate for sensor motion during data capture [13, 189].

Aside from synchronization issues, there are many reasons INS may yield poor localization
results, especially with lower-grade GPS and IMU sensors. For GPS, depending on the number
of visible satellites and other factors, it is not uncommon for position estimates to fluctuate by
several meters, especially along the vertical (height) axis. While the fluctuations can be smoothed
with IMU (and possibly barometer) measurements, these sensors can introduce errors of their
own, due to rapid drift accumulation and noisy measurements (e.g., under vibration and jerky
motions). Moreover, neither GPS or INS correct for drift in yaw, and the magnetometers used for
this purpose can be affected by magnetic fields from various sources other than the Earth.

To improve the quality of the estimated poses, a common approach is to incorporate additional
information, depending on the application. For wheeled vehicles, wheel odometry is a common
sensor to fuse with IMU and GPS to improve motion estimation; the ATV in chapter 5 incorporates
wheel odometry in its state estimation, alongside other cues.

A more generally applicable source for pose estimation is visual data from monocular cameras,
stereo cameras, or RGBD sensors. Visual odometry [131, 95] infers relative motion over time by
matching visual features between consecutive images; when a source of depth for these visual
features is available (e.g., via stereo or RGBD sensing), metrically scaled motion can be recovered.
Steady improvements in this area over the years have resulted in increasingly accurate and robust
systems for monocular SLAM [53, 127] as well as RGBD SLAM [130]. For robotic deployment,
incorporation of IMU data is also useful, and Visual-inertial odometry or VIO has become an
active research area [12, 141]. The MAV from chapter 6 uses visual odometry from stereo pairs,
and fuses these estimates with data from GPS, IMU, and altimeter in a pose-graph based framework
Song, Nuske, and Scherer [164].

Lidar can also be used for odometry by matching consecutive point clouds to infer motion; a
variation of the method proposed in Zhang and Singh [189] was used in the autonomous ATV
from chapter 5.
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2.1.4 3D map representations and temporal fusion

When working correctly, the sensors and methods that we have described in the last two sections
can provide our robots with a stream of global pose estimates and point clouds in a consistent
global frame. However, it is usually impractical to use this point cloud data directly as a map.

A map is a model of the environment built from past observations. There are many common
ways to build this model; from an engineering perspective, the choice of map representation is
guided by a combination of factors, including fit with the robot’s sensing and mapping capabil-
ities, the ability to capture mission-relevant aspects of the environment, compatibility with the
assumptions made by the robot’s planning systems, and computational constraints.

Many different types of map representations have been proposed; see [18] for a survey. Below,
we discuss the spatial map representations used in this thesis, and remark on how they can be used
for temporal fusion of spatial data.

Point clouds

A point cloud map is a collection of three-dimensional points with known coordinates in a global
frame. While many point clouds are created in an organized way (e.g., an ordering given by the
lidar scanline to which they belong), this structure is often ignored or unavailable, in which case
the points are simply considered as an unordered, i.e., unorganized point set.

Point clouds are a natural representation to use in many cases, such as when the data originates
from a range sensor, or when the points are triangulated from features in Structure-from-Motion
algorithms. In their raw form, they require little to no extra processing after the mapping process
and can fully preserve the 3D data captured by the sensors, including reflectance, color, viewpoint,
etc.

A disadvantage of point clouds is that large point clouds can become hard to manage computa-
tionally. Many common operations, such as neighborhood queries, are superlinear in the number
of points, unless indexing data structures are used. Even then, with lidar or structured sensors
capable of producing thousands of points per second, memory usage may become intractable.

Another disadvantage of point clouds is that they do not explicitly represent occupancy infor-
mation of the environment; while each point provides evidence that the location of the point is
occupied by a surface, there is an absence of evidence regarding locations with no points. However,
if the viewpoint of origin of each point is known, then this information can be inferred, as we
discuss below.

In this thesis, we use point clouds as the primary way to represent the raw data, as they are
the natural way to represent data from lidar, and are also well suited to represent data from other
3D sensors. However, for semantic inference and mapping, we convert these point clouds into
volumetric or height-based representations, which have better temporal scalability characteristics.

For temporal fusion purposes, point clouds have the advantage of providing a trivial solution in
the form of storing all points seen in the past. However, in many cases this can result in impractically
high storage and processing requirements over time. A simple and often used alternative is to
store a subset of the past point cloud data, for example by keeping a bounded queue with the most
recent points.
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Depth maps

Depth maps are 2D arrays mapping pixels to depth in a sensor frame. These are a natural way to
represent data from stereo cameras and structured light sensors.

As depth maps are inherently sensor-centric, for purposes of temporal fusion it is common to
convert them into point clouds or integrate them in a volumetric representation. Another alternative
is to simply store a past history of depth maps, along with their respective sensor pose [50].

Volumetric

Volumetric representations represent 3D attributes of the 3D world as a function of 3D coordinates,
usually discretized into a uniform lattice of cells or voxels. Each voxel represents a spatial attribute,
such as the probability of occupancy or signed distance to the nearest surface. In addition, voxels
may be associated with extra metadata such as semantic labels or local shape features.

In this work, we use this representation extensively, as it provides an effective way to fuse
multiple spatial measurements and represent uncertainty about the state of each spatial location
[122, 41, 169]. Moreover, it is well suited for use with convolutional neural networks, as described
in chapter 4.

On the other hand, volumetric representations have some disadvantages. The quantization
process entails a loss of spatial information, and choosing a suitable voxel resolution can be
challenging. As the resolution increases, more spatial detail is preserved, but computational and
memory costs increase cubically and can become intractable.

Height maps

Height maps, also known as elevation maps, represent the height of surfaces as a function of 2D
coordinates. Like volumetric maps, they represent space with a uniform lattice, but only in two
dimensions. Each cell in a height map stores its estimated height (and optional metadata) in some
reference frame; thus, they preserve a limited amount of 3D information, and are also referred to
as 2.5D maps5.

Like volumetric maps, height maps can be used to fuse spatial measurements [58, 61], albeit
with an inherent loss of information caused by assuming only a single elevation value for every
grid cell. The upside is a much lower computational cost, as the number of cells only increases
quadratically with resolution. This trade-off is especially attractive for scenarios where the map
to be modeled can be well-approximated by 2.5D representations. We use height maps to model
surfaces in chapters 3, 5 and chapter 6.

2.2 Tools for semantic perception
Machine Learning (ML) is a key ingredient for our approach to semantic mapping. We aim to
interpret the environment in terms of semantic categories such as vegetation, ground, car, etc.,
using the robot’s sensors. As it is usually impossible to describe these concepts and their relation to

5Depth maps are also 2.5D maps, where each cell represents depth rather than height.
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sense-data in terms of a priori rules or mathematical models, approaches that learn from data have
become indispensable for tasks involving semantic analysis of sensor data. Within the literature
in computer vision, robotics, and ML, there is a vast variety of ways to frame the problem of
“semantic” understanding of the environment from data. For lack of a better term, here we will use
semantic perception as an umbrella term to refer to these tasks. In this section, we identify the
tasks that are most relevant to the work in this thesis, and how they relate to semantic mapping.
We also summarize state-of–of-the–the-art approaches in each of these tasks.

2.2.1 Tasks in semantic perception
The two main tasks in semantic perception that are relevant to this thesis are classification and
semantic segmentation.

(a) (b)

(c) (d)

Figure 2.6: Examples of classification and semantic segmentation tasks that appear in this thesis.
(a) Point cloud classification into one of 14 different categories relevant for urban driving [49]
(chapter 4). (b) Multiclass semantic segmentation of aerial point clouds (chapter 3). (c) Multiclass
Semantic segmentation of trail scenes (chapter 5). (d) Binary semantic segmentation of aerial
(car/non-car) (chapter 6).

In classification, also known as category recognition, the goal is to associate a label from a
set ofK predefined classes (categories) to a given input — such as an image, a point cloud, or a
volumetric input — as a whole. This is the most well-known task in semantic perception, not only
because of its usefulness in and of itself, but also because many other tasks can be formulated in
terms of classification. In all the classification tasks we will encounter in this thesis, we assume
that there is a single class for each input. However, a common variation of this task — seen, for
example, in the ImageNet benchmark [45] — is to allow multiple classes for each input, which is
useful for problems with nonexclusive categories or inputs in which objects of different classes
are visible. In this case, the task can also be seen as consisting of K binary classification tasks.

In semantic segmentation, the goal is to assign a label from a set of predefined classes to
each location in the given input. For images, the “locations” are pixels; for point clouds, the
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locations are points; for volumetric inputs, the locations are voxels. While not as well-studied as
classification, this task has seen a sharp increase in interest over the last decade, given its wider
range of applications.

A task that we do not address in this thesis, but is closely related to the above, is object detection,
in which the goal is to infer the presence and location of instances of each class of interest. The
key difference of object detection with semantic segmentation, for the purposes of this thesis, is
that in detection the basic units of prediction and evaluation are individual localized instances
(usually described by axis-aligned bounding boxes), whereas in segmentation the units are the
dense locations (i.e., pixels, points, or voxels)6.

However, in this thesis we do use the term detection in a broader sense for certain tasks in
which we aim to obtain localized predictions for the presence of a target class, but do not explicitly
distinguish between instances of the same class. In this case, the detection task is equivalent to
semantic segmentation with two classes. For example, in chapter 4 we refer to the task of finding
landing zones for an autonomous helicopter as landing zone detection.

Naturally, the tasks are closely related. For example, semantic segmentation can be seen
as classifying individual locations in the input, and many approaches to segmentation can be
seen as implementing some variation of this approach. Likewise, in many methods for detection,
classification is applied to multiple candidate bounding boxes (regions of interest) of the input.

2.2.2 Current approaches to 2D semantic perception
In the last few years, Convolutional Neural Networks (CNNs), and more broadly, deep learning,
have become ubiquitous in current approaches to semantic perception in computer vision. Despite
their recent notoriety, they have a decades-long history [105, 64]; see [70] for an overview.

The key feature of deep learning approaches, as the name suggests, is learning representations
from data at successively deeper levels of abstraction. In CNNs, this is realized by stacking layers
of learned convolutional filters Figure 2.7. By comparison, until recently, the dominant approach
was to apply hand-engineered feature extractors to the data, and use these features as input to a
learned classifier; in deep learning and CNNs, the features and classifiers are learned jointly from
the data.

CNNs rapidly rose in popularity for the task of object recognition following the success of
the AlexNet CNN architecture [98] in the 2012 ImageNet benchmark, and since have become the
de facto standard approach to this problem. Since the development of AlexNet, a vast number of
new CNN architectures have been developed, with popular examples including VGG [161] and
ResNet [147].

CNNs are also part of the current state of the art for object detection. One line of approach
divides the problem into two subproblems: the problem of proposing regions that may have objects,
and the problem of classifying regions. In [67] the former problem is addressed with a hand-
engineered method [174], and the latter is solved with an AlexNet-style architecture. In [147], both
problems are solved jointly with a single network. Another line of approach poses the problem as
regressing bounding box coordinates [167, 145]. Recent work also has sought to improve accuracy

6In recent years, the distinction between detection and segmentation has blurred, as tasks that combine aspects of
both have emerged, such as instance segmentation [79] and panoptic segmentation [94].
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Figure 2.7: Example of deep representation learning in CNNs. Figure reproduced with permission
from LeCun, Bengio, and Hinton [106].

by modeling context, usually by combining CNNs with graphical models [192, 110].
For semantic segmentation, CNNs have also become an integral part of state-of-the-art pipelines.

Some approaches work by segmenting the image and extracting CNN-based features from seg-
ments [123, 59]. A recent line of alternatives, which we adopt, avoid segmentation by directly
predicting dense pixelwise labelings [113, 51, 188, 5]. These approaches take advantage of the
convolutional nature of the task to perform efficient feed-forward classification. Foregoing some
of this efficiency for higher accuracy, many approaches have combined CNNs with probabilistic
structured output approaches [30, 109]. On the other hand, there has also been recent work in
accelerating inference, with some penalty on accuracy; examples we use in this thesis include [137]
and [177].

2.2.3 Current approaches to 3D semantic perception
Much of the work in 3D semantic perception has mirrored developments in 2D perception, but
the adoption of deep learning has been slower. One likely reason is the greater diversity in
possible input representations used for 3D tasks; whereas in image data, pixels are a nearly
universal common denominator, in 3D different algorithms depth maps, point clouds, meshes and
volumetric representations.

A large body of work has been developed around depth maps, largely due to the popularity
of structured-lighting RGBD sensors, and to a lesser extent, stereo sensors. Much of this work
directly applies the approaches developed for RGB data to depth data. This representation is also
amenable to adaptation of CNN approaches used for image data.

For recognition, [163] use a “recursive” neural network; [155] colorize depth images for use
with a standard CNN. For the detection of graspable points [107] use a sliding window approach
with a neural network cascade. [74] use a slightly more sophisticated encoding of depth.

For segmentation, [113] and [19] use depth images with CNNs for indoor semantic segmenta-
tion, and [112] do the same for an outdoors urban scenario.

There is also much work using a point cloud representation. To our knowledge, no work
with point clouds has adopted Deep Learning yet, and most use hand-engineered features from
point clouds. Examples include [69] for recognition, and [126, 159, 2] in per-point semantic
segmentation.
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There are also various recent works for semantic analysis in 3D using volumetric representa-
tions, including our own; we review them in chapter 4.

2.2.4 Relation to semantic mapping and our thesis
In general, we can see the semantic perception tasks we have described above as a subset of the
semantic mapping task.

For semantic perception tasks with images, the difference with semantic mapping is clear; if
we are to build a semantic map with a 3D representation of the environment, then labeled pixels
or bounding boxes in 2D are insufficient, and additional steps are required to incorporate them in
a semantic map.

For the case of 3D semantic perception tasks, the distinction is more subtle. For 3D object
recognition, the problem scope is more limited in comparison to semantic mapping. Object
recognition assigns a label to a given input (e.g., a point cloud), but does not address how to select
this input or use the output label. On the other hand, for 3D detection and semantic segmentation,
their tasks can be very close to what we consider semantic mapping. Often, there are differences
in the application, which are reflected in the different assumptions and engineering decisions made
in each case. For example, many approaches in 3D semantic segmentation assume the whole point
cloud to be segmented is available at once, and are too computationally intensive for real-time
usage. In contrast, practical semantic mapping approaches require online, real-time operation with
data received incrementally.

In this thesis, we will encounter examples of the three semantic perception tasks defined above,
and we will build on the approaches addressing them. In chapter 3, we will perform voxel-based
semantic segmentation of point clouds. In chapter 4, our main focus is object recognition for
3D data, but we adapt the object recognition approach to perform a type of detection. Finally,
semantic segmentation, primarily in 2D, is a prominent part of chapter 5 and chapter 6.

2.2.5 A note on recent progress in semantic perception
The state of the art for semantic perception tasks has vastly changed in the years since we began
the research described in this thesis. In 2014, research in deep learning with 3D point clouds and
its applications to robotic tasks was nearly nonexistent. Since then, many factors, such as the surge
of interest from industry in self-driving technology, and more generally, the cambrian explosion
of research in the fields of AI and robotics, have led to the publication of a large body of work
that is relevant to the work in this thesis that we have not covered here. While we are unable to
cover this literature in detail, in the last sections of chapter 4, chapter 5 and chapter 6 we briefly
discuss selected recent works that build on our own, address limitations of our approaches, or are
otherwise relevant.
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Chapter 3

Ground surface-aware semantic mapping

Keep your feet on the ground and your
thoughts at lofty heights.

Peace Pilgrim
Her Life and Work in Her Own Words

Recent technological advances have made the prospect of autonomous aerial vehicles operating
in the wild a question of when, rather than if. With recent advances in sensing and mapping
technology, aerial vehicles can quickly capture detailed point clouds of their surroundings. By
creating semantic maps in real-time from these point clouds, we can provide these aerial vehicles
with valuable information for safe navigation and landing in human-populated areas.

In particular, these semantic maps are most useful for point clouds captured at low heights,
ranging from 10 m to 50 m. However, this is a relatively unexplored regime for semantic point
cloud segmentation, where most prior approaches have been designed for ground-level data or
high-altitude aerial surveys. One of the previously unaddressed challenges in this scenario is the
accurate estimation of the ground surface height, a critical cue for semantic inference and aerial
planning. In addition, prior work in aerial point cloud segmentation has focused on offline batch
inference, rather than real-time, incremental operation.

To address these challenges, we propose a system featuring two innovations relative to the state
of the art in semantic point cloud segmentation. First, we propose a method to infer the ground
surface in the presence of occlusions, and use the inferred surface to inform semantic inference.
Second, we achieve real-time operation with grid-based representation encoding sufficient statistics
for point clouds that enables efficient feature extraction and incremental updates.

While the ideas in our approach are potentially applicable for various kinds of real-time
semantic mapping tasks with aerial point cloud data, in this chapter we will evaluate our system in
the context our motivating application, which is to provide a full-sized helicopter with semantic
awareness of classes relevant to navigation and landing. We assemble a dataset of manually labeled
point clouds captured by our platform, and show the benefits of our ground surface estimation
step for semantic inference. In addition, we demonstrate real-time operation of our pipeline from
streaming point cloud data. In the next section, we will provide further context on this task and
our platform.
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3.1 Semantic awareness for an autonomous helicopter
Helicopters and other rotorcraft are widely used in transportation of people and cargo, search and
rescue, firefighting, and aerial surveillance, among other applications. Currently, these vehicles
need to be operated by highly trained pilots, which in many situations may be in short supply
or would be put at risk by piloting the vehicle. This has motivated research aimed at enabling
rotorcraft to navigate, avoid obstacles, and land with minimal or no human intervention. As part of
this broader research effort, our research group participated in the development of an autonomous
full-scale helicopter for cargo transportation and medical evacuation [135]. The work in this
chapter was spurred by challenges encountered in the development of this system. The vehicle
used for the system (shown in Figure 3.1), is equipped with a custom sensor suite including a
scanning lidar, GPS-INS and cameras, which are used to create detailed point cloud maps of its
surroundings.

Figure 3.1: The Unmanned Little Bird platform performing an autonomous landing

While effective for geometric path planning and obstacle avoidance, the point cloud data lacks
information that is useful for safe navigation and landing in cluttered, unstructured environments.
For example, when planning trajectories it is desirable to give more clearance to buildings than
tree canopies, as a collision with the former is more dangerous for both the vehicle and the building
inhabitants (Figure 3.2). However, if space as seen merely as occupied or unoccupied, the planning
system is unable to incorporate this preference.

Even if basic geometric properties of point cloud data, such as local planarity, are taken into
account, these are often insufficient to discriminate the classes of interest. For example, building
roofs and ground planes both are locally planar, but the latter is usually preferable for landing.

Furthermore, given that lidar measurements are affected by noise, sparsity and occlusion, the
geometric information in point clouds in itself is not completely reliable:
• Specular reflections and noisy returns should be discarded
• Wires, given their small surface area, may only be partially seen by lidar
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Figure 3.2: Semantic awareness of the environment allows the helicopter to incorporate the
preference of giving more clearance to buildings than tree when planning its flight path.

• Ground surfaces may be occluded, or receive sparse coverage
From these observations, we conclude that a system to attribute localized semantic information

— in the form of hand-chosen relevant categories — can allow more deliberative and adaptive
decision making for the vehicle.

Given the intended application, the system must also meet certain requirements:
• Low enough latency to be used in real-time planning
• Incremental operation from streaming point cloud data, captured from an agile moving
platform

• Robustness to noise, sparsity and occlusion
In the next section, we will survey related work that addresses tasks similar to ours, and in

many cases, provided useful insights for our work. The rest of this chapter describes the system
we designed and implemented to meet our goals.

3.2 Related work
Semantic segmentation of point clouds The first task in our problem statement, predicting
semantic categories to points in a point cloud, corresponds to the semantic segmentation of point
clouds task discussed in section 2.2.

Our system was heavily influenced by the state of the art in semantic segmentation of point
clouds at the time of its development, which showed the feasibility of using machine learning
models to reliably discriminate among various classes of interest solely from lidar data.

Most of these systems employ a pipeline influenced by contemporaneous work in the area
of computer vision, in which various hand-engineered features are extracted for each point (or
local subregion) to label, and labels are inferred from these features by classifiers trained with
labelled data. In this work we follow this pattern. In particular, our shape point clouds include
spectral shape features [103, 93], various height and lidar waveform features [29], and features
based on pass-through estimation [181]. However, we complement these with our own height
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features based on the inferred ground surface. We also use random forests [14] as the classifier, a
common choice for similar systems [29, 23, 159].

In addition, we depart from most previous work that computes features in batch, usually with
exhaustive per-point neighborhood queries. Instead, we compute these features from incrementally
computed point cloud statistics which are maintained in a voxel data structure. The data structure is
inspired partly by that of Hu et al. [83], but unlike this work, we use the data structure to maintain
sufficient statistics instead of individual points.

Ground filtering The second task in our problem statement is predicting ground surface heights.
There is a large body of work in robotics devoted to the problem of modeling the geometry terrain
around the robot with different representations and methods. A representative and widely used
approach is Fankhauser et al. [58], which uses a grid-based 2.5D elevation map with per-cell
height and uncertainty estimation. These approaches generally consider the “terrain” to be all
surfaces visible to the robot, and do not attempt to distinguish the bare earth terrain from other
objects. While the outputs of these methods may be further analyzed for semantic analysis, by
themselves they are insufficient.

An approach that is close to ours is Wellington [181], which implements a system to estimate
potentially occluded ground surfaces from lidar and image data using a generative model. Like our
approach, it is intended for online incremental use and is designed to deal with heavy occlusion.
However, as it is designed for an off-road vehicle, it makes assumptions that are better suited for
inference over small areas compared to the ones we wish to cover. Their 3D features are relatively
limited in the spatial context they capture, and they rely on local smoothness assumptions for their
probabilistic model to propagate context. This probabilistic model uses Monte Carlo sampling for
inference, which is computationally expensive and suffers from unpredictable mixing times. In
contrast, we use a simpler model with a more efficient and predictable inference process.

There is also relevant work in the areas of remote sensing and aerial lidar analysis. Our ground
surface prediction can be seen as a type of Digital Terrain Model (DTM) or Digital Elevation
Model (DEM) in the Geographic Information Systems (GIS) literature1.

See Meng, Currit, and Zhao [121] for a survey, and Sithole and Vosselman [162] for a com-
parison of the most popular methods. While these methods address a similar task to our ground
surface prediction, given their origin in GIS, they assume the lidar data is extracted from a nadir
angle and high altitudes. In this regime, occlusions and noise are less significant than in our data,
which may be captured from oblique angles and much closer to the ground (50 m or less). These
methods are also not designed for incremental or real-time use, as these are not critical for GIS.

3.3 Approach
At a high level, we formulate the problem as follows:

Given a stream of 3D point clouds, vehicle poses, and 3D regions of interest (all
of which are temporally synchronized and registered to a common inertial frame),

1These terms are often used interchangeably; however, if a distinction is made, DEMs represent the elevation of
all objects in an area, including buildings, whereas DTMs represent the elevation of the bare earth, which is closer to
our task.
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construct and update a 3D semantic map with 1) a predicted semantic category for
each visible point within the region of interest, and 2) a 2.5D height map with a
predicted predicted ground surface height for every location in the region of interest.

In this section, we will first discuss in subsection 3.3.1 in further detail the assumptions we
make regarding the inputs and outputs for our problem. In the remaining sections, we will describe
our proposed approach, outlined in Figure 3.3.

Figure 3.3: Ground surface-aware semantic segmentation system overview

3.3.1 Problem setup
Inputs: 3D point clouds, vehicle poses, and regions of interest (ROIs)

Our system only uses sensor data originating from the vehicle’s lidar and GPS-INS. We do not
use the data from these sensors directly; instead, we rely on the state estimation and perception
modules of our platform, which fuse this data to create a temporally synchronized stream of 3D
point clouds and vehicle poses, expressed in a common inertial frame. We use these outputs as
provided; we do not explicitly attempt to model or account for errors in the registration or state
estimation. However, our system performs temporal and local spatial smoothing that mitigates the
effect of small amounts of noise and errors in these variables.

The lidar is a customized survey-grade sensor with a single-line scanner mounted on an actively
controlled nodding platform (Figure 2.3a). The range, field of view and points-per-second of the
measurements depend on the sensor’s configuration. For most of the data we use in this chapter, the
sensor is configured as a “push-broom” (Figure 2.2b) scanner with a moderate (0◦-30◦) off-nadir
pointing angle and a horizontal field of view of approximately 60◦. In this configuration, the sensor
has a range of 10 m to approximately 200 m, with an accuracy of ± 10 mm. The 3D point clouds
are streamed at a rate of approximately 1 Hz, with each point cloud having approximately 20 000
points. In addition to 3D position, the provided point clouds contain other per-point attributes
such as surface reflectance, instantaneous origin of the lidar ray, and echo number.
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As for ROIs, we assume that for any given moment in time, there is a bounded 3D Region Of
Interest (ROI) to be mapped. This ROI can be static (either relative to a fixed global frame or a
local vehicle-centric frame), or dynamically adjusted in a data-dependent way.

The motivations for this assumption are twofold. The first is that this allows us to simplify
the problem by ignoring distant regions where point cloud data is likely to be extremely sparse,
noisy, or absent altogether. The second is that this makes it easier to bound the computational
resources (in memory and time) used by our solution, so that real-time constraints can be met.
This assumption is not highly limiting, given that in general only a subset of the 3D space around
the vehicle is relevant for planning.

In practice, we mainly use two ROI strategies. The first is a static ROI relative to a global
frame, which is useful when there is a known (but possibly approximate) location for the surface
to be scanned; an example is the landing zones in section 3.4.2.

The other main strategy, which is used in the qualitative results (section 3.4.2) we use is to
dynamically adjust the horizontal offset of the ROI to track the robust centroid (in XY ) of the
incoming point clouds, and the vertical offset of the ROI to stay at a certain height relative to
our last estimate of the inferred ground surface. We use this strategy because simpler strategies,
such as maintaining the ROI at a fixed location relative to the vehicle frame, tend to discard large
amounts of data given the variable heights at which the helicopter flies.

Outputs: 3D semantic map and 2.5D ground surface map

Each point in the map will be assigned a label from a finite set of of semantic categories specified
a priori. We choose categories heuristically based on a qualitative assessment of their potential
usefulness for planning and navigation, as well as whether the categories are identifiable from
lidar data. The nine classes we predict are ground, building roof, building wall, low vegetation,tree
canopy, obstacle, pole, wire/power line, and paved ground; see Table 3.2 for descriptions.

Our approach needs a dataset of hand-labeled point clouds with the chosen semantic categories,
that is used to train the machine learning models employed by our approach and evaluate their
accuracy. We describe our custom dataset in subsection 3.4.1.

At runtime, for each point in the incoming point cloud that falls within our ROI, we predict a
distribution of our beliefs regarding its semantic category, considering all data seen in the past.

As an important detail, we note that the points are not labelled individually; rather, they are
grouped in local subvolumes (i.e., the voxels described below), each of which has a single label
distribution that is inherited by all points within. Thus, the effective spatial resolution of our
predictions is lower than that of the input point cloud. In some applications, it may be desirable to
discard the original point clouds and only use the quantized representation given by the semantic
map. In our case, we still use the original point cloud data for visualization and to maintain
compatibility with other components that use point clouds as their input. In any case, in our
representation, assigning a label to a point according to its voxel is a constant time operation that
adds negligible overhead.

We also explicitly model the bare-earth ground surface, defined as the top soil or a thin layering
(e.g., asphalt or pavement) above it [162]. Whereas categories other than ground are only predicted
for visible 3D points within the ROI, we predict a ground surface for every location in the ROI,
whether or not there is a visible point at that location.
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This is motivated by a combination of two factors: knowledge of the ground surface is highly
useful for the task of finding landing zones, as well as accurately predicting semantic categories
(Figure 3.4); and the fact that due to the vehicle’s high vantage point, large portions of the ground
surface are occluded.

(a) Height with minimum in 1 m
radius.

(b) Height with minimum in 3 m
radius.

(c) Height with our inferred
ground surface.

Figure 3.4: Motivation for ground surface estimation. Each figure shows a voxelized point cloud
colorized according to its height feature, using three different methods to estimate this feature.
Voxels with the same color are estimated to be at the same height. In fig. (a), the height is estimated
as the distance of each voxel along the z-axis to the lowest point in a 1 m radius. Note that the
estimate is noisy for the encircled house roof, as it spans more than 1 m. In fig. (b), the same
estimate is performed with a 3 m radius. In this case, the estimate is accurate for the house
roof, but inaccurate for the circled car, because the slope of the ground skews the estimate over
large distances. In fig. (c), height is estimated relative to our inferred ground surface, and an
accurate height estimate is recovered for both the house roof and the car. This shows how height
computed relative to our inferred ground surface is a more useful feature for classification than
height estimated with more naive methods.

We make the simplifying assumption that the ground surface can be modeled as a 2.5D
elevation map, i.e., a map where a height or elevation is assigned to any given 2D location within
the ROI. This assumption facilitates the development of efficient algorithms for dense prediction
and is sufficient for the environments where the vehicle operates.

In contrast to the situation with the other semantic categories, we do not assume that ground
truth for this task is available, given the relative difficulty of obtaining this data or creating it
manually.

3.3.2 System overview
Our system operates online and incrementally, updating the semantic map representation each
time a point cloud is received from the sensor. In each update, the system performs a series of
steps, outlined in Figure 3.3.

The “zeroth” step is preprocessing of the input data, where we heuristically eliminate spurious
point cloud data from our inputs. Then, the point cloud is used to update a set of per-voxel
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cumulative statistics describing the point cloud geometry and waveform characteristics. These
statistics are maintained in a dense grid arrays for computational efficiency. We then use a first
set of point cloud features and learned classifiers, along with an interpolation step, to estimate a
2.5D ground surface. The point cloud statistics and the ground surface are then used to extract
further per-voxel point cloud features, including features that depend on the newly inferred ground
surface. Finally, the point cloud features are given as input to a learned classifier to obtain per-voxel
semantic class predictions.

The next sections provide further details on each of these steps.

3.3.3 Preprocessing
Due to various sensor-specific factors such as multipath scatter and occasional localization drift,
the point clouds present spurious measurements. Many of these points are detectable by having an
extremely low intensity or by having a physically implausible position in space, such as coming
from behind the laser or extremely distant to neighboring points in the laser scanlines. We remove
these points from the incoming point cloud with manually set thresholds before further processing.

Additionally, we require a minimum number of points to be accumulated in each voxel for it
to be considered in the prediction process. Points that fall within voxels that have less than this
number of points are assigned a special label of “noise” and otherwise ignored.

3.3.4 Sufficient statistics and map representations
We maintain a set of grid-based data structures that maintain a representation of past point cloud
data, intermediate features, and per-cell label prediction beliefs. To this end, we store data in two
ways: the first is a dense array of sufficient statistics for each grid cell in the ROI, and the second
is a sparse table that only stores data for grid cells with visible points. The table contains point
cloud features and a vector of predicted semantic label probabilities. For each of these, we have
two versions: a 3D version, where each grid cell corresponds to a voxel, and a 2D version where
each grid cell corresponds to a 2D area along the XY plane.

Dense array for sufficient statistics

As mentioned earlier, at any given moment in time we will have a 3D region of interest, which
may be either come from a predefined relationship to the vehicle’s pose, or computed dynamically
according to the incoming point data. In either case, the ROI will be defined as an axis-aligned
3D bounding volume with an (time-varying) offset relative to a fixed frame. The dimensions of
the bounding volume are static.

We partition this ROI into a regular 3D lattice, such that each cell, or voxel, can be indexed by
an integer 3-tuple. The physical dimensions of each voxel are a predefined parameter; in practice,
we use cubical voxels of size 0.25× 0.25× 0.25 m3. As the bounding volume has a fixed size,
the number of cells remains fixed. Additionally, we create a parallel 2D grid along the XY plane,
used to maintain features that do not vary with height.

The first step in the point cloud processing is to discard points for which the ray from the lidar
does not intersect the ROI. We then quantize the original point cloud coordinates (x, y, z) into
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integer coordinates (i, j, k) corresponding to a voxel in the grid map (Figure 3.5). This is done by
a simple offset and truncated division. The first two coordinates, (i, j), index into the parallel 2D
grid map.

Figure 3.5: Our representation summarizes the incoming point clouds with a set of sufficient
statistics computed for each 3D grid cell (voxel).

We maintain a running set of sufficient statistics for each grid cell (in 2D and 3D) as a dense
2D or 3D array. Using a dense array allows for constant time access and efficient traversal over
subvolumes.

For scalar values, we maintain the sufficient statistics to compute their first two moments, mean
and variance. For 3D points, we maintain the sufficient statistics to compute their first two spatial
moments, i.e., their centroid and 3× 3 covariance matrix. In addition, we maintain the running
number of observations n in each 2D grid cell or 3D voxel cell.

For each 2D grid cell, we maintain the sufficient statistics of the height z of each point that is
quantized to the same grid cell. Note that here, the height z is an arbitrary global frame, which
may be e.g., relative to mean sea level, and not necessarily indicative of the height relative to the
ground.

For each 3D voxel cell, we maintain the sufficient statistics for the point centroid and covariance
(in 3D), the first two moments of the lidar range, the first moment of the lidar reflectance, the
number of interior returns, and the number of rays that pass through or hit each voxel. For the ray
calculations, we use a 3D line rasterization method [1], and we include all rays that intersect the
ROI, even if they do not end inside it.

These statistics are sufficient to efficiently compute all the point cloud features that we use for
classification of each voxel. For example, spectral features can be directly computed from the 3D
covariance matrix; porosity can be directly computed from the number of hits and pass-throughs in
each voxel; number of points below each voxel can be computed by simple addition of the number
over a voxel column, etc. Therefore, there is no need to perform expensive spatial point queries
to extract these features. Instead, most features can be computed directly from each grid cell or
voxel, or in some cases, with a limited amount of traversal of grid or voxel neighborhoods.

We periodically update our grid map to track the 3D ROI as it moves over time. In the fixed
3D frame, this operation is a simple 3D translation. Because of this, we can efficiently update
the dense arrays we use to store sufficient statistics without reallocating memory by virtually
“reindexing” the arrays, in a 3D analog to circular arrays or ring buffers. This is the “scrolling”
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operation.

Sparse table for features and label predictions

For each nonempty grid cell, we compute a vector of point cloud features (section 3.3.6) and a
vector of predicted semantic label probabilities (section 3.3.6). Storing these in a dense 3D array
would be onerous in terms of memory. Instead, we store them in a hash table keyed by a quantized
32-bit representation of the integer coordinates of each cell. To bound the memory footprint of
this table, we periodically clear the least recently created entries.

3.3.5 Ground surface estimation
For ground surface estimation, there are two steps (Figure 3.6). In the first step, we detect a set of
grid cells from the 2D grid map which we confidently consider as ground using a learned classifier.
In the second step, interpolate the estimated ground surface over the rest of the 2D grid cells using
an unsupervised Gaussian Markov Random Field.

Figure 3.6: Steps in ground surface estimation. Given the point cloud ((a)), a set of confident
ground surface cells is detected ((b)). These confident cells are used to interpolate (and extrapolate)
a ground surface to the rest of our ROI ((c)). This ground surface serves as a source of robust
height features for classification ((d)).

Ground cell classification

The goal of this step is to obtain a set of grid cells that are confidently labelled as ground, which
serve as “control points” for the interpolation process in the next stage. To this end, we use an
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decision forest classifier, similar but separate from the classifier used to predict the final semantic
labels.

First, we extract a subset of the point cloud features described in section 3.3.6 for each nonempty
cell. We then train a binary decision forest to predict whether each cell is ground, using our hand-
labelled dataset. At run time, we make a binary decision on whether each nonempty cell is ground
using a high confidence threshold, so as to avoid false positives affecting the result of interpolation.

Ground surface interpolation

In the first stage, we obtained a sparse set of grid cells predicted as belonging to the ground surface.
We use the height measured in these grid cells to predict the unobserved ground surface height of
the remaining cells in our ROI.

For this purpose, we use an autoregressive model on the grid lattice [9], a type of Gaussian
Markov Random Field (GMRF) model [151]. In this model, the height of each cell, zi, is assumed
to be a noisy average of its neighbors:

zi|{zj : j 6= i} ∼ N

(
1

ni

∑
j∈N(i)

zj,
1

ni κ

)

where ni is the number of neighbors of cell zi, and κ is an inverse variance parameter. As we use
a 4-connected neighborhood, ni = 4 (except at the borders, but as we discuss below, we avoid this
case). This model can also be seen as solving the Laplace equation on the grid [82].

In this form, the joint distribution of the heights is normal, with a mean that can be assumed to
be 0 and a precision matrixQ:

Qij = κ


−1, i is neighbor of j
ni, i = j,
0, otherwise

The sparsity of Q can be used to efficiently infer the expected heights of the unobserved grid cells
given the observed grid cells, among other tasks. We use an off-the-shelf sparse Cholesky solver
from Eigen [73], which leads to a complexity of O(n3/2) in the number of cells to interpolate.

The resulting model is simple to interpret and implement, as well as relatively efficient com-
pared to alternatives such as Gaussian Processes. It is more robust to noise than simple alternatives
such as nearest neighbor interpolation.

This simple model does have drawbacks. Its assumptions regarding conditional independence
and stationarity lead to efficient inference and straightforward implementation, but make the model
inexpressive and unsuitable for interpolation of complex 3D surfaces. However, this is rarely
necessary for our scenario, as we operate in spatial scales for which the ground surface is relatively
smooth and flat.

We note that we use the GMRF only for interpolation, not extrapolation, i.e., only to infer the
height of unobserved cells that are surrounded by observed cells. There are two reasons. First, in
many cases, there is a large number of unobserved cells beyond the visibility frontier of the lidar,
which can incur in a large computational cost for the GMRF inference. Second, we found the

33



behavior of common methods to deal with boundary conditions (e.g., assuming a toroidal lattice)
to be unsuitable for our problem. Instead, inspired by Lai et al. [102], we use a recursive median
filter (RMF) for these cells. The RMF has linear complexity, and is less sensitive to outliers than
other linear-time methods such as nearest neighbor interpolation.

One important drawback of the GMRF is that it is sensitive to outlier height measurements, such
as those caused by spurious lidar returns, or false positives in the initial ground segmentation step.
These measurements will potentially induce large errors that are propagated in the interpolation
process. We reduce the number of outliers as much as possible by filtering the raw point cloud
and using a conservative threshold for the initial ground segmentation step, but some errors are
inevitable. Fortunately, due to the incremental nature of our method, these errors are usually
transient and their effects disappear as the vehicle gathers lidar observations over time.

Nonetheless, even transient errors can cause issues in planning and navigation, and a more
robust method is desirable. We investigated more robust MRF methods (e.g., replacing the normal
distribution with a fat-tailed distribution), but found the computational requirements of these
versions to be unacceptably high, and leave this direction for future work.

3.3.6 Semantic label prediction
Point cloud features

As mentioned in section 3.2, we draw from various papers in the literature to build a rich set of
features from our point clouds. There is a rich set of features described in the literature, several of
which appear to have been reinvented more than once. During development, we experimented
with various features described in [29, 158, 23, 93, 103, 62, 185, 156], among others. Besides the
ground surface-aware features, we also devised some simple descriptors that to our knowledge,
have not been described before in the literature. After excluding features with relatively high
memory or processing requirements, we erred on the side of having an overcomplete feature set, as
our classifier of choice has feature-selecting properties. Our features are summarized in Table 3.1.
Per the table, they can be grouped in four categories:

Local shape These features describe the local shape of the cloud, as approximated by a Principal
Component Analysis (PCA) of the points in the voxel. These features describe how well the local
point cloud approximates a line or a plane (or neither), which is useful, e.g., to discriminate walls,
wires, etc. We also describe orientation of the normal and tangent vectors of the local plane relative
to the direction of gravity (vertical) and relative to an arbitrary vector perpendicular to gravity
(horizontal). These features help with horizontal surfaces (such as roofs or ground) as well as
vertical (walls).

Height and rays For each voxel, we calculate various properties relating to the distribution
of points above and below. This is useful, e.g., for ground (which has few points below it) and
canopies (which tend to have points below it). We measure this property at various neighborhoods
around each voxel, as most surfaces will occlude the points directly beneath it. However, large
objects (such as buildings) will occlude the ground beneath over large spatial extents; this motivates
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the use of our inferred ground surface to compute this property, rather than the raw point cloud
statistics.

We also compute various properties derived from the statistics of the rays formed from the lidar
sensor to its corresponding point measurement, which conveys information not fully described by
the points themselves. For example, inspired by [76] we compute how many rays pass above each
voxel; this may help in discriminating ground surfaces (as many rays will pass above). Similarly,
inspired by occupancy mapping [90] we compute for each voxel its “porosity”, as the ratio of lidar
rays that hit a given voxel versus rays that pass through, as e.g., vegetation and wires tend to have
high porosity compared to walls and the ground.

Lidar waveform While we do not have access to the full waveform, our lidar reports additional
information for each point besides its range. It reports the measured reflectance for each pulse, as
well as an index for each return. It is common for an outgoing lidar pulse to have multiple returns,
and different objects tend to differ in how often they are reflected in the final return versus earlier
(interior) returns (Figure 3.7). In particular, vegetation and other porous objects present a higher
ratio of interior to final returns compared to solid surfaces.

Range Finally, we compute two features based directly on the range, i.e., the distance of the
lidar to each point at the time of its measurement. While its absolute value is not informative,
its variance in a small neighborhood is a measure of the local roughness of each surface, which
can help in discriminating smooth objects (e.g., roofs). Since the variance of measured range
increases with distance, we use the raw variance as well as the variance to mean ratio, also known
as dispersion index.

In most cases, our features describe local properties, such as shape and orientation in a single-
voxel neighborhood. However, other features depend on a larger context; for example, many of
the height features depend on all the voxels above and below each voxel. Likewise, the features
depending on rays depend on the whole path of the lidar rays that traverse each voxel.

Figure 3.7: Illustration of multiple lidar returns in solid and porous objects. Figure reproduced
with permission from [186].
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Table 3.1: Point cloud features used in our system. See main text for more details.

Feature Description Citation

Local shape
pointness Smallest eigenvalue of local PCA [103, 93]
lineness Difference of largest and middle eigenvalue of local PCA [103, 93]
surfaceness Difference of middle and smallest eigenvalue of local PCA [103, 93]
vert-normal Dot product of surface normal to vertical vector [156]
vert-tangent Dot product of surface tangent to vertical vector
horiz-normal Dot product of surface normal with horizontal vector
horiz-tangent Dot product of surface tangent with horizontal vector

Height and rays
points-above Number of points in voxels above
points-above Number of points in voxels below
rays-above Number of rays passing above this voxel
rays-below Number of rays passing below this voxel
porosity Ratio of ray hits to ray hits plus ray pass-throughs [90]
dist-above-min-0 Height w.r.t. to lowest point below voxel [156]
dist-above-min-1 Height w.r.t. to lowest point below voxel within radius of one voxel [156]
dist-above-min-2 Height w.r.t. to lowest point below voxel within radius of two voxels [156]
dist-below-max Distance to highest point above voxel
density-ratio Ratio of points within this voxel relative to points above and below

Lidar waveform
reflectance-mean Average reflectance of lidar pulses
reflectance-std Standard deviation of reflectance of lidar pulses
ret2-count Number of pulses which are interior returns
ret3-count Number of pulses which are final returns
ret2-ret3-ratio Ratio of interior to final returns [29]

Range
range-std Standard deviation of measured range from lidar [116]
range-var-mean Ratio of lidar range variance to range mean (dispersion)
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(a) Point cloud (colored by label) (b) Pointness

(c) Height above ground (d) Porosity

(e) Interior to final return ratio (f) Reflectance

Figure 3.8: Visualization of selected point cloud features used in this chapter. For each feature we
display its per-voxel scalar value with a false color map in order to highlight its variation across
the point cloud, rather than convey its absolute value.
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Per-voxel classification

Figure 3.8 shows a point cloud from our dataset, along with false color representations of various
per-voxel features for this point cloud. Qualitatively, it can be seen that different features are
spatially correlated with different semantic labels. For example, porosity is high for vegetation,
and low for buildings and ground; height above ground is high for both vegetation and objects
above the ground, while low for the ground surface. This suggests that in combination, these
features can be used to predict semantic labels.

As discussed in section 2.2, several machine learning methods exist to learn models that
perform semantic label classification from labelled examples. Here, we frame the problem as
simple supervised learning, in which we predict one of K labels for each voxel from its features.

We note that unlike several approaches in segmentation, we do not explicitly model the
structured nature of the problem; that is, we treat each voxel as an independent instance in our
dataset. This means our approach can not explicitly identify correlations between classes, e.g.,
that building roofs are usually adjacent to building walls. This choice was made based on the
observation that when using a rich feature set with a large spatial context, the trade-off in gained
accuracy with respect to the added computational requirements was not favorable. However, recent
approaches for efficient inference in structured models (e.g., [83]) make them more attractive for
use in future work.

The classifier we use for our system is a decision forest, a type of random forest [14], which
consists of an ensemble of independently trained decision trees. See Criminisi, Shotton, and
Konukoglu [39] for a survey on decision forests. This classifier offers several benefits: inference is
computationally efficient, it can handle high-dimensional, possibly noisy and redundant features,
and it is robust to variations in hyperparameters such as tree depth and number of trees in the
ensemble. These advantages have made it a popular method in computer vision for 2D and 3D
data, and it is used in other semantic point cloud labeling pipelines, e.g., [24, 29, 159].

3.4 Experiments

3.4.1 Datasets
We found no publicly available datasets of lidar — either labeled or unlabeled — data with
characteristics similar to those captured by our platform during low altitude (20 m to 90 m) flight.
Existing public repositories of aerial lidar surveys, such as those collected by the USGS 3DEP
[166] are geared towards applications in earth sciences and GIS. As such, they cover large areas,
but are captured from a high altitude and have low point density (less than 10 points per m2)
relative to those of our platform (typically more than 50 per m2). Moreover, they are usually
unlabeled and are stripped of useful metadata, such as the lidar reflectance and sensor poses. On
the other hand, lidar datasets captured at street-level, such as the CMU-Oakland dataset [126],
have high point cloud densities but intrinsically have very different viewpoints and occlusion
characteristics than the data in our application.

Therefore, we created a dataset using lidar data captured by our platform in fifteen test flights
around western Pennsylvania throughout late 2014 and early 2015. We label nine semantic classes,
described in Table 3.2. Figure 3.9 shows an example scene with points from all the classes.
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Table 3.2: Per-voxel semantic class statistics of our dataset. Each voxel has dimensions
0.25× 0.25× 0.25 m3.

Class Description # Voxels % Voxels

Ground Rough ground (bare earth) 81182 25.88
Roof Building roofs 6109 1.94
Wall Building walls 1935 0.61
Low Veg. Low vegetation (grass, shrubs) 32017 10.20
Canopy Tree canopies 176838 56.38
Obstacle Misc. objects (car, person) 1197 0.38
Pole Utility poles 150 0.04
Wire Power line 841 0.26
Paved Smooth/paved ground 13338 4.25

Total 313607 100.0

Figure 3.9: Example scene from our labeled point cloud dataset.
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3.4.2 Results
Performance evaluation

To evaluate the performance of our system and the impact of using ground-surface aware features,
we use per-class Precision, Recall and F1-scores across all voxels in the test set.

Table 3.3 summarizes the results. We can see that incorporating ground surface-aware features
improves the evaluation metrics for almost every class, specially in regards to recall for paved
and obstacle. For paved, this is explained by the fact that without the inferred ground surface,
building roofs tend to appear similar to paved surfaces. For obstacle, this occurs because without
the inferred ground surface, the height of objects on the ground is often estimated incorrectly.
Both of these scenarios are illustrated in Figure 3.4.

Table 3.3: Precision (P), Recall (R) and F1-score for ((a)) baseline using naive height features and
((b)) our full system, replacing naive height features with ground surface-aware features. In ((b)),
we highlight the changes (∆) for each metric.

(a) Baseline

Class P R F1

Ground 0.87 0.95 0.91
Roof 0.94 0.86 0.90
Wall 0.88 0.69 0.77
Low Veg. 0.78 0.52 0.62
Canopy 0.97 0.99 0.98
Obstacle 0.85 0.26 0.40
Pole 1.00 0.01 0.03
Wire 0.95 0.41 0.58
Paved 0.94 0.51 0.66

Avg. 0.90 0.58 0.65

(b) With ground surface-aware features

Class P ∆ R ∆ F1 ∆

Ground 0.88 0.01 0.96 0.01 0.92 0.01
Roof 0.97 0.03 0.95 0.06 0.96 0.09
Wall 0.86 −0.02 0.75 0.03 0.80 0.06
Low Veg. 0.82 0.04 0.65 0.11 0.73 0.13
Canopy 0.98 0.01 0.99 0.0 0.98 0.0
Obstacle 0.85 0.0 0.50 0.23 0.63 0.24
Pole 0.92 −0.08 0.08 0.12 0.15 0.07
Wire 0.94 −0.01 0.67 0.2 0.78 0.26
Paved 0.96 0.02 0.87 0.25 0.91 0.36

Avg. 0.90 0.0 0.71 0.13 0.76 0.11

To gain further insight on the performance of our full system, we inspect the confusion matrix
in Figure 3.10. We see that poles and wires are easily confused with canopy. This occurs because
with our current set of features, these classes appear similar to each other; they tend to have high
porosity, and occur at large heights. In addition, pole and wire are infrequent classes compared to
canopy, so the classifier is biased to the latter. Other frequently confused classes are obstacle and
low vegetation, which are often misclassified as ground. In both cases, this occurs because it is
difficult to discriminate small objects and very low vegetation from each other and rough ground
surfaces, even for humans.

Feature importance

Given that our feature set plays a critical role in the performance of our system, we are interested
in which features are the most discriminative. Decision forests provide a coarse way of estimating
the importance of each feature, the Gini importance metric [14]. This metric is derived from the
decision tree induction process and quantifies, on average, how much each feature contributes to
the classification output. Note that the metric provides a relative importance; its absolute value
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Figure 3.10: Confusion matrix of classifications in the test set

is not meaningful. According to this metric (plotted in Figure 3.11), the ratio of interior returns
to final returns is the most important feature. Inspection of the data suggests this is due to its
usefulness in discriminating tree canopies — which constitutes a large fraction of the dataset —
from other classes. Porosity is also considered a highly important feature, for similar reasons
to the return ratio. Finally, the third most important metric is the density ratio, which compares
density of points relative to each column, and helps for shapes with different vertical distributions.
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Figure 3.11: Point cloud feature importance ranking, obtained with the Gini importance metric
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Timing

The system must be able to update with low latency in order to be useful for planning purposes.
For our application, the latency target from point cloud reception to semantic map update was set
to be up to 2 s.

We timed our pipeline on a system with a 2.9 GHz Intel i3 CPU with 8 GB of RAM. For
a semantic map of 100× 100× 100 m3 (i.e., 400 × 400 × 400 voxels) and an average input of
20 000 points per s, we have an average latency of 1.4 s. Table 3.4 shows how this timing breaks
down in terms of various steps in our pipeline. The most onerous operation in our system is spent
updating the sufficient statistics for each grid cell. We found that in this step, raytracing is the
bottleneck, occupying around 80% of it. This is due to the fact that each ray may traverse a large
number of voxels. The next main bottleneck is classification, which in this table includes two
passes — one for the ground inference, and another for the final predicted labels. Other steps have
a relatively small contribution.

Our system is not heavily optimized and could be significantly sped up with some minor
modifications. Currently, none of our steps take advantage of multithreading. However, many of
them are easily parallelized. For example, classification and feature extraction could be parallelized
over subregions of the grid map (or even on a per-voxel basis), and likewise for sufficient statistics
updates, other than raytracing.

Table 3.4: Average latency in ms per 20 000 points

Step Time (ms)

Sufficient statistics 838.9
Classification 369.6
Feature extraction 72.8
Ground interpolation 23.3
Scrolling 6.0
Others 4.1

Total 1314.6

Qualitative segmentation results

We show several screen captures of our approach operating in real time in Figure 3.12. The results
are generally plausible, particularly for the more common classes. However, we in the last panel,
we can see two error modes. Ground (brown) is confused with paved (gray); this is a relatively
common issue, given the similarity of the two classes, even to human labelers.

Another visible (and potentially serious) error are the points labelled as roof (red), which in
reality correspond to ground or low vegetation. This is attributable to the mound-like elevation of
this surface relative to the surrounding area, which is unusual in the dataset.
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Figure 3.12: Screen captures of our system performing labeling in real time. The pose of the
helicopter is shown with a red CADmodel (zoommay be required). The green wireframe box is the
ROI used in segmentation at each time. Segmented point clouds outside of the ROI are retained and
visualized within a finite FIFO queue. Video is available at https://youtu.be/wuv0IyKkZmY.

43

https://youtu.be/wuv0IyKkZmY


Interpolation for active Landing Zone evaluation

One of the capabilities that our team developed for the autonomous helicopter is active sensing for
possible landing zones [4]. Due to to the relative sparsity of lidar point clouds at long distances,
deliberate control of the lidar sensor to acquire scans of potential landing zones greatly increases
the ability of the helicopter to perform safe landings after a high-speed approach. Our team realized
that a good estimate of the height of the ground surface would increase the accuracy and speed of
this search, which led us to adapt the ground surface interpolation module for this purpose. While
the module was not evaluated quantitatively, in our testing it performed qualitatively well and was
integrated in the final system for autonomous landing. Figure 3.13 shows captures of this system
incrementally estimating the ground surface during a landing approach.

Figure 3.13: Ground surface interpolation for active sensing of landing zones. In each panel,
we show on the top a profile view of the estimated ground surface and the true ground surface.
On the bottom, we show an oblique view of the surface, false-colored by height. The helicopter
is also shown, and it is highlighted in the third and fourth panels. Video is available at https:
//youtu.be/wNrkhvdUbfo.

3.4.3 Discussion and limitations
Qualitatively, our system performs with low enough latency and sufficiently high accuracy to aid
navigation in several ways, given its high performance in classifying building walls and roofs,
ground, and tree canopies. In addition, we have shown that our novel ground surface inference
provides a significant improvement in the detection of these and other classes.

However, some classes, such as obstacle, wire and pole, are challenging for our approach. The
relatively poor performance in these classes is particularly concerning given the danger they pose
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to aerial vehicles.
We believe that a large contributing factor for the poor performance is the relative rarity of

these classes in the dataset. The relatively low number of examples for these classes means there
are fewer examples to generalize from. Moreover, as our current training objective function aims
to minimize the average accuracy over all classes and examples, it will tend to pay less attention to
infrequent classes, and will label ambiguous cases with the more common label.

One natural strategy to address this issue is to collect and label more data for the challeng-
ing cases. In lieu of additional data, techniques such as modified training objectives and data
augmentation could mitigate this issue.

Another direction that would potentially improve our performance is modeling spatial and
semantic context in a more expressive way. Currently, we rely on our features to encode various
types of spatial context, but it is still relatively limited, and more features encoding information at
various levels of spatial resolutions could be beneficial. However, it is difficult to design these
features by hand, as it involves a fair amount of guesswork and inspection of the data so as to
encode relevant information. In chapter 4 we present an alternative to learn features along with
the classifier.

Explicitly modeling semantic context would also be beneficial, as it could allow the model to
learn, e.g., that wire voxels are near pole voxels, and also near other wire voxels. For this we could
use graphical models [125, 158] or cascaded classification [185].

Finally, other sensing modalities would also be useful. For example, images have a higher
resolution than lidar, which would allow better discrimination of small objects such as wires,
as well as provide color and texture information that may be beneficial for a variety of classes.
While not discussed in this thesis, we developed an image-based method for wire detection
in Madaan, Maturana, and Scherer [117]. We discuss multimodal architectures incorporating
image information in chapter 5.

3.5 Summary
We have presented a semantic mapping system for aerial LIDAR that can successfully create
semantic maps in real time from streaming point cloud data. Our system features a novel ground
surface inference scheme that significantly boosts classification accuracy of various classes.

However, as we discuss in section 3.4, while the accuracy of our system is acceptable for many
classes of interest, we have found that it struggles with others. We believe the main cause is that
our current set of hand-engineered features does not encode sufficient information to allow these
classes to be detected robustly by the classifier. While we can always design more features, this is
a laborious task. In the next chapter, we instead explore a method that can learn discriminative
features for 3D point cloud data.
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Chapter 4

Deep learning for efficient and robust point
cloud classification

In chapter 3, we presented a system to create semantic maps from 3D point clouds for an au-
tonomous helicopter. We found that this system struggles to classify certain classes relevant for this
application, and we hypothesized that this was largely due to the limited amount of information in
the hand-engineered point cloud features at the heart of the system. Rather than design or further
tune these features, a laborious process, in this chapter we explore the use of deep neural networks
to jointly learn the features and classifiers.

To this end, we present VoxNet, a novel architecture for fast and accurate classification of
point cloud data with 3D Convolutional Neural Networks (CNNs). The key innovation of this
architecture is to the application of modern convolutional architectures – which so far have been
mainly used for image and audio data – to the processing of 3D point cloud data, by applying 3D
CNNs to a volumetric occupancy map. We show the benefits of this architecture in a Landing Zone
(LZ) detection task for our autonomous helicopter, as well as more generic object classification
tasks with lidar point clouds in an urban self-driving scenario, RGBD point clouds of indoor
objects, and CAD models.

4.1 A deeper look at point cloud data
The needs that motivated the work in this chapter are similar to those of chapter 3. As before, we
are interested in improving and expanding the capabilities of autonomous rotorcraft operating in
unstructured environments. However, here our focus is different. In chapter 3, we built a semantic
mapping system for a relatively broad set of categories relevant for flights in urban and rural
locations: tree canopy, building wall, ground, obstacle, etc. While the system performs well for
most classes, it struggles for others (e.g., detecting small obstacles) that are particularly relevant
for one of our main tasks of interest, autonomous landing zone (LZ) detection.

Helicopters have the advantage of being able to land on unprepared sites. For autonomous
unmanned helicopters to fully exploit this ability, they must be capable of accurately and reliably
assessing the safety of potential landing sites. The task of LZ detection is to detect zones within
a predefined area that are safe for the helicopter to land on, which are not necessarily marked
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or otherwise prepared [81]. Approaches using simple geometric point cloud analysis have been
demonstrated ([87, 183, 153]), but these are incapable of correctly detecting LZs in cluttered
locations, such as the one shown in in Figure 4.1. This is because the geometry of soft vegetation,
which is safe to land on, is similar to the geometry of obstacles which are not safe to land on.
Moreover, the system in chapter 3, despite being equipped with a far more comprehensive set of
point cloud features and a more sophisticated classifier, also struggles with this kind of scenario.

Figure 4.1: Point clouds for two candidate landing zones, one of them unsafe

As in our last chapter, we also seek a solution capable of running in real time, which may be
particularly pressing for this application, as the output of the system becomes most useful in the
“endgame” of the landing process, when it must commit to landing or abort as it nears a candidate
LZ.

To address the challenges posed by this task we developed a solution leveraging recent advances
in deep neural networks, that can learn features and classifiers jointly from data.

As we developed our approach, we hypothesized that our framework, which is capable of
learning ad hoc features for each task, rather than relying on a pre-built set of features, could
also prove useful for more generic tasks in classification with 3D data. Thus, we also explore the
application of VoxNet to the classification of objects from lidar for self-driving applications [176,
172], classification of objects captured from indoors RGBD data [129], and classification of CAD
models [184].

4.1.1 Problem statement
If we abstract various details surrounding the implementation of our system in real scenarios, we
can simply frame the problem we address in LZ detection and object recognition as 3D point cloud
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Figure 4.2: For our object recognition experiments, we use data from lidar [49] (top), RGBD
sensors [129] (middle), and voxelized CAD models [184] (bottom).
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classification:

Given a 3D point cloud, classify it as one of K predefined classes.
Concretely, for the LZ detection task, we pose the problem as binary classification by classifying

small areas as safe or unsafe; for the object recognition tasks, we classify each input as one of the
classes defined by its corresponding dataset, e.g., one of car, truck, pedestrian, etc. for the urban
driving dataset, or table, chair, sofa, etc. for the indoors dataset.

In most of this chapter, we will focus on this task in isolation. However, in practice, solving
this problem by itself is insufficient for a semantic mapping system, which is our original goal.
We will describe how we use VoxNet for the task of semantic mapping of LZs.

4.2 Related work
Landing Zone detection systems An early approach using simulated lidar for landing zone
detection is Johnson et al. [87]. They propose a system for landing zone selection based on a
relatively simple geometric analysis of terrain roughness and slope. Whalley et al. [183] and
Scherer et al. [153] use similar geometric criteria and demonstrate its success in real data. However,
as we show in our experiments these approaches fail in terrain cluttered with vegetation.

Ground filtering and terrain modeling Ground filtering and terrain modeling methods, as
those described in section 3.2, could also be considered relevant for LZ detection, specially in
the case of terrain cluttered with vegetation. However, as mentioned before, they make several
assumptions that do not apply to the scenarios encountered by a vehicle flying very close to the
ground. Moreover, they are generally designed to discriminate ground points from non-ground
points; however, this does not translate directly to an LZ safety assessment, specially in the presence
of obstacles such as rocks.

Traversable vegetation and obstacle mapping Another relevant line of work proposes to
discriminate traversable grass from hard obstacles using heuristics based on the local statistics of
laser scan lines ([116, 119]). These systems assume measurements are taken from forward-facing
scanners at very close range on ground vehicles. We have observed that the features used by this
method, which we use in chapter 3 and experiments in this chapter, are not highly discriminative,
specially with sparse point clouds. Moreover, these methods do not distinguish between the ground
and other solid surfaces, and would need to be modified on this account.

Semantic classification with lidar As outlined in section 3.2, there are several methods to
classify and segment point clouds with lidar. These methods could be applied to LZ detection,
e.g., by segmenting ground, grass and obstacle points or voxels. However, this is still does not
necessarily translate into an assessment of safety for a larger area, and another layer would have
to be engineered to make this prediction. This is nontrivial, specially considering the effects of
sparsity and occlusion. Regardless, we have taken various hand-engineered point cloud features
from work in this area to build one of our baselines.
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Another issue with prior work in this area, that affects LZ detection as well as generic object
recognition, is the reliance on hand-engineered features that may not encode the information
necessary for each task. Instead, our model learns to extract discriminative features directly from
a voxelized representation.

Learning features for 3D data As we describe in chapter 2, in computer vision there has been
a trend towards learning features from data instead of (or in addition to) using hand-engineered
features, even preceding the popularity of deep learning. However, following the success of deep
learning, and particularly, Convolutional Neural Networks (CNNs) in various benchmarks, they
have become the dominant framework for feature and classifier learning.

The trend towards feature learning also occurs in the analysis of 3D data, but so far there has
not been work to learn features with CNNs in volumetric data.

Several authors have extended CNNs to use RGBD data ([107, 163, 155]). These approaches
leverage existing CNN architectures for 2D data by treating the depth channel as an additional
channel alongside the RGB channels.

Gupta et al. [74] propose a similar idea, but instead of raw depth they use channels encoding
pixelwise height and surface orientation from the depth data. While straightforward, these methods
do not not make full use of the geometric information in the data and make it difficult to integrate
information across viewpoints.

For lidar, Quadros et al. [142] propose a feature that describes scans locally with a 2.5D
representation, and [49] studies this approach in combination with a form of unsupervised feature
learning. Like the RGBD methods, these methods are still 2D-centric. Our work differs from these
in that we employ a fully volumetric representation, resulting in a richer and more discriminative
representation of the environment.

There has also been work in feature learning for volumetric data. Flitton et al. [60] apply a
biologically inspired neural network to the classification of computed tomography (CT) imagery.
While their architecture, at a high level, is similar to ours, they do not learn features from the raw
data, but instead design the network with hard-coded feature extractors at various levels.

3D CNNs have been applied to other domains. Viewing video data as a volume with time
as the third dimension, Ji et al. [86] and Karpathy et al. [88] apply 3D CNNs to human action
classification. In terms of their components and operations, these networks work in the same way
as ours, but the nature of the data is very different.

Recently, [101] proposed an unsupervised volumetric feature learning approach as part of
a pipeline to detect indoor objects from RGBD data. This approach is based on sparse coding,
which is generally slower than CNNs.

Concurrently with our initial publication on VoxNet [120], Wu et al. [184] proposed a gen-
erative 3D convolutional model of shape and applied it to recognition of CAD objects, among
other tasks. This method is close to ours, but they use a significantly larger network that is trained
as a generative, rather than discriminative, network. We compare this approach to ours in the
experiments.
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4.3 Approach
Given a point cloud, our task is to predict a class label. Our system for this task has two main
components: a volumetric grid representing our estimate of spatial occupancy, and a 3D CNN
that predicts a class label directly from the occupancy grid. The process is depicted in Figure 4.3.
We describe each component below.

Figure 4.3: VoxNet architecture and data flow for two example inputs. The system receives 3D
point clouds, which are voxelized as occupancy grids and then passed through a 3D CNN to predict
a label.

4.3.1 Volumetric occupancy grids
Occupancy grids [122, 169] represent the state of the environment as a 3D lattice of random
variables (each corresponding to a voxel) and maintain a probabilistic estimate of their occupancy
as a function of incoming sensor data and prior knowledge.

There are two main reasons we use occupancy grids. First, they allow us to efficiently estimate
free, occupied and unknown space from range measurements, from measurements coming from
potentially different viewpoints and time instants. This representation is richer than those which
only consider occupied space versus free space such as point clouds, as the distinction between
free and unknown space can potentially be a valuable shape cue, as suggested in the example
shown in Figure 4.4. Here the shape of the car is more visible when explicitly distinguishing free
space from unknown space (which in this case correspond to cells occluded by the car’s surface).
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Figure 4.4: Two cross-sections comparing occupancy representations. We show a point cloud of a
car and the section, indexed by i. We then compare a grid representing only occupied space (dark
pixels), with a grid representing occupied space (darker pixels), free space (lighter pixels) and
unknown (gray pixels).

Second, they can be stored and manipulated with simple and efficient data structures. In
this work, we use dense arrays to perform all our CNN processing, as we use small volumes
(32× 32× 32 voxels), and GPUs are well suited for processing dense data. To process larger
spatial extents, as in the task of LZ detection, we store all volumetric data we cover in CPU
memory and copy small volumes to the GPU memory as needed. To manage this data, we use
OpenVDB [128], a semi-sparse data structure that stores volumetric data in dense “tiles” organized
in a shallow hierarchy.

Reference frame and resolution

In our volumetric representation, each point (x, y, z) is mapped to discrete voxel coordinates
(i, j, k) in our ROI, similarly to our system in chapter 3. The mapping is a uniform discretization
but depends on the origin, orientation and scale of the voxel grid in space. The appearance of
the voxelized surface depends heavily on these parameters, similarly to how the appearance of
an object in a two-dimensional image depends on the position, orientation, and resolution of the
camera sensor.

For the origin of our ROI, we assume it is given as an input, e.g., obtained by a segmentation
algorithm or given by a sliding box. To make our method more robust to noise in the ROI origin,
we augment the training data with random translations of the point cloud.

For the orientation of the ROI, we align its Z axis with the negative of gravity, or in the case of
CAD models, with an “up” direction that serves a similar purpose. In our datasets this information
is available. However, this only constrains two degrees of freedom. The yaw, or rotation around
the Z axis, could be determined in different ways, depending on the application. In a robotic
context, it could be set according to an inertial frame or relative to an egocentric frame, but for
CAD models neither of these apply. For simplicity, we opt to make our CNN robust to the yaw
of the input by augmenting the training data with multiple rotations per point cloud. Test time
augmentation was also applied for the object recognition tasks.

For the voxelization scale, we adopt two strategies, depending on whether the input data has a
known scale relative to a fixed reference, such as physical distance units, or whether its scale is
arbitrary or unknown.

The first case applies to the lidar and RGBD datasets we use in this chapter (as well as chapter 3),
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Figure 4.5: Occupancy models. In the Hit grid model (left), each cell is modelled as occupied
(black) or not known to be occupied (white). No distinction is made on free space versus unknown
space. In the binary occupancy grid, the belief for each cell is a continuous variable ranging from
0 to 1, indicating whether it is known to be occupied (black), free (white) or unkown (gray). In the
density grid, the intermediate values have a slightly different interpretation than “unknown”; see
the main text.

where the data has physical units of distance. In this case, the size of our voxels is defined relative
to this unit (e.g., 0.1× 0.1× 0.1 m3), and assumed to be constant for any given experiment. We
evaluate different voxel resolutions in the experiments.

We encounter the second case in the 3D CAD dataset we use in this chapter [184], which uses
models from heterogeneous sources that do not necessarily follow any given convention for their
measurement units. In this case, we follow the strategy adopted by the authors of the dataset. We
isotropically rescale the geometry of each model to fit in an arbitrary canonical volume (e.g., a
unit cube), and define the size of each voxel (again, fixed for each experiment) in the same units as
this volume. In this case, the units have no consistent relation to physical space.

Occupancy models

There are many possible ways of encoding point clouds obtained from range measurements into a
volumetric grid. Here we consider three models that model occupancy, i.e., whether a grid cell is
occupied. We refer to these as Binary Occupancy Grid, Density Grid and Hit Grid.

Let {zt}Tt=1 be a sequence of range measurements that either hit (zt = 1) or pass through
(zt = 0) a given voxel with coordinates (i, j, k). Assuming an ideal beam sensor model, we use
3D ray tracing [1] to calculate the number of hits and pass-throughs for each voxel.

Binary occupancy grid: Introduced by Moravec and Elfes [122], this is the de facto standard
model in robotics, and the term Occupancy grid is often used synonymously with this model.
In this model, each voxel is assumed to have a binary state, occupied or unoccupied. The
probabilistic estimate of occupancy for each voxel is computed with log odds for numerical
stability. Using the formulation from Thrun [169], we update each voxel traversed by the
beam as

ltijk = lt−1ijk + ztlocc + (1− zt)lfree (4.1)

where locc and lfree are the log odds of the cell being occupied or free given that the measure-
ment hit or missed the cell, respectively. We set these to the values suggested in Hähnel,
Schulz, and Burgard [77], lfree = −1.38 and locc = 1.38, and clamp the log odds to (−4, 4)
to avoid numerical issues. Empirically, we found that within reasonable ranges these param-
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eters have little effect on the final outcome. The initial probability of occupancy is set to
0.5, i.e., l0ijk = 0. In this case, the input to the network are the log-odd values lijk.

Density Grid: This model is similar to the standard occupancy grid, but allows for a different
interpretation. In this model, each voxel is assumed to have a continuous “density”1, corre-
sponding to the probability the voxel would block a sensor beam. We use the formulation
from Tipaldi, Spinello, and Burgard [173], where we track the Beta parameters αt

ijk and
βt
ijk, with a uniform prior α0

ijk = β0
ijk = 1 for all (i, j, k). The update for each voxel affected

by the measurement zt is

αt
ijk = αt−1

ijk + zt

βt
ijk = βt−1

ijk + (1− zt)

and the posterior mean for the cell at (i, j, k) is

µt
ijk =

αt
ijk

αt
ijk + βt

ijk

(4.2)

Kelly et al. [90] used a similar model (equivalent to setting βijk = 0) to model the density
of each cell, without an explicit probabilistic interpretation.
In the density grid formulation, the value of µt reflects our best belief regarding the prob-
ability a lidar beam would traverse the voxel, rather than uncertainty originating from a
lack of observations. This uncertainty could be expressed by the posterior variance of zt, or
directly via the conjugate posteriors of αt and βt, and added as additional channels in the
occupancy grid. However, this multiplies the required amount of memory, and preliminary
experiments in this direction did not show any improvement. Thus, in this case we use µijk

as input to the network.
Hit grid: This model only consider hits, and ignores the difference between unknown and free

space. Each voxel has an initial value h0ijk = 0 and is updated as

htijk = min(ht−1ijk + zt, 1) (4.3)

This model can be seen as a simple discretization of the point cloud. While this model
discards some potentially valuable information, in our experiments, it performs surprisingly
well. Moreover, it does not require raytracing, which is useful in computationally constrained
situations. Another advantage is that it does not require knowledge of the origin of each ray;
while this information is usually available when recording a dataset, it is often not provided
with processed point clouds.

4.3.2 3D Convolutional Neural Network architectures
There are three main reasons 3D CNNs are an attractive option for our task.

First, they can potentially extract and integrate information from the occupancy data at multiple
scales and levels of abstraction. For example, filters in the first layer can encode plane-like or

1In the physical sense, not in the sense of a probability density function.
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corner-like structures at various orientations, and subsequent layers can construct a hierarchy of
more complex features representing larger regions of space, eventually leading to a global label
for the input occupancy grid.

Second, when trained with a differentiable loss function, their weights can be learned end-to-
end in a supervised manner using Stochastic Gradient Descent (SGD). This elides the need for
methods that separately learn or hand-engineer the “feature extraction” and “classifier” parts of the
CNN, decreasing the engineering burden and increasing the likelihood that the learned features
will be useful for the task at hand. Moreover, by using the negative log-likelihood as our loss
function, the model’s predictions can be interpreted as probabilities, which we can use to manage
risk and guide sensing.

Finally, inference in CNNs has attractive properties for use in real-time robotics. Inference is
purely feed-foward and uses a fixed number of operations for any given neural network architecture
and input size, making its runtime highly predictable. Furthermore, most operations can be
performed efficiently on commodity graphics hardware.

Below we describe the different layer types considered for our 3D CNN architecture. For each
layer type, we use a shorthand description in the format Name(hyperparameter).

Input Layer: This layer accepts a fixed-size grid of I × J × K voxels. In this work, we use
I = J = K = 24 or I = J = K = 32, depending on the dataset. While larger grids may
be desirable to capture higher spatial resolution or larger spatial extents, the computational
and storage resources required scale cubically with the number of voxels per dimension,
making inference too slow (or altogether infeasible) with our current implementation and
target platforms.
The input for each cell is updated according to the occupancy model, e.g., Equation 4.2.
In all cases we subtract 0.5 and multiply by 2, so the input is in the (−1, 1) range; no
further preprocessing is done. While this work only considers scalar-valued inputs, our
implementation can trivially accept additional values per cell, such as lidar intensity values
or RGB information from cameras.

Convolutional Layers C(f, d, s): These layers accept four-dimensional input volumes in which
three of the dimensions are spatial, and the fourth contains feature maps. The layer creates f
feature maps by convolving the input with f learned filters of shape d× d× d× f ′, where d
are the spatial dimensions and f ′ is the number of input feature maps. Convolution can also
be applied at a spatial stride s. The output is passed through a leaky rectified nonlinearity
unit (ReLU) [115] with parameter 0.1.

Pooling Layers P (m): These layers downsample the input volume by a factor of bym along the
spatial dimensions by replacing each m ×m ×m non-overlapping block of voxels with
their maximum.

Fully Connected Layer FC(n): Fully connected layers have n output neurons. The output of
each neuron is a learned linear combination of the outputs from the previous layer, passed
through a nonlinearity. We use ReLUs save for the final output layer, where the number
of outputs corresponds to the number of class labels and a softmax nonlinearity is used to
provide a probabilistic output.

Given these layer types and their hyperparameters, there is an infinite number of architectures
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that can map a volumetric grid to a vector of predictions. In the image domain, networks such as
AlexNet [98] and VGG [161] have served as a useful template for a great deal of other architectures.
While these architectures can be directly lifted to 3D, it is unclear whether this is the best choice,
specially in light of the higher computational demands of volumetric networks.

To investigate this issue, in subsection 4.4.1 we perform an extensive stochastic search over
hundreds of 3D CNNs architectures, evaluating the model performance on a synthetic LIDAR
dataset.

Based on those experiments, in this chapter we use three models. The first two, used in the LZ
detection experiments, are two high-performing models with different depths, which we denote
VoxNet-LZ1 and VoxNet-LZ2 for brevity. They are described in subsection 4.4.1.

As we describe in subsection 4.4.3, for the object recognition experiments we adopt a modified
version of VoxNet-LZ2, which preserves its depth but uses smaller filters and a reduced fully
connected layer, making it faster and easier to learn. This model is illustrated Figure 4.3. We refer
to this model simply as VoxNet2.

4.4 Experiments
In our initial set of experiments we will describe the exploration of architectures that led to our
initial version of VoxNet.

We will then describe the application of our architectures to different tasks. In the first, we
classify terrain scanned by a lidar sensor as being safe or unsafe for a helicopter landing. In the
second, we perform multiclass object recognition in three domains: CAD models, urban lidar
point clouds, and indoor RGBD point clouds.

4.4.1 Exploration of architectures
Dataset

To evaluate different 3D CNNs we created a synthetic dataset intended to approximate the LZ
detection task. The dataset consists of simulated 3D scans representing various patches of terrain
with varying amounts of grass and different number of obstacles; the task of the CNNs is to
discriminate whether a patch is safe, i.e., has no obstacles. We use synthetic data for this task as it
is a simple way to generate large amounts of diverse data with known ground truth.

We recreate the scanning pattern of our lidar sensor by simulating its pulse repetition rate,
angular resolution, and the nodding behavior of its sensor mount. Our sensor is a RIEGL configured
to scans lines perpendicular to the direction of flight with up to 100◦ horizontal field of view
(FOV). It is mounted on a custom motorized platform for nodding, optionally allowing up to 100◦

vertical FOV scanning. The sensor assembly is mounted on an helicopter which uses an INS for
global registration of the point cloud.

We also addGaussian noise to the range, based on themanufacturer specifications (σ = 25 mm).
Small motions for the origin of the sensor pose were added by a Gaussian random walk with zero

2The reason behind this nomenclature is that we first used the name VoxNet for this specific model. VoxNet-LZ1
and VoxNet-LZ2 are two closely related predecessors that were formerly nameless.
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mean and σ = 2 cm/s. Scenes were scanned until a point density of 3000 points/m2 was reached,
consistent with the density obtained near the landing zones in the autonomous landing missions
from [35].

The generated lidar rays are then intersected against a synthetic scene consisting of a ground
surface, grass blades, and box-shaped obstacles. The ground surface is a mesh in which the height
of the vertices is perturbed by Perlin noise with a height range of −0.05 m to 0.05 m. The grass
blades are simulated by a 3-triangle strip of maximum width 3 mm, and normally distributed
height and inclination. The grass placement is generated according to a homogeneous spatial
Poisson process with a configurable intensity, as in [116]. The box is generated with dimensions
0.15× 0.15× 0.15 m3 dimensions at a uniformly random location and yaw angle on the plane.

Various parameters were systematically swept as shown in Table 4.1. We generate 20 instances
per parameter setting, resulting in 26860 total instances (note that this does not consider any
augmentation performed in training). We add obstacles to half the instances; these are considered
unsafe, while the rest are considered safe.

Table 4.1: Simulation parameter sweep for synthetic datasets.

Parameter Values

Blade per m2 100, 200, . . . , 1800
Scanline angular resolution ◦ 0.05, 0.1, 0.2 and 0.41
Blade width mm 3, 5 and 8
Blade mean height m 0.1, 0.2 and 0.3
Sensor distance in x-axis m −5.0 and −10.0
Sensor height m 4.0 and 8.0

Comparison of simulated and real data

As a sanity check of the relevance of our synthetic datasets we constructed a calibrated target and
scanned in the laboratory. The target and a render of its synthetic version, along with a range
histogram of 1500 points and an occupancy grid are depicted in Figure 4.6. Note that the blades
are randomly generated and not meant to match the real grass on an individual blade level.

Evaluation metric

As described earlier, our task has the form of binary classification, with categories safe and unsafe.
For our initial exploration, we use accuracy to evaluate each 3D CNN, computed as the fraction
of instances where the hard classification prediction (computed with a fixed threshold of 0.5)
matches the ground truth label. We use this metric as a simple way of ranking among models. In
subsequent experiments (subsection 4.4.2) we use more fine-grained metrics.

CNN architecture and hyperparameters

To find suitable architectures for our 3D CNNs, we search over a parameterized space. We follow a
general pattern followed by popular image-based CNNs, with alternating convolution and pooling
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Figure 4.6: Validation of simulated laser scanner. Top row: the real point cloud and its simulated
counterpart. Bottom row: the calibrated target and a render of its synthetic version.
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layers followed by a fully connected network. In terms of depth, we search over architectures with
one or two convolution layers (with respective pooling layers); in regards to width, we search over
different number and shapes of filters for each convolutional layer, as well as the number of hidden
nodes in the fully connected network. Due to time constraints, we do not explore training-related
hyperparameters such as optimizer choice or weight decay. Our search space is summarized in
Table 4.2.

Table 4.2: Search space for 3D CNN architecture

Hyperparameter Values

Convolution layers (depth) 1 and 2
Filter shapes 3, 5 and 7
Number of filters 32, 64 and 128
Pooling stride 1, 2 and 4
FC hidden nodes 27, · · · , 212

We perform a stochastic search in this space with a Tree-structured Parzen Estimator algorithm
using the HyperOpt package [7]. In each case, we train a CNN with half of our dataset, and
validate with the other half. For training, we optimize a negative log-likelihood loss with SGD
(learning rate 0.01, momentum 0.9) for six epochs with a minibatch size of 20. For validation, we
use the AUC metric.

We perform 400 hyperparameter evaluations, which took around three days when distributed
across three computers. We found that many networks performed well in our task, with many
obtaining virtually identical, near-perfect performance. In general, the higher-performing networks
were of intermediate complexity relative to our search space. From a qualitative inspection of the
lower-ranked networks, we believe that most of the smallest networks suffered from underfitting
due to their low parameter count; however, for the larger networks, it is less clear, as it is possible
that they were unable to fully converge with only six training epochs. Nonetheless, these first
results suggested a set of networks that exhibited promising performance for our LZ task, both in
terms of accuracy and computational requirements. We chose two of these architectures for further
evaluation. The first, which we refer to as Voxnet-LZ1, uses one stage of convolution and pooling,
with parameters C(64, 7, 1)− P (4)− FC(512). The second, which we refer to as Voxnet-LZ2,
uses two stages of convolution and pooling, with parameters C(32, 7, 1)− P (2)− C(5, 64, 1)−
P (2)− FC(512),

In terms of parameters, these networks are lightweight relative to the current state of the art
networks for image data. The larger of these networks has 1.8M parameters; for comparison,
AlexNet [98] has around 60M.

4.4.2 Landing Zone Detection
In this section, we further investigate how our 3D CNN architectures can be applied to the task of
LZ detection. The full pipeline, for which we show qualitative results at the end of this section, is
illustrated in Figure 4.7.
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Figure 4.7: Steps in autonomous landing zone detection
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Datasets

Unfortunately, acquiring and labeling real data for this scenario is difficult, as finding obstacles
in cluttered point clouds is challenging even for humans. Therefore, our experiments for landing
zone detection are based on two datasets; one is purely synthetic, and the other is semisynthetic.
In our first set of experiments, we use a synthetic dataset created with a setup similar to that of
subsection 4.4.1. The box obstacles are replaced with a selection of publicly available 3D models
obtained from the Trimble 3D Warehouse3. In particular, we use 11 models of rocks (modelled
after actual rocks, scanned by Intresto Pty Ltd4), a tire, and cinder blocks (Figure 4.8). The height
of the objects ranges between 15 cm to 40 cm, and are all less than 50 cm across. The sensor and
grass simulation parameters are kept the same. We generate 28 760 instances, with approximately
half for training and the rest for validation. The training and validation sets do not have any models
in common.

(a) Example CAD models

(b) Example point clouds

Figure 4.8: (a): renderings of six of the CAD models used as “obstacles”. (b): Two synthetic point
clouds including grass (green points), ground (blue points) and obstacles (red points).

We observed that vegetation was hard to simulate accurately, consistent with the findings of
Deschaud et al. [48]. This motivated us to create semi-synthetic point clouds, consisting of real
point cloud data for vegetation and ground, combined with simulated scans for solid obstacles.
Since our sensor setup reports the estimated pose of the sensor at each measurement time, we

3https://3dwarehouse.sketchup.com
4https://www.intresto.com.au
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can simply use our simulator with sensor rays obtained from actual point clouds, and build semi-
synthetic scenes by inserting virtual obstacles in the world frame and altering rays if they intersect
with the obstacle (see Figure 4.9). As before, we add noise to the simulated rays.

Figure 4.9: Example of semi-synthetic data generation. Left: A real point cloud of cluttered
terrain. Middle: The point cloud with an inserted mesh of a rock model (modelled from a scan of
a real rock). Right: The resulting semi-synthetic cloud.

To generate the semisynthetic scenes, we used lidar data from eight helicopter flights. Two of
these were data collection flights from Pittsburgh, PA and six were autonomous flight missions in
Quantico, VA. Figure 4.10 shows images of the vegetation in these sites. We manually selected

(a) Quantico, VA (b) Pittsburgh, PA

Figure 4.10: Images of the vegetation present in our lidar data. Fig. (a): Vegetation in the Quantico
testing site. Fig. (b): vegetation in the Pittsburgh testing site (Rock airport).

areas known to be safe for landing, and from these sampled on average 1000 patches for each
flight, resulting in 21 000 patches. We then inserted random synthetic CAD obstacles with random
positions and orientations in half of the patches. The CAD obstacles were the same as those used
in our previous synthetic experiment.
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Evaluation metrics

We use Receiver Operating Characteristic (ROC) curves to evaluate our different algorithms. For
any given threshold on a detector with continuous output, we may commit two types of errors
(Figure 4.11): erroneously labelling an unsafe patch as safe (a false positive), or failure to label
a safe patch as safe (a false negative). A ROC curve is generated by varying this threshold and
evaluating the false positive rate (FPR) and true positive rate (TPR). An ideal algorithm would
always have TPR equal to 1, and random chance would have TPR=FPR. Note that we are implicitly

Figure 4.11: Possible outcomes for landing zone safety prediction. The gray rectangles represent
obstacles.

assuming each volume has a 0.5 prior probability of being safe; this can be easily changed to
incorporate prior knowledge by scaling the output appropriately [11].

Baselines

Our first baseline is based on the residuals of a robust plane fit, as proposed in Scherer [152]
and similar geometric methods. The sum of the residuals (clipped to a maximum of 0.1 m for
robustness) was used as the continuous output in the ROC curve.

The second baseline is a RandomForest classifier [14], using the implementation of scikit-learn [138].
It is trained with the same raw volumetric data as our networks. We used 20 trees with no maximum
depth. Random forests are known to be robust and usually effective classifiers that work well with
high-dimensional data. This baseline has no built-in invariance to spatial shifts.

The third baseline is a system built with various well-known features from the literature on
point cloud classification, similar to those of chapter 3. These include three spectral shape features
from Lalonde et al. [103], three directional features and three shape features from Shapovalov et al.
[158], and range variance features from Macedo, Manduchi, and Matthies [116]. We calculate
each feature on a per-voxel basis, with 3× 3× 3 voxel spatial smoothing for the spectral features.
We carefully tuned these features to work well in this data, as they were part of our first approach
to solve this problem (see chapter 3).

We construct a K-means codebook with 512 words from 1/4 of the training data and represent
each volume with a softly-quantized Bag of Words (BoW) [37]. Finally, we classify the BoW with
a random forest classifier trained using the same parameters as before. This approach is similar
to approaches that until recently were considered state-of-the-art for various tasks in computer
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vision. While the BoW ignores any spatial structure in the data, the features encode some local
spatial context (e.g., height relative to the ground).

Results

We show the results of the baselines and our VoxNet models on our synthetic grass and obstacle
dataset in Figure 4.12a and Table 4.3.

(a) Synthetic obstacles ROC (b) Semisynthetic obstacles ROC

Table 4.3: Area under curve (AUC) of evaluated methods

Method AUC Synth AUC Semisynth

Feature BoW 512 RF 0.931 0.66
VoxNet-LZ1 0.97 0.93
VoxNet-LZ2 0.97 0.95
Plane Residuals 0.51 0.50
Raw volumetric RF 0.80 0.73

In the synthetic obstacles dataset, the two CNN approaches take the lead and perform almost
indistinguishably. This suggests they are learning similar hypotheses despite their different archi-
tecture, or that they are reaching some limit related to the dataset. The plane residuals perform
barely above chance. This is due to the fact that by construction, our clouds are relatively dense
and always have at least some clutter.

Results in the semisynthetic dataset are shown in Figure 4.12b and Table 4.3. As before, the
plane residual method is no better than chance. The two random forest methods are better, but are
clearly outperformed by the CNN methods. Out of these, the deeper architecture, VoxNet-LZ2,
obtained slightly better performance, suggesting that the additional depth is beneficial in this more
challenging scenario.

Qualitative results Some representative successes and failures from the semisynthetic dataset
are shown in Figure 4.13. Our method sometimes results in false negatives when the vegetation is
dense enough to resemble rocks, or results in false positives when the obstacle is very small or
mostly occluded.

65



Figure 4.13: Example outputs for landing zone safety prediction. Top: two correct landing zone
safety assessments (true positive and true negative). Bottom: Two failures (false negative and
false positive). Obstacles are shown in red. In the first failure case, there are several dense bushes
which are similar to rocks. In the second, only a very small portion of the obstacle is visible.
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We also apply two visualizations commonly applied to CNNs for image data. In the first, we
examine the weights of the first convolutional layer of VoxNet-LZ1 (Figure 4.14a). We visualize
a slice of selected filters, visualized as a 3D grid, for the network trained on the synthetic and
semisynthetic datasets. They exhibit similar spatial structure for both datasets, and appear to be
specialized to detect corner, blob and plane-like structures.

(a) Selected filters from Voxnet-LZ1 on the synthetic (top row)
and the semi-synthetic (bottom row) datasets, where darker
means a higher value.

(b) Cross-sections of hallucinated unsafe and safe volumes from
VoxNet-LZ1.

Visualizing the higher levels of the network is less straightforward. Our second visualization
uses the technique from [160] to hallucinate an “ideal” input for each category predicted by the
network by backpropagation on the input. We show hallucinated volumes from VoxNet-LZ1,
trained on the synthetic dataset, in Figure 4.14b. We observe the ideal unsafe volume has multiple
box-like sets of planes, whereas the ideal safe volume has visible ground and free space.

Real-time LZ detection pipeline

We built a pipeline based on VoxNet-LZ2 capable of performing real-time LZ detection over an
area of interest (we use an area of 10× 10 m2) by partitioning it into smaller patches of 1× 1 m2

and processing each individually. Our pipeline incrementally updates the occupancy grids from
the lidar point clouds and performs inference after each update, so the vehicle can improve its
assessment of LZs by accumulating a higher-density coverage of the ROI. Figure 4.15 shows a
screen capture of this pipeline operating in a semi-synthetic scenario, where we insert a synthetic
obstacle in flight data captured from a real mission.
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(a) Satellite view of LZ region with overlaid
trajectory

(b) Wide area view of point cloud as the
helicopter begins landing approach

(c) Sequential screen captures of on-line LZ safety evaluation

(d) Close-up of inserted rock obstacle detected by the system

Figure 4.15: Screen capture of integrated system operating in real time. The system evaluates
the safety of a 10× 10 m2 area with a resolution of 1× 1 m2. The video is available at https:
//youtube.com/playlist?list=PLeg9sULe3rSlz3xbjx3WrNk5FS2J-DCWw.
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Timing

Depending on the parameters of the network, training for six epochs takes between two to six
hours on our Core 2 DUO equipped with a 3GB GTX580 GPU. On the other hand, labeling a
1 m3 patch takes less than 5 ms, and ray tracing (which is done on the CPU) to compute hit/passes
and density on 3000 points takes less than 1 ms per 1000 points for a 400× 400× 40 voxel grid.
While not a fair comparison, as it runs on the CPU, the BoW algorithm by itself takes around
200 ms per volume. Around half of the time is spent performing feature extraction, and the other
half is spent performing quantization.

4.4.3 Object Recognition
In this section, we investigate the application of our 3D CNN architecture to more general object
recognition tasks with data from three different sources (lidar, RGBD and CAD data). We also
show qualitative results in a live demonstration with data from yet another source (time-of-flight
sensor).

In addition, we introduce a modified, more lightweight, version of the VoxNet-LZ2 architecture,
which we simply refer to as VoxNet.

Datasets

Our datasets use 3D data from three different sources: lidar point clouds, RGBD point clouds, and
CAD models. Figure 4.16 shows example instances from each source.

Figure 4.16: Object instances from the Sydney Objects, NYUv2 and ModelNet40 datasets. Left:
The Sydney Objects dataset consists of lidar scans captured in urban scenes. Middle: The NYUv2
dataset contains RGBD point clouds of various indoor locations, captured with a Kinect sensor.
Right: ModelNet40 is a dataset of CAD models of various common objects, mostly furniture. We
use voxelized versions of these models.
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Lidar data — Sydney Urban Objects: The Sydney Urban Objects Dataset5, used in Deuge et al.
[49], contains labeled Velodyne lidar scans of 631 urban objects in 26 categories. We chose
this dataset for evaluation as it provides labeled object instances and the lidar viewpoint,
which is used to compute occupancy. When voxelizing the point cloud, we use all points in
a bounding box around the object, including background clutter. This makes the task more
challenging, but also more realistic relative to real world scenarios. We follow the protocol
employed by the dataset authors, who report the average class-weighted F1 score over four
training/testing splits. For this dataset, we perform augmentation at training and test time
with 18 rotations per instance. We report the average F1 score, weighted by class support,
for a subset of 14 classes over four standard training/testing splits.

CAD data —ModelNet: The ModelNet datasets were introduced by Wu et al. [184] to evaluate
3D shape classifiers. ModelNet40 has 151,128 3Dmodels classified into 40 object categories,
and ModelNet10 is a subset based on classes that are found frequently in the NYUv2
dataset [129]. The authors provide the 3D models as well as voxelized versions, which have
been augmented by 12 rotations. We use the provided voxelizations and train/test splits for
evaluation. In these voxelizations the objects have been scaled to fit a 24× 24× 24 grid.
We report the accuracy averaged per class.

RGBD data — NYUv2: Wu et al. also evaluate their approach on RGBD point clouds obtained
from the NYUv2 dataset [129]. We use the train/test split provided by the authors, which uses
538 images from the RMRC challenge6 for training, and the rest for testing. After selecting
the boxes sharing a label with ModelNet10, we obtain 1386 testing boxes and 1422 training
ground truth boxes. Wu et al. report results on a subset of these boxes with high depth
quality, whereas we report results using all boxes. For this dataset, we compute our own
occupancy grids. However, to make results comparable to Wu et al. we do not use a fixed
voxel size; instead, we crop and scale the object bounding boxes to 24× 24× 24, likewise,
we use 12 rotations instead of 18. Unlike Wu et al., we do not use a per-pixel object mask
to remove outlying depth measurements from the voxelization. As in the Sydney Objects
dataset, we keep all points in a bounding box around the object; from the voxelization,
possibly making the task more difficult due to presence of clutter in the voxelized data.

Architecture

In these experiments, we use a modified version of the VoxNet-LZ2 architecture from subsec-
tion 4.4.2, which we simply refer to as VoxNet. Following the recent trend towards smaller
convolutional filters [161], this version reduces the size of the layers in the first and second convo-
lutional filters, as well as the number of hidden neurons in the fully connected layer. To reduce the
computational requirements, we add stridingwith factor 2 to the first convolutional layer and remove
the first pooling layer. We found this network, which was also among the top-performing networks
in subsection 4.4.1, to be slightly faster and easier to learn than VoxNet-LZ2. In the convention
of subsection 4.4.1, the architecture of VoxNet is C(32, 5, 2) − C(32, 3, 1) − P (2) − FC(128)
(Figure 4.3).

5http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
6http://ttic.uchicago.edu/~rurtasun/rmrc/
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Rotation augmentation We study four different cases for rotation augmentation, depending
on whether it is applied or not at train time (as augmentation) and test time (as voting) for the
Sydney Objects and ModelNet40 datasets. For the cases in which no voting is performed at
test time, a random orientation is applied on the test instances, and the average over four runs is
reported. For the cases in which no training time augmentation is performed, there are two cases.
In ModelNet40, we select the object in a canonical pose as the training instance. For Sydney
Objects, this information is not available, and we use the unmodified orientation from the data.
Table 4.4a shows the results. They indicate that training time augmentation is more important.
As suggested by the qualitative example above, the network learns some degree of rotational
invariance, even if not explicitly enforced. However, voting at training time still gives a small
boost. For ModelNet40, we see a large degradation of performance when we train on canonical
poses but test on arbitrary poses, as expected. For Sydney Objects there is no such mismatch, and
there is no significant degradation in this case. Since rotation augmentation seems consistently
beneficial, in the rest of the results we use VoxNet with rotation augmentation at both training
time and test time.

Table 4.4: Effects of rotation augmentation and occupancy models on the Sydney and ModelNet
benchmarks

(a) Effects of rotation augmentation at training and test time

Training Augm. Test Augm. Sydney F1 ModelNet40 Acc.

Yes Yes 0.72 0.83
Yes No 0.71 0.82
No Yes 0.69 0.69
No No 0.69 0.61

(b) Effect of occupancy model

Occupancy Sydney F1 NYUv2 Acc.

Density grid 0.72 0.71
Binary grid 0.71 0.69
Hit grid 0.70 0.70

Occupancy model We also study the effect of the Occupancy Grid representation in Table 4.4b.
We found VoxNet to be quite robust to the different representations. Against expectations, we found
the Hit grid to perform comparably or better than the other approaches, though the differences are
small. This is possibly because any advantage provided by differentiating between free space and
unknown space is negated by the extra viewpoint-induced variability of Density and Binary grids
relative to Hit grids. By default, we will use Density grids in the experiments below.

Resolution For the Sydney Object dataset we evaluated VoxNet with voxels of size 0.1 m and
0.2 m. We found them to perform almost indistinguishably, with an F1 score of 0.72. On the other
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Table 4.5: Comparison with baselines in the Sydney Object, ModelNet and NYUv2 benchmarks

(a) Sydney Object Dataset (Average F1)

Method Avg. F1

UFL+SVM[49] 0.67
GFH+SVM[31] 0.71
VoxNet 0.72

(b) ModelNet (Average accuracy)

Method ModelNet10 Acc ModelNet40 Acc

ShapeNet[184] 0.84 0.77
VoxNet 0.92 0.83

(c) NYUv2 (Average accuracy)

Method NYUv2 Acc ModelNet10→NYUv2 Acc

ShapeNet[184] 0.58 0.44
VoxNet 0.71 0.34

hand, fusing both with the multiresolution approach slightly outperformed both with a score of
0.73. However, as this approach is relatively slow, we will use 0.1 m by default.

Results

We compare VoxNet against publicly available results in the literature for each dataset.
Table 4.5a shows VoxNet with the best approach from Deuge et al. [49], which combines an

unsupervised form of Deep Learning with SVM classifiers, and Chen et al. [31], which designs a
rotationally invariant descriptor and classifies it with a nonlinear SVM. We show a small increase
in accuracy relative to these approaches. Moreover, we expect our approach to be much faster than
approaches based on nonlinear SVMs, as these do not scale well to large datasets.

Table 4.5b compares VoxNet with the ShapeNet architecture proposed by Wu et al. [184] in the
task of classification for ModelNet10 andModelNet40. Shapenet is also a volumetric convolutional
architecture; it is trained generatively with discriminative finetuning, and also employs rotation
augmentation for training. It has over 12.4 million parameters, while VoxNet has less than 1
million. In these datasets VoxNet outperforms ShapeNet by a fairly large margin.

Table 4.5c compares VoxNet with ShapeNet in the NYUv2 dataset and in the task of classifying
the NYUv2 dataset with model trained on ModelNet10. While VoxNet significantly outperforms
ShapeNet in NYUv2 task, it performs significantly worse in the cross-domain classification task.
We speculate that the simpler architecture of VoxNet may result in better generalization when
using purely discriminative training, but may be less capable of dealing with domain shift.
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Qualitative results To get some insight into what the network is learning, we visualize some
filters from the first convolutional layer and the features they extract in Figure 4.17. The filters in
this layer seem to encode primitives such as edges, corners, and “blobs”.

Figure 4.17a depicts cross sections of some learned filters from the input layer and the cor-
responding feature maps learned from the input in the Sydney Objects dataset. The filters in
this layer are similar across datasets and seem to encode primitives such as edges, corners, and
“blobs”. Qualitatively, the filters from VoxNet appear to be smoother than those of the VoxNet-LZ1
and VoxNet-LZ2 variants from subsection 4.4.2. One reason for this may be their smaller size
(5× 5× 5 versus 7× 7× 7) acts as a regularizer, forcing the filters to learn more generic features.

(a) (b)

Figure 4.17: Visualization of first layer filters and feature maps in object detection datasets. Fig. (a)
shows three first-layer filters (one per row, with three cross-sections each) learned from the Sydney
Objects database, along with a cross-section of the corresponding feature map on the right. Each
filter extracts different spatial structure from the occupancy grid. In Fig. (a), we show six first-layer
filters learned from NYUv2 and ModelNet40, with three cross-sections each. Qualitatively, the
filters extracted across different datasets appear to capture similar spatial structures.

As we discuss in section 4.3, yaw rotations may cause large shifts in voxelized appearance, an
issue we attempt to counteract with data augmentation. A natural question is whether the network
trained thus learns some degree of rotational invariance. Figure 4.18 shows an example supporting
this hypothesis, where the two fully connected layers show a highly (but not completely) invariant
response across 12 rotations of the input.

Interactive demonstration with a portable ToF sensor A live, interactive demonstration of
VoxNet was demonstrated at the 2017 Robot Week at Carnegie Mellon University Figure 4.19a as
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Figure 4.18: Neuron activations for the two fully connected layers of VoxNet with an RGBD point
cloud of class toilet from NYUv2, across 12 different orientations. For the first fully connected
layer, only the first 48 features are shown. Each row corresponds to a rotation around z, and each
column corresponds to a neuron. The similar activation magnitude along each column shows
approximate rotational invariance. The neurons in the right correspond to output classes, with the
last column corresponding to the toilet class. Near 90◦, the object becomes confused with a chair
(third column); however, by voting across all orientations we obtain the correct answer.
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well as the 2018 Robotics: Science and Systems conference in Pittsburgh. The demonstration used
a PMD PicoFlexx, a portable time-of-flight sensor that operates with a similar principle to lidar,
and a laptop equipped with a GT980M GPU. With this setup, VoxNet was able to classify and
display predictions for a variety of object categories in real time (20 FPS). The object categories
included a variety of objects including fruits, different types of toys and other objects found in an
office environment, such as mugs and markers (Figure 4.19b). A video of this demonstration can
be seen at https://youtu.be/KAB11FrQz_Q.

(a) Public interactive demonstration during National Robotics
Week 2017, Carnegie Mellon University

(b) Screen captures of demonstration. Video can be found at https://youtu.be/KAB11FrQz_Q.

Figure 4.19: Interactive VoxNet demonstration

4.5 Summary
In this chapter, we describe a novel architecture for classification of 3D point clouds using occu-
pancy grids with a 3D CNN. The system obtains state-of-the-art accuracy in various benchmarks
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while taking only a few ms per volume. Qualitative results suggest that the 3D CNNs learn to
extract useful features and invariant representations for their task, similarly to their 2D counterparts.
We expect that this architecture can be useful in many different tasks involving 3D point clouds
and extended in multiple ways.

However, this chapter is only a first step showing the feasibility and usefulness of learning
deep representations of spatial information with 3D CNNs. There are several issues and questions
that this work does not address. Many of these issues have been researched in the years since the
original publications documenting this work.

For example, our volumetric representations are relatively coarse and low-resolution due to
their relatively high memory requirements when implemented naively. This is limiting in several
ways. For example, for any given fixed volume there is a trade-off in resolution versus scale
invariance when voxelizing a point cloud; if the point cloud is not scaled, then the voxelized point
cloud may be too low resolution, or the ROI may not fit in the volume (Figure 4.20). If the point
cloud is scaled, then object categories that are similar in shape but typically different in size may
be confused. Since our initial publications, several options have been proposed to address this
issue in a volumetric framework, such as sparse 3D CNNs [71, 36] and hierarchical versions of
3D CNNs [149].

Figure 4.20: When using a fixed-size bounding box to crop point clouds, large objects such as the
bus may not fit inside it, making classification difficult. On the other hand, if the point cloud is
scaled to fit inside the bounding box, the bus may become difficult to distinguish from smaller but
similarly-shaped vehicles.

Another question is what is the most effective way of encoding spatial information in 3D
volumes. We have favored occupancy representations under the hypothesis that knowledge about
free space and occupied space is useful for classification; however, we have seen that merely
encoding occupied space (as “hit grids”) can be surprisingly effective, possibly due to being less
affected by capture viewpoints. We have also not considered other common options, such as signed
distance functions, that may be effective in encoding more spatial information than hit grids while
being less affected by viewpoint.

It is not a given that volumetric representations are the best option for 3D semantic perception
tasks. As we have mentioned, they have some drawbacks, and other options (with different
tradeoffs) are possible; for example, shortly after this work, Su et al. [165] proposed using 2D
CNNs applied to multiple 2D projections of 3D shapes as an alternative. Another popular line
of work has proposed using 3D point clouds directly using recurrent neural networks [139] and
graph neural networks [180]. These and many other works have steadily improved on the state of
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the art for the benchmarks we use in our experimental evaluation7.
Despite the limitations of the original formulation of VoxNet, it has seen a variety of interesting

applications and extensions, including generative shape modeling [15], 3D semantic segmentation
[84], robotic grasp prediction [33, 134], hand pose estimation [66], 3D object detection [54], and
many others.

While this chapter has shown that 3D point clouds — whether they are analyzed with VoxNet
or more recent approaches — are a useful data source for many semantic perception tasks, their
sparsity and lack of color information makes them unsuitable for many applications. This makes
images — which lack direct 3D information, but usually encode color and are comparatively dense
— an interesting source of complementary information for semantic inference. In the next chapter,
we investigate how to use both of these modalities for semantic mapping.

7A compilation of results for ModelNet40 can be found in https://paperswithcode.com/sota/
3d-point-cloud-classification-on-modelnet40.
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Chapter 5

Multimodal semantic mapping with image
and point cloud data

Picture, n. A representation in two
dimensions of something wearisome in
three.

Ambrose Bierce
The Devil’s Dictionary

In the past two chapters, we explored methods that showed that point cloud data can be used
effectively for semantic as well as spatial inference. However, in many scenarios, it may be difficult
to acquire point clouds with the density and accuracy necessary to discriminate between classes
with similar geometry. Moreover, many types of surfaces and objects are easier to discriminate by
properties other than their shape, such as color or texture.

Meanwhile, it is common for vehicles equipped with high-quality range sensors to also have
one or more cameras at their disposal, given their comparatively low cost and footprint. Camera
imagery, while lacking in direct 3D information, provides high-resolution texture and color cues
that are usually not captured by range sensors. As shown by the literature in computer vision, this
information is extremely valuable for semantic inference.

This motivates us to build semantic mapping systems that use both range sensors and cameras,
in order to benefit from the complementary information provided by each. In this chapter, we
investigate the joint use of these sensing modalities in two contributions:
• We investigate how to use point cloud and image data jointly for semantic inference with
a novel approach that learns how to fuse these two modalities with a hybrid 2D-3D CNN
architecture. While this approach shows promising results in offline semantic segmenta-
tion benchmarks, our implementation is too computationally intensive for use in real-time
semantic mapping.

• We propose a decoupled approach for multimodal semantic mapping based on the premise
that we can achieve real-time operation with acceptable accuracy by using each modality
independently in a way that takes advantage of their relative strengths. In this approach, we
use image data for semantic inference and point cloud data for spatial mapping, and fuse the
respective outputs of these modules with a simple projection-based method.

79



Multimodal semantic mapping with point cloud and image data has a wide range of applications,
as sensor setups that provide both point cloud and image data have become increasingly popular in
robotics and other applications. The work in this chapter uses data provided by a lidar and a camera
sensor; however, the ideas are also applicable to multimodal data originating from structured light
(RGBD) sensors, as well as stereo sensors.

However, the work in this thesis was originally motivated by a specific application: autonomous
off-road navigation for an All-Terrain Vehicle (ATV). As we evaluate both of our contributions
in the context of this application, we will provide additional background to this task in the next
section.

5.1 Helping an autonomous All-Terrain Vehicle find its way
The past few years have seen a surge of activity in self-driving research. The bulk of recent research
has focused on urban driving scenarios, despite the fact that many influential systems in the area
were developed for off-road vehicles [63, 171, 175].

In this chapter, we revisit the off-road driving scenario, and in particular, one of its most basic
problems: finding traversable paths. Our platform, Erik (Figure 5.2) is a modified All-Terrain
Vehicle (ATV) equipped with high-quality INS, lidar and camera systems that allow a state-of-
the-art mapping and planning framework [182] to build accurate mesh-based maps in real time;
Figure 5.1 shows an example of a point cloud and its corresponding mesh.

(a) (b)

Figure 5.1: Example point cloud (a) and its corresponding mesh representation (b) used for spatial
mapping in the ATV. Potential trajectories considered traversable according to geometric criteria
are visualized in blue. Because of the vegetation in the middle and edges of the trail, the planner
considers considers most of the trail untraversable. Figure courtesy of Mesh Robotics, LLC.

However, as we have observed in prior chapters, relying solely on geometric information leads
to disappointing results for autonomous navigation in off-road environments. For example, in
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Figure 5.2: The ATV platform and its sensors

Figure 5.1 the vegetation in the middle and edges of the trail causes the mesh representation of
the trail to appear too rough to traverse at high speeds, even if this is low, sparse vegetation that
does not pose a risk for the ATV. Figure 5.3 shows more examples of challenging scenarios for a
purely geometric representation. All of these may lead to suboptimal, even dangerous, decisions in
path planning. Similar observations have been made many times before in the context of off-road
robotics, e.g., [90, 118, 171, 85].

(a) Grass-covered trail (b) Narrow trails surrounded by
tall vegetation

(c) Muddy trails

Figure 5.3: Challenging scenarios for path following

As in our earlier chapters, we investigate semantic mapping to counter this problem. Our goal
is to create semantic maps that encode relevant geometric (e.g.height, roughness) and semantic
(classes such as trail, grass, obstacle, etc.) aspects of the vehicle’s surroundings in real time, and
which can be used by a planning system to generate sound paths through terrain that is deemed
untraversable based solely on its geometry. Unlike our earlier chapters, in this chapter we leverage
the availability of image data in addition to lidar data for the construction of our maps.

Like before, we do not address the 3D localization and mapping problem, i.e., we assume that
we have access 3D point clouds and camera poses that are registered in a common frame. However,
there are still various challenges we must solve to build an effective semantic mapping system.
Our system must be able to accurately discriminate among classes that exhibit high variation
in appearance according to various factors; Figure 5.4 shows that even within a single day and
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location, terrain appearance may vary widely. Moreover, the system must operate at high rates to
guide high-speed navigation.

Figure 5.4: Trail images captured within a single day at the Gascola site near Pittsburgh, PA.
Despite being captured within a time span of a few hours and a distance of less than a square mile,
the different categories of interest show a a high diversity in appearance due to intrinsic factors
(e.g., different types of soil) or extrinsic (variation in lighting and imaging parameters).

In the next two sections, we will describe the two contributions of this chapter for semantic
mapping with point cloud and image data, and evaluate both in the context of autonomous off-road
navigation.

5.2 Joint 2D-3D CNN for multimodal semantic segmentation
As illustrated by many success stories in computer vision, image data is a valuable cue for semantic
inference. Meanwhile, as we have shown in the last two chapters, point cloud data can also be
used to good effect for semantic classification and segmentation. In both cases, deep learning, and
specifically, CNNs, have been successfully used to learn discriminative feature representations.

Given the different type of information encoded in images and point clouds, this naturally leads
to the question on whether combining both modalities can be more useful for semantic inference
over either alone, and if so, how can this be achieved.

There is reason to believe that the combination of image and point cloud data can outperform
either alone. Each of these modalities capture different aspects of the environment that are likely
valuable for different semantic inference tasks. For example, the high-resolution color and texture
data provided by image data is useful to discriminate between rough terrain and vegetation, whereas
both may appear similar in sparse point clouds. On the other hand, the geometric information
captured in point clouds is inherently more invariant to lighting and color variations, which can be
useful to provide robust inference across different seasons and even times of the day. In addition
to the value of the cues each of these modalities provide when considered independently, joint
analysis of image and point cloud data may reveal patterns that are not evident in either modality
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by itself. For example, depth cues from point cloud data may help disambiguate changes in image
appearance caused by varying distance to the camera.

No InfoHigh vegetation Rough Terrain Smooth Terrain

S
u
m

m
e
r

W
in

te
r

RGB Label Prediction

Figure 5.5: An image-based CNN [5] trained on a sunny summer dataset (top row) cannot predict
robustly when a test dataset has severe appearance variations, such as on a cloudy winter dataset
(bottom row).

Figure 5.5 shows a motivating example from our target application, autonomous off-road
driving. In this example, an image-only approach to semantic segmentation is adversely affected
by appearance variations induced by seasonality and lighting.

A multimodal approach using image and point cloud data creates opportunities for learning-
based approaches such as CNNs to take advantage of their complementary characteristics. However,
it is not obvious how to build an architecture that is capable of learning how to fuse the information
from each modality.

In this contribution, we propose a solution in the form of a novel hybrid 2D-3D CNN archi-
tecture. We discuss this architecture in subsection 5.2.1. We then evaluate this architecture for
semantic segmentation in the context of autononous off-road driving in section 5.2.6.

5.2.1 Architecture overview
Our proposed network comprises a 3D CNN for point cloud data, based on the work from
chapter 4, a 2D CNN for image data, based on recent work in fully convolutional networks for
image segmentation [113, 137], and projection modules that enable the propagation of information
from the 3D CNN to the 2D CNN.

The inputs to the network consist of a RGB image and a point cloud encoded as a 3D volumetric
grid. We assume that we have the necessary information to project any 3D point in the frame of
the point cloud data to a 2D position in the image frame, i.e., that we have calibrated the intrinsic
and extrinsic parameters of the sensors.

The output of our network is a 2D feature map, which can be adapted for different tasks.
Here, we use this map for 2D semantic segmentation. To this end, we adopt the method of Long,
Shelhamer, and Darrell [113], where the output is a feature map consisting of K channels, each
corresponding to one of the classes to be segmented. We predict four semantic classes: (“High
vegetation”, “Rough terrain”, “Smooth terrain”, and “No Info”).

Figure 5.6 shows a high-level view of this architecture. The next sections describe each
component in this network.
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Figure 5.6: Our multimodal network takes inputs of an image and a 3D point cloud. Our network
learns and combines 2D-3D features; and outputs a segmented image. Point clouds are false
colored by intensity.

5.2.2 2D image network
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Figure 5.7: Modules used in our network, based on ENet [137]. max: max-pooling layer with
non-overlapping 2× 2 windows. up: upsampling layer with a factor of 2. conv: A regular, dilated,
or asymmetric convolution layer. bn: batch normalization. regularizer: spatial dropout. 1× 1
with down or up arrow: A 1× 1 convolution to reduce or expand channels.

The goal of the image network is to learn 2D feature representations θ2D from images that
can help the overall architecture make robust predictions. The network should have a good
segmentation performance, but also have a fast prediction time and a small footprint to allow its
use in a real-time autonomous system. In this work, we design the network based on ENet [137],
which has demonstrated similar performance to existing recent models (e.g., SegNet [5]) but with
faster inference and a lower parameter count. ENet follows an encoder-decoder structure and is
built with a set of blocks shown in Figure 5.7. In the encoder, feature maps are progressively
downsampled to allow the convolutional filters in each stage to capture a wider spatial context; in
the decoder, the feature maps are progressively upsampled until they reach the original resolution.
Throughout, residual connections [80] are added to facilitate the propagation of gradients during
training. The network, as used in this work, is depicted in the top half of Figure 5.9.

5.2.3 3D point cloud network
Similarly to the image network, the point cloud network extracts multiple layers of 3D features
θ3D for our segmentation task. For our experiments, we use a 3D version of the image network
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Figure 5.8: Visualization of roughness and porosity feature. The terrain area shows a low roughness
and low porosity relative to the vegetation area. We omit empty voxels for visibility. The x, y and
z axes are colored red, green and blue respectively.

subsection 5.2.2, in which the convolution, max-pooling, and deconvolution layers are lifted to
3D. However, for the sake of computational performance, we make some small changes. We
replace the dilation and asymmetric layers with regular convolution layers, and we replace the
deconvolution layers with nearest neighbor upsampling layers, followed by 3× 3× 3 convolutions.

We want to predict the semantic classes of high vegetation and terrain, as these commonly
appear in off-road scenes. Intuitively, we would expect high-vegetation surfaces to appear to
be relatively “rough” compared to bare terrain surfaces; similarly, we would also expect high-
vegetation surfaces to appear more “porous”, or less dense, than bare terrain surfaces. Following
this intuition, we encode features representing the roughness and porosity for each cell. These
features are illustrated in Figure 5.8. This encoding differs to that of chapter 4, where each grid
cell only has a single feature, the equivalent of porosity. Here, we opt for this representation to
encode more spatial context in each cell, as we use slightly larger voxel sizes to compensate for
the relative sparsity and noisiness of the point clouds from this platform.

Similarly to chapter 4, we use a voxel grid to describe the point cloud. For each voxel, indexed
by (i, j, k), we obtain its roughness feature R3D

i,j,k by calculating the mean residual from a fitted
plane to each point inside the voxel [154]:

R3D
i,j,k =

1

N

N∑
n=1

|Axn +Byn + Czn +D|√
A2 +B2 + C2

(5.1)

whereN is the number of points inside each voxel, x, y, z are the position of each point, and A, B,
C, D are the fitted plane parameters for N points inside the voxel (i.e., Ax+By + Cy +D = 0).
We assign a constant negative roughness value of −0.1 to voxels with no points.

For the porosity feature P 3D
i,j,k, we use 3D ray tracing [1] to obtain the number of hits and

pass-throughs for each grid voxel. Similarly to chapter 4, we model the porosity by updating the
Beta parameters αt

i,j,k and βt
i,j,k for the sequence of lidar measurements {zt}Tt=1 [120]:

αt
i,j,k = αt−1

i,j,k + zt (5.2)
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βt
i,j,k = βt−1

i,j,k + (1− zt) (5.3)

P 3D
i,j,k =

αt
i,j,k

αt
i,j,k + βt

i,j,k

(5.4)

where α0
i,j,k = β0

i,j,k = 1 for all (i, j, k), zt = 1 for hits, and zt = 0 for pass-throughs.

5.2.4 Projection modules
The projection modules project the 3D features learned by the point cloud network onto 2D feature
maps. They are followed by bottleneck modules to encourage the extraction of features from these
feature maps. For this projection, we map each voxel’s centroid position (x, y, z) with respect to
the lidar onto the image plane (u, v) using the pinhole camera model:

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

 [R | t
] 
x
y
z
1

 (5.5)

where fx, fy, cx, cy are the camera intrinsic parameters, R and t are the 3× 3 rotation matrix and
the 3× 1 translation matrix from the camera to the lidar, respectively. We sample (x, y, z) for
every voxel size from the original point cloud dimension (e.g., 16× 48× 40 in Figure 5.9). This
is to address the sparsity of the projected data caused by the 3D max-pooling layers, which reduce
the number of voxels in the 3D stream. We apply a z-buffer technique to account for pixels that
have multiple lidar points projected onto the same pixel location. Then, we use nearest-neighbor
interpolation to resize the projected feature maps to match the size of the image network layer that
the projection module will be merged into (subsection 5.2.5).

We consider a fixed volume of 3D point clouds with regard to a lidar (section 5.2.6). Thus, the
voxel locations and their corresponding projection locations in the image network are constant if
the dimensions of a point cloud and an image are the same (e.g., projection for stages 1 and 4). In
practice, we precompute the indices of voxel locations and their corresponding pixel indices and
use them inside the network.

5.2.5 Joint 2D-3D network

Figure 5.9 summarizes our multimodal 2D-3D network architecture: the point cloud network
learns 3D features from the roughness and porosity volumetric inputs, the projection module
propagates the 3D features to the image network, and the image network fuses the 3D features with
the 2D features extracted from the image data. We apply the projection modules to the outputs of
the initial stage and stages 1–5 to encourage the extraction of information at multiple scales [78].

5.2.6 Experiments
We evaluate our approach for the task of semantic segmentation for off-road navigation. We are
particularly interested in the impact of using multimodal architectures on generalization. To this
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Figure 5.9: Our multimodal network architecture. The upper network path is the 2D image network,
and the lower network path is the 3D point cloud network. They are connected via the projection
modules. The ENet modules refer to the modules in Figure 5.7. The number below the bottleneck
module indicates the number of times that the module is repeated.

end, we create a manually labeled dataset of image and lidar dataset pairs captured by our platform
featuring variations in appearance caused by illumination, weather, and season. We compare our
approach on this dataset against several baselines using different subsets of the image of point
cloud data.

Dataset

Figure 5.10: GPS coordinates of paths for different datasets

We collected our dataset using the same modified All-Terrain Vehicle (Figure 5.2) as in our
prior experiments. To acquire a dataset with a large appearance variation, we collected our data
on two separate dates: a sunny summer day in July 2016 (24 sessions) and a cloudy winter day
in January 2017 (two sessions). Because the amount of winter data collected is considerably
smaller, winter data is used only for testing. We divide the data as follows: 17 summer sessions for
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training, four summer sessions for validation, and three summer sessions plus two winter sessions
for testing.

For the K-fold cross-validation in section 5.2.6, we fix the test datasets, but randomly shuffle
train/validation sessions. The geographic and split distribution for one of theK-fold cross valida-
tions is shown in Figure 5.10. We note that there is no overlap between the training, validation,
and testing datasets. On average over theK folds, the training dataset has 7.2k image-point cloud
pairs and the validation dataset has 1.7k pairs. The test data for summer has 1.3k pairs, and the
test data for winter has 0.6k pairs.

Our ground-truth semantic labels consist of four classes: High Vegetation, Rough Terrain,
Smooth Terrain, and No Info. To effectively label the ground-truth and minimize the human error,
we first construct a registered point cloud by stitching point clouds over time (Figure 5.11a). We
then manually label the registered point cloud in the point cloud space between the terrain and
high-vegetation class (Figure 5.11b). We separately label another cloud with labels between the
rough terrain and smooth terrain using equation Equation 5.1 (Figure 5.11c). We merge the two
labeled point clouds into one cloud with three classes (Figure 5.11d). To get image labels, we
project the final labeled point cloud onto the image plane. We consider voxels with no points and
pixels with no lidar points projected as the No info class.

Registered Point Cloud

(a)

Terrain vs High Vegetation

High vegetation
Terrain

(b)

Rough vs Smooth Terrain

Smooth Terrain
Rough Terrain

(c)

High Vegetation
Rough Terrain

Labeled Registered Cloud

Smooth Terrain

(d)

Figure 5.11: The point cloud ground-truth generation procedure. (a): Point clouds are first
registered. (b): The terrain and high-vegetation class are labeled manually. (c): The rough and
smooth terrain class are labeled automatically using equation 5.1. (d): Final labeled point cloud is
acquired by merging labeled point cloud (b) and (c).

Baselines

We compare the performance of our method (Ours-Proj) against several baselines. The first
baseline (Mode) classifies each pixel based on a pixelwise mode of the labels in the training dataset.
Because the off-road data has a general structure of trail on the center and vegetation on the
sides, this baseline is significantly better than chance. The second baseline, SegNet, is a popular
encoder-decoder image segmentation network [5]. The third baseline, Ours-Image, is the image
network of our multimodal network without the point cloud network and the projection modules.
The last baseline, Ours-RGBRP, is the same as Ours-Image, but the input to the network is five
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channels (RGB, Roughness, Porosity) obtained by projecting the point cloud network’s inputs onto
the image planes and treating them as additional channels, similarly to the color channels. The
Ours-RGBRP baseline compares the effectiveness of the learning and propagation of 3D features
against learning features only in 2D.

We explored different options for Ours-Proj, with projections only in the encoder (stages 1-3),
projections only in the decoder (stages 4-5), and projections in both. Encoder-only projections
and projections in both the encoder and decoder obtained nearly equivalent performance to each
other and significantly better performance than the decoder-only projections, and we report results
for encoder-only projections.

Training details

All input and label images are resized to 224× 224 pixels. With respect to the lidar, we clip the
point cloud to a fixed volume: −3 m to 0.6 m for the z-axis (up direction), 3 m to 17.4 m for the
x-axis (forward direction), and −6 m to 6 m for the y-axis (left direction), where the axes are in
the vehicle frame (see Figure 5.8).

The voxel size is 0.3 m, so our voxel grid has size 12× 48× 40 in the z-, x-, and y-axis,
respectively. To reduce the GPU memory required for training Ours-Proj, we first train the point
cloud network in isolation. We then remove the deconvolution and softmax layers in the point
cloud network, attach the image network via the projection modules, and train the image network
and projection modules with the point cloud network’s weights frozen. Except for SegNet, all
learning methods are based on Theano. For SegNet [5], we use its publicly available code. We
train all learning methods from scratch and use the validation data to determine weights for testing.

Experimental results

Table 5.1: Quantitative results on Summer test (mean and standard deviation)

Per-Class IoU Average PR

Vege. Rough Smooth No Info Precision Recall

Mode .513 (.041) .000 (.000) .508 (.015) .806 (.009) .572 (.006) .611 (.010)

SegNet .816 (.008) .182 (.007) .670 (.019) .828 (.010) .741 (.003) .767 (.008)

Ours-Image .814 (.007) .183 (.008) .702 (.059) .837 (.003) .742 (.004) .767 (.008)

Ours-RGBRP .833 (.008) .181 (.019) .648 (.104) .858 (.011) .747 (.007) .774 (.017)

Ours-Proj .839 (.005) .179 (.014) .655 (.072) .864 (.003) .747 (.006) .772 (.015)

We report quantitative performance on the per-class Intersection over Union (IoU) and average
precision-recall (PR)metrics (computed in 2D) in Table 5.1 and Table 5.2. The numbers correspond
to the mean and standard deviation of the K-fold cross validations, where K = 5.

Unsurprisingly, the trivial Mode baseline is the worst performing method, specially for the
Rough class, which has the least predictable spatial distribution. The performances between the
unimodal networks (SegNet and Ours-Image) and the multimodal networks (Ours-RGBRP and
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Table 5.2: Quantitative results on Winter test (mean and standard deviation)

Per-Class IoU Average PR

Vege. Rough Smooth No Info Precision Recall

Mode .453 (.010) .000 (.000) .712 (.012) .855 (.003) .589 (.002) .609 (.004)

SegNet .474 (.067) .027 (.002) .660 (.109) .784 (.059) .605 (.032) .630 (.031)

Ours-Image .498 (.018) .017, (.004) .595 (.120) .862 (.009) .623 (.008) .622 (.020)

Ours-RGBRP .582 (.035) .036 (.008) .692 (.107) .881 (.002) .678 (.010) .689 (.022)

Ours-Proj .620 (.012) .040 (.005) .790 (.061) .875 (.002) .688 (.003) .705 (.010)

Ours-Proj) are comparable for summer sessions. However, the multimodal networks outperform
the unimodal networks for winter sessions. For instance, Ours-Proj shows a 25% improvement
in mean Intersection-over-Union (IoU) of the navigation-related semantic classes (i.e., excluding
the No-info class) relative to SegNet. Between Ours-Proj and Ours-RGBRP, Ours-Proj shows
improved IoU and PR, in particular for the smooth terrain class. The results suggest that the
learning and propagation of 3D features help the network learn more robust feature representations,
which is also supported by qualitative examination Figure 5.12. Videos of the qualitative results
can also be found at http://frc.ri.cmu.edu/~dk683/fsr17/fsr17.mp4.

The IoU scores for the rough terrain in the winter class are low, partially due to the relative
rarity of this class in the winter data, mostly consisting of small and hard-to-detect regions. We
note that the multimodal methods can have an advantage in predicting the no-info class because
the ground-truth for the class is based on the lidar projection. However, the multimodal networks
still show improved results for the navigation-related classes.

Feature visualization

To get a sense of how the 3D data is fused into the network, we plot selected feature activation
maps from each of the projection layers in the network, using the configuration with projections in
the encoder and decoder Figure 5.13. We find that there are activation patterns that are correlated
with spatial structures, such as low horizontal surfaces (e.g., terrain), vertical surfaces on both
sides (e.g., high vegetation), or more complex combinations of height, width, and depth. These are
3D spatial features that are hard to learn in the image domain, and intuitively, should be helpful
for semantic inference.

5.2.7 Discussion
In this section we introduced a novel multimodal architecture for semantic segmentation from
image and lidar data. This architecture shows promising quantitative and qualitative results that
show it can learn to extract useful representations from each modality and fuse them to improve
the accuracy of semantic segmentation.

However, for practical purposes, the gains in accuracy from our multimodal approach are
relatively marginal in relation to its increased computational complexity, compared to image-only
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Figure 5.12: Predicted semantic segmentations from each method in summer scenes (top five
rows) and winter scenes (bottom five rows).
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Figure 5.13: Feature map visualization for each projection module’s output.

approaches. Currently, our implementation of the multimodal network has an inference time
upwards of 600 ms for each image-point cloud pair, which is too slow for autonomous navigation
at high speeds.

We leave the design and implementation of more efficient versions of this architecture as a
topic for further research. Meanwhile, motivated by the accuracy and cost tradeoffs we observed
for the different baselines in these experiments, we explore a simpler — and more efficient — to
using multimodal data in the next section.

5.3 Decoupled multimodal approach to 2.5D semantic map-
ping

In the experiments from section 5.2, we observed that for the purposes of 2D semantic segmentation,
image-only approaches achieve only slightly lower accuracies than themultimodal input approaches,
especially when the training and testing data are drawn from the same season. This suggests that
an image-only approach can perform sufficiently well for autonomous navigation purposes in
terms of accuracy, particularly when trained on a representative dataset. At the same time, we
observed image-only CNN inference is computationally more efficient by a large factor, suggesting
that a semantic mapping using 2D-only semantic inference could also have sufficiently low latency
for autonomous navigation.

Based on these observations, in this section we develop a system for 2.5D semantic mapping
with a decoupled approach to inference of the semantic and spatial properties that we represent
in our maps. Semantic information is predicted solely from the image data, whereas the spatial
information is built from the lidar data. This choice exploits the relative strengths of each sensor
modality and simplifies the development of modules meeting the required accuracy and efficiency
for each task. Moreover, this decoupling also simplifies the task of data acquisition, as only
image data (as opposed to image and lidar pairs) is required. Our resulting contribution is a
simple yet effective system leveraging a custom CNN architecture, based on Fully Convolutional
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Networks [113], and a 2.5D vehicle-centered semantic grid map that fuses the geometric and
semantic measurements. We show the effectiveness of the semantic segmentation CNN in offline
benchmarks, including a new dataset gathered for this work. As a proof of concept, we implement
a reactive planner that uses the semantic map to successfully navigate through challenging off-road
terrain.

5.3.1 Overview

To address these challenges, we use our two main sensor streams — the camera images and lidar
point clouds — in a way that plays to the strengths of each. This system architecture is outlined in
Figure 5.14.

Figure 5.14: Outline of decoupled semantic mapping and trail following system

Monocular camera imagery captures high-resolution color and texture information that is
highly informative — at least to the human eye — as to the traversability and semantic class of
visible surfaces. We use this sensor stream to create pixelwise semantic segmentations of each
image using a custom CNN.

On the other hand, image data lacks direct depth information that is critical for navigation
planners that use metric spatial maps. The lidar point clouds of this platform, while relatively sparse
in their surface coverage, directly convey 3D information useful for navigation. We accumulate
and summarize this information over time with an 2.5D elevation map.

To fuse the output of both modules, the semantic mapping module projects the pixelwise
prediction images from the semantic segmentation module onto the elevation map, which also
smoothes these predictions over time. The result is a vehicle-centered 2.5D elevation map encoding
continuously updated estimates of relevant geometric and semantic information for off-road
navigation.

The map can be used for semantically-aware path planning. We developed a reactive receding-
horizon path planner that assigns a traversal cost to each semantic class and continuously chooses
a path to minimize the cost. The whole system runs at 10 Hz, a rate dictated by the speed at which
the semantic segmentation module processes images.
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5.3.2 Semantic segmentation architectures
The goal of 2D semantic segmentation is to assign one ofK predefined classes to each pixel in an
image. As we discussed in chapter 2, Convolutional Neural Networks (CNNs) are currently the
de facto standard approach to learning-based classification in computer vision. For the task of
semantic segmentation, the state of the art has been recently set by Fully Convolutional Networks
(FCNs) [113].

The key idea in FCNs is to replace the fully connected layers of typical CNNs with convolutions.
After this “convolutionalization” process, the output of a FCN is a feature map encoding a low-
resolution semantic segmentation of the input, which can be computed in a single feed-forward
pass.

However, due to pooling, the results in low-resolution outputs; to reverse this, transposed
convolution layers are added to upsample the output. In order to preserve high-frequency detail,
skip layers connecting early layers to upsampled feature maps are added. Encoder-Decoder
architectures [132, 5], of which UpNet [177] is an example, are similar, but omit skip layers.

We found the state of the art architectures to be too computationally intensive four our needs.
Thus, we designed more lightweight alternatives, drawing inspiration from recent architectures in
single-shot object detection [144].

We investigate two custom architectures. The first, cnns-fcn, is based on our “convolutional-
ization” of the VGG-CNNs from Chatfield et al. [28]. It has a 227× 227 input size and a 109× 109
output size. While it is common practice for FCNs to have equal input and output sizes, we chose
to output a smaller size by omitting the last upsampling layer to reduce computational costs. The
second, dark-fcn, is based on our convolutionalization of the Darknet architecture [144], which
in turn is a slimmed down version of VGG16 [161]. For dark-fcn, both the input and output
are 300× 300; for this network, we found it was feasible to use an output size equal to the input
size. The specific number of 300× 300 is also the resolution used by UpNet. Despite the higher
output resolution, dark-fcn is faster than cnns-fcn; on a mobile GT980M GPU, we measured
its its latency as 21 ms, compared to 37 ms for cnns-fcn. The authors of UpNet [177] describe a
50 ms with Caffe on a GTX Titan X, which in our experience has similar speeds to the GT980M.
This leads us to believe our models should be faster, or at least comparable to UpNet. Figure 5.15
shows both of our architectures.

5.3.3 2.5D semantic mapping
The output of the semantic segmentation step is in 2D image space, but it is far more natural for
vehicles to plan in a metric space. For our system, we adopt a 2.5D or elevation map representation,
encoded in a grid with per-cell height and label estimates. This representation is memory-efficient
and suffices for most environments we encounter, but is likely to have issues with overhanging
trees or tunnels.

To keep an up-to-date elevation map of the vehicle’s surroundings, we use a scrolling grid
data structure [90]. This structure is a generalization of ring-buffers to two dimensions, and its
main feature is that it can be shifted (translated) without copying its data, and instead updating the
variables indicating its limits. This is a speed optimization; logically, the grid behaves like a finite
2D array centered around the vehicle, with each grid cell containing various properties about the
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Figure 5.15: Architecture of our 2D semantic segmentation networks. conv denotes a convolu-
tional layer; pool, a pooling layer; layers ending in nin are 1× 1 convolutional layers; fuse is an
elementwise sum layer; norm is a local response normalization layer. The input is assumed to be
the layer above, unless otherwise specified. For convolutional layers, size is the kernel size; for
pooling layers, it is the pooling receptive field. Note that for dark-fcn we split the table in two
columns due to space constraints.

terrain. In our system, the grid cells are 0.25× 0.25 m2 each, and the map has 400× 400 cells.
Each grid cell maintains a running estimate of the minimum and maximum height in that grid cell,
computed by using occupancy and free-space constraints derived from lidar rays, similar to [75,
191]. For each point in the point cloud, we raytrace on our grid using Bresenham’s algorithm in
3D; cells that are passed through, and above, are considered empty, and cells where the beam
stops, and below, are considered occupied.

The semantic map also integrates semantic measurements, as its name indicates. To project
the output of the 2D semantic segmentation into the elevation map representation, we use the
intrinsic parameters of the camera and its relative pose with respect to the lidar, both of which are
obtained by a prior calibration step. As shown in Figure 5.16, we cast a ray for each pixel in the
image and find its intersection with the height map using a 3D line rasterization method [1].

For added robustness, we fuse measurements over time. To this end, we adopt a scheme
inspired by the sequential filtering process of occupancy maps [122]. Using the log-softmax
outputs for each pixel, we maintain a running sum of the log-odds of the K classes projected
to each grid cell. While this soft multiclass representation could be used directly, for planning
purposes, we use the argmax over the K classes as our current best estimate of the semantic class
for each grid cell. This representation assumes a single class per cell, which may be a limitation in
certain environments.

Finally, we accumulate the log posterior probabilities of each class in the corresponding cells
according to:

l
(t+1)
k (gx, gy) = l

(t)
k (gx, gy) + logP (Y = k|i, j, I(1:t)) (5.6)

where I(1:t) is the sequence of RGB images up to frame t, and logP (Y = k|i, j, I(1:t)) is the log
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Figure 5.16: Projecting the 2D semantic segmentation on the 2.5D map.

posterior probability of class k at image coordinate (i, j).
An example cumulative output of the semantic map in a live field run is shown in Figure 5.17.

Figure 5.17: Example output of semantic map in a live field run

5.3.4 Reactive path planning
To demonstrate autonomous operation, we implement a simple receding horizon path planner. The
planner has a library of 30 trajectories corresponding to yaw rates of−15 ◦/s to 15 ◦/s, discretized
at 1 ◦/s, with a constant velocity of 9 km/h; see Figure 5.18a.

Each time the map is updated, which happens at 10 Hz, a trajectory is chosen from the library.
The choice of trajectory maximizes a reward function derived from the semantic map as follows.
Cells labelled as “smooth” or “rough” trail have a reward of 1, and cells labeled as “grass” have a
reward of 0.1. All other classes have zero reward. The total reward of a trajectory is the sum of
rewards over a 20 m trajectory length, originating from the vehicle. To account for vehicle width,
we slightly modify this calculation, as shown in Figure 5.18b.

The advantage of this planner is that in its extreme simplicity, its performance depends largely
on the output of our semantic mapping, with no interference from other factors that will be present
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Figure 5.18: The reactive path planner. (a): Library of candidate paths, overlaid on top of the
semantic map. Red indicates feasible paths. (b): Illustration of how we account for vehicle
width. For each trajectory, we compute the cost (or reward) over seven shifted versions of the
trajectory, covering the vehicle footprint. (c): An example chosen trajectory, chosen according to
the traversability score of the semantic classes it covers.

in a more complex, multi-layered system. However, our system has also been used as an additional
input to a more deliberative planner, for which the main representation is a geometric map built
with lidar. In this planner, our semantic predictions were used primarily to allow the ATV to
traverse grass and drive through narrow trails surrounded by vegetation.

5.3.5 Experiments
We evaluate our system in two ways. First, we run offline benchmarks of the semantic segmentation
module on two datasets. Second, we demonstrate the whole system operating autonomously in
live field experiments.

Offline Benchmarks

In order to evaluate our semantic segmentation module we use two datasets, the DeepScene dataset
from Valada et al. [177] and our own, the Yamaha-CMU Off-Road dataset.

DeepScene dataset This dataset consists of 233 training images and 139 validation images of
off-road imagery densely labeled with six semantic categories: void, road, grass, vegetation, tree,
sky, and obstacle. While this dataset shows some interesting variety in appearance due to the time
of day, it is fairly small and seems to lack diversity in terms of weather and location. A key feature
of this dataset is various modalities (depth, NIR), but we do not currently make use of them.

Yamaha-CMU Off-Road dataset To train and evaluate our method, we have collected our own
dataset, which we call Yamaha-CMU-Off-Road, or YCOR. It consists of 1076 images collected in
four different locations in Western Pennsylvania and Ohio (Figure 5.20), spanning three different
seasons (Figure 5.19). The dataset was labelled using a polygon-based interface with eight classes:
sky, rough trail, smooth trail, traversable grass, high vegetation, non-traversable low vegetation,
obstacle. The polygon labels were postprocessed using a Dense CRF [97] to densify the labels;
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the output of the CRF was manually inspected, and in some cases corrected, to ensure no wrong
labels were created.

We believe our dataset is more diverse and challenging than DeepScene. In Figure 5.20, we
show the mean RGB image and pixelwise labelmode of each dataset. The DeepScene dataset
shows a left-right bias and more predictable structure than ours; if we used the pixelwise mode as
a baseline classifier, we would obtain 0.30 pixelwise error-rate in DeepScene, but 0.51 in ours.
However, we acknowledge that compared to recent efforts, both datasets are relatively small; cf.
CityScapes [38], with 25000 labeled images.

Figure 5.19: Montage of frames from the YCOR dataset.

Figure 5.20: First two columns: A visual comparison of dataset statistics. We show the mean RGB
frame and the pixelwise mode for the labeled frames in the training sets of each dataset used. Last
column: a map with locations where YCOR was collected.

Our current split has 931 training images and 145 validation images. This split was generated
randomly, ensuring there was no overlap in the data collection sessions between images in the
training and validation split. However, there is overlap in the locations used, given the limited
number of trails available to use for field testing.

Quantitative Results We evaluated our models on the two datasets. In each case, we train
our models from scratch on the predefined training set until convergence with SGD, dividing
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by the initial learning rate (0.0001) by a factor of 10 three times. We use a standard pixelwise
cross-entropy loss with a small L2 regularization factor (0.0005). Training takes around two days
on a GT980Ti GPU. We use crop, rotation and color augmentations at training time, and none
at test time. We use per-class intersection over union (IoU) as the evaluation metric, the most
common metric for semantic segmentation.

Table 5.3 shows results for DeepScene and Table 5.4 shows results for YCOR. In both, we
include a variant of the dark-fcn model with 448× 448 resolution, in addition to the standard
300× 300. We report the numbers from their paper [177], where we denote by frequency-weighted
IoU (fw-IoU) what they denote as IoU, and add mean IoU (mIoU), calculated by ourselves. As
we can see, both our models perform comparably, with dark-fcn having a slight advantage. In
the DeepScene dataset, we can also compare the two models with the RGB UpNet. We see that
our models have a slight edge in fw-IoU, though they display dramatically worse performance for
obstacles, which severely skews the mIoU metric. We note that the number of obstacle pixels in
the dataset is three orders of magnitude less than for the other classes, so the network tends to
ignore it. Nonetheless, it is an important class, and further investigation should be conducted into
improving accuracy for this class. Finally, we see that increasing the input resolution gives a slight
boost in performance.

Table 5.3: Per-class, mean IoU and frequency-weighted IoU of UpNet (RGB) and our models in
DeepScene dataset. The first three rows use a 300× 300 image size, as in UpNet; the last row
uses 448× 448.

road grass veg./tree sky obstacle mIoU fw-IoU

Upnet-RGB [177] 85.03 86.78 90.90 90.39 45.31 79.68 85.30
cnns-fcn 85.95 85.34 87.38 90.53 1.84 58.51 87.47
dark-fcn 88.03 86.65 89.21 93.17 5.03 60.35 89.41

dark-fcn-448 88.80 87.41 89.46 93.35 4.61 60.61 89.85

Table 5.4: Per-class, mean IoU, and frequency-weighed IoU of our models in the YCOR dataset.

smooth grass rough puddle obstacle low veg. high veg. sky mIoU fw-IoU

cnns-fcn 46.70 64.03 38.29 0.0 32.74 24.32 79.15 88.01 46.66 61.31
dark-fcn 46.24 71.25 41.35 0.0 29.74 28.17 80.15 91.45 48.54 63.62

dark-fcn-448 52.46 72.11 39.61 0.0 35.56 24.61 82.51 92.69 49.82 65.18

Qualitative Results We show some qualitative labellings of the cnns-fcn architecture for each
dataset in Figure 5.21. As can be seen, the results are generally quite accurate. For the YCOR,
most of the confusions come from smooth vs. rough trail, a distinction that is hard for humans to
make consistently.
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Figure 5.21: Montage of predictions from cnns-fcn in the YCOR dataset (top four rows) and
DeepScene (bottom four rows). In each case, we show three images: input, ground truth labels,
and predicted labels.
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Field Experiments

We perform field testing with the Erik ATV (Figure 5.2) introduced in section 5.1, using its 64-line
Velodyne lidar for point cloud acquisition and RGB images from its frontal RGB stereo camera.
Given the higher quality of the point clouds we obtain from the lidar sensor, we currently do not
use depth information from the stereo camera.

All computation for the semantic mapping and planning modules is performed onboard with
two commercial off-the-shelf laptops, connected via high-speed ethernet. Both laptops use Intel
i7 CPUs and the laptop for semantic mapping includes a 6GB NVIDIA GT980M GPU, used to
achieve real-time execution of the CNN classifier.

All computers run Ubuntu Linux. The different system modules run concurrently as ROS
nodes and communicate through ROS messages. The nodes are implemented in C++ and Python,
using CUDA (generated via the Theano library [8]) to make effective use of the GPU.

We performed self-driving experiments in March and July 2017 in various locations around
our testing site near Pittsburgh, PA. Despite the simplicity of our planner, the vehicle managed
to successfully traverse various trails that were too challenging for a previous lidar-only system.
These include locations with puddles, grass in the middle of the trail, and narrow trails. Figure 5.22
shows the vehicle in autonomous operation. Videos can be found in https://youtube.com/
playlist?list=PLeg9sULe3rSlL211MEvy29wKeeDj-Nt1e.

On the other hand, we observed some limitations of our current system; Figure 5.23 shows
three typical failure cases. We believe that many these limitations can be largely mitigated by using
a more sophisticated planning system; for example, the failures in Figure 5.23a and Figure 5.23b
can be avoided by incorporating more spatial and temporal context in planning (e.g., by path
tracking and waypoint following), as well as a more flexible action space (e.g., allowing the vehicle
to slow down and reverse). The failure from Figure 5.23c can be avoided by reasoning about
partially observed surfaces, as opposed to optimistically assuming unknown space is free. There
is a vast literature of more deliberate planning methods that deal with these and other issues, most
of which can take advantage of semantic map representations.

In fact, our semantic mapping system was also integrated into the proprietary mesh-based
framework mentioned in section 5.1. In addition to its mesh-based terrain modeling, this system
also uses more sophisticated path planning and tracking methods to achieve more stable trail
following at higher speeds. Integrating our semantic maps enabled this system to traverse vegetated
and narrow trails by relaxing its obstacle avoidance criteria in regions classified as vegetation.
Figure 5.22b shows the ATV being driven by the mesh-based framework, in conjunction with our
semantic maps, to successfully traverse the same trail that was previously considered untraversable
in Figure 5.1.

We also saw failures caused by our semantic classification system. For example, it sometimes
failed to detect sparse grass alongside the trail, resulting in the vehicle veering off-trail. On
one occasion, it also confused a large non-traversable bush with traversable grass, forcing us to
manually intervene. We also found our system to be unreliable for puddle detection, despite this
being one of our cases of interest at the outset of the work in this chapter. Puddles are challenging
due to the their specular nature; this causes their appearance to be highly dynamic and similar to
other classes in their surroundings, at least in terms of local patch regions.

101

https://youtube.com/playlist?list=PLeg9sULe3rSlL211MEvy29wKeeDj-Nt1e
https://youtube.com/playlist?list=PLeg9sULe3rSlL211MEvy29wKeeDj-Nt1e


(a) Semantic predictions in image space and chosen paths during autonomous run using our reactive
planner.

(b) Aerial views and top-down display of the semantic map traversing a narrow trail, courtesy of Mesh
Robotics LLC

Figure 5.22: Action shots of our semantic mapping pipeline enabling traversal of veg-
etated, narrow trails. Videos can be found in https://youtube.com/playlist?list=
PLeg9sULe3rSlL211MEvy29wKeeDj-Nt1e.
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(a) Wrong turn into a cul-de-sac

(b) Swerving to avoid puddles

(c) Turning into previously unseen obstacles

Figure 5.23: Three failure cases in our field tests. In fig. (a), the vehicle is faced with a fork in the
trail, and due to its short planning horizon, chooses the right path, which leads to a cul-de-sac.
In fig. (b), the vehicle makes an aggressive turn to avoid a small puddle, after which it struggles
to stay on the trail. In fig. (c), after a left turn, the vehicle comes too close to obstacles that were
previously unseen due to occlusion.
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Timing We observed an average latency of 35 ms for the semantic segmentation of each image,
60 ms for the 2.5D label projection step, and less than 5 ms for trajectory selection. As these steps
occur sequentially, the system has an update rate of approximately 10 Hz, and the bottleneck of
the system is in the semantic mapping steps. While 10 Hz is sufficient for operation at speeds of
up to 16 km/h with our reactive planner, higher update rates are desirable for faster speeds. There
are many opportunities for performance optimization in our current system; for example, the label
projection step could be parallelized and ported to the GPU. Likewise, the inference time of the
semantic segmentation step could likely be lowered with platform-specific optimizations.

5.4 Summary
We proposed two systems to fully take advantage of camera and range sensors for semantic
mapping.

In the first, we create a joint 2D-3D architecture for semantic inference, that fuses the 2D
information from images and 3D information from point clouds in a learned fashion, and show the
benefits of this joint architecture for semantic segmentation from lidar and image data.

In the second, we adopt a decoupled architecture using a 2D CNN for semantic inference from
images and a height mapping module to build maps from lidar, and fuse both to create a semantic
map by geometric projection.

There are multiple directions on which this work can be improved, some of which have been
investigated by research published after the work conducted in this chapter. For example, one of
the more obvious limitations of our 2D-3D CNN architecture is that it only propagates information
from the 3D CNN to the 2D CNN; intuitively, propagating information in the opposite direction
can be useful to improve the quality of the learned 3D features, specially in tasks involving a 3D
output. Dai and Nießner [42] propose an approach that implements this idea and apply it to the
task of 3D semantic segmentation.

The computational cost of simultaneously using 2D and 3D CNNs is also an issue which
limits the applicability of joint multimodal approaches. Recent approaches have adopted different
formulations for joint analysis of point cloud and image data to achieve higher computational
performance. For example, Chen et al. [32] adopts a bird-eye view approach that allows the use of
more efficient 2D convolutions for the task of 3D object detection. Another interesting example is
Qi et al. [140], which use graph neural networks to create a sparser, dynamic representation of the
2D and 3D information in RGBD data for the task of semantic segmentation.
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Chapter 6

Long-range semantic mapping for semantic
exploration

We live boxed-up lives. Our ancestors were
always looking around. They surveyed the
environment, for they needed to know
where they were and what there was in all
directions.

J. J. Gibson
The Ecological Approach to Visual

Perception

In chapter 4 we developed a system for range-only semantic classification; in chapter 5 we
propose a multimodal system for semantic mapping using range and image sensors. However,
relying on lidar sensors is not ideal in all applications. In the pursuit of a (literally) lightweight
perception system for Micro Aerial Vehicles, this chapter explores a primarily vision-only semantic
mapping system.

6.1 Looking forward
Micro-Aerial Vehicles (MAVs) can quickly and inexpensively gather information with cameras,
lidar, and various other sensors, due to their agility. This makes them invaluable for applications
such as search and rescue [40, 56], infrastructure inspection [187, 10], surveillance [146], crop
and wildlife monitoring [3], etc.

A common trend in these applications is that not all possible locations are of equal value;
we are usually more interested in gathering information about specific targets, such as survivors,
vehicles, animals, etc. Often, we do not know in advance the location of these targets, making it
necessary to locate them before more detailed inspection. For example, in a disaster scenario we
might be interested in searching for survivors and then approach them to capture high resolution
images. Equipped with cameras, MAVs are able to switch from viewing large spaces at a distance
to flying in closely to obtain more accurate information. This capability of gaining information at
different scales makes MAVs excellent platforms for the aforementioned applications. We will
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refer to the overall task of searching and gathering data for a semantic class of interest as scouting.
Our goal is to create a system to enable MAVs to perform effective general-purpose autonomous
scouting.

Towards this goal, we study the more concrete scenario depicted in Figure 6.1. In this scenario,
we wish to find any cars within a predefined region and capture high-resolution imagery (e.g., for
3D reconstruction). The location, number, and appearance of cars, if any, are not known a priori.
We have a limited power budget, equivalent to around ten minutes of flight time.

Figure 6.1: Overview of the scouting task. 1) The vehicle is tasked with mapping a semantic class
(here, car) with unknown prior location(s). 2) Using the system described in this chapter, the
vehicle uses visual and positional information to create a 2.5D semantic map on the fly. 3) Using
the map, the vehicle flies up to the desired class and acquires high-quality imagery, useful for tasks
such as 3D reconstruction.

In support of this goal, this work in this chapter proposes a novel semantic mapping system
to estimate the presence and metric location of the semantic classes of interest (e.g., cars) in
its surroundings, so a separate planning system (beyond the scope of this chapter) can create
information-gathering plans. The map is continuously updated on-the-fly from forward-looking
camera imagery and global state estimation, using only on-board computing.

The choice to use a nearly forward-facing (tilted downwards at 15◦) camera is worth noting. We
use this arrangement, as opposed to a downward-facing camera, in order to be able to perceive longer
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ranges quickly without needing to fly long distances or extremely high altitudes. Unfortunately,
this also makes recognition and reconstruction more difficult. While having both forward-facing
and downwards-facing cameras is an attractive option, there is a tradeoff in terms of the added
weight and complexity of the system, and in our system we have opted for simplicity.

There are several challenges in the design of such a system. First, the recognition of semantic
categories from visual data is a non-trivial task; in this case the difficulty is compounded by the
fact that in MAVs with forward-facing cameras, objects will have a highly variable appearance as
they are captured from different heights and angles. Second, it is challenging to reconstruct 3D
metric maps from monocular imagery, specially for distant objects and using image sequences
captured from arbitrary camera motion patterns, as opposed to motion patterns deliberately crafted
to aid reconstruction. Finally, to be useful, our system must operate in online and in real time,
using the relatively constrained on-board computing on our vehicle.

To face these challenges, we make the following contributions:
First, we design a custom Deep Learning architecture for 2D semantic segmentation that

achieves a good accuracy/speed trade-off for our application. Our starting point is recent convolu-
tional architectures [113, 145] but we empirically make various modifications to optimize for our
scenario. To train this network, we assembled and labelled a new dataset consisting of oblique
aerial imagery gathered from publicly available videos, as well as our own field data.

Second, we propose a new 2.5D mapping system to efficiently estimate the location of the
semantic classes found by the semantic segmentation system. Instead of solving the full 3D
reconstruction problem, we assume we have access to a Digital Elevation Map (DEM) of the
region, and we project the 2D measurements on this map, while exploiting for available semantic
knowledge. DEMs are freely available for many places in the world, including most of the United
States.The mapper fuses measurements over time, making use of knowledge regarding typical
heights of objects to improve its accuracy.

We evaluate each part of our system and show the integrated system autonomously completing
a data gathering mission in the field.

6.2 Related work

Semantic segmentation

Semantic segmentation of RGB imagery is a heavily studied topic in computer vision. As for most
classification tasks in computer vision, the state-of-the-art has been considerably advanced by
Deep Learning.

In particular, Fully Convolutional Networks [113] proposed a highly effective and discrimina-
tive model adapting state-of-the-art models for object recognition [161] for the task of pixelwise
prediction with purely feed-forward computation.

Similar models [51, 132, 5] were proposed at approximately the same time. Since then, most
work has focused on optimizing accuracy (e.g.[188]), but relatively little attention has been paid
to computational cost, and in particular, per-image speed. Recent exceptions include ENet [137]
and SceneNet [177], which we intend to evaluate in the future.
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Spatial mapping

Reconstruction of geometric maps from visual and (optionally) inertial information is a well
studied topic in the Simultaneous Localization and Mapping (SLAM) [20] and Structure from
Motion (SfM) literatures.

Algorithmic and computational advances have made it feasible to employ these systems in
robotics for real-time decision making; recent relevant examples include Faessler et al. [57]
and Forster et al. [61], which use recent work in visual SLAM to create elevation maps from
downward-facing cameras on UAVs.

While this work shows impressive results, it is not applied to frontal-facing cameras, a consid-
erably harder problem, given the relatively small (or non-existent) parallax induced by camera
motion in this scenario, specially for distant objects.

Semantic mapping

Some form of semantic mapping in robotics frequently arises in robotic systems using both
semantic and spatial information to navigate; see [96] for a review and taxonomy.

Sengupta et al. [157] present an influential system using images and depth to create 3D
segmentations for street-level imagery. A more recent, similar approach is [179].

Brostow, Fauqueur, and Cipolla [16], and more recently, [100] use monocular imagery for 3D
reconstruction. In the aerial vehicle domain, Bryson et al. [17] is an interesting system using a
fixed-wing platform to monitor vegetation in farm lands. Khan, Masselli, and Zell [92] classify
terrain images from low-altitude imagery.

An impressive recent work is Delmerico et al. [44], which performs terrain classification with
a UAV to support search search and rescue missions. Another impressive work is Desaraju et al.
[47], which uses vision to find landing zones. Most of these works use top-down imagery, and it is
unclear how their results generalize to oblique imagery. In addition, computation is performed
off-board. An exception using frontal imagery is Giusti et al. [68], but in this case the network
only predicts discrete directions of travel, not dense labelings.

In summary, to our knowledge on-line semantic mapping, on-board an MAV is still an open
problem when using oblique monocular imagery. The main challenge is posed by the sensing
geometry that results in pixel measurements that are dependent on-each other and restricted
computational resources.

6.3 Approach
The goal of the semantic mapping system is to inform the planning system about the presence and
approximate location of the classes of interest in its surroundings, so it can create information-
gathering plans. It does so by means of a semantic map, a metric map that is annotated with
localized predictions regarding semantic classes [96].

Thus, to be useful, the system must operate online and in real time, in order to keep the map
updated as new sensor data is acquired. Additionally, it must also be capable of recognizing and
localizing distant (40 m to 200 m) objects, as its function is primarily to help the vehicle decide
where to go, and secondarily to describe where it has been.
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Figure 6.2: System outline of semantic mapping for scouting

To this end, the semantic mapping system must answer two questions about the scene: what
objects of interest are in it, if any, and where are they, in physical space. To answer these questions,
our semantic mapping module, depicted has in Figure 6.2, has two main stages. In the first stage,
semantic segmentation, we use a deep learning system to label monocular camera imagery. In the
second stage, mapping, we project the segmentation into a 2.5D grid map which maintains the
robot’s belief about the semantic class of each grid cell. We describe each stage in further detail in
the following sections.

6.3.1 Lightweight semantic segmentation for aerial data
In the semantic segmentation stage, the goal is to assign one ofK predefined semantic labels to
each pixel in an RGB image. In this paper, the semantic classes are car and background, where the
background class simply corresponds to anything that is not of interest. The choice of semantic
classes was driven mainly by pragmatic reasons concerning our testing sites and available data,
but the framework extends naturally to arbitrary semantic classes.

Semantic segmentation is closely related to object detection, for which the most common
goal is to predict a bounding box around each instance of an object class. In this work, we prefer
the pixel-level semantic segmentation approach over the detection approach, for several reasons:
a) Current algorithms for segmentation are faster, b) We are interested in classes that may not
be easily enclosed in a box, c) We do not require instance-level segmentation, d) It is trivially
extended to multiple classes. Nonetheless, proposal-based approaches such as Faster RCNN [148],
may present advantages for detection of small objects; this may be an interesting direction for
future work.

However, as summarized in section 6.2, in recent years, the state of the art has been significantly
advanced by Deep Learning, and in particular Fully Convolutional methods [113] which constitute
our starting point.
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To apply these networks in our project, we faced two challenges. First, we found the architec-
tures to be too slow for real-time operation on our embedded platform. Second, we found that
off-the-shelf architectures and datasets were optimized for ground-level, prominent objects in the
image, whereas we are interested in distant objects that only occupy a few pixels.

Thus, for this project we created a custom architecture and dataset, as we describe below.

Architecture

Figure 6.3: The ScoutNet architecture with example input and output

Our main architecture, ScoutNet, is shown in Figure 6.3. The structure is similar to FCNs.
FCNs consist of a Directed Acyclic Graph (DAG) of convolutional and pooling layers, with a
3-channel RGB image as the input and aK-channel “label image” as the output, not necessarily
the same size as the input. Given densely labelled images, a differentiable loss function such as
cross-entropy can be computed for each output pixel, and since the whole network is differentiable,
it can be trained via gradient descent using backpropagation. At runtime, inference for pixelwise
labelling is purely feed-forward and can be performed efficiently with GPUs.

However, most work in this area has focused on maximizing accuracy, at the expense of memory
and computing requirements. This becomes evident when applying these methods on relatively
low-power platforms such as the Nvidia TK1, in which the inference times for the FCN-VGG16
from [113] proved to be in more than a second per image. Therefore, we made various experiments
and modifications towards a faster architecture, even at the expense of accuracy.

Compared to FCN-VGG16, the first major difference in ScoutNet is the reduction of the number
of filters in the initial layers, which was inspired by Tiny-YOLO [145], an object detection network.
Another major change is the removal of input padding, which we found to cause a large increase
in computational cost; in theory, it is useful to align receptive fields, but in practice [188] reports
that removing has little effect. As in Tiny-YOLO, we also have a fully-connected layer that has
global information. Unlike Tiny-YOLO, and like FCNs, we use skip layers. Finally, we also output
a lower-resolution labeling. In the FCN, regardless of the effective classification resolution, the
output is scaled to the original resolution at the end, even when training. Instead, we simply
output the low-resolution output (1/16 of the input, in our case); during training and validation,
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we downscale the label image. It must be noted that this slightly changes the objective, e.g., it is
possible for small labelled objects to disappear when downscaled.

Our choice was driven by the observation that increasing the output resolution through upsam-
pling added significant cost to runtime inference by around 2× 2 when doubling the resolution.
We found transposed convolutions [113] to be computationally similar to unpooling plus convolu-
tion [132, 5]. However, for our purposes, a high output resolution is not essential, as long as we
detect the object presence and approximate location. On the other hand, high input resolution is
important, since smaller objects (in image space) are harder to detect; for highly downsampled
images, many of the smaller objects simply disappear.

Here we adopt an 448× 448 input resolution, in place of the 224× 224 resolution commonly
used by other architectures since AlexNet [98]. For the output resolution, we use 28 × 28, i.e.,
a 16-pixel stride. To further use the high resolution provided by the 2MP camera onboard our
vehicle, we extract a 896× 896 center crop from each image and analyze it as four 448× 448
patches, resulting in a 56× 56 output. The patchwise classification is necessary due to memory
constraints on the vehicle.

Dataset

To address the data issue, we created our own dataset. To reliably detect the classes of interest,
we need to learn how they appear from the highly varied viewpoints and ranges we encounter in
MAV data; but to our knowledge, there is no dataset for object detection or semantic segmentation
for oblique, low-altitude (10 m to 40 m) aerial imagery. Instead, existing datasets feature top-
down views (e.g., VEDAI [143]) or are heavily biased towards ground-level imagery (e.g., MS-
COCO [111, 55]).

Fortunately, thanks to the recent popularity of camera-equipped consumer MAVs, thousands of
aerial videos from around the world have been made publicly available on video-sharing websites
such as YouTube and Vimeo. These videos vary widely in location, season, time of day, camera
intrinsics, video quality, and so on, making for a diverse but challenging source of data.

We downloaded an initial dataset of approximately 1200 videos by searching video-sharing
websites for various terms related to MAVs, including drone, fpv (short for First Person View),
aerial, and names of popular consumer MAVs brands and models. As an initial exploration of
this data, we extracted FC7 features for regularly sampled frames of each video using a VGG
network [161] pretrained on the Places dataset [190], and clustered the feature vectors using
k-means. We found the resulting clusters effectively grouped video segments according to the
visually similar scenery type (e.g., beaches, cities, parks, suburban areas) as well as clusters
of videos with irrelevant subject matter (e.g., reviews of MAV equipment, MAV-related news
coverage, “drone” music concerts). Example clusters are visualized in Figure 6.4.

We then manually chose a diverse set of videos and manually labeled the cars in the dataset
with polygons. We labeled 825 images from this dataset; while this is relatively small compared to
recent datasets such as MS-COCO [111], it is comparable to datasets such as CamVid [16], which
has been used to train networks from scratch [5]. We should also note the fairly high resolution of
our images: 1920× 1080, compared to less than 500 pixels per side for most other datasets. We
call this the MAVCAR dataset.

Finally, we also create another dataset consisting of 500 images captured from our own field
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Figure 6.4: Frames belonging to videos in automatically extracted clusters, with one cluster in each
column, and the top row showing the average cluster frame. The cluster on the left corresponds to
videos of reviews for MAV hobbyists, which we discard.
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experiments, spanning two years and two locations. Like before, we label cars only. We call this
the FIELD dataset.

Example images from the datasets are shown in Figure 6.5.

Figure 6.5: Example images from our datasets

6.3.2 Mapping with digital elevation maps and prior knowledge
Given a semantically classified image, we want to find the position of objects detected in the
image, as well as model regions for which the information in measurements is uncertain. Since
this mapping has to be performed on board the vehicle, the driving requirement of the application
is latency. Given a global pose by a state estimation filter, each pixel in the labeled image defines a
ray originating at the camera center and passing through the pixel center. To perform the mapping
operation, we use the images with soft pixel-wise predictions, together with the robot’s global
pose estimate and a pre-existing digital elevation map (DEM). We exploit the semantic knowledge
of the world (every object rests on the ground) and use the digital elevation map to infer the 3D
structure of the environment.

The efficiency of occupancy grid-based mapping algorithms has made them a popular choice
for on-board processing in robots. The key to their efficiency is two simplifying assumptions: that
the grid cell states are independent binary variables and that the measurements themselves are
independent from each other, given the cells’ true occupancy values. These assumptions have
been shown to work effectively with range-bearing sensors.

However, a semantically classified image provides bearing-only measurements through rays
originating from the camera pose, making the ray independence assumption limiting. To fully
exploit the bearing-only measurement and the semantic structure knowledge of the world, we need
to model ray interdependence. section 6.3.2 and section 6.3.2 describe how we model dependence
amongst observations while still allowing for an on-line mapping algorithm.

Exploiting prior semantic knowledge

We assume that the objects of interest, represented by LM = {c1, c2, ...cn}, rest on the ground,
and that we know their likely height hci∀ci ∈ LM. We model the world as a 2.5D grid. In every
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cell Cij of the grid at location i, j, we store the heights at which rays pass over the cell for all
classes, by casting rays originating from the camera center of the classified image Table 6.1.

Table 6.1: Data members of grid cell Cij for class c.

Symbol Description
Cij(c, hu) The highest height at which a ray with label c passes over or intersects

the cell Cij .
Cij(c, hl) The lowest height at which a ray with label c passes over or intersects the

cell Cij .
Cij(c, nf ) The number of rays with label c that pass over or intersect the cell Cij at

a height less than hc.
Cij(c, na) The number of rays with label other than c pass over or intersect the cell

Cij at a height less than hc.
Cij(c, pf ) The cumulative probability of rays with label c that pass over or intersect

the cell Cij at a height less than hc.
Cij(c, pa) The cumulative probability of rays with label other than c that pass over

or intersect the cell Cij at a height less than hc.
Cij(c, lo) Integrated log-odds of an object of class c being present in the cell Cij .

We are interested in finding cells where the height of rays passing over the cell matches the
height of the object we are looking for, while accounting for occlusions and limited field of view.
This leads to following cases for a given class in a cell Cij and a class of concern c:
Case 0: The average probability of rays that pass over cell Cij with a label other than class c is

greater than the average probability of rays with class c.
Case 1: The rays of some other class pass from below and above the class c over the cell Cij .
Case 2: The rays of some other class pass from below and nothing is observed above the class c

over the cell Cij .
Case 3: Nothing is observed above or below the class c over the cell Cij .
Case 4: Nothing is observed below and some other class is observed above the class c over the

cell Cij .
Case 1 implies that the cell is well observed. Therefore, Cij(c, hu) and Cij(c, hl) should be close
to hc and the ground height respectively. Case 2 implies that the upper part of the object could
not be sensed due sensing geometry or occlusion. Hence, Cij(c, hu) should be less than hc and
Cij(c, hl) should be close to the ground. Similarly, Case 3 implies that Cij(c, hu) and Cij(c, hl)
should be less than hc, whereas Case 4 implies that Cij(c, hu) should be close to hc and Cij(c, hl)
should be less than hc. These cases lead to Equation 6.1, that is used to determine whether there is
positive, negative, or a lack of evidence in the current classified frame regarding the presence of
an object of class c over the cell Cij:

φij(c) =


0, Case 0

exp (αkCij(c, hl)) · exp

(
βk

(Cij(c, hu)− hc)
hc

)
· Cij(c, pf )

Cij(c, nf )
, Case k

(6.1)
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Where k ∈ [1, 4] and αk, βk are negative constants that allow us to change the weights of the
measurements according to the cases encountered. We use the following hand-picked values for
these constants: α1 = β1 = −10, α2 = −10, β2 = −1, α3 = −1, β3 = −1, α4 = −1, β4 = −10.
The resulting values φij(c) encode evidence for the presence of class c in the cell (i, j). The values
are in the range [0, 1] and values that are larger, smaller or close to 0.5 indicate positive, negative,
and lack of evidence respectively.

Temporal Evidence Integration

The φij(c) term allows the algorithm to model the dependence amongst rays, while allowing us to
treat the cells independently. We assume that for any given cell, the log-odds of the probability of
observing a class c is given by a constant γ. Each class in a cell is represented as an independent
binary random variable, as a cell can have objects of multiple classes. Once the value of evidence
(φij(c)) is identified, the log-odds for each class in each cell are updated with equation Equation 6.2.

Cij(c, lo) =

{
Cij(c, lo), |φij(c)− 0.5| ≤ ζ

Cij(c, lo) + γ (Cij(c, nf )− Cij(c, na)) , otherwise
(6.2)

Where ζ is a small positive number less than 0.5. We use ζ = 0.2 and γ = 1. As the MAV
performs its mission and captures images, each image is semantically segmented with our network
and associated with the estimated camera pose at the time of capture. As soon as each image is
segmented, the labels in the segmentation and the estimated pose are used to update the grid and
Cij(c, lo).

6.3.3 System implementation

Figure 6.6: Our MAV platform

Our current MAV is depicted in Figure 6.6. The base platform is an off-the-shelf quadrotor
DJI vehicle retrofitted with our own sensors and computing payload designed for autonomous
scouting.

The system architecture is summarized in Figure 6.7.
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Figure 6.7: Block diagram of the MAV scouting system

Sensing

The sensor suite consists of a monochrome stereo camera pair, a monocular color camera, an
integrated GPS-INS unit and a barometer. The GPS/INS system and the barometer are used for
state estimation.

All cameras are forward-facing, tilted downwards at 15◦. an orientation well suited for low-
altitude (<40 m) operation. The horizontal field of view for this camera is approximately 60◦,
which we considered a good compromise between coverage and object size, given the sensor
resolution of 1600× 1200 pixels.

Hardware platform

All computation for autonomous operation is performed on board, using two embedded ARM
computers. The first is an NVidia TK1, which features a low-powered GPU which we use for
semantic segmentation. This computer also runs other perception-related tasks necessary for
autonomous operation. The second is an ODroid XU4, which runs the mapping and planning
systems.

Software platform

Both computers use ROS on Ubuntu Linux. Our segmentation and mapping methods run concur-
rently as ROS nodes and communicate through messages. The segmentation node, implemented
in Python, uses the Theano [8] library with the Nvidia CuDNN backend to make effective use of
the GPU. The mapping algorithm is CPU-only and is implemented in C++.

6.4 Results
Here, we present results for each of the two main subsystems in isolation, and document the
integrated system performing a fully autonomous mission in the field. Finally, we also discuss
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extensions to the current system that address some of its current limitations.

6.4.1 Semantic segmentation evaluation

We study the performance of ScoutNet, two ablations, and 16-stride FCN-VGG16 on the Pascal-
Context dataset [124], a popular semantic segmentation dataset with around 10 000 densely labelled
images. The first ablation, ScoutNet-nopool, replaces all pooling layers with convolutional striding,
for a slight speedup. The second, ScoutNet-noskip, removes skip layers, resulting in a pure encoder-
decoder architecture in the style of SegNet [5]. For FCN we evaluate at full resolution, the standard,
and at the reduced resolution, like our models. We implemented all networks, but FCN-VGG16
was ported from the author’s implementation to Theano [8], including the weights. The FCN
methods are included as a baseline, since in practice they are too slow for our application.

The results are shown in Table 6.2. As a sanity check, standard FCN-VGG16 is within 2%
of the reported results in [113]. This table also shows a drop in performance when reducing the
output resolution (fcn-vgg16-lr), an expected accuracy-performance trade-off. Finally, we see
the impact of ScoutNet ablations, where removing pooling or skip layers improves speed but hurts
performance.

Table 6.2: Performance on Pascal-Context Validation

Method Pixel Acc.

fcn-vgg16 0.65
fcn-vgg16-lr 0.57
scoutnet 0.45
scoutnet-nopool 0.39
scoutnet-noskip 0.33

We then evaluate on our MAVCAR dataset, consisting of 410 frames from 155 different videos.
We use 328 training frames from 101 videos, and the rest of the data is used for validation. We
ensure that there are no videos shared between the training and testing sets to avoid overfitting. All
images are 1920× 1080, so we follow an atypical protocol for training and validation. At training
time, we sample a random crop of size 448× 448 from anywhere in the image. At test time, for
each image we create 896× 896 center crop, divide it in four 448× 448 patches, and evaluate
each separately. This mimics the inference processed used in our live experiments. Figure 6.8
shows examples. We can see, again in Table 6.3a that ScoutNet achieves worse performance than
FCN. On the other hand, results are qualitatively acceptable Figure 6.8. Finally, it evaluate the
importance of using aerial versus ground-level data, we trained ScoutNet on a 2588-image subset
of MS-COCO [111] with vehicles, and tested on FIELD. We repeated the process with MAVCAR.
As Table 6.3b shows, MS-COCO, despite having more images, is less useful for our task due to its
ground-level bias.
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Figure 6.8: Car predictions from ScoutNet on the MAVCAR test set, as heat maps. Middle column
is ground truth. The two bottom rows show failures.

Table 6.3: Quantitative evaluation on the MAVCAR and FIELD datasets

(a) Performance of different architectures on
MAVCAR validation dataset

Variant Prec. Recall IoU

scoutnet 0.43 0.49 0.30
vggs-fcn 0.53 0.58 0.38

(b) Effect of Training Dataset when testing on
FIELD Dataset, for ScoutNet

Training Set Prec. Recall IoU

MS-COCO Vehicles 0.12 0.75 0.11
MAVCAR Train 0.53 0.30 0.24
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Qualitative field results

Figure 6.9 shows results of the system operating on human-piloted field data, along with a top-down
map depicting the estimated position of cars obtained with the system described in subsection 6.3.2.

Figure 6.9: Screen captures of field results on a human-piloted flight. In each frame, the left
shows the input image (top left) and the output of ScoutNet (bottom right; white pixels indicate
car detections). The right side shows a top-down map of estimated car positions (as red squares)
using the method described in subsection 6.3.2.

Timing

Segmentation is currently the bottleneck in our pipeline. We evaluated the average per-frame time
to classify four 448× 448 patches in each network. The classification must be performed four
times to evaluate the desired 896× 896 region. We use the embedded TK1 platform described in
subsection 6.3.3.

With this setup, we find that the FCN-VGG16 takes more than 600 ms per patch, or more than
2.4 s per image; this renders it unusable for our purposes. In contrast, ScoutNet takes around
280 ms per patch, and around 750 ms per image, as we evaluate the four patches within a single
batch. Due to memory limitations we found this impossible with the FCN-VGG16. The large
difference in performance leads us to use ScoutNet over FCNs, despite its inferior accuracy.

When adding time for preprocessing (100 ms) and slower operation due to the load caused
by other processes during flight, in practice we find the effective labelling rate to 0.5 Hz. This is
slower than we would like, but usable in low-speed operation.
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6.4.2 Mapping

In this section, we demonstrate the effects of exploiting semantic knowledge and modeling ray
dependence qualitatively, while measuring the sensitivity of the mapping algorithm to height
inaccuracies in the DEM.

Figure 6.10-4 shows a canonical scenario where a car, more than 50 m away, is detected by
the semantic classification algorithm. Exploiting semantic knowledge and modelling dependence
allows the mapping algorithm to capture the uncertainty about the presence of a car in the cell
occluded by the car (Figure 6.10-1), whereas if we do not reason about ray interdependence, the
occluded cell is also inferred to contain cars (Figure 6.10-3). If both the semantic knowledge and
ray interdependence are not exploited, then a simple projection of classified image to DEM leads
to an inference that multiple cells are occupied by a car (Figure 6.10-2). This case shows how
modelling the ray interdependence and exploiting semantic knowledge leads to better mapping of
objects and uncertainties. On the other hand, Figure 6.10 shows that the algorithm’s performance
deteriorates in the presence of height errors in the DEM. We can see that the degradation is faster
if the DEM underestimates the height of the cells, due to the geometry of the observations.
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Figure 6.10: Analysis of our mapping method in a representative scenario. Figure 4 shows the
image observation integrated in our current mapping pipeline. Figure 1 shows the updated map
after a classified image. Figure 2 shows the updated map if the classified image is projected on
the DEM without exploiting semantic knowledge, and figure 3 shows the updated map if the ray
interdependence is not modelled. Dark gray squares indicate absence of cars and red squares
the presence of cars; intermediate shades of grey and red reflect uncertainty. Modelling ray
interdependence and exploiting semantic knowledge leads to better modelling of uncertainties
due to occlusions, while providing an improved cell occupancy estimate. Figure 5 provides the
sensitivity analysis of mapping performance versus DEM height errors.

6.4.3 Field Results

In this section, we show scouting mission conducted by the MAV platform using the classification
mapping pipeline described in this chapter. Figure 6.11 and Figure 6.12 show two autonomous
missions, in each of which the vehicle is deployed to scout for cars and collect high resolution
data if a car is found. In both missions, the semantic segmentation and mapping algorithm is able
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to detect and map both cars in the environment with sufficient accuracy to enable collection of
high resolution data of the said cars.

Figure 6.11: Autonomous scouting mission. On the top, testing site, start and end are marked by
green nodes and car locations are shown in red. Figures 1–4 show the MAV’s plans at various
stages of the exploration mission. Dark gray squares indicate absence of cars and red squares
presence of cars, with intermediate shades reflecting uncertainty. Once the car is recognized, a
360◦ view of the car is obtained. The mapping pipeline enables detection and data collection for
both cars present in the environment.

6.4.4 Extensions
Multi-class predictions

In the results we have shown so far, we label a single class, car, mainly due to the cost of labeling
data for more classes. However, our pipeline supports multiple classes. In Figure 6.13, we show the
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Figure 6.12: Larger scale autonomous scouting mission. In each frame, the left shows the input
image (top left) and the output of ScoutNet (bottom right; white pixels indicate car detections).
The right side shows an oblique view of the estimated car positions (as red squares), along with
the planned and actual trajectories of the vehicle during the mission.

results of training our semantic segmentation with a combined dataset including Pascal-Context
and our own custom datasets.

DEM-free operation

However, as we explored multiclass segmentation, especially with higher spatial resolution maps
than in our earlier work, we observed multiple issues caused by drift in the state estimation, noisy
depth estimates from stereo and inaccuracies in the DEM. To mitigate these issues, we explored
a learning-based approach to correct for inaccurate stereo depth by creating a training dataset
using Structure-from-Motion (SfM), metrically scaled with GPS information (Figure 6.14). In this
approach, we no longer use DEMs, but instead use only our learned depth predictions. Moreover,
we use pose estimates derived from visual SLAM in combination with the GPS-INS to reduce
drift, and fuse depth measurements into the elevation map in a robust fashion with per-cell running
median filters. Figure 6.15 shows preliminary results of this approach.

6.5 Summary
In this chapter, we have described a semantic mapping system aimed to support autonomous
scouting with MAVs. We evaluated the two main components of the system in isolation and
demonstrated semantic exploration in integrated autonomous missions.

122



(a)

(b)

Figure 6.13: (a): Multiclass semantic labeling (2D only). (b): Multiclass semantic labeling (2D
projected on 3D)
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Figure 6.14: Learning to correct noisy and sparse stereo disparity using SfM reconstructions as a
source of supervision. In the left, an RGB image captured from the MAV is shown, along with
a visualization of the corresponding pixelwise depth as measured by the onboard stereo camera
and by an off-line SfM reconstruction, scaled with GPS-INS metadata. The SfM cloud is denser
and more accurate at long ranges. In the right, we show examples outputs of a CNN trained to
interpolate and refine the noisy disparity images using the SfM point clouds as an approximation
to “ground truth”.

Figure 6.15: Detecting vehicles at long distance without DEMs by using VSLAM and learned
depth refinement
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However, there are several limitations in the current system. Its performance is often limited
by inaccuracies in the depth estimation, the estimated 3D pose and the DEM, which become
particularly visible over long ranges. While subsection 6.4.4 explores some preliminary directions
to mitigate these issues, it is still an unsolved problem. We believe that strong reliance on GPS-INS
and DEMs is a suboptimal solution, especially for vehicles equipped with lower-grade sensors.
Similarly, naive stereo sensing is also limited for this problem, given its quadratic degradation of
accuracy with distance. Going forward, solving this problem may require a deeper integration
of visual SLAM in the semantic mapping pipeline, as well as the incorporation of deep learning
advances in monocular and stereo depth estimation (e.g., [91, 114]) and a robotic platform with
the additional computational power to handle these tasks.

Since the publication of our work in this area, there have been some advances in SLAM that
can potentially address some of the issues we have encountered in terms of state estimation. An
example is the work of Cao, Lu, and Shen [22], who propose a principled non-linear optimization
approach to state estimation from GNSS, visual odometry and inertial sensing.

A relevant research area that has become highly active after the publication of our work is
semantic exploration. A large portion of this work has been spurred by benchmarks for this task
using realistic simulated indoor environments, where the goal is for a simulated robot agent to
search for an object of a certain class; a recent example is Chaplot et al. [27]. While this indoors,
simulated task presents different challenges than the (non-simulated) outdoors task with an MAV,
they offer interesting ideas for learning-based approaches to semantic exploration that would be
interesting to explore for our scenario.
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Chapter 7

Conclusions and future directions

In this thesis, we have shown how semantic maps can be used as a richer inner representation to
extend and improve the capabilities of mobile robots operating in the real world. In the process,
we make several contributions to the state of the art in semantic mapping with image and point
cloud data:
• We develop a novel approach for semantic mapping of low-altitude aerial point clouds,
providing an autonomous helicopter with awareness of various semantic classes relevant to
navigation and landing in unprepared areas. The approach features a novel ground surface
estimation step which is robust to the occlusion patterns of aerial point clouds, and is used to
create discriminative point cloud features for semantic segmentation with a learned classifier.
The novel ground surface feature is shown to improve classification accuracy in a dataset
captured from a helicopter. Additionally, the ground surface estimate is used to estimate the
landing zone height from noisy measurements at long distances (chapter 3).

• We propose a novel deep learning approach for 3D data that obtains superior classification
accuracy relative to prior approaches based on hand-engineered features. Our proposed
approach learns 3D CNNs that jointly perform feature extraction and classification from a
volumetric representation. We show improvements over the state of the art in landing zone
detection and object recognition (chapter 4).

• We propose two systems for multimodal semantic classification from 2D image data and 3D
point cloud data. The first system proposes a novel 2D-3D CNN architecture for the joint use
of these two modalities in learned semantic inference tasks. The architecture outperforms
various unimodal and multimodal baselines in a semantic segmentation benchmark with
lidar and image data. Our second system proposes a more efficient decoupled usage of these
two modalities for semantic mapping, using image data for semantic inference and lidar
data for spatial inference. This system achieves real time operation and is tested in the field,
allowing an autonomous All-Terrain Vehicle to traverse grass and narrow trails that would
be considered untraversable by a system using purely geometric maps. (chapter 5).

• We propose a long-range, image-centric semantic mapping system that does not use range
sensing for semantic inference. The system can build coarse semantic maps of distant objects
using monocular images and INS positioning data by leveraging publicly available digital
elevation maps. We use this system for the task of semantic exploration with a Micro-Aerial
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Vehicle, enabling significant time savings in the autonomous gathering of data for a specific
semantic category (chapter 6).

In each case, we have applied semantic mapping to extend the capabilities of real robots
operating in the field, showing the benefits of a richer semantic understanding of the world
compared to purely spatial representations.

Despite these positive results, we have observed several limitations to our current framework,
that are related to two significant choices we make in this thesis: using semantic categories and
global metric maps.

As we argued earlier, these choices are beneficial for the purposes of allowing robots to build
semantic maps that are interpretable for humans and are highly compatible with the dominant
paradigms in planning and machine learning. However, throughout the development thesis we
have also faced challenges that stem from these choices.

Issues with semantic categories As described in chapter 1, the systems developed in this thesis
describe the semantics of the environment in terms of a finite set of categories, which are chosen
in an ad hoc way for each problem.

However, the question of “how to carve nature at its joints” for any given robotic task is in
general non-trivial. While we have been able to identify human-interpretable semantic categories
that have proven useful for each of the applications featured in this thesis, in each case the process
was far from painless. In practice, it is often difficult to specify semantic categories for a semantic
mapping system, as it requires consideration of multiple constraints concerning different robotic
subsystems, as well as other engineering factors. The chosen semantic categories must be possible
to discern from the available data, for both the robot and humans (when manual labeling is
required). The categories must also provide relevant information for the planning system that will
use the semantic map to accomplish the system’s goals. In many cases, it is necessary to co-design
the sensing and planning systems in order to meet these conditions, resulting in considerable
engineering effort. The problem is compounded if the structure of the tasks to be accomplished is
not well-defined, as often happens in practice.

Semantic categories are often ill-defined or ambiguous. For example, one of the goals for the
semantic mapping system for the ATV from chapter 5 was to allow the vehicle to not only follow a
trail, but to avoid, when possible, “rough” trail sections in favor of “smooth” sections. In practice,
specifying this category was difficult, not solely because “smooth” versus “rough” is a continuum
rather than a binary distinction, but because human judgments of these properties proved to be
only loosely correlated with objective criteria such as geometric roughness, depending also on
perceived soil composition, presence of pebbles, slope, soil moisture, etc. Even categories that
might appear relatively clear-cut, such as car or ground have abundant corner cases; see, e.g.,
Figure 7.1 from chapter 6.

Furthermore, it should be kept in mind that the semantic map is just one part of a larger system.
For any given choice of semantic categories, it is often challenging to design a planning system to
take advantage of this map to accomplish the robot’s task. For example, the implementation of the
reactive planner of chapter 5 required various rounds of hand-tuning of the function to create cost
maps from semantic maps.

Finally, it is also expensive and time-consuming to manually label data, and it is difficult to
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(a) (b)

(c) (d)

Figure 7.1: Edge cases in manual labeling. (a) Is the trailing speedboat a vehicle? (b) Is the RC car
a vehicle? (c) Is the rooftop parking lot a ground surface? (d) Is the frozen ice a ground aurface,
or water?

predict how much data is necessary. In fact, given the dynamic nature of the real world, it is often
necessary to make manual labeling a continuous task.

Issues with global metric maps Global metric maps also have issues. For example, we have
observed that a purely metric representation of space is difficult to use in scenarios where semantic
maps span large distances, require reasoning about multiple frames of reference with possibly
conflicting information, and have large amounts of spatial uncertainty. We observed all of these
conditions in chapter 6. In our deployed system, we make our best effort to use a global metric
frame to represent absolute positioning estimates from GPS, relative pose estimates from visual
odometry and IMUs, elevation estimations from DEMs, and the semantic segmentation and depth
estimates from the on-board cameras. This leads to a metric representation that is readily usable
by planning systems that require this representation, but leads to several difficulties in the face of
uncertainty and noise. While it is possible to mitigate these issues in various ways, taking a step
back, the way we have posed this task seems somewhat unnatural. If we see a car in the distance,
do we need to know its GPS coordinates — or even its position relative to the robot in meters — to
plan a trajectory flying towards it? Currently, our system does, but a human pilot would certainly
not. While human perception of space is not completely understood, evidence (and subjective
phenomenology) suggests humans dynamically switch between reference frames according to
context [136, 99]. Currently, it is not obvious how to endow robots with this kind of flexibility.
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Future directions

In the last few years, many lines of research have emerged that address some of the problems
we have discussed. For example, approaches based on deep reinforcement learning have been
proposed to enable an agent to learn how to act using raw sensor data as input, and with no
other supervisory signal than a reward function [108]. In theory, this kind of approach allows
the robot to learn its own representation of the world from scratch, without any engineering of
localization and mapping systems or labeling of semantic categories. While this is an attractive
idea, in practice it is difficult to apply for real world systems. As this approach requires the robot
to learn by trial and error, for most robots the only way to learn through reinforcement learning
is in simulation. However, it is often difficult to make the policies learned in simulation work
in reality, as we learned first-hand in our own attempts to apply reinforcement learning for the
self-driving task from chapter 5 [34]. In addition, it is still unclear how robots trained from scratch
via reinforcement learning can be adapted to interface with humans; not only in terms of following
human instructions, but also in terms of providing an interpretable view into their inner workings,
so that the behavior of the robot can be predicted and ultimately, trusted to be reasonably safe.

Thus, while we believe the specific approach of using semantic categories and global metric
maps is arguably too restrictive and brittle for many applications going forward, a fully end-to-end,
“pixels-to-torque” approach to learning robotic behavior is also impractical. Given that biological
agents do not learn everything from scratch, but rather, have been shaped through millenia by
evolution, it seems reasonable for humans to invest a few years into engineering the right kind
of representations into robotic agents. Ideally, these representations should provide robots with
a certain amount of prior structure regarding the nature of the world, while still being flexible
enough to allow the robots to efficiently learn and adapt from training data or interaction with
the world. Interesting recent approaches along these lines include Cartillier et al. [25] and Casas,
Sadat, and Urtasun [26]. Naturally, looking forward, there are many other possible approaches,
and what these will look like is still an open question.
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