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Chapter 1

Introduction

Total population size estimation is an important problem in many social and biological sciences where data

collection is a challenge. This task is performed using a special data collection procedure called capture-

recapture. Capture-recapture was first used by Graunt (Krebs et al., 2014) to estimate the total population

of England. Petersen (1896) was the first to apply this method on animal population. The basic set-up

involves capturing a subset of animals from the population of interest, tagging and releasing them back into

the population. This is followed by another round of capture, and hence, the term ‘capture-recapture’. The

two sets of capture are referred to as lists. This set-up is applicable to any total population size estimation

problem where data is obtained from at least two different lists. Some of the well known instances of this

problem include estimation of plague prevalence in England by Graunt (Hald, 2003), estimation of size fish

(plaice) population (Petersen, 1896), estimation of number of pages on the world wide web (Fienberg et al.,

1999) and estimation of number of victims of war (Ball et al., 2003; Lum and Ball, 2015; Manrique-Vallier

et al., 2019). Over the years there have been several advancements and variations in this method to more

accurately model the real data, which potentially increasing the complexities. Continuation to be added...

In this thesis, we focus on the closed population set-up, i.e., where there are no additions or deletions in the

population during the course of the data collection. Further, the capture occasions are discrete.

Total population size estimation is a missing data problem, where it is a challenge to appropriately

infer about the size of the unobserved portion of the data from only the observed fraction. One has to

use additional assumptions to ensure parameter identifiability. One has to be cautious when employing an

assumption since, an invalid assumption will result in wrong inference. Using a strong assumption can give

consistent estimates, however, if it is not valid for the data, then risk is higher. On the other hand using mild

assumptions have lower risks of producing wrong estimates, but at the cost of higher uncertainty. Following

this, one has to appropriately model the capture pattern in the data. Parametric models if correct can

achieve good estimates with fast convergence rates. Similar to the the issue of identifiability, parametric

1



assumptions can be too strong, especially when the data is complex. Use of flexible nonparametric models

has gained popularity in recent literate, but it lacks some of the desirable properties of parametric models,

like fast convergence rates and asymptotic normality. A detailed discussion of the existing approaches in the

capture-recapture literature is available in chapter 2. Our work takes the nonparametric perspective, but

uses advances in efficiency theory to characterize optimality and improve simple plug-in estimators (Bickel

et al., 1993; van der Laan and Robins, 2003; Kennedy, 2016).

In chapter 2, under an identifying assumption that two lists are conditionally independent given measured

covariates, we make several contributions. First, we derive the nonparametric efficiency bound for estimating

the capture probability, which indicates the best possible performance of any estimator, and sheds light on

the statistical limits of capture-recapture methods. Then we present a new estimator, that has a double

robustness property new to capture-recapture, and is near-optimal in a non-asymptotic sense, under relatively

mild nonparametric conditions. Next, we give a confidence interval construction method for total population

size from generic capture probability estimators, and prove non-asymptotic near-validity. Finally, we apply

them to estimate the number of killings and disappearances in Peru during its internal armed conflict between

1980 and 2000.

In chapter 3, we discuss a new R package drpop that implements the proposed method of chapter 2 on

real data. drpop provides the user with the flexibility to choose the model for estimation of intermediate

parameters and returns the estimated population size, confidence interval and some other related quantities.

In this chapter, we illustrate the applications of drpop in different scenarios and we also present some

performance summaries.

In chapter 4, we discuss a more relaxed set-up where we deviate from the conditional independence

assumption. Under this-set-up, the target parameters are no longer point identified. Instead, we focus

on estimating the identifiable range of these parameters. We used a sensitivity approach based on the

conditional risk ratio between two lists in the presence of covariates and proposed confidence intervals using

the formula of Imbens and Manski (2004). We have also evaluated the finite sample coverage guarantees

of the general Imbens and Manski (2004) confidence interval. Finally, we present the performance results

against the baseline plug-in approach in a simulated set-up and apply it to the Peru Internal Armed Conflict

Data 1980-2000.
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Chapter 2

Doubly robust capture-recapture

methods for estimating total

population size

2.1 Introduction

Capture-recapture is a study design for estimating population size when only a fraction of the population

is observed. This setup arises frequently, for example in studying ecological abundance, disease prevalence,

and casualties in armed conflicts. Capture-recapture has a long history, dating back to at least Graunt in

the 1600s (Hald, 2003), who used it to estimate plague prevalence in England. Similarly, in 1802 Laplace

estimated the total population of France (Goudie and Goudie, 2007), and Petersen (1896) the abundance of

plaice fish. More recently, it has been used in diverse settings ranging from estimating the number of pages

on the web (Fienberg et al., 1999) to the total number of victims in a war (Ball et al., 2003), among many

others.

The simplest capture-recapture setup, credited to Petersen (1896); Lincoln (1930), consists of two

independent lists with partial captures from the population of interest. There have been many generalizations

over time. For our purposes, much of the previous work in capture-recapture can be viewed as falling within

one of three streams. The first and oldest stream includes relatively simple data structures, e.g., involving no

covariate information and relatively few lists (Petersen, 1896; Schnabel, 1938; Darroch, 1958). More recent

advances in this stream include Burnham and Overton (1979) and Lee and Chao (1994). A second stream

emerged to handle more intricate data structures, e.g., complex covariate information to help account for

heterogeneity/dependence, largely using model-based approaches (Link, 2003; Carothers, 1973; Fienberg,
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1972; Tilling and Sterne, 1999; Pollock, 2002; Huggins, 1989; Alho, 1990; Yip et al., 2001). However, the

advantages of this second stream typically come at the expense of potentially restrictive parametric modeling

assumptions, which when violated would induce bias. A third more recent stream addresses similar data

structures as the second, but using more flexible nonparametric tools, e.g., local kernel or nonparametric

Bayes or spline methods (Huggins and Hwang, 2007, 2011; Chen and Lloyd, 2000; Manrique-Vallier, 2016;

Kurtz, 2018; Zwane and van der Heijden, 2005; Stoklosa and Huggins, 2012; Yee et al., 2015). However, the

work in this third stream has so far relied on interpretable but typically suboptimal plug-in estimators, which

can suffer from nonparametric smoothing bias and slow rates of convergence (van der Laan and Robins, 2003;

van der Vaart, 2014; Robins et al., 2008). We refer to Kurtz (2018) for a more detailed review of this stream.

Our work takes the nonparametric perspective, but uses advances in efficiency theory to characterize

optimality and improve simple plug-in estimators (Bickel et al., 1993; van der Laan and Robins, 2003;

Kennedy, 2016). Under an identifying assumption that two lists are conditionally independent given

measured covariate information (described in Section 2.2), we make several contributions.

• In Section 2.3 we derive the nonparametric efficiency bound for estimating the capture probability, which

indicates the best possible performance of any estimator, and sheds light on the statistical limits of

capture-recapture methods.

• In Section 2.4 we present a new doubly robust estimator, and study its finite-sample error, showing it is

near-optimal in a non-asymptotic sense, under mild nonparametric conditions.

• In Section 2.5 we give a general method for constructing confidence intervals for population size from

generic capture probability estimators, and prove non-asymptotic near-validity.

• In Section 2.6 we study our methods in simulations, and apply them to estimate the number of killings and

disappearances attributable to different groups in Peru during its internal armed conflict between 1980

and 2000.

2.2 Preliminaries

2.2.1 Setup

Consider a finite population of n individuals, where the size n is unknown and to be estimated. We suppose

there are K different lists of individuals from this population, yielding indicators Yik ∈ {0, 1} of whether

individual i ∈ {1, ..., n} appeared on list k ∈ {1, ...,K}. We let Yi = (Yi1, ..., YiK)T denote the vector

indicating list membership (i.e., capture profile) information for individual i. For example, in the K = 2

case, a profile Yi = (1, 0)T would mean that individual i appears on list 1 but not list 2. We consider the

case where covariates Xi ∈ Rd are also available for each individual i = 1, ..., n. We assume an individual’s

chances of appearing on any given lists (and their covariates) do not depend on what happens with any other

4



individuals, and also that the covariate and (conditional) list membership distributions are the same across

individuals i = 1, ..., n. This implies that the random vectors Zi = (Xi,Yi) are independent and identically

distributed according to some distribution P.

Remark 1. The setup above is commonly referred to as “heterogeneous” (Huggins, 1989; Tilling and Sterne,

1999; Pollock, 2002) since list membership Y can vary with covariates X. In other words, individuals with

different covariates can have different chances of list membership.

Remark 2. In what follows we use the following standard notation. We let EQ denote an expectation under

distribution Q, and let ∥f∥2Q =
∫
f(z)2 dQ(x) denote the corresponding squared L2(Q) norm; we let QN

denote the empirical measure under distribution Q. Finally we let a ≲ b mean a ≤ Cb for some universal

constant C.

If every individual in the population appeared on at least one list (and could be uniquely identified),

then the population size would of course be known without error; however in practice a possibly substantial

fraction of individuals do not appear on any list. In other words, there are some individuals with Y = 0 that

we do not observe. This means that, although the distribution P governs the capture profiles, we cannot

sample from P directly. Instead we only see the N =
∑n
i=1 1(Yi ̸= 0) individuals for whom Yik = 1 for some

k. This is illustrated in Figure 2.1.

Unobserved

(Y = 0)

List 1

(Y1 = 1)
List 2

(Y2 = 1)

List 3

(Y3 = 1)

Figure 2.1: Schematic of data structure for K = 3 lists. Observed data (i.e., those with Y ̸= 0 in the union
of the three lists) are represented with dark gray, while unobserved individuals with Y = 0 are in light gray.
Individuals appearing in all three lists have Y = (1, 1, 1).

Hence the capture-recapture design is an example of biased sampling (Vardi, 1985; Breslow et al., 2000;

Qin, 2017). In particular, the observed data Zi = (Xi,Yi), i = 1, ..., N are actually iid draws from a
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conditional distribution Q defined as

Q(Y = y,X = x) ≡ P(Y = y,X = x | Y ̸= 0)

= ψ−1P(Y = y,X = x) 1(y ̸= 0) (2.1)

where ψ is the (marginal) capture probability defined as

ψ = P(Y ̸= 0). (2.2)

Remark 3. Some authors use N to denote the total population size and n for the observed number of

captures; in contrast, we use N for the observed number and n for the total size, following the convention of

saving upper case for random variables. Note the observed number of captures N is random since it depends

on the random selection indicators, while the total population size n is fixed; specifically N ∼ Bin(n, ψ).

Nonetheless much of our analysis will be conditional on the observed sample size N .

Recall our overall goal is to estimate the total population size n = N +
∑
i 1(Yi = 0). Since N ∼

Bin(n, ψ), the population size can be viewed as a fixed population parameter

n = E(N)/ψ. (2.3)

Intuitively, the lower the capture probability, the more the observed number N must be inflated to reflect the

total population size. The quantity E(N) in (2.3) can of course be unbiasedly estimated with the observed

number of captures N ; therefore estimating population size essentially boils down to estimating the capture

probability, which can then be used to inflate the observed N via the estimator

n̂ = N/ψ̂. (2.4)

Thus we turn towards the crucial question of how to efficiently estimate the capture probability (specifically,

in the presence of high-dimensional and/or complex covariatesX), before coming back to inference about n in

Section 2.5. In the next section we discuss identification of ψ from the distribution Q from which we sample;

this will require extra assumptions, since if lists are irreparably dependent we will have no information about

those who are unobserved.

Remark 4. For the upcoming sections, we will only use the information of lists 1 and 2. Hence, for any

captured individual, we only use the information Zi = (Yi1, Yi2,Xi). The captured individuals, that appear

in neither list1 nor 2, have information vector Zi = (0, 0,Xi). More discussion follows in the next section.
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2.2.2 Identification

As mentioned in the previous section, without additional assumptions, the observed data distribution Q of

list membership among those on at least one list is completely uninformative about the capture probability

ψ = P(Y ̸= 0). A variety of assumptions have been used to identify this and related quantities in previous

literature; broadly, there must be some lack of dependence across lists in order to identify and estimate the

odds and thus the overall population size. The popular Lincoln-Petersen estimator (Petersen, 1896; Lincoln,

1930) assumed independence between K = 2 lists and Darroch (1958) extended it to assume independence

across K > 2 lists. Fienberg (1972) assumed a log-linear model for the expected number of observations with

each capture profile, with one parameter necessarily set to zero (typically the highest-order interaction term

across lists). You et al. (2021) have presented a generalizable framework adaptable to various identification

assumptions including log-linear model assumption and independence between two lists conditional on the

remaining list(s) for K > 2 case.

When one has access to not only list membership but also covariate information, conditional versions

of these assumptions can be used (Sekar and Deming, 1949; Chao, 1987; Tilling and Sterne, 1999; Huggins

and Hwang, 2007). Importantly, this allows heterogeneous capture probabilities that vary across units, and

thus relaxes identifying assumptions; this is conceptually similar to how measured confounders are exploited

in observational studies for causal inference (Hernan and Robins, 2019). Sekar and Deming (1949) studied

the conditional case in the discrete and low-dimensional setup; the continuous case has been studied using

parametric models by Pledger (2000); Pollock et al. (1990); Tilling and Sterne (1999); Huggins (1989);

Chao (1987); Alho (1990). Burnham and Overton (1979); Huggins and Hwang (2007) used non-parametric

jackknife estimator and bandwidth selection respectively. Analogous to the assumption of Tilling and Sterne

(1999) for the two list case, our main identifying assumption for the K list case is that there is a known pair

among the K lists which are conditionally independent. Without loss of generality, we order the lists so the

first two are conditionally independent:

Assumption 1. P(Y1 = 1 | X = x, Y2 = 1) = P(Y1 = 1 | X = x, Y2 = 0), where Yk denotes the capture

indicator variable for list k for k = 1, . . . ,K.

Assumption 1 says that the chance of appearing on list 1 is the same regardless of list 2 membership,

among those with the same measured covariate values, i.e., that the list indicators Y1 and Y2 are conditionally

independent given X. This assumption can be viewed as an important relaxation of a more standard

assumption of marginal independence, particularly when lists cover different parts of a population.

For example, consider a toy setup where there are two regions, equally populous. Suppose people who

live in region A have a 90% chance of appearing on list 1 and a 10% chance of appearing on list 2, while

people who live in region B have the reverse: a 10% chance of appearing on list 1 and a 90% chance on list

2. Thus list 1 tends to capture region A people, and list 2 tends to capture region B people. In this case,
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even if conditional independence holds (i.e., the chance of appearing on list 1, within each region, is the

same regardless of whether you appear on list 2), the lists will not be marginally independent. Intuitively,

the reasoning behind this is straightforward. Once we know you are on list 2, we have some additional

information about your chances of appearing on list 1: you are more likely to live in region B, and so less

likely to be on list 1. More specifically, the chances of appearing on either list are both 50% marginally, but

the chance of appearing on list 1 given that you are on list 2 is only 18%.

The conditional independence in Assumption 1 has been used relatively extensively in the capture-

recapture literature; we refer to Alho et al. (1993); Tilling and Sterne (1999); Tilling (2001); Brenner (1995);

Pollock et al. (1990); Huggins (1989) for more details and discussions of when this assumption may hold and

when it may fail. This assumption is violated for example when not all the covariates are measured. For

example suppose the capture probabilities are influenced by location, age and gender of the individuals. If

we measure only gender and age, we cannot assume conditional independence between lists 1 and 2. One

can use tools like sensitivity analysis in this case. There is more discussion on this in section 2.7.

It is known (e.g., as in Tilling and Sterne, 1999) that under Assumption 1 the capture probability

ψ = P(Y ̸= 0) can be identified from the biased observed data distribution Q. Specifically, let

q1(x) = Q(Y1 = 1 | X = x)

q2(x) = Q(Y2 = 1 | X = x)

q12(x) = Q(Y1 = 1, Y2 = 1 | X = x)

denote the observational probability (under Q) of appearing on list 1, 2, and both, respectively. These

probabilities will be referred to as the q-probabilities throughout.

Remark 5. Note that when there are only K = 2 lists, it must be that q1(x) + q2(x) − q12(x) = 1 since

each observed unit must appear on list 1, list 2, or both, according to the sampling distribution Q. In general

when K > 2 it only holds that 0 ≤ q1(x) + q2(x) − q12(x) ≤ 1, since some individuals may only appear on

lists j ≥ 3 other than 1 and 2.

Remark 6. Note that when there are more than two lists and without loss of generality the conditionally

independent list pair is 1 and 2, the remaining lists aid the estimation by potentially increasing the number

of observed individuals. We include the information of such individuals as shown in remark 4. Our method

does not discard any row if they are captured neither in list 1 nor 2. This in turn leads to variance reduction

as discussed in appendix A.1.1.

For posterity we give the identification result for ψ in the following proposition (with a proof given in

the Appendix).
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Proposition 1. Under Assumption 1 and the positivity condition Q{q12(X) > 0} = 1, the conditional and

marginal capture probabilities are identified from Q by

γ(x) ≡ P(Y ̸= 0 | X = x) =
q12(x)

q1(x)q2(x)
(2.5)

ψ ≡ P(Y ̸= 0) =

{∫
γ(x)−1 dQ(x)

}−1

. (2.6)

In the following sections we give three main contributions. First we derive the efficiency bound for

estimating the capture probability ψ under a nonparametric model that puts no parametric restrictions on

the ‘nuisance’ functions (q1, q2, q12); second, we construct novel estimators that attain the efficiency bound

under weak nonparametric conditions (e.g., allowing the use of flexible machine learning tools); and third,

we give a general method for building corresponding confidence intervals for the total population size n,

given any asymptotically linear estimate ψ̂ of the capture probability.

Remark 7. All subsequent results apply to the statistical parameter ψ, which we define from here on as the

harmonic mean on the right-hand-side of (2.6). Under the identifying Assumption 1 (and positivity), ψ also

represents the capture probability on the left-hand-side of (2.6), but our statistical results do not require this

link, and apply to the harmonic mean in (2.6) regardless.

Remark 8. When there are more than two lists, it is possible that multiple list pairs satisfy assumption 1.

Assumption 1 is agnostic about the presence/absence of additional structure in the data. In the presence of

extra structure, our approach, perhaps not the most efficient, is still valid. This presents multiple different

opportunities to identify and estimate the capture probability, and so yields a semiparametric model with

testable implications. We leave exploration of this setup for potential future work.

2.3 Efficiency Bound

In this section, we derive the nonparametric efficiency bound for estimating the capture probability ψ using

an iid sample from distribution Q. This gives a crucial benchmark against which one can compare candidate

estimators: once an estimator is shown to attain this bound, no further improvements can be made (at least

asymptotically) without adding extra assumptions. To the best of our knowledge, the only previous efficiency

bounds in the capture-recapture literature are for low-dimensional parametric models, where standard results

from maximum likelihood theory apply (Fienberg, 1972; Gimenez et al., 2005).

In order to derive the efficiency bound, we use tools from semiparametric theory (Bickel et al., 1993). A

fundamental goal here is to characterize influence functions, and the efficient influence function in particular.

The efficient influence function of a parameter acts as the derivative term in a distributional Taylor expansion

of the parameter, viewed as a map on distributions; thus it can represent the change in the parameter after
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perturbing the distribution it takes as input. Practically, the efficient influence function for a parameter has

several critical implications. First, as mentioned above, it leads to a minimax efficiency bound (van der Vaart,

2002a) and thus provides a benchmark for efficient estimation in flexible nonparametric models. Further,

it can be used to construct efficient estimators that attain the bound under weak assumptions, and sheds

light on the regularity conditions necessary for said efficiency, as will be shown in Section 2.4. More details

on nonparametric efficiency theory can be found in Bickel et al. (1993), van der Vaart (2002a), and van der

Laan and Robins (2003), among others; reviews can be found in Tsiatis (2006) and Kennedy (2016), for

example.

Our first result gives the form of the efficient influence function for the capture probability, in an

unrestricted nonparametric model.

Lemma 2.0.1. Let g : R 7→ R be any function differentiable at the true capture probability ψ defined in

(2.6). Under a nonparametric model, the efficient influence function for the parameter g(ψ) is given by

fg(ψ)ϕ(Z;Q) where fg(ψ) = −g′(ψ)ψ2 and

ϕ(Z;Q) =
1

γ(X)

{
Y1

q1(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

}
− 1

ψ
. (2.7)

The proof is presented in the Appendix. Note that the first term in the efficient influence function is a

product of the inverse conditional capture probability γ−1 with a term whose conditional expectation given

X (under Q) equals 1. The efficient influence function will be bounded for example if q12(x) ≥ ϵ for some

ϵ > 0 and all x (note that q1(x) ∧ q2(x) ≥ q12(x) so q12(x) ≥ ϵ implies all the q-probabilities are bounded

below by ϵ).

The variance of the efficient influence function acts as a nonparametric efficiency bound, in that no

estimator can achieve a better mean squared error in a local minimax sense (van der Vaart, 2002b).

The following theorem and corollary give the form of this bound and formalize the minimax result. All

expectations and variances are under distribution Q unless noted otherwise.

Theorem 2.1. Let g : R 7→ R be any function differentiable at ψ. The nonparametric efficiency bound for

estimation of g(ψ) is given by var{fg(ψ)ϕ(Z;Q)} ≡ fg(ψ)
2σ2, where fg(ψ) is defined in Lemma 2.0.1,

σ2 = E
(

1

γ(X)

[{
1− γ(X)

γ(X)

}{
1− q12(X)

q12(X)

}
+

q0(X)

q12(X)

])
+ var

{
1

γ(X)

}

and q0(x) = 1− q1(x)− q2(x) + q12(x) is the chance of appearing on neither list 1 nor 2.

The magnitude of the efficiency bound in Theorem 2.1 is driven by three main factors:

(i) the magnitude of the conditional capture probabilities,

(ii) the chance of appearing on both lists, and
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(iii) the heterogeneity in the conditional capture probabilities.

Remark 9. The efficiency bound for any function g(·) is always proportional to σ2, with a scaling fg(ψ)
2

depending on g; for example, fg(ψ) = −1 when g(ψ) = 1/ψ, and fg(ψ) = ψ/(1 − ψ) when g(ψ) = logit(ψ).

Therefore we focus our discussion on the quantity σ2.

The dependence on (i) in the bound in Theorem 2.1 occurs through the term (1− γ)/γ2, i.e., the odds of

capture divided by the capture probability. The dependence on (ii) occurs through the odds (1− q12)/q12 as

well as the probability ratio q0/q12. The dependence on the heterogeneity (iii) occurs through the var(1/γ)

term. Note that the probabilities γ and q12 in (i) and (ii) are related, but q12 can be small even when the

capture probability γ is not, depending on the size of q1 and q2.

More specifically, all else equal, the variance bound increases with: (i) smaller capture probabilities γ,

(ii) smaller chances of appearing on both lists q12, and (iii) greater heterogeneity in the capture probabilities

γ. Therefore capture probabilities can be estimated most efficiently when capture is likely, when there is

substantial overlap across lists, and when capture probabilities are more homogeneous.

Remark 10. For K = 2, the quantity q0(x) is exactly zero, but when K > 2 it can be positive.

Remark 11. When K = 2 and in the absence of covariates, the quantity σ2 reduces to ( 1−ψψ2 )( 1−q12q12
).

In addition to informing what factors yield more or less efficient capture probability estimation, the

variance in Theorem 2.1 also acts as a local minimax lower bound, as formalized in the following corollary.

Corollary 2.1.1. For any estimator g(ψ̂), it follows that

inf
δ>0

lim inf
N→∞

sup
TV(Q,Q)<δ

EQ

[
{g(ψ̂)− g(ψ)}2

]
fg(ψ)2(σ2/N)

≥ 1

where TV(Q,Q) is the total variation between Q and Q, ψ = ψ(Q) and ψ = ψ(Q) are the capture probabilities

under Q and Q, respectively, and fg(ψ) and σ
2 = σ2(Q) are defined as in Theorem 2.1.

Corollary 2.1.1 shows that the worst-case mean squared error of any estimator of ψ, locally near the true

Q, cannot be smaller than the efficiency bound, asymptotically and after scaling by N . This local minimax

result gives an important benchmark for efficient estimation of the inverse capture probability: no estimator

can have mean squared error uniformly better than the variance of the efficient influence function divided

by N , without adding extra assumptions and/or structure to the nonparametric model we consider.

Remark 12. The local minimax result in Corollary 2.1.1 holds for any subconvex loss function ℓ : R 7→ [0,∞)

applied to
√
N{g(ψ̂)−g(ψ)}, not just squared error loss ℓ(t) = t2; the denominator lower bound in the general

case is E{ℓ(fgσZ)} where Z ∼ N (0, 1) is a standard normal random variable (van der Vaart, 2002b).
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Importantly, in the next section we construct estimators that can achieve the nonparametric efficiency

bound under weak conditions that allow for flexible estimation of the q-probabilities, e.g., using machine

learning tools.

2.4 Efficient Estimation

2.4.1 Setup

Recall we let QN denote the empirical measure under Q, so that sample averages can be written with the

short-hand QN (f) = QN{f(Z)} = 1
N

∑N
i=1 f(Zi). The simplest estimator of the capture probability ψ is

just a plug-in

ψ̂pi =

[
QN

{
1

γ̂(X)

}]−1

(2.8)

which replaces unknown quantities in the definition of ψ with estimates, i.e., by estimating the conditional

capture probability γ̂(X) = q̂12(X)
q̂1(X)q̂2(X) for every unit, and computing the harmonic mean of the values

across the sample. This estimator has been used relatively extensively in previous work (Huggins and

Hwang, 2007; Darroch, 1958; Fienberg, 1972; Tilling and Sterne, 1999). When the q-probabilities are

estimated with correctly specified parametric models, the plug-in estimator ψ̂pi will be
√
n-consistent and

asymptotically normal under standard regularity conditions. However, when the covariates contain any

continuous components and/or are high-dimensional, it is usually very unlikely an analyst would have enough

a priori knowledge to be able to correctly specify a low-dimensional parametric model, let alone three (one

for each q-probability nuisance function).

This difficulty of correct model specification suggests trying to flexibly estimate the q-probabilities, e.g.,

using logistic regression with model selection, or lasso, or nonparametric tools like random forests, neural

nets, RKHS regression, etc. Unfortunately, when the plug-in estimator ψ̂pi is constructed from these kinds

of data-adaptive methods, it in general loses the nice properties it has in the parametric setup. Specifically,

without special tuning of particular methods, it in general would suffer from slower than
√
n-convergence

rates, and have an unknown limiting distribution, making it not only inefficient but also leaving no tractable

way to do inference. This deficiency of plug-in estimators is by now relatively well-known in functional

estimation problems (van der Laan and Robins, 2003; Chernozhukov et al., 2018; Wu et al., 2019); however

we have not seen it highlighted in the capture-recapture setting. (We show these issues via simulations in

Section 2.6.1.)

Luckily, the plug-in can be improved upon using tools from semiparametric efficiency theory (Bickel et al.,

1993; van der Vaart, 2002a; van der Laan and Robins, 2003; Tsiatis, 2006; Kennedy, 2016). In what follows,

we will present and study a novel doubly robust estimator, which can attain the efficiency bound from the

previous section even when built from flexible data-adaptive regression tools.
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2.4.2 Doubly Robust Estimator

As mentioned above, the plug-in estimator (2.8) has some important deficiencies in semi- and non-parametric

settings. The plug-in estimator can be debiased by adding an estimate of the mean of the efficient influence

function (Bickel et al., 1993; van der Vaart, 2002a; van der Laan and Robins, 2003; Tsiatis, 2006; Kennedy,

2016). This leads to our proposed doubly robust estimator

ψ̂dr = QN
[

1

γ̂(X)

{
Y1

q̂1(X)
+

Y2
q̂2(X)

− Y1Y2
q̂12(X)

}]−1

(2.9)

where q̂j are estimates of the q-probabilities (e.g., via regression predictions).

Remark 13. In order to avoid potentially restrictive empirical process conditions, we estimate QN and q̂j

from separate independent samples. Specifically, we estimate the q-probability nuisance functions by fitting

regressions in a training sample, independent of a test sample QN . With iid data, one can always obtain

such samples by splitting at random in half, or folds. This yields a loss in efficiency, but that can be

fixed by swapping the samples/folds, computing the estimate on each, and averaging. This is referred to as

cross-fitting, and has been used for example by Bickel and Ritov (1988); Robins et al. (2008); Zheng and

van der Laan (2010); Chernozhukov et al. (2017). Here we analyze a single split procedure, merely to simplify

notation; extending to averages across independent splits is straightforward.

In the following sub-section, we derive finite-sample error bounds and distributional approximations for

our doubly robust estimator, which are valid for any sample size.

Non-asymptotic Error Bounds and Approximate Normality

In this section, we provide our three main theoretical results regarding error bounds for our proposed method.

In particular we show that our estimator is nearly efficient, doubly robust, and approximately normal.

Importantly, we show all these properties hold in finite samples, without resorting to asymptotics.

In the previous section, we derived the efficient influence function, which is the crucial component of the

local minimax lower bound we gave in Corollary 2.1.1. This corollary shows the minimax optimal estimator

has mean squared error that scales like the variance of the efficient influence function divided by N , so that

an optimal estimator would be one that behaves like a sample average of the efficient influence function. Our

first result shows that our proposed estimator does in fact behave like an average of the efficient influence

function, depending on the size of nuisance error. In what follows, we use ϕ and ϕ̂ to denote the efficient

influence function ϕ(Z;Q) and its estimate ϕ(Z; Q̂) respectively.

Theorem 2.2. For any sample size N and error tolerance δ > 0, we have

|(ψ̂−1
dr − ψ−1)−QNϕ| ≤ δ
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with probability at least

1−
(

1

δ2

)
E

(
R̂2

2 +
∥ϕ̂− ϕ∥2

N

)

where R̂2 is a second-order error term given by

R̂2 =

∫
1

q̂12

{(
q1 − q̂1

)(
q̂2 − q2

)
+
(
q12 − q̂12

)( 1

γ
− 1

γ̂

)}
dQ

≤
(
1

ϵ

)
∥q̂1 − q1∥∥q̂2 − q2∥+

(
1

ϵ3

)
∥q̂12 − q12∥∥γ̂ − γ∥

with the latter bound on R̂2 holding as long as (q12 ∧ q̂12) ≥ ϵ.

Theorem 2.2 shows that our proposed estimator is within δ of a sample average of the efficient influence

function, centered at the true (inverse) capture probability, with high probability, at every sample size. For a

given observed number of captures N and error δ, this probability depends on two factors: (i) a second-order

error term R̂2, which is driven by the error in estimating the nuisance q-probabilities; and (ii) the L2 error

in estimating the efficient influence function itself, divided by N , which also depends on estimation error of

the q-probabilities, but in a weaker way due to the division by N . When R̂2 goes to 0 as N increases, the

probability above goes to 1 for any fixed δ. Hence, Theorem 2.2 implies usual asymptotic convergence in

probability, but in addition it gives an error bound that is valid for any finite N .

For example, if the q-probabilities are estimated with errors upper bounded by cN−1/4, then with at least

95% probability, our proposed estimator will be within 4c2
√

5/N of the average efficient influence function.

More generally, if E|R̂2| ≲ 1/
√
N , then our proposed estimator will be within 1/

√
N (up to constants) of

this efficient average, with high probability. For example, if q1, q2, q12 and γ belong to Holder classes H(β1),

H(β2), H(β12) and H(β0) respectively, where H(s) is a Holder class with smoothness index s (Györfi et al.,

2006; Tsybakov, 2008), then a sufficient condition for this kind of result, if the q-probabilities are estimated

at minimax optimal rates, would be that the minimum smoothness is at least half the dimension of the

covariates, i.e., min{β0, β12, β1, β2} ≥ d/2. Similarly, if the q-probabilities were s-sparse, then a sufficient

condition would be that s ≲
√
n with lasso-style methods (Farrell, 2015). However, such N−1/4 nuisance

errors are only sufficient conditions for 1/
√
N capture probability errors; one only needs the remainder error

R̂2 to be small enough, which could also be achieved if some combinations of q-probabilities are estimated

well, even if others are not. We give more detail on this phenomenon in our next result.

Namely, beyond being close to an optimally efficient estimator, in the next result we show that our

proposed estimator enjoys a finite-sample multiple robustness phenomenon, never before shown in capture-

recapture problems. This phenomenon indicates that the overall estimation error can be small as long as

some, but not all, nuisance probabilities are estimated with small error.

Corollary 2.2.1. Suppose (q12 ∧ q̂12) ≥ ϵ. Assume one of the following holds:
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1. ∥q̂1 − q1∥ ∨ ∥q̂12 − q12∥ ≤ ξN , or

2. ∥q̂1 − q1∥ ∨ ∥γ̂ − γ∥ ≤ ξN , or

3. ∥q̂2 − q2∥ ∨ ∥q̂12 − q12∥ ≤ ξN , or

4. ∥q̂2 − q2∥ ∨ ∥γ̂ − γ∥ ≤ ξN .

Then |(ψ̂−1
dr − ψ−1)−QNϕ| ≤ δ with probability at least

1−
(
C

δ2

)(
ξ2N +

1

N

)

where C is a constant independent of sample size N .

As a consequence of Corollary 2.2.1, the proposed estimator is doubly robust, i.e., if either estimator of q1

or q2 has small error, and either estimator of q12 and γ has small error, then the overall error of our proposed

estimator (given by R̂2) will be just as small, up to constants, even if the other estimators have large errors

or are misspecified. (We note that, although this kind of robustness is sometimes called multiple robustness

(Vansteelandt et al., 2008), we use the term doubly robust since the error structure is still second-order,

i.e., involving products of errors, albeit with more terms). This property is very useful when one of the lists

is difficult to estimate, for example, due to high-dimensional covariates, or q-probabilities that are complex

functions of continuous covariates.

Remark 14. Note that when there are only K = 2 lists, then we have the relation q1(x)+q2(x)−q12(x) = 1

for all x. Hence, small bias for any two estimators of q12, q1 and q2 automatically implies small bias for the

third. One might expect then that double robustness does not arise in the K = 2 list setting; however this is

not quite true. To see why, note that it could be possible to estimate γ with small error, for example, even

when some of the q-probability estimators are misspecified. These and other issues related to estimation of

the conditional capture probability γ will be important to explore in future work.

When the remainder error R̂2 is sufficiently small, Theorem 2.2 and Corollary 2.2.1 tell us we can

approximate ψ̂−1
dr with a sample average of the efficient influence function. For the purposes of inference,

this suggests a confidence interval of the form

ĈI = [ψ̂−1
dr ± z1−α/2σ̂/

√
N ], (2.10)

where σ̂ is a variance term defined in Theorem 2.3. In the next Berry-Esseen-type result, we exploit

this closeness with a sample average and further show that our proposed estimator, properly scaled, is

approximately Gaussian. This will show that the above confidence interval gives nearly-valid finite-sample

coverage guarantees.
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Theorem 2.3. Let σ̂2 = v̂ar(ϕ̂) be the unbiased empirical variance of the estimated efficient influence

function. Then ψ̂−1
dr −ψ−1 follows an approximately Gaussian distribution, with the difference in cumulative

distribution functions uniformly bounded above by∣∣∣∣∣P
(
ψ̂−1
dr − ψ−1

σ̂/
√
N

≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ C√
N

E
( ρ
σ̃3

)
+

1√
2π

{
√
NE

(
|R̂2|
σ̃

)
+ |t|E

(∣∣∣∣ σ̂σ̃ − 1

∣∣∣∣)
}

(2.11)

where σ̃ = var(ϕ̂|Zn), ρ = E{|ϕ̂−Qϕ̂|3
∣∣Zn} and C < 1/2 is the Berry-Esseen constant.

The above result shows that the estimation error scaled by σ̂/
√
N is approximately standard normal.

The first term on the right hand side of (2.11) is the usual Berry-Esseen bound. The second term captures

the effect of the nuisance estimation error R̂2. The third term is the estimation error in the variance. Since

E|σ̂−σ̃| is bounded above by cN−1/2 (proof in the appendix), the overall error in the Gaussian approximation

is driven by the second term, involving nuisance error R̂2. This will be the main driver of whether the interval

has approximately correct coverage. We note that the above theorem implies convergence in distribution

whenever E|R̂2| = o(1/
√
N) (which can hold for a wide variety of flexible nonparametric estimators of the

q-probabilities, as discussed after Theorem 2.2), but in addition gives a more precise error bound that holds

for any finite sample size.

Note that Theorem 2.3 immediately implies that the error in coverage

∣∣∣P(ĈI ∋ ψ−1
)
− (1− α)

∣∣∣
for the proposed confidence interval defined in (2.10) is no more than twice the error bound on the right-

hand-side of (2.11), with t = zα/2. Further, a Berry-Esseen-style bound similar to that of Theorem 2.3

(along with subsequent coverage guarantees and corollaries) can be obtained for any function g(·) of ψ̂−1
dr

satisfying the conditions from Friedrich (1989). This implies the same kind of coverage guarantees for ψ, for

example, using the confidence interval

ψ̂dr ± z1−α/2σ̂ψ̂
2
dr/

√
N

which can be motivated via the delta method. The error in the coverage of this estimated interval is twice

the bound in Theorem 2.3, modulo some extra dependence on g.

Importantly, the unbiased empirical variance σ̂2 is a consistent estimator of the efficiency bound σ2 =

var(ϕ) in the sense that E|σ − σ̂| ≲ E∥ϕ̂ − ϕ∥ +N−1/2. This shows the crucial result that our estimator is

approximately minimax optimal in the sense of Corollary 2.1.1, if the nuisance error is small enough.

A natural consequence of the above theorem is the following corollary, which presents a simple bound on

the error of the normal approximation, under some natural conditions on the nuisance error R̂2 and variance.
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Corollary 2.3.1. Assume σ̃ ≳ 1, E|R̂2| ≲ N−2β and α > δ for some δ > 0. Then the coverage error for

the proposed (1− α) confidence interval defined in (2.10) is upper bounded by

∣∣∣P(ĈI ∋ ψ−1
)
− (1− α)

∣∣∣ ≲ N (1−4β)/2 +
1√
N
.

Therefore if β > 1/4 there exists some sample size Nϵ at which the coverage error is never more than ϵ, for

any N > Nϵ.

Since this corollary is a special case of Theorem 2.3, mainly aimed at presenting the result in a simple form,

we refer to the above discussion for more details. However we note that the condition that E|R̂2| ≲ N−2β

would hold for example if the q-probabilities were estimated optimally when contained in Holder classes with

smoothness index s, where β = s
2s+d (or under some conditions on sparsity, as discussed after Theorem 2.2).

Then β > 1/4 would mean s > d/2, aligning with our earlier results.

In this section, we have given finite-sample error bounds and distributional approximations for our

proposed estimator, which are valid for any sample size, allowing accurate estimation and approximately

valid confidence guarantees, even in complex nonparametric models where the q-probabilities are estimated

with flexible machine learning tools. In the next section, we consider a slightly modified version of the

estimator which could further improve finite-sample properties.

2.4.3 Targeted Maximum Likelihood Estimator

We have seen that our proposed doubly robust estimator (2.9) is close in a finite-sample sense to an optimal

sample average, and possesses crucial double robustness properties. However it is possible this estimator

may not respect the bounds on the parameter space; for example ψ̂dr may fall outside [0, 1] if some of the

estimates of the q-probabilities are small. A simple fix is to truncate the estimator ψ̂dr to always lie in [0, 1].

Here for completeness we discuss an alternative approach using targeted maximum likelihood estimation

(TMLE) (van der Laan and Rubin, 2006; van der Laan and Rose, 2011), which is an iterative procedure

that fluctuates nuisance estimates so that a plug-in estimator built from them also approximately solves

an efficient influence function estimating equation. TMLE thus leads to estimators that are asymptotically

equivalent to one-step bias-corrected estimators, but which could bring some finite-sample advantages.

In Appendix A.2, we present an algorithm (Algorithm 1) detailing the computation of a TMLE for ψ. At

a high level, the procedure involves bias correction via iterative updating of initial nuisance estimates, based

on quantities called clever covariates in the TMLE literature. Interestingly, in addition to being somewhat

more computationally intensive, TMLE estimators are not sample averages like our main proposed estimator

from the previous subsection; this makes it less clear how to derive finite-sample error bounds. Since the

estimates q̂∗j (x) obtained after convergence satisfy QN{ϕ(Z; Q̂∗)} ≈ 0, the asymptotic behavior matches the
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doubly robust estimator in (2.9), but for describing finite-sample behavior we resort to simulations, detailed

in Section 2.6.1.

2.5 Inference for Population Size

In the previous section we gave doubly robust estimators for the capture probability and studied finite-sample

properties. In this section we give a crucial result that shows how to obtain an approximate confidence interval

for the population size, given a generic initial estimator of the (inverse) capture probability. Importantly,

our results only require this initial estimator to be weakly approximated by a sample average, and otherwise

are completely agnostic to how the capture probability is estimated. This appears in stark contrast to

most of the literature on this topic, where the inferential procedures are very closely tied to specific model

assumptions and estimator constructions.

This main inferential result is given in the following theorem.

Theorem 2.4. Suppose we are given an initial estimator ψ̂ that satisfies

ψ̂−1 − ψ−1 = QN (φ̂)−
∫
φ̂(z)dQ(z) + R̂2

for φ a generic influence function with mean zero and R̂2 an error term. Let τ̂2 = ψ̂ς̂2 + 1−ψ̂
ψ̂

and τ̃2 =

ψς̃2+ 1−ψ
ψ (ψR̂2+1)2, where ς̂2 = v̂ar(φ̂) is the unbiased empirical variance of the estimated influence function

and ς̃ = var(φ̂ | Zn) the true conditional variance. Then the (1− α) confidence interval given by

ĈIn =
[
n̂± zα/2τ̂

√
n̂
]

(2.12)

has coverage error upper bounded as

∣∣∣P(ĈIn ∋ n
)
− (1− α)

∣∣∣ ≤ 2C√
n
E
( ρ
τ̃3

)
+

√
2

π

{
√
nψE

(
|R̂2|
τ̃

)
+ |zα/2|E

(∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣
)}

(2.13)

where C is the Berry-Esseen constant and

ρ = E

[∣∣∣1(Y ̸= 0) {φ̂−Qφ̂}+ {1(Y ̸= 0)− ψ} R̂2 + ψ−1 {1(Y ̸= 0)− ψ}
∣∣∣3 ∣∣∣∣∣Zn

]
.

Theorem 2.4 gives a non-asymptotic upper bound on how much the coverage P(ĈIn ∋ n) of our proposed

interval

N

ψ̂
± zα/2

√√√√(ψ̂ς̂2 + 1− ψ̂

ψ̂

)
N

ψ̂
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can deviate from its nominal (1 − α) level. Before describing the coverage guarantee, we first describe the

proposed interval. The length of this interval is driven by three factors: (i) the estimated odds of not being

captured (1− ψ̂)/ψ̂, (ii) the variance of the inverse capture probability estimator ς̂2, and (iii) the sample size

N . As one would expect, higher odds of capture yield more precise inference about population size, all else

equal, as does more efficient estimation of ψ̂. Specifically, the length of the interval shrinks to zero when the

capture probability is very large, regardless of the sample size N . Also note that even if ψ were known, one

would still have an interval of the form

N

ψ
± zα/2

√
1− ψ

ψ

√
N

ψ

based on the fact that n̂ = N/
√
n is approximately normal. Although sample sizeN appears in the numerator

of the interval width (contrary to standard intervals), it only appears through its square root, showing that in

an asymptotic regime where N → ∞, the width still grows at a slower rate than the sample size. Intuitively,

this interval takes n̂ = N/ψ̂ and multiplies by 1± zα/2/
√
n̂, which does tend to zero as sample size N grows.

Remark 15. For K = 2 lists and in the absence of covariates, the confidence interval reduces to n̂ ±

zα/2

√
n̂(1−ψ̂)
ψ̂ q̂12

, which approximately resembles the Wald-type confidence interval for the Lincoln-Petersen

estimator (Evans et al., 1996).

Now we describe the coverage guarantee of Theorem 2.4. Importantly, the bound on the coverage error

depends on a number of factors, as shown above appearing the sum of the three terms in (2.13). Under

typical boundedness assumptions, the first and third terms would be of smaller order, and the second term

would dominate. This second term is driven by the size of R̂2 in terms of its mean absolute value, i.e.,

how well the initial estimator ψ̂ is approximated by a sample average. If R̂2 is not substantially smaller

than 1/
√
n, then the confidence interval would not be guaranteed to cover the true population size n at

its nominal level. This points to the importance of efficient estimation of ψ; for example, as shown in the

previous section, our proposed estimator ψ̂dr can be approximated by a sample average up to smaller than

1/
√
n error, even in a nonparametric model when q-probabilities are estimated flexibly.

Remark 16. A unique feature of Theorem 2.4 is that it is valid for any estimator approximated by a sample

average, regardless of what underlying identification or estimation assumptions were used in its construction.

This means if another analyst did not believe the independent lists condition in Assumption 1, and instead

constructed an estimate of the capture probability under a different identifying assumption, they could also

use the above theorem to construct a confidence interval and assess its finite-sample coverage.

A natural consequence of Theorem 2.4 is the following corollary, which parallels Corollary 2.3.1 in giving

a simple bound on normal approximation error, under natural conditions.
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Corollary 2.4.1. Assume τ̃ ≳ 1, E|R̂2| ≲ N−2β and α > δ for some δ > 0. Then the coverage error for the

proposed (1− α) confidence interval defined in (2.10) is upper bounded by

∣∣∣P(ĈIn ∋ n
)
− (1− α)

∣∣∣ ≲ n(1−4β)/2 +
1√
n
.

Therefore if β > 1/4 there exists some population size nϵ at which the coverage error is never more than ϵ,

for any n > nϵ.

Since the result in Corollary 2.4.1 is similar to that of Corollary 2.3.1, we refer there for related discussion.

The main point is that, as long as our initial estimator is well-approximated by a sample average, no matter

how it was constructed or what assumptions it relies on, our proposed confidence interval (2.12) will be

approximately valid.

2.6 Simulation & Application

So far we have proposed doubly robust estimators for the capture probability, and a general approach for

constructing confidence intervals for the total population size, all with non-asymptotic error guarantees. In

this section we study the performance of our methods in simulated data, and apply them to estimate the

total number of killings in the internal armed conflict in Peru during 1980-2000. The code used to generate

the results is available on github at mqnjqrid/capture_recapture.

2.6.1 Simulation

Here we use simulations similar to Tilling and Sterne (1999), taking n = 5000 samples from

X ∼ Uniform(2, 3)

P(Y1 = 1 | X = x) = expit(a+ 0.4x)

P(Y2 = 1 | X = x) = expit(a+ 0.3x).

where a takes values {−2.513, −0.66} to ensure that the capture probability ψ takes values {0.3, 0.8},

respectively. This gives sample sizes N approximately equal to {1500, 4000}. Recall that under P, list

membership Y1 and Y2 are conditionally independent, so the conditional capture probability is

γ(x) = 1− {1− expit(a+ 0.4x)}{1− expit(a+ 0.3x)}

and q-probabilities are equal to qj(x) = P(Yj = 1 | X = x)/γ(x).
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We construct estimates of the q-probabilities via q̂j(x) = expit[logit{qj(x)}+ ϵj ], where we simulate the

errors in estimation by ϵ ∼ N (n−α, n−2α). This allows us to carefully control the error of the q-probability

estimators; since the root mean squared error scales like n−α, this can be viewed as the rate of convergence.

We run 500 simulations for each α ∈ {0.1, 0.2, 0.25, 0.3, 0.4, 0.5}. Note α values 0.5 and 0.25 correspond to

the parametric (n−1/2) and nonparametric (n−1/4) rates, respectively. Figure 2.2 shows the estimated bias

and the root mean square error (RMSE) of ψ̂, along with the coverage proportion for the confidence interval

of the total population size.

Remark 17. For plug-in estimators, there is no well-defined variance formula (this is a main motivation

for our doubly robust construction). Therefore to construct confidence intervals with the plug-in estimator,

we used the estimated variance of the doubly robust estimator.

Overall, the simulations illustrate the phenomena expected from our theoretical results: when the q-

probabilities are estimated with low error (i.e., α large), all the methods do well, whereas when the q-

probabilities are difficult to estimate (i.e., α smaller) the proposed methods do substantially better in terms

of bias, error, and coverage. For example, when the true capture probability is 50%, the simple plug-in

estimator gives substantial bias as soon as α < 0.4 (i.e., when the q-probabilities are estimated at slower

than n−2/5 rates). However, the bias of the proposed doubly robust estimator is relatively unaffected until

α < 0.2, with the TMLE somewhere in between. The story is similar for the RMSE, which is largely driven

by the bias in this problem. The coverage is approximately at the nominal 95% level as soon as α > 0.2 (i.e.,

when the q-probabilities are estimated at faster than n−1/5 rates), whereas the plug-in estimator substantially

under-covers (e.g., nearly zero at α = 0.2) until α ≥ 0.4. Using simulated data with capture probability 0.5,

one will get results similar those of ψ = 0.3. We note that when population size or capture probability is

small (e.g., capture probability substantially less than 50%), estimation becomes more challenging and the

story is less clear about which method does better. For reference, results for population sizes varying from

n = 200 to n = 1000 (in the α = 0.25 case) are given in the Appendix in Figure A.1.

2.6.2 Data Analysis

We apply our proposed methods to estimate the number of killings and disappearances attributable to

different groups in Peru during its internal armed conflict between 1980 and 2000. We use data collected

by the Truth and Reconciliation commission of Peru (Ball et al., 2003), as well as detailed geographic

information, following Rendon (2019a).

There is an ongoing debate regarding the total number of killings and disappearances in the conflict,

as well as about which groups are most responsible, e.g., the PCP-Shining Path versus the State or other

groups. Ball et al. (2003) estimated approximately 69,000 total killings and disappearences, finding the

Shining Path responsible for the majority. In contrast, Rendon (2019a) estimated approximately 48,000
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killings and disappearances, with the State responsible for the majority, though many geographic strata

were excluded. Most recently, Manrique-Vallier et al. (2019) included a newly available list and estimated

approximately 58,000-65,000 killings and disappearances, depending on choices of priors, with the Shining

Path responsible for the majority. Before describing our specific approach, we first describe the data and

give some summary statistics. As explained in Ball et al. (2003), the data come from a few main sources:

the Truth and Reconciliation Commission (CVR), the Public Defender Office (DP), and 4–5 other human

rights groups and NGOs (ODH). We use the CVR as our first list and construct the second list by combining

the remaining lists, i.e., DP and ODH since they have similar demographics. The data contains identifiers

of people who have been killed or disappeared, as well as which of the source lists they appeared on, and

covariates including age, gender, and geographic location of the killing or disappearance (measured via 58

geographic strata as in Ball et al. (2003), as well as bivariate latitude/longitude as in Rendon (2019a)). To

avoid missing completely at random assumptions, we also included missingness indicators for victims with

missing age (28% missing), gender (¡1% missing), or location (11% missing). The lists of all the covariates

is available in the appendix A.4. The total number of killings and disappearances across all lists was 24,692.

Importantly, the lists capture different demographics, which points to the necessity of relaxing classical

marginal independence via the conditional independence in Assumption 1. For example, the CVR list mostly

includes victims who were killed, while the DP and ODH lists mostly include victims who disappeared, as

shown in Figure 2.3. Similarly, geographic diversity varies across lists, as shown in Figure 2.4. For example,

almost 60% of Shining Path victims in the DP and ODH lists come from two smaller districts (Chungui

and Luis Carranzo) of Ayacucho, while in the CVR list the Shining Path victims are more uniformly spread

across the country. More details on the data are available in Appendix A.4.

Now we move to our analysis. Our goal was to estimate the number of killings and disappearances

attributable to the State and Shining Path, as well as those that were not identified as either. We used our

proposed doubly robust estimator (2.9) with five-fold cross-fitting, and we estimated the q-probabilities via

random forests (using the ranger package in R). We truncated all q-probability estimates at 0.01. Figure

2.5 shows the estimated number of killings and disappearances along with 95% confidence intervals obtained

using the interval (2.12). We estimate the total number of killings and disappearances across groups to

be 68,874 (95% CI: 58,543-79,204), close to the estimates in Ball et al. (2003) and the diffuse prior-based

estimate in Manrique-Vallier and Ball (2019) (which used an additional list). Overall we find the State

responsible for more disappearances, and Shining Path responsible for more killings; however we estimate

the number of killings and disappearances by unidentified perpetrators to be larger than that for either

group. In terms of the overall killings and disappearances, the estimate for the State are higher compared to

the estimate for the Shining Path. We present some more details of the analysis and a location wise estimate

comparison for the State and the Shining Path in Appendix A.4.
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2.7 Discussion

In this chapter, we study estimation of population size and capture probability in the capture-recapture set-up

where two lists are conditionally independent given measured covariates. We make four main contributions

to the literature. First, we derive the nonparametric efficiency bound for estimating the capture probability,

which indicates the best possible performance of any estimator, in a local asymptotic minimax sense. As far as

we know this kind of lower bound result has not appeared in the literature, even in simple settings without

covariates. Second, we present a new doubly robust estimator, and study its finite-sample properties; in

addition to double robustness, we show that it is near-optimal in a non-asymptotic sense, under relatively mild

nonparametric conditions. Third, we give a method for constructing confidence intervals for total population

size from generic capture probability estimators, and prove non-asymptotic near-validity. And fourth, we

study our methods in simulations, and apply them to estimate the number of killings and disappearances

attributable to different groups in Peru during its internal armed conflict between 1980 and 2000.

There are many ways one could extend and build on the work in this chapter. For example, rather than

assuming a known pair of lists are conditionally independent given the covariates, one could instead take

a sensitivity analysis and/or partial identification approach. For example, one could assume that a pair of

lists is only nearly conditionally independent, up to some deviation δ, and estimate bounds on the capture

probability and population size accordingly. This relies on weaker assumptions, with the trade-off of yielding

less precise inferences. Another extension would be to flexibly estimate conditional capture probability or

population size, given a continuous covariate such as age or time. For example, for the internal armed conflict

in Peru it might be of interest to estimate the number of victims by age. This would require a non-trivial

extension of the current methods, but would be important future work.
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Figure 2.2: Estimated bias, RMSE, and population size coverage, for simulated data with population size
n = 5000, across true capture probability ψ ∈ {0.8, 0.3}, q-probability error rate n−α for α ∈ [0.1, 0.5], and
for three different estimators: the plug-in and two proposed doubly robust estimators.
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Figure 2.3: This figure shows the observed number of victims for the three lists (CVR, DP, ODH) across
the State, the Shining Path and the victims with unidentified perpetrator. Most of the victims are males.
The Truth and Reconciliation Commission (CVR) has documented the highest number of victims for the
PCP-Shining Path compared to the defender of the People (DP) and the combined NGO’s (ODH), whereas
the later two sources documented most of the victims for the State and very few (¡70 by DP and ¡400 by
ODH) for the Shining Path. Majority of the victims of the State disappeared whereas, most of the victims
of the Shining Path were killed.
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Figure 2.4: Geographic diversity of Shining Path victims at strata level, for CVR list (left) and DP and
ODH lists (right). The color of each stratum reflects the proportion of all Shining Path victims in the list
who were killed or disappeared in that stratum.
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Figure 2.5: Estimated numbers of disappearances and killings (and both together) by perpetrator, as
well as total (combined across perpetrators), using the proposed doubly robust method. Bars indicate 95%
confidence intervals.
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Chapter 3

drpop: Efficient and Doubly Robust

Population Size Estimation in R

3.1 Introduction

One crucial step in working with capture-recapture or population size estimation problem, is applying the

appropriate identification assumption. Population size estimation is inherently a missing data problem, and

hence, one requires some kind of assumption to ensure that the population size is identifiable from the

observed data. One should maintain caution while making identifying assumptions, since it can induce bias

if not valid for the data (You et al., 2021; Tilling, 2001; Hook and Regal, 1999; Link, 2003; Huggins, 2001). To

ensure identifiability, in general, all approaches use some lack of dependence assumption among the lists. The

simplest approach works with two lists assuming marginal independence (Petersen, 1896). Some advances in

this stream include Schnabel (1938); Darroch (1958); Burnham and Overton (1979) and Lee and Chao (1994).

In the presence of covariates, one can use mild assumptions to ensure identifiability. Tilling and Sterne (1999);

Huggins (1989); Das et al. (2021) among others assumed that two lists are independent conditional on the

covariate and presented non-parametric estimators. This conditional independence assumption is milder than

the marginal independence assumption. This assumption can be used for a wide range of data collection

scenarios.

And following that, the next step is to account for any heterogeneity present in the data. Real data is often

far from homogeneous. Unmodelled or wrongly modelled heterogeneity can also lead to misleading inference

(Link, 2003; Carothers, 1973). To account for heterogeneity and/or list dependence, some of the literature

used intricate data structures, e.g., complex covariate information. These approaches are mostly model-

based. To name a few, there are Link (2003); Carothers (1973); Fienberg (1972); Tilling and Sterne (1999);
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Pollock (2002); Huggins (1989); Alho et al. (1993); Yip et al. (2001). Capture probabilities of individuals,

i.e., probability of being observed, are often non-linear or complex functions of the covariates (Huggins and

Hwang, 2007; Stoklosa and Huggins, 2012) and estimation using linear or strong parametric models might

lead to bias. Stoklosa and Huggins (2012) has presented a generalized additive model approach to address

this issue.

drpop implements the doubly robust estimators of capture probability and population size from Das et al.

(2021), which rely on assuming two lists are only conditionally rather than marginally independent. These

methods are flexible yet efficient, with small mean squared error even in non-parametric models involving

continuous or high-dimensional covariates.

3.1.1 Existing packages and softwares

There are several R packages and other softwares available for capture-recapture data. Table 3.1 shows a list

of some of the existing R packages along with the new drpop. Some of the existing packages are designed for

improving estimation and runtime for the classical set-up whereas, others are primarily designed for open

population and/or continuous time captures. In the open population set-up, the population is not fixed.

There can be addition or deletion. When the population is fixed over the duration of data collection, then it

is called a closed population set-up. For this paper, we will focus only on the closed population set-up with

discrete capture times. Discrete capture times is the same as a finite number of lists. This set-up generally

holds for data collected over a shorter time period.

One of the oldest softwares is MARK (White and Burnham, 1999; White et al., 2001) (extended to

R with package RMark by Laake and Rexstad (2008)) and it works on both closed and open population

set-ups. For the closed population, it uses the conditional likelihood approach of Huggins (1989, 1991)

incorporating individual covariate information. Rcapture (Baillargeon and Rivest, 2007) uses log-linear

approach for closed population set-ups implementing the work of Cormack (1989); Rivest and Daigle (2004);

Rivest and Baillargeon (2007); Rivest and Lévesque (2001); Cormack (1985); Cormack and Jupp (1991);

Frischer et al. (1993). It does not use covariate information but models heterogeneity using lists information.

Chao (2014); Chao et al. (2001) presented the R package CARE1 that is designed mainly for closed human

populations and uses sample coverage approach. It does not use covariate information either. One of the

most recent packages is VGAM (Yee et al., 2015). It is designed for closed population and uses conditional

likelihood method while also using covariate information to model heterogeneity. One of the main advantages

of VGAM is the ability to model the heterogeneity as non-linear functions of the covariates using vector

generalized linear and additive models.

There are other existing softwares and packages, for example, software M-Surge Choquet et al. (2004),

and packages like mra (McDonald et al., 2018), marked (Laake et al., 2013), multimark (McClintock, 2015).
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These mainly focus on a broader variety of capture-recapture problems, like open population and continuous

time captures which are beyond the scope of this paper. For a detailed review and performance comparison,

we refer to Bunge (2013) and Yee et al. (2015).

R package cont. covariate variance formula populn. type param. nonparam. eff. & DR
Rcapture 2007 closed/open ✓
RMark 2008 ✓ ✓ closed/open ✓
CARE1 2014 closed ✓
VGAM 2015 ✓ ✓ closed ✓
drpop ✓ ✓ closed ✓ ✓ ✓

Table 3.1: This table lists some R packages for population size estimation. This list is not exhaustive. Our
main focus is on the closed population set-up with discrete capture times. We have listed some properties
like whether the package can incorporate individual level continuous covariate, has a closed form variance
formula, population type it is applicable to, whether it can fit parametric/nonparametric model, and whether
it is efficient and doubly robust.

3.1.2 Advantages of drpop

The main goal of drpop is to improve estimation while using complex covariate information to model the

heterogeneity. Unlike existing software, the methods in drpop are fully nonparametric, doubly robust, and

optimally efficient under weak nonparametric conditions (Das et al., 2021). drpop also lets the user apply

their choice of flexible model(s) to capture the heterogeneity in the data. Moreover, it is applicable for data

with any number of lists and works with arbitrary discrete or continuous covariates.

In terms of usability, one of the attractions of drpop is that it comes with a lot of options for customization,

starting from the model to the level of precision in the estimation. The user can select one or more model(s)

for the covariates. The package comes with six in-built models, and is also capable of accepting user-provided

model estimates. Further, drpop provides the user with the option to return a baseline estimator and an

alternate targeted maximum likelihood estimator (van der Laan and Rubin, 2006) in addition to the proposed

doubly robust estimator. In the presence of categorical or numeric discrete covariates, one can also obtain

estimates for sub-populations. Other than estimates, there is also an in-built function to simulate data to

test models and a plot function for easy inference.

3.1.3 Overview of paper

In this paper, we present the package and some of its applications. Starting in section 3.2, we discuss the

data structure for capture-recapture problems and introduce the necessary notations and the identification

assumption. In section 3.3, we briefly present the estimation method from Das et al. (2021) to obtain a

doubly robust efficient estimator and the formula to obtain a confidence interval. Following this in section

3.4, we present some examples on how to use the drpop for different data types or problems and interpretation
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of the results. Section 3.5 presents some error rates and performance comparison with some commonly used

existing packages to motivate the use of drpop.

3.2 Set-up

In this section, we will discuss the data structure for the capture-recapture data we use. Depending on the

approach, there are multiple ways to structure capture-recapture data. In the first subsection, we present

our data structure and introduce some of the important notations. In the next subsection, we will discuss

the identifiability assumption that the data must satisfy for valid estimates.

3.2.1 Data structure

For a typical capture-recapture problem, the data is a collection of multiple lists. The lists contain

information of the capture history of the observed/capture individuals/units. We use K to denote the

number of lists. We denote the unknown total population size by n and the number of observed individuals

by N . For observed individual i, i ∈ {1, . . . , N}, the capture history is a K-length vector of indicators

Yi = (Yi1, . . . , YiK). Yik is 1 if individual i is captured/observed in list k and 0 otherwise. One individual

can appear in multiple lists simultaneously, but an observed individual must appear in at least one of the

lists i.e. Yi ̸= 0.

In addition to capture profile i.e., lists, we consider the case where we also have covariate information for

the observed individuals. We denote the covariate (or covariate vector) for individual i by Xi, which can be

used to model the individual-level heterogeneity. We thus denote all data for individual i by Zi = (Yi,Xi),

and we assume Zi ∼ P independently.

The observed data size N is a random draw from the binomial distribution Binomial(n, ψ), where ψ is

the capture probability defined by

ψ ≡ P(Y1 ∨ Y2 ∨ · · · ∨ YK = 1) = P(Y ̸= 0).

The capture probability ψ is the probability of being observed in at least one of the K lists. By the property

of binomial distribution, any estimator for ψ can be transformed to obtain an estimator for n as follows

n̂ = N/ψ̂.

However, since we only observe the individuals who satisfy Y ̸= 0, we cannot estimate P, and hence, ψ and

n directly. Instead, we can estimate the observed data distribution Q, where Q at a point z = (y,x) is
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defined as

Q(Y = y, X = x) = P(Y = y, X = x | Y ̸= 0) =
P(Y = y, X = x)1(y ̸= 0)

ψ
.

If we have d (> 1) dimensional covariates, then the data matrix is of dimension N × (K+d); each unique

individual in its own row. In table 3.2, we present a typical capture-recapture data. The first K columns

denote the K lists i.e., data source. The remaining d columns contain the covariate information.

observed individuals list 1 list 2 . . . list K covariate(s)
1 Y11 Y12 . . . Y1K X11 . . . X1d

2 Y21 Y22 . . . Y2K X21 . . . X2d

...
...

...
...

...
...

...
...

N YN1 YN2 . . . YNK XN1 . . . XNd

Table 3.2: A typical capture recapture data set from a population with N observed individuals. The data
is collected over K sessions or using K sources (lists). Each individual has one or more covariates (d in this
example).

3.2.2 Identifiability

As discussed in the previous section, for capture-recapture data, we cannot directly estimate the

unconstrained underlying distribution P. Instead, we can estimate the observed data distribution Q. Further,

to shift from Q to P, we need additional assumptions to ensure identifiability. In general, we assume some

lack of dependence among the K lists.

The simplest and oldest capture-recapture problems considered only K = 2 lists and had no covariates.

One can assume that the two lists are independent i.e., Y1 ⊥⊥ Y2 to ensure identifiability. This set-up has

been used in Petersen (1896). However, the earliest known instance of this approach is by Graunt in the

1600s (Hald, 2003) followed by Laplace (Goudie and Goudie, 2007). It has been further extended to the

more than three list case by Darroch (1958) and Schnabel (1938). There have been other modifications to

this approach over the years (Jolly and Dickson, 1983; Seber et al., 1982; Bailey, 1952). For more discussion,

we refer to Krebs et al. (2014).

Note that it is important that the lists are not completely dependent, i.e., they must have some overlap

and they must not be identical, to say the least. Both these cases are uninformative of the unobserved

population, and contain the same amount information as the case when we observe only one list. Thus, to

ensure identifiability of the total population size, we need some lack of dependence assumption among the

lists.

Das et al. (2021) assumes that two lists out of the K lists are collected independently conditioned on

the covariate(s). Without loss of generality one can assume that lists 1 and 2 are conditionally independent.

One can always reorder the columns to have the two conditionally independent list pair at position 1 and 2.
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This assumption has been used very often in past work (Tilling and Sterne, 1999; Sekar and Deming, 1949;

Alho et al., 1993; Huggins, 1989; Chao, 1987; Pledger, 2000; Burnham and Overton, 1979; Pollock et al.,

1990; Huggins and Hwang, 2007).

Assumption 2. P(Y1 = 1 | X = x, Y2 = 1) = P(Y1 = 1 | X = x, Y2 = 0), where Yk denotes the capture

indicator variable for list k for k = 1, . . . ,K.

This conditional independence assumption is more flexible compared to the conventional marginal

independence assumption and accommodates a wide scenario of data collection procedure including the

case when the lists have some kind of interaction. For example, when one is collecting data on documented

patients at say two different hospitals. Then patients who have already been observed at hospital 1 might

have a low probability of being observed again at hospital 2 and vice versa. Hence, the lists of the hospitals

are not behaving independently. Now, if we have access to say the location information of the patients,

we can describe the behavior of the patients conditioned on that i.e., patients are more likely to visit the

hospitals nearer to them. Hence, conditioning on the location, one can assume independence between the

two lists.

Another very common identifiability assumption in the capture-recapture literature is the log-linear

model introduced by Fienberg (1972). There identifiability is ensured by assuming that the highest order

interaction term among all the lists is zero. We refer to Tilling and Sterne (1999); Huggins and Hwang

(2011) for more discussion on the differences between identifying assumptions like conditional independence

versus log-linear model-based dependence. In particular we refer to You et al. (2021), who give discussion

and present methods in a general identification framework without covariates.

In the presence of covariates, we can define the conditional capture probability of an individual by

γ(x) = P(Y ̸= 0 | X = x). It is known (e.g., as in Tilling and Sterne, 1999) that under Assumption 2 the

capture probability ψ can be identified from the biased observed data distribution Q. Specifically, let

q1(x) = Q(Y1 = 1 | X = x)

q2(x) = Q(Y2 = 1 | X = x)

q12(x) = Q(Y1 = 1, Y2 = 1 | X = x)

denote the observational probability (under Q) of appearing on list 1, 2, and both, respectively. These

probabilities will be referred to as the q-probabilities at various points throughout. They are also called the

nuisance functions or nuisance parameters in this problem set-up and, are crucial in the estimation process.
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Now, under Assumption 2, we can define the conditional capture probability and the marginal capture

probability as follows

γ(x) ≡ P(Y ̸= 0 | X = x) =
q12(x)

q1(x)q2(x)
(3.1)

ψ ≡ P(Y ̸= 0) =

{∫
γ(x)−1 dQ(x)

}−1

. (3.2)

Using the expression on the right hand side above, we can directly estimate the capture probability ψ

and hence, the total population size by using N/ψ from the observed data. We present the baseline and the

proposed method in the following section.

3.3 Methodology

In this section, we discuss a simple plug-in estimator and some of its disadvantages. Following that we

discuss our new proposed method in Das et al. (2021) and the ways in which it improves upon the plug-in.

Under assumption 2, Das et al. (2021) presents two different estimators for ψ and n: (i) a doubly robust

(DR) estimator and (ii) a targeted maximum likelihood estimator (TMLE).

The simplest estimator we can obtain from the expression of ψ in the previous section is based on the

plug-in principle, i.e., taking the identifying expression and constructing an estimator by replacing unknown

quantities with estimates. The plug-in estimators for the capture-probability ψ and the total population size

n are therefore

ψ̂PI =

{
N∑
i=1

q̂1(xi)q̂2(xi)

q̂12(xi)

}−1

and n̂PI =
N

ψ̂PI
,

where q̂j is the estimated probability value of qj for j ∈ {1, 2, 12} and xi is the covariate value for the

observed individual i. In principle, the q̂j can be estimated with any parametric (logistic, multinomial

logistic) or nonparametric (random forest, gradient boosting) models, though the performance of the plug-in

can vary greatly depending on what kind of model is used.

In particular, plug-in estimators typically inherit mean squared errors of the same order as their nuisance

parameter estimates q̂j . This means that when using a plug-in the problem of estimating the one-dimensional

capture probability/population size is often made as difficult as estimating the d-dimensional q-probabilities.

If one has correct parametric models for these probabilities, this is of little concern, but correct parametric

models are hard to come by in practice. When using more flexible methods like random forests or gradient

boosting, one would inherit the larger mean squared errors necessarily obtained in nonparametric regression

problems.

Beyond the issue of plug-ins having potentially large mean squared errors, in general they also do not come

with closed-form variance formulas, which is important for constructing confidence intervals. The bootstrap
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can be used when parametric models are used to estimate the q-probabilities Tilling and Sterne (1999),

but in general the bootstrap fails when more flexible methods are used (e.g., ensembles of high-dimensional

regressions).

The proposed doubly robust estimator in Das et al. (2021) uses elements from semiparametric theory

(Tsiatis, 2006; Bickel and Ritov, 1988; Kennedy, 2016; van der Laan and Rubin, 2006; van der Vaart, 2002b)

to tackle some of the deficiencies of the plug-in estimator discussed above. We discuss more about these

properties in the following section.

3.3.1 Proposed Estimators

Das et al. (2021) proposed a doubly robust estimator using semiparametric theory and influence functions.

More details on general efficiency theory can be found in Bickel et al. (1993), van der Vaart (2002a), and

van der Laan and Robins (2003); reviews can be found in Tsiatis (2006) and Kennedy (2016) among others.

Das et al. (2021) showed that the (uncentered) efficient influence function of the capture probability ψ

is given by

ϕi =
1

γ(Xi)

{
Y1i

q1(Xi)
+

Y2i
q2(Xi)

− Y1iY2i
q12(Xi)

}
,

where γ(Xi) = q12(Xi)
q1(Xi)q2(Xi)

is the conditional capture probability of observation i. The efficient influence

function is crucial since (i) its variance acts as a minimax lower bound in nonparametric models (van der

Vaart, 2002a), and (ii) it can be used to construct efficient estimators that attain the minimax lower bound.

Since the expected value of the efficient influence function is the inverse capture probability ψ−1, Das et al.

(2021) proposed the following doubly robust estimators for the capture probability and the total population

size n

ψ̂DR =

(
1

N

N∑
i=1

ϕ̂i

)−1

and n̂DR =
N

ψ̂DR
,

where ϕ̂i is obtained by substituting the estimates of the q-probabilities into ϕi. This estimator has some

very favorable properties such as: (i) 1/n-rate mean squared errors, even in flexible non-parametric models,

(ii) double robustness, (iii) local asymptotic minimaxity, and (iv) asymptotic normality with finite-sample

guarantees. We briefly discuss these properties in this paper, and for more details refer to Das et al. (2021).

As a consequence of efficiency theory, the error in estimation using the proposed estimator is of the

order of 1/
√
n even when all three nuisance parameters are estimated flexibly. The formal result states

that for any sample size N and error tolerance δ > 0, |(ψ̂−1
dr − ψ−1) − QNϕ| ≤ δ with probability at least
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1−
(

1
δ2

)
E
(
R̂2

2 +
∥ϕ̂−ϕ∥2

N

)
. R̂2 is a second-order error term given by

R̂2 =

∫
1

q̂12

{(
q1 − q̂1

)(
q̂2 − q2

)
+
(
q12 − q̂12

)( 1

γ
− 1

γ̂

)}
dQ

≤
(
1

ϵ

)
∥q̂1 − q1∥∥q̂2 − q2∥+

(
1

ϵ3

)
∥q̂12 − q12∥∥γ̂ − γ∥

The bound on R̂2 holds as long as (q12 ∧ q̂12) ≥ ϵ. If all the nuisance parameters are estimated with error

∼ n−1/4, i.e., a rate commonly found in nonparametric regression problems, then the error is still bounded

above by C/
√
n for some constant C with probability converging to 1 as n and therefore N increases. The

plugin estimator however, does not possess this property and in general inherits the slower rate (e.g., n−1/4)

from the nonparametric estimation of the q-probabilities.

Another important property of the proposed estimator is the double robustness property presented in

corollary 2 in Das et al. (2021). This result follows directly from the formula of the second order error term

above R̂2. This result states that if two out of the four quantities γ, q1, q2, and q12 have small estimation

error, then ψ̂DR and hence, also n̂DR will have small estimation error. More specifically, we need one of q12

and γ to be estimated with small error and, one of q1 and q2 to be estimated with small error. This property

is useful when one of the two lists is difficult to estimate or is a complex function of the covariates. More

details can be found in Das et al. (2021).

Since the proposed estimator ψ̂DR is a sample average of the estimated efficient influence functions, it

has variance nearly equal to the variance of the estimated efficient influence function divided by N , i.e.,

var(ψ̂−1
DR) =

var(ϕ̂)

N
.

If σ2 denotes the population variance of ϕ, then one can estimate var(ψ̂−1
DR) by σ̂

2/N where σ̂ denotes the

estimator of σ. The variance of the efficient influence function divided by N , i.e., σ2/N , acts as a minimax

lower bound in the sense that it is the lowest possible mean squared error any estimator can achieve in a

local neighbourhood. The mean squared error of the proposed estimator is close to this bound for a large

sample size, e.g., when the nuisance parameters are estimated with errors converging to zero. Das et al.

(2021) further presented finite sample analogs of the usual asymptotic minimax arguments and error bounds,

including finite-sample distance from a Gaussian distribution.

All the properties we discussed for the capture probability estimate also apply to the total population

size estimate. In population size estimation problems, the main interest is often in a confidence interval for

n. In the next section, we discuss the properties of the estimated confidence interval.
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Confidence interval estimation

One of the main motivations behind using the proposed estimator is that it has a well defined variance

formula, as discussed in the previous section. One can estimate var(ψ̂−1
DR) by using the unbiased sample

variance of ϕ̂ scaled by N . This can be used to obtain the variance estimator for the estimated total

population size n̂DR which is given by

v̂ar(n̂DR) = N v̂ar(ϕ̂) +
N(1− ψ̂DR)

ψ̂2
DR

,

where v̂ar(ϕ̂) is the unbiased variance estimate of ϕ̂. For the derivation, we refer to Das et al. (2021). This

variance formula for the estimated total population size can be applied more generally to any estimator that

can be approximated by a sample average. The estimated (1− α)× 100% confidence interval is

ĈIn = n̂± zα/2
√
v̂ar(n̂DR).

The finite sample validity/coverage error for this interval is presented in Das et al. (2021). In particular they

show the coverage error is bounded above as

∣∣∣P(ĈIn ∋ n
)
− (1− α)

∣∣∣ ≲ n(1−4β)/2 +
1√
n
,

if the nuisance estimators have mean squared errors of order O(n−2β). Hence, if β > 1/4, then for any ϵ > 0,

there exists an Nϵ, such that the coverage error is less than ϵ for any N > Nϵ.

The availability of a closed form formula for the variance and hence, the confidence interval allows for

simple inference. Moreover, this also can be used to study the effect of the constituent elements on the

variance of the estimate. This eliminates the need to use methods like bootstrap, for example, which can be

computationally intensive or not guaranteed to provide valid coverage.

Das et al. (2021) also presented an alternate targeted maximum likelihood estimator ψ̂TMLE and the

associated n̂TMLE = N/ψ̂TMLE . This estimator has the same properties as ψ̂DR, but the method of

calculation uses clever covariates in the targeted maximum likelihood algorithm (van der Laan and Rubin,

2006; van der Laan and Rose, 2011). This estimator does not have a closed form expression. For simplicity,

we focus on the original doubly robust estimator in this paper.

3.4 Implementation using drpop

In this section, we illustrate the various functions available in drpop and their implementation in detail. The

main goal of drpop is to easily evaluate a doubly robust efficient estimate of the total population size and
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Input data
(Y1, Y2, X)

split

train test

Regress Y1, Y2, Y1Y2 on covariates
using user’s choice of model(s)

Predict q̂1, q̂2, q̂12

Evaluate ψ̂PI , ψ̂DR and σ̂2 = v̂ar(ϕ̂) Run TMLE algorithm to get alternate
estimates q̂∗1 , q̂

∗
2 , q̂

∗
12

Evaluate ψ̂TMLE and σ̂2
TMLE

Evaluate n̂PI , n̂DR and variances Evaluate n̂TMLE and variance

Figure 3.1: The above figure depicts the estimation procedure followed by the estimation function in the
package. For simplicity, we show only two lists, and only one train and one test sample. The functions in
the package however, uses cross-fitting to utilize the whole observed data.

an associated confidence interval from any capture-recapture data with covariate information. The package

is capable of handling high-dimensional and/or complex covariates, both discrete and continuous. It also

contains some additional functions that aid in method design, model testing, and inference.

Before diving into the implementation, we discuss the estimation process for a given dataset. In the

previous section, we discussed three possible estimators: the plug-in (PI), the proposed doubly robust (DR)

and the targeted maximum likelihood estimator (TMLE). drpop has the option to return all three of these

estimators, though the default is just to return the doubly robust estimator. To illustrate the steps in

the estimation process, we present a flow chart in Figure 3.1 that evaluates the estimates for the capture

probability ψ and the total population size n for a capture-recapture dataset with two lists. For the case

of more than two lists (K > 2), drpop returns the estimates for every possible list-pair unless specified

otherwise. Moreover, drpop uses cross-fitting to achieve complete efficiency (Zheng and van der Laan, 2010;

Robins et al., 2008; Chetverikov et al., 2021). But, for simplicity, we only present a simple sample-splitting

in the flow chart.

Following is the list of functions available in the package along with their brief descriptions.

1. simuldata: Generate two or three list toy data with desired features

2. informat: Check if data is in format

3. reformat: Reorder columns to put data in format

4. qhat logit, qhat mlogit, qhat gam, qhat ranger, qhat sl, qhat rangerlogit: Estimate nuisance

parameters q1, q2, q12
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5. tmle: Obtain targeted maximum likelihood estimates of nuisance parameters

6. popsize: Estimate population size from raw data or with user provided nuisance estimates

7. popsize cond: Estimate population size from raw data conditional on a discrete covariate

8. plotci: Plot the results of popsize, or popsize cond.

For a given dataset, one only needs to call either popsize or popsize cond to get the estimates of the

capture probabilities, total population size, and the confidence intervals.

In this section we briefly describe some data types one can come across and the interpretation of the

results. To illustrate the use, we will use toy data examples. A typical dataset in the capture-recapture

format has at least two binary columns (corresponding to two or more lists) indicating list-wise capture

profiles and one or more covariate column(s). Each observed or captured individual has their own row.

3.4.1 Choice of models for nuisance parameters

The estimation of the population size and the capture probability requires modelling the capture profiles

conditional on the covariates. drpop provides six modelling choices listed as follows.

1. logit: Fits logistic regression using R function glm.

2. mlogit: Fits multinomial logistic regression using R function multinom in package nnet.

3. gam: Fits simple generalized additive model from the R package gam.

4. ranger: Fits random forest model from the R package ranger. Suitable for high dimensional covariates.

5. rangerlogit: Fits an ensemble of random forest and logistic model.

6. sl: Fits different SuperLearner algorithm from the library provided by the user from the R package

SuperLearner. Returns estimates using a combination of the fitted models. The user can specify the

library of models via sl.lib.

The computation time varies based on the above models. The parametric models logit and mlogit are

generally the fastest. However, they can lack flexibility, making resulting estimates biased if the nuisance

parameters are more complex functions of the covariates. gam is slightly slower than the parametric models,

but is still comparably fast enough for practical purposes. The flexible nonparametric models ranger and

rangerlogit can be slower to run than these previous models. However, being flexible, these methods

can accommodate more complex nuisance functions. rangerlogit is the default model in drpop and the

performance statistics are presented in section 3.5. sl is the slowest depending on the models passed

into sl.lib. This is because it aggregates multiple models, returning the best estimator combining the
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individual models using cross-validation. drpop provides the user with the option to parallelize sl using

snowSuperLearner from the R package SuperLearner, which is supported on all three of Windows, MacOS

and Linux.

For simplicity, we apply some of these models on a toy dataset, listdata as shown below. The true

population size is 2000 and there are N = 1610 rows in the data. The columns y1, y2 and x1 show list

1 captures, list 2 captures and a continuous covariate. The empirical capture probability is approximately

0.85.

> head(listdata, 3)

y1 y2 x1

1 1 1 2.159287

2 0 1 2.654734

3 1 1 5.338062

The function popsize returns the estimates via nuis for the observed data probabilities q1, q2 and q12

which are often called the nuisance estimates. It also returns the fold assignment for each row. For simplicity,

we use two folds and plot the estimated nuisance parameters.

> qhat = popsize(data = listdata, funcname = c("rangerlogit", "logit", "gam", "mlogit", "sl"), nfolds = 2)

The dataframe qhat$nuis contains the estimates for q1, q2 and q12 for each model supplied by the user

for each row of the data. qhat$idfold shows the fold assigned to each row. Figure 3.2 shows the estimated

probabilities along with the capture profiles of list 1, list 2 and the two lists simultaneously. One also has the

option of using models outside the drpop package and obtain estimates which we will present later in section

3.4.5. Next, we illustrate some examples of application of the package starting from the simplest case.

To ensure that the estimator is valid, we required that all the nuisance parameter estimates, which are

probabilities, are bounded away from zero. The default bound is 0.005. One can change this using the

argument margin in popsize or popsize cond.

3.4.2 Two-list case with covariates

The simplest capture-recapture data has two lists with one or more covariates. We present the toy data,

listdata with true population size 5000 and two continuous covariates.

> head(listdata, 3)

y1 y2 x1 x2

1 1 1 5.342829 0.4682059
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Figure 3.2: The plot shows the smoothed estimated q1, q2 and q12 for five different models against the
scalar covariate x1. The points at 0 and 1 show the capture profiles of the individuals i.e., Y1, Y2 and Y1Y2
respectively.

3 1 0 3.700239 2.0279143

4 1 1 4.279882 3.3915513

> result = popsize(data = listdata, funcname = c("logit", "gam", "mlogit", "sl"))

To obtain the total population size estimate, we call the function popsize. This function accepts the

data frame listdata as data and list of model names, funcname which are to be used to estimate the

nuisance parameters (q1, q2, q12). popsize returns a list of objects which include the estimated population

size, estimated capture probability, estimated variance and the 95% confidence intervals. Above we print

only the estimated capture probabilities psi, estimated population sizes n, estimated σ sigma, estimate

standard deviation of n̂ sigman and the 95% confidence intervals cin.l, cin.u for the total population

size. The columns listpair, model and method indicate the list pairs (lists 1 and 2 in this case), model

used to estimate heterogeneity from covariates, and the formula for estimation of the target parameters ψ

and n respectively.

Remark 18. Setting arguments PLUGIN and TMLE to FALSE will return only the DR (proposed doubly robust)

estimates. We also plot the confidence intervals using the plotci function.

> result = popsize(data = listdata, funcname = c("gam", "logit",

"mlogit", "sl"), PLUGIN = TRUE, TMLE = TRUE)

> print(result)

listpair model method psi sigma n sigman cin.l cin.u

1 1,2 gam DR 0.910 0.440 4978 37.032 4905 5051

2 1,2 gam PI 0.917 0.440 4941 36.433 4870 5012

3 1,2 gam TMLE 0.912 0.595 4968 45.649 4878 5057
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Figure 3.3: The above plot shows the estimated confidence interval for n for different models. The true
population size is 5000. The term list-pair specifies the two lists used for the estimation.

4 1,2 logit DR 0.910 0.478 4978 39.073 4901 5054

5 1,2 logit PI 0.918 0.478 4936 38.423 4860 5011

6 1,2 logit TMLE 0.900 1.670 5034 114.852 4809 5259

7 1,2 mlogit DR 0.910 0.498 4978 40.184 4899 5056

8 1,2 mlogit PI 0.908 0.498 4986 40.311 4907 5065

9 1,2 mlogit TMLE 0.897 1.875 5052 128.443 4800 5304

10 1,2 sl DR 0.910 0.452 4979 37.689 4905 5053

11 1,2 sl PI 0.917 0.452 4938 37.034 4865 5010

12 1,2 sl TMLE 0.896 1.954 5054 133.735 4792 5316

> plotci(result)

Remark 19. Since the plug-in estimator has no known variance formula, we use the same variance formula

as the proposed estimator for the calculation of the variance of the plug-in estimators.

3.4.3 Two-list case with conditional estimates

When one has a discrete or categorical covariate in addition to other covariates, it is often of interest to

estimate the total population size conditioned on that categorical covariate, i.e., for sub-populations. For

example, suppose one has a population of patients in a city and their age, demographic information, and

ethnicity as the covariates. Then it can be of interest to obtain the estimated population size for the different

ethnicities separately.
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We again use a simulated toy dataset to illustrate the implementation. The data has three continuous

covariates (x1, x2, x3) and one categorical covariate column called catcov. catcov takes three possible

values ‘a’, ‘b’, ‘c’ with equal probability. Total population size is 6000 and each of ‘a’, ‘b’ and ‘c’ appear

roughly 2000 times in the whole population. We present the first three rows below.

> head(listdata, 3)

y1 y2 x1 x2 x3 catcov

1 1 1 2.159287 5.897364 3.4173336 b

2 1 0 2.654734 2.075288 0.5961934 a

3 1 0 5.338062 2.156149 2.5186507 c

The interest here is to obtain population size estimates conditioned on the categorical variable catcov,

i.e., for sub-populations with catcov value ‘a’, ‘b’ and ‘c’ separately. The function popsize cond is similar

to the function popsize but returns the result separately for each level of the categorical variable. We

specify the categorical covariate to be used for conditioning using the argument condvar. To obtain an

overall estimate one can use popsize as in the previous example.

> result = popsize_cond(data = listdata, condvar = ’catcov’, funcname = c("mlogit", "gam"), PLUGIN = TRUE, TMLE = TRUE)

> print(result)

listpair model method psi sigma n sigman cin.l cin.u condvar

1,2 mlogit DR 0.560 4.821 3040 204.818 2639 3442 b

1,2 mlogit PI 0.575 4.821 2960 204.323 2560 3361 b

1,2 mlogit TMLE 0.541 7.050 3147 295.398 2568 3726 b

1,2 sl DR 0.627 5.501 2715 230.476 2263 3167 b

1,2 sl PI 0.606 5.501 2808 230.926 2355 3260 b

1,2 sl TMLE 0.637 3.296 2670 141.464 2393 2948 b

1,2 mlogit DR 0.596 4.683 3306 213.115 2888 3724 a

1,2 mlogit PI 0.590 4.683 3338 213.290 2920 3756 a

1,2 mlogit TMLE 0.630 3.401 3126 156.890 2818 3433 a

1,2 sl DR 0.612 3.731 3216 171.610 2880 3553 a

1,2 sl PI 0.630 3.731 3125 171.019 2790 3460 a

1,2 sl TMLE 0.594 5.777 3313 260.696 2802 3824 a

1,2 mlogit DR 0.533 7.068 3082 291.147 2511 3652 c

1,2 mlogit PI 0.558 7.068 2946 290.526 2377 3516 c

1,2 mlogit TMLE 0.489 10.859 3359 444.129 2488 4229 c

1,2 sl DR 0.524 6.486 3138 268.283 2612 3664 c
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Figure 3.4: The above figure shows the confidence interval for n for three sub-populations and models gam,
logit and sl. The sub-populations are obtained from the original population using the values of the catcov

covariate.

1,2 sl PI 0.585 6.486 2807 266.666 2285 3330 c

1,2 sl TMLE 0.476 11.535 3453 471.596 2529 4377 c

> plotci(result)

The result of popsize cond is in a similar format to popsize, but it specifies the level of the categorical

covariate i.e., the sub-population in a separate column.

3.4.4 Three or more lists

The approach used by drpop assumes that there are two lists which are known to be conditionally

independent. However, capture-recapture datasets can often consist of more than two lists. If the analyzer

knows the list-pair that is conditionally independent, they can use the functions popsize and popsize cond

by removing the remaining list columns or by specifying the two list columns to be used for estimation.

However, when the analyzer is not aware of the list-pair, the entire dataset can be passed into the estimation

functions. drpop returns an estimate for each possible list-pair.

The toy dataset has three list columns as shown below. Now, since we pass more than two list columns

into the functions, the output will have the result for the different list-pairs (1,2), (1,3) and (2,3).

> head(listdata,3)

y1 y2 y3 x1 x2 x3 x4

1 0 0 1 1.189401 6.737728 0.8531169 1.508898
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2 1 0 1 3.416144 3.079832 3.1891693 4.082209

3 1 0 0 4.626662 3.684374 3.6552886 2.694606

For more than two lists, we need to specify the number of list columns using K in popsize. For simplicity,

we evaluate only the doubly robust estimators in this example and exclude the TMLE and the plug-in

estimates. The listpair column in the result below specifies the list-pair used for the estimation. For

example, assuming Y1 ⊥⊥ Y2 under the rangerlogit, we get n̂DR = 29, 711, and assuming Y1 ⊥⊥ Y3 under

the rangerlogit model, we get n̂DR = 30, 423.

> result = popsize(data = listdata, K = 3, funcname = c("mlogit", "gam", "rangerlogit"), nfolds = 2)

> result

listpair model method psi sigma n sigman cin.l cin.u

1 1,2 gam DR 0.872 0.983 29752 171.595 29416 30089

4 1,2 mlogit DR 0.873 1.497 29723 249.911 29233 30213

7 1,2 rangerlogit DR 0.874 1.453 29711 243.040 29235 30187

10 1,3 gam DR 0.860 1.565 30192 261.799 29679 30705

13 1,3 mlogit DR 0.851 2.271 30502 373.116 29771 31233

16 1,3 rangerlogit DR 0.853 2.137 30423 351.831 29734 31113

19 2,3 gam DR 0.859 2.467 30236 403.749 29445 31027

22 2,3 mlogit DR 0.859 3.452 30234 560.642 29135 31333

25 2,3 rangerlogit DR 0.853 2.871 30449 468.210 29531 31367

> plotci(result)

The plot function in the package shows the estimated confidence interval for n in Figure 3.5. We note

that confidence intervals are relatively shorter for list-pair (1,2) and (1,3). The reason being that the overlap

between the lists is larger for (1,2) and (1,3) compared to (2,3). As already discussed previously in section

3.2, the overlap between the conditionally independent lists must be bounded away from 0 and N for better

estimation.

If the analyzer is aware of the list pair, then the dataset can be passed into the estimation functions by

removing all other list columns or by specifying the list pair. Suppose that the two conditionally independent

list columns are y1 and y2. Then the user can either remove column y3 and pass the data into popsize, or

he can specify the pair. We illustrate both these approaches below.

> result = popsize(data = subset(listdata, select = -c(y3)))

> result = popsize(data = listdata, j = 1, k = 2, K = 3)
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Figure 3.5: The above plot shows the estimated confidence interval for n for three different possible list-
pairs under different models. The result for list-pair (1,2) produces narrower intervals closer to the true
value 30,000.

3.4.5 Estimation with user provided nuisance estimates

The main purpose of this example is to illustrate how to pass nuisance parameter estimates into popsize.

This is useful when the user has some background information that suggests modelling the heterogeneity

differently than what is available in the package. For simplicity, we illustrate this by passing the nuisance

parameter estimates, nuis from the output of popsize with the default model rangerlogit. The toy

dataset used has total population size 5000 with two continuous covariates. We show the first few rows

of the estimated nuisance parameters in estim$nuis. The columns specify the model name (rangerlogit

in this case) and also the q-probabilities. For more than one model, estim$nuis will contain additional

columns in the same format. estim$idfold specifies the fold assignment for each row. Rows 1 and 2 are

assigned to folds 5 and 1 respectively in this example. There are total five folds because nfolds = 5.

> listdata = simuldata(n = 5000, l = 2, ep = -3)$data

> head(listdata, 3)

y1 y2 x1 x2

1 1 0 2.159287 2.258739

2 0 1 2.654734 4.691390

3 0 1 5.338062 1.279576

> estim = popsize(data = listdata, funcname = c("rangerlogit"), nfolds = 5)

> head(estim$nuis)

listpair rangerlogit.q12 rangerlogit.q1 rangerlogit.q2

1 1,2 0.1284399 0.7116891 0.4167508
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2 1,2 0.2425309 0.7532815 0.4892493

3 1,2 0.2012161 0.8156479 0.3855682

4 1,2 0.2832612 0.8827187 0.4005426

5 1,2 0.4362669 0.8679311 0.5683358

6 1,2 0.2755165 0.8208690 0.4546476

> head(estim$idfold)

[1] 5 1 2 2 3 3

Once we have the nuisance parameter estimates, we can pass it into popsize. As mentioned above,

there are multiple ways of executing this. We illustrate the most straightforward approach below by passing

estim$nuis and estim$idfold directly. The result is shown below and presented in Figure 3.6.

> result = popsize(data = listdata, getnuis = estim$nuis, idfold = estim$idfold)

>result

listpair model method psi sigma n sigman cin.l cin.u

1 1,2 rangerlogit DR 0.500 3.355 5045 182.890 4686 5403

2 1,2 rangerlogit PI 0.593 3.355 4255 176.999 3908 4602

3 1,2 rangerlogit TMLE 0.402 12.549 6284 637.844 5034 7535

> plotci(result)

Remark 20. In the current version of the package, one can pass nuisance parameter estimates only for one

list-pair at a time. The lists can be specified using j and k. The default is j = 1 and k = 2.

Remark 21. All the datasets used in the examples in this section are simulated data.

The package has an in-built function simuldata to generate a toy dataset with two or three lists. It

can be used to test models by comparing against the true value. The simuldata function takes in the

number of lists (K, default value 2), the number of continuous covariates (l), the logical option to include

one categorical column (categorical, default value FALSE) and a numeric parameter to control the capture

probabilities (ep, default value 0). It returns the empirical capture probability (psi0), the simulated dataset

(data), the simulated dataset with transformed continuous covariates (data xstar) and the list wise capture

probability functions (pi1, pi2, pi3) depending on K. For example, the function pi1 returns the probability

of being observed in list 1 for the covariate vector passed into it. The dataset with transformed covariates,

data xstar can be used to study the robustness of a model.
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Figure 3.6: The plot above, generated by plotci, shows the estimated confidence interval for n for the
user provided nuisance estimates under two models, gam and logit. The variable list-pair (1,2) presents the
conditionally independent lists. popsize returns results for only one list-pair which is the first list pair unless
specified otherwise by the user.

3.5 Performance

To motivate the use of the doubly-robust estimators of drpop for closed population, we present some summary

statistics of its performance in a simulated set-up. The main focus of drpop is to flexibly estimate the

total population size and at the same time to achieve optimal 1/n mean squared errors. The identifiability

assumption used in drpop requires just two lists which are independent conditional on the covariates. We use

simulated data that roughly satisfies this assumption to measure the performance of the proposed method.

First, we present a comparison of the proposed doubly robust estimator in drpop against the baseline plug-

in estimator under the flexible nonparametric set-up and also when any of the covariates are not correctly

specified. Following that, we present some performance comparison of the closed population set-ups of the

packages Rcapture, CARE1, VGAM and drpop.

3.5.1 Performance in simulated set-up

In this section, we evaluate the performance of the proposed method in the package over a 100 iterations and

different simulation set-ups. Our simulation set-up ensures that the two lists are independent conditional on

the covariates. The goal is to compare the performance against the baseline plug-in estimator. Moreover,

we also compare the robustness of the estimators when the covariates are not correctly specified or are

transformed. For the later case, flexible non-parametric models would prove useful. drpop has the choice of

several such models. But for this section, we only use the default model rangerlogit which is an ensemble

of logit and random forest models.

47



We simulate a data-frame using the simuldata function for two lists. The true population size is 5000

for each iteration. We generate data with true capture probabilities 0.36 and 0.75 separately. One can set

the parameter ep equal to -2.5 and -1 respectively for the same. The code used to generate the data is

> datalist = simuldata(n = 5000, l = 1, ep = -2.5)

where n is the true population size and l is the number of continuous covariates. The default number of

lists in two. One can access the simulated data using datalist$data and listdata$data xstar where the

later data-frame contains transformed (misspecified covariates).

We evaluated the bias, the RMSE (root-mean-square-error) and the empirical coverage by

b̂ias =
1

100

100∑
i=1

|n̂i − 5000|2 , R̂MSE =

√√√√ 1

100

100∑
i=1

(n̂i − 5000)
2
,

and ̂coverage =
1

100

100∑
i=1

1
(
ĉin.li ≤ 5000 ≤ ĉin.ui

)
,

where i is the iteration, n̂i is the estimated population size at iteration i, and ĉin.li (ĉin.u) denote the

estimated lower (upper) limit of the 95% confidence interval. At each iteration, we generate a dataset

independently of the other iterations. We evaluate these three quantities for both the capture probabilities,

and also under the correct covariate data and misspecified covariate data. The results are shown in Figure 3.7.

Overall, both methods perform better when we have a higher capture probability or the correct covariates.

The proposed method (DR) has lower bias, lower RMSE and a higher empirical coverage compared to the

plug-in PI estimator under both correct covariates and mis-specified covariates.

3.5.2 Comparison to other packages

We present some comparisons with existing R packages that can work for closed populations. We use the

functions closedp, estN and vglm from the packages Rcapture, CARE1 and VGAM respectively. We have

considered two set-ups: two list case and three list case. CARE1 requires more than two lists for its sample

coverage approach and hence, we drop this package in the two list case. Rcapture uses log-linear models

as discussed in Baillargeon and Rivest (2007) and does not use covariate information. It is designed to

use information from many lists to model the heterogeneity. VGAM uses log-likelihood approach and can

incorporate continuous covariate information using generalized linear/additive models. We used simulated

data to compare the performance of drpop against the models in the packages Rcapture, CARE1, and VGAM

in a closed population set-up in the following two subsections. We note that these packages are based on

assumptions different from ours. We present the comparison result for the sake of completeness.
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Figure 3.7: This figure shows the estimated average bias, root-mean-square-error (RMSE) and the empirical
coverage in the estimation of the total population size n. The two facets show the true capture probability
which is also the (×100)% of the population observed. CorX and MisX refer to estimation using data with
original covariates and transformed(mis-specified) covariates respectively. The doubly robust (DR) estimator
has better performance in the set-up shown.

Two list case

We begin with the simple case where we have only K = 2 lists with some covariate information. The

data is simulated using the simuldata function with parameters K=2, l=1, ep=-1.5 i.e., the covariate is of

dimension one. The total population size takes values in (3,000, 6,000, 9,000, 12,000, 15,000) and the true

capture probability is approximately 0.63.

Rcapture function closedp only fits three models (M0 for no henerogeneity, Mt for list heterogeneity and

Mb for heterogeneity based on first capture) when there are only two lists. For a full list of models, one can

refer to Baillargeon and Rivest (2007). For vglm from package VGAM, we used posbernoulli.t to include list

and individual heterogeneity. For drpop, we used the rangerlogit model to calculate the doubly robust

estimator. Both drpop and VGAM use covariate information. Hence, we further compare their performance

in terms of robustness of errors in covariate information i.e., transformed covariates. We applied them

on data with the correctly specified/original covariates, and then on data with transformed/mis-specified

covariates as in Figure 3.7. The results are presented in Figure 3.8.

We removed the estimates of the Mbmodel from the plot because, it had significantly large errors compared

to the other methods (this is expected based on the simulation set-up). In the above two list set-up, the

estimate using the drpop and VGAM packages have bias and RMSE decreasing with the total population

size at a faster rate compared to models M0 and Mt. The coverage of the estimated confidence intervals is

also closer to the nominal level of 95% when the covariates are correctly specified. VGAM has slightly better

coverage when the covariates are correctly specified. This is a consequence of the simulation set-up where
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Figure 3.8: The absolute bias, root mean square error (RMSE) scaled by the true n, and empirical coverage
of n from the default model in drpop (DR rangerlogit), the M0 and Mt models from Rcapture and the model
in VGAM. The true population sizes are shown on the x-axis and the the true capture probability is 0.63,
i.e., we are observing around 63% of the population. For drpop and VGAM we present results with correctly
specified covariates (Cor) and transformed/mis-specified covariates (Mis).

the actual list probabilities are additive functions of the covariates. However, for the mis-specified covariates,

drpop has slightly better performance for larger sample sizes.

Remark 22. The performance result in Figure 3.8 is not necessarily a general phenomenon. This can change

based on the simulation set-up, for example. More exploration is needed to figure out if this is general.

Three list case

In this section, we apply our method and functions from the three packages in a three list set-up (K = 3).

Our goal in this section is to show that the performance of drpop with the default parameter values, at least

matches the performance of Rcapture, CARE1 and VGAM. We again note that these packages are developed

based on assumptions different than those of package drpop. Hence, we do not expect unbiased estimates.

We use simuldata function to generate toy population with three lists and three dimensional continuous

covariates. We set ep at -5 and -3 to get true capture probability psi0 equal to 0.34 and 0.80 respectively.

We set the true total population size at 15,000 and 5,000 for 0.34 and 0.80 respectively, since a low capture

probability requires a larger number of observations for good estimation. The number of observations for

the two set-ups are approximately 5,100 and 4,000 for each iteration. For the above set-up we generated a

simulated dataset 100 times and estimated the population size for each.

To compare the performance, we present the boxplot of the scaled bias (n̂ − n)/n of each iteration for

the different models in Figure 3.9. The estimation models from the four packages are marked by colors.

The doubly robust estimator is DR rangerlogit using only the first two lists for simplicity. For Rcapture,

we excluded the Mb and Mbh models because they have large error which is expected under the current
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Figure 3.9: Scaled bias (n̂−n)/n in the estimation of the total population size using four different packages:
violet (VGAM), teal (CARE1), green (Rcapture) and red (drpop). CARE1 and Rcapture return multiple
estimates. On the left we observe 34% of the whole data, and on the right we observe 80% of the data.

simulation set-up. All the estimators display better performance (lower bias and/or lower variance) for

capture probability 0.8 compared to 0.34. For the specific set-up used with 80% observed data, the proposed

method and Mth Gamma3.5 have bias closest to 0 followed by VGAM and Sample coverage (High). Whereas,

for the 34% observed data set-up, the proposed method and Sample coverage (High) have bias closest to

0 followed by VGAM and method Mth Gamma3.5.

Remark 23. The performance result in Figure 3.9 is not necessarily a general phenomenon. More

exploration is needed to figure out if that is the case.

Summarizing the results and the advantages of drpop, it is capable of incorporating high dimensional

and complex covariates as well as interaction among the covariates. The user can choose from several

flexible modelling options that are provided in the package or also, use their own models to estimate the

nuisance parameters. Under the identification assumption of conditional independence between two lists,

the proposed estimator in drpop also handles mis-specified covariates better compared to the naive plug-in

estimator. Further, attributed to the bias-correction step, the estimation under small capture probability

(small observed sample) is also better compared to the plug-in estimator.

3.6 Discussion

In this paper, we have presented the R package drpop to implement a new doubly robust estimator of the

total population size and an associated confidence interval from incomplete lists. The package provides users

with many choices for flexibly modelling the heterogeneity which usually exists in real data. Further, the

proposed method implemented in the package (Das et al., 2021) exploits efficiency theory so that it achieves

beneficial properties such as (i) 1/n mean squared errors even in flexible nonparametric models, (ii) double

robustness, (iii) minimax optimality, and (iv) near finite-sample normality.
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One of the main advantages of drpop is that it can model the heterogeneity in the data as complex

functions of discrete and/or continuous covariates. This is useful when the capture probabilities (nuisance

parameters i.e. q1, q2, q12) of the individuals do not depend linearly on the covariates. More discussion on

this can be found in Yee and Mitchell (1991); Crawley (1993); Gimenez et al. (2006); Bolker (2008); Schluter

(1988), and Yee et al. (2015). Yee et al. (2015) also created an R package VGAM which addresses this issue

via vector generalized models. The availability of flexible models in drpop makes it easy for users to obtain

good estimates for such datasets as well. The users also have the option to fit their own models to estimate

nuisance parameters and pass them into the package functions to obtain total population size estimate and

confidence interval(s).

The estimation method implemented in drpop exploits modern advances in nonparametric efficiency

theory. This ensures that even when one is using flexible nonparametric methods, the rate of convergence

(i.e., mean squared error) is not compromised. Typically, plug-in estimators inherit convergence rates from

the estimators of the more complex nuisance parameters like q-probabilities. However, because of the form

of the proposed estimator, we can still achieve 1/n mean squared errors, even when the nuisance functions

are estimated flexibly at slower rates. Further, the estimate is doubly robust against errors in the estimation

of the nuisance parameters. In particular, even when either one of q1 and q2 is estimated with large errors,

or one of q12 and γ is estimated with large errors, the ψ̂ and n still have bounded errors as long as q12 and

q̂12 are bounded away from zero. More details and explanation can be found in Das et al. (2021). Further, as

a consequence of efficiency theory, this estimator is near minimax optimal in finite samples and has a nearly

normal distribution, permitting simple but valid confidence interval construction.

We have presented some simulation results in section 3.5 to show the advantages of the proposed estimator

against the baseline method. We have also provided some simulation results to compare the performance of

the proposed method in drpop against some of the existing widely used R packages for the closed population

set-up. Our goal is to show that when the capture probability depends on covariates and when our mild

identifiability assumption holds, the performance of drpop is reliable and comparable to some of the existing

methods for the given set-up.

Alongside the proposed doubly robust estimator, this package also provides the user with the choice of

evaluating the baseline plug-in estimator and an alternate targeted maximum likelihood estimator (TMLE).

Some of the other functions this package can perform are (i) simulate toy data for model training and

study design, (ii) estimate total population size and other parameters and other information for sub-

populations based on a categorical covariate, and (iii) plot the results with an in-built function for easy

and fast interpretation. A full list is presented in section 3.4.
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Chapter 4

Nonparametric estimation of

population size from conditional

capture-recapture designs under

partial identification

4.1 Introduction

Population size estimation in an important problem in many areas of sciences. Capture-recapture design

denotes data consisting of two or more lists from the population (Petersen, 1896; Chao, 1987; Otis et al., 1978).

This problem set-up requires additional assumptions on the lists to ensure identification of the parameters.

Some commonly used assumptions are list independence, log-linear models and conditional independence

between lists. You et al. (2021) has presented estimators under various identification assumption. For real

data, seldom does one know whether the assumptions are satisfied. In recent literature, estimation under

relaxed assumptions has gained traction. For example, Chan et al. (2020) presented log-likelihood models

when some sources have very little or no overlaps to reflect on the chosen assumption. This motivates us to

explore a more relaxed set-up of Das et al. (2021).

Das et al. (2021) has presented efficient and doubly robust estimators under the assumption that two

lists are independent conditioned on individual covariate information. This assumption has been extensively

studied in the capture-recapture literature, for example in Sekar and Deming (1949); Pledger (2000); Pollock

et al. (1990); Tilling and Sterne (1999); Huggins (1989); Chao (1987); Alho (1990). For real data, the
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knowledge of the data collection procedure is not always available. In such a scenario, it is hard to ensure

the validity of the assumption(s) on the lists. We extend this assumption to explore the case where only

partial identification is possible. In this paper, we extend the approach of Das et al. (2021) to a more

relaxed set-up when the two lists can deviate from the conditional independence assumption. This approach

is applicable in the presence of two or more lists, but the focus is on two lists which are chosen by the user.

In this more relaxed set-up, the target parameters are only partially identified instead of point identified,

unlike the set-up of Das et al. (2021). Estimation under only partial identification has gained interest in the

last few years (Imbens and Manski, 2004). The standard approach in this case is to estimate a range for the

parameter of interest instead of a point estimate. Imbens and Manski (2004) provides a method to calculate

confidence intervals for the parameter when the distributions of the estimated upper and lower bounds of

the parameter are available. We apply this approach in the context of this paper and further present the

finite sample error in the coverage guarantees of the proposed confidence interval.

4.1.1 Overview of the paper

In this paper, we discuss estimation of the total population size when the two lists deviate from conditional

independence assumption in the presence of covariates. Section 4.2 describes the set-up and data structure. In

section 4.3, we present the general set-up of partial identification as in Imbens and Manski (2004) and present

the finite sample coverage error in the estimated confidence interval. In section 4.4, we discuss modelling

the dependence using conditional risk ratio of the two lists and present the upper and lower bounds of the

capture probability along with variance estimators. Following this, in section 4.5, we present estimators for

the total population size and present the finite sample coverage error of the proposed confidence interval.

Section 4.6 discusses the performance of the proposed method in a simulated set-up and presents interval

estimates of the total number of victims in the Peru Internal Armed Conflict of 1980-2000 for various levels

of relaxation of the conditional independence assumption.

4.2 Preliminaries

4.2.1 Set-up

The population size estimation in this paper is in a capture-recapture set-up. We use the set-up from Das

et al. (2021). Consider a finite population of n individuals. Suppose the samples consists of data from K

lists. An individual is observed if he is captured by at least one of the K lists. Denote the number of the

observed individuals by N . For individual i, i ∈ {1, . . . , n}, let Yi = (Yi1, . . . , YiK)T denotes the indicator

vector for the capture-history. Yik ∈ {1, 0} is the indicator of whether individual i is captured in list k

or not, k ∈ {1, . . . ,K}. We also consider covariates Xi ∈ Rd for each individual. We assume that every
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individual behaves independently of the other individuals. Hence, the vector Zi = (Xi,Yi) are independent

and identically distributed according to some distribution P.

If all the individuals in the population are observed, then n = N and we do not need to estimate

anything. However, in practice there are a substantial number of individuals not captured by any of the

lists, i.e. Y = 0. We however have access to only N individuals, where N =
∑n
i=1 1(Yi ̸= 0). The observed

data size, N follows Binomial(n, ψ), where ψ = P(Y ̸= 0). We are interested in the estimation of n which

is equivalent to the estimation of ψ. By the property of binomial distribution, any estimator of ψ, say ψ̂

gives an estimator of n by N/ψ̂. the estimation of ψ and n are equivalent.

By structure, capture-recapture is a missing data problem where the observed data is possibly a biased-

sample from the population. Hence, we cannot estimate P directly from the observed data. The observed

data, however, follows a conditional distribution Q, i.e. Zi = (Xi,Yi) ∼ Q, for i ∈ {1, . . . , N}.

Q(Y = y,X = x) ≡ P(Y = y,X = x|Y ̸= 0)

= ψ−1P(Y = y,X = x)1(y ̸= 0).

Das et al. (2021) used the assumption of conditional independence between two lists to ensure identification

of ψ and n. In this paper, we relax this assumption and develop confidence interval estimates under partial

identification.

4.3 Estimation of target parameter using the estimated bounds

All the estimators presented in Das et al. (2021) are valid only when there are two lists that are independent

conditional on the covariates. In general, for real data this identification assumption may not hold true. For

example, the corresponding list pair may not be conditionally independent. Unless we know the extent of

dependence between the two lists, there is no point identification. We present two approaches for estimation

under this violation in section 4.4.

In case of partial identification, usually one has a range of estimates instead of a point estimate. The

standard approach is to use the range of estimates to obtain a confidence interval for the parameter of interest.

Imbens and Manski (2004) has presented a general formula for the calculation of the confidence interval of

the target parameter when we know the estimators for the upper and lower bounds of the parameter; and

further they are asymptotically normal. In this section we briefly discuss the approach of Imbens and Manski

(2004) and present the finite sample coverage error of the estimated confidence interval.

Consider a general partial identification problem with target parameter ψ and the population upper and

lower bounds for ψ are ψu and ψl respectively. Also, let the estimated range be (ψ̂l, ψ̂u). Suppose the

following is the asymptotic joint distribution of the estimated maximum and the estimated minimum. When
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there are N many observations in the data, we have the following.

√
N

 ψ̂l − ψl

ψ̂u − ψu

 −→ N


0

0

 ,

 σ2
l cov

cov σ2
u

 ,

where σl and σu are the corresponding standard deviations. The covariance is not necessary for this set-up.

According to Imbens and Manski (2004), one can construct a (1−ω)% confidence interval for ψ as follows

C̄I
ψ
1−ω =

[
ψ̂l − C̄N

σ̂l√
N
, ψ̂u + C̄N

σ̂u√
N

]
,

where C̄N satisfies Φ
(
C̄N +

√
N ψ̂u−ψ̂l

max(σ̂l, σ̂u)

)
− Φ

(
−C̄N

)
= 1 − ω. Imbens and Manski (2004) has proved

that this estimated confidence interval contains the true target parameter with probability at least 1 − ω

asymptotically.

In general, the estimated parameters need not be asymptotically normal and may not be unbiased. Hence,

we consider a general case with bias and approximate normality and present the finite sample error in the

coverage probability of the estimated interval for a given sample size N .

Theorem 4.1. Suppose the estimated lower and upper bounds ψ̂l and ψ̂u satisfy the following.

1. E(ψ̂l) = ψl + R̂2,l

2. E(ψ̂u) = ψu + R̂2,u

3. var(ψ̂l|Zn) = σ̃2
l /N , v̂ar(ψ̂l) = σ̂2

l /N

4. var(ψ̂u|Zn) = σ̃2
u/N , v̂ar(ψ̂u) = σ̂2

u/N .

R̂2,l is the bias, σ̃2 is the population variance given the training sample, and σ̂2 is the estimated variance for

the corresponding bound. Further, assume that ψ̂u and ψ̂l are sample averages of i.i.d terms and uniformly

continuous. Let ρl and ρu be the absolute central third moment of the i.i.d terms. Moreover, E|σ̂−σ̃| ≲ n−1/2.

For simplicity, define ∆ = ψu − ψl and ∆̂ = ψ̂u − ψ̂l. Suppose the following assumption holds.

Assumption 3. For a given ϵ > 0 and a constant c, there exists N0 and υ > 0 such that for all N > N0

P
(
Nυ|∆̂−∆| > c

)
< ϵ.
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We use ϵ < 1/
√
n for a given n. Further, let σ ≤ σ̂l, σ̃l, σ̂u, σ̃u ≤ σ̄ for some finite real numbers σ and σ̄.

Then the finite sample lower bound on the empirical coverage is presented below.

(1− α)− P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)

≤ 1√
2πσl

E
(√

N |R̂2,l|+
√
N |R̂2,u|

)
+ E

{
C√
N

(
ρl
σ̃3
l

∨ ρu
σ̃3
u

)}
+ E

(
cN√
2πσl

|σ̂u − σ̃u|
)
+ E

(
1 + cN√
2πσl

|σ̂l − σ̃l|
)

+ 1(∆ ̸= 0)E
{

1√
N

(1 + 4θ) +
2cσ̄2

αN
1
2+υ ∆3

+

∣∣∣∣ σ̄lσl − 1

∣∣∣∣ σ̄l√
N∆

}
+ 1(∆ ̸= 0)E

(
3

α∆̂σl
|σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|

)
.

where θ is the maximum value of the density of
√
N(ψ̂u − ψu)/σ̂u and

√
N(ψ̂l − ψu)/σ̂l. By Berry-Esseen,

θ ≈ 1/
√
2π. Moreover, C̄N , cN ≤ z1−α/2.

The above theorem says that the estimated confidence interval contains the true parameter ψu with

probability at least 1 − α minus some additional error term which is bounded above. One can obtain a

similar result for the lower bound ψl. Thus, since the estimated confidence interval contains both ψu and ψl

with some probability, it must also contain ψ with probability at least 1−α with some bounded error term.

This is a general result that is applicable to any partial identification problem that follows the basic set-up

presented in Imbens and Manski (2004) and in this paper. A more precise bound is presented in the proof.

The assumption used in the above theorem says that the estimated difference ∆̂ = ψ̂u − ψ̂l is converging

to the true difference ∆ roughly at rate o(N−υ) for some υ > 0. This is a mild assumption that is easily

satisfied in most estimation scenarios.

The primary result in Imbens and Manski (2004) shows that this interval contains the true parameter

with probability at least 1−α for sufficiently large sample size. The theorem above quantifies that coverage

error for any sample size N . This error further decreases as N (also, equivalently n) increases under some

weak conditions on the bias terms R̂2,l and R̂2,u. We discuss these conditions in a later section in the context

of the proposed estimators in this paper. Below, we present the large sample error bound in the following

corollary.

Corollary 4.1.1. Assume σ ≳ 1, E|R̂2,l| ∨ E|R̂2,u| ≲ N−2β and α > 0. Then the coverage error for the

proposed (1− α) confidence interval is upper bounded by

(1− α)− P
(
ĈI ∋ ψ−1

)
≲ n(1−4β)/2 +

1√
n
.
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Therefore, if β > 1/4 there exists some sample size Nϵ at which the coverage error is never more than ϵ, for

any N > Nϵ.

4.4 Estimation under dependence

In this section, we consider relaxations of the conditionally independent assumption. For simplicity, we will

focus on only two lists. Without loss of generality, let the lists be list 1 and 2. As mentioned before also

stated in Das et al. (2021), for estimation of the total population size or the capture probability, we need

some lack of dependence assumption between the lists under consideration. Hence, to proceed with the

estimation, we assume that lists 1 and 2 are not completely dependent. This dependence can be measured

by either risk ratio or odds ratio. Under independence, both risk and odds ratios are 1. However, for real

data, this may not hold true. In this paper, we will focus on the risk ratio. One can derive equivalent results

for the odds ratio. When the two lists are not conditionally independent, the risk ratio can deviate from 1.

Instead of assuming a fixed value of dependence, i.e. the risk ratio, we use a weak assumption that the risk

ratio lies in a neighbourhood of 1. This relaxation does not guarantee point identification. Hence, instead

of estimating the target parameter, we estimate the upper and lower bounds of the parameter.

The mild identification assumption presented below assumes that the risk ratio lies in a neighbourhood

of 1. This is a relaxation of the conditional independence assumption used in Das et al. (2021) and is more

difficult.

Assumption 4. The risk ratio between lists 1 and 2 is bounded as follows for some finite ω > 1.

1

ω
≤ P(Y1 = 1 | Y2 = 1,X = x)

P(Y1 = 1 | Y2 = 0,X = x)
≤ ω, ∀x.

The ratio in the above assumption is the risk ratio between lists 1 and 2 conditional on the covariate.

When ω = 1, the risk ratio is 1 for all x’s. Thus, ω = 1 implies conditional independence between lists 1 and

2 i.e., Y1 ⊥⊥ Y2 | X. As ω increases, the assumption becomes weaker. For meaningful implementation of this

assumption, one has to choose ω not too close to ∞.

Under this assumption, we derive a reasonable bound for the inverse capture probability ψ−1. since the

total population size is a linear function of the inverse capture probability, we present all the results for

the inverse capture probability instead of the capture probability. First, we begin by expressing the inverse

capture probability as a function of the observed data and the risk ratio. The following proposition presents

the result.
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Proposition 2. For a risk ratio function δ(x) = P(Y1=1|Y2=1,X=x)
P(Y1=1|Y2=0,X=x) , the conditional capture probability is

γ(x) =
q12(x)

[{q1(x)− q12(x)}δ(x) + q12(x)]q2(x)
.

The capture probability ψ associated with the above γ is

ψ−1
δ =

∫
1

γ(x)
dQ(x) =

∫ [
δ(x)

{
q1(x)− q12(x)

}
+ q12(x)

]
q2(x)

q12(x)
dQ(x).

The above expression shows that the inverse capture probability increases with the risk ratio δ(x). Note

that q1(x), q2(x) and q12(x) can be directly estimated from the observed data, δ(x) cannot. Hence, one

cannot obtain a point estimate of the capture probability from the observed data without using additional

information about the risk ratio δ(x). Next, we show how using assumption 4, one can obtain bounds on ψ,

or equivalently ψ−1.

Remark 24. When the two lists are conditionally independent, i.e., δ(x) = 1 ∀ x, then the conditional

inverse capture probability is q1(x)q2(x)
q12(x)

. In the relaxed setup, depending on how list 2 affects list 1, δ(x)

scales the proportion that is observed by only list 1 and not by list 2. For example, if we believe that

δ(x) < 1, i.e., being on list 2 decreases the chances of being on list 1, then q1(x) − q12(x) is larger relative

to q12(x).

Assumption 4 can only ensure partial identification of ψ, and hence ψ−1, since we do not assume point

values for the risk ratios. Let ψ−1
l and ψ−1

u denote the lowest and the highest values ψ−1 can attain under

assumption 4. Under this assumption, the true parameter ψ−1 should lie between ψ−1
l and ψ−1

u because of

the monotone nature of the identifiable expression. We present these bounds in the following theorem.

Lemma 4.1.1. Under assumption 4, the lower and upper bounds on ψ−1 are as follows.

ψ−1
l =

∫ {
1

γ 1
ω
(x)

− 1

}
1
{
γ 1

ω
(x) ≤ 1

}
dQ(x) + 1

ψ−1
u =

∫ {
1

γω(x)
− 1

}
1 {γω(x) ≤ 1} dQ(x) + 1,

where γ−1
ω (x) = [ω {q1(x)− q12(x)}+ q12(x)]

q2(x)
q12(x)

is the inverse conditional capture probability when the

risk ratio is ω. When ω = 1, i.e., the two lists are conditionally independent, then

ψ−1
1 = ψ−1

u =

∫
q1(x)q2(x)

q12(x)
dQ(x) =

∫
1

γ1(x)
dQ(x).

The final expression of the bounds are obtained by adjusting the risk ratio δ(x) such that γ(x) ≤ 1 for

all x, followed by rearrangement of the terms. The bounds above are sharper in the sense that, we are
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selecting the maximum (or minimum) of the inverse capture probabilities for each x, i.e., for each individual.

Further, we ensure that the inverse capture probabilities are greater than or equal to 1. As a consequence,

the integrands are not smooth functions of the x’s. However, if γ is sufficiently smooth, then ψ−1
l and ψ−1

u

are smooth functions of ω.

Moreover, it is easy to see that as ω increases or, equivalently, 1/ω gets closer to 0, ψ−1
l decreases and

ψ−1
u increases. Thus, the bounds grow further apart. Thus, these bounds are also monotone in ω.

4.4.1 Efficiency bound

In this section, we derive the nonparametric efficiency bounds for estimation using i.i.d. samples from the

observed data distribution Q. This bound sets the benchmark for the best possible variance an estimator

can achieve. To evaluate the efficiency bounds, we begin by deriving the efficient influence functions for ψ−1
l

and ψ−1
u (Bickel et al., 1993).

The efficient influence function of a parameter quantifies the change in the parameter when one introduces

perturbations in the input distribution. The efficient influence function has many important properties. Its

variance gives the efficiency bound, which sets the lowest possible variance an estimator can achieve. And

once, we obtain an estimator that achieves this bound, no further improvement scan be made in terms of

the bound. The efficient influence function is used to construct an estimator that achieves this bound under

some regularity conditions (Bickel et al., 1993; van der Vaart, 2002a; van der Laan and Robins, 2003; Tsiatis,

2006; Kennedy, 2016).

Existence of the efficient influence function, requires that the parameter is sufficiently smooth. However,

identifiable expressions for ψ−1
l and ψ−1

u contain indicator terms involving the conditional capture probability.

Hence, we use the following margin assumption to ensure that γω(x) is sufficiently smooth around 1 for any

positive value of ω.

Assumption 5. (Margin) There exists a constant ν > 0, such that for all t > 0, Q(|γω − 1| ≤ t) ≲ tν .

In the following theorem, we evaluate the efficient influence functions for ψ−1
l and ψ−1

u and further, we

have shown in the proof in the appendix that they exist under the above margin condition.
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Theorem 4.2. Given that assumption 5 holds and ν ≥ 1. Then the efficient influence functions for ψ−1
l

and ψ−1
u respectively are

ϕl(Z;Q) = 1
{
γ 1

ω
(X) ≤ 1

}( 1

γ 1
ω
(X)

[
(Y1 − Y1Y2)/ω + Y1Y2

{q1(X)− q12(X)}/ω + q12(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

]
− 1

)
+ 1− ψ−1

l , and

ϕu(Z;Q) = 1 {γω(X) ≤ 1}
(

1

γω(X)

[
(Y1 − Y1Y2)ω + Y1Y2

{q1(X)− q12(X)}ω + q12(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

]
− 1

)
+ 1− ψ−1

u .

The above functions are efficient influence functions of ψ−1
l and ψ−1

u respectively when ν ≥ 1 in the

margin condition in assumption 5. The efficient influence functions above have zero means. Hence, they

can be used to derive alternate expressions for ψ−1
l and ψ−1

u . The estimated efficient influence functions are

obtained by replacing the q-probabilities with their respective estimates.

Remark 25. For simplicity, we will use ϕl and ϕu to denote ϕl(Z;Q) and ϕu(Z;Q) respectively. And, ϕ̂l

and ϕ̂u denote the respective estimates ϕl(Z; Q̂) and ϕu(Z; Q̂), i.e., when one used the distribution Q̂ when

the true distribution is Q.

The variance of the efficient influence sets the benchmark against which one can check the performance

of an estimator of ψ−1
l and ψ−1

u . In the following corollary we present the variance expression of the efficient

influence function associated with ψ−1
l . The equivalent expression for ψ−1

u is obtained by replacing ω with

1/ω.

Corollary 4.2.1. The variance of ϕl is

var (ϕl) = E

(
1
{
γ 1

ω
(X) ≤ 1

}[ 1

γ 1
ω
(X)

{
1

γ 1
ω
(X)

− 1

}{
1

ωq12(X)
− 1

}
+

q0(X)

ωγ 1
ω
(X)q12(X)

+

(
1− 1

ω

)
{q1(X)− q12(X)}2q2(X)2

ω2q12(X)3

])
+ var

[{
1

γ 1
ω
(X)

− 1

}
1
{
γ 1

ω
(X) ≤ 1

}]
,

var (ϕu) = E
(

1 {γω(X) ≤ 1}
[

1

γω(X)

{
1

γω(X)
− 1

}{
ω

q12(X)
− 1

}
+

ωq0(X)

γω(X)q12(X)

− ω2 (ω − 1)
{q1(X)− q12(X)}2q2(X)2

q12(X)3

])
+ var

[{
1

γω(X)
− 1

}
1 {γω(X) ≤ 1}

]
,

where q0(x) = 1− q1(x)− q2(x) + q12(x) is the probability of being observed by neither list 1 nor list 2.

The variance above is influenced by five main factors:

1. the deviation from conditional independence ω,

2. the conditional capture probability γ 1
ω
(x) ,
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3. the probability of appearing only on list 1, q1(x)− q12(x),

4. the probability of appearing on both list 1 and 2,

5. the heterogeneity in the conditional capture probabilities var

[{
1

γ 1
ω
(X)

− 1

}
1
{
γ 1

ω
(X) ≤ 1

}]
.

4.4.2 Estimation

In lemma 4.1.1, we derived the identifiable expressions for ψ−1
l and ψ−1

u . In this section, we will present

estimators for the bounds ψ−1
l and ψ−1

u . The most straight-forward estimators are the plug-in estimators,

which are obtained by the sample analogues of the identifiable expressions in lemma 4.1.1. But, plug-

in estimators typically have first-order bias, and moreover, in a nonparametric set-up, they have slow

convergence rates and no well-defined variance formula, and hence, often do not have a known asymptotic

distribution. Hence, we turn to efficiency theory to overcome these shortcomings.

The plug-in estimator for the bounds on ψ−1 are obtained by substituting the nuisance functions with

their estimates in the expressions in lemma 4.1.1 as follows.

ψ̂−1
l,pi = QN

[{
1

γ̂ 1
ω
(X)

− 1

}
1
{
γ̂ 1

ω
(X) ≤ 1

}]
+ 1.

ψ̂−1
u,pi = QN

[{
1

γ̂ω(X)
− 1

}
1 {γ̂ω(X) ≤ 1}

]
+ 1.

As discussed above, these plug-in estimators have some disadvantages, that need to be addressed. These

can be solved by using the efficient influence functions presented in theorem 4.2. The efficient influence

functions have quite a few desirable properties: (i) They can be used to construct alternate bias-corrected

estimators for the parameters ψ−1
l and ψ−1

u , (ii) The second-order remainder term can be used to quantify

the error in estimation and study the robustness of the estimator, (iii) The variance of the efficient influence

functions can be used to find the lowest possible variance an estimator can achieve.

Using the efficient influence function above and efficiency theory from Tsiatis (2006); Kennedy (2016);

van der Vaart (2002b); Bickel et al. (1993), we can obtain a proposed estimators of ψ−1
l and ψ−1

u .

ψ̂−1
l,proposed = ψ̂−1

l,pi +QN ϕ̂l,

ψ̂−1
u,proposed = ψ̂−1

u,pi +QN ϕ̂u,

where ϕ̂ are the corresponding estimated efficient influence functions. We obtain the above estimators by

using the property that efficient influence functions have mean zero. QN ϕ̂l is the estimated first-order bias

in the plug-in estimator. Hence, the proposed estimators also do not have first-order bias.
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Note that as a consequence of using the efficient influence function, the error in the estimation when using

the proposed estimators can be approximated as a sample average of i.i.d. random variables. Approximation

with a sample average makes it easier to evaluate the variance. In the next result, we derive the bound on

this approximation error.

Theorem 4.3. For any sample size N and error tolerance η > 0, we have

∣∣∣ψ̂−1
l,proposed − ψ−1

l −QNϕl
∣∣∣ ≤ η,

with probability at least

1− 1

η2
E
[
R̂2

2,l +
1

N

∥∥∥ϕ̂l − ϕl

∥∥∥] ,
where R̂l,2 is a second-order error term given by

R̂2,l =

∫
1
{
γ̄ 1

ω
(x) ≤ 1

} 1

ωq̄12(x)

[
{q1(x)− q̄1(x)} {q̄2(x)− q2(x)}

+ {q12(x)− q̄12(x)}
{
q2(x)q1(x)

q12(x)
− q̄2(x)q̄1(x)

q̄12(x)

}]
dQ(x)

+

∫ [
1
{
γ̄ 1

ω
(x) ≤ 1

}
− 1

{
γ 1

ω
(x) ≤ 1

}]{ 1

γ 1
ω
(x)

− 1

}
dQ(x)

≤
(

1

ωϵ

)
∥q̂1 − q1∥∥q̂2 − q2∥+

(
1

ωϵ

)
∥q̂12 − q12∥

∥∥∥∥q2q1q12
− q̂2q̂1

q̂12

∥∥∥∥
+

1

ϵ

∥∥∥γ̄ 1
ω
− γ 1

ω

∥∥∥1+ν
∞

.

where the latter bound holds as long as (q12 ∧ q̂12) ≥ ϵ and assumption 5 holds.

The above theorem shows that the error in estimation and hence, the proposed estimator can be

approximated by a sample average of a function of the efficient influence function. In assumption 5, when

ν ≥ 1, R̂2,l is second order. This approximation falls within a tolerance η with a probability that depends

on the second order error term and the standard deviation of ϕ̂l. Further, the probability increases as the

sample size increases or the remainder term decreases.

This second order error term summarizes the estimation error in ψl. Similarly, one can conclude for R̂2,u.

These error terms also govern the coverage error in the estimated confidence interval presented in section 4.3.

If the risk ratio ζ(x) is s-Holder-continuous, then ∥γ̂ 1
ω
− γ∥∞ = O(n−

s
1−s ), where the nuisance parameters

are estimated with error rate n−β . Thus, E|R̂2,l| ≲ n−2β + n−
(1+ν)s
1−s . The coverage error in theorem 4.1

decreases with N and equivalently n if β > 1/4 and (1 + ν)s/(1 − s) > 1/2 or ν > (1 − 3s)/(2s). For

second-order error and for ϕl to be valid efficient influence functions, we need that ν is at least 1.
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As a consequence of the above theorem, the error in estimation is now approximated by a sample average

of the efficient influence function ϕl. Thus, one can now evaluate the variances for the estimators via the

variances of the efficient influence functions presented in corollary 4.2.1. To formally write, the variance of

ψ̂−1
l is approximated as follows.

var(ψ̂−1
l ) ≈ 1

N
var
(
ϕ̂l

)
.

Since, ψ̂−1
l and ψ̂−1

u are approximately sample averages, one can show that they are approximately normal.

For more details, we refer to Das et al. (2021). This allows us to implement the Imbens and Manski (2004)

confidence interval formula to construct a confidence interval for the target parameter ψ (equivalently ψ−1).

We have presented the general result along with the coverage guarantees in section 4.3.

In this section, we considered a weak identifying assumption that the risk ratio is bounded; which further

guarantees only partial identification. Under this assumption, we presented the identifying expressions for

the lower and upper bounds of the capture probability ψ (equivalently ψ−1) and derived the efficiency

bounds. Further, we presented the doubly robust estimators, i.e. estimators with second-order error terms

for the bounds that achieve the efficiency bound under a margin condition to ensure smoothness. Lastly, we

discussed how one can construct a confidence interval for ψ (equivalently ψ−1) using Imbens and Manski

(2004) formula. In the following section, we discuss the inferences for the total population size.

4.5 Confidence interval for the total population size

In this section, we lay out the steps to obtain a confidence interval for the total population size n using the

results from the previous sections. Under assumption 4, n is not identifiable from the observed data. Hence,

we define the lower and upper bounds for n and present their estimators and variances, which allow us to

apply the Imbens and Manski (2004) formula. Further, we present the coverage guarantee for the proposed

estimated confidence interval for n.

Under assumption 4, we defined the identifiable range for the total population size by the interval (nl, nu).

Suppose nl and nu satisfy the following for consistency.

nl = nψψ−1
l , nu = nψψ−1

u .

Using the above identifiable expressions, one can use the derived results for ψ to infer about the bounds on

n. The results presented in this section hold for all estimators of ψu and ψl that satisfy a very mild condition

presented in the theorem.

Given any estimators for the bounds of ψ−1, one can obtain the respective estimators for nl and nu by

n̂l = Nψ̂−1
l , n̂u = Nψ̂−1

u . (4.1)
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The estimators of nl and nu are products of two random quantities: (i) the observed data size N , and (ii)

the estimated bound on ψ−1. Hence, to derive the variance, and hence, the coverage error of the confidence

interval, it requires some non-trivial extension of the results in the previous sections. In the following

theorem, we present the variances for the estimated bounds of n.

Theorem 4.4. Let ψ̂−1
l and ψ̂−1

u be generic estimators for ψ−1
l and ψ−1

u , respectively, that satisfy

ψ̂−1
l − ψ−1

l = QN (φ̂l)−
∫
φl(z)dQ(z) + R̂2,l, (4.2)

where φl is a generic influence function and R̂2,l is the corresponding second order error term.ψ̂−1
u has a

similar expression. Let ς̃2l = var(φ̂l|Zn) and ς̃2u = var(φ̂u|Zn) be the corresponding efficiency bounds. Then

the variance of n̂l and n̂u are

var(n̂l) = nψ

{
nψ var(R̂2,l) +

1− ψ

ψ2
l

E(ψlR̂2,l + 1)2 + E(ς̃2l )
}

var(n̂u) = nψ

{
nψ var(R̂2,u) +

1− ψ

ψ2
u

E(ψuR̂2,u + 1)2 + E(ς̃2u)
}
.

The above theorem says that the variances of the estimated lower and upper bounds of n (i) increase

with the variance of the influence functions, which also summarize the variance of the estimators of ψ−1
u and

ψ−1
l , (ii) increase with the remainder term and its variance, (iii) depend on the capture probability ψ but the

trend is not clearly monotone, and (iv) decrease with ψu and ψl. Further, it is important to note that the

variances are of order n if the remainder terms and their variances are sufficiently small. The conditions for

the later are discussed in the previous section following theorem 4.3. These variance formulas hold for any

general estimators for the bounds of ψ−1that satisfy the mild condition 4.2 presented in the above theorem.

Next, we will present the estimators of these variances which will be used in the construction of confidence

interval for n. The above variance formulas contain the true capture probability ψ and the total population

size n. One can approximate nψ by the number of observations N using the Binomial assumption discussed

in section 4.2. As for the 1− ψ in the second term, we substitute it by 1− ψ̂u to ensure maximum coverage

by the confidence interval. By our definition, ψu ≤ ψl, since they are respectively the upper and the lower

bounds of the inverse capture probability. We estimate ς̃2l and ς̃2u as follows.

v̂ar(n̂l) = Nτ̂2l = N

(
ς̂2l +

1− ψ̂u

ψ̂2
l

)
,

and v̂ar(n̂u) = Nτ̂2u = N

(
ς̂2u +

1− ψ̂u

ψ̂2
u

)
,
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where τ̂l denotes ς̂
2
l +

1−ψ̂u

ψ̂2
l

. Similarly, we have τ̂u. Note that these variance estimates are positively biased.

We further define the true variances for n̂l and n̂u conditional on the training sample as follows.

var(n̂l|Zn) = nψτ̃2l = nψς̂2l + n
ψ(1− ψ)

ψ2
l

(ψlR̂2,l + 1)2,

and var(n̂u|Zn) = nψτ̃2u = nψς̂2u + n
ψ(1− ψ)

ψ2
u

(ψuR̂2,u + 1)2.

The above expressions follow from the fact that R̂2,l and R̂2,u are constants when conditioning on the training

sample Zn. We use these expressions, to calculate the finite sample coverage guarantees of the proposed

confidence interval.

To construct the (1 − α)% confidence interval for n, we use the Imbens and Manski (2004) formula as

follows.

[n̂l − C̄N τ̂l, n̂u + C̄N τ̂u], (4.3)

where Φ
(
C̄N + n̂u−n̂l√

N(τ̂u∨τ̂l)

)
− Φ(−C̄N ) = 1 − α. The length of this interval increases with the estimated

efficiency bounds ςl and ςu, and the estimated bounds ψ̂−1
l and ψ̂−1

u . Moreover, this length increases with

the sample size (equivalently the population size) at a rate
√
N .

Imbens and Manski (2004) have shown in the coverage of their general proposed confidence interval is

not too small compared to the nominal coverage. In the following, theorem, we evaluate the actual error.

We present the result for the general case in theorem 4.1. In this section, the bounds and the estimated

bounds are linear functions of n and N respectively, and hence, the error for this set-up is slightly different

from the one in theorem 4.1.

Theorem 4.5. Let φl and φu be any generic influence functions for the estimation of ψ−1
l and ψ−1

u as in

theorem 4.4. Let ∆ = ψ−1
u −ψ−1

l and ∆̂ = ψ̂−1
u − ψ̂−1

l . Let τ̂u, τ̂l, τ̃u and τ̃l be defined as above. Further, for

a given n, let 0 < τ ≤ τ̃l, τ̃u, τ̂l, τ̂u ≤ τ̄ <∞ where τ and τ̄ are constants. Suppose the following assumption

holds.

Assumption 6. For a given ϵ > 0 and a constant c, there exists N0 and υ > 0 such that for all N > N0

P
(
|∆̂−∆| > cn−υ

)
< ϵ.
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Then the finite sample coverage error of the confidence interval in equation 4.3 of containing nu is bounded

as follows

(1− α)− P
(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂u + C̄N

√
Nτ̂u

)
≤

√
nψ√
2π

E

(
1
|R̂2,l|
τ̃l

+
|R̂2,u|
τ̃u

)
+

C√
nψ1.5

E
(
ρl
τ̃3l

+
ρu
τ̃3u

)
+ 1(∆ ̸= 0)E

{
2√
n
(1 + 2θ)

}

+
cN√
2π

{
E

(
1−

√
Nτ̂u√
nψτ̃u

)
+ E

(
1−

√
Nτ̂l√
nψτ̃l

)}

+

√
2

π
E

{
(Nτ̂2l ) ∨ (nψτ̃2l )

nψ(∆ ∧ |∆− R̂2,l|)2

(
1−

√
Nτ̂l√
nψτ̃l

)
∆√
Nτ̂l

}

+ 1(∆ ̸= 0) E

{(
1√
Nτ̂l

− 1√
nψτ̃u ∨

√
nψτ̃l

) √
2(
√
Nτ̂l ∨

√
nψτ̃u ∨

√
nψτ̃l)

2

√
πnψ∆

}

+ 1(∆ ̸= 0)
2
√
3

α
√
πψ2n1.5

E

[
|N − nψ|∆̂ + ψcn1−υ (τ̃u ∨ τ̃l)2

∆3

]

+ 1(∆ ̸= 0)
2
√
3

α
√
πψ

E

[
{
√
nψ(τ̃u ∨ τ̃l)−

√
N(τ̂u ∨ τ̂l)}

(τ̃u ∨ τ̃l)
(τ̂u ∨ τ̂l)2

N∆̂2
× 1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1

)]
,

where ρl = E
[
|1(Y ̸= 0)(ϕ̂l −Qϕ̂l) + {1(Y ̸= 0)− ψ}(R̂2,l + ψ−1

l )|3
∣∣Zn],

ρu = E
[
|1(Y ̸= 0)(ϕ̂u −Qϕ̂u) + {1(Y ̸= 0)− ψ}(R̂2,u + ψ−1

u )|3
∣∣Zn], and θ is the maximum value of the

density of (n̂u − nu)/(
√
Nτ̂u) and (n̂l − nl)/(

√
Nτ̂l), and C is the Berry-Esseen constant.

The above theorem says that the proposed confidence interval in 4.3 contains the true upper bound nu

with probability at least as large as 1−α minus some error terms. A similar result follows for the lower bound

nl. Hence, the proposed confidence interval contains the true population size n with the same guarantee.

The first term in the error bound above summarizes the second order error term. The second term comes

from the Berry-Esseen normal approximation. The fourth and the fifth terms summarizes the bias in the

estimated variance and/or standard deviation. These terms are large if the estimated standard deviations

are smaller than the true standard deviations. The third and the remaining terms are all of order 1√
n
.

This error is sufficiently small when E|R̂2,l| and E|R̂2,u| are small. The details can be found in the

discussion following theorem 4.3 in section 4.4.2.

Remark 26. The coverage error presented in the above theorem is valid as long as ∆ and ∆̂ are bounded

away from zero and depend on neither n nor N .

The simplified large sample coverage error is presented in the following corollary.
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Corollary 4.5.1. The error in coverage is bounded as follows for a sufficiently large n.

1− α− P
(
n̂l − C̄N

√
Nτ̂l ≤ n ≤ n̂u + C̄N

√
Nτ̂u

)
≲

1√
n
+
√
nE(|R̂2,l|+ |R̂2,u|).

The above error decreases and n increases if the second order remainder terms are sufficiently small.

4.6 Simulation & Application

In this section, we check the performance of the proposed method in a simulated set-up and then apply it

to real data.

4.6.1 Estimation in a simulated set-up

We have used a simulation set-up similar to the one in Das et al. (2021), but we added some dependence

between the two lists. The true risk ratio function is approximately 1.2. Below is the simulation set-up.

X ∼ Normal(2, 1)

P(Y1 = 1 | Y2 = 1, X = x) = expit(−3.214 + 0.5x)

P(Y1 = 1 | Y2 = 0, X = x) =
expit(−3.214 + 0.5x)

1.2

P(Y2 = 1 | X = x) = expit(−3.214 + 0.3x).

In this set-up, the true capture probability ψ is approximately 0.5. One can change the intercept term to

obtain a different capture probability. Also, instead of estimating the nuisance functions, we simulate the

estimates by perturbing the true nuisance functions with controlled as follows.

q̂j(x) = expit[logit{qj(x)}+ ϵj ]

where the errors ϵj are simulated from N (n−α, n−2α), where α ∈ {0.1, 0.25, 0.5} is the error rate. This

set-up allows us to study the robustness of our estimator against the error in the estimation of the nuisance

functions. Figure 4.1 shows the empirical coverage of the estimated 95% confidence intervals for n from 500

iterations. The true population size is 5000.

We see in figure 4.1, that the estimate confidence intervals have coverage close to the target level for a

wider range of ω when one uses the proposed method for slower error rates. The coverage of the plug-in and

the proposed methods are comparable for the parametric error rate which is n−0.5.
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Figure 4.1: Performance plot of capture probability and total population size as a function of the risk
ratio bound ω. The plots show the empirical coverage of n for different error rates in the estimation of the
q-probabilities. The true risk ratio is approximately 1.2 across all the covariates. The red and the yellow
lines mark the plug-in and the proposed methods. The horizontal line is the target coverage, i.e., 0.95 and
the vertical line marks the true risk ratio.

4.6.2 Application on real data

For the real data application, we apply our method on the Peru Internal Armed Conflict Data from 1980-2000

(Ball et al., 2003). This dataset mainly consists of 24,692 documented victims of the war, along with some

demographic and geographic covariate information. The data comes from three sources, i.e., three lists. We

combined two of these lists after comparing their demographic distribution. More details are available in

Das et al. (2021). In this section, we are interested in estimating the confidence interval for various levels of

deviation ω from the conditional independence assumption. Figure 4.2 shows the estimates lower and upper

bounds and the 95% confidence intervals for deviation upto 1.25. The exact true risk ratio is usually not

known. One can use calibration on the observed data to get an approximate range for the risk ratio and

select ω accordingly.

4.7 Discussion

In this paper, we have considered a sensitivity analysis approach to estimate population size in the capture-

recapture set-up. Das et al. (2021) presented inference when two lists are independent conditional on

covariate information. We consider a relaxation of this assumption and the degree of relaxation is the

sensitivity parameter. We quantify the dependence using the risk ratio between the two lists. One can also

obtain equivalent results using the odds ratio in a similar manner. We present flexible bound parameter

estimates for the target parameters under a margin condition. We also present the efficient influence

functions, the efficiency bounds and discuss that the proposed estimators achieve these bounds. We further

construct confidence intervals using Imbens and Manski (2004) formula and present the finite sample coverage
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Figure 4.2: The 95% confidence interval for the total number of victims in the Peru Internal Armed Conflict
of 1980-2000 as a function of the risk ratio bound ω.

guarantees for a general case. Finally, we apply the proposed approach to construct confidence intervals for

the number of victims of the Peru Internal Armed Conflict 1980-2000.
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Chapter 5

Conclusions

Population size estimation has applications in many areas. Hence, it is crucial to use reliable methods to

avoid oversight. Existing methods often have to choose between flexible estimation and achieving the fast
√
n-rates. Moreover, selecting a set-up that is not too restrictive for real data is crucial.

In this thesis, we have presented a nonparametric approach for population size estimation in a capture-

recapture set-up. We have discussed three problem set-ups, (i) estimation under conditional independence,

(ii) user-friendly software for real data implementation, and (iii) estimation under a relaxed assumption that

guarantees only partial identification for the target parameters.

In chapter 2, we have presented an estimator under a conditional independence identifiability assumption,

and we have shown that the proposed approach is efficient even under a flexible set-up. Further, the proposed

approach is doubly robust against errors in the estimation and is approximately normal. We also presented

a general formula to construct confidence intervals and evaluated the finite sample coverage error. Finally,

we estimated the size of the victim population and sub-populations on the Peru Internal Armed Conflict of

1980-2000.

In chapter 3, we presented the R package drpop that calculates the doubly robust population size

estimated from the input data. We illustrated the use of the package under various set-ups with examples.

Also, we presented some comparison against existing packages to demonstrate that the drpop package works.

In chapter 4, we considered a milder (in comparison to the assumption used in the previous chapters)

assumption that the dependence between two lists conditioned on the covariates is bounded. We appointed

a sensitivity approach for this and presented flexible estimators. We further presented confidence interval

formulas for the population size and evaluated the finite sample coverage guarantees for a general confidence

interval. We applied this method on the Peru data to evaluate the 95% interval as a function of the sensitivity

parameter.
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This thesis focuses on flexible and efficient estimation under a given lack of dependence assumption using

a pair of lists. When there are more than two lists, it is often of interest to utilize the extra structure of

the lists, if any. One immediate extension is when the conditional independent list pair is not known. One

can use a partial identification approach in this case to construct a confidence interval, as in chapter 4.

Another extension is when more than one list pair satisfies the conditional independence assumption. It can

be an important future work to study the advantages of this set-up and potentially improve the proposed

estimator. Considering the lack of dependence assumption in chapter 4 on the risk ratio, a variation of this

assumption can be to bound the risk ratio more flexibly than with strict point-wise bounds.
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Appendix A

Appendix for chapter 1

A.1 Proofs of theorems and results

Proof of proposition 1. The goal is to express ψ in terms of the observed data distribution Q. By

definition ψ = P(Y ̸= 0) and γ(x) = P(Y ̸= 0|X = x).

First we show that ψ is the harmonic mean of γ(x). It is easy to see that

γ(x)

ψ
=

P(Y ̸= 0|X = x)

P(Y ̸= 0)
=

P(Y ̸= 0, X = x)

P(X = x)P(Y ̸= 0)
=

P(X = x|Y ̸= 0)

P(X = x)
.

Thus,

∫
P(X = x)

ψ
dx =

∫
P(X = x|Y ̸= 0)

γ(x)
dx

or,
1

ψ
=

∫
Q(X = x)

γ(x)
dx, since Q(Z) = P(Z|Y ̸= 0).

We have shown a that the capture probability ψ is the harmonic mean of the conditional capture probabilities

γ(x) under the observed data distribution Q.

Next, we express γ(x) in terms of the q-probabilities. Under assumption 1, for any fixed covariate value

x,

P(Y1 = 1, Y2 = 1|X = x) = P(Y1 = 1|X = x)P(Y2 = 1|X = x).
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For a capture history y ̸= 0,

P(Y = y|X = x) =
P(Y = y|X = x)P(Y ̸= 0|X = x)

P(Y ̸= 0|X = x)

= P(Y = y|X = x,Y ̸= 0)γ(x)

= Q(Y = y|X = x)γ(x).

Substituting the above relation in the assumption statement and using the notation of the q-probabilities,

we get

or, Q(Y1 = 1, Y2 = 1|X = x)γ(x) = Q(Y1 = 1|X = x)Q(Y2 = 1|X = x)γ(x)2

or, γ(x) =
q12(x)

q1(x)q2(x)
.

Proof of lemma 2.0.1. There are several ways one can derive an efficient influence function and

corresponding efficiency bound. Here, we first find a putative influence function in the discrete case using a

standard Gateaux derivative argument. Then we show that this influence function is actually the efficient

one in a general nonparametric model (continuous or discrete or mixed), by checking that the corresponding

remainder term in a von Mises expansion is second-order.

To find a candidate influence function, we consider a special parametric submodel (i.e., deviation from

Q) given by Qϵ with density qϵ = (1 − ϵ)q(z) + ϵq̄(z) where q̄ = q̄(z) = 1(z = z̃) is a point mass at Z = z̃,

and for which the pathwise derivative

∂

∂ϵ

{
1

ψ(Qϵ)

} ∣∣∣∣∣
ϵ=0

actually equals the influence function (in the discrete case) Mises (1947); Hampel (1974). We also let qs,ϵ(x)

denote the analog of qs(x) under the submodel for s ∈ {1, 2, 12}, e.g., the marginal density for X under Qϵ
is

qϵ(x) =
∑
y

qϵ(z) = (1− ϵ)q(x) + ϵ1(x = x̃).
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Now the above pathwise derivative equals

∂

∂ϵ

{
1

ψ(Qϵ)

} ∣∣∣∣∣
ϵ=0

=
∂

∂ϵ

∫
q2,ϵ(x)q1,ϵ(x)

q12,ϵ(x)
qϵ(x)dx

∣∣∣∣∣
ϵ=0

=

∫
∂

∂ϵ

{
q2,ϵ(x)q1,ϵ(x)

q12,ϵ(x)
qϵ(x)

}
dx

∣∣∣∣∣
ϵ=0

=

∫
q2,ϵ(x)q1,ϵ(x)

q12,ϵ(x)
qϵ(x)

{
q′1,ϵ(x)

q1,ϵ(x)
+
q′2,ϵ(x)

q2,ϵ(x)
−
q′12,ϵ(x)

q12,ϵ(x)
+
q′ϵ(x)

qϵ(x)

}
dx

∣∣∣∣∣
ϵ=0

.

where the last line follows by the product rule. For the discrete case, we use the notation of the integral to

denote summation over x.

For the derivatives appearing above, by the definition of q̄, we have q′ϵ(x) =
∂
∂ϵqϵ(x) = 1(x = x̃)− q(x).

Similarly, by using derivative of product rule for q′1,ϵ(x), we get

q′1,ϵ(x) =
∂

∂ϵ
q1,ϵ(x) =

∂

∂ϵ

Qϵ(Y1 = 1,X = x)

qϵ(x)

=
∂

∂ϵ

(1− ϵ)Q(Y1 = 1,X = x) + ϵ1(Ỹ1 = 1,x = x̃)

(1− ϵ)q(x) + ϵ1(x = x̃)
, where Ỹ1 = 1(ỹ1 = 1)

=
−Q(Y1 = 1,X = x) + 1(Ỹ1 = 1,x = x̃)

(1− ϵ)q(x) + ϵ1(x = x̃)

− (1− ϵ)Q(Y1 = 1,X = x) + ϵ1(Ỹ1 = 1,x = x̃)

{(1− ϵ)q(x) + ϵ1(x = x̃)}2
q′ϵ(x).

The last step follows from the product rule of derivatives. Finally, setting ϵ = 0, we get q′1ϵ(x)|ϵ=0 =

1(x=x̃)
q(x) {Ỹ1 − q1(x)}. The derivatives for q2,ϵ and q12,ϵ follow similarly.

Thus, combining the above results and using the discrete nature of the distribution, we get

ϕ =
∂

∂ϵ

{
1

ψ(Qϵ)

} ∣∣∣∣∣
ϵ=0

=
∑
x

q1(x)q2(x)

q12(x)
1(x = x̃)

{
Ỹ1 − q1(x)

q1(x)
+
Ỹ2 − q2(x)

q2(x)
− Ỹ1Ỹ2 − q12(x)

q12(x)

}

+
∑
x

q1(x)q2(x)

q12(x)
{1(x = x̃)− q(x)}

=
1

γ(x̃)

{
Ỹ1
q2(x̃)

+
Ỹ2
q2(x̃)

− Ỹ1Ỹ2
q12(x̃)

}
− 1

ψ
, using the definition of γ(x).

Now that we have a candidate influence function that is valid in a discrete model, we evaluate the

remainder term R2 in a general submodel, to show that it is actually the efficient influence function in the

general case as well.
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Letting ψ̄ = ψ(Q̄) for a generic distribution Q̄, the remainder of the so-called von Mises expansion (Bickel

et al., 1993; van der Laan and Robins, 2003) is then given by:

R2(Q, Q̄) ≡ 1

ψ̄
− 1

ψ
+

∫
ϕ(z; Q̄)dQ

=

∫ [
1

γ̄(x)

{
Y1
q̄1(x)

+
Y2
q̄2(x)

− Y1Y2
q̄12(x)

}
− 1

ψ̄
+

1

ψ̄
− 1

ψ

]
dQ(x)

=

∫ [
1

γ̄(x)

{
q1(x)

q̄1(x)
+
q2(x)

q̄2(x)
− q12(x)

q̄12(x)

}
− 1

γ(x)

]
dQ(x)

=

∫ {
q1(x)q̄2(x)

q̄12(x)
+
q̄1(x)q2(x)

q̄12(x)
− q12(x)

γ̄(x)q̄12(x)
− 1

γ(x)

}
dQ(x)

=

∫ {
q1(x)q̄2(x)

q̄12(x)
+
q̄1(x)q2(x)

q̄12(x)
− q̄1(x)q̄2(x)

q̄12(x)
− q1(x)q2(x)

q̄12(x)

+
q̄1(x)q̄2(x)

q̄12(x)
+
q1(x)q2(x)

q̄12(x)
− q12(x)

γ̄(x)q̄12(x)
− 1

γ(x)

}
dQ(x)

=

∫
1

q̄12(x)

[
{q1(x)− q̄1(x)} {q̄2(x)− q2(x)}

+ {q12(x)− q̄12(x)}
{

1

γ(x)
− 1

γ̄(x)

}]
dQ(x).

The above shows that the remainder of the von Mises expansion is second-order, i.e., involving products

of differences between components of Q and Q̄. This fact implies the more general pathwise differentiability

condition that
∂

∂ϵ

{
1

ψ(Qϵ)

} ∣∣∣∣∣
ϵ=0

=

∫
ϕ
∂

∂ϵ

{
log qϵ(z)

∣∣∣
ϵ=0

}
dQ.

for any smooth parametric submodel Qϵ (Kennedy, 2020). Thus, the candidate influence function satisfies

the above pathwise differentiability condition and hence, is an efficient influence function. Moreover, since

the model is non-parametric, ϕ is the only efficient influence function (Bickel et al., 1993; Tsiatis, 2006;

van der Vaart, 2002b).
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Proof of Theorem 2.1. We will evaluate the variance of the efficient influence function ϕ ≡ ϕ(Z;Q).

Recall, Z = (Y,X). Hence, we use the law of total variance by conditioning on X.

var(ϕ) = var

[
1

γ(X)

{
Y1

q1(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

}
− 1

ψ

]

= var

(
E

[
1

γ(X)

{
Y1

q1(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

} ∣∣∣∣∣X
])

+ E

(
var

[
1

γ(X)

{
Y1

q1(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

} ∣∣∣∣∣X
])

, by the law of total variance

= var

{
1

γ(X)

}
+ E

[
1

γ(X)2

{
1− q1(X)

q1(X)
+

1− q2(X)

q2(X)
+

1− q12(X)

q12(X)

+ 2
q12(X)− q1(X)q2(X)

q1(X)q2(X)
− 2

q12(X)− q1(X)q12(X)

q1(X)q12(X)
− 2

q12(X)− q2(X)q12(X)

q2(X)q12(X)

}]

= var

{
1

γ(X)

}
+ E

[
1

γ(X)2

{
2γ(X)− 1

q1(X)
− 1

q2(X)
+

1

q12(X)
− 1

}]
.

The last two equalities follow by evaluating the conditional expectation and the variance the two terms

respectively and the relation that γ(x) = q12(x)
q1(x)q2(x)

. By simple algebra, we can further simplify the variance

as follows

var(ϕ) = var

{
1

γ(X)

}
+ E

[
1

γ(X)2

{
2γ(X)− 1

q1(X)
− 1

q2(X)
+

1

q12(X)
− 1

}]

= var

{
1

γ(X)

}
+ E

[
1

γ(X)2

{
2γ(X)− 1 + q12(X)− q0(X)

q1(X)q2(X)
+

1

q12(X)
− 1

}]

= var

{
1

γ(X)

}
+ E

(
1

γ(X)

[{
1

γ(X)
− 1

}{
1

q12(X)
− 1

}
+

q0(X)

q12(X)

])
.

Recall: q0(X) = Q(Y1 = 0, Y2 = 0 | Y ̸= 0,X = X).

Proof of Theorem 2.2. Let EN = ψ̂−1
dr − ψ−1 −QNϕ. We can expand it as follows.

EN =
1

ψ̂dr
− 1

ψ
−QNϕ

=
1

ψ̂pi
+QN ϕ̂− 1

ψ
−QNϕ, using the definition in equation 2.9

= −
∫
ϕ̂(z)dQ(z) + R̂2 +QN ϕ̂−QNϕ, using von Mises expansion of ψ̂−1.

The last step follows using 1

ψ̂
− 1

ψ = −
∫
ϕ̂(z)dQ(z) + R̂2 from the proof of lemma 2.0.1. The formula of R̂2

is presented in the proof of lemma 2.0.1.
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For simplicity of notation in the proof we will use Q(·) = E(·|Y ̸= 0,Zn) =
∫
(·)dQ(z) to denote the

observed population average function conditioned on the training sample Zn. Using that fact that Qϕ = 0,

we get

EN = R̂2 + (QN −Q)(ϕ̂− ϕ).

We want to bound EN by presenting a bound on E(E2
N ). We will show that the expected value of E is

expected value of the error term R̂2.

E(EN ) = E {E (EN |Zn)}

= E
[
E
{
R̂2 + (QN −Q)(ϕ̂− ϕ)

∣∣Zn}]
= E(R̂2) + E

[
E
{
(QN −Q)(ϕ̂− ϕ)

∣∣Zn}] .
Next, we will show that the second quantity is 0.

E
[
E
{
(QN −Q)(ϕ̂− ϕ)

∣∣Zn}] = E
[
E
{
QN (ϕ̂− ϕ)−Q(ϕ̂− ϕ)

∣∣Zn}]
= E

{
E
(
ϕ̂− ϕ

∣∣Zn)− E
(
ϕ̂− ϕ

∣∣Zn)}
= 0.

The second equality follows because QN is evaluated on i.i.d. terms and Q(ϕ̂−ϕ) = E(ϕ̂−ϕ|Zn) by definition.

Next, we evaluate the variance of EN .

var(EN ) = E{var(EN |Zn)}+ var{E(EN |Zn)}, by the law of total variance

= E{var(EN |Zn)}+ var(R̂2)

= E
[
var
{
R̂2 + (QN −Q)(ϕ̂− ϕ)

∣∣∣Zn}]+ var(R̂2)

= E
[
var
{
QN (ϕ̂− ϕ)

∣∣∣Zn}]+ var(R̂2).

The last equality follows because R̂2 and Q(·) are constants when conditioned on Zn. Now,

var
{
QN (ϕ̂− ϕ)

∣∣Zn} =
1

N
var(ϕ̂− ϕ|Zn), property of variance of sample average

≤ 1

N
∥ϕ̂− ϕ∥2.

Thus, combining the above results we get E(E2
N ) ≤ E(R̂2

2) +
E∥ϕ̂−ϕ∥2

N .
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Hence, by using Markov’s inequality combined with the above inequality gives the required result.

P
(∣∣∣ψ̂−1

dr − ψ−1 −QNϕ
∣∣∣ ≤ δ

)
≥ 1− 1

δ2
E(E2

N ).

Proof of Theorem 2.3. The error in the estimation of ψ−1 is ψ̂−1−ψ−1. Following the proof of Theorem

2.2, it can be expressed as

ψ̂−1 − ψ−1 = (QN −Q)ϕ̂+ R̂2,

where Qϕ̂ denotes
∫
ϕ̂(z)dQ(z) as mentioned in the proof of Theorem 2.2.

Let σ̃2 = var(ϕ̂ | Zn), and note ψ̂−1 − ψ−1 − R̂2 = (QN − Q)ϕ̂ is a sample average of a fixed function

given the training sample Zn. Therefore by Berry-Esseen we have for any t′ and N that

Φ(t′)− Cρ

σ̃3
√
N

≤ P

(
ψ̂−1 − ψ−1 − R̂2

σ̃/
√
N

≤ t′
∣∣∣ Zn) ≤ Φ(t′) +

Cρ

σ̃3
√
N

Taking t′ = σ̂
σ̃ t−

R̂2

σ̃/
√
N

for σ̂2 = v̂ar(ϕ̂) and ρ = E
(
|ϕ̂−Qϕ̂|3

∣∣∣Zn), this implies

Φ

(
σ̂

σ̃
t− R̂2

σ̃/
√
N

)
− Cρ

σ̃3
√
N

≤ P

(
ψ̂−1 − ψ−1

σ̂/
√
N

≤ t
∣∣∣ Zn) ≤ Φ

(
σ̂

σ̃
t− R̂2

σ̃/
√
N

)
+

Cρ

σ̃3
√
N

Now note by the mean value theorem, for some tn between t and t+
(
σ̂
σ̃ − 1

)
t− R̂2

σ̃/
√
N
, we have that

∣∣∣∣∣Φ
(
t+

(
σ̂

σ̃
− 1

)
t− R̂2

σ̃/
√
N

)
− Φ(t)

∣∣∣∣∣ =
∣∣∣∣∣Φ′(tn)

{(
σ̂

σ̃
− 1

)
t− R̂2

σ̃/
√
N

}∣∣∣∣∣
≤ 1√

2π

(∣∣∣∣ σ̂σ̃ − 1

∣∣∣∣ |t|+ |R̂2|
σ̃/

√
N

)
≡ ∆n

where the second inequality used the fact that suptΦ
′(t) ≤ 1/

√
2π and the triangle inequality.

Therefore

−∆n − Cρ

σ̃3
√
N

≤ P

(
ψ̂−1 − ψ−1

σ̂/
√
N

≤ t
∣∣∣ Zn)− Φ(t) ≤ ∆n +

Cρ

σ̃3
√
N

This implies by iterated expectation that∣∣∣∣∣P
(
ψ̂−1 − ψ−1

σ̂/
√
N

≤ t

)
− Φ(t)

∣∣∣∣∣ ≤
√

1

2π

{
√
NE

(
|R̂2|
σ̃

)
+ |t|E

(∣∣∣∣ σ̂σ̃ − 1

∣∣∣∣)
}

+
C√
N

E
( ρ
σ̃3

)
.
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Therefore if σ̃ ≳ 1 with probability one, E(ρ) < c′ for some c′ > 0, E|σ̃ − σ̂| ≲ n−1/2 and E|R̂2| ≲ n−2β ,

then ∣∣∣∣∣P
(
ψ̂−1 − ψ−1

σ̂/
√
N

≤ t

)
− Φ(t)

∣∣∣∣∣ ≲ n−1/2 + n(1−4β)/2

If β > 1/4, then there exists an N = Nϵ guaranteeing that the LHS is no more than ϵ.

Bound on E|σ̂ − σ̃|

We will show that this bound is n−1/2. For ϕ̂, we have defined the quantities σ̃2 = var(ϕ̂ | Zn) and

σ̂2 = v̂ar(ϕ̂). We can further expand σ̃2 as follows

σ̃2 = var(ϕ̂ | Zn) = E
(
ϕ̂2|Zn

)
−
{
E
(
ϕ̂|Zn

)}2

.

The second quantity σ̂2 is the unbiased estimator of the variance of ϕ̂ given the test sample i.e.

N
N−1

{
QN ϕ̂2 − (QN ϕ̂)2

}
. Then by iterated expectation

E(σ̂2) = E{E(σ̂2 | Zn)} = E(σ̃2),

where the second equality follows from the unbiasedness property.

We need the bound on |σ̂ − σ̃| which can be expressed as a linear function of the absolute difference of

the respective squares.

|σ̂ − σ̃| = |σ̂ − σ̃| |σ̂ + σ̃|
|σ̂ + σ̃|

≤ ϵ−1|σ̂2 − σ̃2|, if σ̂ + σ̃ > ϵ > 0.

Hence, it is enough to show the bound on |σ̂2 − σ̃2|. Equivalently, we can show that E|σ̂2 − σ̃2|2 ≲ n−1.

Evaluating this quantity by the law of iterated expectation

E
(
σ̂2 − σ̃2

)2
= E

[
E
{(
σ̂2 − σ̃2

)2 ∣∣Zn}]
= E

{
E
(
σ̂4 + σ̃4 − 2σ̂2σ̃2

∣∣Zn)}
= E

{
E
(
σ̂4
∣∣Zn)− σ̃4

}
,
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where the last equality follows from E(σ̂2|Zn) = σ̃2. Next, we evaluate σ̂4.

σ̂4 =
(
σ̂2
)2

=
N2

(N − 1)2


∑
i ϕ̂

2

N
−

(∑
i ϕ̂

N

)2


2

=
N2

(N − 1)2

{∑
i ϕ̂

4
i +

∑
i̸=j ϕ̂

2
i ϕ̂

2
j

N2
− 2

∑
i ϕ̂

4
i +

∑
i ̸=j ϕ̂

2
i ϕ̂

2
j + 2

∑
i ̸=j ϕ̂

3
i ϕ̂j +

∑
i ̸=j ̸=k ϕ̂

2
i ϕ̂j ϕ̂k

N3

+

∑
i ϕ̂

4
i + 3

∑
i̸=j ϕ̂

2
i ϕ̂

2
j + 4

∑
i ̸=j ϕ̂

3
i ϕ̂j + 6

∑
i ̸=j ̸=k ϕ̂

2
i ϕ̂j ϕ̂k +

∑
i ̸=j ̸=k ̸=l ϕ̂iϕ̂j ϕ̂kϕ̂l

N4

}
.

Let µm = E(ϕ̂m | Zn). Thus, E(σ̂2 | Zn) = σ̃2 = µ2 − µ2
1.

E
(
σ̂4 | Zn

)
=

N2

(N − 1)2

{
Nµ4 +N(N − 1)µ2

2

N2

− 2
Nµ4 +N(N − 1)µ2

2 + 2N(N − 1)µ3µ1 +N(N − 1)(N − 2)µ2µ
2
1

N3

+
µ4 + 3(N − 1)µ2

2 + 4(N − 1)µ3µ1 + 6(N − 1)(N − 2)µ2µ
2
1

N3

+
(N − 1)(N − 2)(N − 3)µ4

1

N3

}
=

µ4

(N − 1)2

{
N − 2 +

1

N

}
+

µ2
2

N − 1

{
N − 2 +

3

N

}
+

µ3µ1

N − 1

{
−2 +

4

N

}
+

µ2µ
2
1

N − 1

{
−2(N − 2) +

6(N − 2)

N

}
+

µ4
1

N − 1

(N − 2)(N − 3)

N

=
µ4

N
+
µ2
2(N

2 − 2N + 3)

N(N − 1)
− 2

µ3µ1(N − 2)

N(N − 1)
− 2µ2µ

2
1(N − 2)(N − 3)

N(N − 1)

+
µ4
1(N − 2)(N − 3)

N(N − 1)
.

Thus, combining the results

E
(
σ̂4
∣∣Zn)− σ̃4

=
µ4

N
+
µ2
2(N

2 − 2N + 3)

N(N − 1)
− 2

µ3µ1(N − 2)

N(N − 1)
− 2µ2µ

2
1(N − 2)(N − 3)

N(N − 1)
+
µ4
1(N − 2)(N − 3)

N(N − 1)

− (µ2 − µ2
1)

2, since E(σ̂2 | Zn) = σ̃2 = µ2 − µ2
1

=
µ4

N
− µ2

2(N − 3)

N(N − 1)
+

4µ2µ
2
1(2N − 3)

N(N − 1)
− 2µ4

1(2N − 3)

N(N − 1)
− 2

µ3µ1(N − 2)

N(N − 1)

≲ N−1 ≲ n−1.

Thus,
∣∣σ̂2 − σ̃2

∣∣ ≲ 1√
n
.
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Proof of Theorem 2.4. The estimate of population size, n̂ = N/ψ̂ depends on two random quantities (i)

the number of observations N and (ii) the estimate of the capture probability ψ.

Calculation of mean and variance of n̂

First, we re-write N

ψ̂
as a sample average for ease of calculation. As mentioned in the proof of Theorem 2.2,

we use Qφ̂ to denote the population average conditioned on training sample Zn i.e.,
∫
φ̂(z)dQ(z).

n̂− n = N/ψ̂ −N/ψ +N/ψ − n

= N
{
(QN −Q)φ̂+ R̂2

}
+N/ψ − n, (follows from proof of Theorem 2.2)

= nPn1(Y ̸= 0)
(
φ̂−Qφ̂+ R̂2 + ψ−1

)
− n, since N = nPn1(Y ̸= 0)

= nPn
[
1(Y ̸= 0) (φ̂−Qφ̂) + {1(Y ̸= 0)− ψ}

(
R̂2 + ψ−1

)]
︸ ︷︷ ︸

ζ

+nψR̂2.

Thus, n̂−n−nψR̂2 is a sample average nPnζ. Moreover, when we condition on the training sample Zn, the

ζ’s are i.i.d. We present the conditional mean and variance of ζ below.

E(ζ|Zn) = E{E(ζ|Y ̸= 0,Zn)|Zn} = 0.

var(ζ|Zn) = var{E(ζ|Y ̸= 0,Zn)}+ E{var(ζ|Y ̸= 0,Zn)}

= var
[
{1(Y ̸= 0)− ψ} (R̂2 + ψ−1)

∣∣Zn]+ E
[
1(Y ̸= 0)var (φ̂|Zn)

∣∣Zn]
= ψ(1− ψ)(R̂2 + ψ−1)2 + ψ var (φ̂|Zn)

=
1− ψ

ψ
(ψR̂2 + 1)2 + ψς̃2, defining ς̃2 = var(φ̂|Zn).

The population expectation of n̂− n is nψE(R̂2). And the population variance is presented below.

var(n̂− n) = var{E(n̂− n|Zn)}+ E{var(n̂− n|Zn)}

= var{E(nPnζ + nψR̂2|Zn)}+ E{var(nPnζ + nψR̂2|Zn)}

= var(nψR̂2) + E{n var(ζ|Zn)}

= n2ψ2var(R̂2) + nψE
(
ς̃2
)
+ n

1− ψ

ψ
E(ψR̂2 + 1)2.

Thus, E(n̂− n)2 = n2ψ2E(R̂2
2) + nψE

(
ς̃2
)
+ n 1−ψ

ψ E(ψR̂2 + 1)2.

If E|R̂2| is sufficiently small, then n̂ − n has expectation approximately 0 and variance approximately

nψς2 + n(1− ψ)/ψ, where ς2 = var(φ).

Approximate normality

92



We define the estimated variance of n̂ − n − nψR̂2 conditioned on the training sample as n̂τ̂2, where

τ̂2 = ψ̂ς̂2 + 1−ψ̂
ψ̂

and ς̂2 = v̂ar(φ̂|Zn) is the unbiased estimator of ς̃2 conditioned on the training data. Let

τ̃2 = var(ζ|Zn) = ψς̃2 + 1−ψ
ψ (ψR̂2 + 1)2.

We ultimately want to see the error in normal approximation for n̂−n
τ̂
√
n̂
.

By Berry-Esseen we have for any t′ and n that

Φ(t′)− Cρ

τ̃3
√
n
≤ P

(
n̂− n− nψR̂2

τ̃
√
n

≤ t′
∣∣∣ Zn) ≤ Φ(t′) +

Cρ

τ̃3
√
n

Taking t′ = τ̂
√
n̂

τ̃
√
n
t− ψR̂2

τ̃/
√
n
and ρ = E

(
|ζ|3
∣∣Zn), this implies

Φ

(
τ̂
√
n̂

τ̃
√
n
t− ψR̂2

τ̃ /
√
n

)
− Cρ

τ̃3
√
n
≤ P

(
n̂− n

τ̂
√
n̂

≤ t
∣∣∣ Zn) ≤ Φ

(
τ̂
√
n̂

τ̃
√
n
t− ψR̂2

τ̃ /
√
n

)
+

Cρ

τ̃3
√
n

or equivalently

Φ

(
t
τ̂
√
n̂

τ̃
√
n
− ψR̂2

τ̃ /
√
n

)
− Φ(t)− Cρ

τ̃3
√
n
≤ P

(
n̂− n

τ̂
√
n̂

≤ t
∣∣∣ Zn)− Φ(t)

≤ Φ

(
t
τ̂
√
n̂

τ̃
√
n
− ψR̂2

τ̃ /
√
n

)
− Φ(t) +

Cρ

τ̃3
√
n
.

Now note by the mean value theorem, for some tn between t and t τ̂
√
n̂

τ̃
√
n
− ψR̂2

τ̃/
√
n
, we have that

∣∣∣∣∣Φ
(
t
τ̂
√
n̂

τ̃
√
n
− ψR̂2

τ̃ /
√
n

)
− Φ(t)

∣∣∣∣∣ =
∣∣∣∣∣Φ′(tn)

{(
τ̂
√
n̂

τ̃
√
n
− 1

)
t− ψR̂2

τ̃ /
√
n

}∣∣∣∣∣
≤ 1√

2π

(∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣ |t|+ ψ|R̂2|
τ̃ /

√
n

)
≡ ∆n

where the second inequality used the fact that suptΦ
′(t) ≤ 1/

√
2π and the triangle inequality.

Therefore

−∆n − Cρ

τ̃3
√
n
≤ P

(
n̂− n

τ̂
√
n̂

≤ t
∣∣∣ Zn)− Φ(t) ≤ ∆n +

Cρ

τ̃3
√
n

This implies by iterated expectation that

∣∣∣∣P( n̂− n

τ̂
√
n̂

≤ t

)
− Φ(t)

∣∣∣∣ ≤
√

1

2π

{√
nψE|R̂2|
τ̃

+ |t|E

(∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣
)}

+
C√
n
E
( ρ
τ̃3

)
.
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Bound on E
∣∣∣ τ̂√n̂
τ̃
√
n
− 1
∣∣∣

It is easy to see that

1√
nτ̃

∣∣∣τ̂√n̂− τ̃
√
n
∣∣∣ = 1√

nτ̃

∣∣∣τ̂√n̂− τ̃
√
n
∣∣∣
∣∣∣τ̂√n̂+ τ̃

√
n
∣∣∣∣∣∣τ̂√n̂+ τ̃

√
n
∣∣∣ ≤

∣∣τ̂2n̂− τ̃2n
∣∣

nτ̃2
.

By simple algebra, we can bound the quantity on the right hand side above as follows.

1

nτ̃2

∣∣∣∣τ̂2N
ψ̂

− τ̃2n

∣∣∣∣ = 1

nτ̃2

∣∣∣∣∣ψ̂ς̂2Nψ̂ +
1− ψ̂

ψ̂

N

ψ̂
− ψς̃2n− 1− ψ

ψ
(ψR̂2 + 1)2n

∣∣∣∣∣
≤ N

nτ̃2
|ς̂2 − ς̃2|+ 1

nψ
|N − nψ|+ N

nτ̃2

∣∣∣∣ 1
ψ̂2

− 1

ψ2
− 1

ψ̂
+

1

ψ

∣∣∣∣
+

1

τ̃2
(1− ψ)

(
ψR̂2

2 + 2|R̂2|
)
.

The last inequality follows using the definition of τ̃ and triangle inequality. To evaluate the third term, we

will use the relation ψ̂−1 − ψ−1 = (QN −Q)φ̂+ R̂2. Thus,

1

ψ̂2
− 1

ψ2
− 1

ψ̂
+

1

ψ

=
{
ψ−1 + (QN −Q)φ̂+ R̂2

}2

− ψ−2 − (Q−QN )φ̂− R̂2

= {(QN −Q)φ̂}2 + R̂2
2 + (2ψ−1 + 2R̂2 − 1)(QN −Q)φ̂+ (2ψ−1 − 1)R̂2.

Similar to the proof of Theorem 2.2,

E
{∣∣(QN −Q)φ̂

∣∣∣∣∣∣Zn} ≤
(
E
[{

(QN −Q) φ̂
}2∣∣∣∣Zn])1/2

=
ς̃√
N

≤ τ̃√
ψN

.

The last bound follows by the relation between τ̃ and ς̃. Thus,

E

{∣∣∣∣ 1
ψ̂2

− 1

ψ2
− 1

ψ̂
+

1

ψ

∣∣∣∣
∣∣∣∣∣Zn
}

≤ E
[
{(QN −Q)φ̂}2

∣∣Zn]+ R̂2
2 +

∣∣∣2ψ−1 + 2R̂2 − 1
∣∣∣E{∣∣(QN −Q)φ̂

∣∣∣∣∣∣Zn}+ (2ψ−1 − 1)
∣∣∣R̂2

∣∣∣
≤ τ̃2

Nψ
+ R̂2

2 +
∣∣∣2ψ−1 + 2R̂2 − 1

∣∣∣ τ̃√
Nψ

+ (2ψ−1 − 1)
∣∣∣R̂2

∣∣∣ .
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Combining the results above, we get the following bound.

E

∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣ ≤ E
(
N

nτ̃2
|ς̂2 − ς̃2|

)
+

1

nψ
E|N − nψ|+ 1

nψ
+ E

(
NR̂2

2

nτ̃2

)

+ E

(∣∣∣2ψ−1 + 2R̂2 − 1
∣∣∣ √

N

n
√
ψτ̃

)
+ (2ψ−1 − 1)E

(
N |R̂2|
nτ̃2

)
+ (1− ψ)E

(
ψR̂2

2 + 2|R̂2|
τ̃2

)
.

Next, using the inequality that N ≤ n and E|N − nψ| ≤
{
E (N − nψ)

2
}1/2

= {nψ(1− ψ)}1/2, we get

E

∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣ ≤ E
(
|ς̂2 − ς̃2|
τ̃2

)
+

√
1− ψ√
nψ

+
1

nψ
+ E

(
R̂2

2

τ̃2

)
+ E


(
2ψ−1 − 1 + 2|R̂2|

)
√
nψτ̃


+ (2ψ−1 − 1)E

(
|R̂2|
τ̃2

)
+ (1− ψ)E

(
ψR̂2

2 + 2|R̂2|
τ̃2

)

= E
(
|ς̂2 − ς̃2|
τ̃2

)
+

√
1− ψ√
nψ

+
1

nψ
+ {ψ (1− ψ) + 1}E

(
R̂2

2

τ̃2

)
+ E

(
2ψ−1 − 1√

nψτ̃

)

+ E

{
|R̂2|
τ̃2

(
2τ̃√
nψ

+ 2ψ−1 + 1− 2ψ

)}

≤ E
(
|ς̂2 − ς̃2|
τ̃2

)
+

√
1− ψ√
nψ

+
1

nψ
+ E

(
2ψ−3/2

√
nτ̃

)
+ 2E

(
R̂2

2

τ̃2

)

+ E

{
|R̂2|
τ̃2

(
2τ̃√
nψ

+ 2ψ−1 + 1− 2ψ

)}
.

Next, we obtain the asymptotic bound on the absolute difference in the cumulative functions.

Let E|R̂2| ≲ n−2β . Following the proof of Theorem 2.3 we have E|ς̂2 − ς̃2| ≲ n−1/2. Thus, if τ̃ ≳ 1 with

probability 1 and ψ ≥ ϵ > 0 then

E

∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣ ≲ n−1/2 + n−2β .

Further, if E
(
ρ
τ̃3

)
< c for some finite constant c,

∣∣∣∣P( n̂− n

τ̂
√
n̂

≤ t

)
− Φ(t)

∣∣∣∣ ≲ n(1−4β)/2 + n−1/2.

Coverage error
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The (1− α)% estimated CI for n is n̂± zα/2τ̂
√
n̂.

∣∣∣P(n̂− zα/2τ̂
√
n̂ ≤ n ≤ n̂+ zα/2τ̂

√
n̂
)
− (1− α)

∣∣∣
=

∣∣∣∣P(n− n̂

τ̂
√
n̂

≤ zα/2

)
− P

(
n− n̂

τ̂
√
n̂

≤ −zα/2
)
− Φ(zα/2) + Φ(−zα/2)

∣∣∣∣
≤
∣∣∣∣P(n− n̂

τ̂
√
n̂

≤ zα/2

)
− Φ(zα/2)

∣∣∣∣+ ∣∣∣∣P(n− n̂

τ̂
√
n̂

≤ −zα/2
)
− Φ(−zα/2)

∣∣∣∣
≤
√

2

π

{√
nψE|R̂2|
τ̃

+ |zα/2|E

(∣∣∣∣∣ τ̂
√
n̂

τ̃
√
n
− 1

∣∣∣∣∣
)}

+
2C√
n
E
( ρ
τ̃3

)
≲ n(1−4β)/2 + n−1/2.

A.1.1 Two lists vs multiple lists

The data-set under consideration has K lists. The proposed method focuses on the conditional independence

assumption of two lists (Y1 ⊥⊥ Y2 | X). The question is, when there are more than two lists, whether one

should ignore the other K − 2 lists (i.e. delete all rows that appear in neither list 1 nor list 2, but only in

one or more of the remaining lists), or keep them. To answer this question, we evaluate the variance under

these two cases. Below we present the variance of the estimated population size when ψ is known.

var(n̂) = var

(
N

ψ

)
=
nψ(1− ψ)

ψ2
= n

(
1

ψ
− 1

)
.

1. Only two lists used

ψ = P(Y1 ̸= 0 or Y2 ̸= 0).

γ(x) = P((Y1, Y2) ̸= (0, 0) | X = x).

2. All lists used

ψ = P(Y1 ̸= 0 or Y2 ̸= 0 or . . . YK ̸= 0).

γ(x) = P(Y ̸= 0 | X = x).

The ψ and the γ(x) for this case are larger than the ones for the two list case above.

It is easy to see that var(n̂) is smaller when all K lists are used since we observe more individuals.
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A.2 TMLE

In this section we present the targeted maximum likelihood algorithm to estimate the capture probability

ψ. We iteratively obtain estimate for the nuisance functions i.e., the q-probabilities. These estimates, q̂∗’s

are used to obtain ψ̂tmle.

Algorithm 1: TMLE algorithm for estimating ψ

1. Obtain initial estimates of q12(x), q1(x) and q2(x), denoted q̂12,0(x), q̂1,0(x) and q̂2,0(x). Set t = 0.

2. At step t, construct clever covariates:

(a) H12,t =
q̂1,t(X)q̂2,t(X)
q̂12,t(X)2 − q̂1,t(X)

q̂12,t(X) −
q̂2,t(X)
q̂12,t(X)

(b) H1,t =
q̂2,t(X)
q̂12,t(X)

(c) H2,t =
q̂1,t(X)
q̂12,t(X) .

3. Regress Y1Y2 on H12,t using a no-intercept logistic model with logit{q̂12,t(X)} as offset, obtaining

estimated coefficient β̂12,t. Set q̂12,t+1(X) = expit
[
logit{q̂12,t(X)}+ β̂12H12,t

]
.

4. Regress Y1(1− Y2) on H1,t using a no-intercept logistic model with logit{q̂1,t(X)− q̂12,t+1(X)} as

offset, obtaining estimated coefficient β̂1,t. Set

q̂1,t+1(X) = min
{
q̂12,t+1(X) + expit

[
logit{q̂1,t(X)− q̂12,t+1(X)}+ β̂1,tH1,t

]
,

1− q̂12,t+1(X)
}
.

5. Regress Y2(1− Y1) on H2,t using a no-intercept logistic model with logit{q̂2,t(x)− q̂12,t+1(x)} as

offset, obtaining estimated coefficient β̂2,t. Set

q̂2,t+1(X) = min
{
q̂12,t+1(X) + expit

[
logit{q̂2,t(X)− q̂12,t+1(X)}+ β̂2,tH2,t

]
,

1 + q̂12,t+1(X)− q̂1,t+1(X)
}
.

6. Update t −→ t+ 1. Repeat Steps 2 to 6 until convergence (e.g., until maxj |β̂j,t+1| ≤ ϵ).

Finally, set ψ̂tmle =
[
QN

{
q̂∗1 (X)q̂∗2 (X)
q̂∗12(X)

}]−1

, with q̂∗j estimates obtained after convergence.

Remark 27. Step 5 in the algorithm can be modified so that for K = 2, q2 is evaluated by q̂2,t+1(x) =

1 + q̂12,t+1 − q̂1,t+1(x). This step uses the relation that for K = 2, q1 + q2 − q12 = 1.
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A.3 Simulated data for varying total population size

The plug-in, the doubly robust and the TMLE are applied on the simulated data from section 2.6.1 total

population size varying from 5000 to 25000. We focus on the case α = 0.25 since it is the non-parametric

convergence rate. The plots are presented in figure A.1. For each combination of (ψ, n), we simulated a

dataset 500 times. The bias and RMSE of all three estimators decrease with the true total population size

n and hence with the sample size N . However, the doubly robust and the targeted maximum likelihood

estimators have smaller bias and RMSE. Similarly, the coverage of the total population size estimate for

the plug-in estimator is much lower than the nominal coverage of 0.95 compared to the proposed methods’

coverage.

A.4 Peru Internal Conflict Data 1980-2000

The data is collected by the Truth and Reconciliation Commission of Peru (Ball et al., 2003). It was further

expanded by Rendon (2019a) with the addition of geographical parameters (Rendon, 2019b). The original

dataset contains the geographic location in the form of Peru’s UBIGEO codes. Rendon (2019a) added the

continuous geographical coordinates for each region.

Ball et al. (2003) divided Peru into 58 stratas using the UBIGEO codes. We used the approach of Rendon

(2019a) and calculated the latitude, longitude and area for a region (department or strata) using shape files

from PERÚ (2014). For the latitude and longitude of a region, we averaged the latitude and longitude of

the border of that region as in Rendon (2019a).

The victims that have no assigned strata are discarded by Ball et al. (2003). We present the statistics of

these victims in table A.1.

Department State PCP-Shining Path Others Unidentified
No department available 396 137 11 369

Ayacucho 1257 21 102 38
Huancavelica 79 0 2 0

Junin 73 1 0 10
Lima 56 3 0 4

San Martin 76 0 3 1
Total 1937 162 118 422

Table A.1: This table shows the count of the victims with missing strata information by perpetrator and
department. 75% of these victims have been captured by lists DP and ODH. 73% of the victims belong to
the State.

List of covariates used to model the nuisance functions are as follows:

• age: numeric variable and takes 0 for missing age.
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Figure A.1: Estimated bias, RMSE, and population size coverage, for simulated data with population size
n ∈ {5000, 10000, 15000, 20000, 25000}, across true capture probability ψ ∈ {0.8, 0.5, 0.3}, and q-probability
error rate n−0.25.
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• indicator for non-missing age: takes value 1 if age is present and 0 otherwise.

• gender: has levels male, female and others (including missing).

• situation: whether the victim was killed or disappeared.

• perpetrator: four levels indicating whether the individual is a victim of the State, Shining Path, others,

or unidentified groups.

• indicator for non-missing department information: takes value 1 if department information is available

for the individual and 0 otherwise.

• department latitude, longitude and area in hectares. For the individuals with missing department code,

we use the average latitude, average longitude and median area of all the departments.

• strata code: 59 possible levels. Details and construction of the 58 strata are available in Ball et al.

(2003)). Those with missing strata take value 59.

• strata latitude, longitude and area in hectares. For the individuals with missing strata code, we use

the average latitude, average longitude and median area of all the strata.

• indicator of non-missing strata code.

A.4.1 Results

We present the exact estimated number of victims using our proposed doubly robust estimation in Table A.2.

The difference in the estimated number of victims of the State and the Shining Path for the 25 departments

and the seven geographic regions (Ball et al., 2003, see) are presented in Figure A.2. The State has a

significantly higher estimated number of victims in department Ayacucho and the Northern region. The

Shining Path has higher estimated number of victims in departments Junin and Puno.

Perpetrator N n̂ 95% CI
State 11564 20756.00 [13775, 27737]
PCP-Shining Path 9243 13313.00 [10333, 16293]
Unidentified 3399 25749.00 [13384, 38114]
Total 24692 68874.00 [58543, 79204]

Table A.2: Observed and estimated numbers of killings and disappearances by perpetrator, using the
proposed doubly robust method, with 95% confidence intervals.

100



DepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartmentsDepartments RegionsRegionsRegionsRegionsRegionsRegionsRegions

−2070 −500 −100 −20 0 20 100 500 1678
difference

Difference in the estimated number of victims between the PCP−Shining Path and the State

Figure A.2: Difference in the estimated number of killings by the PCP-Shining Path and the State in the
25 departments and the seven regions of Peru (Ball et al., 2003) from 1980-2000. The departments with
comparatively higher number of victims for the State are in a darker shade and the ones with higher number
of killings for the Shining Path are in a lighter shade.
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Appendix B

Appendix for chapter 3

Proof of Theorem 4.1. We present the finite-sample error in the coverage guarantee that the proposed

confidence interval contains the lower limit of ψ. The proof for ψu follows similarly.

We ultimately want to see the error in the coverage of the following Imbens and Manski (2004) (1−α)×

100% confidence interval [
ψ̂l − C̄N σ̂l/

√
N, ψ̂u + C̄N σ̂u/

√
N
]
.

Below we evaluate the finite sample coverage error of this estimated confidence interval. The error in coverage

is ∣∣∣(1− α)− P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψ ≤ ψ̂u + C̄N σ̂u/

√
N
)∣∣∣ .

The quantity C̄N is a stochastic quantity that depends on ψ̂l, ψ̂u, σ̂l and σ̂u. Hence, to apply Berry-Esseen

bound, we use a non-stochastic approximation of C̄N , which is cN . cN is a constant for a given n (also N)

and training data Zn unlike C̄N , and satisfies

Φ

(
cN +

√
N
ψu − ψl
σ̃u ∨ σ̃l

)
− Φ(−cN ) = 1− α.

We also define an intermediate quantity C̃N which satisfies

Φ

(
C̃N +

√
N
ψ̂u − ψ̂l
σ̃u ∨ σ̃l

)
− Φ(−C̃N ) = 1− α.

Remark 28. In the context of this paper, the difference ψu − ψl is zero implies that the σ̃u = σ̃l and also

ψ̂u = ψ̂l. Thus, when the difference is zero, C̄N = C̃N = cN = z1−α/2.

Next, following the approach of Imbens and Manski (2004), we show that the estimated confidence interval

contains ψu with probability 1 − α and some additional error. The proof for ψl follows similarly. Since, ψ
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lies between ψu and ψl, the estimated interval will contain ψ with probability 1 − α and some additional

error which is the maximum of the errors of ψu and ψl.

Below we evaluate the error is coverage of ψu by the estimated confidence interval.

(1− α)− P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)

= (1− α)− P
(
ψ̂l − cN σ̂l/

√
N ≤ ψu ≤ ψ̂u + cN σ̂u/

√
N
)

+ P
(
ψ̂l − cN σ̂l/

√
N ≤ ψu ≤ ψ̂u + cN σ̂u/

√
N
)
− P

(
ψ̂l − C̃N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̃N σ̂u/

√
N
)

+ P
(
ψ̂l − C̃N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̃N σ̂u/

√
N
)
− P

(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)
.

We need to show that following:

1. the first difference can be bounded above in the absolute sense, and

2. the second and the third differences are either positive or close to zero with probability close to 1.

Proof for the first difference

For the first difference

∣∣∣P(ψ̂l − cN σ̂l/
√
N ≤ ψu ≤ ψ̂u + cN σ̂u/

√
N
)
− (1− α)

∣∣∣
≤

∣∣∣∣∣P
(
ψ̂l − ψl

σ̂l/
√
N

≤ ψu − ψl

σ̂l/
√
N

+ cN

)
− P

(
ψ̂u − ψu

σ̂u/
√
N

≤ −cN

)
− (1− α)

∣∣∣∣∣
≤

∣∣∣∣∣P
(
ψ̂l − ψl

σ̂l/
√
N

≤ cN +
ψu − ψl

σ̂l/
√
N

)
− Φ

(
cN +

ψu − ψl

σ̂l/
√
N

)∣∣∣∣∣
+

∣∣∣∣∣P
(
ψ̂u − ψu

σ̂u/
√
N

≤ −cN

)
− Φ (−cN )

∣∣∣∣∣
+

∣∣∣∣Φ(cN +
ψu − ψl

σ̂l/
√
N

)
− Φ

(
cN +

√
N
ψu − ψl
σ̃u ∨ σ̃l

)∣∣∣∣
since Φ

(
cN +

√
N
ψu − ψl
σ̃u ∨ σ̃l

)
− Φ(−cN ) = 1− α.

The first two terms are bounded above by Berry-Esseen and for the third term, we can use mean value

theorem as follows,∣∣∣∣Φ(cN +
ψu − ψl

σ̂l/
√
N

)
− Φ

(
cN +

√
N
ψu − ψl
σ̃u ∨ σ̃l

)∣∣∣∣ = (ψu − ψl)ϕ(t3)
√
N

∣∣∣∣ 1σ̂l − 1

σ̃u ∨ σ̃l

∣∣∣∣ ,
for some t3 between cN + ψu−ψl

σ̂l/
√
N

and cN +
√
N ψu−ψl

σ̃u∨σ̃l
.
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Since cN > 0,

ϕ(t3) ≤ ϕ

(√
N

ψu − ψl
σ̂l ∨ σ̃u ∨ σ̃l

)
=

1√
2π
exp

{
−N (ψu − ψl)

2

2(σ̂l ∨ σ̃u ∨ σ̃l)2

}
.

By Berry-Esseen we have for any t′ and N that

Φ(t′)− Cρl

σ̃3
l

√
N

≤ P

(
ψ̂l − ψl − R̂2,l

σ̃l/
√
N

≤ t′
∣∣∣ Zn) ≤ Φ(t′) +

Cρl

σ̃3
l

√
N

where ρl = E(|Wi| | Zn)3 when ψ̂l − ψl = QNWi.

Taking t′ = σ̂l

σ̃l
t−

√
NR̂2,l

σ̃l
and ρl = E

(
|ψ̂l − ψl − R̂2,l|3

∣∣Zn), this implies

Φ

(
σ̂l
σ̃l
t−

√
NR̂2,l

σ̃l

)
− Cρl

σ̃3
l

√
N

≤ P
(
n̂l − nl
σ̂l

≤ t
∣∣∣ Zn) ≤ Φ

(
σ̂l
σ̃l
t−

√
NR̂2,l

σ̃l

)
+

Cρl

σ̃3
l

√
N
.

Therefore, by the mean value theorem and the fact that ψ(z) ≤ 1√
2π

∀w

∣∣∣∣P( n̂l − nl
σ̂l

≤ t
∣∣∣ Zn)− Φ(t)

∣∣∣∣ ≤
∣∣∣∣∣Φ
(
t
σ̂l
σ̃l

−
√
NR̂2,l

σ̃l

)
− Φ(t)

∣∣∣∣∣+
∣∣∣∣∣ Cρl

σ̃3
l

√
N

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
2π

(∣∣∣∣ σ̂lσ̃l − 1

∣∣∣∣ |t|+ nψ|R̂2|
σ̃l

)∣∣∣∣∣+
∣∣∣∣∣ Cρl

σ̃3
l

√
N

∣∣∣∣∣ .
This implies by iterated expectation that

∣∣∣∣∣P
(
ψ̂l − ψl
σ̂l/

√
n

≤ t

)
− Φ(t)

∣∣∣∣∣ ≤
√

1

2π

E
(√

N |R̂2,l|
)

σ̃l
+ |t|E

(∣∣∣∣ σ̂lσ̃l − 1

∣∣∣∣)
+ CE

(
ρl

σ̃3
l

√
N

)
.

A similar result follows for ψ̂u.

Proof for the second bound

The second difference can be re-written as

P(C̃N < cN )P
(
ψ̂l − cN σ̂l/

√
N ≤ ψu ≤ ψ̂l − C̃N σ̂l/

√
N | C̃N < cN

)
+ P(C̃N < cN )P

(
ψ̂u + C̃N σ̂u/

√
N ≤ ψu ≤ ψ̂u + cN σ̂u/

√
N | C̃N < cN

)
− P(C̃N > cN )P

(
ψ̂l − C̃N σ̂l/

√
N ≤ ψu ≤ ψ̂l − cN σ̂l/

√
N | C̃N > cN

)
− P(C̃N > cN )P

(
ψ̂u + cN σ̂u/

√
N ≤ ψu ≤ ψ̂u + C̃N σ̂u/

√
N | C̃N > cN

)
.

105



The probabilities are bounded above by 1. Assuming that ψ̂ and σ̂ have continuous densities (to avoid high

mass in a small area), it is sufficient to show that the positive terms are not too positive. We will show the

following

P(cN − C̃N > η)

is bounded above. Define ∆ = ψu − ψl and ∆̂ = ψ̂u − ψ̂l.

To prove the same, we will show that the following

P

(
Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

)

is bounded for a given η > 0. This however requires as additional assumption. We use the following finite

sample assumption modifying the assumption in Imbens and Manski (2004) (assumption 1 (iii)).

Assumption 7. For a given ϵ > 0 and a constant c, there exists N0 and υ > 0 such that for all N > N0

P
(
Nυ|∆̂−∆| > c

)
< ϵ.

Notice that we can break the event above into the following three terms.

Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

= 1(∆̂ ≤ ∆)× 1

{
Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

}

+ 1(∆̂ > ∆, |∆̂−∆| ≤ cN−υ)× 1

{
Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

}

+ 1(∆̂ > ∆, |∆̂−∆| > cN−υ)× 1

{
Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

}
.

The goal is to show that the probability of this event is not too large. So we start by maximizing this

probability and show that it is bounded. The first term has zero probability and hence, can be dropped. For

the second term, notice the following

1

{
∆̂ > ∆, |∆̂−∆| ≤ cN−υ, Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

}

≤ 1

{
|∆̂−∆| ≤ cN−υ, ϕ

( √
N∆

σ̃u ∨ σ̃l

)
×

√
N |∆̂−∆|
σ̃u ∨ σ̃l

> η

}
,
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where the second bound follows by mean value theorem and the properties of the normal density ϕ. Now,

by Markov’s inequality we get the following bound

1

η
× ϕ

( √
N∆

σ̃u ∨ σ̃l

)
× cN

1
2−υ

σ̃u ∨ σ̃l
=

cN
1
2−υ

η
√
2π(σ̃u ∨ σ̃l)2

exp

{
− N∆2

2(σ̃u ∨ σ̃l)2

}
.

For the third term, it is easy to see that it is bounded above by

P(|∆̂−∆| > cN−υ) <
1√
N
,

when N is sufficiently large and c is a constant chosen appropriately.

Thus,

P

(
Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

)

≤ cN
1
2−υ

η
√
2π(σ̃u ∨ σ̃l)2

exp

{
− N∆2

2(σ̃u ∨ σ̃l)2

}
+

1√
N
.

Next to show that P (cN−C̃N > η) is bounded above, we use mean value theorem. We will use the previously

proved result and show that it is equivalent to P(cN − C̃N > η).

Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)

= Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ(−C̃N )− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
+Φ(−C̃N )

= Φ

(
cN +

√
N∆

σ̃u ∨ σ̃l

)
− Φ(−cN )− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
+Φ(−C̃N ).

The third equality follows from the definitions of C̃N and cN . By mean value theorem,

Φ

(
cN +

√
N∆

σ̃u ∨ σ̃l

)
− Φ(−cN )− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
+Φ(−C̃N )

= ϕ(t1)(cN − C̃N ) + ϕ(t2)(cN − C̃N ), for some numbers t1 and t2.

Also, if
√
N∆/(σ̃u∨ σ̃l), C̃N and cN are bounded above, then ϕ(t1)+ϕ(t2) is bounded away from zero. Note

that ϕ(t1) + ϕ(t2) > ϕ(zα/2) = α/2. Hence, we have the following equivalence for any given η > 0

P
(
cN − C̃N >

η

ϕ(t1) + ϕ(t2)

)
= P

(
Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
− Φ

(
C̃N +

√
N∆

σ̃u ∨ σ̃l

)
> η

)
.
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Thus,

P
(
cN − C̃N > η

)
≤ 2cN

1
2−υ

ηα
√
2π(σ̃u ∨ σ̃l)2

exp

{
− N∆2

2(σ̃u ∨ σ̃l)2

}
+

1√
N
.

Thus, the second difference

P
(
ψ̂l − cN σ̂l/

√
N ≤ ψu ≤ ψ̂u + cN σ̂u/

√
N
)
− P

(
ψ̂l − C̃N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̃N σ̂u/

√
N
)

is bounded above by

P
(
cN − C̃N > η

)
− 2η θ,

where θ is the maximum value of the density of
√
N(ψ̂u − ψu)/σ̂u and

√
N(ψ̂l − ψu)/σ̂l.

Proof for the third difference

The third difference can be re-written as

P(C̄N < C̃N )P
(
ψ̂l − C̃N σ̂l/

√
N ≤ ψu ≤ ψ̂l − C̄N σ̂l/

√
N | C̄N < C̃N

)
+ P(C̄N < C̃N )P

(
ψ̂u + C̄N σ̂u/

√
N ≤ ψu ≤ ψ̂u + C̃N σ̂u/

√
N | C̄N < C̃N

)
− P(C̄N > C̃N )P

(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂l − C̃N σ̂l/

√
N | C̄N > C̃N

)
− P(C̄N > C̃N )P

(
ψ̂u + C̃N σ̂u/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N | C̄N > C̃N

)
.

The probabilities are bounded above by 1. We just need to show that this difference is not too positive.

Assuming that ψ̂ and σ̂ have uniformly continuous densities (to avoid high mass in a small area), it is

sufficient to show the following

P(C̃N − C̄N > η)

is bounded above. Define ∆̂ = ψ̂u − ψ̂l.

To prove the same, we will show that the following

P

(
Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
> η

)

is bounded for a given η > 0.
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Notice that we can break the event above into the following terms.

Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
> η

= 1

(
σ̃u ∨ σ̃l
σ̂u ∨ σ̂l

≤ 1

)
× 1

{
Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
> η

}

+ 1

(
σ̃u ∨ σ̃l
σ̂u ∨ σ̂l

> 1

)
× 1

{
Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
> η

}
.

The goal is to show that the probability of this event is not too large. So we start by maximizing this

probability and show that it is bounded. The first term has zero probability and hence, can be safely

dropped. For the second term, notice the following

1

{
σ̃u ∨ σ̃l
σ̂u ∨ σ̂l

> 1, Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
> η

}

≤ 1

{
ϕ

( √
N∆̂

σ̂u ∨ σ̂l

)
×

√
N∆̂

σ̂u ∨ σ̂l

∣∣∣∣ σ̂u ∨ σ̂lσ̃u ∨ σ̃l
− 1

∣∣∣∣ > η

}
,

where the second bound follows by mean value theorem and the properties of the normal density ϕ. Now,

by Markov’s inequality we get the following bound for the expectation of the above term

E

{
1

η
ϕ

( √
N∆̂

σ̂u ∨ σ̂l

)
× ∆̂

√
N |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|
(σ̃u ∨ σ̃l)(σ̂u ∨ σ̂l)

}
= E

[√
N ∆̂ |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|
η
√
2π(σ̂u ∨ σ̂l)2(σ̃u ∨ σ̃l)

exp

{
− N∆̂2

2(σ̂u ∨ σ̂l)2

}]
≤ Nδ− 1

2

η
√
2π(σ̃u ∨ σ̃l)

e−
1
2 .

Also, notice that (see Das et al. (2021) for a detailed proof)

E |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l| ≤ E |σ̃l − σ̂l| ∨ E |σ̃u − σ̂u| ≲
1√
N
.

Thus,

P

(
Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
> η

)

≤
√
N ∆̂ |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|
η
√
2π(σ̂u ∨ σ̂l)2(σ̃u ∨ σ̃l)

exp

{
− N∆̂2

2(σ̂u ∨ σ̂l)2

}
.

Next to show that P(C̃N − C̄N > η) is bounded above, we can use mean value theorem similar to what we

did for the second difference.
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Hence, we have that the following for any given η > 0

P
(
C̃N − C̄N > η

)
= P

(
Φ

(
C̃N +

√
N∆̂

σ̂u ∨ σ̂l

)
− Φ

(
C̃N +

√
N∆̂

σ̃u ∨ σ̃l

)
>
ηα

2

)
.

Thus, the third difference

P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)
− P

(
ψ̂l − C̃N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̃N σ̂u/

√
N
)

is bounded above by

P
(
C̃N − C̄N > η

)
+ 2η θ,

where θ is the maximum value of the density of
√
N(ψ̂u − ψu)/σ̂u and

√
N(ψ̂l − ψu)/σ̂l.

Combining the bounds

Now, we can show that the estimated confidence internal contains ψu with probability 1−α and some error

term that is not too negative. Similarly, one can show for ψl. And hence, the result follows for the target

parameter ψ. For simplicity, we substitute ∆ for ψu − ψl.

(1− α)− P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)

≤

∣∣∣∣∣P
(
ψ̂l − ψl

σ̂l/
√
N

≤ cN +
∆

σ̂l/
√
N

)
− Φ

(
cN +

∆

σ̂l/
√
N

)∣∣∣∣∣
+

∣∣∣∣∣P
(
ψ̂u − ψu

σ̂u/
√
N

≤ −cN

)
− Φ (−cN )

∣∣∣∣∣
+ ∆E

[√
N

∣∣∣∣ 1σ̂l − 1

σ̃u ∨ σ̃l

∣∣∣∣ 1√
2π
exp

{
−N ∆2

2(σ̂l ∨ σ̃u ∨ σ̃l)2

}]
+ P

(
cN − C̃N > η

)
+ 2η θ + P

(
C̃N − C̄N > η

)
+ 2η θ.

Now, if ∆ = 0, then in the context of this paper, this condition indicates that ∆̂ = 0. Thus, C̄N = C̃N =

cN = z1−α/2. Thus, the second and the third differences are zero when ∆ = 0. To incorporate this property
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here, we will use indicator terms.

≤ 1√
2π

E

(√
N |R̂2,l|
σ̃l

)
+ E

{
ϕ

( √
N∆

σ̂l ∨ σ̃l

) (
∆

σ̂l/
√
N

+ cN

) ∣∣∣∣ σ̂lσ̃l − 1

∣∣∣∣
}

+ CE

(
ρl

σ̃3
l

√
N

)

+
1√
2π

E

(√
N |R̂2,u|
σ̃u

)
+

cN√
2π

E
(∣∣∣∣ σ̂uσ̃u − 1

∣∣∣∣)+ CE
(

ρu

σ̃3
u

√
N

)
+ ∆E

[√
N

∣∣∣∣ 1σ̂l − 1

σ̃u ∨ σ̃l

∣∣∣∣ 1√
2π
exp

{
−N ∆2

2(σ̂l ∨ σ̃u ∨ σ̃l)2

}]
+ 1(∆ ̸= 0)

[
2cN

1
2−υ

ηα
√
2π(σ̃u ∨ σ̃l)2

exp

{
− N∆2

2(σ̃u ∨ σ̃l)2

}]
+ 1(∆ ̸= 0)E

(
1√
N

)

+ 1(∆ ̸= 0)E

[
2
√
N ∆̂ |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|

ηα
√
2π(σ̂u ∨ σ̂l)2(σ̃u ∨ σ̃l)

exp

{
− N∆̂2

2(σ̂u ∨ σ̂l)2

}]
+ 1(∆ ̸= 0)E(4η θ).

We assume that 0 < σ < σ̂l, σ̂u, σ̃l, σ̃u < σ̄ <∞.

If η = N−κ for some κ > 0, then the first two bounds (i.e., the first two differences computed at the

beginning) decrease as N increases if the following holds

N >
2(1/2− υ + κ)(σ̃u ∨ σ̃l)2

∆2
and κ+ δ <

1

2
.

To simplify the bound, let κ = 1/2. Also, by definition υ > 0. Then the bound becomes

(1− α)− P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)

≤ 1√
2π

E

(√
N |R̂2,l|
σ̃l

)
+ E

{
ϕ

( √
N∆

σ̂l ∨ σ̃l

) (
∆

σ̂l/
√
N

+ cN

) ∣∣∣∣ σ̂lσ̃l − 1

∣∣∣∣
}

+ CE

(
ρl

σ̃3
l

√
N

)

+
1√
2π

E

(√
N |R̂2,u|
σ̃u

)
+

cN√
2π

E
(∣∣∣∣ σ̂uσ̃u − 1

∣∣∣∣)+ CE
(

ρu

σ̃3
u

√
N

)
+ ∆E

[√
N

∣∣∣∣ 1σ̂l − 1

σ̃u ∨ σ̃l

∣∣∣∣ 1√
2π
exp

{
−N ∆2

2(σ̂l ∨ σ̃u ∨ σ̃l)2

}]
+ 1(∆ ̸= 0)

[
2cN1−υ

α
√
2π(σ̃u ∨ σ̃l)

exp

{
− N∆2

2(σ̃u ∨ σ̃l)2

}]
+ 1(∆ ̸= 0)E

(
1√
N

)
+ 1(∆ ̸= 0)E

[√
2N ∆̂ |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|
α
√
π(σ̂u ∨ σ̂l)2(σ̃u ∨ σ̃l)

exp

{
− N∆̂2

2(σ̂u ∨ σ̂l)2

}]
+ 1(∆ ̸= 0)E

(
4θ√
N

)
.
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Further, using the inequality e−w < 1/w and e−
w
2 <

√
3!/w3 ∀ w > 0 all the exponential terms, and some

rearrangement, we obtain the following simplified form.

(1− α)− P
(
ψ̂l − C̄N σ̂l/

√
N ≤ ψu ≤ ψ̂u + C̄N σ̂u/

√
N
)

≤ 1√
2π

E

(√
N |R̂2,l|
σ̃l

+

√
N |R̂2,u|
σ̃u

)
+ CE

(
ρl

σ̃3
l

√
N

+
ρu

σ̃3
u

√
N

)

+ E
{

1√
2π

(
σ̂l ∨ σ̃l
σ̂l

+ cN

) ∣∣∣∣ σ̂lσ̃l − 1

∣∣∣∣}+
cN√
2π

E
(∣∣∣∣ σ̂uσ̃u − 1

∣∣∣∣)
+ 1(∆ ̸= 0) E

{∣∣∣∣ 1σ̂l − 1

σ̃u ∨ σ̃l

∣∣∣∣ √2(σ̂l ∨ σ̃u ∨ σ̃l)2√
Nπ∆

}

+ 1(∆ ̸= 0) E

{
c
√
2
√
6 (σ̃u ∨ σ̃l)2

α
√
πN

1
2+υ ∆3

}
+ 1(∆ ̸= 0)E

{
1√
N

(1 + 4θ)

}

+ 1(∆ ̸= 0)E

{
2
√
2 |σ̃u ∨ σ̃l − σ̂u ∨ σ̂l|
α
√
π ∆̂ (σ̃u ∨ σ̃l)

}
.

Further, let 0 < σ ≤ σ̂l, σ̃l, σ̂u, σ̃u ≤ σ̄ < ∞. Now using the bound E|σ̂ − σ̃| ≲ N− 1
2 for both the lower and

the upper bound, we get the large sample bound as follows.

1√
n
+

√
nE(|R̂2,l|+

√
N |R̂2,u|).
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Proof of Proposition 2. One can rewrite the conditional risk ratio between lists 1 and 2 as follows:

Risk ratio =
P(Y1 = 1 | Y2 = 1,X = x)

P(Y1 = 1 | Y2 = 0,X = x)
=

p12(x)(1− p2(x))

(p1(x)− p12(x))p2(x)
=

q12(x) {1− q2(x)γ(x)}
(q1(x)− q12(x))q2(x)γ(x)

,

where we use the property that

P(Y = y|X = x) =
Q(Y = y|X = x)

γ(x)
,

for y ̸= 0 and γ(x) = P(Y ̸= 0|X = x) is the conditional capture probability.

Let δ(x) denote the risk ratio function. Rearrangement of the expression of the risk ratio on the right

gives us an expression for the conditional capture probability as follows.

1

γ(x)
=
δ(x){q1(x)− q12(x)}q2(x)

q12(x)
+ q2(x).

Proof of Lemma 4.1.1. We derive the lower bound ψ−1
l for ψ−1 in this proof. The steps for ψ−1

u are similar.

We have seen before that

ψ−1
δ =

∫ [
{q1(x)− q12(x)}q2(x)δ(x)

q12(x)
+ q2(x)

]
dQ(x) =

∫
1

γ(x)
dQ(x).

Further, we need that γ(X) ≤ 1 for all x.

Note that we can obtain ψ−1
l by substituting the lowest possible value for δ(x) i.e., 1/ω for each x so

that γ(x) is a valid probability. We ensure that it is a valid probability by using an indicator term for each

x. We define the following functionals

1

γ 1
ω
(x)

=

{
q1(x)− q12(x)

ω
+ q12(x)

}
q2(x)

q12(x)

1

γω(x)
=

[
ω {q1(x)− q12(x)}+ q12(x)

]
q2(x)

q12(x)
.

Thus, we obtain ψ−1
l by integrating over γ 1

ω
(x)−1 and ensuring that it is a valid probability using an

indicator as follows. For ψ−1
u , we substitute with γω(x)

−1.

ψ−1
l =

∫ [
1

γ 1
ω
(x)

1
{
γ 1

ω
(x) ≤ 1

}
+ 1

{
γ 1

ω
(x) > 1

}]
dQ(x)

=

∫ [
1

γ 1
ω
(x)

1
{
γ 1

ω
(x) ≤ 1

}
− 1

{
γ 1

ω
(x) ≤ 1

}
+ 1

{
γ 1

ω
(x) ≤ 1

}
+ 1

{
γ 1

ω
(x) > 1

}]
dQ(x)

=

∫ {
1

γ 1
ω
(x)

− 1

}
1
{
γ 1

ω
(x) ≤ 1

}
dQ(x) + 1.
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Proof of theorem 4.2. We first derive the uncentered efficient influence function for ψ−1
l assuming that we

know the value the indicator 1
{
γ 1

ω
(x) ≤ 1

}
takes for each x. Following that, we show that the derived

function is the efficient influence function of ψl in general.

Note that, we can express ψ−1
l as a function of the observed data distribution Q, i.e., ψ−1

l (Q). We use

the notation ψ−1
l (Q, Q̄) to denote the following functional

ψ−1
l (Q, Q̄) =

∫ {
1

ω

q1(x)q2(x)

q12(x)
+

(
1− 1

ω

)
q2(x)− 1

}
1
{
γ̄ 1

ω
(x) ≤ 1

}
q(x)dx+ 1,

where
1

γ̄ 1
ω
(x)

=
1

ω

q̄1(x)q̄2(x)

q̄12(x)
+

(
1− 1

ω

)
q̄2(x) + 1.

We assume that, we know 1
{
γ 1

ω
(x) ≤ 1

}
and derive the efficient influence function for ψ−1

l (Q,Q).

To find a candidate influence function, we consider a special parametric submodel (i.e., deviation from

Q) given by Qϵ with density qϵ = (1 − ϵ)q(z) + ϵq̄(z) where q̄ = q̄(z) = 1(z = z̃) is a point mass at Z = z̃,

and for which the pathwise derivative

∂

∂ϵ

{
1

ψl(Qϵ,Q)

} ∣∣∣∣∣
ϵ=0

actually equals the influence function (in the discrete case) Mises (1947); Hampel (1974). We also let qs,ϵ(x)

denote the analog of qs(x) under the submodel for s ∈ {1, 2, 12}, e.g., the marginal density for X under Qϵ
is

qϵ(x) =
∑
y

qϵ(z) = (1− ϵ)q(x) + ϵ1(x = x̃).

Now the above pathwise derivative equals

∂

∂ϵ

{
1

ψ(Qϵ,Q)

} ∣∣∣∣∣
ϵ=0

=
∂

∂ϵ

∫ {
1

ω

q2,ϵ(x)q1,ϵ(x)

q12,ϵ(x)
+

(
1− 1

ω

)
q2,ϵ(x)− 1

}
1
{
γ 1

ω
(x) ≤ 1

}
qϵ(x)dx

∣∣∣∣∣
ϵ=0

=

∫
1
{
γ 1

ω
(x) ≤ 1

} ∂

∂ϵ

{
q2,ϵ(x)q1,ϵ(x)

ω q12,ϵ(x)
qϵ(x) +

(
1− 1

ω

)
q2,ϵ(x)qϵ(x)

}
dx

∣∣∣∣∣
ϵ=0

=

∫
1
{
γ 1

ω
(x) ≤ 1

} q2,ϵ(x)q1,ϵ(x)
ω q12,ϵ(x)

qϵ(x)

{
q′1,ϵ(x)

q1,ϵ(x)
+
q′2,ϵ(x)

q2,ϵ(x)
−
q′12,ϵ(x)

q12,ϵ(x)
+
q′ϵ(x)

qϵ(x)

}
dx

∣∣∣∣∣
ϵ=0

+

∫
1
{
γ 1

ω
(x) ≤ 1

}(
1− 1

ω

)
q2,ϵ(x) qϵ(x)

{
q′2,ϵ(x)

q2,ϵ(x)
+
q′ϵ(x)

qϵ(x)

}
dx

∣∣∣∣∣
ϵ=0

.

where the last equality follows by the product rule. For the discrete case, we use the notation of the integral

to denote summation over x.
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For the derivatives appearing above, by the definition of q̄, we have q′ϵ(x) =
∂
∂ϵqϵ(x) = 1(x = x̃)− q(x).

Similarly, by using derivative of product rule for q′1,ϵ(x), we get

q′1,ϵ(x) =
∂

∂ϵ
q1,ϵ(x) =

∂

∂ϵ

Qϵ(Y1 = 1,X = x)

qϵ(x)

=
∂

∂ϵ

(1− ϵ)Q(Y1 = 1,X = x) + ϵ1(Ỹ1 = 1,x = x̃)

(1− ϵ)q(x) + ϵ1(x = x̃)
, where Ỹ1 = 1(ỹ1 = 1)

=
−Q(Y1 = 1,X = x) + 1(Ỹ1 = 1,x = x̃)

(1− ϵ)q(x) + ϵ1(x = x̃)

− (1− ϵ)Q(Y1 = 1,X = x) + ϵ1(Ỹ1 = 1,x = x̃)

{(1− ϵ)q(x) + ϵ1(x = x̃)}2
q′ϵ(x).

The last step follows from the product rule of derivatives. Finally, setting ϵ = 0, we get q′1ϵ(x)|ϵ=0 =

1(x=x̃)
q(x) {Ỹ1 − q1(x)}. The derivatives for q2,ϵ and q12,ϵ follow similarly.

Thus, combining the above results and using the discrete nature of the distribution, we get

ϕl(x̃, Ỹ;Q) =
∂

∂ϵ

{
1

ψ(Qϵ,Q)

} ∣∣∣∣∣
ϵ=0

=
∑
x

1
{
γ 1

ω
(x) ≤ 1

} q2(x)q1(x)
ω q12(x)

1(x = x̃)

{
Ỹ1 − q1(x)

q1(x)
+
Ỹ2 − q2(x)

q2(x)
− Ỹ1Ỹ2 − q12(x)

q12(x)

}

+
∑
x

1
{
γ 1

ω
(x) ≤ 1

} q2(x)q1(x)
ω q12(x)

{1(x = x̃)− q(x)}

+
∑
x

1
{
γ 1

ω
(x) ≤ 1

}(
1− 1

ω

)
q2(x)

{
1(x = x̃)

Ỹ2 − q2(x)

q2(x)
+ 1(x = x̃)− q(x)

}

= 1
{
γ 1

ω
(x̃) ≤ 1

} q2(x̃)q1(x̃)
ω q12(x̃)

{
Ỹ1
q1(x̃)

+
Ỹ2
q2(x̃)

− Ỹ1Ỹ2
q12(x̃)

}

−
∑
x

1
{
γ 1

ω
(x) ≤ 1

} q2(x)q1(x)
ω q12(x)

q(x)−
∑
x

1
{
γ 1

ω
(x) ≤ 1

}(
1− 1

ω

)
q2(x)q(x)

+ 1
{
γ 1

ω
(x̃) ≤ 1

}(
1− 1

ω

)
Ỹ2

= 1
{
γ 1

ω
(x̃) ≤ 1

}[q2(x̃)q1(x̃)
ω q12(x̃)

{
Ỹ1
q1(x̃)

+
Ỹ2
q2(x̃)

− Ỹ1Ỹ2
q12(x̃)

}
+

(
1− 1

ω

)
Ỹ2 −

1

γ 1
ω
(x̃)

]
.

The third equality follows from the definition of γ 1
ω
and rearrangement of the terms.

Next, we will show that under the margin condition in assumption 5, the above function ϕl is also the

efficient influence function of ψl(Qϵ,Qϵ)−1, i.e., when the indicator is also not known and is subject to

fluctuations. To show the same, we will evaluate the remainder term below and show that it is of second
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order under assumption 5. First, note that ϕl can be expressed as follows

ϕl(x̃, Ỹ;Q) = 1
{
γ 1

ω
(x̃) ≤ 1

}[q2(x̃)q1(x̃)
ω q12(x̃)

{
Ỹ1
q1(x̃)

+
Ỹ2
q2(x̃)

− Ỹ1Ỹ2
q12(x̃)

}
+

(
1− 1

ω

)
Ỹ2 − 1

]
+ 1− ψ−1

l .

The remainder term for distribution Q and some other distribution Q̄ is as follows:

R2,l(Q, Q̄) =

∫
ϕ̄l(z, Q̄)dQ(z) + ψ̄−1

l − ψ−1
l

=

∫ (
1
{
γ̄ 1

ω
(x) ≤ 1

}[ q̄2(x)q̄1(x)
ω q̄12(x)

{
q1(x)

q̄1(x)
+
q2(x)

q̄2(x)
− q12(x)

q̄12(x)

}
+

(
1− 1

ω

)
q2(x)− 1

]
+ 1− ψ−1

l

)
dQ(x)

=

∫ (
1
{
γ̄ 1

ω
(x) ≤ 1

}[ q̄2(x)q̄1(x)
ω q̄12(x)

{
q1(x)

q̄1(x)
+
q2(x)

q̄2(x)
− q12(x)

q̄12(x)

}
+

(
1− 1

ω

)
q2(x)− 1

]
− 1

{
γ 1

ω
(x) ≤ 1

}{ 1

γ 1
ω
(x)

− 1

})
dQ(x)

=

∫ (
1
{
γ̄ 1

ω
(x) ≤ 1

}[ q̄2(x)q̄1(x)
ω q̄12(x)

{
q1(x)

q̄1(x)
+
q2(x)

q̄2(x)
− q12(x)

q̄12(x)

}
+

(
1− 1

ω

)
q2(x)−

1

γ 1
ω
(x)

]

+
[
1
{
γ̄ 1

ω
(x) ≤ 1

}
− 1

{
γ 1

ω
(x) ≤ 1

}]{ 1

γ 1
ω
(x)

− 1

})
dQ(x)

=

∫
1
{
γ̄ 1

ω
(x) ≤ 1

}[ q̄2(x)q̄1(x)
ω q̄12(x)

{
q1(x)

q̄1(x)
+
q2(x)

q̄2(x)
− q12(x)

q̄12(x)

}
+
q̄2(x)q̄1(x)

ω q̄12(x)

]
dQ(x)

+

∫ [
1
{
γ̄ 1

ω
(x) ≤ 1

}
− 1

{
γ 1

ω
(x) ≤ 1

}]{ 1

γ 1
ω
(x)

− 1

}
dQ(x)

=

∫
1
{
γ̄ 1

ω
(x) ≤ 1

} 1

ωq̄12(x)

[
{q1(x)− q̄1(x)} {q̄2(x)− q2(x)}

+ {q12(x)− q̄12(x)}
{
q2(x)q1(x)

q12(x)
− q̄2(x)q̄1(x)

q̄12(x)

}]
dQ(x)

+

∫ [
1
{
γ̄ 1

ω
(x) ≤ 1

}
− 1

{
γ 1

ω
(x) ≤ 1

}]{ 1

γ 1
ω
(x)

− 1

}
dQ(x).

The first term is in a multiplicative form and easy to bound above. For the second term, we follow the

approaches from Bonvini and Kennedy (2020) and Kennedy et al. (2020). Below is the bound.

∫ ∣∣∣1{γ̄ 1
ω
(x) ≤ 1

}
− 1

{
γ 1

ω
(x) ≤ 1

}∣∣∣ ∣∣∣∣∣ 1

γ 1
ω
(x)

− 1

∣∣∣∣∣ dQ(x)

≤ 1
{∣∣∣γ 1

ω
(x)− 1

∣∣∣ ≤ ∣∣∣γ̄ 1
ω
(x)− γ 1

ω
(x)
∣∣∣} ∣∣∣∣∣ 1

γ 1
ω
(x)

− 1

∣∣∣∣∣ dQ(x)

≲
1

ϵ

∥∥∥γ̄ 1
ω
− γ 1

ω

∥∥∥1+ν
∞

,
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since q12 ∧ q̄12 ≥ ϵ implies γ 1
ω
(x) ≥ q12(x) ≥ ϵ. This shows that E|R̂2,l| is of second-order when ν = 1 in the

margin condition. Hence, ψl is the efficient influence function of ψ−1
l .

Similarly, the corresponding efficient influence function for ψ−1
u is

ϕl(x,Y;Q) = 1 {γω(x) ≤ 1}
[
ω q2(x)q1(x)

q12(x)

{
Y1
q1(x)

+
Y2
q2(x)

− Y1Y2
q12(x)

}
+ (1− ω)Y2 − 1

]
+ 1− ψ−1

l .

Proof of corollary 4.2.1. We derive the variance of ϕl, which is also the efficiency bound. First, note that

the efficient influence function can be represented as follows

ϕl(Z;Q) = 1
{
γ 1

ω
(x̃) ≤ 1

}( 1

γ 1
ω
(X)

[
(Y1 − Y1Y2)/ω + Y1Y2

{q1(X)− q12(X)}/ω + q12(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

]
− 1

)
+ 1− ψ−1

l .

Then we use the formula for total variance by conditioning on the covariates X as follows.

var (ϕl) = E {var (ϕl|X)}+ var {E (ϕl|X)} .

We use following the variance and covariance formulas for the indicator terms Y1 and Y2.

var(Y1 − Y1Y2 | X) = {q1(X)− q12(X)}{1− q1(X) + q12(X)}.

var{(Y1 − Y1Y2)/ω + Y1Y2 | X} = {q1(X)− q12(X)}{1− q1(X) + q12(X)}/ω2

+ q12(X){1− q12(X)} − 2{q1(X)− q12(X)}q12(X)/ω

= {q1(X)− q12(X)}/ω2 + q12(X)− [{q1(X)− q2(X)}/ω + q12(X)]2.

cov(Y1 − Y1Y2, Y1Y2 | X) = − {q1(X)− q12(X)}q12(X).

cov(Y1 − Y1Y2, Y2 | X) = − {q1(X)− q12(X)}q2(X).

Using conditional variance, we get

E

(
1
{
γ 1

ω
(X) ≤ 1

}
× 1

γ 1
ω
(X)2

var

[
(Y1 − Y1Y2)/ω + Y1Y2

{q1(X)− q12(X)}/ω + q12(X)
+

Y2
q2(X)

− Y1Y2
q12(X)

∣∣∣∣X]
)

+ var

[
1
{
γ 1

ω
(X) ≤ 1

}{ 1

γ 1
ω
(X)

− 1

}]
.
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After further simplification we get the following.

E

(
1
{
γ 1

ω
(X) ≤ 1

}[ 1

γ 1
ω
(X)

{
1

γ 1
ω
(X)

− 1

}{
1

ωq12(X)
− 1

}
+

q0(X)

ωγ 1
ω
(X)q12(X)

+

(
1− 1

ω

)
{q1(X)− q12(X)}2q2(X)2

ω2q12(X)3

])
+ var

[{
1

γ 1
ω
(X)

− 1

}
1
{
γ 1

ω
(X) ≤ 1

}]
.

Proof of theorem 2.2. The error in estimation for the proposed estimator is approximated by a sample

average as follows.

EN = ψ̂−1
l,proposed − ψ−1

l −QNϕl = QN ϕ̂l + ψ̂−1
l,pi − ψ−1

l −QNϕl

= QN (ϕ̂l − ϕl)−Qϕ̂l + R̂2,l

= (QN −Q)(ϕ̂l − ϕl) + R̂2,l, since Qϕl = 0.

The second equality follows using the property of efficient influence function as follows

ψ̂−1
l − ψ−1

l = −
∫
ϕ̂l(z)dQ(z) + R̂2,l = −Qϕ̂l + R̂2,l.

The first term is converging to 0 since it is a sample average minus the population average of i.i.d. terms.

Nest, we will show that E(E2
N ) is bounded. By the law of conditional expectation,

E(EN ) = E{E(EN |Zn)} = E
[
E
{
(QN −Q)

(
ϕ̂l − ϕl

)
+ R̂2,l

∣∣∣∣Zn}] .
The first term has expectation because it is the difference of sample average and population average. Further,

R̂2,l is a function is the training sample, and thus

E(EN ) = E(R̂2,l).

Next, the variance of EN is

var(EN ) = var{E(EN |Zn)}+ E{var(EN |Zn)}

= var
(
R̂2,l

)
+ E

[
var

{
(QN −Q)

(
ϕ̂l − ϕl

) ∣∣∣∣Zn}]
≤ var

(
R̂2,l

)
+ E

(
1

N

∥∥∥ϕ̂l − ϕl

∥∥∥2) ,
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where the second step follows via simple triangle inequality. For a more detailed discussion, we refer to Das

et al. (2021). Finally, we have that

E(E2
N ) = E(R̂2

2,l) + E
(

1

N

∥∥∥ϕ̂l − ϕl

∥∥∥2) .

Proof of Theorem 4.5. We present the proof for the estimated lower bound of n i.e., n̂l. The proof for

n̂u follows similarly. We have defined n̂l = Nψ̂−1
l , which depends on two random quantities (i) the number

of observations N and (ii) the estimator of the lower bound of the inverse capture probability ψ̂−1
l .

Calculation of mean and variance of n̂

First, we re-write Nψ̂−1
l as a sample average for ease of calculation. As mentioned in the proof of Theorem

2.2, we use Q
[
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

}]
+ 1 to denote the population average conditioned on training sample Zn

i.e.,
∫
φ̂(z)1

{
γ̂ 1

ω
(X) ≤ 1

}
dQ(z) + 1.

n̂l = Nψ̂−1
l −Nψ−1

l +Nψ−1
l

= N
(
(QN −Q)

[
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

}]
+ R̂2,l

)
+Nψ−1

l

= nPn
[
1(Y ̸= 0)

(
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

}
−Q

[
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

}])
+ 1(Y ̸= 0)

(
R̂2,l + ψ−1

l

)]
︸ ︷︷ ︸

ζ

,

where the last equality follows using N = nPn1(Y ̸= 0). Thus, n̂l is a sample average nPnζ. Moreover, when

we condition on the training sample Zn, the ζ’s are i.i.d. We present the conditional mean and variance of

ζ below.

E(ζ|Zn) = E{E(ζ|Y ̸= 0,Zn)|Zn} = ψ(R̂2,l + ψ−1
l ).

var(ζ|Zn) = var{E(ζ|Y ̸= 0,Zn)}+ E{var(ζ|Y ̸= 0,Zn)}

= var
[
1(Y ̸= 0)(R̂2,l + ψ−1

l )
∣∣Zn]+ E

(
1(Y ̸= 0)var

[
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

} ∣∣∣∣Zn] ∣∣∣∣Zn)
= ψ(1− ψ)(R̂2,l + ψ−1

l )2 + ψ var

[
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

} ∣∣∣∣Zn]
=
ψ(1− ψ)

ψ2
l

(ψlR̂2,l + 1)2 + ψς̃2l , defining ς̃2l = var

[
φ̂l1

{
γ̂ 1

ω
(X) ≤ 1

} ∣∣∣∣Zn] .
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The population expectation of n̂ is nψE(R̂2,l) + nψψ−1
l . And the population variance is presented below.

var(n̂l) = var{E(n̂l|Zn)}+ E{var(n̂l|Zn)}

= var{E(nPnζ|Zn)}+ E{var(nPnζ|Zn)}

= var(nψR̂2,l + nψψ−1
l ) + E{n var(ζ|Zn)}

= n2ψ2var(R̂2,l) + nψE
(
ς̃2l
)
+ n

ψ(1− ψ)

ψ2
l

E(ψlR̂2,l + 1)2.

Thus, using the definition nl ≡ nψψ−1
l , we get E(n̂l−nl)2 = n2ψ2E(R̂2

2,l)+nψE
(
ς̃2l
)
+nψ(1−ψ)

ψ2
l

E(ψlR̂2,l+1)2.

If E|R̂2,l| is sufficiently small, then n̂l − nl has expectation approximately 0 and variance approximately

nψς2l + nψ(1− ψ)/ψ2
l , where ς

2
l = var

[
φl1

{
ζ(X) ≤ 1

ω

}]
.
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Proof of Theorem 4.5. We present the proof for the estimated lower limit of ψ i.e., n̂u. The proof for n̂l

follows similarly. We ultimately want to see the error in the coverage of the following Imbens and Manski

(2004) (1− α)× 100% confidence interval

[
n̂l − C̄N

√
Nτ̂l, n̂u + C̄N

√
Nτ̂u

]
.

Below we evaluate the finite sample coverage error of this estimated confidence interval. The error in coverage

is ∣∣∣(1− α)− P
(
n̂l − C̄N

√
Nτ̂l ≤ n ≤ n̂u + C̄N

√
Nτ̂u

)∣∣∣ .
Note that C̄N satisfies

Φ

(
C̄N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ(−C̄N ) = 1− α.

The quantity C̄N is a stochastic quantity that depends on n̂l, n̂u,
√
Nτ̂l and

√
Nτ̂u. Hence, to apply Berry-

Esseen bound, we use a non-stochastic approximation of C̄N , which is cN . cN is a constant for a given n

(also N) and training data Zn unlike C̄N , and satisfies

Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)
− Φ(−cN ) = 1− α.

We also define an intermediate quantity C̃N which satisfies

Φ

(
C̃N +

√
N∆̂√

nψ(τ̃u ∨ τ̃l)

)
− Φ(−C̃N ) = 1− α.

Remark 29. In the context of this paper, the difference nu − nl is zero implies that the τ̃u = τ̃l and also

n̂u = n̂l. Thus, when the difference is zero, C̄N = C̃N = cN = z1−α/2.

Next, following the approach of Imbens and Manski (2004), we show that the estimated confidence interval

contains nu with probability 1 − α and some additional error. The proof for nl follows similarly. Since, ψ

lies between nu and nl, the estimated interval will contain ψ with probability 1 − α and some additional

error which is the maximum of the errors of nu and nl.
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Below we evaluate the error in coverage of nu by the estimated confidence interval.

(1− α)− P
(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂u + C̄N

√
Nτ̂u

)
= (1− α)− P

(
n̂l − cN

√
Nτ̂l ≤ nu ≤ n̂u + cN

√
Nτ̂u

)
(B.1)

+ P
(
n̂l − cN

√
Nτ̂l ≤ nu ≤ n̂u + cN

√
Nτ̂u

)
− P

(
n̂l − C̃N

√
Nτ̂l ≤ nu ≤ n̂u + C̃N

√
Nτ̂u

)
(B.2)

+ P
(
n̂l − C̃N

√
Nτ̂l ≤ nu ≤ n̂u + C̃N

√
Nτ̂u

)
− P

(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂u + C̄N

√
Nτ̂u

)
. (B.3)

We need to show that the three differences are either positive or close to zero with probability close to 1.

Before showing the above, we first derive the bounds on the differences between the estimated and the

population variances. We want to show that
√
Nτ̂l −

√
nψτ̃l and

√
Nτ̂u −

√
nψτ̃u are not too negative.

Bound on the differences among the variance terms

In this part, we will derive upper bounds on the following quantities

1. E

(
1− τ̂l

√
N

τ̃l
√
nψ

∣∣∣∣Zn
)

2. E

(
1− τ̂u

√
N

τ̃u
√
nψ

∣∣∣∣Zn
)

3. E

(
1− τ̂l

√
N

τ̃u
√
nψ

∣∣∣∣Zn
)
.

These bounds are required when we evaluate the bounds on differences B.1 and B.3 in the later parts of the

proof. Below are the derivations.

1. We expand the following difference using the previously stated definitions:

τ̂2l N − τ̃2l nψ = τ̂2l N − τ̂2l nψ + ς̂2l nψ +
1− ψ̂u

ψ̂2
l

nψ − ψς̃2l n− 1− ψ

ψ2
l

(ψlR̂2,l + 1)2nψ

= τ̂2l (N − nψ) + nψ(ς̂2l − ς̃2l )− nψ(1− ψ)(R̂2
2,l + 2R̂2,l/ψl)

+ nψ(1− ψ̂u)

(
1

ψ̂2
l

− 1

ψ2
l

)
− nψ

(
ψ̂u
ψ2
l

− ψu
ψ2
l

)
+ nψ

(
ψ

ψ2
l

− ψu
ψ2
l

)
︸ ︷︷ ︸

≥0

.
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We need to show that nψτ̃2l −Nτ̂2l is not too large. Hence we can use the following bound by triangle

inequality and ignoring the negative terms

E

(
1− τ̂l

√
N

τ̃l
√
nψ

∣∣∣∣Zn
)

≤ E


(
τ̃l
√
nψ − τ̂l

√
N
)(

τ̃l
√
nψ + τ̂l

√
N
)

τ̃l
√
nψ
(
τ̃l
√
nψ + τ̂l

√
N
) ∣∣∣∣Zn


≤ E

(
τ̃2l nψ − τ̂2l N

nψτ̃2l

∣∣∣∣Zn)
≤ τ̄2l
nψτ̃2l

|N − nψ|+
E
(
|ς̂2l − ς̃2l |

∣∣Zn)
τ̃2l

+
(1− ψ)

ψlτ̃2l

(
ψlR̂

2
2,l + 2|R̂2,l|

)
+

1

τ̃2l
E

(∣∣∣∣∣ 1ψ̂2
l

− 1

ψ2
l

∣∣∣∣∣
∣∣∣∣Zn
)

+
1

τ̃2l
E

(∣∣∣∣∣ ψ̂uψ2
l

− ψu
ψ2
l

∣∣∣∣∣
∣∣∣∣Zn
)
.

We have the following bounds

• E|N − nψ| ≤
√
nψ(1− ψ)

• E|ς̂l − ς̃l| ≲ 1/
√
N .

Further notice that by triangle inequality we have

E

{
(1− ψ̂u)

∣∣∣∣∣ 1ψ̂2
l

− 1

ψ2
l

∣∣∣∣∣
∣∣∣∣∣Zn
}

≤ E

{∣∣∣∣∣ 1ψ̂2
l

− 1

ψ2
l

∣∣∣∣∣
∣∣∣∣∣Zn
}

≤ E
[
{(QN −Q)φ̂l}2

∣∣Zn]+ R̂2
2,l + 2

(
ψ−1
l + |R̂2,l|

)
E
{∣∣(QN −Q)φ̂l

∣∣∣∣∣∣Zn}+ 2ψ−1
l |R̂2,l|

≤ ς̃2l
N

+ R̂2
2,l + 2

(
ψ−1
l + |R̂2,l|

) ς̃l√
N

+ 2
|R̂2,l|
ψl

.

Also,

1

ψ2
l

E|ψ̂u − ψu| = E

∣∣∣∣∣ψ−1
u − ψ̂−1

u

ψ̂−1
u ψ−1

u

∣∣∣∣∣
=

1

ψ2
l

E

∣∣∣∣∣ (QN −Q)φ̂u + R̂2,u

ψ̂−1
u ψ−1

u

∣∣∣∣∣ ≤ ς̃u

ψl
√
N

+
|R̂2,u|
ψl

, (since ψu/ψl, ψ̂u ≤ 1).
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Combining the above results together, we get the following

E

(
1− τ̂l

√
N

τ̃l
√
nψ

∣∣∣∣Zn
)

=
τ̄2

τ̃2l

∣∣∣∣ Nnψ − 1

∣∣∣∣+ E|ς̂2l − ς̃2l |
τ̃2l

+
(1− ψ)

ψlτ̃2l

(
ψlR̂

2
2,l + 2|R̂2,l|

)
+

1

τ̃2l

{
ς̃2l
N

+ R̂2
2,l + 2

(
ψ−1
l + |R̂2,l|

) ς̃l√
N

+ 2ψ−1
l |R̂2,l|+

ς̃u

ψl
√
N

+
|R̂2,u|
ψl

}

≤ τ̄2

τ̃2l

∣∣∣∣ Nnψ − 1

∣∣∣∣+ E|ς̂2l − ς̃2l |
τ̃2l

+ 2|R̂2,l|
2− ψ + ψlς̃l/

√
N

ψlτ̃2l

+
1

τ̃2l

(
ς̃2l
N

+
2ς̃l + ς̃u

ψl
√
N

+
|R̂2,u|
ψl

)
+

(2− ψ)

τ̃2l
R̂2

2,l.

Hence, in the large sample case, we have the following simplified bound (analogously for τ̂u)

E

(
1− τ̂l

√
N

τ̃l
√
nψ

)
= E

{
E

(
1− τ̂l

√
N

τ̃l
√
nψ

∣∣∣∣Zn
)}

≲
1√
n
+ E|R̂2,l|. (B.4)

2. Similarly for the upper limit,

τ̂2uN − τ̃2unψ = τ̂2u(N − nψ) + nψ(ς̂2u − ς̃2u)− nψ(1− ψ)(R̂2
2,u + 2R̂2,u/ψu)

+ nψ

(
1

ψ̂2
u

− 1

ψ2
u

− 1

ψ̂u
+

1

ψu

)
+ nψ

(
ψ

ψ2
u

− 1

ψu

)
︸ ︷︷ ︸

≥0

.

Further notice that by triangle inequality we have

E

{∣∣∣∣∣ 1ψ̂2
u

− 1

ψ2
u

− 1

ψ̂u
+

1

ψu

∣∣∣∣∣
∣∣∣∣∣Zn
}

≤ ς̃2u
N

+ R̂2
2,u +

∣∣∣2ψ−1
u + 2R̂2,u − 1

∣∣∣ ς̃u√
N

+ (2ψ−1
u − 1)|R̂2,u|.

Thus,

E

(
1− τ̂u

√
N

τ̃u
√
nψ

∣∣∣∣Zn
)

≤ τ̄2

τ̃2u

∣∣∣∣ Nnψ − 1

∣∣∣∣+ E|ς̂2u − ς̃2u|
τ̃2u

+
(1− ψ)

ψuτ̃2u

(
ψuR̂

2
2,u + 2|R̂2,u|

)
+

1

τ̃2u

{
ς̃2u
N

+ R̂2
2,u +

∣∣∣2ψ−1
u + 2R̂2,u − 1

∣∣∣ ς̃u√
N

+ |2ψ−1
u − 1||R̂2,u|

}
≤ τ̄2

τ̃2u

∣∣∣∣ Nnψ − 1

∣∣∣∣+ E|ς̂2u − ς̃2u|
τ̃2u

+
2|R̂2,l|
ψuτ̃2u

(
1− ψ + |1− ψu/2|+

ψuς̃u√
N

)
+

1

τ̃2u

(
ς̃2u
N

+
|2ψ−1

u − 1|√
N

ς̃u

)
+
R̂2

2,u(2− ψ)

τ̃2u
.
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Hence, in the large sample case, we have the following simplified bound (analogously for τ̂u)

E

(
1− τ̂u

√
N

τ̃u
√
nψ

)
= E

{
E

(
1− τ̂u

√
N

τ̃u
√
nψ

∣∣∣∣Zn
)}

≲
1√
n
+ E|R̂2,u|. (B.5)

3. For the last difference, we follow similarly as we did for the first one.

τ̂2l N − τ̃2unψ = τ̂2l (N − nψ) + nψ(ς̂2l − ς̃2u)− nψ(1− ψ)

(
R̂2

2,u + 2
|R̂2,u|
ψu

+∆2 + 2
∆

ψl

)

+ nψ(1− ψ̂u)

(
1

ψ̂2
l

− 1

ψ2
l

)
− nψ

(
ψ̂u
ψ2
l

− ψu
ψ2
l

)
+ nψ

(
ψ

ψ2
l

− ψu
ψ2
l

)
︸ ︷︷ ︸

≥0

(
since

1

ψu
= ∆+

1

ψl

)
.

The expected difference is bounded as follows

E
(

1

τ̂l
√
N

− 1

τ̃u
√
nψ

∣∣∣∣Zn) ≤ E
(
τ̃2unψ − τ̂2l N

τ̂lτ̃2u
√
Nnψ

∣∣∣∣Zn)
≤ τ̄

τ̃2u
√
N

∣∣∣∣ Nnψ − 1

∣∣∣∣+ E|ς̂2l − ς̃2u|
τ̃2uτ

√
N

+
(1− ψ)

τ̃2uτ
√
N

(
R̂2

2,u + 2
|R̂2,u|
ψu

+∆2 + 2
∆

ψl

)

+
1

τ̃2uτ
√
N

{
ς̃2l
N

+ R̂2
2,l + 2

(
ψ−1
l + |R̂2,l|

) ς̃l√
N

+ 2ψ−1
l |R̂2,l|+

ς̃u

ψl
√
N

+
|R̂2,u|
ψl

}

≤ τ̄

τ̃2u
√
N

∣∣∣∣ Nnψ − 1

∣∣∣∣+ E|ς̂2l − ς̃2u|
τ̃2uτ

√
N

+
|R̂2,u|
τ̃2uτ

√
N

(
2− 2ψ

ψu
+

1

ψl

)
+

2|R̂2,l|
τ̃2uτ

√
N

(
ς̃l√
N

+
1

ψl

)
+

1

τ̃2uτ
√
N

{
ς̃2l
N

+
2ς̃l + ς̃u

ψl
√
N

+ R̂2
2,u(1− ψ) + R̂2

2,l

}
+

(1− ψ)

τ̃2uτ
√
N

(
∆2 + 2

∆

ψl

)
.

For the large sample case,

E
{
E
(

1

τ̂l
√
N

− 1

τ̃u
√
nψ

∣∣∣∣Zn)} = E
(

1

τ̂l
√
N

− 1

τ̃u
√
nψ

)
≲

1√
n
+

E|R̂2,l|+ E|R̂2,u|√
n

. (B.6)
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Proof for the first difference B.1

For the first difference

(1− α)− P
(
n̂l − cN

√
Nτ̂l ≤ nu ≤ n̂u + cN

√
Nτ̂u

)
= (1− α)− P

(
n̂l − nl√
Nτ̂l

≤ nu − nl√
Nτ̂l

+ cN

)
+ P

(
n̂u − nu√
Nτ̂u

≤ −cN
)

≤ Φ

(
cN +

nu − nl√
Nτ̂l

)
− P

(
n̂l − nl√
Nτ̂l

≤ cN +
nu − nl√
Nτ̂l

)
+ P

(
n̂u − nu√
Nτ̂u

≤ −cN
)
− Φ (−cN )

+ Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)
− Φ

(
cN +

nu − nl√
Nτ̂l

)
since Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)
− Φ(−cN ) = 1− α.

The first two terms are bounded above by Berry-Esseen and for the third term, we can use mean value

theorem as follows,

Φ

(
cN +

nu − nl√
Nτ̂l

)
− Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)
= nψ∆ϕ(t3)

(
1√
Nτ̂l

− 1√
nψ(τ̃u ∨ τ̃l)

)
,

for some t3 between cN + nψ∆√
Nτ̂l

and cN +
√
nψ∆
τ̃u∨τ̃l , where nu − nl = nψ∆. We can show that this term is not

too positive using results from bounds B.4 and B.6.

E
{

1

τ̂l
√
N

− 1

(τ̃l ∨ τ̃u)
√
nψ

∣∣∣∣Zn} ≤ E
(

1

τ̂l
√
N

− 1

τ̃l
√
nψ

∣∣∣∣Zn) ∨ E
(

1

τ̂l
√
N

− 1

τ̃u
√
nψ

∣∣∣∣Zn)
≲

1√
N

+
|R̂2,l|+ |R̂2,u|√

N
.

Since cN > 0, we can bound the ϕ(t3) term as follows

nψ∆ϕ(t3) ≤ nψ∆ϕ

(
nψ∆√

Nτ̂l ∨
√
nψτ̃u ∨

√
nψτ̃l

)
=
nψ∆√
2π

exp

{
− n2ψ2∆2

2(
√
Nτ̂l ∨

√
nψτ̃u ∨

√
nψτ̃l)2

}
≤
√

2

π

(
√
Nτ̂l ∨

√
nψτ̃u ∨

√
nψτ̃l)

2

nψ∆
,

since e−w ≤ 1/w ∀ w > 0.

Thus,

E
{
Φ

(
cN +

nu − nl√
Nτ̂l

)
− Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)}
≤ E

{(
1√
Nτ̂l

− 1√
nψ(τ̃u ∨ τ̃l)

)√
2

π

(
√
Nτ̂l ∨

√
nψτ̃u ∨

√
nψτ̃l)

2

nψ∆

}
.

(B.7)
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By Berry-Esseen, we have for any t′ that

Φ(t′)− Cρl√
nψ1.5τ̃3l

≤ P

(
n̂l − nl − nψR̂2,l√

nψτ̃l
≤ t′

∣∣∣ Zn) ≤ Φ(t′) +
Cρl√
nψ1.5τ̃3l

,

where ρl = E
[
|1(Y ̸= 0)(ϕ̂l −Qϕ̂l) + {1(Y ̸= 0)− ψ}(R̂2,l + ψ−1

l )|3
∣∣Zn].

Taking t′ =
√
Nτ̂l√
nψτ̃l

t− nψR̂2,l√
nψτ̃l

, this implies

Φ

( √
Nτ̂l√
nψτ̃l

t−
√
nψR̂2,l

τ̃l

)
− Cρl√

nψ1.5τ̃3l
≤ P

(
n̂l − nl√
Nτ̂l

≤ t
∣∣∣ Zn)

≤ Φ

( √
Nτ̂l√
nψτ̃l

t−
√
nψR̂2,l

τ̃l

)
+

Cρl√
nψ1.5τ̃3l

.

Therefore, by the mean value theorem and the fact that ϕ(w) ≤ 1√
2π

∀w

Φ(t)− P
(
n̂l − nl√
Nτ̂l

≤ t
∣∣∣ Zn) ≤ Φ(t)− Φ

(
t

√
Nτ̂l√
nψτ̃l

−
√
nψR̂2,l

τ̃l

)
+

Cρl√
nψ1.5τ̃3l

≤ ϕ(θ)

{(
1−

√
Nτ̂l√
nψτ̃l

)
t+

√
nψ|R̂2,l|
τ̃l

}
+

Cρl√
nψ1.5τ̃3l

,

for some θ between t and t
√
Nτ̂l√
nψτ̃l

−
√
nψR̂2,l

τ̃l
.

Further by substituting t = cN + nψ∆√
Nτ̂l

, we see that θ ≥ nψ∆√
Nτ̂l

∧
√
nψ|∆−R̂2,l|

τ̃l
=

nψ(∆∧|∆−R̂2,l|)
(
√
Nτ̂l)∨(

√
nψτ̃l)

. Thus,

using the inequality e−w ≤ 1/w ∀ w > 0, we get

ϕ(θ) ≤
√

2

π

(Nτ̂2l ) ∨ (nψτ̃2l )

n2ψ2(∆ ∧ |∆− R̂2,l|)2
,

1√
2π
.

Substituting these bounds in the above inequality, we get the following.

Φ(t)− P
(
n̂l − nl√
Nτ̂l

≤ t
∣∣∣ Zn) ≤ Φ(t)− Φ

(
t

√
Nτ̂l√
nψτ̃l

−
√
nψR̂2,l

τ̃l

)
+

Cρl√
nψ1.5τ̃3l

≤
√

2

π

(Nτ̂2l ) ∨ (nψτ̃2l )

nψ(∆ ∧ |∆− R̂2,l|)2

(
1−

√
Nτ̂l√
nψτ̃l

)
∆√
Nτ̂l

+

(
1−

√
Nτ̂l√
nψτ̃l

)
cN√
2π

+

√
nψ|R̂2,l|√
2πτ̃l

+
Cρl√
nψ1.5τ̃3l

,

(B.8)
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A similar result follows for n̂u.

P
(
n̂u − nu√
Nτ̂u

≤ −t
∣∣∣ Zn)− Φ(−t) ≤ Φ

(
−t

√
Nτ̂u√
nψτ̃u

−
√
nψR̂2,u

τ̃u

)
− Φ(−t) + Cρu√

nψ1.5τ̃3u

≤ 1√
2π

{(
1−

√
Nτ̂u√
nψτ̃u

)
t+

√
nψ|R̂2,u|
τ̃u

}
+ C

(
ρu√

nψ1.5τ̃3u

)
.

(B.9)

Proof for the second bound B.2

The second difference can be re-written as

P(C̃N < cN )P
(
n̂l − cN

√
Nτ̂l ≤ nu ≤ n̂l − C̃N

√
Nτ̂l | C̃N < cN

)
+ P(C̃N < cN )P

(
n̂u + C̃N

√
Nτ̂u ≤ nu ≤ n̂u + cN

√
Nτ̂u | C̃N < cN

)
− P(C̃N > cN )P

(
n̂l − C̃N

√
Nτ̂l ≤ nu ≤ n̂l − cN

√
Nτ̂l | C̃N > cN

)
− P(C̃N > cN )P

(
n̂u + cN

√
Nτ̂u ≤ nu ≤ n̂u + C̃N

√
Nτ̂u | C̃N > cN

)
.

The probabilities are bounded above by 1. Assuming that ψ̂,
√
Nτ̂l and

√
Nτ̂u have continuous densities (to

avoid high mass in a small area), it is sufficient to show that the positive terms are not too positive. This

difference is bounded above by

2P(cN − C̃N > η) + 2P(0 < cN − C̃N ≤ η)

≤ 2P(cN − C̃N > η) + 2ηθ,
(B.10)

where θ is the maximum value of the density of (n̂u − nu)/
√
Nτ̂u and (n̂l − nu)/

√
Nτ̂l.

We will show the following is bounded above.

P(cN − C̃N > η)

To prove the same, we will show that the following is bounded for any given η > 0.

P

(
Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

)
.

This however requires as additional assumption. We use the following finite sample assumption modifying

the assumption in Imbens and Manski (2004) (assumption 1 (iii)).
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Assumption 8. For a given ϵ > 0 and a constant c, there exists N0 and υ > 0 such that for all N > N0

P
(
|∆̂−∆| > cn−υ

)
< ϵ.

Notice that we can break the event above into the following three terms.

Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

= 1(N∆̂ ≤ nψ∆)× 1

{
Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

}

+ 1(N∆̂ > nψ∆, |∆̂−∆| ≤ cn−υ)× 1

{
Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

}

+ 1(N∆̂ > nψ∆, |∆̂−∆| > cn−υ)× 1

{
Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

}
.

The goal is to show that the probability of this event is not too large. So we start by maximizing this

probability and show that it is bounded. The first term has zero probability and hence, can be dropped. For

the second term, notice the following

1

{
N∆̂ > nψ∆, |∆̂−∆| ≤ cn−υ, Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

}

≤ 1

{
|∆̂−∆| ≤ cn−υ, ϕ

(√
nψ∆

τ̃u ∨ τ̃l

)
× ∆̂|N − nψ|+ nψ|∆̂−∆|√

nψ(τ̃u ∨ τ̃l)
> η

}
,

where the second bound follows by mean value theorem and triangle inequality.Now, by Markov’s inequality

we get the following bound on the second term.

E

{
1

η
× ϕ

(√
nψ∆

τ̃u ∨ τ̃l

)
× |N − nψ|∆̂ + nψcn−υ√

nψ(τ̃u ∨ τ̃l)

}
= E

[
|N − nψ|∆̂ + ψcn1−υ

η
√
nψ

√
2π(τ̃u ∨ τ̃l)

exp

{
− nψ∆2

2(τ̃u ∨ τ̃l)2

}]
.

For the third term, it is easy to see that it is bounded above by

P(|∆̂−∆| > cn−υ) <
1√
n
,

when N is sufficiently large and c is a constant chosen appropriately.
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Thus,

P

(
Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

)

≤ E

[
|N − nψ|∆̂ + ψcn1−υ

η
√
nψ

√
2π(τ̃u ∨ τ̃l)

exp

{
− nψ∆2

2(τ̃u ∨ τ̃l)2

}]
+

1√
n
.

Next, to show that P (cN−C̃N > η) is bounded above, we use mean value theorem. We will use the previously

proved result and show that it is equivalent to P(cN − C̃N > η).

Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)

= Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ(−C̃N )− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
+Φ(−C̃N )

= Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)
− Φ(−cN )− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
+Φ(−C̃N ).

The third equality follows from the definitions of C̃N and cN . By mean value theorem,

Φ

(
cN +

√
nψ∆

τ̃u ∨ τ̃l

)
− Φ(−cN )− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
+Φ(−C̃N )

= ϕ(t1)(cN − C̃N ) + ϕ(t2)(cN − C̃N ), for some numbers t1 and t2.

Also, if
√
nψ∆/(τ̃u∨ τ̃l), C̃N and cN are bounded above, then ϕ(t1)+ϕ(t2) is bounded away from zero. Note

that ϕ(t1) + ϕ(t2) > ϕ(zα/2) = α/2 since cN , C̃N ≤ zα/2. Hence, we have the following equivalence for any

given η > 0.

P
(
cN − C̃N >

η

ϕ(t1) + ϕ(t2)

)
= P

(
Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
− Φ

(
C̃N +

√
nψ∆

τ̃u ∨ τ̃l

)
> η

)
.

Thus, the second difference B.2 is bounded above by

2P
(
cN − C̃N > η

)
+ 2η θ.

Thus,

P
(
n̂l − cN

√
Nτ̂l ≤ nu ≤ n̂u + cN

√
Nτ̂u

)
− P

(
n̂l − C̃N

√
Nτ̂l ≤ nu ≤ n̂u + C̃N

√
Nτ̂u

)
≤ 2E

[
|N − nψ|∆̂ + ψcn1−υ

η(α/2)
√
nψ

√
2π(τ̃u ∨ τ̃l)

exp

{
− nψ∆2

2(τ̃u ∨ τ̃l)2

}]
+

2√
n
+ 2η θ

(B.11)
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Proof for the third difference B.3

The third difference can be re-written as

P(C̄N < C̃N )P
(
n̂l − C̃N

√
Nτ̂l ≤ nu ≤ n̂l − C̄N

√
Nτ̂l | C̄N < C̃N

)
+ P(C̄N < C̃N )P

(
n̂u + C̄N

√
Nτ̂u ≤ nu ≤ n̂u + C̃N

√
Nτ̂u | C̄N < C̃N

)
− P(C̄N > C̃N )P

(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂l − C̃N

√
Nτ̂l | C̄N > C̃N

)
− P(C̄N > C̃N )P

(
n̂u + C̃N

√
Nτ̂u ≤ nu ≤ n̂u + C̄N

√
Nτ̂u | C̄N > C̃N

)
.

We will approach in a similar way as we did for the second difference B.11. The probabilities are bounded

above by 1. We just need to show that this difference is not too positive. Assuming that ψ̂ and
√
Nτ̂ have

uniformly continuous densities (to avoid high mass in a small area), it is sufficient to show the following

P(C̃N − C̄N > η)

is bounded above.

To prove the same, we will show that the following

P

(
Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
> η

)

is bounded for a given η > 0.

Notice that we can break the event above into the following terms.

Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
> η

= 1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

≤ 1

)
× 1

{
Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
> η

}

+ 1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1

)
× 1

{
Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
> η

}
.

The goal is to show that the probability of this event is not too large. So we start by maximizing this

probability and show that it is bounded. The first term has zero probability and hence, can be safely
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dropped. For the second term, notice the following

1

{√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1, Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
> η

}

≤ 1

{√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1, ϕ

(√
N∆̂

τ̂u ∨ τ̂l

)
×

√
N∆̂

τ̂u ∨ τ̂l

(
1−

√
N(τ̂u ∨ τ̂l)√
nψ(τ̃u ∨ τ̃l)

)
> η

}
,

where the second bound follows by mean value theorem and the properties of the normal density ϕ. Now,

by Markov’s inequality we get the following bound for the expectation of the above term

E

[
1

η
ϕ

(√
N∆̂

τ̂u ∨ τ̂l

)
×

√
N∆̂ {

√
nψ(τ̃u ∨ τ̃l)−

√
N(τ̂u ∨ τ̂l)}√

nψ(τ̃u ∨ τ̃l)(τ̂u ∨ τ̂l)
× 1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1

)]
,

since E{(A− C)1(A− C > 0)} < E{A1(A− C > 0)} ≤ E|A|, for variables A&C.

This quantity can be bounded above using the results of B.4 and B.5. Also, notice that

√
nψτ̃u ∨

√
nψτ̃l −

√
Nτ̂u ∨

√
Nτ̂l√

nψ(τ̃u ∨ τ̃l)
≤

√
nψτ̃l −

√
Nτ̂l√

nψ(τ̃u ∨ τ̃l)
∨

√
nψτ̃u −

√
Nτ̂u√

nψ(τ̃u ∨ τ̃l)
.

Thus,

P

(
Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
> η

)

≤ E

[√
N∆̂ {

√
nψ(τ̃u ∨ τ̃l)−

√
N(τ̂u ∨ τ̂l)}

η
√
2πnψ(τ̂u ∨ τ̂l)(τ̃u ∨ τ̃l)

exp

{
− N∆̂2

2(τ̂u ∨ τ̂l)2

}]
.

Next to show that P(C̃N − C̄N > η) is bounded above, we can use mean value theorem similar to what we

did for the second difference.

Hence, we have the following for any given η > 0

P
(
C̃N − C̄N > η

)
≤ P

(
Φ

(
C̃N +

√
N∆̂

τ̂u ∨ τ̂l

)
− Φ

(
C̃N +

N∆̂√
nψ(τ̃u ∨ τ̃l)

)
>
ηα

2

)
.

Thus, the third difference B.3 is bounded above by

2P
(
C̃N − C̄N > η

)
+ 2η θ,

where θ is the maximum value of the density of (n̂u − nu)/
√
Nτ̂u and (n̂l − nu)/

√
Nτ̂l.
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2E
{
P
(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂u + C̄N

√
Nτ̂u

)
− P

(
n̂l − C̃N

√
Nτ̂l ≤ nu ≤ n̂u + C̃N

√
Nτ̂u

)}
≤ E

[√
N∆̂ {

√
nψ(τ̃u ∨ τ̃l)−

√
N(τ̂u ∨ τ̂l)}

η(α/2)
√
2πnψ(τ̂u ∨ τ̂l)(τ̃u ∨ τ̃l)

exp

{
− N∆̂2

2(τ̂u ∨ τ̂l)2

}
× 1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1

)]
+ 2η θ.

(B.12)

Combining the bounds

Now, we can show that the estimated confidence internal contains nu with probability 1−α and some error

term that is not too negative. Similarly, one can show for nl. And hence, the result follows for the target

parameter ψ.

(1− α)− P
(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂u + C̄N

√
Nτ̂u

)
≤ E

{
Φ

(
cN +

nψ∆√
Nτ̂l

)
− P

(
n̂l − nl√
Nτ̂l

≤ cN +
nψ∆√
Nτ̂l

)}
+ E

{
P
(
n̂u − nu√
Nτ̂u

≤ −cN
)
− Φ (−cN )

}
+ E

{
Φ

(
cN +

nψ∆√
nψ(τ̃l ∨ τ̃u)

)
− Φ

(
cN +

nψ∆√
Nτ̂l

)}
+ 2P

(
cN − C̃N > η

)
+ 2η θ + 2P

(
C̃N − C̄N > η

)
+ 2η θ.

Now, if ∆ = 0, then in the context of this paper, this condition indicates that ∆̂ = 0. Thus, C̄N = C̃N =

cN = z1−α/2. Thus, the third term above along with the second B.2 and the third differences B.3 are zero

when ∆ = 0. To incorporate this property here, we will use indicator terms. Next, we use the results from

B.7, B.8, B.9, B.11 and B.12 to obtain the following bound.
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1√
2π

E

(√
nψ|R̂2,l|
τ̃l

)
+

cN√
2π

E

(
1−

√
Nτ̂l√
nψτ̃l

)
+ CE

(
ρl√

nψ1.5τ̃3l

)

+

√
2

π
E

{
(Nτ̂2l ) ∨ (nψτ̃2l )

nψ(∆ ∧ |∆− R̂2,l|)2

(
1−

√
Nτ̂l√
nψτ̃l

)
∆√
Nτ̂l

}

+
1√
2π

E

(√
nψ|R̂2,u|
τ̃u

)
+

cN√
2π

E

(
1−

√
Nτ̂u√
nψτ̃u

)
+ CE

(
ρu√

nψ1.5τ̃3u

)

+ 1(∆ = 0)E

{(
1√
Nτ̂l

− 1√
nψτ̃u ∨

√
nψτ̃l

)√
2

π

(
√
Nτ̂l ∨

√
nψτ̃u ∨

√
nψτ̃l)

2

nψ∆

}

+ 21(∆ ̸= 0)E

[
|N − nψ|∆̂ + ψcn1−υ

η(α/2)
√
nψ

√
2π(τ̃u ∨ τ̃l)

exp

{
− nψ∆2

2(τ̃u ∨ τ̃l)2

}
+

1√
n

]
+ 1(∆ ̸= 0)4η θ

+ 21(∆ ̸= 0)E

[√
N∆̂ {

√
nψ(τ̃u ∨ τ̃l)−

√
N(τ̂u ∨ τ̂l)}

η(α/2)
√
2πnψ(τ̂u ∨ τ̂l)(τ̃u ∨ τ̃l)

exp

{
− N∆̂2

2(τ̂u ∨ τ̂l)2

}
1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1

)]
.

If η = n−κ for some κ > 0, to simplify the bound, let κ = 1/2. We choose η = n−1/2 since the rate is not

faster than 1/
√
n as can be seen from the Berry-Esseen bounds. Also, by definition υ > 0.

Further, to simplify the exponential terms, we use the inequality e−
w
2 <

√
3!/w3 ∀ w > 0, and some

rearrangement to obtain the following simplified form.

(1− α)− E
{
P
(
n̂l − C̄N

√
Nτ̂l ≤ nu ≤ n̂u + C̄N

√
Nτ̂u

)}
≤

√
nψ√
2π

E

(
|R̂2,l|
τ̃l

+
|R̂2,u|
τ̃u

)
+

C√
nψ1.5

E
(
ρl
τ̃3l

+
ρu
τ̃3u

)
+ 1(∆ ̸= 0)E

{
2√
n
(1 + 2θ)

}

+
cN√
2π

{
E

(
1−

√
Nτ̂u√
nψτ̃u

)
+ E

(
1−

√
Nτ̂l√
nψτ̃l

)}

+

√
2

π
E

{
(Nτ̂2l ) ∨ (nψτ̃2l )

nψ(∆ ∧ |∆− R̂2,l|)2

(
1−

√
Nτ̂l√
nψτ̃l

)
∆√
Nτ̂l

}

+ 1(∆ ̸= 0) E

{(
1√
Nτ̂l

− 1√
nψτ̃u ∨

√
nψτ̃l

) √
2(
√
Nτ̂l ∨

√
nψτ̃u ∨

√
nψτ̃l)

2

√
πnψ∆

}

+ 1(∆ ̸= 0)
2
√
3

α
√
πψ2n1.5

E

[
|N − nψ|∆̂ + ψcn1−υ (τ̃u ∨ τ̃l)2

∆3

]

+ 1(∆ ̸= 0)
2
√
3

α
√
πψ

E

[
{
√
nψ(τ̃u ∨ τ̃l)−

√
N(τ̂u ∨ τ̂l)}

(τ̃u ∨ τ̃l)
(τ̂u ∨ τ̂l)2

N∆̂2
× 1

(√
nψ(τ̃u ∨ τ̃l)√
N(τ̂u ∨ τ̂l)

> 1

)]
.

Now, using the upper bounds on the variance differences, we get the large sample bound as follows.

1√
n
+

√
nE(|R̂2,l|+ |R̂2,u|).
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