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Abstract

Autonomous mobile robots have the potential to drastically improve the quality
of our daily life. For example, self-driving vehicles could make transportation
safer and more affordable. To safely navigate complex environments, such robots
need a perception system that translates raw sensory data to high-level under-
standing. This thesis focuses on two fundamental challenges toward building
such perception systems via machine learning: robustness and scalability.

First, how can we learn a perception system that is robust to different types of
variance in sensory data? For example, the sensory data of an object may look
completely different depending on the distance and the presence of occlusion.
Also, a perception system may encounter objects it has never seen during
learning. To capture such variances, we develop approaches that make use of
novel characterizations of context, visibility, and geometric prior.

Second, how can we rearchitect perception that requires less human supervision
during learning? For example, standard perception software stacks build per-
ceptual modules to recognize objects and forecast their movements. Training
these modules requires object labels such as trajectories and semantic categories.
To learn from large-scale unlabeled logs, we explore freespace supervision as
an alternative to the predominant object supervision. We integrate freespace
self-supervision with motion planners and demonstrate promising results.
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Chapter 1

Introduction

Autonomous robots have the potential to drastically improve the quality of our daily life.

For example, self-driving vehicles could make transportation of people and goods safer,

more affordable, and available as a utility. To navigate complex and dynamic environments

safely, such robots need a perception system that translates raw sensory data to high-level

understanding.

We have witnessed exciting progress in the field of sensing and machine learning. On one

hand, state-of-the-art sensors today are able to capture billions of pixels and millions of 3D

points every second. On the other hand, deep learning has surpassed human performance

on multiple computer vision benchmarks. However, there remain fundamental challenges in

learning perception systems for autonomy. This thesis focuses on addressing two fundamental

challenges in perception for autonomy: robustness and scalability.

First, how can we learn a perception system that is robust to different types of variance

in sensory data? For example, the sensory data of an object may look completely different

depending on the distance and the presence of occlusion. Also, a perception system may

encounter objects it has never seen during learning. To model such variances, we develop

approaches that make use of novel characterizations of context, visibility, and prior.

Second, how can we rearchitect perception such that the learning process is more efficient

with human supervision? For example, standard perception software stacks build perceptual

modules to recognize objects and forecast their movements. Training these modules requires

object labels such as semantic categories and trajectories, which are laborious and expensive

to annotate. As a result, the vast majority of data has not been used for training. To learn

from large-scale unlabeled data logs, we explore freespace supervision – a new source of

self-supervision.
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CHAPTER 1. INTRODUCTION

1.1 Overview

Figure 1.1

Part I: Robustness

Scale variance The sensory data of an object may look completely different depending

on the object’s distance to the sensor. This applies to both 2D and 3D sensors. How do we

build visual systems that reliably recognize objects at different scales? Though tremendous

strides have been made in object recognition, detecting small objects remains one of the

open challenges. Traditional approaches aim to be scale-invariant, i.e. building one model

that works for all scales. We argue that the cues for recognizing a 3px tall object must

be fundamentally different than those for recognizing a 300px tall one. Our key insight is

to build scale-variant representations, that is, different representations for different scales.

Importantly, we argue that an effective representation must utilize contextual information

beyond the extent of object, particularly for smaller objects, in order to make up for the
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CHAPTER 1. INTRODUCTION

lack of signal on the object itself. We apply this idea to face detection. On the massively

benchmarked face detection dataset WIDERFACE, our results reduce error by a factor of 2.

Occlusion The presence of occlusion can drastically change the appearance of an object

in sensory data. This applies to both 2D and 3D sensors. Neither cameras nor LiDARs

can reliably observe what is behind objects. A multi-view system is often utilized to

resolve occlusion issues. However, for sensors mounted on mobile robots, such line-of-sight

occlusions are inevitable. Importantly, it may be extremely important to recognize what is

occluded. For example, an autonomous vehicle needs to recognize if there could be a kid

playing behind a parked car. We propose two approaches to help perception be robust to

variance caused by occlusion.

First, top-down context could provide important cues to reason through occlusion. For

example, a ball rolling into the middle of a street suggests the possibility of a kid chasing

after it. The key question is: how do we architect perception models to enable such top-down

reasoning? Classic approaches tend to architect “unidirectional” bottom-up convolutional

nets. To enable top-down feedback, we propose a novel “bidirectional” convolutional net

architecture and demonstrate its efficacy by improving the performance of challenging tasks

such as localizing facial and human body keypoints under severe occlusion.

Second, 3D sensors know where they cannot see since they measure visibility directly.

Most popular representations (such as PointNet [138]) are proposed in the context of

processing truly 3D data (such as points sampled from mesh models), where there is little

to no occlusion. Such approaches often destroy the valuable visibility information during

preprocessing. We argue that perceptions systems built for autonomy need to exploit such

visibility measurements. We develop a simple approach to augmenting state-of-the-art 3D

object detectors with visibility. We show that doing so can significantly improve the 3D

detection accuracy, especially on partially visible objects.

Long-tail Standard learning-based perception systems are known to struggle upon never-

before-seen or rarely-seen objects. Unfortunately, there exists a long tail of such objects.

Practical autonomous robots makes heavy use of perceptual priors such as background

HD maps and adopt bottom-up grouping approaches. These approaches often requires

less to no training and can pick up such novel objects. However, they tend to be brittle

on subtle variance in everyday objects and requires post-hoc fixes in the downstream.

In the meanwhile, data-driven learning has made an undeniable impact on learning 3D

representations. We propose to combine data-driven learning and bottom-up grouping

that exploits geometric priors. We demonstrate that the proposed segmentation framework

3



CHAPTER 1. INTRODUCTION

combines the best of both worlds on segmenting objects on LIDAR point clouds.

Part II: Scalability

Efficient supervision Human feedback is expensive, especially in relative to the scale of

which data is being collected. How do we curate more labels with less human feedback?

Intuitively, only 1 bit worth of feedback is needed if the query is framed as a binary quality

assurance (QA) task at the appropriate granularity; “is the output of the current perception

module correct?” We develop an active binary learning regime, where a recognition model

must choose the data and frame the query. We can draw a parallel to the famous game

called 20 Questions. Here, the active learner asks the questions and human answers binary

questions. We demonstrate that such an active learner can learn more accurate models at

the same limited annotation cost and also fully label the dataset at a much lower cost.

Self-supervision The challenge in scalability goes beyond making the most bang for the

buck out of every human interaction. Large self-driving fleets collect enormous amounts

of raw sensory data every day, the majority of which will never reach annotation. How

can we use unlabeled logs to improve autonomous navigation? Self-supervision! Standard

autonomy software stacks for perception focus on recognizing objects and forecasting their

movements. The learning of such object-centric perception comes at an enormous cost of

human supervision. We rearchitect perception to enable self-supervised learning. Instead

of forecasting objects, we propose to forecast how freespace evolves. Importantly, such

freespace forecasting can be self-supervised via LIDAR raycasting. We demonstrate the

new geometric perception-planning interface can significantly reduce collision rates in

downstream local motion planning without requiring human feedback.

1.2 Thesis Outline

Chapter 2 In Chapter 2, we address the challenge of capturing scale variance when

learning to perceive 2D image data. Context is key when finding small objects. In the

context of building scale-invariant object detectors, we propose a scale-specific approach

that allows contextual features to play a bigger role when detecting smaller objects.

Chapter 3 In Chapter 3, we address the challenge of top-down reasoning when learning

to perceive 2D image data. Top-down reasoning is crucial when key low-level features are

missing due to reasons such as severe occlusion. In the context of localizing facial keypoints,

we derive a novel neural net architecture that allows such top-down feedback.

4



CHAPTER 1. INTRODUCTION

Chapter 4 In Chapter 4, we address the challenge of line-of-sight visibility constraints

when learning to perceive data from 3D sensors. Knowing what we do not know could be

useful. In the context of 3D object detection, we propose an approach that exploits such

3D visibility to improve detection accuracy on partially visible objects.

Chapter 5 In Chapter 5, we address the challenge of perceiving unknown objects from

3D data. Geometric prior is the key to identifying unknown objects. Classic grouping

approaches, despite being brittle, can often outperform learning approaches on unseen

objects. In the context of LiDAR segmentation, we propose an approach that combines the

merits of grouping and learning to improve generalization.

Chapter 6 In Chapter 6, we address the challenge of learning to perceive with limited

human supervision. Labeling can be greatly simplified with deductive reasoning. In the

context of multi-class classification, we formulate active learning with partial feedback as a

game of 20 questions between human experts and evolving models.

Chapter 7 In Chapter 7, we address the challenge of scalability in learning perception

systems. Data is being labeled at a much slower pace than it is created. In the context of

developing perception systems for self-driving vehicles, we propose to forecast freespace,

which can be directly used to assist local planning while requires no human supervision.

Chapter 8 In Chapter 8, we address an important criticism over future freespace as

a representation: view-specific. We propose a novel approach that allows us to forecast

view-independent occupancy with view-specific freespace supervision.

5
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Chapter 2

Exploiting Context for Scale

Variance

2.1 Introduction

Figure 2.1: We describe a detector that can find 685 faces out of the reportedly 1000
present, by making use of novel characterizations of scale, resolution, and context to find
small objects. Detector confidence is given by the colorbar on the right: can you confidently
identify errors?

Though tremendous strides have been made in object recognition, one of the remaining

open challenges is detecting small objects. We explore three aspects of the problem in

7



CHAPTER 2. EXPLOITING CONTEXT FOR SCALE VARIANCE

Figure 2.2: Different approaches for capturing scale-invariance. Traditional approaches
build a single-scale template that is applied on a finely-discretized image pyramid (a). To
exploit different cues available at different resolutions, one could build different detectors
for different object scales (b). Such an approach may fail on extreme object scales that are
rarely observed in training (or pre-training) data. We make use of a coarse image pyramid
to capture extreme scale challenges in (c). Finally, to improve performance on small faces,
we model additional context, which is efficiently implemented as a fixed-size receptive field
across all scale-specific templates (d). We define templates over features extracted from
multiple layers of a deep model, which is analogous to foveal descriptors (e).

the context of face detection: the role of scale invariance, image resolution and contextual

reasoning. Scale-invariance is a fundamental property of almost all current recognition and

object detection systems. But from a practical perspective, scale-invariance cannot hold for

sensors with finite resolution: the cues for recognizing a 300px tall face are qualitatively

different that those for recognizing a 3px tall face.

Multi-task modeling of scales: Much recent work in object detection makes use of

scale-normalized classifiers (e.g., scanning-window detectors run on a an image pyramid [43]

or region-classifiers run on “ROI”-pooled image features [52, 143]). When resizing regions

to a canonical template size, we ask a simple question –what should the size of the template

be? On one hand, we want a small template that can detect small faces; on the other hand,

we want a large template that can exploit detailed features (of say, facial parts) to increase

accuracy. Instead of a “one-size-fits-all” approach, we train separate detectors tuned for

different scales (and aspect ratios). Training a large collection of scale-specific detectors may

suffer from lack of training data for individual scales and inefficiency from running a large

number of detectors at test time. To address both concerns, we train and run scale-specific

detectors in a multi-task fashion : they make use of features defined over multiple layers of

single (deep) feature hierarchy. While such a strategy results in detectors of high accuracy

for large objects, finding small things is still challenging.

How to generalize pre-trained networks? We provide two remaining key insights

to the problem of finding small objects. The first is an analysis of how best to extract scale-

invariant features from pre-trained deep networks. We demonstrate that existing networks

are tuned for objects of a characteristic size (encountered in pre-training datasets such as

8



CHAPTER 2. EXPLOITING CONTEXT FOR SCALE VARIANCE

ImageNet). To extend features fine-tuned from these networks to objects of novel sizes,

we employ a simply strategy: resize images at test-time by interpolation and decimation.

While many recognition systems are applied in a “multi-resolution” fashion by processing

an image pyramid, we find that interpolating the lowest layer of the pyramid is particularly

crucial for finding small objects [43]. Hence our final approach (Fig. 2.2) is a delicate

mixture of scale-specific detectors that are used in a scale-invariant fashion (by processing

an image pyramid to capture large scale variations).

How best to encode context? Finding small objects is fundamentally challenging

because there is little signal on the object to exploit. Hence we argue that one must use

image evidence beyond the object extent. This is often formulated as “context”. In Fig. 2.3,

we present a simple human experiment where users attempt to classify true and false positive

faces (as given by our detector). It is dramatically clear that humans need context to

accurately classify small faces. Though this observation is quite intuitive and highly explored

in computer vision [129, 179], it has been notoriously hard to quantifiably demonstrate the

benefit of context in recognition [34, 46, 189]. One of the challenges appears to be how to

effectively encode large image regions. We demonstrate that convolutional deep features

extracted from multiple layers (also known as “hypercolumn” features [61, 109]) are effective

“foveal” descriptors that capture both high-resolution detail and coarse low-resolution cues

across large receptive field (Fig. 2.2 (e)). We show that high-resolution components of our

foveal descriptors (extracted from lower convolutional layers) are crucial for such accurate

localization in Fig. 2.5.

Our contribution: We provide an in-depth analysis of image resolution, object scale,

and spatial context for the purposes of finding small faces. We demonstrate state-of-the-art

results on massively-benchmarked face datasets (FDDB and WIDER FACE). In particular,

when compared to prior art on WIDER FACE, our results reduce error by a factor of

2 (our models produce an AP of 81% while prior art ranges from 29-64%).

2.2 Related work

Scale-invariance: The vast majority of recognition pipelines focus on scale-invariant

representations, dating back to SIFT[112]. Current approaches to detection such as Faster

RCNN [143] subscribe to this philosophy as well, extracting scale-invariant features through

ROI pooling or an image pyramid [144]. We provide an in-depth exploration of scale-variant

templates, which have been previously proposed for pedestrian detection[133], sometimes in

the context of improved speed [10]. SSD [107] is a recent technique based on deep features

that makes use of scale-variant templates. Our work differs in our exploration of context

9



CHAPTER 2. EXPLOITING CONTEXT FOR SCALE VARIANCE

Figure 2.3: On the left, we visualize a large and small face, both with and without context.
Context is not needed for a human user to recognize the large face, while the small face
is dramatically unrecognizable without its context. We quantify this observation with a
simple human experiment on the right, where users classify true and false positive faces of
our proposed detector. Adding fixed context (300px) reduces error by 20% on small size
(S) comparing to no context, but only 2% for extra large (XL). Also, proportional context
(3X) becomes less helpful as size goes smaller, suggesting context should be modeled in
a scale-variant way as well. We operationalize this observation with foveal templates of
massively-large receptive fields (around 300x300, the size of contextual images shown as
yellow boxes).

for tiny object detection.

Context: Context is key to finding small instances as shown in multiple recognition

tasks. In object detection, [9] stacks spatial RNNs (IRNN[101]) model context outside the

region of interest and shows improvements on small object detection. In pedestrian detection,

[133] uses ground plane estimation as contextual features and improves detection on small

instances. In face detection, [210] simultaneously pool ROI features around faces and bodies

for scoring detections, which significantly improve overall performance. Our proposed work

makes use of large local context (as opposed to a global contextual descriptor [9, 133]) in a

scale-variant way (as opposed to [210]). We show that context is mostly useful for finding

low-resolution faces.

Multi-scale representation: Multi-scale representation has been proven useful for

many recognition tasks. [6, 61, 109] show that deep multi-scale descriptors (known as

“hypercolumns”) are useful for semantic segmentation. [9, 107] demonstrate improvements

for such models on object detection. [210] pools multi-scale ROI features. Our model uses
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CHAPTER 2. EXPLOITING CONTEXT FOR SCALE VARIANCE

“hypercolumn” features, pointing out that fine-scale features are most useful for localizing

small objects (Sec. 2.3.1 and Fig. 2.5).

RPN: Our model superficially resembles a region-proposal network (RPN) trained

for a specific object class instead of a general “objectness” proposal generator [143]. The

important differences are that we use foveal descriptors (implemented through multi-scale

features), we select a range of object sizes and aspects through cross-validation, and our

models make use of an image pyramid to find extreme scales. In particular, our approach

for finding small objects make use of scale-specific detectors tuned for interpolated images.

Without these modifications, performance on small-faces dramatically drops by more than

10% (Table 2.1).

2.3 Exploring context and resolution

In this section, we present an exploratory analysis of the issues at play that will inform our

final model. To frame the discussion, we ask the following simple question: what is the best

way to find small faces of a fixed-size (25x20)?. By explicitly factoring out scale-variation in

terms of the desired output, we can explore the role of context and the canonical template

size. Intuitively, context will be crucial for finding small faces. Canonical template size

may seem like a strange dimension to explore - given that we want to find faces of size

25x20, why define a template of any size other than 25x20? Our analysis gives a surprising

answer of when and why this should be done. To better understand the implications of our

analysis, along the way we also ask the analogous question for a large object size: what is

the best way to find large faces of a fixed-size (250x200)?.

Setup: We explore different strategies for building scanning-window detectors for fixed-

size (e.g., 25x20) faces. We treat fixed-size object detection as a binary heatmap prediction

problem, where the predicted heatmap at a pixel position (x, y) specifies the confidence

of a fixed-size detection centered at (x, y). We train heatmap predictors using a fully

convolutional network (FCN) [109] defined over a state-of-the-art architecture ResNet [64].

We explore multi-scale features extracted from the last layer of each res-block, i.e. (res2cx,

res3dx, res4fx, res5cx) in terms of ResNet-50. We will henceforth refer to these as (res2,

res3, res4, res5) features. We discuss the remaining particulars of our training pipeline in

Section 7.4.

2.3.1 Context

Fig. 2.4 presents an analysis of the effect of context, as given by the size of the receptive

field (RF) used to make heatmap prediction. Recall that for fixed-size detection window,
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Figure 2.4: Modeling additional context helps, especially for finding small faces. The
improvement from adding context to a tight-fitting template is greater for small faces
(18.9%) than for large faces (1.5%). Interestingly smaller receptive fields do better for small
faces, because the entire face is visible. The green box represents the actual face size, while
dotted boxes represent receptive fields associated with features from different layers (cyan =
res2, light-blue = res3, dark-blue = res4, black = res5). Same colors are used in Figures 2.5
and 2.7.

we can choose to make predictions using features with arbitrarily smaller or larger receptive

fields compared to this window. Because convolutional features at higher layers tend to

have larger receptive fields (e.g., res4 features span 291x291 pixels), smaller receptive fields

necessitate the use of lower layer features. We see a number of general trends. Adding

context almost always helps, though eventually additional context for tiny faces (beyond

300x300 pixels) hurts. We verified that this was due to over-fitting (by examining training

and test performance). Interestingly, smaller receptive fields do better for small faces,

because the entire face is visible - it is hard to find large faces if one looks for only the tip of

the nose. More importantly, we analyze the impact of context by comparing performance of

a “tight” RF (restricted to the object extent) to the best-scoring “loose” RF with additional

context. Accuracy for small faces improves by 18.9%, while accuracy for large faces improves

by 1.5%, consistent with our human experiments (that suggest that context is most useful

for small instances). Our results suggest that we can build multi-task templates for detectors
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Figure 2.5: Foveal descriptor is crucial for accurate detection on small objects. The small
template (top) performs 7% worse with only res4 and 33% worse with only res5. On the
contrary, removing foveal structure does not hurt the large template (bottom), suggesting
high-resolution from lower layers is mostly useful for finding small objects!

of different sizes with identical receptive fields (of size 291x291), which is particularly simple

to implement as a multi-channel heatmap prediction problem (where each scale-specific

channel and pixel position has its own binary loss). In Fig. 2.5, we compare between

descriptors with and without foveal structure, which shows that high-resolution components

of our foveal descriptors are crucial for accurate detection on small instances.

2.3.2 Resolution

We now explore a rather strange question. What if we train a template whose size

intentionally differs from the target object to be detected? In theory, one can use a “medium”-

size template (50x40) to find small faces (25x20) on a 2X upsampled (interpolated) test

image. Fig. 2.7 actually shows the surprising result that this noticeably boosts performance,

from 69% to 75%! We ask the reverse question for large faces: can one find large faces

(250x200) by running a template tuned for “medium” faces (125x100) on test images

downsampled by 2X? Once again, we see a noticeable increase in performance, from 89% to

94%!

One explanation is that we have different amounts of training data for different object

sizes, and we expect better performance for those sizes with more training data. A recurring

observation in “in-the-wild” datasets such as WIDER FACE and COCO [106] is that smaller
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Figure 2.6: The distribution of average object scales in the ImageNet dataset (assuming
images are normalized to 224x224). more than 80% categories have an average object size
between 40 and 140 pixel. We hypothesize that pre-trained ImageNet models are optimized
for objects in that range.

objects greatly outnumber larger objects, in part because more small things can be labeled

in a fixed-size image. We verify this for WIDER FACE in Fig. 2.8 (gray curve). While

imbalanced data may explain why detecting large faces is easier with medium templates

(because there are more medium-sized faces for training), it does not explain the result for

small faces. There exists less training examples of medium faces, yet performance is still

much better using a medium-size template.

We find that the culprit lies in the distribution of object scales in the pre-trained dataset

(ImageNet). Fig. 2.6 reveals that 80% of the training examples in ImageNet contain objects

of a “medium” size, between 40 to 140px. Specifically, we hypothesize that the pre-trained

ImageNet model (used for fine-tuning our scale-specific detectors) is optimized for objects

in that range, and that one should bias canonical-size template sizes to lie in that range

when possible. We verify this hypothesis in the next section, where we describe a pipeline

for building scale-specific detectors with varying canonical resolutions.

2.4 Approach: scale-specific detection

It is natural to ask a follow-up question: is there a general strategy for selecting template

resolutions for particular object sizes? We demonstrate that one can make use of multi-task
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Figure 2.7: Building templates at original resolution is not optimal. For finding small
(25x20) faces, building templates at 2x resolution improves overall accuracy by 6.3%; while
for finding large (250x200) faces, building templates at 0.5x resolution improves overall
accuracy by 5.6%.

learning to “brute-force” train several templates at different resolution, and greedily select

the ones that do the best. As it turns out, there appears to be a general strategy consistent

with our analysis in the previous section.

First, let us define some notation. We use t(h,w, σ) to represent a template. Such a

template is tuned to detect objects of size (h/σ,w/σ) at resolution σ. For example, the

right-hand-side Fig 2.7 uses both t(250, 200, 1) (top) and t(125, 100, 0.5) (bottom) to find

250x200 faces.

Given a training dataset of images and bounding boxes, we can define a set of canonical

bounding box shapes that roughly covers the bounding box shape space. In this paper,

we define such canonical shapes by clustering, which is derived based on Jaccard distance

d(Eq. (2.1)):

d(si, sj) = 1− J(si, sj) (2.1)

where, si = (hi, wi) and sj = (hj , wj) are a pair of bounding box shapes and J represents

the standard Jaccard similarity (intersection over union overlap).

Now for each target object size si = (hi, wi), we ask: what σi will maximize performance

of ti(σihi, σiwi, σi)? To answer, we simply train separate multi-task models for each value

of σ ∈ Σ (some fixed set) and take the max for each object size. We plot the performance

of each resolution-specific multi-task model as a colored curve in Fig. 2.8. With optimal σi
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Figure 2.8: Template resolution analysis. X-axis represents target object sizes, derived by
clustering. Left Y-axis shows AP around each target size (ignoring objects with more than
0.5 Jaccard distance). Natural regimes emerge in the figure: for finding large faces (more
than 140px in height), build templates at 0.5 resolution; for finding smaller faces (less than
40px in height), build templates at 2X resolution. For sizes in between, build templates at
1X resolution. Right Y-axis along with the gray curve shows the number of data within 0.5
Jaccard distance for each object size, suggesting that more small faces are annotated.

for each (hi, wi), we retrain one multi-task model with “hybrid” resolutions (referred to as

HR), which in practice follows the upper envelope of all the curves. Interestingly, there exist

natural regimes for different strategies: to find large objects (greater than 140px in height),

use 2X smaller canonical resolution. To find small objects (less than 40px in height), use

2X larger canonical template resolution. Otherwise, use the same (1X) resolution. Our

results closely follow the statistics of ImageNet (Fig. 2.6), for which most objects fall into

this range.

Pruning: The hybrid-resolution multitask model in the previous section is somewhat

redundant. For example, template (62, 50, 2), the optimal template for finding 31x25 faces,

is redundant given the existence of template (64, 50, 1), the optimal template for finding

64x50 faces. Can we prune away such redundancies? Yes! We refer the reader to the caption
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Method Easy Medium Hard

RPN 0.896 0.847 0.716

HR-ResNet101 (Full) 0.919 0.908 0.823
HR-ResNet101 (A+B) 0.925 0.914 0.831

Table 2.1: Pruning away redundant templates does not hurt performance. As a reference,
we also plotted the performance of a vanilla RPN as mentioned in Sec. 6.4. Please refer to
Fig. 2.10 for visualization of (Full) and (A+B).

in Fig. 2.10 for an intuitive description. As Table 2.1 shows, pruning away redundant

templates led to some small improvement. Essentially, our model can be reduced to a small

set of scale-specific templates (tuned for 40-140px tall faces) that can be run on a coarse

image pyramid (including 2X interpolation), combined with a set of scale-specific templates

designed for finding small faces (less than 20px in height) in 2X interpolated images.

2.4.1 Architecture

We visualize our proposed architecture in Fig. 3.4. We train binary multi-channel heatmap

predictors to report object confidences for a range of face sizes (40-140px in height). We

then find larger and smaller faces with a coarse image pyramid, which importantly includes

a 2X upsampling stage with special-purpose heatmaps that are predicted only for this

resolution (e.g., designed for tiny faces of shorter than 20 pixels). For the shared CNNs,

we experimented with three different architectures: ResNet101, ResNet50, and VGG16.

Though ResNet101 performs the best, we include a detailed comparison for all models in

Table 2.2. Importantly, our results noticeably improve over prior art for all models on

“hard” set.

Details: Given training images with ground-truth annotations of objects and templates,

we define positive locations to be those where IOU overlap exceeds 70%, and negative

locations to be those where the overlap is below 30% (all other locations are ignored by

zero-ing out the gradient ). Note that this implies that each large object instance generates

many more positive training examples than small instances. Since this results in a highly

imbalanced binary classification training set, we make use of balanced sampling [52] and

hard-example mining [161] to ameliorate such effects. We find performance increased with

a post-processing linear regressor that fine-tuned reported bounding-box locations. To

ensure that we train on data similar to test conditions, we randomly resize training data

to the range of Σ resolution that we consider at test-time (0.5x,1x,2x) and learn from a

random fixed-size crop of 500x500 pixels per image (to take advantage of batch processing).

We fine-tune pre-trained ImageNet models on the WIDER FACE training set with a fixed
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Figure 2.9: Overview of our detection pipeline. Starting with an input image, we first
create a coarse-level image pyramid (including 2X interpolation). At each scale, we feed
the re-scaled input into a CNN to extract hyper-column features. Based on hyper-column
features, we predict response maps (for both detection and regression) of corresponding
templates. Given response maps, we first extract detection bounding boxes for each scale
and then merge them back in original scale. In the end, we apply non-maximum suppression
(NMS) to get the final detection results. The dotted box represents the part that is trained
end-to-end. We run A-type templates (tuned for 40-140px tall faces) on the coarse image
pyramid (including 2X interpolation), while only run B-type (tuned for less than 20px tall
faces) templates on only 2X interpolated images. Please refer to Fig. 2.10 for more details
about two types of templates.

Method Easy Medium Hard

ACF[194] 0.659 0.541 0.273
Two-stage CNN[198] 0.681 0.618 0.323
Multiscale Cascade CNN[197] 0.691 0.634 0.345
Faceness[197] 0.713 0.664 0.424
Multitask Cascade CNN[205] 0.848 0.825 0.598
CMS-RCNN[210] 0.899 0.874 0.624

HR-VGG16 0.862 0.844 0.749
HR-ResNet50 0.907 0.890 0.802
HR-ResNet101 0.919 0.908 0.823

Table 2.2: Performance of our approach on validation set featuring different architectures.
ResNet101 performs slightly better than ResNet50 and much better than VGG16. Impor-
tantly, our VGG16-based model already outperforms prior art by a large margin on “hard”
set.
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Figure 2.10: Pruning away redundant templates. Suppose we test templates built at 1X
resolution (A) on a coarse image pyramid (including 2X interpolation). They will cover a
larger range of scale except extremely small sizes, which are best detected using templates
built at 2X, as shown in Fig. 2.8. Therefore, our final model is reduced to two small sets of
scale-specific templates: (A) tuned for 40-140px tall faces and are run on a coarse image
pyramid (including 2X interpolation) and (B) tuned for faces shorter than 20px and are
only run in 2X interpolated images.

learning rate of 10−4, and evaluate performance on the WIDER FACE validation set (for

diagnostics) and held-out testset. To generate a final set of detections, we apply standard

NMS to the detected heatmap with an overlap threshold of 30%. We discuss other details

of our procedure in supplementary material. Our code will be released in the future.

2.5 Experiments

WIDER FACE: We train a hybrid-resolution model with 25 templates on WIDER FACE’s

training set and reported our performance on the held-out test set. As we see in Fig. 2.11,

our hybrid-resolution model (HR) achieves state-of-the-art performance on all difficulty

levels, but most importantly, it outperformed prior-art by 17% on the “hard” set. Note that

“hard” set includes all faces taller than 10px, hence more accurately represents performance

on the full testset. Qualitative results are shown in Fig. 2.13. Please see supplementary

material for evaluation on “easy” and “medium”, and more diagnosis[74] of our detectors.

We only report the performance of full model (without pruning) on test set.

FDDB: We test our hybrid-resolution model trained on WIDER FACE directly on

FDDB. Our out-of-the-box detector (HR) outperforms all published results on discrete

score. Because WIDER FACE has bounding box annotation while FDDB has bounding

ellipses, we train a post-hoc elliptical regressor to transform our predicted bounding boxes

to bounding ellipses. With the post-hoc regressor, our detector achieves state-of-the-art
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Figure 2.11: Precision re-
call curves on WIDER
FACE test set, featuring
“hard” set, where our ap-
proach (HR) outperforms
state-of-the-art by 17%.
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Figure 2.12: ROC curves on FDDB test set. Our out-of-
the-box detector (HR) achieves state-of-the-art on discrete
score(on the left). By learning a post-hoc elliptical re-
gressor, our approach (HR-ER) achieves state-of-the-art
on continuous score as well(on the right). Note that only
published results are included here.

performance on continuous score as well. Our post-hoc regressor is trained following 10-fold

cross validation. In Fig. 2.12, we plot the performance of our detector both with and

without the elliptical regressor (ER). Qualitative results are shown in Fig. 2.14. Please see

supplementary material for details on how we train the elliptical regressor.

Conclusion: We propose a simple yet effective framework for finding small objects,

demonstrating that both large context and scale-variant representations are crucial. We

specifically show that massively-large receptive fields can be effectively encoded as a foveal

descriptor that captures both coarse context (necessary for detecting small objects) and

high-resolution image features (helpful for localizing small objects). We also explore

the encoding of scale in existing pre-trained deep networks, suggesting a simple way to

extrapolate networks tuned for limited scales to more extreme scenarios in a scale-variant

fashion. Finally, we use our detailed analysis of scale, resolution, and context to develop

a state-of-the-art face detector that significantly outperforms prior work on standard

benchmarks.
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Figure 2.13: Qualitative results on WIDER Face. We visualize one example for each
attribute and scale. Our proposed detector is able to detect faces at a continuous range of
scales, while being robust to challenges such as expression, blur, illumination etc. Please
zoom in to look for some very small detections.

Figure 2.14: Qualitative results on FDDB. Our proposed detector is robust to heavy
occlusion, heavy blur, large appearance and scale variance. Interestingly, many faces under
such challenges are not even annotated (second example). Green ellipses are ground truth,
blue bounding boxes are detection results, and yellow ellipses are regressed ellipses.
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Chapter 3

Exploiting Top-down Feedback for

Occlusion

3.1 Introduction

Hierarchical models of visual processing date back to the iconic work of Marr [116]. Convo-

lutional neural nets (CNN’s), pioneered by LeCun et al. [102], are hierarchical models that

compute progressively more invariant representations of an image in a bottom-up, feedfor-

ward fashion. They have demonstrated remarkable progress in recent history for visual

tasks such as classification [95, 163, 172], object detection [52], and image captioning [85],

among others.

Feedback in biology: Biological evidence suggests that vision at a glance tasks, such

as rapid scene categorization [184], can be effectively computed with feedforward hierarchical

processing. However, vision with scrutiny tasks, such as fine-grained categorization [93]

or detailed spatial manipulations [78], appear to require feedback along a “reverse hierar-

chy” [72]. Indeed, most neural connections in the visual cortex are believed to be feedback

rather than feedforward [37, 96].

Feedback in computer vision: Feedback has also played a central role in many

classic computer vision models. Hierarchical probabilistic models [79, 104, 211], allow

random variables in one layer to be naturally influenced by those above and below. For

example, lower layer variables may encode edges, middle layer variables may encode parts,

while higher layers encode objects. Part models [43] allow a face object to influence the

activation of an eye part through top-down feedback, which is particularly vital for occluded

parts that receive misleading bottom-up signals. Interestingly, feed-forward inference on
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Figure 3.1: On the top, we show a state-of-the-art multi-scale feedforward net, trained for
keypoint heatmap prediction, where the blue keypoint (the right shoulder) is visualized in
the blue plane of the RGB heatmap. The ankle keypoint (red) is confused between left and
right legs, and the knee (green) is poorly localized along the leg. We believe this confusion
arises from bottom-up computations of neural activations in a feedforward network. On the
bottom, we introduce hierarchical Rectified Gaussian (RG) models that incorporate top-
down feedback by treating neural units as latent variables in a quadratic energy function.
Inference on RGs can be unrolled into recurrent nets with rectified activations. Such
architectures produce better features for “vision-with-scrutiny” tasks [72] (such as keypoint
prediction) because lower-layers receive top-down feedback from above. Leg keypoints are
much better localized with top-down knowledge (that may capture global constraints such
as kinematic consistency).

part models can be written as a CNN [53], but the proposed mapping does not hold for

feedback inference.

Overview: To endow CNNs with feedback, we treat neural units as nonnegative latent

variables in a quadratic energy function. When probabilistically normalized, our quadratic

energy function corresponds to a Rectified Gaussian (RG) distribution, for which inference
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can be cast as a quadratic program (QP) [164]. We demonstrate that coordinate descent

optimization steps of the QP can be “unrolled” into a recurrent neural net with rectified

linear units. This observation allows us to discriminatively-tune RGs with neural network

toolboxes: we tune Gaussian parameters such that, when latent variables are inferred from

an image, the variables act as good features for discriminative tasks. From a theoretical

perspective, RGs help establish a connection between CNNs and hierarchical probabilistic

models. From a practical perspective, we introduce RG variants of state-of-the-art deep

models (such as VGG16 [163]) that require no additional parameters, but consistently

improve performance due to the integration of top-down knowledge.

3.2 Hierarchical Rectified Gaussians

In this section, we describe the Rectified Gaussian models of Socci and Seung [164] and

their relationship with rectified neural nets. Because we will focus on convolutional nets,

it will help to think of variables z = [zi] as organized into layers, spatial locations, and

channels (much like the neural activations of a CNN). We begin by defining a quadratic

energy over variables z:

S(z) =
1

2
zTWz + bT z (3.1)

P (z) ∝ eS(z)

Boltzmann: zi ∈ {0, 1}, wii = 0

Gaussian: zi ∈ R,−W is PSD

Rect. Gaussian: zi ∈ R+,−W is copositive

where W = [wij ], b = [bi]. The symmetric matrix W captures bidirectional interactions

between low-level features (e.g., edges) and high-level features (e.g., objects). Probabilistic

models such as Boltzmann machines, Gaussians, and Rectified Gaussians differ simply in

restrictions on the latent variable - binary, continuous, or nonnegative. Hierarchical models,

such as deep Boltzmann machines [151], can be written as a special case of a block-sparse

matrix W that ensures that only neighboring layers have direct interactions.

Normalization: To ensure that the scoring function can be probabilistically normalized,

Gaussian models require that (−W ) be positive semidefinite (PSD) (−zTWz ≥ 0,∀z) Socci

and Seung [164] show that Rectified Gaussians require the matrix (−W ) to only be copositive

(-zTWz ≥ 0, ∀z ≥ 0), which is a strictly weaker condition. Intuitively, copositivity ensures

that the maximum of S(z) is still finite, allowing one to compute the partition function.
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Figure 3.2: A hierarchical Rectified Gaussian model where latent variables zi are denoted
by circles, and arranged into layers and spatial locations. We write x for the input image
and wi for convolutional weights connecting layer i− 1 to i. Lateral inhibitory connections
between latent variables are drawn in red. Layer-wise coordinate updates are computed by
filtering, rectification, and non-maximal suppression.

This relaxation significantly increases the expressive power of a Rectified Gaussian, allowing

for multimodal distributions. We refer the reader to the excellent discussion in [164] for

further details.

Comparison: Given observations (the image) in the lowest layer, we will infer the

latent states (the features) from the above layers. Gaussian models are limited in that

features will always be linear functions of the image. Boltzmann machines produce nonlinear

features, but may be limited in that they pass only binary information across layers [126].

Rectified Gaussians are nonlinear, but pass continuous information across layers: zi encodes

the presence or absence of a feature, and if present, the strength of this activation (possibly

emulating the firing rate of a neuron [83]).

Inference: Socci and Seung point out that MAP estimation of Rectified Gaussians can

be formulated as a quadratic program (QP) with nonnegativity constraints [164]:

max
z≥0

1

2
zTWz + bT z (3.2)

However, rather than using projected gradient descent (as proposed by [164]), we show that

coordinate descent is particularly effective in exploiting the sparsity of W . Specifically, let

us optimize a single zi holding all others fixed. Maximizing a 1-d quadratic function subject
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to non-negative constraints is easily done by solving for the optimum and clipping:

max
zi≥0

f(zi) where f(zi) =
1

2
wiiz

2
i + (bi +

∑
j 6=i

wijzj)zi

∂f

∂zi
= wiizi + bi +

∑
j 6=i

wijzj = 0

zi = − 1

wii
max(0, bi +

∑
j 6=i

wijzj) (3.3)

= max(0, bi +
∑
j 6=i

wijzj) for wii = −1

By fixing wii = −1 (which we do for all our experiments), the above maximization can

solved with a rectified dot-product operation.

Layerwise-updates: The above updates can be performed for all latent variables in a

layer in parallel. With a slight abuse of notation, let us define the input image to be the

(observed) bottom-most layer x = z0, and the variable at layer i and spatial position u is

written as zi[u]. The weight connecting zi−1[v] to zi[u] is given by wi[τ ], where τ = u− v
depends only on the relative offset between u and v (visualized in Fig. 3.2):

zi[u] = max(0, bi + topi[u] + boti[u]) where (3.4)

topi[u] =
∑
τ

wi+1[τ ]zi+1[u− τ ]

boti[u] =
∑
τ

wi[τ ]zi−1[u+ τ ]

where we assume that layers have a single one-dimensional channel of a fixed length to

simplify notation. By tying together weights such that they only depend on relative locations,

bottom-up signals can be computed with cross-correlational filtering, while top-down signals

can be computed with convolution. In the existing literature, these are sometimes referred

to as deconvolutional and convolutional filters (related through a 180◦ rotation) [201]. It is

natural to start coordinate updates from the bottom layer z1, initializing all variables to

0. During the initial bottom-up coordinate pass, topi will always be 0. This means that

the bottom-up coordinate updates can be computed with simple filtering and thresholding.

Hence a single bottom-up pass of layer-wise coordinate optimization of a Rectified Gaussian

model can be implemented with a CNN.

Top-down feedback: We add top-down feedback simply by applying additional

coordinate updates (3.4) in a top-down fashion, from the top-most layer to the bottom.

Fig. 3.3 shows that such a sequence of bottom-up and top-down updates can be “unrolled”
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Figure 3.3: On the left, we visualize two sequences of layer-wise coordinate updates on
our latent-variable model. The first is a bottom-up pass, while the second is a bottom-up
+ top-down pass. On the right, we show that bottom-up updates can be computed with
a feed-forward CNN, and bottom-up-and-top-down updates can be computed with an
“unrolled” CNN with additional skip connections and tied weights (which we define as a
recurrent CNN). We use T to denote a 180◦ rotation of filters that maps correlation to
convolution. We follow the color scheme from Fig. 3.2.

into a feed-forward CNN with “skip” connections between layers and tied weights. One can

interpret such a model as a recurrent CNN that is capable of feedback, since lower-layer

variables (capturing say, edges) can now be influenced by the activations of high-layer

variables (capturing say, objects). Note that we make use of recurrence along the depth

of the hierarchy, rather than along time or spacial dimensions as is typically done [63].

When the associated weight matrix W is copositive, an infinitely-deep recurrent CNN must

converge to the solution of the QP from (3.2).

Non-maximal suppression (NMS): To encourage sparse activations, we add lateral

inhibitory connections between variables from same groups in a layer. Specifically, we write

the weight connecting zi[u] and zi[v] for (u, v) ∈ group as wi[u, v] = −∞. Such connections

are shown as red edges in Fig. 3.2. For disjoint groups (say, non-overlapping 2x2 windows),

layer-wise updates correspond to filtering, rectification (3.4), and non-maximal suppression

(NMS) within each group.

Unlike max-pooling, NMS encodes the spatial location of the max by returning 0 values

for non-maximal locations. Standard max-pooling can be obtained as a special case by

replicating filter weights wi+1 across variables zi within the same group (as shown in

Fig. 3.2). This makes NMS independent of the top-down signal topi. However, our approach

is more general in that NMS can be guided by top-down feedback: high-level variables (e.g.,

car detections) influence the spatial location of low-level variables (e.g., wheels), which is
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particularly helpful when parsing occluded wheels. Interestingly, top-down feedback seems

to encode spatial information without requiring additional “capsule” variables [71].

Approximate inference: Given the above global scoring function and an image x,

inference corresponds to argmaxz S(x, z). As argued above, this can be implemented with

an infinitely-deep unrolled recurrent CNN. However, rather than optimizing the latent

variables to completion, we perform a fixed number (k) of layer-wise coordinate descent

updates. This is guaranteed to report back finite variables z∗ for any weight matrix W

(even when not copositive):

z∗ = QPk(x,W, b), z∗ ∈ RN (3.5)

We write QPk in bold to emphasize that it is a vector-valued function implementing k

passes of layer-wise coordinate descent on the QP from (3.2), returning a vector of all N

latent variables. We set k = 1 for a single bottom-up pass (corresponding to a standard

feed-forward CNN) and k = 2 for an additional top-down pass. We visualize examples of

recurrent CNNs that implement QP1 and QP2 in Fig. 3.4.

Output prediction: We will use these N variables as features for M recognition tasks.

In our experiments, we consider the task of predicting heatmaps for M keypoints. Because

our latent variables serve as rich, multi-scale description of image features, we assume that

simple linear predictors built on them will suffice:

y = V T z∗, y ∈ RM , V ∈ RN×M (3.6)

Training: Our overall model is parameterized by (W,V, b). Assume we are given

training data pairs of images and output label vectors {xi, yi}. We define a training

objective as follows

min
W,V,b

R(W ) +R(V ) +
∑
i

loss(yi, V
TQPk(xi,W, b)) (3.7)

where R are regularizer functions (we use the Frobenius matrix norm) and “loss” sums

the loss of our M prediction tasks (where each is scored with log or softmax loss). We

optimize the above by stochastic gradient descent. Because QPk is a deterministic function,

its gradient with respect to (W, b) can be computed by backprop on the k-times unrolled

recurrent CNN (Fig. 3.3). We choose to separate V from W to ensure that feature extraction

does not scale with the number of output tasks (QPk is independent of M). During learning,

we fix diagonal weights (wi[u, u] = −1) and lateral inhibition weights (wi[u, v] = −∞ for

(u, v) ∈ group).
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Figure 3.4: We show the architecture of QP2 implemented in our experiments. QP1 corre-
sponds to the left half of QP2, which essentially resembles the state-of-the-art VGG-16 CNN
[163]. QP2 is implemented with an 2X “unrolled” recurrent CNN with transposed weights,
skip connections, and zero-interlaced upsampling (as shown in Fig. 3.5). Importantly, QP2

does not require any additional parameters. Red layers include lateral inhibitory connections
enforced with NMS. Purple layers denote multi-scale convolutional filters that (linearly)
predict keypoint heatmaps given activations from different layers. Multi-scale filters are
efficiently implemented with coarse-to-fine upsampling [108], visualized in the purple dotted
rectangle (to reduce clutter, we visualize only 3 of the 4 multiscale layers). Dotted layers
are not implemented to reduce memory.

Related work (learning): The use of gradient-based backpropagation to learn an

unrolled model dates back to ‘backprop-through-structure’ algorithms [56, 165] and graph

transducer networks [102]. More recently, such approaches were explored general graphical

models [169] and Boltzmann machines [57]. Our work uses such ideas to learn CNNs with

top-down feedback using an unrolled latent-variable model.

Related work (top-down): Prior work has explored networks that reconstruct images

given top-down cues. This is often cast as unsupervised learning with autoencoders [70, 118,

185] or deconvolutional networks [201], though supervised variants also exist [108, 128].

Our network differs in that all nonlinear operations (rectification and max-pooling) are

influenced by both bottom-up and top-down knowledge (3.4), which is justified from a

latent-variable perspective.

3.3 Implementation

In this section, we provide details for implementing QP1 and QP2 with existing CNN

toolboxes. We visualize our specific architecture in Fig. 3.4, which closely follows the

state-of-the-art VGG-16 network [163]. We use 3x3 filters and 2x2 non-overlapping pooling
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Figure 3.5: Two-pass layer-wise coordinate descent for a two-layer Rectified Gaussian model
can be implemented with modified CNN operations. White circles denote 0’s used for
interlacing and border padding. We omit rectification operations to reduce clutter. We
follow the color scheme from Fig. 3.2.

windows (for NMS). Note that, when processing NMS-layers, we conceptually use 6x6

filters with replication after NMS, which in practice can be implemented with standard

max-pooling and 3x3 filters (as argued in the previous section). Hence QP1 is essentially a

re-implementation of VGG-16.

QP2: Fig. 3.5 illustrates top-down coordinate updates, which require additional feedfor-

ward layers, skip connections, and tied weights. Even though QP2 is twice as deep as QP1

(and [163]), it requires no additional parameters. Hence top-down reasoning “comes for free”.

There is a small notational inconvenience at layers that decrease in size. In typical CNNs,

this decrease arises from a previous pooling operation. Our model requires an explicit 2×
subsampling step (sometimes known as strided filtering) because it employs NMS instead

of max-pooling. When this subsampled layer is later used to produce a top-down signal

for a future coordinate update, variables must be zero-interlaced before applying the 180◦

rotated convolutional filters (as shown by hollow circles in Fig. 3.5). Note that is not an

approximation, but the mathematically-correct application of coordinate descent given

subsampled weight connections.
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Supervision y: The target label for a single keypoint is a sparse 2D heat map with a

‘1’ at the keypoint location (or all ‘0’s if that keypoint is not visible on a particular training

image). We score this heatmap with a per-pixel log-loss. In practice, we assign ‘1’s to a

circular neighborhood that implicitly adds jittered keypoints to the set of positive examples.

Multi-scale classifiers V : We implement our output classifiers (3.7) as multi-scale

convolutional filters defined over different layers of our model. We use upsampling to

enable efficient coarse-to-fine computations, as described for fully-convolutional networks

(FCNs) [108] (and shown in Fig. 3.4). Specifically, our multi-scale filters are implemented as

1× 1 filters over 4 layers (referred to as fc7, pool4, pool3, and pool2 in [163]). Because our

top (fc7) layer is limited in spatial resolution (1x1x4096), we define our coarse-scale filter to

be “spatially-varying”, which can alternatively be thought of as a linear “fully-connected”

layer that is reshaped to predict a coarse (7x7) heatmap of keypoint predictions given

fc7 features. Our intuition is that spatially-coarse global features can still encode global

constraints (such as viewpoints) that can produce coarse keypoint predictions. This coarse

predictions are upsampled and added to the prediction from pool4, and so on (as in [108]).

Multi-scale training: We initialize parameters of both QP1 and QP2 to the pre-

trained VGG-16 model[163], and follow the coarse-to-fine training scheme for learning

FCNs [108]. Specifically, we first train coarse-scale filters, defined on high-level (fc7)

variables. Note that QP1 and QP2 are equivalent in this setting. This coarse-scale model is

later used to initialize a two-scale predictor, where now QP1 and QP2 differ. The process is

repeated up until the full multi-scale model is learned. To save memory during various stages

of learning, we only instantiate QP2 up to the last layer used by the multi-scale predictor

(not suitable for QPk when k > 2). We use a batch size of 40 images, a fixed learning rate

of 10−6, momentum of 0.9 and weight decay of 0.0005. We also decrease learning rates of

parameters built on lower scales [108] by a factor of 10. Batch normalization[77] is used

before each non-linearity. Both our models and code are available online 1.

Prior work: We briefly compare our approach to recent work on keypoint prediction

that make use of deep architectures. Many approaches incorporate multi-scale cues by

evaluating a deep network over an image pyramid [176, 177, 180]. Our model processes

only a single image scale, extracting multi-scale features from multiple layers of a single

network, where importantly, fine-scale features are refined through top-down feedback.

Other approaches cast the problem as one of regression, where (x,y) keypoint locations are

predicted [207] and often iteratively refined [18, 171]. Our models predict heatmaps, which

can be thought of as marginal distributions over the (x,y) location of a keypoint, capturing

uncertainty. We show that by thresholding the heatmap value (certainty), one can also

1https://github.com/peiyunh/rg-mpii
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produce keypoint visibility estimates “for free”. Our comments hold for our bottom-up

model QP1, which can be thought of as a FCN tuned for keypoint heatmap prediction,

rather than semantic pixel labeling. Indeed, we find such an approach to be a surprisingly

simple but effective baseline that outperforms much prior work.

3.4 Experiment Results

We evaluated fine-scale keypoint localization on several benchmark datasets of human faces

and bodies. To better illustrate the benefit of top-down feedback, we focus on datasets

with significant occlusions, where bottom-up cues will be less reliable. All datasets provide

a rough detection window for the face/body of interest. We crop and resize detection

windows to 224x224 before feeding into our model. Recall that QP1 is essentially a re-

implementation of a FCN [108] defined on a VGG-16 network [163], and so represents quite

a strong baseline. Also recall that QP2 adds top-down reasoning without any increase in

the number of parameters. We will show this consistently improves performance, sometimes

considerably. Unless otherwise stated, results are presented for a 4-scale multi-scale model.

AFLW: The AFLW dataset [94] is a large-scale real-world collection of 25,993 faces

in 21,997 real-world images, annotated with facial keypoints. Notably, these faces are not

limited to be responses from an existing face detector, and so this dataset contains more

pose variation than other landmark datasets. We hypothesized that such pose variation

might illustrate the benefit of bidirectional reasoning. Due to a lack of standard splits, we

randomly split the dataset into training (60%), validation (20%) and test (20%). As this is

not a standard benchmark dataset, we compare to ourselves for exploring the best practices

to build multi-scale predictors for keypoint localization (Fig. 3.7). We include qualitative

visualizations in Fig. 3.6.

COFW: Caltech Occluded Faces-in-the-Wild (COFW) [16] is dataset of 1007 face

images with severe occlusions. We present qualitative results in Fig. 3.8 and Fig. 3.9, and

quantitative results in Table 3.1 and Fig. 3.10. Our bottom-up QP1 already performs near

the state-of-the-art, while the QP2 significantly improves in accuracy of visible landmark

localization and occlusion prediction. In terms of the latter, our model even approaches

upper bounds that make use of ground-truth segmentation labels [51]. Our models are not

quite state-of-the-art in localizing occluded points. We believe this may point to a limitation

in the underlying benchmark. Consider an image of a face mostly occluded by the hand

(Fig. 3.8). In such cases, humans may not even agree on keypoint locations, indicating that

a keypoint distribution may be a more reasonable target output. Our models provide such

uncertainty estimates, while most keypoint architectures based on regression cannot.
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Figure 3.6: Facial landmark localization results of QP2 on AFLW, where landmark ids
are denoted by color. We only plot landmarks annotated visible. Our bidirectional model
is able to deal with large variations in illumination, appearance and pose (a). We show
images with multiple challenges present in (b).

Pascal Person: The Pascal 2011 Person dataset [60] consists of 11,599 person instances,

each annotated with a bounding box around the visible region and up to 23 human keypoints

per person. This dataset contains significant occlusions. We follow the evaluation protocol

of [110] and present results for localization of visible keypoints on a standard testset in

Table 3.2. Our bottom-up QP1 model already significantly improves upon the state-of-the-

art (including prior work making use of deep features), while our top-down models QP2

further improve accuracy by 2% without any increase in model complexity (as measured

by the number of parameters). Note that the standard evaluation protocols evaluate only

visible keypoints. In Fig. 3.11, we demonstrate that our model can also accurately predict

keypoint visibility “for free”.
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Visible Points All Points

RCPR[16] - 8.5
RPP[196] - 7.52
HPM[50] - 7.46
SAPM[51] 5.77 6.89
FLD-Full[191] 5.18 5.93

QP1 5.26 10.06
QP2 4.67 7.87

Table 3.1: Average keypoint localization error (as a fraction of inter-ocular distance)
on COFW. When adding top-down feedback (QP2), our accuracy on visible keypoints
significantly improves upon prior work. In the text, we argue that such localization results
are more meaningful than those for occluded keypoints. In Fig. 3.10, we show that our
models significantly outperform all prior work in terms of keypoint visibility prediction.

α 0.10 0.20

CNN+prior[110] 47.1 -

QP1 66.5 78.9
QP2 68.8 80.8

Table 3.2: We show human keypoint localization performance on PASCAL VOC 2011 Person
following the evaluation protocol in [110]. PCK refers to the fraction of keypoints that were
localized within some distance (measured with respect to the instance’s bounding box).
Our bottom-up models already significantly improve results across all distance thresholds
(α = 10, 20%). Our top-down models add a 2% improvement without increasing the number
of parameters.
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Figure 3.7: We plot the fraction of recalled face images whose average pixel localization
error in AFLW (normalized by face size [212]) is below a threshold (x-axis). We compare
our QP1 and QP2 with varying numbers of scales used for multi-scale prediction, following
the naming convention of FCN [108] (where the Nx encodes the upsampling factor needed
to resize the predicted heatmap to the original image resolution.) Single-scale models
(QP1-32x and QP2-32x) are identical but perform quite poorly, not localizing any keypoints
with 3.0% of the face size. Adding more scales dramatically improves performance, and
moreover, as we add additional scales, the relative improvement of QP2 also increases (as
finer-scale features benefit the most from feedback). We visualize such models in Fig. 3.12.

MPII: MPII is (to our knowledge) the largest available articulated human pose

dataset [4], consisting of 40,000 people instances annotated with keypoints, visibility

flags, and activity labels. We present qualitative results in Fig. 3.14 and quantitative results

in Table 3.3. Our top-down model QP2 appears to outperform all prior work on full-body

keypoints. Note that this dataset also includes visibility labels for keypoints, even though

these are not part of the standard evaluation protocol. In Fig. 3.13, we demonstrate that

visibility prediction on MPII also benefits from top-down feedback.

TB: It is worth contrasting our results with TB [178], which implicitly models feedback

by (1) using a MRF to post-process CNN outputs to ensure kinematic consistency between

keypoints and (2) using high-level predictions from a coarse CNN to adaptively crop high-res

features for a fine CNN. Our single CNN endowed with top-down feedback is slightly more
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Figure 3.8: Visualization of keypoint predictions by QP1 and QP2 on two example COFW
images. Both our models predict both keypoint locations and their visibility (produced
by thresholding the value of the heatmap confidence at the predicted location). We
denote (in)visible keypoint predictions with (red)green dots, and also plot the raw heatmap
prediction as a colored distribution overlayed on a darkened image. Both our models
correctly estimate keypoint visibility, but our bottom-up models QP1 misestimate their
locations (because bottom-up evidence is misleading during occlusions). By integrating
top-down knowledge (perhaps encoding spatial constraints on configurations of keypoints),
QP2 is able to correctly estimate their locations.

Head Shou Elb Wri Hip Kne Ank Upp Full

GM [54] - 36.3 26.1 15.3 - - - 25.9 -
ST [152] - 38.0 26.3 19.3 - - - 27.9 -
YR [199] 73.2 56.2 41.3 32.1 36.2 33.2 34.5 43.2 44.5
PS [136] 74.2 49.0 40.8 34.1 36.5 34.4 35.1 41.3 44.0
TB [178] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 84.5 82.0

QP1 94.3 90.4 81.6 75.2 80.1 73.0 68.3 82.4 81.1
QP2 95.0 91.6 83.0 76.6 81.9 74.5 69.5 83.8 82.4

Table 3.3: We show PCKh-0.5 keypoint localization results on MPII using the recommended
benchmark protocol [4].

accurate without requiring any additional parameters, while being 2X faster (86.5 ms vs

TB’s 157.2 ms). These results suggest that top-down reasoning may elegantly capture

structured outputs and attention, two active areas of research in deep learning.

36



CHAPTER 3. EXPLOITING TOP-DOWN FEEDBACK FOR OCCLUSION

Figure 3.9: Facial landmark localization and occlusion prediction results of QP2 on COFW,
where red means occluded. Our bidirectional model is robust to occlusions caused by
objects, hair, and skin. We also show cases where the model correctly predicts visibility
but fails to accurately localize occluded landmarks (b).

K 1 2 3 4 5 6

Upper Body 57.8 59.6 58.7 61.4 58.7 60.9

Full Body 59.8 62.3 61.0 63.1 61.2 62.6

Table 3.4: PCKh(.5) on MPII-Val for a smaller network

More recurrence iterations: To explore QPK ’s performance as a function of K

without exceeding memory limits, we trained a smaller network from scratch on 56X56

sized inputs for 100 epochs. As shown in Table 3.4, we conclude: (1) all recurrent models

outperform the bottom-up baseline QP1; (2) additional iterations generally helps, but

performance maxes out at QP4. A two-pass model (QP2) is surprisingly effective at

capturing top-down info while being fast and easy to train.
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Figure 3.10: Keypoint visibility prediction on COFW, measured by precision-recall. Our
bottom-up model QP1 already outperforms all past work that does not make use of ground-
truth segmentation masks (where acronyms correspond those in Table 3.1). Our top-down
model QP2 even approaches the accuracy of such upper bounds. Following standard
protocol, we evaluate and visualize accuracy in Fig. 3.9 at a precision of 80%. At such
a level, our recall (76%) significantly outperform the best previously-published recall of
FLD [191] (49%).

Conclusion: We show that hierarchical Rectified Gaussian models can be optimized

with rectified neural networks. From a modeling perspective, this observation allows one

to discriminatively-train such probabilistic models with neural toolboxes. From a neural

net perspective, this observation provides a theoretically-elegant approach for endowing

CNNs with top-down feedback – without any increase in the number of parameters. To

thoroughly evaluate our models, we focus on “vision-with-scrutiny” tasks such as keypoint

localization, making use of well-known benchmark datasets. We introduce (near) state-

of-the-art bottom-up baselines based on multi-scale prediction, and consistently improve

upon those results with top-down feedback (particularly during occlusions when bottom-up

evidence may be ambiguous).
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Figure 3.11: Keypoint visibility prediction on Pascal Person (a dataset with significant
occlusion and truncation), measured by precision-recall curves. At 80% precision, our
top-down model (QP2) significantly improves recall from 65% to 85%.
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Figure 3.12: We visualize bottom-up and top-down models trained for human pose estima-
tion, using the naming convention of Fig. 3.7. Top-down feedback (QP2) more accurately
guides finer-scale predictions, resolving left-right ambiguities in the ankle (red) and poor
localization of the knee (green) in the bottom-up model (QP1).
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Figure 3.13: Keypoint visibility prediction on MPII, measured by precision-recall curves.
At 80% precision, our top-down model (QP2) improves recall from 44% to 49%.
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Figure 3.14: Keypoint localization results of QP2 on the MPII Human Pose testset. We
quantitatively evaluate results on the validation set in Table 3.2. Our models are able to
localize keypoints even under significant occlusions. Recall that our models can also predict
visibility labels “for free”, as shown in Fig. 3.13.
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Chapter 4

Exploiting Visibility For Occlusion

(a) (b)

Figure 4.1: What is a good representation for 3D sensor data? We visualize a bird’s-eye-view
LiDAR scene and highlight two regions that may contain an object. Many contemporary
deep networks process 3D point clouds, making it hard to distinguish the two regions
(left). But depth sensors provide more than 3D points - they provide estimates of freespace
in between the sensor and the measured 3D point. We visualize freespace by raycasting
(right), where green is free and white is unknown. In this paper, we introduce deep 3D
networks that leverage freespace to significantly improve 3D object detection accuracy.

4.1 Introduction

What is a good representation for processing 3D sensor data? While this is a fundamental

challenge in machine vision dating back to stereoscopic processing, it has recently been

explored in the context of deep neural processing of 3D sensors such as LiDARs. Various

representations have been proposed, including graphical meshes [14], point clouds [138],

voxel grids [209], and range images [120], to name a few.
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Visibility: We revisit this question by pointing out that 3D sensored data, is infact,

not fully 3D! Instantaneous depth measurements captured from a stereo pair, structured

light sensor, or LiDAR undeniably suffer from occlusions: once a particular scene element

is measured at a particular depth, visibility ensures that all other scene elements behind it

along its line-of-sight are occluded. Indeed, this loss of information is one of the fundamental

reasons why 3D sensor readings can often be represented with 2D data structures - e.g., 2D

range image. From this perspective, such 3D sensored data might be better characterized

as “2.5D” [117].

3D Representations: We argue that representations for processing LiDAR data should

embrace visibility, particularly for applications that require instantaneous understanding

of freespace (such as autonomous navigation). However, most popular representations are

based on 3D point clouds (such as PointNet [100, 138]). Because these were often proposed

in the context of truly 3D processing (e.g., of 3D mesh models), they do not exploit visibility

constraints implicit in the sensored data (Fig. 7.1). Indeed, representing a LiDAR sweep as a

collection of (x, y, z) points fundamentally destroys such visibility information if normalized

(e.g., when centering point clouds).

Occupancy: By no means are we the first to point out the importance of visibility. In

the context of LiDAR processing, visibility is well studied for the tasks of map-building

and occupancy reasoning [75, 174]. However, it is not well-explored for object detection,

with one notable exception: [200] builds a probabilistic occupancy grid and performs

template matching to directly estimate the probability of an object appearing at each

discretized location. However, this approach requires knowing surface shape of object

instances beforehand, therefore it is not scalable. In this paper, we demonstrate that deep

architectures can be simply augmented to exploit visibility and freespace cues.

Range images: Given our arguments above, one solution might be defining a deep

network on 2D range image input, which implicitly encodes such visibility information.

Indeed, this representation is popular for structured light “RGBD” processing [40, 89], and

has also been proposed for LiDAR [120]. However, such representations do not seem to

produce state-of-the-art accuracy for 3D object understanding, compared to 3D voxel-based

or top-down, bird’s-eye-view (BEV) projected grids. We posit that convolutional layers that

operate along a depth dimension can reason about uncertainty in depth. To maintain this

property, we introduce simple but novel approaches that directly augment state-of-the-art

3D voxel representations with visibility cues.

Our approach: We propose a deep learning approach that efficiently augments point

clouds with visibility. Our specific constributions are three-fold; (1) We first (re)introduce

raycasting algorithms that effciently compute on-the-fly visibility for a voxel grid. We
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demonstrate that these can be incorporated into batch-based gradient learning. (2) Next,

we describe a simple approach to augmenting voxel-based networks with visibility: we

add a voxelized visibility map as an additional input stream, exploring alternatives for

early and late fusion; (3) Finally, we show that visibility can be combined with two crucial

modifications common to state-of-the-art networks: synthetic data augmentation of virtual

objects, and temporal aggregation of LiDAR sweeps over multiple time frames. We show

that visibility cues can be used to better place virtual objects. We also demonstrate that

visibility reasoning over multiple time frames is akin to online occupancy mapping.

4.2 Related Work

4.2.1 3D Representations

Point representation: Most classic works on point representation employ hand-crafted

descriptors and require robust estimates of local surface normals, such as spin-images [80]

and Viewpoint Feature Histograms (VFH) [149]. Since PointNet [138], there has been a

line of work focuses on learning better point representation, including PointNet++[140],

Kd-networks [92], PointCNN [105], EdgeConv [187], and PointConv [190] to name a few.

Recent works on point-wise representation tend not to distinguish between reconstructed

and measured point clouds. We argue that when the input is a measured point cloud, e.g.

a LiDAR sweep, we need to look beyond points and reason about visibility that is hidden

within points.

Visibility representation: Most research on visibility representation has been done

in the context of robotic mapping. For example, Buhmann et al. [15] estimates a 2D

probabilistic occupancy map from sonar readings to navigate the mobile robot and more

recently Hornung et al. [75] have developed Octomap for general purpose 3D occupancy

mapping. Visibility through raycasting is at the heart of developing such occupancy maps.

Despite the popularity, such visibility reasoning has not been widely studied in the context

of object detection, except a notable exception of [200], which develops a probabilistic

framework based on occupancy maps to detect objects with known surface models.

4.2.2 LiDAR-based 3D Object Detection

Initial representation: We have seen LiDAR-based object detectors built upon range

images, bird’s-eye-view feature maps, raw point clouds, and also voxelized point clouds.

One example of a range image based detector is LaserNet [120], which treats each LiDAR

sweep as a cylindrical range image. Examples of bird-eye-view detectors include AVOD [97],
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LiDAR Point Sweeps
 X = (x, y, z, t)

Multi-channel Feature Map 
 f(X)

Per-anchor Predictions 
 (S, C)

Oriented 3D Boxes 
 D

Predefined 
3D Anchors

Hypothetic Anchor Placements 
over a 2D Plane

Figure 4.2: Overview of a general 3D detection framework, designed to solve 3D detection
as a bird’s-eye-view (BEV) 2D detection problem. The framework consists of two parts:
anchors (left) and network (right). We first define a set of 3D anchor boxes that match
the average box shape of different object classes. Then we hypothesize placing each anchor
at different spatial locations over a ground plane. We learn a convolutional network to
predict confidence and adjustments for each anchor placement. Such predictions are made
based on 2D multi-channel feature maps, extracted from the input 3D point cloud. The
predictions for each anchor consist of a confidence score S and a set of coefficients C for
adjusting the anchor box. Eventually, the framework produces a set of 3D detections with
oriented 3D boxes.

HDNet [195], and Complex-YOLO [162]. One example that builds upon raw point clouds

is PointRCNN [160]. Examples of voxelized point clouds include the initial VoxelNet[209],

SECOND [193], and PointPillars [100]. Other than [200], we have not seen a detector that

uses visibility as the initial representation.

Object augmentation: Yan et al. [193] propose a novel form of data augmentation,

which we call object augmentation. It copy-pastes object point clouds from one scene

into another, resulting in new training data. This augmentation technique improves both

convergence speed and final performance and is adopted in all recent state-of-the-art 3D

detectors, such as PointRCNN [160] and PointPillars [100]. For objects captured under

the same sensor setup, simple copy-paste preserves the relative pose between the sensor

and the object, resulting in approximately correct return patterns. However, such practice

often inserts objects regardless of whether it violates the scene visibility. In this paper, we

propose to use visibility reasoning to maintain correct visibility while augmenting objects

across scenes.

Temporal aggregation: When learning 3D object detectors over a series of LiDAR

sweeps, it is proven helpful to aggregate information across time. Luo et al. [114] develop a

recurrent architecture for detecting, tracking, and fore-casting objects on LiDAR sweeps.

Choy et al. [23] propose to learn spatial-temporal reasoning through 4D ConvNets. Another

technique for temporal aggregation, first found in SECOND [193], is to simply aggregate

point clouds from different sweeps while preserving their timestamps relative to the current

one. These timestamps are treated as additional per-point input feature along with (x, y, z)
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and fed into point-wise encoders such as PointNet. We explore temporal aggregation over

visibility representations and point out that one can borrow ideas from classic robotic

mapping to integrate visibility representation with learning.

4.3 Exploit Visibility for 3D Object Detection

Before we discuss how to integrate visibility reasoning into 3D detection, we first introduce

a general 3D detection framework. Many 3D detectors have adopted this framework,

including AVOD [97], HDNet [195], Complex-YOLO [162], VoxelNet [209], SECOND [193],

and PointPillars [100]. Among the more recent ones, there are two crucial innovations: (1)

object augmentation by inserting rarely seen (virtual) objects into training data and (2)

temporal aggregation of LiDAR sweeps over multiple time frames.

We integrate visibility into the aforementioned 3D detection framework. First, we

(re)introduce a raycasting algorithm that efficiently computes visibility. Then, we introduce

a simple approach to integrate visibility into the existing framework. Finally, we discuss

visibility reasoning within the context of object augmentation and temporal aggregation.

For object augmentation, we modify the raycasting algorithm to make sure visibility remains

valid while inserting virtual objects. For temporal aggregation, we point out that visibility

reasoning over multiple frames is akin to online occupancy mapping.

4.3.1 A General Framework for 3D Detection

Overview: We illustrate the general 3D detection framework in Fig. 6.1. Please refer

to the caption. We highlight the fact that once the input 3D point cloud is converted to

a multi-channel BEV 2D representation, we can make use of standard 2D convolutional

architectures. We later show that visibility can be naturally incorporated into this 3D

detection framework.

Object augmentation: Data augmentation is a crucial ingredient of contemporary

training protocols. Most augmentation strategies perturb coordinates through random

transformations (e.g. translation, rotation, flipping) [97, 139]. We focus on object augmen-

tation proposed by Yan et al. [193], which copy-pastes (virtual) objects of rarely-seen classes

(such as buses) into LiDAR scenes. Our ablation studies (g→i in Tab. 4.3) suggest that

it dramatically improves vanilla PointPillars by an average of +9.1% on the augmented

classes.

Temporal aggregation: In LiDAR-based 3D detection, researchers have explored

various strategies for temporal reasoning. We adopt a simple method that aggregates

(motion-compensated) points from different LiDAR sweeps into a single scene [17, 193].
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Importantly, points are augmented with an additional channel that encodes the relative

timestamp (x, y, z, t). Our ablation studies (g→j in Tab. 4.3) suggest that temporal

aggregation dramatically improves the overall mAP of vanilla PointPillars model by +8.6%.

4.3.2 Compute Visibility through Raycasting

Physical raycasting in LiDAR: Each LiDAR point is generated through a physical

raycasting process. To generate a point, the sensor emits a laser pulse in a certain direction.

The pulse travels through air forward and back after hitting an obstacle. Upon its return,

one can compute a 3D coordinate derived from the direction and the time-of-flight. However,

coordinates are by no means the only information offered by such active sensing. Crucially,

it also provides estimates of freespace along the ray of the pulse.

Simulated LiDAR raycasting: By exploiting the causal relationship between freespace

and point returns - points lie along the ray where freespace ends, we can re-create the

instantaneous visibility encountered at the time of LiDAR capture. We do so by drawing a

line segment from the sensor origin to a 3D point. We would like to use this line segment to

define freespace across a discretized volume, e.g. a 3D voxel grid. Specifically, we compute

all voxels that intersect this line segment. Those that are encountered along the ray are

marked as free, except the last voxel enclosing the 3D point is marked as occupied. This

results in a visibility volume where all voxels are marked as occupied, free, or unknown

(default). We will integrate the visibility volume into the general detection framework

(Fig. 6.1) in the form of a multi-channel 2D feature map (e.g. a RGB image is an example

with 3 channels) where visibility along the vertical dimension (z-axis) is treated as different

channels.

Efficient voxel traversal: Visibility computation must be extremely efficient. Many

detection networks exploit sparsity in LiDAR point clouds: PointPillars[100] process only

non-empty pillars (about 3%) and SECOND [193] employs spatially sparse 3D ConvNets.

Inspired by these approaches, we exploit sparsity through an efficient voxel traversal

algorithm [3]. For any given ray, we need traverse only a sparse set of voxels along the ray.

Intuitively, during the traversal, the algorithm enumerates over the six axis-aligned faces of

the current voxel to determine which is intersected by the exiting ray (which is quite efficient).

It then simply advances to the neighboring voxel with a shared face. The algorithm begins at

the voxel at the origin and terminates when it encounters the (precomputed) voxel occupied

by the 3D point. This algorithm is linear in the grid dimension, making it quite efficient.

Given an instantaneous point cloud, where points are captured at the same timestamp, we

perform raycasting from the origin to each point and aggregate voxels’ visibility afterwards.

To reduce discretization effects during aggregation, we follow best-practices outlined in
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(a) original (b) naive

(c) culling (d) drilling

Figure 4.3: Different types of object augmentation we can do through visibility reasoning.
In (a), we show the original LiDAR point cloud. In (b), we naively insert new objects
(red) into the scene. Clearly, the naive strategy may result in inconsistent visibility. Here,
a trailer is inserted behind a wall that should occlude it. We use raycasting as a tool to
“rectify” the LiDAR sweep. In (c), we illustrate the culling strategy, where we remove virtual
objects that are occluded (purple). In practice, this may excessively remove augmented
objects. In (d), we visualize the drilling strategy, where we remove points from the original
scene that occlude the virtual objects. Here, a small piece of wall is removed (yellow).

Octomap (Sec. 5.1 in [75]).

Raycasting with augmented objects: Prior work augments virtual objects while

ignoring visibility constraints, producing LiDAR sweeps with inconsistent visibility (e.g.,

by inserting an object behind a wall that should occlude it - Fig. 4.3-(b)). We can use

raycasting as a tool to “rectify” the LiDAR sweep. Specifically, we might wish to remove

virtual objects that are occluded (a strategy we term culling - Fig. 4.3-(c)). Because this

might excessively decrease the number of augmented objects, another option is to remove

points from the original scene that occlude the inserted objects (a strategy we term drilling

- Fig. 4.3-(d)).

Fortunately, as we show in Alg. 1, both strategies are efficient to implement with

simple modifications to the vanilla voxel traversal algorithm. We only have to change the

terminating condition of raycasting from arriving at the end point of the ray to hitting a

voxel that is BLOCKED. For culling, when casting rays from the original scene, we set voxels

occupied by virtual objects as BLOCKED; when casting rays from the virtual objects, we set

voxels occupied in original scenes as BLOCKED. As a result, points that should be occluded

will be removed. For drilling, we allow rays from virtual objects to pass through voxels
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(a) instantaneous visibility (b) temporal occupancy

Figure 4.4: We visualize instantaneous visibility vs. temporal occupancy. We choose one
xy-slice in the middle to visualize. Each pixel represents a voxel on the slice. On the
left, we visualize a single LiDAR sweep and the instantaneous visibility, which consists of
three discrete values: occupied (red), unknown (gray), and free (blue). On the right, we
visualize aggregated LiDAR sweeps plus temporal occupancy, computed through Bayesian
Filtering [75]. Here, the color encodes the probability of the corresponding voxel being
occupied: redder means more occupied.
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(a) early fusion (b) late fusion

Figure 4.5: We explore both early fusion and late fusion when integrating visibility into
the PointPillars model. In the early fusion (a), we concatenate visibility volume with pillar
features before applying a backbone network for further encoding. For late fusion, we build
one separate backbone network for each stream and concatenate the output of each stream
into a final multi-channel feature map. We compare these two alternatives in ablation
studies (Tab. 4.3).

occupied in the original scene.

Online occupancy mapping: How do we extend instantaneous visibility into a

temporal context? Assume knowing the sensor origin at each timestamp, we can compute

instantaneous visibility over every sweep, resulting in 4D spatial-temporal visibility. If we

directly integrate a 4D volume into the detection framework, it would be too expensive.

We seek out online occupancy mapping [75, 175] and apply Bayesian filtering to turn a 4D

spatial-temporal visibility into a 3D posterior probability of occupancy. In Fig. 4.4, we plot

a visual comparison between instantaneous visibility and temporal occupancy. We follow

Octomap [75]’s formulation and use their off-the-shelf hyper-parameters, e.g. the log-odds

of observing freespace and occupied space.
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Table 4.1: 3D detection mAP on the NuScenes test set.

car pedes. barri. traff. truck bus trail. const. motor. bicyc. mAP

PointPillars [17] 68.4 59.7 38.9 30.8 23.0 28.2 23.4 4.1 27.4 1.1 30.5
Ours 79.1 65.0 34.7 28.8 30.4 46.6 40.1 7.1 18.2 0.1 35.0

4.3.3 Approach: A Two-stream Network

Now that we have discussed raycasting approaches for computing visibility, we introduce

a novel two-stream network for 3D object detection. We incorporate visibility into a

state-of-the-art 3D detector, i.e. PointPillars, as an additional stream. The two-stream

approach leverages both the point cloud and the visibility representation and fuses them

into a multi-channel representation. We explore both early and late fusion strategies, as

illustrated in Fig. 4.5. This is a part of the overall architecture illustrated in Fig. 6.1.

Implementation: We implement our two-stream approach by adding an additional

input stream to PointPillars. We adopt PointPillars’s resolution for discretization in order

to improve ease of integration. As a result, our visibility volume has the same 2D spatial

size as the pillar feature maps. A simple strategy is to concatenate and feed them into

a backbone network. We refer to this strategy as early fusion (Fig. 4.5-(a)). Another

strategy is to feed each into a separate backbone network, which we refer to as late fusion

(Fig. 4.5-(b)). We discuss more training details in the Appendix ?? . Our code is available

online1.

4.4 Experiments

We present both qualitative (Fig. 5.4) and quantitative results on the NuScenes 3D detection

benchmark. We first introduce the setup and baselines, before we present main results on

the test benchmark. Afterwards, we perform diagnostic evaluation and ablation studies to

pinpoint where improvements come from. Finally, we discuss the efficiency of computing

visibility through raycasting on-the-fly.

Setup: We benchmark our approach on the NuScenes 3D detection dataset. The

dataset contains 1,000 scenes captured in two cities. We follow the official protocol for

NuScenes detection benchmark. The training set contains 700 scenes (28,130 annotated

frames). The validation set contains 150 scenes (6,019 annotated frames). Each annotated

frame comes with one LiDAR point cloud captured by a 32-beam LiDAR, as well as up to 10

1https://www.cs.cmu.edu/~peiyunh/wysiwyg
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Figure 4.6: We visualize qualitative results of our two-stream approach on the NuScenes
test set. We assign each class a different color (top). We use solid cuboids to represent
ground truth objects and wireframe boxes to represent predictions. To provide context,
we also include an image captured by the front camera in each scenario. Note the image
is not used as part of input for our approach. In (a), our approach successfully detects
most vehicles in the scene on a rainy day, including cars, trucks, and trailers. In (b), our
model manages to detect all the cars around and also two motorcycles on the right side. In
(c), we visualize a scene with many pedestrians on the sidewalk and our model is able to
detect most of them. Finally, we demonstrate a failure case in (d), where our model fails to
detect objects from rare classes. In this scenario, our model fails to detect two construction
vehicles on the car’s right side, reporting one as a truck and the other as a bus.
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frames of (motion-compensated) point cloud. We follow the official evaluation protocol for

3D detection [17] and evaluate average mAP over different classes and distance threshold.

Baseline: PointPillars [100] achieves the best accuracy on the NuScenes detection

leaderboard among all published methods that have released source code. The official

PointPillars codebase2 only contains an implementation for KITTI [49]. To reproduce

PointPillars’s results on NuScenes, the authors of PointPillars recommend a third-party

implementation3.Using an off-the-shelf configuration provided by the third-part implemen-

tation, we train a PointPillars model for 20 epochs from scratch on the full training set and

use it as our baseline. This model achieves an overall mAP of 31.5% on the validation set,

which is 2% higher than the official PointPillars mAP (29.5%) [17] (Tab. 4.2). As suggested

by [17], the official implementation of PointPillars employ pretraining (ImageNet/KITTI).

There is no pretraining in our re-implementation.

Main results: We submitted the results of our two-stream approach to the NuScenes

test server. In Tab. 4.1, we compare our test-set performance to PointPillars on the official

leaderboard [17]. By augmenting visibility, our proposed approach achieves a significant

improvement over PointPillars in overall mAP by a margin of 4.5%. Specifically, our

approach outperforms PointPillars by 10.7% on cars, 5.3% on pedestrians, 7.4% on trucks,

18.4% on buses, and 16.7% on trailers. Our model underperforms official PointPillars on

motorcycles by a large margin. We hypothesize this might be due to us (1) using a coarser

xy-resolution or (2) not pretraining on ImageNet/KITTI.

Improvement at different levels of visibility: We compare our two-stream ap-

proach to PointPillars on the validation set, where visibility improves overall mAP by

4%. We also evaluate each object class at different levels of visibility. Here, we focus on

the two most common classes: car and pedestrian. Interestingly, we observe the biggest

improvement over heavily occluded cars (0-40% visible) and the smallest improvement over

fully-visible cars (80-100% visible). For pedestrian, we also find the smallest improvement

is over fully-visible pedestrians (3.2%), which is 1-3% less than the improvement over

pedestrians with heavier occlusion.

Ablation studies: To understand how much improvement each component provides,

we perform ablation studies by starting from our final model and removing one component

at a time. Key observations from Tab. 4.3 are:

• Early fusion (a,b): Replacing early fusion (a) with late fusion (b) results in a 1.4%

drop in overall mAP.

• Drilling (b,c,d): Replacing drilling (b) with culling (c) results in a 11.4% drop on

2https://github.com/nutonomy/second.pytorch
3https://github.com/traveller59/second.pytorch
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Table 4.2: 3D detection mAP on the NuScenes validation set.
†: reproduced based on an author-recommended third-party implementation.

car pedes. barri. traff. truck bus trail. const. motor. bicyc. mAP

PointPillars [17] 70.5 59.9 33.2 29.6 25.0 34.4 16.7 4.5 20.0 1.6 29.5
PointPillars† 76.9 62.6 29.2 20.4 32.6 49.6 27.9 3.8 11.7 0.0 31.5
Ours 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0.0 35.4

car 0-40% 40-60% 60-80% 80-100%

Proportion 20% 12% 15% 54%

PointPillars† 27.2 40.0 57.2 84.3
Ours 32.1 42.6 60.6 86.3

Improvement 4.9 2.6 3.4 2.0

pedestrian 0-40% 40-60% 60-80% 80-100%

Proportion 20% 12% 15% 54%

PointPillars† 17.3 23.4 28.0 68.3
Ours 22.1 27.8 34.2 71.5

Improvement 4.8 4.4 6.2 3.2

bus and a 4.9% drop on trailer. In practice, most augmented trucks and trailers tend

to be severely occluded and are removed if the culling strategy is applied. Replacing

drilling (b) with naive augmentation (d) results in a 1.9% drop on bus and 3.1% drop

on trailer, likely due to inconsistent visibility when naively augmenting objects.

• Object augmentation (b,e): Removing object augmentation (b→e) leads to signif-

icant drops in mAP on classes affected by object augmentation, including in a 2.5%

drop on truck, 13.7% on bus, and 7.9% on trailer.

• Temporal aggregation (e,f): Removing temporal aggregation (e→f) leads to worse

performance for every class and a 9.4% drop in overall mAP.

• Visibility stream (f,g,h): Removing the visibility stream off a vanilla two-stream

approach (f→g) drops overall mAP by 1.4%. Interestingly, the most dramatic drops

are over pedestrian (+7.5%), barrier(+3.3%), and traffic cone (+3.7%). Shape-wise,

these objects are all “skinny” and tend to have less LiDAR points on them. This

suggests visibility helps especially when having less points. The network with only a

visibility stream (h) underperforms a vanilla PointPillars (g) by 4%.

• Vanilla PointPillars (g,i,j,k): On top of vanilla PointPillars, object augmentation
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Table 4.3: Ablation studies on the NuScenes validation set. We italicize classes for which
we perform object augmentation. OA stands for object augmentation and TA stands for
temporal aggregation.

Fusion OA TA car pedes. barri. traff. truck bus trail. const. motor. bicyc. avg

(a) Early Drilling Multi-frame 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0.0 35.4
(b) Late Drilling Multi-frame 77.8 65.8 32.2 24.2 33.7 53.0 30.6 4.1 18.8 0.0 34.0
(c) Late Culling Multi-frame 78.3 66.4 33.2 27.3 33.4 41.6 25.7 5.6 17.0 0.1 32.9
(d) Late Naive Multi-frame 78.2 66.0 32.7 25.6 33.6 51.1 27.5 4.7 15.0 0.1 33.5
(e) Late N/A Multi-frame 77.9 66.8 31.3 22.3 31.2 39.3 22.7 5.2 15.5 0.6 31.3
(f) Late N/A Single-frame 67.9 45.7 24.0 12.4 22.6 29.9 8.5 1.3 7.1 0.0 21.9
(g) No V N/A Single-frame 68.0 38.2 20.7 8.7 23.7 28.7 11.0 0.6 5.6 0.0 20.5
(h) Only V N/A Single-frame 66.7 28.6 15.8 4.4 17.0 25.4 6.7 0.0 1.3 0.0 16.6

(i) No V Naive Single-frame 69.7 38.7 22.5 11.5 28.1 40.7 21.8 1.9 4.7 0.0 24.0
(j) No V N/A Multi-frame 77.7 61.6 26.4 17.2 31.2 38.5 24.2 3.1 11.5 0.0 29.1
(k) No V Naive Multi-frame 76.9 62.6 29.2 20.4 32.6 49.6 27.9 3.8 11.7 0.0 31.5

(g→i) improves mAP over augmented classes by 9.1%; temporal aggregation (g→j)

improves overall mAP by 8.6%. Adding both (g→k) improves overall mAP by 11.0%.

Run-time speed: We implement visibility computation in C++ and integrate it into

PyTorch training as part of (parallel) data loading. On an Intel i9-9980XE CPU, it takes

24.4±3.5ms on average to compute visibility for a 32-beam LiDAR point cloud when running

on a single CPU thread.

Conclusions: We revisit the problem of finding a good representation for 3D data. We

point out that contemporary representations are designed for true 3D data (e.g. sampled

from mesh models). In fact, 3D sensored data such as a LiDAR sweep is 2.5D. By processing

such data as a collection of normalized points (x, y, z), important visibility information is

fundementally destroyed. In this paper, we augment visibility into 3D object detection. We

first demonstrate that visibility can be efficiently re-created through 3D raycasting. We

introduce a simple two-stream approach that adds visibility as a separate stream to an

existing state-of-the-art 3D detector. We also discuss the role of visibility in placing virtual

objects for data augmentation and explore visibility in a temporal context - building a

local occupancy map in an online fashion. Finally, on the NuScenes detection benchmark,

we demonstrate that the proposed network outperforms state-of-the-art detectors by a

significant margin.
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Algorithm 1 Raycasting with Augmented Objects

Input: mode m, sensor origin s, original points P, augmented points Q
Output: occupancy grid O
Initialize: O[:]← UNKNOWN /* Raycast P with Q as a ray stopper */

Compute B such that ∀q in Q,B[vq]← BLOCKED for p in P do
v ← vs; /* vs: sensor voxel */

while v 6= vp do
v ← next voxel(v,p− s) if B[v] = BLOCKED then

break; /* stop the ray */

end
if v = vp then

O[v]← OCCUPIED

else
O[v]← FREE

end

end

end
/* Raycast Q with P as a ray stopper */

Compute B such that ∀q in Q,B[vq]← BLOCKED for q in Q do
v ← vs; /* vs: sensor voxel */

while v 6= vq do
v ← next voxel(v,q− s) if B[v] = BLOCKED then

if m = CULLING then
break; /* stop the ray */

else if m = DRILLING then
O[v]← FREE; /* let ray through */

/* Do nothing under the naı̈ve mode */

end
if v = vq then

O[v]← OCCUPIED

else
O[v]← FREE

end

end

end
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Chapter 5

Exploiting Geometric Priors for

Novel Objects

5.1 Introduction

Perception for autonomous robots presents a collection of compelling challenges for computer

vision. We focus on the application of autonomous vehicles. This domain has three notable

properties that tend not to surface in traditional vision applications: (1) 3D sensing in

the form of LiDAR technology, which exhibits different properties than traditional 3D

vision captured through stereo or structured light. Despite significant work in this area,

the right representation for such sparse 3D signals still remains an open question. (2)

Contemporary approaches to object detection and scene understanding tend to be closed-

world, where the task is predicting 1-of-N possible labels. But autonomous systems require

the ability to recognize all possible obstacles and movers - e.g., a piece of road debris

must be avoided regardless of what name it has. Such understanding is crucial from a

safety perspective. Historically, this has been formulated as a perceptual grouping or

bottom-up segmentation task, which is typically addressed with different approaches. (3)

Finally, practical autonomous robotics makes heavy use of perceptual priors in the forms

of geometric maps and assumptions on LiDAR geometry. Indeed, prior map was a crucial

component among finishing entries in the DARPA Urban Grand Challenge [124, 181].

Motivation: In this work, we focus on the problem of class-agnostic instance segmen-

tation of LiDAR point clouds (Figure 7.1) in an open-world setting. We carefully mix

graph-theoretic algorithms with data-driven learning. Data-driven learning has made an

undeniable impact on computer vision, but it is difficult to make guarantees about perfor-
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Figure 5.1: Our proposed algorithm takes a pre-processed LiDAR point cloud with back-
ground removed (top) and produces a class-agnostic instance-level segmentation over all
foreground points (bottom). For visualization, we use a different color for each segment
and plot an extruded polygon to show the spatial extent.

mance when processing out-of-sample data from an open world. Geometric graph-based

approaches for segmentation tend not to require training and so are less-like to overfit, but

also tend to be brittle.

Approach: Our approach searches over an exponentially-large space of candidate

segmentations and returns one where individual segments score well according to a data-

driven point-based model of “objectness” [2]. We demonstrate that one can repurpose

existing closed-world point networks [140] for bottom-up perceptual grouping tasks that

generalize to objects rarely seen during training.

Optimality: We prove that our approach produces optimal segmentations according

to a specific definition. First, we restrict the search into a subset of segmentations that are

consistent with a hierarchical grouping of a point cloud sweep. Such hierarchical groups can

be readily produced with agglomerative clustering [208], HDBSCAN [119], or hierarchical

graph-based algorithms [170].
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Naive methods for producing a segmentation might apply a global threshold over

the whole hierarchy. It turns out that one can produce an exponentially-large set of

segmentations by applying different thresholds at different branches. We introduce efficient

algorithms that search over this space of tree-consistent segmentations (Figure 5.2) and

return the one that maximizes a global segmentation score that is computed by aggregating

local objectness scores of individual segments.

Evaluation: We demonstrate empirical results on KITTI, a benchmark originally

designed for closed-world object detection. Following past work, we repurpose it for open-

world 3D segmentation [68]. We compare to existing bottom-up approaches [148] and

state-of-the-art LiDAR-based object detectors after converting their output 3D bounding

boxes to a point cloud segmentation. We demonstrate that our approaches outperform

both baselines on less common classes.

5.2 Related work

Robust 3D object detection is crucial for downstream applications such as semantic under-

standing [59] and tracking [188]. Comparing to monocular 3D detection [98], we focus on

LiDAR-based solutions in this paper.

LiDAR segmentation: Classic LiDAR segmentation algorithms use bottom-up group-

ing such as flood-filling [38], connected components [91], or density-based clustering [119].

Bottom-up strategies can also be applied on LiDAR sequences, allowing for motion as an

additional cue [5, 67, 173]. Oftentimes such approaches are tuned for particular object

categories such as cars. Our work differs in its use of static, single-frame cues that are not

object-specific.

LiDAR object detection: There is an ever-increasing literature on data-driven

object detection with LiDAR point clouds. Early approaches include fusion-based models

that combine LiDAR and imagery [97], tracking-based detectors [114] and voxel-based

classifiers [99, 193, 209]. We have seen approaches built upon raw point clouds such as

PointRCNN [159]. Our approach is most related to Frustum PointNet [139] in the way we

use pooled point cloud representation [140]. Our work differs in that we do not make use of

camera input, and most notably, focus on all possible objects in an open world. Specifically,

we compare to [97, 99, 160, 193] as a representative sample of the literature.

Perceptual grouping: Our graph-based approach is inspired by a long line of classic

work on graph-theoretic perceptual grouping, dating back to normalized cuts [159], graph

cuts [13], and spanning-tree approaches [42]. Such methods are typically used with hand-

designed features, while we make use of data-driven techniques for learning a shape-based
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Figure 5.2: On the left, we visualize a set with 6 points. According to Bell number, one will
find 203 unique segmentations (partitions). Most of these are arbitrary and do not respect
local geometry, e.g. {{1, 2, 5}, {3, 4, 6}}. On the right, we implement geometric constraints
with a tree formed by hierarchical grouping. Every vertex cut of this tree is automatically a
segmentation that respects local geometry encoded by the tree, e.g. {{1}, {2, 3}, {4, 5, 6}}.

segment classifier.

Image segmentation: The idea of searching for an optimal image segmentation

given a hierarchical image segmentation tree has been explored. [182] formulates neuron

segmentation on electron microscopy images as a maximum a posteriori (MAP) labeling

task on a tree-structured graph. It can be made equivalent to our search under certain

conditions. [132] tackles the problem of class-agnostic instance segmentation in image space

by exploiting visual appearance and motion. We discuss more in Section 5.3 and 5.4.2.

5.3 Approach

For 3D object point segmentation, the input is a 3D point cloud, which contains an unknown

number of objects. The goal is to produce a point segmentation, in which every segment

contains points from one and only one object.

Segmentation: A global segmentation PX is a partition of a set of points X = {xi}Ni=1

into subsets of points, i.e. PX = {Ci}Mi=1, where M denotes the number of segments and

Ci ⊂ X. We refer to each Ci as a local segment. Importantly, every point exists in one and

only one segment, meaning ∪Mi=1Ci = X and ∀i 6= j, Ci ∩ Cj = ∅.
Tree-consistent segmentations: Let us use SX to denote the set of all possible

global segmentations on X, i.e. all possible PX . Without constraints, the size of SX is

exponential in N (i.e. the Bell number). In practice, we can reduce the number of candidates

by enforcing geometric constraints. In this work, we implement the constraints by grouping

all points hierarchically into a tree structure TX . We will discuss how to build such a tree

structure based on local geometric cues in Section 5.3.4. For now let us assume the tree is

given.

Once we specify the tree, we can focus on a strictly smaller set of segmentations

59



CHAPTER 5. EXPLOITING GEOMETRIC PRIORS FOR NOVEL OBJECTS

that respect local geometry. We denote such set as SX,T and call them tree-consistent

segmentations. As a reference, the size of SX,T is still exponential in N , when TX is a

balanced binary tree1. We further illustrate the relationship between SX and SX,T with an

example in Figure 5.2. Any tree-consistent segmentation from SX,T corresponds to a vertex

cut set of the tree T , i.e. a set of tree nodes, which satisfy the following constraints: (1) for

each node in the vertex cut, its ancestor and itself cannot both be in the cut and (2) each

leaf node must have itself or its ancestor in the cut. Such relationship allows us to design

efficient tree searching algorithms, as we will see later.

Segment score: Before we discuss how to score a global segmentation, we first introduce

how to score a local segment. Given a local segment C ⊂ X, we define a function

f(C; θ) : C 7→ [0, 1] that predicts a given segment’s “objectness”, where θ represents the

parameters. One can implement such a function with a PointNet++, where θ would represent

weights of the PointNet++. We will discuss how to learn this function in Section 7.3.4. For

now let us assume it is given.

Segmentation score: We now introduce how to score a global segmentation. Given

a global segmentation PX = {Ci}Mi=1, we define its score F (PX ; θ) : PX 7→ [0, 1] by

aggregating over local objectness of its individual segments. Specifically, we introduce

worst-case segmentation and average-case segmentation. Note that our objective can be

made equivalent to [182] if we score a segmentation as the sum of its local segment scores.

As we see in Section 5.4.2, this objective produces much larger oversegmentation error.

5.3.1 Worst-case segmentation

Worst-case segmentation scores a global segmentation as the worst objectness among its

local segments:

Fmin(PX ; θ) = min
i
f(Ci; θ), i ∈ 1 . . .M (5.1)

where PX ∈ SX,T , PX = {Ci}Mi=1, and Ci ⊂ X. We define P ∗X,min as the optimal worst-case

segmentation if

P ∗X,min = argmax
PX∈SX,T

Fmin(PX ; θ) (5.2)

It turns out the problem of finding optimal worst-case segmentation has optimal

substructure (Theorem 1), allowing us to find the global optimum efficiently with dynamic

programming (Algorithm ??).

We briefly describe how the algorithm works. Given a set of points X and a tree TX ,

1One can derive recurrence on the number of segmentations between depth d+1 and d as Kd+1 = K2
d + 1

with K1 = 2. Since Kd > 22(d−1), Kd/Nd > 2d−2, where Nd = 2d represents the number of leaves, it suggests
the number of segmentations at least outgrow the number of leaves exponentially.
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OptMinSeg(X, TX) (Algorithm ??) produces an optimal worst-case segmentation P ∗X,min

with score F ∗min(P ∗X,min ; θ). For simplicity, we refer to a node in the tree by the set of points

it is associated with. The algorithm starts from the root node X and chooses between a

coarse segmentation ({X}) and a fine one. The fine segmentation will be the union of all

X’s children’s optimal worst-case segmentation, which can be computed recursively. The

algorithm would first traverse down to the leaf nodes, representing the finest segmentation.

Then it will make its way up, during which it finalizes optimal segmentations for each

intermediate node by making local coarse vs. fine decisions. Eventually, it returns to the

root node and produces an optimal worst-case global segmentation.

Lemma 1 Given pairs of non-empty sets that contain real numbers (X1, Y1), . . . , (Xn, Yn),

∀i, min
x∈Xi

x ≤ min
y∈Yi

y ⇒ min
x∈∪iXi

x ≤ min
y∈∪iYi

y (5.3)

Theorem 1 Given C and TC , Algorithm ?? finds the optimal segmentation P ∗C,min =

argmaxPC∈SC,T Fmin(PC ; θ).

Proof. Proof by structural induction.

Base: When NC = ∅, meaning C corresponds to a leaf node in TC , the algorithm returns

{C}, which is the only segmentation in SC,T and obviously is optimal.

Induction: When NC 6= ∅, we need to show that the algorithm will produce the optimal

segmentation, i.e. P ∗C and F ∗C , if it has access to the optimal segmentation for each of C’s

child Ci, i.e. P ∗Ci and F ∗Ci (optimal substructure).

Let PC be the segmentation that the algorithm produces for C and let FC be its score.

If PC were not optimal, there must exist a different segmentation P ′′C with score F ′C , s.t.

P ′C 6= PC and F ′C > FC . Moreover, P ′C is either a trivial segmentation, i.e. P ′C = {C} or

the union of segmentations over each of C’s children nodes, i.e. P ′C = ∪i{P ′Ci}.
First, P ′C is not a trivial segmentation. If we assume P ′C = {C}, we will have F ′C =

f(C; θ). Since PC 6= P ′C , the algorithm chooses PC over {C}, therefore, FC > f(C; θ). This

clearly contradicts with F ′C > FC .

Thus, P ′C has to be the union of segmentations over each of C’s children node. According

to the inductive hypothesis, the algorithm has the optimal segmentation over each of C’s

children node, meaning ∀i, F ′Ci ≤ F
∗
Ci

or concretely

∀i, min
z∈P ′Ci

f(z; θ) ≤ min
z∈P ∗Ci

f(z; θ) (5.4)

Here, z represents an arbitrary local segment from a segmentation over Ci. By applying
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Lemma 1, we have

min
z∈∪iP ′Ci

f(z; θ) ≤ min
z∈∪iP ∗Ci

f(z; θ) (5.5)

On one hand, P ′C = ∪i{P ′Ci} has a score of F ′C = minz∈∪iP ′Ci
f(z; θ). On the other hand,

the algorithm by design chooses the higher scoring one between PC = {C} with a score

of FC = f(C; θ) and PC = ∪iP ∗Ci with a score of FC = minz∈∪iP ∗Ci
f(z; θ), ensuring that

FC ≥ minz∈∪iP ∗Ci
f(z; θ). With these and (5.5), we conclude FC ≥ F ′C , which contradicts

the assumption F ′C > FC .

Generality: Our analysis makes no assumptions about the objectness function f(C; θ)

except the fact that it cannot be affected by the partitioning of other segments. In particular,

this would allow objectness to depend on contextual arrangement of surrounding points

outside C - e.g., f(C,X; θ).

Efficiency: Given points X and a tree TX with N leaf nodes, Algorithm ?? guarantees

to return the optimal worst-case segmentation after visiting every node in the tree. In

practice, it might not visit all nodes. Instead, it skips the rest of sub-trees whenever one

sub-tree exhibits lower score than the coarse segmentation (line 9 in Algorithm ??). The

algorithm’s complexity is linear in N despite the fact that the search space is exponential

in N .
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5.3.2 Average-case segmentation

Average-case segmentation scores a global segmentation as the average objectness among

its local segments:

Favg (PX ; θ) =
1

M

M∑
i=1

f(Ci; θ) (5.6)

where PX ∈ SX,T , PX = {C1, . . . , CM}, and Ci ⊂ X. We define P ∗X,avg as an optimal

average-case segmentation if

P ∗X,avg = argmax
PX∈SX,T

Favg (PX ; θ) (5.7)

It turns out that the problem of finding the optimal average-case segmentation does

not have optimal substructure, unlike worst-case segmentation, meaning a locally optimal

partitioning might no longer be optimal when considering global partitioning. Formally

speaking, Lemma 1 no longer holds once min is changed to avg.

Despite without optimal substructure, we apply a similar greedy searching algorithm.

The main difference is how we aggregate local scores. Though greedily averaging local

scores might lead to myopic decisions in certain situations (Figure 5.3), it performs well in

practice (Section 7.4).

5.3.3 Learning the objectness function

We have discussed segmentation algorithms under the assumption that we already have

access to an objectness function f(C; θ), which predicts an objectness score for a given point

cloud. We now introduce how to learn this function. Despite there has been a line of work

that focuses on learning better representation, including Kd-networks [92], PointCNN [105],

EdgeConv [187], PointConv [190], just to name a few, we choose a simple PointNet++ to

parameterize such an objectness function as a proof of concept. Below, we talk about how

to learn a PointNet++ model as a regressor to predict objectness score.

Ground truth objectness: First, we must define regression target, i.e. ground truth

objectness, of a given segment C. Suppose we have ground truth segmentation P gt =

{Cgt1 , . . . , C
gt
L }, where L is the number of ground truth segments. We can define C’s target

objectness as the largest point IoU between itself and any ground truth segment Eq. (5.8).

Objectness(C,P gt) = max
l=1,...,L

|C ∩ Cgtl |
|C ∪ Cgtl |

(5.8)

Such a definition of objectness is only reasonable if points are uniformly distributed in
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Figure 5.3: We illustrate why average-case segmentation does not have optimal substructure.
We plot a tree on the left and show local objectness scores on the right. In this case, the opti-
mal average-case segmentation of the root node, i.e. {{1,2,. . . ,n},{n+1}} cannot be formed
by the optimal average-case segmentations of its children nodes, i.e. {{1},{2},. . . ,{n}} and
{{n+1}}.

space. In practice, 3D sensors (e.g. LiDAR) tend to produce denser points near the sensor.

In consequence, the objectness will be heavily influenced by the partitioning of points closer

to the sensor. For example, imagine two objects are segmented into one segment. Suppose

one object has n1 points and the other has n2. If we use vanilla IoU as objectness, this

segment would score max(n1,n2)
n1+n2

. When n1 � n2, the score could be really close to 1 despite

it clearly introduces an under-segmentation error. To compensate such bias towards nearby

objects, we propose a simple modification to IoU as in Eq. (5.9).

Objectness(C,P gt) = max
l=1,...,L

∑
x∈C∩Cgtl

xTx∑
x∈C∪Cgtl

xTx
(5.9)

where xTx represents a point x’s squared distance to sensor origin. Eq. (5.8) is a special

case, where xTx is replaced with 1.

Implementation2: We train a PointNet++ w/ multi-scale grouping (MSG) [140] for

learning the objectness function. Starting from the off-the-shelf architecture, we replaced the

classifier with a regressor that produces a real-value given an input point cloud. We applied

a sigmoid function to convert the regression output to numbers between [0,1]. Finally,

we compute the mean-squared error between prediction and ground truth objectness and

perform backprop. In terms of preprocessing, we follow [139] to make sure the input cloud

is centered at origin and rotated based on the viewpoint. To facilitate batch processing, we

follow the standard practice for PointNet++ and re-sample each segment to 1024 points.

2Code is available at: https://www.github.com/peiyunh/3dseg
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(a) (b)

(c) (d)

Figure 5.4: We visualize more qualitative results of the proposed algorithm Ours(avg) on
KITTI. In (a), we show a common scenario where there are parked cars on both sides of the
road. In (b), we show a rare scenario where there is an oversized tank truck in the right lane.
In (c), we show a scenario where a group of pedestrians walking in front of the autonomous
vehicle. In (d), we show a typical failure case where pedestrians walk closely side by side.
For such cases, there is often no perfect solution within the search space generated by EC.

5.3.4 Building tree hierarchies

We have discussed segmentation algorithms under the assumption that we have access to a

tree hierarchy. Now we introduce how to build such a tree hierarchy given a set of points X.

One natural approach is agglomerative clustering. After we define a metric (i.e. pairwise

distance between two points) and a linkage criteria (i.e. pairwise distance between two

sets of points), we can start from {{x1}, . . . , {xN}} and keep merging the closest pair of

point sets by taking the union over them, until all points are merged into one set. Such an

approach produces a tree in a bottom-up fashion.

This approach tends to create tree hierarchies with very fine granularity, e.g. one node

may differ from another with only one point of difference. As we have mentioned, our

segmentation algorithms need to evaluate the objectness of every node in the tree. From an

efficiency point of view, we would like to build a coarser tree whose leaf nodes are segments

rather than individual points. Moreover, adjacent nodes should differ from each other much

more.

Implementation: We build tree hierarchies by applying Euclidean Clustering [148]

recursively in a top-down fashion with a list of decreasing ε. Since Euclidean Clustering finds

connected components w.r.t. a distance threshold ε, we start with the largest ε that defines

the most coarse connected components. Then, we apply Euclidean Clustering with a smaller
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ε within each connected component. This produces a multiple-tree top-down hierarchy.

In our experiments, we use ε ∈ {2m, 1m, 0.5m, 0.25m} to build tree hierarchies for both

training and testing. During training, we extract segments out of tree hierarchies built with

the same parameters to form our training set for learning the objectness function. During

testing, we apply the same learned objectness function in both worst-case semgentation

and average-case segmentation.

5.4 Experiments

For evaluation, we repurpose the KITTI object detection benchmark for point cloud

segmentation following the setup in [68]. In our case, 3D objects do not physically overlap

with one another. Therefore, we use ground truth 3D bounding boxes to produce ground

truth segmentation. To do so, we first remove all points outside ground truth 3D bounding

boxes (Figure 7.1). Then we treat points within one ground truth 3D bounding box as the

ground truth segment for the object. On KITTI, there exist ground truth 3D bounding

boxes that overlap with each other. We ignore such segments during evaluation, since it is

not clear how to define the ground-truth for the points in such bounding boxes [68]. We

follow [22] for splitting data into training and validation.

Evaluation protocol We follow evaluation metrics introduced by Held et al. [68],

which consists of two errors, under-segmentation error and over-segmentation error. Given

ground truth segmentation P gt = {Cgt1 , . . . , C
gt
L }, we compute under-segmentation error U

and over-segmentation error O given an output segmentation P = {C1, . . . , CM} as:

U =
1

L

L∑
l=1

1(
|Ci∗ ∩ Cgtl |
|Ci∗ |

< τU ) (5.10)

O =
1

L

L∑
l=1

1(
|Ci∗ ∩ Cgtl |
|Cgtl |

< τO) (5.11)

with

i∗ =
M

argmax
i=1

|Ci ∩ Cgtl | (5.12)

where 1(·) is an indicator function and τU , τO are both constant thresholds. We set τU = 2/3

and τO = 1 following [68]. We ignore objects with 0 points inside their 3D boxes (about

1%). For objects with overlapping bounding boxes (about 2.5%), we ignore points that fall

into the overlapped region. Other than these, we compute segmentation errors over objects

at all distance and also errors that focus on nearby objects (15m).
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Table 5.1: Segmentation errors on KITTI Val. Left shows under-, over-segmentation, and total error.
Right shows total error on a per-class basis.

Method
under over total car van truck pedestrian person sitting cyclist tram misc mean

all 15m all 15m all 15m all 15m all 15m all 15m all 15m all 15m all 15m all 15m all 15m all 15m

EC(2m) 24.89 46.21 5.24 0.43 30.1 46.6 24.4 37.3 18.2 21.1 29.3 18.5 63.1 75.2 79.2 78.5 28.7 53.0 94.9 55.0 31.0 36.2 46.1 46.9
EC(1m) 11.26 26.31 24.89 7.09 36.1 33.4 31.4 21.2 44.5 22.1 51.6 59.3 48.9 60.7 74.0 74.3 17.4 35.6 121.2 100.0 39.5 36.2 53.6 51.2
EC(0.5m) 5.54 12.89 63.70 48.32 69.2 61.2 74.6 67.9 81.0 73.2 79.3 92.6 39.0 47.6 63.0 62.5 25.5 16.1 121.2 100.0 64.9 43.3 68.6 62.9
EC(0.25m) 3.02 7.47 89.61 78.70 92.6 86.2 97.1 98.8 98.8 99.1 98.7 100.0 58.9 54.1 74.7 75.0 87.5 56.4 119.1 100.0 94.1 82.7 91.1 83.3
EC(all)* 9.72 17.16 5.24 0.43 15.0 17.6 10.9 11.6 13.6 5.6 29.3 18.5 26.9 33.6 48.7 48.6 10.4 14.1 94.5 55.0 15.8 7.1 31.3 24.3

AVOD - - - - - - 81.8 85.5 - - - - 85.4 92.0 - - 88.3 87.9 - - - - - -
AVOD++ - - - - - - 12.5 10.7 - - - - 36.6 46.4 - - 13.1 18.8 - - - - - -
PointPillars++ - - - - - - 22.4 22.7 - - - - 58.6 63.6 - - 44.8 36.2 - - - - - -
PointRCNN++ - - - - - - 7.6 5.2 - - - - - - - - - - - - - - - -

SECOND++(4) - - - - - - 8.1 4.2 22.5 7.5 - - 34.4 41.6 - - 10.6 14.1 - - - - - -
+ Ext. Range - - - - - - 7.2 4.5 18.4 7.0 - - 34.2 41.8 - - 10.0 10.1 - - - - - -
+ BG Removal - - - - - - 9.9 4.0 25.9 8.9 - - 33.2 39.1 - - 11.9 15.4 - - - - - -
+ Both - - - - - - 9.3 4.0 20.6 8.0 - - 32.9 38.7 - - 12.0 14.1 - - - - - -

SECOND++(8) 4.07 7.42 11.79 9.25 15.9 16.7 8.1 5.1 23.2 8.0 43.2 51.9 33.2 39.5 70.8 70.8 9.6 13.4 119.5 100.0 28.7 18.9 42.0 38.5
+ Ext. Range 4.28 7.85 10.48 9.10 14.8 17.0 7.4 4.9 17.6 8.5 34.0 48.1 34.3 40.8 72.7 72.9 9.5 12.1 115.3 100.0 27.8 22.8 39.8 38.8
+ BG Removal 3.89 6.74 13.34 9.74 17.2 16.5 10.0 5.0 24.7 5.6 45.8 63.0 32.8 40.0 63.0 62.5 11.7 14.8 116.1 95.0 26.6 21.3 41.3 38.4
+ Both 3.84 6.66 12.28 9.66 16.1 16.3 9.4 4.8 20.1 6.1 38.2 63.0 33.2 40.1 63.0 62.5 11.5 13.4 112.7 95.0 23.4 21.3 38.9 38.3

Ours(min) 15.09 25.70 5.57 0.58 20.7 26.3 15.9 17.9 15.4 11.3 29.3 18.5 39.2 48.0 68.8 67.4 17.9 26.2 94.9 55.0 23.2 15.0 38.1 32.4
Ours(avg) 10.54 17.41 7.87 4.60 18.4 22.0 13.8 14.6 14.8 7.0 30.1 29.6 33.4 40.6 61.7 61.1 16.4 19.5 94.9 55.0 22.3 15.0 35.9 30.3

Ours(avg) w/
(2.7, 0.9, 0.3)m 13.41 19.65 6.16 5.13 19.6 24.8 15.8 17.1 13.9 13.6 23.6 25.9 36.2 43.3 63.6 63.2 18.3 26.2 72.0 20.0 20.2 19.7 33.0 28.6
(2.4, 1.2, 0.6, 0.3)m 11.26 16.65 5.94 5.69 17.2 22.3 12.9 15.0 11.5 7.5 27.2 29.6 34.7 41.2 59.7 59.0 15.7 19.5 80.9 25.0 18.4 19.7 32.6 27.1
(3.2, 1.6, 0.8, 0.4, 0.2)m 12.36 15.10 4.67 5.36 17.0 20.5 12.8 12.7 10.7 4.2 21.5 22.2 35.8 41.2 59.7 59.0 17.4 16.8 67.8 10.0 19.0 17.3 30.6 22.9

5.4.1 Baselines

Euclidean clustering: We use Euclidean clustering with 4 different distance threshold

{2m, 1m, 0.5m, 0.25m} to build trees of segments, which defines the space of possible

segmentations for our approach. Therefore, we include them as baselines and see if a better

solution can be found.

State-of-the-art 3D detectors: We compare our approach to AVOD [97], Point-

Pillars [99], PointRCNN [160], and SECOND [193]. We follow the off-the-shelf training

and testing setting as closely as possible. For AVOD, we re-train a car detector and a

people detector (pedestrian and cyclist) with LiDAR as the only input following the official

implementation3. For PointPillars, we re-train a detector that simultaneously detects cars

and people (pedestrian and cyclist) following an author-endorsed implementation4. For

PointRCNN, we evaluate the official pre-trained car model as there are no available models

or training configurations for other classes within its official repository5. For SECOND,

since it is our best performing baseline, besides re-training the off-the-shelf model, we also

explore various ways to improve its performance.

By design, these detectors output class-specific bounding box detection. To produce

class-agnostic segmentations, we ignore the class label and follow a greedy procedure: We

3https://github.com/kujason/avod
4https://github.com/traveller59/second.pytorch
5https://github.com/sshaoshuai/pointrcnn
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start with the highest scoring bounding box and group all points within the box as one

segment. We then remove those points and move onto the next highest scoring detection.

We repeat until exhausting either detections or 3D points. In the end, we might still not

have every point assigned to a segment. A simple fix is grouping leftover points as a new

segment. We discuss a much better alternative approach below.

Detector++: A better approach to handling missed detection is to fall back to

clustering. Specifically, we apply Euclidean Clustering (EC) with a fixed ε on all leftover

points, producing a set of leftover segments. For each leftover segment, we check if it

can merged into an existing detection segment, using the criteria of whether the smallest

pairwise distance between two segments is smaller than the threshold ε. If so, we merge the

leftover segment into the detection segment. We refer to such baselines as Detector++ (e.g.

AVOD++ etc.).

SECOND++: To ensure an apples-to-apples comparison, we re-train and re-evaluate

the best baseline, i.e. SECOND, with background removal. These baselines are marked with

“+ BG Removal”. In addition, we discover that, by extending SECOND’s detection range

from 50m to 80m, we significantly improve SECOND’s performance. The affected baselines

are marked with “+ Ext. Range”. Finally, we re-train and re-evaluate SECOND on all

8 classes. The new baselines are labeled as “SECOND++(8)”. In contrast, off-the-shelf

SECOND baselines are labeled as “SECOND++(4)” as they are trained on 4 classes (car,

pedestrian, cyclist, and van).

5.4.2 Results

We first present qualitative examples of our approach segmenting rare objects on KITTI

Val, as shown in Figure 5.4. For quantitative evaluation, we present both per-class and

overall segmentation errors in Table 5.1.

Ours(min) vs. Ours(avg): We label the optimal worst-case segmentation as Ours(min)

and the average-case segmentation as Ours(avg). Ours(avg) consistently outperforms

Ours(min) in terms of the total error. Ours(min) produces a much lower over-segmentation

error but a much higher under-segmentation error, suggesting it makes more mistakes of

grouping different objects into one segment and less mistakes of splitting points from one

single object into multiple segments. The cause of such behavior might be due to the

risk-averse objective of optimal worst-case segmentation. However, current evaluation does

not emphasize the worst-case performance, instead, it measures the average performance

over all objects. We observe that if we evaluate the worst-case objectness (Section 5.4.3),

Ours(min) does outperform both Ours(avg) and AVOD++.
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Ours vs. Euclidean Clustering: We label Euclidean Clustering as “EC(ε)”, where

ε represents the distance threshold (meter). All together, they define a segment hierarchy.

We construct a pool of segments that contains every node (segment) in the hierarchy and

call this “EC(all)*”. This serves as a unreachable upper-bound, since segments from such a

pool overlap with each other, which violates the non-disjoint constraint of a valid partition.

Nonetheless, it shows that there gap between our proposed method and the upper bound is

relatively small (3-4%), suggesting plenty of room left for improvement in creating better

hierarchies.

Detector++ vs. Detector: We focus on AVOD to demonstrate the improvement of

Detector++ over Detector. AVOD produces much larger oversegmentation errors, likely

due to imprecisely localized 3D bounding boxes. For example, when a 3D bounding

box is predicted smaller than it should be, the resultant segment might miss points

on the edge, leading to oversegmentation. AVOD++ is designed to fix this issue and

dramatically improves the oversegmentation error. The undersegmentation errors also

improves significantly from AVOD to AVOD++, likely due to successfully segmenting

objects that are completely missed by detections.

Ours vs. Detector++: SECOND++ performs the best among all Detector++

baselines and also achieves the lowest overall total error among all methods. However,

if we break down total segmentation errors on a per-class basis, our approaches perform

much better than SECOND++. Such difference is due to a skewed data distribution. For

example, 68% objects are labeled as car while only 3% are labeled as misc. SECOND++

performs better on common classes such as car and ours perform better on rare ones such

as misc.

Runtime analysis: Our algorithm requires running PointNet++ on every candidate

segment in order to compute its objectness. In practice, one frame from KITTI Val, which

contains 68(σ = 42) segments on average, takes about 0.19s(σ = 0.06s) to process on a

single GTX 1080.

5.4.3 Additional evaluation protocols

Class-agnostic instance segmentation: The evaluation protocol we adopt comes from

the robotics community [67]. It differs from the standard evaluation in computer vision, i.e.

per-voxel instance segmentation in ScanNet [31]. One key difference is that 3D instance

segmentation does not require the output segmentation to be a valid partition. Instead, it

treats the task as retrieval and evaluates the tradeoff between precision and recall. Here we

take a similar approach as ScanNet, but modify the evaluation protocol to be class-agnostic

and per-point instead of per-voxel.
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Figure 5.5: How the learned objectness model generalizes in the tail.

As we can see in Table 5.2, the observations are consistent with what we see in

Table 5.1: SECOND++(8) with both modifications outperforms our segmentation approach

on common classes such as car, but falls short on rarer classes (such as person sitting and

tram) by a large margin. Overall, the best SECOND approach outperforms the best variant

of our approach by 1.6% in mAP.

How objectness generalizes: To evaluate how well our learned objectness model

generalizes, we apply it onto ground truth segments from the validation set. In Figure 5.5,

we plot the average objectness score for each class and the standard deviation. We also

show the percentage of objects for each class within the training set. As the number of

training data decreases dramatically, the average score tends to drops slightly and the

variance tends to rise slightly.

Worst-case evaluation: In Table 5.1 and 5.2, we see Ours(avg) outperforms Ours(min)

despite the latter is provably optimal. We have briefly discussed the reason: current protocols

do not evaluate worst-case performance. Here, we score the worst IoU between a set of local

segments and the ground truths, as Eq. (5.13) shows, where {P1 . . . PN} and {P gt1 . . . P gtN }
represents predicted and ground truth segmentation in each of the N frames. We found

Ours(min) scores a mean-worst IoU of 72.2%, 4.2% higher than Ours(avg).

score =

N∑
i=1

1

N
min
C∈Pi

max
Cgt∈P gti

|C ∩ Cgt|
|C ∪ Cgt|

(5.13)
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Table 5.2: Instance segmentation AP[@.5:.95:.05] on KITTI Val.

car van trk ped psit cyc tram misc mean

AVOD 64.4 - - 31.1 - 15.5 - - -
AVOD++ 91.6 - - 51.6 - 41.6 - - -
PointPillars++ 91.4 - - 55.2 - 55.9 - - -
PointRCNN++ 95.2 - - - - - - - -

SECOND++(4) 95.1 68.9 - 68.6 - 65.9 - - -
+ Ext. Range 95.8 75.4 - 70.2 - 68.1 - - -
+ BG Removal 95.3 74.0 - 77.5 - 71.8 - - -
+ Both 96.0 82.0 - 78.1 - 72.9 - - -

SECOND++(8) 95.3 70.3 30.0 71.8 2.6 69.6 10.2 33.9 48.0
+ Ext. Range 95.9 78.3 63.4 71.0 2.9 71.9 13.4 39.6 54.5
+ BG Removal 95.1 73.5 30.3 76.2 9.0 71.4 13.1 47.3 52.0
+ Both 96.0 81.3 61.7 76.5 8.6 72.4 16.4 55.4 58.5

Ours(min) 86.0 80.4 61.6 62.3 12.9 66.3 21.9 53.0 55.6
Ours(avg) 89.8 81.1 58.6 69.2 14.0 68.2 19.8 51.0 56.5

Ours(avg) w/
(2.7, 0.9, 0.3)m 87.5 78.6 57.6 66.7 14.0 66.9 20.8 49.7 55.2
(2.4, 1.2, 0.6, 0.3)m 89.6 81.9 59.4 67.9 13.7 69.2 21.5 52.1 56.9
(3.2, 1.6, 0.8, 0.4, 0.2)m 89.0 79.0 56.3 67.6 13.2 67.2 18.7 49.0 55.0

5.4.4 Additional diagnostics

Sensitivity analysis: Our objectness function is learned on segments from a EC hierarchy

generated with 4 distance thresholds {2m, 1m, 0.5m, 0.25m}. To analyze how robust

our algorithm is to change of hyper-parameters, we test the learned objectness function

on different hierarchies. In Table 5.1 and 5.2, we find that having a deeper hierarchy

significantly reduces segmentation errors. Comparing to hard-thresholded segmentation

errors, there are only slight changes in multi-threshold instance segmentation mAP.

Weighted vs. vanilla IoU: Here, we empirically compare weighted IoU and vanilla IoU

in terms of defining the training target for our objectness model. As we see in Table 5.3, for

both worst-case and average-case segmentation, the objectness model trained with weighted

IoU perform slightly better than the one trained with vanilla IoU. Note “Ours(min) - vanilla”

and “Ours(avg) - vanilla” share the same objectness model.
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Table 5.3: Segmentation errors on KITTI Val.

Method
Under (%) Over (%) Total (%)

all 15m all 15m all 15m

Ours(min) - vanilla 13.91 22.40 5.58 0.60 19.5 23.0
Ours(min) - weighted 13.13 21.42 5.65 0.60 18.8 22.0

Ours(avg) - vanilla 10.30 15.44 7.11 3.13 17.4 18.6
Ours(avg) - weighted 8.64 12.75 7.89 4.73 16.5 17.5

5.5 Conclusion

We present an approach for class-agnostic point cloud segmentation. The approach efficiently

searches over an exponentially large space of candidate segmentations and return one where

individual segments score well according to a data-driven point-based model of “objectness”.

We prove that our algorithm is guaranteed to achieve optimality to a specific definition. On

KITTI, we demonstrate our approach significantly outperforms past bottom-up approaches

and top-down object-based algorithms for segmenting point clouds.
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Chapter 6

Learning with Active and Partial

Feedback

6.1 Introduction

Given a large set of unlabeled images, and a budget to collect annotations, how can we learn

an accurate image classifier most economically? Active Learning (AL) seeks to increase

data efficiency by strategically choosing which examples to annotate. Typically, AL treats

the labeling process as atomic: every annotation costs the same and produces a correct

label. However, large-scale multi-class annotation is seldom atomic; we can’t simply ask a

crowd-worker to select one among 1000 classes if they aren’t familiar with our ontology.

Instead, annotation pipelines typically solicit feedback through simpler mechanisms such as

yes/no questions. For example, to construct the 1000-class ImageNet dataset, researchers

first filtered candidates for each class via Google Image Search, then asking crowd-workers

questions like “Is there a Burmese cat in this image?” [32]. For tasks where the Google

trick won’t work, we might exploit class hierarchies to drill down to the exact label. Costs

scale with the number of questions asked. Thus, real-world annotation costs can vary per

example [156].

We propose Active Learning with Partial Feedback (ALPF), asking, can we

cut costs by actively choosing both which examples to annotate, and which questions to ask?

Say that for a new image, our current classifier places 99% of the predicted probability

mass on various dog breeds. Why start at the top of the tree – “is this an artificial object?”

– when we can cut costs by jumping straight to dog breeds (Figure 6.1)?

ALPF proceeds as follows: In addition to the class labels, the learner possesses a
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Does this image contain a dog?

model

human  
annotators

fully labeled set

training

selected queriesPartial feedback

partially labeled set

unlabeled set

partially labeled set

Yes

Figure 6.1: Workflow for an ALPF learner.

pre-defined collection of composite classes, e.g. dog ⊃ bulldog, mastiff, .... At each round,

the learner selects an (example, class) pair. The annotator responds with binary feedback,

leaving the learner with a partial label. If only the atomic class label remains, the learner has

obtained an exact label. For simplicity, we focus on hierarchically-organized collections—trees

with atomic classes as leaves and composite classes as internal nodes.

For this to work, we need a hierarchy of concepts familiar to the annotator. Imagine

asking an annotator “is this a foo?” where foo represents a category comprised of 500

random ImageNet classes. Determining class membership would be onerous for the same

reason that providing an exact label is: It requires the annotator be familiar with an

enormous list of seemingly-unrelated options before answering. On the other hand, answering

“is this an animal?” is easy despite animal being an extremely coarse-grained category

—because most people already know what an animal is.

We use active questions in a few ways. To start, in the simplest setup, we can select
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samples at random but then once each sample is selected, choose questions actively until

finding the label:

ML: “Is it a dog?” Human: Yes!

ML: “Is it a poodle?” Human: No!

ML: “Is it a hound?” Human: Yes!

ML: “Is it a Rhodesian ?” Human: No!

ML: “Is it a Dachsund?” Human: Yes!

In ALPF, we go one step further. Since our goal is to produce accurate classifiers on

tight budget, should we necessarily label each example to completion? After each question,

ALPF learners have the option of choosing a different example for the next binary query.

Efficient learning under ALPF requires (i) good strategies for choosing (example, class)

pairs, and (ii) techniques for learning from the partially-labeled data that results when

labeling examples to completion isn’t required.

We first demonstrate an effective scheme for learning from partial labels. The predictive

distribution is parameterized by a softmax over all classes. On a per-example basis, we

convert the multiclass problem to a binary classification problem, where the two classes

correspond to the subsets of potential and eliminated classes. We determine the total

probability assigned to potential classes by summing over their softmax probabilities. For

active learning with partial feedback, we introduce several acquisition functions for soliciting

partial labels, selecting questions among all (example, class) pairs. One natural method,

expected information gain (EIG) generalizes the classic maximum entropy heuristic to

the ALPF setting. Our two other heuristics, EDC and ERC, select based on the number

of labels that we expect to see eliminated from and remaining in a given partial label,

respectively.

We evaluate ALPF learners on CIFAR10, CIFAR100, and Tiny ImageNet datasets. In

all cases, we use WordNet to impose a hierarchy on our labels. Each of our experiments

simulates rounds of active learning, starting with a small amount of i.i.d. data to warmstart

the models, and proceeding until all examples are exactly labeled. We compare models

by their test-set accuracy after various amounts of annotation. Experiments show that

ERC sampling performs best. On TinyImageNet, with a budget of 250k binary questions,

ALPF improves in accuracy by 26% (relative) and 8.1% (absolute) over the i.i.d. baseline.

Additionally, ERC & EDC fully annotate the dataset with just 491k and 484k examples

binary questions, respectively (vs 827k), a 42% reduction in annotation cost. Surprisingly,

we observe that taking disparate annotation costs into account may alter the conventional
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wisdom that active learners should solicit labels for hard examples. In ALPF, easy examples

might yield less information, but are cheaper to annotate.

6.2 Active Learning with Partial Feedback

By x ∈ Rd and y ∈ Y for Y = {{1}, ..., {k}}, we denote feature vectors and labels. Here d

is the feature dimension and k is the number of atomic classes. By atomic class, we mean

that they are indivisible. As in conventional AL, the agent starts off with an unlabeled

training set D = {x1, ...,xn}.
Composite classes We also consider a pre-specified collection of composite classes

C = {c1, ..., cm}, where each composite class ci ⊂ {1, ..., k} is a subset of labels such that

|ci| ≥ 1. Note that C includes both the atomic and composite classes. In this paper’s

empirical section, we generate composite classes by imposing an existing lexical hierarchy

on the class labels [121].

Partial labels For an example i, we use partial label to describe any element

ỹi ⊂ {1, ..., k} such that ỹi ⊃ yi. We call ỹi a partial label because it may rule out

some classes, but doesn’t fully indicate underlying atomic class. For example, dog =

{akita, beagle, bulldog, ...} is a valid partial label when the true label is {bulldog}. An

ALPF learner eliminates classes, obtaining successively smaller partial labels, until only

one (the exact label) remains. To simplify notation, in this paper, by an example’s partial

label, we refer to the smallest partial label available based on the already-eliminated classes.

At any step t and for any example i, we use ỹ
(t)
i to denote the current partial label. The

initial partial label for every example is ỹ0 = {1, ..., k} An exact label is achieved when the

partial label ỹi = yi.

Partial Feedback The set of possible questions Q = X × C includes all pairs of

examples and composite classes. An ALPF learner interacts with annotators by choosing

questions q ∈ Q. Informally, we pick a question q = (xi, cj) and ask the annotator, does

xi contain a cj? If the queried example’s label belongs to the queried composite class

(yi ⊂ cj), the answer is 1, else 0.

Let αq denote the binary answer to question q ∈ Q. Based on the partial feedback, we

can compute the new partial label ỹ(t+1) according to Eq. (6.1),

ỹ(t+1) =

{
ỹ(t) \ c if α = 0

ỹ(t) \ c if α = 1
(6.1)

Note that here ỹ(t) and c are sets, α is a bit, c is a set complement, and that ỹ(t) \ c and

ỹ(t) \ c are set subtractions to eliminate classes from the partial label based on the answer.
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Learning Process The learning process is simple: At each round t, the learner selects

a pair (x, c) for labeling. Note that a rational agent will never select either (i) an example

for which the exact label is known, or (ii) a pair (x, c) for which the answer is already

known, e.g., if c ⊃ ỹ(t) or c∩ ỹ(t) = ∅. After receiving binary feedback, the agent updates the

corresponding partial label ỹ(t) → ỹ(t+1), using Equation 6.1. The agent then re-estimates

its model, using all available non-trivial partial labels and selects another question q. In

batch-mode, the ALPF learner re-estimates its model once per T queries which is necessary

when training is expensive (e.g. deep learning). We summarize the workflow of a ALPF

learner in Algorithm ??.

Objectives We state two goals for ALPF learners. First, we want to learn predictors

with low error (on exactly labeled i.i.d. holdout data), given a fixed annotation budget.

Second, we want to fully annotate datasets at the lowest cost. In our experiments (Section

6.3), a ALPF strategy dominates on both tasks.

6.2.1 Learning from partial labels

We now address the task of learning a multiclass classifier from partial labels, a fundamental

requirement of ALPF, regardless of the choice of sampling strategy. At time t, our model

ŷ(y,x, θ(t)) parameterised by parameters θ(t) estimates the conditional probability of an

atomic class y. For simplicity, when the context is clear, we will use ŷ to designate

the full vector of predicted probabilities over all classes. The probability assigned to a

partial label ỹ can be expressed by marginalizing over the atomic classes that it contains:

p̂(ỹ(t),x, θ(t)) =
∑

y∈ỹ(t) ŷ(y,x, θ(t)). We optimize our model by minimizing the log loss:

L(θ(t)) = − 1

n

n∑
i=1

log
[
p̂(ỹ

(t)
i ,xi, θ

(t))
]

(6.2)

Note that when every example is exactly labeled, our loss function simplifies to the standard

cross entropy loss often used for multi-class classification. Also note that when every partial

label contains the full set of classes, all partial labels have probability 1 and the update

is a no-op. Finally, if the partial label indicates a composite class such as dog, and the

predictive probability mass is exclusively allocated among various breeds of dog, our loss

will be 0. Models are only updated when their predictions disagree (to some degree) with

the current partial label.
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6.2.2 Sampling strategies

Expected Information Gain (EIG): Per classic uncertainty sampling, we can quantify

a classifer’s uncertainty via the entropy of the predictive distribution. In AL, each query

returns an exact label, and thus the post-query entropy is always 0. In our case, each answer

to the query yields a different partial label. We use the notation ŷ0, and ŷ1 to denote

consequent predictive distributions for each answer (no or yes). We generalize maximum

entropy to ALPF by selecting questions with greatest expected reduction in entropy.

EIG(x,c) = S(ŷ)− [p̂(c,x, θ)S(ŷ1) + (1− p̂(c,x, θ))S(ŷ0)] (6.3)

where S(·) is the entropy function. It’s easy to prove that EIG is maximized when

p̂(c,x, θ) = 0.5.
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Table 6.1: Learning from partial labels on Tiny ImageNet. These results demonstrate the
usefulness of our training scheme absent the additional complications due to ALPF. In each
row, γ% of examples are assigned labels at the atomic class (Level 0). Levels 1, 2, and 4
denote progressively coarser composite labels tracing through the WordNet hierarchy.

γ(%)
γ (1− γ)

Level 0 Level 1 Level 2 Level 4

20 0.285 +0.113 +0.086 +0.025

40 0.351 +0.079 +0.056 +0.016

60 0.391 +0.051 +0.036 +0.018

80 0.432 +0.015 +0.017 -0.009

100 0.441 - - -

Expected Remaining Classes (ERC): Next, we propose ERC, a heuristic that

suggests arriving as quickly as possible at exactly-labeled examples. At each round, ERC

selects those examples for which the expected number of remaining classes is fewest:

ERC(x,c) = p̂(c,x, θ)||ŷ1||0 + (1− p̂(c,x, θ))||ŷ0||0, (6.4)

where ||ŷα|| is the size of the partial label following given answer α. ERC is minimized

when the result of the feedback will produce an exact label with probability 1. For a given

example xi, if ||ŷi||0 = 2 containing only the potential classes (e.g.) dog and cat, then with

certainty, ERC will produce an exact label by querying the class {dog} (or equivalently

{cat}). This heuristic is inspired by [27], which shows that the partial classification loss

(what we optimize with partial labels) is an upper bound of the true classification loss (as

if true labels are available) with a linear factor of 1
1−ε , where ε is ambiguity degree and

ε ∝ |ỹ|. By selecting q ∈ Q that leads to the smallest |ỹ|, we can tighten the bound to make

optimization with partial labels more effective.

Expected Decrease in Classes (EDC): More in keeping with the traditional goal

of minimizing uncertainty, we might choose EDC, the sampling strategy which we expect

to result in the greatest reduction in the number of potential classes. We can express EDC

as the difference between the number of potential labels (known) and the expected number

of potential labels remaining: EDC(x,c) = |ỹ(t)| − ERC(x,c).
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6.3 Experiments

We evaluate ALPF algorithms on the CIFAR10, CIFAR100, and Tiny ImageNet datasets,

with training sets of 50k, 50k, and 100k examples, and 10, 100, and 200 classes respectively.

After imposing the Wordnet hierarchy on the label names, the size of the set of possible

binary questions |C| for each dataset are 27, 261, and 304, respectively. The number of

binary questions between re-trainings are 5k, 15k, and 30k, respectively. By default, we

warm-start each learner with the same 5% of training examples selected i.i.d. and exactly

labeled. Warm-starting has proven essential in other papers combining deep and active

learning [158]. Our own analysis (Section 6.3.3) confirms the importance of warm-starting

although the affect appears variable across acquisition strategies.

Model For each experiment, we adopt the widely-popular ResNet-18 architecture [65].

Because we are focused on active learning and thus seek fundamental understanding of

this new problem formulation, we do not complicate the picture with any fine-tuning

techniques. Note that some leaderboard scores circulating on the Internet appear to have

far superior numbers. This owes to pre-training on the full ImageNet dataset (from which

Tiny-ImageNet was subsampled and downsampled), constituting a target leak.

We initialize weights with the Xavier technique [55] and minimize our loss using the

Adam [90] optimizer, finding that it outperforms SGD significantly when learning from

partial labels. We use the same learning rate of 0.001 for all experiments, first-order

momentum decay (β1) of 0.9, and second-order momentum decay (β2) of 0.999. Finally,

we train with mini-batches of 200 examples and perform standard data augmentation

techniques including random cropping, resizing, and mirror-flipping. We implement all

models in MXNet and have posted our code publicly1.

Re-training Ideally, we might update models after each query, but this is too costly.

Instead, following [158] and others, we alternately query labels and update our models

in rounds. We warm-start all experiments with 5% labeled data and iterate until every

example is exactly labeled. At each round, we re-train our classifier from scratch with

random initialization. While we could initialize the new classifier with the previous best

one (as in [158]), preliminary experiments showed that this faster convergence comes at the

cost of worse performance, perhaps owing to severe over-fitting to labels acquired early in

training. In all experiments, for simplicity, we terminate the optimization after 75 epochs.

Since 30k questions per re-training (for TinyImagenet) seems infrequent, we compared

against 10x more frequent re-training More frequent training conferred no benefit (Appendix

??).

1Our implementations of ALPF learners are available at: https://github.com/peiyunh/alpf
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CHAPTER 6. LEARNING WITH ACTIVE AND PARTIAL FEEDBACK

6.3.1 Learning from partial labels

Since the success of ALPF depends in part on learning from partial labels, we first

demonstrate the efficacy of learning from partial labels with our loss function when the

partial labels are given a priori. In these experiments we simulate a partially labeled

dataset and show that the learner achieves significantly better accuracy when learning from

partial labels than if it excluded the partial labels and focused only on exactly annotated

examples. Using our WordNet-derived hierarchy, we conduct experiments with partial labels

at different levels of granularity. Using partial labels from one level above the leaf, German

shepherd becomes dog. Going up two levels, it becomes animal.

We first train a standard multi-class classifier with γ (%) exactly labeled training data

and then another classifier with the remaining (1 − γ)% partially labeled at a different

granularity (level of hierarchy). We compare the classifier performance on holdout data

both with and without adding partial labels in Table 6.1. We make two key observations:

(i) additional coarse-grained partial labels improve model accuracy (ii) as expected, the

improvement diminishes as partial label gets coarser. These observations suggest we can

learn effectively given a mix of exact and partial labels.

6.3.2 Sampling strategies

Baseline This learner samples examples at random. Once an example is sampled, the

learner applies top-down binary splitting—choosing the question that most evenly splits

the probability mass, see Related Work for details— with a uniform prior over the classes

until that example is exactly labeled.

AL To disentangle the effect of active sampling of questions and samples, we compare

to conventional AL approaches selecting examples with uncertainty sampling but selecting

questions as baseline.

AQ Active questions learners, choose examples at random but use partial feedback

strategies to efficiently label those examples, moving on to the next example after finding

an example’s exact label.

ALPF ALPF learners are free to choose any (example, question) pair at each turn,

Thus, unlike AL and AQ, ALPF learners commonly encounter partial labels during training.

Results We run all experiments until fully annotating the training set. We then evaluate

each method from two perspectives: classification and annotation. We measure each

classifiers’ top-1 accuracy at each annotation budget. To quantify annotation performance,

we count the number questions required to exactly label all training examples. We compile

our results in Table 6.2, rounding costs to 10%, 20% etc. The budget includes the (5%)
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Figure 6.2: The progression of top1 classification accuracy (left), percentage of exactly
labeled training examples (middle), and average number of remaining classes (right).

i.i.d. data for warm-starting. Some key results: (i) vanilla active learning does not improve

over i.i.d. baselines, confirming similar observations on image classification by [153]; (ii)

AQ provides a dramatic improvement over baseline. The advantage persists throughout

training. These learners sample examples randomly and label to completion (until an exact

label is produced) before moving on, differing only in how efficiently they annotate data.

(iii) On Tiny ImageNet, at 30% of budget, ALPF-ERC outperforms AQ methods by 4.5%

and outperforms the i.i.d. baseline by 8.1%.

6.3.3 Diagnostic analyses

First, we study how different amounts of warm-starting affects ALPF learners’ performance

with a small set of i.i.d. labels. Second, we compare the selections due to ERC and EDC to

those produced through uncertainty sampling. Third, we note that while EDC and ERC

appear to perform best on our problems, they may be vulnerable to excessively focusing

on classes that are trivial to recognize. We examine this setting via an adversarial dataset

intended to break the heuristics.

Warm-starting We compare the performance of each strategy under different per-

centages (0%, 5%, and 10%) of pre-labeled i.i.d. data (Figure 6.3). Results show that ERC

works properly even without warm-starting, while EIG benefits from a 5% warm-start and

EDC suffers badly without warm-starting. We observe that 10% warm-starting yields no

further improvement.

Sample uncertainty Classic uncertainty sampling chooses data of high uncertainty.

This question is worth re-examining in the context of ALPF. To analyze the behavior

of ALPF learners vis-a-vis uncertainty we plot average prediction entropy of sampled

data for ALPF learners with different sampling strategies (Figure 6.4). Note that ALPF
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Figure 6.3: This plot compares our models under various amounts of warm-starting with
pre-labeled i.i.d. data. We find that on the investigated datasets, ERC does benefit from
warm-starting. However, absent warm-starting, EIG performs significantly worse and EDC
suffers even more. We find that 5% warmstarting helps these two models and that for both,
increasing warm-starting from 5% up to 10% does not lead to further improvements.

learners using EIG pick high-entropy data, while ALPF learners with EDC and ERC

choose examples with lower entropy predictions. The (perhaps) surprising performance of

EDC and ERC may owe to the cost structure of ALPF. While labels for examples with

low-entropy predictions confer less information, they also come at lower cost.

Adversarial setting Because ERC goes after “easy” examples, we test its behavior

on a simulated dataset where 2 of the CIFAR10 classes (randomly chosen) are trivially

easy. We set all pixels white for one class all pixels black for the other. We plot the

label distribution among the selected data over rounds of selection in against that on the

unperturbed CIFAR10 in Figure 6.5. As we can see, in the normal case, EIG splits its

budget among all classes roughly evenly while EDC and ERC focus more on different

classes at different stages. In the adversarial case, EIG quickly learns the easy classes,

thereafter focusing on the others until they are exhausted, while EDC and ERC concentrate

on exhausting the easy ones first. Although EDC and ERC still manage to label all data

with less total cost than EIG, this behavior might cost us when we have trivial classes,

especially when our unlabeled dataset is enormous relative to our budget.

6.4 Related work

Binary identification: Efficiently finding answers with yes/no questions is a classic

problem [47] dubbed binary identification. [76] proved that finding the optimal strategy

given an arbitrary set of binary tests is NP-complete. A well-known greedy algorithm called
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binary splitting [48, 111], chooses questions that most evenly split the probability mass.

Active learning: Our work builds upon the AL framework [12, 26, 155] (vs. i.i.d

labeling). Classical AL methods select examples for which the current predictor is most

uncertain, according to various notions of uncertainty: [29] selects examples with maximum

entropy (ME) predictive distributions, while [28] uses the least confidence (LC) heuristic,

sorting examples in ascending order by the probability assigned to the argmax. [157] notes

that annotation costs may vary across data points suggesting cost-aware sampling heuristics

but doesn’t address the setting when costs change dynamically during training as a classifier

grows stronger. [113] incorporates structure among outputs into an active learning scheme

in the context of structured prediction. Mo et al. [122] addresses hierarchical label structure

in active learning interestingly in a setting where subclasses are easier to learn. Thus they

query classes more fine-grained than the targets, while we solicit feedback on more general

categories.

Deep Active Learning Deep Active Learning (DAL) has recently emerged as an

active research area. [186] explores a scheme that combines traditional heuristics with

pseudo-labeling. [45] notes that the softmax outputs of neural networks do not capture

epistemic uncertainty [87], proposing instead to use Monte Carlo samples from a dropout-

regularized neural network to produce uncertainty estimates. DAL has demonstrated success

on NLP tasks. [206] explores AL for sentiment classification, proposing a new sampling

heuristic, choosing examples for which the expected update to the word embeddings is

largest. Recently, [158] matched state of the art performance on named entity recognition,

using just 25% of the training data. [82] and [88] explore other measures of uncertainty

over neural network predictions.

Learning from partial labels Many papers on learning from partial labels [27, 58, 127]

assume that partial labels are given a priori and fixed. [58] formalizes the partial labeling

problem in the probabilistic framework and proposes a minimum entropy based solution.

[127] proposes an efficient algorithm to learn classifiers from partial labels within the max-

margin framework. [27] addresses desirable properties of partial labels that allow learning

from them effectively. While these papers assume a fixed set of partial labels, we actively

solicit partial feedback. This presents new algorithmic challenges: (i) the partial labels for

each data point changes across training rounds; (ii) the partial labels result from active

selection, which introduces bias; and (iii) our problem setup requires a sampling strategy to

choose questions.
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6.5 Conclusion

Our experiments validate the active learning with partial feedback framework on large-scale

classification benchmarks. The best among our proposed ALPF learners fully labels the

data with 42% fewer binary questions as compared to traditional active learners. Our

diagnostic analysis suggests that in ALPF, it’s sometimes more efficient to start with

“easier” examples that can be cheaply annotated rather than with “harder” data as often

suggested by traditional active learning.
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Table 6.2: Results (N/A indicates data has been fully labeled)

Annotation Budget Labeling Cost
(w.r.t. baseline labeling cost)

10% 20% 30% 40% 50% 100%

TinyImageNet

Baseline 0.186 0.266 0.310 0.351 0.354 0.441 827k

AL - ME 0.169 0.269 0.303 0.347 0.365 - 827k
AL - LC 0.184 0.262 0.313 0.355 0.369 - 827k

AQ - EIG 0.186 0.283 0.336 0.381 0.393 - 545k
AQ - EDC 0.196 0.291 0.353 0.386 0.415 - 530k
AQ - ERC 0.194 0.295 0.346 0.394 0.406 - 531k

ALPF - EIG 0.203 0.289 0.351 0.384 0.420 - 575k
ALPF - EDC 0.220 0.319 0.363 0.397 0.420 - 482k
ALPF - ERC 0.207 0.330 0.391 0.419 0.427 - 491k

CIFAR100

Baseline 0.252 0.340 0.412 0.437 0.469 0.537 337k

AL - ME 0.237 0.321 0.388 0.419 0.458 - 337k
AL - LC 0.247 0.332 0.398 0.432 0.468 - 337k

AQ - EIG 0.266 0.354 0.443 0.485 0.502 - 208k
AQ - EDC 0.264 0.366 0.439 0.483 0.508 - 215k
AQ - ERC 0.256 0.366 0.453 0.479 0.496 - 215k

ALPF - EIG 0.263 0.341 0.423 0.466 0.497 - 235k
ALPF - EDC 0.281 0.367 0.442 0.479 0.518 - 193k
ALPF - ERC 0.273 0.379 0.464 0.502 0.526 - 187k

CIFAR10

Baseline 0.645 0.718 0.757 0.778 0.792 0.829 170k

AL - ME 0.663 0.709 0.759 0.763 0.800 - 170k
AL - LC 0.644 0.724 0.753 0.780 0.792 - 170k

AQ - EIG 0.654 0.747 0.791 0.806 0.823 - 89k
AQ - EDC 0.675 0.746 0.784 0.789 0.826 - 95k
AQ - ERC 0.682 0.750 0.771 0.811 0.822 - 96k

ALPF - EIG 0.673 0.741 0.786 0.815 0.813 - 124k
ALPF - EDC 0.676 0.752 0.797 0.832 N/A - 74k
ALPF - ERC 0.670 0.743 0.797 0.833 N/A - 74k
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Chapter 7

Self-Supervised Freespace

Forecasting

Figure 7.1: What are good 3D representations that support planning in dynamic en-
vironments? We visualize a typical urban motion planning scenario from a bird’s-eye
view, where an autonomous vehicle (AV) awaits an unprotected left turn. We highlight a
candidate plan with a blue arrow, whose endpoint represents where the AV will be in 1s.
An object-centric representation (left), as adopted by standard perception stacks, focuses on
objects properties (their shape, orientation, position, etc.) both at the current time step and
the future. Alternatively, a freespace-centric representation directly captures the freespace
of the surrounding scene, and can be readily obtained by raycasting measurements from a
depth (e.g., LiDAR) sensor. Forecasting a future version (in 1s) of either representation
could help the AV identify a potential collision associated with the candidate plan, however
at wildly different annotation costs. Forecasting future object trajectories requires a massive
amount of object and track labels to train perceptual modules. Instead, we explore future
freespace, whose forecasting can be naturally self-supervised by simply letting time move
forward and raycasting future sensor measurements. We propose approaches to planning
with forecasted freespace and learning to plan with future freespace.
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7.1 Introduction

Motion planning in dynamic environments requires forecasting how the scene imminently

evolves. What representation should we forecast to support planning? In practice, standard

autonomy stacks forecast a semantic object-centric representation by building perceptual

modules such as object detection, tracking, and prediction [181]. However, in the context of

machine learning, training these modules comes at an enormous annotation cost, requiring

massive amounts of data manually annotated with object labels, including both 3D trajec-

tories and semantic categories (e.g., cars, pedestrians, bicyclists, etc). With autonomous

fleets gathering petabytes of data, it’s impossible to label data at a rate that keeps up with

the rate of data collection.

To avoid the need for such costly annotations, and to enable learning at scale, we explore

an alternative freespace-centric representation to support motion planning (Fig. 7.1). We

believe this is effective for two primary reasons. First, freespace is a natural cue for safe

planning - it is generally important to avoid straying into occupied space, regardless of what

is occupying it. Second, gathering training data for freespace forecasting is annotation-free

given LiDAR scans recorded from an autonomous vehicle.

In this work, we propose two approaches for using a freespace-centric representation to

assist with planning. First, we explore freespace forecasting as a self-supervised learning task.

We point out essential modeling choices for building an effective predictor that forecasts

freespace. Then, given an off-the-shelf black-box motion planner, we demonstrate that

self-supervised future freespace predictions can be used to identify candidate plans that are

likely to collide with objects in the near future.

Lastly, we propose using future freespace as an additional source of supervision when

learning to plan. Many planners learn from expert demonstrations, and for example, learn

to imitate good habits like maintaining a wide safety margin when approaching pedestrians

in the street. However, it is difficult for the learner to know which other actions are bad,

since there may have been multiple reasonable actions that could have been taken. We

use future freespace to identify a subset of other actions that are clearly poor because they

collide with an obstacle. We empirically show that imitative learning-based planners with

such additional supervision produce motion plans that are far more safe and less likely to

induce collisions.

Contributions: We explore a self-supervised freespace-centric representation as an

alternative to the predominantly supervised object-centric representation. We are the first

to integrate self-supervised freespace predictions with an existing planner and demonstrate

promising results. We also propose simple modifications to existing learning approaches to
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Figure 7.2: We illustrate a raw data log collected by an AV. In practice, such logs come in
abundance. The crucial question is: how do we use them to support local planning? The
widely-adopted approach tries to provide planners with knowledge of where objects are
and will be (red). We try to provide knowledge of what future freespace looks like (green).
We discuss two ways of how existing planners can use future freespace. First, we develop
freespace forecasting models and demonstrate that their predicted future freespace can be
used to improve off-the-shelf planners. Second, we show how to use ground-truth future
freespace as additional supervision while learning to plan and demonstrate improvements
by doing so.

planning that allow future freespace to be used as an additional source of self-supervision.

Finally, we demonstrate promising results on planning benchmarks.

7.2 Related work

Geometric planning: Classic planning algorithms such as A* [62] D* [167], PRM [86],

and RRT* [84] usually assume static scene geometry and focus on efficiently finding the

shortest collision-free path within the navigable freespace. A common workaround for

motion planning in dynamic environments is to replan at high frequencies and reactively

avoid moving objects [8, 135, 168, 183]. To avoid reactive planning, one must be able

to forecast future evolution of geometry. This is typically done by building a modular

perception pipeline that contains components for object detection, tracking, and forecasting.

However, massive amounts of training data and annotated labels are required to train

perception modules for discrete object classes. Purely geometric planning approaches also

commonly suffer from ambiguous interpretation of geometry (e.g. aggressively avoiding

leaves blowing in the wind) or may not pick up on semantic cues (e.g. driving onto an

empty opposite lane).

Behavior cloning: End-to-end learned approaches for autonomous driving have

emerged as simple alternatives to modular autonomy stacks, with imitation learning

methods showing particular promise [25, 145]. Imitation learning is generally split into

two major classes: behavioral cloning and inverse optimal control (inverse reinforcement

learning) [131]. Behavioral cloning refers to methods that learn a direct mapping from
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observations to actions using expert demonstrations. ALVINN [137] is a classic example

of behavioral cloning for road following which uses a neural network to learn a mapping

from image to steering angle. More recently, [11] used a deep convolutional network to

demonstrate real-world vehicle control in a variety of driving scenarios. Another approach

uses video game driving demonstrations to train a network that maps images to driving

affordances that can be directly used for control [20]. [24] trains a network to produce

steering and acceleration commands from input images while also conditioning on a high

level-command. More recently, [21] proposes a new approach to behavior cloning. Their

results suggest that a privileged imitative learner, despite performing worse than the ex-

pert it learns from, may serve as a better teacher to non-privileged imitative learners, by

providing richer supervision.

Inverse optimal control: Inverse optimal control (or inverse reinforcement learning)

attempts to recover an unknown cost function from a set of expert demonstrations which can

then be used for planning. [1] developed a seminal approach that cast the cost/reward model

as a linear function of state features whose feature weights could be learned from expert

demonstrations. Maximum Margin Planning (MMP) [142] is another classic approach that

used a structured margin loss to learn a cost map that can produce expert-like trajectories

via dynamic programming. [213] use the maximum-entropy principle to select solutions

that show the least commitment to the training data, avoiding ambiguities that may arise

if expert demonstrations are imperfect. This approach has recently been improved by using

neural networks to approximate the underlying cost model [192]. Similarly, [203] extends

MMP by using a deep neural network trained end-to-end with a multi-task loss to produce

cost maps for trajectory scoring.

Additional supervision: One well-known challenge for imitation learning is figuring

out how to recover from mistakes - commonly referred to as the ”compounding error” problem

[11, 137, 147]. [147] show that an effective solution is to have the expert interactively provide

feedback by correcting the actions executed by a policy that is learning online. However,

this is potentially dangerous to implement in the real world and may result in only sparse

feedback. A more widely adopted strategy is to instead learn offline from historical (non-

interactive) driving logs. Many researchers have used the CARLA simulator to record

driving logs at scale using the built-in autopilot system [24, 25, 35, 145]. Simulation is

particularly attractive because one has access to ground-truth labels of objects and the

environment, which greatly simplifies learning [21]. However, transferring policies trained

in simulation to the real world remains an active area of research. [7] perturb mid-level

representations of real-world historical data to simulate nontrivial driving scenarios and

were able to deploy their model on a real car. Our freespace forecasting approach is able to
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learn from both real historical data and simulated data, and works directly with raw sensor

data instead of needing object labels.

Self-supervised learning: Self-supervised learning has recently emerged as an effec-

tive approach for many robotic manipulation tasks [39, 103, 125, 202]. However, its usage in

mobile robotics is far less prevalent, with most methods aimed at solving perception tasks

like road detection [30], aerial image analysis [154], and lidar/camera depth completion [115].

One early application of self-supervised learning to robot navigation developed by [166]

learned mappings from both online and offline perceptual data to planning costs, demonstrat-

ing navigation on the Crusher robot. More recently, [81] showed that a navigation system

based on a generalized computation graph trained with self-supervised deep reinforcement

learning (DRL) was able to outperform standard DRL approaches in both simulation and

real-world RC car experiments. In this work, we pose future freespace forecasting as a

scalable source of self-supervision and show that it is effective for motion planning.

Freespace as a representation: A few works have explored the question of estimating

freespace. [44] estimate a top-view probabilistic occupancy map to track people in an indoor

setting with a multi-camera setup. [66] estimate indoor freespace from a single image

by leveraging “boxy” object detectors. Thanks to the progress in 3D sensing, recent

works have been building upon freespace measured through depth sensors (e.g. LiDAR).

[33, 41, 73, 123, 130] pose occupancy grid maps (OGMs) prediction as a self-supervised

learning task and explore effective neural net architectures for this task. Our work on

forecasting freespace is similar to prior works on predicting OGMs in learning with self-

supervision. However, our work extends beyond the forecasting task itself in three meaningful

aspects. First, we demonstrate how off-the-shelf planners can use forecasted freespace.

Second, we demonstrate how to learn planners with future freespace as additional supervision.

Third, we demonstrate improvements in terms of planning performance. Most recently, [146]

learn to predict semantic occupancy maps. [150] learn to predict future semantic occupancy

maps as a representation that supports downstream planning and demonstrate improvement

in planning performance. Our work differs in that our freespace-centric representation is

annotation-free and therefore more scalable.

7.3 Method

Raw logs of autonomous fleets naturally provide an abundance of aligned sensor data

sequences x and ego-vehicle trajectories y, represented as collections of {(x,y)}. We

provide an example of such logs in Fig. 7.2. How do we make use of such data to learn

representations that support planning? In the sections to follow, we first introduce the
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definition of freespace and how to compute it. Then we describe a self-supervised approach to

forecasting freespace. Finally, we describe approaches to planning with forecasted freespace

and learning to plan with future freespace.

7.3.1 Computing freespace

We define freespace as space free of obstacles as observed by a LiDAR sensor at a particular

time instance. Given a sequence of aligned sensor data and ego-vehicle trajectory (x,y), let

us write

ray(u; x,y) ∈ {0,−1, 1}, u = (x, y, t), ∀u ∈ U (7.1)

to denote the freespace state of voxel u in the spacetime voxel grid U, which can be unknown

(0), free (-1), or occupied (1) respectively. Note that the spatial index of voxel u is 2D

because we assume the local motion planners we work with operate on a ground plane and

x, y represents a bird’s-eye-view spatial location. When the freespace state of voxel u is

unknown, the true state can be either occupied or free but is unobserved due to for example

occlusion.

We compute freespace via raycasting. Given a 3D point cloud, we compute a 2D

bird’s-eye-view freespace following two steps. First, we identify LiDAR returns from the

ground via a robust ground segmentation algorithm [69]. After we discard ground returns,

we compute 2D freespace via a 2D visibility algorithm known as wall tracking [134]. We

show example results in Fig. 7.2. This computation is automatic and does not require

human annotators in the loop.

7.3.2 Forecasting freespace

Suppose we split each sensor trajectory pair (x,y) into a historical pair (x1,y1) and future

pair (x2,y2), our goal is to learn a model that predicts freespace computed over (x2,y2)

given freespace computed over (x1,y1). Crucially, we can compute ground-truth future

freespace via raycasting for free (without human annotations)!

We train a convolutional neural network fθ(u; x1,y1) with parameters θ to predict

future freespace given the historical sequence (x1,y1) by minimizing the following loss:

min
θ

BCE
(
σ
(
fθ(u; x1,y1)

)
, ray(u; x2,y2)

)
,∀u ∈ U (7.2)

where σ represents the sigmoid function and BCE stands for Binary Cross Entropy. Here,

we use U to represent the voxel grid with future timestamps. The neural network produces
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logits, which are then converted to probabilities of voxels belonging to freespace through

sigmoid.

Here, we formulate freespace forecasting as a binary classification and do not represent

a unknown state as a separate state. This is because, as we have mentioned, when the

ground-truth freespace state of a voxel future is unknown, its true state is either occupied

or free. When computing the binary cross entropy loss, we ignore such voxels with an

ambiguous freespace state.

Residual forecasting: In most scenarios, future freespace does not look much different

from historical freespace. This means we may be able to predict a majority of future

freespace through interpolating historical freespace. Therefore, we decompose our freespace

forecasting model into two parts, i.e., linear extrapolation and non-linear residual.

fθ(u; x1,y1) =

linear extrapolation︷ ︸︸ ︷
fα(ray(u1; x1,y1)) +

non-linear residual︷ ︸︸ ︷
fθ̃(u; x1,y1) (7.3)

where fα represents a linear extrapolation over spatially-aligned historical freespace and fθ̃
represents a non-linear predictor that forecasts residual logits. As we will show in Tab. 7.1,

residual forecasting (7.3) is crucial to good accuracy.

7.3.3 Planning with forecasted freespace

Now we have introduced a self-supervised approach to freespace forecasting, how can an

off-the-shelf planner work with forecasted freespace? We answer this question in the context

of planners learned via both behavior cloning (BC) and inverse optimal control (IOC).

Behavior cloning (BC): A behavior cloning planner takes sensor data and ego-

trajectories x1,y1 as input and predicts an expert-like future trajectory ŷ2. The planner

needs to know if the ego-vehicle can safely traverse each space-time voxel along the future

trajectory. Our freespace forecasting model is designed to answer such queries, with one

caveat: the model is trained to output a soft probability. We have to introduce a threshold

that turns soft probabilities into hard decisions, similar to the fact that we have to pick a

confidence score threshold for object detectors in standard autonomy stacks. Let τ be the

threshold, we can test if a candidate future trajectory y = {u} is safe by

q = ∧u∈ŷ2 [fθ(u; x1,y1) ≤ τ ] (7.4)

The planner passes the test of predicted future freespace when q is true. When it fails, we

override the plan with a fall-back option, such as emergency braking maneuvers.
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Inverse optimal control (IOC): An inverse optimal control approach to planning

learns a cost map that scores potential trajectories, where the best one is found through

optimization. We define the cost of a candidate trajectory ŷ2 to be the sum of costs along

its spacetime points:

Cψ(ŷ2; x1,y1) =
∑
u∈ŷ2

costψ(u; x1,y1) (7.5)

where costψ is a spacetime costmap generated by a neural net, structurally similar to

the freespace forecaster from Sec. 7.3.2. It is important that any candidate trajectory

ŷ2 maintains consistent and smooth dynamics with its immediate past y1 hence the

conditioning. When integrating forecasted freespace into IOC planners, we directly modify

the costmap to ensure that voxels predicted to be likely occupied incur very large costs,

Cψ,θ(ŷ2; x1,y1) =
∑
u∈ŷ2

[(costψ + γfθ)(u; x1,y1)] (7.6)

where γ is a predefined cost w.r.t. future freespace violation.

Implementation: An IOC planner may search over an exponentially large number of

potential trajectories with dynamic programming [142], explore a local set of trajectories

through gradient based optimization [141], or evaluate a set of sampled trajectories through

exhaustive search [203]. We make use of the latter. Following [203], instead of modeling

smoothness as part of the costmap, we enforce them as a constraint by restricting the

space of viable trajectories Y(y1) that is searched. This is formally equivalent to assigning

trajectories not in Y(y1) to be infinite cost.

min
y∈Y

Cψ(y; x1,y1) = min
y∈Y(y1)

∑
u∈y

costψ(u; x1) (7.7)

When the space of viable trajectories Y(y1) is available, we found it useful to restrict

the freespace forecasting loss to the set of spacetime voxels reachable by the ego-vehicle.

This results in a sparse loss in contrast to the original dense one. We will refer to freespace

forecasting learned with the sparse loss as planning-aware freespace forecasting.

min
θ

BCE
(
σ
(
fθ(u; x1,y1)

)
, ray(u; x2,y2)

)
,∀u ∈ Y(y1) (7.8)

7.3.4 Learning to plan with future freespace

We have discussed how an off-the-shelf planner can work with forecasted freespace. In

particular, we show one can modify an IOC planner’s costmap based on predicted future

freespace. A follow-up question is: can we use ground-truth future freespace to learn a
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costmap that naturally reflects future freespace?

An IOC planner learns a neural net to predict a space-time costmap. The network will

be trained to ensure that ground truth future trajectory y2 has lower cost than others:

Cψ(y2; x1,y1) ≤ min
y∈Y

Cψ(y; x1,y1) (7.9)

Because not all alternative trajectories are equally bad, one often introduces a penalty that

ensures the ground-truth dominates over those trajectories that lie far away by a margin

l(y,y2) [142, 203]:

Cψ(y2; x1,y1) ≤ min
y∈Y

(Cψ(y; x1,y1)− l(y,y2)) (7.10)

The margin term l(y,y2) is often chosen to be a measure of dissimilarity between y and

y2, for example, Euclidean distance:

l(y,y2) = Dist(y,y2) (7.11)

One can rewrite the constraint from (7.10) as a loss that penalizes the cost of the

ground-truth while maximizing the cost of the worst-offender:

loss(ψ) =

[
Cψ(y2;x1,y1)−

(
min
y∈Y

Cψ(y;x1,y1)− l(y,y2)

)]+

(7.12)

where [·]+ = max(·, 0). The minimization reaches the minimum at 0 when (7.10) is satisfied.

Importantly, [203] query additional supervision in the form of object bounding boxes.

These bounding boxes in future frames are converted to a binary object occupancy grid,

denoted by O, as visualized by red in Fig. 7.2. If O[u] = 1, there is an object occupying

spacetime voxel u. Any trajectory y that appears at such spacetime voxels should bear an

additional margin cost for collisions:

l(y,y2) = Dist(y,y2) + γo
∑
u∈y

O[u] (7.13)

where γo is a predefined cost of object collision. Instead of relying on human annotations,

our approach extracts supervision from raycasted future-freespace, as visualized by green in

Fig. 7.2.

l(y,y2) = Dist(y,y2) + γ
∑
u∈y

[ray(u; x2,y2)]+ (7.14)

where γ is a predefined cost of future freespace violation.
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7.4 Experiments

We use CARLA to evaluate freespace forecasting as a task itself. We use both NoCrash and

nuScenes to evaluate planning performance. On one hand, NoCrash offers an interactive

environment where an agent’s action has lasting consequences, allowing for on-policy

evaluation; on the other hand, nuScenes offers real-world sensor data and driving scenarios,

allowing for realistic off-policy evaluation.

CARLA and NoCrash: CARLA is an open-source urban driving simulator [36] and

NoCrash is the latest planning benchmark on CARLA [25]. On NoCrash, an agent succeeds

if it completes a predefined route in time without collisions. NoCrash features various towns,

weather conditions, and traffic densities. Town 1 is for training and Town 2 is for testing.

A subset of weather conditions is also held out for testing. An agent has access to a sensor

suite to perceive the environment and needs to produce control signals to apply to motors.

nuScenes: nuScenes is one of the latest real-world driving datasets collected by au-

tonomous fleets. We choose nuScenes because its unique release of CAN bus data makes it

possible to implement our baseline motion planner [203]. Since the official server does not

evaluate planning, we create a protocol for nuScenes to evaluate planning. We randomly

split the 850 annotated scenes into training (550), validation (150), and test sets (150),

which amounts to about 17K, 5K, 4K frames respectively.

We refer readers to the supplementary materials for implementation details such as

neural net architectures. We plan to make our implementation publicly available.

7.4.1 Freespace Forecasting

Setup: We let a driving agent roam around in Town 1 under an autopilot policy [25] to

collect 400 trajectories for training and and 100 trajectories for validation. We follow the

same practice to collect 100 trajectories in Town 2 for testing. In total, we have about 164K

frames for training, 39K for validation, and 31K for testing.

Evaluation: Under the binary classification formulation, two classes in freespace

forecasting turns out to be highly imbalanced. Compared to occupied space, freespace

constitutes a vast majority of freespace states in the future at a rate of 35 to 1. Therefore,

we plot a precision-recall curve w.r.t. occupied space and compute average precision. We

also evaluate the maximum F1 score on the PR curve.

Residual forecasting: We test the idea of residual forecasting, including four variants

as shown in Tab. 7.1. Our results suggest residual forecasting is highly effective. Please

refer to the caption for details.

Scalability: Learning to forecast freespace requires no human annotation. We evaluate
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α, θ
Town 1(val) Town 2(test)

BCE F1 AP BCE F1 AP

(α0,0) 0.594 0.659 0.453 0.377 0.740 0.561
(α,0) 0.101 0.688 0.610 0.089 0.786 0.730
(0, θ) 0.043 0.687 0.752 0.099 0.406 0.364
(α, θ) 0.034 0.772 0.830 0.047 0.755 0.773

Table 7.1: Ablation studies on residual forecasting. (α0,0) replicates the latest frame as
the future prediction, without any learning. (α,0) learns to linearly predict from historical
freespace observations, dramatically improving accuracy on towns used for training, but
reducing performance on new towns. (0, θ) forecasts directly learns a nonlinear predictor
without a residual, which also appears to heavily overfit to the training town. (α, θ) learns
a nonlinear residual that is added to the linear prediction, which outperforms all variants.

#Logs
Town 1(val) Town 2(test)

BCE F1 AP BCE F1 AP

25 0.051 0.692 0.707 0.051 0.759 0.752
50 0.046 0.710 0.740 0.049 0.760 0.760
100 0.042 0.731 0.773 0.048 0.760 0.768
200 0.037 0.754 0.805 0.048 0.757 0.772
400 0.034 0.772 0.830 0.047 0.755 0.773

Table 7.2: Ablation studies on increasing the amount of training data. We see a dramatic
improvement on towns used for training and a slower improvement on new towns in AP.

the performance of freespace forecasting models trained with an increasing amount of data.

Our results in Tab. 7.2 suggest performance in training towns improves dramatically as we

increase the amount of training data. The slower improvement on new towns suggests we

should collect data on new towns as well. This would be particularly viable for freespace

forecasting as it does not need additional human annotations.

7.4.2 Planning on NoCrash

Baseline: LBC [21] is the state-of-the-art planner on NoCrash. At test time, a LBC agent

receives sensor data and a high-level instruction (turn-left, turn-right, go-straight, follow-

lane) as input every 0.1s and outputs a trajectory in the form of a series of bird’s-eye-view

waypoints. In particular, there are 5 waypoints from 0.5s to 2.5s at every 0.5s. The planner

then uses heuristics to select one waypoint and translates it via pure-pursuit controllers to

control signals that can be applied to motors for a duration of 0.1s before re-planning when
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Figure 7.3: Freespace forecasting qualitative result (bird’s-eye-view). On the left, we
visualize ground-truth future freespace. occupied is red, unknown is gray, freespace is blue.
On the right, we visualize predicted future freespace. The model does not treat unknown
as a separate class, instead it predicts a probability for every voxel. We highlight two
vehicles in the opposing lane with green boxes. Notice the predicted freespace tracks the
first (bottom) vehicle. Also, it predicts that the second vehicle could have turned left,
shown by the predicted freespace in the pink box. We urge readers to view video version of
this figure (and other results) in our supplement.

new sensor data and instructions arrive.

Results: We learn a residual forecasting model that takes historical freespace from the

past 2s and predicts future freespace up to 2.5s. We incorporate future freespace predicted

by this forecasting model into an off-the-shelf LBC planner in a post-hoc fashion. Based on

the predicted bird’s-eye-view future freespace (Fig. 7.3), we check if LBC’s waypoint passes

the test according to Eq. (7.4). We identify relevant voxels by drawing an oriented box for

the ego-vehicle centered at the selected waypoint. When the test fails, we override LBC’s

plan with a trajectory that represents the action of staying still, which would then translate

to the control signals that correspond to an emergency brake through the controllers. As

results in Table 7.3 show, such post-hoc integration significantly improve the overall success

rate on most testing suites compared to LBC’s off-the-shelf performance. We further break

down remaining failures by their causes in Fig. 7.4. When incorporating forecasted freespace

post-hoc, we dramatically reduce the number of collisions, converting some to timeouts.

This suggests avoiding imminent collisions is not enough to guarantee successful long-term

planning.

7.4.3 Planning on nuScenes

Baselines: Neural motion planner (NMP) [203] is a state-of-the-art planner on real-world

driving data. Since there is no official implementation for NMP, we reimplement it based on

details from the paper and with help from the authors. The planner first samples a list of
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Task Weather PV [21] LBC [21] LBC+FF

Empty
Train

100 ± 0 100 ± 1 99 ± 1
Regular 95 ± 1 94 ± 3 96 ± 2
Dense 46 ± 8 51 ± 3 57 ± 4

Empty
Test

100 ± 0 70 ± 4 66 ± 3
Regular 93 ± 1 62 ± 2 73 ± 1
Dense 45 ± 6 39 ± 6 44 ± 5

Table 7.3: Planning results on CARLA NoCrash (test town). PV: privileged agent (see [21]).
LBC: Learning By Cheating (our baseline planner on CARLA). LBC+FF: we combine a
learned freespace forecaster (FF) with LBC and override any plan of LBC that “collides”
with the predicted future freespace. By using forecasted freespace, we significantly improve
the state-of-the-art planner LBC’s overall success rates on most test suites, in particular,
on those test suites that have moving objects. On empty towns, using forecasted freespace
leads to slightly worse performance, likely due to false positives in freespace forecasting.
Fig. 7.4 further breaks down failures into collisions versus timeouts, demonstrating that
freespace is even more beneficial for avoiding safety-critical collisions.

Gray shade : new approaches from this work.

Empty-Train Regular-Train Dense-Train Empty-Test Regular-Test Dense-Test

0

20

40

60

Failure rates (%)

Collision-LBC
Collision-LBC+FF

Timeout-LBC
Timeout-LBC+FF
Timeout-LBC
Timeout-LBC+FF

Figure 7.4: Breaking down NoCrash failures. Our approach of incorporating freespace
forecasting into off-the-shelf black-box planners reduces overall failure rates in most scenarios.
Most importantly, it dramatically reduces the collision rates by converting many collisions
to timeouts. This suggests that avoiding imminent collisions is not enough to assure the
success of long-term goal-reaching planning. For example, an autonomous vehicle would not
want to drive on the opposing lane even if it does not lead to any collision in the near term.
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plausible trajectories based on the ego-vehicle’s kinematic state. Then it takes sensor data

from the last 2 seconds as input and predicts a space-time bird’s-eye-view cost map for the

next 3 seconds, including 6 time-slices from 0.5s to 3.0s at every 0.5s. Finally, it score every

sampled trajectory according to the predicted cost maps and pick the best-scoring one.

We implement three NMP baselines. First, we implement a vanilla NMP, where it

penalizes trajectories based on how much they deviate from expert trajectories, as described

in (7.11). Second, we implement a object-supervised NMP, where it applies additional

penalties to trajectories that collide with object box occupancy in space-time, as described

in (7.13). This baseline serves as a faithful reimplementation of [203] given what is available

on nuScenes ([203] also applies penalties based on the real-time traffic light status which is

not available on nuScenes). Third, we implement a NMP with improved object supervision.

Specifically, we modify binary object occupancy grid O as in (7.13) by performing raycasting

over O. This gives us a bird’s-eye-view occlusion patterns imposed by object occupancy,

based on a heuristics that the ego-vehicle should learn to stay away from not only the

spacetime voxels that are occupied by objects but also those that are occluded by objects.

Evaluation: We evaluate planned trajectories within a 3s horizon at every 0.5s. We

focus on two evaluation metrics: L2 error and collision rate. First, we compute the

difference between the planned and the expert trajectory by the average L2 error between

corresponding waypoints. Second, we evaluate how often the ego vehicle would collide with

other objects. We place oriented bird’s-eye-view boxes that represent the ego-vehicle at

every waypoint along the planned trajectory and detects if there is any collision with other

annotated boxes in the scene. One caveat for this evaluation is that we assume the scene

plays out as recorded.

Results (L2P): We compare different learning-to-plan approaches. As Tab. 7.4 shows,

the vanilla baseline achieves the lowest L2 errors but larger collision rates compared to

object-supervised baselines. Learning with improved object-supervision leads to the lowest

collision rates, suggesting staying away from object occlusion is a good heuristics when

learning costmaps for planning. Finally, learning with future freespace reduces collision

rates compared to the vanilla baseline without requiring human annotations.

Results (Plan w/ FF): We evaluate approaches that post-process the vanilla baseline

with forecasted freespace. We explore both dense and sparse loss for learning the freespace

forecasting model. As Tab. 7.5 shows, post-processing with planning-aware freespace

forecasting (FF) greatly reduces the vanilla baseline’s collision rates, and largely bridge

the gap toward the best object-supervised baseline (Tab. 7.4). Interestingly, post-processing

with planning-aware freespace forecasting (7.8) turns out more effective than learning to

plan with future freespace. We posit that max-margin learning does not take full advantage
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Learn to plan
L2 (m) Collision (%)

1s 2s 3s 1s 2s 3s

vanilla 0.50 1.25 2.80 0.68 0.98 2.76
+ object 0.61 1.44 3.18 0.66 0.90 2.34
+ object∗ 0.61 1.40 3.16 0.71 0.81 1.45
+ freespace 0.57 1.28 2.94 0.66 0.87 2.17

Table 7.4: We compare learning-to-plan approaches with different additional supervision
(+) on the held-out test set of nuScenes. The vanilla approach learns with ego-vehicle
trajectories as the only source of supervision, achieving the lowest L2 errors but the largest
collision rates. Learning with additional object (especially object* – improved) supervision,
significantly reduces the collision rates. Learning with additional future freespace supervision
reduces collision rates without requiring human annotations. Note that vanilla+object
represents a faithful reimplementation of neural motion planning (NMP) [203].

Red: approaches that need human annotations

Plan w/ FF
L2 (m) Collision (%)

1s 2s 3s 1s 2s 3s

vanilla 0.50 1.25 2.80 0.68 0.98 2.76

→ FF (dense) 0.57 1.34 3.18 0.66 0.98 2.43
→ FF (sparse) 0.56 1.27 3.08 0.65 0.86 1.64

Table 7.5: We evaluate planning-with-forecasted-freespace approaches on the test set
of nuScenes. We compare two loss functions for freespace forecasting: dense (7.2) and
sparse (7.8). The sparse loss is strictly better than the dense loss, suggesting freespace
forecasting is more effective at helping planning when it is aware of what is reachable
space for the planner. In addition, post-processing a vanilla baseline with planning-aware
freespace forecasting can largely bridge the gap toward learning with object∗-supervision.
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of future freespace by penalizing only the worst offender.

Conclusion: Standard approaches to planning in a dynamic environment usually

require an object-centric perception system that is trained to forecast the future evolution

of the scene. Providing object annotations is an expensive venture that cannot scale to the

magnitude of data generated by autonomous fleets. We introduce self-supervised future

freespace forecasting as an annotation-free, scalable representation for safe, expert-like

motion planning and show that it serves as an effective augmentation to standard methods.

In practical settings, future freespace forecasting is versatile because it can (1) be directly

incorporated into existing learning-based approaches for motion planning or (2) be used

as an additional post-hoc predictive collision-checking step on top of an existing motion

planner.
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Chapter 8

Self-Supervised Occupancy

Forecasting

In the last chapter, we explore future freespace as an alternative representation as opposed

to the predominant object-centric representation. We show that the forecasting of future

freespace can be naturally self-supervised, where ground-truth future freespace can be

directly computed via raycasting “for free”. We demonstrate that such freespace supervision

can potentially improve the safety aspect of local motion planning.

However, one distinctive criticism over future freespace as a representation is that it

is view-specific (Fig. 8.1-b). In contrast, object-centric representation (Fig. 8.1-a) is view-

independent. In this chapter, we address this criticism of future freespace. We develop a

novel approach that allows us to forecast view-independent representations (Fig. 8.1-c) given

view-specific freespace supervision. The key insight of this approach is the differentiable

rendering of freespace.

Figure 8.1: (a) View-independent object occupancy; (b) Chap. 7: view-specific freespace;
(c) Proposed: view-independent latent occupancy.

In the sections to follow, we will first review future freespace and how one can integrate
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freespace supervision into max-margin neural motion planner [142, 203]. Then we will

introduce how one could utilize differentiable freespace rendering to produce occupancy-like

view-independent representations.

8.1 Background

Our goal is learning to map sensor data to “planning-ready” cost maps, as illustrated in

Fig. 8.2 [142]. A “planning-ready” cost map is structured such that the optimal trajectory

achieves the lowest cost.

Figure 8.2: Learning to map sensor data to cost maps.

We adopt a sampling-based approach to trajectory planning (Fig. 8.3). We discretize

each candidate trajectory into a series of waypoints at discrete timestamps. We assign

a cost to each waypoint by using it as an index on the cost map. Finally, we select the

trajectory with the lowest cost as the final plan.

Figure 8.3: Max-margin neural motion planner.

To learn a neural network that produces such “planning-ready” cost maps, we adopt a

max-margin learning framework. This requires expert demonstrations, which are readily

available in driving logs. The learning objective is to score a candidate trajectory depending
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on how different it is from the expert trajectory. The more it looks like the expert trajectory,

the lower the cost should be. We often use L2 distance between waypoints to quantify such

difference. We can write the objective with the following max-margin loss function.

L = max
(

0, ce −min
s

(cs −D(e, s))
)

(8.1)

Such learning setup is scalable because it does not require laborious and expensive human

annotations. However, there is an important criticism about learning from demonstration

alone: the loss function provides no other incentive to distinguish candidate trajectories,

regardless of the context. We provide an example (Fig. 8.4) where one trajectory should cost

more than the other despite the fact they are equally distant from the expert demonstration.

Figure 8.4: When scored, the red trajectory (s1) should cost more than the blue trajectory
(s2) given the presence of the car.

A costly but effective remedy, as suggested by Zeng et al. [203], is to use object labels

to guide cost learning. With object labels, we could modify the learning objective such

that a candidate trajectory that collides with objects costs even more in addition to the

deviation from expert demonstration. We refer to this approach as guided cost learning

(Fig. 8.5). We can modify the loss function accordingly.

Lg = max
(

0, ce −min
s

(cs −D(e, s)−O(s))
)

(8.2)

Another approach, as we have introduced in the last chapter, is to use freespace

supervision instead of object labels (Fig. 8.6) to guide cost learning. We only have to

substitute one term in the loss function.

Lg = max
(

0, ce −min
s

(
cs −D(e, s)− F̄ (s)

))
(8.3)

where F̄ (s) represents the cost of a candidate trajectory “collides” with non-freespace.
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Figure 8.5: Object labels guided cost learning.

As we have shown in the last chapter, guiding max-margin cost learning with supervision

in addition to expert demonstrations can significantly reduce the collision rates during

motion planning. We show that object labels are the most effective but also are the most

expensive. In the meanwhile, we demonstrate freespace supervision is also effective in

lowering collision rates albeit requires no human supervision.

One important criticism over guided cost learning is that it does not produce an

interpretable intermediate representation that describes the dynamic environment. Recent

works have explored multi-task learning in order to produce such interpretable intermediate

representations. Zeng et al. [203] designs a perception loss that focuses on learning to detect

objects in addition to the max-margin loss that focuses on planning. However, the object

detection does not directly contribute to the cost maps for planning. Because perception

and planning are decoupled, a mistake in planning cannot be pinpointed to a mistake in

object detection. Later works [19, 150, 204] improve the multi-task learning design and

allow the result of perception and prediction to directly contribute to the cost maps.

In particular, Sadat et al. [150] proposes future semantic occupancy as an interpretable

intermediate representation and propose a multi-task learning setup that consists of label-

guided cost learning and semantic occupancy forecasting, as illustrated in Fig. 8.7.

In a similar fashion, we can build a multi-task learning setup that consists of freespace-

guided cost learning and freespace forecasting, as illustrated in 8.8.
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Figure 8.6: Label-intensive object supervision vs. label-free freespace supervision.

8.2 Approach

We propose an end-to-end learnable network that performs (latent) occupancy forecasting

and motion planning. We plot the training-time architecture of the proposed approach in

Fig. 8.9. In contrast to Fig. 8.8, note that we add an additional step named differentiable

rendering. During training, the model predicts view-independent latent occupancy, which

is rendered into view-specific freespace with the knowledge of LiDAR pose. Finally, the

rendered freespace is compared to the observed freespace and produce gradients for learning.

Notice we are learning with the exact same freespace forecasting loss, meaning we are using

the same freespace supervision. But the introduction of rendering is what enables the model

to produce view-independent intermediate representations (Fig. 8.1-c) with view-specific

supervision.

We propose a differentiable freespace rendering algorithm, which enables the end-to-end

learning of the model described in Fig. 8.9. We illustrate why such a rendering process is

differentiable in Fig. 8.10. Please refer to the caption for more details.

The proposed approach has a slightly different architecture at test time, because we no

longer have access to LiDAR pose at future timestamps. We modify the architecture such

that the predicted latent occupancy directly contributes to the cost map. We illustrate the

test-time architecture in Fig. 8.11.
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Figure 8.7: Multi-task: label-guided cost learning with semantic occupancy forecasting.

8.3 Experiments

We adopt the same experimental setup as in Sec. 7.4.3 of Chap. 7. We include main results

in Tab. 8.1. Here we evaluate three metrics: (1) L2 distance between the output trajectory

and the expert trajectory; (2) Point collision: collision rate with the ego vehicle as a point;

(3) Box collision: collision rate with the ego vehicle as an oriented box.

Object label’s efficacy comes at a price. Freespace supervision (Tab. 8.1-i), which

requires no human supervision, only slightly underperforms object supervision (Tab. 8.1-d)

at 1s and 2s horizon and outperforms it at 3s horizon. Compared to the approach from

Chap. 7 (Tab. 8.1-e), our new approach (Tab. 8.1-i) achieves either same or lower collision

rates across the board while providing interpretable intermediate representations.

Ablation studies: cost margin Using supervision in addition to expert demonstration

to guide cost learning is crucial for achieving lower collision rates. This is true with both

object supervision and freespace supervision. However, there is a trade-off. When we

introduce other penalties into the cost margin, the L2 errors tend to increase as being

expert-like (at all costs) is no longer the only objective. This can be seen in Tab. 8.1 by

comparing (d) to (c), (g) to (f), or (i) to (h).
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Figure 8.8: Multi-task: freespace-guided cost learning with freespace forecasting.

Ablation studies: intermediate task Learning with an intermediate task, let it be

supervised object occupancy forecasting or self-supervised freespace forecasting, not only

provides interpretable intermediate representations, but also reduces collision rates especially

at 1s and 2s horizon. This can be seen in Tab. 8.1 by comparing (d) to (b), (g) to (e) or (i)

to (e).

Ablation studies: occupancy vs. freespace Our approach produces view-independent

latent occupancy with the introduction of differentiable freespace rendering. If we compare

(i) to (h), we find that (i) outperforms (h) significantly especially at 3s. This suggests that

view-independent occupancy as an intermediate representation is more suitable for motion

planning compared to view-specific future freespace.

Problem: predicted occupancy diffuses over time We observe that occupancy

forecasting suffers from a problem where predicted occupancy tends to diffuses over time.

First off, this is inevitable due to the uncertain nature of future events. Second, Casas

et al. [19] proposed occupancy flow to encourage more temporal consistency in order to

mitigate this problem.
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Figure 8.9: Training-time architecture of the proposed approach.

Conclusion We address an important drawback of future freespace as an intermediate

representation that it is view-specific. We propose latent future occupancy that is view-

independent. We introduce a novel approach that learns to forecast view-independent latent

occupancy with view-specific freespace supervision. We demonstrate that latent future

occupancy is more effective than future freespace in both interpretability and safety.
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Figure 8.10: Differentiable Freespace Rendering. We start with predicted latent occupancy
on the left. We first perform cumulative max along each LiDAR ray. Note that this process
is differentiable as it is essentially re-indexing. This produces non-freespace, which is finally
converted to freespace. Note the second step is also differentiable.

Cost Mid Diff. L2 Distance (m) Point Collision (%) Box Collision (%)

Margin Task Render 1s 2s 3s 1s 2s 3s 1s 2s 3s

(a) - - - 0.44 1.15 2.47 0.00 0.00 0.35 0.08 0.27 1.95

(b) O - - 0.53 1.25 2.67 0.00 0.00 0.08 0.04 0.12 0.87
(c) - O - 0.43 1.08 2.33 0.00 0.02 0.10 0.10 0.17 1.60
(d) O O - 0.59 1.34 2.82 0.00 0.00 0.07 0.00 0.05 1.03

(e) F - - 0.55 1.20 2.54 0.00 0.01 0.04 0.06 0.17 1.07
(f) - F - 0.42 1.06 2.30 0.00 0.02 0.08 0.08 0.17 1.29
(g) F F - 0.52 1.22 2.64 0.00 0.00 0.08 0.02 0.10 1.10
(h) - F X 0.45 1.09 2.30 0.00 0.00 0.08 0.08 0.15 1.49
(i) F F X 0.67 1.36 2.78 0.00 0.01 0.03 0.04 0.09 0.88

Table 8.1: Planning results on nuScenes-val. F: Freespace. O: Objects.
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Figure 8.11: Test-time architecture of the proposed approach.
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Chapter 9

Discussion

In the first part of the thesis, we explored how to build stand-alone vision models that are

robust to different types of variance in sensor data. We adopt standard learning protocols

and interfaces. For example, we assume that the dataset, the labels, and the input-output

interfaces are fixed. In the second part of the thesis, we zoom out one level and re-examine

the learning protocols and input-output interfaces through the lens of scalability.

To build safe autonomous robots, we will continue to face the challenge of robustness

and scalability. I believe the most important question we should keep asking is “what is a

good representation?” Here are a few properties a good representation should possess.

• Actionable: Planners should be able to work directly with a good representation to

figure out what to do next.

• Interpretable: A good representation should be interpretable at least to a degree

where the representation can be benchmarked.

• Robust: The mapping function should be invariant to different types of variance in

sensor data.

• Scalable: Since data collection easily outpaces annotation, the learning of the

mapping function should be scalable.

• Efficient: A good representation can be computed within reasonable computational

budget (c.f. bounded rationality).

Standard autonomy software stacks adopt intuitive object-centric representations, in-

cluding object bounding-box trajectories. Object detectors, object trackers, and trajectory

forecasters are developed. Such object-centric representations are actionable and inter-

pretable. However, the vision models responsible for producing such representations are not

as robust in rare scenarios. Moreover, learning these vision models often require manual

annotation, making them less scalable. Finally, the efficiency deteriorates when reasoning
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about hundreds of object instances (e.g., crowds) and possible interactions among them.

In the last two chapters, we have seen promising results that suggest vision models may

learn to forecast object motion without defining objects. In other words, the notion of

objects emerge from learning to forecast future sensor data. This observation has significant

implications. It may suggest that we do not need to solve detection, tracking, or trajectory

forecasting.

How much does scalability offer? Currently, there is no publicly available dataset that

offers magnitudes more unlabeled driving logs. As a result, we cannot fully test this idea,

but once such datasets become available, it would be interesting to see what the scalability

can offer. In addition, we compare self-supervised representations to supervised object

representations in the downstream. Is there a mid level apples-to-apples comparison?

Do objects still have a role? Practically, forecasted freespace tends to diffuse over time,

making it harder to work with for planning over a longer time horizon. The traditional

approach seems to shine because we can build physical models that naturally encode

common sense such as object permanence.

How do we reason about interactions without objects? We did not explore the possible

interaction between the ego agent’s action and how the future unfolds. It is easier to

reason such interactions with a notion of objects. Without such, how can we make forecasts

conditioned on the ego agent’s action such that one can start plan game-theoretic maneuvers?
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Dosovitskiy. End-to-end driving via conditional imitation learning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1–9. IEEE,
2018. 7.2

118



Bibliography

[25] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the
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