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Abstract

Nonparametric density estimation is a fundamental task in statistics. In many

applications, such as clustering, non-parametric testing, classification, anomaly de-

tection and topological data analysis, density estimation is performed as a necessary

preliminary step to solve more complex problems. Unfortunately, both the theoretical

guarantees and the computational costs of virtually all commonly used density estima-

tors are impacted significantly by the dimensionality of the data. This is due to the

intrinsic hardness of the problem: minimax optimal density estimation is computation-

ally infeasible even in small dimensions. In order to overcome the computational and

theoretical limitations of the classical density estimations framework, in this thesis we

study computationally efficient methods for obtaining adaptive histograms, piecewise

constant density estimators over data adaptive partitions defined by axis-aligned

hyperrectangles.

We consider a variant of the density estimator tree (DET) method of Ram and

Gray (2011), a very fast, fully data-driven greedy CART-like procedure that returns

a tree-structured density estimator. We show through extensive simulations that

our modified DET procedure outperforms the standard version of DET, as well as

traditional density estimators under a variety of scenarios and metrics, and is highly

interpretable.
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vi ABSTRACT

Inference for classical density estimation methods comes at a price, generally

requiring certain smoothness conditions on the underlying density and computationally

intensive procedures such as the bootstrap. In addition, the greedy nature of the DET

method and the lack of theoretical understanding of its properties makes the task

even more formidable. The second contribution of this thesis is the development of

computationally feasible procedures to construct confidence sets for high-dimensional

distributions based on the DET estimator. Our methodology relies on sample splitting

and harness the explicit form of the upper level sets of the DET estimations, which can

be easily evaluated as a union of axes-aligned hyper-rectangles. The confidence sets

we develop come with coverage guarantees that are finite-sample, dimension free and

do not require any smoothness on the data generating distribution. We propose three

ways for building such confidence sets, and provide efficient algorithms that return

density functions guaranteed to belong to the confidence set. We explore various

applications of our methods, including classification, clustering, anomaly detection,

and background subtraction.
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One

Introduction

Density estimation is an essential tool in statistics and sees applications in a variety

of statistical and machine learning tasks. In exploratory analysis, density estimation

is effective in presenting descriptive features of the underlying data distribution, such

as modality, skewness and tail behavior. In clustering, one can find the level sets

and modes of the density estimates, and samples belonging to the same component

of the level sets or mode are associated with a cluster. Density estimation is also

commonly applied as a preliminary step in regression, classification, goodness-of-fit

testing, anomaly detection, and topological data analysis, etc.

As opposed to traditional parametric density estimation methods, nonparametric

density estimation methods are considered more effective and flexible in various

situations. A notable example of the superiority of the nonparametric model over a

parametric one is provided in Park and Marron (1990), in which the authors study

the distribution of net income data over a range of time. The density estimates from

a lognormal model indicate unimodality and similar distribution from year to year,

whereas a nonparametric model indicate bimodality and vast changes in distribution

over time.

Formally, the problem of nonparametric density estimation is defined as follows.

1



1. introduction

Denote (Rd, µ) as the d-dimensional Euclidean space with Lebesgue measure µ. Let

X1, . . . , Xn ⊂ (Rd, µ) be n independent and identically distributed (i.i.d.) random

samples generated from a probability distribution P with density function p, where p

satisfies

p(x) ≥ 0,

∫
p(x) dµ(x) = 1. (1.0.1)

The goal is to provide an estimate p̂(x) = p̂(x;X1, . . . , Xn) of p without assuming

any parametric structure on the class of p. Note that even if we assume that the

underlying measure space is the Euclidean space, the formulation in this thesis can be

naturally extended to other measure spaces.

1.1 Literature

There is a huge literature on nonparametric density estimation. In the following

sections, we first review some of the classical density estimators in the literature. The

drawbacks of the classical density estimators serve as the motivation for the research

objective of this thesis: computationally efficient multivariate adaptive histograms.

Next, we introduce some of the more recently developed methods in the literature.We

give more details on the density estimators that are more relevant to the methods

considered in this thesis (some of which are used as benchmarks in our numerical

experiments), and we briefly mention the rest.

1.1.1 Classical Density Estimators

The Histogram

The histogram is probably the earliest density estimator introduced Karl (1895); yet,

it is still considered one of the simplest and widely used density estimators nowadays.

The method is often favored in exploratory analyses and in applications with large and

2



1.1. Literature

high dimensional data because of its simplicity and computational efficiency. However,

it’s also well-known that the histogram does not have optimal convergence rate and

suffers badly from the curse of dimensionality. The histogram estimator is formulated

as the following.

Suppose that p is supported on the a hyper-cube [0, 1]d. Partition [0, 1]d into a grid

of equally sized bins, each with size h. Denote the bins as B1, . . . , Bm. The histogram

estimator is defined as

p̂(x) =
1

hd

m∑
j=1

njI(x ∈ Bj)

where

nj =
1

n

n∑
i=1

I(Xi ∈ Bj)

is the proportion of samples falling inside bin j.

Kernel Density Estimator

Kernel Density Estimation (KDE) is another classical density estimator and is formu-

lated as follows. Given a kernel function K(·) and bandwidth h = hn > 0,

p̂(x) =
1

nhd

n∑
i=1

K(
‖x−Xi‖

h
).

As opposed to the histogram, KDE achieves the minimax optimal rate of convergence

with appropriately selected bandwidth. However, the vanilla KDE is computationally

expensive, especially in high dimensions, because the method relies on computing

pairwise distances between the observations. Moreover, in practice, the optimal

bandwidth is unknown and the bandwidth selection process (e.g. cross-validation)

can add to the runtime significantly. More efficient implementations of KDE can be

3



1. introduction

achieved by sacrificing a bit of accuracy by utilizing tree-based data structures Gray

and Moore (2003), Lee and Gray (2008), Beygelzimer et al. (2006) for the distance

computations, or fast fourier transform (FFT) O’Brien et al. (2016) Gramacki and

Gramacki (2017) for bandwidth selection.

1.1.2 Recent Advances

Another major issue with KDE and the histogram is that they do not adapt well to the

heterogeneous smoothness of the data (i.e. the data can be smooth in some sections

and wiggly in others), given that the bin size or bandwidth is taken to be a fixed value.

In the multivariate case, both methods can be generalized by considering different

values of bin size or bandwidth for each dimension (or more generally, a bandwidth

matrix for KDE), but still, it does not solve of the problem of their inability to adapt

to the heterogeneous smoothness within each dimension.

Naturally, with the objective of data adaptivity in mind, numerous extensions to

the histogram and KDE have been developed. Adaptive KDE Terrell and Scott (1992)

Shimazaki (2010), Wang and Wang (2007), k-nearest neighbor density estimator Mack

and Rosenblatt (1979), and the rodeo KDE Liu et al. (2007) are some examples of

data adaptive KDE methods. However, similar to the regular KDE, they also suffer

from the same problem of computational inefficiency.

On the other hand, numerous efficient adaptive histogram-like methods have been

developed recently. We say histogram-like because some of those estimators may not

seem to be similarly formulated as the histogram; nonetheless, like the histogram,

all of them provide piecewise-constant density estimates supported on axis-aligned

hyper-rectangles. We introduce some of them here.

4



1.1. Literature

Essential histograms

The essential histogram Li et al. (2020) is a univariate piecewise-constant density

estimator that is not necessarily designed to provide the best fit to the true density

function, but rather serves the purpose of the histogram being a computationally

efficient exploratory analysis tool. The method first constructs a confidence set

of probability distributions that are able to estimate the density values as well as

capturing the important features of the true density (e.g. modes, skewness), and

then select a piecewise-constant distribution with the fewest number of bins in the

confidence set. The authors show that the method is asymptotically optimal for

detecting the important features. We give more a thorough introduction of the method

in Section 3 and show how the method can be extended to higher dimensions.

Fused Density Estimator

The Fused Density Estimator (FDE) Bassett and Sharpnack (2019) is another univari-

ate density estimator. The problem is formulated as the solution to a total variation

penalized maximum likelihood problem. The authors show that the problem can be

computed efficiently using quadratic programming, and the solution is a piecewise

constant density function with discontinuities only occurring on the sample points.

The estimator achieves the minimax rate of convergence in Hellinger distance over

densities with log-bounded total variation. More formally, the problem is formulated

as follows.

Given univariate samples X1, . . . , Xn ∼ P . Fix λ > 0, the FDE of p is the density

p̂ = exp(ĝ), where the log-density ĝ is the minimizer of the program

ĝ ∈ argmin
g∈G

− 1

n

n∑
i=1

g(Xi) + λTV(g) s.t.

∫
eg dµ(x) = 1

5



1. introduction

where G = {g : TV(g) <∞}.

Tree-based Multivariate Histograms

In higher dimensions, multivariate histogram methods have been studied extensively

in the past. Shang (1994), Sutton (1994), Ooi (2002), and Ram and Gray (2011) look

at density estimation with CART Breiman et al. (1984)-type methods. The density

estimation trees (DET) Ram and Gray (2011) method, in particular, is known to

possess many desirable properties: it is consistent in L2, highly interpretable, adapts

well within each dimension and across dimensions, and has decent computational

efficiency (good training time and extremely fast querying, which can be useful for

predicting density values outside the sample points). The construction of DET is

motivated by the widely used and successful classification and regression trees (CART)

Breiman et al. (1984) in the supervised setting. The method proceeds by iteratively

partitioning the space, and at each step, the optimal split is obtained by minimizing

an estimate of the L2 loss function on the densities. We will give a more detailed

discussion of DET in Chapter 2 and propose a variation of it using the Kullback–Leibler

(KL) divergence instead of the L2 as the loss function.

Another class of tree-based density estimation methods in high dimension utilizes

Bayesian approaches. Optional Polya Trees (OPT) Wong and Ma (2010) constructs

a prior distribution using Polya trees with optional stopping and variable splitting

rules. This prior distribution satisfies the Ferguson’s criteria Ferguson (1973) and

has a nice conjugate property in the sense that the posterior distribution is also an

OPT. However, the exact computation of the OPT posterior in higher dimensions has

high complexity and thus, in practice, one usually resorts to a more greedy approach

(LL-OPT Jiang H (2016)) for faster computation. Bayesian Sequential Partitioning

6



1.2. Contributions

(BSP) Lu et al. (2013) uses a different prior where the posterior distribution can

be derived analytically. Inference from posterior is done via sequential importance

sampling.

1.2 Contributions

In this thesis, we propose several computational efficient multivariate adaptive his-

togram methods that are developed on top of the DET Ram and Gray (2011) estimator.

In Chapter 2, we give a thorough introduction of DET: its mathematical formulation

and algorithmic procedure. We propose a variant of DET by considering an alternative

objective function, the KL divergence. In Chapter 3, in order to address some of

the issues with DET estimators, we propose a class of methods for constructing

efficient density estimators that naturally comes with confidence guarantees. The

confidence sets we construct are finite sample, dimension free, and does not require

any assumptions on the underlying distribution. Chapter 4 contains all the numer-

ical experiments of the methods considered in Chapter 2 and 3. We give thorough

numerical comparisons of our methods with classical density estimators in terms of

estimation error in hellinger distance and CPU time. Our findings are backed by

extensive low dimensional illustrations. In Chapter 5, we demonstrate the applicability

of our methods by looking at problems in classification, density level set estimation,

background subtraction, and anomaly detection. Finally, Chapter 6 provides an

installation guide and a more detailed documentation to the package we developed for

this thesis.

7





Two

Density Estimation Trees

Without loss of generality, assume that the samples X1, . . . , Xn ∈ [0, 1]d. Denote Π to

be the class of partitions of [0, 1]d using axis-aligned rectangles.

Definition 2.0.1. A piecewise constant density function p on partition Π ∈ Π

is defined as:

p(x) =
∑

Ωj∈Π

βjI(x ∈ Ωj), x ∈ Rd, (2.0.1)

such that βj ≥ 0 and
∑

j βjµ(Ωj) = 1.

Denote P as the class of piecewise constant density functions. DET constructs an

estimator p̂ of p by solving the optimization problem

p̂ = argmin
q∈P

L̂(p, q), (2.0.2)

where L̂(p, ·) is an estimate of some loss function on p.

2.1 DET with L2 loss

9



2. density estimation trees

2.1.1 Problem Formulation

The original DET method proposed in Ram and Gray (2011) utilizes the L2 loss as

the loss function, i.e.

L2(p, q) =

∫
(p(x)− q(x))2 dµ(x)

=

∫
p2(x) dx− 2

∫
p(x)q(x) dx+

∫
q2(x) dx.

Note that the first term does not depend on q, the second term depends on the unknown

density function p, but can be approximated using the monte carlo approximation∫
p(x)q(x) dx ≈ 1

n

∑n
i=1 q(Xi), and the last term is simply a function of q. Hence, we

obtain an estimate of the L2 loss and the DET estimator can be computed by solving

p̂ = argmin
q∈P

− 2

n

n∑
i=1

q(Xi) +

∫
q2(x) dx. (2.1.1)

Using the piecewise constant density formulation for q from definition (2.0.1), the

objective function in (2.1.1) can be replaced with the following

− 2

n

n∑
i=1

∑
Ωj∈Π

βjI(Xi ∈ Ωj) +
∑

Ωj∈Π

β2
jµ(Ωj). (2.1.2)

For any fixed partition Π, by differentiating (2.1.2) with respect to each βj and setting

the derivative to zero, we get that

βj =
Pn(Ωj)

µ(Ωj)
,

where Pn(Ωj) = 1
n

∑n
i=1 I(Xi ∈ Ωj) is the fraction of samples falling inside hyper-

rectangle Ωj. Therefore, we can remove the dependence of problem (2.0.2) on the

density values βj and, after some simplifications, problem (2.0.2) boils down to

constructing an optimal partition Π̂ of [0, 1]d via

Π̂ = argmin
Π∈Π

R̂(Π), (2.1.3)

10



2.1. DET with L2 loss

where

R̂(Π) = −
∑

Ωj∈Π

Pn(Ωj)
2

µ(Ωj)
. (2.1.4)

The optimal density estimator becomes

p̂(x) =
∑

Ωj∈Π̂

Pn(Ωj)

µ(Ωj)
I(x ∈ Ωj).

With (2.1.4) as the overall surrogate error, the greedy surrogate error for any hyper-

rectangle Ω can be likewise defined as

R̂(Ω) = −Pn(Ω)2

µ(Ω)
. (2.1.5)

In practice, computing the argmin of R̂(Π) is computationally intractable. The most

common alternative is to greedily build a partition by splitting [0, 1]d into smaller

hyperrectangles recursively as in a tree-based structure.

2.1.2 Algorithm

DET utilizes the same procedure as CART Breiman et al. (1984) as its tree construction

procedure. The tree growing, pruning and cross-validation steps are respectively

modified to to account for the new loss function. The procedure takes into account

the following model parameters

• MAX LEAF SIZE: a tree node will not get split on if the number of samples

contained is less than MAX LEAF SIZE

• MIN LEAF SIZE: selection of the split location of each tree node ensures that

there are at least MIN LEAF SIZE many samples in each of the two children tree

nodes.

11
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• MTRY: the number of variables available for splitting at each node. Note that this

parameter was not included in the original DET implementation. We included

this parameter because it is commonly used in constructing tree ensembles.

• K FOLD: the number of folds used in the step of cross-validation for selecting the

optimal pruning parameter α.

The DET algorithm takes the following three steps.

• Grow a density tree T using DET: Grow 1.

• Select the optimal pruning parameter α∗ using DET: Cross-Validation 3.

• Prune T with pruning parameter α∗ using DET: Prune 2.

Next, we discuss each of the steps in detail.

Growing. DET is constructed by recursively splitting each node into two children

nodes. The optimal split location is selected as the one that maximally reduces (2.1.5).

By convention, the candidate split location is taken to be the the middle points of

adjacent samples in each dimension. A node does not get split on if the number of

samples contained is less than MAX LEAF SIZE and we select the split location that

guarantees at least MIN LEAF SIZE many samples in each of its children nodes. The

complete algorithm is given in Algorithm 1.

Pruning. Once the tree T is fully grown, in order to prevent overfitting, the tree is

pruned using the minimal cost-complexity pruning procedure introduced in Breiman

et al. (1984). Denote the subtree of T rooted at a node Ω as TΩ, and the subtree

omitting TΩ as T − TΩ. We abuse notations here and denote the loss of a tree

12



2.1. DET with L2 loss

Algorithm 1 DET: Grow

Inputs: Ω – current tree node, X – the set of samples in the current
node

if |X| ≤ MAX LEAF SIZE then

return Node(Val ← |X|
Nµ(Ω)

)
else

Randomly sample (without replacement) MTRY many covariates from 1, . . . , d and
denote the subset as V .
Let S = {} be the set of candidate split locations. Denote Xj

(i) as the value of

the ith largest sample in coordinate j.
For each v ∈ V , add (Xv

(i) +Xv
(i+1))/2 into S for all i = MIN LEAF SIZE, . . . , n−

MIN LEAF SIZE.
Find the optimal split s∗ of the current node Ω into Ωs∗

L and Ωs∗
R such that

s∗ = argmaxs∈S R̂(Ω)− R̂(Ωs
L)− R̂(Ωs

R).
return Node(Left ← grow(Xs∗

L , Ωs∗
L ), Right ← grow(Xs∗

R , Ωs∗
R ))

end if

T as R̂(T ) =
∑

Ω:leaves in T R̂(Ω), the sum of the loss over all its leave nodes.The

penalized surrogate error of T with pruning parameter α is defined as R̂α(T ) =

R̂(T ) + α|T |, where |T | is the number of leaves in T . Therefore, a node Ω is pruned if

R̂α(T − TΩ)− R̂α(T ) ≤ 0, or equivalently, α ≤ R̂(Ω)−R̂(TΩ)
|TΩ|−1

. Since the tree constructed

in the previous step has finitely many nodes, there are finitely many values for the

fraction. The algorithm looks for the nodes to be pruned by sequentially increasing

the fraction values, until it is bigger than the given α value. The complete algorithm

is given in Algorithm 2.

Cross-Validation. Finally, the optimal α in the pruning step is selected using leave-

one-out cross validation (LOO-CV) or K-fold cross-validation (KCV). The complete

algorithm with K-fold cross-validation is given in Algorithm 3.

13



2. density estimation trees

Algorithm 2 DET: Prune

Inputs: T – a decision tree, α – regularization parameter

Initialize T 1 = T , α1 = 0, i = 1.
while αi ≤ α do

For a given node Ω in T i, define gi(Ω) =
R̂(Ω)−R̂(T iΩ)

|T iΩ|−1
.

Select tree node Ωi in T i by Ωi = argminΩ∈Ti gi(Ω).
Let αi+1 = gi(Ωi) and T i+1 = T i − T iΩi .
i = i+ 1

end while
return T i

Algorithm 3 DET: Cross-Validation

Inputs: T – a decision tree, K – K FOLD

Split data into K folds, denote the X(i) as the data in the ith fold, and X−(i) as the
data in all but the ith fold.
Define Ji(α) =

∫
(p̂αi (x))2 dx + 2

|X−(i)|
∑

z∈X−(i) p̂αi (z) for i = 1, . . . , K, where p̂αi is

the estimator built on X(i) with pruning parameter α.
Define J(α) = 1

K

∑K
i=1 Ji(α).

Optimal regularization parameter is the solution to α∗ = argminα J(α).
return α∗

2.1.3 Computational Complexity

Table 2.1 summarizes the training and querying computational complexity of KDE, tree-

based KDE, OPT, LL-OPT, and DET algorithms. The training complexity, O(Hdn2),

of a vanilla fixed bandwidth KDE comes from selecting the optimal bandwidth

parameter from a candidate set of H many choices. Given an estimated bandwidth,

the computational complexity of computing the density estimate of a single query for

KDE is O(dn). Spatial partitioning using the tree-based data structure allows more

efficient computation of the KDE Gray and Moore (2003), Lee and Gray (2008). In

particular, with cover trees Beygelzimer et al. (2006), the training time complexity

can be improved to O(Hdn) Ram et al. (2009) and the querying time to O(d log n).
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Methods Training Querying

Histogram O(Hdn) O(d)
KDE O(Hdn2) O(dn)

Tree-based KDE O(Hdn) O(d log n)

OPT O(ndn/c) O(DT )
LL-OPT O(n(n+ 2hd)dh) O(DT )

DET Slow KCV O(DT )

Table 2.1: Training and Querying computational complexity of KDE, tree-based KDE, OPT,
LL-OPT, and DET.

In addition, the querying time for O(n) many queries can be amortized, yielding an

order of O(dn) total time Ram et al. (2009). The training and querying complexity of

the histogram are O(Hdn) and O(d), respectively. The training time comes from the

selection of the optimal bin size parameter, with H being the number of candidate

choices.

The training computational complexity of OPT Wong and Ma (2010) and LL-

OPT Jiang H (2016) are O(ndn/c) and O(n(n + 2hd)dh), respectively, where h and

c are some pre-determined model parameters. The detailed complexity derivations

for both methods are provided in Jiang H (2016). The analytical expression for

the computational complexity of the full training stage of DET is unknown, due to

the intricacies in the pruning and cross-validation step. Generally, the complexity

for growing a decision tree scales like O(dn log n) Hastie et al. (2001), and the

computational bottleneck of the DET algorithm comes from the cross-validation

step. DET, OPT, and LL-OPT all enjoy extremely efficient querying time due to

their tree-based structures; the complexity is of order O(DT ), where DT is the depth

of the resulting decision tree. DT has a worst case upper bound of O(n), but is in

practice seen to be close to O(log n).
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2. density estimation trees

2.2 DET with Maximum Likelihood

2.2.1 Problem Formulation

While being a common and simple loss function, the L2 loss may not be a good loss

for density estimation as it tends to downweight low density regions. Alternatively,

we propose a variant of DET by considering the KL divergence as the loss function,

LKL(p, q) =

∫
log

p(x)

q(x)
p(x) dµ(x)

=

∫
log p(x)p(x) dµ(x)−

∫
log q(x)p(x) dµ(x).

Similar to the derivations in the previous section, after expanding the expression

for the KL divergence, we may drop the first term since it’s independent of q, and

approximate the second term using monte carlo approximations. We arrive at an

estimate of the KL divergence and the DET estimator can be computed by solving

p̂ = argmin
q∈P

− 1

n

n∑
i=1

log q(Xi). (2.2.1)

Note that minimizing the KL divergence is equivalent to maximizing the likelihood,

we refer to this DET method as DET(MLE) and the original one as DET(L2).

After plugging in expression for piecewise constant density function from definition

(2.0.1), the objective function in (2.2.1) can be replaced with the following

− 1

n

n∑
i=1

∑
j

log(βj)I(Xi ∈ Ωj)

= −
∑
j

log(βj)Pn(Ωj)
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2.2. DET with Maximum Likelihood

For a fixed partition Π, βj can be computed exactly by solving a simple constrained

maximization problem,

max
βj

∑
j

log(βj)Pn(Ωj) subject to
∑
j

βjµ(Ωj) = 1.

The Lagragian dual (with dual variable λ) to the program is given as the following

min
λ

max
βj

∑
j

log(βj)Pn(Ωj)− λ(
∑
j

βjµ(Ωj)− 1).

By differentiating the objective function with respect to βj and setting the derivative

to 0, we obtain that

1

βj
Pn(Ωj)− λµ(Ωj) = 0 =⇒ βj =

Pn(Ωj)

λµ(Ωj)

Thus, ∑
j

βjµ(Ωj) = 1 =⇒
∑
j

Pn(Ωj)

λµ(Ωj)
µ(Ωj) = 1 =⇒ λ = 1,

which implies that βj = Pn(Ωj)/µ(Ωj), and problem (2.0.2) boils down to constructing

an optimal partition Π̂ of [0, 1]d via

Π̂ = argmin
Π

R̂(Π),

where

R̂(Π) = −
∑

Ωj∈Π

Pn(Ωj) log
Pn(Ωj)

µ(Ωj)
. (2.2.2)

The optimal density estimator becomes

p̂(x) =
∑

Ωj∈Π̂

Pn(Ωj)

µ(Ωj)
I(x ∈ Ωj).

With (2.2.2) as the overall surrogate error, the greedy surrogate error for any hyper-

rectangle Ω can be likewise defined as

R̂(Ω) = −Pn(Ω) log
Pn(Ω)

µ(Ω)
. (2.2.3)
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2. density estimation trees

2.2.2 Algorithm

The procedure for DET(MLE) is identical to that of DET(L2), except for a different

choice of the greedy surrogate loss function. We ask the readers to refer to Section

2.1.2 for the complete algorithm.

2.2.3 Computational Complexity

The computational complexity of DET(MLE) is identical to that of DET(L2). See

Section 2.1.3 for more details.

2.3 Bagged DET

Booststrap Aggregating, or Bagging, is a common technique applied to decision trees

in regression and classification settings for variance reduction. In Chapter 4, we

investigate the effectiveness of bagging on DET. The procedure of a Bagged DET is

given in Algorithm 4.

Algorithm 4 Bagged DET

Inputs: B – number of bags, m – MTRY

for b = 1, . . . , B do
Draw a bootstrap sample Z of size n from the observed sample X1, . . . , Xn.
Construct a DET on Z using the algorithms described in Section 2.1.2 with
MTRY = m. Denote the estimator as p̂b.

end for
Let p̂(x) = 1

B

∑B
b=1 p̂

b(x).
return p̂

2.4 Summary

In summary, in this chapter, we provided a thorough introduction of the DET estimator

proposed by Ram and Gray (2011). We described in detail how the DET estimator is
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2.4. Summary

mathematically formulated, followed by its algorithmic description and computational

complexity analysis. Next, we propose a variant of the DET method, which we refer to

as DET(MLE), by considering the KL divergence as the loss function. The algorithm

for constructing DET(MLE) is almost identical to that of original DET method; both

utilize a CART-like procedure, which consists of a decision tree growing step, a pruning

step, and a cross-validation step. Finally, we describe how bagging can be applied to

the DET estimators.
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Three

Density Estimation with Confidence

3.1 DET with Confidence

The DET estimators have some potential limitations. First, when we have a large

amount of samples, the DET estimators can occasionally overfit, and thereby producing

a number of local ”spikes”, or spurious nodes in the density estimates (see Figure

4.1 as an example). The spikes does not necessarily affect the estimation errors,

since they usually have tiny probability mass, but may be misleading in downstream

analyses. For example, the spikes can show up as an extra cluster in cluster analyses,

or simply, give an inaccurate estimates of the number of modes. Note that in all our

experiments, we are already setting the regularization parameters MAX LEAF SIZE = 10

and MIN LEAF SIZE = 5. The reason for this behavior comes from the greedy pruning

process.

The second limitation of the DET estimators is its lack of uncertainty quantification.

While a single density estimator gives the best estimator according to its model, it

does not naturally come with a level of confidence. Generally, confidence statements

can be provided for simpler density estimators under certain smoothness assumptions

on p. For example, confidence intervals or confidence bands can be calculated with

the histogram and KDE because both are well understood estimators with complete
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3. density estimation with confidence

risk analysis results; see Scott (2015), Wasserman (2006), Tsybakov (2008), Giné and

Guillou (2002), Einmahl and Mason (2005). However, for more complicated estimators

such as the DET, it is not as straightforward how those confidence statements can

be constructed. In addition, obtaining confidence bands from confidence intervals

generally involves computationally expensive procedures such as the bootstrap Bickel

and Rosenblatt (1973), Rosenblatt (1976), Neumann (1998), Chernozhukov et al.

(2016), Chernozhukov et al. (2013), which is computationally impractical on large

high-dimensional datasets.

Finally, as explained in Section 2.1.3, the computational bottleneck of the DET

algorithm comes from the cross-validation step for variable selection of the pruning

parameter, and thereby limiting the computational scalability of the method to large

datasets.

With these limitations in mind, we propose an alternative way of constructing an

density estimator that naturally comes with confidence guarantees. The idea is to first

construct a confidence set, and then select an estimator inside the confidence set. The

essential histogram Li et al. (2020) is one such example in the univariate case. The

construction of the confidence set utilizes sample splitting and level sets of the density

function. Sample splitting is a powerful tool that sees use in a variety of statistical

inference problems. For example, in conformal predictive inference Shafer and Vovk

(2008), Lei et al. (2016), Vovk and Buntine (2012), sample splitting is a key element

in the construction of valid prediction sets in the regression and classification setting.

Notably, conformal methods do not require any assumptions on the underlying density

or model, and the prediction sets are valid in finite samples. Sample splitting is also

used in hypothesis testing. The universal inference approach developed by Wasserman

et al. (2020) provides a new likelihood ratio testing framework that addresses situations
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3.1. DET with Confidence

where the classical approach is not valid. Sample splitting allows the construction

of a test and confidence set that are valid in finite samples and without regularity

conditions. The motivation for using upper level sets as part of the confidence set has

several reasons. First, probability density functions can be (almost surely) uniquely

defined by upper level sets, i.e. for probability distributions P and Q with density

functions p and q, respectively, P (A) = Q(A) for all upper level sets A of p and q if

and only if P = Q almost surely. In addition, Polonik (1999) argues that upper level

sets are natural extensions of quantiles in goodness-of-fit tests. The corresponding

test statistics, similar to the univariate case, behaves asymptotically as the uniform

empirical process under appropriate assumptions.

In the following sections, we discuss three ways to construct such confidence sets.

The first two methods harness the explicit form of upper level sets and the third one

is an extension of the essential histogram approach to higher dimensions, which also

indirectly uses probability statements of the level sets. The three confidence sets

we construct are all valid in finite sample, dimension free, and does not require any

smoothness assumptions of the underlying density.

The problem setup is as follows. Given i.i.d. random samples X1, . . . , Xn ∼ P

on Rd, we randomly split {1, . . . , n} into two subsets I1 and I2 with size n1 and n2,

respectively. Generally, {Xi : i ∈ I1} is referred as the training subset, used for fitting

the model of interest, and {Xi : i ∈ I2} is referred as the validation set, used for

constructing the confidence bands. Let p̃ be any density estimator constructed on the

training set, we denote the upper level set of p̃ as L, i.e.

L = {Lt : t ∈ R} where Lt = {x : p̃(x) > t}.

Let P̃n be the empirical probability measure with respect to the validation set.
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3.1.1 VC-based Confidence Set

The first method relies on the following result from Vapnik-Chervonenkis (VC) theory.

This result is a direct consequence of the relative VC inequality (see Theorem 7 from

Bousquet et al. (2004)) and the Sauer’s lemma.

Theorem 3.1.1. Chaudhuri et al. (2014) Let F be a class of functions from Rd to

{0, 1} with VC dimension h <∞, and P a probability distribution on Rd. Suppose

n samples are drawn independently at random from P ; let Pn denote the empirical

distribution with respect to this sample. Then for any δ > 0, with probability at least

1− δ, the following holds for all f ∈ F ,

−min
(
βδ
√
Pnf, β

2
δ + βδ

√
Pf
)
≤ Pf − Pnf ≤ min

(
β2
δ + βδ

√
Pnf, βδ

√
Pf
)
,

where βδ =
√

(4/n)(h log(2en/h) + log(4/δ)).

Next, note that the class L has VC dimension 1, because level sets are embedded in

one another. After some rearrangements, we get that for any δ > 0, with probability

at least 1− δ, for any Lt ∈ L,

P (Lt) ∈
[

max

(
0, P̃n(Lt)− βδ

√
P̃n(Lt), P̃n(Lt)− β2

δ/2− βδ
√
P̃n(Lt)− 3β2

δ/4

)
,

(3.1.1)

min

(
1, P̃n(Lt) + β2

δ/2 + βδ

√
P̃n(Lt) + β2

δ/4

)]
.

where βδ =
√

(8/n)(log(en) + log(4/δ)).

Finally, let the set CP (t, δ) be the set of probability distributions that satisfies

(3.1.1). Note that the confidence statement holds uniformly for all Lt ∈ L. In practice,

we take an arbitrarily fine grid of t = t1, . . . , tK to produce a 1− δ confidence set for
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P .

P(P ∈
K⋂
i=1

CP (ti, δ)) ≥ 1− δ. (3.1.2)

The confidence set derived from VC inequalities is a simple one, but is conservative

because the constants in Theorem 3.1.1 are not sharp. Next, we describe alternative

procedures for deriving sharper confidence sets.

3.1.2 Empirical Process Based Confidence Set

Define random variable Y = p̃(X) and Yi := p̃(Xi) for i ∈ I2. Denote the distribution

function of Y as FY , and the empirical distribution function w.r.t. {Yi : i ∈ I2} as

F̃n,Y . Then, for any Lt ∈ L, we have

P (Lct) = P ({x : p̃(x) ≤ t}) = FY (t)

P̃n(Lct) =
1

n2

∑
i∈I2

I(p̃(Xi) ≤ t) = F̃n,Y (t)

Consider the statistic

Z := sup
t∈R

√
n2[P (Lt)− P̃n(Lt)]√
P (Lt)(1− P (Lt))

= sup
t∈R

√
n2[F̃n,Y (t)− FY (t)]√
FY (t)(1− FY (t))

If FY is continuous, the distribution of Z does not depend on FY , we may substitute

FY and F̃n,Y with the distribution function of a uniform random variable. In other

words, let U1, . . . , Un2

i.i.d∼ Uniform[0, 1],

Z
d
= sup

0≤t≤1

√
n2√

t(1− t)

[
1

n2

n2∑
i=1

I(Uj ≤ t)− t

]
Note that even if FY is not continuous, the confidence set we derive assuming FY is

continuous is still valid, yet conservative. Let the order statistics of U1, . . . , Un2 be
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U(1), . . . , U(n2), then

√
n2√

t(1− t)

[
1

n2

n2∑
i=1

I(Uj ≤ t)− t

]
=



−
√
n2√

t(1− t)
t, for 0 ≤ t < U(1)

...
√
n2√

t(1− t)

[
k − 1

n2

− t
]
, for U(k−1) ≤ t < U(k)

...
√
n2√

t(1− t)
(1− t), for U(n2) ≤ t ≤ 1

Hence, setting U(0) = 0, U(n2+1) = 1 and using the convention 0/0 = 0, we have

sup
0≤t≤1

√
n2√

t(1− t)

[
1

n2

n2∑
i=1

I(Uj ≤ t)− t

]
= sup

1≤k≤n2+1

√
n2√

U(k−1)(1− U(k−1))

[
k − 1

n2

− U(k−1)

]
= sup

0≤k≤n2

√
n2√

U(k)(1− U(k))

[
k

n2

− U(k)

]
(3.1.3)

since (a− t)/
√
t(1− t) is a decreasing function in t for a ∈ [0, 1]. Similarly, consider

the statistic

Z ′ := sup
t∈R
−
√
n2[P (Lt)− P̃n(Lt)]√
P (Lt)(1− P (Lt))

= sup
t∈R
−
√
n2[F̃n,Y (t)− FY (t)]√
FY (t)(1− FY (t))

Then,

Z ′
d
= sup

0≤t≤1

√
n2√

t(1− t)

[
t− 1

n2

n2∑
i=1

I(Uj ≤ t)

]

= sup
1≤k≤n2+1

√
n2√

U(k)(1− U(k))

[
U(k) −

k − 1

n2

]
. (3.1.4)

Next, we generate B many times the random variable in (3.1.3) and denote them as

Z1 . . . , ZB, and generate B many times the random variable in (3.1.4) and denote
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them as Z ′1, . . . , Z
′
B. Let

M := max(Z,Z ′) and Mb = max (Zb, Z
′
b) for b = 1, . . . , B.

Define

ξα,δ = sup
z

{
z :

B∑
b=1

I(Mb ≤ z) ≤ F−1
Bin(B,1−α)(1− δ)

}
,

where we denote FBin(n,p)(·) as the distribution function of a Bin(n, p) random variable.

Lemma 3.1.2.

P(P(max(Z,Z ′) ≤ ξα,δ|Z1, . . . , ZB, Z
′
1, . . . , Z

′
B) ≥ 1− α) ≥ 1− δ.

Proof.

P(ξα,δ < c) = P(
B∑
b=1

I(Mb ≤ c) > F−1
Bin(B,1−α)(1− δ))

= 1− FBin(B,FM (c))(F
−1
Bin(B,1−α)(1− δ)).

Thus,

P(P(max(Z,Z ′) ≤ ξα,δ|Z1, . . . , ZB, Z
′
1, . . . , Z

′
B) ≥ 1− α)

= P(FM(ξα,δ) ≥ 1− α)

= P(ξα,δ ≥ F−1
M (1− α))

= FBin(B,FM (F−1
Z (1−α)))(F

−1
Bin(B,1−α)(1− δ))

≥ FBin(B,1−α)(F
−1
Bin(B,1−α)(1− δ))

≥ 1− δ
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3. density estimation with confidence

This implies that with probability at least 1−δ, the generated data Z1, . . . , ZB, Z
′
1, . . . , Z

′
B

leads to a 1− α quantile of Z and Z ′. Namely, with probability at least 1− α,

sup
t∈R

√
n2[P (Lt)− P̃n(Lt)]√
P (Lt)(1− P (Lt))

≤ ξα,δ and sup
t∈R
−
√
n2[P (Lt)− P̃n(Lt)]√
P (Lt)(1− P (Lt))

≤ ξα,δ.

After some rearrangements, we have

P (Lt) ∈

 P̃n(Lt) +
ξ2
α,δ

2n2
±
√

ξ4
α,δ

4n2
2

+
P̃n(Lt)(1−P̃n(Lt))ξ2

α,δ

n2

1 + ξ2
α,δ/n2

 for all t ∈ R. (3.1.5)

Denote CP (t, δ) as the set of probability distributions that satisfies (3.1.5). Note that

the confidence statement holds uniformly for all Lt ∈ L. In practice, we can take an

arbitrarily fine grid of t = t1, . . . , tK to produce a 1− δ confidence set for P .

P(P ∈
K⋂
i=1

CP (ti, δ)) ≥ 1− δ. (3.1.6)

3.1.3 Multiscale Likelihood Ratio Tests

In Section 1, we briefly introduced the essential histogram, a univariate adaptive

histogram method. Here, we show how sample splitting allows us to extend the

framework of the essential histogram to higher dimensions.

More formally, the (univariate) essential histogram is constructed as follows. Given

univariate samples Z1, . . . , Zm ∼ P , one can invert the multiscale likelihood ratio test

to construct a 1− δ confidence set for P .{
Q : (2 log LRm(Q(I), Pm(I)))1/2 ≤ `(Pm(I)) + κm(δ) for all I ∈ J

}
, (3.1.7)

where Pm is the empirical distribution on Z1, . . . , Zm,

log LRm(Q(I), Pm(I)) = mPm(I) log

(
Pm(I)

Q(I)

)
+m(1− Pm(I)) log

(
1− Pm(I)

(1−Q(I))

)
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3.1. DET with Confidence

is the log-likelihood statistic for testing P (I) = Q(I),

`(Pm(I)) =

(
2 log

(
e

Pm(I)(1− Pm(I))

))1/2

is the scale penalty, and κm(δ) is the 1− δ quantile of the distribution of

Tm = max
I∈J

{
(2 log LRm(Q(I), Pm(I)))1/2 − `(Pm(I))

}
.

J is a collection of intervals,

J =
lmax⋃
l=2

J (I), where lmax =

⌊
log2

m

logm

⌋
,

J (l) =
{

(Z(j), Z(k)] : j, k ∈ {1 + idl, i ∈ N0} ∩ D,ml < k − j ≤ 2ml

}
,

where ml = m2−l, dl =
⌈ ml

6l1/2

⌉
, and D = {i : Z(i) 6= Z(i+1)}.

The essential histogram estimator is the probability distribution in (3.1.7) with the

fewest number of bins and can be computed efficiently using dynamic programming.

Note that the framework for the essential histogram can be extended to higher

dimensions if we consider carrying out the multiscale likelihood ratio test on the

transformed variables Yi = p̃(Xi) for i ∈ I2. For any interval I ⊂ R, let p̃−1(I) = {x :

p̃(x) ∈ I} be the pre-image of I under p̃. We have

1

n2

∑
i∈I2

I(Yi ∈ I) = P̃n(p̃−1(I)) and P(Y ∈ I) = P(X ∈ p̃−1(I)).

Define

CP (δ) :=

{
Q :

(
2 log LRn2(Q(p̃−1(I)), P̃n(p̃−1(I)))

)1/2

≤ `(P̃n(p̃−1(I))) + κn2(α) for all I ∈ J
}
,

(3.1.8)

Therefore, CP (δ) is a 1− δ confidence set for P , i.e.,

P(P ∈ CP (δ)) ≥ 1− δ.
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3. density estimation with confidence

3.1.4 Algorithm

Having introduced the confidence sets, next we discuss how we can construct a DET-

like estimator that belongs to the confidence set. The idea is simple. We grow the

density tree iteratively one node at a time, until the density tree belongs to the

confidence set of interest. However, unlike the classical DET method, the tree nodes

are not split in a recursive depth-first order. Instead, the tree is split iteratively using

a priority queue data structure that stores the set of all leaf nodes, where the priority

score of each leaf node is its maximum reduction in the surrogate error if split. At

each iteration, we first check if the confidence statements are satisfied. If satisfied,

we return the current tree, and if not, we select the node in the priority queue with

the highest score, and split the node using Algorithm 5. The optimal split dimension

and value are selected using Algorithm 6. Once the selected node is split, its two

children nodes are added into the priority queue. The complete algorithm is given in

Algorithm 7.

Algorithm 5 SplitNode

Inputs: node – current node, Ω – hyper-rectangle of current node, X – the set of
samples in the current node

if |X| > MAX LEAF SIZE then
s∗ ← node.splitLoc
node.left← node(Xs∗

L ,Ω
s∗
L ), node.right← node(Xs∗

R ,Ω
s∗
R )

FindSplit(node.left).
FindSplit(node.right).

end if

Choice of p̃. Notice that all three confidence methods involves computing the prob-

ability mass of p̃−1([a, b]), for some 0 ≤ a ≤ b ≤ ∞. For piecewise constant density

estimators, p̃−1([a, b]) is simply a union of disjoint hyperrectangles. In addition, for
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3.1. DET with Confidence

Algorithm 6 FindSplit

Inputs: node – current node, Ω – hyper-rectangle of current node, X – the set of
samples in the current node

Randomly sample (without replacement) MTRY many variables and denote the subset
as V .
Let S = {} be the set of candiate split locations. Denote Xj

i as the value of jth

coordinate of sample Xi.
For each variable v ∈ V , add (Xv

i +Xv
i+1)/2 into S for all i = MIN LEAF SIZE, . . . ,

n− MIN LEAF SIZE.
Find the optimal split s∗ of the current node Ω into Ωs∗

L and Ωs∗
R such that

s∗ = argmaxs∈S R(Ω)−R(Ωs
L)−R(Ωs

R).
node.split← s∗.
node.loss← R(Ω)−R(Ωs∗

L )−R(Ωs∗
R ).

Algorithm 7 DET-CF

Inputs: X1, . . . , Xn – samples

Construct initial density estimator p̃ on the training set{Xi}i∈I1 .
Construct a confidence set C using p̃ and the validation set {Xi}i∈I2 using one of
(3.1.2), (3.1.6), and (3.1.8).
Let pq = PriorityQueue() where the priority scores are determined by the object’s
surrogate loss reduction (object.loss).
root = node(X1, . . . , Xn).
FindSplit(root).
while root 6∈ C do
node = pq.pop().
SplitNode(node).
if node.left.loss > 0 then
pq.push(node.left).

end if
if node.right.loss > 0 then
pq.push(node.right).

end if
end while
return root

31



3. density estimation with confidence

tree based density estimators such as the DET and OPT, the probability mass of the

hyperrectangles can be queried very efficiently, and thereby making them the ideal

choices for the initial density estimator p̃. In all our experiments in Chapter 4, we

will be using DET(MLE) as the initial density estimator for all DET with confidence

methods.

Speed-up. Note that the corresponding confidence sets of all three confidence state-

ments (3.1.2), (3.1.6), and (3.1.8) can be written as the intersection of larger confidence

sets: for the VC and empirical process based confidence sets, the intersection is taken

over the upper level sets of the p̃, and for the multiscale likelihood ratio test based

confidence set, the intersection is taken over the collection of intervals. Therefore,

checking the validity of each three confidence statements is equivalent to checking a

sequence of simpler confidence statements. However, such a procedure can be quite

computationally costly if we have a large number of statements to check. One caveat

we can make is that when we are splitting a node deeper down in the density tree,

the hyperrectangle associated may only be relevant to a small part of the list of

confidence statements, because the rest of the confidence statements do not depend

on the probability content of the current node. Therefore, by keeping track of the list

of relevant confidence statements as the nodes are split, we can greatly reduce the

number of confidence statements to check as the tree grows bigger.

3.2 Optimization Methods

Although the greedy algorithm 7 provides a very efficient way of constructing a DET-

like density estimator inside the confidence set of interest, a successful construction is

actually not guaranteed. There are situations where a density tree is fully grown while

parts of the list of confidence statements remain unsatisfied. Intuitively, the density
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3.2. Optimization Methods

tree is grown by greedily splitting the nodes that yield the maximum reduction in

the surrogate loss, and thus, generally, high probability density regions that contains

more samples get split on much more often than low probability regions. As a result,

certain confidence statements involving low density regions may remain unsatisfied

throughout the entire process. This behavior can happen more regularly in higher

dimensional datasets than lower dimensional ones; due to the curse of dimensionality,

the volume of the space increases so fast that the available data become sparse.

Next, we discuss two approaches that guarantee finding a density estimator inside

the confidence set of interest. Both methods are framed as constrained convex

optimization problems, and thus can be solved using appropriate convex solvers. The

solutions to both methods still return piecewise constant density estimates; however,

the training and querying time are significantly higher than the greedy DET-CF

method 7.

Recall that checking the whether a probability measure Q satisfies any of the

three confidence statements (3.1.2), (3.1.6), and (3.1.8) is equivalent to checking a

list of simpler confidence statements of the form Lj ≤ Q(p̃−1(Ij)) ≤ Uj, j = 1, . . . , K

for some K > 0. For the VC and empirical process based confidence methods, Ij is

simply an open interval of the form [a,∞) for some a > 0, and Lj and Uj are the

corresponding lower and upper bounds in the confidence intervals (3.1.1) and (3.1.5),

respectively. For the multiscale likelihood ratio test based confidence set, Ij comes

from the collection of intervals in J , and Lj and Uj can be computed using root

searching algorithms.
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3. density estimation with confidence

3.2.1 Constrained MLE

In the first approach, the density estimator is constructed as the solution to a

constrained MLE problem. We restrict our attention to the class of piecewise constant

densities with identical support as p̃. More formally, let Π be the partition associated

with p̃, the problem can be formulated as

p̂ = argmax
g∈G

n∑
i=1

log g(Xi)

subject to Lj ≤
∫
p̃−1(Ij)

g(x) dµ(x) ≤ Uj for all j = 1, . . . , K

(3.2.1)

where G = {g : g(x) =
∑

i aiI(x ∈ Ωi), ai ≥ 0,
∫
g(x) dµ(x) = 1}. The problem can be

equivalently formulated in matrix form. Since Π is fixed, the only free variables are the

density values ai’s. Denote a = (a1, . . . , a|Π|), v = (µ(Ω1), . . . , µ(Ω|Π|)), L = (Lj)j∈[K],

U = (Uj)j∈[K]. Let M be a K × |Π| matrix where Mij = µ(Ωj)I(Ωj ∈ p̃−1(Ii)) and

H be a n× |Π| matrix where Hij = I(Xi ∈ Ωj). Problem (3.2.1) can be equivalently

formulated as

â = argmax
a

log(a)TH1

subject to L ≤Ma ≤ U ,aTv = 1,a ≥ 0

The resulting density estimator is

p̂(x) =
∑
i

âiI(x ∈ Ωi).

3.2.2 Constrained Maximum Entropy

In the second approach, the density estimator is taken as the solution to a constrained

maximum entropy problem (MaxEnt). Compared to the previous approach, this

formulation does not put any constraint on the class of the underlying density function,
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3.2. Optimization Methods

yet we can still obtain a piecewise constant density estimator. The MaxEnt approach

for density estimation was first proposed in Jaynes (1957), and later sees applications

in various areas, such as statistical mechanics Kapur and Kesavan (1992), and natural

language processing Berger et al. (1996), Della Pietra et al. (1997).In MaxEnt, one is

given a set of constraints on the target distribution P ; usually the constraints require

the expectations of a certain set of feature functions (real-valued functions) with

respect to the target distribution match their empirical means. Using the Karush-

Kuhn-Tucker (KKT) optimality conditions, one can show that the problem can be

equivalently formulated as a maximum likelihood estimation problem, where the target

distribution belongs to the class of Gibbs distributions Dud́ık (2011).

In Dud́ık et al. (2004), the authors discuss several limitations of the original MaxEnt

formulation, and propose using a relaxation of the feature-based constraints; the new

constraints only require the the feature expectation to be within a certain range of

their empirical means. The authors show that this new formulation is equivalent to

solving a maximum likelihood problem with a `1 style regularization term, with the

candidate distribution also belonging to the class of Gibbs distributions. Next, we

give a more formal introduction to the MaxEnt problem, and demonstrate how it

can be applied to finding a density estimator satisfying any of the three confidence

statements (3.1.2), (3.1.6), and (3.1.8).

The entropy of a distribution P with density function p is defined as

H(p) = −
∫
p(x) log p(x) dµ(x).

Let fj(x) = I(x ∈ p̃−1(Ij)) and f = (fj)j∈[K] be the feature functions. Consider all
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3. density estimation with confidence

Gibbs distribution of the form

qλ(x) =
eλ·f(x)

Zλ
,

where Zλ =
∫
eλ·p(x) dµ(x) is a normalizing constant and λ ∈ Rd. The MaxEnt

problem is formulated as follows.

max
g
H(g)

s.t.

∫
g(x) dµ(x) = 1,

and Lj ≤
∫
p̃−1(Ij)

g(x) dµ(x) ≤ Uj for all j = 1, . . . , K.

(3.2.2)

For simplicity, denote Gj :=
∫
p̃−1(Ij)

g(x) dµ(x). We take a similar procedure as in

Dud́ık et al. (2004) to derive the Lagrangian dual of (3.2.2). The dual problem (with

dual variables λ0, λ
+
j , λ

−
j ) can be written as

min
λ+
j ,λ
−
j ,λ0

max
g
H(g)− λ0(

∫
g(x) dµ(x)− 1)−

∑
I

λ+
j (Lj −Gj)−

∑
I

λ−j (Gj − Uj).

After rearranging the terms, we arrive at

min
λ+
j ,λ
−
j ,λ0

max
g
H(g)− λ0(

∫
g(x) dµ(x)− 1)−

∑
I

(λ+
j − λ−j )Gj +

∑
I

λ−j Uj +
∑
I

λ+
j Lj.

Taking the derivative with respect to g(x) and setting it to zero yields that g(x)

must be a Gibbs distribution with parameters λ = (λj)j∈[K] and λ0 + 1 = logZλ,

where λj = λ+
j − λ−j . Let U = (Uj)j∈[K] and L = (Lj)j∈[K], problem (3.2.2) can be

equivalently formulated as

λ̂+
j , λ̂

−
j = argmin

λ+
j ,λ
−
j

H(qλ) + λ · qλ(g) + λ− ·U − λ+ ·L,

which can be simplified into

λ̂+
j , λ̂

−
j = argmin

λ+
j ,λ
−
j

logZλ + λ− ·U − λ+ ·L. (3.2.3)
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The resulting density estimator is simply

p̂(x) = qλ̂(x),

where λ̂ = λ̂+
j − λ̂−j . Note that p̂ is a piecewise constant density function because the

feature functions fj are indicator functions in this case.

Note that (3.2.3) is an unconstrained convex program, which can be solved using

existing convex solvers. However, when we have a large set of constraints, second

order optimization methods may impose too much memory pressure. Alternatively,

one can sacrifice some accuracy and runtime efficiency for better memory efficiency

using first order sequential-update algorithms, such as the coordinate descent. The

procedure described below is adapted from Dud́ık et al. (2004). For each j, define

λ̃+
j = λ+

j + δ+ and λ̃−j = λ−j + δ−, where δ+, δ− ∈ R. Let L(·) be the objective function

in (3.2.3), then

L(λ̃+,λ−)− L(λ+,λ−) = logZλ̃+−λ− − logZλ − Lj(λ̃+
j − λ+

j )

= log qλ[eδ
+fj ]− Ljδ+

≤ log(1 + (eδ
+ − 1)qλ[fj])− Ljδ+

=: F+
j (λ+,λ−, δ).

(3.2.4)

Similarly,

L(λ+, λ̃−)− L(λ+,λ−) = logZλ+−λ̃− − logZλ + Uj(λ̃
−
j − λ−)

= log qλ[e−δ
−fj ] + Ujδ

−

≤ log(1 + (e−δ
− − 1)qλ[fj]) + Ujδ

−

=: F−j (λ+,λ−, δ).

(3.2.5)
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3. density estimation with confidence

The coordinate descent algorithm for solving problem 3.2.3 is given in Algorithm 8.

At each step, the algorithm modifies one λ+
j or λ−j at a time. The algorithm can be

proved to be convergent by using a similar argument as in Dud́ık et al. (2004).

Algorithm 8 MaxEnt: coordinate-descent

Inputs: T – number of iterations.

Let λ+
1 = 0,λ−1 = 0.

for t = 1, . . . , T do
Let (j, δ+) = argminj,δ F

+
j (λ+

t ,λ
−
t , δ) and (j, δ−) = argminj,δ F

−
j (λ+

t ,λ
−
t , δ),

where F+
j (·) and F−j (·) are defined in (3.2.4) and (3.2.5).

if F+
j (λ+

t ,λ
−
t , δ

+) ≤ F−j (λ+
t ,λ

−
t , δ

−) then

λ+
t+1,j′ =

{
λ+
t,j + δ+ if j′ = j

λ+
t,j′ else

else

λ−t+1,j′ =

{
λ−t,j + δ− if j′ = j

λ−t,j′ else

end if
end for
return λ+

T , λ−T

3.3 Summary

In summary, in this chapter, we discuss some of the potential limitations of the DET

estimators, and propose another class of DET-like methods that are intended to address

these issues. More specifically, we propose three ways for constructing confidence

sets of the underlying density, and provide a greedy algorithm for efficiently finding a

DET-like density estimator that belongs to the confidence set. The confidence sets

we constructed are dimension free, finite sample, and does not require any regularity

assumption of the underlying distribution. Next, we address the potential issue of the

greedy algorithm not being able to converge to a density estimator in the confidence

38



3.3. Summary

set. The idea is to alternatively formulate problem as constrained convex optimization

problems. The first method constructs a density estimator by solving a constrained

MLE problem. The second method constructs the density estimator using ideas from

maximum entropy density estimation.
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Four

Numerical Experiments

4.1 DET(L2) and DET(MLE)

In this section, we demonstrate the performance of DET estimators. To show the

efficiency and scalability of DET methods, we first compare them with KDE and OPT

in terms of estimation error and running time. Next we provide some concrete lower

dimensional illustrations of the DET estimators in comparison with other state-of-

the-art density estimators mentioned in the Introduction 1. Finally, we show that the

DET estimators can be utilized as a variable selection tool.

Both DET methods are implemented in C++ with bindings to Python and R. Please

refer to Chapter 6 for more implementation details. Unless otherwise specified, for

all our experiments, we are using the default model parameters, i.e. MAX LEAF SIZE

= 10, MIN LEAF SIZE = 5, MTRY = D, and the number of folds K = 10. For KDE,

we are using the KernelDensity() function from sklearn in python with default

models parameters except for the bandwidth. In the hellinger distance and running

time comparison experiements, we set the bandwidth using Silverman’s rule of thumb

for simplicity. For the lower dimensional experiments, the bandwidth is selected using

5-fold cross-validation. Note that the KernelDensity() utilizes k-d tree and ball tree

for more efficient computation of the nearest neighbors. For OPT, we are using the
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4. numerical experiments

LL-OPT implementation Jiang H (2016) with two look ahead levels (h = 2). All

experiments are simulated on a Macbook Pro with Apple M1 Pro chip with 16GB of

RAM.

4.1.1 Accuracy and Speed

First, we compare the performance of DET(L2) and DET(MLE) with that of KDE

with a fixed bandwidth and OPT in terms of Hellinger distance and running time.

Mixture of Gaussians

We simulate samplesX ∼
∑4

i=1
1
4
N (µi,Σi) withD = 2, 3, 4, 5, 6 andN = 2000, 20000, 100000

respectively. The mean vectors and covariance matrices for each component are gen-

erated randomly for each (N,D) pair. As a preprocessing step, we standardize each

covariate such that they have mean zero and standard deviation one, which is necessary

for fitting KDE with a fixed bandwidth. This processing step can be omitted for the

DET methods as they do not have any model parameters depending on the scale of

the data.

Table 4.1 records the average hellinger distance between the true density and

the estimation from each method over 20 replications. Table 4.2 records the average

CPU time of each method in seconds over the 20 replications. The numbers in the

parenthesis are the corresponding standard deviation. In general, KDE gives the best

estimation error, followed by DET(MLE) and OPT. Note the performance of KDE can

still be significantly improved for optimally selected bandwidth (using cross-validation)

or with adaptive (bandwidth) KDE methods at higher computational cost. DET(MLE)

and OPT gives similar performance in lower dimensions, and DET(MLE) improves

over OPT by a fair margin as the dimension gets higher. DET(L2), on the other hand,

is a bit lacking in performance,especially in higher dimensions.
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N = 2000 N = 20000 N = 100000
D KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE)
2 0.0583 0.1520 0.2483 0.1411 0.0305 0.1666 0.0862 0.0818 0.0170 0.0559 0.1337 0.0549

(0.0053) (0.0085) (0.0139) (0.0065) (0.0050) (0.0028) (0.0061) (0.0024) (0.0069) (0.0027) (0.0067) (0.0038)
3 0.1035 0.2561 0.3489 0.2132 0.0631 0.1566 0.2846 0.1377 0.0417 0.1131 0.2238 0.0996

(0.0064) (0.0083) (0.0180) (0.0085) (0.0032) (0.0049) (0.0135) (0.0040) (0.0041) (0.0032) (0.0112) (0.0031)
4 0.1513 0.3669 0.4329 0.2838 0.0969 0.2389 0.3732 0.1977 0.0716 0.1776 0.3177 0.1521

(0.0048) (0.0093) (0.0113) (0.0086) (0.0046) (0.0050) (0.0100) (0.0026) (0.0057) (0.0044) (0.0125) (0.0046)
5 0.2038 0.4791 0.5270 0.3577 0.1429 0.3366 0.5110 0.2530 0.1095 0.2565 0.4336 0.2015

(0.0044) (0.0055) (0.0116) (0.0051) (0.0044) (0.0049) (0.0147) (0.0043) (0.0035) (0.0034) (0.0093) (0.0037)
6 0.2774 0.5855 0.5973 0.4335 0.2056 0.4408 0.6157 0.3387 0.1653 0.3556 0.5278 0.2842

(0.0051) (0.0065) (0.0134) (0.0063) (0.0038) (0.0053) (0.0072) (0.0044) (0.0052) (0.0045) (0.0134) (0.0037)

Table 4.1: Error in Hellinger Distance between the true density and KDE, OPT, DET(L2), and
DET(MLE). The numbers in parentheses are standard errors from 20 replicas. The underlying
distribution is a mixture of four Gaussian distributions.

In terms of computational efficiency, OPT is the fastest of all. Both DET methods

are significantly faster KDE, especially for large samples sizes and higher dimensions,

which proves a big advantage of DET estimators over KDE in higher dimensions.

DET(MLE), while enjoying much better Hellinger error distance, is only slightly slower

than DET(L2). It is also worth emphasizing that the DET methods have extremely

efficient querying time (∼ 10−4 secs), which can be particularly useful for predicting

density values outside the samples points.

Piecewise Constant Densities

Similar to the Gaussian scenario, Table 4.3 and Table 4.4 give the estimation error

and running time when the data are generated from piecewise constant densities. The
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N = 2000 N = 20000 N = 100000
D KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE)
2 6.2923 0.3701 1.1010 1.0960 56.8166 0.4489 8.3994 8.2408 278.9758 0.8157 73.9431 80.9630

(0.0411) (0.0073) (0.2473) (0.0668) (0.8027) (0.0034) (2.0411) (1.6330) (3.9961) (0.0051) (1.7722) (1.7984)
3 6.6136 0.4539 0.8832 0.7967 59.8095 0.6804 7.8331 6.8500 262.6469 1.6202 71.0551 80.4940

(0.0439) (0.0039) (0.4383) (0.3874) (0.5662) (0.0036) (2.6684) (1.4359) (4.5769) (0.0081) (0.9687) (0.5833)
4 7.3774 0.5669 0.8998 1.0016 65.2782 1.1865 6.6886 5.5885 266.8435 3.5486 71.7238 84.7116

(0.2877) (0.0057) (0.3058) (0.3714) (0.9712) (0.0119) (2.1540) (1.2716) (1.1531) (0.0312) (0.9816) (0.8013)
5 7.7992 0.7705 0.7130 0.7194 68.4494 2.3876 5.1550 4.5996 310.3625 8.1626 72.0560 88.9800

(0.2353) (0.0049) (0.4084) (0.4911) (3.1933) (0.0428) (1.6922) (1.0634) (5.5689) (0.0657) (1.1836) (2.8023)
6 7.3934 1.0849 1.0963 0.9541 72.5337 4.6280 6.3683 6.2312 348.6712 17.7740 79.5784 97.7803

(0.3696) (0.0162) (0.5338) (0.4436) (5.2640) (0.0531) (1.9639) (1.0442) (7.7749) (0.1978) (3.4399) (5.8268)

Table 4.2: Average CPU time in seconds of KDE, OPT, DET(L2), and DET(MLE). The numbers
in parentheses are standard errors from 20 replicas. The underlying distribution is a mixture of
four Gaussian distributions.

density function is generated as a product of D 1-dimensional piecewise constant

density function, where the number of discontinuities along each dimension is 10. We

observe similar behaviors among the four estimators as in the Gaussian case, except

that the Hellinger distance for both versions of DET are now much lower than that of

KDE, which is expected as DET is designed to provide piecewise constant estimates.

Note that in this case we also have DET(MLE) outperform DET(L2) and OPT in

Hellinger distance.

4.1.2 Adaptability

Next, to better understand the behaviours of the DET methods, we look at some

concrete examples in lower dimensions.
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4.1. DET(L2) and DET(MLE)

N = 2000 N = 20000 N = 100000
D KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE)
2 0.4843 0.1890 0.2702 0.0996 0.4124 0.0966 0.1236 0.0398 0.3744 0.0548 0.0740 0.0157

(0.1049) (0.0216) (0.1341) (0.0125) (0.0731) (0.0109) (0.0358) (0.0064) (0.1018) (0.0106) (0.0505) (0.0046)
3 0.5941 0.3300 0.4264 0.1934 0.5424 0.1948 0.2791 0.0804 0.5174 0.1348 0.2437 0.0372

(0.0981) (0.0326) (0.1093) (0.0181) (0.0636) (0.0195) (0.0876) (0.0054) (0.0484) (0.0169) (0.1341) (0.0047)
4 0.6846 0.4403 0.4953 0.2890 0.6596 0.3044 0.4361 0.1454 0.6205 0.2294 0.3774 0.0764

(0.0777) (0.0482) (0.0836) (0.0420) (0.1008) (0.0315) (0.1237) (0.0162) (0.0532) (0.0273) (0.1203) (0.0114)
5 0.7347 0.5078 0.5355 0.3704 0.7478 0.4069 0.5440 0.2240 0.6874 0.3207 0.5164 0.1300

(0.0731) (0.0631) (0.0924) (0.0714) (0.0870) (0.0416) (0.1113) (0.0281) (0.0621) (0.0312) (0.1260) (0.0183)
6 0.8047 0.5925 0.6196 0.4527 0.7989 0.4763 0.6013 0.2981 0.7484 0.4144 0.6030 0.2014

(0.0603) (0.0561) (0.0682) (0.0673) (0.0541) (0.0410) (0.0870) (0.0343) (0.0607) ( 0.0422) (0.1262) (0.0240)

Table 4.3: Error in Hellinger Distance between the true density and KDE, OPT, DET(L2), and
DET(MLE). The numbers in parentheses are standard errors from 20 replicas.The underlying
distribution is a product of (independent) piecewise constant densities with 10 discontinuities
along each dimension.

1D examples. We first compare the performance of DET(MLE), DET(L2), OPT, and

KDE with two other state-of-the-art density estimators in one dimension — essential

histograms and FDE. Figure 4.1, 4.2, and 4.3 give the case when the underlying

densities are generated from the claw distribution (mixture of 5 Gaussian distributions

with unequal mean and same variance), harp distribution (mixture of 5 Gaussian

distributions with unequal mean and variance), and a piecewise constant distribution

with 10 discontinuities respectively.

While KDE is unable to adapt well to the heterogeneous degree of smoothness of

the densities in our examples, all the other five estimators are doing decent work. In

general, we notice that both DET estimators give very similar performance to that of
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4. numerical experiments

Figure 4.1: Density Estimates for KDE, DET(L2),DET(MLE), OPT,Essential Histogram, and
FDE when the underlying distribution is a univariate claw distribution. Sample size is 5000.

Figure 4.2: Density Estimates for KDE, DET(L2),DET(MLE), OPT,Essential Histogram, and
FDE when the underlying distribution is a univariate harp distribution. Sample size is 5000.
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4.1. DET(L2) and DET(MLE)

N = 2000 N = 20000 N = 100000
D KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE) KDE OPT DET(L2) DET(MLE)
2 6.7972 0.4064 1.0874 1.1135 51.0509 0.5005 7.2771 5.2695 267.2345 0.8658 67.7634 81.5085

(0.4111) (0.0095) (0.5432) (0.3842) (2.0758) (0.0119) (0.9354) (1.4265) (13.4730) (0.0301) (3.9599) (2.2978)
3 6.6550 0.4920 0.8697 0.6387 52.4089 0.7573 8.1489 7.1278 251.6021 1.8684 61.2846 77.8866

(0.0724) (0.0093) (0.5045) (0.4276) (1.9858) (0.0430) (2.1772) (1.4061) (12.1612) (0.1496) (1.9087) (2.5618)
4 6.9609 0.6110 0.8114 0.8406 55.1284 1.3603 6.9747 6.5775 249.8068 4.3283 60.2926 77.4996

(0.0906) (0.0163) (0.4438) (0.4552) (2.4107) (0.1229) (2.5239) (1.4679) (9.8989) (0.5846) (1.8420) (2.0432)
5 7.1838 0.7842 0.6925 0.6864 60.4738 2.6492 6.9871 5.5144 276.0558 9.5129 63.7258 79.3698

(0.1030) (0.0406) (0.3678) (0.3962) (2.1240) (0.3192) (1.7397) (1.4583) (12.5507) (1.4442) (1.9378) (1.4647)
6 7.2941 1.0282 0.6749 0.5540 65.4299 4.5061 6.9266 7.1030 301.8258 19.5153 63.4614 76.7321

(0.0940) (0.0650) (0.4246) (0.2860) (1.3532) (0.5389) (1.9822) (2.2783) (19.3400) (3.6895) (9.4703) (10.0277)

Table 4.4: Average CPU time in seconds of KDE, OPT, DET(L2), and DET(MLE). The numbers
in parentheses are standard errors from 20 replicas. The underlying distribution is a product of
(independent) piecewise constant densities with 10 discontinuities along each dimension.

the essential histogram in the sense of capturing the important features (e.g. modes).

Compared to DET(MLE), DET(L2) tends to give an overly smoothed estimate of the

density and is unable to pick out some the of lower density modes. FDE and OPT

give a much tighter fit to the true density than the others by producing many more

discontinuities in their estimates. However,when the underlying density is not smooth

as in Figure (4.3), OPT gives multiple spurious modes, while both DET estimators

and the essential histogram can recover the behavior of the true density most of the

time. In addition, we also notice that both DET estimators occasionally produce

density ”spikes”, most likely due to the greedy nature of the method.
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4. numerical experiments

Figure 4.3: Density Estimates for KDE, DET(L2),DET(MLE), OPT,Essential Histogram, and
FDE when the underlying distribution is a univariate piecewise constant distribution with 10
discontinuities. Sample size is 5000.

2D examples. Next, we compare the performance of KDE, DET(L2) and DET(MLE)

in two dimensions. Figure 4.4 gives the case when the underlying density is mixture

of two Gaussian with the same covariance matrix, and 4.5 gives the case when the

covariance matrices are different. The results are consistent with those of the multi-

dimensional experiments. We have that KDE gives almost perfect recovery of the true

density, while both DET estimators struggle. Still, DET(MLE) does a much better

job then DET(L2) at capturing the general shape of the density.

Figure 4.6 gives an example of a two dimensional piecewise constant density,

where the number of discontinuities in the first dimension is 2, and the number

of discontinuities in the second dimension in 4. Figure 4.7 gives another example

of piecewise constant density where the density has 3 discontinuities in the first

dimension and is constant in the other. In both examples, we notice that DET(L2)
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4.1. DET(L2) and DET(MLE)

(a) KDE (b) DET(L2)

(c) DET(MLE) (d) pdf

Figure 4.4: Density Estimates for KDE, DET(L2), and DET(MLE) when the underlying distribu-
tion is a mixture of two gaussian distributions with the same covariance matrix. Sample size is
5000.

and DET(MLE) perform similarly to each other, both giving much more accurate

estimates than KDE. Note that DET(L2) is unable to pick out the low density region

in Figure 4.6, which is, again, consistent with what we observe in the univariate

examples.
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4. numerical experiments

(a) KDE (b) DET(L2)

(c) DET(MLE) (d) pdf

Figure 4.5: Density Estimates for KDE, DET(L2), and DET(MLE) when the underlying distribu-
tion is a mixture of two gaussian distributions with different covariance matrices. Sample size is
5000.
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4.1. DET(L2) and DET(MLE)

(a) KDE (b) DET(L2)

(c) DET(MLE) (d) pdf

Figure 4.6: Density Estimates for KDE, DET(L2), and DET(MLE) when the underlying distribu-
tion is a piecewise constant distribution, with 2 splits on the x-axis and 4 splits on the y axis.
Sample size is 5000.
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4. numerical experiments

(a) KDE (b) DET(L2)

(c) DET(MLE) (d) pdf

Figure 4.7: Density Estimates for KDE, DET(L2), and DET(MLE) when the underlying distribu-
tion is a piecewise constant distribution, with 3 splits on the x-axis and 0 splits on the y axis.
Sample size is 5000.
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4.1. DET(L2) and DET(MLE)

Special cases. Finally, we give some more special examples where piecewise constant

density estimates could be problematic. In Figure 4.8, we have a uniform density

supported on two intertwined moon shaped domains. While KDE has little trouble

with recovering the domain of the density and giving almost constant estimates, both

DET methods fail in both ways. Since the moon shaped domain cannot be well

approximated by axis-aligned rectangles, the domains given by the DET estimators

are chunky and disconnected. The density estimates are also far from being constant.

The bright spots on the heatmap indicate that the density estimates in those regions

are significantly higher than the rest.

Figure 4.9 gives another similar example where the underlying density is supported

on two concentric circles. The densities are constant on both rings, with the values

on the outer ring being slightly lower than that of the inner ring. DET(L2), in this

case, completely misses the outer ring while DET(MLE) does a sightly better job at

capturing the shape of the support.

4.1.3 Interpretability

As mentioned in Ram and Gray (2011), DET(L2) can be used to perform variable

selection. The variable importance of a covariate a is defined as the total reduction in

the surrogate loss over all nodes with a as the splitting,∑
Ω

(R̂(Ω)− R̂(ΩL)− R̂(ΩR))I(Ωsplit dim = a).

The authors demonstrate the application of variable importance on two real datasets

and show that the irrelavant variables almost never get split on. The variable

importance of a covariate a for DET(MLE) can be similarly defined.

We illustrate the performance of the two metrics with a simple toy example. Con-

sider X ∈ R10, where (X1, X2, X3) ∼ N (µ,Σ) for some µ and Σ, and (X4, . . . , X10) ∼
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4. numerical experiments

(a) KDE (b) DET(L2)

(c) DET(MLE) (d) dataset

Figure 4.8: Contourplot of the density Estimates for KDE, DET(L2), and DET(MLE) when the
underlying distribution is a uniform density supported on two intertwined moon shaped domains.
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4.1. DET(L2) and DET(MLE)

(a) KDE (b) DET(L2)

(c) DET(MLE) (d) dataset

Figure 4.9: Contourplot of the density Estimates for KDE, DET(L2), and DET(MLE) when the
underlying distribution is a uniform density supported on two concentric circles.
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4. numerical experiments

DET(L2) 0.0025 0.0013 0.0023 0.0003 0 0 0 0.0002 0 0.0007
DET(MLE) 1121.37 843.86 929.47 0 0 0 0 0 0 0

Table 4.5: Variable importance estimation of each covariate by DET(L2) and DET(MLE) when
the underlying distribution is X ∈ R10, where (X1, X2, X3) ∼ N (µ,Σ) for some µ and Σ, and
(X4, . . . , X10) ∼ Unif(0, 1)

Unif(0, 1). We generate N = 2000 samples using this distribution and run DET(L2)

and DET(MLE) on the generated samples. The variable importance estimated by

DET(L2) for each covariate is given in Table 4.5.

Notice that both methods give their highest three variable importance values to

the first three covariates. DET(MLE) does not split on the other seven covariates at

all, while DET(L2) would split on them very rarely.

4.2 Bagging

Next, we demonstrate the effect of bagging on the DET(MLE) estimator. Table

(4.6) and (4.7) records the error of the DET(MLE) and the bagged DET(MLE)

in terms of hellinger distance for various dimensions and sample sizes when the

underlying distribution is a mixture of four gaussian distributions and piecewise

constant, respectively. The number of estimators for the bagged DET is taken to be

10 and the MTRY parameter is set to be
√
d rounded down, a common choice when

ensembling regression trees . Based on the results, it appears that, as least for the set

of parameters we are using, bagging does not seem to provide significant improvement

over the a single density tree. In fact, for large sample sizes, bagging actually worsen

the performance of the estimators.
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4.3. DET with Confidence

N = 2000 N = 20000 N = 100000
D DET Bagged DET DET Bagged DET DET Bagged DET
3 0.2132 0.2240 0.1377 0.1801 0.0996 0.1538

(0.0085) (0.0049) (0.0040) (0.0056) (0.0031) (0.0057)
4 0.2838 0.2640 0.1977 0.2102 0.1521 0.1902

(0.0086) (0.0049) (0.0026) (0.0045) (0.0046) (0.0044)
5 0.3577 0.3263 0.2530 0.2507 0.2015 0.2195

(0.0051) (0.0039) (0.0043) (0.0060) (0.0037) (0.0041)
6 0.4335 0.4030 0.3387 0.3261 0.2842 0.2860

(0.0063) (0.0078) (0.0044) (0.0035) (0.0037) (0.0033)

Table 4.6: Error in Hellinger Distance between the true density and DET and Bagged DET. The
numbers in parentheses are standard errors from 20 replicas. The underlying distribution is a
mixture of four Gaussian distributions.

4.3 DET with Confidence

In this section, we demonstrate the performance of all the DET-CF estimators. To

show the efficiency and scalability of DET methods, we first compare them with the

regular DET in terms of estimation error and running time. Next we provide some

concrete lower dimensional illustrations of the DET-CF estimators.

All DET-CF methods are implemented in C++ with bindings to Python and R.

Please refer to Section 4.1 for more implementation details. Unless otherwise specified,

for all our experiments, we are using the default model parameters, i.e. MAX LEAF SIZE

57



4. numerical experiments

N = 2000 N = 20000 N = 100000
D DET Bagged DET DET Bagged DET DET Bagged DET
3 0.1934 0.2387 0.0804 0.1749 0.0372 0.1323

(0.0181) (0.0250) (0.0054) (0.0137) (0.0047) (0.0152)
4 0.2890 0.2937 0.1454 0.2117 0.0764 0.1643

(0.0420) (0.0432) (0.0162) (0.0127) (0.0114) (0.0196)
5 0.3704 0.3556 0.2240 0.2655 0.1300 0.2097

(0.0714) (0.0602) (0.0281) (0.0218) (0.0183) (0.0106)
6 0.4527 0.4312 0.2981 0.3253 0.2014 0.2503

(0.0673) (0.0585) (0.0343) (0.0290) (0.0240) (0.0182)

Table 4.7: Error in Hellinger Distance between the true density and DET, Bagged DET. The
numbers in parentheses are standard errors from 20 replicas. The underlying distribution is a
multivariate piecewise constant distribution.

= 10, MIN LEAF SIZE = 5, MTRY = D, the number of folds K = 10, confidence level

delta = 0.01 and the list of alpha values to be the set of all distinct values from

the training DET. In addition, we only consider the case of criterion being the KL

divergence in this experiment, because it is the best performing estimator based on

previous experiments. We’ll denote DET(MLE) as DET in this section for simplicity.

4.3.1 Accuracy and Speed

First, we compare the performance of all the DET-CF estimators with that of a regular

DET in terms of Hellinger distance and running time when the underlying distribution
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4.3. DET with Confidence

is a mixture of four gaussians and piecewise constant, respectively. Please refer to

Section 4.1 for more details regarding how the underlying distributions are generated.

Mixture of Gaussians

Table 4.8 records the average hellinger distance between the true density and the

estimation from each DET-CF method over 20 replications. Table 4.2 records the

average CPU time of each DET-CF method in seconds over the 20 replications. The

numbers in the parenthesis are the corresponding standard deviation. The underlying

distributions are identical to the ones generated in Section 4.1 and one can directly

compare the numbers here with Table 4.1 and Table 4.2. In general, all DET-CF

methods give very similar error rate as DET(MLE), with DET(MLE) giving the

lowest error rate by a small margin in almost all cases. This is expected because

the DET-CF methods are not designed to optimize any error metric, but rather be

a simple estimator that belongs to a certain confidence set. Among the DET-CF

methods, DET-CF(CM) and DET-CF(MLR) give the best estimation error overall,

followed by DET-CF(MaxEnt) and the other two greedy methods. The confidence set

constructed using the multiscale likelihood ratio test (3.1.8) appears to be a better

choice for density estimation.

In terms of computational efficiency, the three greedy confidence methods DET-

CF(VC), DET-CF(EP) and DET-CF(MLR) give faster computation than DET(MLE),

especially for large sample sizes. DET-CF(CM) and DET-CF(MaxEnt) are computed

using interior point solvers and require significantly more computational time than

the greedy methods.

59
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N = 2000 N = 20000 N = 100000
D VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt
2 0.2519 0.2655 0.1918 0.1569 0.1979 0.2262 0.1736 0.1065 0.0933 0.1095 0.1332 0.1107 0.0727 0.0629 0.0713

(0.0100) (0.0118) (0.0160) (0.0077) (0.0090) (0.0115) (0.0185) (0.0064) (0.0048) (0.0048) (0.0043) (0.0074) (0.0033) (0.0034) (0.0044)
3 0.3286 0.3507 0.2634 0.2380 0.2768 0.2165 0.2266 0.1515 0.1496 0.1695 0.1672 0.1466 0.1078 0.1099 0.1205

(0.0129) (0.0171) (0.0227) (0.0083) (0.0123) (0.0101) (0.0114) (0.0067) (0.0039) (0.0043) (0.0054) (0.0057) (0.0057) (0.0036) (0.0038)
4 0.4010 0.4179 0.3143 0.3128 0.3547 0.2598 0.2647 0.2036 0.2130 0.2308 0.1946 0.1832 0.1517 0.1692 0.1758

(0.0157) (0.0173) (0.0162) (0.0069) (0.0101) (0.0064) (0.0066) (0.0027) (0.0026) (0.0039) (0.0049) (0.0068) (0.0048) (0.0033) (0.0040)
5 0.4640 0.4775 0.3766 0.3813 0.4180 0.3050 0.3126 0.2534 0.2847 0.2961 0.2306 0.2242 0.2112 0.2256 0.2299

(0.0130) (0.0125) (0.0118) (0.0077) (0.0090) (0.0082) (0.0085) (0.0045) (0.0056) (0.0049) (0.0038) (0.0064) (0.0210) (0.0036) (0.0026)
6 0.5235 0.5372 0.4434 0.4776 0.5062 0.3697 0.3811 0.3618 0.3757 0.3778 0.2963 0.3034 0.3306 * *

(0.0106) (0.0075) (0.0122) (0.0067) (0.0069) (0.0079) (0.0098) (0.0139) (0.0062) (0.0037) (0.0068) (0.0206) (0.0166) * *

Table 4.8: Error in Hellinger Distance between the true density and DET-CF(VC), DET-CF(EP),
DET-CF(MLR), DET-CF(CM), and DET-CF(MaxEnt). The numbers in parentheses are standard
errors from 20 replicas. The underlying distribution is a mixture of four Gaussian distributions.

Piecewise Constant Densities

Similar to the Gaussian scenario, Table 4.10 and Table 4.11 give the estimation error

and running time when the data are generated from piecewise constant densities.

Again, the results recorded are directly comparable with those in Table 4.3 and Table

4.4. We observe similar behaviors between the DET-CF estimators and DET(MLE)

as in the Gaussian case.

4.3.2 Adaptability

Next, we show some concrete examples in lower dimensions.

1D Examples. In this example, we compare the performance of DET(MLE) with the

five DET-CF estimators. Figure 4.10, 4.11, and 4.12 give the case when the underlying
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4.3. DET with Confidence

N = 2000 N = 20000 N = 100000
D VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt
2 0.3913 0.4413 0.3082 3.2874 4.1148 3.1747 3.4063 2.5281 21.8085 43.2803 15.9269 19.1556 15.1119 158.5226 412.8647

(0.0309) (0.0218) (0.1162) (1.3856) (0.6786) (0.1728) (0.2625) (0.7416) (6.4673) (7.8530) (0.8553) (0.3190) (0.3801) (10.2557) (44.0395)
3 0.3962 0.3760 0.3467 2.5563 2.7266 2.8082 2.6542 2.2438 12.8603 61.9080 14.9962 18.1550 15.1476 147.6845 826.1208

(0.0213) (0.0498) (0.0557) (0.8921) (0.4967) (0.3693) (0.2726) (0.7630) (5.0141) (16.6778) (0.7091) (0.8634) (0.9140) (6.2034) (160.3396)
4 0.2922 0.2871 0.3491 3.4075 4.7722 2.8407 3.3347 2.6602 23.2326 87.3465 17.2904 20.8743 20.6650 166.3502 1274.8135

(0.1577) (0.1520) (0.0553) (1.6381) (0.5003) (0.1976) (0.2001) (0.7734) (8.8571) (10.6239) (0.3121) (0.3822) (0.8092) (8.2125) (138.6695)
5 0.3784 0.3899 0.3206 1.4910 3.3637 2.5040 2.6932 2.9124 18.9044 133.2233 21.0483 25.6754 34.9552 179.1269 2065.9864

(0.0262) (0.0699) (0.0420) (0.4892) (0.6706) (0.7120) (0.2620) (0.5698) (6.5240) (33.4005) (0.9136) (1.3374) (7.8037) (5.6049) (355.6428)
6 0.3725 0.3592 0.3317 3.3571 5.5570 1.7656 2.1700 4.6472 18.4917 178.9235 31.3642 54.3841 95.8679 * *

(0.0190) (0.0551) (0.0472) (1.7107) (1.5081) (0.3824) (0.2520) (1.0050) (5.0183) (19.3438) (3.0306) (4.6970) (10.2990) * *

Table 4.9: Average CPU time in seconds of DET-CF(VC), DET-CF(EP), DET-CF(MLR), DET-
CF(CM), and DET-CF(MaxEnt). The numbers in parentheses are standard errors from 20
replicas. The underlying distribution is a mixture of four Gaussian distributions.

densities are generated from the claw distribution (mixture of 5 Gaussian distributions

with unequal mean and same variance), harp distribution (mixture of 5 Gaussian

distributions with unequal mean and variance), and a piecewise constant distribution

with 10 discontinuities respectively. The number of samples is 5000 in each case.

In general, all five DET-CF estimators are doing decent work, with DET-CF(MLR)

and DET-CF(CM) giving the best fit overall since they are able to capture the modes of

the underlying distribution in almost all cases. In comparison, DET-CF(MaxEnt) also

does a good job at picking out the modes, but due to the nature of using the entropy

as the objective function, it tends to smoothen out the relative magnitude of the

density estimates for the modes. DET-CF(VC) and DET-CF(EP), on the other hand,

are constructed using more conservative confidence sets thatn DET-CF(MLR), and
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Figure 4.10: Density Estimates for DET(MLE), DET-CF(VC),DET-CF(EP), DET-CF(MLR),
DET-CF(CM), and DET-CF(MaxEnt) when the underlying distribution is a univariate claw
distribution. Sample size is 5000.

Figure 4.11: Density Estimates for DET(MLE), DET-CF(VC),DET-CF(EP), DET-CF(MLR),
DET-CF(CM), and DET-CF(MaxEnt) when the underlying distribution is a univariate harp
distribution. Sample size is 5000.
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N = 2000 N = 20000 N = 100000
D VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt
2 0.2634 0.2645 0.1542 0.1252 0.2146 0.1450 0.1453 0.0640 0.0514 0.0919 0.0836 0.0670 0.0287 0.0195 0.0500

(0.0487) (0.0518) (0.0206) (0.0179) (0.0199) (0.0212) (0.0292) (0.0087) (0.0051) (0.0136) (0.0242) (0.0121) (0.0054) (0.0055) (0.0079)
3 0.3351 0.3585 0.2424 0.2321 0.2797 0.1965 0.2032 0.1094 0.1004 0.1302 0.1322 0.1133 0.0576 0.0487 0.0712

(0.0370) (0.0390) (0.0349) (0.0289) (0.0324) (0.0222) (0.0180) (0.0099) (0.0081) (0.0105) (0.0138) (0.0138) (0.0087) (0.0061) (0.0071)
4 0.4174 0.4497 0.3336 0.3325 0.3699 0.2541 0.2613 0.1807 0.1746 0.1942 0.1654 0.1557 0.0984 0.0950 0.1096

(0.0442) (0.0495) (0.0532) (0.0481) (0.0454) (0.0254) (0.0238) (0.0170) (0.0187) (0.0207) (0.0156) (0.0192) (0.0133) (0.0151) (0.0130)
5 0.4714 0.4975 0.3979 0.4111 0.4414 0.3125 0.3270 0.2522 0.2599 0.2774 0.2031 0.2037 0.1514 0.1558 0.1679

(0.0585) (0.0626) (0.0665) (0.0770) (0.0748) (0.0355) (0.0340) (0.0301) (0.0369) (0.0372) (0.0172) (0.0158) (0.0171) (0.0212) (0.0194)
6 0.5503 0.5615 0.4891 0.4776 0.5062 0.3715 0.3883 0.3243 0.3757 0.3778 0.2575 0.2597 0.2135 * *

(0.0630) (0.0652) (0.0723) (0.0067) (0.0069) (0.0330) (0.0386) (0.0297) (0.0062) (0.0037) (0.0211) (0.0256) (0.0226) * *

Table 4.10: Error in Hellinger Distance between the true density and DET-CF(VC), DET-
CF(EP), DET-CF(MLR), DET-CF(CM), and DET-CF(MaxEnt). The numbers in parentheses
are standard errors from 20 replicas.The underlying distribution is a product of (independent)
piecewise constant densities with 10 discontinuities along each dimension.

therefore are unable to detect the modes well enough for this sample size. Increasing

the sample size will, however, eventually allow both methods to detect all modes in

the underlying distributions. Note that compared to the original DET methods, the

DET-CF methods no longer produce any ”spikes” in the density estimates.

4.4 Summary

In summary, in this chapter, we provided extensive numerical simulations of the

methods considered in Chpater 2 and Chapter 3. We started off with a thorough

comparison of KDE, OPT, DET(L2), and DET(MLE) in terms of estimation error in

hellinger distance and CPU time over a variety of high dimensional scenarios. Our
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N = 2000 N = 20000 N = 100000
D VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt VC EP MLR CM MaxEnt
2 0.2844 0.3480 0.2575 3.1801 2.5931 2.7328 3.5543 2.4030 23.9594 29.7355 16.9600 21.7133 18.3225 161.2779 179.6800

(0.1216) (0.1492) (0.0947) (1.5589) (0.9430) (0.2192) (0.3906) (0.3231) (6.2444) (4.6218) (0.8481) (1.6986) (1.7127) (5.0472) (6.5356)
3 0.2122 0.3450 0.2740 2.4087 3.0155 2.8780 3.0719 2.3041 16.5161 32.8860 15.6460 18.9827 15.2751 151.3886 329.2281

(0.0955) (0.0308) (0.1283) (1.1814) (1.3716) (0.1530) (0.3400) (0.6946) (9.8668) (9.4952) (0.5179) (0.4174) (0.2650) (4.7503) (66.4500)
4 0.2494 0.3818 0.1706 0.9347 3.0250 2.5694 2.7218 1.8154 9.1920 76.3758 16.1812 20.2446 18.0513 144.4974 815.6579

(0.1149) (0.0207) (0.1209) (0.2499) (1.0981) (0.3037) (0.3655) (0.5458) (1.1914) (33.0447) (1.0610) (1.0484) (1.0783) (13.3569) (220.0140)
5 0.1997 0.2430 0.1744 1.3924 3.3234 2.0261 2.3263 1.9489 19.4516 152.8674 20.1490 23.8465 22.4505 158.4581 1667.0901

(0.1245) (0.1070) (0.0719) (0.6007) (1.7818) (0.3007) (0.2746) (0.2638) (7.6965) (47.6800) (1.1857) (1.2385) (3.6469) (11.3878) (433.7138)
6 0.1310 0.1819 0.1989 3.3571 5.5570 1.5912 1.9942 2.5400 18.4917 178.9235 23.9152 26.0299 32.8056 * *

(0.0733) (0.0855) (0.0680) (1.7107) (1.5081) (0.4361) (0.2640) (2.1239) (5.0183) (19.3438) (5.0058) (4.4507) (9.8502) * *

Table 4.11: Average CPU time in seconds of DET-CF(VC), DET-CF(EP), DET-CF(MLR),
DET-CF(CM), and DET-CF(MaxEnt). The numbers in parentheses are standard errors from 20
replicas. The underlying distribution is a product of (independent) piecewise constant densities
with 10 discontinuities along each dimension.

results show that DET(MLE) gives a consistent improvement over DET(L2) in terms

of estimation error, while only being marginally slower in computational time. Both

DET methods show a big advantage over KDE in terms of computational efficiency,

and also in terms of estimation error when the underlying distribution is not smooth.

Compared to LL-OPT (the fast implementation of OPT), DET(MLE) is a bit lacking

in computational efficiency, especially for large sample sizes, due to the intricacy of

the cross-validation step. However, DET(MLE) enjoys slightly better estimation error

than OPT. Our findings are further backed by various low dimensional illustrations.

Notably, a potential drawback of the DET methods is that they would occasionally

overfit by producing a spike in the density estimates.
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Figure 4.12: Density Estimates for DET(MLE), DET-CF(VC),DET-CF(EP), DET-CF(MLR),
DET-CF(CM), and DET-CF(MaxEnt) when the underlying distribution is a univariate piecewise
constant distribution with 10 discontinuities. Sample size is 5000.

Next, we investigate the effectiveness of bagging with DET estimators. For the

set of model parameters we considered in our experiments, we did not observe an

improvement of bagged DET over DET. In fact, the estimation error is generally

higher with bagging.

Finally, we compare the numerical performance of the five DET with confidence

methods introduced in Chapter 3 with that of the DET(MLE). All method give very

similar estimation performances, with DET(MLE) giving the lowest error, followed

closely by DET-CF(MLR) and DET-CF(CM). The greedy DET-CF methods also

proves to be notably more computationally efficient than DET(MLE) whereas the

exact DET-CF methods solved using constrained optimization are significantly slower.

Our low dimensional illustrations show that the confidence set constructed using

the multiscale likelihood ratio test gives the sharpest confidence set out of all three
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methods. Notably, DET-CF(MLR) and DET-CF(CM) are both able to capture the

descriptive features well and, unlike the DET(MLE), they do not produce any spikes

in the density estimates.
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Five

Applications

Density estimation is a powerful tool in numerous applications. In this section, we

demonstrate some of them.

5.1 Level Set Trees

The level set tree of a probability density function is a useful tool for visualizing and

presenting the hierarchy of the modes of the function, and sees applications in cluster

analysis, statistical inference of the density estimates, function optimization, etc. In

particular, the level set tree, when applied as a cluster analysis tool, can provide a

more informative and holistic visualization of the data topography compared to many

traditional clustering algorithms. For example, classical clustering methods such as the

K-means Macqueen (1967), Lloyd (1982) and spectral clustering Shi and Malik (2000)

rely on knowing the number of clusters K a priori. While effective in certain cases,

such an assumption can be problematic when the samples are very noisy or corrupted,

or exhibit complex multimodal behavior and spatial heterogeneity, or simply when

the true number of clusters is unknown. As a result, hierarchical clustering becomes a

preferable method in those scenarios because its construction does not require prior

knowledge on the number of clusters K. In addition, the dendrogram provides a more
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informative depiction of the clustering structure for various cluster levels. However, the

result of the dendrogram can be highly susceptible to the choice of the linkage criteria

Hartigan (1975), Hastie et al. (2001), and computing the dendrogram involves storing

the n × n pairwise distance matrix for the samples, which can be computationally

expensive for large scale problems.

The level set tree provides a good alternative way of visualizing the cluster structure

of the data through density estimation. More formally, let Lt = {x : p(x) > t} denote

an upper level set of p. For a given level t, Lt may be decomposed into finitely many

disjoint sets: Lt = ∪mi=1Ci for some m. The sets C1, . . . , Cm are the denoted as the

level set clusters at level t. The tree structure of the level sets comes from the fact

that for levels t1 6= t2, if C1 is a level set cluster at level t1 and C2 a level set cluster

at level t2, then we have either (i) C1 ⊂ C2 or (ii) C2 ⊂ C1, or (iii) C1 ∩ C2 = ∅.

In general, constructing the level set tree for a smooth density function can be

challenging because it is almost impossible to recover the level set exactly for each level

t. Instead, the level set clusters are generally estimated with data using graph-based

algorithms Bobrowski and Kahle (2018). For example, DeBaCl Kent et al. (2013) is

a Python package for constructing level set trees which utilizes k-nearest neighbor

graphs for estimating the clusters.The level set tree estimation for smooth density

estimates also relies on a high resolution of cluster levels t for a representative tree.

However, on the other hand, constructing the level set tree for a piecewise constant

density is almost immediate. Because there are only finitely many density values

for each estimated density, we only need to look at finitely many cluster levels t. In

addition, the support of the piecewise constant densities being axis-aligned rectangles

means that we can provide exact recovery of the level set clusters based on the
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estimated densities. Finally, on top of all else, for tree-based density estimation

methods such as DET, the tree structure allows extremely fast querying of the density

tree, which in turn allows a extremely efficient level set tree construction. This makes

tree based density estimation methods especially desirable in high dimensions, since

they provide a simple tool for visualizing the cluster structure in high dimensions.

Finally, we demonstrate the effectiveness of the level set tree for DET(MLE) on

two simple univariate examples: the claw distribution and the harp distribution. The

results are given in Figure 5.1. We see that in both examples, the level set tree does a

good job at detecting the modes of the underlying density.

(a) Claw

(b) Harp

Figure 5.1: Demonstration of the Level Set Tree for DET(MLE) on (a) univariate claw distribution
(b) univariate harp distribution. Figure on the left show s the underlying density function and
the DET(MLE) estimates. Figure on the right plots the level set tree.
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5.2 Background Subtraction

Background subtraction is one of the major tasks in the area of computer vision

and image processing whose aim is to detect changes in a video data sequence. In

many applications, one does not need to have all the information about the evolution

of movement in the video sequence, but rather only requires the information of the

changes in the scene, because an image’s regions of interest are objects (humans,

animals, vehicles, etc) in the foreground.

Density estimation can be applied in background subtraction through the estimation

of the probability of observing pixel intensity values based on a sample of intensity

values for each pixel. Effective density estimators can adapt quickly to changes in

the images, which enables very sensitive detection of moving targets. For example,

Elgammal et al. (2000) illustrates how KDE can be applied an a background subtraction

method; the authors discuss how to estimate the bandwidth matrix of KDE, and

introduce a false detection suppression technique as a post-processing step. Jang

et al. (2008) explores using the oriental histogram Jang et al. (2007) as the density

estimator. The method is shown to be relatively robust to changes in illumination

and small movements. The authors show that the method can be further sped up by

incorporating an integral histogram Porikli (2005) technique.

In both examples we mentioned above, the bandwidth matrix for KDE and the

number of bins for the histogram are fixed. Next, as a simple illustration, we consider

the performance of the DET(MLE) and KDE applied in background subtraction and

demonstrate how adaptive density estimators can potentially provide better results.

Figure 5.2 shows an example of a video data sequence with a total of 76 image frames.

We take one of them as the test frame (shown in Figure 5.2a), and use the remaining
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5.2. Background Subtraction

(a) Data (b) Label

(c) DET(MLE) (d) KDE

Figure 5.2: Application in background Subtraction: comparison of DET(MLE) and KDE.

as the training data for the density estimators. The label for the foreground (a duck) is

shown in Figure 5.2b. Figure 5.2c and 5.2d show, respectively, the detected foreground

of the DET(MLE) and kDE estimators. The threshold density values for classifying

the foreground are chosen as the ones that yield the maximum average precision scores.

As we can see, in this example, DET(MLE) gives a much clearer foreground recovery

than KDE.
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5.3 Anomaly Detection

Anomaly detection is the process of detecting instances that deviate significantly

from the other sample members. The problem of detecting anomalies can arise in

many different applications, such as fraud detection in financial transactions, intrusion

detection for security systems, and various medical examinations. In Gu et al. (2019)

we study various anomaly detection methods under the unsupervised setup, where

we do not assume any prior knowledge on the label of the normal and anomalous

instances.

Many empirical methods have been developed in the unsupervised setup, and can

be roughly classified into four categories: density based methods such as the Robust

KDE (RKDE) Kim and Scott (2012), Local Outlier Factor (LOF) Breunig et al.

(2000), and mixture models (EGMM); distance based methods such as kNN Angiulli

and Pizzuti (2002) and Angle-based Outlier Detection (ABOD) Li et al. (2015); model

based methods such as the one-class SVM (OCSVM) Schölkopf et al. (2001), SVDD

Tax and Duin (2004), and autoencoders Chen et al. (2017); ensemble methods such

as Isolation Forest (IForest) Liu et al. (2008), LODA Pevný (2016), and PIDForest

Gopalan et al. (2019).

Through our investigation of various anomaly detection methods, we noticed that

essentially all methods boils down to constructing a ”score” for measuring the degree

of anomaly of the instances. A good scoring function would give more extreme values

to anomalous instances than normal ones, so that one can easily tell them apart based

on the score values. For example, kNN Angiulli and Pizzuti (2002) uses the average k

nearest neighbor distance as the score for measuring anomalies. Anomalous instances

are expected to be further away than normal ones, and thus have higher kNN distance
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values. IForest Liu et al. (2008) constructs a set of trees by sequentially randomly

partitioning the space. Each node in the tree corresponds to a sector of the partition.

The score of a instance is set to be the average path lengths from the root to the leave

nodes that the instance belongs to. As anomalies tend to be outlying and scarce, they

are more likely to be isolated faster by the random partitioning than normal instances,

therefore leading to shorter average path lengths.

It is not hard to notice that the scores in anomaly detection have a density flavor

to them, as anomalies are expected to be rare and outlying, they usually lie in low

density regions as opposed to normal instances. Therefore, a good density estimator

can potentially be a good anomaly detector. In addition, many benchmark and real

datasets in anomaly detection are rather large and high dimensional, which makes

efficient density based anomaly detection methods that scales well with sample size

and dimension more appealing.

In this section, we apply DET(MLE) and KDE to a variety of anomaly detection

real datasets from the ODDS library . For simple illustration purposes, we are taking

the estimated density values from the density estimators as the anomaly scores. We

understand that such a choice is not necessarily ideal because density values does not

take into consideration some important factors, such as the location of the sample

points. In practice, more complicated anomaly scores are generally used.

In the next experiment, we compare the performance of DET(MLE) and KDE

with that of IForest and LOF, two state-of-the-art anomaly detection methods, in

terms of AUC and average precision (AP) scores. The results are given in Table

5.1 and 5.2. Our results show that, even though both DET(MLE) and KDE do not

perform as well as the other two anomaly detectors, they are actually giving very
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Data n d IForest LOF DET(MLE) KDE
arrhythmia 452 274 0.7914 0.7614 0.6851 0.5539

cardio 1831 21 0.9205 0.7013 0.5879 0.5884
ionosphere 351 33 0.8496 0.9023 0.5649 0.9199

lympho 148 18 1.0000 0.9824 0.8087 0.9683
musk 3062 166 0.9999 0.2860 0.5000 0.0997
pima 768 8 0.6697 0.5528 0.6208 0.5511

satellite 6435 36 0.7058 0.5787 0.6433 0.5660
satimage-2 5803 36 0.9923 0.9915 0.9889 0.6456

thyroid 3772 6 0.9762 0.9630 0.9574 0.9330
vowels 1456 12 0.7499 0.9373 0.8546 0.8647
WBC 278 30 0.9474 0.9025 0.9188 0.8616

avg.rank 0.4545 1.2727 1.9091 2.3636

Table 5.1: AUC scores for the IForest, LOF, DET(MLE) and KDE on various anomaly detection
real datasets from the ODDS library.

comparable performance in many examples. In particular, DET(MLE) outperform

KDE in most cases, because being data adaptive makes it better at picking out modes

and irregularities of the density. In addition, the decent computational efficiency

allows DET(MLE) to potentially take on more computationally heavy tasks, which

would be a challenge for distance-based methods such as LOF and KDE.

5.4 Classification

Finally, we illustrate the performance of DET estimators applied in classification

problems. The procedure is standard. Given labeled data (X1, Y1), . . . , (Xn, Yn) where

Yi’s are the corresponding labels belonging to k classes {C1, . . . , Ck}. For a new sample

X∗, we’d like to predict the label Y ∗ associated with X∗. The Bayes classifier selects
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Data n d IForest LOF DET(MLE) KDE
arrhythmia 452 274 0.4445 0.3641 0.3608 0.1611

cardio 1831 21 0.5816 0.2002 0.1459 0.1708
ionosphere 351 33 0.8030 0.8698 0.5180 0.9117

lympho 148 18 1.0000 0.7695 0.4665 0.5900
musk 3062 166 0.9958 0.0217 0.0317 0.0169
pima 768 8 0.4969 0.3852 0.4526 0.3788

satellite 6435 36 0.6556 0.4068 0.4778 0.3517
satimage-2 5803 36 0.9383 0.5104 0.4596 0.0182

thyroid 3772 6 0.5084 0.3975 0.2560 0.2232
vowels 1456 12 0.1572 0.3989 0.2075 0.6729
WBC 278 30 0.6137 0.2654 0.2958 0.4194

avg.rank 0.4545 1.4545 2.0000 2.0909

Table 5.2: Average Precision scores for the IForest, LOF, DET(MLE) and KDE on various
anomaly detection real datasets from the ODDS library.

the label that gives the maximal posterior probability

argmax
Ci

P(Ci|X1, . . . , Xn)

= argmax
Ci

P(X1, . . . , Xn|Ci)P(Ci)

where the equality follows from the Bayes rule. Replacing P(Ci) with its the plug-in

estimator 1
n

∑n
j=1 I(Xj ∈ Ci) and P(X1, . . . , Xn|Ci) with density estimates on those

samples with a class label Ci yields an estimate of the class label.

Table 5.3 records the classification accuracy rates of random forest, kernel support

vector machine (SVM), logistics regression, KDE, and DET(MLE) applied on three real

datasets: the Higgs boson machine learning challenge dataset ATLAS collaboration

(2014), the Cherenkov imaging gamma-ray telescope MAGIC dataset Heck et al. (1998),

Frank and Asuncion (2010), and a letter recognition dataset Frank and Asuncion
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(2010). In all examples, we randomly sample ∼ 80% of the data as training data

for constructing the classifiers. The remaining data are taken as the testing data for

obtaining classification accuracy rates.

The Higgs ATLAS collaboration (2014) dataset has 818, 238 observations and 35

features, where each observation is a simulated proton-proton collision event in the

official ATLAS full detector simulator. A detailed description of the features can be

found in ATLAS collaboration (2014). We follow the same preprocessing procedure

as in Chakravarti et al. (2021) (see their Section 5.1 for more details) and arrive at

a total of 165, 027 observations with 2 classes (80, 806 background observations and

84, 221 signal observations) and 15 features. Table 5.3 shows that random forest and

kernel SVM give the highest classification rates. The performance of DET(MLE) is

close to logistic regression and KDE, but not as good as random forest and kernel

SVM.

MAGIC Heck et al. (1998), Frank and Asuncion (2010) is a set of simulated data

from a physics-based model for the gamma-ray Cherenkov telescope. The dataset

consists of a total of 19, 020 observations with 2 classes (6688 background observations

and 12, 332 signal observations) and 10 features. The signal and background observa-

tions are, respectively, images of hadronic showers caused by gamma rays vs other

cosmic rays in the upper atmosphere. Table 5.3 shows that random forest, kernel

SVM, KDE and DET(MLE) all demonstrate similarly compelling performances.

The letter Frank and Asuncion (2010) dataset is a discrete 16-dimensional dataset

with 20, 000 observations. The original raw dataset records a large number of black-

and-white rectangular pixel displays coming from 26 capital letters in the English

alphabet. Each display is converted into 16 primitive numerical attributes that are
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Table 5.3: Classification rates for the Higgs, Letter, and MAGIC data: Random Forest, Kernel
SVM, Logistic Regression, KDE and DET(MLE)

Dataset Random Forest Kernel SVM Logistic Regression KDE DET(MLE)

Higgs 0.7452 0.7346 0.6285 0.6495 0.6334
MAGIC 0.8276 0.8815 0.7759 0.8329 0.8446
Letter 0.8288 0.9412 0.6930 * 0.9179

then scaled to fit into a range of integer values from 0 through 15. Table 5.3 shows

that both kernel SVM and DET(MLE) dominate the other methods by giving over

90% classification accuracy rates. Note the KDE is omitted in this example because

the dataset is discrete.

5.5 Summary

In summary, in this chapter, we study several applications of density estimation. We

argue that the computational efficiency of querying a DET allows for fast construction

of its level set tree, which can be a valuable asset in downstream analyses such as

cluster analysis. We demonstrate the effectiveness of level set tree construction with

DET using two simple examples. We explain how density estimation can be applied

in background subtraction and illustrate the performance of DET(MLE) and KDE

over video stream data. We consider the application of DET(MLE) and KDE in

anomaly detection (using the density values as the anomaly scores) and provide

comparison studies with two other state-of-the-art anomaly detectors over a selection

of real datasets. Finally, we compare the performance of applying DET(MLE) as a

bayes classifier with other popular classification methods over three large scale high

dimensional datasets.
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Software

The original DET(L2) method developed by Ram and Grey is implemented in C++

as part of the mlpack library under namespace mlpack::det . The mlpack library is

an open source machine learning library in C++ with CLI support and bindings with

Python, R, Julia, etc. DET(MLE) is developed as a complement to the DET(L2)

method by adding in criterion as an extra argument in the det function in mlpack.

DET-CF is developed as an additional function to the mlpack library. The complete

documentation of the two functions is given as follows.

6.1 Installation

Since the DET (with criterion as an option) and DET-CF functions are not developed

as part of the released functions in the mlpack library, they need to be added to the

library and built manually.

• Download the latest version of mlpack from https://github.com/mlpack/

mlpack.

• Include the source code for DET and DET-CF https://github.com/guxiaoyi/

DET-var under the unpacked directory ’src/mlpack/methods’.
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• Build the mlpack library from source by following the instructions provided in

https://www.mlpack.org/doc/stable/doxygen/build.html. Note that it is

not necessary to install the mlpack library to the system. You may run the

bindings in the build directory by specifying the correct path for the bindings.

6.2 Functions

The det function implements DET(L2) and DET(MLE), and the det cf function

implements DET-CF(VC), DET-CF(EP), and DET-CF(MLR). The arguments of det

is given as follows.

6.2.1 det

Arguments

train (-t) The data set on which to build a density estimation tree.

test (-T) A set of test points to estimate the density of.

folds (-f) The number of folds of cross-validation to perform for the
estimation (0 is LOOCV). Default value 10.

criterion (-r) The loss function used for growing the tree. Possible choices:
”L2”, ”NLL”. Default value ”NLL”.

max leaf size (-L) The maximum size of a leaf in the unpruned, fully grown
DET. Default value 10.

min leaf size (-l) The minimum size of a leaf in the unpruned, fully grown DET.
Default value 5.

mtry (-R) The number of features considered for splitting the tree node
(0 is equivalent to all features). Default value 0.

input model (-m) A trained density estimation tree.

verbose (-v) Display informational messages and the full list of parameters
and timers at the end of execution.
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6.2. Functions

Values

test set estimates (-E) The density estimates on the test set from the final
optimally pruned tree.

training set estimates (-e) The ensity estimates on the training set from the
final optimally pruned tree.

output model (-M) Trained density estimation tree to.

train time (-Q) Training time.

query time (-q) Querying time.

vi (-i) The variable importance values for each feature.

upper (-P) The upper bounding box of the hyper-rectangles
in the support of the trained DET.

lower (-W) The lower bounding box of the hyper-rectangles in
the support of the trained DET.

dens (-D) The density values associated with each hyper-
rectangle in the support of the trained DET.

Examples

The following gives a command-line example of fitting a DET(MLE) estimator with

10-fold cross-validation, where the training data is supplied in the file train.csv and

the density estimates on the test data is stored in test.csv.

mlpack_det -t train.csv -T test.csv -f 10 -r NLL

The following gives a Python example of fitting a DET(L2) estimator with mtry

= 3. dtree is a dictionary containing all the output values.

import mlpack

from mlpack import det

dtree = det(train = trainData, test = testData, criterion = ’L2’, mtry = 3)

testVals = dtree[’test_set_estimates’]
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6.2.2 det cf

Arguments

train (-t) The data set on which to build a density estimation tree as
an inital estimator.

val (-e) The data set on which to generate the confidence statements.

test (-T) A set of test points to estimate the density of.

folds (-f) The number of folds of cross-validation to perform for the
estimation (0 is LOOCV). Default value 10.

criterion (-r) The loss function used for growing the tree. Possible choices:
”L2”, ”NLL”. Default value ”NLL”.

method (-a) The type of confidence statements used. Possible choices:
”vc”, ”ep”, ”mlr”. Default value ”mlr”.

alpha list (-p) The list of alpha values (upper level set probability content) for
generating the level set based confidence statements. Default
is using all distinct alpha values from the training DET.

delta (-d) Confidence level associated with the confidence statements.
Default value 0.01.

max leaf size (-L) The maximum size of a leaf in the unpruned, fully grown
DET. Default value 10.

min leaf size (-l) The minimum size of a leaf in the unpruned, fully grown DET.
Default value 5.

mtry (-R) The number of features considered for splitting the tree node
(0 is equivalent to all features). Default value 0.

input model (-m) A trained density estimation tree.

verbose (-v) Display informational messages and the full list of parameters
and timers at the end of execution.
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Values

test set estimates (-E) The density estimates on the test set from the final
optimally pruned tree.

training set estimates (-e) The ensity estimates on the training set from the
final optimally pruned tree.

output model (-M) Trained density estimation tree to.

train time (-Q) Training time.

query time (-q) Querying time.

vi (-i) The variable importance values for each feature.

upper (-P) The upper bounding box of the hyper-rectangles
in the support of the trained DET.

lower (-W) The lower bounding box of the hyper-rectangles in
the support of the trained DET.

dens (-D) The density values associated with each hyper-
rectangle in the support of the trained DET.

Examples

The following gives a command-line example of fitting a DET-CF(MLR) estimator

with confidence level 0.95, where the training data is supplied in the file train.csv,

validation data is supplied in the file val.csv, and the density estimates on the test

data is stored in test.csv.

mlpack_det_cf -t train.csv -T -e val.csv test.csv -a mlr -d 0.05

The following gives a Python example of fitting a DET-CF(VC) estimator with

delta being a grid of values between 0 and 1 (exclusive). dtree is a dictionary

containing all the output values.

import mlpack

from mlpack import det_cf

83



6. software

deltas = np.linspace(0.1,0.9,9)

dtree = det_cf(train = trainData, test = testData, method = ’vc’, delta = deltas)

testVals = dtree[’test_set_estimates’]
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F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing

Systems 32, pages 15809–15819. Curran Associates, Inc.

Gramacki, A. and Gramacki, J. (2017). Fft-based fast computation of multivariate

kernel density estimators with unconstrained bandwidth matrices. Journal of

Computational and Graphical Statistics, 26(2):459–462.

Gray, A. G. and Moore, A. W. (2003). Nonparametric density estimation: Toward

computational tractability.

Gu, X., Akoglu, L., and Rinaldo, A. (2019). Statistical analysis of nearest neighbor

methods for anomaly detection. In Wallach, H., Larochelle, H., Beygelzimer, A.,
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