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Navigation is one of the most essential behaviors for animal survival. To navigate their

worlds, animals use sensory cues that provide them with spatial information about their

current location, and the direction and distance they should choose to travel to the next

location. Information from olfactory cues and how they guide animal navigation remain a

challenging problem to be studied. This is due to a difficulty in characterizing the physical

properties of odor plumes that are temporally complicated and turbulent. Also, the neural

circuits implicated in odor perception and its translation into olfactory driven motor behavior

are still unclear and not easily understood. Studies have shown that animals employ different

strategies to localize odor sources and follow odor trails. In this thesis, we study how

animals use bilateral olfactory information in navigating their environment. We start by a

mathematical analysis of the dynamics of a bilateral model that depends on the simultaneous

comparison between odor concentrations detected by left and right sensors. We show that

the animal has to be in an attraction region around the odor source in order to navigate

towards the point source or follow the trail. We then introduce stochasticity into the bilateral

model and study the effect of noise on the probability of finding an odor source. We find that

constant noise is more successful when paired with a nonlinear function applied either to the

concentration detected by the left and right sensors or to the difference in concentrations.

We also show that concentration dependent noise improves performance for a spot source.

Finally, we examine behavioral patterns of mice following odor trails in an attempt to assess

whether bilateral olfactory cues are utilized by mice for navigation.
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1.0 Introduction

1.1 Olfaction

Animals use olfactory cues to navigate through their environment in order to find food

[78, 11, 79], encounter mates [64, 59], avoid predators [39, 2, 19] and locate their home

[24, 8, 68, 67]. This requires an ability to both localize odor sources and follow odor trails.

How do animals utilize odor signals to extract directional cues in order to navigate to the

source? What behavior allows for successful odor navigation and what are the algorithms

that animals could be using?

1.2 Odor Landscape

Odorant molecules bind with olfactory receptor neurons causing their activation which

mediates the sense of smell. The odorant diffuses or is transported by air or water. Turbulent

advection and dispersion are the physical processes that transport odor signals. Odor plumes

arise when the spatial structure of a chemical field is stirred due to dispersion and the change

of velocity gradients in turbulent flows [50]. Odor plumes have a complex structure but it

has been shown that the plumes disperse differently according to the landscapes they are in.

If the odor is released in a freestream location far away from boundaries, the plume exhibits

more intermittency, fluctuations and dilution of the concentration away from the source [18].

However, the plume has different spatiotemporal structure when released close to a boundary

where it spreads laterally with little fluctuations [18, 33]. Photoionization detector (PID)

[38] and planar laser-induced fluorescence (PLIF) [20, 73] have been used to measure odor

plume structure. However, because of this complex and varying spatiotemporal structure,

the concentration of the odor within the plumes is difficult to quantify and model.

1



1.3 Odor Sampling

To localize odor, animals have been observed to use serial sampling (klinotaxis) or bilat-

eral sampling (tropotaxis) of the concentration [60]. Serial sampling depends on inter-sniff

comparisons of odor concentrations between sequential sniffs that are measured at different

locations. Bilateral sampling, on the other hand, depends on comparisons of odor concen-

trations detected by sensors located at two different positions of the body. It is not yet clear

whether animals use one or more strategies that change according to the complexity of the

environment, odor onset and loss [75], distance to the odor source or trail, or any other factor

that affects their decision making. However, the distance to the odor source, and thus the

steepness of concentration gradient, has been considered as one reason to switch strategies

[15]. Due to the inter-naris distance restriction, Catania suggests that serial comparisons

are better in shallower gradients - where larger movements provide directional information -

while stereo comparisons are more useful near the odor source.

1.4 Stereo Olfaction

1.4.1 Stereo Olfaction in Insects

The ability to use inter-sensor geometry to localize odors has been observed in many

animals especially insects. When one of the antennas was removed, walking fruit flies

(Drosophila melanogaster) [9], flying fruit flies [26], ants (Lasius fuliginosus) [31] and honey-

bees (Apis mellifera) [47] showed a tendency to orient toward the intact side. Flying fruit

flies were either slow to aquire a plume or unable to orient towards it when placed on the

side of the occluded antenna. With crossed antennae, honeybees and ants constantly entered

the scentfree arm of a Y tube. In larval chemotaxis [46], unilaterally functioning larvae were

less accurate in sensing concentration gradient, an indication that integration between the

left and right olfactory inputs increased the signal to noise ratio. In walking moths [70], the

bombyx mori turned toward the side receiving stronger stimulus (intensity differences) or

2



larger latency (temporal differences). On the boundaries of the plume, they seemed to use

bilateral inputs to decide the direction of turning. Within the plume, walking moths moved

in a straight line with some fluctuation indicating that bilateral integration is important for

source localization. Ants have also been observed to use stereo information not only to find

food and follow pheromone but also to home [69].

1.4.2 Stereo Olfaction in Marine Animals

Marine animals have also shown dependence on bilateral information of the odor concen-

tration to orient. Leopard sharks [53], which are nearshore species, followed more tortuous

paths and ended farther away from the shore when one of their nostrils was blocked, in

contrast to control sharks which ended closer to the shore with relatively straight tracks.

Crustaceans also exhibited a loss of ability to correctly orient in an odor plume and effi-

ciently find odor sources when one of their antennules was ablated [5, 23, 29, 44, 61].

1.4.3 Stereo Olfaction in Mammals

The detriment of loss of bilateral inputs was also shown in mammals. When one of

the nostrils was partially or completely blocked, rats’ accuracy in localizing odor dropped

significantly and their response was biased towards the unblocked side. Their performance

in tracking odor trails also declined and was less efficient [41, 60]. Blocking a nostril in moles

also biased the animal in one direction and increased the latency to find the source [15]. In

this study, crossing the airflow, by inserting polyethylene tubes into the nostrils, disrupted

the ability to localize sources. Likewise, human subjects’ accuracy almost halved when one

nostril was taped during a scent tracking task [57]. Though humans could not report which

nostril was receiving the stronger odor, their perceived direction was biased towards the

higher concentration [80].

3



1.4.4 Neural Evidence of Stereo Olfaction

Recording from the olfactory bulb (OB) also lends evidence to the importance of bilateral

inputs. It has been shown that half of the responsive neurons in the OB exhibited firing

rate changes when odor was presented to one nostril and not the other [60]. Neurons in the

anterior olfactory nucleus pars externa (AONpE) showed excitatory and inhibitory response

to ipsilateral and contralateral nostril stimulation respectively [42]. The spike rate decreased

accordingly when both nostrils were stimulated instead of only the ipsilateral nostril. The

same was observed when an odor source was positioned more to the center of the nostrils

than in the direction of the ipsilateral nostril. This suggests that AONpE neurons subtract

the odor inputs and can detect position of odor sources relative to nostrils. AON was further

shown to be both sufficient and necessary to trigger orientation responses [58]. In humans

performing an odorant localization task, fMRI showed nostril specific neural activity in the

left temporal piriform cortex [56].

1.5 Behavior and Strategies

Animals exhibit different behaviors while following odor trails or plumes. Upwind or up-

stream surge when odor is turned on has been observed in moths [65], walking flies [1], flying

flies [72], and blue crabs [54]. Casting, which is characterized by zigzagging or crisscrossing,

is also widely detected in animal behavior [72, 41, 40, 43]. It is expected that animals cast

or zigzag in an attempt to find the plume or odor trail once they have lost it. However, if

odor is sparse and therefore lost, the animals need to employ search strategies to find the

plume before they can navigate it. Random walk models have been suggested as models

of animal movements during foraging. To account for persistence in direction, correlated

random walks and biased correlated random walks have been used [10, 17]. When resources

are scarce or the environment to search is large, a Levy walk [81, 4] has been proposed as a

search strategy that crosses larger areas and then concentrate its search in specific regions.
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1.6 Thesis Outline

This thesis is organized into three parts that investigate strategies animals use to navi-

gate. The second chapter aims to understand the role of bilateral information on its own in

olfactory navigation. A bilateral model is presented that depends on the simultaneous com-

parison between odor concentrations detected by left and right sensors. After a mathematical

analysis of the dynamics of the model, the behavior produced by this model is compared to

previous animal data. This work, largely based on [62], indicates that the animal must be in

a basin of attraction around the odor source in order to navigate towards the point source

or follow the trail.

The third chapter addresses the effect of adding noise to the bilateral model which was

introduced before. Performance is measured by examining the probability of success as non-

linear functions are applied to the concentrations and constant or concentration dependent

noise is used. This work shows that stochastic resonance is observed such that an optimal

level of noise is useful in improving the performance in finding odor sources which reflects

on the importance of having a wide enough distribution of turning angles.

Finally, the fourth chapter examines the behavior of mice while they follow odor trails.

The odor trails bifurcate into two branches at different angles. Body and nose positions

of mice from many trials performing this task are extracted and analyzed. Then simula-

tions of the strategy presented in the previous chapter are inspected and compared to the

experimental data.
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2.0 The Dynamics of Bilateral Olfactory Search and Navigation

2.1 Abstract

Animals use stereo sampling of odor concentration to localize sources and follow odor

trails. We analyze the dynamics of a bilateral model that depends on the simultaneous

comparison between odor concentrations detected by left and right sensors. The general

model consists of three differential equations for the positions in the plane and the heading.

When the odor landscape is an infinite trail, then we reduce the dynamics to a planar system

whose dynamics have just two fixed points. Using an integrable approximation (for short

sensors) we estimate the basin of attraction. In the case of a radially symmetric landscape,

we again can reduce the dynamics to a planar system, but the behavior is considerably

richer with multi-stability, isolas, and limit cycles. As in the linear trail case, there is also

an underlying integrable system when the sensors are short. In odor landscapes that consist

of multiple spots and trail segments, we find periodic and chaotic dynamics and characterize

the behavior on trails with gaps and that turn corners.

2.2 Introduction

In this chapter, we present a mathematical analysis of tropotaxis in the presence of

smooth odor sources and trails. We provide a fairly comprehensive analysis of the model

dynamics, which in several cases reduces to a planar dynamical system. In the first section,

we study the dynamics on an infinite trail. We show that there are always two stable fixed

points and that there is an optimal sensor angle for attraction to the trail. We also show

that the basin of attraction can be estimated from an associated integrable system. We

next consider circularly symmetric trails which include a single spot as well as circular trails.

The dynamics is more complicated there and we explore several different regimes including

long sensors and sensors that are oriented behind the animal. Finally, we consider more

6



complicated odor landscapes such as partial trails and multiple odor sources. Here we also

study trails with gaps and trails that branch and make sharp turns.

CL

RC

(X,Y)

�� = �(C  - C )�t 

v = v(cos� , sin� )

L R

Figure 1: The bilateral model: an animal centered at (X, Y ), heading in the direction, θ.

The sensors are length, l with angle ±φ around the axis of the body. Orientation is governed

by the difference in concentrations at the two sensors, CL − CR and speed is constant, v.

2.2.1 The Model

The model that we will analyze describes a navigation mechanism in which the angle

of the heading (θ) of the individual depends on the difference between the concentration

detected by the left and right sensors (See Fig. 1). The (X, Y ) position of the individual is a

function of the heading angle and the individual’s speed v, which we will fix to be constant:

the individual is always moving. The sensors have length l and are separated by an angle φ

between them. They are located at the left and the right of the individual’s body at positions

(X + l cos(θ + φ), Y + l sin(θ + φ)) and (X + l cos(θ − φ), Y + l sin(θ − φ)) and detect odor

concentration CL and CR where the concentration is generally a smooth gradient in some

shape such as a line or a point source. The bilateral olfactory navigation model equations

are

Ẋ = v cos θ

Ẏ = v sin θ

θ̇ = β
[
CL(X, Y, θ)− CR(X, Y, θ)

]
.

The parameter β is the sensitivity to odor differences. If the concentration is greater on the

left, the individual turns left and vice versa. To make the model dimensionless, we propose

7



a change of variables (X, Y, t) → (σx, σy,
σ

v
t̂) where σ is the spread of concentration and v

is the velocity. This will change the left sensor position to (x+ l̂ cos(θ+ φ), y+ l̂ sin(θ+ φ)),

the right sensor position to (x + l̂ cos(θ − φ), y + l̂ sin(θ − φ)), the sensor length to l̂ =
l

σ
,

and the sensitivity to concentration difference to β̂ =
σ

v
β. The new model equations are

ẋ =
∂x

∂t̂
= cos θ

ẏ =
∂y

∂t̂
= sin θ

θ̇ =
∂θ

∂t̂
= β̂

[
CL(x, y)− CR(x, y)

]
.

(1)

These equations together with the initial conditions give us the bilateral model. We will use

this dimensionless model throughout the chapter unless otherwise mentioned and we will

drop the ˆ for easier notation.

2.3 Infinite Line

We will start by analyzing how the model performs when the odor is along an infinite

line. This corresponds to a straight trail along the y−axis. Here, the object is for the

individual to find the trail (i.e., navigate to it) and then keep on it. The odor concentration

has a Gaussian profile and is equal to C(x) = exp(−x2). (This is the simplification of a

point source odor profile; one can use a more principled model based on advection-diffusion

equation, c.f. [74] Eq. 6, supplement, but the Gaussian has the advantage of being smooth

at the origin making the analysis possible. Results for other odor profiles are qualitatively

similar.) Since the concentration is independent of y, the equations are reduced to a simple

planar ODE:

ẋ = cos θ

θ̇ = β
[
CL(x)− CR(x)

]
.

8



where the sensors position are

xL = x+ l cos(θ + φ)

xR = x+ l cos(θ − φ)

The fixed points of the system are at (0,±π
2

). They correspond to finding the trail and

either going up (+π/2) or down (−π/2) the trail. Here, we will limit our domain to θ ∈ [0, π],

and thus the fixed point is at (0,
π

2
). This fixed point is stable as long as φ ∈ (0, π/2), as is

the corresponding fixed point at −π/2. Looking at the Jacobian:

J(x, θ) =

 0 − sin θ

β(∂CL

∂x
− ∂CR

∂x
) β(∂CL

∂θ
− ∂CR

∂θ
)


∂CL
∂x

= −2(x+ l cos(θ + φ) exp−(x+ l cos(θ + φ))2

∂CR
∂x

= −2(x+ l cos(θ − φ) exp−(x+ l cos(θ − φ))2

∂CL
∂θ

= 2(x+ l cos(θ + φ))l sin(θ + φ) exp−(x+ l cos(θ + φ))2

∂CR
∂θ

= 2(x+ l cos(θ − φ))l sin(θ − φ) exp−(x+ l cos(θ − φ))2

J(0,
π

2
) =

 0 −1

4βl sin(φ) exp(−(l sinφ)2) −2βl2 sin(2φ) exp(−(l sinφ)2)


The trace and determinant of the linearization are respectively:

Tr = −2βl2 sin(2φ) exp(−(l sinφ)2)

Det = 4βl sin(φ) exp(−(l sinφ)2).

Since the trace is negative and the determinant is positive for all φ ∈ (0, π/2), the fixed

point is asymptotically stable. This fixed point shifts horizontally if the length of the sensors

are not the same. It becomes a saddle point when the sensors are crossed and then the

individual will not be able to navigate the odor trail. Also, the individual will not find the

trail when one of its sensors is cut. The left panel of Fig. 2A shows a pair of trajectories,

one of which misses the equilibrium and travels off to the right and another that eventually

lands on the fixed point suggesting that there is a basin of attraction for the fixed point. The

right panel of Fig. 2A shows the projection of these trajectories in (x, y)−plane. Fig. 2B
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shows the basin of attraction for l = 0.2, φ = 1, β = 10, 1 in solid red and blue respectively.

(These curves are computed by integrating backwards starting at x = ±5 and θ close to

π/2.) Any initial data contained within the solid curves will be attracted to the fixed point

(0,+π/2) and any initial data outside this will go off to ±∞. As would be expected, the

blue region lies entirely in the red region. Intuitively, if the individual is too far away from

the source, unless it is nearly aligned with the trail, the concentration difference will never

get large enough to allow it to correct. We can put this intuition on a more rigorous footing

by assuming the sensor length, l, is small to get (via Taylor’s theorem):

lim
l→0

CL − CR
l

= lim
l→0

1

l

[
exp−

(
x+ l cos(θ + φ)

)2 − exp−
(
x+ l cos(θ − φ)

)2]
= lim

l→0

exp−(x2)

l

[
exp

(
2lx cos(θ + φ)− l2 cos2(θ + φ)

)
− exp

(
− 2lx cos(θ − φ)− l2 cos2(θ − φ)

)]
= lim

l→0

exp−(x2)

l

[
− 2xl cos(θ + φ)− l2 cos2(θ + φ) + 2xl cos(θ − φ)

+ l2 cos2(θ − φ) +
1

2

(
− 2lx cos(θ + φ)− l2 cos2(θ + φ)

)2
− 1

2

(
− 2lx cos(θ − φ)− l2 cos2(θ − φ)

)2
+ ...

]
= exp−(x2)

[
− 2x cos(θ + φ) + 2x cos(θ − φ)

]
= 4x exp−(x2) sin θ sinφ.

Therefore, for small l, the difference between the concentrations detected by the left and

right sensors is

CL − CR = [4l sinφ] x exp(−x2) sin θ +O(l2)

so that we obtain an approximate system:

ẋ = cos θ

θ̇ = 4[βl sinφ] x exp(−x2) sin θ.

This ODE is integrable, with

E(x, θ) := −2βl sinφ exp(−x2)− log(| sin θ|) = constant.
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E(x, θ) = 0 corresponds to a pair of trajectories (shown by the dashed lines in figure 2B)

that separate bounded (E < 0) from unbounded (E > 0) trajectories. As can be seen in the

figure, these curves are reasonable approximations to the full basin of attraction (at least for

l small).

A B

Figure 2: (A) (left) Phase plane when trail is an infinite line. One trajectory converges to

the stable fixed point at (0,
π

2
) but another does not. From the vector field, a separatrix can

be noticed around the line, θ = π/2. (right) Projection of the solutions in the (x, y)−plane.

(B) Basin of attraction of the trail. The dashed lines are the separatrices for the integrable

system that separate the bounded solutions from the unbounded. The solid lines are the

numerically simulated basins. The blue lines represent the basin when β = 1 and the red

lines when β = 10 Here φ = 1, l = 0.2.

2.3.1 Sensor angles

The sensor angles play an important role in the ability to find and follow a trail. Fur-

thermore, they are something that can be under control of the animal, whereas sensitivity

and sensor length would be difficult to vary. Fig. 3A shows the basin of attraction for a

trail with β = 10, l = 1 as φ is varied from the nominal value, φ = 1 to φ = 0.2, 1.5 and

φ = 0.57 (the angle at which the trace is minimum for l = 1). Consider the upper part of

the diagram (the bottom is similar under the transformation, x → −x, θ → π − θ). As φ

increases toward π/2 (blue curve) and x(0) > 0, the individual must be more closely aligned

with the trail (θ(0) closer to π/2). For x(0) < 0, the initial heading does not matter as long
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as x(0) is close enough to the trail and in this case, there is a slight advantage to increasing

the angle. On the other hand, with small φ (black curve), there seems to be no difference

from φ = 1 for x > 0, but for x < 0 the basin is decreased. While we have not measured the

precise area of the basin, it would appear that φ = 1 (green) has the largest; losing a little

for x < 0 but keeping the maximal amount for x > 0. We also note that when φ = 0.57

(red), the basin is very close to that of φ = 1.

The basin is impossible to compute analytically, but a plausible surrogate is the diver-

gence of the vector field at the fixed point, (x, θ) = (0, π/2). We thus consider the trace of

the linearization around the fixed point which was given above. We plot this quantity as a

function of φ for several different values of l as shown in Fig. 3B. Clearly as l increases the

minimum shifts toward lower values of φ. With a little bit of calculus and algebra, we find

that

cosφmin =

√
l2 +
√
l4 + 1− 1

2l2
.

We arrive at the result above by taking the derivative of the trace with respect to φ:

dTr

dφ
= −4βl2 cos(2φ) exp(−(l sinφ)2) + 4βl4 sin(2φ) sin(φ) cos(φ) exp(−(l sinφ)2) = 0

4βl2 exp(−(l sinφ)2)
(
− cos(2φ) + l2 sin(2φ) sin(φ) cos(φ)

)
= 0

4βl2 exp(−(l sinφ)2)
(

sin2(φ)− cos2(φ) + 2l2 sin2(φ) cos2(φ)
)

= 0.

Let z = cos2 φ, then solve for the quadratic equation

(1− z)− z + 2l2(1− z)z = 0,

which will yield

z =
l2 − 1 +

√
(1− l2)2 + 2l2

2l2
=
l2 − 1 +

√
l4 + 1

2l2
.

Replacing
√
z = cosφ, we get the result.

The right hand side ranges between 1/
√

2 and 1 as l ranges between 0 and ∞. This

suggests that the sensors should have an angle between them that is between 0 and π/2.

The distance between the sensors is 2l sinφ, yielding the optimal distance to be:

dopt(l) =

√
2 l2 − 2

√
l4 + 1 + 2.
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dopt saturates near l = 2 at
√

2, which suggests that the optimal sensor distance for staying

on a trail whose characteristic width is σ will be
√

2σ.

A

l=0.5

l=1

l=2

B

=1.5

=1

=0.57

=0.2

Figure 3: (A) Basin of attraction for the stable fixed point (0, π/2) for trail following as a

function of initial orientation and x−position for 4 different sensor angles, φ. Remaining

parameters are l = 1, β = 10. (B) Trace of the linearization about the stable fixed point as

the angle between the sensors varies.

In sum, a single infinite odor trail greatly simplifies the dynamics to lie on the plane.

There are only two fixed points, both always stable corresponding to moving up or down the

trail. There is an optimal angle for the sensors that maximizes the stability and decreases

with the sensor length. The basin of attraction is well-approximated by a simple analytic

formula for an associated integrable system.

2.4 Radially Symmetric Landscapes

We now turn our attention to odor landscapes that are radially symmetric, which in-

clude point sources and circular trails. This symmetry allows us to again reduce the three-

dimensional dynamical system to a planar system. We introduce polar coordinates, r, ψ

(x = r cosψ, y = r sinψ) and the relative coordinate, ξ = θ − ψ. Note that ξ = 0 (respec-

tively ξ = π) corresponds to heading away from (resp. toward) the source along a radial line
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Figure 4: Change of variables when odor landscape is radially symmetric. (r, ψ) are the polar

coordinates introduced when the individual is at position (x, y) and has a heading angle θ.

ξ is the relative coordinate where ξ = θ − ψ.

(See Fig. 4). Differentiating x = r cosψ, y = r sinψ,

ẋ = ṙ cosψ − ψ̇r sinψ (2)

ẏ = ṙ sinψ + ψ̇r cosψ. (3)

(2) cosψ + (3) sinψ and −(2) sinψ + (3) cosψ will give

ṙ = ẋ cosψ + ẏ sinψ =
(

cos θ cosψ + sin θ sinψ
)

= cos(θ − ψ)

ψ̇ =
1

r

(
− ẋ sinψ + ẏ cosψ

)
=

1

r

(
− cos θ sinψ + sin θ cosψ

)
=

1

r
sin(θ − ψ).

With these coordinates, we again obtain a planar system:

ṙ = cos ξ

ξ̇ = β
[
CL(r, ξ)− CR(r, ξ)

]
− 1

r
sin ξ := G(r, ξ).

(4)

With a radially symmetric concentration, C(r), the left and right concentrations are

CL(r, ξ) = C
(√

r2 + l2 + 2lr cos(ξ + φ)
)

CR(r, ξ) = C
(√

r2 + l2 + 2lr cos(ξ − φ)
)
.

Any equilibria will have ξ = ±π/2 and r = r̄ chosen to solve G(r̄,±π/2) = 0. These fixed

points correspond to the individual moving counter clockwise (resp. clockwise) around the
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source at a constant velocity. Whether such fixed points exist and whether they are stable

is the subject of the rest of this section.

Henceforth, we will assume the concentration has the form: C(r) = exp(−(r − r0)
2)

where the peak concentration forms a ring of radius r0 around a central point. Note that

r0 = 0 is a point source. As noted above, there are two different values of ξ corresponding

to equilibria; since they just represent the individual going clockwise or counter-clockwise,

we will focus on the latter, ξ̄ = π/2.

Remark. We have chosen a simplistic model for the circular trail, C(r, r0) = exp(−(r−r0)2)

which is not a physical possibility. Rather, the correct form is to convolve the Gaussian with

a Dirac distribution on a circle. The result of this is:

Creal(r, r0) = N(r0)I0(2r0r) exp(−2r0r) exp(−(r − r0)2),

where I0 is the modified Bessel function of the first kind and N(r0) is chosen so that

Creal(r, r0) has a maximum value of 1. One problem is the computation of N(r0) since

there is no simple analytical expression for the value of r maximizing Creal. For r0 close to

zero, the two forms are indistinguishable and for r0 > 2, they are also quite close. Thus it

is only for values of r0 around 1 that there are differences. (Recall, that we have scaled the

width of the Gaussian to be 1.) We have reproduced all the phase-portraits except those in

Fig. 6 using the physically correct concentration. However, we also note that we have only

approximated N(r0) as no analytic expression exists and the behavior in figure 6 occurs for

a very limited range of r0.

When ξ = π/2 (fixed point) and r0 = 0 (odor is point source), the concentration difference

becomes:

CL − CR = exp(−r2 − l2 − 2rl cos(ξ + φ))− exp(−r2 − l2 − 2rl cos(ξ − φ))

= exp(−r2 − l2)[exp(−2rl cos(ξ + φ))− exp(−2rl cos(ξ − φ))].

To check the stability of the fixed point, we start by calculating the Jacobian matrix and

then find the trace and determinant.

J(r, ξ) =

 0 − sin ξ

β ∂(CL−CR)
∂r

+ sin ξ
r2

β ∂(CL−CR)
∂ξ

− cos ξ
r


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trace(J(r,
π

2
)) = β

∂(CL − CR)

∂ξ
|ξ=π/2

= βexp(−r2 − l2)[2rl(cosφ) exp(2rl sinφ)− 2rl(cosφ) exp(−2rl sinφ)]

= 2rlβ(cosφ) exp(−r2 − l2) sinh(2rl sinφ) ≥ 0

det(J(r,
π

2
)) =

1

r2
+ 2β exp(−r2 − l2)[l(sinφ) cosh(2rl sinφ)− r sinh(2rl sinφ)].

So depending on r > 0, the determinant can be > 0 or < 0 and then the fixed points (r, π
2
)

are either an unstable fixed point or a saddle point.

Fig. 5A shows the behavior of the model when r0 = 0, a point source. The top shows the

phase-plane for (4). There are two fixed points, the one closest to r = 0 is an unstable source

and the larger one is a saddle point. The stable (cyan) and unstable (orange) manifolds are

drawn. While there are no attractors in this case, the stable manifolds still play an important

role in the dynamics. If the initial data lies above them, then solutions in the (x, y, θ) system

will pass through the odor spot as seen in the (x, y)−projection in the bottom of the panel.

Initial data below the manifolds will veer off without getting closer to the spot. While there

are no attractors (there is no “trail” to follow), from a practical point of view, any initial

condition above the stable manifolds will “find” the spot. The bifurcation diagram in Fig.

5D shows the behavior of the small r fixed point as r0 increases. At r0 ≈ 0.5, the unstable

source becomes a stable sink via a Hopf bifurcation. A branch of unstable periodic orbits

(blue curves) emerges and terminates at an orbit homoclinic with the saddle point (not

shown). We remark that for large r0, the stable equilibrium is r ≈ r0, so the individual

is centered on the trail just as in the line trail. Fig. 5C top (bottom) panel shows the

(r, ξ)−phaseplane ((x, y) projection) for r0 = 4. In this case, the stable manifolds form the

basin of attraction for the circular trail. Any initial condition starting within the basin will

find and follow the trail (blue trajectories) while outside the basin will not follow it (red

trajectories). Fig. 5B shows the (r, ξ)−phaseplane for r0 = 1. In this case, the basin is the

unstable periodic orbit that is the α-limit set of one of the branches of the stable manifold.

If one of the sensors is cut, the individual converges to a new stable periodic orbit (in (x, y)

plane) with a smaller radius as long as it is starting in the region bounded by the circular

trail.
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A B C

D

Figure 5: A. (top) Phaseplane for equation (4) for r0 = 0, a spot source showing an unstable

spiral (near r = 0.4) and a saddle (near r = 2.5) along with its stable (cyan) and unsta-

ble (orange) manifolds and two trajectories. (bottom) Projection of the solutions in the

(x, y)−plane. (B) Phaseplane for r0 = 1. The stable manifold forms an unstable limit cycle

as shown in the bifurcation diagram, D. The fixed point inside is stable. C. (top) Phaseplane

for r0 = 4 with the same conventions as in panel A. Note the unstable spiral has become an

attractor. (bottom) Projection in the (x, y)−plane. (D) Bifurcation diagram as a function

of the trail radius, r0; stable (unstable) fixed points are red (black) and unstable limit cycles

are blue. Black dots correspond to r0 = 0, 1, 4 and the phaseplanes in A,B,C. Parameters

are β = 10, φ = 1, l = 1.
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2.4.1 Dependence on the model parameters

The stabilization of the fixed point as r0 increases occurs via a Hopf bifurcation. In the

next sections, we explore this dependence in detail.

2.4.1.1 Sensor angle

The sensor angle, φ provides an interesting picture. We first note that if we let φ̂ = π−φ

and ξ̂ = ξ + π, the concentrations become:

CL(r, ξ̂) = exp(−(

√
r2 + l2 + 2lr cos(ξ̂ + φ̂)− r0)2)

= exp(−(
√
r2 + l2 + 2lr cos(ξ − φ)− r0)2) = CR(r, ξ)

CR(r, ξ̂) = exp(−(

√
r2 + l2 + 2lr cos(ξ̂ − φ̂)− r0)2)

= exp(−(
√
r2 + l2 + 2lr cos(ξ + φ)− r0)2) = CL(r, ξ),

and then equation (4) becomes:

dr

dt
= − cos ξ̂

dξ̂

dt
= −

(
β
[
CL(r, ξ̂)− CR(r, ξ̂)

]
− sin ξ̂/r

)
,

with φ̂ replacing φ. Angles φ ∈ (π/2, π) correspond to the individual having its sensors

behind it. This calculation shows that the vector field for φ ∈ (π/2, π) is the same as that

for φ ∈ (0, π/2) in reverse time. Thus, for example, unstable periodic orbits for φ ∈ (0, π/2)

become stable periodic orbits for φ ∈ (π/2, π). Additionally, note that when φ = π/2, then

Eq.(4) is a reversible system, since ξ → ξ+π takes t→ −t. Thus, for fixed r0 and increasing

φ from 0, there will be three Hopf bifurcations; the middle one is degenerate and is at

φ = π/2, the reversible system. To get more insight into the full dynamics, we look at the

(φ, r0) parameter plane in more detail. Fig. 6 shows bifurcation diagrams as φ varies for

several different values of r0. There are several notable features. The central diagram shows

the curves of Hopf bifurcations (blue) in addition to curves of saddle-nodes of limit cycles

(SNLCs, black). The latter curve is non-monotonic, so that there is a region (below the red

dashed curve), where there can be two SNLCs. The lower right diagram shows that these
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delineate an isola (isolated branch) of periodic orbits. As r0 increases, this isola merges

with the branch of unstable periodic orbits (lower left diagram). Between r0 = 0.51 and

r0 = 0.55, the stable and unstable branches collide with the saddle at a saddle-homoclinic

bifurcation (shown as H in the upper right diagram). Finally, the SNLC merges with the

Hopf bifurcation curves (shown by the asterisk in the central figure) leaving an unstable

periodic orbit (upper left diagram; the other unstable periodic orbit is not shown). The

apparent existence of stable periodic orbits for small radii trails and small sensor angles

implies that there is a stable torus in the full (x, y, θ) system.

2.4.1.2 Sensor length

Surprisingly, we have found multistability on circular trails of radius, r0, for sensors that

have the same approximate length l ≈ r0 and small attraction, β. Figure 7 shows some

examples of the dynamics. Here, we choose r0 = 4 and l between 4 and 6, while letting β

range between 0.5 and 3.5. The dynamics is organized around the two parameter curves of

various bifurcations (not all of them are shown, either for clarity or for inability to follow

them). In the figure, curves of saddle-node bifurcations of equilibria (SNE) are shown in

red, Hopf bifurcations in blue, and a homoclinic bifurcation in olive. Phaseplanes in some

of the regions are shown. We emphasize once again, that stable fixed points (limit cycles) in

this reduced system correspond to stable periodic orbits (tori) in the full three-dimensional

model (See Fig. 8). Starting in region (a), there is a single attracting fixed point whose basin

is delineated by the stable manifolds of the outer saddle. (As we will eventually encounter

another saddle point, the outer one will be the one that is at roughly r = 9. It persists

throughout the figure.) Two bifurcations occur as we move from a to b. First, there is a

homoclinic bifurcation at the outer saddle leading to an unstable periodic orbit (UP) that

plays the role of the basin for the fixed point. (This is not shown as a separate phaseplane

since the attractor structure is still the same.) As we cross the red curve into region b,

two new fixed points arise: a stable node and a saddle. The UP continues to provide the

basin, but the stable manifolds of the inner saddle (near r = 2) split this basin between

the two stable fixed points. Recalling that r0 = 4, we see the outer fixed point shows the
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Figure 6: Behavior as r0, φ vary. Center figure shows the two-parameter (φ, r0) plane. Blue

line denotes the curve of Hopf bifurcations. Above this curve there is a stable fixed point. The

black line is the curve of saddle-node bifurcations of periodic orbits. Below the red dashed

line there are 2 saddle-node of limit cycles (isola). One-parameter bifurcation diagrams are

shown for different values of r0 as φ varies. Black (Red):unstable (Stable) fixed points; Blue

(Green): unstable (stable) periodic orbits. (h), Hopf bifurcations; (s), saddle-node of limit

cycles; (H), saddle-homoclinic orbits.
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individual following the trail while with the inner stable fixed point the individual makes

smaller circles within the trail. In the transition from b to c, the inner fixed point undergoes

a Hopf bifurcation and spawns a stable periodic orbit (SP). Thus, in the (x, y, θ) model there

is bistability between the individual tracking the trail and a quasiperiodic trajectory that lies

near the center of the trail. Fig. 8 shows the dynamics in the (x, y)-plane. The transition

from c to d occurs through a homoclinic bifurcation (olive curve) where the SP disappears.

The result is just a single attractor. In d to g, this attractor is lost via a SNE and there

remain no attractors. The path from c to e occurs via a SNE leaving just a SP whose basin

is determined by the UP. The transition from e to g occurs when the SP and the UP (SNLC)

merge and disappear. The transition from e to f occurs when limit cycle disappears through

a reverse Hopf bifurcation stabilizing the fixed point shown by the hollow square. Region f

has only one attractor, this stabilized fixed point is near r = 1 and is not shown. We were

unable to compute the curve of SNLCs delineating the transition from e to g.

2.4.1.3 Basins of attraction

Given a circular trail sufficiently large that there is a stable fixed point, we first examine

the dependence of the basin on the radius and the turning sensitivity, β in Fig. 9. In Fig.

9A, r0 = 1 and β = 1, 10 while in 9B, r0 = 4. For smaller radii, higher sensitivity does not

necessarily mean that the basin will be bigger. Indeed, there are initial conditions that lie

in the basin of attraction for β = 1 (red) , but not when β = 10 (blue). On the other hand

for large radii (Fig. 9B), the basin for β = 10 contains that for β = 1.

Since there are no stable fixed points for spot location, we can consider the ability of an

individual to orient toward a spot given that it is frozen (v = 0) at a distance, r, from the

spot. In this case, we have a simple one-dimensional system:

ξ̇ = β
[
CL(r, ξ)− CR(r, ξ)

]
with a stable fixed point at ξ = π. The eigenvalue around this fixed point is:

λ(r, l, φ) = −β4lr sin(φ) exp(−r2 − l2 + 2lr cos(φ))

21



0

0.5

1

1.5

2

2.5

3

3.5

beta

4.5 5 5.5 6
a

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

d

ψ

r

a

ψ

r

a

b g
c

e

d

f

β

l

b

ψ

r

c

ψ

r

e

ψ

r

up

up
up

sp

Figure 7: Dynamics on circular trail (here r0 = 4, φ = 1) when l is large and β is small. The

dynamics is organized by the saddle-nodes or folds of equilibria (red), the Hopf bifurcation

(blue), and a homoclinic bifurcation (olive). Phaseplanes in the representative regions are

depicted. Stable (cyan) and unstable (orange) manifolds of the saddles (filled black squares)

are shown along with some representative trajectories (black). Stable fixed points are red

circles, saddles are black squares, unstable nodes are hollow squares. UP:unstable periodic

orbit; SP:stable periodic orbit. Region f is like region e, but the stable periodic orbit is

replaced by a stable fixed point. In region g, there are no attractors. Panel e shows a stable

isolated limit cycle in green. More details in the text. Parameters (l, β): (a) (4.5,0.5), (b)

(4.5,2), (c) (4.85,1.25), (d) (4.93,1.25), (e) (4.72,3)
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Figure 8: Projection of the trajectory of the individual in the (x, y, θ) model in region c of Fig.

7. Outer orange circle is a stable path of the individual, grayscale shows trail concentration.

Stable torus solution shown in cyan. Magenta spot is the individual with the sensors drawn

to scale in blue. Animation can be found in supplementary video.

A B

Figure 9: (A) Basin of attraction when trail is circular with radius r0 = 1. (B) Basin of

attraction when trail is circular with radius r0 = 4. For both figures, blue and red lines

correspond to the basin when β = 10 and β = 1 respectively.
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and, as with the trail, this has a minimum at a particular value of φ:

dλ

dφ
= −4βlr exp(−r2 − l2 + 2lr cos(φ))

(
cos(φ)− 2rl sin2 φ

)
= 0.

Solving for cosφ, we get

cosφ =
−1 +

√
16(rl)2 + 1

4rl
:= M.

As rl → 0, M → 0 and as rl → ∞, M → 1. In particular, this suggests that close to the

spot (rl small), the animal should keep its sensors near ±π/2 while keeping them close to 0

when it is far from the spot.

2.4.1.4 Integrability

As in the case of an infinite line, system (4) can be approximated by an integrable system

for small l:

ṙ = cos ξ

ξ̇ = [4lβ sin(φ)(r − r0) exp(−(r − r0)2)− 1/r] sin ξ,
(5)

with

E := log(| sin ξ|) + 2lβ sin(φ) exp(−(r − r0)2) + log(r) = constant.

We arrive at system (5) by looking at:

lim
l→0

CL − CR
l

= lim
l→0

1

l

[
exp−

(
rL − r0

)2 − exp−
(
rR − r0

)2]
.

We will simplify CL

l
first then use similar calculations for CR

l
.

CL
l

=
1

l
exp

(
−
(
rL − r0

)2)
= exp

(
− r2L − r20 + 2rLr0

)
=

1

l
exp

(
− r2 − l2 − 2rl cos(ξ + φ)− r20 + 2r0

√
r2 + l2 + 2rl cos(ξ + φ)

)
=

exp(−r2 − r20)
l

exp(−l2) exp
(
− 2rl cos(ξ + φ) + 2r0

√
r2 + l2 + 2rl cos(ξ + φ)

)
.
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Using Taylor’s expansion,

CL
l

=
exp(−r2 − r20)

l
(1− l2 + l4 + · · · )

(
1− 2rl cos(ξ + φ) + 2r0

√
r2 + l2 + 2rl cos(ξ + φ)

+

(
− 2rl cos(ξ + φ) + 2r0

√
r2 + l2 + 2rl cos(ξ + φ)

)2
2

+

(
− 2rl cos(ξ + φ) + 2r0

√
r2 + l2 + 2rl cos(ξ + φ)

)3
3!

+ · · ·
)

=
exp(−r2 − r20)

l
(1− l2 + l4 + · · · )

(
1− 2rl cos(ξ + φ) + 2r0

√
r2 + l2 + 2rl cos(ξ + φ)

+
4r2l2 cos2(ξ + φ) + 4r20(r

2 + l2 + 2rl cos(ξ + φ))

2

−
8rr0l cos(ξ + φ)

√
r2 + l2 + 2rl cos(ξ + φ)

2

+
−8r3l3 cos3(ξ + φ) + 8r30(r

2 + l2 + 2rl cos(ξ + φ))
3
2

3!

+
24r2r0l

2 cos2(ξ + φ)
√
r2 + l2 + 2rl cos(ξ + φ)

3!

− 24rr20l cos(ξ + φ)(r2 + l2 + 2rl cos(ξ + φ))

3!
+ · · ·

)
.

Similarly, we simplify CR

l
to get

CR
l

=
exp(−r2 − r20)

l
(1− l2 + l4 + · · · )

(
1− 2rl cos(ξ − φ) + 2r0

√
r2 + l2 + 2rl cos(ξ − φ)

+
4r2l2 cos2(ξ − φ) + 4r20(r

2 + l2 + 2rl cos(ξ − φ))

2

−
8rr0l cos(ξ − φ)

√
r2 + l2 + 2rl cos(ξ − φ)

2

+
−8r3l3 cos3(ξ − φ) + 8r30(r

2 + l2 + 2rl cos(ξ − φ))
3
2

3!

+
24r2r0l

2 cos2(ξ − φ)
√
r2 + l2 + 2rl cos(ξ − φ)

3!

− 24rr20l cos(ξ − φ)(r2 + l2 + 2rl cos(ξ − φ))

3!
+ · · ·

)
.
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Therefore, taking the limit of the difference between concentrations

lim
l→0

CL − CR
l

= lim
l→0

exp(−r2 − r20)
l

(1 +O(l2))
[
− 2rl

(
cos(ξ + φ)− cos(ξ − φ)

)
+ 2r0

(√
r2 + l2 + 2rl cos(ξ + φ)−

√
r2 + l2 + 2rl cos(ξ − φ)

)
+ 4rr20l

(
cos(ξ + φ)− cos(ξ − φ)

)
− 4rr0l

(
cos(ξ + φ)

√
r2 + l2 + 2rl cos(ξ + φ)− cos(ξ − φ)

√
r2 + l2 + 2rl cos(ξ − φ)

)
+

4

3
r30

(
(r2 + l2 + 2rl cos(ξ + φ))

3
2 − (r2 + l2 + 2rl cos(ξ − φ))

3
2

)
− 4rr20l

(
cos(ξ + φ)(r2 + l2 + 2rl cos(ξ + φ))− cos(ξ − φ)(r2 + l2 + 2rl cos(ξ − φ))

)
+O(l2) + · · ·

]
.

Simplifying, we get

lim
l→0

CL − CR
l

= exp(−r2 − r20)
[
− 2r(−2r sin ξ sinφ) +

2r02r(−2 sin ξ sinφ)

2r

+ 4rr20(−2 sin ξ sinφ)− 4rr0(−2r sin ξ sinφ) +
4

3
r30

3r42r(−2 sin ξ sinφ)

2r3

− 4rr20(−2r2 sin ξ sinφ) + · · ·
]

= exp(−r2 − r20)
[
4r sin ξ sinφ(1 + 2rr0 +

(2rr0)
2

2!
+ · · · )

− 4r0 sin ξ sinφ(1 + 2rr0 +
(2rr0)

2

2!
+ · · · )

]
= exp(−r2 − r20)4(r − r0) sin ξ sinφ exp(2rr0)

= 4(r − r0) exp(−(r − r0)2) sin ξ sinφ.

For K := βl sin(φ) large enough, the integrable system has a saddle and a nonlinear cen-

ter; the stable manifolds of the saddle form a good approximation for the basin of attraction

for (4), even for l = 1, over a wide range of the other parameters. This calculation does

not say anything about the stability of the fixed point; rather, it gives some insight into the

regions of attraction. Figure 10 shows that the even for l = 1, the basins of the full equation

(4) and the integrable system (5) are close.
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Figure 10: Comparison of the basin of attraction for the full model (4) (red) with that of the

integrable approximation (5) (blue) for l = 1, β = 4, r0 = 2, φ = 1. Saddle points are shown

in their respective colors. The stable fixed point and nonlinear center are nearly coincident

and shown in purple.

As with the linear trail, radially symmetric odor gradients can also be reduced to planar

dynamical systems. Nevertheless, they produce complex behavior including multi-stability

and different types of stable and unstable limit cycles. Circular trails with a large enough

radius lead to a stable movement clock-wise or counter-clockwise around the trail when the

sensors are short. Such trajectories are seen in so-called ant-mills (where large populations

of ants move in a circular trail until they die of exhaustion)[66]. Because the individual has a

constant speed, it is not possible for the point source to be an attractor. However, the model

does take the individual toward the source (depending on its initial distance and heading),

so, in a real situation where the source is some reward the animal would stop moving when

it reached the source.
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2.5 Multiple sources

When an animal is searching for food, there can be multiple sources that affect the

concentration detected and could be used to localize an odor source. We next study how the

bilateral model behaves in the presence of two odor sources. With more than one source,

the radial symmetry is broken and we cannot exploit the reduction in dimension used above.

Thus, we will use the (x, y, θ) system and the concentration detected will be the sum of the

Gaussian concentration of the spots.

d = 1.23

d = 1.5

A

sym

anti

B C

Figure 11: Two different types of trajectories for concentrations with two odor sources

located on the x-axis a distance d apart, centered at x = 0. (A) Projection into the (x, y)

plane; (B) Projection in the (x, θ) plane; (C) Bifurcation diagram for the two different cases

in (A and B) as d varies. Other parameters are β = 20, l = 0.5, φ = 1.

Without loss of generality, we place the two point sources at a distance d from each

other on the x-axis and analyze the dynamics of Eq. (1). The odor concentration at the

first spot is C1(x, y) = A1 exp
(
−
(
(x + d/2)2 + y2

))
, and at the second spot is C2(x, y) =

A2 exp
(
−
(
(x − d/2)2 + y2

))
where A1 and A2 are positive, possibly different, amplitudes.

Thus, the concentration detected at the sensors is

CL(x, y) = C1(xL, yL) + C2(xL, yL)

CR(x, y) = C1(xR, yR) + C2(xR, yR),

xL,R, yL,R are as in Fig. 1.
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d=1.2452

B

d

A

Figure 12: Behavior of Eq. (1) when there are two Gaussian sources at (x, y) = (±d/2, 0).

(A) As d increases, the symmetric periodic solution (red) loses stability and gives rise to a

stable asymmetric solution (blue). Increasing d leads to a period doubled solution (black)

which also loses stability as d increases. (B) Presumably chaotic behavior for d = 1.2452.

(C) Poincare map through x = 1.75 for the solution in (B). Blue circle is unstable periodic

orbit. (D) Same Poincare section showing the numerical existence of a period three orbit

shown by the intersections of the n+3 iterate with the diagonal. The blue filled circle shows

the period one fixed point. (Parameters are as in Fig. 11.)
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Recall that in the case of a circular trail, there are stable fixed points in the polar form of

the equations which correspond to circular periodic orbits in the (x, y, θ) system. Since the

individual must maintain a constant speed, we cannot expect any fixed points in the (x, y, θ)

system, so we will look for periodic orbits. We fix β = 20, l = 0.5, φ = 1 in this section; the

default values of β, l produce periodic orbits for a range of d, but the behavior is not as rich.

In Figure 11A, we show two qualitatively different trajectories projected in the (x, y) plane

for spots placed a distance d on the x-axis. At small values of d the trajectory is symmetric

(black curve) and the heading, θ oscillates around π/2 (Fig. 11B, black) (topological winding

number of 0). There is an analogous curve where y(t) < 0 and θ oscillates about 3π/2. For

a larger value of d, we find an anti-symmetric trajectory (Fig. 11A, red) and in this case, θ

goes through all values with a net increase of 2π after each cycle (Fig. 11B, red) (topological

winding number of 1). Fig. 11C shows the one-parameter bifurcation diagram as d changes

for the symmetric and the anti-symmetric paths. The stability of these is lost at branch

points marked by the filled blue circles. If we follow the symmetric branch point at the

high value of d (close to 1.25), then a stable branch of asymmetric solutions emerges. This

is shown in Fig. 12A as the blue curve. Increasing d along this asymmetric branch leads

to a periodic doubling bifurcation (shown as the black curve). Further increases lead to

presumably chaotic behavior, shown in Fig. 12B in the (x, y)−plane. To further quantify

the chaos, we take a Poincare section through x = 1.75 and plot the points (yn, θn) where

x crosses from right to left. We find (not shown) that these points appear to lie along a

one-dimensional curve, indicating that the underlying chaos can be understood by a one-

dimensional map. Fig. 12C shows the map where we plot (yn, yn+1). It appears to be a

typical cap map. The periodic orbit (blue circle) is unstable as the slope through it is less

than -1. Fig. 12D shows (yn, yn+3) plotted and a clear period 3 orbit that is also unstable.

Since the underlying dynamics seems to be governed by a one-dimensional map, we believe

that Fig. 12B represents a truly chaotic orbit. Additionally, the maximal Liapunov exponent

is 0.045, a positive number, yet another character of chaos.

As the previous figures show, if the spots are close to each other, there can exist solutions

where the individual circles both of them. Furthermore, when there is an isolated spot, there

are no stable bounded solutions as we saw above. However, the presence of a distant spot
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(at least over a small range of distances) can stabilize periodic orbits around a spot. Fig.

13A shows two different stable trajectories around a source at (−d/2, 0). The red solution

is symmetric about the y-axis (d = 2.5) and the black solution has lost the symmetry

(d = 2.43). This branch of periodic solutions exists for a narrow range of values of d as shown

in the bifurcation diagram in Fig. 13B. In particular as d decreases, there is a supercritical

pitchfork bifurcation that leads to the stable asymmetric solution shown in panel A. For d

increasing,there is a subcritical pitchfork which together with the other pitchfork forms an

isolated branch of asymmetric solutions.

A B

Figure 13: Two distant sources. (A) Stable periodic circling around the source at (−d/2, 0)

with the other source located at (d/2, 0) with d = 2.5 (red) and d = 2.34 (black). (B)

Bifurcation of the isolated periodic orbit as d changes. There are two pitchfork bifurcations

whose branches form an isolated loop. Filled circles correspond to orbits depicted in A.

Remaining parameters as in Fig. 11

Another interesting question is how the behavior changes when the concentrations at the

spots are different in magnitude. Fig 14A shows trajectories when the amplitudes of the spot

are equal and the spots are at a relatively large distance from each other (such that there

is no periodic orbit encircling them). Depending on the initial position, trajectories either

pass through both spots, just one of the spots or miss them both. In all cases, however, the

trajectories diverge. This is also true when we increase the amplitude of one of the spots

by 5-fold as in Fig 14B. Note that the individual spends some time wandering around the

spot with higher intensity before wandering off. On the other hand, when we bring the
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spots closer to each other as well as increase the amplitude (Fig 14C), the trajectories that

go to the spot with larger amplitude will oscillate around this spot. Thus, the existence

of the weaker spot at a distance can stabilize the trajectory around the spot with a higher

concentration, just as we saw in Fig. 13. The periodic solution shown in Fig. 14C persists

for much larger values of A2 and will also persist for A2 reduced to 1, where the resulting

periodic solution is the same as that seen in Fig. 13A (red).
A B

C

Figure 14: Different trajectories when: (A) Both sources have the same amplitude (A1 =

A2 = 1) and are at a distance (d = 10) where the 2 sources are distinguishable. (B) Second

source has significantly larger amplitude (A2 = 5). (C) Second source has significantly larger

amplitude and the sources are closer to each other (d = 5) Other parameters as in Fig. 11.

More complex dynamics can occur with three or more sources. In this case, however,

there are many different possible configurations thus we will not consider them further.

2.6 Finite Trails

We have looked at how the bilateral model performs when we have an infinite line and

circular trails. Now we will examine its behavior on a finite line segment and a finite line
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segment with gaps, sharp angles and branches, as these cases can be tested in animal behavior

experiments.

If we start close enough to a segment trail, the model will find the trail, follow it and

then leave it. When β or l is small, trajectories will have damped oscillations that decay

slower as we decrease β or l (Fig 15). The starting angle affects the trajectory orientation;

most trajectories continue to the right when θ0 is less than
π

2
and to the left when θ0 is larger

than
π

2
. Similarly, if we start around the gap, then we take either the left or right branch

depending on the starting position and angle. Also, we can find the trail from significantly

farther distances when we start around the gap which is also the case when we start around

the beginning or end of the trail. An individual will cross the gap and reacquire the trail

when the gap is in a line trail that has no angles or turns. This is true because once the trail

is acquired in the bilateral model, the individual will keep moving straight on it. However,

if either β or l is small, and the oscillations are large near the gap, the model will sometimes

lose the trail as in Fig 15B.

A

-6 0 6

-2

0

2

B

Figure 15: (A) Trajectories on a segment trail. Red line is when β is 5 fold smaller than

the blue line trajectory. (B) Trajectories can either cross gaps or lose the trail depending on

β or length of nares l. Red trajectory is when l = 0.4 and Blue trajectory is when l = 0.1.

If there is an angle in the trail, then it must be larger than
π

4
for the model to follow it

easily. In Fig 16A, the model is able to correct and follow the trail when the angle is slightly

bigger than
π

4
, but as soon as the corner angle is

π

4
, the model loses the trail.

When the trail bifurcates into two branches, the angle and amplitude of each branch
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A B

Figure 16: A. (top) Trail with angle very close but greater than π
4
. Zoomed on how model

is able to correct and find trail. (bottom) Trail with angle equal to π
4
. Zoomed on how model

can not sense the change in the angle and loses trail. B. (top) Y trail, the branches are at

equal angles from the main trail. (bottom) Y trail where the branches are at different angle

from the main trail. The blue line is a trajectory starting at the main trail.
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determine the trajectories of the model as it passes the branch. We observe that when an

individual starts on the main trail that has two branches at equal angle and amplitude (top

panel of Fig 16B), it will continue on a straight path as there is no difference in the left

and right concentrations due to symmetry. However, if the symmetry is broken, say, the

branch angles are unequal, (bottom panel of Fig 16B), then the individual will go towards

the branch that requires the least amount of turning. This might not be the case if the

concentrations on the two branches differ as the model will always turn toward the higher

of the two concentrations at the sensors.

Trails with gaps and finite trails are similar to an infinite trail over the period of time

in which the individual is on the segment. since once the individual finds the trail, it stays

on it. If the trail is short and σ is large, then, there is behavior like two close spots, e.g.

Fig. 11, otherwise, the individual eventually reaches the end of the trail and moves away.

Thus, in these cases, there are no attractors and basins, bifurcations, etc do not make sense.

We have included the results on branched and finite trails mainly because they provide

for the possibility of experimentally testing some of the results. Indeed, some preliminary

experiments in the lab of Nathan Urban examine the paths of mice that are trained to follow

trails when the trails branch and have gaps.

2.7 Discussion

In this chapter, we analyzed a simplified dimensionless model that describes the use of

bilateral information to navigate odor sources. We looked at how the model behaves in the

presence of one or more odor spot sources, circular and infinite straight trails, and trails

with gaps and angles. To allow for mathematical analysis of the model, some simplifica-

tions were applied. Instead of using more realistic odor description such as turbulent plumes

[18], we present concentration as fixed Gaussian distributions. We also keep the function

that determines the change in the heading angle linear in the difference between left and

right concentration unlike previous work [12, 13]. Calenbuhr et. al [12, 13] put the con-

centrations through a Michaelis-Menten type nonlinearity so that saturation occurs at large
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concentrations. These nonlinearities will not change the qualitative behavior (in fact, on

an infinite trail, the fixed points are the same), but will alter some of the details like the

basin of attraction and the degree of multistability. Some animals change their velocities

while searching for odor sources (for example ants [25] and mice [45] decrease their veloc-

ity closer to the source), here though, we do not take variable velocity into consideration.

With our simplifications, we are able to examine how the performance changes as we vary

different parameters. The main parameters we look at in our scaled model are the length l

of the sensors, the angle φ between the sensors and the sensitivity β to concentration change.

In the case of the infinite line, as we increase β, both the analytical and simulated basins

of attraction increase which is expected since the change in heading angle becomes more

sensitive to the concentration difference. When φ is larger or l is smaller, we see increased

sinusoidal motion centered at the trail. When the odor source is a spot, one of the fixed

points of the model is a saddle point and the other is unstable (at r close to 0). This suggests

that the individual will not be able to find spot sources, however, we can see from figures

(in (x, y) plane) that trajectories pass through the spot. The reason that the model moves

away from the spot is that we have required that the speed stay constant. When multiple

spot odor sources are added, the (x, y, θ) system exhibits trajectories that pass through one

source or multiple sources, periodic orbits around sources and chaotic behavior. Because

Gaussian circular trails share the radially symmetric property with single spots, we use the

same (r, ξ) system to study how varying l, β and φ affects its stability and basin of attraction

on these trails. The fixed point (circular trail) becomes stable at a small radius (r0 ∼ 0.5)

and remains stable for all larger radii. As in infinite trails, when we increase β on a circular

trail with large enough radius, the basin of attraction increases. This is not true for smaller

radii or when we increase the length of the nares l where an optimal length l < r0 gives the

largest basin of attraction. When the odor source is a finite straight trail, the individual will

keep on the trail once it finds it even if there is a gap because of the symmetry between the

nares. If the trajectory is sinusoidal (e.g. Fig. 15B) then the individual can lose the trail at

the gap depending on the amplitude of the fluctuations. When there is a trail with an angle,

the individual turns and keeps on the trail if the angle is larger than π/4 and loses the trail
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otherwise. If the trail bifurcates into two branches, we see that the individual chooses the

branch with a smoother turn angle. This is seen in rats [41] where they tended to choose

the branch that had a smaller angle with the main trail (straighter).

At a fixed sensor length l, there is an angle φ that makes the system most stable and

have an optimal basin of attraction when the odor landscape is an infinite line. For a spot

source, we are also able to find an optimal φ by freezing the individual while orienting it

towards the spot (ξ = π) and studying the linearization of the new system. We conclude

that the individual will best reach the source if it keeps φ closer to zero when it is away

from the spot and closer to π/2 (large sinusoidal behavior) when it is near the spot. This

contradicts the best strategy we found to acquire and stay on an infinite trail where it is bet-

ter to have a smaller φ closer to the trail. This shows that animals consider different ways

to optimize their search depending on the odor distribution. For example, similar to our

results, in Draft et al [25], ants move their antennas to have smaller angles while following

the trail and bigger angles when exhibiting sinusoidal movements near the trail. In Khan et

al [41], rats were able to cross gaps and reacquire the trail by increasing the amplitude of

their head casting (which might suggest that they are using the strategy discussed to best

find infinite trails by changing their method since they can not control angle between nares).

Also in Liu et al [45], mice exhibit an increase in sinusoidal behavior near the spot source

and their trajectories become more tortuous.

Real odor landscapes are not simple smooth gradients, but, rather, temporally compli-

cated and turbulent. In Boie et al [7, 25], the authors showed that the spatial information

provided by the two sensors is non-redundant in turbulent plumes. We have tested the

simple bilateral algorithm in a plume (not shown here) and we observe that the individual

can successfully find the odor source. Similar to our previous results, we have to start at

a position orienting towards the plume in order to find it because we do not add noise or

a corrective method to turn the individual back once it veers off the plume. One major

aspect that we have not explored in this chapter is the effects of noise on the models. There

are several ways we could introduce this variability in the model. For example, the odor

37



concentration at a point in space could be converted to a rate for a Poisson process and

the number of hits in some window of time could act as the main signal. In other work

([45]), we have used this type of model to mimic the behavior of mice looking for spots of

odor. Another type of stochasticity that could be included is additive noise to the equation

for θ. That is, in absence of any odor cue, the individual undergoes a correlated random

walk. Such behavior is commonly seen as a foraging strategy for animals and in the present

case would have the effect of allowing the individual to correct for starting conditions that,

in the deterministic case, would lead it away from the odor source. Whether there is an

optimal amount of such ”noise” to maximize the probability of success is currently a subject

of further research. The bilateral model explains many results observed in animal data but

not all behavior. Understanding the underlying dynamics of the bilateral model will help in

building models that use bilateral information together with other strategies such as casting

or upwind orientation.
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3.0 Effect of Adding Noise to Bilateral Olfactory Search and Navigation

3.1 Abstract

Animals use olfactory cues while navigating their environments to find food, locate mates

and avoid danger. Previously, we studied the dynamics of the bilateral model, a strategy

that depends on the simultaneous comparison between odor concentrations detected by left

and right sensors. We showed that the agent has to be in a basin of attraction around the

odor source in order to navigate towards the point source or follow the trail, else it fails.

Thus, to improve the probability of finding the odor source, we employ a search strategy

by adding noise to the heading angle in the bilateral model. We find that constant noise

will be more successful when paired with a nonlinearity applied either to the concentration

detected by the left and right sensors or to the difference in concentrations. We also show

that concentration dependent noise improves performance on the spot source.

3.2 Introduction

In Chapter two, we looked at a deterministic bilateral model and provided a mathematical

analysis to understand how bilateral information, on its own, can drive navigation. In this

chapter, we will look at the effect of noise when added to the same model and how to

interpret this noise in terms of navigation. In the previous chapter, we find that the agent

has to be around the odor source in order to navigate towards the point source or follow the

trail. However, from the behavior of animals, whether in experimental setting or naturalistic

(open field) arenas, we notice that animals can still find odor sources and acquire trails

even if their initial starting position is not close to the source. This indicates that even

though animals depend on sensory cues to extract directional information, in the absence of

a reliable sensory signal they use different strategies to first search for odorants and then to

navigate them.
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For an algorithm, that tries to find an existing or a suspected target, to be called a

search strategy, there should be an uncertainty in either the sources or in how to find these

sources (i.e. no cues should be driving the movement) [4]. There are two types of searches,

systematic searches compared to random searches. systematic searches depend on a deter-

ministic algorithms and some knowledge of the landscape [35] while random searches depend

on stochastic processes. Random search strategies that have been proposed to characterize

animal movements use either random walks or Levy walks. A random walk moves an agent

some distance where it orients towards a random direction and then repeats the same ac-

tion. Though simple to implement, random walks may result in redundant trajectories [10]

and do not always describe realistic animal movement. The advantage of correlated random

walks and Levy walks is that they result in less redundant paths and better describe animal

behavior. These models allow for directional persistence of the movement, which is observed

in animals, because the turning angles are not independent.

Two other distinctions affect a search strategy which are the availability of resources and

the scale of the environments where the animals are searching. Many studies have suggested

that in environments where the resources are abundant, models that allow for spending more

time at a patch should be used such as correlated random walks. While in environments

with scarce cues, models that optimize the animal’s time and energy are more appropriate

such as Levy walks. This brings up a trade-off between exploration of new possibilities and

exploitation of already detected opportunities. This is sometimes referred to as intensive

versus extensive search or even local versus global search [32, 22, 14].

In this chapter, we will examine how adding a stochastic term to the heading angle is

going to affect the search efficiency of our model. In our setup, we fix the borders of the

arena which restricts the search area and eliminates the need for a more extensive or spread

search. Therefore, we want to switch from an exploratory to an exploitation strategy in a

fixed space where the agent exists. This means that maximizing the search or area coverage

is not an important factor in defining the search efficiency. Instead, we look to the number

of times the animal is able to find the target while starting from anywhere in the fixed arena.

Thus, we will quantify the efficiency as the probability of success in finding the odor source.
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3.2.1 The Model

In all of the following sections, we will add noise to the heading angle θ of the bilateral

model we analyzed before. For all the simulations, the odor concentration landscape is

Gaussian with σ = 2, the length of the sensors is l = 1, the angle between the sensors is

φ = 1, the velocity is v = 1, and the measure of sensitivity to the concentration difference is

β = 10 unless mentioned otherwise.

dx = v cos θdt

dy = v sin θdt

dθ = β
[
CL − CR

]
dt+ kdW.

(6)

3.3 Spot Source

3.3.1 Constant Noise

We first look at the effect of adding a constant noise to the heading angle θ in the model.

This translates to adding a constant noise to the angle ξ in the reduced (r, ξ) system that

we used in our previous work when the concentration landscape presented to the model is

radially symmetric.

dr = v cos ξdt

dξ = β
[
CL − CR

]
dt− v

r
sin ξdt+ kdW.

(7)

For every noise value, we start at a random position in the domain with a random heading

angle and check if the model is able to find the spot source successfully within the allotted

time. We repeat this for N = 50000 simulations. Successful simulations occur when the

trajectories cross a minimum value of r, rmin, while unsuccessful simulations occur when

trajectories cross a maximum value of r set at rmax or run out of time before crossing rmin.

Here we choose rmin = 1, since the source is at r = 0, and rmax = 10. Probability of success is
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then calculated by dividing the number of successful runs by the total number of simulations

N at every noise level, and mean time to source is calculated by adding the time it takes for

every successful simulation to find the source and then dividing it by N .
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Figure 17: Probability of success as constant noise varies for a spot source. (A) Probability

of success (blue) and mean time to source (red) as noise varies. (B,C,D) Distribution of

the initial positions and the color changes according to probability of success. (B) At small

noise = 0.063 (cyan in (A)), the probability of success is 0.5. (C) At optima noise = 1.484

(magenta in (A)), the probability of success is 0.6. (D) At large noise = 15.85 (green in

(A)), the probability of success is 0.255. (E) Marginal Probabilities P (r) (left panel) and

P (ξ) (right panel) where the noise axis is log scaled and the dashed black line is the optimal

noise level.

From Fig. 17, we can see that the mean time to source increases with noise magnitude

(which will be true for all the following figures) and there is an optimal noise level at 1.48

that gives the highest value of the probability of success at 60%. For small noise values,

trajectories must start closer to the source to find it and since these trajectories do not

have fluctuations, it takes them less time even though probability of success is not optimal.

As the noise values increase, trajectories will have much more fluctuations and therefore it

will take them longer to find the source. Fig. 17 also shows the distribution of the initial

conditions across the domain and whether the agent is successful when starting from that
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Figure 18: (A) Phaseplane of (r, ξ)− system for a spot source has an unstable fixed point

at (0.398,
π

2
) and a saddle point at (4.72,

π

2
) with the unstable manifold in orange and the

stable manifold in cyan. (B) Phaseplane of (r, ξ)− system for a spot source when a Hill

function is applied. It has a stable fixed point at (1.91,
π

2
) and a saddle point at (6.75,

π

2
)

with the unstable manifold in orange and the stable manifold in cyan. The blue curve is an

invariant set.

initial condition. When the noise value is small at 0.06 in Fig. 17A, there is a boundary

that separates the trajectories that find the source (in yellow) and those that do not (in

blue). This boundary resembles the stable manifold that we see in the deterministic case

(Fig. 18A). However, once more noise is introduced into the system, this boundary is broken

and there is more variation in the probability of success. Now, the agent is no longer 100%

successful when it is radially oriented toward the spot (ξ is close to π) and far away from the

source. Instead, the boundaries become more vertical and the probability of success depends

more on the distance to the source. When the noise is optimal at 1.48, the initial conditions

in Fig. 17C can be grouped into different regions. When r < 2(yellow), the probability of

success is 100% which then drops to 80 − 90% for 2 < r < 4, 60 − 80% for 4 < r < 6,

and the probability gradually decreases to reach 0% for r > 9. When the noise is very large

(Fig. 17D), we see that the region with success probability greater than 80% shrinks down

to r < 2 and a clear region where the probability is zero emerges for r > 6.
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3.3.2 Constant Noise with Non-linearity

3.3.2.1 Hill Function

Olfactory neuron receptors bind to odorants and the biophysics of this process results

in a saturating relationship between the fraction of receptors closed and odor concentration

[28, 52]. The Hill function which describes this saturating relationship has been shown to

play a role in olfactory navigation [76]. Therefore, here, we will still add a constant noise to

the heading angle θ in the (x, y, θ) system i.e. ξ in the reduced (r, ξ). However, now the first

term of the heading angle will change to become the difference between nonlinear left and

right concentrations.

dr = v cos ξdt

dξ = β
[ CL
CL + cmin

− CR
CR + cmin

]
dt− v

r
sin ξ + kdW.

(8)
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Figure 19: Effect of the sharpness of Hill function on the probability of success. (A) Odor

Concentration detected for different cmin in Hill function. (B) Probability of success as noise

varies for different cmin.

We vary cmin from eq. 8 in order to choose the best sharpness of the Hill function.

Notice from Fig. 19A that as cmin get smaller, Cx

Cx+cmin
becomes more sensitive to lower

concentration values. Therefore, when cmin = 0.01, the Hill function amplifies very low

concentration values and saturates to 1 much faster than when all the other values of cmin
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are used. Fig. 19B shows that the smaller values of cmin also improve the probability of

success which is the reason why we choose cmin = 0.01 to continue our analysis.

From Fig. 20A, we observe that the probability of success starts at 57.5% for small noise

values, then an optimal noise level at 2 maximizes the probability at 76% where it plateaus

for a range of noise values and falls off to 25% for very large noise. For small noise at

0.06, Fig. 20B exhibits two boundaries that separate initial conditions that are successful in

finding the source (in yellow) from unsuccessful trajectories (in blue). The outside boundary

resembles the stable manifold in the deterministic case. To understand the inside boundary

which shows trajectories that start near rmin but are unsuccessful in reaching the source, we

look at the effect of adding a Hill function on the phase plane. In Fig. 18B, we observe that

there is a change in the fixed points coordinates and stability when a Hill non-linearity is

introduced to the deterministic system. The two fixed points are shifted to larger values of

r where the first fixed point at r ≈ 1.91 becomes stable and the second fixed point remains

a saddle. Therefore, trajectories starting around the stable fixed point will be attracted to

it instead of trying to reach r = 0 where the source is. We find an invariant set (blue curve

in Fig. 18B) such that trajectories starting within will converge to the fixed point without

crossing rmin = 1 and trajectories starting outside of this set will hit rmin = 1 and come close

to the source while they spiral towards the fixed point. The inside boundary that we get in

Fig. 20B corresponds to this invariant set. As more noise is added, trajectories will fluctuate

and will not be contained in this invariant set, thus crossing rmin = 1 which will cause the

inside boundary to disappear. The outside boundary changes since the initial conditions

with coordinates between 2 < ξ < π and 8 < r < 10 which were successful at low noise

levels because they were radially oriented towards the spot are no longer 100% successful.

The probability of success now will fall off as the agent moves away from the source. We

detect this clearly in Fig. 20C where the success is maximized and in Fig. 20D where the

probability is at its minimum for large noise. Fig. 20C shows that the probability of success

is 100% for r < 5 and gradually drops as the agent starts farther away from the source.

Similarly, Fig. 20D shows the probability of success is high for r < 2 then decreases to reach

zero for all trajectories starting at r > 6.
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Figure 20: Probability of success of model with Hill function applied to CL and CR as

constant noise varies. (A) Probability of success (blue) and mean time to source (red) as

noise varies. (B,C,D) Distribution of the initial positions and the color changes according to

probability of success. (B) At small noise = 0.063 (cyan in (A)), the probability of success

is 0.575. (C) At optimal noise = 2.08 (magenta in (A)), the probability of success is 0.76.

(D) At large noise = 15.85 (green in (A)), the probability of success is 0.257. (E) Marginal

Probabilities P (r) (left panel) and P (ξ) (right panel) where the noise axis is log scaled and

the dashed black line is the optimal noise level.
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3.3.2.2 Tanh

Instead of applying a Hill function to the left concentration and right concentration,

we apply a tanh non-linearity to the difference between the concentrations. We start with

tanh(10(CL−CR)) and we increase the sharpness until we reach tanh(100(CL−CR)). In the

deterministic case, we still have two fixed points with one of them being a saddle. We observe

that the basin of attraction created by the stable manifold of the saddle point increases as

we increase the sharpness of tanh. Here, we do not see the invariant set that shows up in the

Hill function case. The increase in the basin of attraction can be seen in Fig. 21 where the

cyan colored points represent the probability of success for low noise which increases from

62% to 70% as the sharpness of tanh increases from 10 to 100. The maximum probability

of success also increases from 70% to 76% with the sharpness of tanh. The probability of

success curve is similar to Fig. 20A when a Hill function is applied where we observe a

plateau before the probability drops for very large noise values.
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Figure 21: Effect of the sharpness of tanh on the probability of success. The green curve is

tanh(10(CL−CR)), the blue curve is tanh(30(CL−CR)), the purple curve is tanh(50(CL−CR))

and the black curve is tanh(100(CL − CR)).
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3.3.3 Concentration Dependent Noise

We now know that adding constant noise to the bilateral model improves the probability

of finding the source. From the phase plane of the (r, ξ)− system, we observe that the plane

is divided into two regions, the first region is above the stable manifold where trajectories

starting there will cross the source and the second region which is below the stable manifold

such that trajectories starting there will veer off and not come across the source. Intuitively,

we think that adding a constant level of noise at every position might not the best strategy.

If the agent is in the second region where trajectories usually veer off, then adding a high

noise term might be helpful to find the source but large noise values might push the agent

away from the source if it is in the first region. Therefore, we introduce a noise term that is

concentration dependent such that lower noise values are required when the concentration

detected is high and the agent is at a closer proximity to the source and higher noise values

are used when the odor concentration is low or not detected at all. The noise is again added

to ξ in the reduced (r, ξ)− system and contains two parameters that affect its value, α which

affects the magnitude of the noise and γ that affects the slope of the noise as a function of

the average of the concentration detected by the left and right sensors.

dr = v cos ξdt

dξ = β
[
CL − CR

]
dt− v

r
sin ξdt+ +α exp

(
− γCL + CR

2

)
dW.

(9)

We start by investigating the best γ to choose which will then describe how the noise is

changing with odor concentration. To do this, we set α to 2 and then examine the change of

the probability of success as we vary γ. Here we find that the probability keeps on increasing

as we increase the value of γ as shown in Fig. 22A. This suggests that the best strategy is a

fast switching mechanism where noise is turned off or set to very low values once any odor

concentration is detected. So we choose an appropriate value for γ (we choose γ = 100) and

then vary α to address the effect of changing the magnitude of this noise type. Similar to

the case of constant noise, we again find that there is a value of α that maximizes the prob-

ability of success. At small values of α (Fig. 23B), we see the same boundary that separates
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Figure 22: Probability of success as the slope of the concentration dependent noise is var-

ied. (A) Probability of success (blue) and mean time to source (red) as γ varies when the

amplitude of the noise is set to α = 2. (B) When γ = 0.01, mean time to source = 12.11

and probability of success = 0.59 which corresponds to smallest noise. (C) When γ = 100,

mean time to source = 7.6 and probability of success = 0.7 which corresponds to optimal

noise (green in (A)) .
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Figure 23: (A) Probability of success as α varies when γ = 100. (B,C,D) Distribution of

the initial positions and the color changes according to probability of success. (B) At small

noise magnitude α = 0.01 (cyan in (A)), the probability of success is 0.5. (C) At optimal

noise magnitude α = 7.2 (magenta in (A)), the probability of success is 0.75. (D) At large

noise magnitude α = 100 (green in (A)), the probability of success is 0.61. (E) Marginal

Probabilities P (r) (left panel) and P (ξ) (right panel) where the noise axis is log scaled and

the dashed black line is the optimal noise level.
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successful from unsuccessful starting points. Then at α = 7.2, the probability of success is

the highest at 75% and we observe in Fig. 23C that the domain is divided into 5 regions. In

the first region, r < 6, the agent is always successful. Then the probability of success drops

to 80− 90% when the agent starts in 6 < r < 7, it drops further to 60− 70% in the region

7 < r < 8, it becomes around 50% in 8 < r < 9 and then zeroes out in the region where r > 9.

From Fig. 23A and 23D, we observe that at higher values of α, the probability of success

plateaus at around 60% which comes as a surprise since one would expect a much lower

probability akin to the results we get for high values of constant noise (Fig. 17D and Fig.

20D). To understand what is going on at large α values, we first check whether this is an

effect of the high value of γ. We observe from Fig. 24 that the probability of success persists

at higher values than we expected for larger noise magnitude for all the different slopes γ of

the concentration dependent noise. We conclude that this result then is not a byproduct of

the chosen slope. We next investigate whether this is due to averaging. Therefore, in Fig.

25A, we again choose γ = 100 and fix r at different values in our domain instead of choosing

both initial conditions r and ξ randomly. Here we notice that for r = 1.5, r = 2.5 and

r = 3.5, the probability of success remains = 1 for all the magnitudes α of noise. We begin

to see a change in the probability once r = 4.5 (purple curve), but the main decrease in the

probability for larger α occurs when r = 5.5 (green curve). Thus, as long as r is less than

4.5, the probability remains high and for r ≥ 7.5, the probability becomes small for large α.

To explain the reason behind these r numbers, we look at the noise (= exp(−100C(r))) as

a function of r. From Fig. 25B, we find that for r < 3, the noise is always zero because the

odor concentration detected is higher than the threshold that would turn the noise switch

on. Hence, for these values of r where the agent is close to the source, the magnitude α

will not affect the 100% probability of success since the noise is already zero here. A very

small noise (< 0.15) is then introduced for 3 < r < 4 which then increases rapidly when no

concentration is detected to become ≈ 1 for r greater than 6. Now, the high magnitudes of

the noise will tremendously worsen the probability of success and we get the plateau once

we average all the curves for different r (black dashed curve in Fig. 25A).
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Figure 24: The probability of success for different values of γ.
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Figure 25: (A) Probability of success as α varies when we start at a fixed value r and a

random value ξ, noise = α exp(−γ CL+CR

2
). The topmost curve in dark blue corresponds to

r = 1.5, the red orange curve for r = 2.5, the yellow curve for r = 3.5, the purple curve

for r = 4.5, the green curve for r = 5.5, the light blue curve for r = 6.5, the red curve for

r = 7.5, the blue curve which is second from bottom corresponds to r = 8.5, and the last

orange curve for r = 9.5. The black dashed curve is the average. (B) noise = exp(−100C(r))

as a function of r.
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Next, we add a non-linearity, either by applying a tanh(100(CL−CR)) or a Hill function

to both CL and CR, and check whether using a concentration dependent noise will improve

on the results we get when adding constant noise. We find that when tanh is used, the

probability of success starts at 76% and fluctuates around this value as γ varies. Though

the mean time to source decreases as γ increases which is similar to the result we get when

the difference between the left and right odor concentrations are linear, we do not find a

similar trend for the probability of success as in Fig. 22A. Therefore, if we consider the

probability of success as the only measure of efficiency, then constant noise is enough to

improve when tanh is applied. If, however, we were to consider the mean time to source as

our efficiency measure, it might then be useful to examine adding concentration dependent

noise further. When we apply a Hill function with cmin = 0.01 to both CL and CR, we find

that the probability of success peaks at very small value of γ = 0.017 and decreases as γ

increases. This shows that the best noise to add when we are using a Hill function is the

constant noise that gives the optimal success probability in Fig. 20C.

3.4 Infinite Line

3.4.1 Constant Noise

In this section, we will again add a constant noise to the heading angle θ in the system

(x, y, θ). This system is planar when we the odor landscape is an infinite line along the y−

axis.

dx = v cos θdt (10)

dθ = β
[
CL − CR

]
dt+ kdW. (11)

This model has two stable fixed points at (0,±π
2
) which correspond to going up or down

the line. In the previous chapter, we show that there is a basin of attraction around the
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Figure 26: Probability of success as constant noise is varied for an infinite line. (A) Prob-

ability of success (blue) and mean time to source (red) as we change the constant level of

noise. (B,C,D) show the distribution of initial conditions and color changing according to

probability of success. (B) At small noise = 0.063 (cyan in (A)), the mean time to source is

7.95 and probability of success is 0.699. (C) At optimal noise = 0.7 (magenta in (A)), the

mean time to source is 7.85 and probability of success is 0.715. (D) At large noise = 15.85

(green in (A)), the mean time to source is 101 and probability of success is 0.23. (E) Marginal

Probabilities P (r) (left panel) and P (ξ) (right panel) where the noise axis is log scaled and

the dashed black line is the optimal noise level.
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stable fixed point even though the model does not exhibit a saddle point. As long as the

trajectories start within this basin, the agent will find and follow the trail, else it might cross

the line but it will not follow it. Because this basin of attraction exists, we want to examine

if we can start somewhere outside this region and still find and follow the trail. We start

by adding a constant noise to θ and exploring its effect on the behavior of our model. The

agent is successful in following the trail if it comes very close to the trail (−1 < x < 1)

and has crossed the trail at least twice. We enforce the second condition in order to ensure

that an instance where the agent crosses the trail but keeps on moving away from it is not

counted as a hit. To count a run as a failure, we study two cases. In the first case, we start

from a specific domain and we consider it a failure once trajectories leave this domain. In

the second case, we allow for trajectories to leave the domain we start from and the agent

fails if it does not follow the trail within the allocated time. Probability of success and mean

time to source are then calculated in the same manner as in the spot source.

In the following infinite line simulations, we used 50,000 simulations where l = 1, φ = 1,

v = 1, β = 10 and the concentration is Gaussian with σ = 2. Fig. 26 shows the probability

of success, mean time to source and distribution of initial conditions when trajectories are

not allowed to cross the domain. The domain here is −10 ≤ x ≤ 10, and we find that the

probability of success does not improve significantly when noise is added. When the noise

is very small, the probability of success is around 70% and it increases to a maximum of

71.5% when noise is optimal. There is a plateau around this value for some range of noise

and then the probability starts decreasing to reach 23%. The mean time to source increases

as we increase noise levels and it takes the shortest time to the trail when the noise is the

lowest. If we look at the distribution of initial conditions, we find that in Fig. 26B when

the noise is small, 0.06, the boundaries of the initial conditions from which trajectories

acquired the trail corresponds the basin of attraction in the deterministic case in Fig. 29

(blue curve). In Fig. 26C, when the noise at 0.7 gives the maximum success, the inside

of what resembles the basin still follow the trail 100% of the time. However, adding noise

breaks the symmetry of the model. Thus, the part of the basin where the agent starts far

from the trail but continues towards it just because the initial heading is directed towards
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the trail no longer has a 100% success probability but rather the probability decreases as we

move farther from the trail to reach around 60%. Similarly, in the regions that never find

the trail in Fig. 26B (blue) because the agent starts heading away from the trail and can

not detect any concentration that will help in correcting its turn, will in Fig. 26C succeed

20 − 60% in following the trail depending on the distance to the trail. Adding noise aids

the agent to turn without detecting concentration which will then put the agent in a higher

concentration gradient that will allow it to acquire the trail. For very large noise levels, we

see from Fig. 26D that noise will be very detrimental to the agent performance which will

only find the trail if it is in a concentration gradient.

In Fig. 27, we inspect the effect of allowing trajectories to leave the domain they start

in. Here, all parameters and the domain size are the same as in Fig. 26, and the only

difference is counting failures as trajectories that do not follow the trail within the allotted

time. We can directly see the improvement in the probability of success in Fig. 27A. The

probability starts around 74%, peaks at 92% and then falls off quickly as the noise increases

to reach 23% for very high noise. Fig. 27B shows that, for small noise, the distribution

of initial conditions that lead to successful runs is almost the same as in Fig. 26B. The

same goes for the case of very high level of noise where Fig. 27D and Fig. 26D are very

similar. The major difference occurs when the noise is optimal at 0.75 which gives the best

probability of success. The region where the the probability is 100% grows a little bit larger

than what it is in Fig. 26C and wherever the agent starts outside of the yellow region, it is

70− 90% successful in following the trail. From Fig. 27C, we see that the lowest probability

calculated is 60% which occurs at the most difficult positions to follow the line: on the edge

of the domain facing away from the trail.

3.4.2 Constant Noise with Hill function

In this section, we check whether applying a non-linearity to the concentration will im-

prove the performance of the model when the odor landscape is an infinite line as it does

when the odor is a spot source. Here, we apply a Hill function to CL and CR and a steep
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Figure 27: Probability of success when trajectories can cross domain as constant noise is

varied for an infinite line. (A) Probability of success (blue) and mean time to source (red)

as the constant level of noise changes. (B,C,D) show the distribution of initial conditions

and color changes according to probability of success. (B) At small noise = 0.063 (cyan in

(A)), the mean time to source is 16.4 and probability of success is 0.74. (C) At optimal

noise = 0.754 (magenta in (A)), the mean time to source is 24.24 and probability of success

is 0.925. Here, the smallest probability of success is 0.6. (D) At large noise = 15.85 (green

in (A)), the mean time to source is 102.65 and probability of success is 0.23. (E) Marginal

Probabilities P (r) (left panel) and P (ξ) (right panel) where the noise axis is log scaled and

the dashed black line is the optimal noise level.
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Figure 28: Probability of success when Hill function is applied as constant noise is varied.

(A) Probability of success (in blue) and mean time to source (in red) as we the constant

level of noise varies. (B,C,D) show the distribution of initial conditions and color changing

according to probability of success. (B) At small noise = 0.063 (cyan in (A)), the mean time

to source is 13.24 and probability of success is 0.79. (C) At optimal noise = 1.17 (magenta

in (A)), the mean time to source is 18.39 and probability of success is 0.81. (D) At large

noise = 15.85 (green in (A)), the mean time to source is 103.37 and probability of success is

0.22 . (E) Marginal Probabilities P (r) (left panel) and P (ξ) (right panel) where the noise

axis is log scaled and the dashed black line is the optimal noise level.
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Figure 29: The blue curves are the basin of attraction when the change in θ depends on the

linear difference between the concentration detected on the left and right sensors. The red

curves are the basin of attraction when a Hill function is applied to CL and CR.

tanh to the difference in the concentrations. We had very similar results for both so we will

only show figures for the Hill function.

Fig. 28A shows the probability of success and mean time to source as constant noise

varies. Here, it is considered a failure if trajectories cross the boundaries. We get very similar

results to when the concentrations detected are not amplified (Fig. 26A). It is important to

note that what differs is the probability of success at small noise levels which in Fig. 26A

is 70% but becomes approximately 80% when a Hill function is used. Fig. 29 explains this

increase because once a Hill function is applied, the basin of attraction expands (red curves).

This can also be seen in Fig. 28B in which the boundary between successful and unsuccessful

runs resemble the basin of attraction in the deterministic case. However, though we see little

change between the probability of success at low noise compared to the optimal noise, the

distribution of the initial conditions that allow for successful runs changes such that the

probability of success becomes more dependent on distance from trail.

When we allow the trajectories to cross the boundaries of the domain, noise at 0.84 will

produce a maximum probability of success at 96% in Fig. 30A instead of it being 82% in Fig.
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Figure 30: Probability of success when Hill function is applied and trajectories can cross

domain. (A) Probability of success (blue) and mean time to source (red) as we change the

constant level of noise. (B,C,D) show the distribution of initial conditions and color changing

according to probability of success. (B) At small noise = 0.063 (cyan in (A)), the mean time

to source is 18.2 and probability of success is 0.82. (C) At optimal noise = 0.844 (magenta

in (A)), the mean time to source is 25.5 and probability of success is 0.96. Here, the smallest

probability of success is around 0.6. (D) At large noise = 15.85 (green in (A)), the mean

time to source is 101.75 and probability of success is 0.22. (E) Marginal Probabilities P (r)

(left panel) and P (ξ) (right panel) where the noise axis is log scaled and the dashed black

line is the optimal noise level.
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28. This is a big improvement and can be seen in Fig. 30C where there is a high probability

to acquire the trail no matter which positions the agent starts from. At very small and high

noise levels, we have the same results as in Fig. 28.

We then examine if this trend continues when the domain size is larger. We expect that

the model will still exhibit an optimal noise level which maximizes success rate but the

probability will peak at a lower value than before. In Fig. 31, we choose the domain to be

−20 < x < 20 and the results are exactly what we predict. The probability starts at 68%

and peaks at around 85% which is lower than what we get in Fig. 30A then it decreases to

11% when the noise is very high. From Fig. 31C, we observe that the agent is at least 60%

successful in acquiring the trail even when it starts very far away from the trail except at

the edges of the domain where the probability drops to 50%.

3.5 Probability of Exiting the Arena at the Source

There are other measures to assess the performance or efficiency of the strategies we used.

One such measure is to look at the probability of exiting the arena at the source. For a spot

source, if the system is initially at some position r at time t, we ask what is the probability

that at a future time s it will exit the arena through rmin. This probability P (r, ξ)) is

similar to the idea of probability of success. It satisfies P (rmin, ξ)) = 1, P (rmax, ξ)) = 0,

P (r, ξ + 2π) = P (r, ξ). P (r, ξ)) and is described by :

0 = f(r, ξ)
∂P

∂ξ
+D1

∂2P

∂ξ2
+ v cos(ξ)

∂P

∂r
+D2

∂2P

∂r2

where D1 = k2

2
, k is the noise level used in Monte Carlo simulations, and f(r, ξ) = β(CL −

CR) − v
r

sin ξ. We used a finite element method software to solve the partial differential

equation. We get similar results to the figures in first section above especially for small

enough diffusion levels. However, we find that even if only constant noise is added, at large

diffusion levels, the probability of success plateaus at unexpected high values. Similar results

are observed with concentration dependent noise. We are not sure the exact reason behind

this and whether it is a byproduct of averaging.
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Figure 31: Probability of success when Hill function is applied and trajectories can cross

a bigger domain. (A) Probability of success (blue) and mean time to source (red) as we

change the constant level of noise. (B,C,D) show the distribution of initial conditions and

color changing according to probability of success. (B) At small noise = 0.063 (cyan in (A)),

the mean time to source is 31.6 and probability of success is 0.685. (C) At optimal noise

= 0.54 (magenta in (A)), the mean time to source is 46.93 and probability of success is 0.855.

Here, the smallest probability of success is around 0.5. (D) At large noise = 15.85 (green in

(A)), the mean time to source is 102.25 and probability of success is 0.11.
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3.6 Discussion

In this chapter, we examined the effect of adding noise to the bilateral model when the

odor landscape is a Gaussian spot source or an infinite line. We used constant noise and

concentration dependent noise and then calculated the probability of success to measure the

performance of each strategy. We also looked at how the model behaves in the presence

of noise when a non-linearity, whether a Hill function or tanh, is applied to the odor con-

centration. We find that there is an optimal level of noise that makes it beneficial to the

system. This is an example of stochastic resonance [51, 48] which has been observed in many

biological systems and in foraging [21, 27, 30, 63]. This noise could be external noise, sensory

noise or even noise in the motor system. Here, the noise we added makes the turning angle

more random than when only bilateral information is used.

In the case of a spot source, constant noise on its own improves the performance of the

bilateral model. However, the performance is greatly enhanced when a Hill function or tanh

is applied to the concentration. In the deterministic case, tanh does not affect the stability

of the fixed points exhibited by the original system. The Hill function, on the other hand,

changes the first unstable fixed point to a stable fixed point causing some trajectories close

by to converge to it without crossing the source. That is the reason why, for small noise, the

model with tanh outperforms that with the Hill function. Once an optimal level of noise is

added, both models with non-linear functions have similar performance which surpass the

model with a linear function of concentrations. This coincides with results showing the im-

portance of a Hill function in olfactory navigation strategies [76] which governs the response

of olfactory receptors [52, 28].

When the odor is an infinite line, the basin of attraction in the deterministic case in-

creases when a non-linearity is applied. We only showed figures for the Hill function, but

this is also true when a steep tanh is used. Thus, the probability of success is larger when

the low concentrations are amplified. With or without a non-linearity, the probability of

success peaks at an optimal noise level and then decreases for larger noise values. A very

63



small noise (< 1) is needed to maximize the probability of success at a value > 90%. This

shows that bilateral information is really helpful when the task is to follow trails. Moreover,

if only a small noise is added to the model, the agent will be able to move more, with some

tortuosity, that allows it to turn without detecting concentration in order to get out of no

odor regions to sample odor at other regions.

One thing that we were able to find for the spot source but not for the infinite line was

the effect of using concentration dependent noise. When we tried adding it for the infinite

trail, we did not observe anything significant. This was also the case for the spot source

when we added concentration dependent noise to the models with non-linear functions of

concentration. However, when the model did not have a Hill or tanh function, concentration

dependent noise greatly increased the performance. Therefore, we find that the best noise

to add to the bilateral model (when its has a linear function of concentration difference) is

the concentration dependent noise that switches off abruptly once a very small odor con-

centration is detected. We can think of this as a transition from a global search where a

correlated random walk is used to move around the environment into a local search where

only the difference between concentrations detected on the sensors is used. We call this a

local search because once concentration is detected then we are close to the odor source due

to the use of Gaussian distribution to describe the target. This abrupt transition which has

been observed in animals such as C-elagans [14] and mice [45] was measured experimentally

by the turning rate and velocity change. Calhoun et al. [14] used a drift diffusion model

fitted to parameters of infotaxis trajectories to describe this transition that they found to

be maximally informative. Our results here depend only on instantaneous detection of the

concentration without any memory measure that tracks odorant hits and no hits (evidence

accumulation).

It has been shown that animals [25, 45] tend to decrease their velocities when they get

closer to odor sources. Liu et al. [45] also showed that removing concentration dependent

velocity while modeling mice behavior, during a spot source localization task in a closed

arena, severely decreased the performance of the model. In our model, we increased the con-
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stant velocity and used a concentration dependent velocity such that the agent slows down

next to the source. Increasing the velocity was helpful on the infinite line when trajectories

could leave the domain especially when the domain size was expanded. We saw no effect

of using a concentration dependent velocity over constant velocity. However, on the spot

and on trails where trajectories failed if they hit the boundary of the domain, both velocity

types worsened the success rate. This might be due to not allowing trajectories to leave the

domain or bounce off the boundaries. Also, concentration dependent velocity might be more

useful if the heading angle depended on temporal sampling and not just the spatial sampling

that we have in our model.

Adding multiplicative noise to the concentrations detected by the sensors did not affect

the probability of success. In future work, We would like to further explore concentration

noise as well as investigate whether adding colored noise might be helpful to the model.

Also, we want to test how noise affect the behavior and performance of the model on more

realistic plumes.
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4.0 Mouse Navigation on Bifurcated Odor Trails

4.1 Introduction

Studies of animals following scent trails have been previously conducted on ants [55, 25],

rodents [37, 41, 77, 49], dogs [71, 36], moles [15, 16] and humans [57]. These studies have

shown that animals use stereo olfaction to navigate, however, if one of the antennae or

nostrils is blocked, animals are still able to follow odor sources though their accuracy and

performance decrease and their trajectories become more tortuous. During navigation, an-

imals also tend to have lateral back-and-forth behavior. These back-and-forth movements

or casting are seen as evidence of active sampling of the odor [3]. However, this zigzagging

increases in amplitude either when the odor signal is lost (rats in [41]), one of the sensors

detecting concentration is lost (moles with stitched nostrils in [15]) or when mice get closer to

odor point sources where the concentration becomes higher instead of lower [45]. Therefore,

how this sampling of odor concentration is employed by animals and how they modulate its

magnitude to track trails or localize sources are still unclear.

Tracking is a complex problem especially in naturalistic arenas where trails are affected

by different factors [36] causing the odor signal to be intermittently detected. Still, the odor

landscape is more stable and fluctuates less than odor plumes especially during lab experi-

ments because the odor is near surface [18]. The experiments studied here are conducted in

low wind conditions which is likely to preserve the spatiotemporal information of the odor

trails near the surface.

In this chapter, we analyze trajectories of mice following odor trails and try to find

behavioral patterns that can be associated with the use of either bilateral or inter-sniff

information. We will simulate a model utilizing bilateral information with noise and check

whether this will be enough to follow the trails. We will further investigate the role of casting

in future work.
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4.2 Methods

4.2.1 Behavioral Arena

The following experiments were done by Annie Liu in Nathan Urban’s lab. A behavioral

arena that was designed before and described in details in Jones and Urban, 2018 ([37]) was

used to collect the trails data. It measures 36× 45 inches which is held above the ground by

an aluminum frame. Infrared IR light-emitting diodes (LEDs) were used to illuminate the

arena to allow the camera (1280×1024 resolution, 11.2 pixels/cm, 50 frames/s, Flea3, Point

Gray Imaging) which was fixed below the arena to record the mice behavior in the dark. All

other light sources were handled so that mice can not rely on visual cues to complete the

trials [37, 45].

4.2.2 Training

Mice were on food restriction to motivate them to engage in the task. While training the

mice, they were placed in the arena for some time to habituate and explore their environment

and were trained on trails that were short and not necessarily Y-trails.

4.2.3 Task

The table was cleaned before every trial. The trails were drawn with odorized wax

crayons [45] which contain methyl salicylate in mineral oil. At random positions on the

trails, small pieces of food (such as peanut or chocolate) were placed as a reward for the

mice to keep them motivated. The location and shapes of the trails were different from

one trial to the other. However, two types of Y-trails were included, symmetric trails that

branched at somehow equal angles, and asymmetric trails that branched at very different

angles.
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4.2.4 Video Analysis

63 trials were analyzed where each trial ran for approximately 3 minutes and the mouse

was presented with a different trail (so total of 63 trails). Optimouse open source [6] was

used to extract the body and nose positions from the raw files (done by Andrew Papale in

Nathan Urban’s lab). The missing data found in the positions were filled using the ’fillgaps’

function in matlab which performs forward and reverse autoregressive fits of the intact data

to extrapolate an estimate new position arrays. The missing data occurred mainly on the

edge of the arena where the mouse could not be detected by the camera from below. One

can simply remove the missing data altogether but we decided on replacing them in the body

and nose positions which are needed for subsequent computations. In some of the figures

below, we do end up removing the data where the mouse hangs at the edge.

4.2.5 Behavioral Analysis

We first started by extracting information about the trails such as the endpoints position,

branching point position, three different branches, angles between the branches and we

accordingly characterize the Y trail as either symmetric or asymmetric. Symmetric trails

are when the branches bifurcate at similar angles while asymmetric trails have branches

with more acute angles. We characterized the angles such that if α1 > α2 > α3 then α1 was

labeled as least acute, α2 as acute and α3 as most acute (Fig. 34 left panel).

Each trial was split into stretches of trail following. We defined trail following as being

at a maximum distance of 10cm from the trail for n = 40 consecutive frames (Fig. 32).

We used the adaptive windowing Janabi-Sharifi algorithm (window size = 50 and an error

term = 0.2) [34], modified by Andrew Papale to allow for post-smoothing of 0.1 seconds, to

calculate the derivatives.

We calculated the average velocities of both the body and the nose of the mice when

they were in the trail following phase (Fig. 33).

We found that in many trail following stretches mice transitioned from one branch to

another. For each transition, we found the angle of the branch that the mouse chose and

computed the probability of a branch being visited from the other two branches (Fig. 34).
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Figure 32: Examples of Mice Trajectories on Y-trails. The top left panel is a schematic of

the top view of the arena. The bottom left three panels show the complete trajectory of

a mouse on an asymmetric Y-trail and two isolated instants from the same trial where the

mouse is considered following the trail. The right panels show the complete trajectory of

a mouse on a symmetric Y-trail and four isolated instants from the same trial where the

mouse is considered following the trail.
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BA

Figure 33: (A) Average body velocity for all trials when mice are following the trail. (B)

Average nose velocity for all trials when mice are following the trail. (A,B) The dashed line

is the average across all trials.

145.3
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21

34
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Figure 34: Left panel, schematic of Y-trail with angles between branches calculated. angle

145.3 is considered the least acute, angle 122.2 is considered the acute, angle 92.5 is considered

the most acute. Right panel, Percentage of branch chosen when mice navigate from one

branch to another.
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To calculate the percentage of arena explored, we binned the arena into 10000 bins for

every trial and excluded 4cm from each edge because the mice usually spend a big part of

the trial hanging around the edges (Fig. 35D).

We determined the occupancy ratio, Fig. 35C, by finding the shortest distance between

the data points and the trails and then partitioning the distance into 2cm blocks. We then

counted the data points that belong in this partition and divided by all the samples that

were not excluded (edges were again excluded here).

Using Janabi-Sharifi algorithm, we calculated the velocity vectors. For each trial, we

grouped the samples that belong to the same distance away from the trail and averaged

their velocities. Then we averaged across trials to get Fig. 35A for body velocities and Fig.

36A for nose velocities.

We got Fig. 35B in the same way as Fig. 35A but here instead of velocities, we looked at

casting or tortuosity. To quantify this measure, we take the absolute value of the derivative

of the turning angle (dφ = arctan(
dy

dx
)) and divide it by the velocity, |dφ|

V
, then take log10.

We computed the casting of the nose in Fig. 36B.

4.2.6 Model

We used the model from Chapter 3 where a Hill function was applied to the left and

right concentrations with cmin = 0.5. Constant noise = 0.7 was added to the heading angle

θ of the model. The sensor length was set to l = 5cm and the sensor angle φ = 0.05 to

mimic the very small distance between the nostrils of the mouse. The concentration was

Gaussian with σ = 2. We set the velocity to be constant throughout the simulation at 13

cm/sec which is the average body velocity across trials when the mice are following the odor

trails. We increased the sensitivity measure of the concentration difference β to 40 and we

set dt = 0.01 which is not realistic to the mouse which sniffs at a rate 0.1. Also, we allowed

for reflective boundaries such that the mouse reflects at an angle = π when its nares hit the

walls.
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Figure 35: (A) Average body velocity across trials binned by distance to the trail. (B)

Tortuosity measure of the body across trials binned by distance to the trail. (C) Ratio of

time occupied across trials at a specific distance from trail. (A,B,C) Shaded area is the

standard deviation of the values across trials. (D) Percent of arena explored at each trial.
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Figure 36: (A) Average nose velocity across trials binned by distance to the trail. (B)

Tortuosity measure of the nose across trials binned by distance to the trail. (A,B) Shaded

area is the standard deviation of the values across trials.

4.3 Results

The results discussed next are preliminary.

4.3.1 Mice Follow the Trail

From Fig. 32, we observe that the mice favor staying on the edge of the arena but that

does not mean that they do not try to follow the trail. Mice are trained on this task and the

trails are randomly baited with small bits of food (peanut or chocolate) which motivate the

mice to engage in the task. When we split the whole trial into stretches of samples where

the mouse is < 10 cm from the trail (i.e. following the trail by our definition), we find that

the mouse does not randomly stay next to the trail but it actually follows it.

We examine whether the mice are exploring the arena by binning the arena and removing

the data within 4cm of the edges. Fig. 35D shows that mice explore between 11 − 25% of

the arena which indicates that the animals are either around the trail or on the edges. This

might be due to the size of the trails relative to the arena which means that the mice are

able to detect where the trail is even from the walls.
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4.3.2 Mice Modulate Their Behavior As a Function of Distance From Odor

Trail

To further check whether the mice are spending time following the trail, we look at the

ratio of time spent as a function of distance from the odor. We notice from Fig. 35C that

the mice spend a majority of the experiment around the trail. They spend ≈ 67% of the

time (excluding time they are on the walls) at a distance < 10 cm from trail. Once the

distance from the trail increases, this figure shows that the mouse spends less time at these

locations. This again demonstrates that the mice are not exploring the arena but are either

on the wall or around the trail.

At every stretch, we calculated the average body and nose velocities in Fig. 33. From

Fig. 33A, the average body velocity ranges between 8 − 22 cm/sec except for the last trial

and the average nose velocity ranges between 12 − 25 cm/sec as seen in Fig. 33B. Across

all trials, the average body velocity = 13.204 cm/sec and the average nose velocity = 17.3

cm/sec. This is consistent with values from other studies (such as [45]) where the nose is

usually faster than the body because of its sweeps and are in a range that indicates they

are actively following the trail. This is further affirmed in Fig. 35A and 36A. We find

that as the mice move towards the odor trail, their average velocities across trials decrease

and the variation decreases. This suggests that the mice are perceiving a higher intensity

of the concentration and they are changing their strategy and behavior to incorporate this

concentration change. We also note that at around 10cm the body velocity has a sharper

change in its magnitude and at around 15cm the nose velocity has a sharper change. We

need to further investigate if this is because of our data or if this will remain true when more

trails are analyzed. One reason might be that at such distance, the odor concentration is

crossing a threshold that the mice are using to switch strategies.

From Fig. 35B and 36B, we observe that the opposite occurs for the casting of both

body and nose. Here, as the mice move closer to the odor source and around 10cm from the

trail, we observe a sharp increase in the the casting magnitude suggesting that the mice are

increasing body and nose sweeps when odor concentration increases. The measure of casting

here divides dφ by the linear velocity therefore biasing the casting measure to the velocity
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response.

4.3.3 Mice Choose the Smoother Angle

From the stretches that we calculated before, we see that when the mice are following

the trail, they transition from one branch to the other. In Chapter 2, when using bilateral

information on its own, we find that the model always chooses the straighter branch. This

is also shown in rats [41] where they choose the straighter branch of the bifurcated trail. To

be able to study whether this is observed in mice too, we calculate the angles between the

branches and accordingly categorize which angle the mice choose in order to move to the

next branch. We see from the right panel of Fig. 34 that mice favor the smoother angle as

well (least acute). Two things we should note: first the number of symmetric trails, where

the least acute and acute angle are very close to each other, outnumber the asymmetric trails

in this dataset. Second, we think that more trails need to be analyzed in order to confidently

proclaim this as a pattern of behavior by the mice.

4.3.4 Simple Model Behavior

When we use the model we specified in the Methods, we find that the agent is able

to follow trails. From Fig. 37, we see that on both symmetric and asymmetric trails, the

model is successful in following the trail and transitioning from one branch to another. The

stretches of trail following are not exhaustive for we observe stretches, similar to mice, where

the agent either starts on a trail and then leaves it or does not choose a branch but keeps

on straight. After we allow the agent to reflect of the walls, we see some bouncing around

the edges in the first row figures in Fig. 37, but do not consider this behavior as spending

time on the edges. Therefore, when we calculate the percent of arena explored with the

trajectories obtained from the model in Fig. 38B, we do not remove any data points. Still,

the model explores 10− 20% of the arena which is similar to the 11− 25% we get with mice

trajectories.

In Fig. 38A, the percentage of branch chosen which is calculated from the model tra-

jectories are comparable to the results we get with the mice. The model chooses the most
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acute branch, fewer than the mice, in favor for the acute angle which is justifiable because

there are more symmetric trails.

4.4 Discussion

In the arena, mice either hang around the edges or are around the trail without exploring

other parts of the arena. As the mouse heads towards the trail, it modulates its velocity

and casting such that at distance around 10cm from the trail, the velocity sharply decreases

and the casting sharply increases. We want to further study this threshold and understand

the reason and advantage of increasing casting. Is casting similar to the noise we added in

Chapter 3 where there is an optimal amplitude that improves the performance even next to

the source?

The model, though simple, performs well in following the trails especially that the bound-

aries are reflecting and thus the trajectories do not leave the arena. We still want to study

how changing the parameters affect the model behavior. In the future, we also want to

introduce different strategies to the model to better determine what cues are most useful to

the mouse. Such strategies might be concentration dependent velocity which occurs in mice

data. Another strategy would be introducing casting to the model and either modulating it

by the velocity or the concentration.

We find that in both the mice and model trajectories, straighter branches (or smoother

angles) are chosen over more acute angles. We are not sure if the results using the model

are due to the effect of the bilateral term, the noise or even how the concentration is defined

at the branching point. However, it would be interesting to pin down if the bilateral term is

behind this result in both the model and the mice.

We are also interested in what is happening around the branch point to maybe understand

how the mice choose one branch over the other. Does the velocity further decrease around the
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Figure 37: The left panels show the complete trajectory of the model on the same asymmetric

Y-trail from Fig. 32 and stretches of trail following. The right panels show the complete

trajectory of a model on a symmetric Y-trail and stretches of trail following.
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Figure 38: Behavior of the model. (A) Percentage of branch chosen when model navigate

from one branch to another. (B) Percent of arena explored at each simulation.

branch point or does casting increase in an attempt by the mouse to gather more information

and then decide? Is the nose closer to one branch and thus leading the mouse to choose that

branch? In mice, one would expect that a swinging nose (casting) might cause the branches

to be equally chosen according to which branch the nose is closer to at the time. We want

to examine if mice are integrating memory or choosing ahead where they are orienting. We

hope we will be able to understand and answer these questions in the future.
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5.0 Conclusion

Olfaction is a sensory modality that is not very well studied. Although research has

picked up in the last decade or two in studying olfaction and olfactory navigation, there is

still a lot that we need to learn. This is due to the different aspects of olfactory navigation

that are complex. The odor landscape itself is usually turbulent and not easily described.

Throughout the experiments and modeling, we can not exactly quantify the odor concentra-

tion that the animals are perceiving. Though we observe and analyze odor driven behaviors,

we are also not sure what rules or strategies are governing these behaviors. Moreover, the

neural circuitry that underlie odor perceptions and translate them into actions is still a chal-

lenge to understand. However, this should not dissuade us from continuing to investigate all

facets of olfactory navigation whether it is plume structure, neurological processes, animal

behavior analysis or mathematical modeling of algorithms and behavior. In this disserta-

tion, we analyzed behavior of mice performing an odor tracking task. We used mathematical

modeling to further our understanding of animal behavior, the algorithm that uses bilateral

information, and the effect of noise on the performance of the model and maybe the animal.

In chapter two, we analyzed a simple model that employs bilateral information to nav-

igate odor sources. We studied its behavior in the presence of infinite and circular trails

and one or more point sources. We find that for the spot source, the stable manifold of the

saddle point acts like a basin of attraction such that any time the agent starts above this

manifold, it navigates toward the spot source. When an infinite line is presented, the system

exhibits only stable fixed points but still has a basin of attraction around the trail so that

only when the agent is inside this region it can follow the trail. In both cases, the basin of

attraction is affected by the parameters of the model; however, if the agent start outside of

this basin, it will never find the source. This indicates that bilateral information is useful as

a local algorithm when it is not paired by any other strategy.

In chapter three, we add on the bilateral model some noise and investigate whether its

79



performance will remain constrained by the basin of attraction. We find that adding noise

to the heading angle is always beneficial in the presence of a spot source whether this noise

is constant or concentration dependent.There is always an optimal level of noise that maxi-

mizes the success rate. The ability to successfully find a source becomes less constrained by

the basin of attraction (as seen the deterministic case) and more dependent on the distance

to source. This improvement is notable when a Hill function is added. The Hill function

is significant for its role as the first step in olfaction due to the relationship between the

receptors and odor concentrations. We also observe that for concentration dependent noise,

the performance is optimized when the noise acts as a switch that turns off once a small

amount of concentration is detected. This is in contrast to what has been shown in chap-

ter three where mice become more tortuous in higher concentrations. On the infinite line,

concentration dependent noise is not useful and a small constant noise can peak the success

rate at high values.

In the final chapter, we analyzed mice behavior on bifurcated trails. We find that mice

are able to track the odor trail without any exploration of the other parts of the arena.

We also see that mice tend to choose smoother angles in bifurcated trails. However, we are

careful not to form a conclusion before further studying and understanding the behavior

before and around the branching point. We observe that many patterns of behavior in mice

change and are modulated by the distance to the trail which is a substitute of concentration

intensity. We find that the velocity and casting have a sharp change in their values when the

mice get within 10 cm of the trail. Moreover, we see that the model from chapter 3, with

different parameters, can perform the task of odor tracking. In the future, we want to try

and better understand whether a change in strategies in mice is responsible for the change

in behavioral patterns. We also want to further develop a model that better describes the

strategies the mice are using here.
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