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Abstract

Object detection is one of the most fundamental tasks in the computer vision field, which aims at localizing

and classifying instances of semantic objects of certain classes in digital images. Object detection serves

as a crucial step for many downstream vision tasks such as action recognition, face analysis, instance seg-

mentation, object re-identification, retail scene understanding, etc. Therefore, it has been carefully studied

by the computer vision community for decades. Thanks to the advance of deep neural networks and well-

annotated challenging datasets, object detection algorithms have been greatly improved. However, object

detectors are still far from robust when deployed in real-world AI applications. The performance can

drop dramatically due to the challenging conditions introduced by the varying nature of the real-world

data. We summarize the majority of this varying nature as three aspects, i.e. appearance variation, scale

variation, and availability variation. In some extreme cases where multiple variations co-exist, the failure

of object detectors may even lead to the crash of the entire AI system.

The focus of this thesis is to construct the solutions addressing the mentioned three types of data

variations. For the appearance variation, we study the effect of the context information on the detection

of the human face, one of the most common objects. We propose an explicit contextual reasoning module

for the detection network to capture the local information surrounding the face. For the scale variation

challenge, we start with the anchor-based formulation of object detection where the anchor-object match-

ing mechanism is theoretically investigated. This inspires us to propose several better designs of robust

anchors. Then we discover the inherent limitations of anchor-based detection, leading to the reformu-

lation of detection from an anchor-free perspective. Advanced techniques for dynamic feature selection

are proposed to achieve the goal that less is more. For the availability variation, we address the inherent

long-tail distribution of the real-world data by studying object detection in the few-shot setting in which

there are some rare classes with only a few annotated objects available while other common classes dom-

inate the dataset with abundant labeled samples. Given limited visual information of the rare classes, we

propose semantic relation reasoning with prior knowledge from natural language to take advantage of

the constant relationship between common classes and rare classes regardless of the data availability. We

thoroughly analyze the effect of proposed techniques by conducting several experiments on challenging

real-world datasets, such as WiderFace, VOC, COCO, etc. Comparisons with the previous state of the arts

demonstrate the superiority of our methods.
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Chapter 1

Introduction and Background

Object detection aims at understanding the scene by answering the question: what and where are the

objects in the scene? The scene can be represented by 2D images or 3D data like videos or point clouds.

In this thesis, we focus on the 2D RGB images, so the answers are given by a set of bounding boxes with

the class labels from a close set and confidence scores. The class set is predefined which includes some

objects with semantically meaningful names, such as humans, animals, vehicles, or furniture.

Object detection is an important task in the computer vision community. It serves as a prerequisite

for various down-streaming vision applications such as instance segmentation [33], facial analysis [3,

110], action recognition [86], video analysis [61, 88], image captioning [42], object tracking [87], and the

prediction and planning for autonomous driving cars [19, 54]. Without a proper object detector, the

objects we care about in the scene cannot further enter the analysis pipeline of AI systems. Due to

its importance, people have been studying it for decades. In recent years, there have been remarkable

breakthroughs in the performance of object detectors thanks to the rapid development of deep learning

techniques [45, 81, 34, 94] and well-annotated detection datasets [101, 22, 58] to simulate the real-world

scenario.

1.1 Object Detection in the Wild - Difficulties & Challenges

Although object detection is a mature and well-defined problem, it is still challenging in the real world. It

is not easy to answer the question "what are the difficulties and challenges in object detection?" because

different detection tasks have different objectives and constraints. In our opinion, the challenges mainly

come from the varying nature of the real-world data. We summarize the majority of this varying nature

as three aspects, i.e. appearance variation, scale variation, and availability variation.

The appearance variation is about the change of appearance for a certain object class. Because we

1
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are capturing the object with 2D images, some information may be lost in the process of projecting a 3D

object from the real world to 2D images. For example, the object can look very differently at given poses.

And the object can be occluded by other objects in 2D images even it is far away from others in the 3D

world, due to the viewpoint of the camera. When the image is taken with an out-of-focus camera, the

object will have low resolution. Additionally, a given object class may include multiple subclasses so fine-

grained visual differences between subclasses can exist. For the human face, its appearance in images can

be largely affected by illumination, expression, makeup, etc. Object detectors are given only 2D images

to learn and predict the objects, hence it is challenging to understand the appearance variation which is

happening in the 3D world.

The scale variation is about the change of object size. The variation can be on the area of the object

bounding box according to the distance between the object and the camera, as near big far small. It

can also be the variation of the box aspect ratio. Some objects can be very flat, such as skateboards

and surfboards, while others may be very thin, e.g. giraffes, forks, knives. Scale variation is a major

challenge for object detection so that many important inventions and technical designs are specifically for

this challenge. And the objects can appear with arbitrary sizes ranging from a few pixels to the entire

image. Extensive searching in this wide range is a hard task for efficient object detection.

The availability variation is about the inherent long-tail distribution of the real-world data. In the real

world, there are always some common categories that have a large number of samples. The data amount

of these common categories can take up the majority of the entire dataset. On the other hand, some rare

categories have very limited samples available, such as rare road conditions or rare animals. And we are

unable to alleviate this situation of scarce cases by simply collecting more data, not only because the data

collection of these rare categories is costly but also because we may find even rarer objects during data

collection. If we directly train an object detector using this imbalanced data, the detector can be heavily

biased to the common objects, i.e. it will miss the rare objects with high probability.

The above three types of variations can co-exist at the same time. In this extreme situation, a detector

designed without considering those variations could easily fail the detection task, which may further lead

to the failure of down-streaming vision tasks and even the crash of the entire AI system. One such example

is that the self-driving car fails to detect an overturned truck on the highway because the overturned truck

has an uncommon appearance due to overturned pose, small scale due to far distance, and belongs to rare

road conditions that the detector never saw before. The failure of the detector caused this truck to bypass

the prediction and planning modules of the self-driving car and ended up with a costly crash.



CHAPTER 1. INTRODUCTION AND BACKGROUND 3

1.2 A Recent History of Object Detectors

In the past two decades, much effort has been devoted to the progress of object detection. The progress can

be roughly categorized as two historical periods, i.e. pre-deep-learning period and deep-learning-based

period. In this section, we briefly introduce some representative methods to highlight these periods.

In the pre-deep-learning period, most of the early object detection algorithms are built on handcrafted

features. Sophisticated feature representations are designed and some speedup skills are proposed given

limited computing resources. One of the most popular detection methods is the Viola-Jones (VJ) face

detector [84]. It follows the sliding window principle to check all possible locations and scales in an image

if any window contains a human face. To reduce the computation complexity, the VJ detector introduces

several important techniques, e.g. integral image for fast Haar feature extraction, feature selection with

Adaboost [26], and detection cascades for quick rejection of background windows. Later, Histogram of

Oriented Gradients (HOG) [16] is proposed for pedestrian detection to extract invariant features over a

dense grid of uniformly spaced cells. It is originally designed for pedestrian detection but its core ideas

have been an important foundation of many computer vision applications for many years. The peak of

the pre-deep-learning period is the Deformable Parts Model (DPM) [25]. The DPM solves object detection

in a divide-and-conquer style where the training can be seen as learning a way to decompose an object,

and the inference can be viewed as an ensemble of different detected object parts. DPM has provided

many valuable insights for detector design such as mixture models, hard negative mining, bounding box

regression, etc, which still have a deep influence on modern object detection approaches.

As the performance of handcrafted features became saturated, object detection also reached a plateau.

Then in 2012, the renaissance of convolutional neural networks (CNNs) [45] completely changed the de-

sign pattern of computer vision algorithms. A deep convolutional neural network can learn semantically

high-level and robust feature representations from large-scale datasets. Therefore, a natural idea is to

replace the handcrafted features with more powerful features from CNN. This idea leads to the proposal

of Regions with CNN features (RCNN) for object detection [30]. The RCNN starts with a set of object

proposals by selective search [78]. And each proposal is resized to a fixed size and fed into a CNN model

pretrained on the ImageNet dataset [17] to extract a feature representation. Finally, some SVM classifiers

are trained to predict the classification scores of objects within each region. The RCNN represents the

start of the deep learning era for object detection, and since then object detection begins to evolve at an

unprecedented speed.

In the deep learning era, object detectors can be roughly divided into two categories, i.e. two-stage

and single-stage. The two-stage detectors have a class-agnostic region proposal stage which outputs the
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potential regions that may contain objects. Then the second stage is responsible for classifying the region

and refining its location. Some examples of two-stage detectors include Fast R-CNN [29], Faster R-CNN

[77], R-FCN [14], FPN [56], Cascade R-CNN [5], and Libra R-CNN [68]. The single-stage detectors, on

the other hand, turn the class-agnostic proposal into the class-specific one and directly output the class

confidence scores and the bounding box coordinates over a dense grid. Some representatives are YOLO

[75], SSD [59], RetinaNet [57], and FreeAnchor [109].

Recently, there have been works focusing on solving the detection problem in the limited data scenario.

LSTD [8] proposes the transfer knowledge regularization and background depression regularization to

promote the knowledge transfer from the source domain to the target domain. [20] proposes to iterate

between model training and high-confidence sample selection. RepMet [41] adopts a distance metric

learning classifier into the RoI classification head. FSRW [40] and Meta R-CNN [96] predict per-class

attentive vectors to reweight the feature maps of the corresponding classes. MetaDet [91] leverages meta-

level knowledge about model parameter generation for category-specific components of novel classes. In

[23], the similarity between the few shot support set and query set is explored to detect novel objects.

Context-Transformer [103] relies on discriminative context clues to reduce object confusion. TFA [90] only

fine-tunes the last few layers of the detector. Two very recent papers are MPSR [92] and FSDetView [93].

MPSR develops an auxiliary branch to generate multi-scale positive samples as object pyramids and to

refine the prediction at various scales. FSDetView proposes a joint feature embedding module to share

the feature from base classes. However, all these methods depend purely on visual information and suffer

from availability variation.

To provide a context for this dissertation, we show some technical details of Faster R-CNN, FPN, and

RetinaNet as follows.

1.2.1 Faster R-CNN

Faster R-CNN [77] is the first anchor-based detector that proposes the concept of anchor boxes. Anchor

boxes are designed for discretizing the continuous space of all possible instance boxes into a finite number

of boxes with predefined locations, scales, and aspect ratios. The detection problem is then formulated

as anchor-object matching in the framework of deep convolutional neural networks. Instance boxes are

matched to anchor boxes based on the Intersection-over-Union (IoU) overlap. During training, each object

instance is matched with one or several highly overlapped anchors. Matched anchors are trained to output

high confidence scores and then regress to ground-truth boxes. During inference, objects in a testing image

are detected by classifying and regressing anchors. Faster R-CNN serves as a prototype for many modern
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Figure 1.1: Overview of the Faster R-CNN prototype, the first anchor-based object detector.

deep-learning-based object detectors. Its frameworks have also been adopted and generalized to other

methods, such as 3D object detection, instance segmentation and, image captioning.

Faster R-CNN is a single unified network for object detection, which consists of two modules as shown

in Figure 1.1. The first one is a fully convolutional network termed Region Proposal Network (RPN) to

propose potential regions of interest. The second module is a per-region prediction network that uses the

proposed regions. Two modules share the feature maps from the convolutional layers.

Region Proposal Network. A Region Proposal Network (RPN) takes in an image of any size and

predicts a set of rectangular object proposals. Inspired by the idea of the sliding window, a small network

is slid over the convolutional feature map generated from the backbone model. The small network looks

at an n× n spatial window at each location of the input feature map and extracts a feature vector. This

feature is then fed into two sibling 1× 1 convolutional layers with one for box localization (loc) and the

other for box classification (cls), as shown in Figure 1.2. At each sliding window location, multiple region

proposals are predicted, where the number of maximum possible proposals for each location is denoted

as p. Therefore, the cls layer outputs p scores indicating the probability of objectness for each proposal,

and the loc layer has 4p outputs encoding the coordinate deltas of p boxes. The coordinate deltas are

concerning p reference boxes which are referred to as anchors. All anchor boxes are centered at the sliding

window location. The set of these various anchor boxes is denoted as A. Duo to the nature of multiple

scales (and aspect ratios) of objects, the anchor boxes are also designed as a multi-scale (and multi-aspect)

pyramid as shown in Figure 1.2. This design of multi-sale anchors is a key for addressing scale variation

with shared features in object detection.

Per-region prediction network. In the per-region prediction network, the proposed regions from RPN

are used as input to extract per-region features from the backbone. For each region of interest (RoI),
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Figure 1.2: Detailed architecture of the Region Proposal Network.

Figure 1.3: Detailed architecture of the per-region prediction network.

it is firstly projected back onto a feature map in the backbone and a feature tensor is extracted with

activation functions like RoI-pooling [29] or RoI-align [33]. The extracted feature is then fed into several

fully connected (FC) layers followed by two sibling FC layers. One FC layer outputs the classification

probabilities of all classes for the RoI in question. The other FC layer further predicts the coordinate deltas

w.r.t. the proposed region of this RoI. The whole pipeline is illustrated in Figure 1.3.

1.2.2 Feature Pyramid Network

One long-standing problem for object detection is scale variation. To achieve scale invariability, pre-deep

learning approaches often adopt the image pyramid as a basic component. But recent deep learning

object detectors have avoided the image pyramid partly because it is computation and memory intensive.

The Feature Pyramid Network (FPN) [56] addresses this dilemma by exploiting the inherent multi-scale,

pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra

cost. Specifically, FPN takes in a single-scale image of arbitrary size and outputs proportionally sized

feature maps at multiple levels in a fully convolutional fashion. As shown in Figure 1.4, a coarser-



CHAPTER 1. INTRODUCTION AND BACKGROUND 7

Figure 1.4: Architecture of the Feature Pyramid Network.

Figure 1.5: Typical way of assigning anchor boxes to multiple levels of FPN. Larger anchor boxes are
associated with coarser-resolution map.

resolution feature map is upsampled by a factor of 2 using nearest neighbor upsampling. The upsampled

map is then merged with the corresponding bottom-up map by element-wise addition. The bottom-up

map goes through a 1× 1 convolutional layer to match the channel dimension of the upsampled map.

This process is iterated until the finest resolution map is generated. Predictions are independently made

on all levels.

When integrating FPN with anchor boxes, large anchor boxes are typically associated with upper

feature maps, and small anchor boxes are associated with lower feature maps, see Figure 1.5. This is

based on the heuristic that upper feature maps have more semantic information suitable for detecting big

instances whereas lower feature maps have more fine-grained details suitable for detecting small instances

[32]. The design of feature pyramids integrated with anchor boxes has achieved good performance on

several object detection benchmarks [22, 58, 27].
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1.2.3 RetinaNet

The single-stage detectors have the advantage of simple network architecture and fast runtime speed when

compared with two-stage detectors. But they are less accurate than the two-stage counterparts until the

proposal of RetinaNet [57]. RetinaNet keeps the network architecture concise. The detection head is as

simple as the RPN in Figure 1.2, except that the classification map for each anchor has multiple channels

corresponding to multiple classes. The detection head is attached to each level of the feature pyramid

network. It is discovered that the lower accuracy is caused by the extreme foreground vs. background

class imbalance during training. Because the predictions are generated from a dense grid, there are a large

number of negative anchor boxes. Training with conventional classification loss will make the detector

bias to low confidence scores. RetinaNet addresses this with a new loss function named Focal Loss

which reshapes the standard cross-entropy loss so that detector will focus more on hard and misclassified

examples during training. Focal Loss enables the single-stage detectors to achieve comparable accuracy

with two-stage detectors while maintaining high runtime speed.

1.3 Summary of Key Contributions

In this dissertation, we aim at constructing effective solutions to address the varying nature of the real-

world data. We build upon previous state-of-the-art methods and provide an in-depth analysis of the

issues in the current system. Then novel designs are proposed guided by the analysis. And thorough

experiments are conducted to verify the effectiveness of the proposed components. It turns out our

methods are more tolerant to the appearance variation, scale variation, and availability variation from the

real world. Our key contributions can be summarized as follows:

• For the appearance variation, we propose the multi-resolution feature and the contextual reasoning

module for the two-stage object detectors [118, 119]. The multi-resolution feature fuses information

from multiple layers from the CNN architecture with different resolutions. And the contextual rea-

soning module enables explicit reference to the context information surrounding the objects during

inference. We explore both fixed context regions and learnable dynamic context regions as well as

different information fusion strategies and demonstrate the improvements on human faces.

• For the scale variation, we start with improving the anchor-based face detectors [117]. An in-depth

analysis of the anchor matching mechanism is provided under different conditions with the newly

proposed Expected Max Overlap (EMO) score to theoretically characterize anchors’ ability to achieve

high face IoU scores. Guided by the theoretical analysis, we propose several effective techniques of
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new anchor design for higher IoU scores especially for tiny faces, which demonstrates significant

improvement over the strong baseline. Our final face detection system achieves state-of-the-art

performance on WiderFace, AFW, PASCAL Faces, and FDDB with competitive runtime speed.

• Further on the scale variation problem, we discover the inherent limitations of anchor-based de-

tection and reformulate the object detection from an anchor-free perspective [116, 115]. Under the

anchor-free formulation, we take advantage of its flexibility for feature selection and propose several

novel strategies for dynamic feature level selection. To this end, we come up with a detection proto-

type with a simpler architecture, faster speed, easier training, and higher accuracy compared to the

anchor-based counterpart. Our anchor-free detector demonstrates the philosophy that less is more

and achieves a superior balance of accuracy vs. speed. In a graph of detection accuracy vs. runtime,

the performances of our detector under different backbone models form an upper envelope of all

previous single-stage or two-stage detectors.

• For the availability variation, we study object detection in the few-shot setting to address the class

imbalance problem in the data with the long-tailed distribution. In addition to the limited visual

information, we propose to use the semantic relation between the common classes and rare classes

to aid the learning of rare classes, where the semantic relation information can be acquired from the

knowledge in natural language learning with some knowledge graphs. To the best of our knowledge,

we are the first work to investigate semantic relation reasoning for the few-shot detection task and

show its potential to improve a strong baseline. Our few-shot detector achieves stable performance

w.r.t the availability variation, outperforming state-of-the-art methods under several existing settings

especially when the rare class data is extremely limited.

• For the few-shot detection setting, we also discover the flaws of existing setups in previous methods.

We find the detector can get early access to rare class data through the pretrained model used for

initializing the backbone of the detector because the pretrained model is trained on a large-scale

classification dataset including many samples from the rare classes, which makes the rare classes

not so “rare”. Therefore, we suggest a more realistic setting in which rare classes are removed from

the classification dataset for the pretrained model. Our few-shot detector can maintain a more steady

performance compared to previous methods if using the new pretrained model.
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1.4 Notation and Organization

This thesis is structured as follows. In Chapter 2, we focus on addressing the detection challenges from

the appearance variation. We motivate and present Contextual Multi-Resolution R-CNN (CMR-RCNN)

for face detection in the wild. The key insight is that the multi-resolution feature and the context infor-

mation surrounding the face matter a lot for handling the facial appearance variation. And CMR-RCNN

demonstrates how to incorporate such information into the detector on top of the Faster R-CNN proto-

type. In Chapter 3, we study how to address the scale variation. We start with investigating the existing

anchor-based detectors. Section 3.1.1 derives the Expected Max Overlapping score to characterize the ro-

bustness of anchor design, followed by several design strategies of robust anchor in Section 3.1.2. Section

3.2.1 interprets anchor-object matching from the feature selection’s perspective. and reveals its inherent

limitations, which inspires the proposal of the anchor-free detection prototype (Section 3.2.2) and several

advanced feature selection methods (Section 3.2.3). In Chapter 4, we focus on addressing the availability

variation in the few-shot setting. Section 4.2 introduces the standard setting for few-shot object detection

and our semantic relation reasoning is proposed in Section 4.3. Chapter 5 summarizes the work with the

major findings and discusses some feature research ideas at a high level.

We use the following mathematical notation for the remainder of this dissertation:

m A scalar value
m A column vector
M A matrix



Chapter 2

Contextual Multi-Resolution R-CNN for

Appearance Variation

Detection and analysis on human subjects using biometrics based on facial features for access control,

surveillance systems, and other security applications have gained popularity over the past few years.

Several such biometrics systems are deployed in security checkpoints across the globe with more being

deployed every day. Particularly, face recognition has been one of the most popular biometrics modalities

attractive to security departments. Indeed, the uniqueness of facial features across individuals can be

captured much more easily than other biometrics. To take into account a face recognition algorithm,

however, face detection usually needs to be done first.

The problem of face detection has been intensely studied for decades to ensure the generalization

of robust algorithms to unseen face images [84, 106, 120, 51, 47, 63, 48, 64, 7, 97, 28, 55]. Although the

detection accuracy in recent face detection algorithms [49, 24, 100, 73, 98, 74] has been highly improved

due to the advancement of deep Convolutional Neural Networks (CNN), they are still far from achieving

the same detection capabilities as a human due to many challenges from facial appearance variation. For

example, off-angle faces, large occlusions, low-resolutions, and strong lighting conditions, as shown in

Figure 2.1, are always the important factors that need to be considered.

This chapter presents an advanced R-CNN-based approach named Contextual Multi-Resolution Region-

based CNN (CMR-RCNN) to handle the problem of face detection in digital face images collected under

severe appearance variation. Our designed region-based CNN architecture allows the network to simulta-

neously look at multi-resolution features, as well as to explicitly look outside facial regions as the potential

body regions. In other words, this process tries to mimic the way of face detection by humans in the sense

that when humans are not sure about a face, seeing the body will increase our confidence. Addition-

11
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Figure 2.1: An example of face detection results using our proposed CMR-RCNN method. The proposed
method can robustly detect faces across occlusion, facial expression, pose, illumination, scale and low
resolution conditions from the WiderFace dataset [101].

ally, this architecture also helps to synchronize both the global semantic features in high-level layers and

the localization features in low-level layers for facial representation. Specifically, our method introduces

the Multi-Resolution Region Proposal Network (MR-RPN) to generate a set of region candidates and the

Contextual Multi-Resolution Convolution Neural Network (CMR-CNN) to do inference on the region

candidates of facial regions. A confidence score and bounding box regression are computed for every

candidate.

In the experiments, we first conduct ablation studies to verify the effect of the proposed components.

Then our best model is evaluated on four public face detection databases, the WiderFace [101], the Face

Detection Dataset and Benchmark (FDDB) [39], the Annotated Faces in the Wild (AFW) [120] and the

PASCAL Faces [99]. It is compared against many other recent face detection methods. Experimental

results show that our approach outperforms previous approaches by a considerable margin and is robust

when dealing with faces under extreme conditions.

2.1 Background in Deep-Learning-Based Face Detection

Apart from the general methods introduced in Section 1.2, there are many detection approaches designed

especially for human faces. Li et al. [49] utilized a cascade of CNNs to perform face detection. The
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cascading networks allowed them to process different scales of faces at different levels of the cascade while

also allowing for false positives from previous networks to be removed at later layers in a similar approach

to other cascade detectors. Yang et al. [100] approached the problem from a different perspective more

similar to a DPM approach. In their method, the face is broken into several facial parts such as hair, eyes,

nose, mouth, and beard. By training a detector on each part and combining the score maps intelligently,

they were able to achieve accurate face detection even under occlusions. Both of these methods require

training several networks to achieve high accuracy. Our method, on the other hand, can be trained as a

single network, end-to-end, allowing for less annotation of training data needed while maintaining highly

accurate face detection.

The idea of using contextual information in object detection has been studied in several recent works

with very high detection accuracy. Divvala et al. [18] reviewed the role of context in contemporary

and challenging object detection in their empirical evaluation analysis. In their conclusions, the context

information not only reduces the overall detection errors, but also the remaining errors made by the

detector are more reasonable. Bell et al. [2] introduced an advanced object detector method named

Inside-Outside Network (ION) to exploit information both inside and outside the region of interest. In

their approach, the contextual information outside the region of interest is incorporated using spatial

recurrent neural networks. Inside the network, skip pooling is used to extract information at multiple

scales and levels of abstraction. Recently, Zagoruyko et al. [105] have presented the MultiPath network

with three modifications to the standard Fast R-CNN object detector, i.e. skip connections that give

the detector access to features at multiple network layers, a foveal structure to exploit object context at

multiple object resolutions, and an integral loss function and corresponding network adjustment that

improve localization. The information in their proposed network can flow along multiple paths. Their

MultiPath network is combined with DeepMask object proposals to solve the object detection problem.

2.1.1 Limitations of Faster R-CNN

The Region-based CNN family, e.g. Faster R-CNN [77] and its variants, achieves the state-of-the-art

performance results in object detection on the PASCAL VOC dataset. These methods can detect objects

such as vehicles, animals, people, chairs, etc. with very high accuracy. In general, the defined objects

often occupy the majority of a given image. However, when these methods are tested on the challenging

Microsoft COCO dataset [58], the performance drops a lot, since images contain more small, occluded,

and incomplete objects. Similar situations happen in the problem of face detection. We focus on detecting

only facial regions that are sometimes small, heavily occluded, and of low resolution.
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The detection network in designed Faster R-CNN is unable to robustly detect such tiny faces. The

intuition point is that the Regions of Interest pooling layer, i.e. ROI-pooling layer, builds features only

from the last single high-level feature map. For example, the global stride of the ’conv5’ layer in the

VGG-16 model is 16. Therefore, given a facial region with the sizes less than 16× 16 pixels in an image,

the projected ROI-pooling region for that location will be less than 1 pixel in the ’conv5’ layer, even if the

proposed region is correct. Thus, the detector will have much difficulty predicting the object class and the

bounding box location based on information from only one pixel.

2.1.2 Other Face Detection Method Limitations

Other challenges in object detection in the wild include occlusion and low resolution. For face detection, it

is very common for people to wear stuff like sunglasses, scarves, and hats, which occlude the face. In such

cases, the methods that only extract features from faces do not work well. For example, Faceness [100]

consider finding faces through scoring facial parts responses by their spatial structure and arrangement,

which works well on clear faces. But when facial parts are missing due to occlusion or when the face

itself is too small, facial parts become harder to detect. Therefore, the body context information plays its

role. As an example of context-dependent objects, faces often come together with the human body. Even

though the faces are occluded, we can still locate them only by seeing the whole human body. Similar

advantages for faces at low resolution, i.e. tiny faces. The deep features can not tell much about tiny

faces since their receptive field is too small to be informative. Introducing context information can extend

the area to extract features and make them meaningful. On the other hand, the context information also

helped with reducing false detection as discussed previously, since context information tells the difference

between real faces with bodies and face-like patterns without bodies.

2.2 Contextual Multi-Resolution R-CNN

Our goal is to detect human faces captured under strong appearance variations such as strong illumi-

nation, heavy occlusion, extreme off-angles, and low resolution. Under these conditions, the current

CNN-based detection systems suffer from two major problems, i.e. 1) low-res faces are hard to identify;

2) only face region is taken into consideration for classification. In this section, we show why these prob-

lems hinder the ability of a face detection system. Then, our proposed network is presented to address

these problems by using the Multi-Resolution Region Proposal Network (MR-RPN) and the Contextual

Multi-Resolution Convolution Neural Network (CMR-CNN), as illustrated in Figure 2.2. Similar to Faster

R-CNN, the MR-RPN outputs several region candidates and the CMR-CNN computes the confidence



CHAPTER 2. CONTEXTUAL MULTI-RESOLUTION R-CNN FOR APPEARANCE VARIATION 15

Figure 2.2: Our proposed Contextual Multi-Resolution Region-based CNN model. It is based on the VGG-
16 model [81], with 5 sets of convolution layers in the middle. The upper part is the Multi-Resolution
Region Proposal Network (MR-RPN) and the lower part is the Contextual Multi-Resolution Convolution
Neural Network (CMR-CNN). In the CMR-CNN, the face features labeled as blue blocks and the body
context features labeled as red blocks are processed in parallel and combined in the end for final outputs,
i.e. confidence score and bounding box.

score and bounding box for each candidate.

2.2.1 Multi-Resolution Feature

Why low-res faces are hard to be robustly detected by the previous region-based CNNs? The reason is

that in these networks both the proposed region and the classification score are produced from one single

high-level convolution feature map. This representation doesn’t have enough information for the multiple

tasks, i.e. region proposal and RoI detection. For example, Faster R-CNN generates region candidates

and does RoI-pooling from the ’conv5’ layer of the VGG-16 model [81], which has an overall stride of 16.

One issue is that the reception field in this layer is quite large. When the face size is less than 16-by-16
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pixels, the corresponding output in the ’conv5’ layer is less than 1 pixel, which is insufficient to encode

informative features. The other issue is that as the convolution layers go deeper, each pixel in the feature

map gathers more and more information outside the original input region so that it contains a lower

proportion of information for the region of interest. These two issues together make the last convolution

layer less representative for tiny faces.

Multi-Resolution Faster-RCNN Our solution for this problem is a combination of both global and local

features, i.e. multiple resolutions. In this architecture, the feature maps are incorporated from low-level

convolution layers with the last convolution layer for both MR-RPN and CMR-CNN. Features from lower

convolution layers help get more information for the low-res faces because stride in the lower convolution

layer will not be too small. Another benefit is that both low-level features with localization capability and

high-level features with semantic information are fused [32] since face detection needs to localize the face

as well as to identify the face. In the MR-RPN, the whole lower-level feature maps are down-sampled

to the size of the high-level feature map and then concatenated with it to form a unified feature map.

Then we reduce the dimension of the unified feature map and use it to generate region candidates. In

the CMR-CNN, the region proposal is projected into feature maps from multiple convolution layers. And

RoI-pooling is performed in each layer, resulting in a fixed-size feature tensor. All feature tensors are

normalized, concatenated, and dimension-reduced to a single feature blob, which is forwarded to two

fully connected layers to compute a representation of the region candidate.

L2 Normalization In both MR-RPN and CMR-CNN, concatenation of feature maps is done with L2

normalization layer [60], shown in Fig. 2.2, since the feature maps from different layers have generally

different properties in terms of numbers of channels, scales of value, and norm of feature map pixels.

Generally, compared with values in shallower layers, the values in deeper layers are usually too small,

which leads to the dominance of shallower layers. In practice, the system cannot readjust and tune values

from each layer for best performance. Therefore, L2 normalization layers before concatenation are crucial

for the robustness of the system because it keeps the value from each layer in roughly the same scale.

The normalization is performed within each pixel, and all feature map is treated independently:

x̂ =
x
‖x‖2

‖x‖2 = (
d

∑
i=1
|xi|)

1
2 (2.1)

where the x and x̂ stand for the original pixel vector and the normalized pixel vector respectively. d stands

for the number of channels in each feature map tensor.

During training, scaling factors γi will be updated to readjust the scale of the normalized features. For

each channel i, the scaling factor follows:

yi = γi x̂i (2.2)
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where yi stand for the re-scaled feature value.

Following the back-propagation and chain rule, the update for scaling factor γ is:

∂l
∂x̂

=
∂l
∂y
· γ ∂l

∂x
=

∂l
∂x̂

(
I
‖x‖2

− xxT

‖x‖3
2

)
∂l

∂γi
= ∑

yi

∂l
∂yi

x̂i (2.3)

where y = [y1, y2, ..., yd]
T .

The system integrates information from feature maps of lower layers, i.e. third and fourth convolution

layers, to extract determinant features for low-res faces. For both parts of our system, i.e. MR-RPN

and CMR-CNN, the L2 normalization layers are inserted before concatenation of feature maps from the

three layers. The features were re-scaled to proper values and concatenated to a single feature map. We

specially set the initial scaling factor, following two rules. First, the average scale for each feature map is

roughly identical; second, after the following 1× 1 convolution, the resulting tensor should have the same

average resolution as the conv5 layer in the work of Faster R-CNN. As implied, after the following 1× 1

convolution, the tensor should be the same as the original architecture in Faster R-CNN, in terms of its

size, the scale of values, and function for the downstream process.

2.2.2 Integrating Body Context

When humans are searching for faces, they try to look for not only the facial patterns, e.g. eyes, nose,

mouth but also the human bodies, such as hair, shoulders, torso, etc, as the supporting information.

Sometimes a human body makes us more convinced about the existence of a face. In addition, sometimes

the human body helps to reject false positives. If we only look at face regions, we may make mistakes

identifying them. For example, Figure 2.3 shows two cases where body region plays a significant role for

correct detection. This intuition is not only true for humans but also valid in computer vision. Previous

research has shown that contextual reasoning is a critical piece of the object recognition puzzle, and that

context not only reduces the overall detection errors but, more importantly, the remaining errors made by

the detector are more reasonable [18]. Based on this intuition, our network is designed to make explicit

reference to the human body context information in the RoI detection.

In our proposed network, the contextual body reasoning is implemented by explicitly grouping body

information from convolution feature maps shown as the red blocks in Figure 2.2. Specifically, additional

RoI-pooling operations are performed for each region proposal in convolution feature maps to represent

the body context features. Then same as the face feature tensors, these body feature tensors are normal-

ized, concatenated, and dimension-reduced to a single feature blob. After two fully connected layers, the

final body representation is concatenated with the face representation. They together contribute to the

computation of confidence score and bounding box regression.
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Figure 2.3: Examples of body context helping face identification. The first two figures show that existence
of a body can increase the confidence of finding a face. The last two figures show that what looks like a
face turns out to be a mountain on the planet surface when we see more context information.

With the projected region proposal as the face region, the additional RoI-pooling region represents the

body region and satisfies a certain spatial relation with the face region. A natural question to ask is: how

to model the one-to-one spatial relation between the face region and the body region? We borrow the idea

from the bounding box regression in Faster R-CNN [77] to parameterize this spatial relation. The body

regions are parameterized as box offsets w.r.t. their associated face regions. Mathematically, this spatial

relation can be represented by four parameters presented in Equation (2.4).

tx = (xb − x f )/w f

ty = (yb − y f )/h f

tw = log(wb/w f )

th = log(hb/h f )

(2.4)

where x(∗), y(∗), w(∗), and h(∗) denote the two coordinates of the box center, width, and height respectively.

b and f stand for body and face respectively. tx, ty, tw, and th are the parameters.

To decide the four spatial parameters, we propose two approaches. One is Fixed Body Context where

the parameters are fixed throughout the experiments. The other is Dynamic Body Context, where the

parameters are generated by a sub-network trained jointly with the detector.

Fixed Body Context In this setting, we make a simple hypothesis that if there is a face, there must exist

a body, and the spatial relationship between each face and body is fixed. This assumption may not be true

all the time but should cover most of the scenarios since most people we see in the real world are either

standing or sitting. Therefore, the spatial relation is roughly fixed between the face and the vertical body.

To choose a fixed set of parameters, we go through all the person instances in the PASCAL-Part dataset

[11]. Then face boxes and body boxes are tightly retrieved from the person instances with visible face and

torso parts. Note that the face box encloses only the face part while the body box encloses both the face

and the torso parts. We ignore the arms and legs because they may be self-occluded. For each face and
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Figure 2.4: The architecture of Multi-Task RPN which outputs both interior and exterior region candidates
for face-body pairs.

body box pair, parameters are computed using Equation (2.4). In the end, all parameters are averaged

across all the instances. Eventually, we have tx = 0.07, ty = 1.53, tw = 0.95, and th = 1.34.

Dynamic Body Context In the dynamic setting, the special parameters are predicted from the detector.

This is realized by modifying the MR-RPN into a multi-task version, which is termed as Multi-Task Region

Proposal Network (MT-RPN). The MT-RPN generates both interior and exterior region candidates in a

multi-task fashion from the shared multi-resolution features as shown in Figure 2.4. The interior region

and the exterior region correspond to the face region and the body region respectively. The multi-task

fashion allows two tasks to benefit each other [74]. Note that MT-RPN still relies on the multi-resolution

feature as described in Section 2.2.1.

The MT-RPN essentially predicts the spatial parameters defined in Equation (2.4) for the exterior region

candidates. There is no ground truth of body boxes so no direct supervision exists for exterior regions.

We propose to learn the spatial parameters in a weakly supervised manner. Specifically, we take the loss

for face detection from the very end of the detector and back-propagate the gradients back to the conv

layer for spatial parameters. This can be interpreted as the detector is trained to estimate the informative

body context region for each face candidate, aiming at minimizing the network loss for face detection. The
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back-propagation rules are straightforward as presented in Equation (2.5) derived from Equation (2.4).

∂l
∂tx

=
∂l

∂xb
w f

∂l
∂tw

=
∂l

∂wb
w f exp(tw)

∂l
∂ty

=
∂l

∂yb
h f

∂l
∂th

=
∂l

∂hb
h f exp(th)

(2.5)

where ∂l
∂xb

, ∂l
∂yb

, ∂l
∂wb

, and ∂l
∂hb

are back-propagated from the RoI-pooling layer. During training, the spatial

parameters are initialized as the values in Fixed Body Context.

2.3 Experiments

This section presents the experimental results in face detection. We first conduct the ablative study to

analyze the effectiveness of each of our proposed components. Then we evaluate the final model on

common face detection benchmarks. Finally, we provide the reference time.

2.3.1 Ablation Study

To investigate the effect of each component in our network, we conduct several ablation experiments.

All models are trained on the WiderFace [101] training set and evaluated on the validation set with 3,226

images. The validation images are divided into three parts based on their detection rates on EdgeBox [121].

In other words, face images are divided into three levels according to the difficulties of the detection, i.e.

Easy, Medium and Hard. The Hard level includes more challenging faces such as small faces or heavily

occluded faces. The performance comparison are presented in Table 2.1.

Baseline. Our detector is a generalization of Faster R-CNN [77], so we directly train a slightly modified

version as our baseline method. Different from [77], we only use square anchors, i.e. the aspect ratio of all

anchors is set to 1.0. All other hyper-parameters are kept the same. It can deliver decent performance on

Easy and Medium cases, but unsatisfying results on the Hard level (shown as the first entry of Table 2.1).

The effect of multi-resolution feature. Then we apply the multi-resolution feature (MRF). This is

implemented by adding multi-scale features in the region proposal network and the Fast R-CNN stage as

mentioned in Section 2.2.1, which improves the performance on all three levels (shown as the second entry

of Table 2.1). Especially, we observe about 20% absolute improvement on the Hard level. This suggests

that the multi-resolution feature helps to find more challenging faces.
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Table 2.1: Ablation studies on the easy, medium, and hard level of Wider Face validation set. Numbers
are the average precision scores. MRF: multi-resolution feature; Context: body context (fixed or dynamic);
MST: multi-scale testing.

Methods Easy Medium Hard
baseline 84.3% 73.1% 40.9%
+MRF 88.7% 86.1% 61.2%

+MRF +Context (Fixed) 90.2% 87.4% 64.3%
+MRF +Context (Dynamic) 90.6% 88.3% 66.1%

HR-VGG16 [38] 86.2% 84.4% 74.9%
baseline +MRF +Context (Dynamic) +MST 91.6% 89.8% 79.2%

Figure 2.5: Visualization of body context regions (magenta) predicted by the network. Green boxes are
the detection of faces.

The effect of body context. Next, we incorporate the body context. This is implemented by predicting

additional body region proposals from the region proposal network and fusing the face and body features.

We observe another improvement on all three levels no matter whether the context is fixed or dynamic,

especially the Hard case (shown as the third and fourth entries of Table 2.1). This is clear evidence that

explicit reference to exterior body features can support the detection of challenging faces. Additionally,

the dynamic body context gives the detector more freedom to search for better body regions, thus yielding

another improvement over the fixed body context. To better understand how body context features help

improve the performance, we visualize all the interior and exterior region pairs from the dynamic body

context, i.e. the face and body box pairs, predicted by the network. Some examples of challenging faces

and their corresponding body regions are illustrated in Figure 2.5. It shows the body regions roughly

focus on the face and torso parts and adapt across instances. This means the features from the torso part

provide visual cues for finding hard faces.

The effect of multi-scale testing. Inspired by [38], we apply the multi-scale testing technique (MST)

to our method and compare it with the VGG version of [38] termed as HR-VGG16. We rescale each image

to 0.5X, 1.0X, and 2.0X and run our detector. The detection results are gathered from three images and
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combined. We use non-maximum suppression with a threshold of 0.3 to remove redundant detections.

This gives another performance boost, outperforming [38] on all three cases (see 5th and 6th entries of

Table 2.1). This indicates that our method can find more faces on various scale levels.

2.3.2 Benchmark Evaluation

We run our CMR-RCNN with multi-resolution feature, body context and multi-scale testing on the Wider-

Face dataset [101]. Under this database, our approach robustly outperforms strong baseline methods,

including Two-stage CNN [101], Multiscale Cascade CNN [101], Faceness [100] and Aggregate Channel

Features (ACF) [97], Multitask Cascade CNN [107] by a considerable margin.

We also show that our CMR-RCNN trained on the WiderFace dataset generalizes well to other stan-

dard face detection datasets including the AFW [120], the PASCAL faces [99], and the FDDB [39]. Our

detector without MST alone is able to consistently achieve state-of-the-art results against other popular

face detection methods, including MTCNN [107], Conv3D [53], HyperFace [74], DP2MFD [73], CCF [98],

Faceness [100], NPDFace [55], MultiresHPM [28], DDFD [24], CascadeCNN [49], ACF [97], Pico [63],

HeadHunter [64], Joint Cascade [7], Boosted Exemplar [48], and PEP-Adapt [47], Face++ [111], SURF

Cascade multiview [50], XZJY [79].

WiderFace dataset. WiderFace is a public face detection benchmark dataset [101]. It contains 393,703

labeled human faces from 32,203 images collected based on 61 event classes from the Internet. The

database has many human faces with a high degree of pose variation, large occlusions, low-resolutions,

and strong lighting conditions. The images in this database are organized and split into three subsets, i.e.

training, validation, and testing. Each contains 40%, 10%, and 50% respectively of the original databases.

The images and the ground-truth labels of the training and the validation sets are available online for

experiments. In the testing set, only the testing images are available online. All detection results are sent

to the database server for evaluating and receiving the Precision-Recall curves. In our face detection ex-

periments, our model is trained on the training set of the WiderFace dataset containing 159,424 annotated

faces collected in 12,880 images. The trained model on this database is used in the testing of all databases

without further fine-tuning.

Testing and Comparison. We run our CMR-RCNN on the Wider Face testing set. Our proposed method

is compared against all published methods , i.e. Multitask Cascade CNN [107], Two-stage CNN [101],

Multiscale Cascade CNN [101], Faceness [100], and Aggregate Channel Features (ACF) [97]. All these

methods are trained and tested following the same evaluation protocols. We don’t compare with [38]

because it doesn’t report the performance of the VGG version detector on the testing set. The Precision-
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(a) Easy level (b) Medium level (c) Hard level

Figure 2.6: Precision-Recall curves obtained by our proposed method (red) and the other published strong
baselines on the WiderFace testing set. Numbers show the average precision scores.

Figure 2.7: Examples of the top 20 false positives from our model tested on the WiderFace validation set.
In fact these false positives include many human faces not in the dataset due to mislabeling, which means
that our method is robust to the noise in the data.

Recall curves and average precision scores are shown in Figure 2.6. Our method outperforms those strong

baselines by a considerable margin. It achieves the best average precision in all level faces and outperforms

the second-best baseline by 7.06% (Easy), 8.78% (Medium), and 29.98% (Hard). These results suggest that

as the difficulty level goes up, our model can detect challenging faces better. So it can handle difficult

conditions hence is more closed to human detection performance.

Visualization of False Positives. As it is well known that precision-recall curves degrade due to false

positives, we are interested in the false positives produced by our model. We are curious about what object

can fool our model to treat it as a face. Is it due to over-fitting, data bias, or miss labeling? To visualize

the false positives, we test our model on the Wider Face validation set and pick all the false positives

according to the ground truth. Then those positives are sorted by the confidence score in descending

order. We choose the top 20 false positives as illustrated in Figure 2.7. Because their confidence scores are

high, they are the objects most likely to cause our model to make mistakes. It turns out that most of the

false positives are real human faces caused by miss labeling in the dataset. For other false positives, we
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Figure 2.8: Comparison between our method (red) and popular state-of-the-art methods on the AFW,
PASCAL Faces, and FDDB datasets.

(a) AFW (b) PASCAL Faces (c) FDDB

Figure 2.9: Some examples of face detection results using our approach on the AFW, PASCAL Faces, and
FDDB databases.

find the errors made by our model are rather reasonable. They all have the pattern of the human face as

well as the shape of the human body.

AFW, PASCAL Faces and FDDB datasets. To show that our method generalizes well to other databases,

the proposed method is also benchmarked on three challenging face detection datasets, i.e. AFW [120],

PASCAL Faces [99] and FDDB database [39]. The AFW dataset consists of 205 images with 473 annotated

faces. The PASCAL Faces dataset is a subset of the PASCAL VOC [22] testing set. It has 851 images

with 1,335 annotated faces. The FDDB dataset has 2,845 images with 5,171 annotated faces. Instead of

rectangle boxes, faces in FDDB are represented by ellipses. So we learn a regressor to transform rectangle

boxes predicted by our detector to ellipses. Again, we test on the original images without rescaling. Our

CMR-RCNN without MST can already achieve state-of-the-art performance. The performance curves are

generated using the tool from [64].

On the PASCAL Faces and AFW datasets we compare with DPM [64], HeadHunter [64], SquaresChnFtrs-

5 [64], Structured Models [95], Shen et al. [79], TSM [120], Picasa, Face++ [111].

On FDDB dataset we compare with several published methods including MTCNN [107], Conv3D [53],
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HyperFace [74], DP2MFD [73], CCF [98], Faceness [100], NPDFace [55], MultiresHPM [28], DDFD [24],

CascadeCNN [49], ACF [97], Pico [63], HeadHunter [64], Joint Cascade [7], Boosted Exemplar [48], and

PEP-Adapt [47], Face++ [111], SURF Cascade multiview [50], XZJY [79].

The proposed method outperforms all previous methods as shown in Figure 2.8. This is concrete

evidence to demonstrate that our method robustly detects unconstrained faces. Figure 2.9 shows some

examples of the face detection results on three datasets.

We present more qualitative results in Figure 2.10 and 2.11.

2.3.3 Inference Time

During inference, our method is running on a single Titan X GPU machine with Intel Core i7-6700 CPU @

3.40GHz in a batch size of 1. It takes 0.168s per frame running on WiderFace or AFW (XGA quality) and

0.045s per frame on FDDB or PASCAL Faces (VGA quality).

2.4 Summary

This chapter presents our proposed Contextual Multi-Resolution R-CNN (CMR-RCNN) for unconstrained

face detection. The CMR-RCNN introduces the multi-resolution feature and the explicit body context rea-

soning into the conventional two-stage detectors. The superior performance on four face detection datasets

shows its capability to extract robust facial feature representation which is tolerant to strong appearance

variation in the real-world scenario. The multi-resolution feature greatly improves the detection of faces

with low-resolution degradation and the body context reasoning further enhances the facial representation

with contextual clue.
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Figure 2.10: Examples of face detection by our approach on the WiderFace dataset. Green rectangles
denote the face bounding boxes.
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Figure 2.11: Examples of face detection by our approach on some challenging images collected from the
Internet. Green rectangles denote the face bounding boxes.



Chapter 3

Scale-Tolerant Detection from Anchor-Based to

Anchor-Free

A long-lasting challenge in object detection is the scale variation, meaning the objects can appear with

arbitrary size in the image. Ideally, a good object detector should be able to detect all the objects no matter

what the scale, but many methods struggle with the scale variation. Indeed, scale variation is a major

challenge for object detection so that many important inventions and technical designs are specifically for

this challenge.

In the deep learning era, anchor-based detectors are dominating the field [77, 59, 75, 56, 57, 118, 119,

117, 35]. Anchor boxes are designed to deal with scale variation by discretizing the continuous space

of all possible instance boxes into a finite number of boxes with predefined locations, scales, and aspect

ratios. The detection problem is then formulated as anchor-object matching in the framework of deep

convolutional neural networks. Instance boxes are matched to anchor boxes based on the Intersection-

over-Union (IoU) overlap. During training, each object instance is matched with one or several highly

overlapped anchors. Matched anchors are trained to output high confidence scores and then regress to

ground-truth boxes. During inference, objects in a testing image are detected by classifying and regressing

anchors.

However, anchor-based detectors are not as scale-invariant as claimed, especially for some extremely

small or large objects. The focus of this chapter is to improve the object detector’s ability to deal with

severe scale variation. To achieve our goal, we start with enhancing anchor-based object detectors by

theoretically investigating the anchor-object matching mechanism. The theory inspires us to propose

several designs of robust anchor, as well as reveals the inherent limitations of anchor matching from the

feature selection’s perspective. Therefore, we reformulate the object detection problem from the anchor-

28
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free viewpoint. With the anchor-free formulation, we come up with a detection prototype with a simpler

architecture, fewer parameters, and easier training compared to the anchor-based counterpart. Under

the anchor-free formulation, we discover the importance of advanced feature selection based on object

appearance instead of heuristics.

3.1 Improving Anchor-Based Object Detection

We start with analyzing anchor-based detectors and identifying the issues with anchor boxes when han-

dling scale variation. For simplicity and without the loss of generalization, we study the detection of

human faces which do not have high shape and appearance variation.

When applying anchor-based methods for face detection, their capability in handling various scales is

not satisfactory, i.e. the performance drops drastically on faces with tiny sizes like less than 16× 16 pixels.

Figure 3.1a shows the face recall rate of a baseline anchor-based detector across different face scales on

the Wider Face dataset [101]. While big faces (larger than 64× 64 pixels) can be almost 100% recovered,

there is a significant drop in recall for smaller faces, especially those with less than 16× 16 pixels. In other

words, after classifying and adjusting anchor boxes, the new boxes with high confidence scores are still

not highly overlapped with enough small faces. This suggests that we look at how anchors are overlapped

with faces initially before training. For each face, we compute its highest IoU with overlapped anchors.

Then faces are divided into several scale groups. Within each scale group, we compute the averaged

highest IoU score, as presented in Figure 3.1b. It’s not surprising to find that average IoUs across face

scales are positively correlated with the recall rates. We argue that anchors with low IoU overlap with

small faces are harder to be adjusted to the ground truth, resulting in the low recall of small faces.

In this section, we focus on new anchor design to support anchor-based detectors for better scale tol-

erance. Our newly proposed anchors have higher IoU overlaps with faces than the baseline anchors, as

shown in Figure 3.1c. Therefore, it is easier for the network to learn how to adjust the new anchors (red

boxes) to ground-truth faces than the original anchors (yellow boxes). To achieve this, we look deep into

how faces are matched to anchors with various configurations and propose the Expected Max Overlap-

ping (EMO) score to characterize anchors’ ability to achieve high IoU overlaps with faces. Specifically,

given a face of known size and a set of anchors, we compute the expected max IoU of the face with the

anchors, assuming the face’s location is drawn from a 2D distribution on the image plane. The EMO score

theoretically explains why larger faces are easier to be highly overlapped by anchors and serves as a guide

for our anchor design principle.

The EMO score enlightens several simple but effective strategies of new anchor design for higher face
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(a) Recall Rate-Face Scale (b) Average IoU-Face Scale

(c) Baseline anchors (yellow) vs. our anchors (red) with higher face IoUs

Figure 3.1: Problems of current anchor-based detectors and our solution. (a): A baseline anchor-based
detector, trained and evaluated on the WiderFace dataset (see Section 3.1.3 for details), has significantly
lower recall rate at IoU of 0.5 on tiny faces (16× 16) than larger faces. (b): Maximum IoU with anchors is
computed for each face and averaged in each scale group, showing a positive correlation with the recall
rate across the scales. (c): Visualization of the anchor boxes with the highest IoUs for each face. Our
anchors have much higher IoU with faces than the baseline anchor. The right side shows an enlarged
example. (Best viewed in color)

IoU scores without introducing much complexity to the network. Specifically, we propose to reduce the

anchor stride with various network architecture designs. We also propose to add anchors shifted away

from the canonical center so that the anchor distribution becomes denser. In addition, we propose to

stochastically shift the faces to increase the chance of getting higher IoU overlaps.

3.1.1 Expected Max Overlapping Score

Recap of anchor-based detectors. Anchor-based detection methods classify and regress anchor boxes to

detect objects. Anchors are a set of pre-defined boxes with multiple scales and aspect ratios tiled regularly

on the image plane. During training, anchors are matched to the ground-truth boxes based on the IoU

overlap. An anchor will be assigned to a ground-truth box if a) its IoU with this box is the highest than

other anchors, or b) its IoU is higher than a threshold Th. An anchor will be labeled as background if its
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(a) Anchor setup and distribution (b) Anchor matching mechanism (c) Computing the EMO score

Figure 3.2: (a): Anchors are a set of boxes with different sizes (yellow dashed boxes) tiled regularly
(centered on “+” crosses) on the image plane. A face (green) overlaps with multiple anchors. (b): A face
is matched to an anchor with the max IoU score. The matched anchor is highlighted as the red dashed
box. (c): The EMO score characterizes the anchors’ ability to capture a face by computing the expected
max IoU of the face with anchors w.r.t. the distribution of the face’s location (Best viewed in color).

IoU overlap scores with all boxes are lower than a threshold Tl .

Anchors are associated with certain feature maps which determine the location and stride of anchors.

A feature map is a tensor of size c× h×w, where c is the number of channels, h and w are the height and

the width respectively. It can also be interpreted as c-dimensional representations corresponding to h · w

sliding-window locations distributed regularly on the image. The distance between adjacent locations is

the feature stride sF and decided by H
h = W

w = sF. Anchors take those locations as their centers and

use the corresponded representations to compute confidence scores and bounding box regression. So, the

anchor stride sA is equivalent to the feature stride, i.e. sA = sF.

Anchor setup and matching. We consider the standard anchor setup as shown in Figure 3.2. Formally,

let S be a pre-defined scale set representing the scales of anchor boxes, and R be a pre-defined ratio set

representing the aspect ratios of anchor boxes. Then, the number of different boxes is |S× R| = |S||R|,

where × is the Cartesian product of two sets and | ∗ | is the set’s cardinality. For example, anchor boxes

with 3 scales and 1 ratio are shown as the yellow dashed rectangles in the top-left corner in Figure 3.2a. Let

L be the set of regularly distributed locations shown as the yellow crosses “+”, with the distance between

two adjacent locations as anchor stride sA. Then the set of all anchors A is constructed by repeatedly tiling

anchor boxes centered on those locations, i.e. A = S× R× L.

Given a face box B f shown as the green rectangle, it is matched to an anchor box Ba with the max IoU

overlap shown as the dashed red rectangle (Figure 3.2b). The max IoU overlap is computed as Equation

(3.1).

max
a∈A

|B f ∩ Ba|
|B f ∪ Ba|

(3.1)

where ∩ and ∪ denote the intersection and union of two boxes respectively.
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Figure 3.3: The EMO score is a function of face scale l and anchor stride sA (Best viewed in color).

Computing the EMO score. A face can randomly appear at any location on the image plane W × H,

where H and W are the height and width respectively. In Figure 3.2c, we denote the center point of a

face as a pair of random variables (x, y), i.e. the green cross “×”. Let p(x, y) be the probability density

function of the location of the face, it then satisfies
∫ H

0

∫W
0 p(x, y)dxdy = 1. Plugging in Equation (3.1), the

EMO score is defined as Equation (3.2).

EMO =
∫ H

0

∫ W

0
p(x, y)max

a∈A

|B f ∩ Ba|
|B f ∪ Ba|

dxdy (3.2)

In practice, we consider the anchor setting according to the Wider Face dataset. We set S = {16, 32, 64, 128, 256, 512}

to cover the face scale distribution of the dataset, and set R = {1} since face boxes are close to squares.

Therefore, there is a total of six anchors for each “+” location. In addition, we assume each face can ran-

domly appear anywhere on the image plane with equal probability. Thus, (x, y) are drawn from uniform

distributions, i.e. x ∼ U(0, W) and y ∼ U(0, H).

Since anchors are repeatedly tiled on an image, the overlapping pattern is also periodic w.r.t. the face

location. So we consider only one period where the face center is enclosed by 4 anchor centers as shown

in Figure 3.3. Then, the face will have the highest IoU with the anchor centered on the closest location

to the face center. Due to symmetry, we focus on the cases where the face gets matched to the top-left

anchor (dashed red box) with the highest IoU and the blue square shows the sA
2 ×

sA
2 region where the

face center can appear. Face with the center outside that region will be matched to one of the other three

anchors. The relative location of the face center to the anchor center is denoted as (x′, y′), where x′, y′ are

drawn from the distribution U(0, sA/2).

Given a l× l face with the same size as the anchor box, i.e. l ∈ S, it will be matched to the l× l anchor.
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Figure 3.4: The effect of face scale and anchor stride on the EMO score. Small anchor stride is crucial for
tiny faces.

So the IoU score between the face and the matched anchor is

IoU =
(l − x′)(l − y′)

2l2 − (l − x′)(l − y′)
(3.3)

IoU is a function of the relative location (x′, y′). A closer distance from face center to anchor center leads

to higher IoU. The EMO score of this face is the expected IoU w.r.t. the distribution of (x′, y′) derived as

in Equation (3.4).

EMO =
∫ sA

2

0

∫ sA
2

0
(

2
sA

)2 (l − x′)(l − y′)
2l2 − (l − x′)(l − y′)

dx′dy′ (3.4)

Figure 3.4 shows the EMO scores given different face scales and anchor strides. It explains why larger

faces tend to have higher IoU overlap with anchors. When the face size is fixed, sA plays an important

role in reaching high EMO scores. Given a face, the smaller sA is, the higher the EMO score achieves,

especially for small faces. Hence the average max IoU of all faces can be statistically increased.

3.1.2 Robust Anchor Design

This section introduces our newly designed anchors for finding more tiny faces. We aim at improving

the average IoU especially for tiny faces from the view of theoretically improving the EMO score since

average IoU scores are correlated with face recall rate. Based on the analysis in Section 3.1.1, we propose

to increase the average IoU by reducing the anchor stride as well as the distance between the face center

and the anchor center.

For anchor stride reduction, we look into new network architectures to change the stride of the feature

map associated with anchors. Three architectures are proposed. Additionally, we redefined the anchor

locations such that the anchor stride can be further reduced. Moreover, we propose the face shift jittering

method which can statistically reduce the distance between the face center and the anchor center, the other
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Figure 3.5: Three types of network architecture for reducing the anchor stride by enlarging the feature
map (red).

important factor to increase the IoU overlap. With these methods, the EMO score can be improved which

theoretically guarantees a higher average IoU.

Stride reduction with enlarged feature maps. As discussed before, anchor stride equals feature stride

in current anchor-based detectors. Therefore, one way to increase the EMO scores is to reduce the anchor

stride by enlarging the feature map. This section presents three different architectures that double the

height and width of the feature maps as illustrated in Figure 3.5.

Bilinear upsampling upscales the feature map by a factor of 2 as shown in Figure 3.5a. In this network,

a deconvolution layer is attached to the feature map and its filters are initialized to have weights of a

bilinear upsampler. During training, the filters are updated to adapt to the data.

Figure 3.5b shows the upscaled feature map augmented with the features from shallower large feature

map by skip connection. The intuition in this design is to combine high-level features for semantical

information and low-level features for localization precision [56]. In the actual networks, the low-level

and high-level feature maps have different numbers of channels. Thus, two 1× 1 convolution layers are

first added to reduce the number of channels to the same size. Then, after the element-wise addition,

another 3× 3 convolution layer is appended to the final feature map for detection (not shown in Figure

3.5b).

The architectures in Figures 3.5a and 3.5b introduce additional parameters to the networks when en-

larging the feature maps, hence increasing the model complexity. However, the same goal can be achieved

without additional parameters by using dilated convolutions [62] as shown in Figure 3.5c. Specifically,

we take out the stride-2 operation (either pooling or convolution) right after the shallower large map and

dilate the filters in all the following convolution layers. Note that 1× 1 filters are not required to be di-

lated. In addition to not having any additional parameters, dilated convolution also preserves the size of

receptive fields of the filters.

With halved anchor stride, the average IoU of tiny faces increases by a large margin as shown in Figure
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Figure 3.6: Anchor stride reduction by adding shifted anchors.

3.7, compared to the original one. In addition, we show in Section 3.1.3 the performance comparison of

the three architectures.

Extra shifted anchors. Reducing anchor strides by enlarging feature maps doesn’t change the condition

that sA = sF. This section presents a new approach such that sA < sF. We further reduce sA by adding

extra supportive anchors not centered on the sliding window locations, i.e. shifted anchors. This strategy

can help to increase the EMO scores without changing the resolution of feature maps. These shifted

anchors share the same feature representation with the anchors in the centers.

Specifically, given a feature map with stride sF, the distance between two adjacent sliding window

locations is sF, and labeled by black dots in Figure 3.6. In Figure 3.6a, each location has a single anchor

(black) centered on it, giving the anchor stride of sA = sF. When extra supportive (green) anchors are

added to the bottom-right of the center for all locations, the anchor stride can be reduced to sA = sF/
√

2

(Figure 3.6b). In addition, two other supportive anchors (blue and magenta) can be sequentially added

to further reduce the anchor stride to sA = sF/2 (Figure 3.6c). Note that no matter how many anchors

are added, all anchors are regularly tiled in the image plane. Indeed, we only need to add small shifted

anchors since large anchors already guarantee high average IoUs, which saves the computational cost. For

example, three shifted anchors of the smallest size (16× 16) are added on top of enlarged feature maps to

show further improvements of the average IoUs in Figure 3.7.

Face Shift Jittering. When computing the EMO score for each face, the center of the face is assumed

to be drawn from a 2D uniform distribution. However, in the actual datasets, each face has a fixed

location. Some of them are closed to the anchor centers so they are more likely to have high IoU overlaps

with anchors. While some others far from anchor centers will always get low IoU scores. To increase

the probability for those faces to get high IoU overlap with anchors, they are randomly shifted in each
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Figure 3.7: Comparison of the average IoU between original and our anchor design. With our proposed
stride reduction techniques, the average IoU is significantly improved for small faces.

iteration during training.

Specifically, the image is shifted by a random offset (δx, δy) in every iteration. δx and δy are the pixels

where the image is shifted right and down respectively so that locations of all faces in that image are added

by (δx, δy). The offset is sampled from a discrete uniform distribution, i.e. δx, δy ∈ {0, 1, ..., sA/2− 1}. We

use the discrete uniform distribution of offsets to approach the continuous uniform distribution of face

locations. We set the maximum offset to be sA/2− 1 because the period of overlap pattern is sA/2.

Hard Face Compensation. As shown in Figure 3.7, even with halved feature strides and shifted small

anchors, very tiny faces still have lower average IoU than bigger faces. It is because face scales and

locations are continuous whereas anchor scales and locations are discrete. Therefore, there are still some

faces whose scales or locations are far away from the anchor. These faces are hard to be matched to

anchors.

We propose a compensation strategy of anchor matching to assign hard faces to multiple anchors.

Specifically, we first label anchors as positive if their overlapping scores with faces are higher than a

threshold Th, same as the current anchor matching strategy. Then faces whose highest overlapping scores

are below Th are the hard faces. For hard faces, the top N anchors with the highest overlap with them are

labeled as positive. We find the optimal N empirically as described in Section 3.1.3.

3.1.3 Ablation Study

We conduct ablative experiments on the WiderFace dataset [101]. This dataset has 32,203 images with

393,703 labeled faces with a high degree of variability in scales, occlusions, and poses. The images are

split into training (40%), validation (10%), and testing (50%) set. Faces in this dataset are classified into

Easy, Medium, and Hard subsets according to the difficulties of detection. The hard subset includes a lot
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Table 3.1: Ablative study of each components in our proposed method on Wider Face validation set.
Network architectures: BU - bilinear upsampling; BUS - bilinear upsampling with skip connection; DC -
dilated convolution. Extra shifted anchors: s× n - adding n shifted s-by-s anchors. SJ - Face Shift Jittering.
HC(N) - assigning each hard face to top N anchors.

Easy Medium Hard
Baseline 0.934 0.895 0.705

+BU 0.933 0.901 0.710
+BUS 0.926 0.899 0.778
+DC 0.936 0.911 0.779

+DC+16x1 0.934 0.908 0.781
+DC+16x1&32x1 0.936 0.910 0.782

+DC+16x3 0.938 0.912 0.786
+DC+16x3&32x1 0.937 0.909 0.781
+DC+16x3&32x3 0.938 0.913 0.779

+DC+SJ 0.939 0.910 0.788
+DC+16x3+SJ 0.940 0.914 0.789

+DC+16x3+SJ+HC(3) 0.938 0.912 0.793
+DC+16x3+SJ+HC(5) (Final) 0.940 0.914 0.795

+DC+16x3+SJ+HC(7) 0.936 0.912 0.791
Baseline+Pyramid 0.943 0.927 0.840

Final+Pyramid 0.949 0.933 0.861

of tiny faces. All networks are trained on the training set and evaluated on the validation set. Average

Precision (AP) score is used as the evaluation metric. Note that we train and evaluate on the original

images without rescaling since we want to test the detector’s ability to find real tiny faces instead of

upscaled tiny faces.

Baseline setup. We build an anchor-based detector with ResNet-101 [34] inspired by the R-FCN [14]

as our baseline detector. It differs from the original R-FCN in the following aspects. Firstly we set 6

anchors whose scales are from the set {16, 32, 64, 128, 256, 512} and all anchors’ aspect ratios are 1. This

setting matches the face boxes in the Wider Face dataset. Secondly, “res5” is used to generate region

proposals instead of “res4”. Thirdly, the threshold of IoU for positive anchors is changed to 0.5. All the

other settings follow the original [14]. The baseline detector is trained on the Wider Face training set for

8 epochs. The initial learning rate is set to 0.001 and decreases to 0.0001 after 5 epochs. During training

we applied online hard example mining [80] with the ratio between positives and negatives as 1:3. The

detector is implemented in the MXNet framework [10] based on the open-source code from [15].

The effect of the enlarged feature map. The enlarged feature map reduces the anchor stride so that

it helps to increase the EMO scores and the average IoU, especially for tiny faces. To better understand

its effect on the final detection performance, we apply three architectures in Figure 3.5 to the ResNet

backbone architecture of the baseline detector. The corresponding stride-8 feature and stride-16 feature in

the backbone architecture are “res3” and “res5” respectively. For bilinear upsampling (denoted as BU),
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“res5” is appended with a stride-2 deconvolution layer with filters initialized by a bilinear upsampler. For

bilinear upsampling with skip connection (denoted as BUS), all the additional convolution layers have

512 output channels. For dilated convolution (denoted as DC), all the 3×3 filters in “res4” and “res5”

are dilated. Evaluation results are presented as “BU”, “BUS” and “DC” in Table 3.1. Compared to the

baseline, the enlarged feature map provides significant improvements on the Hard subset (rising by 7.4%

at most), which mainly consists of tiny faces. Among the three architectures, BUS is better than BU at

finding tiny faces, but has more false positives, because BUS uses features from the shallower “res3” layer

that is less discriminative. DC achieves the best performance on all three subsets without introducing

extra parameters. Thus, we fix the architecture to DC in the following experiments.

The effect of additional shifted anchors. Adding shifted anchors can further reduce the anchor stride

without changing the resolution of the feature map. In Figure 3.7 we can see with halved anchor stride,

faces larger than 32× 32 pixels already have the same average IoU overlap. So we mainly focus on adding

anchors with scales of 16 and 32. As shown in Figure 3.6, there are two settings of shifted anchors, i.e.

added by one to reduce the stride by 1/
√

2 or added by three to reduce the stride by 1/2. We denote

the shifted anchor setting as s× n, where s ∈ {16, 32} is the scale of anchor and n ∈ {1, 3} is the number

of additional anchors. Noted that we always start with adding anchors of scale 16 since larger anchors

cannot affect the average IoU of smaller faces. Hence there are total 5 combinations as presented in the

second row section in Table 3.1. It turns out that adding shifted anchors can improve the AP score on

the Hard set. However, there is a trade-off between the number of additional anchors and the detection

accuracy. More anchors do not always lead to higher average precision, because each anchor is associated

with a set of parameters in the network to predict the confidence score and box offsets. As the number of

anchors increases, each anchor is matched to fewer faces and the associated parameters are trained from

fewer examples. In the end, we find adding just 3 anchors of scale 16 gives the best performance.

The effect of face shift jittering. Next, we look into the effect of randomly shifting the faces for each

iteration during training, denoted as SJ for shift jittering. It is applied to both the model with DC and the

model with DC and 3 shifted anchors of scale 16. Experiments show that shift jittering can further improve

the AP scores of Hard faces. In Table 3.1, the AP rises by 0.9% on the model with DC (+DC vs. +DC+SJ)

and by 0.3% on the model with DC and 3 shifted anchors of scale 16 (+DC+16x3 vs. +DC+16x3+SJ).

The effect of hard face compensation. The hard face compensation completes our final model. It is

denoted as HC(N) where N is the number of anchors to which the hard faces are assigned. We find N = 5

is a proper choice since smaller N leads to a lower recall rate and larger N results in more false positives.

To this end, we denote “+DC+16x3+SJ+HC(5)” as our “Final” detector.

The effect of testing size. The size of the testing images has a significant impact on the face detection
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Table 3.2: The effect of testing size on the average precision (AP) of Hard faces in Wider Face validation
set.

Max size 600x1000 800x1200 1200x1600 1400x1800
SSH [67] 0.686 0.784 0.814 0.810

Ours 0.757 0.817 0.838 0.835

precision, especially for tiny faces. Therefore we evaluate our final model on the Hard set of Wider Face

validation set with different image sizes, comparing with the state-of-the-art SSH face detector [67]. We

show in Table 3.2 that our detector trained with single-scale input outperforms the SSH detector trained

with multiple scales at every testing size. Note that at the maximum input size of 600x1000, our detector

outperforms SSH by 7.1%, showing the effectiveness of our proposed techniques for detecting tiny faces.

The effect of image pyramid Image pyramid for multi-scale training and testing helps improving

the detection performance, as shown by “Baseline+Pyramid” in Table 3.1. By applying our strategies we

observe another improvement (“Final+Pyramid”). We follow the same way in [67] to build the pyramid.

3.2 Anchor-Free Object Detection: Less is More

Both anchor boxes and feature pyramid networks are addressing the scale variation in object detection.

When combining anchor boxes with feature pyramid network, large anchor boxes are typically associated

with upper feature maps, and small anchor boxes are associated with lower feature maps, as shown

in Figure 1.5. This is based on the heuristic that upper feature maps have more semantic information

suitable for detecting big instances whereas lower feature maps have more fine-grained details suitable

for detecting small instances [32]. The design of feature pyramids integrated with anchor boxes has

achieved good performance on object detection benchmarks. A natural question to ask is how to further

improve the performance of this design for scale variation? When it comes to general objects, not only do

the objects have a wider range of size but also they can be of arbitrary aspect ratio. In Section 3.1, we have

seen that adding more anchor boxes could be a solution. But this is not an elegant solution as more anchor

boxes introduce more manually selected hyperparameters as well as increase the computation cost. In this

section, we show how to derive from the limitations of anchors towards the anchor-free detection, a more

elegant solution.

3.2.1 Inherent Limitations of Anchors

We argue that the anchor-based detection with feature pyramid has two limitations: 1) heuristic-guided

feature selection; 2) overlap-based anchor sampling. During training, each instance is always matched
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Figure 3.8: Selected feature level in anchor-based branches may not be optimal due to heuristic guided
selection.

to the closest anchor box(es) according to IoU overlap. And anchor boxes are associated with a certain

level of feature map by human-defined rules, such as box size. Therefore, the selected feature level

for each instance is purely based on ad-hoc heuristics. For example, a car instance with size 50 × 50

pixels and another similar car instance with size 60× 60 pixels may be assigned to two different feature

levels, whereas another 40× 40 car instance may be assigned to the same level as the 50× 50 instance, as

illustrated in Figure 3.8. In other words, the anchor matching mechanism is inherently heuristic-guided.

This leads to a major flaw that the selected feature level to train each instance may not be optimal.

To this end, we reformulate the detection problem from an anchor-free perspective and propose a

simple and effective prototype to address the above two limitations simultaneously. Our motivation is

to let each instance select the best level of feature freely to optimize the network, so there should be

no anchor boxes to constrain the feature selection in our module. Instead, we encode the instances in

an anchor-free manner to learn the parameters for classification and localization. The general concept

is presented in Figure 3.9. An anchor-free detection head is built per level of the feature pyramid. An

instance can be assigned to an arbitrary level of the anchor-free head. During training, we dynamically

select the most suitable level/levels of feature for each instance based on the instance content instead of

just the size of the instance box. The selected level of feature then learns to detect the assigned instances.

Our anchor-free prototype is agnostic to the backbone network and can be applied to single-shot detectors

with a structure of feature pyramid.

3.2.2 A Simple Anchor-Free Prototype

Anchor-based detectors generate detections in a box-to-box style. Differently, anchor-free detectors do

not rely on anchor boxes and predictions are directly generated in a point-to-box style. We denote the

points from which detection boxes are generated as anchor points. Similarly, anchor points are associated
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Figure 3.9: The general concept of our anchor-free prototype plugged into feature pyramid network.
During training, each instance can be assigned to arbitrary pyramid level/levels for setting up supervision
signals.
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Figure 3.10: The network architecture of a vanilla anchor-point detector with a simple detection head.

with the features at their locations just like the anchor boxes. In this section, we formulate the detection

pipeline from the anchor point’s viewpoint in the setting of a vanilla anchor-free prototype with a simple

architecture of the detection head.

Network architecture. As shown in Figure 3.10, the network consists of a backbone, a feature pyramid,

and one detection head per pyramid level, in a fully convolutional style. A pyramid level is denoted as

Pl where l indicates the level number and it has 1/sl resolution of the input image size W × H. sl is the

feature stride and sl = 2l . A typical range of l is 3 to 7. A detection head has two task-specific subnets,

i.e. classification subnet and localization subnet. They both have five 3× 3 conv layers. The classification

subnet predicts the probability of objects at each anchor point location for each of the K object classes.

The localization subnet predicts the 4-dimensional class-agnostic distance from each anchor point to the

boundaries of a nearby instance if the anchor point is positive (defined next).

Supervision targets. We first define the concept of anchor points. An anchor point plij is a pixel on

the pyramid level Pl located at (i, j) with i = 0, 1, . . . , W/sl − 1 and j = 0, 1, . . . , H/sl − 1. Each plij has

a corresponding image space location (Xlij, Ylij) where Xlij = sl(i + 0.5) and Ylij = sl(j + 0.5). Next we

define the valid box Bv of a ground-truth instance box B = (c, x, y, w, h) where c is the class id, (x, y)
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is the box center, and w, h are box width and height respectively. Bv is a central shrunk box of B, i.e.

Bv = (c, x, y, εw, εh), where ε is the shrunk factor. An anchor point plij is positive if and only if some

instance B is assigned to Pl and the image space location (Xlij, Ylij) of plij is inside Bv, otherwise it is a

negative anchor point. For a positive anchor point, its classification target is c and localization targets

are calculated as the normalized distances d = (dl , dt, dr, db) from the anchor point to the left, top, right,

bottom boundaries of B respectively (Equation (3.5)),

dl =
1

zsl
[Xlij − (x− w/2)] dt =

1
zsl

[Ylij − (y− h/2)]

dr =
1

zsl
[(x + w/2)− Xlij] db =

1
zsl

[(y + h/2)−Ylij]

(3.5)

where z is the normalization scalar. For negative anchor points, their classification targets are background

(c = 0), and localization targets are set to null because they don’t need to be learned. To this end, we have

a classification target clij and a localization target dlij for all of each anchor point plij. A visualization of

the classification targets and the localization targets of one feature level is illustrated in Figure 3.10.

Loss functions. Given the architecture and the definition of anchor points, the network generates a

K-dimensional classification output ĉlij and a 4-dimensional localization output d̂lij per anchor point plij.

Focal loss [57] (lFL) is adopted for the training of classification subnets to overcome the extreme class

imbalance between positive and negative anchor points. IoU loss [104] (lIoU) is used for the training of

localization subnets. Therefore, the per anchor point loss Llij is calculated as Equation (3.6).

Llij =


lFL(ĉlij, clij) + lIoU(d̂lij, dlij), plij ∈ p+

lFL(ĉlij, clij), plij ∈ p−
(3.6)

where p+ and p− are the sets of positive and negative anchor points respectively. The loss for the whole

network is the weighted summation of all anchor point losses divided by the summation of weights of

positive anchor points (Equation (3.7)).

L =
1

∑plij∈p+ wlij
∑
lij

wlijLlij (3.7)

where wlij is an attention weight assigned for each anchor point’s loss. For each positive anchor point,

the weight depends on the distance between its image space location and the corresponding instance

boundaries. The closer to a boundary, the more down-weighted the anchor point gets. Thus, anchor

points close to boundaries are receiving less attention and the network focuses more on those surrounding

the center. For negative anchor points, they are kept unchanged, i.e. their weights are all set to 1.
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Mathematically, wlij is defined in Equation (3.8):

wlij =


min(dl

lij ,d
r
lij)min(dt

lij ,d
b
lij)

max(dl
lij ,d

r
lij)max(dt

lij ,d
b
lij)

, ∃B, plij ∈ Bv

1, otherwise

(3.8)

3.2.3 Feature Selection Matters

Unlike anchor-based detectors, anchor-free methods don’t have constraints from anchor matching to select

feature levels for instances from the feature pyramid. In other words, we can assign each instance to

arbitrary feature level(s) in anchor-free methods during training. And selecting the right feature levels can

make a big difference [116]. In this section we consider heuristic guided feature selection and semantic

guided feature selection. The heuristic guided feature selection is purely based on ad-hoc heuristics such

as the box scale of the instance, which is similar to anchor-based detection. For semantic guided feature

selection, we take the actual semantic information of the instance into consideration. A hard version and

a soft version are proposed respectively.

Heuristic guided feature selection. Similarly to anchor-based detectors, anchor-free detector can also

select the feature levels based on heuristics where the feature selection depends purely on box sizes. We

borrow the idea from the FPN detector [56]. An instance I is assigned to the level Pl′ of the feature

pyramid by:

l′ = bl0 + log2(
√

wh/224)c (3.9)

Here 224 is the canonical ImageNet pre-training size, and l0 is the target level on which an instance with

w× h = 2242 should be mapped. In this work we choose l0 = 5 because ResNet [34] uses the feature map

from 5th convolution group to do the final classification.

Semantic guided feature selection: hard version. We believe the semantic guided feature selection

should be based on per-instance loss in training because semantic information is encoded in the network

loss. For the hard version, we aim to find a single optimal feature level for each instance.

Given an instance B, we define its classification loss and box localization loss on Pl as LB
FL(l) and

LB
IoU(l), respectively. They are computed by averaging the weighted focal loss and IoU loss of all positive

anchor points on Pl inside the valid box Bv, i.e.

LB
FL(l) =

1
∑plij∈Bv wlij

∑
plij∈Bv

lFL(ĉlij, clij)

LB
IoU(l) =

1
∑plij∈Bv wlij

∑
plij∈Bv

lIoU(d̂lij, dlij)

(3.10)

Figure 3.11 shows our hard version feature selection process. First the instance I is forwarded through

all levels of the feature pyramid. Then the summation of LI
FL(l) and LI

IoU(l) is computed in all anchor-free



CHAPTER 3. SCALE-TOLERANT DETECTION FROM ANCHOR-BASED TO ANCHOR-FREE 44

Figure 3.11: Hard version of our semantic guided feature selection. Each instance is passing through all
levels of anchor-free branches to compute the averaged classification (focal) loss and localization (IoU)
loss over effective regions. Then the level with minimal summation of two losses is selected to set up the
supervision signals for that instance.

branches using Equation (3.10). Finally, the best pyramid level Pl∗ yielding the minimal summation of

losses is selected to learn the instance, i.e.

l∗ = arg min
l

LB
FL(l) + LB

IoU(l) (3.11)

For a training batch, features are updated for their correspondingly assigned instances. The intuition is

that the selected feature is currently the best to model the instance. Its loss forms a lower bound in the

feature space. And by training, we further pull down this lower bound. At the time of inference, we do

not need to select the feature because the most suitable level of the feature pyramid will naturally output

high confidence scores.

Semantic guided feature selection: soft version. If we look into the properties of the feature pyramid,

feature maps from different pyramid levels are somewhat similar to each other, especially the adjacent

levels. We visualize the response of all pyramid levels in Figure 3.12. It turns out that if one level of

feature is activated in a certain region, the same regions of adjacent levels may also be activated in a

similar style. But the similarity fades as the levels are farther apart. This means that features from more

than one pyramid level can participate together in the detection of a particular instance, but the degrees

of participation from different levels should be somewhat different.

Inspired by the above observation, we argue features from multiple levels should be involved in the

training and testing for each instance, and each level should make distinct contributions. FoveaBox [44]

has shown that assigning instances to multiple feature levels can improve the performance to some extent.

But assigning to too many levels may instead hurt the performance severely. We believe this limitation

is caused by the hard selection of pyramid levels. For each instance, the pyramid levels in FoveaBox are

either selected or discarded. The selected levels are treated equally no matter how different their feature

responses are. Therefore, the solution lies in reweighting the pyramid levels for each instance. In other

words, a weight is assigned to each pyramid level according to the feature response, making the selection
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Figure 3.12: Feature responses from P3 to P7. They look similar but the details gradually vanish as the
resolution becomes smaller. Selecting a single level per instance causes the waste of network power.
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Figure 3.13: The weights prediction for soft-selected pyramid levels. “C” indicates the concatenation
operation.

soft. This can also be viewed as assigning a proportion of the instance to a level.

So how to decide the weight of each pyramid level per instance? We propose to train a feature

selection network to predict the weights for soft feature selection [115]. The input to the network is

instance-dependent feature responses extracted from all the pyramid levels. This is realized by applying

the RoIAlign layer [33] to each pyramid feature followed by concatenation, where the RoI is the instance

ground-truth box. Then the extracted feature goes through a feature selection network to output a vector

of the probability distribution, as shown in Figure 3.13. We use the probabilities as the weights of soft

feature selection.

There are multiple architecture designs for the feature selection network. For simplicity, we present

a lightweight instantiation. It consists of three 3× 3 conv layers with no padding, each followed by the

ReLU function, and a fully connected layer with softmax. Table 3.3 details the architecture. The feature

selection network is jointly trained with the detector. Cross entropy loss is used for optimization and the

ground-truth is a one-hot vector indicating which pyramid level has minimal loss as defined in the hard
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Table 3.3: Architecture of the feature selection network. The conv layers have no padding.

layer type output size layer setting activation
input 1280× 7× 7 n/a n/a
conv 256× 5× 5 3× 3, 256 relu
conv 256× 3× 3 3× 3, 256 relu
conv 256× 1× 1 3× 3, 256 relu

fc 5 n/a softmax

version of feature selection.

So far, each instance B is associated with a per level weight wB
l via the feature selection network. The

anchor point loss Llij is down-weighed further if B is assigned to Pl and plij is inside Bv. We assign each

instance B to topq feature levels with q minimal instance-dependent losses during training. Thus, Eq. (3.8)

is augmented into Equation (3.12).

wlij =


wB

l
min(dl

lij ,d
r
lij)min(dt

lij ,d
b
lij)

max(dl
lij ,d

r
lij)max(dt

lij ,d
b
lij)

, ∃B, plij ∈ Bv

1, otherwise

(3.12)

The total loss of the whole model is the weighted sum of anchor point losses plus the classification loss

(Lselect-net) from the feature selection network, as in Equation (3.13).

L =
1

∑plij∈p+ wlij
∑
lij

wlijLlij + λLselect-net (3.13)

where λ is the hyperparameter that controls the proportion of classification loss Lselect-net for feature

selection.

3.2.4 Experimental Results

We conduct experiments on the more general and challenging COCO [58] detection dataset using the

MMDetection [9] codebase. All models are trained on the train2017 split including around 115k images.

We analyze our method by ablation studies on the val2017 split containing 5k images. When comparing

to the state-of-the-art detectors, we report the Average Precision (AP) scores on the test-dev split.

Implementation details. We follow [57] for the initialization of the detection network. Specifically, the

backbone networks are pre-trained on ImageNet1k [17]. The classification layers in the detection head are

initialized with bias − log((1− π)/π) where π = 0.01, and a Gaussian weight. The localization layers in

the detection head are initialized with bias 0.1, and also a Gaussian weight. For the newly added feature

selection network, we initialize all layers in it using a Gaussian weight. All the Gaussian weights are filled

with σ = 0.01.
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Table 3.4: Ablative experiments for our anchor-free prototype on the COCO minival. ResNet-50 is the
backbone network for all experiments in this table. We study the effect of various feature selection strate-
gies.

Heuristic
guided

Semantic guided
AP AP50 AP75 APS APM APLHard

version
Soft

version
RetinaNet (anchor-based) X 35.7 54.7 38.5 19.5 39.9 47.5

Ours (anchor-free)
X 35.9 54.8 38.1 20.2 39.7 46.5

X 37.0 55.8 39.5 20.5 40.1 48.5
X 38.0 56.9 40.5 21.0 41.1 50.2

The entire detection network and the feature selection network are jointly trained with stochastic

gradient descent on 8 GPUs with 2 images per GPU using the COCO train2017 set. Unless otherwise

noted, all models are trained for 12 epochs (∼90k iterations) with an initial learning rate of 0.01, which

is divided by 10 at the 9th and the 11th epoch. Horizontal image flipping is the only data augmentation

unless otherwise specified. In the soft version of semantic guided feature selection, we don’t use the

output from the feature selection network for the first 6 epochs. The detection network is trained with the

same feature selection strategy as in the hard version, i.e. each instance is assigned to only one feature

level yielding minimal loss. We plug in the soft selection weights and choose the topq levels for the

second 6 epochs. This is to stabilize the feature selection network first and to make the learning smoother

in practice. We use the training hyperparameters for the shrunk factor ε = 0.2 and the normalization

scalar z = 4.0. We set λ = 0.1 although results are robust to the exact value.

At the time of inference, the network architecture is as simple as in Figure 3.10. The feature selection

network is not involved in the inference so the runtime speed is not affected. An image is forwarded

through the network in a fully convolutional style. Then classification prediction ĉlij and localization

prediction d̂lij are generated for all each anchor point plij. Bounding boxes can be decoded using the

reverse of Equation (3.5). We only decode box predictions from at most 1k top-scoring anchor points

in each pyramid level, after thresholding the confidence scores by 0.05. These top predictions from all

feature levels are merged, followed by non-maximum suppression with a threshold of 0.5, yielding the

final detections.

Ablation Study

For all ablation studies, we use an image scale of 800 pixels for both training and testing. We compare our

anchor-free prototype with the anchor-based counterparts, i.e. RetinaNet [57]. We also study the effect of

different proposed feature selection strategies. Results are reported in Table 3.4.

Anchor boxes may not be necessary. We first compare the performance of our anchor-free prototype
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with the anchor-based counterpart, i.e. RetinaNet. It turns out even with the naive heuristic guided feature

selection, comparable results can be achieved (Table 3.4 1st vs. 2nd entry) with the anchor-free detection

head which has fewer parameters and simpler network architecture than the anchor-based detection head.

Thus we encourage the community to rethink the necessity of anchor boxes which are currently considered

as the de facto standard in object detection.

Semantic guided feature selection is essential. Our anchor-free prototype with semantic guided fea-

ture selection outperforms the heuristic guided one by a considerable margin (Table 3.4 2nd vs. 3rd entry).

This indicates selecting the right feature to learn plays a fundamental role in detection. To understand

the optimal pyramid level selected for instances, we visualize some qualitative detection results from the

anchor-free detection heads in Figure 3.14. The number before the class name indicates the feature level

that detects the object. It turns out the hard version of the semantic guided feature selection somehow

follows the rule that upper levels select larger instances, and lower levels are responsible for smaller in-

stances, which is the same principle in anchor-based branches. However, there are quite a few exceptions,

i.e. semantic guided feature selection chooses pyramid levels different from the choices of heuristic guided

selection. We label these exceptions as red boxes in Figure 3.14. Green boxes indicate agreement between

the semantic guided and heuristic guided ones. By capturing these exceptions, our anchor-free detector

can use better features to detect challenging objects.

Soft-selected pyramid levels utilize the feature power better. We further compare the soft version of

semantic guided feature selection with the hard version (Table 3.4 3rd vs. 4th entry). We find that as long

as each instance is assigned to more than one pyramid level, a robust ∼1.0% absolute AP improvement

over the hard version can be observed. This indicates that allowing instances to optimize multiple pyramid

levels is essential to utilize the feature power as much as possible. Empirically, we assign each instance to

the top 3 feature levels with the minimal instance-dependent losses according to Table 3.5. To understand

how does the feature selection network assign instances, we visualize the predicted soft selection weights

in Figure 3.15. It turns out that larger instances tend to be assigned high weights for higher pyramid

levels. The majority of instances can be learned with no more than two levels. Very rare instances need

to be modeled by more than two levels, e.g. the sofa in the top right sub-figure of Figure 3.15. This is

consistent with the results in Table 3.5.

Semantic guided feature selection works well with augmented feature pyramids. To evaluate the

generalization ability of the semantic guided feature selection, we apply it to augmented feature pyramids.

Here we adopt the Balanced Feature Pyramid (BFP) [68] and achieve further improvement. The BFP

pushes our model with ResNet-50 to a 38.8% AP. More importantly, our proposed semantic guided feature

selection can robustly work with advanced feature pyramids, offering a steady 2% AP gain as shown in



CHAPTER 3. SCALE-TOLERANT DETECTION FROM ANCHOR-BASED TO ANCHOR-FREE 49

6:person 0.94

6:person 0.93

6:person 0.95

4:baseball bat 0.59

5:person 0.684:person 0.754:person 0.72
4:person 0.68

4:person 0.59

4:baseball glove 0.74

5:giraffe 0.71

6:giraffe 0.89 6:person 0.92

5:surfboard 0.72

7:dining table 0.77

5:fork 0.56

5:bottle 0.84

4:cup 0.80

4:bottle 0.58

4:knife 0.74

7:dining table 0.78

6:person 0.61

7:person 0.82

6:person 0.74

5:cup 0.65

5:cake 0.66

4:clock 0.84

4:fork 0.60

7:person 0.81

6:person 0.65

5:tennis racket 0.88

6:person 0.88

5:snowboard 0.59

4:person 0.87

4:person 0.94

4:skis 0.66

6:cat 0.82

6:laptop 0.88

4:cell phone 0.54
4:cup 0.52

6:person 0.66

6:laptop 0.66

4:mouse 0.52

6:person 0.94 6:person 0.62

5:person 0.955:person 0.95
5:person 0.93

4:skateboard 0.54

4:skateboard 0.624:skateboard 0.664:skateboard 0.64

7:elephant 0.90

6:person 0.905:person 0.73 5:person 0.92
5:person 0.86

4:person 0.71

3:skateboard 0.643:skateboard 0.63

6:person 0.87

5:tennis racket 0.95

3:sports ball 0.96

Figure 3.14: Visualization of online feature selection from anchor-free branches. The number before the
class name is the pyramid level that detects the instance. We compare this level with the level to which
as if this instance is assigned in the anchor-based branches, and use red to indicate the disagreement and
green for agreement.

Table 3.5: Varying q for number of selected levels in soft version of semantic guided feature selection.

topq AP AP50 AP75 APS APM APL
2 37.9 56.9 40.5 21.1 41.0 50.1
3 38.0 56.9 40.5 21.2 41.2 50.2
4 37.9 56.9 40.3 21.2 41.1 50.2
5 37.9 56.8 40.5 21.0 41.1 50.2

Table 3.6: The effect of semantic guided selection on different feature pyramids.

Feature pyramid
Heuristic
guided

selection

Semantic
guided

selection
AP AP50 AP75 APS APM APL

FPN X 35.9 54.8 38.1 20.2 39.7 46.5
X 38.0 56.9 40.5 21.0 41.1 50.2

BFP X 36.8 57.2 39.0 22.0 41.0 45.9
X 38.8 58.7 41.3 22.5 42.6 50.8

Table 3.6.

Our anchor-free detector is robust and efficient. Our anchor-free detector can consistently provide

robust performance using deeper and better backbone networks, while at the same time keeping the de-

tection head as simple as possible. We report the head-to-head comparisons with anchor-based RetinaNet

in terms of detection accuracy and speed in Table 3.7. Except for the head architectures, all other settings
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Figure 3.15: Visualization of the soft feature selection weights from the feature selection network. Weights
(the top-left red bars) ranging from 0 to 1 of five pyramid levels (P3 to P7) are predicted for each instance
(blue box). The more filled a red bar is, the higher the weight. Best viewed in color when zoomed in.

Table 3.7: Head-to-head comparisons of anchor-based RetinaNet, and our anchor-free detector with dif-
ferent backbone networks on the COCO val2017 set. R: ResNet. X: ResNeXt.

Backbone Method AP AP50 FPS

R-50 RetinaNet (anchor-based) 35.7 54.7 11.6
Ours (anchor-free) 38.8 58.7 14.9

R-101 RetinaNet (anchor-based) 37.7 57.2 8.0
Ours (anchor-free) 41.0 60.7 11.2

X-101-64x4d RetinaNet (anchor-based) 39.8 59.5 4.5
Ours (anchor-free) 43.1 63.7 6.1

are the same. All detectors run on a single GTX 1080Ti GPU with CUDA 10 using a batch size of 1. It

turns out that our detector gets both sides of two worlds. Ours with purely anchor-free heads can not

only run faster than the anchor-based counterparts due to simpler head architecture, but also outperform

the anchor-based detector by significant margins, i.e. 3.1%, 3.3%, and 3.3% absolute AP increases on

ResNet-50, ResNet-101, and ResNeXt-101-64x4d backbones respectively.

Comparison to State of the Art

We evaluate our best anchor-free detector on the COCO test-dev set to compare with recent state-of-

the-art methods. All of our models are trained using scale jitter by randomly scaling the shorter side of

images in the range from 640 to 800 and for 2× number of epochs as the models in the ablation study

with the learning rate change points scaled proportionally. Other settings are the same.

For a fair comparison, we report the results of single-model single-scale testing for all methods, as
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Figure 3.16: Single-model single-scale speed (ms) vs. accuracy (AP) on COCO test-dev. We show
variants of our anchor-free detector with and without DCN [15]. Without DCN, our fastest version can
run up to 5× faster than other methods with comparable accuracy. With DCN, our accurate version forms
an upper envelop of all recent detectors.

well as their corresponding inference speeds in Table 3.8. A visualization of the accuracy-speed trade-off

is shown in Figure 3.16. The inference speeds are measured by Frames-per-Second (FPS) on the same

machine with a GTX 1080Ti GPU using a batch size of 1 whenever possible. A “n/a” indicates the case

that the method doesn’t provide trained models nor self-timing results from the original paper.

Our detector pushes the envelope of accuracy-speed boundary to a new level. We report the results

of two series of backbone models, one without DCN and the other with DCN. Without DCN, our fastest

version based on ResNet-50 can reach a 14.9 FPS while maintaining a 41.7% AP, outperforming some of the

methods [56, 57, 44, 82, 68] using ResNet-101. With DCN, our accurate version forms an upper envelope

of state-of-the-art anchor-free detectors and some recent anchor-based detectors. The closest competitor,

RPDet [102], is 1.0% AP worse and 15ms slower than ours.

3.3 Summary

This chapter studies how to address the scale variation problem for object detection. Our exploration

starts with anchor-based detection and evolves to anchor-free detection. For the anchor-based detection,

we identify low object-anchor overlap as the major reason hindering anchor-based detectors to detect tiny

objects. We proposed the new EMO score to characterize anchors’ capability of getting high overlaps with

objects, providing an in-depth analysis of the anchor matching mechanism. This inspired us to come up

with several simple but effective strategies for a new anchor design for higher IoU scores. Consequently,
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Table 3.8: Single-model and single-scale accuracy and inference speed of SAPD vs. recent state-of-the-art
detectors on the COCO test-dev set. FPS is measured on the same machine with a single GTX 1080Ti
GPU using the official source code whenever possible. “n/a” means that both trained models and timing
results from original papers are not available. R: ResNet. X: ResNeXt. HG: Hourglass. For a visualized
comparison, please refer to Figure 3.16.

Method Backbone Anchor
free? FPS AP AP50 AP75 APS APM APL

Multi-stage detectors
Faster R-CNN w/ FPN [56] R-101 9.9 36.2 59.1 39.0 18.2 39.0 48.2

Deformable R-FCN [15] Inception ResNet n/a 37.5 58.0 n/a 19.4 40.1 52.5
Soft-NMS [4] Inception ResNet n/a 40.9 62.8 n/a 23.3 43.6 53.3

Cascade R-CNN [5] R-101 8.0 42.8 62.1 46.3 23.7 45.5 55.2
GA-Faster-RCNN [85] R-50 X 9.4 39.8 59.2 43.5 21.8 42.6 50.7

Libra R-CNN [68] R-101 9.5 41.1 62.1 44.7 23.4 43.7 52.5
Libra R-CNN [68] X-101-64x4d 5.6 43.0 64.0 47.0 25.3 45.6 54.6

RPDet [102] R-101 X 10.0 41.0 62.9 44.3 23.6 44.1 51.7
RPDet [102] R-101-DCN X 8.0 45.0 66.1 49.0 26.6 48.6 57.5

TridentNet [52] R-101 2.7 42.7 63.6 46.5 23.9 46.6 56.6
TridentNet [52] R-101-DCN 1.3 46.8 67.6 51.5 28.0 51.2 60.5

Single-stage detectors
YOLOv2 [76] DarkNet-19 n/a 21.6 44.0 19.2 5.0 22.4 35.5

SSD [59] ResNet-101 n/a 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [57] R-101 8.0 39.1 59.1 42.3 21.8 42.7 50.2
RefineDet [108] R-101 n/a 36.4 57.5 39.5 16.6 39.9 51.4
CornerNet [46] HG-104 X 3.1 40.5 56.5 43.1 19.4 42.7 53.9
AB+FSAF [116] R-101 7.1 40.9 61.5 44.0 24.0 44.2 51.3
AB+FSAF [116] X-101-64x4d 4.2 42.9 63.8 46.3 26.6 46.2 52.7

GA-RetinaNet [85] R-50 X 10.8 37.1 56.9 40.0 20.1 40.1 48.0
ExtremeNet [113] HG-104 X 2.8 40.2 55.5 43.2 20.4 43.2 53.1

FoveaBox [44] R-101 X 11.2 40.6 60.1 43.5 23.3 45.2 54.5
FoveaBox [44] X-101 X n/a 42.1 61.9 45.2 24.9 46.8 55.6

FCOS [82] R-101 X 9.3 41.5 60.7 45.0 24.4 44.8 51.6
FCOS [82] w/ imprv X-101-64x4d X 5.4 44.7 64.1 48.4 27.6 47.5 55.6

CenterNet [21] HG-52 X 4.4 41.6 59.4 44.2 22.5 43.1 54.1
CenterNet [21] HG-104 X 3.3 44.9 62.4 48.1 25.6 47.4 57.4

CenterNet(OAP) [112] HG-104 X n/a 42.1 61.1 45.9 24.1 45.5 52.8
FreeAnchor [109] R-101 9.1 43.1 62.2 46.4 24.5 46.1 54.8
FreeAnchor [109] X-101-32x8d 5.4 44.8 64.3 48.4 27.0 47.9 56.0

Ours R-50 X 14.9 41.7 61.9 44.6 24.1 44.6 51.6
Ours R-101 X 11.2 43.5 63.6 46.5 24.9 46.8 54.6
Ours X-101-32x4d X 8.7 44.5 64.7 47.8 26.5 47.8 55.8
Ours X-101-64x4d X 6.1 45.4 65.6 48.9 27.3 48.7 56.8
Ours R-50-DCN X 12.4 44.3 64.4 47.7 25.5 47.3 57.0
Ours R-101-DCN X 9.1 46.0 65.9 49.6 26.3 49.2 59.6
Ours X-101-32x4d-DCN X 6.8 46.6 66.6 50.0 27.3 49.7 60.7
Ours X-101-64x4d-DCN X 4.5 47.4 67.4 51.1 28.1 50.3 61.5
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our method outperforms the baseline anchor-based detector by a considerable margin and achieves the

state-of-the-art performance on the challenging WiderFace dataset. For the anchor-free detection, we

discover heuristic feature selection as the primary limitation for anchor-based detectors with feature pyra-

mids. Our insight is that flexible feature selection is the major advantage of anchor-free detection over

anchor-based counterparts. Semantic-guided feature selection is the key to utilize such an advantage.

Eventually, we achieve the goal that less is more. Our anchor-free detector both faster and more accurate

than previous state-of-the-art methods.



Chapter 4

Semantic Relation Reasoning for Availability

Variation

Deep learning algorithms usually require a large amount of annotated data to achieve superior perfor-

mance. To acquire enough annotated data, one common way is by collecting abundant samples from the

real world and paying annotators to generate ground-truth labels. However, even if all the data samples

are well annotated based on our requirements, we still face the problem of availability variation. Because

long-tail distribution is an inherent characteristic of the real world, there always exist some rare cases

that have just a few samples available, such as rare animals, uncommon road conditions. In other words,

we are unable to alleviate the situation of scarce cases by simply spending more money on annotation

even big data is accessible. Therefore, how to address data availability variation is an imperative and

long-lasting task.

The availability variation problem can be formulated as a few-shot learning task. Recently, efforts have

been put into the study of few-shot object detection (FSOD) [8, 41, 20, 40, 96, 91, 23, 103, 90, 92, 93]. In

FSOD, there are base classes in which sufficient objects are annotated with bounding boxes and novel

classes in which very few labeled objects are available. The novel class set does not share common classes

with the base class set. The few-shot detectors are expected to learn from limited data in novel classes

with the aid of abundant data in base classes and to be able to detect all novel objects in a held-out testing

set. To achieve this, most of the recent few-shot detection methods adopt the ideas from meta-learning

and metric learning for few-shot recognition and apply them to conventional detection frameworks, e.g.

Faster R-CNN [77], YOLO [75].

Although recent FSOD methods have improved the baseline considerably, data scarcity is still a bottle-

neck that hurts the detector’s generalization from a few samples. In other words, the performance is very

54



CHAPTER 4. SEMANTIC RELATION REASONING FOR AVAILABILITY VARIATION 55

1-shot 2-shot 3-shot 5-shot 10-shot
10

20

30

40

50
m

AP
50

 (%
) o

n 
VO

C 
No

ve
l S

et
 1

Methods
SRR-FSD (Ours)
TFA
Meta R-CNN
MetaDet
FSRW

Pretrained
original
rm-nov

Figure 4.1: FSOD performance (mAP50) on VOC [22] Novel Set 1 at different shot numbers. Solid line
(original) means the pretrained model used for initializing the detector backbone is trained on the original
ImageNet [17]. Dashed line (rm-nov) means classes in Novel Set 1 are removed from the ImageNet for
the pretrained backbone model. Our SRR-FSD is more stable to the variation of explicit shots (x-axis) and
implicit shots (original vs. rm-nov).

sensitive to the number of both explicit and implicit shots and drops drastically as data becomes limited.

The explicit shots refer to the available labeled objects from the novel classes. For example, the 1-shot

performance of some FSOD methods is less than half of the 5-shot or 10-shot performance, as shown

in Figure 4.1. In terms of implicit shots, initializing the backbone network with a model pretrained on

a large-scale image classification dataset is a common practice for training an object detector. However,

the classification dataset contains many implicit shots of object classes overlapped with the novel classes.

So the detector can have early access to novel classes and encode their knowledge in the parameters of

the backbone. Removing those implicit shots from the pretrained dataset also hurts the performance as

shown in Figure 4.1. The variation of explicit and implicit shots could potentially lead to system failure

when dealing with extreme cases in the real world.

We believe the reason for shot sensitivity is due to exclusive dependence on visual information. Novel

objects are learned through images only and the learning is independent between classes. As a result,

visual information becomes limited as image data becomes scarce. However, one thing remains constant

regardless of the availability of visual information, i.e. the semantic relation between base and novel
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Figure 4.2: Key insight: the semantic relation between base and novel classes is constant regardless of the
data availability of novel classes, which can aid the learning together with visual information.

classes. For example in Figure 4.2, if we have the prior knowledge that the novel class “bicycle” looks

similar to “motorbike”, can have interaction with “person”, and can carry a “bottle”, it would be easier to

learn the concept “bicycle” than solely using a few images. Such explicit relation reasoning is even more

crucial when visual information is hard to access [89].

So how can we introduce semantic relation to few-shot detection? In natural language processing,

semantic concepts are represented by word embeddings [65, 70] from language models, which have been

used in zero-shot learning methods [89, 1]. And explicit relationships are represented by knowledge

graphs [66, 6], which are adopted by some zero-shot or few-shot recognition algorithms [89, 69]. However,

these techniques are rarely explored in the FSOD task. Also, directly applying them to few-shot detectors

leads to non-trivial practical problems, i.e. the domain gap between vision and language, and the heuristic

definition of knowledge graph for classes in FSOD datasets (see Section 4.3.1 and 4.3.2 for details).

In this chapter, we explore the semantic relation for FSOD. We propose a Semantic Relation Reasoning

Few-Shot Detector (SRR-FSD), which learns novel objects from both the visual information and the seman-

tic relation in an end-to-end style. Specifically, we construct a semantic space using word embeddings.

Guided by the word embeddings of the classes, the detector is trained to project the objects from the

visual space to the semantic space and to align their image representations with the corresponding class

embeddings. To address the aforementioned problems, we propose to learn a dynamic relation graph

driven by the image data instead of predefining one based on heuristics. Then the learned graph is used

to perform relation reasoning and augment the raw embeddings for reduced domain gap.

With the help of the semantic relation reasoning, our SRR-FSD demonstrates the shot-stable property
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in two aspects, see the red solid and dashed lines in Figure 4.1. In the common few-shot settings (solid

lines), SRR-FSD achieves competitive performance at higher shots and significantly better performance

at lower shots compared to state-of-the-art few-shot detectors. In a more realistic setting (dashed lines)

where implicit shots of novel concepts are removed from the classification dataset for the pretrained

model, SRR-FSD steadily maintains the performance while some previous methods have results degraded

by a large margin due to the loss of implicit shots. We hope the suggested realistic setting can serve as a

new benchmark protocol for future research.

4.1 Background of Semantic Reasoning in Vision Tasks

Semantic word embeddings have been used in zero-shot learning tasks to learn a mapping from the visual

feature space to the semantic space, such as zero-shot recognition [89] and zero-shot object detection

[1, 71]. In [13], semantic embeddings are used as the ground-truth of the encoder TriNet to guide the

feature augmentation. In [31], semantic embeddings guide the feature synthesis for unseen classes by

perturbing the seen feature with the projected difference between a seen class embedding and an unseen

class embedding. In zero-shot or few-shot recognition [89, 69], word embeddings are often combined with

knowledge graphs to perform relation reasoning via the graph convolution operation [43]. Knowledge

graphs are usually defined based on heuristics from databases of common sense knowledge rules [66, 6].

[12] proposed a knowledge graph based on object co-occurrence for the multi-label recognition task. To

our knowledge, the use of word embeddings and knowledge graphs are rarely explored in the FSOD task.

Any-Shot Detector (ASD) [72] is the only work that uses word embeddings for the FSOD task. But ASD

focuses more on the zero-shot detection and it does not consider the explicit relation reasoning between

classes because each word embedding is treated independently.

4.2 The Setting of Few-Shot Object Detection

Conventional object detection problem has a base class set Cb in which there are many instances, and a

base dataset Db with abundant images. Db consists of a set of annotated images {(xi, yi)} where xi is the

image and yi is the annotation of labels from Cb and bounding boxes for objects in xi. For few-shot object

detection (FSOD) problem, in addition to Cb and Db it also has a novel class set Cn and a novel dataset Dn,

with Cb ∩ Cn = ∅. In Dn, objects have labels belong to Cn and the number of objects for each class is k for

k-shot detection. A few-shot detector is expected to learn from Db and to quickly generalize to Dn with a

small k such that it can detect all objects in a held-out testing set with object classes in Cb ∪ Cn.
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A typical few-shot detector has two training phases. The first one is the base training phase where

the detector is trained on Db similarly to conventional object detectors. Then in the second phase, it is

further finetuned on the union of Db and Dn. To avoid the dominance of objects from Db, a small subset

is sampled from Db such that the training set is balanced concerning the number of objects per class.

As the total number of classes is increased by the size of Cn in the second phase, more class-specific

parameters are inserted in the detector and trained to be responsible for the detection of novel objects.

The class-specific parameters are usually in the box classification and localization layers at the very end

of the network.

4.3 Semantic Relation Reasoning for Few-Shot Detector

Our proposed few-shot detector is built on top of Faster R-CNN [77], a popular two-stage general object

detector. An overview of our method is presented in Figure 4.3. We modify the classification output in

the second stage of Faster R-CNN with our semantic relation reasoning module [114].

In the second stage of the original Faster R-CNN, a feature vector is extracted for each region proposal

and forwarded to a classification subnet and a regression subnet. In the classification subnet, the feature

vector is transformed into a d-dimentional vector v ∈ Rd through fully-connected layers. Then v is

multiplied by a learnable weight matrix W ∈ RN×d to output a probability distribution as in Equation

(4.1).

p = so f tmax(Wv + b) (4.1)
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where N is the number of classes and b ∈ RN is a learnable bias vector. Cross-entropy loss is used during

training.

4.3.1 Semantic Space Projection

To learn objects from both the visual information and the semantic relation, we first construct a semantic

space and project the visual feature v into this semantic space. Specifically, we represent the semantic

space using a set of de-dimensional word embeddings We ∈ RN×de [65] corresponding to the N object

classes (including the background class). And the detector is trained to learn a linear projection P ∈ Rde×d

in the classification subnet (see Figure 4.3) such that v is expected to align with its class’s word embedding

after projection. Mathematically, the prediction of the probability distribution turns into Equation (4.2)

from Equation (4.1).

p = so f tmax(WePv + b) (4.2)

During training, We is fixed and the learnable variable is P. A benefit is that generalization to novel objects

involves no new parameters in P. We can simply expand We with embeddings of novel classes. We still

keep the b to model the category imbalance in the detection dataset.

Domain gap between vision and language. We encodes the knowledge of semantic concepts from

natural language. While it is applicable in zero-shot learning, it will introduce the bias of the domain

gap between vision and language to the FSOD task. Because the few-shot detector can rely on both

the images and the embeddings to learn the concept of novel objects, which is different from the zero-

shot learning where unseen classes have no support from images. When there are very few images to

rely on, the knowledge from embeddings can guide the detector towards a decent solution. But when

more images are available, the knowledge from embeddings may be misleading due to the domain gap,

resulting in a suboptimal solution. Therefore, we need to augment the semantic embeddings to reduce

the domain gap. Some previous works like ASD [72] apply a trainable transformation to each word

embedding independently. But we find leveraging the explicit relationship between classes is more effective

for embedding augmentation, leading to the proposal of the dynamic relation graph in Section 4.3.2.

4.3.2 Relation Reasoning

The semantic space projection learns to align the concepts from the visual space with the semantic space.

But it still treats each class independently and there is no knowledge propagation among classes. There-

fore, we further introduce a knowledge graph to model their relationships. The knowledge graph G is a

N × N adjacency matrix representing the connection strength for every neighboring class pair. G is in-
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volved in classification via the graph convolution operation [43]. Mathematically, the updated probability

prediction is shown in Equation (4.3).

p = so f tmax(GWePv + b) (4.3)

The heuristic definition of the knowledge graph. In zero-shot or few-shot recognition algorithms, the

knowledge graph G is predefined base on heuristics. It is usually constructed from a database of common

sense knowledge rules by sampling a sub-graph through the rule paths such that semantically related

classes have strong connections. For example, classes from the ImageNet dataset [17] have a knowledge

graph sampled from the WordNet [66]. However, classes in FSOD datasets are not highly semantically

related, nor do they form a hierarchical structure like the ImageNet classes. The only applicable heuristics

we found are based on object co-occurrence from [12]. Although the statistics of the co-occurrence are

straightforward to compute, the co-occurrence is not necessarily equivalent to semantic relation.

Instead of predefining a knowledge graph based on heuristics, we propose to learn a dynamic relation

graph driven by the data to model the relation reasoning between classes. The data-driven graph is

also responsible for reducing the domain gap between vision and language because it is trained with

image inputs. Inspired by the concept of the transformer, we implement the dynamic graph with the

self-attention architecture [83] as shown in Figure 4.4. The original word embeddings We are transformed

by three linear layers f , g, h, and a self-attention matrix is computed from the outputs of f , g. The self-

attention matrix is multiplied with the output of h followed by another linear layer l. A residual connection

[34] adds the output of l with the original We. Another advantage of learning a dynamic graph is that it

can easily adapt to new coming classes. Because the graph is not fixed and is generated on the fly from the

word embeddings. We do not need to redefine a new graph and retrain the detector from the beginning.

We can simply insert corresponding embeddings of new classes and fine-tune the detector.
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Figure 4.5: Comparison between conventional FSOD approaches and our SRR from a meta-learning’s
perspective.

4.3.3 Decoupled Fine-tuning

In the second fine-tuning phase, we only unfreeze the last few layers of our SRR-FSD similar to TFA

[90]. For the classification subnet, we fine-tune the parameters in the relation reasoning module and

the projection matrix P. For the localization subnet, it is not dependent on the word embeddings but it

shares features with the classification subnet. We find that the learning of localization on novel objects can

interfere with the classification subnet via the shared features, leading to many false positives. Decoupling

the shared fully-connected layers between the two subnets can effectively make each subnet learn better

features for its task. In other words, the classification subnet and the localization subnet have individual

fully connected layers and they are fine-tuned independently.

4.3.4 Generalized Meta-Solution

The proposed Semantic Relation Reasoning (SRR) can be interpreted from a meta-learning perspective.

Under the meta-learning view, our SRR differentiates from conventional FSOD approaches by the way of

parameter optimization. Figure 4.5 visualizes this major difference.

Conventional approaches address FSOD by learning exclusively from visual information as shown in

Figure 4.5a. Given a visual feature v, it is fed into a network f parameterized by trainable class-specific θ to

predict the output y. Then the loss function compares the output with the ground truth and computes the

gradient, which is back-propagated to update θ. Mathematically, the output is computed as in Equation

(4.4).

y = f (v; θ) (4.4)

Under such parameter optimization, data scarcity is a bottleneck that hurts the detector’s generalization

from a few samples. In other words, the performance is very sensitive to the shots variation and drops
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Figure 4.6: The architecture of SRR-FSD++, a more general version of SRR-FSD and a unified solution for
few-shot classification and localization.

drastically as data becomes limited.

In our approach, the cross-domain knowledge is leveraged for parameter generation from semantic

concepts in natural language as shown in Figure 4.5b. Instead of directly learning θ, θ is generated from

a dynamic network g parameterized by class-agnostic φ. The network g takes in the language feature l

representing the semantic concept of a class and outputs the class-specific parameter for the detector, as

presented in Equation (4.5).

y = f (v; g(l; φ)) (4.5)

One benefit of viewing SRR in the form of meta-learning is that we can easily generalize it to not only

few-shot classification but also few-shot localization. In other words, our approach can be general enough

to be applied to both the classification subnet and the localization subnet in the few-shot detector in a

unified and coherent way. Notice that our SRR-FSD in Figure 4.3 still has the localization subnet trained

conventionally, i.e. exclusively dependent on visual information. In a more general scenario, the network

g can output two sets of parameters for the classification branch and the localization branch, respectively.

Figure 4.6 demonstrates the architecture of this general solution of FSOD, which we call SRR-FSD++.

4.4 Experiments

4.4.1 Implementation Details

Our method is implemented based on Faster R-CNN [77] with ResNet-101 [34] and Feature Pyramid Net-

work [56] as the backbone using the MMDetection [9] framework. All models are trained with Stochastic

Gradient Descent (SGD) and a batch size of 16. For the word embeddings, we use the L2-normalized
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Table 4.1: Ablative performance (mAP50) on the VOC Novel Set 1 by gradually applying the proposed
components to the baseline Faster R-CNN. SSP: semantic space projection. RR: relation reasoning. DF:
decoupled fine-tuning. GMS: generalized meta-solution.

Components Shots in Novel Set 1
SSP RR DF GMS 1 2 3 5 10

Faster R-CNN [77] 32.6 44.4 46.3 49.6 55.6
X 40.5 46.8 46.5 47.1 52.2
X X 44.1 46.0 47.8 51.7 54.7

SRR-FSD X X X 47.8 50.5 51.3 55.2 56.8
SRR-FSD++ X X X X 50.6 51.2 53.2 57.1 58.8

300-dimensional Word2Vec [65] vectors from the language model trained on large unannotated texts like

Wikipedia. In the relation reasoning module, we reduce the dimension of word embeddings to 32 which

is empirically selected. In the first base training phase, we set the learning rate, the momentum, and the

weight decay to 0.02, 0.9, and 0.0001, respectively. In the second fine-tuning phase, we reduce the learn-

ing rate to 0.001 unless otherwise mentioned. The input image is sampled by first randomly choosing

between the base set and the novel set with a 50% probability and then randomly selecting an image from

the chosen set.

4.4.2 Ablation Study

In this section, we study the contribution of each component. Experiments are conducted on the VOC

dataset. Our baseline is the Faster R-CNN [77] with ResNet-101 [34] and FPN [56]. We gradually apply

the Semantic Space Projection (SSP 4.3.1), Relation Reasoning (RR 4.3.2), Decoupled Fine-tuning (DF

4.3.3), and Generalized Meta Solution (GMS) to the baseline and report the performance in Table 4.1. We

also compare three different ways of augmenting the raw word embeddings in Table 4.2, including the

trainable transformation from ASD [72], the heuristic knowledge graph from [12], and the dynamic graph

from our proposed relation reasoning module.

Semantic space projection guides shot-stable learning. The baseline Faster R-CNN can already

achieve satisfying results at 5-shot and 10-shot. But at 1-shot and 2-shot, performance starts to fall apart

due to exclusive dependence on images. The semantic space projection, on the other hand, makes the

learning more stable to the variation of shot numbers (see 1st and 2nd entries in Table 4.1). The space

projection guided by the semantic embeddings is learned well enough in the base training phase so it can

be quickly adapted to novel classes with a few instances. We can observe a major boost at lower shot con-

ditions compared to baseline, i.e. 7.9 mAP and 2.4 mAP gain at 1-shot and 2-shot respectively. However,

the raw semantic embeddings limit the performance at higher shot conditions. The performance at 5-shot

and 10-shot drops below the baseline. This verifies our argument about the domain gap between vision
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Table 4.2: Comparison of three ways of refining the word embeddings, including the trainable transfor-
mation from ASD [72], the heuristic knowledge graph from [12], and the dynamic relation graph from
our relation reasoning module. SSP: semantic space projection. RR: relation reasoning. TT: trainable
transformation. HKG: heuristic knowledge graph.

Shots in Novel Set 1
1 2 3 5 10

+SSP 40.5 46.8 46.5 47.1 52.2
+SSP +TT [72] 39.3 45.7 43.9 49.4 52.4
+SSP +HKG [12] 41.6 45.5 47.8 49.7 52.5

+SSP +RR 44.1 46.0 47.8 51.7 54.7

and language. At lower shots, there is not much visual information to rely on so the language information

can guide the detector to a decent solution. But when more images are available, the visual information

becomes more precise then the language information starts to be misleading. Therefore, we propose to

refine the word embeddings for a reduced domain gap.

Relation reasoning promotes adaptive knowledge propagation. The relation reasoning module ex-

plicitly learns a relation graph that builds direct connections between base classes and novel classes. So

the detector can learn the novel objects using the knowledge of base objects besides the visual information.

Additionally, the relation reasoning module also functions as a refinement to the raw word embeddings

with a data-driven relation graph. Since the relation graph is updated with image inputs, the refinement

tends to adapt the word embeddings for the vision domain. Results in Table 4.1 (2nd and 3rd entries)

confirm that applying relation reasoning improves the detection accuracy of novel objects under different

shot conditions. We also compare it with two other ways of refining the raw word embeddings in Table

4.2. One is the trainable transformation (TT) from ASD [72] where word embeddings are updated with a

trainable metric and a word vocabulary. Note that this transformation is applied to each embedding inde-

pendently which does not consider the explicit relationships between them. The other one is the heuristic

knowledge graph (HKG) defined based on the co-occurrence of objects from [12]. It turns out both the

trainable transformation and the predefined heuristic knowledge graph are not as effective as the dynamic

relation graph in the relation reasoning module. The effect of the trainable transformation is similar to

unfreezing more parameters of the last few layers during fine-tuning as shown in the Section 4.5.4, which

leads to overfitting when the shot is low. And the predefined knowledge graph is fixed during training

thus cannot be adaptive to the inputs. In other words, the dynamic relation graph is better because it can

not only perform explicit relation reasoning but also augment the raw embeddings for a reduced domain

gap between vision and language.

Decoupled fine-tuning reduces false positives. We analyze the false positives generated by our SRR-

FSD with and without decoupled fine-tuning (DF) using the detector diagnosing tool [36]. The effect of
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Figure 4.7: Error analysis of false positives in VOC Novel Set 1 with and without decouple fine-tuning
(DF). Detectors are trained with 3 shots. Pie charts indicate the fraction of correct detections (Cor) and
top-ranked false positives that are due to poor localization (Loc), confusion with similar objects (Sim),
confusion with other VOC objects (Oth), or confusion with background or unlabeled objects (BG).

DF on reducing the false positives in novel classes is visualized in Figure 4.7. It shows that most of the

false positives are due to misclassification into similar categories. With DF, the classification subnet can be

trained independently from the localization subnet to learn better features specifically for classification.

Generalized meta-solution further improves localization. The SRR-FSD only applies semantic rela-

tion reasoning to the classification output. The localization subnet still learns the class-specific parameters

only from the visual data. So in SRR-FSD++, the semantic relation reasoning is also applied to the

localization subnet. The class-specific parameters are generated by a class-agnostic network from the cor-

responding semantic word embedding of that class. Compared with SRR-FSD, SRR-FSD++ improves the

localization accuracy, leading to a more shot-tolerant performance shown as the 5h entry in Table 4.1.

4.4.3 Existing Settings

We follow the existing settings in previous FSOD methods [40, 91, 96, 90] to evaluate our methods on the

VOC [22] and COCO [58] datasets. For fair comparison and reduced randomness, we use the same data

splits and a fixed list of novel samples provided by [40].

VOC The 07 and 12 train/val sets are used for training and the 07 test set is for testing. Out of its

20 object classes, 5 classes are selected as novel and the remaining 15 are base classes, with 3 different

base/novel splits. The novel classes each have k annotated objects, where k equals 1, 2, 3, 5, 10. In the

first base training phase, our SRR-FSD is trained for 18 epochs with the learning rate multiplied by 0.1 at

the 12th and 15th epoch. In the second fine-tuning phase, we train for 500× |Dn| steps where |Dn| is the



CHAPTER 4. SEMANTIC RELATION REASONING FOR AVAILABILITY VARIATION 66

Table 4.3: FSOD evaluation on VOC. We report the mAP with IoU threshold 0.5 (mAP50) under 3 different
sets of 5 novel classes with a small number of shots.

Novel Set 1 Novel Set 2 Novel Set 3
Method / shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [40] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [91] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

Meta R-CNN [96] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA [90] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

SRR-FSD (Ours) 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
SRR-FSD++ (Ours) 50.6 51.2 53.2 57.1 58.8 34.9 35.7 39.3 41.7 46.4 39.5 42.2 42.5 46.5 47.8

Table 4.4: FSOD performance for the base and novel classes on Novel Set 1 of VOC. Our SRR-FSD has the
merit of learning without forgetting.

Shot Method Base AP50 Novel AP50

3

Meta R-CNN [96] 64.8 35.0
TFA [90] 79.1 44.7

Ours base only 77.7 n/a
SRR-FSD (Ours) 78.2 51.3

10

Meta R-CNN [96] 67.9 51.5
TFA [90] 78.4 56.0

Ours base only 77.7 n/a
SRR-FSD (Ours) 78.2 56.8

number of images in the k-shot novel dataset.

We report the mAP50 of the novel classes on VOC with 3 splits in Table 4.3. In all different base/novel

splits, our SRR-FSD achieves a more shot-stable performance. At higher shots like 5-shot and 10-shot,

our performance is competitive compared to previous state-of-the-art methods. At more challenging

conditions with shots less than 5, our approach can outperform the second-best by a large margin (up to

10+ mAP). Compared to ASD [72] which only reports results of 3-shot and 5-shot in the Novel Set 1, ours

is 24.2 and 6.0 better respectively in mAP. We do not include ASD in Table 4.3 because its paper does not

provide the complete results on VOC.

Learning without forgetting is another merit of our SRR-FSD. After generalization to novel objects, the

performance on the base objects does not drop at all as shown in Table 4.4. Both base AP and novel AP

of our SRR-FSD compare favorably to previous methods based on the same Faster R-CNN with ResNet-

101. The base AP even increases a bit probably due to the semantic relation reasoning from limited novel

objects to base objects.

COCO The minival set with 5000 images is used for testing and the rest images in train/val sets are

for training. Out of the 80 classes, 20 of them overlapped with VOC are the novel classes with k = 10, 30

shots per class and the remaining 60 classes are base. We train the SRR-FSD on the base dataset for 12

epochs using the same setting as MMDetection [9] and fine-tune it for a fixed number of 10× |Db| steps
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Table 4.5: FSOD performance of the novel classes on COCO.

Shot Method AP AP50 AP75

10

FSRW [40] 5.6 12.3 4.6
MetaDet [91] 7.1 14.6 6.1

Meta R-CNN [96] 8.7 19.1 6.6
TFA [90] 10.0 - 9.3

MPSR [92] 9.8 17.9 9.7
SRR-FSD (Ours) 11.3 23.0 9.8

SRR-FSD++ (Ours) 11.9 22.7 11.4

30

FSRW [40] 9.1 19.0 7.6
MetaDet [91] 11.3 21.7 8.1

Meta R-CNN [96] 12.4 25.3 10.8
TFA [90] 13.7 - 13.4

MPSR [92] 14.1 25.4 14.2
SRR-FSD (Ours) 14.7 29.2 13.5

SRR-FSD++ (Ours) 15.1 28.8 13.9

where |Db| is the number of images in the base dataset. Unlike VOC, the base dataset in COCO contains

unlabeled novel objects, so the region proposal network (RPN) treats them as the background. To avoid

omitting novel objects in the fine-tuning phase, we unfreeze the RPN and the following layers. Table 4.5

presents the COCO-style averaged AP. Again we consistently outperform previous methods including

FSRW [40], MetaDet [91], Meta R-CNN [96], TFA [90], and MPSR [92].

COCO to VOC For the cross-domain FSOD setting, we follow [40, 91] to use the same base dataset

with 60 classes as in the previous COCO within-domain setting. The novel dataset consists of 10 samples

for each of the 20 classes from the VOC dataset. The learning schedule is the same as the previous COCO

within-domain setting except the learning rate is 0.005. Figure 4.8 shows that our SRR-FSD achieves

the best performance with a healthy 44.5 mAP, indicating better generalization ability in cross-domain

situations.

4.4.4 A More Realistic Setting

The training of the few-shot detector usually involves initializing the backbone network with a model

pretrained on large-scale object classification datasets such as ImageNet [17]. The set of object classes in

ImageNet, i.e. C0, is highly overlapped with the novel class set Cn in the existing settings. This means

that the pretrained model can get early access to large amounts of object samples, i.e. implicit shots, from

novel classes and encode their knowledge in the parameters before it is further trained for the detection

task. Even the pretrained model is optimized for the recognition task, the extracted features still have a

big impact on the detection of novel objects (see Figure 4.1). However, some rare classes may have highly

limited or valuable data in the real world that pretraining a classification network on it is not realistic.
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Figure 4.8: 10-shot cross domain performance on the 20 novel classes under COCO to VOC.

Therefore, we suggest a more realistic setting for FSOD, which extends the existing settings. In addition

to Cb ∩ Cn = ∅, we also require that C0 ∩ Cn = ∅. To achieve this, we systematically and hierarchically

remove novel classes from C0. For each class in Cn, we find its corresponding synset in ImageNet and

obtain its full hyponym (the synset of the whole subtree starting from that synset) using the ImageNet

API 1. The images of this synset and its full hyponym are removed from the pretrained dataset. And the

classification model is trained on a dataset with no novel objects. We provide the list of WordNet IDs for

each novel class to be removed in the Appendix A.2.

We notice that CoAE [37] also proposed to remove all COCO-related ImageNet classes to ensure the

model does not “foresee” the unseen classes. As a result, a total of 275 classes are removed from ImageNet

including both the base and novel classes in VOC [22], which correspond to more than 300k images. We

think the loss of this much data may lead to a worse pretrained model in general. So the pretrained

model may not be able to extract features strong enough for down-streaming vision tasks compared with

the model trained on full ImageNet. Our setting, on the other hand, tries to alleviate this effect as much as

possible by only removing the novel classes in VOC Novel Set 1, 2, and 3 respectively, which correspond

to an average of 50 classes from ImageNet.

Under the new realistic setting, we re-evaluate previous methods using their official source code and

report the performance on the VOC dataset in Table 4.6. Our SRR-FSD demonstrates superior perfor-

mance to other methods under most conditions, especially at challenging lower shot scenarios. More

importantly, our SRR-FSD is less affected by the loss of implicit shots. Compared with results in Table 4.3,

our performance is more stably maintained when novel objects are only available in the novel dataset.

1http://image-net.org/download-API
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Table 4.6: FSOD performance (mAP50) on VOC under a more realistic setting where novel classes are
removed from the pretrained classification dataset to guarantee C0 ∩ Cn = ∅. Our SRR-FSD is more robust
to the loss of implicit shots comparing with Table 4.3.

Novel Set 1 Novel Set 2 Novel Set 3
Method / shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [40] 13.9 21.1 20.0 29.9 40.8 13.5 14.2 20.6 20.7 36.8 16.2 22.2 26.8 37.0 41.5
Meta R-CNN [96] 11.5 22.2 24.7 36.4 45.2 10.1 16.9 22.7 29.6 40.1 10.0 21.7 27.1 32.8 41.6

TFA [90] 35.8 39.5 44.2 50.8 55.3 18.8 26.0 33.2 31.3 39.2 25.6 32.6 36.4 43.7 48.5
SRR-FSD (Ours) 46.3 51.1 52.6 56.2 57.3 31.0 29.9 34.7 37.3 41.7 39.2 40.5 39.7 42.2 45.2

4.5 Discussions

4.5.1 Visualization of Relation Reasoning

Figure 4.9 visualizes the correlation maps between the semantic embeddings of novel and base classes

before and after the relation reasoning, as well as the difference between the two maps. Nearly all the

correlations are increased slightly, indicating better knowledge propagation between the two groups of

classes. Additionally, it is interesting to see that some novel classes get more correlated than others,

e.g. “sofa” with “bottle” and “sofa” with “table”, probably because “sofa” can often be seen together

with “bottle” and “table” in the living room but the original semantic embeddings cannot capture these

relationships.

4.5.2 Using Other Word Embeddings

In the semantic space projection, we represent the semantic space using word embeddings from the

Word2Vec [65]. We could simply set the We to be random vectors. Additionally, there are other language

models for obtaining vector representations for words, such as the GloVe [70]. The GloVe is trained with

aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations

showcase interesting linear substructures of the word vector space. We also explored using word em-

bedding with different dimensions from the GloVe in the semantic space projection step and compared

it with the results by the Word2Vec. Performance on the VOC Novel Set 1 is reported in Table 4.7. The

Word2Vec can provide better representations than the GloVe of both 300 dimensions and 200 dimensions.

The performance of random embeddings is significantly worse than the meaningful Word2Vec and GloVe,

which again verifies the importance of semantic information for shot-stable FSOD.
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Figure 4.9: Correlation of the semantic embeddings before and after the relation reasoning between the
base classes and the novel classes on the VOC dataset. The novel classes are from Novel Set 1. The last
figure shows how does the correlation change subtly. Some novel classes are getting more correlated with
base classes after relation reasoning, e.g. “sofa” with “bottle” and “table”. Best viewed in color.

Table 4.7: FSOD performance (mAP50) on the VOC Novel Set 1 under different word embeddings in the
semantic space projection. All models are using the ResNet-50 network. 300d and 200d mean the numbers
of embedding dimension are 300 and 200 respectively. The Word2Vec provides better representations than
the GloVe.

Novel Set 1
Word embeddings shot=1 2 3 5 10

Random-300d 33.2 37.5 43.0 47.0 51.5
Word2Vec-300d [65] 42.8 47.1 49.0 50.8 52.8

GloVe-300d [70] 38.8 44.8 46.6 49.0 54.3
GloVe-200d [70] 39.7 44.6 45.8 49.4 53.0
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Table 4.8: FSOD performance (mAP50) on the VOC Novel Set 1 under different reduced feature dimension
in the relation reasoning module. Bold font indicates best or second best results. All models are using the
ResNet-50 network.

Novel Set 1
Dimension shot=1 2 3 5 10

128 40.9 44.6 44.3 48.1 54.1
64 42.0 47.4 48.9 51.7 54.1
32 42.4 46.8 48.1 51.9 54.7
16 44.1 46.0 47.8 51.7 54.7

4.5.3 Reduced Dimension in Relation Reasoning

In the relation reasoning module, the dimension of word embeddings is reduced by linear layers before

computing the attention map, which saves computational time. We empirically test different dimensions

and select the one with the best performance, i.e. when the dimension is 32. But other choices are

just slightly worse. Table 4.8 reports the results on VOC dataset under different dimensions. All the

experiments are following the same setting as in the main paper. The only exception is that we use

ResNet-50 [34] to reduce the computational cost of tuning hyperparameters.

4.5.4 Finetuning More Parameters

Similar to TFA [90], we have a finetuning stage to make the detector generalized to novel classes. For

the classification subnet, we finetune the parameters in the relation reasoning module and the projection

matrix while all the parameters in previous layers are frozen. Some may argue that the improvement

of our SRR-FSD over the baseline is due to more parameters finetuned in the relation reasoning module

compared to the Faster R-CNN [77] baseline. But we show that finetuning more parameters does not

necessarily lead to better results in Table 4.9. We take the TFA model which is essentially a Faster R-CNN

finetuned with only the last layer trainable and gradually unfreeze the previous layers. It turns out more

parameters involved in finetuning do not change the results substantially and that too many parameters

will lead to severe overfitting.

4.5.5 Interpretation of the Dynamic Relation Graph

In the relation reasoning module, we propose to learn a dynamic relation graph driven by the data, which

is conceptually different from the predefined fixed knowledge graphs used in [89, 12, 69]. We implement

the dynamic graph with the self-attention architecture [83]. Although it is in the form of a feedforward

network, it can also be interpreted as a computation related to the knowledge graph. If we denote the

transformations in the linear layers f , g, h, l as T f , Tg, Th, Tl respectively, we can formulate the relation
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Table 4.9: FSOD results (mAP50) on the VOC Novel Set 1 with more and more tunable parameters in
the finetuning stage. The baseline is TFA [90] which only finetunes the last classification layer in the
Faster R-CNN. We gradually unfreeze more previous layers including two fully-connected layers (FCs)
after the RoI-pooling, layers in region proposal network (RPN), and layers in the Backbone. This proves
that finetuning more parameters does not guarantee better performance in few-shot detection.

Novel Set 1
Tunable Parameters shot=1 2 3 5 10
Last layer (TFA [90]) 39.8 36.1 44.7 55.7 56.0

+FCs 36.9 34.9 45.3 53.0 55.9
+FCs +RPN 37.2 39.8 44.3 52.7 56.2

+FCs +RPN +Backbone 16.2 19.5 24.8 39.2 44.6

reasoning in Equation (4.6)

W′e = δ(WeT f TT
g WT

e )WeThTl + We (4.6)

where W′e is the matrix of augmented word embeddings after the relation reasoning which will be used as

the weights to compute classification scores and δ is the softmax function operated on the last dimension

of the input matrix. The item δ(WeT f TT
g WT

e ) can be interpreted as a N× N dynamic knowledge graph in

which the learnable parameters are T f and Tg. And it is involved in the computation of the classification

scores via the graph convolution operation [43], which connects the N word embeddings in We to allow

knowledge propagation among them. The item ThTl can be viewed as a learnable transformation applied

to each embedding independently.

4.6 Summary

In this chapter, we propose semantic relation reasoning for few-shot object detection. The key insight is to

explicitly integrate semantic relation between base and novel classes with the available visual information,

which can help to learn the novel concepts better especially when the novel class data is extremely lim-

ited. We apply the semantic relation reasoning to the standard two-stage Faster R-CNN and demonstrate

robust few-shot performance against the variation of shot numbers. Compared to previous methods, our

approach achieves state-of-the-art results on several few-shot detection settings, as well as a more realistic

setting where novel concepts encoded in the pretrained backbone model are eliminated. We hope this

realistic setting can be a better evaluation protocol for future few-shot detectors. Last but not least, the

key components of our approach, i.e. semantic space projection and relation reasoning, can be straightly

applied to the classification subnet of other few-shot detectors.



Chapter 5

Conclusion and Future Work

While the problem of real-world object detection has not yet been solved, this work presents several

possible directions towards this goal. We identify three major challenges for successful object detection

in the real world, i.e. appearance variation, scale variation, and availability variation. The key to this

whole work is understanding the varying nature of the real-world data and addressing it in a divide-and-

conquer style. While it may be easier, and therefore tempting, to just trust the generalization ability of deep

networks to learn everything given enough data, we have shown that imposing the restrictions from prior

knowledge can greatly benefit object detection. This is immediately noticeable in how we address the three

variation challenges. For the appearance variation, we focus on the most common object, human faces.

We enable the detector to construct the multi-resolution feature and to reason about the explicit human

body context. For the scale variation, the conventional anchor design is thoroughly analyzed so that it

is enhanced with a focus on improving the anchor’s ability to achieve high IoU overlap with any object.

The analysis also reveals the inherent limitations of the anchor and leads to the reformulation of object

detection from an anchor-free perspective, which allows us to discover the importance of semantic guided

feature selection and come up with an elegant solution so that less is more. For the availability variation,

we propose semantic relation reasoning which makes use of both the semantic word embeddings from the

natural language domain and the explicit relation graph for dynamic relation reasoning between semantic

concepts.

5.1 Future Research Directions

Of course, the work outlined here is only the first few attempts in the direction of real-world object

detection and understanding. For my future research, I want to continue working on the machine under-

standing of the real world in a much broader scenario, which has a wide range of applicable industries

73
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Figure 5.1: Future research directions.

such as augmented reality, autonomous vehicles, service on the cloud, wearable devices, content under-

standing and recommendation, etc. To be more specific, I think the following research directions have

promising potentials to be explored as shown in Figure 5.1.

• Beyond 2D Data. Current approaches are operating on static 2D images, which is the projection

of the 3D world. The projection causes the loss of information because the object is only captured

from a single viewpoint at a single moment. Therefore, it is necessary to go beyond the 2D data to

include information from additional dimensions. The additional dimension can be in time or space.

Correspondingly, we can have videos or 3D objects as the data format. To represent 3D objects,

we can use either point cloud or 3D mesh. With the 3D data, we can not only detect the existence

of objects but also measure the distance between the objects and the camera. For few-shot object

detection (Chapter 4), the 3D data is particularly helpful as it can provide multiple statuses of a

few-shot object.

• Reduced Supervision. Most of the algorithms deployed in industrial products rely on supervised

learning where data is fully annotated. However, as we move to the wilder aspect of the real world,

we inevitably face the problem of reduced supervision. The data may have few-shot or even zero-

shot samples not only due to the long-tail distribution but also because the users can customize their
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items, making the objects unique. Additionally, some real-world data is weakly/partially annotated,

e.g. only the name or description of the object is provided but no bounding box or segmentation

available. Therefore, weakly supervised learning is necessary to extract useful information from this

kind of data. Even so, the majority of the real-world data has no annotation at all and this largely

limits the model learning scope. Although self-supervised learning has shown promising progress,

it is mostly focusing on preset tasks. If we can figure out an effective way to learn from unsupervised

data directly on the down-streaming tasks, the model performance will reach another level.

• Multi-Modal Learning. The real world is very complex. Information comes from multiple domains,

e.g. vision, language, speech, etc. These modalities are often entangled so that the real world

can be represented from different perspectives. Therefore, it is beneficial to use the information

from language or speech domains to help the learning of vision methods. Recently, the application

of Transformer to the vision tasks has become a trend. While Transformer can achieve similar or

even better performance than the conventional CNN family, I believe it is more suitable for multi-

modal learning. Because the core part of Transformer is a natural way to transform the feature

representation from one domain to another and the transformed feature is compatible with the

target domain to perform further inference. This is essentially different from the naive feature

fusion methods in current multi-modal learning tasks.



Appendix A

Supplementary Materials

A.1 IoU Loss

We use IoU loss [104] to optimize the box regression subnets for our anchor-free detection methods. As

stated in Section 3.2.2, the localization targets can be represented as a 4-dimensional vector:

dlij = [dl
lij, dt

lij, dr
lij, db

lij], (A.1)

where dl
lij, dt

lij, dr
lij, db

lij are the normalized distances between the current pixel location and the left, top,

right, and bottom boundaries of instance B, respectively. For simplicity, we omit l, i, j in the rest of

derivation. Accordingly, a predicted projected box is defined as d̂ = [d̂l , d̂t, d̂r, d̂b]. The forward pass and

backward pass of the IoU loss lIoU are presented as follows. We denote the area, width, height of the box

as A, W, H, and the intersection, union as in, un respectively.

Forward pass:

A = (dt + db)× (dl + dr)

Â = (d̂t + d̂b)× (d̂l + d̂r)

Hin = min(dt, d̂t) + min(db, d̂b)

Win = min(dl , d̂l) + min(dr, d̂r)

Ain = Hin ×Win

Aun = A + Â− Ain

IoU = Ain/Aun

L = − ln IoU

(A.2)
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Backward pass: First we compute the derivative of predicted box area Â w.r.t. d̂∗ denoted as ∇d̂∗
Â:

∂Â
∂d̂t

=
∂Â
∂d̂b

= d̂l + d̂r

∂Â
∂d̂l

=
∂Â
∂d̂r

= d̂t + d̂b

(A.3)

Then compute the derivative of intersection area Ain w.r.t. d̂∗ denoted as ∇d̂∗
Ain:

∂Ain

∂d̂t(or ∂d̂b)
=


Win d̂t < dt(or d̂b < db)

0 o.w.

∂Ain

∂d̂l(or ∂d̂r)
=


Win d̂l < dl(or d̂r < dr)

0 o.w.

(A.4)

Finally the gradient of IoU loss lIoU w.r.t. d̂∗ is:

∂L
∂d̂∗

=
1

Aun
∇d̂∗

Â− Aun + Ain
Aun Ain

∇d̂∗
Ain (A.5)

A.2 Removing Novel Classes from ImageNet

In Section 4.4.4, we propose a realistic setting for evaluating the few-shot object detection methods, where

novel classes are completely removed from the classification dataset used for training a model to initialize

the backbone network in the detector. This can guarantee that the object concept of novel classes will not

be encoded in the pretrained model before training the few-shot detector. Because the novel class data is

so rare in the real world that pretraining a classifier on it is not realistic.

ImageNet [17] is widely used for pretraining the classification model. It has 1000 classes organized

according to the WordNet hierarchy. Each class has over 1000 images for training. We systematically and

hierarchically remove novel classes by finding each synset and its corresponding full hyponym (synset of

the whole sub-tree starting from that synset) using the ImageNet API 1. So each novel class may contain

multiple ImageNet classes.

For the novel classes in the VOC dataset [22], their corresponding WordNet IDs to be removed are as

follows.

• aeroplane: n02690373, n02692877, n04552348

• bird: n01514668, n01514859, n01518878, n01530575, n01531178, n01532829, n01534433, n01537544,

n01558993, n01560419, n01580077, n01582220, n01592084, n01601694, n01608432, n01614925, n01616318,

1http://image-net.org/download-API
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n01622779, n01795545, n01796340, n01797886, n01798484, n01806143, n01806567, n01807496, n01817953,

n01818515, n01819313, n01820546, n01824575, n01828970, n01829413, n01833805, n01843065, n01843383,

n01847000, n01855032, n01855672, n01860187, n02002556, n02002724, n02006656, n02007558, n02009229,

n02009912, n02011460, n02012849, n02013706, n02017213, n02018207, n02018795, n02025239, n02027492,

n02028035, n02033041, n02037110, n02051845, n02056570, n02058221

• boat: n02687172, n02951358, n03095699, n03344393, n03447447, n03662601, n03673027, n03873416,

n03947888, n04147183, n04273569, n04347754, n04606251, n04612504

• bottle: n02823428, n03062245, n03937543, n03983396, n04522168, n04557648, n04560804, n04579145,

n04591713

• bus: n03769881, n04065272, n04146614, n04487081

• cat: n02123045, n02123159, n02123394, n02123597, n02124075, n02125311, n02127052

• cow: n02403003, n02408429, n02410509

• horse: n02389026, n02391049

• motorbike: n03785016, n03791053

• sheep: n02412080, n02415577, n02417914, n02422106, n02422699, n02423022

• sofa: n04344873

For the novel classes in the COCO dataset [58], they are very common in the real world. Removing

them from the ImageNet does not make sense as much as removing data-scarce classes. So we suggest for

large-scale datasets like COCO, we should follow the long-tail distribution of their class frequency and

select the data-scarce classes on the distribution tail to be the novel classes.
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