
Carnegie Mellon University
Dietrich College of Humanities and Social Sciences

Dissertation

Submitted in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy

Title: Selective inference approaches for augmenting genetic association studies with multi-
omics metadata
Presented by: Ronald Yurko
Accepted by: Department of Statistics & Data Science
Readers:

kathryn roeder, advisor date

max g’sell, advisor date

bernie devlin date

aaditya ramdas date

valérie ventura date

Approved by the Committee on Graduate Degrees:

richard scheines, dean date





Selective inference approaches for augmenting genetic

association studies with multi-omics metadata

Ronald Yurko

April 1, 2022

A dissertation submitted in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy

Department of Statistics & Data Science
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

Thesis Committee:
Kathryn Roeder, Chair

Max G’Sell, Chair
Bernie Devlin

Aaditya Ramdas
Valérie Ventura





Abstract

To correct for a large number of hypothesis tests, most researchers rely on simple multiple
testing corrections. Yet, new selective inference methodologies could improve power by
enabling exploration of test statistics with meta-data for informative weights while retaining
desired statistical guarantees. My thesis revolves around this theme by developing statistical
and computational tools to address the challenges especially arising from studying complex,
neuropsychiatric disorders. In chapter 2 we explore one such framework, adaptive p-value
thresholding (AdaPT), in the context of testing individual single nucleotide polymorphisms
(SNPs) for schizophrenia. We demonstrate a substantial increase in power using flexible
gradient boosted trees to account for covariates constructed with GWAS statistics from
genetically-correlated phenotypes, as well as measures capturing association with gene
expression and coexpression subnetwork membership. In chapter 3, we address a popular
approach for computing gene-level p-values that is based on an invalid approximation for
the combination of two-sided test statistics. Our correction ensures error rate control and
alleviates null distribution concerns necessary for selective inference procedures. In chapter
4, we introduce an agglomerative algorithm, based on the dependence induced from linkage
disquilibrium (LD), to test the aggregation of SNPs into gene-based test statistics for autism
spectrum disorder (ASD). The advantages of our approaches are twofold: increased power
and increased interpretability, with the latter expediting our understanding of the etiology
of human diseases, disorders, and other phenotypes. Finally, in chapter 5, we demonstrate in
simulations an improvement in power in the context of rare variant studies by augmenting
testing corrections with annotation information and explore the use of data blurring to explore
annotation structure providing ways to address the challenges of multiplicity persistent in
whole genome sequencing.

i





Acknowledgments

It is impossible for me to express my sincere thanks and appreciation to everyone that have
contributed to my personal and academic growth over the course of my PhD. I firmly believe
that dating back to my time as an undergraduate at Carnegie Mellon (ten years ago!), I
have been incredibly fortunate to be at the right place at the right time, surrounded by
incredible people. I will likely not be able to express the proper gratitude and respect I feel
towards the people below (in no particular order), but I will still try regardless:

• To Kathryn Roeder, who has been my academic mentor ever since she was willing to
randomly meet with me one day to discuss potential research projects. She has always
supported me through the highs and lows in my academic career, and has helped me
grow into the researcher and educator I am today. Her dedication and support to all
of the students she advises has created not only an intellectually engaging research
group, but also fosters a fun community of people that I am proud to be a member of.
I am forever grateful for the patience she has displayed with me over these years, and
I am excited to continue working with and learning from her in the years to come.

• To Max G’Sell, who has been a role model for me since my time as an undergrad in his
Data Mining class. As an undergrad, he helped inspire me to attend grad school. And
throughout my PhD career, his enthusiasm, positive attitude, and ability to generate
ideas has been constant motivation for me and is a template for the type of statistician
I hope to be one day.

• To Bernie Devlin, who has effectively been a third advisor throughout my PhD. He
has been a mentor and has taught me incredible amount about research in genetics
and science in general. I have learned so much from our conversations and am excited
to continue collaborating together in the future.

• I would also like to thank my other thesis committee members: Aaditya Ramdas and
Valerie Ventura. To Aaditya, who has inspired me since his job talk with his incredible

iii



iv ABSTRACT

presentations and fantastic course on reproducibility. To Valerie, who taught me how
to craft effective presentations with lessons I will follow for the rest of my career.

• To everyone in the lab group, past and present: Bert, Lora, Maria, Jiebiao, Fuchen,
Kevin, Minshi, Yixuan, Xuran, Tim, Yue, Jinjin and others whose names I’m forgetting
to mention. The bi-weekly lab meetings and our student/postdoc reading groups have
been a pleasure to attend and I have learned from so much from all of you.

• To Rebecca Nugent, who has been a role model for me as well as a friend. I remember
sitting in 36-401 all those years ago and telling my friends “I think I want to be like
her one day” - to which they responded “Ron, you’re crazy” and they were probably
right... But I am forever grateful for everything she has done for me in my career,
from research opportunities as an undergrad, to letting me join the clustering group
meetings when I was not a student and “working”, to advising my ADA and other
projects, to initiating #CMSAC, and for the mentorship she is always somehow able
to find time to provide. I am beyond excited to work in a department under her
leadership.

• To Peter Freeman, Ann Lee, Andrew Thomas, Cosma Shalizi, Joel Greenhouse, and
Howard Seltman, whose classes and advising inspired me to pursue a PhD in Statistics.

• To Sam Ventura, who introduced me to the world of statistics in sports research and
has been a great mentor and friend throughout my academic career.

• To Kostas, Lee, Francesca, Taylor, Bmac, and everyone else in the stats in sports
group for the thought provoking discussions and fun collaborations.

• To everyone in my cohort, for powering through classes and all the fun times together
- I’m excited to see the path you all take in your careers and I was incredibly lucky to
be admitted with such an excellent group.

• To every member of the Random Walkers IM teams - thanks for the fun memories
together and distractions from everyday life.

• To the SAC “leadership group”, Nic, Mikaela, and Alec for the fun golf outings.

• To the CMU Statistics & Data Science department staff, especially Laura, Jess, Heidi,
Margie, Beth, Danielle, Kira, and Sam for all the work they do behind the scenes
simplifying my life as a PhD student. And a special thanks to Carl Skipper who had to
put with I don’t know how many emails I sent him with countless tedious computing
questions.

• To all of the professors in the CMU Statistics & Data Science department as a whole,
for their continued support, encouragement and teaching throughout the PhD years.



v

• To my parents, brothers, sisters-in-law, nieces, and the rest of my family and friends
for their unwavering support throughout this endeavor. I am only able to complete
this because of them.

• And finally I want to thank Madeline Marco Scanlon for her love, support, and ability
to cheer me up throughout this entire journey. You’re stuck with me, now and forever.





Contents

Abstract i

Contents vii

1 Introduction 1

1.1 Introduction to genome-wide association studies . . . . . . . . . . . . . . . . . 1

1.2 Multiple testing corrections for GWAS . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Family-Wise Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 False Discovery Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Gene-level testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Augmenting multiple testing corrections with meta-data . . . . . . . . . . . 4

1.4 Introduction to rare variant analysis with category-wide association studies 5

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 An Implementation of Adaptive p-value Thresholding for GWAS with
Gradient Boosted Trees 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 AdaPT discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Variable importance and relationships . . . . . . . . . . . . . . . . . 17

2.2.5 Replication in independent studies . . . . . . . . . . . . . . . . . . . 18

2.2.6 Gene ontology comparison . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.7 Pipeline results for all 2018 studies . . . . . . . . . . . . . . . . . . . 20

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Two-groups model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 AdaPT gradient boosted trees with CV steps . . . . . . . . . . . . . 23

vii



viii CONTENTS

2.4.3 Computational aspects of AdaPT . . . . . . . . . . . . . . . . . . . . 23

2.4.4 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Method Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 AdaPT conditional two-groups model . . . . . . . . . . . . . . . . . 24

2.5.2 SCZ results with independent loci . . . . . . . . . . . . . . . . . . . 26

2.5.3 SCZ variable importance and partial dependence . . . . . . . . . . . 27

2.5.4 Replication simulations . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.5 SCZ results with all 2018 studies . . . . . . . . . . . . . . . . . . . . 29

2.5.6 Type 2 diabetes results . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.7 BMI results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.8 CV tuning for SCZ, T2D, and BMI results . . . . . . . . . . . . . . 33

2.5.9 Selection of s0 and number of CV steps . . . . . . . . . . . . . . . . 34

2.5.10 Dependent p-value block simulation . . . . . . . . . . . . . . . . . . 35

2.5.11 Simulations demonstrating effects of overfitting . . . . . . . . . . . . 37

3 Identifying and Correcting Type I Error Rate Inflation in Gene-level
Testing 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Combining p-values under dependence . . . . . . . . . . . . . . . . . 65

3.2.2 MAGMA ‘snp-wise-mean model’ . . . . . . . . . . . . . . . . . . . . 68

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Methods for computing gene-level p-values . . . . . . . . . . . . . . 69

Computational considerations . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2 Multivariate Gaussian simulation . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Example genotype data . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.4 Gene simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.5 Multiple testing simulation . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.6 Gene-set analysis simulation . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.7 Replicating H-MAGMA Analysis . . . . . . . . . . . . . . . . . . . . 73

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Comparison of type 1 error rate control . . . . . . . . . . . . . . . . 74

3.4.2 Impact on multiple testing . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3 Impact on gene-set analysis type 1 error control . . . . . . . . . . . . 75

3.4.4 Results for H-MAGMA Replication . . . . . . . . . . . . . . . . . . . 76

3.5 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 An approach to gene-based testing accounting for dependence of tests
among nearby genes 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS ix

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 SNP-to-gene assignment and correlation between gene-level tests . . 85

4.2.2 Agglomerative LD loci testing . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Overview of GWAS data and eQTL sources . . . . . . . . . . . . . . 88

4.2.4 GENCODE version . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.5 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.6 AdaPT implementation . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.7 Kernel smoothing localization . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Assigning SNPs to genes and generating LD loci . . . . . . . . . . . 90

4.3.2 AdaPT models and results . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.3 Comparison of phenotypic results . . . . . . . . . . . . . . . . . . . . 93

4.3.4 Exploring signal in selected genes/loci . . . . . . . . . . . . . . . . . 94

4.3.5 Enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Data availability statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Method Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.1 Comparison of GWAS enrichment . . . . . . . . . . . . . . . . . . . . 101

4.6.2 AdaPT overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.3 AdaPT tuning results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.4 Measuring AdaPT metadata importance . . . . . . . . . . . . . . . . 103

4.6.5 Results with LD threshold r2 ∈ {0.50, 0.75} . . . . . . . . . . . . . . 103

4.6.6 Results per chromosome breakdown . . . . . . . . . . . . . . . . . . 103

4.6.7 LD locus zoom application . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.8 Enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Augmenting rare variant studies with annotations to improve power 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Background and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 Mutation rate model . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Agglomerative testing approach . . . . . . . . . . . . . . . . . . . . . 122

5.3.2 AdaPT implementation with annotation features . . . . . . . . . . . 123

5.3.3 Data blurring augmentation . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.1 Agglomerative AdaPT results without blurring . . . . . . . . . . . . 127

5.4.2 Comparison of results with blurring . . . . . . . . . . . . . . . . . . 129

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



x CONTENTS

6 Conclusions and future work 133

Bibliography 137



One

Introduction

This introductory chapter provides the background and overview necessary for understanding
this thesis, including an introduction to genome-wide association studies (GWAS), com-
monly used multiple testing corrections, advances in statistical methodology to account for
available meta-data to improve multiple testing power, and an introduction to category-wide
association studies (CWAS) developed for testing rare variant associations that are now
feasible to detect due to advances in technology from whole-genome sequencing (WGS).
All of these topics are taken into consideration with respect to detecting associations with
complex neuropsychiatric disorders, such as schizophrenia and autism spectrum disorder.
Section 1.1 - The introduction to GWAS, single-nucleotide polymorphisms (SNPs), and
linkage disequilibrium (LD). Section 1.2 - Commonly used multiple testing corrections for
family-wise error rate (FWER) and false-discovery rate (FDR) control and approaches for
gene-level testing. Section 1.3 - An introduction to new approaches for flexible multiple
testing corrections that account for available meta-data in order to improve power. Section
1.4 - An introduction to rare variant analysis in the context of WGS, de novo mutations,
and CWAS methodology.

1.1 Introduction to genome-wide association studies

A major goal for performing human genetics research is to detect genetic risk factors for
complex diseases such as schizophrenia and autism spectrum disorder. The first three
chapters of this thesis focus on the use of GWAS, which are used to identify common variants
in the human population (Figure 1.1) and measure their association with some phenotype,
e.g., neuropsychiatric disorders. The use of GWAS to study human genetics has continued
to surge over the past fifteen years, with over 5,000 publications and their results available
in the GWAS Catalog [Buniello et al., 2019].

The most abundant form of genetic variation in the human genome are single base-pair
changes known as single-nucleotide polymorphisms (SNPs). SNPs are the main form of
common variation studied in GWAS, with many SNPs present in a large fraction of the
human population. Typically SNPs have two alleles, i.e., two common possibilities for
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1. introduction

Figure 1.1: GWAS are primarily used to identify common variants with small effect sizes in the
lower right portion [Bush and Moore, 2012].

a single base-pair at a specified SNP location. SNPs are often summarized in terms of
the minor allele frequency (MAF). For example, consider a SNP with two alleles: major
allele T and minor allele C. A SNP with MAF = .35 implies that 35% of the population
has the allele C versus the 65% of the population with the more common allele T. The
main type of analysis conducted in GWAS are marginal tests of association for each SNP’s
minor allele. Thus treating each SNP independently to measure their marginal association
with some target phenotype. Throughout this thesis we focus on categorical phenotypes
regarding some neuropsychiatric disorder status, relying on the use of case/control studies
with measures of association typically from either chi-squared tests or logistic regression.
Due to the abundance of studies that are often performed, the main results reported from
GWAS are results from meta-analysis pooling information and weak signals together across
studies [Willer et al., 2010]. In this common variant setting, GWAS summary statistics are
necessarily two-sided tests because which SNP allele confers risk is not known a priori.

The presence of linkage disequilibrium (LD) creates a challenge for interpreting GWAS
results. LD refers to the degree to which the alleles of two SNPs are inherited together
within a population through physical proximity on a chromosome. This leads to LD-induced
correlation between the resulting GWAS summary statistics that are assessed for phenotypic

2



1.2. Multiple testing corrections for GWAS

Figure 1.2: Manhattan plot displaying GWAS discoveries for SCZ at genome-wide significance
threshold displayed by horizontal line [Ripke et al., 2014].

association. This leads inevitably to the detection of indirect associations, referring to
significant SNP associations that are not necessarily causal mechanisms but rather in high
LD with the causal SNP. This leads to the use of follow-up studies and techniques in the
vein of fine-mapping procedures in order to identify causal variants [Schaid et al., 2018].

1.2 Multiple testing corrections for GWAS

1.2.1 Family-Wise Error Rate

Because millions of SNPs are tested in a GWAS, to overcome the multiple testing challenge
and limit false positives, researchers typically use a strict multiple testing correction. The
most widely accepted GWAS approach corresponds to the genome-wide threshold of < 5×
10−8 for significance. This roughly correspond to to a Bonferroni correction [Bonferroni, 1935]
for controlling the Family-Wise Error Rate (FWER), Pr(V > 0) ≤ α, where V is the number
of Type I errors (i.e., false positives) and α is the target Type I error rate. This strict
correction has worked well for studies of large sample sizes, e.g., human height, as well as
recently obtained results for complex neuropsychiatric disorders (Figure 1.2).

1.2.2 False Discovery Rate

The conservative nature of the classic FWER control presents a challenge for detecting
associations for GWAS with less informative sample sizes such as autism spectrum disorder

3



1. introduction

(ASD). Introduced by [Benjamini and Hochberg, 1995], false discovery rate (FDR) control
has become a popular approach to improve power for detecting weak effects by limiting
the expected false discovery proportion (FDP) instead of the more classical FWER. Rather
than limit the possibility of making any Type 1 error, FDR controlling methods focus on
the expected fraction of mistakes out of the total number of rejections R:

FDR = E[FDP], where FDP =
V

max(R, 1)
.

The Benjamini-Hochberg (BH) procedure was the first method to control FDR at target
level α using a step-up procedure that is adaptive to the set of p-values for the hypotheses
of interest.

1.2.3 Gene-level testing

A natural strategy for improving GWAS power is gene-based testing: m SNPs are assigned
to genes and a global null test is performed for each gene g ∈ G, i.e. all SNPs i ∈ Sg in gene
g are null versus at least one SNP in the gene is non-null,

H0,g : Hi = 0 ∀i ∈ Sg versus H1,g : ∃i ∈ Sg such that Hi = 1, (1.1)

where Hi = 0 if SNP i is null, and Hi = 1 if non-null. This can improve power to detect weak
signal by reducing the multiple testing burden and pooling signal strength, which can be
advantageous for settings with weaker signal such as ASD. While there are many approaches
for global testing, the presence of LD poses a challenge here: the combination of dependent
SNP-level summary statistics at the gene-level must adjust for the LD-induced covariance
of SNPs. While there are a number of approaches for global testing in the presence of
dependence, such as harmonic means [Wilson, 2019, Tian et al., 2021] or Cauchy combina-
tions [Liu et al., 2019, Liu and Xie, 2020], in this thesis we consider approaches featured in
popular gene-level testing software VEGAS [Liu et al., 2010, Mishra and Macgregor, 2015]
and MAGMA [de Leeuw et al., 2015, v1.08]. By focusing tests on genes instead of SNPs
dispersed throughout the genome, gene-based testing provides increased interpretability with
regards to detecting functional units of interest. Furthermore, it is common to see methods
for FDR control applied in gene-level testing [Sey et al., 2020].

1.3 Augmenting multiple testing corrections with meta-data

Other methods for FDR control have led to improvements in power over BH by incorporating
prior information, such as by the use of p-value weights [Genovese et al., 2006]. With the
realization that multiple omics – genomics, epigenomics, proteomics, etc. – are required
for describing phenotypic variation, it is natural to think that accounting for multi-omics
metadata in the form of a priori hypothesis weights can improve power. However, until

4



1.4. Introduction to rare variant analysis with category-wide association studies

recently, it was not clear how to choose these weights in an exploratory manner while
maintaining valid error rate guarantees. Recent methodologies have been developed enabling
the inclusion of metadata in the form of model covariates to improve power while maintaining
some form of FDR control [Scott et al., 2015, Ignatiadis et al., 2016, Boca and Leek, 2018,
Li and Barber, 2019, Zhang et al., 2019]. A recent review paper [Korthauer et al., 2019]
covered the performance of various covariate-informed methods for FDR control, including
a selective inference approach, called adaptive p-value thresholding [Lei and Fithian, 2018,
AdaPT]. Unlike other considered approaches with asymptotic FDR control, and under
similar assumptions, the AdaPT framework guarantees finite-simple FDR control. How-
ever, based on simulations and real datasets with one and two-dimensional covariates,
[Korthauer et al., 2019] observed a poor results by AdaPT based on off-the-shelf perfor-
mance with one and two-dimensional covariate examples. Their criticisms of AdaPT include
that it: (1) suffers with uninformative covariates, (2) requires careful specification of func-
tional relationships, and (3) displayed low power or failure to reject any tests in many data
sets.

1.4 Introduction to rare variant analysis with category-wide association
studies

While the majority of this thesis focuses on gains in power for weak, common-variant
signals in the GWAS setting, we also explore selective approaches in the context of testing
rare variants. Recently, the development of whole-genome sequencing (WGS) has enabled
greater exploration into the impact de novo mutations (variants observed in child but not
in parents) located in noncoding regions of the genome have on complex disorders. The
non-coding portions covers ≈ 98.% of the human genome, and includes elements regulating
how protein-coding genes are transcribed. At this point, it is still largely unknown to the
extent at which de no novo variation in the noncoding genome contributes to the genetic
risk of ASD [An et al., 2018].

Although WGS presents a promising opportunity to reveal insight about noncoding
regions, the size and unknown number of tests poses a unique multiple testing challenge.
To address the unique multiple burden respecting the scale of the noncoding genome, a
category-wide association studies (CWAS) framework has been introduced by defining over
fifty-thousand annotation categories to test for association with ASD [Werling et al., 2018].
However, in the analysis of case-control data from a limited number of quartet-families
(parents, probands, and siblings for controls), it was unable to detect a single noncoding
annotation category that met a category-wide significance threshold (Figure 1.3). Similar
null results were observed by with the inclusion of more families, however a de novo risk
score analysis implicated the contribution of de novo mutations in promoter regions to ASD
[An et al., 2018].
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Figure 1.3: CWAS fails to detect any significant enrichment (y-axis) in noncoding variants for
cases (right x-axis) or controls (left x-axis) [An et al., 2018].

1.5 Thesis overview

My thesis aims to contribute to addressing these challenging problems in genetics stud-
ies to improve power to detect associations for under-powered studies in the context of
neuropsychiatric disorders. I have completed these aims in the following ways:

1 Built a pipeline to select a subset of SNPs documented to affect gene expression and
then incorporate covariates from independent GWAS and gene expression studies into
AdaPT via gradient boosted trees to ulimately improve our power. Our boosting
implementation of AdaPT scales with more covariates and addresses the perceived
modeling weakness of AdaPT, enabling practitioners to capture interactions and
non-linear effects from resources of available multi-omics metadata (chapter 2).

2 When investigating a popular tool for gene-based testing, Multi-marker Analysis of
GenoMic Annotation [de Leeuw et al., 2015, MAGMA], we discovered it yielded an
unusual distribution of gene-level p-values which would violate necessary assumptions
for AdaPT to maintain FDR control. Despite undocumented, ad-hoc corrections in
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MAGMA, we observe via simulations and recent applications that it yields incorrect null
p-value distribution resulting in inflated error rates. This is due to the inappropriate
application of an approximation that is valid for only one-sided tests, while GWAS
summary statistics are two-sided (chapter 3).

3 We observed that current gene-based testing approaches do not capture LD of SNPs
falling in different nearby genes, which can induce correlation of gene-based test
statistics. This compromises the interpretability of gene-based testing, thus obscuring
the meaning of error-rate guarantees. We introduce an algorithm to account for this
correlation directly, based on the LD-induced correlation of commonly used quadratic
gene-level test statistics. (chapter 4).

4 Demonstrate an improvement in CWAS power by augmenting testing corrections with
annotation-level information in simulation studies. We also investigate the use of
data blurring in the context of exploring annotation structure with the goal of aiding
hypothesis testing. While testing power remains stagnant, the use of blurring provides
the opportunity for estimation post-selection to reveal greater insight about noncoding
associations (chapter 5).
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Two

An Implementation of Adaptive p-value
Thresholding for GWAS with Gradient

Boosted Trees

To correct for a large number of hypothesis tests, most researchers rely on simple multiple
testing corrections. Yet, new methodologies of selective inference could potentially improve
power while retaining statistical guarantees, especially those that enable exploration of test
statistics using auxiliary information (covariates) to weight hypothesis tests for associa-
tion. We explore one such method, adaptive p-value thresholding [Lei and Fithian, 2018,
AdaPT], in the framework of genome-wide association studies (GWAS) and gene expres-
sion/coexpression studies, with particular emphasis on schizophrenia (SCZ). Selected SCZ
GWAS association p-values play the role of the primary data for AdaPT; SNPs are selected
because they are gene expression quantitative trait loci (eQTLs). This natural pairing
of SNPs and genes allow us to map the following covariate values to these pairs: GWAS
statistics from genetically-correlated bipolar disorder, the effect size of SNP genotypes on
gene expression, and gene-gene coexpression, captured by subnetwork (module) membership.
In all 24 covariates per SNP/gene pair were included in the AdaPT analysis using flexible
gradient boosted trees. We demonstrate a substantial increase in power to detect SCZ
associations using gene expression information from the developing human prefontal cortex
[Werling et al., 2020b]. We interpret these results in light of recent theories about the
polygenic nature of SCZ. Importantly, our entire process for identifying enrichment and
creating features with independent complementary data sources can be implemented in
many different high-throughput settings to ultimately improve power.

This chapter appears in [Yurko et al., 2020].

2.1 Introduction

Large scale experiments, such as scanning the human genome for variation affecting a
phenotype, typically result in a plethora of hypothesis tests. To overcome the multiple
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testing challenge, one needs corrections to limit false positives while maximizing power.
Introduced by [Benjamini and Hochberg, 1995], false discovery rate (FDR) control has
become a popular approach to improve power for detecting weak effects by limiting the
expected false discovery proportion (FDP) instead of the more classical Family-Wise Error
Rate. The Benjamini-Hochberg (BH) procedure was the first method to control FDR at
target level α using a step-up procedure that is adaptive to the set of p-values for the
hypotheses of interest [Benjamini and Hochberg, 1995]. Other methods for FDR control
have led to improvements in power over BH by incorporating prior information, such as
by the use of p-value weights [Genovese et al., 2006]. In the “omics” world – genomics,
epigenomics, proteomics, and so on – the challenge of multiple testing is burgeoning, in part
because our ability to characterize omics features grows continually and in part because of
the realization that multiple omics are required for describing phenotypic variation. One
might imagine merging complementary omics data and tests using a priori hypothesis weights
to improve power; however, until recently, it was not clear how to choose these weights in a
data driven manner.

Recent methodologies have been proposed to account for covariates or auxiliary informa-
tion while maintaining FDR control [Scott et al., 2015, Ignatiadis et al., 2016, Boca and Leek, 2018,
Li and Barber, 2019, Zhang et al., 2019]. We implement a selective inference approach,
called adaptive p-value thresholding [Lei and Fithian, 2018, AdaPT], to explore prior auxil-
iary information while maintaining guaranteed finite-sample FDR control. A recent review
compared the performance of AdaPT with other covariate-informed methods for FDR con-
trol with off-the-shelf one and two-dimensional covariate examples [Korthauer et al., 2019].
One of the weaknesses they ascribe to AdaPT is the unintuitive modeling framework for
incorporating covariates; however, AdaPT is not a specific algorithm that one can simply
apply to a dataset, but rather a meta-algorithm for marrying machine learning methods to
multiple testing problems without compromising FDR control. We fully embrace AdaPT’s
flexibility via gradient boosted trees in a much richer, high-dimensional setting. Our boost-
ing implementation of AdaPT easily scales with more covariates, enabling practitioners
to capture interactions and non-linear effects from the rich resources of prior information
available.

In this manuscript, we demonstrate our gradient boosted trees implementation of AdaPT
on results from genome-wide association studies (GWAS), incorporating covariates con-
structed from independent GWAS and gene expression studies. Specifically, we apply AdaPT
to GWAS for detecting single nucleotide polymorphisms (SNPs) associated with schizophre-
nia (SCZ) using bipolar disorder (BD) GWAS results from an independent dataset as a
covariate. Additionally, we incorporate results from the recent BrainVar study to identify
a set of expression-SNPs (eSNPs) based on 176 neurotypical brains, sampled from pre-
and post-natal tissue from the human dorsolateral prefrontal cortex [Werling et al., 2020a].
Along with the genetically correlated BD z-statistics, we create additional features from this
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complementary data source by summarizing the associated developmental gene expression
quantitative trait loci (eQTL) slopes and membership in gene co-expression networks. We
demonstrate that this process of identifying an enriched set of eSNPs and applying AdaPT
with covariates summarizing gene expression from the developing human prefrontal cortex
yield substantial improvement in power with each additional piece of information from the
BrainVar study. Furthermore, we validate the replication of our results using more recent,
independent SCZ studies.

This study had two goals, to explore the use of AdaPT in a realistic high-dimensional
multi-omics setting and to determine what can be learned about the neurobiology of SCZ
by this exploration. Our results revealed the power of incorporating auxiliary information
with flexible gradient boosted trees. While each covariate independently provided at best a
modest increase in power, our adaptive search discovered a more complex model with far
greater power. These discoveries also led to increasing support for the polygenic basis of SCZ,
complementing recent findings and suggesting that there are many physiological avenues to
its underlying neurobiology. We emphasize that the process and analysis undertaken with
this implementation of AdaPT can be extended to a variety of “omics” and other settings
to utilize the rich contextual information that is often ignored by standard multiple testing
corrections. We highlight this feature by analyzing two other sets of GWAS studies, type 2
diabetes (T2D) and body mass index (BMI), using results from these analyses to interpret
findings from SCZ.

2.2 Results

2.2.1 Methodology overview

AdaPT is an iterative search procedure, introduced by [Lei and Fithian, 2018], for determin-
ing a set of discoveries/rejections, R, with guaranteed finite-sample FDR control at target
level α under conditions outlined below. We apply AdaPT to the collection of p-values
and auxiliary information, (pi, xi)i∈n, testing hypothesis Hi regarding SNP i ’s association
with the phenotype of interest (e.g. SCZ). The covariates from some feature space, xi ∈ X ,
capture information collected independently of pi, but potentially related to whether or not
the null hypothesis for Hi is true and the effect size under the alternative. AdaPT provides
a flexible framework to incrementally learn these relationships, potentially increasing the
power of the testing procedure, while maintaining valid FDR control.

For each step t = 0, 1, . . . in the AdaPT search, we first determine the rejection set
Rt = {i : pi ≤ st(xi)}, where st(xi) is the rejection threshold at step t that is adaptive to
the covariates xi. This provides us with both the number of discoveries/rejections Rt = |Rt|,
as well as a pseudo-estimate for the number of false discoveries At = |{i : pi ≥ 1− st(xi)}|
(i.e. number of p-values above the “mirror estimator” of st(xi)). These quantities are used

11



2. an implementation of adaptive p-value thresholding for gwas with
gradient boosted trees

to estimate the FDP at the current step t,

F̂DPt =
1 +At

max{Rt, 1}
. (2.1)

If F̂DPt ≤ α, then the AdaPT search ends and the set of discoveries Rt is returned.
Otherwise, we proceed to update the rejection threshold while satisfying two protocols: (1)
the updated threshold must be more stringent st+1(xi) ≤ st(xi), and (2) p-values determining
Rt and At are partially masked,

p̃t,i =

{
pi, if st(xi) < pi < 1− st(xi),

{pi, 1− pi}, otherwise.
(2.2)

Under these protocols, the rejection threshold can be updated using Rt, At, and (xi, p̃t,i)i∈[n].
The flexibility in how this update takes place is one of AdaPT’s key strengths and allows it to
easily incorporate other approaches from the multiple testing literature, such as a conditional
version of the two-groups model [Efron et al., 2001] with estimates for the probability of
being non-null, π1, and the effect size under the alternative, µ.

The algorithm proceeds by sequentially updating the threshold st+1(xi) to discard the
most likely null element in the current rejection region, as measured by the conditional local
false discovery rate (fdr): i.e., i∗ = arg max

i∈Rt

fdrt,i is removed from Rt. With the threshold

updated, the AdaPT search repeats by estimating FDP and updating the rejection threshold
until the target FDR level is reached F̂DPt ≤ α or Rt = 0.

This procedure guarantees finite-sample FDR control under independence of the null
p-values and as long as the null distribution of p-values is mirror conservative, i.e. the
large “mirror” counterparts 1− pi ≥ 0.5 are at least as likely as the small p-values pi ≤ 0.5.
To address the assumption of independence, we select a subset of weakly correlated SNPs
detailed in Data, and additionally provide simulations in Method Appendix showing that
AdaPT appears to maintain FDR control in relevant positive dependence settings. However,
one practical limitation we encounter with the FDP estimate in Equation 2.1 is observing
p-values exactly equal to one. While this can understandably occur with publicly available
GWAS summary statistics, p-values equal to one will always contribute to the estimated
number of false discoveries At. This nuance can lead to a failure of obtaining discoveries
at a desired target α, such as the reported AdaPT results by [Korthauer et al., 2019] for
multiple case-studies. However, we demonstrate in Method Appendix an adjustment to the
p-values for T2D and BMI GWAS applications that alleviates this problem, although future
work should explore modifications to the FDP estimator itself.

The modeling step of AdaPT estimates conditional local fdr with an EM algorithm. In
this context, we use gradient boosted trees, which constructs a flexible predictive function as
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Figure 2.1: Summary of AdaPT GWAS implementation for selected set of SNPs. See Figure S1
for a summary of the AdaPT EM algorithm.

a weighted sum of many simple trees, fit using a gradient descent procedure that minimizes a
specified objective function. The two objective functions considered correspond to estimating
the probability of a test being non-null and the distribution of the effect size for non-null
tests. The advantage of this approach to function fitting is that it is invariant to monotonic
variable transformations, automatically incorporates important variable interactions, and is
able to handle a large number of covariates without degrading significantly in performance
due to the high dimensionality. In contrast, less effective methods might fail to capture
useful information because the covariates are poorly transformed for a linear model, because
the important information is only revealed through a combination of covariates, or because
the important signal is simply swamped by the number of possible predictors to search
through. Our choice of method gives the flexibility to include many potentially useful
covariates without being overly concerned about the functional form with which they
enter or their marginal utility. In our implementation, we employ the XGBoost library
[Chen and Guestrin, 2016] to capitalize on its computational advantages. Figure 2.1 displays
the full pipeline of our implementation of AdaPT to GWAS summary statistics for SNPs
using expression quantitative trait loci (eQTL) to select the SNPs under investigation.

2.2.2 Data

Our investigation includes AdaPT analyses of published GWAS p-values, {pi, i = 1, . . . n},
for body mass index [Locke et al., 2015, BMI], type 2 diabetes [Mahajan et al., 2018, T2D],
and schizophrenia [Ruderfer et al., 2014, SCZ], but we focus our presentation on SCZ results.
SCZ is a highly heritable, severe neuropsychiatric disorder. It is most strongly correlated,
genetically, with another severe disorder, bipolar disorder (BD) [Lichtenstein et al., 2009,
Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013]. Because of this ge-
netic correlation, reported z-statistics from BD GWAS, zBD

i , can be used as informative
covariates for determining the SCZ rejection threshold. As an application of our AdaPT
implementation, we use the GWAS summary statistics reported by [Ruderfer et al., 2014],
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specifically 19,779 subjects diagnosed with either SCZ or BD with 19,423 control subjects
(data are available from the Psychiatric Genomics Consortium, PGC). SCZ and BD subjects
were completely independent and independent controls were bulk matched to the sample
sizes of the two case samples. Results from more recent studies in [Ruderfer et al., 2018a] are
used for replication analysis of our results (combined 53,555 SCZ and BD cases with 54,065
controls). However, the 2014-only studies from [Ruderfer et al., 2014] are a subset of the
all-2018 studies from [Ruderfer et al., 2018a]. Although we do not have access to the raw
genotype data, we use the fact that both papers report inverse variance-weighted fixed effects
meta-analysis results [Willer et al., 2010]. We then separate the summary statistics for the
2018-only studies exclusive to [Ruderfer et al., 2018a], thus independent of the 2014-only
studies, and create an appropriate hold-out for replication analysis.

After matching alleles from both 2014-only and all 2018 studies and limiting SNPs to
those with imputation score INFO > 0.6 for both BD and SCZ in 2014-only [Ruderfer et al., 2014],
we obtained 1,109,226 SNPs. Rather than test all SNPs, we chose to investigate a selected
subset of SNPs, eSNPs, whose genotypes are correlated with gene expression; this additional
filtering step captures a set of SNPs that are more likely to be functional and not highly
correlated [Nicolae et al., 2010]. These eSNPs were identified from two sources. First, we
evaluated the BrainVar study of dorsolateral prefrontal cortex samples across a develop-
mental span [Werling et al., 2020a]. BrainVar included cortical tissue from 176 individuals
falling into two developmental periods: pre-natal, 112 individuals; and post-natal, 60 in-
dividuals. We identified nSCZ = 25,076 eSNPs as any eQTL SNP-gene pairs provided by
[Werling et al., 2020a] meeting Benjamini-Hochberg α ≤ 0.05 for at least one of the three
sample sets (pre-natal, post-, and complete = all). These eSNPs were used for the SCZ
analysis, which is a neurodevelopmental disorder and thus a developmental cohort seemed
most appropriate for our analyses.

The second source was the Genotype-Tissue Expression (GTEx) V7 project dataset
[GTEx Consortium and others, 2015] with adult samples from fifty-three tissues. As the
first winnowing step, we identified the set of GTEx eQTLs for any of the available tissues at
target FDR level α = 0.05. Rather than use all GTEx eQTLs, however, we selected eQTL
SNP-gene whose genotypes are most predictive of expression for each gene. The GTEx
eSNPs were used for analysis of T2D and BMI, both of which typically onset in adults (for
details see Method Appendix ).

For each eSNP i, we created a vector of covariates xi to incorporate auxiliary information
collected independently of pi, including p-values from GWAS studies of related phenotypes,
and relationships inferred from gene expression studies. First, we utilize the mapping of
eSNPs to genes derived from eQTLs assessed in a relevant tissue type r. Although the
majority of observed eSNPs have one unique cis-eQTL gene pairing, 14% of SNPs in BrainVar
were eQTL for multiple genes. Let Gr

i denote the set of genes whose expression is associated
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with eSNP i and summarize the level of expression as the average absolute eQTL slope for
variants in Gr

i to obtain β̄r
i . Additionally, we account for gene co-expression networks as

covariates using the J = 20 modules reported in the BrainVar study, which were generated
using weighted gene co-expression network analysis [Zhang and Horvath, 2005, WGCNA].
For each of the j = 1, . . . , J WGCNA modules, we create an indicator variable ℓri,j denoting
whether or not eSNP i has any associated cis-eQTL genes in module j.

For the nSCZ eSNPs, we calculate β̄type
i where type ∈ {pre, post, complete} to capture

the eSNP’s overall expression association across different epochs of the developmental span.
Additionally, we use the 20 WGCNA modules (including unassigned gray) reported by
[Werling et al., 2020a] to create indicator variables ℓSCZ

i,j for j = 1, . . . , 20. This culminates

in a vector of twenty-four covariates xSCZ
i = (zBD

i , β̄pre
i , β̄post

i , β̄complete
i , ℓSCZ

i,1 , . . . , ℓSCZ
i,20 ). Al-

though we use WGCNA modules to make use of the results from the BrainVar study, future
applications could explore other approaches to account for gene set and pathway analysis
[Zhu and Stephens, 2018].

2.2.3 AdaPT discoveries

As noted elsewhere [Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014],
eSNPs are more likely to be associated with a GWAS phenotype than are randomly chosen
SNPs. This is true for the eSNP from BrainVar too, when evaluated in light of the SCZ
GWAS p-values (Figure 2.2A). To evaluate the performance of the AdaPT search algorithm
using the eSNP data, we compare the fitted full covariate model to results from its intercept-
only version (Figure 2.2B versus 2.2C). As expected, the intercept-only analysis performs
better than BH, with all 269 BH discoveries contained within the intercept-only discoveries,
because it incorporates an estimate for the proportion of non-null tests. The full model
rejects RSCZ = 843 of the nSCZ = 25,076 BrainVar eSNPs versus 361 discoveries for the
intercept-only model. For insight into AdaPT’s performance, we sequentially include (1)
only the BD z-statistics, then (2) include eQTL slope summaries, and then (3) the WGCNA
indicators (Figure 2.2D-E).

The largest number of discoveries occurs when all twenty-four covariates are fitted (Figure
2.2 D), highlighting that all three types of information together are required. Notably, only
540 associations are discovered using all covariates without interactions, fewer discoveries
than only using module-based covariates with interactions. This highlights the improvement
in AdaPT’s performance from modeling the interactions between covariates via gradient
boosted trees. As might be expected from their counts of discoveries (Figure 2.2D), the
greatest overlap with the full model occurs by fitting all covariates, but without interactions,
or by fitting the module-based covariates (Figure 2.2E).

Additional discoveries are of little interest if they consist primarily of SNPs in LD with
SNPs already discovered using a simpler model, such as the logit model typically used for
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Figure 2.2: AdaPT results from analysis of schizophrenia (SCZ) p-values. (A) Comparison of
qq-plots revealing SCZ enrichment for both BrainVar eSNPs compared to the full set of SNPs
from 2014 studies. (B-C) Manhattan plots of SCZ AdaPT discoveries (in orange) using (B)
intercept-only model compared to (C) covariate-informed model at target α = 0.05. (D-E)
Comparison of the number of discoveries at target α = 0.05 for AdaPT with varying levels of
covariates (D) and (E) their resulting discovery set intersections.

SCZ GWAS. For context, however, of the initial 25,076 eSNPs we analyzed, only four have
p-values < 5×10−8, the standard GWAS threshold, and all four occur in the discovery sets for
the AdaPT full and intercept-only models. To investigate how the Adapt procedure performs
using completely independent eSNPs, we identified the “lead” SNP in each LD block using the
approach delineated in [Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014]
and compared model performance for this set of approximately independent SNPs (Method
Appendix ). This thinning results in roughly 3,960 eSNPs to be analyzed by the different
models (Figure 2.2). (Ties in q-values add or subtract a few SNPs to this 3,960 count,
depending on the model analyzed.) When AdaPT is fit to these independent SNPs, we
obtain analogous improvements in performance compared to the larger set of SNPs (Figures
S2 and S3): the full AdaPT model discovers 95 independent loci, while the intercept-only
model discovers only 42 loci. Likewise, the full model is the best model and interactions
remain important. Finally, no location in the genome exerts unusual influence on the results,
which is also the case for the analyses of 25,076 eSNPs.

As described previously, we performed similar analyses of T2D and BMI GWAS p-values.
All results for these analyses, as well as more details regarding analyses of SCZ, are available
in Dataset S1 and Method Appendix.
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Figure 2.3: Variable importance and relationships. (A) Change in variable importance for AdaPT
estimated probability of non-null π1 model across the search, with top variables in final model
highlighted. (B) Change in partial dependence for estimated probability of being non-null π1
and BD z-statistics across π1 models in AdaPT search. (C) SCZ enrichment of eSNPs based on
salmon WGCNA module membership, the most important WGCNA module indicator in the first
model fitting step.

2.2.4 Variable importance and relationships

We examine the variable importance and partial dependence plots from the gradient boosted
models to provide insight into the relationships between each of the covariates and SCZ
associations. Figure 2.3(A) displays the change in variable importance for the probability of
being non-null (π1) at each model fitting iteration, with the top variables in the final model
highlighted. We see that the BD z-statistics are estimated as the most important for each
π1 model, but they decrease in importance in the final steps. In contrast, the unassigned
gray module increases in important throughout the AdaPT search. This change in variable
importance across the AdaPT search highlights that the difference in the discriminatory
power of covariates depends on the remaining masked p-values.
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Figure 2.3(B) displays the partial-dependence plot [Friedman, 2001] at each AdaPT
model fitting iteration for the estimated marginal relationship between the BD z-statistics
and the probability of being non-null, evaluated at the 0, 2.5%, 5%, . . . , 100% percentiles.
Because the goal of the AdaPT two-groups model (detailed in Methods) is to order the
remaining masked p-values, the π1 model predicts values relative to the remaining masked
p-values: as the rejection threshold st(xi) becomes more stringent, the masked p-values
are more likely non-null (assuming there is signal). However, for each model iteration,
Figure 2.3(B) reveals an increasing likelihood for non-null results as the BD z-statistics
grow in magnitude from zero, as well as a diminished impact of BD z-statistics on the
estimated π1 for later model iterations. Figure 2.3(C) displays the clear enrichment for
eSNPs with cis-eQTL genes that are members of the salmon WGCNA module reported by
[Werling et al., 2020a], which was the most important WGCNA module indicator in the first
model fitting step. This differs from the unassigned gray module variable: it is predictive of
SNPs that are classified as null, rather than associated with the phenotype. Taken together,
Figures 2.3(A-C) emphasize the use of all covariates across different steps of the AdaPT
search. See Method Appendix for more analyses highlighting the advantages of accounting
for interactions between covariates.

2.2.5 Replication in independent studies

Next, we examine the replicability of the 2014-only SCZ AdaPT results using independent
2018-only studies. We find (Figure 2.4) an increasing smoothing spline relationship between
these sets of values, with noticeably increasing evidence indicated by the 2018-only p-values
for the set of AdaPT discoveries at α = 0.05. Additionally, of the 843 discoveries from the
2014-only studies at target FDR level α = 0.05, approximately 55.2% (465 eSNPs) were
nominal replications for 2018-only (p-values < 0.05), comparable to the replication fraction
expected on the basis of power (see Method Appendix for supporting simulations).

2.2.6 Gene ontology comparison

Using the SNP discoveries, which span the genome, we next sought biological insights. We ap-
plied gene ontology enrichment analysis [Ashburner et al., 2000, The Gene Ontology Consortium, 2018]
to the 136 genes obtained from the eQTL variant-gene pairs associated with the 843 discov-
eries. This analysis produced no clear signal, yielding only a minor enrichment for biological
processes related to peptide antigen assembly. Several explanations are plausible, we explore
two: either AdaPT is discovering SNPs of such small effect that the discoveries are not
meaningful or SCZ is a highly complex disorder with a large number of biological processes
involved. For comparison we applied our full pipeline to GWAS summary statistics for
T2D [Mahajan et al., 2018]. This comparison is of interest because T2D is a disease with a
well understood functional basis and this is a well powered study (74,124 T2D cases and
824,006 controls). We restricted our analysis to 176,246 eSNPs based on eQTLs obtained
using GTEx data. Next, we created eQTL-based covariates using pancreas, liver, and
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Figure 2.4: Relationship between the 2018-only p-values and the resulting 2014-only q-values
from the AdaPT search. Black line displays smoothed relationship between SCZ p-values from
2018-only studies and AdaPT q-values from 2014-only studies. Blue region indicates AdaPT
discoveries at α = 0.05 that are nominal replications, p-values from 2018-only studies < .05,
while red region denotes discoveries that failed to replicate.
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adipose tissue samples (see Method Appendix for more details). After creating a vector
of covariates from GTEx, AdaPT returned 14,920 eSNPs at α = 0.05, resulting in 5,970
associated genes. Applying gene ontology enrichment analysis to this gene list, we discovered
enrichment for biological processes related to lipid metabolic process (Figure 2.5), consistent
with previous literature [Cirillo et al., 2018]. These results provide some reassurance that
the lack of specificity in the SCZ results can be attributed to the complex etiology of SCZ.
For comparison to the well powered BMI GWAS (339,224 subjects), we found a lack of gene
ontology enrichment in our gene discoveries (Method Appendix ).

2.2.7 Pipeline results for all 2018 studies

In addition to applying the pipeline to SCZ p-values from the 2014-only studies in [Ruderfer et al., 2014],
we also modeled p-values from all 2018 studies. The latter yields far more discoveries due
to smaller standard errors from increased study sizes, even though the covariates were the
same: for xSCZ

i , we find 2,228 discoveries at target FDR level α = 0.05 when the pipeline
was applied to the p-values for most up-to-date set of studies versus 843 for the 2014-only
studies. Notably, the intercept-only version of AdaPT returned 1,865 discoveries at α = 0.05,
meaning the covariates contributed to ≈ 19% increase in discovery rate for all 2018 studies
versus the ≈ 134% increase (361 to 843 eSNPs) from using the covariates for the 2014-only
studies. This reinforces the value of using auxiliary information in studies with lower power.
Complementary to this observation, AdaPT applied to BMI GWAS the covariate informed
models did not yield more discoveries than the intercept-only version (details presented in
Method Appendix ). Simply accounting for more auxiliary information does not guarantee an
improvement in power and the advantages thereof diminishes as power increases, as witnessed
by results for all 2018 studies for SCZ and the large-scale BMI GWAS. Additionally, the
larger number of discoveries for the SCZ all 2018 studies, 2,228, maps onto 382 genes.
Despite this increase, these genes did not reveal any clear signal from the Gene Ontology
enrichment analysis, comporting with results from the 2014-only results.

2.3 Discussion

Our goals in this study were to explore the use of AdaPT for high-dimensional multi-
omics settings and investigate the neurobiology of SCZ in the process. AdaPT was used
to analyze a selected set of GWAS summary statistics for SNPs, together with numerous
covariates. Specifically, SNPs were selected if they were documented to affect gene expression;
these SNP-gene pairs were dubbed eSNPs. Covariates for these eSNPs included GWAS
test statistics from a genetically correlated phenotype, BD, which were mapped to eSNPs
through SNP identity; as well as features of gene expression and co-expression networks,
which were mapped to eSNPs through genes. By coupling flexible gradient boosted trees
with the AdaPT procedure, relationships among eSNP GWAS test statistics and covariates
were uncovered and more SNPs were found to be associated with SCZ, while maintaining
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guaranteed finite-sample FDR control. The tree-based handling of covariates addresses a
perceived weakness of AdaPT, namely the unintuitive modeling framework for incorporating
covariates [Korthauer et al., 2019]. Moreover, it is worth noting that the original approach
implemented by [Lei and Fithian, 2018], a generalized linear model with spline bases, yields
similar results (361 discoveries at target α = 0.05) when applied to the univariate case of
only using BD z-statistics. This is an even more straightforward implementation for handling
covariates without interactions. The pipeline we built should be simple to mimic for a wide
variety of omics and other analyses.

The results shed light on the level of complexity underlying the neurobiology of SCZ.
If the origins of SCZ arose by perturbations of one or a few pathways, we would expect
to converge on those pathways as we accrue more and more genetic associations. On the
other hand, if the ways to generate vulnerability to SCZ were myriad — even if there is an
single ultimate cause shared across all cases — then we might expect no such convergence,
at least with regards to the common variation assessed through GWAS. Gene ontology
analysis of associated discovery genes from either the 2014-only or all 2018 studies reveals no
enrichment for biological processes for SCZ. There are many possible explanations for these
null findings, one of which is simply a lack of power or specificity of our results. However, the
result stands in stark contrast to the results for T2D, for which the gene ontology analysis
converges nicely on accepted pathways to T2D risk; yet they comport with those for BMI,
which is known to have myriad genetic and environmental origins. Therefore our results
are consistent with myriad pathways to vulnerability for SCZ, although it is impossible
to rule out other explanations: for example, the possibility that we understand so little
about brain functions that gene ontology analyses lack specificity. In any case, our results
are consistent with two recent theories underlying the genetics of SCZ, namely extreme
polygenicity [O’Connor et al., 2019] and “omnigenic” origins [Boyle et al., 2017].

Although the examples considered in this manuscript pertain to omics data, this process
can be adapted for a large variety of settings. We demonstrate in Method Appendix simula-
tions showing that AdaPT appears to maintain FDR control in positive dependence settings
emulating linkage disequilibrium (LD) block structure underlying GWAS results. There is a
clear need, however, for future work to explore AdaPT’s properties and computational chal-
lenges under various dependence regimes. The growing abundance of contextual information
available in “omics” settings provides ample opportunity to improve power for detecting
associations, using a flexible approach such as AdaPT, when addressing the multiple testing
challenge.
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2.4 Methods

2.4.1 Two-groups model

The most critical step in the AdaPT algorithm [Lei and Fithian, 2018] involves updating the
rejection threshold st(xi). Following [Lei and Fithian, 2018], we use a conditional version of
the classical two-groups model [Efron et al., 2001, Scott et al., 2015] where the null p-values
are modeled as uniform (f0(p|x) ≡ 1) and we model the non-null p-value density with
a beta distribution density parametrized by µi = E[−log(pi)], resulting in a conditional
density for a beta mixture model, f(p|xi) = π1(xi)

1
µi
p1/µi−1 + 1 − π1(xi). In this form,

we can model the non-null probability π1(xi) = E[Hi|xi] and the effect size for non-null
hypotheses µ(xi) = E[−log(pi)|xi, Hi = 1] with two separate gradient boosted tree-based
models. The XGBoost library [Chen and Guestrin, 2016] provides logistic and Gamma
regression implementations which we use for π1(xi) and µ(xi) respectively.

There are two categories of missing values in these regression problems: Hi is never
observed, and at each step t of the search, the p-values for tests {i : pi ≤ st(xi) or pi ≥
1− st(xi)} are masked as p̃t,i. An expectation-maximization (EM) algorithm can be used to
estimate both π̂1(xi) and µ̂(xi) by maximizing the partially observed likelihood. We briefly
restate the EM algorithm from (1), and provide details in our supplementary materials that
reflect the approach taken in the R adaptMT package by the same authors, which differs
slightly from (1).

During the E-step of the d = 0, 1, . . . iteration of the EM algorithm, conditional on the

partially observed data fixed at step t, (xi, p̃t,i)i∈[n], we compute both, Ĥ
(d)
i and b̂

(d)
i , where

b̂
(d)
i indicates how likely p′t,i = min(p̃t,i) equals pi for non-null hypotheses. The explicit calcula-

tions of Ĥ
(d)
i and b̂

(d)
i are available in the supplementary materials of [Lei and Fithian, 2018].

The M-step consists of estimating π̂
(d)
1 and µ̂(d) with separate gradient boosted trees,

using pseudo-datasets to handle the partially masked data. In order to fit the model for

π1(xi), we construct the response vector y
(d)
π = (1, . . . , 1, 0, . . . , 0) ∈ R2n and use weights

w
(d)
π = (Ĥ

(d)
1 , . . . , Ĥ

(d)
n , 1−Ĥ

(d)
1 , . . . , 1−Ĥ

(d)
n ) ∈ R2n. Then we estimate π̂

(d)
1 (xi) using the first

n predictions from a classification model using y
(d)
π as the response variable with the covariate

matrix (xi)i∈[n] replicated twice and weights w
(d)
π . Similarly, for estimating µ̂(d)(xi) we

construct a response vector y
(d)
µ = (−log(p1), . . . ,−log(pn),−log(1−p1), . . . ,−log(1−pn)) ∈

R2n with weights w
(d)
µ = (b̂

(d)
1 , . . . , b̂

(d)
n , 1− b̂

(d)
1 , . . . , 1− b̂

(d)
n ) ∈ R2n, and again take the first

n predicted values using the duplicated covariate matrix.

We follow the procedure detailed in Section 4.3 of [Lei and Fithian, 2018] to estimate
the conditional local fdr for each p′t,i, and then update the rejection threshold to st+1(xi) by
removing test i∗ = arg max i∈Rt

fdrt,i from Rt.
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2.4.2 AdaPT gradient boosted trees with CV steps

As a flexible approach for modeling the conditional local fdr, we use gradient boosted trees
[Friedman, 2001] via the open-source XGBoost implementation [Chen and Guestrin, 2016].
Gradient boosted trees are an ensemble of many small tree models that jointly contribute
to predictions. Let fp ∈ F be an individual regression tree, then the sum-of-trees model

can be written as, ŷi =
∑P

p=1 fp(xi) to minimize
∑n

i L(yi, ŷi) +
∑P

p=1Ω(fp) where L is the
loss function and Ω measures the complexity of each tree such as the maximum depth,
regularization, etc. [Chen and Guestrin, 2016] detail the algorithms for fitting the model in
an additive manner as well as determining the splits for each tree.

To tune the variety of parameters for gradient boosted trees within AdaPT, such as
the number of trees P and maximum depth of each tree, we use the cross-validation (CV)
approach recommended in [Lei and Fithian, 2018]. If we are considering M different options
of boosting parameters, then we evaluate each of the M choices during the modeling phase
of the AdaPT search. At step t, we divide the data into K folds preserving the relative
proportions of masked and unmasked hypotheses. Then for each set of boosting parameters

m = 1, ...,M , and for each fold k = 1, ...K: (1) apply EM-algorithm to estimate π̂
(m)
1 (xi)

and µ̂(m)(xi) using parameters m with data from folds {1, . . . ,K}\{k}, and (2) compute

expected-loglikelihood l̃
(m)
k on hold-out set k using two-groups model parameters from m

following convergence, and compute total across folds as l̃m =
∑K

k=1 l̃
(m)
k . Finally we use the

set of parameters m∗ = arg max m l̃(m) in another instance of the EM algorithm to estimate

π̂
(m∗)
1 (xi) and µ̂(m∗)(xi) on all data.

2.4.3 Computational aspects of AdaPT

Practical decisions are necessary to implement the AdaPT search. In addition to the
covariates and p-values (xi, pt,i)i∈[n], an initial rejection threshold s0(xi) is required to begin
the search. Rather begin the search with a high starting threshold, such as s∗0 = 0.45
recommended by [Lei and Fithian, 2018], we instead begin the AdaPT search with s∗0 = 0.05.
Our decision to lower the starting threshold is advantageous for multiple reasons. First,
intuitively, this starts our search in the regime of interest for target level α = 0.05, whereas
we would not expect to detect discoveries with larger p-values using this flexible multiple
testing correction. Additionally, by lowering the starting threshold, more true information is
available to the gradient boosted trees at the start of the AdaPT search. For instance, with
the set of BrainVar eSNPs, 21,248 true p-values are immediately revealed with s∗0 = 0.05
as compared to only 2,290 when s∗0 = 0.45. Simulations detailed in Method Appendix show
that on average our choice for using a lower threshold results in higher power.

The most computationally intensive part of the procedure is updating the rejection thresh-
old via the EM algorithm. Instead of updating the model for estimating fdrt,i at each step
of the search, we re-estimate every [n/20] steps as recommended by [Lei and Fithian, 2018].
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However, the inclusion of the previously described K-fold CV procedure (we use K = 5) for
tuning the gradient boosted trees obviously adds computational complexity to the AdaPT
search, and would be expensive to apply every time the model fitting takes place. Rather,
we apply the CV step once at the beginning, and then another time half-way through the
search based on the similarity of simulation performance with varying number of CV steps
in Method Appendix. Additionally, one needs to choose the potential M model parameter
choices. Technically, unique combinations can be used for both models, π1 and µ, but for
simplicity we only consider matching settings for both models, i.e. both models have the
same number of trees and maximum depth. As a reminder, AdaPT guarantees finite-sample
FDR control regardless of potentially over-fitting to the data when using the CV procedure.
Simulations are provided in Method Appendix showing how extensively increasing the number
of trees P leads to decreasing power, but maintains valid FDR control.

2.4.4 Code availability

We provide a modified version of the adaptMT R package to implement the AdaPT-CV
tuning steps with XGBoost models at https://github.com/ryurko/adaptMT, and provide
all code used to generate the manuscript’s results at https://github.com/ryurko/AdaPT-
GWAS-manuscript-code.

2.5 Method Appendix

2.5.1 AdaPT conditional two-groups model

This section provides a more detailed explanation of updating the rejection threshold st(xi)
in the AdaPT procedure, expanding on the description from Methods in the main manuscript.
As in the main text, this is essentially an explanation of the EM approach of Lei18. Note
that for coherence some text is repeated from the main manuscript. Lei18 use a conditional
version of the classical two-groups model Efron01 yielding the conditional mixture density,

f(p|x) = π1(x)f1(p|x) + 1− π1(x), (2.3)

where the null p-values are modeled as uniform (f0(p|x) ≡ 1). They proceed to use a
conservative estimate for the conditional local false discovery rate, fdr(p|x) = f̂(1|x)/f̂(p|x),
by setting 1− π1(x) = f(1|x).

We model the non-null p-value density with a beta distribution density parametrized by
µi,

f1(p|xi) = h(p;µi) =
1

µi
p1/µi−1, (2.4)

where µi = E[−log(pi)], resulting in a conditional density for a beta mixture model,

f(p|xi) = π1(xi)
1

µi
p1/µi−1 + 1− π1(xi). (2.5)
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In this form, we can model the non-null probability π1(xi) = E[Hi|xi] and the effect size
for non-null hypotheses µ(xi) = E[−log(pi)|xi, Hi = 1] with two separate gradient boosted
tree-based models. The XGBoost library Chen16 provides logistic and Gamma regression
implementations which we use for π1(xi) and µ(xi) respectively.

There are two categories of missing values in these regression problems: Hi is never
observed, and at each step t of the search, the p-values for tests {i : pi ≤ st(xi) or pi ≥
1− st(xi)} are masked as p̃t,i. An expectation-maximization (EM) algorithm can be used
to estimate both π̂1(xi) and µ̂(xi) by maximizing the partially observed likelihood. The
complete log-likelihood for the conditional two-groups model is,

l(π1, µ; p,H, x) =

n∑
i=1

{Hilog(π1(xi) + (1−Hi)log(1− π1(xi))}+
n∑

i=1

Hilog{h(pi;µ(xi))}.

(2.6)
During the E-step of the d = 0, 1, . . . iteration of the EM algorithm, conditional on the
partially observed data fixed at step t, (xi, p̃t,i)i∈[n], we compute both,

Ĥ
(d)
i = E

π̂
(d−1)
1 ,µ̂(d−1) [Hi

∣∣(xi, p̃t,i)i∈[n]] (2.7)

b̂
(d)
i = E

π̂
(d−1)
1 ,µ̂(d−1) [1(p

′
t,i = pi)

∣∣(xi, p̃t,i)i∈[n], Hi = 1], (2.8)

where b̂
(d)
i indicates how likely p′t,i = min(p̃t,i) equals pi for non-null hypotheses. The

explicit calculations of Ĥ
(d)
i and b̂

(d)
i for both the revealed, p̃t,i = p′t,i, and masked p-values,

p̃t,i = {pi, 1− pi}, are available in the supplementary materials of Lei18.

The M-step consists of estimating π̂
(d)
1 and µ̂(d) with separate gradient boosted trees,

using pseudo-datasets to handle the partially masked data. In order to fit the model for

π1(xi), we construct the response vector y
(d)
π = (1, . . . , 1, 0, . . . , 0) ∈ R2n and use weights

w
(d)
π = (Ĥ

(d)
1 , . . . , Ĥ

(d)
n , 1−Ĥ

(d)
1 , . . . , 1−Ĥ

(d)
n ) ∈ R2n. Then we estimate π̂

(d)
1 (xi) using the first

n predictions from a classification model using y
(d)
π as the response variable with the covariate

matrix (xi)i∈[n] replicated twice and weights w
(d)
π . Similarly, for estimating µ̂(d)(xi) we

construct a response vector y
(d)
µ = (−log(p1), . . . ,−log(pn),−log(1−p1), . . . ,−log(1−pn)) ∈

R2n with weights w
(d)
µ = (b̂

(d)
1 , . . . , b̂

(d)
n , 1− b̂

(d)
1 , . . . , 1− b̂

(d)
n ) ∈ R2n, and again take the first

n predicted values using the duplicated covariate matrix.

The conditional local fdr is estimated for each p′t,i,

fdrt,i =
π̂1(xi)h(1; µ̂(xi) + 1− π̂1(xi)

π̂1(xi)h(p′t,i; µ̂(xi) + 1− π̂1(xi)
, (2.9)
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and we follow the procedure detailed in Section 4.3 of Lei18 to update the rejection threshold
to st+1(xi) by removing test i∗ = arg max

i∈Rt

fdrt,i from Rt. A summary diagram of the EM

algorithm is displayed in Figure 2.6.

2.5.2 SCZ results with independent loci

One potential concern regarding the assessment of performance of AdaPT is the impact of
linkage disequilibrium (LD). In the Manhattan plots of Figures 2.2(B-C), the discoveries
visually appear to be located close to one another. However, the visual appearance of
genomic positions is somewhat misleading because our initial selection of eSNPs greatly
reduces the number of SNPs commonly portrayed in Manhattan plots – many of these SNPs
are not very close to each other in the genome and not in high LD, although the format
of the Manhattan plot makes this feature hard to see. To take this analysis further we
follow common practice for GWAS results by identifying the “best” or “lead” SNPs in a LD
block/cluster, using a similar approach as scz14, for each of the set of discoveries presented
in Figure 2.2:

1. order the SNPs by the AdaPT -log10(q-value) in descending order,

2. starting with the SNP with the largest value for the AdaPT -log10(q-value),

• remove all SNPs with r2 ≥ 0.1 within a 500kb window,

• move on to next SNP that is still remaining,

3. return the retained SNPs as the LD-independent SNPs in low LD (r2 < 0.1). (Remark:
this approach excludes SNPs whose contribution to the GWAS signal is partially
independent of the lead SNP, but it has the advantage of simplicity.)

We use the reference European sample genotype data from the 1000 Genomes project
1000G to compute the r2 values between SNPs. In the GWAS setting this LD clumping
procedure is typically applied to the reported SNP p-values, but because the ordering of
SNPs varies between the different sets of discoveries (intercept-only versus use of covariates)
we perform the operation separately with their respective q-values. For each of the different
set of covariates considered, this results in reducing the 25,076 selected eSNPs down to the
following number of “independent loci”:

• Intercept-only: 3,958

• BD z-stats: 3,966

• BD z-stats + eQTL slopes: 3,962
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• BD z-stats + eQTL slopes + WGCNA (w/ interactions): 3,963

• BD z-stats + eQTL slopes + WGCNA (w/o interactions): 3,959

• WGCNA: 3,954

The differences in counts are due to the different number of ties that take place between
the resulting q-values for each considered set of covariates. Next, for the identified set of
“lead” SNPs we observe how many have q-values less than the target FDR level α = 0.05 (i.e.
associations detected at α = 0.05). The results are displayed in the Figure 2.7, including
Manhattan plots Figures 2.7(A-B) of the q-values for the AdaPT intercept-only and BD
z-stats + eQTL slopes + WGCNA (w/ interactions) results, rather than using the actual
p-values. The lead SNPs in each of the Manhattan plots are denoted by an X shape. In
conjunction with Figures 2.7(C-D), the relative improvement in the set of independent loci
within the discovery sets from AdaPT is analogous to the results presented in Figure 2.2,
emphasizing the advantage of accounting for covariates and their interactions via gradient
boosted trees. Additionally, Figure 2.8 further emphasizes that the improvement in power is
not restricted to a particular section of the genome. As seen in Figure 2.9, we observe a
similar improvement in the number of independent loci when ordering the SNPs with the
observed 2014-only studies SCZ p-values.

While we maintain FDR control on the original set of discoveries (see Figure 2.3 in
Results), we do not retain any guarantees regarding the detected independent loci presented
in Figure 2.7. In order to maintain FDR control on the set of discovered independent loci, an
alternative approach or adjustment to the AdaPT algorithm is required. A simple alternative
is to first apply LD pruning/clumping as initial step prior to applying AdaPT to a reduced
set of lead SNPs. However, this encounters the challenge of defining lead SNPs without data
“snooping” based on using the observed p-values. Future work will explore modifications
for AdaPT, potentially exploring recent developments ren2020knockoffs, to maintain FDR
control on an independent subset of SNPs.

2.5.3 SCZ variable importance and partial dependence

We explore further the variable relationships from the gradient boosted trees. First, Figure
2.10 displays the change in variable importance for the non-null effect size (µ) at each
model fitting iteration, with the top variables in the final model highlighted. The variable
importance measures are relatively stable across all model iterations with the BD z-statistics
and eQTL slope measures maintaining the highest level of importance. Figure 2.11 displays
the partial-dependence plot at each AdaPT model fitting iteration for the estimated marginal
relationship between the BD z-statistics and the non-null effect size µ, evaluated at the
0, 2.5%, 5%, . . . , 100% percentiles. The estimates reveal an increasing effect size as the BD
z-statistics grow in magnitude, which is relatively stable across the model iterations. Figures
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2.12(A-C) display the relationships for the probability of non-null model, while (D-F) display
relationships for the effect size under the alternative. Although the partial dependence plots
show considerable variability due to the high dimensional of the model, we can still see
general trends consistent with the variable importance plots from Figure 2.3(A) and Figure
2.10.

In Figure 2.13 we display the p-value distributions comparing the enrichment for mem-
bership in the different WGCNA modules reported by werling2020whole. While many of
the WGCNA modules lack clear evidence or contain too few eSNPs, as denoted by their
respective y-axes, the cyan and salmon modules display noticeable enrichment. Additionally,
as mentioned previously, membership in the gray module displays a lack of enrichment
versus no associated cis-eQTL gene affiliated with the unassigned WGCNA module.

As additional context for the improved performance from using all covariates with
interactions, Figures 2.14(A-B) display the change in partial dependence between the BD
z-statistics and probability of being non-null π1 across the AdaPT search for the AdaPT
results using (A) BD z-statistics only and (B) all covariates without interactions. When
compared to the results using all covariates with interactions in Figure Figure 2.3(B), we
see that both versions of these results display relatively flat relationships near the end of the
AdaPT search. This provides evidence of the importance of the interactions between other
covariates and the BD z-statistics in retaining discriminatory power of the eSNPs near the
end of the AdaPT search.

2.5.4 Replication simulations

We use simulations to empirically assess the observed nominal replication rate, percentage
of discoveries with p-values less than 0.05 in holdout 2018-only studies, of 55.2% for the 843
SCZ discoveries from the 2014-only studies at target FDR level α = 0.05. We use the final
non-null effect size model returned by the AdaPT, µ̂∗, to generate simulated p-values psim

and nominal replication rates to compare the observed rate against. For the simulations,
we assume that all 843 SCZ discoveries from the 2014-only studies are truly non-null, and
we use the actual eSNPs, their observed standard errors σ14, σ18 from the 2014-only and
2018-only studies respectively, as well as their actual covariates for generating psim. A single
iteration of the simulation proceeds as follows:

• For each of the RSCZ = 843 discoveries i ∈ RSCZ:

1. Assume test status is non-null: Hi = 1.

2. Generate effect size using final AdaPT model as truth:

− log psimi |xSCZ
i ∼ Exp

(
1/µ̂∗(xSCZ

i )
)
. (2.10)

3. Transform effect sizes to p-value psimi .
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4. Convert simulated p-value to z-statistic zsimi =
∣∣Φ−1(psimi /2)

∣∣.
5. Calculate updated z-statistic to reflect observed reduction in standard error for

2018-only studies relative to 2014-only,

z∗,simi = zsimi · σ14
σ18

. (2.11)

6. Convert updated z-statistic to p-value:

p∗,simi = 2 · Φ(−|z∗,simi |). (2.12)

• Calculate nominal replication rate using psim = (p∗,simi , . . . , p∗,simRSCZ
),

Nominal replication rate =
|{i : p∗,simi ≤ .05}|

RSCZ
. (2.13)

We repeat this process to generate ten-thousand simulated values for the nominal
replication rate. The distribution of the simulated values ranges from approximately 51% to
63%, with an average and median of ≈ 57%, close to the observed rate of 55.2%. Obviously,
assuming that all of the 843 rejections are truly non-null is an overtly optimistic assumption
given the use of FDR error control. Thus, the average simulated nominal replication rate of
≈ 56.6% is reassuringly close to the observed rate and likely higher than what would be
expected if false discoveries were accounted for among the 843 considered eSNPs.

2.5.5 SCZ results with all 2018 studies

We generate the AdaPT results using the SCZ p-values from all-2018 studies to the same
set of nSCZ = 25, 076 eSNPs with the same covariates xSCZ

i . As a comparison to the results
displayed in Figure 2.2 using the 2014-only studies, Figures 2.15(A-D) display the same
figures but with the results from all 2018 at target FDR level α = 0.05. In contrast to
before, we see that due to the increase in power from the study size, the use of modeling the
auxiliary information provides a much smaller increase in power with just an approximately
19% increase in discoveries from the intercept-only results (1,865 discoveries) to using all
twenty-four covariates with interactions (2,228 discoveries).

For comparison, we additionally examine the change in variable importance and partial
dependence plots returned by AdaPT using all 2018 studies. Similar to before, Figures
2.16(A-B) display the change in variable importance plots for both the probability of being
non-null π1 and effect size under alternative µ models using the SCZ p-values from all 2018
studies respectively. The results are similar to before, but with the complete sample eQTL
slopes possessing the highest importance. The BD z-statistics are again highly important
for all 2018 studies, displaying the similarly increasing relationships across the AdaPT
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models as seen in the partial dependence plots in Figures 2.17(C-D). The change in partial
dependence plots for the different eQTL slopes summaries are seen in Figures 2.18(A-F).
Figure 2.19 displays the levels of SCZ enrichment for all 2018 studies, revealing modules
that are consistent with the 2014-only studies such as cyan and salmon.

2.5.6 Type 2 diabetes results

Using GWAS summary statistics for type 2 diabetes (T2D), unadjusted for BMI, available
from Diabetes Genetics Replication And Meta-analysis (DIAGRAM) consortium Mahajan18,
we applied our full pipeline outlined in Figure 2.1. Of the initial set of over twenty-three
million SNPs available, we identified 176,246 eSNPs from eQTL variant-gene pairs from any
GTEx tissue sample using the definition of the GTEx eSNPs explained in Data. Figure 2.20
displays the enrichment for these GTEx eSNPs compared to the original set of SNPs from
the T2D GWAS results.

We create a vector of covariates xT2D
i summarizing expression level information from

GTEx for pancreas, liver, and two adipose tissues, subcutaneous and visceral (omentum).

Specifically, we calculate β̃rT2D

i for each rT2D in the set of tissues: pancreas, liver, adipose -
subcutaneous, adipose - visceral (omentum). Additionally, we generate WGCNA module
assignments using protein coding genes for pancreas samples from GTEx. To generate the
WGCNA results, we only consider protein coding genes identified using the grex package
in R grex, rlang. Additionally, all genes with expression levels of zero for over half of the
provided samples were removed. This resulted in fourteen different module, including the
unassigned gray module. Unlike the SCZ application, we do not use independent GWAS
results from another phenotype.

Using xT2D
i defined above, we applied AdaPT to the 176,246 GTEx eSNPs. However,

we encountered an issue for this data where we were unable to discover any hypotheses at
target FDR level α ≤ 0.05. This was due to the fact that 640 eSNPs had p-values exactly
equal to one. While this can understandably occur with publicly available GWAS summary
statistics, p-values equal to one will then always contribute to the pseudo-estimate for the
number of false discoveries At during the AdaPT search (see Methodology overview). With a
relatively high number of p-values equal to one, AdaPT is unable to search through rejection
sets for lower α values. To overcome this challenge, we draw random replacement p-values
for the 640 eSNPs from a uniform distribution between 0.97 and 1− 1E−15, a value strictly
less than one, to allow some leeway. We refer to this set of p-values as adjusted, while the
original observed p-values are unadjusted. For comparison, Figure 2.21 shows the difference
in the number of discoveries for the adjusted and unadjusted p-values across different target
α values. Due to the similarity in performance for α values greater than 0.1, we use results
for the adjusted p-values moving forward.

At target FDR level α = 0.05, AdaPT yields 14,920 T2D discoveries using the adjusted
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p-values with covariates xT2D
i (compared to 14,693 intercept-only discoveries). The change

in variable importance for the T2D AdaPT models are displayed in Figure 2.22. This set
of eSNPs is associated with 5,970 cis-eQTL genes for which we then applied gene ontology
enrichment analysis to Ashburner00, GO18, identifying the gene enrichment for biological
processes displayed in Figure 2.5.

2.5.7 BMI results

We also applied our pipeline of analysis to BMI, unadjusted for waist-to-hip ratio (WHR),
using GWAS results for individuals of European ancestry available from the GIANT Con-
sortium. Specifically, we approached BMI in the same manner as SCZ: apply AdaPT to
GWAS results from earlier studies with a sample size of 322,154 individuals Locke15; then
compare the nominal replication results on recently conducted studies with a sample size of
approximately 700,000 individuals Yengo18. As before, all of the 2015-only studies from
Locke15 were included as a subset of all 2018 studies Yengo18. Because both Locke15 and
Yengo18 use the inverse variance-weighted fixed effects approach for meta-analysis, we then
compute statistics for the studies exclusive to 2018-only studies in Yengo18. Additionally,
to make this example more comparable to the SCZ use, we also use GWAS results for
WHR Shungin15 as a covariate (analogous to BD for SCZ). Following pre-processing steps
(matching SNPs across studies and effect alleles in both WHR and BMI), we identified
47,690 GTEx eSNPs from a set of nearly two million SNPs, based on the definition explained
in Data. Figure 2.23 displays the enrichment for the GTEx eSNPs compared to the original
set of pre-processed SNPs for the 2015-only studies.

Based on previous knowledge of BMI tissue expression associations Locke15, we create a
vector of covariates xBMI

i summarizing expression level information from GTEx for brain and

adipose tissues (both subcutaneous and visceral (omentum)). Specifically, we calculate β̃rBMI

i

for each rBMI ∈ {GTEx brain tissues, adipose - subcutaneous, adipose - visceral (omentum)},
where we consider the following brain tissues: (1) amygdala, (2) anterior cingulate cortex
BA24, (3) caudate basal ganglia, (4) cerebellar hemisphere, (5) frontal cortex BA9, (6) hip-
pocampus, (7) hypothalamus, (8) nucleus accumbens basal ganglia, (9) putamen basal ganglia,
(10) spinal cord cervical c-1, and (11) substantia nigra. We do not consider the available
cerebellum cortex tissue samples from GTEx as these are duplicates of cerebellar hemisphere
and frontal cortex BA9 respectively. We instead only use the samples taken the same time
as the other brain sub-regions at the University of Miami Brain Endowment Bank, preserved
by snap freezing (see GTEx FAQs).

We also created an aggregate across Grnc
i , all cis-eQTL genes associated with eSNP i for

each non-cerebellar hemisphere brain tissue region rnc,

β̄nc
i =

1

|Grnc
i |

∑
g∈Grnc

i

|βrnc

i,g |. (2.14)
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We did not include the cerebellum tissue samples in this aggregate due to the reported
distinctness of the cerebellum relative to other brain tissue samples GTEx2015. Similarly,
we computed an average across the two adipose tissues. As before, when calculating the
various eQTL slopes summaries, if eSNP i was not an eQTL for a particular region then we
impute a value of zero reflecting the lack of associated expression.

Furthermore, WGCNA module assignments were generated using protein coding genes for
three different sets of tissues: (1) all non-cerebellar hemisphere brain tissues, (2) cerebellar
hemisphere only tissue, and (3) adipose tissues (using same settings described previously in
Type 2 diabetes results). Together with the WHR z-statistics and covariates accounting for
the associations and WGCNA module indicators, xBMI

i contained 110 variables.

For BMI eSPS, 376 have p-value exactly equal to one, leading to the same problem as
we encountered in the T2D analysis. Again, we proceed by randomly drawing replacement
p-values for these 376 eSNPs from a uniform distribution between 0.97 and 1−1E−15. Figure
2.24 shows how AdaPT fails to obtain any discoveries across the various α levels without
making an adjustment to the p-values. With this limitation recognized, we proceed to focus
on the discoveries returned by AdaPT using the adjusted p-values at α = 0.05.

Unlike SCZ and T2D, AdaPT using all of the covariates (with the same tuning parameters
as SCZ) detected fewer discoveries: 1,383 eSNPs compared to 1,624 eSNPs discovered by
the intercept-only AdaPT model at target FDR level α = 0.05. With further boosting
regularization, beyond what is considered here, one could achieve the intercept-only results
with gradient boosted trees. Of these 1,383 discoveries, approximately 83% (1,140 eSNPs)
were nominal replications with p-values less than or equal to 0.05 in the independent 2018-
only studies. Figure 2.25 displays the increasing smoothing spline relationship between the
2018-only p-values and the resulting 2015-only q-values from the AdaPT search on the log10
scale. The much higher observed nominal replication rate is not surprising given the well
powered size of the BMI studies, as indicated by the y-axis of Figure 2.25, which reflects the
level of enrichment for the 2018-only studies.

Additionally, gene ontology enrichment analysis for the 1,383 discoveries using all
covariates revealed no significant biological process enrichment at target FDR level α = 0.05.
One concern is that a model with 110 variables is excessive, because the variable importance
plots for the BMI AdaPT models in Figures 2.26(A-B), along with the partial dependence
plots in Figures 2.27(A-B), emphasize the relative importance of the WHR z-statistics
compared to other covariates. To test this conjecture, we explored two simpler models
using (1) WHR z-statistics only and (2) WHR z-statistics with eQTL slope summaries.
These produced 1,324 and 1,351 discoveries at the 0.05 level, respectively. We conclude that
the available covariates do not provide sufficient additional information beyond the signal
available with this immense sample and consequently including covariates in the AdaPT
model does not increase the power of the procedure.
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2.5.8 CV tuning for SCZ, T2D, and BMI results

Rather than fixing the parameter settings for the XGBoost gradient boosted trees, we use
the CV algorithm (detailed in Methods) at two steps of the search to tune the models (see
the following section for justification of using two CV steps). For our search space, we
evaluate a small range of values for the number of trees P and limit the maximum tree
depth D to result in reasonably shallow trees (referred to as nrounds and max depth in the
xgboost package xgboost19).

First, for SCZ analysis, when exploring the improvement in discovery rate for the eSNPs
by incrementally including more information, we used the following XGBoost settings:

• BD z-stats: Combinations of P ∈ {100, 150}, D ∈ {1, 6},

• BD z-stats + eQTL slopes: Combinations of P ∈ {100, 150}, D ∈ {3, 6},

• BD z-stats + eQTL slopes + WGCNA: Combinations of P ∈ {100, 150}, D ∈ {2, 3},

• WGCNA only: Combinations of P ∈ {100, 150}, D ∈ {1, 2, 3}.

We explored different settings for the different possible covariates to address the types of
variables included. For instance, when using the BD z-statistics only, we considered both
single-split “stumps” as well as more depth with six splits to potentially handle the variable’s
symmetric relationship. Once we have all three types of covariates (BD z-statistics, eQTL
slope summaries, and WGCNA results), we limit the maximum depth to be at least two to
ensure possible interactions can be captured.

The selected number of trees P and maximum depth D for each of these sets of covariates
is displayed in Table 2.1. When using only the BD z-statistics, as well as only including the
eQTL slopes, the single-split settings were selected in the first CV step while the higher depth
was selected in the second CV step. When using all covariates, the most complex settings
(largest number of trees and largest depth) are selected in both CV steps. This agreement
in selection is not surprising given the choice of the low starting threshold s0 = 0.05, which
differs from the results displayed in Table 2.3 of the next section using s0 = 0.45. We
evaluated the same possible settings for the various all 2018 results displayed in Figures
2.15(C-D): the same choices for P and D displayed in Table 2.1 were selected in both CV
steps.

For the T2D and BMI results with their full set of covariates, we evaluated four com-
binations: (1) P = 100, D = 2, (2) P = 150, D = 2, (3) P = 100, D = 3, and (4)
P = 150, D = 3. For the BMI results using only WHR z-statistics, we varied over
P ∈ {100, 150} and D ∈ {1, 6}; for the results using WHR z-statistics with the eQTL slopes,
we used combinations of P ∈ {100, 150}, D ∈ {3, 6}. The selected number of trees P and
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maximum depth D for each of these sets of AdaPT results at both CV steps is displayed in
Table 2.2.

2.5.9 Selection of s0 and number of CV steps

To justify the selection of both the starting threshold s0 and number of CV steps for the
AdaPT search, we generated simulations from the first AdaPT models returned from the
SCZ 2014-only results. While these models are based on AdaPT results with a starting
threshold of s0 = 0.05 following one CV step, they are only from the first model and are
not explicitly parametrized by s0 and the number of CV steps. We know, however, that
these first models are the result of using P = 150 trees with a maximum depth of D = 3, as
indicated in Table 2.1 of the previous section.

Let π̂∗
1 and µ̂∗ be the first models for the probability of non-null and effect size under

the alternative that AdaPT returns for the eSNPs using all covariates xSCZ
i . We use these

models as the “truth” for generating data, in which a single iteration of the simulation
proceeds as follows:

• For each eSNP i ∈ [n∗
SCZ]

1. Generate test status: Hi|xSCZ
i ∼ Bernoulli

(
π̂∗
1(x

SCZ
i )

)
.

2. Generate simulated effect sizes:

− log pi|Hi, x
SCZ
i ∼

{
Exp

(
1
)
if Hi = 0,

Exp
(
1/µ̂∗(xSCZ

i )
)
if Hi = 1.

(2.15)

3. Transform to p-values pi.

• Apply AdaPT to simulated study p-values with specified s0 and v CV steps with two
candidate settings:

1. number of trees P = 100 and maximum depth D = 2,

2. number of trees P = 150 and maximum depth D = 3.

• Compute observed power and FDP at range of target FDR α values.

We generate one-hundred simulations this way for each possible threshold s0 ∈ {0.05, 0.25, 0.45}
and v ∈ {1, 2, 5} CV steps. Figure 2.28 displays the average difference in power between the
different starting threshold values by the number of CV steps. Although the differences are
small, we see that using s0 = 0.05 results in higher power, on average, than both 0.25 and
the recommended 0.45 value. Using this low starting threshold of s0 = 0.05, we then directly
compute the difference in power between the different number of CV steps displayed in
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Figure 2.29. Unsurprisingly, while again the differences are small, only one CV step results
in the lowest power, on average. Since the computational cost of AdaPT with CV tuning
is reduced by only using two CV steps instead of a higher number, such as five, and the
simulations demonstrate on average no difference in power at both α values of 0.05 and 0.10,
we use the starting threshold of s0 = 0.05 with two CV steps in our applications of AdaPT.

In the previous section, Table 2.1 displayed the selections in both CV steps with s0 = 0.05.
For comparison, Table 2.3 displays the selections using s0 = 0.45. Instead of selecting the
same settings in both steps, the higher initial threshold selects the least complex settings
(smallest number of trees and minimum depth) in the first CV step before flipping to the
most complex settings in the second step. Intuitively, the higher initial threshold means
more information is masked from the models, so it is not surprising to see less complex
settings chosen. This further reinforces the use of the lower initial threshold s0 = 0.05: it
starts with more revealed information and selects model settings corresponding to improved
CV performance for tests with lower p-values of interest.

2.5.10 Dependent p-value block simulation

To demonstrate the performance of AdaPT in the presence of dependent tests, we construct
simulations with a block-correlation scheme to emulate LD structure for SNPs. We consider
a setting with two independent covariates,

xi = (xi1, xi2),

where xi1, xi2 ∼ Uniform(0, 1).

For each test i ∈ [n], we define a linear relationship for the log-odds of being non-null using
these covariates,

logit(π1,i(xi)) = β0 + β1xi1 + β2xi2.

Then, the resulting status of the test Hi is a Bernoulli random variable based on the
probability π1,i(xi) where Hi = 1 indicates the test i is non-null while Hi = 0 indicates a
true null,

Hi ∼ Bernoulli(π1,i(xi)).

Given this test status, a vector of true effect sizes µ = c(µi, . . . , µn) is also generated as a
function of the covariates,

µi(xi) =

{
max{µfloor, γ1xi1 + γ2xi2} if Hi = 1,

0 otherwise.

To simulate observed effect sizes, we construct an n × n covariance matrix Σ with B
blocks of equal size n

B . Each block b ∈ [B] has constant correlation ρ between all tests
within the block, while each block is independent of each other. This results in constructing
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individual block covariance matrices, Σb, with ones along the diagonal and ρ for the off-
diagonal elements. Each of these individual matrices are placed along the diagonal of Σ,
with the remaining off-diagonal elements set to zero so blocks are independent of each other.
As an example, if each block contained only two tests they would be constructed in the
following manner,

Σb =

[
1 ρ
ρ 1

]
⇒ Σ =



[
1 ρ
ρ 1

]
0 ... 0

0

[
1 ρ
ρ 1

]
... ...

... ... ... ...

0 ... ...

[
1 ρ
ρ 1

]


Using this block-wise construction of the covariance matrix, we then proceed to generate

the vector of observed effect sizes z = (zi, . . . , zn) from a multivariate Gaussian distribution,

z ∼ Normal(µ,Σ).

We compute the resulting two-side p-value pi = 2 ·Φ(−|zi|) for each test’s observed effect
size.

For each dataset generated using this process above, we compute both the observed FDP
and power for the classical BH procedure and two different versions of AdaPT:

1. intercept-only,

2. gradient boosted trees with covariates: xi = (xi1, xi2).

We fix both n = 10,000 and B = 500 blocks, resulting in 500 blocks of twenty tests each.
Rather than force all non-nulls together in the same blocks, we first calculate the minimum
number of blocks required to hold all non-null tests, B∗

A = ⌈|{i : Hi = 1}|/20⌉. The non-null
tests are then randomly assigned to BA = ⌈(500 +B∗

A)/2⌉ blocks, ensuring that there will
be blocks containing both null and non-null tests. The |{i : Hi = 0}| tests are randomly
assigned to available spots within the BA blocks as well as the remaining 500−BA strictly
null blocks.

In our simulations, we fix β0 = −3 and require that both β1 = β2 and γ1 = γ2. We vary
the following settings in our simulations:

1. block correlation ρ ∈ {0, 0.25, 0.5, 0.75, 1} where each block has the same value for ρ,
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2. β1, β2 ∈ {1, 2, 3},

3. µfloor ∈ {0.5, 1, 1.5},

4. γ1, γ2 ∈ {0.5, .75, 1}.

We generate 100 simulations using the data generating process above, computing both the
FDP and power for BH and the two different versions of AdaPT. For the covariate-informed
version of AdaPT, we use gradient boosted trees via XGBoost with P = 100 trees and
maximum depth D = 1. For both versions of AdaPT results, we start with the initial
threshold of s0 = 0.45 and update the model ten times throughout the search (rather than
the recommended twenty for computational speed).

Figures 2.30, 2.31, and 2.32 display points for the average observed FDP and power
across the 100 simulations with plus/minus two standard errors bars for µfloor =0.5, 1, and
1.5 respectively, with target FDR level α = 0.05. The columns in each figure correspond
to the different values considered for γ1 = γ2, while the rows correspond to β1 = β2. The
x-axis for the figures displays the increasing block correlation ρ. Regardless of the simulation
setting, we see that the AdaPT results when accounting for covariates (xi1, xi2) maintains
valid FDR control at 0.05 similar to BH. This holds in the settings with greater effect sizes,
as well as when the covariate information displays the best performance in terms of observed
power (the bottom right panels of each figure). We can see that the intercept-only approach
fails to achieve FDR control under block settings with perfect correlation, while the use of
covariate information appears to inhibits such behavior. Our focus on positive correlation
values is synonymous with the setting faced in genomics regarding LD structure. Further
exploration of AdaPT’s performance in settings with arbitrary dependence structure presents
an opportunity for future work, as well as accounting for covariate information that predict
observed correlated noise.

2.5.11 Simulations demonstrating effects of overfitting

It is possible that flexible methods like gradient boosted trees can be overfit, especially on
small data sets. This could potentially lead to concerns about their incorporation in AdaPT.
To assess the effects of overfitting the gradient boosted trees in AdaPT, we constructed
simulated datasets using the first models returned by AdaPT on the SCZ GWAS results,
π̂∗
1 and µ̂∗, with the actual covariates xSCZ

i for each of the n∗
SCZ = 25,076 eSNPs. We then

simulated data using these models in the same manner previously explained for choosing s0
and the number of CV steps, and computed the observed power and FDP over a range of
number of trees P ∈ {100, 300, 500, 700, 900}.

Figure 2.33(A) displays the distributions for fifty simulations of the observed FDP as the
number of trees in the gradient boosted model increases. Regardless of the number of trees,
we still maintain valid FDR control. However, Figure 2.33(B) shows as the number of trees
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Figure 2.6: Summary of AdaPT EM algorithm.

increases, the method will overfit, resulting in a reduction in power. This reinforces that,
although good model tuning can be important for power, the AdaPT method continues to
maintain FDR control even as the model breaks down.
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Figure 2.7: Manhattan q-value plots of SCZ AdaPT discoveries (orange) using (A) intercept-only
model compared to (B) covariate informed model at target α = 0.05, with lead SNPs for
independent loci denoted by Xs. (C) Comparison of the number of independent loci for each
discovery set at target α = 0.05 based on LD pruning with the respective AdaPT q-values and
(D) their resulting discovery set intersections.

Table 2.1: Selected boosting settings for number of trees P and maximum depth D with AdaPT
CV algorithm by covariates for eSNPs in each CV step.

Covariates m∗
1 m∗

2

BD z-stats P = 150, D = 1 P = 150, D = 6

BD z-stats + eQTL slopes P = 150, D = 3 P = 150, D = 6

BD z-stats + eQTL slopes + WGCNA P = 150, D = 3 P = 150, D = 3

WGCNA only P = 150, D = 3 P = 150, D = 3

Table 2.2: Selected boosting settings for number of trees P and maximum depth D with AdaPT
CV algorithm by GWAS results in each CV step.

GWAS results m∗
1 m∗

2

T2D P = 100, D = 2 P = 150, D = 3

BMI (all covariates) P = 100, D = 2 P = 150, D = 3

BMI (WHR z-stats only) P = 150, D = 1 P = 150, D = 1

BMI (WHR z-stats + eQTL slopes) P = 100, D = 3 P = 150, D = 3
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Figure 2.8: Comparison of the number of independent loci in the AdaPT discovery sets by type
for each chromosome.

Table 2.3: Selected boosting settings for number of trees P and maximum depth D with AdaPT
CV algorithm by covariates for eSNPs with s0 = 0.45.

Covariates m∗
1 m∗

2

BD z-stats P = 50, D = 1 P = 150, D = 1

BD z-stats + eQTL slopes P = 100, D = 1 P = 150, D = 2

BD z-stats + eQTL slopes + WGCNA P = 100, D = 2 P = 150, D = 3

WGCNA only P = 150, D = 3 P = 150, D = 3
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Figure 2.9: Comparison of the number of independent loci for each discovery set at target
α = 0.05, based on LD pruning with the with 2014-only SCZ p-values.

Figure 2.10: Change in variable importance for AdaPT non-null effect size µ model across search,
with top variables in final model highlighted.
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Figure 2.11: Change in partial dependence for non-null effect size µ and BD z-statistics across µ
models in AdaPT search.
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Figure 2.12: Change in partial dependence plots for probability of being non-null π1 in (A-C),
and the effect size under alternative µ in (D-F), for each type of eQTL slope. Rugs along x-axis
denote distribution of values for each variable.
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Figure 2.13: Comparison of SCZ p-value distributions from 2014 studies by whether or not the
eSNP had an associated cis-eQTL gene in the module.

Figure 2.14: Change in partial dependence for BD z-statistics and probability of being non-null
π1 for the AdaPT results using (A) only BD z-statistics and (B) all covariates without any
interactions.
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Figure 2.15: Manhattan plots of SCZ AdaPT discoveries (in orange) with all 2018 studies using
(A) intercept-only model compared to (B) covariate informed model at target α = 0.05. (C)
Comparison of the number of discoveries at target α = 0.05 for AdaPT with varying levels of
covariates and (D) their resulting discovery set intersections.
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Figure 2.16: Using all 2018 studies: change in variable importance for AdaPT (A) probability of
being non-null π1 and (B) effect size under alternative µ models across search, with top variables
in final model highlighted.
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Figure 2.17: Using all 2018 studies: change in partial dependence for BD z-statistics and AdaPT
(A) probability of being non-null π1 and (B) effect size under alternative µ models across search.
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Figure 2.18: Using all 2018 studies: change in partial dependence plots for probability of being
non-null π1 in (A-C), and the effect size under alternative µ in (D-F), for each type of BrainVar
eQTL slope. Rugs along x-axis denote distribution of values for each variable.
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Figure 2.19: Using all 2018 studies: comparison of SCZ p-value distributions from 2014 studies
by whether or not the eSNP had an associated cis-eQTL gene in the module.
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Figure 2.20: A comparison of qq-plots revealing T2D enrichment for GTEx eSNPs compared to
full set of SNPs.
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Figure 2.21: Comparison of the number of discoveries by AdaPT for T2D by whether or not the
adjusted or unadjusted p-values were used.
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Figure 2.22: Change in T2D variable importance for AdaPT (A) probability of being non-null π1
and (B) effect size under alternative µ models across search, with top variables in final model
highlighted.
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Figure 2.23: Comparison of qq-plots revealing BMI enrichment for GTEx eSNPs compared to
full set of SNPs.
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Figure 2.24: Comparison of the number of discoveries by AdaPT for BMI by whether or not the
adjusted or unadjusted p-values were used.

Figure 2.25: Black line displays smooth relationship between BMI p-values from 2018-only
studies and the AdaPT q-values from the 2015-only studies. Blue-shaded region indicates AdaPT
discoveries at α = 0.05 that are nominal replications, p-values from the 2018-only studies < 0.05
while red denotes discoveries which failed to replicate.
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Figure 2.26: Change in BMI variable importance for AdaPT (A) probability of being non-null π1
and (B) effect size under alternative µ models across search, with top variables in final model
highlighted.
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Figure 2.27: Change in BMI partial dependence for WHR z-statistics and AdaPT (A) probability
of being non-null π1 and (B) effect size under alternative µ models across search.
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Figure 2.28: Difference in simulation power between different initial thresholds s0 for AdaPT
search by number of CV steps. Points denote averages with plus/minus two standard error bars.

Figure 2.29: Difference in simulation power between the number of CV steps with s0 = 0.05.
Points denote averages with plus/minus two standard error bars.
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Figure 2.30: Comparison of average (A) FDP and (B) power with plus/minus two standard error
bars for 100 simulations with µfloor = 0.5, and varying values for β1 (rows) and γ1 (columns)
and block correlation ρ.
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Figure 2.31: Comparison of average (A) FDP and (B) power with plus/minus two standard error
bars for 100 simulations with µfloor = 1, and varying values for β1 (rows) and γ1 (columns) and
block correlation ρ.
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Figure 2.32: Comparison of average (A) FDP and (B) power with plus/minus two standard error
bars for 100 simulations with µfloor = 1.5, and varying values for β1 (rows) and γ1 (columns)
and block correlation ρ.
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Figure 2.33: Distributions of observed (A) FDP and (B) power for simulations as the number of
AdaPT gradient boosted trees increases by target FDR level α. Points denote averages with
plus/minus two standard error intervals.

61





Three

Identifying and Correcting Type I Error Rate
Inflation in Gene-level Testing

The ‘snp-wise mean model’ of Multi-marker Analysis of GenoMic Annotation is often used
to perform gene-level testing for association with disease and other phenotypes. This
methodology, in turn, forms the foundation for H-MAGMA. Unfortunately, that foundation
is unsound, with implications publications including recent H-MAGMA results published in
Nature Neuroscience regarding genes associated with psychiatric disorders: e.g., only 125 of
H-MAGMA’s 275 reported discoveries for autism replicate when the foundation’s flaws are
corrected.

This chapter appears in [Yurko et al., 2021a].

3.1 Introduction

The ‘snp-wise mean model’ of Multi-marker Analysis of GenoMic Annotation [de Leeuw et al., 2015]
(hereafter MAGMA) is often used to perform gene-level testing for association with disease
or other phenotypes, taking as input genomewide association study (GWAS) summary
statistics and reference linkage disequilibrium (LD) data. The success of this method-
ology (MAGMA has 826 Google Scholar citations as of 18 August, 2020) has led to
its incorporation into a variety of tools, including an atlas of over 4,700 GWAS results
[Watanabe et al., 2019] and various testing methods. For example, it is the foundation for
H-MAGMA[Sey et al., 2020], which also incorporates Hi-C data and uses the Benjamini-
Hochberg (BH)[Benjamini and Hochberg, 1995] procedure for false discovery rate (FDR)
control. When applying MAGMA, however, we noted that its distributional properties did
not comport with statistical expectation.

When investigating the basis of MAGMA’s distributional properties, we also discovered
a critical departure of the accepted MAGMA implementation from the manuscript details1.

1Our findings are pertinent to version 1.07b of MAGMA, since the latest version (1.08) was released with

63



3. identifying and correcting type i error rate inflation in gene-level
testing

MAGMA, as described in the manuscript, builds on Brown’s approximation of Fisher’s
method for combining dependent SNP-level p-values [Brown, 1975], adjusting for the LD-
induced covariance of SNP p-values. This statistical approximation, however, is valid only for
one-sided tests. GWAS summary statistics are necessarily two-sided tests because which SNP
allele confers risk is not known, a priori [Willer et al., 2010]. When applied to two-sided tests,
as in the analysis of GWAS summary statistics by MAGMA, the assumed null distribution
is incorrect in both its distributional form and its covariance. The correct null distribution
for simulated multivariate normal two-sided test statistics (Fig. 3.1a) does not follow the
re-scaled chi-square distribution implied by Brown’s approximation (denoted by MAGMA:
paper). Furthermore, comparison to a known correction to the covariance for two-sided
tests [Yang et al., 2016] leads to a stark difference with the one-sided test approximation
(Supplementary Fig. 3.3; see Supplement for details of this and other calculations).

This incorrect null distribution should lead to invalid and non-uniform null p-values
with a severely inflated error rate. Curiously, this does not comport with the observed
performance of MAGMA when tests are conducted at small significance level α. How could
this be? The software embodies two undocumented, ad-hoc corrections: replacing the
correlation coefficient ρ in Brown’s approximation with its square, which acts as a rough
correction for one- versus two-sidedness (denoted as MAGMA: ρ2 in Fig. 3.1), followed by
an empirically-motivated warping of the p-values to reduce the false positive rate (MAGMA:
code). While these corrections together result in improved error rate control at small α,
ultimately, this extension of Brown’s approximation is invalid for two-sided tests (Fig. 3.1a)
and it yields an inflated error rate that worsens for larger genes (Fig. 3.1b and Supplementary
Fig. 3.4).

MAGMA’s incorrect null p-value distributions (Fig. 3.1c) are particularly relevant for
procedures that correct for multiple testing, such as family-wise error rates (Supplementary
Fig. 3.5 and 3.6). We demonstrate this impact with simulations using real genotype data
[1000 Genomes Project Consortium and others, 2012] to show its failure to maintain FDR
control using the BH procedure (Fig. 3.1d). Additionally, we observe that the concern for
MAGMA in the setting of gene-set enrichment analysis is a loss of power due to the properties
of the procedures (see Supplement and Supplementary Fig. 3.7-3.9). In comparison, Monte
Carlo-based approaches to computing the null guarantee appropriate error-rate control and
uniform p-value distributions under the assumed model (Fig. 3.1b-d), even when using the
same test statistic as MAGMA (referred to as Corrected).

The use of MAGMA impacts the results and development of new procedures that
inherit its statistical flaws. We examine the results of one such paper, published in Nature
Neuroscience, which proposes H-MAGMA[Sey et al., 2020]. After introducing the concept

a different but corrected testing strategy in response to a pre-print of our manuscript. For details regarding
the MAGMA v1.08 update: https://www.biorxiv.org/content/10.1101/2020.09.25.310722v1
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of H-MAGMA, which relies on MAGMA for computing gene-level p-values and BH for FDR
control, the authors apply it to data from five psychiatric disorders. Reanalyzing these
data, we observe that the H-MAGMA p-value distributions are improper (Fig. 3.2a) and
testing using corrected p-values yields substantially smaller subsets of the reported results
(Fig. 3.2b and Supplementary Table 3.1). This reduction is more prevalent in the weaker
signal setting for autism spectrum disorder, for which only 125 of the 275 genes H-MAGMA
associates with autism replicate with the corrected p-values.

Correcting MAGMA’s underlying gene-level p-value computation is essential to ensure
that novel extensions, such as H-MAGMA, do not yield excess false positives. As our results
suggest, a simple solution is to replace Brown’s approximation in MAGMA with Monte
Carlo-based procedures, similar to VEGAS [Liu et al., 2010, Mishra and Macgregor, 2015].
We believe these results are critical for researchers wishing to interpret gene-based testing or
for those wishing to build new methods in this challenging area.

3.2 Background

3.2.1 Combining p-values under dependence

Fisher’s method [Fisher, R.A., 1925] is a classical approach to combine p-values from m
tests. Given observed p-values pj for each test j ∈ [m], it computes a summary test statistic,

T =
m∑
j

−2 log pj . (3.1)

Under the assumption of independent p-values, Fisher’s test statistic T ∼ χ2
2m. Fisher’s

method is used to test the global null, i.e. all SNPs j ∈ [m] in gene g are null versus at least
one SNP in the gene is non-null,

H0,g : Hj = 0 ∀j ∈ [m] versus H1,g : ∃j ∈ [m] such that Hj = 1, (3.2)

where Hj = 0 if SNP j is null, and Hj = 1 if non-null.

However, p-values for nearby SNPs are often dependent due to LD. Brown introduced
an extension of Fisher’s method in the case of dependence [Brown, 1975], for the setting
where m tests are based on multivariate Gaussian random variables,

z = (z1, . . . , zm) ∼ Normal(µ,Σm×m), (3.3)

where µ is the vector of true centers for the m tests and Σm×m is the corresponding
covariance matrix. Brown’s test uses the same Fisher’s test statistics as in Equation 3.1,
but assumes that the null distribution is T ∼ cχ2

2v, a re-scaled χ2 distribution. The two
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Figure 3.1: a, Comparison of the different covariance approximations for fitting the test statistic
distribution with Brown’s rescaled χ2 using two-sided summary statistics. Test statistic distribu-
tion is generated using fifty-dimensional multivariate Gaussian distribution centered with mean
zero and block correlation ρ = 0.50. b, Comparison of the type 1 error rate control, plus/minus
two standard errors at target α = 0.05 (denoted by dashed red line) by gene-level method for
small (17 SNPs) and large (1,068 SNPs) example genes. c, Comparison of null histograms by
method for ≈ 53000 genes of different sizes averaged over 1,000 simulations (standard errors
are too small to be visible). Horizontal black lines represents ideal uniform distribution for
null p-values. d, Comparison of average BH false discovery proportions (FDP) across 1000
simulations, plus/minus two standard errors, at target FDR level α = 0.05 (denoted with dashed
red line) by gene-level method.
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Figure 3.2: a, Comparison of autism spectrum disorder (ASD) gene-level p-values, based on the
adult Hi-C data annotations, computed with H-MAGMA versus corrected Monte Carlo-based
approach. b, Percentage of H-MAMGA reported discoveries using BH at target FDR level
α = 0.05 for five psychiatric disorders due to MAGMA inflation versus the remaining Monte
Carlo-corrected set.

constants c and v are calculated by matching the first two moments of the re-scaled χ2 to
the moments of Fisher’s test statistic T induced by the multivariate Gaussian,

v =
E[T ]2

Var[T ]
and c =

Var[T ]

2E[T ]
, (3.4)

where E[T ] = 2m and Var[T ] = 4m+ 2
∑
j<k

Cov(−2logpj ,−2logpk), for j, k ∈ [m]. (3.5)

Instead of computing the covariance directly with numerical integration, which can
be computationally intensive in -omics settings such as GWAS, Brown approximated the
covariance between tests j and k as a function of the correlation of the corresponding
Gaussians, ρjk,

Cov(−2logpj ,−2logpk) ≈

{
ρjk · (3.25 + 0.75ρjk) if ρjk ≥ 0,

ρjk · (3.27 + 0.71ρjk) if 0.5 ≤ ρjk < 0.
(3.6)

Since Brown’s initial publication, there have been further refinements to this approxima-
tion [Kost and McDermott, 2002, Yang, 2010]; for example, Kost and McDermott[Kost and McDermott, 2002]
used polynomial regression over a grid of values for −0.98 ≤ ρjk ≤ 0.98 by increments of
0.02,

Cov(−2 log pj ,−2 log pk) ≈ 3.263ρjk + 0.710ρ2jk + 0.027ρ3jk. (3.7)

However, Brown’s covariance approximation and its various refinements are based on the
usage of one-sided tests pj = 1− ϕ(zj), where zj is the corresponding z-statistic for test j
and ϕ is the Gaussian cumulative distribution function. [Yang et al., 2016] introduced an
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approximation for two-sided tests, pj = 2ϕ(−|zj |), in the context of detecting association
between a SNP and multivariate phenotypic traits, using a tenth order polynomial,

Cov(−2 log pj ,−2 log pk) ≈ 3.9081ρ2jk+0.0313ρ4jk+0.1022ρ6jk−0.1378ρ8jk+0.0941ρ10jk. (3.8)

This yields a drastically different covariance approximation from one-sided tests as displayed
in Supplementary Fig. 3.3. We provide a simpler two-sided approximation using polynomial
regression over a grid of values for −1 ≤ ρjk ≤ 1 by increments of 0.01,

Cov(−2 log pj ,−2 log pk) ≈ 3.902364ρ2jk + 0.051520ρ4jk + 0.032832ρ6jk. (3.9)

The median difference between the approximations in Equations 3.8 and 3.9 is 0.0006465, with
a maximum observed difference of 0.011184. Equation 3.9 also displays a smaller maximum
absolute difference of 0.0009217044 with a recent calculation using Hermite polynomials
[Zhang and Wu, 2020] than Equation 3.8, which has a maximum absolute difference of
0.0104.

3.2.2 MAGMA ‘snp-wise-mean model’

The MAGMA ‘snp-wise-mean model’ is used to compute a gene-level test statistic from
GWAS summary statistics. In the original publication [de Leeuw et al., 2015], the authors
describe the use of Brown’s covariance approximation, which is inappropriate for two-sided
tests (Supplementary Fig. 3.3). However, the maintainers of the MAGMA software have
made several adjustments to this approximation not described in the manuscript. First,
prior to approximating the covariance based on the sign of the correlation, they square the
correlation values, ρ2jk, resulting in,

Cov(−2 log pj ,−2 log pk) ≈ ρ2jk · (3.25 + 0.75ρ2jk). (3.10)

This covariance approximation (Supplementary Fig. 3.3) alleviates the initial stark difference
in covariance values in the presence of negative correlation from using Brown’s one-sided
approximation and is much closer to, but still under-estimating, the appropriate approxima-
tion for two-sided tests. The software includes an additional adjustment to the resulting
gene-level p-value pg,

p∗g = pcg where c = (1.025)log10(pg). (3.11)

Based on correspondence with the maintainers of MAGMA, they determined the use
of an adjusted p-value p∗g from the power c after viewing simulations to reveal Brown’s
approximation would yield smaller p-values than the truth. By using the power adjustment
above, smaller values pg will receive a stronger adjustment. It is unfortunate that these
adjustments were not presented in the manuscript, which thus misleads readers who are
exploring the usage of similar methodology for combining p-values from GWAS summary
statistics.
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3.3 Methodology

3.3.1 Methods for computing gene-level p-values

To evaluate the impact of MAGMA’s implementation, we compare these approaches:

1. MAGMA: paper - the approach presented in the original MAGMA manuscript following
Brown’s covariance approximation for one-sided tests, red-dashed line in Supplementary
Fig. 3.3,

2. MAGMA: ρ2 - replacement of Brown’s covariance approximation with squared correla-
tion values, cyan-dashed line in Supplementary Fig. 3.3,

3. MAGMA: code - includes the use of both ρ2 and the adjustment power c,

4. Two-sided approximation - replacement of Brown’s covariance approximation with the
appropriate two-sided covariance [Yang et al., 2016], green-solid line in Supplementary
Fig. 3.3.

5. Corrected - Monte Carlo simulation using the Fisher test statistic, T ∗
i = −2 ·

∑m
j log p∗j .

Details below.

The Corrected Monte Carlo-based approach for computing empirical p-values differs
from MAGMA in that it does not rely on Brown’s original assumption of a re-scaled χ2

distribution. Instead, we generate N draws of m-dimensional Gaussian random variables,

z∗ = (z∗1 , . . . , z
∗
m) ∼ Normal(0,Σm×m), (3.12)

where 0 is a vector of zeroes representing the null distribution with Σm×m as the LD
structure of the variants within a gene. A test statistic T ∗

i is calculated for each of the
i ∈ [N ] draws and, using the observed test statistic T , an empirical gene-level p-value is
calculated as:

p =

∑n
i 1(T

∗
i > T ) + 1

N + 1
. (3.13)

To be consistent with MAGMA, we use the same test statistic T ∗
i = −2 ·

∑m
j log p∗j , where

p∗j = 2 · ϕ(−|z∗j |) is a two-sided p-value. While the Corrected results in this manuscript
refers matching the MAGMA test statistic, we observed equivalent results when using VE-
GAS [Liu et al., 2010, Mishra and Macgregor, 2015], a similar Monte Carlo-based approach
based on a different test statistic, T ∗

i = z∗Tz∗.
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Computational considerations

We use the Cholesky decomposition ofΣm×m = LLT, where L is a lower triangularm×mma-
trix, to simulate N draws from a m-dimensional multivariate Gaussian distribution. A single
draw z∗ ∼ Normal(0,Σm×m) is generated by multiplying L with a vector of m independent,
standard Gaussian random variables. The combined computational cost of the Cholesky
decomposition with all N draws is O(m3 + Nm2), but blocks of draws can be produced
in parallel to reduce time. We implement these steps in the R[R Core Team, 2020] pack-
age snpcombineR[Yurko, 2020] (available at https://github.com/ryurko/snpcombineR)
using RcppArmadillo[Eddelbuettel and Sanderson, 2014] for efficient computation. Using
this package we can generate 1,000,000 null simulations in ≈ 10 seconds for a gene with
m = 101 SNPs and ≈ 575 seconds with m = 1,068 SNPs (see below for details on example
genes), with a 3.6 GHz Intel processor without using parallel computing. While we consider
a large fixed N in this manuscript (e.g., 1,000,000 is sufficient for testing ≈ 20, 000 genes), in
practice N can be determined adaptively, as described in detail by Liu et. al.[Liu et al., 2010]
in their paper describing VEGAS..

3.3.2 Multivariate Gaussian simulation

As a ‘toy’ example for demonstrating the flaw of Brown’s approximation for two-sided test
statistics, we generate null multivariate Gaussian random variables as in Equation 3.12,
which matches the initial assumption made by Brown in Equation 3.3. For simplicity, we a
m = 50-dimensional covariance matrix with block correlation ρ = 0.5, where the diagonal
elements Σj,j = 1 and all off-diagonal elements Σj,k = 0.5 for j ̸= k, and j, k = 1, . . . ,m. We
use 1,000,000 simulations under this model to generate the correct null distribution for the
test statistic T ∗

i = −2 ·
∑m

j log p∗j in Fig 1a, where p∗j = 2 ·ϕ(−|z∗j |) is a two-sided p-value, as

compared to Brown’s re-scaled χ2 distribution with three different covariance approximations:
MAGMA: paper (red), MAGMA: ρ2 (cyan), and the Two-sided approximation (green).

3.3.3 Example genotype data

To evaluate the performance of the gene-level methods with real data, we randomly select
genes using the sample of 503 individuals from the 1000 Genomes project [1000 Genomes Project Consortium and others, 2012]
of European ancestry (build 37), with NCBI gene-locations accessed from the MAGMA site:
https://ctg.cncr.nl/software/magma. After standard pre-processing steps, excluding
SNPs with minor allele frequency (MAF) less than 0.05 and call rate less than 0.95, the
remaining SNPs were assigned to 19,326 genes using the MAGMA ‘annotate’ command
with 10kb padding (upstream and downstream). We randomly select fifteen candidate genes
from each autosomal chromosome, with stratified sampling of five genes from each of the
following size groups: (1) [10, 100], (2) (100, 500], and (3) (500,∞) SNPs. To remove SNPs
displaying high LD values, these candidate genes were pruned in the following manner:

1. order the SNPs in the gene by minor allele frequencies (MAFs) in descending order,
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2. starting with the SNP with the highest MAF,

• remove all SNPs with r2 ≥ 0.95 within the gene,

• move on to the next SNP that is still remaining,

3. return the retained SNPs that are not in high LD for simulations.

We then randomly selected nine example genes, with stratified sampling of three genes from
the same size groups as above: (1) [10, 100], (2) (100, 500], and (3) (500,∞) SNPs remaining
after pruning. The nine randomly selected genes (with m SNPs after pruning) are: KRT1
(m = 17), FAM13B (24), BMPR2 (38), IDO2 (101), PREX2 (218), RAI14 (220), RYR3
(772), PTPRT (1,026), and AGBL1 (1,068). For each gene of these nine, we resample the
reference genotype matrix 5,000 times to increase the sample size, from the original 503
individuals, to yield more stable and realistic GWAS simulations.

3.3.4 Gene simulation

To simulate GWAS SNP-level statistics, we use a gene’s n×m reference genotype matrix
X where n = 5,000 individuals, m = number of SNPs, and Xi,j ∈ {0, 1, 2} is the number
of effect alleles for individual i at SNP j. We generate simulations for null genes in the
following way:

1. Compute the gene’s correlation matrix Rm×m.

2. Determine the phenotype status Yi ∈ {0, 1} for each individual i ∈ [n] depending on
the expected case rate η:

Yi ∼ Bernoulli(η), (3.14)

3. For each individual SNP j ∈ [m], fit a logistic regression model logit(P(Yi = 1|Xj)) =
β0 + βj ·Xj using all 5,000 individuals, returning the SNP’s two-sided p-value pj .

4. Compute gene-level p-values using the SNP-level statistics and gene correlation matrix
Rm×m with each of the considered methods: (1) MAGMA: paper, (2) MAGMA: ρ2,
(3) MAGMA: code, (4) Two-sided approximation, and (5) Corrected.

To measure the type 1 error rate at target α = 0.05 for the five different methods, we
generate 1,000,000 independent null simulations for each of the nine example genes with the
case-rate η = 0.5.
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3.3.5 Multiple testing simulation

We assess each method’s multiple testing performance by simulating sets of null genes that
are comparable in size to the number of genes tested in H-MAGMA. To make the simulations
more realistic, we generate each set of genes based on the distribution of the number of
SNPs assigned to each gene for the H-MAGMA autism spectrum disorder (ASD) results
using the adult Hi-C data annotations. This corresponds to roughly 82.6% from [10, 100],
16.4% (100, 500], and 1.0% from (500,∞). Using the nine randomly picked genes from each
of the size buckets, we construct each set of null genes by assigning:

• 14,663 from each gene with m ∈ [10, 100],

• 2,827 from each gene with m ∈ (100, 500],

• 177 from each gene with m ∈ (500,∞).

We repeat this process to generate 1,000 sets of G = 53, 001 null genes to assess each
method’s impact on multiple testing corrections. First, we use the Bonferroni correction,
rejecting the gene’s null hypothesis if its p-value is ≤ α

G , to control the target family-wise
error rate (FWER), the probability of making at least one type 1 error, at α = 0.05. We then
apply the Benjamini-Hochberg procedure[Benjamini and Hochberg, 1995] (BH) to control
the false discovery rate (FDR) at target α = 0.05, and compute the average false discovery
proportion (FDP) across the simulations.

3.3.6 Gene-set analysis simulation

We measure the downstream impact of the different approaches for computing gene-level
p-values on self-contained gene-set analysis, i.e., test whether a set of genes is associated with
a phenotype. There are several ways for performing gene-set analysis[De Leeuw et al., 2016],
but we consider three approaches for computing a test statistic Ts for gene-set s with G
genes:

1. MAGMA[de Leeuw et al., 2015] gene-set analysis: each gene g’s p-value pg is converted
to a one-sided z-statistic, zg = ϕ−1(1− pg), then the test statistic is

Ts =

√
G

SDs
· 1

G

G∑
g

zg ∼ t(G−1), (3.15)

where SDs is the sample standard deviation of the gene-set’s one-sided z-statistics.
The one-sided gene-set p-value is computed as ps = 1−Ft(G−1)

(Ts), where Ft(G−1)
is the

cumulative distribution function for the t-distribution with G− 1 degrees of freedom.
Note: this is a separate test from the MAGMA gene-level test described earlier in this
manuscript.
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2. Fisher’s combination test: as presented in Equation 3.1,

Ts =

G∑
g

−2 log pg ∼ χ2
2G (3.16)

3. Stouffer’s z-test: similar to MAGMA, one-sided z-statistics, zg = ϕ−1(1 − pg), are
computed for the test statistic,

Ts =
1√
G

G∑
g

zg ∼ N(0, 1). (3.17)

The gene-set p-value is then computed as ps = 1− ϕ(Ts).

Both Fisher’s and Stouffer’s are testing the global null of the gene-set,

H0,s : Hg = 0 ∀g ∈ [G] versus H1,s : ∃g ∈ [G] such that Hg = 1, (3.18)

i.e. all of the individual genes, g ∈ [G] in gene-set s, are null versus at least one gene in the
set is non-null. In comparison, the MAGMA approach is a one-sided test for whether the
genes in gene-set s are jointly associated with the phenotype based on a measure of the set’s
effect size µs,

H0,s : µs ≤ 0 versus H1,s : µs > 0. (3.19)

We simulate 200,000 gene-sets of size G = 45, constructed with five independent null
genes from each example gene, to compare the gene-set analysis type 1 error rate that follows
from using the different methods for computing gene-level p-values.

3.3.7 Replicating H-MAGMA Analysis

We assess the impact of correcting the usage of MAGMA for computing gene-level p-values
with a Monte Carlo-based approach when applied to the SNP annotations used in H-MAGMA
by Sey et al.[Sey et al., 2020]. Specifically, we recreate the results presented in Extended
Data Fig. 1b of the H-MAGMA manuscript for the GWAS results of five psychiatric
disorders: attention-deficit/hyperactivity disorder[Demontis et al., 2019] (ADHD), autism
spectrum disorder[Grove et al., 2019] (ASD), schizophrenia[Pardiñas et al., 2018] (SCZ),
bipolar disorder[Stahl et al., 2019] (BD) and major depressive disorder[Howard et al., 2018]
(MDD). For each of the five GWAS results, Sey et al.[Sey et al., 2020] assign SNPs to genes
based on annotations derived from two different sources of Hi-C data: (1) adult and (2) fetal
brain tissue samples (available on GitHub: https://github.com/thewonlab/H-MAGMA).
H-MAGMA relies on MAGMA to compute the GWAS gene-level p-values for both adult
and fetal Hi-C annotations, then proceeds to identify which genes are associated with the
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respective GWAS phenotype using BH to control FDR at target α = 0.05. The counts
reported by Sey et al. in Extended Data Fig. 1b correspond to taking the union of the adult
and fetal sets of BH discoveries.

We use the same set of Hi-C derived annotations to compute the Corrected Monte
Carlo-based gene-level p-values with N = 1,200,000 null simulations for each gene. Each
gene’s assumed covariance matrix is based on the sample of 503 individuals of European
ancestry from the 1000 Genomes project, which is the same reference data used by Sey et al.
in H-MAGMA. We proceed to identify the union of adult and fetal BH identified genes at
target FDR level α = 0.05 for each of the five psychiatric disorders’ GWAS and compare to
the reported H-MAGMA results. We encountered minor discrepancies in the total number
of genes with p-values in a subset of the GWAS results as compared to H-MAGMA, since we
were unable to compute gene-level p-values for the following: forty-one adult and forty-five
fetal for ADHD, two adult and one fetal for ASD, and one fetal for SCZ. These differences are
likely due to pre-processing steps that are not publicly available since our analysis matches
the set of genes with p-values returned by using the MAGMA software directly, including
the same set of SNPs by accounting for synonymous identifiers. However, these differences
are negligible and do not impact our results as only one of these missing genes were reported
as an association for ASD by H-MAGMA.

3.4 Results

3.4.1 Comparison of type 1 error rate control

Fig. 1b and Supplementary Fig. 3.4 display the type 1 error rates at target α = 0.05,
plus/minus two standard errors, for the example genes with each of the considered methods
to compute gene-level p-values. The same pattern holds for each gene: the different variants
of MAGMA display inflated type 1 error rates while the Corrected Monte Carlo-based
approach maintains valid control. Unsurprisingly, the incorrect usage of Brown’s covariance
approximation (MAGMA: paper) displays the greatest error rate inflation. MAGMA: code
yields comparable results to the Two-sided approximation, however, it appears to display
higher inflated error rates with more severity for larger genes.

These results are consistent with recent analysis regarding the behavior of Brown’s approx-
imation when applied to two-sided tests generated from multivariate normal data[Zhang and Wu, 2020],
whereas our simulations use real genotype data rather than rely on distributional assump-
tions. The reason for this poor performance stems from the failure of Brown’s re-scaled
χ2 distribution to properly fit the actual null test statistic distribution, regardless of the
covariance approximation, as seen in Fig. 1a for the ‘toy’ multivariate Gaussian example
with m = 50.
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3.4.2 Impact on multiple testing

Supplementary Fig. 3.5 displays the observed FWER across 1,000 simulations of applying
the Bonferroni correction to sets of 53,001 null genes, by each gene-level method. Only the
Corrected Monte Carlo-based approach controls FWER at the target rate α = 0.05 (indicated
by the dashed red line), while all of the other MAGMA variants do not maintain valid control
within plus/minus two standard errors. The MAGMA: code approach appears to be more
conservative than using the Two sided approximation approach, likely from its adjustment
power c. For context, Supplementary Fig. 3.6a displays the proportion of simulations
with zero to six false positives with the Bonferroni correction for each method (excluding
MAGMA: paper) while Supplementary Fig. 3.6b displays the distribution of the number of
false positives represented by boxplots, with points denoting single simulation results, for
each method (dashed red line indicates one observed false positive). The Corrected Monte
Carlo-based approach is the only method that yield less than one false positive in the vast
majority of simulations (as implied by the FWER control), while the other methods display
a substantial number of simulations resulting in one to six false positives or, in the case
of using the MAGMA: paper approach, between two to three hundred false positives. We
observe similar patterns of inflation when applying BH for FDR control as displayed in Fig.
1d.

We investigate this further by examining the p-value distributions for the simulated sets
of 53,001 genes. Fig. 1c displays histograms for the null gene-level p-values by method
averaged over 1,000 simulations (standard errors are too small to be visible), with the black
horizontal line denoting the ideal uniform distribution for null p-values. However, only the
Corrected null p-value distribution displays such behavior. The different MAGMA variants,
including the Two-sided approximation, display an inflation in smaller p-values along with
non-uniform p-value distributions, such as fewer than expected number of genes for the
bin of largest p-values (≥ 0.95). The observed inflated FWER and FDR in Supplementary
Fig. 3.5 and Fig. 3.1d emphasize the failings of using these improper, non-uniform null
distribution in typical multiple testing procedures.

3.4.3 Impact on gene-set analysis type 1 error control

The type 1 error rate for the gene-set simulations are displayed in Supplementary Fig. 3.7.
Regardless of the gene-set analysis method, only the Corrected Monte Carlo-based approach
displays control at the at the target type 1 error rate α = 0.05 (as indicated by the dashed
red line). The behavior for the other methods varies depending on the type of gene-set
analysis. The different types of MAGMA gene-level p-values result in overly conservative
results for the MAGMA gene-set analysis approach, while they display inflated error rates
for both Fisher and Stouffer’s method to varying degrees (with the notable exception that
MAGMA: code is conservative with Stouffer’s method).

The difference in behavior of the gene-set error rate control is driven by the non-uniform
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p-value distribution. Supplementary Fig. 3.8 displays a comparison of the resulting gene-set
null p-value distributions by gene-set analysis method (columns) and method for computing
gene-level p-values (rows). We clearly see that for both the MAGMA and Stouffer’s gene-set
analysis methods, the MAGMA: code approach yields conservative p-value distributions. To
further investigate this behavior, Supplementary Fig. 3.9 displays the resulting MAGMA
gene-set analysis zs distributions by the gene-level method, with the expected t(G−1) (where
G = 45) distribution curve overlaid in red. We see that both the MAGMA: paper and
MAGMA: code approaches are shifted to the left with more negative values. The use of
the adjustment power c in the MAGMA: code approach, which applies a more conservative
adjustment as the p-value decreases, has a noticeable downstream effect on the MAGMA
gene-set analysis results. The Monte Carlo-based approaches are the only gene-level methods
yielding appropriate null distributions and results regardless of the gene-set analysis method.

3.4.4 Results for H-MAGMA Replication

Supplementary Table 3.1 and Fig. 2b display the substantial reduction in the number of
discoveries reported by H-MAGMA after using the Corrected Monte Carlo-based approach.
Fig. 2a highlights the improper H-MAGMA ASD p-value distribution (based on adult Hi-C
data annotations) consistent with behavior observed in our simulations (Fig. 1c).

3.5 Code availability

All code and data used in the chapter are available at https://github.com/ryurko/HMAGMA-
comment.

Table 3.1: Comparison of number of BH discoveries (union across adult and fetal Hi-C data
annotations) with H-MAGMA versus corrected Monte Carlo-based approach.

Phenotype H-MAGMA Corrected

ADHD 486 223
ASD 275 125
BD 1,931 1,111
SCZ 9,217 8,066
MDD 3,167 2,201
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Figure 3.3: Comparison of covariance approximations for two-sided tests (green-solid) versus
Brown’s one-sided approximation described in MAGMA paper (red-dashed) and the code imple-
mented in MAGMA with ρ2 (cyan-dashed).
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Figure 3.4: Comparison of the type 1 error rate control, plus/minus two standard errors, at
target α = 0.05 (denoted by dashed red line) by gene-level method for seven example genes of
different sizes.
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Figure 3.5: Comparison of multiple testing family-wise error rate (FWER), plus/minus two
standard errors, at target α = 0.05 (denoted with dashed red line) by gene-level method.
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Figure 3.6: a, Comparison of the proportion of simulations with zero to six false positives for
each method, excluding MAGMA: paper, using the Bonferroni correction at target α = 0.05
(plus/minus two standard errors). b, Distribution of the number of false positives represented
by boxplots, with points denoting single simulation results, for each method (dashed red line
indicates one observed false positive).
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Figure 3.7: Comparison of gene-set analysis type 1 error, plus/minus two-standard errors, at
target α = 0.05 (denoted with dashed red line) by gene-level method for each considered gene-set
analysis method (from left to right) MAGMA: gene-set, Fisher’s combination test, and Stouffer’s
z-test.
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Figure 3.8: Comparison of null histograms by gene-set analysis method (columns) and methods
for computing gene-level p-values (rows) for gene-sets of size G = 45 genes. Red dashed lines
indicate expected 2.5% and 97.5% quantiles for uniform p-values across 200,000 simulations.
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Figure 3.9: Comparison of distributions for MAGMA gene-set analysis standardized test statistic
by methods for computing gene-level p-values. Red density curve displays the expected t(G−1)

distribution, with the red vertical dashed line denoting the center at zero.
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Four

An approach to gene-based testing
accounting for dependence of tests among

nearby genes

In genome-wide association studies (GWAS), it has become commonplace to test millions
of SNPs for phenotypic association. Gene-based testing can improve power to detect weak
signal by reducing multiple testing and pooling signal strength. While such tests account for
linkage disequilibrium (LD) structure of SNP alleles within each gene, current approaches
do not capture LD of SNPs falling in different nearby genes, which can induce correlation
of gene-based test statistics. We introduce an algorithm to account for this correlation.
When a gene’s test statistic is independent of others, it is assessed separately; when test
statistics for nearby genes are strongly correlated, their SNPs are agglomerated and tested
as a locus. To provide insight into SNPs and genes driving association within loci, we
develop an interactive visualization tool to explore localized signal. We demonstrate our
approach in the context of weakly powered GWAS for autism spectrum disorder, which is
contrasted to more highly powered GWAS for schizophrenia and educational attainment.
To increase power for these analyses, especially those for autism, we use adaptive p-value
thresholding (AdaPT), guided by high-dimensional metadata modeled with gradient boosted
trees, highlighting when and how it can be most useful. Notably our workflow is based on
summary statistics. This chapter appears in [Yurko et al., 2021b].

4.1 Introduction

More than 3,000 human GWAS have examined over 1,800 diseases and traits, with uneven
success in discovering associations [MacArthur et al., 2017]. For schizophrenia, for example,
280 discoveries were recently announced, while, for genetically correlated autism spectrum
disorder, a handful of loci have been discovered [Grove et al., 2019]. The difference largely
is due to statistical power. To increase power, one might decrease the number of hypotheses
tested and thus reduce the threshold for significance. A natural strategy is gene-based
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testing: SNPs are assigned to genes they occur in or nearby [de Leeuw et al., 2015]; within
this unit, test statistics for SNPs are aggregated; and, finally, significance is judged by the
number of genes tested. By focusing tests on genes instead of SNPs dispersed throughout the
genome, gene-based testing also has interpretability as an appealing feature. Power can also
be enhanced by choosing false discovery rate (FDR) control for significance testing. These
two options, gene-based testing and FDR control, are not mutually exclusive. H-MAGMA
[Sey et al., 2020] combines them and also incorporates Hi-C data into its testing scheme.
Likewise, when SNPs affect gene expression, these functional SNP-to-gene assignments can
be modeled [Gerring et al., 2019].

A related approach is to increase power by incorporating metadata about SNPs or genes
in the targeting of multiple testing procedures; selective inference provides approaches to
incorporating this information while maintaining valid FDR control. An early approach
incorporated metadata directly through the use of p-value weights [Genovese et al., 2006].
More recently, in the setting of SNP-based GWAS, we [Yurko et al., 2020] implemented a
data-driven approach to determine weights via the adaptive p-value thresholding (AdaPT)
framework [Lei and Fithian, 2018]. In brief [Yurko et al., 2020], we improved power for
detecting a subset of weakly correlated SNPs by using gradient boosted trees to model
potentially-informative metadata, such as known effects of SNPs on gene expression and on
genetically correlated traits.

Here we explore the use of AdaPT in the context of gene-based tests for autism (ASD),
schizophrenia (SCZ), and educational attainment (EA), placing special emphasis on how it
enhances power to detect associations of genes with ASD. To do so, we utilize gene-based
testing methods introduced to account for linkage disequilibrium (LD) among SNPs in a
gene [Liu et al., 2010, Mishra and Macgregor, 2015, Yurko et al., 2021a]. LD is not limited
by gene boundaries, however. To the contrary, LD among SNPs falling in different genes is
commonplace. This compromises the interpretability of current gene-based tests, obscuring
the meaning of error guarantees with family-wise error rate and FDR controlling procedures.
Because of the extensive and heterogeneous LD in the genome, in our prior SNP-based GWAS
using AdaPT, we purposely selected quasi-independent SNPs for analysis. By contrast, for
gene-based testing, we introduce an agglomerative algorithm to account for LD-induced
correlation of test statistics. This algorithm directly groups genes into ‘loci’ for which
between-loci test statistic correlation—based on LD—is bounded above. This reduces the set
of tests to a collection of weakly correlated genes and loci. Importantly, this agglomerative
algorithm can be used in any gene-based testing framework to highlight gene-based tests
that are dependent.

We analyze results from three GWAS: ASD[Grove et al., 2019], SCZ[Ruderfer et al., 2018b]
and EA[Lee et al., 2018]. Using AdaPT guided by loci metadata as our example, we are able
to improve power to select ASD-associated genes and LD-defined loci with multiple genes
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Figure 4.1: Schematic of our workflow to improve power with metadata and highlight interesting
signals while adjusting for LD structure.

while maintaining finite-sample FDR control. Improvements are more modest for the other
phenotypes, due to the high power of their original GWAS. One novel feature of our analyses
is that it groups genes into loci when their test statistics are expected to be highly dependent,
due to LD. We complement this feature with graphical tools to examine the distribution of
association signal within each such locus. The interactive visualization tool we develop uses
R Shiny [R Core Team, 2020, Chang et al., 2020] and plotly [Sievert, 2020] for exploring
and highlighting biological signals therein.

Our workflow for improving power to select associated genes and LD-defined loci follows
(Figure 4.1): We first introduce the agglomerative algorithm. Then we demonstrate our ap-
proach for detecting associations with in the AdaPT framework. For metadata, we use eQTL
data from cortical tissue samples, gene co-expression networks [Zhang and Horvath, 2005],
and GWAS results for the other phenotypes, which is motivated by the observation that all
three are genetically correlated[Weiner et al., 2017]. Relationships of metadata to gene-based
statistic are uncovered by use of gradient boosted trees. We separate our results into two
categories, technical features related to gene-based testing and implementation of AdaPT in
this setting, and association results for these phenotypes and their implications, with special
emphasis on ASD.

4.2 Methods

4.2.1 SNP-to-gene assignment and correlation between gene-level tests

We consider two different approaches for assigning n SNPs to a set of genes G. Following
common practice, we use genomic location only for “Positional” SNP assignment: SNP i is
assigned to gene g if its genomic position is within gene g’s start and end positions (SPos

g ).
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In some published analyses, the start and end positions are expanded slightly to include
presumed regulatory regions, although we do not do so here. As an alternative approach,
recognizing that some SNPs have documented effects on genes, such as eQTL effects, we use
Positional SNP assignment and include in the set cis-eQTL SNP-gene pairs, which we dub
eSNPs. We denote the collection of eSNPs for gene g as SeQTL

g and call this “Positional +
eSNPs” SNP assignment.

After assigning SNPs to genes, each gene’s vector of SNP-level z statistics zg is modeled
as multivariate normal (Gaussian) with mean 0 and LD-induced covariance Σg. Following
common practice [Liu et al., 2010], we assume Σg is known using correlations from reference
genotype data, specifically 503 individuals from the 1000 Genomes EUR sample as the
reference data [1000 Genomes Project Consortium and others, 2012]. Gene-level testing
frameworks [de Leeuw et al., 2015, Liu et al., 2010, Mishra and Macgregor, 2015] combine
SNP-level signals into gene-level test statistics Tg while accounting for Σg, the LD among
SNPs in a gene.

Consider the quadratic gene-level test statistics, Tg = zg
Tzg, featured in VEGAS

[Liu et al., 2010, Mishra and Macgregor, 2015] and MAGMA (v1.08). Constructed in this
way, the quadratic test statistic is merely the sum of the individual z2g ’s at every SNP in the
gene. Under the null model, if the |Sg| SNPs had been independent, then the test statistic
Tg would have been approximately χ2 distributed with |Sg| degrees of freedom, and thus
have an expectation of |Sg| with variance 2|Sg|. Here we are concerned with the case where
the individual test statistics are dependent. The expectation is unchanged by dependence,
but the variance in the sum now becomes

∑
i∈Sg

Var(z2i ) + 2
∑∑
i<j∈Sg

Cov(z2i , z
2
j ), which gives

equation

Var(Tg) = 2|Sg|+ 2
∑∑
i<j∈Sg

(2ρ2ij). (4.1)

Let Sg and Sg′ denote the sets of SNPs for g and g′, respectively. We can compute the
induced correlation between the quadratic test statistics for two sets of SNPs, Cor(Tg, Tg′) =
Cov(Tg, Tg′)/

√
Var(Tg) ·Var(Tg′), using the induced covariance between the test statistics,

Cov(Tg, Tg′) =
∑
i∈Sg

∑
j∈Sg′

(2ρ2ij). (4.2)

For nearby gene sets g and g′, these correlations can be quite strong. This can confound
the interpretability—and even meaning—of the guarantees from multiple testing procedures.
To avoid these issues, we will modify the construction of our gene sets to bound the pairwise
correlation between the resulting gene sets.
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4.2.2 Agglomerative LD loci testing

To account for substantially correlated test statistics, we introduce an agglomerative proce-
dure to group highly correlated genes that are within w megabases (Mb) into sets of genes
we refer to as LD loci or simply loci. Given an LD threshold r2, we apply the following
procedure to a set of genes G within a chromosome:

1. Compute Cor(Tg, Tg′) for all pairs of genes, g, g
′ ∈ G, within w Mb of each other (using

Equations 4.2 and 4.1).

2. Repeat the following until (Cor(Tg, Tg′))
2 < r2 for all remaining pairs of genes/loci in

G:

• Find genes/loci {g∗, g′∗} = arg max
g,g′∈G,g ̸=g′

Cor(Tg, Tg′),

• Merge {g∗, g′∗} into locus gLD,

• Update G = G \ {g∗, g′∗} ∪ {gLD}, and compute Cor(TgLD , Tg′) for all g′ ∈ G
within w Mb of gLD.

This is essentially agglomerative hierarchical clustering, but with a linkage determined by
the LD-based correlation structure of the test statistics. We compute the quadratic test
statistic, Tg, for each remaining gene/locus g ∈ G.

Because the resulting distribution Tg does not have a known closed-form solution, we use
a Monte Carlo based approach for computing the p-value pg for the gene/locus to test the
null hypothesis that its ng-dimensional vector of SNP-level z statistics are not associated
with trait status. We generate B draws of null, ng-dimensional Gaussian random variables,
z∗
g ∼ Normal(0g,Σg). A quadratic test statistic T ∗

b is calculated for each of the b ∈ [B]
draws, resulting in an empirical p-value:

pg =

∑B
b 1(T ∗

b > Tg) + 1

B + 1
. (4.3)

To generate the B samples, we use the Cholesky decomposition of Σg = LLT, where L
is a lower triangular ng × ng matrix. A single sample is generated by multiplying L with
a vector of ng independent, standard Gaussian random variables. Across B samples, the
combined computational cost is O(n3

g +Bn2
g). Using an efficient implementation of these

steps [Yurko et al., 2021a], for a gene/locus with ng ≈ 1,000 SNPs, we can generate one
million draws in less than ten minutes with a 3.6 GHz Intel processor. Parallelization can
be used to further increase speed.
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4.2.3 Overview of GWAS data and eQTL sources

Our investigation focuses on reported GWAS z statistics, {zi, i = 1, . . . , n} measuring
SNP-level association with ASD [Grove et al., 2019], SCZ [Ruderfer et al., 2018b] and EA
[Lee et al., 2018]. For GWAS results of one phenotype, we explore SNP-level association
statistics from the other two GWAS as potential sources of metadata due to previous
evidence of their genetic correlation [Weiner et al., 2017]. We consider n = 5, 238, 256
SNPs whose alleles could be aligned across all three phenotypes and with minor al-
lele frequency (MAF) > 0.05 based on the 1000 Genomes EUR sample reference data
[1000 Genomes Project Consortium and others, 2012]. Also, for these SNPs, their hg19
variant locations could be converted to GRCh38 using the LiftOver utility from the UCSC
Genome Browser (http://genome.ucsc.edu/). Probably due to a smaller sample size, ASD
has lower power: 18,381 cases and 27,969 controls, in comparison to SCZ with 33,426 cases
and 32,541 controls, and EA with ≈ 1.1 million subjects (Figure 4.7). Because we focus on
detecting associations for ASD, a neurodevelopmental disorder, we leverage two different
sources of cortical tissue to identify eSNPs for functional SNP-to-gene assignment. The first
source of eSNPs was obtained from the BrainVar study of dorsolateral prefrontal cortex from
176 individuals sampled across a developmental span [Werling et al., 2020b]. We identified
151,491 cis-eQTL SNP-gene pairs meeting BH α ≤ 0.05 for at least one of the three sample
sets: prenatal (112 individuals), postnatal (60 individuals), as well as across the complete
study. This corresponds to 123,664 eSNPs associated with 6,660 genes, with 85% of the
eSNPs associated with one unique cis-eQTL gene pairing.

The second source is adult cortical tissue cis-eQTLs from the Genotype-Tissue Expression
(GTEx) V7 project dataset [GTEx Consortium and others, 2015]. Instead of using eQTLs
as reported by GTEx, to be consistent with the BrainVar eQTL definition, we identified
414,405 cis-eQTL SNP-gene pairs meeting BH α ≤ 0.05 for either Frontal Cortex BA9 or
Anterior cingulate cortex BA24 samples based on the tissue specific files for all SNP-gene
associations available at gtexportal.org. This resulted in 313,316 GTEx eSNPs associated
with 9,012 genes, where 78% of the eSNPs are associated with one gene. However we observe
an overlap of 55,313 cis-eQTL SNP-gene pairs with BrainVar, culminating in 510,583 unique
cis-eQTL SNP-gene pairs with 370,749 eSNPs associated with 12,854 genes across the union
of BrainVar and GTEx sources.

4.2.4 GENCODE version

We use GENCODE v21 [Harrow et al., 2012] for our list of genes with their respective start
and end positions based on genome assembly version GRCh38. This matches the version
used in the BrainVar study, but differs from GTEx, which is based on v19. When identifying
GTEx eQTLs, we removed 187 genes from GENCODE v19 that do not match Ensembl IDs
in v21. This provides us with an initial list of G = 57, 005 candidate genes to potentially
assign SNPs to, based on either positional or functional eSNP status.
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4.2.5 Metadata

For each gene/locus g, we create a vector of metadata xg collected independently of pg. This
process is completed in the same manner for both the Positional and Positional + eSNPs
collections. First, we consider the number of SNPs assigned to a gene/locus, ng = |Sg|, which
can be viewed as statistical information relevant to the power of the quadratic test statistic.
Additionally, we include one-sided z statistics, i.e., zg = Φ−1(1− pg), constructed using the
gene/locus-level p-values from independent GWAS results. For our target phenotype ASD
we use SCZ and EA GWAS z statistics, zSCZ

g and zEA
g , while for SCZ (EA) we use zEA

g

(zSCZ
g ) and zASD

g as metadata.

Given the set of eSNPs SeQTL
g associated with single genes or genes in LD locus g, we

summarize the expression level as the average absolute eQTL slope in a relevant source
to obtain β̄source

g for five sources: three BrainVar developmental periods (pre-, post-, and
complete) and two adult GTEx cortical regions. Furthermore, we account for weighted gene
co-expression network analysis (WGCNA) [Zhang and Horvath, 2005] modules by creating
two sets of indicators, one set for the twenty modules reported in the BrainVar study and
another for eight modules constructed using the GTEx cortical tissue samples. For simplicity,
we also construct indicators denoting if gene/loci is not included in any of the modules.

We also include additional context about the gene/loci. Indicator variables determine
four GENCODE biotypes: protein coding, antisense, long non-coding RNA, and other. Using
gnomAD v2.1.1 [Karczewski et al., 2020], we associate with each gene its loss-of-function
observed / expected upper fraction (LOEUF) value, which indicates the gene’s tolerance to
loss-of-function. Because a lower LOEUF scores indicate strong selection against loss-of-
function, we include the minimum LOEUF across all genes in an LD locus in our vector of
metadata xg.

4.2.6 AdaPT implementation

Given a collection of gene/locus-level p-values and metadata, (pg, xg)g∈G, we apply AdaPT to
select a subset of discoveries with FDR control at target level α = 0.05. AdaPT is guaranteed
finite-sample FDR control under the assumption of independent null p-values, and was
demonstrated to maintain control in weak, positive correlated scenarios [Yurko et al., 2020],
such as the one considered here.

We incorporate metadata from the feature space xg ∈ X using XGBoost [Chen and Guestrin, 2016]
(see Method Appendix for details). XGBoost is a popular implementation of gradient boosted
trees, which constructs a flexible predictive function as a weighted sum of many simple
trees, fit using a gradient descent procedure that minimizes a specified objective function.
The two objective functions considered in our AdaPT context correspond to estimating the
probability that a hypothesis is non-null, and the distribution of effect size for non-null
hypotheses. XGBoost gives us flexibility to include many potentially useful covariates

89



4. an approach to gene-based testing accounting for dependence of tests
among nearby genes

without being overly concerned about the functional form with which they enter the model
or their marginal utility. However, overfitting in this context will lead to a loss of power. To
find appropriate settings for the gradient boosted trees (number of trees, learning rate, and
maximum depth), we first “tune” AdaPT’s performance with synthetic SCZ p-values that
are aligned with the ASD p-values in the following manner:

1. Sort SCZ and ASD p-values: (pSCZ
(1) , . . . , pSCZ

(G) ) and (pASD
(1) , . . . , pASD

(G) )

2. Replace SCZ with ASD p-values by matching order, i.e., replace pSCZ
(1) with pASD

(1) ,

pSCZ
(2) with pASD

(2) , . . .

This transforms the SCZ signal to match the weaker signal in ASD. We then proceed to
apply AdaPT using these synthetic SCZ p-values to find candidate settings which yield
the highest number of synthetic SCZ discoveries at FDR level α = 0.05. Finally, for each
phenotype and positional assignment, we use two cross-validation steps within AdaPT
[Yurko et al., 2020] to select from among these candidate settings to generate our AdaPT:
XGBoost results using the adapt xgboost cv() function in the adaptMT R package (available
at https://github.com/ryurko/adaptMT).

4.2.7 Kernel smoothing localization

Following the selection of interesting genes/loci, researchers may be interested in “zooming”
in on localized signals at the gene and/or SNP-level. For a selected gene/locus g∗ and
its corresponding set of SNPs Sg∗ , we smooth over the squared z statistics of the locus’
positional SNPs SPos

g∗ ⊆ Sg∗ , given their genomic positions (BP) using the Nadaraya–Watson
estimator:

ẑ2g∗(BP ) =
∑

i∈SPos
g∗

z2i
Kh(BPi, BP )∑

j∈SPos
g∗

Kh(BPj , BP )
, (4.4)

in which Kh is a one-dimensional Gaussian kernel with bandwidth h selected separately
for each gene/locus using generalized cross-validation (as implemented in the np package
[Hayfield and Racine, 2008]). We then provide the option to display any subset of eSNPs
SeQTL
g∗ ⊆ Sg∗ separately as bars with their heights indicating individual SNP-level signal.

This separation is due to the presence of intergenic eSNPs, however any eSNPs that are also
positionally assigned to genes, SPos

g∗ ∩ SeQTL
g∗ , are included in the positional smoothing in

Equation 4.4.

4.3 Results

4.3.1 Assigning SNPs to genes and generating LD loci

We assign SNPs to genes using the two approaches: Positional, which assigns 2,779,780 SNPs
to 40,581 genes; and Positional + eSNPs, which includes an additional 109,042 intergenic

90

https://github.com/ryurko/adaptMT


4.3. Results

25000

30000

35000

40000

0.25 0.50 0.75 1
(w/o merging)

LD r2 threshold

N
um

be
r 

of
 g

en
es

/lo
ci

Positional + eSNPs

Positional

Figure 4.2: Comparison of the number of genes/loci following our agglomerative algorithm over
a range of values for the induced LD threshold r2 ∈ {0.25, 0.50, 0.75} by positional type (in
color). The initial number of genes is provided for reference (corresponding to r2 = 1).

cortical tissue eSNPs resulting in 2,888,822 SNPs assigned to 41,301 genes. Next, we
generate genes/loci based on the LD-induced correlation of gene-based test statistics using
the agglomerative algorithm with window size w = 6 Mb and with one of three thresholds
for r2, 0.25, 0.50, 0.75. The number of independent genes/loci decreases substantially as
the threshold becomes more strict for both SNP assignment types (Figure 4.2). Even a
relatively high threshold of r2 = 0.75 reduces the number of Positional + eSNPs (Positional)
gene/locus tests from 41,301 (40,581) to 37,522 (37,114). We report the conservative
threshold r2 = 0.25 in the body of the manuscript (see Method Appendix for results with
r2 ∈ {0.50, 0.75}). Due to the conservative threshold we combine 17,915 genes to form
4,136 LD loci for Positional + eSNPs and 16,625 genes to form 3,985 LD loci for the
Positional approaches. Over 75% of these loci contain five or fewer genes while the largest
is a chromosome 11 locus that groups over sixty genes, most of which encode olfactory
receptors. Combined with the 23,386 and 23,956 individual genes that were not merged, this
results in 27,522 and 27,941 genes/loci for testing. The reduction of independent testing
units highlights the correlation among genes that is often ignored in gene-based testing. We
then compute the gene/locus quadratic test statistics and p-values for each phenotype using
the Monte Carlo-based approach in Equation 4.3 with B equal to two million simulations.

4.3.2 AdaPT models and results

To generate AdaPT: XGBoost results, we first tune the procedure based on synthetic SCZ
p-values, which mimic the distribution of ASD p-values, to find optimal XGBoost settings. To
avoid over-fitting, we consider shallow trees with maximum depth ∈ {1, 2}, while searching
over the number of trees P ∈ 100, . . . , 450 by increments of fifty and the learning rate
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Figure 4.3: The most important variables (top five) predicting association with phenotype as
ranked by XGBoost for the Positional + eSNPs assignment of SNPs. Variables are sorted in
order of importance, while the color of the bars denote the separate parameters for the AdaPT
implementation: probability of association (orange) and of non-zero effect size (blue).

η ∈ 0.03, . . . , 0.06 by increments of 0.01. To analyze the real p-values for each phenotype
and thereby select associated genes/loci, then, these top setting combinations (Table 4.1)
were used in the AdaPT cross-validation steps and while targeting FDR control at α = 0.05.

To find genes/loci associated with each phenotype, our AdaPT: XGBoost implementation
fits a mixture model that requires two parameters – the probability of association and the
effect of each gene/locus on the phenotype – and these are estimated separately for each step
of the algorithm. Variables in the metadata inform on each of these parameters to different
degrees; see Method Appendix and Table 4.2 for details on measuring variable importance.
For the Positional + eSNPs results, the number of SNPs per gene/locus and z-statistics for
at least one genetically correlated trait are important predictors for all three phenotypes
(Figure 4.3). SCZ and EA, in contrast to ASD, display increased importance for LOEUF
and membership in a WGCNA module constructed from the GTEx cortical tissue samples
(Figure 4.3) Lower LOEUF values, which indicate lower tolerance to loss-of-function, were
more likely to be associated with SCZ and EA. We observe similar patterns of variable
importance for the Positional results (Figure 4.8).

Comparing the number of genes/loci selected by AdaPT to baseline results of intercept-
only versions of AdaPT and BH, there is a clear gain in gene/locus discovery by accounting
for metadata through the AdaPT: XGBoost implementation, regardless of phenotype and
SNP-to-gene assignment approach (Figure 4.4A, Table 4.3, see also Method Appendix, Figures
4.9 and 4.10 for results with LD threshold of r2 ∈ {0.50, 0.75}). Unsurprisingly, the number
of associated genes/loci is much larger for SCZ and EA than for ASD, likely due to the
lower power of the original ASD GWAS. For Positional ASD, we see that the intercept-only
version of AdaPT fails to select any genes/loci due to the weak signal without inclusion of
metadata (Figure 4.4A).
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Figure 4.4: (A) Comparison of the number of selected genes/loci at FDR level α = 0.05 for each
phenotype by positional assignment. AdaPT: XGBoost results are presented in comparison to
BH and AdaPT: intercept-only baselines which do not account for metadata. (B) Comparison of
the proportion of implicated genes that overlap between the two types of positional assignment
results, based on the AdaPT: XGBoost results for each phenotype.

4.3.3 Comparison of phenotypic results

For ASD, analysis of Positional + eSNPs identifies 483 genes, of which 405 cluster in 47
loci and 78 are unclustered, whereas analysis of Positional SNPs alone yields 447 genes, of
which 370 cluster in 54 loci (Table 4.3). A substantial portion of these genes overlap (Figure
4.4B). While similar patterns emerge for SCZ and EA, the ratio of unclustered to clustered
genes increases with increasing number of genes/loci detected: 0.193 for ASD, 0.414 for SCZ,
and 0.681 for EA. This presumably reflects greater power to detect small effects of a SNP
on phenotype with larger sample size: decay of this signal tends to cause it to fall below
the threshold of detection for SNPs in nearby genes. In contrast, the proportion of genes
uniquely identified when eSNP information is included is substantially higher for ASD than
it is for SCZ or EA (Figure 4.4B), again likely due to lower power for the ASD sample.

As expected, for all three phenotypes, the number of unclustered genes increases with
increasing threshold r2 (Table 4). If, however, we assume that signal should be sparsely
distributed across the genome, then the sum of LD loci and unclustered genes, for r2 = 0.25,
should be a reasonable estimate of genes associated given the current data. This translates
into 125 genes for ASD, 2,277 for SCZ, and 6,598 for EA, and correspondingly 0.30, 5.51,
and 15.98% of the total 41,301 genes analyzed (including protein-coding and non-coding
genes). For SCZ and EA, the total number of associated genes per chromosome declines
strongly and linearly with chromosome size (Figures 4.11-4.13), which itself is correlated
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with the total number of genes per chromosome. This pattern, while more variable, is also
seen in a breakdown of genes into protein-coding and other non-coding types (Figure 4.12).
For ASD, however, an unusually large number of genes are associated on chromosomes 3, 8,
15, and 17, relative to chromosome size, and the associated gene counts show only a modest
relationship with chromosome size (Figures 4.11-4.13), presumably due to lower power and
resulting lower number of associated genes per chromosome.

4.3.4 Exploring signal in selected genes/loci

LD loci, as we define them, are expected to exhibit correlated association signal. Nonetheless,
the signal is unlikely to be distributed evenly across the locus, instead in many instances it
will be concentrated near one or more SNPs generating the signal, depending on the LD
pattern in the locus. The same is true for signal in non-clustered genes. To interactively
explore localized signal within genes/loci, we developed an LD locus zoom application using
R Shiny [R Core Team, 2020, Chang et al., 2020] and plotly [Sievert, 2020] (available here:
https://ron-yurko.shinyapps.io/ld_locus_zoom/). This tool displays the gene/locus
of interest, represents genes by their location therein, and highlights the association signal
by kernel smoothing for positional SNP signals, including interpolation.

3.7 Mb deletion region in chromosome 17:. One of the associated loci, roughly 500 Kb,
falls in the well-known 3.7 Mb 17p11.2 deletion/duplication region associated with Smith-
Magenis syndrome (deletion, OMIM:182290) [Seranski et al., 1999] and Potocki-Lupski
syndrome (duplication, OMIM:610883) [Neira-Fresneda and Potocki, 2015]. The associated
LD locus displays overlapping genes and signals from eSNPS and positional SNPs for
ASD, SCZ, and EA (Figure 4.5A). For reference, the gray dotted line denotes a point-wise
95th percentile of 1,000 simulations for squared null Gaussian random variables, z2g∗ where
zg∗ ∼ Normal(0g∗ ,Σg∗), given the LD structure Σg∗ of the selected LD locus g∗. Notably, a
single gene in the locus has been associated with all three phenotypes to various degrees,
RAI1 [Carmona-Mora and Walz, 2010]. Known to be dosage-sensitive, both deletion and
duplication of a single copy of the gene is sufficient to elevate the likelihood of ASD
substantially and to diminish cognitive function strongly [Carmona-Mora and Walz, 2010].
Curiously, only the smoothed signal for EA association peaks over RAI1, whereas it peaks
over TOM1L1 for ASD and further proximal for SCZ. The peak association for EA over RAI1
also coincides with the SNP having the lowest p-value for association with this phenotype:
this index SNP rs11655029 has p-value 2.84× 10−9 and falls in an intron of RAI1. While
RAI1 is a prime candidate for the target gene in this locus for ASD, due to prior evidence, the
peak signal located over TOM1L2 is intriguing, especially because its index SNP rs4244599,
while not strongly associated (p-value = 0.0018), is an eQTL for TOM1L2. The index SNP
for SCZ, rs8082590, has p-value 6.02× 10−8, close to the traditional threshold for GWAS,
and coincides roughly with its smoothed signal for association over GID4.
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Figure 4.5: Gene/locus zoom displays for (A) locus falling in the chromosome 17 3.7 Mb
Smith-Magenis syndrome region, (B) FOXP1 in chromosome 3, and (C) locus in chromosome 17
1 Mb inversion region. (A)-(C) The genes located within the locus are represented in rectangles
denoting their respective start and end positions below the smooth display, arranged by position
and size to prevent overlapping. The gene/locus level kernel smoothing of ASD signal (black
line) is displayed along with SCZ (red line) and EA (blue line) kernel smoothing signal (both
are normalized to appear on the same signal scale as ASD). The gray dotted line denotes a
point-wise 95th percentile of 1,000 simulations for null simulations, and vertical bars correspond
to eSNP signals (colored by their associated genes). A subset of genes are highlighted with
colors in (A) and (B), with other genes represented by gray rectangles. Additionally, individual
genes are labeled in (A): RAI1 and TOM1L2, (B): FOXP1, and (C): MAPT and KANSL1, with
gene direction (+ indicates left to right, - indicates right to left).
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FOXP1 in chromosome 3:. An unclustered protein-coding gene on chromosome 3 highlights
a set of associated SNPs in FOXP1, which has previously been strongly associated with
intellectual disability, language impairment, and ASD [Hamdan et al., 2010] (Figure 4.5B).
The smoothed association signal for ASD falls near the gene’s 3’ end whereas, for SCZ
and EA, it falls close to the gene’s 5’ region. It is possible that variation associated with
ASD is regulating FOXP1 ’s expression quite differently than that for SCZ and EA. The
index SNP for EA is GWAS-significant and the one for SCZ approaches it (rs55736314 and
rs4677597 with p-values 1.63× 10−16 and 3.87× 10−7 respectively) and both fall closer to
the 5’ region of FOXP1. For ASD, its index SNP rs7616330 carries a more modest signal
(p-value 2.26 × 10−4). Compared to the complete gene, it falls toward the 3’ end, but it
also falls quite close to the 5’ start site of certain transcripts, such as ENST00000650387.1.
Given the prominent role that FOXP1 has in ASD and cognitive function, we speculate that
the differential location of signal for SCZ/EA versus ASD could trace to different transcripts
and regulation of their expression.

1 Mb inversion region in chromosome 17:. Another locus of interest is a 1.5 Mb region of
chromosome 17, namely 17q21 (Figure 4.5C). This region of the genome is well known in hu-
man genetics because it comprises a 1.5 Mb inversion polymorphism [Stefansson et al., 2005,
Steinberg et al., 2012] and the inversion alleles, actually haplotypes, have been associated
with a wide variety of neurodegenerative disorders, including Progressive Supranuclear
Palsy [Höglinger et al., 2011], corticobasal degeneration [Kouri et al., 2015], frontotemporal
dementia [Furukawa et al., 2003], and other tauopathies [Silva and Haggarty, 2020]. In this
locus, altered MAPT is well known to affect risk for late-life neurodegenerative disorders.
Moreover, the inversion itself inhibits recombination, rendering alleles at SNPs across this
region in high LD. Indeed, the complexity of this region inspires the interactive features
of our application (conveyed in Figures 4.14 and 4.15) with subsets of genes and their
associated eSNPs. Our results suggest variation in the region is associated with all three phe-
notypes. The index SNP for EA exceeds the standard threshold for single SNP significance
(rs74998289, p-value 1.31 × 10−17), while for ASD it approaches it (rs12942300, p-value
2.06× 10−6). Variation in the region has been previously implicated in ASD susceptibility
[Cantor et al., 2005]; more recently, KANSL1 expression has been implicated in cognitive
function and ASD [Arbogast et al., 2017]. While the smoothed association signals for ASD
and EA show a peak over this gene, signal is distributed across many genes in this locus
and gene-based analysis is unlikely to pinpoint any gene therein. A clue to the driver or
drivers of association comes by comparison of panels A-C in Figure 4.5. In the inversion
region (Figure 4.5C), eSNP signals are noticeably more enriched compared to the other
two loci and indeed the index SNP for EA is an eSNP for KANSL1. As highlighted by the
display (Figure 4.5C), however, careful statistical and molecular analyses will be required to
pinpoint what variation and what genes influence each of the three phenotypes at this locus.
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4.3.5 Enrichment analysis

A primary motivation for gene-based analyses is to garner insight into the biological mecha-
nisms underlying the phenotype by evaluating the set of genes associated with it. A standard
approach infers these mechanisms by gene-set enrichment analysis, which we will implement
in two ways. First, we will use the FUMA GENE2FUNC tool [Watanabe et al., 2017] for
gene ontology (GO) enrichment analysis of the AdaPT: XGBoost genes/loci. This analysis
has the advantage of searching through myriad functional sets of genes in an agnostic fashion.
Still, this could also be viewed as a disadvantage if, a priori, certain biological functions are
likely to affect the phenotype. For example, for all three phenotypes analyzed here, rare
variation has already provided evidence linking synaptic, epigenetic, and transcription factor
genes to them. Moreover, for ASD there exists a substantial set of genes implicated in risk
by studies of rare variation. For these reasons, we implement a second gene-set enrichment
analysis, specifically GSEA [Subramanian et al., 2005], which is a tool for testing if different
sets of genes are enriched in a ranked gene list. We perform GSEA at the gene/locus-level
ranked by their one-sided z statistics, using five different sets of genes/loci to test for
enrichment at the top of the phenotype-specific ranked list: (1) brain expressed, (2) synaptic,
(3) epigenetic, (4) transcription factors, and (5) 102 ASD risk genes identified based on de
novo and case-control variation [Satterstrom et al., 2020] (see Method Appendix and Table
4.4 for details on compilation of gene lists).

Another reason to use both approaches is that they allow us to handle a confounder,
gene size, in different ways. In our analyses, gene/locus size (and the number of SNPs
therein) is a predictor of association: larger genes/loci are more likely to be associated
(Figure 4.16). So enrichment analysis should control for gene size in some way. One
approach is to contrast the associated set of genes with control genes after matching on
gene size. We will use this approach in the FUMA analyses (see Method Appendix for
details). However, a substantial portion of brain-expressed genes are synaptic, which are
known to be among the largest genes in the genome. We reasoned that if these phenotypes
were influenced by variation altering function of synaptic genes—which rare variant stud-
ies suggest they are [De Rubeis et al., 2014, Satterstrom et al., 2020, Fromer et al., 2014,
Kurki et al., 2019]—then matching on gene size will tend to match associated synaptic genes
with other synaptic genes, thereby over-matching and lowering the power to detect synaptic
association. For this reason, in the GSEA analysis, we first remove the effect of gene size on
the association z statistics by regressing them on gene size, then entering the residual z′

values into the GSEA analysis.

Rather than include all genes in the associated loci for the FUMA enrichment analysis,
we used the kernel smoothing results to identify signal genes (see Method Appendix ). For
example, this reduces the number of ASD Positional + eSNPs genes from 483 to 464
signal genes. After matching for gene size, no GO terms show enrichment for associated
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Figure 4.6: Enrichment analysis of genes/loci ranked by one-sided ASD z statistics, adjusted for
size, by positional assignment. (A) BH-adjusted GSEA p-values are displayed on the -log10 scale,
with FDR target level α = 0.05 indicated by dashed gray line. Enrichment score for (B) synaptic
and (C) epigenetic genes/loci with tick marks denoting gene/locus rank based on Positional +
eSNPs ASD z statistics, adjusted for size, in descending order.

ASD genes. Genes associated with SCZ display GO enrichment: 698 terms in biological
processes, 163 terms in cellular components, and 108 in molecular function. The EA genes
display enrichment for 114 terms in biological processes, 64 in cellular components, and
27 in molecular function (Table 4.3). Using REVIGO [Supek et al., 2011] to summarize
these terms, they highlight neuron projection, synaptic function, cell adhesion, cell cycle,
chromosome organization, and many more for both SCZ and EA (Figures 4.17 and 4.18).

GSEA analysis of five gene sets (brain expressed, synaptic, epigenetic, transcription
factor, and ASD risk) finds ASD implicated genes enriched for two gene sets, synaptic and
epigenetic genes (Figure 4.6, Figure 4.19), whereas for SCZ and EA, all five gene sets are
enriched (Table 4.3).

4.4 Conclusion

GWAS studies have identified myriad associations between SNPs and human phenotypes.
With few exceptions, these associations are weak. One of the goals in this study is to improve
power to detect weak associations through gene-based tests, while also accounting for LD
among SNPs in different genes, which can induce correlations among tests for different genes.
Although such correlation can elevate the false positive rate and obscure the interpretation
of gene-based test results, most published studies have ignored it. To account for LD, we
introduce a workflow (Figure 4.1) to aggregate genes into loci if the expected dependence
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of their test statistics exceeds a pre-specified threshold. This approach produces a notable
reduction in the number of genes tested: nearly 4,000 are aggregated even for a tolerant
threshold for correlation of test statistics (aggregate if r2 > 0.75; Figure 4.2).

We recommend practitioners use a stringent LD r2 threshold, such as the one we use
to analyze the data reported here (r2 = .25). This ensures test statistics for genes/loci are
largely independent, it will be appropriately conservative regarding reporting of the number
of discoveries, and, for loci, it will highlight the complexity of causal inference therein.
Practitioners will also need to set the window size to search for correlation among test
statistics. For our analyses, we chose a large one, 6Mb. This is computationally expensive,
compared to a smaller window. A smaller window will cover most loci, with a few known
exceptions including the chromosome 6p MHC region. One should also note that, like all
gene-based test approaches that account for LD structure, our approach is sensitive to
mismatch of the LD reference panel. Such a mismatch could impact our results in two ways:
(1) the individual test-level statistics could have the inappropriate null distribution, (2) the
induced correlations between gene-level test statistics will be incorrect, potentially leading
to over/under-clustering of the genes. We believe that (1) is the larger concern, and it is a
concern that is shared by any testing approach that aggregates SNP-level test statistics (e.g.
MAGMA or VEGAS). Properly capturing this sensitivity to correlation in gene-level testing
is a topic for future research.

With a collection of uncorrelated or only weakly correlated genes/loci, any gene-based
test can be applied. To improve power, we adopt the FDR control framework for hypothesis
testing and a particular implementation of it, adaptive p-value thresholding (AdaPT). AdaPT
has the potential to increase power over the classical Benjamini–Hochberg (BH) procedure
for FDR control by accounting for covariates, which collectively we call metadata, to inform
on which genes are likely to be true positives even though their test statistics failed to cross
the BH threshold for significance. Importantly, like BH, AdaPT also maintains finite-sample
FDR control.

We applied AdaPT to data from three phenotypes, ASD, SCZ, and EA, all of which
are genetically correlated. Notably, the ASD GWAS was weakly-powered compared to the
well-powered GWAS for SCZ and EA. Although AdaPT increased power for every phenotype
and setting, relative to BH, the largest improvement was achieved for ASD (Figure 4.4A,
Figures 4.9 and 4.10). We believe the most likely explanation for these contrasting results
is the differential information content of the original GWAS. Even without the additional
power from AdaPT, the BH-corrected GWAS for SCZ and EA identifies many genes/loci:
there is little to be gained by analyses with more power. By contrast, there is far more to be
gained by additional power for ASD analyses. Gene-based tests that incorporated the impact
of SNPs on gene expression also increased power of gene discovery (Figure 4.4B, Figure 4.11).
Reflecting the genetic correlation, summary statistics for other phenotypes were always
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useful predictors for the AdaPT model (Figure 4.3, Figure 4.8). Gene conservation also
played an important role, as did the size of the gene/locus (Figure 4.3, Figure 4.16).

That gene/locus size was a useful predictor for associated genes is of limited biological
and genetic interest; however, it generates an interpretative challenge when the set of associ-
ated genes are evaluated for functional relevance, such as by GO enrichment analysis. One
approach to enrichment analysis would match associated genes with control genes by size and
we did this in our GO analyses. Such an approach, however, could be conservative. For ex-
ample, a substantial portion of brain-expressed genes are synaptic, they tend to be large, and
synaptic genes likely play a role in all three phenotypes analyzed here [De Rubeis et al., 2014,
Satterstrom et al., 2020, Fromer et al., 2014, Kurki et al., 2019]. Yet, matching on gene size
will tend to contrast associated synaptic genes with other synaptic genes, lowering power to
detect their enrichment. For this reason, we also took a different approach to enrichment
analysis. Specifically, we regressed the association statistics on size, then entered the residual
value into a GSEA analysis. The end result, for ASD, is that synaptic genes were not
enriched when genes were matched before GO analysis, while they were enriched in the
GSEA analysis (Figure 4.6, Figure 4.19). The same is true for a set of epigenetic genes, which
include chromatin readers, remodelers, and so on. Both results agree well with previous
rare variant studies [De Rubeis et al., 2014, Satterstrom et al., 2020]. On the other hand,
for the well powered SCZ and EA studies, such enrichment emerges regardless of the way
gene size is controlled (Figures 4.17 and 4.18).

Here we demonstrated the gain in power of evaluating gene-based association statistics
using AdaPT, guided by metadata, to detect genes affecting three specific phenotypes, ASD,
SCZ, and EA. As our results show, the greatest gain in power is achieved when the underlying
study has intermediate power, neither too high nor too low. Power gains will be modest for
highly powered studies and absent for very weakly powered studies. We believe that AdaPT,
guided by metadata, can be applied to a wide variety of omics problems, although it will
undoubtedly require some adaptation for the specific problem to be solved. The advantage
of doing so is twofold, increased power and increased interpretability. We are especially
interested in the latter, as a means of expediting our understanding of the etiology of human
diseases, disorders, and other phenotypes.

Although gene-based association draws attention to an important functional unit (or
units for locus-based association), it does not inform on what variation drives the association.
We developed an interactive visualization tool (https://ron-yurko.shinyapps.io/ld_
locus_zoom/) for exploring the localization of association signal within associated genes/loci
and generating hypotheses about mechanisms of action (Figure 4.5, Figures 4.14 and 4.15).
For example, using this tool to explore the association of FOXP1 [Hamdan et al., 2010]
reveals that the pattern of association in the gene is different for ASD versus EA and SCZ
(Figure 4.5B) and suggests that different patterns of gene expression could be important
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for these phenotypes. Another example is the 500Kb associated locus within the 17p11.2
deletion/duplication (Smith-Magenis syndrome) region (Figure 4.5A) [Seranski et al., 1999,
Neira-Fresneda and Potocki, 2015]. In this locus, all three phenotypes have been associated
to varying degrees to one gene, RAI1 [Carmona-Mora and Walz, 2010]. Curiously, however,
only the association signal for EA peaks within this gene, whereas for ASD it unexpectedly
maximizes over an adjacent gene. While we believe this tool can be a useful guide to
researchers, this example also underscores a limitation of this approach: we cannot provide
error rate guarantees at the localized level. Such an analysis will be a target of our future
work in this challenging area.

4.5 Data availability statement

The data and code used in this chapter are available at https://github.com/ryurko/

Agglomerative-LD-loci-testing.

4.6 Method Appendix

4.6.1 Comparison of GWAS enrichment

We observe that autism spectrum disorder (ASD) GWAS results [Grove et al., 2019] suffer
from weaker power in comparison to schizophrenia (SCZ) [Ruderfer et al., 2018b] and ed-
ucational attainment (EA) [Lee et al., 2018] (Figure 4.7). This is likely due to differences
in study size: 18,381 cases and 27,969 controls for ASD in comparison to 33,426 cases and
32,541 controls for SCZ and ≈ 1.1 million individuals for EA.

4.6.2 AdaPT overview

AdaPT is an iterative search procedure for selecting R discoveries with guaranteed finite-
sample FDR control at target level α, under the assumption of independent null p-values
[Lei and Fithian, 2018]. We apply AdaPT to a collection of weakly correlated gene/locus-
level p-values and metadata, (pg, xg)g∈G, testing hypothesis Hg regarding gene/locus’ g’s
association with the phenotype of interest (e.g. ASD). For each step t = 0, 1, . . . in the
AdaPT search, we first determine the rejection set Rt = {g : pg ≤ st(xg)}, where st(xg) is
the rejection threshold at step t that is adaptive to the metadata xg (except for the starting
threshold s0 = 0.05). This provides us with both the number of discoveries/rejections
Rt = |Rt|, as well as a pseudo-estimate for the number of false discoveries At = |{g : pg ≥
1− st(xg)}|. These quantities are used to estimate the FDP at the current step t,

F̂DPt =
1 +At

max{Rt, 1}
.

If F̂DPt ≤ α, then the AdaPT search ends and the set of discoveries Rt is returned.
Otherwise, the rejection threshold is updated by discarding the most likely null element in
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the current rejection region, as measured by the conditional local false discovery rate (fdr)
estimated with an expectation-maximization (EM) algorithm. With the threshold updated,
the AdaPT search repeats by estimating FDP and updating the rejection threshold until
the target FDR level is reached.

The most critical step in AdaPT involves updating the rejection threshold st(xi) through
an EM algorithm to fit a conditional version of the two-groups model [Efron et al., 2001] to
estimate local fdr. We consider the same model form as our previous work [Yurko et al., 2020],
where the null p-values are modeled as uniform (f0(p|x) ≡ 1) while we model the non-null
p-value density with a beta distribution density parametrized by µg = E[−log(pg)]. This
results in a conditional density for a beta mixture model,

f(p|xg) = π1(xg)
1

µg
p1/µg−1 + 1− π1(xg).

In this form, we can model the non-null probability π1(xg) = E[Hi|xg] and the non-null
effect size µ(xg) = E[−log(pi)|xg, Hg = 1] with two separate gradient boosted tree-based
models. The XGBoost library [Chen and Guestrin, 2016] provides logistic and Gamma
regression implementations which we use for π1(xg) and µ(xg) respectively. See our previous
work [Yurko et al., 2020] for details about the implementation of the EM algorithm, and
[Lei and Fithian, 2018] for details about updating the AdaPT rejection threshold using
π1(xg) and µ(xg).

4.6.3 AdaPT tuning results

In order to avoid overfitting our the non-null probability and effect size models, we first
find appropriate settings for the gradient boosted trees (number of trees, learning rate, and
maximum depth) using synthetic SCZ p-values which mimic ASD p-values in the following
manner:

1. Sort SCZ and ASD p-values: (pSCZ
(1) , . . . , pSCZ

(M) ) and (pASD
(1) , . . . , pASD

(M) )

2. Replace SCZ with ASD p-values by matching order,

• e.g., replace pSCZ
(1) with pASD

(1) , pSCZ
(2) with pASD

(2) , . . .

We then proceed to apply AdaPT using these ASD-aligned SCZ p-values, finding appropriate
settings in our gradient boosted trees. To avoid overfitting, we consider shallow trees with
maximum depth ∈ {1, 2}, while searching over the number of trees P ∈ 100, . . . , 450 by
increments of fifty and the learning rate η ∈ 0.03, . . . , 0.06 by increments of 0.01. We find
the combination P and η yielding the highest number of synthetic SCZ discoveries for both
depth values at FDR level α = 0.05. The top setting combinations across the considered
SNP-to-gene assignment types and r2 threshold (Table 4.1) were then considered in the
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AdaPT cross-validation algorithm [Yurko et al., 2020] when applied to the actual ASD, SCZ,
and EA p-values.

4.6.4 Measuring AdaPT metadata importance

We examine the variable importance from the gradient boosted trees to provide insight into
the relationships between the metadata xg and measures of phenotypic association, non-null
probability π1(xg) and non-null effect size µ(xg). However, because AdaPT is an iterative
search with several modeling steps, we summarize metadata importance by computing the
average importance across the steps in the search. This allows us to compare metadata
importance across phenotypes and positional assignment since the AdaPT searches vary in
terms of the number of modeling steps required to reach the target α = 0.05 (Table 4.2).

We rank the top five sources of metadata for each phenotype and positional assignment
based on the sum of the average importance for the two types of AdaPT models, non-null
probability π1(xg) and non-null effect size µ(xg). We observe similar rankings in metadata
importance between the Positional + eSNPs (Figure 4.3) and Positional results (Figure
4.8), with differences between phenotypes such as the increased importance of LOEUF for
SCZ and EA in comparison to ASD.

4.6.5 Results with LD threshold r2 ∈ {0.50, 0.75}
We additionally generate the AdaPT: XGBoost and baseline results using genes/loci formed
with LD thresholds of r2 ∈ {0.50, 0.75}, which are not as conservative as the threshold of
r2 = 0.25. Both of these higher threshold values lead to a greater number of genes/loci
for testing for both positional types, Positional and Positional + eSNPs (Figure 4.2).
Ultimately, in terms of the number of genes/loci selected by AdaPT at target FDR level
α = 0.05, we observe similar results as before (Figure 4.4A) with increased power from
using AdaPT: XGBoost regardless of phenotype with indication that including eSNPs
provides an advantage in detecting more signals (Figures 4.9 and 4.10). As expected, for all
three phenotypes, the percentage of genes/loci selected corresponding to unclustered genes
increases with the r2 threshold (Table 4.3).

4.6.6 Results per chromosome breakdown

We compare the chromosome breakdown of the selected genes/loci using AdaPT: XGBoost
for each phenotype, indicating a greater boost in detecting associations by including eSNPs
for ASD in comparison to well-powered SCZ and EA (Figure 4.11). Additionally, for SCZ
and EA, the total number of associated genes per chromosome declines strongly and linearly
with chromosome size (Figures 4.12 and 4.13).

4.6.7 LD locus zoom application

We developed our LD locus zoom application using R Shiny [R Core Team, 2020, Chang et al., 2020]
and plotly [Sievert, 2020] to interactively explore localized signal within interesting genes/loci.
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The genes located within the locus are represented in rectangles denoting their respective
start and end positions below the smooth display, arranged by position and size to prevent
overlapping. The solid black line denotes the gene/locus-level kernel smoothing for positional
SNP signals, including interpolation. For reference, the gray dotted line denotes a point-wise
95th percentile of 1,000 simulations for squared null Gaussian random variables, z2g∗ where
zg∗ ∼ Normal(0g∗ ,Σg∗), given the LD structure Σg∗ of the selected LD locus g∗.

Additionally, we provide several interactive features such as the option to display
background kernel smoothing results for SCZ (in red) and EA (in blue), normalized to appear
on the same signal scale as ASD, as well as the option to display eSNPs separately as bars
(colored to match their associated genes) with bar heights denoting individual eSNP-level
signal. Furthermore, one has the option to display gene-level smoothing (Figure 4.14) as
well as highlight particular genes and their corresponding eSNP signals with the plotly

highlighting tool (Figure 4.15). To simplify the visualization of larger loci, we perform the
interpolation within subgroup of SNPs that are formed if they are separated by more than
five percent of the loci size (using single-linkage clustering), e.g. three subgroups of SNPs
with interpolation performed separately for LD locus in chromosome 17 1 Mb inversion
region (Figure 4.15).

Within the application, there are three tabs: (1) ASD results, (2) Upload results, and
(3) Description. The ASD results tab includes the LD locus visualization for our Positional
and Positional + eSNPs results, with the ability to select different genes/loci to display as
well as export the image as an SVG file. Furthermore, the tables of the selected LD locus’
corresponding genes and SNPs can be downloaded as CSV or Excel files (via the Genes
and SNPs tabs respectively). The gene and SNP tables also include urls to their respective
pages in the GWAS catalog [Buniello et al., 2019].

Additionally, users can use the Upload results tab to import datasets to generate the same
type of kernel smoothing visualization. Additional information about the interactive features
of the application are available in the Description tab. The LD locus zoom application can
be accessed here https://ron-yurko.shinyapps.io/ld_locus_zoom/.

4.6.8 Enrichment analysis

A primary motivation for gene-based analyses is to garner insight into the biological mech-
anisms underlying the phenotype by evaluating the set of genes associated with it. We
implement two approaches: (1) FUMA GENE2FUNC tool [Watanabe et al., 2017] for gene
ontology (GO) enrichment analysis of the AdaPT: XGBoost genes/loci, and (2) gene-set
enrichment analysis (GSEA) [Subramanian et al., 2005] to test if different sets of genes are
enriched in a ranked gene list. In both approaches, we address the confounding effect of
gene/locus size as larger genes are more likely to be associated (Figure 4.16).

First, we use the FUMA GENE2FUNC tool for GO enrichment analysis of the implicated
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genes in the AdaPT: XGBoost genes/loci. Rather than include all implicated genes in the
associated loci for the FUMA enrichment analysis, we used the kernel smoothing results
to identify signal genes. Specifically, we only use genes with kernel smoothing signals
above the point-wise 95th percentile of null simulations and any gene with at least one
intergenic eSNP displaying a large marginal effect size (i.e., z statistic ≥ 1.96). Then to
address the confounder of gene size, we find non-implicated genes to match the signal
genes with respect to gene size using the optmatch [Hansen and Klopfer, 2006] package in R

[R Core Team, 2020]. Due to the difference in number of signal genes for the phenotypes, we
find the twenty, two, and the single closest matching non-implicated genes for each Positional
+ eSNPs signal gene with ASD, SCZ, and EA respectively. Using the list of matched
non-implicated background genes, we then do not observe any GO enrichment terms for
the ASD genes. In comparison, the SCZ (EA) genes display enrichment for 698 (114) terms
in biological processes, 163 (64) terms in cellular components, and 103 (27) in molecular
function. Using REVIGO [Supek et al., 2011] to summarize these terms, they highlight
neuron project, synaptic function, cell adhesion, cell cycle, chromosome organization, and
and many more (Figures 4.17 and 4.18).

Next, we performed GSEA for five different sets of genes/loci to test for enrichment at
the top of the list of genes/loci ranked by their one-sided z statistics:

1. 18,008 brain expressed genes from SynGO [Koopmans et al., 2019],

2. 1,232 synaptic genes from SynGO [Koopmans et al., 2019],

3. 815 epigenetic genes from EpiFactors [Medvedeva et al., 2015],

4. 1,819 transcription factors compiled from the SeqQC project [de Santiago, 2020], and

5. 102 ASD risk genes identified based on de novo and case-control variation [Satterstrom et al., 2020].

We collapsed these five lists of genes into their respective genes/loci based on LD induced
correlation for each positional type, indicating that a locus is a member of a list if at least
one of its genes is a member of the list (Table 4.4).

To address the confounder of gene/locus size, we compute versions of the z statis-
tics that are adjusted for the gene/locus’ size. Specifically, we regress out the effect of
the log(size) on the z statistics for each phenotype (Figure 4.16) and use the adjusted
z statistics for GSEA. We use the fgsea implementation in R [Korotkevich et al., 2019],
with 10,000 permutations to compute GSEA p-values, to test if any of the five lists are
enriched at the top of the genes/loci ordered by the size-adjusted z statistics for all three
phenotypes. We observe that both synaptic and epigenetic genes/loci are enriched for both
positional types using the size-adjusted ASD z statistics based on Benjamini-Hochberg (BH)
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[Benjamini and Hochberg, 1995] adjusted p-values at FDR level α = 0.05 (Figure 4.6 and
Figure 4.19). In comparison, we observe that all five gene sets, for both positional types, are
enriched for both SCZ and EA size-adjusted z statistics (all of their respective BH adjusted
p-values were equal to 1 / 10,001, i.e., their observed enrichment scores were more extreme
than the 10,000 simulations).

Figure 4.7: Comparison of SNP-level quantile-quantile plots revealing greater enrichment for
SCZ and EA in comparison to ASD. Dotted reference line indicates null, uniform distribution.
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Figure 4.8: The top five sources of metadata as ranked by XGBoost importance for the Positional
results by phenotype. Metadata are sorted in order of combined importance, while the color
of the bars denote the separate measures of importance for the two AdaPT models: non-null
probability (orange) and non-null effect size (blue).

Figure 4.9: Comparison of the number of discoveries at FDR level α = 0.05 for each phenotype
(by column), comparing the number of genes/loci returned by the type of SNP-to-gene assignment
with LD threshold r2 = 0.50. AdaPT: XGBoost results are presented in comparison to BH and
AdaPT: intercept-only baselines.
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Figure 4.10: Comparison of the number of discoveries at FDR level α = 0.05 for each phenotype
(by column), comparing the number of genes/loci returned by the type of SNP-to-gene assignment
with LD threshold r2 = 0.75. AdaPT: XGBoost results are presented in comparison to BH and
AdaPT: intercept-only baselines.

Figure 4.14: Gene-level ASD kernel smoothing for the chromosome 17 LD locus in the 3.7 Mb
deletion region. Line colors match the associated genes displayed below the x-axis. The gray
dotted line indicates point-wise 95th percentile for null simulations.
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Figure 4.11: Comparison of the number of selected genes/loci by chromosome in the AdaPT:
XGBoost by positional assignment type for each phenotype. The bars are overlaid on top of
each other, indicating a higher number of genes/loci are selected at a chromosome using the
Positional + eSNPs approach when the orange bar height is above the dark gray area, e.g., ASD
results for chromosome six.
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Figure 4.12: Comparison of the number of implicated genes by chromosome in the AdaPT:
XGBoost results for both positional assignment types for each phenotype (colored by type of
gene).
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Figure 4.13: Relationship between the number of implicated genes and total number of genes
per chromosome by phenotype and positional assignment. Chromosome points are labeled by
their respective number. Blue line indicates regression fit with p-values of coefficients labeled in
the top-left corners.
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Figure 4.15: Zoom display for LD locus in chromosome 17 1 Mb inversion region. (A) Display
with all genes and their associated eSNPs. (B) and (C) Display two separate subsets of genes
and their associated eSNPs.
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Figure 4.16: Relationship between unadjusted z statistics and log(gene/locus size) by phenotype
and positional assignment. Red line indicates regression fit with p-values of coefficients labeled
in the bottom-right corners.
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Figure 4.17: Treemap display of GO (A) biological processes, (B) cellular components, and (C)
molecular function for SCZ Positional + eSNPs results using signal genes with size-matched list
of background genes.
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Figure 4.18: Treemap display of GO (A) biological processes, (B) cellular components, and (C)
molecular function for EA Positional + eSNPs results using signal genes with size-matched list
of background genes.
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Figure 4.19: Enrichment score for (A) synaptic and (B) epigenetic genes/loci with tick marks
denoting gene/locus rank based on Positional ASD z statistics, adjusted for size, in descending
order.
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Table 4.1: Top boosting settings to consider for number of trees P and learning rate η by
maximum depth and SNP-to-gene assignment type from tuning with synthetic SCZ p-values.

SNP-to-gene assignment r2 threshold Depth = 1 Depth = 2

Positional
0.25 P = 450, η = 0.06 P = 100, η = 0.04
0.50 P = 150, η = 0.06 P = 250, η = 0.06
0.75 P = 450, η = 0.05 P = 200, η = 0.05

Positional + eSNPs
0.25 P = 400, η = 0.06 P = 250, η = 0.05
0.50 P = 450, η = 0.06 P = 300, η = 0.05
0.75 P = 450, η = 0.05 P = 250, η = 0.04

Table 4.2: Number of model fitting steps in AdaPT search to reach target FDR level α = 0.05,
by phenotype and positional assignment.

Phenotype Positional steps Positional + eSNPs steps

ASD 18 20

SCZ 16 15

EA 8 8

Table 4.3: Comparison of the number (%) of unclustered genes in the AdaPT: XGBoost selected
genes/loci as a function of r2 for each phenotype by positional assignment.

Positional assignment r2 ASD SCZ EA

Positional
0.25 77 (17.2%) 1,439 (30.2%) 4,991 (42.4%)
0.50 98 (31.6%) 2,318 (54.6%) 6,882 (63.2%)
0.75 150 (62.2%) 3,098 (76.5%) 8,683 (81.9%)

Positional + eSNPs
0.25 78 (16.1%) 1,566 (29.3%) 5,091 (40.5%)
0.50 112 (28.9%) 2,306 (50.6%) 7,054 (61.1%)
0.75 179 (60.1%) 3,297 (74.5%) 9,071 (80.8%)

Table 4.4: Comparison of the number of genes/loci in each of the five considered list of genes
for GSEA by positional assignment.

Gene list Positional Positional + eSNPs

Brain expressed 11,878 11,558

Synaptic 1,109 1,114

Epigenetic 654 664

Transcription Factors 1,453 1,454

102 ASD risk genes 102 102
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Five

Augmenting rare variant studies with
annotations to improve power

5.1 Introduction

Recently, the development of whole-genome sequencing (WGS) has enabled greater explo-
ration into the impact de novo mutations (variants observed in child but not in parents)
located in noncoding regions of the genome have on complex disorders. To address the unique
multiple burden respecting the scale of the noncoding genome, [Werling et al., 2018] intro-
duced a category-wide association studies (CWAS) framework defining over fifty-thousand
annotation categories to test for association with ASD. However, in the analysis of case-
control data from a limited number of quartet-families (parents, probands, and siblings for
controls), they did not observe any noncoding annotation categories meeting the category-
wide significance threshold. Similar null results were observed by [An et al., 2018] with the
inclusion of more families, however a de novo risk score analysis implicated the contribution
of de novo mutations in promoter regions to ASD. Our goal is to improve power to detect
noncoding, regulatory elements associated ASD by building upon the foundation of the
CWAS framework.

The role of annotation categories in the CWAS framework provides a natural setting
for selective inference approaches to improve power. First, we provide an overview of
the mutation rate model and example data considered in this chapter. We then propose a
testing approach analogous to our previous work in gene-level testing [Yurko et al., 2021b], by
clustering correlated tests together based on their annotation structure and then incorporating
annotations as covariates in AdaPT. We then investigate the use of a data blurring approach
to enable exploration of lower-level annotations and compare performances between the
considered methods in simulation studies.
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Figure 5.1: Comparison of trinucleotide DNM rate in noncoding regions between values computed
using controls to approach based on human-chimp comparison.

5.2 Background and data

5.2.1 Mutation rate model

Following common practice [He et al., 2013, Liu et al., 2018], we model the null de novo
mutation (DNM) counts Yw within some noncoding region w following a Poisson distribution,

Yw ∼ Poisson
(
λw

)
, (5.1)

where λw = 2Nµw is the DNM rate given N individuals in the study and the baseline
mutation rate µw for region w. We assume the mutation rates µw are known from an external
source. In this chapter, we use controls from previous studies [An et al., 2018] to compute
the baseline mutation rates, which are based on summing across the trinucleotide-specific
mutation rates for each base in a region. This yields comparable rates to previous approaches
[Samocha et al., 2014] (Figure 5.1).

The aforementioned genomic regions are constructed based on annotations, essentially
dividing the genome into non-overlapping regions defined by changes in the status of the
considered annotations (Figure 5.2). Rather than work with these regions directly, the
CWAS framework instead accumulates these regions based on the annotation status. For
example, in the example schematic (Figure 5.2) there are nine regions constructed based
on two annotations A and B. This leads to four independent combinations of annotations:
(1) A = 0; B = 0, (2) A = 1; B = 0, (3) A = 0; B = 1, or (4) A = 1; B = 1. By this
construction, a genomic region can only exist in a single annotation combination. For this
reason, we then treat each combination c ∈ C as the base unit of our analysis. We assume
the DNM counts for each combination are independent and follow a Poisson distribution
with DNM rate λc.
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Figure 5.2: Schematic indicating how genomic regions are constructed based on annotations.
Each rectangle denotes a particular annotation, while the dashed lines indicate where non-
overlapping regions are constructed.

However, we are not interested in testing the association status of the |C| annotation
combinations directly. We are instead interested in testing the association status for
intersections of annotations, i.e., when a particular set of annotation indicators are each
equal to one. For example, in the example schematic (Figure 5.2) there are three possible
intersections: (1) A = 1, (2) A = 1; B = 1, or (3) B = 1. Given this structure, each
intersection hypothesis i ∈ I is comprised of a set independent, annotation combinations
Ci. We then compute the DNM rate for each intersection hypothesis by summing the rates
for its independent combination affiliates, λi =

∑
c∈Ci

λc, such that the DNM counts at the
intersection follow a Poisson distribution, Yi ∼ Poisson(λi).
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5.2.2 Example data

Throughout this chapter, we work with data from previous studies [An et al., 2018] to ensure
our methods are working on realistic examples. We consider fourteen annotations indicating
GENCODE definitions, conservation, and functional status. Since there are annotations
that do not overlap with each other, we observe |C| = 371 independent combinations of the
fourteen annotations, i.e., there are 371 unique observations of fourteen indicator variables.
We then observe I = 420 different annotation intersections. Unlike the combinations which
always consider all fourteen annotations, we designate intersections by the order of their
intersection, i.e., the number of annotation indicators equal to one. For instance, in the
previously mentioned example, A = 1 is considered an order-1 intersection, while A = 1;
B = 1 is an order-2 intersection. Because there are certain annotations that do not overlap
with each, for our example data we observe up to order-6 intersections. These different
order of intersections could be interpreted as a DAG-structure, where order-1 intersections
represent the top of the DAG while the combinations (which are technically order-14 by our
construction) are the leaves. For the remainder of this chapter, we decide to remove the
order-1 and order-2 intersections from our analysis due to their overwhelming size and the
potential lack of insight gained from detecting associations at such a high level. This leaves
us with I = 344 remaining intersection hypotheses for testing.

5.3 Methods

5.3.1 Agglomerative testing approach

By construction, we can observe overlap between the considered annotation intersections
leading to test statistics with substantial levels of correlation, thus confounding the inter-
pretability of our error rate guarantees from various multiple testing procedures. Because
of the structure of the independent annotation combinations, we can compute the covari-
ance between the DNM counts for two intersections i and i′ based on the overlap in their
independent combination members:

Cov(Yi, Yi′) =


∑

c∈Ci
⋂

Ci′
λc if |Ci

⋂
Ci′ | > 0

0, else
(5.2)

To account for substantially correlated test statistics, we use an agglomerative procedure
that was implemented in the context of gene-level testing [Yurko et al., 2021b] to cluster
highly correlated intersections together for testing. Given a correlation threshold r, we apply
the following procedure to a set of annotation intersections I:

1. Let each intersection be its own test i with |I| initial hypotheses in total.
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2. Compute Cor(Yi, Yi′) for all pairs of intersections, i, i
′ ∈ I, (using Equation 5.2 and

each intersection’s assumed Poisson variance λi and λi′).

3. Repeat the following until Cor(Yi, Yi′) < r for all remaining pairs of annotation
intersections in I:

• Find intersection {i∗, i′∗} = arg max
i,i′∈I,i ̸=i′

Cor(Yi, Yi′),

• Merge {i∗, i′∗} into group imerge,

• Update I = I \{i∗, i′∗}∪{imerge}, and compute Cor(Yimerge , Yi′) for all remaining
i′ ∈ I.

This is an agglomerative clustering algorithm with a linkage function determined by the
assumed correlation structure of the Poisson test statistics. We can use the observed DNM
counts yi as the test statistic for each clustered annotation intersection i ∈ I, and then
compute the p-values based on one-sided enrichment tests, i.e., pi = Pr(Yi ≥ y|λi). For our
example data, we observe I = 96 clustered intersections at threshold r = 0.50, thus greatly
reducing the number of tests but also indicating the prevalent levels of correlation between
the various intersections.

5.3.2 AdaPT implementation with annotation features

Given a collection of intersection-level p-values and metadata, (pi, xi)i∈I , we apply AdaPT
[Lei and Fithian, 2018] to select a subset of discoveries with FDR control at target level
α = 0.05. However, due discreteness of the p-values for one-sided Poisson tests and the
potentially conservative inflation of p-values equal to one exactly, we cannot use the original
masking function in AdaPT. Instead, we implement recent developments in masking functions
[Duan et al., 2020b, Chao and Fithian, 2021] to handle the smaller number of tests and also
remove the conservative p-values equal to one that would result in AdaPT failing to reject
anything. These general masking functions take the form of,

g (pi) =

ν−pi
ζ pi ∈ [η, ν]

pi otherwise
(5.3)

where ζ is a “stretch factor” based on inputs for the thresholds αm, ν, and η:

ζ =
ν − η

αm
. (5.4)

This leads to an updated FDP estimate at step t of the AdaPT search,

FDPt =
At + 1

ζRt
. (5.5)
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We then choose values for these inputs such that AdaPT only needs a minimal number of
rejections to be made in order to work, as well as avoid the inflation of p-values equal to
one. In the simulation studies below, we set the values to be αm = 0.125, η = 0.125, and set
ζ = 6.6 such that the upper bound for p-values is ν ≈ 0.95. At target FDR level α = 0.05,
this means we need at least three rejections for AdaPT to be able to return any discoveries.

Similar to [Yurko et al., 2021b], we incorporate metadata about these annotation hy-
potheses from feature space xi ∈ X using XGBoost [Chen and Guestrin, 2016]. For each
annotation intersection i, we create a vector of information summarizing which annotations
comprise each intersection. For each annotation a ∈ A, we let xia denote the fraction of the
intersection’s independent combination where that annotation indicator is equal to one:

xia =
1

|Ci|
∑
c∈Ci

xca, (5.6)

where xca is an indicator variable denoting whether or not annotation a is equal to one
for combination c. Obviously, this is just a single approach to encoding the annotation
information at this intersection-level structure. We leave further encoding for future work.

5.3.3 Data blurring augmentation

While we can create features summarizing the annotations at the intersection-level, we are
interested in leveraging the unique structure of the independent annotation combinations.
We want to somehow explore the independent-level data to help us effectively order the
intersections we are interested in testing. In order to explore the annotations, we consider
a data blurring approach which has been primarily used in the context of estimation after
selection [Leiner et al., 2021]. We consider the following steps:

Step 1 - Blur data. Given the use of independent Poissons, we observe yc DNMs for each
independent annotation combination. We then create a blurred version ỹc which is defined
as,

ỹc = yc + zc where zc ∼ Poisson(τλc), (5.7)

and τ > 0 controls the amount of blurring that takes place. Under this form, we assume
Ỹc ∼ Poisson(λc · (1 + τ)).

Step 2 - Model blurred data. Next, we can model the blurred counts ỹc at the independent
combination level to derive new features based on exploring the blurred data. First, we
consider a Poisson model of the blurred counts accounting for the offset term from the
blurred data:

log λ∗
c(xc) = log(λ0c · (1 + τ)) + β(xc), (5.8)

where λ0c is our assumed null DNM rate and β(xc) is the effect size as a function of the
annotation indicators xc, which we learn with gradient boosted trees. Additionally, we
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also implement a version of the classical two-groups model [Efron et al., 2001] yielding the
conditional mixture probability mass function,

f(ỹc|xc) = π1(xc)f(ỹc;λ0ce
β(xc) · (1 + τ)) + (1− π1(xc))f0(ỹc;λ0c · (1 + τ)), (5.9)

where f(y;λ) is the Poisson probability mass function for a Poisson random variable. In this
form, we model the non-null probability π1(x) and the non-null effect size β(xc). In this
model, there is one missing variable: the hypothesis status Hc regarding the combination
is never observed. An expectation-maximization (EM) algorithm can be used to estimate
both π̂1(xc) and β̂(xc) by maximizing the partially observed likelihood. The complete data
log-likelihood for the conditional two-groups model in this form is,

l(π1, β; yc, Hc, xc) =
∑
c∈C

{Hclogπ1(xc) + (1−Hc)log(1− π1(xc))}+ (5.10)∑
c∈C

{Hclogf(yc;λ0ce
β(xc) · (1 + τ)) + (1−Hc)logf(yc;λ0c · (1 + τ))}. (5.11)

During the E-step of the iteration of the EM algorithm, given estimates π̂1 and β̂, we
compute:

Ĥc =
π1cf(Yc;λ0ce

β(xc) · (1 + τ))

π1cf(yc;λ0ceµ(xc) · (1 + τ)) + 1− π1cf(yc;λ0c · (1 + τ))
. (5.12)

The M-step consists of estimating π̂1 and µ̂ with separate gradient boosted trees. In order to

fit the model for π1(xi), we construct the response vector v
(d)
π = (1, . . . , 1, 0, . . . , 0) ∈ R2|C|

and use weights wπ = (Ĥ1, . . . , Ĥ|C|, 1− Ĥ1, . . . , 1− Ĥ|C|) ∈ R2|C|. Then we estimate π̂1(xc)
using the first |C| predictions from a classification model using vπ as the response variable
with the covariate matrix (xc)c∈[C] replicated twice and weights wπ. Then, for estimating

µ̂(xc) we construct a response vector with the blurred counts vµ = (ỹ1, . . . , ỹ|C|) ∈ Z+|C|

with weights wµ = (Ĥ1, . . . , Ĥ|C|) ∈ Rn.

We use logistic and Poisson regression implementations in XGBoost [Chen and Guestrin, 2016]
to model π1 and β respectively. For initialization of β, we use an unweighted model of the
blurred counts ỹc. For initialization of π1, we use the same approach by [Boca and Leek, 2018]
and [Ignatiadis and Huber, 2021].

Step 3 - Accumulate blurred data to intersection level. Because we are interested in testing
the merged groups of intersections, we first accumulate the blurred data to the intersection-
level. Based on the mapping of the combinations to intersections, denoted by the set Ci, we
compute the blurred counts as ỹi =

∑
c∈Ci

ỹc. We then accumulate the conditionally inde-
pendent non-null probability and effect size estimates based on the mapping of combinations
to intersections. To compute the intersection-level effect size estimate β̂i, we simply sum up
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the estimated non-null rates for each corresponding member combination and divide by the
assumed null rate under the blurred model:

log β̂i = log
( ∑
c∈Ci

λ0ce
β̂c · (1 + τ)

)
− log

(
λi · (1 + τ)

)
. (5.13)

Similarly, we compute the non-null probability based on the product of the conditionally
independent non-null probability estimates at the combination level,

π̂1i = 1−
∏
c∈Ci

(1− π̂1c). (5.14)

We then compute the conditional local fdr [Efron et al., 2001] for each test as,

lfdri =
(1− π̂i)f

(
ỹi;λ0i · (1 + τ)

)
π̂if

(
ỹi;λ0ieβ̂i · (1 + τ)

)
+ (1− π̂i)f

(
ỹi;λ0i · (1 + τ)

) . (5.15)

Step 4 - Perform conditional binomial test. Since we used the blurred counts ỹi (from
modeling ỹc) to explore the hypotheses, we then must test Yi|Ỹi to ensure our hypothesis
testing is independent of the exploration step (Step 2 above) [Leiner et al., 2021]. This
conditional test becomes a one-sided binomial test because,

Yi|Ỹi ∼ Binomial(Ỹi,
1

1 + τ
). (5.16)

By design, the blurring parameter τ controls the tradeoff we have between hypothesis
exploration in Step 2 and the testing step in Step 4. As τ increases, the power in the
conditional binomial test will improve - but the exploration step in modeling the blurred
counts will likely suffer.

Step 5 - Guide conditional test with blurred exploration. To overcome the power lost by
introducing variance from blurring the data, we use the estimates constructed in Step 2 as
new metadata for the intersection-level hypotheses. Specifically, in the simulations below we
demonstrate the performance using the local fdr estimates as features in AdaPT, coupled
with the annotation proportion values that were constructed prior to blurring. The goal is
to see if additional information constructed from modeling the blurred data can ultimately
lead to improved power over the results without blurring.

5.4 Simulation studies

In order to evaluate our potential approaches for augmenting CWAS, we consider simulation
iterations with the following steps:
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• Choose a set of annotation interactions to be non-null, i.e., where a particular choice
of annotations are all equal to one.

• Determine which of the annotation combinations c ∈ C are non-null (C1) based on if
they contain the selected non-null interaction, e.g., if the triplet (a1, a2, a3) denotes a
non-null annotation interaction then Hc = 1 if xca1 · xca2 · xca3 = 1 regardless of the
status of the other eleven annotations.

• Under the assumption we have access to null mutation rates λ0c for each independent
annotation combination, we multiply it’s mutation rate by a factor of eβ if it’s non-null:

λc =

{
λ0c · eβ, if c ∈ C1

λ0c otherwise
(5.17)

• Generate the observed number of DNMs yc for each of the independent combinations,
given the desired total number of DNMs Y ∗:

Yc ∼ Multinomial
(
Y ∗,

λc∑
d∈C λd

)
(5.18)

• Proceed to compute both number of DNMs yi and null rates λ0i for each of the
considered intersection/group hypotheses i ∈ I, by summing across the their respective
member combinations yc and λ0c for c ∈ Ci. The null status of the intersection/group
hypotheses Hi is determined by the structure of which independent combinations are
accumulated for that intersection,

Hi =

{
1, if ∃Hc = 1, for c ∈ Ci

0, otherwise
(5.19)

In the simulation studies below we set Y ∗ = 63492 to match the number of non-coding
DNMs observed in new datasets, providing us with realistic scenarios for our simulations.

5.4.1 Agglomerative AdaPT results without blurring

We first compare the performance of AdaPT with the annotation features considered above
relative to an AdaPT intercept-only approach (without accounting for metadata) and BH
[Benjamini and Hochberg, 1995] on the clustered intersection hypotheses with threshold
ρ = 0.5. These tests are based on using the p-values from one-sided Poisson tests given
the simulated case counts yi. We generate 1,000 simulations following the above steps
values of β ranging from 0 (null) to log 4, over a grid of ten values, and observe both the
intersection-level power and FDR control at target level α = 0.5. We observe clear gains in
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Figure 5.3: Comparison of power (+/- one standard error) across 1,000 simulations between
AdaPT with annotation proportions (blue) to BH (black) and the AdaPT intercept-only approach
(orange), as a function of the non-null effect size.
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Figure 5.4: Comparison of FDR control (+/- one standard error) across 1,000 simulations
between AdaPT with annotation proportions (blue) to BH (black) and the AdaPT intercept-only
approach (orange), as a function of the non-null effect size.

power from using AdaPT with the annotation proportions (AdaPT: Annotation Proportions
in blue) compared to both BH (black) and AdaPT without any side information (orange)
- with the only drawback seen in the initial weak settings where we suffer from power to
detect anything (Figure 5.3). All three approaches suffer from conservative control likely
due to the positive dependence structure remaining post-merging intersection hypotheses at
the chosen threshold of ρ = 0.5 (Figure 5.4). These results indicate the clear advantages of
including the annotation indicators in some form to demonstrably improve power.
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5.4.2 Comparison of results with blurring

Next, we compare the performance of AdaPT using features created from exploring data via
the blurring steps based on 100 simulations across the same grid of non-null effect sizes µ
but now varying the amount of blurring τ , ranging from 0.5 to 10 in increments of 0.5. To
evaluate the effectiveness of the performance with blurring, we compute the power for BH on
the conditional binomial tests post-blurring along with AdaPT using as a feature the local
fdr estimates defined in the previous section. For reference, we consider the performance
of AdaPT using only the local fdr features from blurring versus using only the annotation
proportions (again post-blurring), then finally using both the local fdr and annotation
proportions together. The goal is to see if any information modeling in the blurring step can
be used to improve our power over the performance with the annotation features constructed
without blurring.

While we can see the gains in power from using our features constructed from the blurred
exploration step over pre-blurring BH (black dashed line), we fail to improve our power
over the AdaPT results using the annotation proportions without blurring (blue dashed line,
Figure 5.5). We can see that the inclusion of the blurred estimates for local fdr as features
in AdaPT, whether it is exclusive or included with the annotation proportions, leads to the
same results post-blurring as the AdaPT results with annotation proportions. While we
have evidence indicating the annotation proportions are useful features alone (Figure 5.3),
our current approach for using features derived from exploring blurred data does not lead to
any additional improvement.

5.5 Conclusions

In this study, we proposed the use of an agglomerative algorithm to cluster overlapping
annotation intersections and then demonstrated in simulations an improvement in power by
augmenting CWAS hypotheses with annotation summaries. This approach is analogous to
our previous work in the common variant setting [Yurko et al., 2021b] but adapted for the
context of rare variant studies. We only considered annotation proportions as metadata in
this chapter, but additional summary statistics and external data can be accounted for to
further improve our power. We then explored the use of data blurring in order to see if an
additional exploration step of the lower-level annotation combinations could lead to further
improvements in power. Our current approach based on generating additional features
for AdaPT from the blurred step, in the form of conditional local fdr estimates, failed to
demonstrate any meaningful gains in power beyond available annotation summaries.

For next steps, data blurring enables estimation of CWAS effect sizes post-selection
[Leiner et al., 2021]. For instance, we can use AdaPT with summaries about annotations
and additional metadata to improve our power on blurred DNM counts, with the amount
of blurring chosen such that AdaPT displays the same level of power as BH without
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Figure 5.5: Comparison of power (+/- one standard error) across 100 simulations between
AdaPT with different sets of features in comparison to the results before blurring with annotation
proportions (dashed blue line) and BH (dashed black line) as a function of the blurring parameter
τ . Each panel corresponds to an increasing non-null effect size β.

blurring (Figure 5.6). Then we could construct valid post-selection confidence intervals on
the conditional binomial test statistics [Leiner et al., 2021], or perform conditional testing
[Heller et al., 2019] within the clustered hypotheses, while retaining greater power than
considering these same steps post-selection with BH. While we did not observe improvements
in overall selection power via blurring in our current approach, the use of blurring may prove
optimal when considering the optimal approach for aggregating tests in this context. For
example, different global hypotheses may vary in terms of the distribution of signal, e.g.,
sparse versus dense signal regimes. Rather than computing a single test statistic in the
manner we have in this chapter, we could instead explore blurred data to figure out the
optimal testing strategy for a particular global hypothesis. Coupled with multiple testing
corrections guided by metadata, determining the best way to aggregate lower-level test
statistics in a valid manner with blurred data could yield fruitful results in both the CWAS
context as well as analogous problems in gene-level testing with common variants.
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Figure 5.6: Comparison of power (+/- one standard error) across 100 simulations for AdaPT
with annotation proportions based on one-sided Poisson tests with blurred DNM counts as a
function of blurring parameter τ for a particular choice of non-null effect size β. For reference, the
pre-blurring results for AdaPT with annotation proportions (blue) and BH (black) are displayed
as horizontal dashed lines.
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Six

Conclusions and future work

My thesis explores the challenging problem of improving power to detect association in
under-powered genetics studies with the use of selective inference methods. While there
has been great progress in the development of selective inference methodology in recent
years, there has been limited applied work in the setting of genetic studies taking advantage
of these approaches for handling the burden of multiple testing in the presence of weak
effects. This slow adoption can be partially attributed to implementation challenges for these
approaches, both statistical and computational. My Ph.D. has focused on addressing such
implementation difficulties in an effort to encourage adoption of these methods in genetics.

The thesis contains four related projects aimed to augmenting genetic association studies
for neuropsychiatric disorders with metadata across both common and rare variant analysis.

In chapter 2, we boost the performance of adaptive AdaPT by recognizing it is not a
specific algorithm that one can simply apply to a dataset, but rather a meta-algorithm
for coupling machine learning methods to multiple testing problems without compromising
FDR control. We embrace AdaPT’s flexibility via gradient boosted trees in a rich, high-
dimensional multi-omics settings and investigate the neurobiology of schizophrenia in the
process. Specifically, we built a pipeline to select a subset of single-nucleotide polymorphisms
(SNPs) documented to affect gene expression and then incorporate covariates from indepen-
dent GWAS and gene expression studies into AdaPT to ulimately improve our power. Our
boosting implementation of AdaPT scales with more covariates and addresses the perceived
modeling weakness of AdaPT, enabling practitioners to capture interactions and non-linear
effects from resources of available multi-omics metadata.

Our investigation motivates several questions that could lead to interesting extensions
that are worthy of future work. First, although we demonstrate in simulation AdaPT
appears to maintain FDR control in relevant dependence settings to LD structure underlying
GWAS results, there is a need to explore in greater detail AdaPT’s properties under various
dependence regimes. Furthermore, there are opportunities to address adaptive testing
schemes in the presence of dependence directly [Fithian and Lei, 2020]. We also envision our
GWAS analysis with AdaPT to assist in identifying variants likely driving GWAS association
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signal with functional roles regarding gene expression, assisting in colocalization analysis
[Foley et al., 2021, Giambartolomei et al., 2018]. Additionally, this work could be used to
potentially improve the performance of polygenic risk scores, which are numerical summaries
indicating an individual’s risk for a disease / phenotype based on identified genetic risk
factors [Ni et al., 2021]. The use of adaptive thresholding approaches guided by metadata
could help inform to indentify and weight potential risk factors [Amariuta et al., 2020].

In chapter 3, we transition to gene-based testing, which can improve power to detect weak
signal by reducing multiple testing and pooling signal strength. This can be advantageous for
settings with weaker signal, such as those observed in studies for neuropsychiatric disorders.
While there are many approaches for global testing, the presence of LD poses a challenge here:
the combination of dependent SNP-level summary statistics at the gene-level must adjust for
the LD-induced covariance of SNPs. When investigating MAGMA, a popular tool for this
problem, we discovered it yielded an unusual distribution of gene-level p-values, which would
violate necessary assumptions for AdaPT to maintain FDR control. Despite undocumented,
ad-hoc corrections in MAGMA, we observe via simulations and recent applications that it
yields incorrect null p-value distribution resulting in inflated error rates. This is due to the
inappropriate application of an approximation that is valid for only one-sided tests, while
GWAS summary statistics are two-sided.

In chapter 4, we observed that current gene-based testing approaches do not capture LD
of SNPs falling in nearby genes, which can induce correlation of gene-based test statistics.
This compromises the interpretability of a gene-based test, obscuring the meaning of error-
rate guarantees. We introduce an algorithm to account for this correlation directly, based on
the LD-induced correlation of commonly used quadratic gene-level test statistics. When a
gene’s test statistic is independent of others, it is assessed separately, but when test statistics
for genes are strongly correlated, their SNPs are agglomerated and tested as a locus. Using
our implementation of AdaPT guided by gradient boosted trees, we are able to improve
power to select ASD-associated genes and LD-defined loci while maintaining finite-sample
FDR control. We observe how improvements are modest for other, well-powered phenotypes
in comparison to ASD. We complement this algorithm with an interactive visualization tool
to explore localized signal and shed light on biological signals therein.

Our work in the common variant setting demonstrates clear advantages of augmenting
association studies with metadata to improve power. But can we make more general
statements about which sources of side information are relevant for improving power? Or is
it specific to the context of the association study of interest? These are questions relevant to
practitioners desiring to use these approaches in their research. While we provided variable
importance summaries of gradient boosted trees, there is ample opportunity for deeper
investigation. One problem pertinent to gene-level testing is the assumption of availability of
using a LD reference panel. However, this means our gene-based approaches are sensitive to
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potential mismatches with the assumed LD reference structure. A mismatch could lead to an
inappopriate null distribution, as well as potentially over/under-clustering genes. Properly
accounting for sensitivity to LD mismatch is an important area for future research it also
pertains to the portability of our approach across ancestries.

In chapter 5, we focus on problems in the context of rare variant analysis to improve
power for detecting noncoding associations in CWAS. Via simulations, we demonstrated
improvements in power by accounting for annotation-level summaries using AdaPT, in an
analogous manner with our gene-level testing approach by also clustering strongly correlated
hypotheses together. We also investigated a data blurring approach to separately model
and explore lower-level annotation combinations to guide our multiple testing corrections.
However, our current approach failed to yield power improvements over the application of
AdaPT with features constructed without blurring. We emphasize, however, that the role
blurring still leads to advantages in terms of estimation post-selection with an adaptive
threshold providing further insight into understanding rare variant associations in noncoding
regions of the genome.

Our preliminary simulation studies for CWAS indicate similar findings with our work in
common variants: clear gains in power from augmenting testing procedures with AdaPT and
available side information via gradient boosted trees. But there are several opportunities for
future work in this space, such as exploiting the hierarchical structure of annotation categories
in CWAS [Werling et al., 2018]. The STAR framework [Lei et al., 2021] is a potential way to
address this problem, as a more careful testing scheme could be designed to incorporate the
DAG structure of the annotation categories. Additionally, while the Cauchy combination test
provides one way to aggregate several tests together [Liu et al., 2019, Liu and Xie, 2020],
there may be ways to exploit data blurring to improve selection power in the context of
determining the optimal approach for aggregating test statistics for global testing and
coupling it with interactive procedures [Duan et al., 2020a]. While this thesis has focused on
approaches for controlling FDR, there is an opportunity to meld approaches for adaptively
controlling FWER in genetics studies with high-dimensional metadata [Duan et al., 2020b,
Ignatiadis and Huber, 2021]. I believe the contribution of my thesis helps bridge the gap
between selective inference methodology and practical applications in genetic studies, and
motivates the need for the development of new methods and future studies in this challenging
area.
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