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Abstract
This thesis focuses on designing and controlling a dynamically stable shape-

accelerating dual-arm mobile manipulator, the Carnegie Mellon University (CMU)
ballbot. The CMU ballbot is a human-sized dynamically stable mobile robot that
balances on a single spherical wheel. We describe the development of a pair of
seven-degree-of-freedom (DOF) humanoid arms. The new 7-DOF arm pair have
human-like kinematics, a large bimanual workspace, and the strength to carry a 20 kg
payload. As part of this thesis work, the pair of strong and lightweight arms are inte-
grated into the CMU ballbot. To the best of our knowledge, this robot configuration
is the first and only of its kind.

The ballbot class of robots is inherently unstable and requires careful coordina-
tion between the upper and lower body to maintain balance while performing manip-
ulation tasks. This thesis also demonstrates that this new configuration for mobile
manipulation can be controllable over a wide envelope of possible configurations.
Two different control strategies are presented: (i) a decoupled lower and upper body
control strategy where the existing balancing controller compensates for the arm
movement while the arms react to the body motion; and (ii) an optimal whole-body
planning and control strategy that considers the entire kinematics and dynamics of
the system in a single formulation.

The CMU ballbot already has an existing robust balancing controller. This con-
troller was designed for the ballbot in its initial configuration without arms. It also
assumes the center of mass (COM) is aligned with the central axis of the ballbot’s
cylindrical body. To balance the robot, the controller tracks a zero body lean angle.
With the addition of the new arms, the COM will constantly move off-axis, and the
zero body lean angle will not stabilize the system. Here we explore the control of the
entire system’s COM by controlling the body lean angle. This strategy decouples the
balancing task from the upper body motions. We present joint space and task space
controllers to control the new arms. This decoupled control strategy is evaluated
through experiments on the CMU ballbot.

Most solutions to dynamic whole-body motion planning and control either use
a complex, full-body nonlinear dynamic model of the robot or a highly simplified
robot model. Here we explore centroidal dynamics, which has recently become
a popular approach for designing balancing controllers for humanoid robots. We
describe a framework where we first solve a trajectory optimization problem offline
and later use the same nonlinear program (NLP) with a shorter time horizon in a
model predictive control (MPC) context to execute the motion. We define balancing
for a ballbot in terms of the centroidal momentum instead of other approaches like
zero moment point (ZMP) or angular velocity that are more commonly used. We
demonstrate that this framework can generate combined loco-manipulation motion
plans and control inputs for the CMU ballbot.
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Chapter 1

Introduction

The role of mobile robots in human environments is increasing every day. We see robots working
with or alongside people in critical applications ranging from manufacturing to health care and
quality of life. The increasing role of robots in human environments correspondingly increases
the demand for their capabilities and functionalities. Mobile robots should have arms to manip-
ulate objects and the environment to be truly useful. Mobile robot bases have been developed
over many decades, but only recently have researchers added arms to these bases, opening up
the rich field of mobile manipulation. To date, the robot configurations need wide, heavy bases
to support the arms and provide stability. Such robot bases, in turn, severely limit maneuver-
ing agility in cluttered human environments. Insufficient agility, dexterity, and intelligence have
hindered mobile manipulators from being at a stage of real value to people. Despite exciting
research progress, there remains a need for robots that can fully utilize the dynamics of their
bodies to accomplish challenging tasks in an efficient, robust, and safe manner. This thesis work
develops a unique vision for mobile manipulator robots that embodies a combination of three
main attributes: (1) dynamic stability + (2) agile mobility + (3) dexterous interaction. The goal
of this work is to develop foundational capabilities that, in the future, will enable the creation of
a robot with an unprecedented ability to perform complex dynamic tasks with a complete and
unified understanding of dynamics, control, software, hardware, and the environment.

1.1 Motivation

There exist two types of mobile manipulators, as shown in Fig 1.1. The most common configu-
ration for human-sized mobile manipulators is to be statically stable. This robot class has wide,
heavy bases that may or may not be omnidirectional. This is so to keep the center of mass (COM)
as low as possible to provide stability. A high center of mass and/or small base will cause the
robot to tip over easily, which is not desirable. Thus, these robot designs remain bulky, cumber-
some, and lack the capability for truly agile motion. It is becoming increasingly apparent that
to be most effective, mobile manipulators should be dynamically stable machines that actively
balance just like humans do.

Unlike their statically stable counterparts, dynamically stable robots can be more effective
personal robots as they can be tall enough for eye-level interaction, have a small footprint to
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Figure 1.1: Examples of notable existing mobile robots: (a) Willow Garage PR2 [1], (b) DLR
Rollin’ Justin [2], (c) Fetch Robotics Mobile Manipulator [3] are statically stable. While (d)
Golem Krang [4], Boston Dynamics (e) Handle [5] and (f) Atlas [6] are dynamically stable.

navigate cluttered environments, and accelerate and decelerate quickly. The ability to actively
maintain postural stability makes this type of robot platform effective mobile manipulators. They
can generate forces on external objects, withstand greater impact forces, and leverage their body
dynamics. These traits make them ideal platforms for safe deployment in crowded spaces such
as warehouses, homes, businesses, and retail environments, which the robots may share with
people or in which they may cooperate with people.

Many common interactions utilize significant dynamics. For example, when opening a heavy
door or initiating the motion of a wheelchair, people use the dynamic motion of their bodies to
make the task easier. Few existing robots are capable of such abilities, especially while working
with people. Exploiting dynamics to perform supportive or cooperative tasks is in contrast to
many of the usual paradigms of manipulation and navigation today. Yet, this idea is critical
for the safe deployment of robots in crowded spaces. The characteristics of dynamically stable
mobile robots give them the potential to realize such dynamic and agile tasks. Real-time control
of the desired actions requires innovation in simultaneous execution of different subtasks such
as maintaining balance, being compliant to external forces, and ensuring accurate end-effector
position and force tracking.

In this thesis work, we explore the development of a new type of dynamically stable agile
and dexterous mobile manipulator by adding a pair of 7-DOF arms and multi-DOF hands to a
ballbot, as illustrated in Fig 1.2. The CMU ballbot research platform [11, 12] was the first robot
that dynamically balanced and locomoted on a ball, shown in Fig 1.3. It is an underactuated
system that accelerates by leaning its body, but cannot directly control its lean angle. This makes
motion planning and controls nontrivial but yields many benefits. The ballbot class of mobile
robots provides unique advantages over a legged or multi-wheeled counterpart; they can be tall
enough to interact with people at eye level and slender enough to easily move around in cluttered
human environments. The single spherical wheel provides a small footprint and omnidirectional
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Figure 1.2: Proposed mobile manipulator: (a) CAD model of existing CMU ballbot with simple
2-DOF arms removed; (b) pair of 7-DOF arms with hands to be developed; (c) resulting ballbot
research platform with dexterous arms and hands shown manipulating a simple object

motion, making it difficult for the ballbot to get trapped in tight places. Most importantly, owing
to the action of their balancing controllers, ballbots have intrinsic omnidirectional compliance
enabling soft, gentle interaction with people. The CMU ballbot can be easily moved by the force
of a single finger yet cannot be upset by a strong push. This combination of desirable features
does not exist in traditional mobile robots. A detailed description of the ballbot is available in
Chapter 2.

Ballbots present many interesting dynamics and control challenges but yield many benefits,
especially for physical human-robot interaction (pHRI) [13]. An interesting research avenue is
to add arms to the ballbot. A pair of simple two degrees of freedom (DOF) arms have already
been developed for the ballbot [14]. Reliable balancing and navigation over long distances with
the arms have been demonstrated [14]. The limitations of this arrangement are obvious. The
simple 2-DOF arms [15, 16] shown in Fig. 1.3(b)-(d) do not have a human-like appearance, size,
and manipulative capabilities, which hinders operation in human environments where furniture,
tools, and objects are optimized for the human anatomy [8]. However, this provides an excellent
starting point for the work in this thesis because as a proof of concept it has established feasibility.
By equipping the ballbot with far more capable 7-DOF arms and multi-DOF hands, it will be
possible to grasp and manipulate objects using one or both arms, carry the objects over arbitrary
distances at high speed, and place or assemble them into larger structures. It will also be possible
to interact dynamically with larger aspects of the environment for tasks such as opening and
closing doors or pushing/pulling on objects such as furniture while using both its body lean and
arm strengths. There are other ballbots being developed around the world [17, 18, 19, 20, 21], as
shown in Fig. 1.4. However, to our knowledge, besides the CMU ballbot only one other ballbot
has been shown to operate with an arm mounted on it. That robot is Rezero [22], it is roughly
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Figure 1.3: Views of the CMU ballbot with simple arms shown dynamically balancing: (a) photo
of the ballbot with body panels navigating autonomously; (b) arms in neutral pose; (c) arms
outstretched with up to 2 kg weights; (d) arms waving around while balancing and maintaining
position on the floor (Courtesy of Ralph Hollis).

half the size of the CMU ballbot and has a single 3-DOF arm mounted on top of it. The work in
this thesis will result in the first-of-its-kind ballbot robot with a pair of 7-DOF arms.

1.2 Thesis Objectives

It has been successfully shown that balancing mobile robots, like the ballbot, have the dynamic
capabilities to navigate human environments with speed and grace comparable to that of hu-
mans. However, comparable manipulation capabilities are still to be demonstrated. This thesis
is focused on proving the hypothesis that the resulting first-of-its-kind, highly dynamic ball-
bot with 7-DOF arms is controllable over a wide envelope of possible configurations. Within
this controllability envelope, it is necessary to prove that purposeful actions can be successfully
planned and carried out. Basic capabilities to be demonstrated include, e.g., accurately moving
the arms/hands to points in space while dynamically balancing; grasping objects fixed in the
environment; lifting objects of unknown mass while adaptively compensating for their effects;
robust mobility and navigation while moving the arms and holding objects. To achieve these
results three main objectives have been set for this thesis work.

TO 1. Build a first-of-its-kind platform for mobile robot manipulation by enhancing the CMU
ballbot mobile platform by adding a pair of custom-built 7-DOF arms and multi-DOF hands.

TO 2. Develop a robust control framework for the enhanced ballbot that will enable it to suc-
cessfully plan and execute motions over a wide envelope of possible configurations.

TO 3. Demonstrate that within the controllable envelope, the robot can carry out purposeful
actions in a safe and effective manner.
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BallIP [17] Rezero [19, 22] Kugle [21]

Figure 1.4: Other existing ballbots around the world used for academic research.

Achieving these three objectives will constitute a unique new platform for agile and dexterous
mobile manipulation. Here, the term agile refers to the ability to smoothly move through the
environment while avoiding static and dynamic obstacles. The term dexterous refers to the ability
to skillfully manipulate objects and interact with the environment.

1.3 Approach

To achieve the goals of this thesis requires innovative solutions to hardware, planning algorithms,
and real-time control for the safe, effective operation of the dynamic multi-DOF mobile manip-
ulator proposed.

Hardware Development

Reaching the compound goal of developing an agile and dexterous mobile manipulator will be
enabled by creating a pair of new lightweight but strong human-scale arms/hands for the ballbot.
Ideally, one would purchase such arms and interface them to the ballbot. Unfortunately, no
existing off-the-shelf 7-DOF arms are available that meet the requirements of scale, weight, and
actuation strength needed for the enhanced ballbot, as discussed in detail in Sec. 4.1. The goal is
to enable the enhanced ballbot to lift and carry up to 20 kg loads with both arms while reacting
compliantly. Accordingly, this thesis presents the design of the arms based on modular integrated
actuators that combine a motor, drive electronics, harmonic gearing, torque, position sensing,
and a network interface in a compact lightweight package. Structural joints and lightweight links
were designed and fabricated. To complement the existing compliance of the ballbot, additional
compliance for the arms is generated by having a lightweight structure combined with high-
resolution torque sensing. Integrating the new 7-DOF arms to the CMU ballbot opens a wide
range of new research areas.
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Balancing by Regulating Body Lean Angle

The CMU ballbot already has a robust and effective balancing controller [23]. It is robust against
external disturbances and model errors. Since the ballbot is underactuated, the controller employs
an outer and inner loop structure. The inner loop tracks a desired body lean angle. The outer loop
generates a body lean angle trajectory to follow a desired ball position on the floor. The controller
was designed for the ballbot without arms. Without modification, the controller cannot stabilize
the ballbot with the new 7-DOF arms. To mitigate this problem, the work in this thesis presents
an extension to the balancing controller. The extension enables the control of the entire system’s
COM via regulating the robot’s body lean angle. This approach shifts the old control inputs to
operate about the actual equilibrium point instead of the zero equilibrium point. The arm motion
can be decoupled from the balancing controller by regulating the COM position only through the
body lean angle. This simplifies the planning and control of the arms.

Whole-Body Motion Planning

A typical approach to controlling mobile manipulators is to use an inverse dynamics control strat-
egy [24, 25]. This method achieves satisfying results for fully actuated statically stable mobile
manipulators. However, for underactuated shape-accelerating systems, like the ballbot, inverse
dynamics control is more difficult to apply because of the presence of unstable zero dynam-
ics [22]. This thesis work presents an optimization-based whole-body planning framework. The
whole-body planner enables the careful coordination required between the upper and lower body
of the robot to maintain balance while performing manipulation tasks. Trajectory optimization
forms the basis of the motion planner. In the formulation of the trajectory optimization problem,
the robot’s dynamics are represented via the system’s centroidal dynamics with kinematic con-
straints [10, 26]. This avoids the use of the complex non-linear dynamics of the system. This
model representation is complex enough to exploit the full-body dynamics of the system but
is also simple enough to have a low computational burden. Moreover, inspired by momentum-
based-balancing controllers [27] postural balance is defined in terms of the centroidal momentum
instead of traditional approaches like ZMP or angular velocity.

Optimal Model-Based Control

Using a Model Predictive Control-like approach can make the system’s control substantially
more robust, facilitating a fast and safe reaction to unknown external disturbances and model un-
certainty [24]. This approach can improve safe operation around humans. This thesis investigates
modifying the optimization problem used for planning in an MPC context. In the MPC formula-
tion, a hierarchical structure is defined [25, 28]. Higher priorities are set to primary tasks (e.g.,
balancing and self-collision avoidance), and lower priority to secondary tasks (e.g., reaching for
an object with one end-effector while reaching for a second object with another end-effector)
while guaranteeing the execution of primary tasks. Experiments in simulation and hardware are
conducted to evaluate the proposed planning and control framework.
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1.4 Thesis Outline
The rest of this document is organized as follows:

Chapter 2 introduces the Carnegie Mellon University (CMU) ballbot research platform. The
history of the platform and a description of the hardware and software architecture of the system
are presented.

Chapter 3 investigates a kinematic-based center of mass compensation control scheme to
maintain balance while performing manipulation tasks that require heavy payload lifting on the
ballbot with its simple 2-DOF arms. A method to locomote while carrying heavy loads is also
presented. The controller effectiveness is evaluated by demonstrating different payload trans-
portation and robot-to-human handovers. The chapter results serve as proof that the ballbot with
7-DOF arms is feasible.

Chapter 4 begins with the design and development of a new 14-DOF dual manipulation sys-
tem to replace the existing 2-DOF arms in the CMU ballbot research platform. Joint and task
space control algorithms implemented on the arms are also presented. Successful integration of
the arms to the CMU ballbot is demonstrated by executing heavy payload manipulation experi-
ments and compliant interaction with humans. The existing balancing controller is extended to
enable the ballbot to balance while operating the 7-DOF arms. Successful experiments of the
ballbot balancing while moving the arms are shown.

Chapter 5 presents a task space impedance control formulation to control the ballbot arms. It
extends the traditional implementation of task space impedance control for fixed-based fully ac-
tuated robot manipulators to dynamically stable underactuated mobile manipulators. Experimen-
tal results to evaluate the controller performance are shown alongside different demonstrations
of the controller in action.

Chapter 6 presents a planning and control framework for dynamic, whole-body motions for
dynamically stable shape-accelerating mobile manipulators. Centroidal dynamics, which has re-
cently become a popular approach for designing balancing controllers for humanoid robots, is
explored. The framework is demonstrated to be capable of generating dynamic motion plans. A
model-based control formulation is presented to track the generated motions plan. The frame-
work is evaluated in a simulation and the real CMU ballbot with 7-DOF arms.

Chapter 7 concludes the thesis with a summary of the contributions made by the work in
this thesis and presents potential future work.
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Chapter 2

The ballbot

This thesis focuses on the Carnegie Mellon University (CMU) ballbot research platform. This
mobile robot is a dynamically-stable robot that balances and locomotes on a single spherical
wheel. Ballbot type robots offer unique advantages over other mobile robots and present inter-
esting dynamics and control challenges. This chapter introduces the CMU ballbot. The physical
system, hardware, sensor components, and software architecture are presented.

2.1 Background

The CMU ballbot [11, 12] was the first successful dynamically stable mobile robot that balances
on a single spherical wheel. The ballbot was invented by Dr. Ralph Hollis in 2005 at the Micro-
dynamics Systems Laboratory (MSL) at Carnegie Mellon University [29]. Unlike Segway-type
two-wheel balancing robots, the ballbot is omnidirectional. It can move in any direction without
first turning its body. It is an underactuated system that accelerates by leaning but cannot directly
control its lean angle. This property makes motion planning and control nontrivial, but yields
many benefits, especially for physical Human-Robot Interaction (pHRI) [30]. The ballbot class
of mobile robots provides unique advantages over a statically-stable robot such as a tall body en-
abling human-robot interaction at eye level; a small footprint afforded by the single ball wheel;
and omnidirectional motion with intrinsic omnidirectional compliance afforded by its balancing
controller. The CMU ballbot was designed to be of human proportions to operate in human
environments.

Early work by Tom Lauwers [11, 31] enabled the ballbot to balance and station keep. Further
capabilities were developed to automatically transition between its statically stable state and its
dynamically stable state by Anish Mampetta and Umashankar Nagarajan [32, 33].

This thesis builds on the fundamental work by Eric Shearer in 2006 that modeled dynamics
and control of a ballbot that would have a pair of simple 2-DOF arms [34]. In 2012, a pair
of 2-DOF series-elastic arms were developed and interfaced to the ballbot. Byungjun Kim and
Umashankar Nagarajan [14] demonstrated stable motion planning and execution while moving
the arms. The task was to control the ballbot’s ball position on the floor utilizing the arm motion.
Precise end-effector control was not shown.

Nagarajan performed early exploration of the ballbot as a platform for pHRI, where the ball-
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bot inferred the difference between a soft push and a shove. This allowed physical guidance
along a path and then autonomously repeat the path [13]. In 2010, he introduced a hybrid con-
trol formalism for navigation of shape-accelerated balancing systems [15, 35]. He extended his
work in 2013 and developed a comprehensive hybrid control strategy for ballbot navigation [16].
A complete description of the CMU ballbot’s capabilities using this strategy was presented in
2014 [12].

In 2012, Michael Shomin formulated a differentially flat representation of the ballbot system;
this enabled fast analytic trajectory planning [36]. He extended his work to develop a compre-
hensive differential flatness-based planning strategy for the CMU ballbot to enable autonomous
navigation through cluttered indoor environments with static and dynamic obstacles [37], as
shown in Figure 2.1(a). In 2015, Shomin extended the pHRI capabilities of the CMU ballbot
and its 2-DOF arms by demonstrating the robot can assist in helping a person in sit-to-stand
maneuvers by exerting forces up to 120 N by leaning up to 15° from vertical [7], as shown in
Fig. 2.1(b). Leveraging the CMU ballbot’s navigational capabilities, he presented a method to
lead people by the hand physically. A human subject trial was conducted demonstrating the
ballbot successfully leading participants to multiple goals utilizing an amount of force that users
found comfortable [38], as shown in Fig. 2.1(c). The same year, Bhaskar Vaidya developed a
compensation strategy for ballbots operating with center-of-mass offsets and on Americans with
Disabilities Act (ADA)-compliant ramps [39]. The approach builds on top of the existing bal-
ancing controller by introducing feedforward compensating body lean angle commands. This
thesis follows a similar strategy to balance with the new 7-DOF arms.

Figure 2.1: Photos of the ballbot using a pair of simple 2-DOF arms: (a) autonomously navigating; (b)
providing up to 120 N of assistive force in a sit-to-stand maneuver [7]; (c) leading a person through a
doorway; (c) cooperative carrying of a bulky object.

2.2 System Description

Before this thesis, the CMU ballbot consisted of a 1.71 m tall and 0.368 m wide cylindrical body
on top of a 185 mm radius ball. The robot had a total weight of 65 kg. The ballbot had a pair
of strong, compliant 2-DOF arms. Each of these arms was made of a single 0.56 m straight
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hollow aluminum tube with a rubber knob as hand. Two series-elastic actuators actuated each
arm that controls the shoulder adduction/abduction and flexion/extension joints. The robot was
intentionally built to be of a human-size to interact with human environments, similar to the
way humans do. Fig. 2.2 depicts the evolution of the CMU ballbot research platform from its
inception in 2006 (Fig. 2.2(a)), to its state in 2010 when the simple 2-DOF arms were integrated
((Fig. 2.2(b)), to its current form with the enhancement made in this thesis work (Fig. 2.2(c)).

(a) (b) (c)

Figure 2.2: The dynamically stable mobile robot CMU ballbot in its different development stages
through the years, circa (a) 2006, (b) 2010, and (c) 2019 (this thesis work).

The CMU ballbot is a self-contained semi-autonomous mobile robot with all the required
components for operation onboard. Batteries, charger, computers, inertial measuring unit (IMU),
and a “light detection and ranging device” (lidar) are located in the body. The lidar is used for
localization and navigation within a map.

The ballbot drives the ball wheel on which it balances through its four-motor Inverse Mouse
Ball Drive (IMBD) [11]. This mechanism works in the inverse fashion of an old trackball com-
puter mouse. The ball is squeezed by four orthogonal rollers that are actuated by DC servomotors
via pulleys and belts, as shown in Fig. 2.3. Each pair of actuated opposing rollers drive the ball
in each of the two orthogonal motion directions on the floor [33]. This mechanism achieves om-
nidirectional motion by moving the ball in any direction. The ballbot can travel at speeds up to
1.5 m/s over long distances indoors while dynamically balancing. Turning the body is sometimes
necessary to orient sensors on the body to a task or position its arms. Thus, the IMBD mecha-
nism is attached to the body using a large thin-section bearing, which allows yaw rotation of the
body (i.e., rotation about its vertical axis). Another DC servomotor actuates this yaw degree of
freedom. A slip ring assembly enables unlimited yaw rotation of the body.

At the top of the body is a pan-and-tilt sensory turret with multiple sensors to perceive and
interact with the environment, as shown in Fig. 2.4. The turret includes an ASUS Xtion RGB-D
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Figure 2.3: CAD model of the CMU ballbot’s Inverse Mouse Ball Drive (IMBD) mechanism
(Courtesy of Ralph Hollis).

sensor, a Hokuyo UST-05LN 5 m laser rangefinder, an Acoustic Magic directional microphone,
and two speakers. The turret can pan 700° and can tilt the RGB-D sensor and laser range finder
90° to face straight down. The ballbot is capable of helpful verbal interaction with humans.
The microphone and speaker enable the robot to receive spoken commands and provide speech
feedback of its state and actions.

Figure 2.4: The ballbot’s pan-and-tilt sensory turret with 3D camera, laser rangefinder, micro-
phone and speakers.

The robot also houses a triad of legs that descend from the body to automatically transition
from dynamically stable (DS) (i.e., balancing) to a statically stable state (SS) and vice versa [33].
When the robot’s legs are deployed, it can stop operation to charge its 4 12V sealed lead-acid bat-
teries. These batteries allow the robot to run for approximately 1.5 hours. A video summarizing
the existing capabilities of the ballbot can be found on YouTube1.

1https://www.youtube.com/watch?v=8BtDuzu2WeI&t=2s
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2.3 Computing and Software Architecture

2.3.1 Controller Design
The balancing controller, for obvious reasons, is the single most important controller on the robot.
As discussed previously, the ballbot is an underactuated system. The ballbot’s ball is actuated, but
the body lean angles are unactuated. To control the ballbot’s body, a cascading control scheme
is implemented with an inner and outer loop as discussed extensively in [23]. A schematic of
the balancing controller is shown in Fig. 2.5. The inner PID controller closes the loop around the

Figure 2.5: Diagram of the ballbot balancing controller.

desired lean angle, i.e. the roll and pitch angles of the body, and balances the robot about these
desired body angles. The outer loop PD controller tracks the desired ball position trajectory on
the floor. The outer loop provides body lean angle commands to the balancing controller. By
tracking a desired lean angle, the ballbot can indirectly track a ball position. Although this may
not yield the same performance as an inverse dynamics or LQR controller, having an inner loop
balancer is a more robust approach as substantiated by experiments in [14]. This method has
the advantage of placing limits on lean angles and ensuring that the robot will not fall over as
long as the balancing controller is stable within the lean angle limits. The body controller is
implemented as two independent controllers, one for each of the vertical planes.

The body lean angles are directly measured with the VectorNav VN-100 Inertial Measure-
ment Unit (IMU) and Attitude Heading Reference System (AHRS). The body lean angles are
measured with respect to the gravity vector with an accuracy of ±0.5◦. The ball angles corre-
spond to the rotation measured by the encoders on the IMBD motors.

The ballbot’s yaw control is decoupled from the balancing controller. The yaw motor is
controlled with PID feedback control on the yaw estimate taken from the IMU. The turret pan
and tilt are controlled via PID controllers with feedback from encoders.
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2.3.2 Software Architecture
All the software running on the CMU ballbot is distributed between two machines: a real-time
system and a high-level non-real-time system. A third offboard “ground base station” computer
is used to visualize data, monitor data, send high-level commands, and log data. It connects
wirelessly via Wi-Fi to the robot’s onboard network.

The real-time machine is an Intel Core 2 Duo @ 2.4 Ghz running the QNX operating system.
This machine is responsible for balancing the robot and control of the legs. The balancing control
loop operates at 500 Hz, triggered by an RTC timer module. Non-real-time critical software
packages are run on the high-level machine. As part of the work in this thesis, this computer
has been upgraded to a Zontac Magnus EN72070V with an Intel Core i7 six-core 2.6 Ghz CPU
and NVIDIA GeForce RTX 2070 GPU running Ubuntu 16.04. The addition of a GPU opens the
possibility for computer vision and machine learning algorithms to run onboard. All software
in the high-level machine is developed to be compatible with the Robotics Operating System
(ROS) Kinetic middleware [40]. This allows code to be more modular, facilitates communication
between different pieces of code, and enables the use of a vast amount of open-source robotics
software packages.

The two onboard computers are connected via Ethernet and communicate using rosbridge [41],
a serialization/deserialization package for ROS communication via a socket connection. The
QNX system relays odometry, IMU data, and diagnostic information to the Ubuntu system. The
Ubuntu machine sends desired lean angle, velocity, and state-of-operation commands to the con-
trollers running in the QNX machine.

The high-level machine runs the localization, navigation, arms control, and communication
with the base station components. The pair of 7-DOF arms are connected via Ethernet to this
machine, which allows direct control at 250 Hz. The ROS Control framework [42] is used to
control the arms, enabling the use of the many open-source grasping and manipulation packages.
The high-level machine also controls the sensory turret and connects to all its sensors.

The ground base station computer controls the robot via high-level commands and logs data
via the ROS network. A graphical user interface is available to toggle the primary function of the
ballbot. This includes starting controllers, lifting the legs, start to balance, etc. RViz and RQT
ROS tools are used to visualize, receive, and send data between the base station and the ballbot’s
high-level machine.
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Chapter 3

Lifting Heavy Payloads

Ballbot type robots belong to the family of shape-accelerated underactuated balancing systems
[35]. This means that non-zero changes in joint configuration result in accelerations in the po-
sition space of the base. Because of this, ballbots equipped with manipulators can use the addi-
tional degrees of freedom to keep balance, and better trajectory tracking [35, 43]. However, this
is a curse when trying to lift heavy payloads. Large payloads at the distal end of the arms will
cause the system’s center of mass (COM) position to move away from the single support point
(POS). In turn, the body will accelerate, and if not controlled, the system will become unstable.
The existing balancing controller is not able to compensate for the large disturbances. One ap-
proach to mitigate this is to introduce additional commands to force the COM position to be on
top of the single point of support.

This chapter presents a pragmatic kinematic-based COM compensation controller that al-
lows balancing mobile robots, like the ballbot, to lift and transport heavy payloads safely and
smoothly. This strategy was implemented and experimentally validated on the ballbot with
2-DOF arms. With the 2-DOF arms, the ballbot’s payload carrying capacity increased from
2 kg [44] to 15 kg while dynamically balancing. The successful demonstration of carrying a
heavy load with the 2-DOF proves that the ballbot can operate with a more complex and heavier
pair of 7-DOF arms.

The work presented in this chapter with the 2-DOF arms was done in collaboration with
Fabian Sonnleitner. Sections of this chapter appeared in [45].

3.1 Background

3.1.1 Underactuated Dynamical Systems
The force Euler-Lagrange equations of motion for a dynamical system in matrix form are given
by:

M(q)q̈ +C(q, q̇)q̇ +G(q) = Sτ , (3.1)

where n is the number of DOF of the system, q ∈ Rn is the configuration vector, M(q) ∈ Rn×n

is the mass/inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal matrix, G(q) ∈ Rn

is the vector of gravitational forces, τ ∈ Rnc is the vector of generalized input forces, and
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S ∈ Rn×nc is the actuation selection matrix that separates the nc controlled and nu uncon-
trolled DOF. A system satisfying Eq. 3.1 is said to be an underactuated system [46] if nc < n,
i.e., there are fewer independent control variables than configuration variables. The ballbot

(a) (b)

Figure 3.1: (a) Decomposition of 3D ballbot model into two orthogonal planes used for planning
and control. (b) Planar ballbot model and notation diagram projected onto the Sagittal (Z-Y)
plane.

with 2-DOF arms has eight configuration variables given by q = [θ,ϕ,α]T ∈ R8, where
θ = [θx, θy]

T ∈ R2 are the ball angles, ϕ = [ϕx, ϕy]
T ∈ R2 are the body lean angles, and

α = [αlx , αly , αrx , αry ]
T ∈ R4 are the left and right arm joint angles. As discussed in Sec. 2.3.1

two instances of the balancing controller are implemented, one on each of the vertical planes
shown in Fig. 3.1 (a). Consequently, we derive the dynamic using a planar representation of the
ballbot with 2-DOF arms while carrying a payload as shown in Fig. 3.1 (b). For the systems the
body configuration variables ϕ are unactuated, while the ball θ and arm α configurations are
actuated. Therefore, the system is underactuated, it cannot directly control the body lean angle.
The ballbot with 2-DOF arms has six actuated degrees of freedom and two unactuated degrees
of freedom, i.e. nc = 6 and nu = 2.

3.1.2 Shape-Accelerating Balancing Systems
The special class of underactuated systems called shape-accelerating balancing systems, for
which the ballbot is part of, was introduced by Nagarajan [44]. This section provides only a
summary of shape-accelerating balancing systems, for an in-depth description refer to [44]. The
configuration variables q ∈ Rn of a dynamic system can be split into position variables qp ∈ Rnp ,
and shape variables qs ∈ Rns , i.e., q = [qp, qs]

T and np + ns = n. For the ballbot with arms,
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the ball angles form the position variables, i.e., qp = θ ∈ R2, whereas the body and arm joint
angles form the shape variables, i.e., qs = [ϕ,αl,αr]. The ballbot with 2-DOF arms has np = 2
position variables and ns = 6 shape variables. Note that the ball angles relate to the position of
the ball and not the actual orientation of the ball. The position Pb ∈ R2 of the ball relative to the
inertial frame is given by:

Pb =

[
px
py

]
=

[
r(θx + ϕx)
r(θy + ϕ)

]
, (3.2)

where r is the radius of the ball.
Shape-accelerated balancing systems have the property that their shape configurations can be

mapped to the accelerations of the position variables. These systems are destabilized by gravi-
tational forces and have non-integrable constraints on their dynamics. Balancing mobile robots,
such as the ballbot, are examples of such systems. For ballbot type robots this characteristic is in
part due to having a very small patch of support (i.e., approximately the size of a 25 cent coin, that
we model as a single point of support) rather than a large polygon of support like multi-wheeled
mobile bases. Consider the planar ballbot schematic in Fig. 3.2 and assume the robot starts in an
equilibrium configuration (i.e., qeq

s for which q̈ = 0) as in Fig. 3.2 (a). Any non-zero change in
shape configuration (e.g., moving an arm as in Fig. 3.2 (b)) will result in the COM of the system
moving away from the point of support. Consequently, the system will accelerate in the direction
of the center of mass displacement and make the system unstable, as shown in Fig. 3.2 (c). For
the system to stabilize, it has to find a new equilibrium configuration qeq′

s where the center of
mass is on top of the point of support, such as leaning backward, as shown in Fig. 3.2 (d). This
behavior worsens when carrying heavy payloads as the COM shift will be larger, causing the
system to accelerate more.

Figure 3.2: Sketch of depicting the effects of changes in shape configuration on the position
variables.
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3.1.3 Planning in Shape Space
The shape space trajectory planner developed by Nagarajan [44, 47] used dynamic constraint
equations to plan trajectories in the shape space, which, when tracked, resulted in approximate
tracking of desired position trajectories. The planner can handle systems with more shape vari-
ables than position variables and handles cases where a subset of the shape variables is artificially
constrained. This framework was shown to experimentally work with the ballbot with 2-DOF
arms with 2 kg weights attached to the distal ends. However, this planner required knowing the
mass of the arm payload beforehand and could not adapt online to changes in payload mass.
Moreover, extending this framework to the ballot with 7-DOF arms is nontrivial as the algorithm
requires decomposing the 3D dynamics of the system, which for the 7-DOF system is a complex
task due to the highly non-linear coupling terms. This framework plans arm trajectories to track
a desired ball position trajectory indirectly. It does not plan for desired end-effector trajectories
that are important for manipulation tasks.

3.1.4 Feed-forward COM Offsets Compensation
The controller presented by Vaidy et al. [39] compensates for shifts in the equilibrium point of
the ballbot caused by small COM offsets in the body and sloped floors by adding feedforward
body lean angle terms to the PD-PID cascading balancing controller. Two instances of this
controller run simultaneously, one to control the motion of the system in the frontal plane, the
other to control the system in the sagittal plane. The feedforward body lean angle compensation
terms are computed using an online estimator based on the internal dynamics of a planar model
of ballbot without arms. This model simplification assumes operation around a small range of
body lean angles, i.e., −2◦ < ϕ < 2◦. Manipulation tasks or handling heavy payloads break
this condition. When there is a large change in the payload (e.g., adding or removing a > 10 kg
payload instantaneously) the estimator fails to detect the > 3◦ change in equilibrium point fast
enough and may cause instability or undesirable jerk motions. Further, on average it takes the
estimator 10 seconds to converge within 0.2◦ for small offsets of up to 1.35◦. Instead, we replace
the equilibrium body lean angle estimator with a kinematic-based closed-form calculation of the
COM offset using direct measurements of the payload mass using the series-elastic actuators in
the arm’s shoulders. The proposed feedforward term calculation method in this thesis does not
need a dynamic model. Consequently, it does not need to support the small-angle approximation,
enabling a larger range of body lean angles, i.e., 7◦ > ϕ, for the controller to operate in.

3.1.5 Differentially Flat Path Planning
The COM offset strategy discussed in Sec. 3.1.4 requires an external planner to be able to navi-
gate from point to point. In a similar fashion to the work in [39], the proposed framework in this
thesis leverages the differentially flat path planner presented by Shomin [36]. The differentially
flat path planner enables the ballbot to smoothly navigate autonomously through the environment
while avoiding static and dynamic obstacles. The planner can generate dynamically feasible tra-
jectories for the underactuated ballbot online. While the ballbot’s acceleration is proportional to
its body lean angle, its position depends on the ball angle θ. To enable a point-to-point motion
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with an initial and final target condition, the crackle of the flat output is minimized, resulting in
a ninth-degree polynomial trajectory for the ball path (θp(t)) on the floor. Using the flat outputs
and the 9th order polynomial, a feasible lean angle trajectory (ϕp(t)) can be generated [36]. By
directly tracking the body lean angle trajectory ϕp(t), the desired ball path θp(t) is indirectly
tracked.

3.2 Approach

This section presents a control strategy to enable the ballbot to lift and transport heavy payloads.
The strategy extends the balancing controller to compensate for the COM deviation due to the
heavy load. We present a modification to the differentially flat-based planner to enable navigation
while carrying a heavy load.

3.2.1 Balacing Controller with COM Compensation
The existing PD-PID cascading balancing controller for ballbot [16], discussed in section 2.3.1,
was designed for the ballbot without arms. It also assumed that (1) the ballbot operated on a level
floor, and (2) the COM of the robot was aligned with the center axis of the ballbot’s cylindrical
body (i.e., there is no COM offset). Despite these assumptions, it has been shown to be robust
against external disturbances and small COM offsets, and to work on the ballbot with 2-DOF
arms [44].

Without modifications, manipulation tasks with heavy payloads (e.g., carrying 10 kg pay-
loads) result in large COM shifts that take the robot’s state outside the range of attraction of
the controller. The robot will accelerate until it becomes unstable and fall. To mitigate this we
present an extension to the existing balancing controller by augmenting the desired body lean
angle trajectory ϕd(t, q) ∈ R2, as shown in Fig. 3.3. The objective of this controller is to enable
underactuated systems, like the ballbot, to lift and carry heavy payloads while tracking a desired
position trajectory P d

s (t).
The body lean angle trajectory ϕd is the net body lean angle necessary to balance the effects

of (1) the navigation task, (2) manipulation task, and (3) model uncertainty. It is computed as the
summation of three terms as:

ϕd = ϕm + ϕp + ϕfb. (3.3)

The first term ϕm(q) = [ϕmx , ϕmy ]
T ∈ R2 is a feed-forward body lean angle term to compensate

for the effects of the manipulation task and payload mass. The term is computed from a closed-
form expression based on the system’s forward kinematics, detailed in Sec. 3.2.3. The generated
body lean angle brings the COM back on top of the point of support. Intuitively, this approach
shifts the old control inputs, at both inner and outer loop control levels, to operate about the
actual equilibrium instead of a zero equilibrium.

The second term ϕp(t) ∈ R2 is the body lean angle trajectory, generated by a path planner,
to track a desired position trajectory P d

s (t). The term is generated from a modified version of
the differentially flat path planner described in Sec. 3.1.5, the details of the modifications are
presented in Sec. 3.2.4.
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Figure 3.3: Overview of the implemented cascading control loops with feed-forward compensa-
tion terms.

Assuming we have a perfect robot and payload model, the previous two terms are sufficient
to maintain balance and track the desired position trajectory. On real robots, this is rarely the
case. There are unmodeled dynamics, nonlinear friction effects, noise, and mismatch in initial
conditions. In order to solve these issues, the feedback compensation term ϕfb(t, q) ∈ R2 is
introduced. This term is computed from a feedback position tracking controller that compensates
for the deviation of the position trajectory from the desired trajectory as:

ϕfb(t, q) = Kp(q
d
p − qp) +Kd(q̇

d
p − q̇p), (3.4)

where Kp ∈ R2×2 and Kd ∈ R2×2 are proportional and derivative diagonal gain matrices, re-
spectively.

3.2.2 Mapping COM Position to Body Lean Angles

The Cartesian COM position of the ballbot with respect to the ball frame {S} (i.e., G⃗sys =
[Gsys,x, Gsys,y, Gsys,z]

T ) can also be represented as a rotation of the COM about the origin of
frame {S} by the COM offset angle ϕG ∈ R2, as shown in Fig. 3.4. The COM offset angle ϕG

is defined as the angle between the center axis of the ballbot and the axis connecting PS with
the system’s COM. To maintain balance, the COM has to be brought back on top of the point of
support. In the case of the ballbot, this is inducing a body lean angle ϕeq ∈ R2 to ensure that[

px
py

]
−

[
Gx

sys

Gy
sys

]
= 0. (3.5)

The equilibrium lean angle is directly correlated to the COM offset angle, i.e, ϕeq = −ϕG.
When complete knowledge of the robot’s and payload physical properties and state exist, then

calculating ϕeq is simple. Using forward kinematics the COM position of the entire system can
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Figure 3.4: Schematic of the ballbot with 2-DOF arm COM angle calculation.

be computed. Knowing the new displaced position of the system’s center of mass, the equilibrium
body lean is calculated as:

ϕ̂eq = −atan
Gx

sys

Gz
sys

. (3.6)

In the task of lifting heavy boxes this is rarely the case. The mass of the box is usually unknown
and can change through out the task execution.

3.2.3 Implementation with 2-DOF arms
When lifting heavy payloads with the ballbot with 2-DOF arms we make the following assump-
tions:

1. Lifting motions are only performed in the sagittal plane. The limited degrees of freedom
of the arms restrict lifting motions with both arms to be in the sagittal plane. However, this
simplifies the lifting problem into a 2D plane.

2. Both arms move synchronously and equally at all times. This ensures that both arms are
sharing the load equally and the 2D projection holds.

3. The payload is always placed at the distal end of the arm links.

4. Full state information at any given time ti is known, i.e., the mass of the payload mload(ti)
and the state of the robot q(ti) ∈ R8×1 is known.

If these assumptions hold, then a closed-form expression to compute ϕ̂eq can be obtained. The
calculation is done for the projected system into the sagittal plane, as shown in Fig. 3.4 (b). The
COM position of the system G⃗sys ∈ R2 with respect to the ball frame {S} by

G⃗sys =
G⃗body ·mbody + G⃗arm ·marm

mbody +marm

(3.7)
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where G⃗body = [Gbody,z, Gbody,y]
T is the COM of the cylindrical body, G⃗arm = [Garm,z, Garm,y]

T

is the COM of the arm with the payload, mbody is the mass of the cylindrical body, marm is the
mass of the arms plus the mass of the payload. Note that because we make the assumption that
the arm mass is negligible, marm = mload. The value of the ballbot model parameters are listed
in Table 3.1. The COM of the body G⃗body is computed from:

Parameter Value
mbody 81.65 kg
Lcom 0.71 m
Ljoint 1.3 m
Larm 0.56 m

Table 3.1: Parameters of ballbot 2D model

G⃗body = −Lcom sin(ϕ) (3.8)

where Lcom is the body center of mass along the z axis and ϕ is the ballbot’s body lean angle
with respect to the gravity vector. Following the assumption that the arm links are massless and
the payload is always at the distal end of the arm, then G⃗arm is computed from:

G⃗arm = Ljoint sin(ϕ)− Larm sin(ϕ− α) (3.9)

where Ljoint is the shoulder joint height, Larm is the arm length and α is the arm angle.
Knowing the new displaced position of the system’s center of mass, the equilibrium body

lean is calculated from Eq. 3.10 as

ϕ̂eq = −atan
Gsys,z

Gsys,y

. (3.10)

Combining Eq. 3.7 and Eq. 3.10 the required body lean angle ϕ̂eq to maintain balance is obtained
as:

ϕ̂eq(mload, α),= −atan
mbody Lcom +mload(Ljoint − Larm · cos(α))

Larm ·mload · sin(α)
(3.11)

3.2.3.1 Mass Estimation

It is rarely the case that complete knowledge of the system properties and state exists. Usually,
the mass of the payload is unknown or varying over time, resulting in an unknown COM position
of the system. Leveraging the series-elastic actuators in the arms’ joints, the robot can directly
measure the mass of the payload online. Knowing the stiffness coefficient and deflection of the
elastic element, the applied torque at the shoulder joint can be measured. By assuming that the
arm link is rigid and the payload is at the distal end of the arm, we can estimate the payload
weight from the definition of torque

τα = Larmmload g sin(α), (3.12)
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where τα is the torque magnitude at the shoulder joint, Larm is the length of the arm (the position
vector from the point about which the torque is being measured to the point where the force
is applied), mload is the mass of the payload, g is the acceleration due to gravity, and α is the
angle between the gravity vector and the lever arm vector. Solving Eq. (3.12) for the mass of the
payload results in

mload(τα, α, ϕ) =
τα

Larm g sin(α− ϕ)
. (3.13)

The series-elastic actuators on the 2-DOF arms joints are composed of a DC motor, a torsional
spring, and two encoders at each end of the spring element. The torque at the shoulder joints can
be measured directly from the series elastic actuators using Hooke’s law:

τa = −Ks∆α, (3.14)

where Ks is the spring constant and ∆α is the deflection of the torsional spring. Combining
Eq. 3.13 and Eq. 3.14 we measure the mass of the payload as a function of the shape variables
qs = [ϕ, α]T and the deflection of the torsional spring ∆α as follows:

mload(ϕ, α,∆α) =
Ks∆α

Larm · g · sin(α− ϕ)
. (3.15)

Combining Eq. 3.11 and Eq. 3.15 a closed form solution for the equilibrium body angle in terms
of the shape configuration is obtained:

ϕ̂eq(ϕ, α),= −atan
(
mbody Lcom g

Ks∆α
+

Ljoint − Larm cos(α)

Larm sin(α− ϕ)

)
. (3.16)

This equation allows for fast computation of the equilibrium angle from direct physical measure-
ments.

In experimentation, we noticed the spring did not act linearly, and the manufacturer’s spring
constant value resulted in inaccurate mass estimates. Instead, we performed a sensor calibra-
tion routine. The arms’ joints were commanded to follow a sinusoidal trajectory while lifting
payloads of different masses. The corresponding joint angle position and torque were recorded.
Fig. 3.5 show the measured relation between payload mass mload, arm angle α and joint torque
τα. The X and Y-axis show the arm angle and the joint torque, while the Z-axis shows the corre-
lating payload mass. The black cluster points correspond to a given payload mass. A quadratic
relation was found that mapped τα, α to mload, as follow

mload(τ, α) = aτ 2 + bα2 + cτα+ dτ + eα + f, (3.17)

where the constants are a = −7.357e−05, b = 1.06, c = −0.05059, d = −0.2027, e = 0.906,
and f = −4.841. In the controller implementation Eq. 3.17 provides a better result than using
Eq. 3.13.

3.2.4 Path Planning
The differentially flat formulation, described in Sec. 3.2.4, is based on the linearization of the
planar ballbot without arms dynamics using a small-angle approximation. This model only holds
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Figure 3.5: Fitted quadratic function to arm payload calibration data using MatlabsTM curve
fitting tool.

if the ballbot body lean angle is constraint to be between −3◦ < ϕ < 3◦. The COM angle offset
ϕ̂eq when the ballbot is carrying a heavy object breaks this constraint. Consequently, the path
planner cannot account for the induced body lean angle and generate trajectories that destabilize
the ballbot. To mitigate this issue, instead of using the ballbot’s state to plan trajectories, a
virtual ballbot aligned with the COM axis was used, as shown in Fig. 3.6. In essence, this shifts
the planner to be about the actual COM equilibrium instead of a zero body lean equilibrium
point. To work, we assume that the arm and payload configuration does not change while the
ballbot is navigating.

Figure 3.6: Schematic of virtual system (in orange) used for navigation with differential flat based
planer while the real system (in black) is controlled with the COM compensation controller.
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3.3 Experiments and Results

We experimentally validated the COM compensation controller presented in Sec. 3.2.3 and dif-
ferential flatness planner with the modification shown in Sec. 3.2.4 on the ballbot with 2-DOF
arms. To evaluate the proposed controller, the tasks of lifting and setting down payloads of un-
known mass while station-keeping, transporting heavy loads from point to point, and transferring
payloads with a human were considered. For all experiments, the payload mass was unknown
for the robot initially. It actively measured the mass using the method described in Sec. 3.2.3.1.
The results can be viewed in the supplemental Video C.1.

3.3.1 Station-Keeping while Lifting a Heavy Payload

tasks is to track the desired ball position. One specific case of this is station-keeping, i.e., stay in
one place q̇p = 0. The payload mass detection is constantly updating at a frequency of 500 Hz,
enabling instantaneous changes in the payload. Fig. 3.7 shows the linear displacement of the
ball while lifting a 10 kg heavy object with both arms. The actual lifting, where the arms were
raised from 0◦ to 80◦, occurred between second 0 and second 2.5. With the implemented COM
compensator, the ball position error stayed within ±0.045 m. This is a bigger tracking error than
the ±0.01 m error when the arms are not in motion or carrying a payload. However, once the
robot reached steady-state the ball position was kept within ±0.02 m. The increase in position
error is expected as the ball must move to induce the required body lean angle to compensate for
the load. Without the COM compensator, the ball position error was within ±0.74 m. The im-
plemented controller reduced the ball position tracking error by 86%. Fig. 3.8 shows screenshots
of the robot performing this lifting task.

The maximum payload that the ballbot was able to lift was mload = 15 kg. This is equivalent
to the maximum theoretical payload capacity of the arms. Any larger payload mass would per-
manently deform the elastic element in the series-elastic actuators in the arms’ joints. This is the
first time the ballbot can lift this size payload. Fig. 3.9 shows the ballbot carrying a 15 kg heavy
payload. To maintain balance, the ballbot leaned back 6.2◦. Even with a 15 kg heavy object, the
ballbot showed that it could yaw around its axis, at 10◦/s.

3.3.2 Payload Transport and Exchange with Humans

Another useful application for robots is transporting and exchanging heavy objects with humans
safely and efficiently. The following experiments demonstrate the ballbot capable of realizing
these types of tasks. Fig. 3.10 shows screenshots of the ballbot autonomously transporting a
heavy payload and handing it over to a human. The ballbot carries a 10 kg payload, for which it
has no prior knowledge, and transports it to a human 3 m away from it. The COM compensation
controller described in Sec. 3.2.1 is actively measuring the payload mass and ensuring stability. It
also tracks the desired body lean angle plan generated by the differentially flat planner described
in Sec. 3.1.5. The controller can rapidly compensate for the sudden removal of the payload by the
human, as shown in Fig. 3.10(c). The ball position stays within ±0.02 m. The ballbot locomotes
at 0.166 m/s while carrying the 10 kg payload.
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(a) (b)

Figure 3.7: Ballbot motion while lifting a 10 kg payload, ball linear displacement in (a) the X
axis, and (b) the Y axis. Arm joint angle is shown in top plots to correlate motion of ball with
arm movement.

(a) (b) (c)

Figure 3.8: Screenshots of the ballbot lifting a 10 kg payload from a table while station-keeping.
In screenshots (a) the ballbot is station-keeping, in (b) just before lifting the payload of unknown
mass, and in (c) station-keeping while carrying the 10 kg payload.

The ballbot is also able to perform the complementary task. To navigate to the human, re-
ceive a payload of unknown mass, and navigate away. Fig. 3.11 shows screenshots of the ballbot
receiving a 10 kg payload from a human, actively measuring the weight of the payload to com-
pensate for it, and then navigates away with the payload. The estimated weight of the payload
is within ±0.5 kg. This is sufficiently accurate to compensate for its effects and track the de-
sired ball trajectory. The observer in [39] is too slow to estimate the COM displacement in the
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(a) (b)

Figure 3.9: The CMU ballbot station keeping using the COM compensation strategy while (a)
receiving a payload mass and (b) carrying a 15 kg payload using its 2-DOF arms.

hand-off tasks, making it unfeasible for this experiment. The time between touching the robot’s
“hands” and the subject releasing their grasp was measured on average to be 5 s. It is half the
time it takes the observer in [39] to converge to a COM estimate.

3.3.3 Lift and Place Task with in Place Yaw
This final experiment demonstrates the ballbot lifting a box from a table and placing it back
at a different location in the table while station keeping. Fig. 3.12 shows screenshots of the
ballbot lifting a box from a table, yawing 90◦, and setting it down on another section of the table.
The ballbot is station-keeping in front of the table while it moves its arm from 0◦ to 80◦ to lift
the box with a 10 kg payload. The lifting motion takes 8 s, and the ballbot is unaware of the
payload mass. Once the ballbot satisfactorily lifts the payload, it is commanded to yaw 90◦ in
place. Yawing while lifting a heavy payload is difficult because there is little rotational control
authority over the contact point between the ball and floor. After facing the new table section,
the arms are commanded down to set down the box. The ballbot can successfully station keep
while performing this entire task.

3.4 Discussion

The presented extension to the balancing controller enabled the ballbot with 2-DOF arms to bal-
ance while carrying a heavy payload and track a ball position trajectory. The experimental results
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(a) (b)

(c) (d)

Figure 3.10: Screenshots of the ballbot transporting a 10 kg payload over a 3.0 m distance and
handing it over to a human. In screenshots (a) and (b) the ballbot is navigating autonomously, in
(c) the human removes the payload, and in (d) the ballbot is station-keeping without the payload.

showed that the implemented differentially flat path planner can generate feasible locomotion
plans when carrying heavy loads. However, it fails to consider the arms to perform combined
manipulation and locomotion tasks. In the presented scheme, arm motion only happens when
the ballbot is station-keeping. In Chapter 6, a whole-body planning framework based on simple
centroidal dynamics and kinematics is introduced to overcome this limitation.

The manipulation experiments were restricted to simple motion due to the limited DOF. The
ballbot was able to carry a maximum payload of 15 kg. The series elastic joints in the arms
limited the lifting capacity. The ballbot could lift larger payloads using the same control strategy
with stronger arms. Nevertheless, the experiments highlight the potential benefits of a mobile
manipulator like the ballbot with 7-DOF arms. The human-robot and robot-human payload ex-
change tasks showed that the ballbot can collaborate close to humans in a safer manner. Also,
they demonstrate that a direct measurement of the payload mass allows for dynamic weight
adaptation, ensuring that the robot will remain stable despite sudden changes in the payload. The
design of a new pair of 7-DOF arms is presented in the next chapter.
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(a) (b)

(c) (d)

Figure 3.11: Screenshots of the ballbot receiving a 10 kg payload from a human and navigating
away to a predefined target. In screenshot (a) the human is approaching the robot, in (b) the
human is handing over the payload of unknown mass, in (c) the ballbot leans back to compensate
for the payload mass, and in (d) the ballbot navigates away with the payload.

(a) (b) (c) (d)

Figure 3.12: Screenshots of the ballbot lifting and placing a 10 kg payload while yawing in
place. In screenshot (a) the ballbot is station keeping in front of the payload, in (b) the payload is
picked up, in (c) the robot is midway through its yawing motion, and in (d) the ballbot is setting
the payload down.
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Chapter 4

Design and development of 7-DOF arms

The CMU ballbot equipped with a pair of simple 2-DoF arms [12], shown in Fig. 2.2 (b), has
demonstrated to be a very capable and exciting robot that has particular relevance to the field
of physical human-robot interaction. Sec. 2.1 summarized the manipulation capabilities of the
ballbot with 2-DOF arms, ranging from guiding people by the hand [48] to aiding in sit-to-stand
maneuvers [7]. However, the simple 2-DOF arms severely limit the range of manipulation tasks
the ballbot can perform due to the lack of strength, dexterity, and large workspace.

This chapter presents a new high-performance multi-DOF pair of robotic arms for the CMU
ballbot. The new arms increase the ballbot’s manipulation workspace, payload capacity, and
dexterity. The goal is to enable the enhanced ballbot to lift and carry up to 20 kg loads with both
arms and perform more intricate manipulation tasks.

This chapter also demonstrates that with minor modifications, the proposed controller in
Chapter 3 can be easily implemented on the ballbot with 7-DOF arms. Successful balancing
while moving the arms is demonstrated in various experiments.

4.1 Background

In recent years many collaborative robotic manipulation platforms (cobots) intended to physi-
cally interact with humans in a shared workspace have been developed. The ABB YuMi [49],
Yaskawa MOTOMAN SDA-Series [50], KAWADA NEXTAGE [51] are examples of available
dual-arm systems. They can perform tasks such as loading, packing, and material handling.
However, they either have low payload capacity (YuMi and NEXTAGE payload capacity ranges
between 0.5 kg - 3.0 kg) or are mounted to large heavy fixed bases that make them impossible to
be integrated into the CMU ballbot (MOTOMAN dual-arm system weighs 220 kg).

The KUKA LBR iiwa based on the DLR LWR III [52] and the UR10 by Universal Robots [53]
are examples of robotic arms that have high positioning precision, rich proprioception that en-
ables the robot arms to compliantly interact with the physical world, and a high payload ca-
pacity of 14 kg and 10 kg respectively. However, their usability for the enhanced ballbot is
limited due to their heavyweights (LBR iiwa 29.9 kg and UR10 28.9 kg) and the need for a
large separate control box that does not fit on-board. Further, the UR10 only has 6-DOF and
a non-anthropomorphic kinematic configuration. This configuration was selected to optimize
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workspace volume while mounted on a table. The 7-DOF Franka Emika Panda arm [54] and
Kinova Gen3 Ultra lightweight [55] robotic arms are lighter alternatives. They weigh 17.8 kg
and 8.2 kg but have a limited payload capacity of 3 kg and 4 kg, respectively. The Panda arm
also requires a large 7 kg external control box. Thus, they are also not feasible options to be
integrated into the CMU ballbot.

Few robotic arms have been developed in research facilities that achieve low weight and high
payload capacities, such as the KIT dual-arm system [56] and the bi-manual manipulation plat-
form by the Istituto Italiano di Tecnologia (IIT) [57]. The KIT arm consists of two 8-DOF, strong
(11 kg payload), anthropomorphic robot arms. The IIT system is a pair of high-impact resistant
7-DOF robot arms with a superior weight to payload ratio (0.85 for continuous lifting operation).
The IIT arm weighs only 8.5 kg and has a maximum payload capacity of 7 kg continuous and
15 kg peak. However, both manipulation systems are assembled from non-commercial custom
sensor-control-actuator units, contrary to our developed arms. Further, the KIT dual arm is heavy
and large (25 kg weight per arm and 1224 mm arm reach).

Unfortunately, none of these commercially available robotic arms meet the requirements of
scale, weight, and actuation strength for the ballbot detailed in Sec. 4.2. Fig. 4.1 compares the
payload to weight ratio of existing robot arms. It is desirable to have a large payload capacity
and low weight (i.e. be close to the upper left corner). However, most are found in the bottom
right corner of the plot where weight is large, and payload capacity is small.

Figure 4.1: Plot of arm weight vs. payload capacity for different robotic arms. Commercial and
research literature arms are shown.

4.2 System Requirements

The objective of this thesis work is to create an agile and dexterous mobile manipulator capable
of being deployed in human-robot collaborative tasks and environments. With the long-term vi-
sion of deploying ballbot type robots in human environments, it is desirable to design arms suited
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to operate in human environments. Human-robot collaborative tasks benefit from rich proprio-
ception, large payload capacity, and physical resilience—leading to the following specifications:

1. Arm Dimensions: The ballbot was designed to be of human proportions. It is desirable
to keep the arms in the same proportions (i.e., average human arm is 0.608 m [58]), so
they can be readily used in environments designed for humans. Further, they need to be
lightweight to be mounted on the ballbot (i.e., ∼ 10 kg per arm).

2. Power Density: The goal is to enable the enhanced ballbot to lift and carry up to 20 kg
loads with both arms (i.e., 10 kg payload per arm). Since the arm must be lightweight, a
∼1.0 weight-to-payload ratio is the target.

3. Workspace: A big limitation of the existing 2-DOF arms is the ability to manipulate small
objects with both arms and hands. It is necessary to have a large bi-manual workspace in
front of the robot (i.e., human bi-manual workspace is ∼0.3 m2 [58]), where both arms
can interact with an object at the same time. Workspace is also related to the kinematic
configuration of the system. It is necessary to have a similar kinematic structure as a human
arm (i.e., 7-DOF).

4. Safety: When operating around and with people, robots must embody soft, gentle com-
pliant behavior. Correspondingly the arms must have passive and/or active compliance to
react compliantly to unanticipated collisions. Recall the ballbot itself reacts with intrinsic
compliance due to its balancing controller, which will add to any compliance of the arms.

5. Physical Robustness: The proposed manipulator platform is intended to be used for re-
search purposes. Potential experiments include dynamic interaction with the environment
that encompasses pushing off and colliding with walls. The robot arms should be able
to withstand large perturbations and impacts. For extreme impacts, a mechanical safety
mechanism should be implemented.

6. Sensing and Proprioception: Many novel algorithms today exploit the rich range of
sensing modalities available. High-resolution position, inertial, and torque sensing are a
minimum requirement. Additional vision and touch sensors at the wrist and hand are de-
sirable. The ballbot platform already has a wide range of sensors onboard, complementing
any new sensing capabilities of the arms.

7. Power and Electronics: The arms are intended to be interfaced with the existing CMU
ballbot. Accordingly, they should be powered from the onboard 48 V batteries. They
should also be self-contained with no external power or control box.

The specification listed above are summarized in Table 4.1. The following sections of this
chapter describe the mechanical design decisions made to achieve the specified requirements.

4.3 Mechanical Design
An overview of the proposed arm components is illustrated in the CAD rendering in Fig. 4.2(a).
The completed developed 7-DOF robot arms with human-like kinematic configuration integrated
into the ballbot are shown in Fig. 4.2(b). Each arm has a maximum reachable distance of
815.5 mm without an end-effector (EE) and weighs 12.9 kg with a 10 kg payload capacity (0.78
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Property Functional Requirement Specification

Size
High power and strength density mass-to-payload ratio ≥1.0
Lightweight to be compatible with ballbot Mass ∼10 kg
Arm dimensions and proportions
comparable to those of human

Shoulder-Elbow dist.: 360 mm
Forearm-Wrist dist.: 310 mm

Sensing High proprioception position, inertial and torque
sensor on each joint

Usefulness
Lift and carry large payloads 10 kg payload per arm
Large bi-manual workspace; similar to that
of a human

>0.3 m2

Robustness
& Safety

Physical robustness against perturbations
and impacts

Safety factor ≥1.5, use
mechanical safety mechanism

React compliantly to unanticipated
disturbances passive or active compliance

active or passive compliance

Table 4.1: Summary of functional requirements and specifications for the 7-DOF arms.

payload-to-mass ratio). 49.1% (6.34 kg) of the total arm mass is considered static, only 6.56 kg
are dynamic, reducing the required joint torques. When compared to thirteen of the most com-
mon robotic arms, the ballbot arms exhibit notable weight and strength, as shown in Fig. 4.1.
Only 31% of the arms have equal or larger payload capacity than the ballbot’s arms. The KIT
Arm and KUKA LBR can carry 1 kg and 5 kg more than the ballbot’s arms, respectively. How-
ever, their larger payload capacity comes with significantly greater weight. These arms weigh
>93% more than the ballbot’s arms. The UR10 and AUBO-i10 that have the same payload
capacity as the ballbot’s arms weigh >159% more.

Compliant arm behavior is achieved through a lightweight structure combined with high-
resolution torque sensing [59]. A ball-detent torque limiter in the shoulder joint decouples the
joint actuator from the affected links to ensure physical robustness to extreme impacts. The arms’
major components and joint configuration are summarized in Fig. 4.2.

4.3.1 Arm Kinematics
The motions of a human arm can be equivalent to seven revolutions: shoulder abduction-adduction,
shoulder flexion-extension, upper arm external-internal rotation, elbow flexion-extension, wrist
abduction-adduction, wrist supination and wrist flexion-extension [8], as shown in Fig. 4.4 (a).
With 7-DOF, each arm can manipulate all 6 DOF of the environment with adequate dexterity
while using the additional DOF to resolve constraints introduced by the surrounding environ-
ment. There are many 7-DOF arm configurations. This thesis considered four different configu-
rations, as shown in Fig.4.3 [8].

The ballbot arm kinematic configuration has a 3-DOF shoulder, 1-DOF off-center elbow,
and 3-DOF non-spherical wrist, as shown in Fig. 4.4 (b) and (c). The off-center elbow was
implemented to allow a greater elbow flexion range of motion. Similarly, a non-intersecting-
axes wrist design was chosen to increase the wrist joint’s range of motion. In contrast to other
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Figure 4.2: CMU ballbot dual arm system with BH-282 grippers, (top) CAD rendering and
(bottom) arms interfaced with ballbot.

Figure 4.3: Typical 7-DOF arm configurations [8]

7-DOF arms, the ballbot’s arms are of similar scale to that of an average adult human. Table 4.2
shows that the ballbot arm’s dimensions are closest to that of a human arm in comparison to other
robotic arms with similar payload capacity. From shoulder to end-effector tip, the arm measures
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735.5 mm, only 20 mm more than a human arm (710 mm [60]). Note that at full extension, from
the arm base to the EE tip, the arm has a reach of 935.5 mm, but a 200 mm shoulder section is
located inside the ballbot’s body and reduces the effective reach to 735.5 mm. The complete arm
dimensions are summarized in Fig. 4.5.

Figure 4.4: Overview of (a) the degrees of freedom of a human arm [8], (b) the joints and links
of the 7-DOF arm, and (c) the kinematic tree and frames of the 7-DOF arm.
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Figure 4.5: Size specification for pair of arms, all dimensions in mm.
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Human
[60]

[mm]

KIT
[56]
[mm]

IIT
[57]
[mm]

KUKA
iiwa [61]

[mm]

Ballbot
[mm]Distance

Shoulder - Elbow 303 409 293 400 262
Elbow - Wrist 270 364 410 526 353.5
Wrist - EE Tip 137 227 – – 120

Shoulder - EE Tip 710 1000 (703) (926) 735.5

Table 4.2: Human arm vs. 7-DOF robot arms dimensions.

4.3.2 Range of Motion and Workspace
The target joint range and workspace were defined considering human ergonomic data [60]. The
human arm range of motion was used as a starting point, but when possible, a greater range was
implemented to enhance the motion and manipulation capability of the arm. The ranges of the
upper and lower shoulder rotations (Joint 1 and Joint 3) were extended to be capable of full 360◦

rotation. This maintains the ballbot symmetry about the frontal plane, allowing to effortlessly
switch between a front and back bimanual workspace in tight locomotion spaces without rotating
the body. The range of the elbow (Joint 4) was increased by implementing an off-center elbow
joint arrangement that results in a 30◦ extension and 160◦ flexion, as shown in Fig. 4.6. The

Figure 4.6: Range of motion of off-center elbow

wrist joints are arranged in a non-anthropomorphic configuration with non-intersecting axes to
maximize the range of motion of the wrist flexion/extension and abduction/adduction (Joint 6
and Joint 7) motions to [−90◦, 90◦], as shown in Fig. 4.7. The range of motion of all joints is
summarized in Table 4.3. The workspace of each arm is composed of a large hemisphere volume
of radius 615.5 mm. This is an increase from the 580 mm radius hemisphere shell workspace
of the 2-DOF arms. The increased range of motion of the joints foresaid allows for a greater
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Figure 4.7: Range of motion of the non-spherical wrist

bimanual workspace of 0.46 m2, compared to 0.3 m2 of the average human [60], as shown in
Fig. 4.8. The 3D workspace volume of both arms is depicted in Fig. 4.9. Note that the entire
three-dimensional range of motion in front and behind the robot is accessible to the arms.

(a) (b)

Figure 4.8: The 2D workspace of the ballbot arms; (a) top view compared to human arm
workspace, dark green represents the bi-manual workspace area; (b) side view of a single arm
workspace.

4.3.3 Actuator and motor driver selection
To determine the actuation requirements, a dynamic model of the 7-DOF arm was developed
using MATLAB’s Robotics Toolbox [62]. Inertia and mass properties were estimated from a
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Figure 4.9: The 3D workspace of both arms, blue volume corresponds to the left arm and the red
volume to the right arm. The intersection of both volumes is the dual arm workspace.

Table 4.3: Mechanical Properties of the 7-DOF Arm
Joint
No.

Articulation Range
[deg.]

Actuator Type
[SENSO-Joint]

Gear
Ratio

Torque [N/m]
peak - nominal

Max. Velocity
[rpm]

Mass
[kg]

1 Shoulder flexion/extension [-720, 720] 100 RD5014 AEST 160 120 - 56 21 1.45
2 Shoulder abduction/adduction [-10,190] 100 RD5014 AEST 160 120 - 56 21 1.45
3 Shoulder rotation int./ext. [-720, 720] 100 RD5008 AEST 160 100.8 - 30 34 1.35
4 Elbow flexion/extension [-30,160] 100 RD5008 AEST 160 100.8 - 30 34 1.35
5 Wrist rotation [-720,720] 75 RD3806 AEST 100 19 - 5.4 85 0.7
6 Wrist flexion/extension [-90,90] 75 RD3806 AEST 100 19 - 5.4 85 0.7
7 Wrist abduction/adduction [-90,90] 75 RD3806 AEST 100 19 - 5.4 85 0.7

CAD model of an initial prototype of the 7-DOF arms. A set of 30 different joint trajectories
that covered the entire workspace were simulated with a 10 kg payload mass attached to the end
of the arm and subject to gravity. The recursive Newton-Euler algorithm was used to solve the
inverse dynamics problems and obtain the required joint torques. The box plot in Fig. 4.10 shows
the torque range requirement by each joint to follow the 30 simulated trajectories. As expected,
the shoulder joints demand the highest torque (105 Nm peak). From Fig. 4.10, it is apparent that
joint torque requirements can be satisfied by using only three different actuator sizes with peak
torques of 105 Nm, 60 Nm, and 25 Nm.

Each arm is built around three different custom sensor-actuator units by SENSODRIVE
GmbH1, shown in Fig. 4.11. The units used, SENSO-Joint: 100 RD5014 AEST, 100 RD5008
AEST, and 75 RD3806 AEST, achieve peak torques of 120 Nm, 100.8 Nm, and 19 Nm, respec-

1SENSODRIVE GmbH: https://www.sensodrive.de
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Figure 4.10: Box plot of joint torques recorded from the simulated trajectories moving a 10 kg
payload. The black “whiskers” show the maximum and minimum torques, the average recorded
torque is shown by the red line, and interquartile range by the blue box.

tively. The sensor-actuator units were developed in collaboration with SENSODRIVE for this
project but are now commercially available2. Their complete specifications are summarized in
Table 4.3. Each drive unit combines a TQ-RoboDrive BLDC motor, Harmonic Drive, cross-
roller ring bearing that decouples the input and output, incremental and absolute encoders, motor
temperature sensor, and output torque sensor in a compact, lightweight package. Detail speci-
fications of each sensor resolution and accuracy can be found in Table A.1. A custom 50 mm
diameter circular shape motor controller board, developed by MUSE Robotics3, was integrated
into the back of each SENSO-Joint, eliminating the need for a large external control box. The mo-
tor controller board includes the driver electronics, 6-axis IMU sensor, and communication and
sensor interfaces. The only connections from each sensor-actuator-control unit are the DC-bus
for power supply and the Ethernet bus for communication. Those connections are daisy-chained
between units, and the cables are routed through the actuator’s hollow shaft. This allows for
±720◦ joint rotation, minimum cables, and overall smaller arm volume.

4.3.4 Arm Structure
The arm structure that links all the SENSO-Joint units is based on an exoskeleton approach
using lightweight shell structures that are both load-bearing and covers [56, 57]. The actuators
are floating inside the exoskeleton structure and are mechanically fixed to the link structure via
screw flanges, as illustrated in Fig. 4.12.

The exoskeleton structure has several advantages over the classic frame construction. The
bending stiffness K of a link is proportional to the material’s Young’s modulus E times the area

2https://www.sensodrive.de/news/cooperation-with-carnegie-mellon-university-cmu
3http://www.muserobotics.com/
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Figure 4.11: SENSO-Joint sensor-actuator units from SENSODRIVE assembled with custom
BLDC motor controllers by MUSE Robotics used in the ballbot’s 7-DoF arm.

Figure 4.12: Integration steps of a sensor-actuator-control-unit into the exoskeleton shell struc-
ture

moment of inertia I and inversely proportional to its length L, i.e., K = 3EI/L3. Thus, the arm
links can be optimized to be short hollow structures with large I with minimum openings that
are lightweight while stiff to increase position precision.

The arm is assembled with only a few complex parts, in contrast to using many simple parts
in traditional frame constructions. Loading torques and forces are only transmitted through the
link’s mounting flanges allowing thin wall structures with thicker flanges where loads are larger.
The 3 mm wall thickness hollow exoskeleton links, shown in Fig. 4.13, were machined from
single blocks of 7075-T6 aluminum using a 5-axis CNC milling machine. The links weigh
between 0.242 kg - 0.454 kg. Some none-load-bearing covers were manufactured using 3D
Printing.

4.3.5 End-Effectors

For dexterous manipulation, a three-finger Barrett Hand BH-280 [63] is attached to each arm.
This robotic end-effector is a highly integrated, reliable, and fully-supported product that is in
use in many robotics research programs from which future work can build on. Each arm has
internal wiring to provide CAN communication and a 24 V power supply to the robotic hand. A
USB 3.0 cable also runs inside the arm to provide a serial communication interface. The BH-280
provides finger joint torque-sensing, adding to the robot’s sensing capabilities. Additionally, an
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Figure 4.13: Exoskeleton shell structural links. Each link is machined from a single block of
7075 aluminum using a 5-Axis CNC milling machine.

Intel RealSense D435i is mounted at the wrist of each arm, to provide visual feedback for visual
servoing. The arm wrist design allows for easy mounting of different grippers, hands, and tools
to fit the task’s needs. In addition to the BH-280, we have designed two passive end-effectors.
The paddle hand was used for initial cuboid picking experiments, and the knob hand was used for
pushing on walls experiments. Both passive end-effectors are 3D printed in PLA plastic and have
a neoprene rubber surface to increase the contact surface friction. Students at Carnegie Mellon
University have already made the most out of mounting and communication options to interface
a novel 3D printed tendon driven soft hand [9]. Fig. 4.14 shows the four different end-effectors
integrated to the ballbot.

4.4 Arm Controllers and Estimation

This section presents the implemented controllers and state estimation algorithms necessary to
operate the new 7-DOF arms. We designed the controllers shown here, considering only the
kinematics and dynamics of the new robot arms. We did not consider the kinematics and dy-
namics of the entire ballbot system. These controllers are the basis for developing more complex
algorithms considering the complete ballbot manipulation system.

4.4.1 Joint Torque-Compliant Control
An important goal is to ensure compliant arm behavior, especially when interacting with people.
Inspired by the results with DLR lightweight arm, which can react quickly to collisions and
respond safely around humans [59], we follow the same approach to use a lightweight structure
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(a) (b)

(c) (d)

Figure 4.14: Hands used with the ballbot arms, (a) the BH-280 hand used for active grasping
tasks, (b) the custom low-cost dexterous soft hand [9] to explore compliant and soft interactions,
(c) the paddle hand used for initial cuboid picking experiments, and (d) the knob hands for force
experiments.

combined with high-resolution torque sensing to generate sufficient active compliance.

The implemented torque-compliant based feedback controller on each arm includes feedfor-
ward gravity and torque-sensing compensation, as shown in Eq. 4.1.

τd = KPα(αd −α) +KDα(α̇d − α̇) + g(α, α̇)− τ , (4.1)

where τd ∈ R7 is the vector of joint torque input commands, α, α̇ ∈ R7 are the arm joint po-
sitions and velocities, αd, α̇d ∈ R7 are the desired joint positions and velocities, KPα , KDα are
positive definite diagonal stiffness and damping gain matrices, g(α, α̇) is the gravity compensa-
tion term based on the dynamic model of the arm, and τ ∈ R7 is the vector of measured joint
torques. An overview of the complete control loop is illustrated in Fig. 4.15.

The joint control was implemented on an Intel Core I7 @ 2.6GHz, running Ubuntu 16.04
Linux. The computer calculates motor current commands and sends them to each motor driver
board via an Ethernet bus running at 250 Hz with a 100 Mbps data rate. The inner PI current
control loop is executed on each motor driver at 10 kHz. To ensure that no mechanical joint
limits are violated during operation, a unidirectional stiffening PD controller is implemented in
the “Safety Check” block in Fig. 4.15.

43



Figure 4.15: Block diagram of the impedance joint controller with gravity compensation. The
motor current i is measured by the motor driver board, the joint torque τ is measured by a
torque sensor and the motor position θ by an absolute encoder. The derivatives are obtained by
numerical differentiation. Sensors’ specifications are detailed in Table A.1.

4.4.2 Task-Space Admittance Control
Another important capability for the arms is to control its end-effector position. Admittance
control is a popular strategy used for human-robot interaction. Admittance is the opposite of
impedance. It takes guiding forces/torques by the human and maps them to task-space velocities.
Task-space admittance control renders a virtual behavior for the end-effector that follows the
dynamic equation

MdẌ +DdẊ +KsX = Fvirt + Fext, (4.2)

where Ẍ, Ẋ,X ∈ R6 are the Cartesian acceleration, velocity and position of the end-effector.
The gains Md ∈ R6, Dd ∈ R6×6, and Ks ∈ R6×6 are positive definite matrices describing the
desired virtual inertia, damping and stiffness of the end-effector. Fext ∈ R6 is the vector of
measured external forces fext ∈ R3 and torques τext ∈ R3, i.e., Fext = [fext, τext]

T . Fvirt =
[fvirt, τvirt]

T ∈ R6 is a vector of desired virtual forces to modify the behavior of the end-effector
dynamics. This control strategy is summarized in Fig. 4.16.

The desired Cartesian acceleration Ẍref ∈ R6 necessary to follow the dynamic behavior
described by Eq. 4.2 is calculated by

Ẍref = M−1
d [−DdẊ −KsX + Fvirt + Fext]. (4.3)

Using the Euler integration method, the joint the Cartesian end-effector reference velocity Ẋref ∈
R6 is obtained. The Cartesian velocities cannot be directly commanded to the robot arms. Thus,
Ẋref is mapped to reference robot joint velocities q̇ref ∈ Rn by the inverse differential kinematics

q̇ref = J(q)†Ẋref , (4.4)

where J(q)† ∈ Rn×6 is the pseudo-inverse of the manipulator Jacobian,

J(q) =
δX

δq
∈ R6×n. (4.5)
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Figure 4.16: Block diagram of implemented Task-Space admittance controller on the ballbot
arms.

The reference joint velocities are integrated using Euler integration to obtain reference joint
positions qref ∈ Rn×1. For the ballbot, n = 7 corresponding to the seven degrees of freedom
of each arm. The reference joint position and velocities qref , q̇ref are passed as input commands
to a low-level position control system. For the ballbot arms, the external force Fext is estimated
from the joint torque sensors as described in Sec. 4.4.3. Note that this controller only controls
the DOF of a single arm. Two instances of the controllers are implemented to control both arms.
Further, this controller assumes that arms are mounted to a fixed base rather than a mobile base.

The formulation above is designed for regulating the relationship between position and force
about a fixed operating end-effector pose. It is desirable to track an end-effector trajectory
in some scenarios instead of just regulating the end-effector position. The control law can
be extended by introducing the end-effector pose error dynamics to track a trajectory. Let
e = Xref − Xdes be the end-effector Cartesian pose error and ė = Ẋ − Ẋdes the Cartesian
velocity error. Replace this trajectory tracking error terms in Eq. 4.3 as

Ẍref = M−1
d [−Ddė−Kse+ Fvirt + Fext], (4.6)

to obtain a reference Cartesian acceleration. The joint position and velocity commands are ob-
tained the same way as before. The Cartesian position errors are composed of linear and angular
components:

e =

[
ex
eθ

]
∈ R3×1, linear error
∈ R3×1, angular error (4.7)

The linear errors ex are computed using Euler distance. The angular component error [64] is
defined as

eθ = Reeϵ
e
d ∈ R3×1 (4.8)
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where Ree ∈ R3×3 is the rotation matrix for the end-effector, and ϵed is the vector part of the unit
quaternion extracted from Re

d. Which is defined as,

Re
d = R⊤

eeRd, (4.9)

the error between the desired end-effector rotation Rd ∈ R3×3 and the actual rotation Ree.

4.4.3 End-Effector Wrench Estimation
The joint torque measurements are sufficient for joint-space controllers. However, for task space
controllers, it is necessary to measure the wrench acting in the task space frame. A wrench
estimator based on joint torque measurements was implemented instead of adding a 6-DOF
Force/Torque sensor to the robot’s wrist.

Consider the following Euler-Lagrangian dynamics of one of the robot arms

Ma(qa)q̈a +Ca(qa, q̇a)q̇a +Ga(qa) = τm − τext (4.10)

where qa ∈ R7 is the configuration vector of one robot arm, Ma(qa) ∈ R7×7 is the inertia matrix,
Ca(qa) ∈ R7×7 is the matrix containing the Coriolis and centrifugal terms, Ga(qa) is the gravity
vector, τm is the joint torque, and τext is the joint torque associated to an external force Fext by

τext = JT (qa)Fext (4.11)

where JT (qa) is the Jacobian matrix that associates the linear and angular velocity of a frame
located at the point where Fext is applied to the joint velocity q̇a. In this work we assume that
external forces only act on the end-effector frame EEr and EEl as defined in Figure 4.17. τm can
me readily measured using the high resolution joint torque sensors on the ballbot arms. However,
τext cannot be easily calculated by solving equation (4.10), because the joint accelerations q̈a are
usually noisy and inaccurate. In our work we implement a residual observer similar to that
in [59, 65] to estimate τext.

Let the residual r be defined as

r(t) = K

[∫ t

0

(Ca(qa, q̇a)
T q̇a −G(qa) + τm − r)dt+ p

]
, (4.12)

where the diagonal matrix K > 0 is the cutoff frequency of the observer, and p = Ma(qa)q̇a

is the generalized momentum of the arm. Assuming that the control period is fast enough (>
200 Hz), then r = τext. The wrench W acting on the end-effector is obtained by solving
equation (4.11)

W = JT †
(qa)r −W0 (4.13)

where JT †
(q) is the pseudo inverse of JT (qa) and W0 = W (t = 0) is the initial wrench

estimate at time t = 0. The torque measurements from the joint sensors are noisy. To reduce
the propagation of the raw measurement noise to the wrench estimate we implement a simple
moving average filter.
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4.5 Balancing Controller
The existing balancing controller described in Sec. 2.3.1 can balance the enhanced ballbot when
the arms are in their zero configuration. Any movement of the arms’ configuration will desta-
bilize the system, and the controller will not maintain balance. We present an extension to the
balancing controller to enable arm motion while dynamically balancing. The extension follows
the same strategy used in Chapter 3 to lift heavy payloads with the 2-DOF arms. The approach
is to control the system’s COM position by controlling the desired body lean angle ϕd ∈ R2.
This method decouples the arms control from the balancing controller and enables the use of
the controllers described in Sec. 4.4 for the arms. Similar to before, the total body lean angle
command sent to the balancing controller is:

ϕd = ϕm + ϕfb + ϕp. (4.14)

With the 2-DOF arms, the ballbot kinematics were projected to the two orthogonal vertical
planes, and the COM position was computed for the planar ballbot model. The manipulation
body lean angle ϕm could be easily computed. With the new pair of 7-DOF arms, the robot
kinematics cannot be easily expressed in the two orthogonal vertical planes. Instead we first
compute the 3D COM position p⃗SG = [pSG,x, p

S
G,y, p

S
G,z]

T ∈ R3 with respect to the fixed ball frame
{S} resulting from the current shape configuration qs(t). Then the COM position is projected to
the frontal and sagittal planes. A schematic of the 3D kinematics and COM projections of the
ballbot with a pair of 7-DOF arms is shown in Fig. 4.17. The 3D COM position is computed
used the Forward Kinematic map

p⃗G,i = FKi(qs(t)), ∀i = 1...Nlink, (4.15)

that converts robot’s shape variables qs to the COM position p⃗G,i of each link i, the ballbot has
15 links in the kinematic structure, i.e., Nlink = 15. The COM of the entire system is computed
from

p⃗SG(qs) =

∑N
i mi · p⃗G,i∑N

i mi

. (4.16)

Note that in this definition, the COM position is only a function of the shape variables (i.e., the
body lean angle and the arm joint configuration). It is not a function of the ball’s position on the
floor because, for balancing, we are only interested in the relative X-Y position of the COM with
respect to the point of support that coincides with frame {S}. The projection of the COM to the
vertical planes is necessary because of the decomposition of the balancing controller into these
planes. The COM position represented as an angle with respect to the vertical axis is computed
as follow:

ϕx
G = cos−1

(
pSG,z

pGx
S

)
, (4.17)

ϕy
G = cos−1

(
pSG,z

pSGy

)
. (4.18)
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Figure 4.17: Schematic of the ballbot with 7-DOF arms 3D kinematics and projection of the
COM to the sagittal and frontal planes.

The body lean angle command ϕm = [ϕx
m, ϕ

y
m] ∈ R2 to compensate for the effects of the upper

body motion are computed as

ϕx
m = −ϕx

G and ϕy
m = −ϕy

G. (4.19)

The feedback compensation term ϕfb again is computed from a PD-Control law closing
the loop around the ball position. This term is necessary to compensate for the unmodeled
dynamics, nonlinear friction effect, and initial condition mismatch on the real robot. With a
good model of the ballbot system, this term is usually small. The planned body lean angle ϕp

term is used to realize secondary tasks with the ballbot, such as navigation or exerting a force on
the environment.

Tracking the desired body angle was sufficient to minimize the upper body’s effects while
lifting heavy objects with the 2-DOF arms. In the experiments with the 2-DOF arms, the lifting
motion was assumed to be slow, and only significant sudden changes in the COM position hap-
pened with the addition/removal of the payload. This assumption is no longer applicable when
operating the 7-DOF arms. When swinging the arms around, the COM is constantly changing.
The feed-forward term ϕm alone is no longer sufficient to compensate for the upper body motion.
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Figure 4.18: Extension of the balancing controller with COM compensation and arm control.

To mitigate this, we introduce a feedback term that outputs a ball velocity command to zero out
the body lean angle rate as:

θ̇d = Kpϕ̇G. (4.20)

The implemented control strategy is shown in Fig. 4.18. Results of the implemented controller
are shown in Sec. 4.6.2.

4.6 Experiments and Results

This section presents the results of the experiments conducted to evaluate the new 7-DOF arms
and the controllers described in this chapter. The first set of experiments is done with the ballbot
in its statically stable configuration. These experiments intend to demonstrate the capabilities
of the arms without considering the effects of the ballbot base. The second set of experiments
is done with the ballbot dynamically balancing. These experiments show the capabilities of the
entire mobile manipulation platform.

4.6.1 Statically Stable Experiments

4.6.1.1 Load Estimation

An important skill for the ballbot is to estimate the mass of the load it is carrying. Mass estimation
is possible with the joint torque sensors integrated into the new arms and the wrench estimator
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described in section 4.4.3. The mass of the payload can be estimated from the equation:

mload = Fz/g, (4.21)

where mload is the estimated payload mass in kg, Fz is the estimated force applied at the end-
effector aligned with gravity, and g = 9.81 m/s is the acceleration due to gravity. We compared
the estimated force to the expected force from lifting a known mass to determine the estimator’s
accuracy. The experimental setup for this test is shown in Fig. 4.19. The force estimated when

Figure 4.19: Experimental setup to evaluate the wrench estimator accuracy, the ballbot is holding
6 kg with its right arm.

adding different masses to the end-effector are shown in Fig. 4.20 (a). For the six different
masses tested, the estimated force was within 11% of the expected force in the worst case and
6.8% on average, as shown in Fig. 4.20 (b). A summary of this experiment can be viewed in
Video C.2. As demonstrated by the experiment in section 4.6.2.4 this mass estimate is sufficient
for the ballbot to adapt and balance.

4.6.1.2 Payload Manipulation

The arm’s capabilities were evaluated by holding a 6.8 kg dumbbell with the 1.2 kg BH-280
hand while tracking the desired motion. Fig. 4.21 and the Video C.3 show a motion from the
zero configuration to elbow flexion, followed by moving the mass above the ballbot’s turret and
ending with shoulder rotation at full extension. The corresponding joint torque commands are
shown in Fig. 4.22. The required torques are significantly lower than the actuator unit limits
listed in Table 4.3. Although the arm can lift 10 kg without an end-effector the test was limited
to 6.8 kg because it is the maximum payload the BH-280 can hold before its fingers buckle.
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(a) (b)

Figure 4.20: Results of the load estimation experiment. (a) shows the estimated force along the
direction of gravity for different masses, and (b) shows the error in the estimated force.

Figure 4.21: Screenshots of the CMU ballbot lifting 6.8 kg dumbbell with the new arm and
Barrett Hand. Here, the ballbot is constrained at the top by a fixture and is not balancing.

4.6.1.3 Dual Arm Control

To validate the simultaneous control of the 7-DOF arms integrated into the ballbot, the task of
picking a box was considered. The ballot was statically stable in this experiment with its triad of
legs deployed. This was done to evaluate the arms’ control without the effects of the moving base.
To perform this task, the arms were controlled using the joint space impedance controller, de-
scribed in Sec. 4.4.1, to position the arms close to the box. The task space admittance controller,
described in Sec. 4.4.2, takes over to grasp the box and lift it. The controllers were implemented
using the ROS-Control framework [42] and ran onboard ballbot on the non-real-time Linux ma-
chine. The reference joints position and velocity were sent to the low-level arm position control
at 250 Hz. The end-effector trajectory was hand-crafted since the path planning task was outside
the scope of this experiment. Fig. 4.23 shows screenshots of the ballbot successfully picking up
an empty box using both of its arms from a table in front. The compliance of the arms prevents
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Figure 4.22: Joint torque command evolution to lift a 6.7 kg payload at the end of the arm. The
arm is moved from pointing straight down to fully extended, then performs a shoulder rotation
at full extension.

the box from being squashed by the motion of the arms. The results of this experiment prove that
both arms can be controlled simultaneously.

Figure 4.23: Screenshots of the ballbot picking up a box with its 7-DOF arms while statically
stable.

4.6.2 Dynamically Stable Experiments
This section presents the results of the proposed balancing controller in Sec. 4.5 implemented on
the ballbot with a pair of 7-DOF arms. Balancing with the new 7-DOF arms is a significantly
harder challenge than with the previous 2-DOF arms. The new arms cannot be assumed to be
massless and will have bigger dynamic effects on the robot’s stability. The motion of the 7-DOF
arms has a similar effect as carrying a heavy payload with the 2-DOF arms, the COM shifts
away from the point of support. Fig. 4.24 shows the controller successfully balancing the ballbot
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with its 7-DOF arms in a range of different configurations. In addition, to maintain balancing, a
fundamental capability is to stay in one place while operating the new 7-DOF arms. The results
presented in this section demonstrate this capability. The videos of the ballbot achieving the
experimental results presented in this section can be found in Video C.3.

(a) (b) (c)

Figure 4.24: The enhanced CMU ballbot balancing with the arms in different configurations.
Here, a slack rope is attached for safety.

4.6.2.1 Single arm motion

In the experiments realized with the 2-DOF arms, both arms moved synchronously and equally.
In this experiment with the 7-DOF arms, this constrain is removed. In this experiment, we tested
station-keeping while moving the arms asynchronously. One arm was kept stationary at the zero-
configuration while the other arm was commanded to full extension as shown in Fig. 4.24 (a).
This is a difficult task because the COM shifts the greatest at full arm extension and is not
symmetrical about the sagittal plane. The ballbot can maintain its balance throughout the entire
motion. With the COM regulator and, the ball position on the floor tracking error decreased by
∼ 87% in the axis of motion, as shown in Fig. 4.25. Also, the oscillation of the ball position is
reduced, and the steady-state is reached faster in both axes. The steady-state error with the COM
regulation was < 0.15 m for the Y-axis and < 0.05 m for the X-axis. Note the motion of the arm
is in the Y-axis direction.

4.6.2.2 Synchronized double arm motion

The motion of both arms synchronously and equally is also a necessary capability for the ball-
bot. In this experiment, both arms move simultaneously from pointing straight down to a 90◦

elbow flexion while trying to station-keep, as shown in Fig. 4.24 (b). The ballbot can maintain
its balance through the entire motion. Fig. 4.26 shows the benefits of the addition of the COM
compensation to the balancing controller. With the COM compensation, the ball position track-
ing error significantly decreases by ∼ 85%. Similarly to the single-arm motion, the ball position
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Figure 4.25: The ballbot’s X and Y axis position on the floor during the motion of a single arm
from straight down to full extension. The outer loop station-keeping controller is enabled in both
experiments.

steady-state error is <0.15 m. Further, oscillations and settling time in both axes also decrease.
The COM compensation also removes the drift in the lateral (i.e., x-axis) position.

Figure 4.26: The ballbot’s X and Y linear position on the floor during the motion of both arms
from straight down to 90◦ elbow flexion. The outer loop station-keeping controller is enabled in
both experiments.

4.6.2.3 Choreography

In the previous experiments, the arms motion was simple and relatively slow. In reality, most
manipulation tasks will require the actuation of multiple joints simultaneously. The next ex-
periment executes a choreography for the arms while balancing and tracking a fixed floor po-
sition to demonstrate this capability. Without the COM compensation strategy, complex arm
motions were impossible. The choreography goes through different arm configurations as shown
in Fig. 4.27 (a) and (b). The ballbot has to lean up to 2 degrees to compensate for the upper
body motion, as shown in Fig. 4.27 (c). As shown in Fig. 4.27 (d), throughout the arm chore-
ography the ballbot position only deviates ±0.05 m in both axes. This is significantly lower
than in the previous experiments with simpler arm motions. This improvement is because new
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model parameters for the ballbot model were used for this experiment. The updated parameters
led to better feedforward body lean angle compensation terms. Screenshots of the entire arm
choreography are shown in Fig. 4.28 and the in the Video C.4.

4.6.2.4 Lifting Heavy Payloads

Another important capability for the ballbot is to lift payloads of unknown mass and adapt its
posture to maintain balance. This experiment further demonstrates the capabilities of the con-
troller. The ballbot has to balance while lifting an increasing unknown payload in this task. The
controller regulates the ball position on the floor and the arm configuration. Fig. 4.29 (a) shows
the experimental setup used for this test. A wood plank is placed across the ballbot’s forearms to
provide a surface to place the weights. Weights are added until the total payload reaches 15 kg.
Without the implemented controller, the ballbot would accelerate forward and becomes unstable.
With the controller enabled, the robot maintains its balance and tracks its ball position within
±0.2 m as shown in Fig. 4.30 (a). The larger ball displacement, in comparison to previous ex-
periments, is expected. Recall the ballbot has no direct control over the body lean angle. The
ball must move to induce the body lean angle necessary to compensate for the payload mass.
To carry 15 kg the ballbot has to significantly lean (i.e., 4.6◦), as shown in Fig. 4.30 (b). The
maximum payload that the ballbot was able to carry was 21 kg and required a 5.3◦ body lean
angle, as shown in Fig. 4.29 (b). Experimental results can be seen in the Video C.5.

4.7 Discussion
This chapter introduced a new pair of 7-DOF arms with multi-DOF hands to enhance the CMU
ballbot research platform. The developed 7-DOF arms are of comparable size and weight to
an average adult human. This chapter also presented the joint and task space controllers imple-
mented in the arms. The controllers were tested by performing simple manipulation tasks while
the ballbot was statically stable. These controllers are the foundation for future work to real-
ize complex tasks such as maneuvering a manual wheelchair, leading elderly or sight-impaired
individuals from place to place inside a building, and cooperative carrying heavy objects.

The COM compensation controller implemented in this chapter allowed the ballbot with its
new 7-DOF arms to balance and station-keep. In the first two experiments the controller had
considerable ball position error, i.e., ±0.15 m. This is not ideal for tasks that require precise
end-effector position relative to an inertial frame. However, with a better kinematic model and
small gain tuning, the controller performance significantly improved, as demonstrated in the arm
choreography experiment. The COM compensation controller only considers the kinematics.
Accounting for the dynamic effects of the arm motion can further improve the tracking perfor-
mance. Additionally, we demonstrated the ballbot capable of adapting to maintain balance while
the payload is transferred to it. A maximum carrying payload of 21 kg was attained, this breaks
the previous record of carrying a 15 kg payload with the simple 2-DOF arms.

Having demonstrated complete integration of the 7-DOF arms with the ballbot, the follow-
ing chapter investigates more intelligent planning and controls that combine manipulation and
locomotion into a single framework.
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(a)

(b)

(c)

(d)

Figure 4.27: Time series plot of the ballbot’s state evolution while station keeping and performing
an arm choreography routine. (a) and (b) show the left and right arm state, (c) the body lean angle,
and (d) x-y ball displacement.
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(a) t = 0 s (b) t = 3 s (c) t = 6 s

(d) t = 9 s (e) t = 12 s (f) t = 18 s

(g) t = 18 s (h) t = 21 s (22) t = 22 s

Figure 4.28: Screenshots of the ballbot station keeping while performing an arm choreography.
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(a) (b)

Figure 4.29: Experimental setup for evaluating the ballbot lifting task. In (a) the ballbot is
balancing with 15 kg, and in (b) balancing with 21 kg and with a body lean angle of 5.3◦.
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(a)

(b)

Figure 4.30: Ballbot state evolution while lifting a varying weight payload. (a) shows the ball-
bot’s ball position on the floor and (b) shows the body lean angle to compensate for the payload
mass. Shaded area indicates the total payload weight being lifted (grey: 5.5 kg, green: 11 kg,
yellow: 15 kg).
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Chapter 5

Task Space Impedance Control

In Chapter 3 the problem of picking up boxes with a dynamically stable shape-accelerating mo-
bile manipulators, like the ballbot with arms, was presented. The control framework was de-
veloped and implemented for a simpler ballbot base manipulator system with a pair of 2-DOF
instead of 7-DOF arms. Given the lower number of DOF and simpler kinematic tree, it was pos-
sible to realize the entire control law in joint space. It was simple to generate pick-up motions
in joint space. Further, because the arms were simple lightweight aluminum hollow tubes, their
mass and inertia could be considered negligible. Thus, the motion of the arms did not really
affect the stability behavior of the ballbot. These assumptions are not valid in the ballbot with a
pair of 7-DOF arms.

The tasks space admittance controller described in Sec. 4.4.2 assumed the robot arm was
mounted to a fixed base. In reality, the arms are mounted to a mobile base with underactuated
DOF. An end-effector (EE) control strategy is necessary to account for the ballbot’s ball position
and body lean angle. This chapter extends the framework presented in section 4.5 to realize
accurate end-effector control with the ballbot with a pair of 7-DOF arms. To control the robot’s
end-effectors, a floating-base Task Space Impedance Control is introduced that accounts for the
motion of the lower body. The control framework uses the same philosophy to decouple the
control of the lower body, i.e., body and ball, from the upper body, i.e. the pair of arms. The
presented framework is tested by performing different tasks with the enhanced CMU ballbot.

5.1 Background

There exist many mobile manipulators both in academia and industry. The goal for these robots
is to perform combined manipulation and locomotion tasks in collaboration with humans. To
realize this, robots require the skill to accurately control the position of their end-effector when
moving in free space and be compliant when it makes contact with the environment. Broadly
speaking, end-effector control to enable these types of skills can be grouped into three categories:
Motion Control: The objective is to track a desired end-effector pose or trajectory as accurately

as possible. It does not matter what forces are applied by the environment. This is useful
when performing repetitive position tasks in free space, such as a pick-and-place task in
a constrained factory setting. However, it can be dangerous as there are no bounds on the
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force that the robot can apply to the environment and can potentially cause damage.

Force Control: The objective is to track the desired force instead of position. The robot arm
will try to maintain the desired force between the end-effector and the environment. It
requires a source of force feedback to sense physical interactions, which makes it suitable
for human-robot interactive applications. However, it is limited when moving the robot
through free space (i.e. when there is no applied force).

Compliance Control: The objective is to combine motion and force control to get the benefits
of both. There are several different force/position control techniques. We are interested in
Impedance control, where a virtual mass-spring-damper system is inserted between desired
and actual end-effector positions. This is good when the task requires following the desired
pose and reacting compliantly to external disturbances.

5.1.1 Task Space Impedance Control
Impedance control was first introduced by Hogan in the seminal work [66, 67] and is considered
as a classical control approach in robotics. The controller’s goal is to modulate the mechanical
impedance of the manipulator. It does so by manipulating the dynamics of the system through
feedback control. Impedance control regulates the relationship between force and position on
the one hand and velocity and acceleration on the other hand [68].

Manipulation tasks are usually specified in terms of motion in the Task space (Operational
space), i.e. desired Cartesian coordinates describing the pose or motion of the manipulator’s
end-effector. If we are interested in enabling dexterous and compliant end-effector motions, the
dynamics of the robot must be considered. Joint space dynamic control algorithms only suffice
for motion control in the free space [69]. Thus, task space control algorithms become necessary
when controlling the interaction between the end-effector and the environment. The Task Space
Formulation developed by Khatib [70] provides a framework for controlling redundant and non-
redundant manipulators with respect to the Cartesian coordinates. The framework derives end-
effector dynamics for fixed-based rigid-body robot manipulators from the joint space dynamics.
Additionally, it implements a nullspace projection technique to treat redundant robots. In typical
implementations, the controller has the Cartesian position x ∈ R6 and velocity ẋ ∈ R6 of the
end-effector as inputs and gives the motor torques τ as outputs. This formulation is not sufficient
to control the ballbot’s end-effectors. The framework has to be extended to consider the floating
base, the ballbot mobile base, that the arms are mounted to.

5.1.2 Control of Redundant Robots
A robot is said to be redundant if the number m of task coordinates is smaller than the number n
of DOFs of the robot. The inverse kinematic problem will have infinite solutions when a robot is
redundant. This implies that, for a given constant pose of the robot’s end-effector, it is possible
to perform a joint motion without changing the posture of the end-effector. Any joint motion
which keeps the end-effector fixed is called a nullspace motion. It is non-trivial to control the
remaining n−m redundant DOF to generate nullspace motions.

The problem of controlling fixed-based redundant manipulators has been widely studied in
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the robotics literature, and state-of-the-art methods like [70, 71, 72] can define and limit the
interaction forces in a reactive manner. However, if the manipulator is mounted on a mobile
base, additional control action is required to balance the robotic platform itself. This is the case
for underactuated dynamically stable mobile bases, such as humanoids, quadrupeds, or wheeled
balancing systems, that require a planning strategy to maintain their balance [4, 5, 6, 73]. The
CMU ballbot is an example of such a robot.

Most of the proposed approaches employ an inverse kinematics (IK) method to transform
from task space to joint space. In control, it is typical to solve the IK problem instantaneously
at the differential (i.e. velocity) level, exploiting the linear relationship between the joint-space
and task-space velocities using the manipulator’s Jacobian matrix. More sophisticated methods
can handle inequality constraints by solving the IK problem as a general quadratic program
(QP) [74, 75, 76], which may include limits on the joint positions and their derivatives. However,
these methods only consider the task of motion control of the end-effector and not the compliant
behavior.

Sentis and Khatib [28] developed an extension to the task space impedance control frame-
work for fixed-based manipulators [70] to allow for behavior-oriented whole-body control for
legged humanoid robots, based on task prioritization. The framework integrates task-oriented
dynamic control and control prioritization [77] to execute multiple task primitives while com-
plying with physical and movement-related constraints. Prioritization establishes a hierarchy
between control spaces. It assigns top priority to constraint-handling tasks while projecting
operational tasks in the nullspace of the constraints. For a ballbot type manipulator task prioriti-
zation is necessary, as balance must be maintained while performing a manipulation task. In our
framework, we borrow the idea of projecting lower-priority task Jacobians into the nullspace of
higher priority tasks, to embed the manipulation tasks in the nullspace of the balancing task.

Dietrich et al. [78] presented a whole-body impedance controller for the statically stable
mobile manipulator Rollin’ Justin. The nonholonomy of the wheeled systems prohibits the direct
implementation of impedance control due to kinematic rolling constraints that must be taken
into account in modeling and control. The framework employs an admittance interface to the
kinematically controlled mobile platform and an impedance interface based on potential energy
for the torso and arms. The upper body impedance control law, the platform admittance interface,
and the compensation of dynamic couplings between both subsystems yield a passive closed-
loop system. Our framework uses a similar philosophy to treat the lower and upper body control
separately but for a dynamically stable mobile manipulator.

5.1.3 Challenges of Ballbots
The CMU ballbot with its pair of 7-DOF arms is an underactuated dynamically balancing system
in joint space, but a highly redundant system in the end-effectors’ task space. Due to its under-
actuation, to balance, the ballbot requires a control strategy that coordinates the movement of
the arms and body. The problem of controlling each of the CMU ballbot’s end-effectors presents
several challenges and self-imposed constraints.

The CMU ballbot already has an existing robust balancing controller that renders the base
compliant to external disturbances. The controller is based on tracking the desired body lean
angle to track the desired COM position indirectly. In section 4.5 this controller was extended
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to account for the motion of new 7-DOF arms. We want to leverage this existing controller
to realize end-effector task space impedance control. This imposes constraints on the method
used for end-effector control. Using the balancing controller with COM compensation limits the
choice of command inputs. The balancing controller takes as inputs the desired body lean angle
and ball velocity (i.e. ϕd and θ̇d). We don’t have direct control of the torque commands between
the ball and body. Having direct torque control would make the control problem easier. However,
this would be at the expense of losing the safety guarantees of the existing balancing controller.

If the arm and base motion could be decoupled, a classical task space control could be imple-
mented for each arm on top of the balancing controller. However, for ballbots, the arm and base
motion cannot be decoupled. Consider the planar ballbot with a 2-DOF arm in an equilibrium
state dynamically balancing shown in Fig. 5.1 (a). Assume you want to position the end-effector

Figure 5.1: Sketch of the the induced end-effector pose error when the ballbot lean angle is not
taken into account.

of the arm to be aligned with Frame {EE∗}. If you move the arm in joint space to reach the
desired position it will cause the system’s COM to also move forward, as in Fig. 5.1 (b). This
will cause the ballbot to accelerate forward and destabilize. The robot has to lean backward to
bring the COM back on top of the small patch of support to maintain balance. If the arm does not
actively compensate for the body motion, an error will be generated between the desired and ac-
tual end-effector. Even when there is no motion of the arms, the ballbot must constantly move its
ball to maintain balance. Thus, an end-effector controller has to actively account for the actions
of the balancing controller and the movement of its base. Moreover, in the traditional implemen-
tation of task space control, all joints in the kinematic chain are controllable. For ballbot’s, there
is no direct control over the body lean angle DOFs.
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5.2 System Model

The joint space dynamics model establishes the manipulator joint motions and provides means
for analyzing and controlling these motions. However, the control of the end-effector motion
and wrenches requires the development of a model describing the dynamic behavior of this spe-
cific part of the robot system [70]. This section introduces the joint space dynamics and the
corresponding transformation into the task space (operational space) dynamics. The joint forces,
torques, velocity, and acceleration are replaced with the end-effector wrench, twist, and time
derivative. For the derivation of the controller in section 5.3 the model makes the following
assumptions:

1. There is no slip between the ball and the floor.

2. The ball height relative to the floor remains constant, i.e., the ball is always in contact with
the floor.

3. There is now yaw motion between the floor and the ball.

4. There is no reactive friction forces acting on the ball position Ps and body lean angle ϕ
DOFs.

5.2.1 Kinematic Model
The control framework presented uses a free-floating model of the CMU ballbot, where five
virtual unactuated DOF describe the dynamics of the free-floating base (i.e. the IMBD link), as
shown in Fig. 5.2. Usually, free-floating bases models have six virtual unactuted DOF, but we
drop the z-axis (vertical) position since we assume that the ball is always in contact with the
floor. Thus, the robot’s task and posture kinematics are defined with respect to the origin of the
free-floating model (i.e. the inertial frame {I}). The relationship between the task coordinates
x ∈ Rm and the joint configuration coordinates q ∈ Rn is given by the forward kinematics
function FK : Rn → Rm,

x = FK(qb, qa), (5.1)

where q = [qb, qa]
T , qb ∈ R5 is a vector of the floating base joints, and qa ∈ R14 is the vector

of the actuated arm joints. This kinematic description allows accounting for the body lean angle
and position effect on the end-effector position. Classical task space control methods define the
kinematics with respect to the base frame of the manipulator, where all joints in the tree are
actuated. The formulation presented is with respect to inertial frame {I} and has passive joints
in the kinematic tree.

5.2.2 Joint Space Dynamics
The configuration of the robot is described by n = nb + na DOFs, where nb is the number of
DOF of the mobile base and na is the DOF of the manipulators attached. The motion of the
ballbot base can be described by qb = [PS, ϕ]

T ∈ Rnb where nb = 5. PS = [px, py]
T ∈ R2 is

the 2D position of the ball center in the horizontal plane with respect to the inertial frame {I},
ϕ = [ϕx, ϕy, ϕz]

T ∈ R3 is a vector of Euler angles representing the lean angle of the body with
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Figure 5.2: Schematic of the CMU ballbot floating-base kinematic model representation.
{I}, {S}, {B} are the inertial frame, the ball (sphere) frame and the body frame. {EER} and
{EEL} are right and left end-effector frames.Cubes represent linear joints and cylinders revolute
joints.

respect to the gravity vector and the body yaw around the vertical axis. The body lean and yaw
angles are measured directly from the IMU. The ball position (px, py) are function of the ball
angles (θx, θy) such that

px = r(θx + ϕx),

py = r(θy + ϕx),
(5.2)

where r is the radius of the ball. The position The 7-DOF of the arm are represented by qa ∈ Rna .
For the CMU ballbot with the set of generalized coordinates

q =

PS

ϕ
qa

 and q̇ =

ṖS

ϕ̇
q̇a

 (5.3)

is defined. The system has in total n = 19 DOF (i.e. nb = 5, na = 14). Recall, the ballbot
is underactuated and the body lean angle DOFs (ϕx, ϕy) are passive, i.e. it has nc = 17 active
joints and np = n− nc = 2 passive joints.

Similar to as in (3.1), for the ballbot with a pair of 7-DOF arms, the rigid-body dynamics
equation can be written as:

M (q)q̈ + h(q, q̇) + ϵ = Sτ + JT (q)Fext (5.4)
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where M (q) ∈ Rn×n is the mass/inertia matrix, h(q, q̇) ∈ Rn is the vector of Coriolis, cen-
tripetal, and gravity forces, ϵ ∈ Rn is the vector that collects unmodeled arm dynamics (e.g.
joint friction forces), τ ∈ Rn is the vector of joint torques, Fext ∈ R6 is the vector of exter-
nal forces and moments acting at the end-effector, and S ∈ Rn×nc is the selection matrix that
separates the nc controlled joints from the np passive body lean angle joints.

5.2.3 Task Space Dynamics

The end-effector motion results from forces and moments acting along or about the axes of
displacement or rotation. We define the task in terms of the robot’s end-effector motion and
wrench for this framework. In general, the configuration of a single end-effector is represented
by a homogeneous transformation (i.e. as an element of the group SE(3)). For the purpose of the
controller design, a minimal vector representation x ∈ Rm is chosen, where m corresponds to the
number of end-effector coordinates of interest. In case all DOFs of a single end-effector motion
are considered m = 6. Thus, the robot is underactuated in joint space, but redundant in task
space (i.e. m ≤ nc). The derivation of the end-effector dynamic model is achieved by expressing
the relationship between its position, velocities, acceleration, and virtual forces acting on it. The
relationship between the Cartesian coordinates x and the joint configuration coordinates q is
given by (5.1). The differential kinematics that relates the joint velocities q̇ ∈ Rn to the task
velocity ẋ ∈ Rm is given by:

ẋ = J(q)q̇, (5.5)

where the task Jacobian is defined as:

J(q) =
δFK(q)

δq
∈ Rn×m. (5.6)

Taking the derivative of (5.5) the relation between joint acceleration q̈ ∈ Rn to the task acceler-
ation ẍ ∈ Rm is obtained as:

ẍ = J(q)q̈ + J̇(q)q̇. (5.7)

The Jacobian matrix J(q) also relates the external torque vector τext to the generalized external
forces Fext by

τext = J(q)TFext. (5.8)

Following a similar process as in [68, 70] the joint space dynamics (5.4) are derived in task space
as:

Λẍ+ µ = Fτ + Fext, (5.9)

where Λ = (JM−1JT )−1, µ = Λ(JM−1(h − ϵ) − J̇ q̇), Fτ is a virtual force at the end-
effector related to the joint torques by τ = JTFτ , and Fext is the external force applied at the
end-effector. For a complete derivation of the task space dynamics refer to Appendix B.
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5.3 Control

As originally presented by [70] the relation between task and joint forces consistent with the
end-effector and robot dynamic equation is given by:

τ ∗ = JTF ∗ (5.10)

where F ∗ = Fτ is defined from (5.9) using a desired task acceleration ẍ∗ instead of ẍ. Equa-
tion (5.10) provides a method for task-based force control. As such, it projects task space forces
F ∗ into joint torques τ ∗ through the task forward kinematics J . This relationship forms the
basis for the actual control of the robot in task space. Then the objective becomes to determine
the value of F ∗ to realize the desired end-effector behaviors (i.e. motion control, force control,
or compliance control). This section presents the derivation of different formulations of F ∗ to
achieve the different desired behaviors.

5.3.1 Motion Control
In Motion Control, the objective is to control the ballbot arm’s end-effector Cartesian pose. A
regulating PD law is used to obtain the desired task acceleration ẍ∗ from the current and desired
end-effector pose and velocity. The Cartesian pose errors are composed of linear and angular
components:

ex =

[
el
eθ

]
∈ R3, linear error
∈ R3, angular error. (5.11)

The linear errors el are computed using Euclidean distance for each translation axis as:

el = p− pd, (5.12)

where p ∈ R3 and pd ∈ R3 are the actual and desired position vector of the end-effector with
respect to frame {I}. The angular component error is defined as

eθ = Reeϵ
e
d ∈ R3×1 (5.13)

where Ree ∈ R3×3 is the rotation matrix for the end-effector with respect to the inertial frame
{I}, and ϵed is the vector part of the unit quaternion extracted from Re

d [64] defined as,

Re
d = R⊤

eeRd, (5.14)

the error between the desired end-effector rotation Rd ∈ R3×3 and the actual rotation Ree. The
error derivative is defined as:

ėx =
dex

dt
, (5.15)

and in practice we compute it numerically. The desired Task acceleration is obtain as:

ẍ∗ = K̄dex + B̄dėx, (5.16)
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where K̄d and B̄d are diagonal proportional and derivative gain matrices. Plugging the desired
acceleration (5.16) into equation (5.9) we get

Λ
(
B̄dėx + K̄dex

)
+ µ = F ∗

τ + Fext, (5.17)

and solving for the desired virtual force to get

F ∗
τ = Λ

(
B̄dėx + K̄dex

)
+ µ− Fext. (5.18)

Substituting back into (5.10) the final control law in joint torque space is

τ ∗ = JT
[
Λ
(
B̄dėx + K̄dex

)
+ µ− Fext

]
. (5.19)

5.3.2 Force Control
In Force Control the objective is to control the ballbot arm’s end-effector applied force. The
force error and error derivative are defined as:

ef = Fext − Fd, (5.20)

ėf = Ḟext, (5.21)

where Fd is the desired wrench to be applied. Similar to in motion control, a PD law is used to
determine the desired task acceleration as:

ẍ∗ = K̄f,pef + K̄f,dėf , (5.22)

where K̄f,p and K̄f,d are diagonal proportional and derivative gain matrices. Plugging back in
(5.9) to get

Λ
(
K̄f,pef + K̄f,dėf

)
+ µ = F ∗

τ + Fext, (5.23)

and solving for the desired virtual force to get

F ∗
τ = Λ

(
K̄f,pef + K̄f,dėf

)
+ µ− Fext. (5.24)

Substituting back into (5.10) the final control law in joint torque space is

τ ∗ = JT
[
Λ
(
K̄f,pef + K̄f,dėf

)
+ µ− Fext

]
. (5.25)

5.3.3 Compliance Control
In Compliance Control the objective is to control the ballbot arm’s impedance in the Cartesian
space of the end-effector to provide a stable physical interaction. In order to specify the desired
impedance behaviour the end-effector pose error and its time derivatives are defined as in (5.11)
and (5.15). Similarly, the force applied error at the end-effector is defined as (5.20) and (5.21).
Then the control objective is to render the dynamic relationship between the external force Fext

and the end-effector position error ex to mimic that of a mass-spring-damper system of the form:

M̄dëx + B̄dėx + K̄dex = ef . (5.26)
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The symmetric positive definite matrices K̄d, B̄d, and M̄d are the desired stiffness, damping, and
inertia matrix, respectively. From (5.26) the task acceleration is:

ẍ∗ = ẍd + M̄−1
d (ef − B̄dėx − K̄dex). (5.27)

Plugging the desired acceleration (5.27) into equation (5.9) we get

Λ
(
ẍd + M̄−1

d (ef − B̄dėx − K̄dex)
)
+ µ = F ∗

τ + Fext, (5.28)

and solving for the desired virtual force to get

F ∗
τ = Λẍd −ΛM̄−1

d (B̄dėx + K̄dex + ef ) + µ− Fext. (5.29)

Substituting back into (5.10) the final control law in joint torque space is

τ ∗ = JT
[
Λẍd −ΛM̄−1

d (B̄dėx + K̄dex + ef ) + µ− Fext

]
. (5.30)

5.3.4 Nullspace Compliance

One ballbot’s arm’s configuration cannot be specified solely by the end-effector position and
orientation coordinates. The solution to the control law (5.10) is not unique. The robot config-
uration has n − m redundant DOF and can be used for nullspace motion that do not affect the
motion of the EE. To control these redundant DOF the control law (5.10) can be augmented with
the nullspace projection [70] to:

τ = JTF + (I − JTJT#

)τnull (5.31)

where JT# is a generalized pseudo-inverse of JT :

JT#

= (JM−1JT )−1JM−1. (5.32)

This generalized pseudo-inverse is dynamically consistent with the task (i.e. it is the general-
ized inverse that results in zero end-effector acceleration). The incorporation of the nullspace
projection in (5.31) allows realizing secondary tasks through the joint torque inputs τnull without
affecting the primary tasks to track the desired Task Space dynamics.

We choose a value for τnull that regulates the arm joints to a desired position qa,d. We define
the nullspace torque as:

τnull = Kqa,p(qa − qa,d)−Kqa,dq̇a (5.33)

where Kqa,p ∈ Rn×n is a positive definite diagonal proportional gain matrix, and Kqa,d ∈ Rn×n

is a positive definite diagonal derivative gain matrix. Incorporating this joint regulation term
helps avoid the arm moving towards a singularity configuration.
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5.3.5 Integration to Balancing Controller

In section 4.5 we presented a control framework that enabled the ballbot to arbitrarily move
a single or both arms in joint space while tracking the desired ball position and maintaining
balance. The framework decoupled the control of the lower body, i.e., body and ball, separately
from the upper body, i.e. the pair of arms controllers. This approach introduces pre-defined
levels of hierarchies to the control framework. The lower body controller reacts to the motion of
the arms, but the upper body controller does not react to the motion of the lower body. This was
a valid approach since the objective was to track the desired ball position and not an end-effector
position. The framework did not care about the end-effector’s motion relative to an inertial frame.
It cared about the internal joint configuration of the robot.

Here, the joint space control law of the arms is replaced with two instances of the task space
control law (5.31), one for each arm. Depending on desired task to perform (5.19), (5.25), or
(5.30) is used. Fig. 5.3 shows the block diagram of the combined lower and upper body controller.
The aim is that both controllers will minimize their respective tracking errors in a close-loop. The

Figure 5.3: Block diagram of the implemented Task Space Impedance Controller on the ballbot
with a pair of 7-DOF arms.

lower body balancing controller will continue to react to the disturbances from the movement of
the arms. The inclusion of whole-body kinematics to the task space formulation enables the
upper body to respond to the body movements. Now, both ball and end-effector targets can be
tracked. In case the task is to station keep the ball (i.e. track a fixed ball position), then the body
lean angle commands are generated similarly as in section 4.5. If, instead, the task is to track a
ball position trajectory, a body lean angle trajectory command must be planned.
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5.3.6 Ball Position Controller
The control laws presented in sections 5.3.1 to 5.3.3 output torque commands for all active joints
in the floating base model described in section 5.2. This includes the torque commands to actuate
the ball. As discussed earlier, we do not have direct control over the torque commands applied to
the ball. The COM compensation controller drives the robot’s COM to an equilibrium position
(i.e. to be on top of the point of support where ball position has zero acceleration and velocity)
by controlling the body lean angle. Adding a lean angle deviation target will cause the robot to
accelerate. As shown in Fig. 5.3 we define the desired body lean angle to track by the lower level
balancing controller to be:

ϕ∗ = ϕcom + ϕfb + ϕp, (5.34)

where ϕcom ∈ R2 is the body lean angles output from the COM compensation controller, and
ϕfb ∈ R2 is the body lean angles generated by a feedback controller on the ball position. The
term ϕp is a body lean angle trajectory planned to track the desired ball trajectory P ∗

s . To control
the movement of the ball position, we implemented two methods.

5.3.6.1 Method 1: External Commands

In this method, the ball position trajectory is generated by some external planner that is decoupled
from the arms motion. The ball position trajectory is as a function of time as:

P ∗
S = f(t), t ∈ [0, T ] (5.35)

A path planner is required to transform the desired ball trajectory to a body lean angle trajectory.
The differential flatness-based planner presented by Shomin in [79] can be used to generate the
body lean angle trajectory. If the task is instead to stay in one place (i.e., station keep), we can
eliminate the use of a path planner. The feedback term ϕfb is sufficient.

5.3.6.2 Method 2: Integration Commands

The previous method is limited because it does not account for the desired end-effector pose.
Assume the scenario where the end-effector target pose is outside the reach of the arm. The
ballbot has to navigate to reach the target. Integrating the desired task space acceleration ẍ∗

from (5.16),(5.22), and (5.27) we get desired task velocity ẋ∗ commands. Using the differential
kinematics formulation we obtain the corresponding ball velocity commands.

ṖS = J(q)TPs
ẋ∗, (5.36)

where J(q)Ps is the jacobian matrix that relates the end-effector pose to the ball position co-
ordinates. Ball position commands P ∗

s are obtained by integration ṖS using Euler integration.
The ball position and velocity commands are sent to the ball trajectory tracking controller that
generates body lean angle ϕfb commands, as shown in Fig. 5.3. Note that if the arms have
conflicting end-effector poses that drive the robot in the opposite direction it can destabilize the
system. Thus, we introduce the gain variable αP ∈ [0, 1] to weight each end-effector controller
implementation command.
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5.3.7 Minimum Jerk Trajectories

The proposed task space controller for manipulation tasks takes the desired Cartesian pose targets
as input. Spline interpolation is used for smooth motions when a big Cartesian target change is
specified. A minimum jerk trajectory was used for position interpolation with terminal null
velocities and accelerations. The reference position spline pr(t), t ∈ [0, T ] is a 6th order (i.e. C5)
differentiable spline:

pr(t) = pi + (pf − pi)

(
10

(
t

d

)3

− 15

(
t

d

)4

+ 6

(
t

d

)5
)
, (5.37)

where pi is the current position, pf is the final desired position, t is current query time, d is the
desired duration of the motion. This can be set to a predefined value or can be computed using
an average desired velocity for the entire motion. The velocity trajectory is obtained by time
differentiating (5.37):

ṗr(t) =
1

d
(pf − pi)
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)
. (5.38)

For orientation we employ spherical linear interpolation (slerp) to generate a trajectory between
the initial and final desired orientation represented as quaternions.

5.4 Experiments and Results

This section presents results that characterize the performance of the proposed task space impedance
control framework on the CMU ballbot hardware. The videos of the ballbot showing the experi-
mental results can be found in the Video C.6.

5.4.1 Experimental Setup

All the experiments were performed on the CMU ballbot with its pair of 7-DOF arms. The
controllers were implemented in C++ wrapped around a ROS interface. The task space controller
runs at 250 Hz on the Intel Core i7 2.6 GHz CPU running Ubunutu 16.04 and sends commands to
each joint motor driver board in the arms. An external sensor is used to measure the pose tracking
accuracy of the controller. A Fiducial marker was attached to the end-effector palm, and the pose
of the marker was tracked using the open-source ArUco library [80]. An Intel RealSense D435
camera 1 was used as the image sensor. The experimental setup is shown in Fig. 5.4.

1https://www.intelrealsense.com/depth-camera-d435/
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Figure 5.4: Experiment setup to test the motion tracking performance of the task space controller
implemented on the CMU Ballbot.

5.4.2 Motion Control
This set of experiments evaluates the position tracking performance of the task space control. In
the first experiment, the task is to smoothly move the robot’s right end-effector from an initial
configuration to a target configuration. The second experiment regulates the arms postures to
track a desired end-effector pose when the robot is disturbed. For this set of experiments, we use
the motion control law (5.19).

5.4.2.1 Experiment 1: End-effector Trajectory Tracking

In this first experiment, only the right arm is active, and the left arm joints are locked. The
task is to track a continuous minimum jerk trajectory between an initial pose P0 and the desired
pose Pd with the right end-effector. In the control law (5.19) gain matrices B̄d and K̄d have a
corresponding angular and linear part,

B̄d =

[
btran 0
0 brot

]
and K̄d =

[
ktran 0
0 krot

]
. (5.39)

The parameters btran ∈ R3×3 and brot ∈ R3×3 define the desired Cartesian damping applied to
the three translation and rotational axis, respectively. The parameters ktran ∈ R3×3 and krot ∈
R3×3 defined the desired Cartesian stiffness applied to the three translation and rotational axis,
respectively. The control parameters and gains are set according to Table 5.1. For this experiment
the values of B̄d are set to achieve critical damping behavior (i.e. bi = 2

√
kimi). We assume

all motions are in free space and forgo the use of the force feedback Fext. The screenshots
in Fig 5.5 show the right end-effector motion from its initial configuration in Fig. 5.5 (a) to
reaching the target end pose in Fig. 5.5 (e). The task was repeated ten times with the same
parameters. The mean linear and angular position trajectory of the right end-effector are shown
in Fig. 5.6 (a) and (b), respectively. The end-effector translation trajectory had a total length of
0.27 m with a maximum linear velocity of 0.6 m/s and is realized in less than 6 seconds. The end-
effector orientation undergoes a large orientation change (i.e., 90◦ in the Y-axis) throughout the
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Experiment: 1
B̄d bi = 2

√
kimi

ktran diag ([500, 500, 800])
krot diag ([50, 50, 50])
Kqa,p diag ([1, 1, 1, 1, 1, 1])
Kqa,d diag ([0.01, 0.01, 0.01, 0.01, 0.01, 0.01])

Table 5.1: Parameters and gains for pure motion control experiment 1.

(a) t = 0s (b) t = 7s (c) t = 10s

Figure 5.5: Screenshots of the motion control experiment tracking a minimum jerk trajectory
between two poses of the right end-effector. The trajectory (green line) is realized in under 10s.
The final translation and orientation errors are 0.007 m and 0.0277 rad (1.59 deg), respectively.

trajectory. As shown in the time series plots of the tracking error in Fig. 5.6 (c) and (d), through
the ten trials, the translation error is bounded within ±0.01 m and the orientation error within
±0.1 radians (5.78 degrees). Even with the higher stiffness in the z-axis (vertical), this coordinate
had the biggest transient and steady-state error. A potential reason is that the controller is not
fully compensating for gravity effects. Further, there could be unmodeled joint dynamics such as
stiction in the joints that contribute the most to the vertical movement (i.e. shoulder and elbow
joints).

5.4.2.2 Experiment 2: Upper Body Posture Control

In this experiment, both the left and right arms are active. The task of the controller is to track
a fixed end-effector pose with respect to the inertial frame {I} while the ballbot is dynamically
balancing and experiencing external forces from a human. The station-keeping controller is
enabled to track a fixed ball position. The control parameters are set according to Table 5.2.
The screenshots in Fig. 5.7 show how even though the ballbot is being pushed and pulled around
by the human, the controller can track the desired end-effector pose. The task space controller
generates torque commands for both arms to control their internal configuration. The kinematic
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Experiment 1: The translation and angular right end-effector trajectory tracking
performance.

redundancy of the arm configuration allows compensating for both the translation and orientation
error introduced. As shown in the time series plot in Fig. 5.8, the ball position is displaced ±0.2 m
on both directions. Despite this large displacement, the task space controller can track the end-
effectors’ positions in all directions within ±0.05 m (i.e., 25% of the introduced error). When the
ballbot is yawed ±30◦ at 32 seconds, the tracking performances for the y-coordinate deteriorates
to tracking within ±0.1 m. The end-effector orientation error is kept within ±4◦ for the x and
y-axis, as shown Fig. 5.8 (e) and (f). As expected, the orientation error in the Z-axis is greater
because the corresponding stiffness gain is set to be lower by choice. The results of the posture
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Experiment: 2
B̄d bi = 2

√
kimi

ktran diag ([800, 800, 600])
krot diag ([70, 70, 50])
Kqa,p diag ([5, 5, 5, 5, 5, 5])
Kqa,d diag ([0.01, 0.01, 0.01, 0.01, 0.01, 0.01])

Table 5.2: Parameters and gains for pure motion control experiment 2.

(a) t = 18 s (b) t = 25 s (c) t = 30 s

(d) t = 32 s (e) t = 36 s (f) t = 44s

Figure 5.7: Screeshots of the motion control experiment tracking a desired pose for the right
and left EE while the ballbot is dynamically balancing and external forces are applied (green X:
desired EE pose, red cross: original ball position). In the first 12 seconds (a)-(c) the ballbot is
experiencing a translation disturbance. In the last 12 seconds (d)-(f) the ballbot is being rotate
around its central axis.

control experiments can be viewed in the Video C.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: State evolution (a) the ball position on the floor, (b) the body yaw angle, (c) and
(d) the right and left end-effector linear position error, (e) and (f) the right and left end-effector
angular position error, during the upper body postural control experiment.

5.5 Applications

Three different real-world applications have been tested on the CMU ballbot hardware that high-
lights the capabilities of the proposed control framework. These demonstrations show the poten-
tial of integrating a higher level of planning and reasoning to the task space impedance controller.
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5.5.1 Balancing a Wine Glass while Disturbed
One practical demonstration of the controller’s ability to track a desired end-effector pose is to
balance a filled wine glass on its hand while dynamically balancing and experiencing external
disturbances. Screenshots of this demo are show in Fig. 5.9. Note that the wine glass is not
permanently attached to the ballbot’s end-effector. The demonstration of the ballbot balancing a
“wine glass” can be found in Video C.6.

(a) t = 0 s (b) t = 4 s (c) t = 7 s

(d) t = 10 s (e) t = 16 s (f) t = 20 s

Figure 5.9: Screenshots of the application balancing a wine glass on the right end-effector while
the ballbot is dynamically balancing and external forces are applied (red +: original ball position).

5.5.2 Moving Cup in a Circle
The ballbot should stay in one place while the end-effector tracks the desired trajectory. In this
demo, the ballbot tracks a desired ball position on the floor while simultaneously tracking a
pose trajectory for the right end-effector and a fixed pose for the left end-effector. The right
end-effector tracks a circular motion while keeping the desired orientation. To demonstrate it
does so smoothly a cup of water is balanced on top of the end-effector throughout the motion.
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Screenshots of the motion are shown in Fig. 5.10. The entire motion can be viewed in the
Video C.7.

(a) t = 9s (b) t = 9.5s (d) t = 10 s (e) t = 10.5 s

Figure 5.10: Screenshots of the application moving a cup of water in a circular motion with the
right end-effector while tracking a fixed left end-effector pose.

5.5.3 Picking up a Box
This task demonstrates the manipulation of an object in 6D-space with dual-arm manipulators
like the CMU ballbot. The box is of an unknown dimension to the ballbot but is bounded. Instead
of defining two end-effector trajectories (i.e., one for each hand), we define a pose trajectory for
a point between both hands and a desired separation between the hands. The surface of the
paddle hands are constrained to mirror each other throughout the entire motion. Screenshots of
the ballbot picking up a box are shown in Fig. 5.11.

(a) t = 0s (b) t = 4s (c) t = 22s

Figure 5.11: Application: Picking up a box with both hands.
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5.6 Discussion
This chapter presented a framework for controlling a dynamically stable mobile robot with re-
dundant arms, like the ballbot with 7-DOF arms. The framework decomposes controlling the
lower body, i.e., body and ball, separately from the upper body, i.e., the pair of arms. The lower
body controller compensates for the motion of the arms. The upper body controller reacts to
the motion of the lower body. This approach introduces pre-defined levels of hierarchy in the
controller definition. The balancing controller has the highest priority in the control hierarchy.
The task space controller developed enables motion, force, and compliance control of the arms’
end-effectors. The performance of the controller was experimentally evaluated. Further, different
real demonstrations of the task space control framework in action were presented.

Although this framework was shown to work on the CMU ballbot platform and perform
different demonstrations, it has several limitations. The biggest limitation of the framework
is that all manipulation tasks are realized with a stationary ball position. That is, there is no
consideration of combined locomotion and manipulation tasks. It is non-trivial to plan loco-
manipulation tasks. First, a locomotion task has to be planned with stationary arms; then, once
the ball position is stationary, a manipulation task can be planned. This framework does not
leverage the body dynamics to perform manipulation (e.g., leaning forward to push open a door).
To exploit the system’s dynamics, careful coordination of the upper and lower body has to be
planned. The following chapter presents a whole-body optimal planning and control method to
solve the framework’s limitation.
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Chapter 6

Whole-Body Planning and Control

In Chapter 3 the problem of controlling dynamically stable shape-accelerating mobile manipu-
lators, like the ballbot with arms, was decomposed into controlling the lower body, i.e., body
and ball, separately from the upper body, i.e., the pair of arms. The lower body controller re-
acted to the motion of the arms. This approach introduces pre-defined levels of hierarchies in
the controller definition, thus limiting the system’s full capabilities. To exploit the dynamics of
the system, careful coordination between the upper and lower body motion is required. Solu-
tions to this problem include search or optimization-based approaches that use either a complex,
full-body nonlinear dynamic or a highly simplified robot model to generate motion plans.

This chapter presents a planning and control framework to generate dynamic, whole-body
motions by considering both balancing and end-effector tasks in the same planning stage and over
the same time horizon for a dynamically balancing mobile manipulator. The planner leverages
the centroidal dynamics of the system. The framework first solves a trajectory optimization
problem offline. It later uses the same Nonlinear Problem (NLP) with a shorter time horizon
in a model predictive control (MPC) context to execute the motion. Balancing constraints in the
optimization are formulated in terms of the centroidal momentum instead of other approaches like
ZMP or angular velocity that are more commonly used. The proposed framework is evaluated in
simulation and on CMU ballbot showing it can generate dynamic whole-body motion plans.

Parts of this chapter’s contents appeared in [81].

6.1 Background

Whole-body planners and controllers have been extensively studied in legged humanoids [10,
28, 82, 83, 84], and quadruped robots [85, 86, 87], but scarcely for dynamically stable wheeled
robots (e.g., Segway and ballbot bases). Kinematics-based controllers, like the one presented
in Chapter 3, are most effective for slow upper-body motions. Considering the dynamics of the
system can enable more agile and dynamic motions. Most existing dynamic-based algorithms
use simplified models such as the Linear Inverted Pendulum (LIP) model that fail to exploit the
whole body dynamic capabilities of the platform in use [4, 44, 88]. This model assumes that an-
gular momentum is constant, which is not valid for motions requiring fast arm swinging. On the
other hand, dynamic motion planning can be done by formulating a trajectory optimization prob-
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lem with the full-body nonlinear dynamics of the system [89]. This method can produce smooth
trajectories, but due to the complexity of the full-body nonlinear dynamics, these optimizations
can take an excessively long time to run. This thesis instead represents the dynamics constraint
of the ballbot by its centroidal dynamics, since postural balance can be defined in terms of cen-
troidal momentum [26]. This method is a balance between the two extremes and has become
a popular approach to plan and control legged humanoid and quadruped robots [10, 82]. When
combined with full-body kinematics, the simple centroidal dynamics capture enough informa-
tion to generate dynamic motions that leverage multiple limbs. Fig. 6.1 highlights the benefits
and drawbacks of the different dynamic models.

Figure 6.1: Overview of typical dynamical models used, ranging from a simple Linear Inverted
Pendulum Model, to centroidal dynamics, to complex nonlinear full body dynamic models. In
this work, we use the middle option of centroidal dynamics. (Inspired from [10])

Until recently, most balance control methods have attempted to maintain balance by control-
ling only the linear motion of the robot. An interesting departure from this are momentum-based-
balance controllers [27]. These approaches control the spatial momentum’s linear and angular
components to perform whole-body motions.

In [27] a whole-body momentum-based controller for humanoid robots on non-level ground
is presented. The controller regulates the linear and angular momentum by solving an optimiza-
tion problem to find whole-body motion. It gives higher priority to linear momentum over angu-
lar momentum. This thesis implements a similar approach when both cannot be simultaneously
attained.

In [90] a whole-body controller for a torque-controlled humanoid robot balancing on top of a
two-wheel balancing platform is presented. The controller is formulated as a quadratic optimiza-
tion problem (QP) to generate joint torques that satisfy the whole-body dynamics constraint. The
quadratic cost function minimizes the error between the system’s desired and actual linear and
angular momentum. However, the issue of how to set the desired angular momentum for more
complex motions such as performing locomotion and manipulation simultaneously was not fully
explored.

84



Complex whole-body motions can be generated offline using trajectory optimization. In [91]
a non-convex optimization problem is formulated that adopts centroidal dynamics to generate
feasible trajectories for large-step up motions with a humanoid robot. The framework presented
in this Chapter is inspired from [10], which combines the simple centroidal dynamics with a
full kinematic model to generate whole-body motions. The work in this thesis differentiates
in that the optimization problem is simplified by not including the complementary constraint
for contact implicit optimization. This is possible because wheeled robots, like the ballbot, do
not need to make and break contacts between the feet and floor to locomote. Also, instead of
using a specialized QP for stabilizing dynamic locomotion [92], the same optimization problem
formulation is reused and solved with a shorter horizon time inside an MPC framework. To
decrease solving time, the solution of the offline optimization is used to warm-start the online
MPC.

6.2 System Model

This section presents the dynamic model of the CMU ballbot with a pair of 7-DOF arms. The
CMU ballbot is a human-size robot that balances on a ball. It has a pair of 7-DOF torque-
controllable arms mounted onto the body. The ball is actuated using a four-motor inverse mouse-
ball drive mechanism (IMBD). A pair of actuated opposing rollers drive the ball in each of the
two orthogonal motion directions on the floor. This mechanism achieves omnidirectional motion
by moving the ball in any direction. The IMBD mechanism is attached to the body using a
large thin-section bearing, which allows yaw rotation of the body (i.e., rotation about its vertical
axis). Another DC servomotor actuates this yaw degree of freedom. A slip ring assembly enables
unlimited yaw rotation of the body. The model makes the following assumptions:

1. There is no slip between the ball and the floor.

2. The ball height relative to the floor remains constant, i.e., the ball is always in contact with
the floor.

3. There is no yaw motion between the floor and the ball.

6.2.1 3D Dynamics

The configuration of the robot is described by nb+
∑i nai DOF, where nb is the number of DOF

of the mobile base and nai is the number of DOF of the ith manipulators attached. The motion of
the ballbot base can be described by qb = [PS, ϕ]

T ∈ Rnb where nb = 5. PS = [px, py]
T ∈ R2

is the 2D position of the ball in the horizontal plane with respect to the inertial frame {I},
ϕ = [ϕx, ϕy, ϕz]

T ∈ R3 is a vector of Euler angles representing the lean angle of the body with
respect to the gravity vector and the body yaw around the vertical axis. The 7-DOF of the left
and right arms are represented by qaL ∈ Rna and qaR ∈ Rna . These notations are shown in
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Fig. 6.2. For the CMU ballbot the set of generalized coordinates

q =


PS

ϕ
qaL

qaR

 and q̇ =


ṖS

ϕ̇
q̇aL

q̇aR

 (6.1)

is defined. The system has a total of n = 19 DOF (nb = 5, naL = 7, naR = 7). Grasp-planning is
outside the scope of this work and hence the DOF of the hand fingers are not considered. Instead,
we only consider the left and right arm end-effector posepEE,L ∈ SE(3) and pEE,R ∈ SE(3),
respectively. We also define r ∈ R3 the robot’s COM position with respect to {I}.

Figure 6.2: Schematic of the CMU ballbot generalized coordinate representation. {I}, {S}, {B}
are the inertial frame, the ball (sphere) frame and the body frame. {EER} and {EEL} are right
and left end-effector frames.

Considering the generalized coordinates defined in (6.1) the Euler-Lagrange Equation of Mo-
tion are as follow:

M(q)q̈+ h(q, q̇) = Sτ + J(q)Tc Fext,c, (6.2)

where M(q) ∈ Rn×n is the mass matrix, h(q, q̇) ∈ Rn is the vector of Coriolis, centrifugal,
and gravity forces, and Fext,c is the floor reaction force, Jc is the corresponding Jacobian. τ =
[fs, τϕz , τa,L, τa,R]

T ∈ Rnτ is the vector of generalized forces and torque inputs. The torque
exerted by the IMBD at the center of the ball is related to a linear force at the point of contact
between the ball and the floor by

fs =

[
fx
s

f y
s

]
=

[
rb · τxb
rb · τ yb

]
, (6.3)

86



where rb is the radius of the ball and the τxb , τ
y
b are the torques exerted by the IMBD in the X and

Y axis respectively. τϕz is the torque applied on the yaw degree of freedom. The joint torque of
the manipulators are described by the vectors τa,L ∈ RnaL and τa,R ∈ RnaR . The system has a
total of seventeen control inputs, i.e., nτ = 17. The actuation selection S ∈ Rn×(nτ ) separates
the nc = n− nf controlled joints from the nf = 2 unactuated body lean angle joints ϕx and ϕy.
Since the number of degrees of freedom of the robot is larger than the number of independent
control inputs, the system is underactuated.

Different to the equations of motion defined in (5.4) the dynamic model described in (6.2)
does not account for unmodeled dynamics ϵ and contact forces at the arms’ end-effectors. It
only considers the reaction forces acting on the ball contact point Fext,c. This is valid because
we assume the arms will operate in free space and not contact the environment.

6.2.2 Centroidal Dynamics

The centroidal dynamics are the dynamics of a robot system projected at its COM [26]. They
describe the evolution of the angular momentum and the COM position [10]. The centroidal mo-
mentum vector h ∈ R6×1 composed of the linear momentum l ∈ R3×1 and angular momentum
k ∈ R3×1 is linearly related to the generalized joint velocities vector q̇ by

h(q, q̇) =

[
k
l

]
= A(q)q̇, (6.4)

where A ∈ R6×n is the centroidal momentum matrix (CMM). Taking the time derivative of (6.4)
results in the second order centroidal dynamics

ḣ(q, q̇) = A(q)q̈+ Ȧ(q, q̇)q̇. (6.5)

The rate of centroidal linear and angular momentum ḣ(q, q̇) = [k̇, l̇]T , computed from the robot’s
joint angles and velocities, equals the total wrench generated by the external contacts and the
gravitational forces:

k̇ = mr̈ =
∑
j

Fj +mg (6.6)

l̇(q, q̇) =
∑
j

(cj − r)× Fj + τj, (6.7)

where m is the total mass of the robot, r ∈ R3 is the COM position, Fj ∈ R3 is the external
contact force at jth contact point, cj ∈ R3 is the position of the jth contact point, τj ∈ R3 is the
torque at the jth contact point, and g ∈ R3 is the gravitational acceleration. The CMM has been
shown to be useful when generating dynamic motions of multiple limbs to maintain balance [26].
Thus, in this thesis work balancing is defined in terms of the linear and angular momentum. For
balancing maintenance it is desired that k and l be zero and for Pcom to be above the point of
support. This will form the basis of the optimization problem presented in Sec. 6.3.
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6.3 Optimization

6.3.1 Trajectory Optimization
To compute the feasible motion plan that includes the centroidal momentum trajectory and joint
trajectories, a nonlinear optimization problem (NLP) is formulated. The centroidal dynamics
and a full kinematic model are used to enforce dynamic and geometric constraints [10]. A direct
collocation method [93, 94] to transcribe the continuous-time dynamics in (6.4) and (6.5) to their
discrete form is implemented. All time-varying quantities are sampled at N knot points. The
nonlinear constraint optimization problem minimizes the cost function

min
q[k],q̇[k],q̈[k],r[k],ṙ[k],̈r[k];

h[k],ḣ[k],Fj[k],τj[k]

N∑
k=0

(∣∣PEE,i[k]−Pd
EE,i[k]

∣∣2
QEE,i

+
∣∣eoEE,i[k]

∣∣2
QoEE,i

+
∣∣PS[k]−Pd

S[k]
∣∣2
QS

+
∣∣PS[k]−Pcom[k]

∣∣2
Qcom

+
∣∣ḣ[k]∣∣2

Qḣ

+
∣∣q̈[k]∣∣2

Qq̈

)
,

(6.8)

where |x|2Q is the abbreviation for the quadratic cost xTQx. The square bracket [k] means the
sampled value at the kth knot point. The cost function (6.8) tries to minimize the sum of dif-
ferent tasks that the robot is required to perform. The semidefinite positive matrices QEE,i and
QoEE,i weight the task of tracking a desired end-effector position and orientation for i = L,R
corresponding to the left and right end-effectors. The orientation error is computed using quater-
nion difference. The task of tracking the desired base position is weighted by the matrix QS .
The balancing task is defined by the error tracking term between the COM position to be on top
of the point of support and the term penalizing the centroidal momentum rate. The momentum
penalizing term is weighted higher by Qḣ than the COM tracking term by Qcom. The regulation
term penalizing joint acceleration in the cost function is included to provide numerical stability
and is weighted by Qq̈.

The formulation of the NLP is flexible in the sense that different behaviors and tasks can be
achieved with the same cost function by simply changing the weights on different terms. For
example, if we care about tracking the right end-effector position more than the left end-effector,
then we can set QEE,R ≥ QEE,L.

The optimization constraints include the centroidal dynamics defined in (6.4) and (6.5) dis-
cretized at each knot point

mr̈[k] =
∑
i

Fi[k] +mg, (6.9)

ḣ[k] =
∑
i

(ci[k]− r[k])× Fi[k] + τj[k], (6.10)

h[k] = A(q[k])q̇[k]. (6.11)

Note that in our case, there is only one contact point ci between the ball and the floor. To
enforce continuity between the discrete system state knot points q[k], q̇[k], q̈[k],h[k], and ḣ[k]
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we formulate equality constraints such that the change in state between two knot points is equal
to the integral of the system dynamics. We approximate the integral using Euler integration.
For numerical stability, this is implemented using backward-Euler integration. The collocation
constraints are

q[k]− q[k − 1] = q̇[k]dt, (6.12)
q̇[k]− q̇[k − 1] = q̈[k]dt, (6.13)

h[k]− h[k − 1] = ḣ[k]dt, (6.14)

where dt is the sample time between knot points. We approximate the COM position using a
piecewise quadratic polynomial. Its time integration constraints are

r[k]− r[k − 1] =
ṙ[k] + ṙ[k − 1]

2
dt, (6.15)

ṙ[k]− ṙ[k − 1] = r̈[k]dt. (6.16)

To ensure the full kinematics of the robot are obeyed we implement the kinematic constraint that
relates the robot joint configuration and COM position

r[k] = com
(
q[k]

)
, (6.17)

where com(q) computes the corresponding COM position to a given robot joint configuration
q. Joint position, velocity, and acceleration limits are also enforced through the inequality con-
straints

qlb ≤ q[k] ≤ qub, (6.18)
q̇lb ≤ q̇[k] ≤ q̇ub, (6.19)
q̈lb ≤ q̈[k] ≤ q̈ub. (6.20)

Equality boundary constraints are also included to enforce initial and final robot states. The
initial constraints for the joint states are set to

q[0] = q0, q̇[0] = q̇0, and q̈[0] = q̈0. (6.21)

The final value of the centroidal momentum and centroidal momentum rate are constrained to be
zero, so to ensure the robot is balancing at the end of the motion by

h[N ] = 0 and ḣ[N ] = 0. (6.22)

6.3.2 Model Predictive Control
The NLP described in Section 6.3.1 outputs smooth end-to-end robot motion trajectories. How-
ever, this NLP has a long time horizon and takes several seconds to solve. Thus, it is only good
to be solved offline. Further, executing this trajectory in an open-loop fashion on the robot may
lead to poor performance due to model uncertainties and unmodeled dynamics. In this work, a
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model predictive control (MPC) is implemented using a similar NLP as the trajectory optimiza-
tion problem. However, by shortening the time horizon N ≤ 10 (i.e., 1 second) and using the
output of the offline trajectory optimization to warm-start, we can reduce the solve time to be fast
enough (≈ 20Hz) to be computed in an MPC fashion. The constraint on the final zero centroidal
momentum is dropped, as this will generate undesirable stopping behaviors. The complete plan-
ning and control structure is depicted in Fig. 6.3.

Instead of feeding the output of the MPC directly to the robot motors, the MPC output is fed
to a PD-PID cascading balancing controller. This ensures that the robot will maintain balance
at all times. The inner PID loop running at 500 Hz maintains the ballbot balancing upright. It
does so by tracking a desired lean angle by actuating the ball. The outer loop tracks the ball
position on the floor and feeds lean-angle setpoints to the inner-loop controller. By tracking the
body’s lean angle we can indirectly track the ball position in the floor. The arms are controlled
by a decentralized torque-impedance-based feedback controller with feedforward gravity and
torque-sensing compensation, as shown in Eq. 6.23.

τdes = KPαeα +KDα ėα + g(α, α̇)− τ, (6.23)

where KPα , KDα are positive definite diagonal gain matrices, g(α, α̇) is the gravity compensation
term based on the dynamic model of the arm, eα = αdes − α and ėα = α̇des − α̇ are the joint
position and velocity errors.

Figure 6.3: Block diagram of the implemented whole-body optimal control framework for ball-
bot using centroidal dynamics.

6.4 Experiments and Results
The proposed whole-body planning and control framework was tested in a variety of tasks in a
dynamic simulation environment of the CMU ballbot and in the real hardware.
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6.4.1 Implementation Details
We implemented all the optimization problems using CasADi [95], an open-source C++ library
for nonlinear optimization and algorithmic differentiation. It facilitates the rapid implementation
of different methods for numerical optimal control, both in an offline context and for nonlinear
model predictive control. CasADi provides interfaces to several state-of-the-art nonlinear opti-
mization problem solvers such as Ipopt [96] and SNOPT [97]. In our implementation, we use
Ipopt to solve all the optimization problems. We experimented using several open-source C++
rigid body dynamics libraries RBDL [98] and RobCoGen [99], to obtain the robot’s dynamics
equations used as constraints. In the final implementation, we decided to use Pinocchio [100],
a fast and flexible C++ library that implements rigid body dynamics algorithms and their ana-
lytical derivatives. We chose Pinocchio because it provides an interface to CasADi, simplifying
the implementation of the dynamic constraints into the optimization problem. Moreover, it also
outperforms the other libraries in terms of computation timing.

For all the tasks tested, the offline trajectory optimization problem is solved with a long
time horizon (N ≥ 40 and dt = 0.1 s) to obtain a reference trajectory to follow. All offline
optimization problems were run on a PC with an Intel Xeon(R) 2.80GHz quad-core CPU running
Ubuntu 16.04.

The online optimization and controllers are implemented in C++ wrapped into ROS [42].
This optimization uses a short time horizon (N ≤ 10 and dt = 0.1 s) and runs online to track
the motion plan in a Model Predictive Control fashion. The output solution of the trajectory op-
timization problem is sampled on every iteration to warm-start the online optimization problem.

The simulation test environment is written in C++ using the Pinocchio [100]. The evolution
of the dynamics is obtained using an explicit Euler integration scheme. Pinocchio generates
the model based on the Unified Robot Description Format (URDF1) model of the robot and the
parameters of the robot obtained from system identification.

6.4.2 Simulation
This section presents the simulation results of the whole-body planning and control framework
for the CMU ballbot with its pair of 7-DOF arms. The simulation results are shown in the
supplemental Video C.8.

6.4.2.1 Experiment 1: Single End-Effector Pose Tracking

The primary task for a ballbot is to maintain balance, but with the addition of the 7-DOF arms
manipulation tasks become important too. In this first experiment, we set a reference position and
orientation for the right end-effector that is outside the arm’s reach without moving the base, as
shown in Fig. 6.4. A 5 kg payload is added to each hand to make the task more difficult. For this
task we penalize the end-effector position and orientation error QEE,r = diag([100, 100, 100])
and QoEE,r = diag([10, 10, 10]). All other weights matrices Qi are set to the identity. Without
explicitly defining a task for the base motion, the framework synthesizes a combined motion for
the arms and base such that the robot achieves its end-effector task while maintaining balance.

1http://wiki.ros.org/urdf
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The centroidal momentum trajectory is shown in Fig. 6.5. The planner outputs a motion that

(a) t = 0 sec (b) t = 3 sec (c) t = 5 sec

Figure 6.4: Snapshots of tracking a desired end-effector pose with low weight cost on left arm
joint acceleration.

uses its free arm to balance by swinging it backward. However, this motion is not ideal when
operating in a tight environment. The motion can be easily modified by simply increasing the
weight Qq̈ on the cost of moving the joints of the left arm. Fig. 6.6 shows the results of achieving
the same task but now using the body lean angle to maintain balance instead of the second arm.
The left arm remains in its zero-configuration throughout the entire motion.

Figure 6.5: Centroidal momentum trajectory when tracking a single end-effector pose.
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(a) t=0 sec (b) t=3 sec (c) t=5 sec

Figure 6.6: Snapshots of tracking a desired end-effector pose with large weight cost on left arm
joint acceleration.

6.4.2.2 Experiment 2: Dual End-Effector Pose Tracking

In this experiment, we control the desired position and orientation for both end-effectors as
shown in Fig. 6.7. We set high weights on the position QEE,L = QEE,R = diag

(
[100, 100, 1000]

)
and orientation QoEE,L = QoEE,R = diag

(
[50, 50, 50]

)
error tracking terms. In Fig. 6.8 the end-

effector position tracking error are shown. The linear and angular momentum trajectories are
non-zero initially to realize the desired motion but quickly return to zero to stabilize the robot, as
shown in Fig. 6.9. We set Qb = 0 to give the optimization the freedom to find a motion to coor-
dinate the base and arm motion to track the desired end-effector pose. As desired, the controller
can successfully track the planned motion that uses the body lean to compensate for the COM
movement due to the arm motion. The offline plan was generated in 26 seconds. This behavior
is very similar to that of humans when lifting heavy objects.

6.4.2.3 Experiment 3: Base Position Tracking

There may be scenarios where we are not interested in the end-effector pose and are only inter-
ested in the base tracking the desired position. This can be accomplished by setting QEE,i = 0
and setting a large value for Qb = diag

(
[100, 100]

)
. We test this by commanding the robot to a

position Pd
B = [1, 1]T m, as shown in Fig. 6.10. Without setting a high weight to penalize the

arm joint accelerations, the trajectory optimization found an optimum motion in 21 seconds that
primarily uses lean angle motion. Screenshots of the entire motion are shown in Fig. 6.11. Even
without setting a high weight on the joint accelerations (i.e., Qq̈ ≤ I) minimum arm motion is
used. This is desirable and expected since inducing a small lean angle alone produces enough
momentum to realize the motion. Swinging the arms will produce undesirable large momentum
changes. This result resembles those obtained from our differential flatness-based planner [37].
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(a) t=0 sec (b) t=3 sec (c) t=6 sec

Figure 6.7: Snapshots of tracking desired position and orientation for both end-effectors. Note
the use of the arms instead of the body lean to move towards the target location.

Figure 6.8: Right and left end-effector cartesian position with respect to inertial frame.
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Figure 6.9: Linear and angular momentum evolution while tracking a desired position for both
end-effectors

6.4.3 Hardware
In this section, we present the results obtained on the real CMU ballbot hardware.

6.4.3.1 Experiment 1: Nearby Right End-Effector Target

In this first experiment, the task is to position the right end-effector in a desired Cartesian position
within the arm’s reach without navigating. For this task we penalize the end-effector position
error QEE,r = diag([150, 150, 150]). All other weights matrices Qi are set to the identity. The
motion plan was generated offline in 21 seconds. Similar to before, the framework can generate
and track a combined motion for the arm and base that attains the desired end-effector position.
Snapshots of the entire motion running on the robot are shown in Fig. 6.12. The blue ball is
only used as a visual reference of the desired end-effector position, and it is not tracked online.
Fig. 6.13 shows the trajectory of the end-effector throughout the entire motion. The controller
does a good job at tracking the final end-effector position in the x-y direction (i.e. tracking error
is < 0.01 m). However, in the vertical Z-direction the tracking error is larger (i.e. < 0.07 m).
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Figure 6.10: Ball position and velocity trajectories for the task of tracking a desired ball position

(a) t=0 sec (b) t=3 sec (c) t=6 sec

Figure 6.11: Snapshots of tracking desired base position. Despite arm joint acceleration not
being penalized they are not used to generate forward momentum.

The error in the Z-axis could be caused by poor arm joint stiction and gravity models.

6.4.3.2 Experiment 2: Cost Function Tuning

In this experiment, we demonstrate that different robot behavior can be obtained to achieve the
same task by tuning the weights in the cost function terms. We repeat the task performed in
experiment 1 of Sec. 6.4.2, but now we execute the motion on the ballbot hardware. We set
a reference position and orientation for the right end-effector that requires moving the robot’s
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(a) t = 0 sec (b) t = 2 sec (c) t = 5 sec

Figure 6.12: Screenshots of tracking a nearby desired end-effector pose (blue ball for reference
only) with high weight cost on left arm joint acceleration.

base. For the first test we penalize the end-effector position and orientation error QEE,r =
diag([100, 100, 100]) and QoEE,r = diag([10, 10, 10]). All other weights matrices Qi we set to
the identity. Without explicitly defining a task for the base motion, the framework synthesizes
a combined motion for the arm and base such that the robot achieves its end-effector task while
maintaining balance. The planner outputs a motion that uses its free (i.e., left) arm to maintain
balance by swinging it backward, as shown in the screenshots in Fig. 6.14. This is because we set
a low weight on arms’ joints acceleration. The robot manages to reach the desired end-effector
target. To meet the desired end-effector pose, the robot moves 0.5 m forward.

As mentioned before it may not be desirable to swing the arm backwards to stabilize the
system. The weight on the joint accelerations can be modified to increase the cost of using the
left arm. The joint acceleration weight matrix Qq̈ have elements corresponding to the body and
arms joints,

Qq̈ =

Qq̈b 0 0
0 Qq̈al 0
0 0 Qq̈ar

 . (6.24)

The diagonal matrix Qq̈b is the weight on the body joints acceleration, Qq̈al and Qq̈ar are the
weight matrices for the left and right arm joint accelerations, respectively. To reduce the use
of the left arm, we increase the the weight on the left arm joint acceleration to equal Qq̈al =
diag([10, 10, 10, 10, 10, 10, 10]). By making this simple modification, the ballbot still reaches the
desired right end-effector pose, but now it only uses its body lean angle to stabilize. The modified
behavior is shown in Fig. 6.15. Video C.9 shows the execution of both motions with a low and
high penalty on the left arm joint accelerations.
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(a)

(b)

(c)

Figure 6.13: Experiment 1: The decomposed right end-effector position tracking performance
of the whole-body controller. The translation trajectories in the (a) X-axis (left/right), (b) Y-axis
(front/back) and (c) Z-axis (up/down).

6.5 Discussion

This chapter presented a framework for optimal whole-body planning and control for dynam-
ically stable mobile robots with multiple arms. The framework leverages the combination of
simple centroidal dynamics and a full kinematics model instead of using a full-nonlinear dy-
namic model. The planning problem first solves a trajectory optimization problem offline. Then
the same NLP is solved with a shorter time horizon in an MPC context to execute the motion. We
define balancing for a ballbot in terms of the centroidal momentum instead of other approaches
like ZMP or angular velocity that are more commonly used. The employed combination of the
centroidal dynamics and a full kinematics model represented the system’s dynamics sufficiently
well to generate stable motion plans for the ballbot. We demonstrate the effectiveness of this
algorithm performing different locomotion and arms motion tasks that require simultaneous con-
trol of the ball, body, and arms both in simulation and hardware. This framework has been shown
in a ballbot with arms. Still, because of its high non-linearity, non-minimum phase behavior, and
inherent instability, we believe it can be extended to other similar systems such as humanoids
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(a) t = 0 sec (b) t = 4 sec (c) t = 10 sec

Figure 6.14: Screenshots of tracking a desired right end-effector pose with low weight cost on
left arm joint acceleration.

(a) t = 0 sec (b) t = 4 sec (c) t = 10 sec

Figure 6.15: Screenshots of tracking a desired right end-effector pose with high weight cost on
left arm joint acceleration.

with wheeled feet and two-wheeled balancing manipulators.
The simulation results are considerably better than the results obtained in the hardware. As

with any model-based planning and control algorithm, its performance is highly dependent on
the robot model. To improve the implementation on the CMU ballbot, a more thorough sys-
tem identification is required. Additionally, in our model, we do not consider the closed-loop
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dynamics of the ballbot with its balancing controller. Similar to [85], taking into account the
inner closed-loop dynamics could improve the tracking performance. Moreover, in our current
formulation, we do not consider the problem of force and contact planning. This can be realized
by projecting the total wrench generated by external contacts to the centroidal dynamics.
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Chapter 7

Conclusion and Future Work

The ballbot’s form factor and balancing capability have already been shown to be a very func-
tional mobile robot capable of useful and interesting physical interactions. However, the ballbot
as a mobile manipulation platform has been little studied before the work presented in this the-
sis. This thesis presents a first-of-its-kind mobile manipulation platform based on the human-size
CMU ballbot with the addition of a pair of dexterous custom 7-DOF arms and hands.

The body of the work develops planning and control frameworks for the enhanced CMU
ballbot to operate over a wide envelope of possible configurations. Two control philosophies are
presented in this thesis: (i) a decoupled lower and upper body control strategy where the existing
balancing controller compensates for the arm movement while the arms react to the body motion;
and (ii) an optimal whole-body planning and control strategy that considers the entire kinematics
and dynamics of the system in a single formulation.

This chapter highlights the contributions of the work presented in this thesis and discusses
several possible future directions of the ballbot project.

7.1 Contributions
The work presented in this thesis has yielded the following contributions:

Demonstrating heavy box lifting and transportation with the ballbot
Chapter 3 presented a pragmatic center of mass compensation control strategy for shape-
accelerating mobile manipulators, such as the ballbot. The controller enabled the ballbot
with a pair of 2-DOF arms to lift and transport heavy payloads while retaining the ability
to balance gracefully. The ballbot was able to carry a maximum load of 15 kg. This work
proved that building a ballbot with more complex and higher inertia arms is possible. It
also set the foundation for the development of controllers for the ballbot with 7-DOF arms
based on COM compensation.

The design and development of pair of multi-DOF arms and hands
Chapter 4 presented the design, development, and integration of a 14-DOF dual manipu-
lation system for the CMU ballbot. The system includes a pair of self-contained 7-DOF
arms. Each arm weighs 12.9 kg, with a reach of 0.815 m, and a maximum payload of
7.5 kg at full extension. The ballbot’s arms have a larger payload-to-weight ratio than
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commercially available cobot arms with similar or greater payload capacity. Design fea-
tures include highly integrated sensor-actuator-control units, torque sensors on each joint,
lightweight exoskeleton structure, and anthropomorphic kinematics. A torque limiter at
the shoulder joint was incorporated to protect against large impact forces. We integrated
multiple passive and active end-effectors to provide dexterity. As default, the system has a
pair of 3-Finger Barrett Hands.

A new configuration for mobile manipulation
The integration of the new pair of 7-DOF arms and hands to the existing human-size CMU
ballbot results in a new robot configuration for mobile manipulation. To the best of our
knowledge, the CMU ballbot is the first-of-its-kind. It is the first ballbot with a pair of
anthropomorphic arms. The resulting robot configuration combines the smooth omnidi-
rectional motion of the ballbot base with the new capability to interact with objects and the
environment through manipulation. The new robot platform was designed with the aim of
supporting future research directions.

A control algorithm to balance with the high DOF and inertia arms
Chapter 4 also presented a COM compensation strategy to extend the existing balancing
controller. The controller enables the ballbot to balance and station-keep while moving
its 7-DOF arms. The new arms have considerable mass and inertia. Consequently, their
movement heavily affects the robot’s stability. With the proposed feedforward control
strategy the ballbot is able to effectively track its position on the floor, i.e., ±0.15 m, while
swinging the arms at moderate speeds, i.e., ±0.6 rad/s (34.4 deg/s).

Development of a task space impedance control for the ballbot
For manipulation, we are interested in controlling the robot’s end-effector. Additionally,
it is desirable to have compliant arm control strategies that complement the compliance of
the ballbot base. Chapter 5 extends the framework presented in section 4.5 to realize task
space impedance control with the ballbot with a pair of 7-DOF arms. In a close-loop, the
task space controller can react to the control inputs of the balancing controller.

Performance evaluation of the ballbot performing simple manipulation tasks
To evaluate the performance of the task space controller, several experiments were per-
formed. It was shown that effective end-effector trajectory tracking and regulation were
possible. Additionally, demonstrations of the controller realizing real manipulation tasks
are shown.

A framework for whole-body optimal planning and control
Chapter 6 presented a framework for whole-body optimal planning and control for dy-
namically stable mobile robots with multiple arms. The framework presented implements
centroidal dynamics and a full kinematics model instead of using a full-nonlinear dynamic
model to describe the behavior of the robot. The control framework was implemented and
tested on the ballbot. Using this method, the ballbot performed simple combined locomo-
tion and manipulation tasks.

This thesis has also yielded several contributions regarding both software and project infras-
tructure. These contributions benefit the project as a whole and enable the ballbot to be used as
a research platform by future students:
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Hardware and software updates for the ballbot
The high-level Linux computer was upgraded to provide additional processing power and
modern I/O ports as part of this thesis work. The new computer added USB 3.0 ports and
a graphics card to connect two Intel RealSense cameras and do all the processing onboard.
The robot’s network interface was also upgraded to handle the traffic of the new Ethernet-
controlled arms. The OS was upgraded from Ubuntu 14.04 to Ubuntu 16.04. The entire
ROS software stack was upgraded from ROS Indigo to ROS Kinetic alongside the OS
upgrade. This encompassed upgrading numerous ROS packages developed since 2012 by
the research group. This enabled the use of the latest open-source software available in the
ROS ecosystem.

Arm’s low-level control and ROS integration
In addition to the hardware development of the arms, the low-level software stack for the
arms was developed. A C++ library was developed to provide an easy interface to the arm’s
input commands and feedback signals. The arms were integrated with the ROS hardware
interface. This enabled the support of the standard ROS interfaces, and taking advantage
of a large library of open-source controllers for robot arms.

Physics simulation environment of the ballbot
As part of this thesis work, a new physics simulation environment of the enhanced ballbot
was developed in PyBullet [101]. The new simulation environment provides a 1:1 ROS
communication interface replica to the robot’s real-time QNX computer. The simulation
provides a fast and easy sandbox to test new planning and control algorithms in a diverse
set of environments.

Ballbot Wiki
A significant amount of effort has been put into the documentation to enable this new re-
search platform to be easily used by future students and researchers. We created a wiki
page that contains general information and parameters of the ballbot, maintenance instruc-
tions, operation instructions, common issues and how to debug them, and code develop-
ment rules. A new user of the platform should be able to run the ballbot and develop new
code for it by reading through the documentation.

This thesis furthers state of the art in balancing mobile manipulator robots. The principal
merit lies, in part, in proving the hypothesis that the resulting first-of-its-kind, highly dynamic
multi-DOF configuration is controllable over a wide envelope of possible configurations. By
developing hardware, control algorithms, and testing experimentally on the ballbot, this work
has demonstrated basic capabilities that includes; accurately moving the arms/hands to points in
space while dynamically balancing; adapting to external disturbances and varying payloads; and
grasping objects fixed in the environment.

7.2 Future Work

The ballbot is unlike any mobile robot that came before it. It is the very first mobile robot
to balance on a spherical wheel. This innovation yields the benefits of physical compliance
and an advantageous form factor. This thesis adds manipulation capabilities to the ballbot and
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explores some simple manipulation tasks. These new capabilities enable a vast range of future
possibilities for the platform. This section presents brief descriptions of different improvements
and extensions that can be applied to the work presented in this thesis.

7.2.1 Robust Force Planning and Control

The task space impedance control framework presented in Chapter 5 provides a hybrid posi-
tion/force interface for the ballbot arms. However, this is just a reactive base controller. For a
robot to be able to truly interact with its environment it has to be able to plan, apply, and handle
external forces. It may also need to use its body dynamics to apply a greater force.

The whole-body momentum based planning framework presented in Chapter 6 can be easily
extended to plan for end-effector forces and torques. The rate of centroidal linear and angular
momentum ḣ(q, q̇) = [k̇, l̇]T , computed from the robot’s joint angles and velocities, equals the
total wrench generated by the external contacts and the gravitational forces:

k̇ = mr̈ =
∑
j

Fj +mg (7.1)

l̇(q, q̇) =
∑
j

(cj − r)× Fj + τj (7.2)

where m is the total mass of the robot, r ∈ R3 is the COM position, Fj ∈ R3 is the external
contact force at jth contact point, cj ∈ R3 is the position of the jth contact point, τj ∈ R3 is the
torque at the jth contact point, and g ∈ R3 is the gravitational acceleration.

Leveraging this information we can add the set of Fj and τj for all contact points as decision
variables to the optimization problem. This will allow the optimization to solve not only over
joint space but also over the external wrench space. This fundamental capability to plan and
control in the force space will be useful for dynamic tasks such as pushing off walls and pushing
heavy objects.

7.2.2 Improve loco-manipulation planning and control

In Chapter 6 we presented a framework for whole-body planning and control. The implemented
framework on the ballbot demonstrated the successful execution of combined locomotion and
manipulation tasks simultaneously. However, the control architecture could be improved to re-
move the undesirable oscillations of the robot ball position. At the lowest level of the control
architecture is the balancing controller. This controller introduces delays into the dynamics of
the systems that are not considered by the planning and higher-level tracking controller. Incor-
porating information of the balancing controller into the model-based planners and controllers
could potentially improve the overall performance. Other control strategies that do not include
the low-level balancing controller could also be investigated. Having direct torque control over
the ball actuators could improve tracking of the whole-body motion plan.
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7.2.3 Dynamic Interactions for Mobile Manipulation

There has been a great deal of recent interest in robots working with or alongside people in
critical applications, from manufacturing to health care and quality of life. In many cases, the
interaction involves direct physical contact between robot and human. Despite exciting research
progress, there remains a need for robots that can fully utilize the dynamics of their bodies, along
with affordances in the environment, to accomplish challenging tasks in an efficient, robust, and
safe manner. Many common interactions utilize significant dynamics. For example, when open-
ing a heavy door or initiating the motion of a wheelchair, people use the dynamic motion of their
bodies to make the task easier. Handholds may be used to stabilize a dynamic interaction or to
facilitate rapid movement through cluttered spaces. Few existing robots are capable of such abil-
ities, especially while working with people. The ballbot’s unique dynamics make it an exciting
platform to investigate dynamic interactions. To realize such dynamic physical interactions it
is required to explore new interaction models and methods for planning, learning, and real-time
control. Observations of human behavior show that dynamic whole-body interactions that exploit
upper body contact with the environment are common to realize complex dynamic tasks. Hu-
man subjects studies can be performed to develop dynamic interaction models and explore the
ideas of reflex models for short-term contact events and dynamic skill models for longer-term
coordinated interactions.

Assuming that humans are experts at performing dynamic interaction tasks, the results of
the human studies should be transferred to the robot, potentially using imitation learning. For
dynamic tasks, simply repeating the demonstrated trajectories on the ballbot will not suffice as the
robot and the human have very different kinematics and dynamics [102, 103, 104]. Thus, there
is a need to develop analytical and learning-based methods for mapping human demonstrations
onto the robot’s skills.

7.2.4 Maneuvering a Wheelchair

The CMU ballbot has evolved into a competent and exciting robot that has particular relevance to
the field of physical human-robot interaction. Studies with the ballbot platform focused on possi-
ble application scenarios where the technology may assist the elderly or physically handicapped
can advance whole-body dynamic interaction control limits. An integrative task demonstrating
various skills working together is maneuvering a wheelchair.

To perform the task, the ballbot must position itself relative to the wheelchair and identify and
grasp the two wheelchair handles using vision subtasks that are difficult in themselves. The ball-
bot must then accurately control its arms to apply the correct forces to go in the desired direction
using its navigation ability while always respecting the wheelchair’s dynamics and kinematics.
It will need to apply enough force through its body lean or arms to overcome high friction and go
over bumps and ramps. The control algorithm could use continuous online learning to robustly
handle unknown disturbances such as passenger mass and wheelchair friction characteristics that
may cause the chair to drift to one side or require extra forces to roll the wheelchair. Leveraging
the ballbot’s unique dynamic balancing and lean strength capabilities, it would be possible to
demonstrate navigating an ADA-compliant 4.8◦ slope with a 114 kg (250 lb.) load. This would
require forces of approximately 96 N that are within the ballbot’s capability.
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Control experiments and human studies should be conducted to evaluate the effectiveness
(i.e., how accurate and fast can the ballbot reach its destination), reliability (i.e., how repeatable
can the task be performed successfully), and comfort (i.e., how comfortable a human subject
feels on the wheelchair) performing the complete task.

7.2.5 Accurate Payload Estimation and Adaptation
As described throughout the thesis for balancing mobile manipulator robots, like the ballbot, lo-
comotion and manipulations tasks are tightly coupled. This brings about some challenges. One
of the challenges is that the manipulated object’s weight plays a significant role in the robot’s
balance and locomotion. We introduce a simple method to estimate the payload’s weight from
the joint torques and compensate for its dynamic effect. However, there are significant errors in
the estimate. A better state estimator that actively estimates the object mass will improve per-
formance and ease performing manipulation tasks. Further, the whole-body control framework
in Chapter 6 should be improved to account for the object’s physical properties and dynamics to
realize smooth trajectories.

7.2.6 Dynamic Cooperative Carrying
The new pair of 7-DOF arms and hands presented in Chapter 4 are more powerful, enabling new
opportunities to study tasks that require carrying, pushing, and pulling heavier objects.

A task of potential interest is collaborative carrying. Strenuous load transportation tasks
performed solely by humans have the potential of causing accidents and repetitive stress injuries.
Dynamic, collaborative load manipulation skills between a robotic agent and a human will enable
an alternative, reliable, safe transportation and manipulation framework. The ballbot’s inherit
omnidirectional compliance, and strong arms make it an ideal platform to study this task. The
ballbot and human must share the object’s load since it is too large and cumbersome to be carried
alone. The ballbot can bring an object close to its body and lean backward to carry part of the load
with its body, similar to how humans do. Given the importance of human-robot coordination,
three cases can be investigated: (i) the human leads the robot, (ii) the robot leads the human, and
(iii) the most interesting case where the human and robot have a shared plan for how to carry the
object through an environment [105].
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Appendix A

SENSO-Joints’ Sensor Specification

Table A.1: SENSO-Joints’ Sensor Specification
SENSO-Joint 100

RD5014
SENSO-Joint 100

RD5008
SENSO-Joint 75

RD3806
Incremental Encoder RLS RLC2IC
Resolution 13 bit
Counts per Revolution 4096 3200
Accuracy ±0.40
Magnet RLS MR040G RLS MR031G
Absolute Encoder RLS Orbis RD50-AksIM
Resolution 14 bit 16 bit
Counts per Revolution 16384 65536
Accuracy ±0.25◦ ±0.1◦

Magnet Orbis magnet MRA2
Torque Sensor
Nominal Torque 67 Nm 40 Nm 10 Nm
Maximum Torque 200 Nm 80 Nm 20 Nm
Accuracy ±0.6 Nm ±0.4 Nm ±0.1 Nm
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Appendix B

Task Space Dynamics

This section presents the derivation of the ballbot dynamics in task space for the development of
a task space impedance control law in Chapter 5. The joint space dynamic model of the ballbot’s
arm with respect to the generalized joint coordinates q ∈ Rn can be expressed as:

M (q)q̈ + h(q, q̇) + ϵ = Sτ + JT (q)Fext (B.1)

However, the desired dynamics are defined in task spaced coordinates x ∈ Rm. It is necessary
to transform the model in (B.1) from joint coordinates to task space coordinates.

The relationship between the Cartesian coordinates x and the joint configuration coordinates
q is given by the forward kinematics function FK : Rn → Rm, i.e. x = FK(q). In our
formulation the number of joint configuration of the arm is n = 7 and the number of Cartesian
coordinates is m = 6. Thus, our system is redundant because n > m. Let

J(qq) =
δFK(qa)

δqa
∈ Rn×m (B.2)

be the Jacobian matrix that relates the joint velocities q̇ ∈ Rn to the task velocity ẋ ∈ Rm

according to
ẋ = J(q)q̇. (B.3)

Taking the derivative of (5.5) the relation between joint acceleration q̈a ∈ Rn to the task acceler-
ation ẍ ∈ Rm is obtained as:

ẍ = J(q)q̈ + J̇(q)q̇. (B.4)

The Jacobian matrix J(q) also relates the external torque vector τext to the generalized external
forces Fext by

τext = J(q)TFext. (B.5)

To project the joint space dynamics to the task space dynamics we first pre-multiply (B.1) by
JM−1, we get

Jq̈a + JM−1(Cq̇a + g + τfric) = JM−1τ + JM−1τext. (B.6)

Substituting equation (B.3), (B.4), (B.5) into the resulting (B.6), we get

ẍ− J̇ q̇ + JM−1h = JM−1τ + JM−1JTFext, (B.7)
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where h = Cq̇+g+tfric. The joint space inertia matrix M can be transformed into its equivalent
task space inertia Λ as:

Λ = (JM−1JT )−1. (B.8)

Assuming that the joint torques τ and a virtual force Fτ at the EE are related by τ = JTFτ and
pre-multiplying (B.7) by task space inertia Λ we get the task space dynamics:

Λẍ+ Λ(JM−1h− J̇ q̇) = ΛJM−1JTFτ + Fext. (B.9)

Since ΛJM−1JT = I we can simply the equation to

Λẍ+ µ = Fτ + Fext, (B.10)

where µ = Λ(JM−1h − J̇ q̇). The objective of the control law is to find a Fτ = F ∗
τ such that

the real dynamics in (5.9) follow some desired dynamic behaviour. For Task Space Impedance
Control a popular choice of desired dynamics are those of a mass-spring-damper system of the
form:

M̄dëx + B̄dėx + K̄dex = ef , (B.11)

where M̄d, B̄d, and K̄d are the desired inertia, damping and stiffness of the virtual system. ex, ėx,
and ëx are the end-effector pose errors between the actual and desired pose. ef is the error
between the desired applied force and the actual force. These errors can be calculated using
different methods depending on the representation of the task coordinates.

One approach to computing F ∗
τ is to compute the task acceleration ẍ from (B.11) as:

ẍ = M̄−1
d (Fd − Fext − B̄dėx − K̄dex) + ẍd (B.12)

and plug-in back into (B.10) to get

Λ(M̄−1
d (Fd − Fext − B̄dėx − K̄dex) + ẍd) + µ = F ∗

τ + Fext, (B.13)

and solving for the desired virtual force to get

F ∗
τ = Λẍd − ΛM̄−1

d (B̄dėx + K̄dex) + µ+ ΛM̄−1
d Fd − (I + ΛM̄−1

d )Fext. (B.14)

From the assumption that τ = JTFτ we get our control law in joint space to be:

τ ∗ = JT
[
Λẍd − ΛM̄−1

d (B̄dėx + K̄dex) + µ+ ΛM̄−1
d eF − Fext

]
. (B.15)

The total joint torque control law (5.30) can be split into its feedforward τff and feedback τfb
components as,

τ ∗ = τff + τfb, (B.16)

where
τff = JT [Λẍd − µ− Fext] (B.17)

and
τfb = −JT

[
ΛM̄−1

d (B̄−1
d ėx + K̄dex + ef )

]
. (B.18)
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Appendix C

Links to the ballbot videos

Chapters 3- 6 presented several successful experimental results on the ballbot, and links to the
videos of the ballbot achieving these results are listed below.

C.1 Lifting heavy payloads with 2-DOF arms

https://youtu.be/lVUEqauRmII

C.2 Wrench Estimation Experiment

https://youtu.be/sr3PY1Eo-mI

C.3 Initial experiments of the ballbot with 7-DOF arms

https://youtu.be/FYKJiXFJrlE

C.4 Arm choreography while station-keeping

https://youtu.be/D33xcA4cqd0

C.5 Ballbot lifting a heavy payload with 7-DOF arms

https://youtu.be/P1KXYxAo2-k

C.6 Task space control results

End-effector pose regulation and balancing a “wine glass”.
https://youtu.be/lBq_djcovVQ

C.7 End-effector circular motion

https://youtu.be/6DmeSe4HqPY
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C.8 Whole-Body Motion Planning Simulation Results

https://youtu.be/bMdO4HGr3pc

C.9 Whole-Body Motion Planning Hardware Results

https://youtu.be/LSXIbwdsbdE
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