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Abstract

This thesis focuses on the development of continuous reactor networks that consist of continuous

stirred tank reactors (CSTR) and plug flow reactors (PFR) with multiple injection points for the

rigid polyol productions. To meet the product specifications of this polymerization process and

to minimize the capital cost of the reactor configuration, four major topics are studied: 1. model

development for rigid polyol production, 2. optimization formulations and solution strategies, 3.

kinetic parameter estimation, 4. reactor network design under uncertainties in kinetic parameters.

First, a detailed mathematical model is developed to capture the dynamic behavior of the poly-

merization process. This model includes mass balance, and energy balance. Then, this model is

utilized to estimate the values of kinetic parameters involved in this process. Next, production and

safety specifications are incorporated into the model to find the optimal continuous reactor network

design and corresponding operation recipes that would lead to a minimum capital cost. The results

show that a single PFR with multiple monomer injection points is the best design. However, the

performance can deteriorate in the presence of parameter uncertainties. Compact problem formu-

lations with modifications on the constraint (back-off constraints) and multi-scenario formulation

with each scenario corresponding to one discretized uncertainty level are adopted to develop the

reactor network and operation recipe. Back off terms that are obtained from Monte Carlo simu-

lations tighten the constraint and shrink the feasible region of the optimization problem to such a

level that variations of the constraints in the worst case can still be handled and thus feasibility is

ensured. The multi-scenario formulation is also tolerant to the uncertainties and has better perfor-

mance than the back off method, since it allows different operation recipes (recourse variables) for

different scenarios. On the other hand, multi-scenario approach increases the problem size dramat-

ically. In this work, we demonstrate the effectiveness of both uncertainty approaches and compare

the results on the multi-product reactor network.

For dynamic optimization, simultaneous collocation strategy is applied to discretize the continu-

ii



ous time/volume horizon into finite element mesh and to covert the differential-algebraic equation

(DAE) optimization problems into nonlinear programming problems (NLP). These NLPs are fur-

ther solved by NLP solvers IPOPTH or CONOPT.

iii



Acknowledgments

First, I would like to express my appreciation to the Carnegie Mellon University. Thanks for

providing all the opportunities that allow me to pursue my Ph.D. study at here. I would also like to

express my deepest gratitude to my advisor Prof. Lorenz T. Biegler, who has been a tremendous

mentor for me in academic and many other aspects. I really respect his enthusiasm, devotion and

love towards research. And his wisdom, patience and advice have tremendously helped me with

my research and led me to the right direction. It would be impossible for me to develop those

invaluable skills and knowledge to complete this thesis work in the last five years without him.

I would like to express my sincere thanks to Dr. Maria Ochoa, Dr. John Weston, Dr. Nima Nikbin

and Dr. Jeff Ferrio from the Dow Chemical Company for their strong support, generous help and

valuable feedback. The collaboration with them in the last five years is a great and enjoyable

learning experience. I am also grateful to the financial support from The Dow Chemical Company

for my Ph.D. program in the past few years.

I would also like to express my grateful thanks to my committee members: Prof. Chrysanthos

Gounaris, Prof. Javier Pena and Prof. Nikolas Sahinidis, for their careful reading of my thesis and

valuable advice on the dissertation.

Finally, I would like to express my particular thanks to my parents for their endless amounts of love

and support. There are not enough words to describe how thankful I am to both of you. You both

have taught me so much. Going abroad and being apart from you has made me more independent,

but also made me realize how much you both mean to me. In the end, I would like to express my

thanks to my friends for always being there for me. They have enlightened my life and made it an

enjoyable journey.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Rigid Polyols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Reactor Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Superstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2. Attainable Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3. Model Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Research Statement and Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Optimization Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Solution Approaches for Dynamic Optimization . . . . . . . . . . . . . . . . . . . 12

v



TABLE OF CONTENTS

2.2.1. Sequential Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2. Simultaneous Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . 14

2.3. Nonlinear Programming Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Kinetic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Reaction Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1. BASF Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2. Dow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4. Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1. Semi-Batch and Plug Flow Reactor Models . . . . . . . . . . . . . . . . . 26

3.4.2. Continuous Stirred Tank Reactor Model . . . . . . . . . . . . . . . . . . . 28

3.5. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4. Continuous Reactor Network Design for Rigid Polyol Production . . . . . . . . . . . 34

4.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2. Kinetics for Rigid Polyol Production . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1. Reaction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2. Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3. Optimization Model for Rigid Polyol Reactor . . . . . . . . . . . . . . . . . . . . 44

4.3.1. Material Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2. Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



TABLE OF CONTENTS

4.3.3. Product Quality & Safety Constraints . . . . . . . . . . . . . . . . . . . . 47

4.4. Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1. CSTR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2. DSR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1. One DSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.2. One CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.3. Two CSTRs in Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.4. CSTR Followed by a DSR . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.5. DSR Followed by a CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.6. Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. Continuous Reactor Network Design for Multiple Rigid Polyol Productions . . . . . 73

5.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2. Reactor Models for Rigid Polyol Production . . . . . . . . . . . . . . . . . . . . . 76

5.2.1. Reaction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2. Reactor Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3. Optimization Formulations and Solution Strategy . . . . . . . . . . . . . . . . . . 86

5.3.1. Stage 1 - Minimizing capital cost . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2. Stage 2 - Generate Pareto Chart Between Net Sales and Capital Cost . . . . 90

5.3.3. Optimization Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 91

5.4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



TABLE OF CONTENTS

5.4.1. Stage 1 - Minimizing Capital Cost . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2. Stage 2 Generating Pareto Chart Between Net Sales and Capital Cost . . . 108

5.4.3. Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6. Reactor Network Design Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . 115

6.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2. Back-off Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3. Multi-scenario Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4. CSTR Configuration Design Under Uncertainty . . . . . . . . . . . . . . . . . . . 125

6.4.1. Back-off Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.2. Multi-scenario Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5. DSR Configuration Design Under Uncertainty . . . . . . . . . . . . . . . . . . . . 143

6.5.1. Single DSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5.2. CSTR Followed by a DSR . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.1. Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2. Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.1. Model Development of Rigid Polyol Production . . . . . . . . . . . . . . . 166

7.2.2. Online Optimization and Control . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.3. Grade Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.4. Integration of Demand Forecasting, Scheduling and Real-time Optimization 167

viii



TABLE OF CONTENTS

Appendix A. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

ix



List of Tables

3.1 Optimal Results for Kinetic Parameter Estimation . . . . . . . . . . . . . . . . . . 29

3.2 Eigenvalues of the Reduced Hessian Matrix . . . . . . . . . . . . . . . . . . . . . 30

3.3 Optimal Results After Setting keff1 and keff3 to Zero . . . . . . . . . . . . . . . 31

3.4 Eigenvalues of the Reduced Hessian Matrix After Setting keff1 and keff3 to Zero 31

3.5 Optimal Results After Setting Ea1 and Ea3 to Zero . . . . . . . . . . . . . . . . . 32

3.6 Eigenvalues of the Reduced Hessian Matrix After Setting Ea1 and Ea3 to Zero . . 32

4.1 Reaction Scheme for Rigid Polyol . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Kinetic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Capital Cost Parameters for CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Capital Cost Parameters for PFR . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Capital Cost Parameters for Oxide Recovery System . . . . . . . . . . . . . . . . . 44

4.6 Optimal Relative Capital Cost for Injection Profiles with 10 Monomer Feeds (Scaled
Based on the 5th Iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Active Constraints in the Single DSR Model . . . . . . . . . . . . . . . . . . . . . 59

4.8 Active Constraints in the 2 CSTRs in Series Reactor Network . . . . . . . . . . . . 61

4.9 Active Constraints in the CSTR Followed by a DSR Reactor Network . . . . . . . 64

4.10 Active Constraints in the DSR Followed by a CSTR Reactor Network . . . . . . . 68

x



LIST OF TABLES

4.11 Optimal Results for Different Reactor Networks . . . . . . . . . . . . . . . . . . . 70

4.12 Model Size for Different Reactor Networks . . . . . . . . . . . . . . . . . . . . . 71

5.1 Reactants of Each Rigid Polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Reaction Scheme for Rigid Polyol . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Kinetic Parameters of PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Kinetic Parameters of EO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Parameters for Estimating the Net Sales . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Product & Safety Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Active Constraints’ Impact on the Objective Function (Constraint Multiplier) for
the DSR Reactor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Optimal Decision Profile of DSR vs. the Number of Monomer Injection Points . . 96

5.9 Active Constraints’ Impact on the Objective Function (Constraint Multiplier) for
the 4CSTRs Reactor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Optimal Decision Profile of the 4 CSTRs in Series Model . . . . . . . . . . . . . . 101

5.11 Optimal Decision Profile of CSTR Followed by a DSR Vs. the Number of Monomer
Injection Points within the DSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.12 Relative FRm for CSTR Followed by a DSR (5 INJ) Reactor Network . . . . . . . 106

5.13 Active Constraints’ Impact on the Objective Function (Constraint Multiplier) for
the CSTR Followed by a DSR Reactor Network . . . . . . . . . . . . . . . . . . . 107

5.14 Relative Optimal Results for Different Reactor Networks . . . . . . . . . . . . . . 112

5.15 Model Size for Different Reactor Networks . . . . . . . . . . . . . . . . . . . . . 113

6.1 Uncertain Kinetic Parameters of PO with Corresponding Deviation . . . . . . . . . 125

6.2 Standard Deviations of Inequality Constraints . . . . . . . . . . . . . . . . . . . . 129

6.3 Back-off Optimal Decision Profile for Common Decision Variable q . . . . . . . . 132

xi



LIST OF TABLES

6.4 Back-off Optimal Decision Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Worst Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6 MS Optimal Decision Profile for Common Decision Variable q . . . . . . . . . . . 136

6.7 MS Optimal Decision Profile for Polymer A . . . . . . . . . . . . . . . . . . . . . 136

6.8 MS Optimal Decision Profile for Polymer B . . . . . . . . . . . . . . . . . . . . . 137

6.9 MS Optimal Decision Profile for Polymer C . . . . . . . . . . . . . . . . . . . . . 137

6.10 MS Optimal Decision Profile of Single DSR . . . . . . . . . . . . . . . . . . . . . 145

6.11 MS Optimal Decision Profile of CSTR Followed by a DSR . . . . . . . . . . . . . 152

6.12 Relative Optimal Capital Cost for Different Reactor Networks . . . . . . . . . . . 161

xii



List of Figures

1.1 Application of Rigid Polyols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Potential Reactor Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Superstructure Proposed by Kokossis and Floudas . . . . . . . . . . . . . . . . . . 4

1.4 Superstructure Proposed by Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Attainable Region Proposed by Ming . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Sequential Approach for Dynamic Optimization . . . . . . . . . . . . . . . . . . . 13

3.1 Reaction Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Set Up of a CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Set Up of a PFR with Multiple Monomer Injection Points . . . . . . . . . . . . . . 24

3.4 Set Up of a Semi-batch Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Examined Reactor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Discretized DSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Flow Chart of Finding Optimal Injection Profile . . . . . . . . . . . . . . . . . . . 53

4.4 Feed Profile for the Relaxed DSR Model . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Relative Capital Cost Versus Number of Monomer Injection Points (Scaled to Op-
timal Objective in Table 4.6 No.5 Iteration) . . . . . . . . . . . . . . . . . . . . . 56

xiii



LIST OF FIGURES

4.6 Relative Capital Cost Versus the Position of the Final Injection Point (Scaled to
Optimal DSR Objective in Table 4.6 No.5 Iteration) . . . . . . . . . . . . . . . . . 57

4.7 Decision Profiles of the DSR Model . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Chain Length Distribution for the DSR Model . . . . . . . . . . . . . . . . . . . . 60

4.9 Optimal Results of the 2 CSTRs Model . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Chain Length Distribution for the 2 CSTRs Model . . . . . . . . . . . . . . . . . . 62

4.11 Optimal Results of the CSTR Followed by a DSR Model . . . . . . . . . . . . . . 63

4.12 Decision Profiles of the CSTR Followed by a DSR Model . . . . . . . . . . . . . . 64

4.13 Chain Length Distribution for the CSTR Followed by a DSR Model . . . . . . . . 65

4.14 Number of Injection Point Versus CSTR Residence Time . . . . . . . . . . . . . . 66

4.15 Decision Profiles of the DSR Followed by a CSTR Model . . . . . . . . . . . . . . 67

4.16 Optimal Results of the DSR Followed by a CSTR Model . . . . . . . . . . . . . . 68

4.17 Molecular Weight Distribution for the DSR Followed by a CSTR Model . . . . . . 69

5.1 Examined Reactor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Discretized DSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Number of Monomer Injection Points Versus Costs . . . . . . . . . . . . . . . . . 93

5.4 Capital Cost Breakdown for Each Polymer with DSR with 10 Monomer Injection
Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Decision Profiles of the DSR with 10 Injections for Product A . . . . . . . . . . . 97

5.6 Decision Profiles of the DSR with 10 Injections for Product B . . . . . . . . . . . . 97

5.7 Decision Profiles of the DSR with 10 Injections for Product C . . . . . . . . . . . . 98

5.8 Chain Length Distribution for the DSR Model . . . . . . . . . . . . . . . . . . . . 98

5.9 Number of CSTRs Versus Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiv



LIST OF FIGURES

5.10 Capital Cost Breakdown for Each Polymer Product with 4 CSTRs in Series . . . . 102

5.11 Chain Length Distribution for the 4 CSTRs Model . . . . . . . . . . . . . . . . . . 103

5.12 Number of Monomer Injection Points Within the DSR Versus Costs . . . . . . . . 104

5.13 Temperature Profiles of the CSTR Followed by a DSR Model . . . . . . . . . . . . 106

5.14 Capital Cost Breakdown for Each Polymer Product (Single CSTR Followed by a
DSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.15 Chain Length Distribution for the CSTR Followed by a DSR . . . . . . . . . . . . 108

5.16 Pareto Chart for 4 CSTRs in Series . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.17 Pareto Chart for DSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.18 Pareto Chart for Single CSTR Followed by a DSR . . . . . . . . . . . . . . . . . . 110

5.19 Capital Cost Versus Net Sales for Three Different Reactor Networks . . . . . . . . 111

6.1 Back-off Method Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Multi-scenario Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Sampling Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 PDI Constraint Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 OH Number Constraint Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Molar Flow Rate of Catalyst Constraint Violation . . . . . . . . . . . . . . . . . . 131

6.7 Constraint Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.8 Sampling Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.9 Distribution of PDI Constraint h1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.10 Distribution of Production Constraint h2 . . . . . . . . . . . . . . . . . . . . . . . 140

6.11 Distribution of Outlet Weight Percentage of Monomer Constraint h3 . . . . . . . . 140

6.12 Distribution of Outlet Weight Percentage of Catalyst Constraint h4 . . . . . . . . . 141

xv



LIST OF FIGURES

6.13 Distribution of Adiabatic Temperature Constraint h5 . . . . . . . . . . . . . . . . . 141

6.14 Distribution of Heat Release Constraint h6 . . . . . . . . . . . . . . . . . . . . . . 142

6.15 Distribution of Catalyst Molar Flow Rate Constraint h7 . . . . . . . . . . . . . . . 142

6.16 Distribution of OH Number Lower Bound Constraint h8 . . . . . . . . . . . . . . . 143

6.17 Distribution of OH Number Upper Bound Constraint h9 . . . . . . . . . . . . . . . 143

6.18 MS Decision Profiles of Single DSR for Product A . . . . . . . . . . . . . . . . . 145

6.19 MS Decision Profiles of Single DSR for Product B . . . . . . . . . . . . . . . . . 146

6.20 MS Decision Profiles of Single DSR for Product C . . . . . . . . . . . . . . . . . 146

6.21 Sampling Points Projected in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.22 Distribution of PDI Constraint h1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.23 Distribution of Production Constraint h2 . . . . . . . . . . . . . . . . . . . . . . . 148

6.24 Distribution of Outlet Weight Percentage of Monomer Constraint h3 . . . . . . . . 148

6.25 Distribution of Outlet Weight Percentage of Catalyst Constraint h4 . . . . . . . . . 149

6.26 Distribution of Adiabatic Temperature Constraint h5 . . . . . . . . . . . . . . . . . 149

6.27 Distribution of Heat Release Constraint h6 . . . . . . . . . . . . . . . . . . . . . . 150

6.28 Distribution of Catalyst Molar Flow Rate Constraint h7 . . . . . . . . . . . . . . . 150

6.29 Distribution of OH Number Lower Bound Constraint h8 . . . . . . . . . . . . . . . 151

6.30 Distribution of OH Number Upper Bound Constraint h9 . . . . . . . . . . . . . . . 151

6.31 MS Decision Profiles of CSTR Followed by a DSR for Product A . . . . . . . . . . 153

6.32 MS Decision Profiles of CSTR Followed by a DSR for Product B . . . . . . . . . . 153

6.33 MS Decision Profiles of CSTR Followed by a DSR for Product C . . . . . . . . . . 153

6.34 Distribution of PDI Constraint h1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.35 Distribution of Production Constraint h2 . . . . . . . . . . . . . . . . . . . . . . . 155

xvi



LIST OF FIGURES

6.36 Distribution of Outlet Weight Percentage of Catalyst Constraint h4 . . . . . . . . . 155

6.37 Distribution of Adiabatic Temperature Constraint in CSTR h5 . . . . . . . . . . . . 156

6.38 Distribution of Adiabatic Temperature Constraint in DSR h5 . . . . . . . . . . . . 156

6.39 Distribution of Heat Release Constraint in CSTR h6 . . . . . . . . . . . . . . . . . 157

6.40 Distribution of Heat Release Constraint in DSR h6 . . . . . . . . . . . . . . . . . . 157

6.41 Distribution of Catalyst Molar Flow Rate Constraint in CSTR h7 . . . . . . . . . . 158

6.42 Distribution of Catalyst Molar Flow Rate Constraint in DSR h7 . . . . . . . . . . . 158

6.43 Distribution of OH Number Lower Bound Constraint h8 . . . . . . . . . . . . . . . 159

6.44 Distribution of OH Number Upper Bound Constraint h9 . . . . . . . . . . . . . . . 159

6.45 Violation Amount for PDI Constraint of Polymer A . . . . . . . . . . . . . . . . . 160

6.46 Violation Amount for PDI Constraint of Polymer C . . . . . . . . . . . . . . . . . 161

xvii



Chapter 1 Introduction

1.1 Rigid Polyols

Rigid polyols are defined as polyether polyols that are formed by alkoxylation of initiators with

three to eight active sites to form polyethers. These polyethers usually have a chain length less

than 10, and are used with isocyanates to manufacture closed cell foams, which are utilized in

the production of refrigerators, construction insulation and related products as shown in Fig. 1.1.

Demand for these products has recently doubled, and is expected to grow with the energy efficiency

market in the next 10 years [1].

Figure 1.1. Application of Rigid Polyols

In most current processes, semi-batch reactors are used to produce rigid polyols, with a few ex-

amples of continuous reactors in the patent literature [2]. As polymer product demand increases,

more and larger semi-batch reactors must be built to meet the demand, and the capital cost per

production capacity is reduced as expected. However, this capital cost may still be too high for
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re-investment, and alternative lower capital cost solutions, such as switching the production from

semi-batch reactor to continuous processes, could help sustained growth. Continuous processes

can reduce capital & operating costs and improve productivity. Since in a continuous process, re-

actors do not need to be stopped at the end of a run, or be emptied and refilled with initiator to start

over. Continuous processes can also reduce the cost required for the heat transfer equipment, since

the heat load is more evenly distributed over time. In addition, continuous reactors are easier to

optimize at a steady state to maximize the overall production rate. However, continuous reactors

are not as flexible regarding multiple products, product transition can be difficult and scale-up of

the products requires additional investment. The motivation of this project is to analyze the effect

of switching the production from semi-batch reactors to continuous reactors, by exploring differ-

ent network configurations that consist of plug flow reactor (PFR) and/or continuous stirred tank

reactor (CSTR) models as shown in Fig. 1.2.

Figure 1.2. Potential Reactor Configurations
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1.2 Reactor Network Design

The reactor plays an important role in chemical process; it affects unit operation and more impor-

tantly the product quality. Moreover, the character of a flowsheet is determined by reaction systems

and reactor design. However, research in reactor network synthesis has met with limited success

because of the non-linearity in the reaction models, the uncertainty in kinetic parameters, and the

existence of numerous possible reactor types and networks. In this section, we first introduce the

two main methods that are usually used to obtain the optimal reactor network: superstructure based

approach [3], and attainable region [6]. Then, we cover the approach we applied in this work.

1.2.1 Superstructure

In 1994, Kokossis and Floudas [4] proposed a reactor network that included both CSTRs and PFRs,

as shown in Fig. 1.3. The key advantage of the approach is that the objective value, optimal reac-

tor network and operating conditions can be determined simultaneously. One of the limitations of

this superstructure approach is that the model formulations typically are nonconvex, and subspaces

of the response surface are often ”flat”, leading to many near-optimal solutions. In addition, the

optimal solution is only as rich as the initial superstructure; therefore, the global optimal reactor

network cannot be found if it is not contained within the superstructure. However, there is a trade

off between the richness of the superstructure and the size and complexity of the model. In ad-

dition, some optimal reactor configurations are rather complex (contain multiple recycle streams)

and are hard to validate.
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Figure 1.3. Superstructure Proposed by Kokossis and Floudas

Simple flowsheet configurations with two CSTRs in series and in parallel are frequently used in

practice. However, due to the limitations of these conventional reactor network structures, many

polymer grades, especially high-quality ones, may not be achievable even under a wide range of

operating conditions. Hence, a more flexible process flowsheet configuration was constructed. In

2016, Zhang et al. [5] developed the optimization of continuous reactor networks for a polymer-

ization process. The superstructure (Fig. 1.4) is constructed to incorporate all possible structural

alternatives of interest. The basic idea is to place splitters at the exit of each CSTR, and then allow

all CSTRs to be fully connected with each other. In Zhang’s work, the configurations with one

to four CSTRs were carried out to meet the target molecular weight distribution. The proposed

superstructure is very flexible and allows recycles to occur, but it does not contain other types of

continuous reactors, such as PFR and DSR.
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Figure 1.4. Superstructure Proposed by Chen

1.2.2 Attainable Region

Another way to formulate the reactor network is through the attainable region (AR) in concentra-

tion space, which finds the set of all possible outputs for all possible reactor configurations [6].

Every point in or on the AR is an output of a reactor combination. Once we have the region, we

are assured that it contains the optimal solution. A picture that illustates the attainable region is

shown in Fig. 1.5. However, for this polymerization problem, attainable regions with more than

two dimensions would be required, since there are more than two independent reactants in the pro-

cess. And such AR is hard to construct.

Figure 1.5. Attainable Region Proposed by Ming
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In 2000, Feinberg analyzed the optimal reactor design from a geometric viewpoint [7], [8]. The

first work focused on critical differential sidestream reactors (DSR), while the second one analyzed

critical CSTRs. Critical reactors are the ones whose products lie entirely on the attainable region’s

boundary. Both critical DSR and CSTR play important roles in shaping the attainable region’s

boundary. In these studies, Feinberg determined the necessary conditions for a DSR/CSTR to be

critical. These properties apply regardless of the problem dimension, although computational cost

increases dramatically with the problem dimension. In addition, Feinberg did not discuss if these

conditions would hold true when path constraints were considered. Nevertheless, these AR studies

inspired our study to focus on the reactor networks that contain DSRs (i.e., a PFR with multiple

monomer injection points) and/or CSTRs.

Lakshmanan and Biegler [9] proposed a superstructure framework as a sequence of modules, each

consisting of a CSTR and DSR in parallel. These reactor modules are solved as a sequence of

optimization problems with additional degrees of freedom. Because of this, the sequence leads

to a monotonically decreasing objective function. An optimal network is assumed to have been

found, when there are no further improvements within tolerance. This approach combines AR

properties with superstructure techniques. From a geometric property that shows that network

recycles and recycle reactors are unlikely to lie on the AR, Lakshmanan and Biegler [9] argued

that the modular network is sufficiently rich to yield the optimum network. In addition, higher

dimensional problems are addressed directly through the MINLP formulation.

Our approach combines the ideas in Feinberg’s work [7],[8] (CSTR and DSR play important roles

in shaping the AR boundary) and Lakshmanan and Biegler [9] papers (solving reactor modules

in an increasing manner). First, we examine the reactor network with one CSTR or a PFR with

multiple sidestreams. Then, we enrich the reactor design by adding one more CSTR/DSR in series,

and we continue this procedure, until no improvement (within a tolerance of 1e−3) in the objective

function is found.
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1.2.3 Model Based Optimization

Besides reactor network design, model based optimization can be applied in all layers of the de-

cision hierarchy, which includes regulatory control [10], model predictive control [11], [12], [13],

[14],real time optimization [15], [16], [17], [18], [19], scheduling and planning [20], [21], [22],

[23], [24], [25], [26] (from bottom to the top). Model based optimization allows us to translate

an optimization task to a mathematical programming problem, from which optimal solutions can

be obtained from a mathematical point of view with the help of efficient optimization algorithms.

Hence, model based optimization has been extensively studied in academia. And it becomes the

core of process system engineering (PSE). As these systematic problem solving tools become more

and more mature, there is a stronger trend in process industry to implement these tools to replace

the traditional methods that rely heavily on personal domain knowledge, expertise and trial and

error lab experiment.

1.3 Uncertainty

The success of model-based optimization is highly based on model accuracy. In order to obtain

reliable and meaningful optimal solutions, models used in the optimization problems need to be ac-

curate and representative of the real chemical process. Even a small model mismatch or parameter

uncertainty may result in infeasible solutions, and even leads to unsafe control actions in an actual

plant. Although the off-line dynamic optimization is capable of handling reactor network design

problem and generating operating recipes, its performance can be deteriorated in the presence of

uncertainties. Uncertainties can come from many different sources, such as noises, disturbances,

measurement errors, and uncertain kinetic parameters. In this work we will focus on the last type

of uncertainty. In order to assess the impact of uncertainty in kinetic parameters and construct con-

tinuous reactor networks that work in different scenarios, robust optimization methods for reactor

network design need to be considered. A bunch of methods have been proposed to deal with the

uncertainties in dynamic optimization problem. Based on the utilization of measurements, these
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approaches can be classified into two major categories: robust optimization [27], [28], [29], and

stochastic programming [30], [31], [32], [33].

The robust optimization approach aims to obtain optimal solutions that give the best performance

without using any additional measurements. Therefore, robust optimization does not react to mea-

surements and its optimal solutions are more conservative. A typical formulation of robust opti-

mization is bilevel minmax. In the lower level, we search for the worst case. In the upper level,

we optimizes over the worst scenario. Since the occurrence probability of the worst case is usually

small, the robust solution is often conservative and its performance is largely sacrificed when the

nominal or the most probable uncertainty level is realized.

Stochastic programming first assumes that the probability distribution of the uncertain parame-

ter can be estimated. Then, it takes advantage of the probability information to optimize the best

expected performance. Moreover, this method utilizes measurements and introduces recourse vari-

ables into the model to improve the solution. Once the uncertainty is known in the first stage, its

effect is observed and evaluated. In this way, different uncertainty levels can apply different re-

active actions. The optimal solution results from the stochastic programming is less conservative

compared to those of the robust optimization. However, its problem size is much larger and re-

quires more computational cost, since it needs to cover multiple scenarios.

1.4 Research Statement and Thesis Outline

The goal of this study is to build model-based optimization problem to figure out the optimal re-

actor network design and the corresponding operating recipes for rigid polyol productions. To

achieve this goal, four topics are carried out:

1. Kinetic parameter estimation

2. Reactor network design for a single rigid polyol

3. Reactor network design for multiple rigid polyols

4. Optimization under uncertainty
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A detailed model that is representative of the process is a solid base for all the subsequent tasks.

Once the model is ready, we focus on the reactor network design under uncertainty. The motiva-

tion, the background, the methodology as well as the results of each topic will be discussed in the

remainder of the thesis.

Chapter 2 first introduces the dynamic optimization problem formulation. Then, it gives a brief

overview of the optimization algorithms for dynamic optimization. In this work, simultaneous

collocation method is widely applied to solve the dynamic optimization problems. Because this

approach converts DAE problem into NLP, and enables efficient solution to the large-scale opti-

mization problem. We also discuss three main nonlinear programming algorithms that are applied

in the current NLP solvers.

Starting from Chapter 3, we focus on industrial applications of rigid polyol polymerization pro-

cesses. First, we construct model that describes the polymerization process from scratch. Then,

we utilize the model to estimate kinetic parameters present in the process with data provided by

the Dow Chemical Company and a BASF patent.

Chapter 4 starts reactor network design for a single rigid polyol production. We focus on two types

of continuous reactors: continuous stirred tank reactor (CSTR) and plug flow reactor (PFR) with

multiple injection points. To this end, we examine five different reactor configurations: a single

CSTR, two CSTRs in series, a single DSR, a CSTR followed by a DSR, and a DSR followed by a

CSTR.

In order to remain competitive, companies are required to operate their systems at nearby optimal

conditions for multiple products. Furthermore, multiproduct processes are widely used in different

sectors due to their versatility and convenience. Therefore, in Chapter 5, we aim to find the optimal

reactor network that is capable of producing multiple rigid polyols. We explore three main reactor

configurations: CSTRs in series, a single DSR and a DSR followed by a CSTR.

Chapter 6 aims at obtaining robust optimal solutions in the presence of uncertainty in kinetic pa-

rameters. The motivation of considering uncertainty, as well as the background information on

related research topics, will be introduced at the beginning of the chapter. Next, we formulate the
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back-off and multi-scenario problems, and demonstrate and compare their effectiveness using a

case study.

Chapter 7 concludes the dissertation, discusses the contributions of our work, and points out some

open questions and future research directions.
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Chapter 2 Optimization Methodology

2.1 Dynamic Optimization

Dynamic optimization [34], [35], [36] has been widely applied in chemical processes, including

off-line problems [38], [39], [40], such as recipe and reactor network optimization, as well as

on-line applications [41], [42] including predictive control, state estimation and online process

identification. In most of the cases, a dynamic optimization problem with embedded differential

algebraic equations (DAEs) is couched in the continuous time or volume horizon. The general

form of a dynamic optimization problem can be summarised in Eqn. 2.1.

min CC = f(q, βV )

s.t. ż(V ) = f(z(V ), y(V ), u(V ), q) = 0

g(z(V ), y(V ), u(V ), q, ) = 0

h(z(V ), y(V ), u(V ), q, βV ) ≤ 0

z(V )L ≤ z(V ) ≤ z(V )U

y(V )L ≤ y(V ) ≤ y(V )U

qL ≤ q ≤ qU

u(V )L ≤ u(V ) ≤ u(V )U

βV ∈ {0, 1}

(2.1)
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The objective function of the dynamic optimization problem (f(q, βV )) is to minimize the capital

cost (CC), which is a function of decision variables (q) including reactor volume, heat exchanger

capacity and monomer separation unit capacity. Binary variable βV is also a decision variable,

which represents the monomer injection points. It equals to 1 when monomers are added to the

reactor at the reactor volume of V . If no monomer is fed to reactor at the volume of V , βV equals

to 0. z and y are differential and algebraic state variables, respectively, and u denotes the oper-

ation variables, which is also a type of decision variables that is a function of reactor volume V .

It consists of the reactor temperature, feeding rates of monomer, catalyst and initiator. Also, the

derivatives in differential equations are denoted by ż, which result from the material balance as

well as the energy balance. In addition, g(·) and h(·) denote the algebraic equality and inequality

constraints, respectively. The next four equations represent the upper and lower bounds for the

differential, algebraic and decision, operation variables, respectively.

2.2 Solution Approaches for Dynamic Optimization

Numerical solution techniques are favored to obtain the approximated optimal solutions of dy-

namic optimization problem, because analytical solution is difficult for realistic problems and

cannot handle inequality constraints in the dynamic optimization problem. There are two com-

mon numerical solution methods for solving the dynamic optimization problem: the sequential

approach [43], [44], [45], [46] and the simultaneous approach [47], [48]. In both approaches,

the decision variable is parameterized by applying an appropriate function approximation, such

as piecewise constant parameterization. The major difference between these two methods is the

way to treat the embedding DAEs. We are going to explore these two methods in the next two

subsections.
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2.2.1 Sequential Approach

The idea behind the sequential approach is to separate the DAE simulation problem from the

optimization objective. At the meanwhile, the sequential approach links these two parts together

through sensitivity calculations. In order to converge to a local optimal point, three functional

blocks: DAE solver, sensitivity calculation and NLP solver are executed repeatedly [49], as shown

in Fig. 2.1.

Figure 2.1. Sequential Approach for Dynamic Optimization

At each iteration, decision variables are fixed based on the DAE solver from the previous iteration.

When the decision variables are specified, the DAE problem can be treated as an initial value prob-

lem and one can integrate the differential and the equality constraints forward in time or volume

to obtain the differential state profile, algebraic state profile and control function profile. These

profiles are used in the next component to evaluate the gradients of the objective and constraint

functions with respect to the decision variables. Then, these function and gradient information are

passed to the NLP solver, and the decision variables. One of the disadvantages of the sequential

approach is that it cannot directly handle path constraints and inequality constraints in the sensi-

tivity analysis. Further reformulation is required to convert those constraints to either end-point

constraints or penalty terms in the objective function.
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2.2.2 Simultaneous Dynamic Optimization

Both multiple shooting [50] and simultaneous collocation [51] methods can be considered as si-

multaneous approaches. The basic idea of multiple shooting is to divide the continuous time or

volume horizon into several segments. Then, the sequential approach is applied to each time or

volume slot. This approach performs better than the sequential approach when dealing with unsta-

ble systems. Moreover, not only the control variables but also the initial conditions of the states in

each slot are considered in the sensitivity calculation, and thus more state variable information can

be utilized by the NLP solver. Therefore, multiple shooting approach increases the problem size.

The simultaneous collocation method follows a full discretization methodology, in which orthog-

onal collocation on a fixed/moving finite element mesh is introduced to represent the continuous

time or volume horizon. By discretizing the continous time or volume horizon into a finite ele-

ment mesh, the DAE problem is converted into NLP. State and decision variables are represented

by a family of polynomials on the finite elements. In addition, the decision profiles are usually

parametrized within finite elements using piecewise constant or linear profiles. More specifically,

for the differential and algebraic state variables, a Runge-Kutta basis representation is introduced:

z(V ) = zi−1 + hi

K∑
j=1

Ωj(τ)żi,j (2.2)

y(V ) =
K∑
j=1

lj(τ)yi,j (2.3)

where i corresponds to the index of finite elements, j is the index of collocation points up to K. hi

is the length of each element. τ ∈ [0, 1] represents the normalized time or volume in an element

with V = Vi−1 + hiτ . Moreover, zi−1 is the value of the differential variable at the beginning of

the element, żi,j is the value of the derivatives at the collocation point j in element i, and Ωj is

a polynomial of degree K, defined in Eqn. 2.4, where lj(τ) denotes the Lagrange interpolation
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polynomial basis function (Eqn. 2.5).

Ωj =

∫ τ

0

lj(τ
′)dτ ′ (2.4)

lj(τ) =
K∏

k=1,6=j

(τ − τk)
(τj − τk)

(2.5)

In addition, to ensure the continuity condition across the element boundary, Eqn. 2.6 is introduced.

It requires the value of the differential variables at the beginning of each element to equal the value

of the differential variables at the end of the previous element.

zi = zi−1 + hi

K∑
j=1

Ωj(1)żi,j (2.6)

The algebraic state variables y are treated as Kth order Lagrange polynomials, but without the

continuity condition across finite elements. By applying the collocation method, a dynamic op-

timization problem (Eqn. 2.1) is transformed into an MINLP problem with algebraic constraints

(Eqn. 2.7). The binary variables βi,j can be manually fixed to convert the MINLP to a NLP, which
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can later be solved by NLP solvers, such as IPOPT [52] and CONOPT [53], [54].

min CC = f(q, βi,j)

s.t. zi,j = zi−1 + hi

K∑
j=1

Ωj(τj)żi,j

zi = zi−1 + hi

K∑
j=1

Ωj(1)żi,j

żi,j = f(zi,j, yi,j, ui,j, q), z1,0 = z0

g(zi,j, yi,j, ui,j, q) = 0

h(zi,j, yi,j, ui,j, q, βi,j) ≤ 0

zLi,j ≤ zi,j ≤ zUi,j

yLi,j ≤ yi,j ≤ yUi,j

qL ≤ q ≤ qU

uLi,j ≤ ui,j ≤ uUi,j

βi,j ∈ {0, 1}

i = 1...N, j = 1...K

(2.7)

2.3 Nonlinear Programming Solvers

No matter whether one chooses to adopt the sequential or the simultaneous approach, an NLP

solver is required to solve the dynamic optimization problem by conducting optimization searches

on the decision variables. Newton type solvers [55], [56], [57] are generally preferred due to

their fast convergence properties. The current NLP solvers usually apply three types of nonlinear

programming algorithms: 1. sequential quadratic programming (SQP) method, 2. generalized re-

duced gradient (GRG) method, 3. interior point method.

SQP method [58], [59], [60], [61] is one of the most successful methods for generating the numer-

ical solution of the constrained NLPs. SQP is an iterative procedure which models the NLP for a
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given iteration by a Quadratic Programming (QP) subproblem. Then, it solves the QP subproblem

and uses the solution to construct a new iteration. The QPs are constructed by using the variable

value and derivative information at each iteration. SQP solvers are widely applied in the sequential

method for dynamic optimization. First, the NLP problem size is relatively small in the sequential

approach. Second, SQP methods generally perform well with approximated derivatives although

second order derivatives are very expensive to compute via sensitivity analysis. SQP is adopted in

solvers like SNOPT [62], [63], and NPSOL [64].

The main idea behind the GRG method [65], [66], [67] is to partition the variables in a NLP into ba-

sic, nonbasic, and superbasic variables. The basic variables are used to solve equality constraints,

nonbasic variables are fixed at either their upper or lower bounds, and superbasic variables are

used to drive the optimization search. CONOPT and MINOS [68], [69] are representative solvers

implementing the GRG method.

The basic idea behind the interior point method is to reformulate the inequality constraints as bar-

rier (penalty) terms to the objective function. Then, a series of NLP problems are solved with

decreasing barrier parameters to recover the optimal solution of the original problem. The method

has advantages dealing with large-scale problems with many degrees of freedom. Therefore, it is

often used to solve the NLP problems resulting from the simultaneous collocation method. NLP

solvers that apply the interior point method include IPOPT, and KNITRO [70], [71].
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Chapter 3 Kinetic Parameter Estimation

3.1 Introduction

As mentioned in the previous chapters, the motivation of this project is switching the rigid polyol

production from the existing semi-batch reactors to continuous reactors to lower the capital cost,

and to increase the production rate. Before jumping into the continuous reactor network design,

we first need to figure out and understand the reaction mechanism and the values of the kinetic

parameters involved in the polymerization process. Rational design, simulation and optimization

of an industrial process has to be built on an accurate basis, reliable data for mass, energy and mo-

mentum balance as well as chemical kinetics. In addition, scaling up from laboratory to industrial

level requires predictive models with accurate parameter values. The aim of any kinetic parame-

ter analysis in reaction engineering is to find adequate reaction model equations and to arrive at

reliable parameter estimates dependent on the operating variables of the reactor, such as pressure,

temperature, flow conditions and so on. These parameters then will be used to construct a reactor

model, which consists of a set of equations that describe the behavior of a reactor with sufficient

accuracy. Nowadays, model-based or equation-oriented kinetic parameter estimation [72], [73],

[74], [75] is widely applied in chemical, biological and pharmaceutical process to deeper the un-

derstanding. Moreover, an open-source toolkit KIPET has been developed for kinetic parameter

estimation.
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3.2 Reaction Mechanism

The rigid polyols are initiated from base initiators like sucrose, glycerin, sorbitol, ethylene di-

amine, ortho-toluene diamine. These initiators often require special equipment to handle them

due to their different physical and chemical nature. Typically, catalysts are used during the poly-

merization process to accelerate the desired reaction although there are some initiators that are

autocatalytic for the first oxide addition. Typical catalysts that are used are divided into two cat-

egories – deactivating catalysts, such as amines, imidazoles and non-deactivating catalysts, like

KOH. The deactivating catalysts have a side reaction with the oxides that accelerates with the in-

creasing temperature. The oxides are typically propylene oxide and ethylene oxide.

In this kinetic parameter estimation case study:

Initiator: o-toluenediamine

Catalyst: none

Monomer: propylene oxide

The reaction scheme composes of six reactions in total. First, monomer propylene oxide (PO)

attaches to the initiator o-toluenediamine (TDA) to form the mono-substituted species (M). Then,

M reacts with PO to form di-substituted species D11 and D12. There is a minor difference between

D11 and D12, as shown in Fig. 3.1. In D11, two POs attach to the same amine group, but in D12

they attach to different amine groups. D11 and D12 then continue to react with PO to produce

tri-substituted (T) species. Last, T and PO form quad-substituted (Q) species.

TDA + PO k1−−→ M

M + PO k2−−→ D12

M + PO k3−−→ D11

D12 + PO k4−−→ T

D11 + PO k5−−→ T

T + PO k6−−→ Q
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Figure 3.1. Reaction Mechanism

Although there are six reactions, only two rate constants k1 and k3 are independent. The rest of the

rate constants are connected with either k1 or k3, as described below:

k2 =
1

2
k1

k4 = 2 k3 (3.1)

k5 =
1

2
k1

k6 = k3

According to the Arrhenius equation below, activation energies Ea1 and Ea3 are required, in order

to obtain the rate constants at various temperatures.

ki = krefi e
Eai

RTref
(1−

Tref
T

)
, i = 1, 3 (3.2)

Furthermore, it is known that tertiary amines act as catalysts in these reactions. It is suggested to

modify the reaction rates by introducing two enhancement factors keff1 and keff3.

TAREi = 1 + keffi(CD11 + CT + 2CQ), i = 1, 3 (3.3)

In the end, the rate equations can be modified with six kinetic parameters in this process: k1, k3,

20



CHAPTER 3. KINETIC PARAMETER ESTIMATION

Ea1, Ea3, keff1 and keff3.

r1 = k1CTDACPO ∗ TARE1

r2 =
1

2
k1CMCPO ∗ TARE1

r3 = k3CMCPO ∗ TARE3 (3.4)

r4 = 2k3CD12CPO ∗ TARE3

r5 =
1

2
k1CD11CPO ∗ TARE1

r6 = k3CTCPO ∗ TARE3

3.3 Data Set

For this rigid polyol production, two kinds of data sources are available for the kinetic parameter

estimation. One data set is from a BASF patent [2], and the other one comes from the Dow Chem-

ical Company as confidential data.

3.3.1 BASF Data

In the BASF patent, two experiments involving the continuous stirred tank reactor (CSTR) and

three examples involving the plug flow reactor (PFR) with multiple monomer injections. The be-

havior of a CSTR is often approximated or modeled by that of an ideal CSTR, which assumes

perfect mixing. In a perfectly mixed reactor, reagent is instantaneously and uniformly mixed

throughout the reactor upon entry. Consequently, the output composition is identical to compo-

sition of the material inside the reactor, which is a function of residence time and reaction rate.

Fig. 3.2 shows the set up of a typical CSTR. For the CSTR data set, the available information

includes the reactor temperature, residence time, PO/TDA feed ratio and weight percentage of free

TDA and PO at the outlet stream. Moreover, the CSTR material balance is F 0
i − Fi = −riV ,
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where i represents the components in this process, F 0
i and Fi are the inlet and outlet molar flow

rate of component i, respectively. ri is the generation rate of reactant i, and V represents the reactor

volume. The CSTR mass balance can be summarized as following:

F 0
TDA − FTDA = r1 ∗ V

F 0
M − FM = (−r1 + r2 + r3) ∗ V

F 0
D11 − FD11 = (−r3 + r5) ∗ V

F 0
D12 − FD12 = (−r2 + r4) ∗ V (3.5)

F 0
T − FT = (−r4 − r5 + r6) ∗ V

F 0
Q − FQ = −r6 ∗ V

F 0
PO − FPO =

6∑
n=1

ri ∗ V

Figure 3.2. Set Up of a CSTR

Fluid going through a PFR can be modeled as flowing through the reactor as a series of infinitely

thin coherent plugs, each with a uniform composition, traveling in the axial direction of the reactor,

and each plug has a different composition from the ones before and after it. The key assumption is
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that as a plug flows through a PFR, the fluid is perfectly mixed in the radial direction but not in the

axial direction (forwards or backwards). Each plug of different volume is considered as a separate

entity, effectively an infinitesimally small continuous stirred tank reactor, limiting to zero volume.

As it flows down the tubular PFR, the residence time of the plug is a function of its position in

the reactor. For the PFR data set, what are available are the reactor temperature, residence time,

PO/TDA feed ratio, weight percentage of free PO at the outlet stream, and the number of feeding

points. However, there is no information about the exact amount or location of each injection point.

Hence, it is assumed that the feed is evenly distributed among the feeding points and the injection

points are evenly distributed along the PFR reactor, as shown in Fig. 3.3. Furthermore, the design

equation for PFR is dFi

dV
= ri, where Fi stands for the molar flow rate of component i, V represents

the reactor volume, ri is the reaction rate of reactant i. The PFR mass balance can be summarized

as follows:

dFTDA
dV

= −r1
dFM
dV

= r1 − r2 − r3
dFD11

dV
= r3 − r5

dFD12

dV
= r2 − r4 (3.6)

dFT
dV

= r4 + r5 − r6
dFQ
dV

= r6

dFPO
dV

= −
6∑

n=1

ri
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Figure 3.3. Set Up of a PFR with Multiple Monomer Injection Points

3.3.2 Dow Data

The confidential Dow data contains four sets of semi-batch data. Semi-batch reactors (see Fig.

3.4) operate much like batch reactors in that they take place in a single stirred tank with similar

equipment. However, they are modified to allow reactant addition in time. A normal batch reactor

is filled with the reactants in a single stirred tank at time zero and the reaction proceeds. On

the contrary, a semi-batch reactor allows partial filling of reactants with the flexibility of adding

more reactant as time progresses. Stirring in both types is very efficient, which allows batch and

semi-batch reactors to assume a uniform composition and temperature throughout the reactor.

Figure 3.4. Set Up of a Semi-batch Reactor

Each semi-batch data set includes the reactor temperature and pressure at every minute, molar flow

rate of monomer PO, the amount of TDA fed to the reactor and the reactor volume. Since pressure
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data are available instead of concentration data, Wilson equation is used to convert pressure to

concentration.

lnγi = 1− ln(
∑
j

Aijxj)−
∑
j

Ajixj∑
k Ajkxk

(3.7)

lnAij = aij +
bij
T

+ cijlnT + dijT +
eij
T

(3.8)

P =
∑
i

xiP
sat
i γi (3.9)

where, xi represents the molar fraction of component i in the liquid phase. γi stands for activity

coefficient, and Aij is a parameter, which can be calculated using the second equation above.

Last, reactor pressure can be obtained by the last equation, where psati is the saturation pressure of

component i. Finally, the material balance for semi-batch reactor is dNi

dt
= Fi + riV , where Ni is

the number of moles of component i, t stands for time, Fi represents the feeding rate of component

i, V is the reactor volume. The semi-batch mass balance can be summarized as following:

dNTDA

dt
= FTDA − r1 ∗ V

dNM

dt
= (r1 − r2 − r3) ∗ V

dND11

dt
= (r3 − r5) ∗ V

dND12

dt
= (r2 − r4) ∗ V (3.10)

dNT

dt
= (r4 + r5 − r6) ∗ V

dNQ

dt
= r6 ∗ V

dNPO

dt
= FPO −

6∑
n=1

ri ∗ V
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3.4 Solution Strategy

3.4.1 Semi-Batch and Plug Flow Reactor Models

The semi-batch and plug flow reactor models can be written in a general form as a dynamic opti-

mization problem:

min
∑
n

(θn − θdatan )2

s.t. ż = f(z(x), y(x), u), z(0) = z0

g(z(x), y(x), u) = 0

zL ≤ z(x) ≤ zU

yL ≤ y(x) ≤ yU

uL ≤ u ≤ uU

(3.11)

θ here represents weight fraction when dealing with the BASF data and stands for pressure when

handling the Dow data. In addition, x represents time in the semi-batch model and stands for re-

actor volume in the PFR model. The objective function is the difference between actual data and

model prediction. Moreover, z and y are differential and algebraic state variables, respectively,

and u denotes the decision variables that are the six kinetic parameters in this case. Furthermore,

differential equations are denoted by f(·), which come from the material balance. g(·) denotes the

equality process constraints, which results from the pressure or weight fraction calculations, such

as Wilson equation. The last three equations represent the upper and lower bounds for differential,

algebraic and decision variables, respectively.

The simultaneous collocation method can be adopted to deal with the dynamic optimization prob-

lem in Eqn. 3.11. This method follows a full discretization methodology, in which orthogo-

nal collocation on a fixed/moving finite element mesh is introduced to represent the continuous

time/volume horizon. Meanwhile, the state variables are also discretized in the time/volume di-
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mension. More specifically, for the differential states variables, a Runge-Kutta basis representation

is introduced:

z(x) = zi−1 + hi

K∑
j=1

Ωj(τ)żi,j (3.12)

where i corresponds to the index of finite elements, j is the index of collocation points up to K.

hi is the length of element i. τ ∈ [0, 1] represents the normalized time/volume in an element with

x = xi−1 + hiτ . Moreover, zi−1 is the value of the differential variable at the beginning of the

element, żi,j is the value of the derivatives at the collocation point j in element i, and Ωj is a

polynomial of degree K, defined as the following:

Ωj =

∫ τ

0

lj(τ
′)dτ ′ (3.13)

lj(τ) =
K∏

k=1,6=j

(τ − τk)
(τj − τk)

(3.14)

In addition, to ensure the continuity condition across the element boundary, the following equation

is introduced:

zi = z1−1 + hi

K∑
j=1

Ωj(1)żi,j (3.15)

The algebraic states y are treated as Kth order Lagrange polynomials, but without the continuity

condition across finite elements. By using the collocation method, a dynamic optimization problem
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is translated into an NLP problem without any differential equations.

min
∑
n

(θn − θdatan )2

s.t. żi,j = f(zi,j, yi,j, u), z1,0 = z0

zi,j = zi−1 + hi

K∑
j=1

Ω(τj)żi,j

zi = zi−1 + hi

K∑
j=1

Ω(1)żi,j

g(zi,j, yi,j, u) = 0

zL ≤ zi,j ≤ zU

yL ≤ yi,j ≤ yU

uL ≤ u ≤ uU

(3.16)

3.4.2 Continuous Stirred Tank Reactor Model

The general form for the CSTR model is simpler, since it does not contain any differential equa-

tions. Hence, all the constraints are in algebraic form, and the CSTR problem is a nonlinear pro-

gramming problem (NLP) instead of a differential-algebraic equation (DAE) optimization prob-

lem. The CSTR model can be directly developed in platforms, such as GAMS, AMPL, Pyomo,

and solved by NLP solvers. In addition, the objective function is still the difference between actual

data and model prediction for the CSTR model.

min (θPO − θdataPO )2

s.t. g(y, u) = 0

yL ≤ y ≤ yU

uL ≤ u ≤ uU

(3.17)
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where θ represents weight fraction, y stands for the algebraic state variables, u is the decision

variables, which are the six kinetic parameters. g(·) denotes the equality constraints that come

from the material balance.

3.5 Results and Discussion

The kinetic parameter estimation results are displayed in Table 3.1. The optimal results obtained

by using the BASF data are presented in the left two columns. Both results in the last two columns

are estimated based on the Dow data. The lower bounds for Ea1 and Ea3 are 120 kJ
mol

and 95

kJ
mol

, respectively for BASF 1 and Dow 1. On the other hand, there is no restriction on activation

energies for the BASF 2 and Dow 2 cases. The reason why lower bounds of activation energies are

added for BASF 1 and Dow 1 cases is that the open literature states the values of Ea1 amd Ea3 are

around 120 kJ
mol

and 95 kJ
mol

, respectively. The units for ki, Eai and keffi in Table 3.1 are cm3

mol∗min ,

J
mol

and cm3

mol
, respectively, i ∈ {1, 3}, and the reference temperature is 122 °C.

Table 3.1 Optimal Results for Kinetic Parameter Estimation

BASF 1 BASF 2 Dow 1 Dow 2

Obj 936.310 0.0989 80.921 57.541

k1 6.96± 1.89 ∗ 10−5 5.76± 3.35 3.87± 4.56 ∗ 10−3 6.47± 0.68

k3 0.20± 4.69 ∗ 10−6 1.05± 1.31 8.92± 0.63 3.23± 0.67

Ea1 1.20 ∗ 105 6.06 ∗ 103 ± 2.98 ∗ 104 1.20 ∗ 105 3.72 ∗ 104 ± 1.69 ∗ 104

Ea3 9.50 ∗ 104 6.56 ∗ 10−2 ± 9.27 ∗ 102 9.50 ∗ 104 9.69 ∗ 103 ± 1.05 ∗ 103

keff1 3.47 ∗ 103 ± 9.12 ∗ 10−2 1.75 ∗ 104 ± 8.55 ∗ 103 6.71 ∗ 103 ± 465 6.84 ∗ 103 ± 7.73 ∗ 102

keff3 2.23 ∗ 104 ± 5.97 ∗ 10−1 2.48 ∗ 104 ± 5.04 ∗ 104 1.34 ∗ 10−4 ± 0.13 1.09 ∗ 10−4 ± 0.11

According to Table 3.1, the value of the objective function is much lower when there is no restric-

tion on the activation energies. In addition, the optimal results solve to lower bounds when bounds

forEai are added. However, the standard deviations of kinetic parameters are much higher without
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the activation energy bounds.

After solving the model and obtaining the optimal results, a covariance check is carried out to figure

out which kinetic parameter cannot be determined independently. The eigenvalues of the reduced

hessian matrix are shown in Table 3.2. According to this, all kinetic parameters can be determined

for the BASF 1 case. However, recall that, the activation energies solve to lower bounds. Moreover,

four eigenvalues of the reduced hessian matrix are very small for the BASF 2 case, which means

these four kinetic parameters have large variances. Hence these parameters cannot be determined

independently. On the other hand, when solving the model using the Dow data, and adding the

activation energy bounds, only one kinetic parameter keff1 has large variance. In addition, Ea1,

Ea3 and keff1 cannot be determined independently when the lower bounds for activation energies

are not present. In conclusion, more kinetic parameters can be determined independently when the

lower bounds of activation energies are incorporated in the model. However, activation energies

solve to their lower bounds, which implies they are not independent and we would obtain a lower

objective when there is no activation energy restriction.

Table 3.2 Eigenvalues of the Reduced Hessian Matrix

BASF 1 BASF 2 Dow 1 Dow 2

2.8 - keff3 3.9 ∗ 10−10 - keff3 6.3 ∗ 10−5 - keff1 2.4e−9 - Ea3

1.2 ∗ 102 - keff1 1.1 ∗ 10−9 - Ea1 55.5 - keff3 4.5 ∗ 10−9 - Ea1

5.1 ∗ 109 - k1 3.1 ∗ 10−8 - keff1 3.9 ∗ 109 - k3 5.4 ∗ 10−6 - keff1

5.5 ∗ 1011 - k3 1.2 ∗ 10−6 - Ea3 7.4 ∗ 1011 - k1 8.4 ∗ 101 - keff3

3.0 ∗ 101 - k1 1.1 ∗ 108 - k3

2.3 ∗ 103 - k3 2.3 ∗ 1010 - k1

We further simplify the kinetic model by setting keff1 and keff3 to zero and removing the lower

bounds for Ea1 and Ea3. The optimal nominal values and corresponding standard deviations

obtained by applying the BASF and Dow data are recorded in the second and third columns of
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Table 3.3, respectively. Moreover, the corresponding eigenvalues of the reduced Hessian matrix are

listed in Table 3.4. From these two tables we can tell that Ea1 and Ea3 still cannot be determined

independently even when keff1 and keff3 are fixed to zero.

Table 3.3 Optimal Results After Setting keff1 and keff3 to Zero

BASF Dow

Obj 8.1 118.1

k1(
cm3

mol∗min) 69.8 ±1.0 8.1 ±0.02

k3(
cm3

mol∗min) 29.5 ±6.0 40.9 ±2.4

Ea1(
J
mol

) 2128.3 ±1153 8.3*10−6 ± 0.1

Ea3(
J
mol

) 2675.9 ±15251 5.5*10−4 ± 7.7

Table 3.4 Eigenvalues of the Reduced Hessian Matrix After Setting keff1 and keff3 to Zero

BASF Dow

7.9 ∗ 10−9 - Ea3 1.4 ∗ 10−2 - Ea3

4.5 ∗ 10−5 - Ea1 1.7 ∗ 10−1 - Ea1

1.4 ∗ 104 - k3 7.3 ∗ 101 - k3

1.8 ∗ 107 - k1 4.2 ∗ 1013 - k1

We also try to simplify the kinetic model by setting Ea1 and Ea3 to zero. The optimal nominal

values and corresponding standard deviations obtained by applying the BASF and Dow data are

recorded in the second and third columns of Table 3.5, respectively. Moreover, the corresponding

eigenvalues of the reduced Hessian matrix are listed in Table 3.6. From these two tables we can

tell that keff1 and keff3 still cannot be determined independently even when Ea1 and Ea3 are

fixed to zero.
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Table 3.5 Optimal Results After Setting Ea1 and Ea3 to Zero

BASF Dow

Obj 8.1 118.1

k1(
cm3

mol∗min) 5.6 ±0.3 8.3 ±0.03

k3(
cm3

mol∗min) 2.2 ±0.7 5.9 ±3.1

keff1(
J
mol

) 18740 ±6132 4965 ±2310

keff3(
J
mol

) 11200 ±2903 564 ±525

Table 3.6 Eigenvalues of the Reduced Hessian Matrix After Setting Ea1 and Ea3 to Zero

BASF Dow

2.2 ∗ 10−8 - keff1 1.3 ∗ 10−5 - keff1

1.5 ∗ 10−6 - keff3 5.6 ∗ 10−5 - keff3

1.4 ∗ 102 - k1 1.8 ∗ 108 - k1

1.4 ∗ 105 - k3 2.5 ∗ 1011 - k3

3.6 Conclusions

In this chapter, we first go over the motivation behind the kinetic parameter estimation. Then,

we explore the reaction scheme for this particular rigid polyol and the material balances for dif-

ferent types of reactors. Two data sources are available for this rigid poyol production. One is

from a BASF patent, the other one is provided by the Dow Chemical Company. Next, we model

the parameter estimation problems as dynamic optimization problems, and apply the simultaneous

collocation method to discretize the continuous time or volume horizon to convert the DAE prob-

lems into NLPs. Finally, we examine and compare the estimation results obtained from the BASF

patent and the Dow data.
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The optimal results obtained from the two data sources are not consistent with each other. This

may be caused by the incompatibility between these two data sources. First, the BASF data are

based on continuous reactors, such as CSTR and PFR. On the contrary, the Dow data is obtained

from semi-batch reactors. Second, the objective of reference is different. In the BASF patent, what

we know is the outlet weight percentage of unreacted monomer and initiator. Therefore, the objec-

tive is to minimize the difference between the predicted and the actual outlet weight percentage.

For the Dow data, what we have available is pressure data, which is a function of time. Hence,

we aim to minimize the difference between the predicted and the target pressure. Both objective

of references have their own advantages and disadvantages. For instance, weight percentage data

is more accurate than pressure data, since we do not need to make any assumptions to convert

concentration to pressure. However, the outlet weight percentage data is inadequate, since it lacks

weight percentage data along the reactor volume.

Despite which data source is applied, the kinetic parameter estimation results do not turn out as

expected. When the bounds for activation energies are not present, more than half of the kinetic

parameters cannot be determined independently. This is mainly caused by the insufficiency of the

data. After adding the activation energy bounds, fewer parameters have large standard deviations,

but activation energies solve to lower bounds. The reason behind this is that the temperature ranges

of these data sets are narrow, between 110 and 150 °C. Hence, it is hard to estimate the activation

energies over this small range.

Since the kinetics cannot be fully understand, our next step is to consider processes that take KOH

as catalyst, since the kinetics of KOH is fully discovered, and we can adopt it directly in the con-

tinuous network design problem.
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Chapter 4 Continuous Reactor Network De-

sign for Rigid Polyol Production

In this chapter, we focus on developing continuous reactor network models that are capable of pro-

ducing rigid polyols under strict product and safety specifications. At the same time, we determine

the optimal decision profiles that lead to minimum capital cost. Decision variables include the

feeding rates of initiator, monomer, and catalyst, reactor temperature, residence time, number and

location of monomer injection points. Moreover, we narrow down the types of continuous reactors

that can be part of the network to two: plug flow reactor (PFR) with multiple feed injection points

and continuous stirred tank reactor (CSTR). The PFR model can be written as a differential alge-

braic equation (DAE) optimization problem. The simultaneous collocation method is applied to

transform the DAE into a mixed integer nonlinear programming (MINLP) problem. An iterative

algorithm is proposed to solve the MINLP, where binary variables are manually fixed. The re-

sults obtained from this strategy show that a PFR with ten monomer injection points is the reactor

configuration that has the lowest capital cost.

4.1 Literature Review

Nie et al. [76] studied the recipe optimization of polyether polyol processes, where a well defined

reaction model was proposed for polyol production and it is adopted in this work as well, since the

same reaction mechanism applies to rigid polyols with shorter chain length. The reaction scheme
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contains four kinds of reactions: initiation, propagation, transfer and exchange. Among the four

reactions, the rates of exchange reactions are higher than other reaction rates. The difference in

reaction rates leads to a two-time scale model and results in a stiff system that is hard to solve.

Hence, the quasi-steady state assumption (QSSA) is applied through a nullspace projection pro-

posed in [76] to simplify the differential-algebraic equation (DAE) reactor model. The basic idea is

to model the fast reactions using QSSA to separate the slow and fast components and reformulate

the stiff system to a non-stiff, index-1 DAE reactor model. However, in [76] only operating recipes

were examined for the semi-batch reactor. Furthermore, Di Serio et al. [77] studied the kinetics

of propoxylation process in the presence of catalyst KOH, and these kinetics are adopted in Nie’s

work, as well as the case study in this work.

In 2016, Zhang et al. [5] developed the optimization of continuous reactor networks for a poly-

merization process. Simple flowsheet configurations with two CSTRs in series and in parallel are

frequently used in practice. However, due to the limitations of these conventional reactor network

structures, many polymer grades, especially high-quality ones, may not be achievable even under

a wide range of operating conditions. Hence, a more flexible process flowsheet configuration was

constructed in Zhang’s study. The superstructure was constructed to incorporate all possible struc-

tural alternatives of interest. The basic idea was to place splitters at the exit of each CSTR, and then

allow all CSTRs to be fully connected with each other. In Zhang’s work, the configurations with

one to four CSTRs were carried out to meet the target molecular weight distribution. The proposed

superstructure was very flexible and allows recycles to occur, but it does not contain PFRs.

In 1994, Kokossis and Floudas. [4] proposed a reactor network that includes both CSTRs and

PFRs. The key advantage of this approach is that the objective value, optimal reactor network

and operating conditions can be determined simultaneously. One of the limitations of this su-

perstructure approach is that the model formulations typically are nonconvex, and the subspaces

of the response surface are often ”flat”, leading to many near-optimal solutions. In addition, the

optimal solution is only as rich as the initial superstructure; therefore, the global optimal reactor

network cannot be found if it is not contained within the superstructure. However, there is a trade
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off between the richness of the superstructure and the size and complexity of the model. In ad-

dition, some optimal reactor configurations are rather complex (contain multiple recycle streams)

and hard to validate in reality.

Another way to formulate the reactor network is through the attainable region (AR) in concentra-

tion space, which finds the set of all possible outputs for all possible reactor configurations [6].

Every point in or on the AR is an output of a reactor combination. Once we have the region, we are

assured that it contains the optimal solution. However, for this polymerization problem, attainable

regions with more than two dimensions would be required, since there are more than two inde-

pendent reactants in the process. And such AR is hard to construct. In 2000, Feinberg analyzed

the optimal reactor design from a geometric viewpoint [7], [8]. The first work focused on critical

differential sidestream reactors (DSR), while the second one analyzed critical CSTRs. Critical re-

actors are the ones whose products lie entirely on the attainable region’s boundary. Both critical

DSR and CSTR play important roles in shaping the attainable region’s boundary. In these studies,

Feinberg determined the necessary conditions for a DSR/CSTR to be critical. These properties ap-

ply regardless of the problem dimension, although computational cost increases dramatically with

the problem dimension. In addition, Feinberg did not discuss if these conditions held true when

path constraints were considered. Nevertheless, these AR studies inspired our study to focus on the

reactor networks that contain DSRs (i.e., a PFR with multiple monomer injection points) and/or

CSTRs.

Lakshmanan and Biegler [9] proposed a superstructure framework as a sequence of modules, each

consisting of a CSTR and DSR in parallel. These reactor modules are solved as a sequence of op-

timization problems with additional degrees of freedom. Because of this, the sequence leads to a

monotonically decreasing objective function. An optimal network is assumed to have been found,

when there are no further improvements within tolerance. This approach combines AR properties

with superstructure techniques. From a geometric property that shows that network recycles and

recycle reactors are unlikely to lie on the AR, Lakshmanan and Biegler [9] argued that the modular

network is sufficiently rich to yield the optimum network. In addition, higher dimensional prob-
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lems are addressed directly through the MINLP formulation.

Our approach combines the ideas in Feinberg’s works [7],[8] (CSTR and DSR play important roles

in shaping the AR boundary) with the findings in Lakshmanan and Biegler’s paper [9] (solving re-

actor modules in an increasing manner). First, we examine the reactor network with one CSTR or

a PFR with multiple sidestreams. Then, we enrich the reactor design by adding one more CSTR/D-

SRs in series, and we continue this procedure, until no improvement (within a tolerance of 1e−3)

in the objective function is observed. Finally, five reactor networks are derived and compared, as

shown in Fig. 4.1: one CSTR, two CSTRs in series, a single DSR, a CSTR followed by a DSR,

and a DSR followed by a CSTR.

Figure 4.1. Examined Reactor Networks

This chapter is organized as follows; Section 2 introduces the complex reaction scheme for rigid

polyol production and corresponding kinetic parameters. In Section 3, the development of both

CSTR and DSR models is presented. The solution strategy utilized for solving the reactor network

optimization models is given in Section 4. Section 5 presents and further compares the numerical

results for each reactor network. Section 6 summaries the study and concludes the chapter.
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4.2 Kinetics for Rigid Polyol Production

The kinetics for rigid polyol are based on Sorbitol initiator, which has six hydroxyl groups per

molecule of Sorbitol with a molecular weight of 182 g/mol. Sorbitol is propoxylated (addition

of propylene oxide (PO) monomer) to a molecular weight less than 1000 g/mol. Therefore, the

typical chain length for rigid polyol is less than 10. For the lower molecular weight rigid polyols,

the propoxylation is done via anionic polymerization with KOH catalyst. Typically, the alkoxide

is produced by adding KOH catalyst to an aqueous sorbitol solution and then removing the water.

Therefore, all the catalyst is fed at the beginning of the reactor. The melt needs to be maintained at

a temperature above 100 °C to remain pumpable. Finally, it is desirable that the mole fraction for

the unalkoxylated OH groups to be less than 0.05.

4.2.1 Reaction Scheme

The reaction kinetics generally follow the reaction kinetics reported in Nie’s work [76], except that

hydrolysis reactions are excluded, because water in aqueous sorbitol solution is removed before

adding to the reactor. In addition, the detailed reaction scheme is displayed in Table 4.1. The fol-

lowing notation is used in the remainder of this chapter. PO denotes the propylene oxide monomer.

Pn represents one of six branches in the sorbitol initiator CH(PO)n. Both n and m indicate the

number of repeating units. Meanwhile, Un denotes the unsaturated chains with double-bond end

groups CH2 = CHCH2(PO)n, formed by the chain transfer step and subsequent growth step.

Moreover, depending on the different functional end groups, we define the following:
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Gn growing product chains of length n (PnO
−K+)

Dn dormant product chains of length n (PnOH)

Qn growing unsaturated chains of length n (UnO
−K+)

Rn dormant unsaturated chains of length n (UnOH)

Table 4.1 Reaction Scheme for Rigid Polyol

Initiation

G0 + PO ki−−→ G1

Propagation

Gn + PO
kp−−→ Gn+1 (n ≥ 1)

Qn + PO
kp−−→ Qn+1 (n ≥ 1)

Transfer

Gn + PO kt−−→ Dn + Q0 n ≥ 0)

Qn + PO kt−−→ Rn + Q0 (n ≥ 0)

Exchange

Gn + Dm
ke−−→ Dn + Gm (n,m ≥ 0)

Qn + Rm
ke−−→ Rn + Qm (n,m ≥ 0)

Gn + Rm
ke−−⇀↽−− Dn + Qm (n,m ≥ 0)

The population balance of polymer chains in the CSTR model is described in Eqn. 4.1, where

the subscripts i, p, t and e represent the initiation, propagation, transfer and exchange reactions,

respectively. Also, F represents the molar flow rate. C stands for concentration. V is the volume.
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F 0
G0
− FG0 = −V ∗ ki ∗ CG0 ∗ CPO − V ∗ kt ∗ CG0 ∗ CPO

− V ∗ ke ∗ CG0 ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CD0 ∗
N∑
m=0

(CGm + CQm)

F 0
G1
− FG1 = V ∗ ki ∗ CG0 ∗ CPO − V ∗ (kp + kt) ∗ CG1 ∗ CPO

− V ∗ ke ∗ CG1 ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CD1 ∗
N∑
m=0

(CGm + CQm)

F 0
Gn
− FGn = V ∗ kp ∗ (CGn−1 − CGn) ∗ CPO − V ∗ kt ∗ CGn ∗ CPO

− V ∗ ke ∗ CGn ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CDn ∗
N∑
m=0

(CGm + CQm)

Gn = G2, ..., GN−1

F 0
GN
− FGN

= V ∗ kp ∗ CGN−1
∗ CPO − V ∗ kt ∗ CGN

∗ CPO

− V ∗ ke ∗ CGn ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CDn ∗
N∑
m=0

(CGm + CQm)

F 0
Dn
− FDn = V ∗ kt ∗ CGn ∗ CPO

+ V ∗ ke ∗ CGn ∗
N∑
m=0

(CDm + CRm)− V ∗ ke ∗ CDn ∗
N∑
m=0

(CGm + CQm)

Dn = D0, ..., DN

F 0
Q0
− FQ0 = −V ∗ (ki + kt) ∗ CQ0 ∗ CPO + V ∗ kt ∗

N∑
m=0

(CGm + CQm) ∗ CPO

− V ∗ ke ∗ CQ0 ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CR0 ∗
N∑
m=0

(CGm + CQm)

F 0
Q1
− FQ1 = V ∗ (ki ∗ CQ0 − kp ∗ CQ1) ∗ CPO − V ∗ kt ∗ CQ1 ∗ CPO

− V ∗ ke ∗ CQ1 ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CR1 ∗
N∑
m=0

(CGm + CQm)
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F 0
Qn
− FQn = V ∗ kp ∗ (CQn−1 − CQn) ∗ CPO − V ∗ kt ∗ CQn ∗ CPO

− V ∗ ke ∗ CQn ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CRn ∗
N∑
m=0

(CGm + CQm)

Qn = Q2, ..., QN−1

F 0
QN
− FQN

= V ∗ kp ∗ CQN−1
∗ CPO − V ∗ kt ∗ CQN

∗ CPO

− V ∗ ke ∗ CQn ∗
N∑
m=0

(CDm + CRm) + V ∗ ke ∗ CRn ∗
N∑
m=0

(CGm + CQm)

F 0
Rn
− FRn = V ∗ kt ∗ CQn ∗ CPO

+ V ∗ ke ∗ CQn ∗
N∑
m=0

(CDm + CRm)− V ∗ ke ∗ CRn ∗
N∑
m=0

(CGm + CQm)

Rn = R0, ..., RN

(4.1)

Among the four major reactions, the rates of the exchange reactions are significantly higher than

other reaction rates. This explains why it is necessary to add less catalyst than the number of OH

groups in the reactor. The difference in the rate constants results in a two-time scale model and

leads to a stiff system, which cannot be easily solved. Hence, the exchange reactions are modeled

using the quasi-steady state assumption and two pseudo-species X and Y are introduced [76] to

solve this problem, where Xn = Gn + Dn and Yn = Qn + Rn. The resulting population balances
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for the CSTR and DSR models are demonstrated in Eqn. 4.2 and 4.3, respectively.

F 0
X0
− FX0 = −ki ∗ CG0 ∗ CPO

F 0
X1
− FX1 = (ki ∗ CG0 − kp ∗ CG1) ∗ CPO

F 0
Xn
− FXn = (kp ∗ CGn−1 − kp ∗ CGn) ∗ CPO n = 2, ..., N − 1

F 0
XN
− FXN

= kp ∗ CGN−1
∗ CPO

F 0
Y0
− FY0 = −ki ∗ CQ0 ∗ CPO + kt ∗

N∑
n=0

(CGn + CQn) ∗ CPO

F 0
Y1
− FY1 = (ki ∗ CQ0 − kp ∗ CQ1) ∗ CPO

F 0
Yn − FYn = (kp ∗ CQn−1 − kp ∗ CQn) ∗ CPO n = 2, ..., N − 1

F 0
YN
− FYN = kp ∗ CQN−1

∗ CPO

(4.2)

dFX0

dV
= −ki ∗ CG0 ∗ CPO

dFX1

dV
= (ki ∗ CG0 − kp ∗ CG1) ∗ CPO

dFXn

dV
= (kp ∗ CGn−1 − kp ∗ CGn) ∗ CPO n = 2, ..., N − 1

dFXN

dV
= kp ∗ CGN−1

∗ CPO

dFY0
dV

= −ki ∗ CQ0 ∗ CPO + kt ∗
N∑
n=0

(CGn + CQn) ∗ CPO

dFY1
dV

= (ki ∗ CQ0 − kp ∗ CQ1) ∗ CPO
dFYn
dV

= (kp ∗ CQn−1 − kp ∗ CQn) ∗ CPO n = 2, ..., N − 1

dFYN
dV

= kp ∗ CQN−1
∗ CPO

(4.3)

4.2.2 Model Parameters

Kinetic parameters stated by Nie et al. [76] are applied to this case study, and listed in the Table

4.2 below. This is a major assumption since these kinetics are brought up for long polymer chains
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which are not necessarily the same as those for the short chains in this work. Moreover, initiation

and propagation steps have different kinetics, which implies that polymer chains with monomers

attached behave differently than the initiator.

Table 4.2 Kinetic Parameters

Reaction Type Initiation Propagation Transfer

Arrhenius Constant ( m3

mol∗s) 396400 8504 950410

Activation Energy ( kJ
kmol

) 77822 69172 105018

Heat of Reaction ( kJ
kmol

) 92048 92048 0

Tables 4.3, 4.4, 4.5 list the parameters used to calculate the capital cost for CSTR, PFR, and oxide

recovery system [78]. These costs are relative.

Table 4.3 Capital Cost Parameters for CSTR

CSTR component Basis Installed Base cost ($K) Exponent

Tank Reactor 3 hr RT 1000 0.7

Agitators Per reactor 300 1

Pump 50 1

Oxide Injection Per injection 50 1

Catalyst Injection Per injection 20 1

Heat Exchanger 1465 kJ
s

100 0.7
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Table 4.4 Capital Cost Parameters for PFR

PFR component Basis Installed Base cost ($K) Exponent

Piping Segment 15 minutes 100 0.7

Pump every hour 50 1

Oxide Injection Per injection 50 1

Catalyst Injection Per injection 20 1

Heat Exchanger 293 kJ
s

50 0.7

Table 4.5 Capital Cost Parameters for Oxide Recovery System

Recovery System component Basis Installed Base cost ($K) Exponent

Vacuum 1% oxide 200 0.7

Flash Tank 1% oxide 200 0.7

Condenser 1% oxide 100 0.7

4.3 Optimization Model for Rigid Polyol Reactor

The model consists of three main parts: material balance, energy balance, product specifications

and safety constraints, which are explored in the following subsections. In addition, n denotes

either the index of each CSTR or the index of each DSR zone. c and m stands for the components

involved in the process, and monomer respectively. rxn represents the reaction index. Finally,

FRm,n is the feed rate of monomer to nth CSTR/DSR zone.
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4.3.1 Material Balance

First, rate constants can be calculated using the Arrhenius equation (4.4), where k, A, Ea, R

and T represent the rate constant, Arrhenius constant, activation energy, gas constant and reactor

temperature, respectively.

krxn,n = Arxne
−Earxn

RTn , rxn ∈ {i, p, t}, n ∈ N (4.4)

Second, reaction rates for different reactions can be expressed using Eqn. 4.5, where r is the

reaction rate, and C represents concentration. All the reactions are of second order. The subscripts

1 and 2 in Eqn. 4.5, represent the first and second components involved in the reaction, respectively.

rrxn,n = krxn,n ∗ [C1,n] ∗ [C2,n], rxn ∈ {i, p, t}, n ∈ N (4.5)

Eqns. 4.6a, and 4.6b enforce the continuity between CSTRs or DSR zones. F 0 and F denote the

inlet and outlet molar flow rate, respectively. Since fresh monomers are allowed to be added at

the beginning of each CSTR/DSR zone, the inlet molar flow rate equals the summation of outlet

molar flow rate from previous CSTR/DSR zone and the feeding rate of fresh monomer. For other

components, the inlet molar flow rate equals the outlet molar flow rate of the previous CSTR/DSR

zone.

F 0
m,n = Fm,n−1 + FRm,n, n ∈ {1..N} (4.6a)

F 0
c,n = Fc,n−1, c 6= m,n ∈ {1..N} (4.6b)

Reactor volume, volumetric flow rate and concentration for each zone n can be calculated using

Eqn. 4.7a, 4.7b and 4.7c, respectively. V represents the reactor volume, V̇ is the volumetric flow
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rate and MW denotes the molecular weight of component c.

Vn = V̇n ∗ τn, n ∈ N (4.7a)

V̇n =
∑
c

F 0
c,n ∗MWc

ρc,n
, n ∈ N (4.7b)

Cc,n ∗ V̇n = Fc,n, c ∈ C, n ∈ N (4.7c)

Finally, CSTR and DSR follow different design equations. For CSTR, the design equation is in

algebraic form (Eqn. 4.8):

F 0
c,n − Fc,n = −rc,n ∗ Vn, c ∈ C, n ∈ N (4.8)

while the design equation for DSR is a differential equation (Eqn. 4.9).

dFc,n
dVn

= −rc,n, c ∈ C, n ∈ N (4.9)

4.3.2 Energy Balance

Fresh monomer feed has a cooling effect, since its temperature is at least 100 °C lower than the

reactor temperature. Monomer cooling is represented by Hm
cool in Eqn. 4.10. In addition, Cm

p is the

heat capacity of monomer and Tmf denotes the feed temperature of monomer.

Hm,n
cool =

∫ Tn

Tm
f

Cm
p dT, n ∈ N (4.10)

Second, total mass flow rate Ṁ can be obtained from Eqn. 4.11, which is required in the energy

balance calculation.

Ṁn =
∑
c

F 0
c,n ∗MWc, n ∈ N (4.11)

Moreover, we need to ensure the energy is conserved across CSTRs/DSR zones (Eqn. 4.12a,

4.12b). Ṁm is the mass flow rate of monomer. Superscript b represents the solution mixture inside

46



CHAPTER 4. CONTINUOUS REACTOR NETWORK DESIGN FOR RIGID POLYOL
PRODUCTION

of the reactor.

(Ṁn − Ṁm
n ) ∗

∫ T b
f

T 0
n

Cb
pdT =

∑
m

Hm,n
c ∗ FRm,n ∗MWm, n = 1 (4.12a)

Ṁn ∗
∫ Tn−1

T 0
n

Cb
pdT =

∑
m

Hm,n
c ∗ FRm,n ∗MWm, n ∈ {1..N} (4.12b)

The final element in energy balance is the amount of heat released during the reaction, Hr. For

CSTR, it can be obtained using Eqn. 4.13, where Hrxn represents the heat of reaction, which is

different for different monomers.

Hn
r =

∑
m

(F 0
m,n − Fm,n) ∗Hm

rxn, n ∈ N (4.13)

For DSR, the heat released can be calculated based on the rate of reactions as shown in Eqn. 4.14:

Hn
r = −

∑
m

rm,n ∗Hm
rxn, n ∈ N (4.14)

Finally, the energy balances for CSTR and DSR are different, with the former one in algebraic

form (Eqn. 4.15a), and the latter one in differential form (Eqn. 4.15b). Moreover, Hp represents

the extra cooling that needs to be provided.

Ṁn ∗ Cb
p ∗ T 0

n +Hn
r −Hn

p = ṁn ∗ Cb
p ∗ Tn, n ∈ N (4.15a)

Ṁn ∗ Cb
p ∗

dTn
dVn

= Hn
r −Hn

p , n ∈ N (4.15b)

4.3.3 Product Quality & Safety Constraints

This model includes six product specifications and two safety constraints. First, there is a minimum

target production rate (Eqn. 4.16), where N represents the final reactor or the last zone in the

network. ∑
c

Fc,N ≥ PR∗ (4.16)
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Second, a lower bound for the average molecular weight is given by Eqn. 4.17:

MW =

∑
c Fc,N ∗MWc∑

c Fc,N
≥MW

∗
(4.17)

Third, an upper bound for unalkoxylated active sites of initiator is given by Eqn. 4.18:

σ =
moles of unalkoxylated active sites

moles of initiator
≤ σ∗ (4.18)

Fourth, there are specifications for outlet weight percentage of monomer m and catalyst (Eqn.

4.19a, 4.19b).

wt%m,N ≤ wt%∗m (4.19a)

wt%cat,N ≤ wt%∗cat (4.19b)

Finally, the amounts of monomer, initiator and catalyst are limited (Eqn. 4.20a). In addition,

monomer feeding rate should equal to zero if reactor n has no monomer injection point (the corre-

sponding binary variable βn = 0).

FRc ≤ FR∗c , c = {ini, cat} (4.20a)

FRm,n ≤ βn ∗ FR∗m, βn ∈ {0, 1}, n ∈ N (4.20b)

The first safety constraint is implemented to avoid runaway reactions when the cooling system

fails. κ in Eqn. 4.21 is a constant between one and ten. Basically, this constraint limits the weight

percentage of unreacted monomers in the reactor. In a PFR, runaway will dramatically increase

the reactor temperature and eventually lead to overpressure the storage tank that the PFR empties

into.

κ ∗ wt%m,n ≤ Tsafety − Tn, n ∈ N (4.21)
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The second safety constraint provides the reactor temperature range as shown in Eqn. 4.22.

TLB ≤ Tn ≤ TUB, n ∈ N (4.22)

4.4 Solution Strategy

4.4.1 CSTR Model

The MINLP problem of continuous stirred tank reactor (Eqns. 4.2, 4.4 - 4.8, 4.10 - 4.13, 4.15a &

4.16-4.22) can be summarized in Eqn. 4.23:

min CC =
N∑
n=1

(f1(Hp(n)) + f2(τ(n)) + f3(βn)) + f4(wt%m,N) + f5

s.t. g(yn, un) = 0

h(yn, un, βn) ≤ 0

yLn ≤ yn ≤ yUn

uLn ≤ un ≤ uUn

βn ∈ {0, 1}

(4.23)

where n represents the index of CSTRs and N denotes the final CSTR. The objective function

is capital cost (CC), which includes the reactor cost and the cost for oxide recovery system (f4),

which is used to separate the unreacted monomer from the polyol product. In addition, the reac-

tor cost includes the cost of reactor tank (f2), agitator, pump, catalyst injection (these three costs

are constants and denoted by f5), monomer injection (f3) and heat exchanger (f1). Notice that,

monomer injection is represented by binary variable βn. If the feeding rate of monomer m to

CSTR n is greater than zero then βn = 1, otherwise βn = 0. In order to formulate the problem as

an NLP instead of a MINLP, the binary term is manually fixed to either 1 or 0. Moreover, y stands

for algebraic state variables, and u denotes the decision variables that are the reactor temperature,
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residence time, injection points of monomer, feeding rates of monomer, catalyst and initiator. g(·)

denotes the equality process constraints, which result from the mass balance (Eqn. 4.2) as well as

the energy balance. h(·) represents the inequality constraints which result from the process con-

straints, such as the adiabatic temperature rise, heat removal and product specification constraints.

The last two equations represent the upper and lower bounds for algebraic and decision variables,

respectively.

4.4.2 DSR Model

The DSR model (Eqns. 4.3, 4.4 - 7, 4.9 - 12, 4.14 & 4.15b - 4.22) can be written in a general

form as a dynamic optimization problem (Eqn. 4.24). The objective function of the DSR model

is capital cost. In addition, f1 calculates the cost for heat exchanger. f2 estimates the reactor cost.

The monomer injection cost is denoted by f3, followed by the cost for monomer recovery system

(f4). Finally, f5 represents the cost for agitator, pump and catalyst injection. Moreover, z and

y are differential and algebraic state variables, respectively. u denotes the decision variable that

includes the reactor temperature, residence time and injection points of monomer, feeding rates

of monomer, catalyst and initiator. Furthermore, differential equations are denoted by f , which

result from the mass balance (Eqn. 4.3) as well as the energy balance and g denotes the algebraic

equality constraints. h stands for inequality constraints that come from the product and safety

specifications. The next three equations represent the upper and lower bounds for differential,

algebraic and decision variables, respectively. Monomer injection points are represented by binary

variable βV .
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min CC = f1(Hp) + f2(τ) +
N∑
n=1

f3(βV ) + f4(wt%m,Vf ) + f5

s.t. ż(V ) = f(z(V ), y(V ), u(V )) = 0

g(z(V ), y(V ), u(V )) = 0

h(z(V ), y(V ), u(V ), βV ) ≤ 0

z(V )L ≤ z(V ) ≤ z(V )U

y(V )L ≤ y(V ) ≤ y(V )U

u(V )L ≤ u(V ) ≤ u(V )U

βV ∈ {0, 1}

(4.24)

The dynamic optimization model can be solved by the simultaneous collocation method. This

method discretizes the continuous volume horizon into a finite element mesh, and then the differential-

algebraic equation optimization problems are converted into nonlinear programming problems. A

detailed description for simultaneous collocation method can be found in Chapter 2. In this study, a

mesh of 40 finite elements along with a two-point Radau collocation is applied to the DSR model.

We observe that this combination gives accurate solutions, while maintaining a computationally

solvable model, shown in Fig. 4.2. Each DSR is discretized into 40 elements with equal volume

and each element is treated as one DSR zone. Initiator and catalyst are added at the beginning

of DSR. Monomer can be added at the beginning of each DSR zone. Therefore, there are forty

possible monomer injection points per DSR and over a trillion (240) injection profiles. More im-

portantly, the model is highly nonlinear. Through several trials, we observe that solution of the

nonconvex MINLP in Eqn. 4.24, is beyond the capabilities of current MINLP solvers, such as

BARON, DICOPT, SBB and BONMIN. Therefore, instead of using MINLP solvers, an efficient

algorithm is proposed to determine the injection profile that would lead to a minimum capital cost.
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Figure 4.2. Discretized DSR

Below are the steps to determine the optimal injection profile for a DSR:

• Step 1. Relax the binary variables to nonnegative variables between 0 and 1. Then, solve the

relaxed DSR model and obtain its optimal decision profiles. Based on the monomer feeding

rates, sort the injection points from the highest to the lowest. Set i = 1

• Step 2. Select only the first i injection points (βn) from the sorted list and set them to one.

Fix other injection points to zero. Define the set Ji = {n|βn = 1}. Solve the DSR model

with injection profile Ji. If the model is infeasible, set i = i + 1. Repeat step 2, until

the DSR model becomes feasible (able to produce desired rigid polyol without violating the

safety constraint in Eqn. 4.21). Then, the minimum number of injection points required for

the rigid polyol production is obtained, with injection profile given by Ji, which includes the

first i elements in the sorted injection point list.

• Step 3. Re-visit the optimized solution of the model with injection profile Ji. Based on the

KKT multiplier of the constraint displayed in Eqn. 4.20b for n /∈ Ji, add the injection point

with the largest multiplier to injection profile Ji+1 (fix the binary variable to one instead

of zero). Repeat this step, until no further improvement in the objective function (within a

tolerance of 10−3).

• Step 4 (Optional). Permute between different profiles with i injection points by shifting

injection points one by one to the near by positions or dividing the injection points more

evenly. If the new profile yields a lower objective, update profile Ji. Repeat this step until

exhausted.
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Our alternative approach offers no guarantee of a global optimal solution, since it is not possible

to examine all permutations when i is large. Nevertheless, we find this multiplier-based approach

determines high quality local solutions with modest computational costs. As shown in the Sec-

tion 4.5.1, reactor configurations with similar monomer injection profiles all converge to a similar

relative capital cost. This also shows that the objective function is flat due to the non-linearity.

Furthermore, CSTR model yields to the same results using either NLP solver IPOPTH or MINLP

solver SBB. And FRini is consistent between CSTR and DSR models. All of the consistency

between models shows that the multiplier-based approach determines high quality local solutions.

Figure 4.3. Flow Chart of Finding Optimal Injection Profile

Both CSTR and DSR models are implemented in GAMS and solved by NLP solver IPOPTH.
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4.5 Results and Discussions

In this section, five different reactor networks for polyol production are examined: one CSTR,

two CSTRs in series, one DSR, a CSTR followed by a DSR, and a DSR followed by a CSTR.

The corresponding optimal capital cost, and operation conditions are presented in the following

subsections. Due to confidentiality, results are scaled based on the optimal solution of the single

DSR model. Moreover, the maximum chain length of the rigid polyol is set to 10 in this study.

4.5.1 One DSR

The DSR model is presented in Eqn. 4.24 and the steps in Fig. 4.3 are applied to obtain the optimal

injection profile.

First, the binary variables are relaxed into variables between 0 and 1. The relaxed DSR model is

then solved. The relative capital cost of the relaxed DSR model (optimal DSR cost = 1) is 0.572.

However, this capital cost represents a lower bound of the solution, since the optimal values for

variables βn lead to fractional injection points with unrealistic costs. The relative capital cost is

1.322 after setting the fractional βn to unity for the injection points. The optimal feed profile of

the relaxed DSR model is plotted in Fig. 4.4. According to this, fresh PO feeds are added to first

22 zones. The weight percentage curve oscillates in the first half of the reactor, since monomers

are constantly added to the reactor. Moreover, there is a spike in the weight percentage of PO,

and a drop of PO feeding rate when the normalized volume equals to 0.2. This is caused by the

adiabatic temperature rise constraint, which limits the weight percentage of unreacted PO in the

reactor. Since, the weight percentage of PO is high at that point, it is reasonable for the system to

decrease the PO feeding rate at the same point. Based on the monomer feeding rates, the injection

points are sorted from the largest to the smallest as follows: 1, 2, 3, 5, 7, 4, 6, 9, 8, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22.
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Figure 4.4. Feed Profile for the Relaxed DSR Model

Then, we move to step 2 and find that at least five injection points are required for model feasibility.

Next, we solve the DSR model with injection profile J5 = {1, 2, 3, 5, 7} (the first five injection

points in the sorted list above). Based on the KKT multiplier for the injection points that are not

presented in J5, injection point at zone 4 is added to the profile. Step 3 is repeated, until additional

injection points no longer improves the objective function. Fig. 4.5 shows the change in capital

cost as a function of the number of monomer injection points. According to this plot, capital cost

starts to drop as more injection points are incorporated. However, after 10 injection points, adding

more feeding points does not lead to a significant improvement in capital cost, since the savings in

reactor cost do not cover the cost of additional injection point.
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Figure 4.5. Relative Capital Cost Versus Number of Monomer Injection Points (Scaled to
Optimal Objective in Table 4.6 No.5 Iteration)

After step 3, the profile J10 includes injection points at zones 1, 2, 3, 4, 5, 7, 9, 12, 15, and 25. The

last injection point (at zone 25) is far away from its previous injection point (at zone 15). Moving

the last injection point towards the front, would extend the DSR digestion period, and might reduce

the capital cost. In order to obtain the relationship between capital cost and the optimal position

of the final injection point, the last injection point is moved towards the beginning of the reactor

one zone at a time, while keeping the other injection points fixed. According to Fig. 4.6, as the

final injection point moves from zone 25 to zone 22, the relative capital cost decreases, although

moving it to zone 20 increases the capital cost. Therefore, the injection profile is updated to J10 =

{1, 2, 3, 4, 5, 7, 9, 12, 15, 22}.

56



CHAPTER 4. CONTINUOUS REACTOR NETWORK DESIGN FOR RIGID POLYOL
PRODUCTION

Figure 4.6. Relative Capital Cost Versus the Position of the Final Injection Point (Scaled to
Optimal DSR Objective in Table 4.6 No.5 Iteration)

We also consider spreading the injection point more evenly to reduce the capital cost. Eight of

the closest injection profiles to profile J10 are explored, and Table 4.6 shows the optimal rela-

tive capital cost for each profile. The fifth iteration has the lowest capital cost and its optimal

solution is set as the baseline. Hence, the relative capital cost of a DSR with injection profile

J10 = {1, 2, 3, 5, 7, 9, 11, 13, 17, 23} is 1. Moreover, when the final injection point is at zone 22,

spreading the injection points along the first half of the reactor does not reduce the capital cost,

although it decreases the capital cost when the final injection point is at zone 23. All of these injec-

tion profiles have similar values for the objective function, which demonstrates that the response

surface is fairly flat. Furthermore, the capital cost with injection profile found after step 3 (iteration

0 in Table 4.6) is 1.001, which is slightly higher than the optimal capital cost (iteration 5 in Table

4.6). The approach proposed in Fig. 4.3 offers no guarantee of a global optimal solution, since not

all permutations are explored. Nevertheless, based on the assumption that injection points have

a monotonic effect on the objective function and the fact that all reactor configurations with ten

injection points have similar capital cost, we conclude that the solution obtained by applying the

steps described in Fig. 4.3 should be close to the global optimal point. The monotonic assumption
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may apply to other reactor type, as long as the monomer injection point accounts for a major part

in the objective function.

Table 4.6 Optimal Relative Capital Cost for Injection Profiles with 10 Monomer Feeds (Scaled
Based on the 5th Iteration)

No. Iteration Monomer Injection Locations Relative Capital Cost

0 1,2,3,4,5,7,9,12,15,22 1.001

1 1,2,3,5,7,9,12,15,18,22 1.005

2 1,2,3,5,7,9,13,15,17,22 1.007

3 1,3,5,7,9,11,13,15,17,22 1.025

4 1,2,3,4,5,7,9,12,15,23 1.002

5 1,2,3,5,7,9,13,15,17,23 1.000

6 1,2,3,5,7,9,11,13,15,23 1.012

7 1,2,3,7,9,11,13,15,17,23 1.016

8 1,2,3,5,7,9,13,17,19,23 1.010

The optimal feed and temperature profiles of single DSR with J10 = {1, 2, 3, 5, 7, 9, 11, 13, 17, 23}

are plotted in Fig. 4.7. In this figure, we see that monomer feeding rates increase along the 10

injection points. This trend can be explained by the limits on monomer feeds imposed by the adi-

abatic temperature constraint (Tad ≤ T ∗ad), as seen at the injection points in Fig. 4.7b. As polymer

product is formed along the reactor, the composition change influences the determination of Tad,

which leads to higher feed rates along the length of the reactor, e.g., at normalized volumes of 0.4

and 0.5 in Fig. 4.7b.
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(a) Feed Profile (b) Temperature Profile

Figure 4.7. Decision Profiles of the DSR Model

Table 4.7 shows the constraints that are active in this reactor network, and the corresponding im-

pacts on the objective function (scaled to optimal objective in Table 4.6 iteration 5). The impact is

obtained based on the value of the KKT multiplier at the optimal solution, which equals the rate of

change in the maximal value of the objective function as the constraint is relaxed. A larger KKT

multiplier indicates greater impact on the objective if the constraint is changed by one unit.

Table 4.7 Active Constraints in the Single DSR Model

Active Constraint Impact on the Objective Function

Outlet weight percentage of KOH 2.642

Un-alkoxylated OH group 2.204

Production rate 0.210

Adiabatic temperature 0.001

The feeding rates of initiator and catalyst are 0.78FR∗Sorbitol and 0.07FR∗KOH , respectively. Recall

that, FR∗Sorbitol and FR∗KOH represent the upper bounds for the feeding rates of sorbitol and KOH,

respectively. For confidentiality, optimal results are scaled based on this optimal solution: a DSR

with injection profile J10 = {1, 2, 3, 5, 7, 9, 13, 15, 17, 23}. Therefore, the relative PDI of the final
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polymer obtained by a reactor network containing one DSR is 1. Its relative total heat removal is

also scaled to 1. Normalized chain length distribution is plotted in Fig. 4.8 (scaled to FR∗Sorbitol).

Furthermore, the weight percentage of PO at the outlet stream is 0.017wt%∗PO.

Figure 4.8. Chain Length Distribution for the DSR Model

4.5.2 One CSTR

If only one CSTR is utilized, polymer that satisfies the product specifications cannot be produced

without violating the safety constraints. All the constraints cannot be satisfied at the same time and

the model in Eqn. 4.23 with N = 1 has no feasible solution.

4.5.3 Two CSTRs in Sequence

The relative capital cost of two CSTRs in series is 2.64. In addition, the optimal decision profiles

are sketched in Fig. 4.9. Majority of the monomers are fed to the first reactor where the weight

fraction of monomer is high. Therefore, the adiabatic temperature is at its upper bound. Moreover,

the residence time of the second reactor is greater than that of the first reactor. Hence, digestion is
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the main function of the second CSTR to reduce the weight percentage of unreacted monomer in

the outlet stream below its specified value.

Figure 4.9. Optimal Results of the 2 CSTRs Model

Table 4.8 shows the constraints that are active in this reactor network, and their corresponding

impacts on the objective function (scaled based on the optimal objective in Section 4.4.2).

Table 4.8 Active Constraints in the 2 CSTRs in Series Reactor Network

Active Constraint Impact on the Objective Function

Un-alkoxylated OH group 15.963

Outlet weight percentage of KOH 6.832

Production rate 3.168

Outlet weight percentage of PO 0.563

Feeding rate of PO to the first CSTR 0.071

Adiabatic temperature of the first CSTR 0.002
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Furthermore, the normalized chain length distribution is plotted in Fig. 4.10 (scaled to FR∗Sorbitol).

The relative PDI to the single DSR model and the relative average molecular weight of final product

are 1.16 and 1.64, respectively.

Figure 4.10. Chain Length Distribution for the 2 CSTRs Model

4.5.4 CSTR Followed by a DSR

As with the previous case, DSR is discretized using a fine mesh of 40 finite elements along with

a two-point Radau collocation. Moreover, for this reactor network, two monomer injection points

per DSR are enough to produce the desired rigid polyol. The injection profile is found by first

solving the relaxed model. Then, starting with i = 1, fix the first i injection points with the highest

monomer feeding rates to 1 and others to zero. This step is repeated until the problem becomes

feasible. Since the CSTR followed by a DSR model becomes feasible when i = 2 (two injection

points per DSR), there is no need to loosen the last constraint in model 4.24. Therefore, step 3 and

4 in Fig. 4.3 are skipped. In this reactor configuration, the majority of the reactions occur within

the CSTR. And the DSR is used to further digest the unreacted monomer in the reactor. Therefore,

it does not require feeding a lot of monomers to the DSR and two injection points are sufficient to
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produce the desired polymers.

The capital cost of this reactor configuration is 1.2. The optimal decision profile of the CSTR

is presented in Fig. 4.11. Based on this, both reactor and adiabatic temperatures are at upper

bounds, to accelerate the reactions to their maximum rate. In addition, the optimal feed profile

and temperature profile of the DSR after the CSTR are plotted in Fig. 4.12. Fresh PO feeds

are added to zones 5 and 13. At these two points, the weight percentage of unreacted monomer

increases. Although the feeding rate at zone 13 is higher, its weight percentage of unreacted PO

is less compared to zone 5. Because the PO feeding rates at zones 5 and 13 do not differ a lot

(one is 0.11*FR∗PO and the other is 0.12*FR∗PO). Also, the weight percentage of PO just before

the injection is higher at zone 5. Furthermore, based on the temperature profile, the adiabatic

temperature constraint is only active in zones 5 and 13. At the same position, reactor temperature

is lowered to avoid runaway reaction. Besides the adiabatic temperature constraint, the outlet

weight percentage of KOH, production rate, and the un-alkoxylated OH group constraints are also

active. Their impacts on the objective function are shown in Table 4.9 (scaled to optimal objective

in Section 4.4.2). Finally, the relative PDI of the final polymer is 1.13.

Figure 4.11. Optimal Results of the CSTR Followed by a DSR Model
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(a) Feed Profile (b) Temperature Profile

Figure 4.12. Decision Profiles of the CSTR Followed by a DSR Model

Table 4.9 Active Constraints in the CSTR Followed by a DSR Reactor Network

Active Constraint Impact on the Objective Function

Outlet weight percentage of KOH 2.992

Un-alkoxylated OH group 2.516

Production rate 0.058

Adiabatic temperature 0.002

Fig. 4.13 shows the normalized chain length distribution (scaled to FR∗sorbitol). According to this,

the majority of branches have one PO or two POs attached to them. Few branches have more than

five POs.
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Figure 4.13. Chain Length Distribution for the CSTR Followed by a DSR Model

4.5.5 DSR Followed by a CSTR

In Section 4.4.2, DSR is discretized using a fine mesh of 40 finite elements along with a two-point

Radau collocation. The same discretization scheme is adopted in the section. And steps in Fig.

4.3 are carried out to determine the optimal injection profile for the system. Moreover, this reactor

network requires at least four monomer feeding points. Fig. 4.14 shows the relationship between

the number of injection points and the CSTR residence time, which is normalized by dividing the

residence time of single DSR. The relative capital cost is based on the optimal capital cost of the

single DSR model. As the number of monomer injection points increases, the residence time of

CSTR decreases to its lower bound, which is 0.1 min. This suggests that adding a CSTR at the end

of DSR would not improve the capital cost. Hence, it is better to use a DSR alone. In summary,

this reactor network is not suitable for this rigid polyol production. If few injection points (less

than 6) are applied, the problem is either infeasible or has a high capital cost compared to other re-

actor designs. On the contrary, when more injection points are utilized, the CSTR becomes useless.
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Figure 4.14. Number of Injection Point Versus CSTR Residence Time

The optimal solution of one DSR followed by a CSTR with four monomer injection points is shown

in this section. The relative capital cost of this configuration is 3.380. The optimal feed profile and

temperature profile of the DSR are plotted in Fig. 4.15. According to this, fresh PO are added

to zones 1,3,5 and 7. Furthermore, based on the temperature profile, the adiabatic temperature

constraint is active when monomers are added to the DSR. And this is why the temperature profile

oscillates before the normalized volume reaches 0.2. Moreover, the temperature profile and the

weight percentage of unreacted PO drop at volume = 0.4, which implies digestion begins at that

point and most of reactions are carried out before this point. However, the reactor volume cannot

be reduced, since it will violate the adiabatic temperature constraint.
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(a) Feed Profile (b) Temperature Profile

Figure 4.15. Decision Profiles of the DSR Followed by a CSTR Model

The spikes in reactor and adiabatic temperature profiles occur when monomers are added to the

reactor. And temperature profile becomes steady after all the monomer injections. Because weight

percentage of unreacted monomer increases after monomer has been added to the reactor. Then,

the reactor temperature is decreased to ensure the adiabatic temperature would not exceed its upper

bound. After a while, monomer reacts to grow the polymer chain length. Hence, the weight

percentage of unreacted monomer decreases and the reactor temperature increases to speed up

the reactions. In addition, the optimal decision profile of the CSTR is sketched in Fig. 4.16.

Based on this, the adiabatic temperature constraint is inactive. On the other hand, the feeding

rate of monomer to the CSTR, outlet weight percentages of KOH and PO, production rate, and

unalkoxylated OH group constraints are active. Their impacts on the objective are listed in Table

4.10 (scaled to optimal objective in Section 4.4.2).
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Figure 4.16. Optimal Results of the DSR Followed by a CSTR Model

Table 4.10 Active Constraints in the DSR Followed by a CSTR Reactor Network

Active Constraint Impact on the Objective Function

Un-alkoxylated OH group 15.723

Outlet weight percentage of KOH 11.348

Outlet weight percentage of PO 1.052

Production rate 0.972

Feeding rate of monomer to the CSTR 0.018

Adiabatic temperature 0.006

Finally, the relative PDI of the final polymer is 1.20, and the normalized chain length distribution

is displayed in Fig. 4.17 (scaled to FR∗sorbitol). When comparing the chain length distributions

among different reactor configurations (Fig. 4.8 4.10, 4.13, and 4.17), it is clear that using a CSTR

at the end would result in more polymers with higher chain length. This is caused by the mixing
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nature of CSTR, and the unreacted monomer constraint.

Figure 4.17. Molecular Weight Distribution for the DSR Followed by a CSTR Model

4.5.6 Results Summary

Table 4.11 summarizes the optimal results normalized to the optimal solution of single DSR for

different reactor configurations, where UB represents the optimal result is at the upper bound.

The reason why DSR outperforms other reactor networks is that it has the highest monomer con-

version (lowest weight percentage of monomers in the outlet stream). The DSR has a digestion

phase where the weight percentage of unreacted monomer in the mixture decreases after the last

monomer injection, as shown in Fig. 4.7. On the other hand, a CSTR does not have a digestion

phase, since its reactor concentration equals its outlet concentration. If the monomer concentration

in the outlet stream is low, then its concentration in the reactor is also low. Therefore, the reaction

rates decrease, since they are proportional to the monomer concentration in the reactor. In order to

react more monomer in a CSTR, the monomer concentration needs to be increased. For this reason
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adding a DSR after CSTR is more effective than adding a CSTR after a DSR; DSRs can help digest

the unreacted monomers, but CSTRs cannot. Also, since capital cost includes the reactor and heat

exchanger costs, as well as the costs for injection points and monomer separation unit, having less

monomer in the outlet stream means reducing the cost of monomer separation unit.

Table 4.11 Optimal Results for Different Reactor Networks

DSR 2 CSTRs CSTR + DSR DSR + CSTR

Relative Capital Cost 1.00 2.64 1.20 3.38

Relative Residence Time 1.00 2.29 0.82 4.95

Relative Total Feed of PO 1.00 1.87 1.36 1.82

Relative Feed of Sorbitol 1.00 1.00 1.00 1.00

Relative Feed of KOH 1.00 1.71 1.43 1.71

Relative PDI 1.00 1.16 1.13 1.20

Relative Total Heat Removal 1.00 1.03 0.87 1.30

Relative wt% of PO in the Outlet Stream 1.00 58.82 (UB) 2.59 58.82 (UB)

Finally, all reactor optimization models are MINLPs, but as these models are large (as shown in

Table 4.12) and highly nonlinear, MINLP solvers are not capable of solving these problems. In

particular, DSR models could not be handled because of the excessive number of binary variables.

Instead, the binary variables are manually fixed to either 0 or 1 based on a detailed NLP-based

algorithm where the optimization models are solved with IPOPTH in GAMS.
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Table 4.12 Model Size for Different Reactor Networks

# of Variables # of Equality Constraints # of Inequality Constraint

2 CSTRs 505 497 11

DSR 16657 16534 205

CSTR + DSR 16909 16783 209

DSR + CSTR 16909 16783 209

4.6 Conclusions

The focus of this study is to determine a continuous reactor network along with its operating

conditions that minimize the capital cost for rigid polyol production. Based on Feinberg’s studies

[7], [8] we narrowed the reactor types to CSTRs and DSRs. The main strategy is to start with the

most basic reactor network (contains one CSTR or DSR), and then enlarge the reactor network

by adding more CSTRs/DSRs until there is no improvement in the objective function. Hence, we

first examined the reactor networks, with only one CSTR or DSR. For the single CSTR case, we

find that it cannot produce the target rigid polymer without violating the safety constraints. For the

reactor configuration with one DSR, at least five monomer injections points are required to produce

polymer that satisfies the product specifications. A DSR with ten monomer injection points has

the lowest capital cost. Then, one more reactor (CSTR/DSR) is added after the CSTR/DSR to

determine if an extra reactor would provide a better option. Adding another CSTR/DSR after the

CSTR enables the rigid polyol production to satisfy the safety and product constraints. However,

it fails to improve the objective function, since its capital cost is higher than the one of single DSR.

We also examined the reactor configuration with a single DSR followed by a CSTR, to analyze

if an extra CSTR would reduce the objective function. The results show that adding a CSTR

can not decrease the capital cost and improve performance simultaneously. Because the reactor
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networks with two reactors do not outperform the one with one reactor, we conclude that one DSR

with 10 injection points is the appropriate reactor network design for this particular rigid polyol

production.

The optimal reactor network is sensitive to the cost parameters, as well as the target product.

Moreover, it is clearly inefficient if the continuous reactor network can only produce one product.

In order to remain competitive, companies are required to operate their systems at nearby optimal

conditions for multiple products. Therefore, we consider the reactor network design for multiple

rigid polyols in the next chapter.
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Chapter 5 Continuous Reactor Network De-

sign for Multiple Rigid Polyol Pro-

ductions

This study focuses on developing continuous reactor network models to produce multiple rigid

polyol products under strict product and safety specifications. We first determine reactor networks

and operating decisions for minimum capital cost, and then find reactor networks with optimal

profit through multi-criteria optimization, using a Pareto chart to analyze the relationship between

capital cost and net sales. Based on our previous study [85], we narrow down the types of contin-

uous reactors to two: plug flow reactor (PFR) with multiple feed injection points and a network

of continuous stirred tank reactors (CSTR). The CSTR model can be written as a mixed integer

nonlinear programming (MINLP) problem. The DSR model is a differential algebraic equation

(DAE) optimization problem. The simultaneous collocation method is applied to transform the

resulting DAE model into a MINLP, which is solved as a NLP by fixing the binary terms. Both

capital cost and multi-criteria problems are formulated as multi-scenario optimization problems to

determine the best single network design for producing multiple polymer products.
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5.1 Literature Review

Recent related studies for continuous multi-product polymerization plants include [79, 39, 40].

Shi et al. [39] developed an optimization strategy for polymer grade transitions for a multi-product

continuous loop reactor. In this work, a rigorous mathematical model was developed for the entire

reactor-based process. Optimal transition recipes were generated through dynamic optimization to

guide the transition between polymer A and polymer B. These recipes efficiently shorten the tran-

sition time and significantly reduce the off-transition products. A similar approach was proposed

by Wang et al. [40], where a multi-stage dynamic optimization was implemented on a gas-phase

fluidized bed polymerization process. In addition to off-line optimization, they extended this ap-

proach to shrinking horizon nonlinear model predictive control, along with an expanding horizon

weighted least-squares estimator for process states and unknown parameters.

Moreover, there have been a number of general optimization studies for multi-product continuous

processes. These include the integration of optimal design and control for reactor systems [80],

simultaneous control and scheduling for a multi-product CSTR [81, 82] as well as scheduling and

operation optimization for generic multi-plant models. A comprehensive review of this work was

summarized by L. D. R. Beal group [83].

In addition, optimization methods have been extended to integrate the design, control and schedul-

ing for polyol processes [84], since it provides more reliable optimal solutions. However, for large-

scale problems, the simultaneous method requires a high computational cost, since the numbers

of variables and equations involved are quite large. Some problems also include binary variables.

Moreover, the problem formulation can become more complex when uncertainty in kinetic param-

eters comes into play.

Multi-product polymer processes lead to further design advantages, as well as convenience and

versatility. On the other hand, obtaining an optimal design solution can be challenging, since these

problems/models are large and non-convex, and involve binary variables. For optimal design and

operation of multi-product processes, a simultaneous optimization strategy is the most straight-
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forward, where optimal decision profiles are generated simultaneously for all the products. Once

designed, the optimal process meets the performance and capacity requirements for all products,

which are produced in single product campaigns separated by grade transitions. This optimization

study focuses on the recipe design of this process. In this work, the simultaneous approach is

adopted to generate optimal multi-product reactor networks. Since, the reaction kinetics for each

polymer product may be quite different, it is a challenge to satisfy feasibility requirements for each

product scenario. Therefore, an approach combines the ideas that CSTR and DSR play important

roles in shaping the AR boundary [7],[8] and solving reactor modules in an increasing manner

[9] are adopted in this work. As shown in Chapter 4, DSRs offered long digestion times, which

implied putting the DSR at the end of the reactor network. In addition, single DSR is often suffi-

cient to produce rigid polyol. On the other hand, existing semi-batch reactors can be converted to

CSTRs, which are easier to control than DSR. To meet these requirements, three reactor networks

are derived and considered here. As shown in Fig. 5.1, these are single DSR, CSTRs in series, and

a CSTR followed by a DSR.

(a) Single DSR (b) CSTRs in Series

(c) Single CSTR Followed by a DSR

Figure 5.1. Examined Reactor Networks

This chapter is organized as follows. Section 5.2 introduces the complex reaction scheme for rigid
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polyol productions, corresponding kinetic parameters and the reactor network models. In Section

5.3, the solution strategy utilized for solving the reactor network optimization models is presented,

as well as constraint specifications. Section 5.4 presents and compares the numerical results for

each reactor network. Section 5.5 summarizes the study and concludes the chapter.

5.2 Reactor Models for Rigid Polyol Production

5.2.1 Reaction Scheme

We follow the reaction kinetics reported in Nie’s work [76], except that hydrolysis reactions are

excluded, because water in the aqueous initiator solution is removed before adding to the reactor.

Each polymer product is formed by different initiators and monomers, as described in Table 5.1.

The catalyst is KOH for all the products. In addition, the detailed reaction scheme is displayed in

Table 5.2. The following notation is used in the remainder of the study. MO denotes monomer

oxide. Pl represents one of the branches from the initiator without the active site CH(MO)l. Both

l and s indicate the number of repeating units. G0 is a branch of the initiator. Meanwhile, Ul de-

notes the unsaturated chains with double-bond end groups CH2 = CHCH2(MO)l, formed by the

chain transfer step and subsequent growth step. Moreover, depending on the different functional

end groups, we define the following components, where L ≤ 10. Based on the average molecular

weight of rigid polymers, the expected average chain length is less than 5. Therefore, we assume

the maximum chain length is less than 10.

Gl growing product chains of length l (PlO
−K+), l = 1, ...L

Dl dormant product chains of length l (PlOH), l = 1, ...L

Ql growing unsaturated chains of length l (UlO
−K+), l = 1, ...L

Rl dormant unsaturated chains of length l (UlOH), l = 1, ...L
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Table 5.1 Reactants of Each Rigid Polymer

Polymer Initiator Monomer

Polymer A Sorbitol Propylene oxide (PO)

Polymer B Glycerin Ethylene oxide (EO)

Polymer C Glycerin Propylene oxide (PO)

Table 5.2 Reaction Scheme for Rigid Polyol

Initiation

G0 + MO ki−−→ G1

Propagation

Gl + MO
kp−−→ Gl+1 (l ≥ 1)

Ql + MO
kp−−→ Ql+1 (l ≥ 1)

Transfer

Gl + MO kt−−→ Dl + Q0 l ≥ 0)

Ql + MO kt−−→ Rl + Q0 (l ≥ 0)

Exchange

Gl + Ds
ke−−→ Dl + Gs (l, s ≥ 0)

Ql + Rs
ke−−→ Rl + Qs (l, s ≥ 0)

Gl + Rs
ke−−⇀↽−− Dl + Qs (l, s ≥ 0)

Since the maximum chain length L is small, we can include all of the population balances for each

species up to L into the model. To illustrate the population balance of polymer chains, we first

present a CSTR model in Eqn. 5.1, where the subscripts ini, prop, trf and exc represent the ini-

tiation, propagation, transfer and exchange reactions, respectively. Here, V is the volume, F 0
c and

Fc represent the total inlet and outlet molar flow rate of component c. Cc stands for concentration

of component c in set COMP, which includes initiator, monomer, catalyst and growing/dormant

product/unsaturation chains.
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F 0
G0
− FG0

V
= − kiniCG0 CMO − ktrf CG0 CMO

− kexcCG0

S∑
s=0

(CDs + CRs) + kexcCD0

S∑
s=0

(CGs + CQs)

F 0
G1
− FG1

V
= kiniCG0 CMO − (kprop + ktrf )CG1 CMO

− kexcCG1

S∑
s=0

(CDs + CRs) + kexcCD1

S∑
s=0

(CGs + CQs)

F 0
Gl
− FGl

V
= kprop (CGl−1

− CGl
)CMO − ktrf CGl

CMO

− kexcCGl

S∑
s=0

(CDs + CRs) + kexcCDl

S∑
s=0

(CGs + CQs)

for Gl = G2, ..., GL−1

F 0
GL
− FGL

V
= kpropCGL−1

CMO − ktrf CGL
CMO

− kexcCGl

S∑
s=0

(CDs + CRs) + kexcCDl

S∑
s=0

(CGs + CQs)

F 0
Dl
− FDl

V
= ktrf CGl

CMO

+ kexcCGl

S∑
s=0

(CDs + CRs)− kexcCDl

S∑
s=0

(CGs + CQs)

for Dl = D0, ..., DL

F 0
Q0
− FQ0

V
= − (kini + ktrf )CQ0 CMO + ktrf

S∑
s=0

(CGs + CQs)CMO

− kexcCQ0

S∑
s=0

(CDs + CRs) + kexcCR0

S∑
s=0

(CGs + CQs)

F 0
Q1
− FQ1

V
= (kiniCQ0 − kpropCQ1)CMO − ktrf CQ1 CMO

− kexcCQ1

S∑
s=0

(CDs + CRs) + kexcCR1

S∑
s=0

(CGs + CQs)
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F 0
Ql
− FQl

V
= kprop (CQl−1

− CQl
)CMO − ktrf CQl

CMO

− kexcCQl

S∑
s=0

(CDs + CRs) + kexcCRl

S∑
s=0

(CGs + CQs)

for Ql = Q2, ..., QL−1

F 0
QL
− FQL

V
= kpropCQL−1

CMO − ktrf CQL
CMO

− kexcCQl

S∑
s=0

(CDs + CRs) + kexcCRl

S∑
s=0

(CGs + CQs)

F 0
Rl
− FRl

V
= ktrf CQl

CMO

+ kexcCQl

S∑
s=0

(CDs + CRs)− kexcCRl

S∑
s=0

(CGs + CQs)

for Rl = R0, ..., RL

(5.1)

Since the rates of the exchange reactions are significantly higher than other reaction rates. The

exchange reactions are modeled using the quasi-steady state assumption and two pseudo-species

X and Y are introduced [76] to solve this problem, where Xl = Gl + Dl and Yl = Ql + Rl. The

resulting population balances for the CSTR and PFR models are presented in Eqns. 5.2 and 5.3,

respectively.

F 0
X0
− FX0 = −kiniCG0 CMO

F 0
X1
− FX1 = (kiniCG0 − kpropCG1)CMO

F 0
Xl
− FXl

= (kpropCGl−1
− kpropCGl

)CMO, l = 2, ..., L− 1

F 0
XL
− FXL

= kpropCGL−1
CMO

F 0
Y0
− FY0 = −kiniCQ0 CMO + ktrf

L∑
l=0

(CGl
+ CQl

)CMO

F 0
Y1
− FY1 = (kiniCQ0 − kprop]CQ1)CMO

F 0
Yl
− FYl = (kpropCQl−1

− kpropCQl
)CMO, l = 2, ..., L− 1

F 0
YL
− FYL = kpropCQL−1

CMO

(5.2)
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dFX0

dV
= −kiniCG0 CMO

dFX1

dV
= (kiniCG0 − kpropCG1)CMO

dFXl

dV
= (kpropCGl−1

− kpropCGl
)CMO, l = 2, ..., L− 1

dFXL

dV
= kpropCGL−1

CMO

dFY0
dV

= −kiniCQ0 CMO + ktrf

L∑
l=0

(CGl
+ CQl

)CMO

dFY1
dV

= (kiniCQ0 − kpropCQ1)CMO

dFYl
dV

= (kpropCQl−1
− kpropCQl

)CMO, l = 2, ..., L− 1

dFYL
dV

= kpropCQL−1
CMO

(5.3)

Model Parameters

As a proof of concept, the kinetic parameters stated in Nie et al. [76] are applied to this study,

and are listed in Tables 5.3 and 5.4 below. They apply to long polymer chains and are suitable for

this study, even though they are not necessarily the same as those for the short chains. Moreover,

initiation and propagation steps have different kinetics, which implies that polymer chains with

monomers attached behave differently than the initiator. Generally, monomer EO reacts faster than

monomer PO, due to larger rate constants.

Table 5.3 Kinetic Parameters of PO

Reaction Type Initiation Propagation Transfer

Arrhenius Constant (m3/mol/s) 396,400 13,504.2 1,509,000

Activation Energy (kJ/kmol) 77,822 69,172 105,018

Heat of Reaction (kJ/kmol) 92,048 92,048 0
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Table 5.4 Kinetic Parameters of EO

Reaction Type Initiation Propagation Transfer

Arrhenius Constant (m3/mol/s) 322,030,000 24,104 1,509,000

Activation Energy (kJ/kmol) 90,854 66,107 105,018

Heat of Reaction (kJ/kmol) 112,968 112,968 0

5.2.2 Reactor Network Model

The reactor network model consists of three main parts as our previous work [85]: material balance,

energy balance, product specifications and safety constraints, which are explored in the following

subsections. In addition, n denotes either the index of each CSTR or the index of each DSR

zone. Indices c and m refer to the components and monomer, respectively, that are involved in

the process, p indicates the process model that produces polymer products A, B and C, rxn is the

reaction index, FRm,n is the feed rate of monomer to nth CSTR/DSR zone.

Material Balance

First, rate constants can be calculated using the Arrhenius Eqn. 5.4, where k, A, Ea, R and T

represent the rate constant, Arrhenius constant, activation energy, gas constant and reactor temper-

ature, respectively.

krxn,n,p = Arxne
−Earxn

RTn,p , rxn ∈ {ini, prop, trf}, n ∈ {1..N}, p ∈ {A,B,C} (5.4)

Second, reaction rate for different reactions can be expressed using Eqn. 5.5, where r is the reaction

rate, and Cc represents the concentration of components. All the reactions are second order. The

subscripts c1 and c2 in Eqn. 5.5 represent the first and second components involved in reaction
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rxn, respectively.

rrxn,n,p = krxn,n,pCc1,n,pCc2,n,p, rxn ∈ {ini, prop, trf}, n ∈ {1..N}, p ∈ {A,B,C}

(5.5)

Third, Eqns. 5.6a and 5.6b enforce the continuity between CSTRs/DSR zones. F 0 and F denote

the inlet and outlet molar flow rates, respectively. Since fresh monomer can be added at the be-

ginning of each CSTR/DSR zone, the inlet molar flow rate equals the summation of outlet molar

flow rate from the previous CSTR/DSR zone and the feeding rate of fresh monomer. For other

components, the inlet molar flow rate equals the outlet molar flow rate of the previous CSTR/DSR

zone.

F 0
m,n,p = Fm,n−1,p + FRm,n,p, n ∈ {1..N}, p ∈ {A,B,C} (5.6a)

F 0
c,n,p = Fc,n−1,p, c 6= m, n ∈ {1..N}, p ∈ {A,B,C} (5.6b)

Reactor volumetric flow rate and concentration can be calculated using the Eqns. 5.7a and 5.7b for

each zone n, respectively. V̇ is the volumetric flow rate and MW denotes the molecular weight of

reactant.

V̇n,p =
∑
c

F 0
c,n,pMWc

ρc,n,p
, n ∈ {1..N}, p ∈ {A,B,C} (5.7a)

Cc,n,p V̇n,p = Fc,n,p, c ∈ COMP, n ∈ {1..N}, p ∈ {A,B,C} (5.7b)

Finally, CSTRs and DSRs follow different design equations. For the CSTR, the design equation is

an algebraic equation (Eqn. 5.8).

Fc,n,p − F 0
c,n,p = −rc,n,p Vn, c ∈ COMP, n ∈ {1..N}, p ∈ {A,B,C} (5.8)
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while the design equation for DSR is in differential form (Eqn. 5.9).

dFc,n,p
dVn

= −rc,n,p, c ∈ COMP, n ∈ {1..N}, p ∈ {A,B,C} (5.9)

Energy Balance

To develop the energy balance, we introduce monomer cooling. Fresh monomer feed has a cooling

effect, since its temperature is at least 100 °C lower than the reactor temperature. Monomer cooling

is represented by Hm
cool in Eqn. 5.10. In addition, Cm

p is the heat capacity of monomer and Tmf

denotes the feed temperature of monomer.

Hm,n,p
cool =

∫ Tn,p

Tm
f

Cm
p dT, n ∈ {1..N}, p ∈ {A,B,C} (5.10)

Second, total mass flow rate Ṁ can be obtained from Eqn. 5.11. It is required in the energy balance

calculation.

Ṁn,p =
∑

c∈COMP

F 0
c,n,pMWc, n ∈ {1..N}, p ∈ {A,B,C} (5.11)

Moreover, we need to ensure that energy is conserved across CSTRs/DSR zones (Eqn. 5.12a,

5.12b). Here Ṁm is the mass flow rate of monomer and superscript b represents the solution

mixture inside of the reactor.

(Ṁn,p − Ṁm
n,p)

∫ T b
f

T 0
n,p

Cb
pdT = Hm,n,p

c FRm,n,pMWm, n = 1, m ∈MON, p ∈ {A,B,C}

(5.12a)

Ṁn,p

∫ Tn−1,p

T 0
n,p

Cb
pdT = Hm,n,p

c FRm,n,pMWm, n ∈ {1..N}, p ∈ {A,B,C} (5.12b)

The final element in energy balance is the amount of heat released during the reaction, Hr. For

CSTR, this can be obtained using Eqn. 5.13, where Hrxn represents the heat of reaction, which is
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different for each monomer.

Hn,p
r = (F 0

m,n,p − Fm,n,p)Hm,p
rxn , n ∈ {1..N}, p ∈ {A,B,C} (5.13)

For DSR, heat released H̄r can be calculated based on the rates of reactions, as shown in Eqn. 5.14:

H̄n,p
r = −rm,n,pHm,p

rxn , n ∈ {1..N}, p ∈ {A,B,C} (5.14)

Finally, the energy balances for CSTR and DSR are different, with the former one in algebraic

form (Eqn. 5.15a), and the latter one in differential form (Eqn. 5.15b). Moreover, HX represents

the extra cooling that needs to be provided.

Ṁn,pC
b
p T

0
n,p +Hn,p

r −HXn,p = Ṁn,pC
b
p Tn,p, n ∈ {1..N}, p ∈ {A,B,C} (5.15a)

Ṁn,pC
b
p

dTn,p
dVn

= H̄n,p
r −HXn,p, n ∈ {1..N}, p ∈ {A,B,C} (5.15b)

Product Quality & Safety Constraints

This model includes six product specifications and two safety constraints. First, there is a minimum

target production rate (Eqn. 5.16) for each of the polymer, where subscript N refers to the final

reactor in the network. ∑
c∈COMP

Fp,c,N ≥ PR∗p, p ∈ {A,B,C} (5.16)
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Second, a lower and upper bound for the OH number can be obtained through Eqn. 5.17:

OH Numberp =
56.1 ∗ 1000

EWp

, p ∈ {A,B,C} (5.17a)

EWp =
MW p

Functionalityp
(5.17b)

Functionalityp =
total molesOH of polymer p

total moles polyol of polymer p
, p ∈ {A,B,C} (5.17c)

MW p =

∑
c Fc,N,pMWc∑

c Fc,N,p
, p ∈ {A,B,C} (5.17d)

OH NumberLB,p ≤ OH Numberp ≤ OH NumberUB,p, p ∈ {A,B,C} (5.17e)

Third, an upper bound for polydispersity index (PDI) is given by Eqn. 5.18, where Mw and Mn

stand for weight and number average molecular weight, respectively.

PDIp =
Mwp
Mnp

=

∑
c∈COMP Fp,c ∗MW 2

p,c ∗
∑

c∈COMP Fp,c

(
∑

c∈COMP Fp,c ∗MWp,c)2
≤ PDI∗p , p ∈ {A,B,C} (5.18)

Fourth, there is a specification for the outlet weight percentage of catalyst.

FRcat,p ≥
∑
l

(Gl,n,p +Ql,n,p) l = 1...L, n,= 1...N, p ∈ {A,B,C} (5.19a)

wpcat,p,N =
FRcat,p ∗MWcat,p

ṀN,p

≤ wp∗cat,p, p ∈ {A,B,C} (5.19b)

Finally, the monomer, initiator and catalyst amounts are limited (Eqn. 5.20a). In addition, monomer

feeding rate should equal zero if reactor n has no monomer injection point (the corresponding bi-

nary variable βn = 0).

FRc,p ≤ FR∗c,p, c ∈ {ini, cat}, p ∈ {A,B,C} (5.20a)

FRm,n,p ≤ βn FR
∗
m,p, βn ∈ {0, 1}, n ∈ {1..N}, p ∈ {A,B,C} (5.20b)

The first safety constraint (Eqn. 5.21) is implemented to limit the adiabatic temperature rise to
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(Tsafety − Tn,p) if the cooling system fails; in Eqn. 5.21 κ is a constant between one and ten. Note

that this rise is directly related to weight percentage of unreacted monomers in the reactor. In a PFR

or DSR, runaway will dramatically increase the reactor temperature and eventually overpressure

the storage tank that the reactor empties into.

κwpm,n,p ≤ Tsafety − Tn,p, n ∈ {1..N}, p ∈ {A,B,C} (5.21)

The second safety constraint provides the reactor temperature range, as shown in Eqn. (5.22).

TLB,p ≤ Tn,p ≤ TUB,p, n ∈ {1..N}, p ∈ {A,B,C} (5.22)

5.3 Optimization Formulations and Solution Strategy

Our optimization approach derives reactor networks with minimum capital costs and maximum net

sales. This multi-objective optimization problem is solved in two stages. In this section we first

consider minimizing capital cost, followed by an ε−constrained approach [86] that traces a Pareto

curve with maximum net sales.

5.3.1 Stage 1 - Minimizing capital cost

The aim of stage 1 is to construct continuous reactor networks that are able to produce multiple

rigid polyols with strict product and safety specifications. At the same time, optimal decision

profiles that would lead to a minimum capital cost are determined. Decision variables include the

feeding rates of initiator, monomers and catalyst, reactor temperature, reactor volume, injecting

location of monomers, capacity of heat exchange and the separation unit. Feeding rates and reactor

temperature can take different values in order to produce different polymer products. All other

decision variables are common variables, which means they take the same values for different

polymer products.
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CSTR Optimization Model

The MINLP problem of the continuous stirred tank reactor (Eqns. 5.2, 5.4 - 5.8, 5.10 - 5.13, 5.15a,

5.16-5.22) are incorporated into Eqn. 5.23:

min CC =
N∑
n=1

(f1(HX(n)) + f2(V ) + f3(βn)) + f4(wpm,N) + f5

s.t. gp(yp(n), up(n)) = 0, p ∈ {A,B,C}

hp(yp(n), up(n), βn) ≤ 0, p ∈ {A,B,C}

yp(n)L ≤ yp(n) ≤ yp(n)U , p ∈ {A,B,C}

up(n)L ≤ up(n) ≤ up(n)U , p ∈ {A,B,C}

βn ∈ {0, 1}

(5.23)

where n is the index of CSTRs, N denotes the final CSTR and p ∈ {A,B,C} stands for the prod-

uct process model. The objective is to minimize the capital costs (CC), which includes the cost for

the heat exchangers (f1), reaction vessel (f2), monomer injectors (f3), oxide recovery system (f4),

which is used to separate the unreacted monomer from the polyol product, and agitator, pump,

catalyst injection (taken as constants and denoted by f5).

Notice that monomer injection is represented by binary variable βn. If the feed of monomer m

to CSTR n is greater than zero then βn = 1, otherwise βn = 0. This model can either be solved

as a MINLP using SBB, or solved as an NLP using IPOPTH with binary variables fixed. Both

methods lead to same optimal decision profiles. Moreover, yp stands for algebraic state variables,

and up denotes the decision variables for each polymer product; these are the reactor temperature,

feeding rates of monomer, catalyst and initiator. gp(·) denotes the equality process constraints,

which result from the mass balcnce (Eqn. 5.2) as well as the energy balances, and hp(·) represents

the inequality constraints which result from the process constraints, such as adiabatic temperature,

and product specification constraints. The last two constraints in Eqn. 5.23 represent the upper and

lower bounds for algebraic and decision variables, respectively.
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DSR Optimization Model

The DSR model (Eqns. 5.3, 5.4 - 5.7, 5.9 -5.12, 5.14, 5.15b -5.22) can be written in a general form

as a dynamic optimization problem (Eqn. 5.24). The objective function of the DSR model is to

minimize the capital cost. Here, f1 calculates the cost for heat exchanger, f2 estimates the reactor

cost and the monomer injection cost is denoted by f3, followed by the cost for monomer recovery

system (f4). Finally, f5 represents the cost for agitator, pump and catalyst injection. Moreover, the

subscript p refers to the product process model, zp and yp are differential and algebraic state vari-

ables, respectively, and up denotes the decision variables, which consist of the reactor temperature,

feeding rates of monomer, catalyst and initiator. Other than these individual decision variables,

there are four common ones: capacity of the heat exchangers HX , reactor volume V , monomer

injection points βn, and monomer recovery system’s capacity wpm,Vf . Also, the derivatives in dif-

ferential equations are denoted by żp, which result from the material balance (Eqn. 5.3) as well as

the energy balance, and gp denotes the algebraic equality constraints. The next three equations rep-

resent the upper and lower bounds for differential, algebraic and decision variables, respectively.

Monomer injection is represented by binary variable βV . We aim to limit the number of injection

points by setting this to βmax which is typically 10, and we relax it if the design is not feasible.
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min CC = f1(HX) + f2(V ) +
N∑
n=1

f3(βV ) + f4(wpm,Vf ) + f5

s.t. żp(V ) = f(zp(V ), yp(V ), up(V )) = 0, p ∈ {A,B,C}

gp(zp(V ), yp(V ), up(V )) = 0, p ∈ {A,B,C}

hp(zp(V ), yp(V ), up(V ), βV ) ≤ 0, p ∈ {A,B,C}

zp(V )L ≤ zp(V ) ≤ zp(V )U , p ∈ {A,B,C}

yp(V )L ≤ yp(V ) ≤ yp(V )U , p ∈ {A,B,C}

up(V )L ≤ up(V ) ≤ up(V )U , p ∈ {A,B,C}

βV ∈ {0, 1}∑
V

βV ≤ βmax

(5.24)

The dynamic optimization model can be solved by the simultaneous collocation method. This

method discretizes the continuous volume horizon into a finite element mesh, and then the differential-

algebraic equation optimization problems are converted into nonlinear programming problems. A

detailed description for the simultaneous collocation method can be found in Chapter 2. In this

study, a mesh of 40 finite elements along with two-point Radau collocation is applied to the DSR

model. We observe that this combination gives accurate solutions, while maintaining a compu-

tationally solvable model. As shown in Fig. 5.2, each DSR is discretized into 40 elements with

unequal volumes and each element is treated as one DSR zone. Catalyst and initiator are added at

the beginning of the DSR, while monomer can be added at the beginning of each DSR zone. Since

the volume of each zone is a decision variable, the optimal injection profile and location can be

found automatically for fixed number of injection points. In order to find the optimal number of

monomer injection points, the following steps are applied:

• Step 1. Start with number of injection points i = 1. Fix the first i binary variable βn to 1,

and others to 0.
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• Step 2. Solve the NLP problem. If it is infeasible, set i = i+ 1.

• Step 3. Repeat Step 2, until the problem becomes feasible.

• Step 4. Keep increasing i by 1 and observe the change in capital cost with the number of

injection points. Continue until there is no further improvement.

Compared with our previous algorithm, where DSR is divided into 40 zones with equal length, the

new method is more flexible about the monomer injection location, and requires fewer iterations

to obtain the optimal injection profile.

Figure 5.2. Discretized DSR

The simultaneous collocation method [51] follows a full discretization methodology, in which

orthogonal collocation on a fixed/moving finite element mesh is introduced to represent the con-

tinuous volume horizon in the DSR model. Both CSTR and DSR models are implemented in

GAMS and solved by NLP solver IPOPTH.

5.3.2 Stage 2 - Generate Pareto Chart Between Net Sales and Capital Cost

Stage 2 focuses on generating a Pareto chart between net sales and capital cost for each of the

reactor configuration. This is achieved by increasing ε > 0 in Eqn. 5.25 until net sales gradually

levels off. Because the problem is nonconvex, we are only ensuring local solutions. However, we

use multi-start and other features to make sure these are very good solutions, and assume them to

be global solutions. Due to the nonconvexity, we use the ε constraint formulation for the multi-

criteria optimization. This helps to promote unique solutions on the pareto curve. Stage 2 has the

same decision variables as stage 1. But the objective switches from minimizing the capital cost to
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maximizing the net sales. In addition, CC∗ is the optimal capital cost obtained from Eqns. 5.23

and 5.24. γ1, γ2, and γ3 are prices for polymer product, utility and raw material, respectively,

as listed in Table 5.5. Although prices generally differ for different product, the selling price of

each polymer is assumed to be the same in this study, as is the raw material cost. gp(·) represents

the equality constraints that come from the material and energy balances. hp(·) represents the

inequality constraints that result from the safety and product specifications.

max
∑
p

net salesp = γ1 salesp − γ2 utilityp − γ3 rawmaterialp

s.t. gp(zp(V ), yp(V ), up(V )) = 0, p ∈ {A,B,C}

hp(zp(V ), yp(V ), up(V )) ≤ 0, p ∈ {A,B,C}

CC ≤ (1 + ε) ∗ CC∗

(5.25)

Table 5.5 Parameters for Estimating the Net Sales

Price ($/kg)

Product 2.866

Utility 0.0123

Raw Material 2.176

5.3.3 Optimization Model Parameters

Tables 4.3 – 4.5 list the parameters used to calculate the capital cost for CSTR, PFR, and oxide

recovery system [78]. Cost of component equals to the installed base cost multiplied by the ratio

of component to base size raised to an exponent. These costs are normalized for confidentiality.

Table 5.6 describes the product and safety specifications for each product model.
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Table 5.6 Product & Safety Specifications

Polymer A Polymer B Polymer C

PR∗p(
kg
min

) 28.87 28.87 28.87

OH Number Range ( mgKOH
g of polymer

) 460-495 260-280 370-396

PDI∗p 1.3 1.5 1.4

wp∗cat,p 0.15 0.1 3

FR∗ini,p(
kmol
min

) 0.45 0.45 0.45

FR∗cat,p(
kmol
min

) 2.7 1.35 1.35

FR∗m,p(
kmol
min

) 5 5 5

Tsafety(°C) 220 220 220

TLB,p(°C) 100 100 100

TUB,p(°C) 160 160 160

5.4 Results and Discussion

5.4.1 Stage 1 - Minimizing Capital Cost

Single DSR

The aim is to minimize the capital cost, and the monomer injections represent a high percentage

of those costs. Fig. 5.3 shows how the costs change with the number of monomer injection points.

CC, SU, MI, R, and HE represent the costs for total capital, separation unit, monomer injection, re-

actor and heat exchange, respectively. All the costs are normalized to the optimal DSR capital cost.

If a single DSR is used for production, at least 10 monomer injection points are required to meet

the product specifications. Generally, optimal capital cost increases as the number of monomer

injection points increases, due to the expense of new injection points. In addition, the weight per-
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centage of unreacted monomer in the outlet stream remains at zero for all product cases A, B and

C, which means DSR provides enough digestion time and can achieve high conversion. Moreover,

the heat exchanger cost gradually reduces, and the reactor cost increases with the number of in-

jection points. These are caused by the fact that with more injections, monomers are fed to the

reactor more evenly and then, the temperature profile oscillates less dramatically, but the reactions

slow down due to the reduction in monomer concentrations. Therefore, the heat exchanger duty

decreases, but the reactor size increases in order to speed up the reactions.

Figure 5.3. Number of Monomer Injection Points Versus Costs

This reactor design is dominated by polymer product B. Table 5.7 shows the constraints that are

active in this reactor network, and their corresponding values of the constraint multipliers; higher

values show a higher impact on the objective function. For all of these active constraints, Polymer

B has the largest impact on the objective function among the three polymers, especially for the

outlet weight percentage of KOH constraint. Therefore, we would expect that polymer B is the

dominant product for the DSR network design.
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In order to prove this point, we optimize the DSR model with 10 monomer injection points for

each polymer product separately (Fig. 5.4). The relative optimal capital costs (scaled to the op-

timal capital cost of single DSR) for product A, B, and C are 0.84, 0.98 and 0.74, respectively.

Polymer B has the highest capital cost and this cost is very close to the optimal cost of the multi-

product process. Since, we fix the number of injection points to 10, all the products have the same

monomer injection cost. Moreover, if we plan to use DSR to produce only polymers A and C,

then only 5 monomer injection points are required, with a relative capital cost of 0.65. All of these

demonstrate that Polymer B is the dominant product in the DSR network design.

Table 5.7 Active Constraints’ Impact on the Objective Function (Constraint Multiplier) for the
DSR Reactor Network

Active Constraint Polymer A Polymer B Polymer C

OH Number 0.025 126.05 -

Outlet weight percentage of KOH 2.96 439.54 1.14 ∗ 10−4

Production rate 0.444 202.29 -

PDI - - -

Adiabatic temperature - 0.178 -

Reactor Temperature 0.52 41.05 -
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Figure 5.4. Capital Cost Breakdown for Each Polymer with DSR with 10 Monomer Injection
Points

All the decision variables in Table 5.8 are relative values normalized to their upper bounds. Ac-

cording to it, for the dominant product B, the total feeding rates of initiator, monomer and catalyst

stay the same, while the number of injection points increases from 10 to 15. On the other hand,

we observe that the nondominating polymer C behaves differently; the feeding rates decrease as

the number of injection points increases. No matter how many injection points are utilized, there

is added capacity to produce more polymer C than is demanded, but reactor volume increases the

yield of product C as the number of injection points increases and leads to adiabatic temperature

violations (5.21). To avoid this, the feeding rates of polymer C must decrease as the number of

injection points increases.
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Table 5.8 Optimal Decision Profile of DSR vs. the Number of Monomer Injection Points

10 INJ 11 INJ

Product A B C A B C

FRini 0.093 0.11 0.44 0.087 0.11 0.46

FRcat 2.88 ∗ 10−4 3.85 ∗ 10−4 0.037 2.88 ∗ 10−4 3.85 ∗ 10−4 0.039

Total FRm 0.073 0.11 0.25 0.074 0.11 0.26

Volume 0.084 0.079

HX 2.19 3.51

wpKOH,N 0 0

13 INJ 15 INJ

Product A B C A B C

FRini 0.087 0.11 0.39 0.087 0.11 0.26

FRcat 2.88 ∗ 10−4 3.85 ∗ 10−4 0.033 2.88 ∗ 10−4 3.85 ∗ 10−4 0.021

Total FRm 0.074 0.11 0.22 0.075 0.11 0.14

Volume 0.041 0.053

HX 6.47 5.55

wpKOH,N 0 0

Figures 5.5, 5.6, and 5.7 show the relative temperature and feed profiles for polymers A, B and

C, respectively. Temperatures and adiabatic temperatures are scaled relative to Tsafety. All other

variables in the plots are scaled to their upper bounds. In the feed profile, the feeding rate of

monomer at that position is indicated by the dot, and the smooth line represents the weight per-

centage of unreacted monomer in the reactor. The temperature profiles and weight percentages of

monomer for all the polymers stop oscillating after all the monomers are added to the reactor. In

addition, polymer B’s temperature profile oscillates dramatically compared with other products.

This is expected, since polymer B uses EO instead of PO as its monomer. EO reacts much faster
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than PO, and has a higher value of κ in Eqn. 5.21, which makes it more sensitive to the adiabatic

temperature rise constraint. Therefore, when the weight percentage of monomer in the reactor is

the same for all products, polymer B’s reactor temperature needs to be the lowest among all the

polymers. Moreover, the sharp decrease in polymer B’s temperature profile requires the largest

amount of heat exchanger capacity, since it requires a lot of cooling to bring temperature down

from a high temperature to a low temperature within a small reactor volume. The faster kinetics

also make polymer B the dominant product in this design. Since it is more sensitive to the adiabatic

temperature rise constraints, monomers are required to be added more slowly, and this would lead

to requiring more monomer injections.

(a) Feed Profile (b) Temperature Profile

Figure 5.5. Decision Profiles of the DSR with 10 Injections for Product A

(a) Feed Profile (b) Temperature Profile

Figure 5.6. Decision Profiles of the DSR with 10 Injections for Product B
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(a) Feed Profile (b) Temperature Profile

Figure 5.7. Decision Profiles of the DSR with 10 Injections for Product C

Furthermore, the normalized chain length distribution is plotted in Fig. 5.8 (scaled to FR∗ini,p).

Product A and C do not include polymers with chain lengths longer than 8, and product B does

not have polymers with chain length greater than 9. These prove that it is reasonable to assume the

maximum chain length for these rigid products to be less than 10. The PDIs of the three products

are 1.22, 1.15, and 1.20 respectively.

Figure 5.8. Chain Length Distribution for the DSR Model
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CSTR in Series

Fig. 5.9 shows the relationship between the number of CSTRs in series and the relative capital

cost (CC), along with other relative costs (normalized to the optimal capital cost of the single DSR

case). SU, MI, R, and HE represent the cost for the separation unit, monomer injection, reactor

and heat exchange, respectively. Other costs include the cost for catalyst injection, agitator, and

pump. Capital cost increases as the number of CSTRs increases, due to the fact that extra CSTRs

require extra pumps, and agitators. In contrast, the costs for the separation unit and the reactor

decrease as the number of CSTRs increase, since more reactors provide longer residence time for

digestion, and lower the weight percentage of unreacted monomer in the outlet stream. Moreover,

when fewer than 4 CSTRs are utilized, PDI product specifications could not be satisfied, especially

for polymers A and C, as they have a tighter bound than polymer B. Therefore, at least four CSTRs

are required, and the relative capital cost of this configuration is 2.86.

Figure 5.9. Number of CSTRs Versus Costs

This reactor structure is mainly determined by polymer A. Since polymer A has the shortest chain
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length, its monomer feeding rates are the lowest among the three products. This would lead to

a lower monomer concentration in the reactor, and slower reactions. Hence, larger reactors are

needed to increase its reaction rates and its monomer conversion. Table 5.9 shows this to be the

most constrained production case.

Table 5.9 Active Constraints’ Impact on the Objective Function (Constraint Multiplier) for the
4CSTRs Reactor Network

Active Constraint Polymer A Polymer B Polymer C

OH Number - 0.067 -

Outlet weight percentage of KOH 1925.87 43.90 -

Production rate 10.00 2.23 -

PDI 11.81 - -

Adiabatic temperature of the first CSTR 0.45 0.028 -

Reactor Temperature 10.21 0.23 -

The relative decision profiles (normalized to their upper bounds) are listed in Table 5.10. Although,

no monomer is fed to the last CSTR, the last CSTR is necessary in order to provide more residence

time for digestion, and to satisfy the PDI and other product specifications. Moreover, the last CSTR

is ten times larger than the other CSTRs. Since the weight percentage of unreacted monomer in

the last CSTR is small, it requires a larger reactor to achieve a higher conversion.
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Table 5.10 Optimal Decision Profile of the 4 CSTRs in Series Model

Decision Variable Polymer A Polymer B Polymer C

FRini 0.089 0.11 0.14

FRcat 2.88 ∗ 10−4 3.85 ∗ 10−4 0.018

FRm,1 0.032 0.024 0.012

FRm,2 0.023 0.052 0.038

FRm,3 0.020 0.036 0.031

FRm,4 0.00 0.00 0.00

T1 1.00 1.00 0.72

T2 1.00 1.00 1.00

T3 1.00 1.00 0.77

T4 1.00 1.00 0.83

V1 0.0027

V2 0.0051

V3 0.0072

V4 0.061

HX1 1.28

HX2 0.72

HX3 0.42

HX4 0.20

SU 4360

Table 5.9 shows the constraints that are active in this reactor network, and their corresponding

multipliers. Larger multipliers imply higher impact on the objective function. For most of these

active constraints, Polymer product A has the largest impact on the objective function among the

three cases. Therefore, we observe that product A is the dominant one when it comes to the CSTR
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network design.

In order to prove this point, we optimize the 4-serial CSTR model for each polymer product sepa-

rately. The relative optimal capital costs (normalized to the optimal capital cost for single DSR) for

product A, B, and C are 2.82, 2.32, and 2.04, respectively. Moreover, if the reactor configuration is

used to produce B only, only one monomer injection point is required. To produce product C, only

two injection points are required. Fig. 5.10 shows the detailed costs for each product case. All of

these show that product A is dominant for the CSTR network design.

Figure 5.10. Capital Cost Breakdown for Each Polymer Product with 4 CSTRs in Series

Furthermore, the normalized chain length distribution is plotted in Fig. 5.11 (scaled to FR∗ini,p).

Product A and C do not contain polymers with chain lengths longer than 7, and product B has

only a small amount of longer polymers. The PDIs for the three products are 1.3, 1.24, and 1.33

respectively.
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Figure 5.11. Chain Length Distribution for the 4 CSTRs Model

Single CSTR followed by a DSR

The last configuration is the design of a single CSTR followed by a DSR. This reactor design was

chosen in previous work [85], where several additional network options were considered. In [85]

this network was favored because it initially leads to better heat control, along with better digestion

at the end. In contrast, the single DSR followed by a CSTR is inferior, as the CSTR does not offer

enough digestion time and is not suitable to be placed at the end of a reactor network.

As in the previous sections, we study the relationship between costs and the number of monomer

injection points within the DSR. All the costs in Fig. 5.12 are normalized to the optimal capital cost

of a single DSR. This reactor design requires at least 6 injection points in total, one for the CSTR

and 5 for the DSR. Also its relative optimal capital cost is 1.09. This reactor design is dominated

by both product A and B, as these are the most constrained cases (see Table 5.13). Moreover,

increasing the number of monomer injections increases the total capital cost. The separation unit

cost is zero for all cases, since the weight percentage of unreacted monomer is negligible. This

further demonstrates that DSRs provide longer digestion time to help increase the conversion.
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Figure 5.12. Number of Monomer Injection Points Within the DSR Versus Costs

The relative decision profiles (scaled to their upper bounds) for different number of monomer

injection points are listed in Table 5.11. As with the single DSR model, the total feeding rates of

monomer, initiator and catalyst for polymer C decrease with the number of injection points. Also,

in order to achieve higher conversion for polymer product A and B, reactor volume is increased.

However, for the nondominant product C, larger volume will lead to violation of the adiabatic

temperature constraint, since the reaction rates would increase with the volume and more heat

would be generated. Therefore, its raw material feeding rates reduce with increasing volume to

avoid run-away reaction. The relative monomer feeding rates to the CSTR and to each DSR zone

are listed in Table 5.12. Fig. 5.13 shows the relative temperature profiles (normalized to Tsafety)

for all product cases.
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Table 5.11 Optimal Decision Profile of CSTR Followed by a DSR Vs. the Number of Monomer
Injection Points within the DSR

CSTR+DSR w/ 5 INJ CSTR + DSR w/ 6 INJ

Product A B C A B C

FRini 0.093 0.11 0.28 0.093 0.11 0.30

FRcat 2.88 ∗ 10−4 3.85 ∗ 10−4 0.024 2.88 ∗ 10−4 3.85 ∗ 10−4 0.025

Total FRm 0.073 0.11 0.16 0.073 0.11 0.17

Volume 0.025 0.027

HX 2.83 2.78

wpKOH,N 0 0

CSTR + DSR w/ 8 INJ CSTR + DSR w/ 10 INJ

Product A B C A B C

FRini 0.093 0.11 0.28 0.093 0.11 0.26

FRcat 2.88 ∗ 10−4 3.85 ∗ 10−4 0.024 2.88 ∗ 10−4 3.85 ∗ 10−4 0.021

Total FRm 0.073 0.11 0.16 0.073 0.11 0.15

Volume 0.027 0.023

HX 2.78 2.84

wpKOH,N 0 0
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Table 5.12 Relative FRm for CSTR Followed by a DSR (5 INJ) Reactor Network

Polymer A Polymer B Polymer C

FRm,CSTR 0.049 0.085 0.14

FRm,DSR1 8.0 ∗ 10−3 7.8 ∗ 10−3 3.8 ∗ 10−5

FRm,DSR2 0.010 4.2 ∗ 10−3 8.0 ∗ 10−5

FRm,DSR3 1.4 ∗ 10−3 4.4 ∗ 10−3 1.4 ∗ 10−3

FRm,DSR4 3.6 ∗ 10−3 4.2 ∗ 10−3 0.018

FRm,DSR5 8.0 ∗ 10−4 5.2 ∗ 10−3 2.8 ∗ 10−3

(a) Product A (b) Product B (c) Product C

Figure 5.13. Temperature Profiles of the CSTR Followed by a DSR Model

Table 5.13 shows the active constraints for this reactor network, and their corresponding constraint

multipliers. Both product A and B play important roles when deciding the structure of this reactor

network. This is what we expected, since product A and B dominate in the CSTR and DSR designs,

respectively. Fig. 5.14 shows the detailed costs for each product case.
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Table 5.13 Active Constraints’ Impact on the Objective Function (Constraint Multiplier) for the
CSTR Followed by a DSR Reactor Network

Active Constraint Polymer A Polymer B Polymer C

OH Number 0.059 0.023 -

Outlet weight percentage of KOH 7.04 21.91 -

Production rate 1.46 4.17 -

PDI 66.03 - 0.20

Adiabatic temperature of the first CSTR 0.058 0.10 -

Reactor Temperature 0.77 0.31 -

Figure 5.14. Capital Cost Breakdown for Each Polymer Product (Single CSTR Followed by a
DSR)

Furthermore, the normalized chain length distribution is plotted in Fig. 5.15 (scaled to FR∗ini,p).

Product A does not contain polymers with chain length longer than 6. Products B and C have only

a small amount of longer chain length polymers. The PDIs of the three products are 1.30, 1.26,

and 1.40, respectively.
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Figure 5.15. Chain Length Distribution for the CSTR Followed by a DSR

5.4.2 Stage 2 Generating Pareto Chart Between Net Sales and Capital Cost

Stage 2 focuses on generating Pareto charts between net sales (sales - operating costs) and capital

cost for each reactor network, as shown in Figs. 5.16, 5.17, and 5.18. All the sales and costs are

normalized with respect to the net sales of optimal DSR with ε = 0. Here the capital cost abscissa

(1 + ε) refers to (1 + ε) × CC∗, where CC∗ is the minimum capital costs obtained in stage 1.

For these plots, all reactor networks can eventually reach the same amount of product sales, as

each network model has the same amount of provided initiator (Eqn. 5.20a). However, the single

DSR case tends to consume more utility, due to dramatic temperature changes along the reactor.

Therefore, the network with 4 serial CSTRs plateaus with higher net sales, as shown in Fig. 5.19.

Also, the numbers below the raw material profile in Fig. 5.17 indicate the optimal number of

monomer injection points at each 1 + ε value. When 1 + ε is below 2, 10 injection points leads to

the maximum net sales. After this point, up to 15 injection points are needed for higher net sales.

This finding is consistent with the trends in Table 5.8.

However, when capital cost is limited, applying more injection points would lower the production

of product C, as well as the total net sales. When the capital cost is sufficiently large (production
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of product C achieves its maximum), more injection points lead to higher net sales due to lower

utility cost. For CSTR in series, the 4 CSTR network has the highest net sales. The CSTR followed

by a DSR configuration provides the highest net sales for ε ≤ 2.5.

Figure 5.16. Pareto Chart for 4 CSTRs in Series
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Figure 5.17. Pareto Chart for DSR

Figure 5.18. Pareto Chart for Single CSTR Followed by a DSR
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Figure 5.19. Capital Cost Versus Net Sales for Three Different Reactor Networks

5.4.3 Results Summary

Table 5.14 summarizes the relative optimal results for different reactor configurations, where val-

ues in bold are the optimal results at upper bounds. Capital cost is normalized to the optimal

single DSR model. Other variables are scaled to their upper bounds. Here the DSR model has

a lower capital cost because it has the highest monomer conversion (lowest weight percentage of

monomers in the outlet stream) and DSR offers a digestion phase, where the weight percentage of

unreacted monomer in the mixture decreases after the last monomer injection; this can be observed

in Figure5.5, 5.6, and 5.7. In contrast, CSTR does not provide any digestion phase, since its reactor

concentration equals its outlet concentration. If the monomer concentration in the outlet stream is

low, then its concentration in the reactor is also low. And the reaction rates decrease, since they

are proportional to the monomer concentration in the reactor. For this reason adding a DSR after

a CSTR is more effective than adding a CSTR after a DSR; DSRs can help digest the unreacted

monomers and reduce the separation unit cost, but CSTRs cannot. Moreover, the DSR alone can

already produce desired polymers, so there is no need to add a CSTR behind it.
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Moreover, Fig. 5.19 shows that adding a DSR after a CSTR has performance advantages over

single DSR. This is due to better heat transfer and lower cooling costs, which leads to considerably

better net sales. From Fig. 5.19 we see that the optimal CSTR-DSR network leads to the best

trade-off between net sales and capital cost.

Table 5.14 Relative Optimal Results for Different Reactor Networks

Single DSR 4 CSTRs in Series CSTR + DSR

Polymer A B C A B C A B C

Total FRm 0.073 0.11 0.25 0.073 0.11 0.081 0.073 0.11 0.16

FRini 0.093 0.11 0.44 0.089 0.11 0.14 0.093 0.11 0.28

FRcat 2.88 ∗ 10−4 3.85 ∗ 10−4 0.037 2.88 ∗ 10−4 3.85 ∗ 10−4 0.018 2.88 ∗ 10−4 3.85 ∗ 10−4 0.024

PDI 1.22 1.15 1.20 1.30 1.24 1.33 1.30 1.26 1.40

CC 1.00 2.86 1.09

Total V 0.084 0.076 0.025

Total HX 2.19 2.62 2.83

wpm,N 0 0.44 0

The sensitivity analysis helps us to determine the dominant product in each reactor design. For

DSR, polymer B determines the reactor superstructure, such as the heat exchanger capacity and

number of monomer injection points. Because polymer B uses EO as its monomer, it reacts much

faster than PO. In a long DSR, fast reactions could cause run-away reaction and a large increase

in adiabatic temperature. Therefore, in order to avoid safety constraint violation, monomers are

added more gradually, and more cooling is required. For the CSTR case, polymer A is the dominant

product. Since polymer A has the shortest chain length, its monomer feeding rates is the lowest

among the three products. This would lead to a lower monomer concentration in the reactor, and

slower reactions. Hence, larger reactors are needed to increase its reaction rates and its monomer

conversion. For the CSTR followed by a DSR case, both polymer A and B play important roles

in shaping the reactor design, because polymers B and A dominate the DSR and CSTR design,

respectively.
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Finally, all reactor optimization models are MINLPs, but as these models are large (as shown

in Table 5.15) and highly nonlinear, MINLP solvers were not effective in solving these problems.

Instead, the binary variables are systematically fixed to either 0 or 1, based on a detailed NLP-based

algorithm and guided by optimal sensitivity for the binary variables. The optimization models are

solved with IPOPTH in GAMS.

Table 5.15 Model Size for Different Reactor Networks

# of Variables # of Equality Constraints # of Inequality Constraint

4 CSTRs in Series 2991 2949 60

DSR 51081 50832 612

CSTR + DSR 51820 51524 624

5.5 Conclusions

The focus of this study is to determine a continuous reactor network along with its operating con-

ditions that minimizes the capital cost for multi-product rigid polyol production, where individual

products are produced by the same plant in single product campaigns. Based on our previous study

[85] we narrow down the reactor types to CSTRs and DSRs with multiple potential monomer in-

jection points. Moreover, we examine three reactor networks in particular: CSTRs in series, single

DSR, and a CSTR followed by a DSR. The single DSR has the lowest capital cost among the three

configurations. In addition, this reactor design is dominant by polymer B. If we use this reactor

network to produce another polymer which has faster kinetics than polymer B, then this new poly-

mer product would become the dominant product and may require more injection points. For the

reactor configuration with only CSTRs, at least four CSTRs are required to produce polymer that

satisfies the product specifications. Its capital cost is two times larger than that of the DSR. More

CSTRs may be required if we plan to use this reactor design to produce a new polymer which
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has slower kinetics and larger target molecular weight than polymer A. The last configuration, a

single CSTR followed by a DSR requires at least 6 monomer injection points, one for CSTR and

5 for DSR. Its relative capital cost is 9% higher than the single DSR case. However, when the

normalized capital cost reaches 1.5 or higher, the CSTR followed by a DSR would have a higher

annual net sales at the same capital cost level than a single DSR, because it consumes less utility.

In addition, the increase in capital cost can easily be offset by the increase in net sales, since the

net sales grow 4 times for the CSTR followed by a DSR network when the normalized capital cost

increases from 1 to 1.5. Consequently, the optimal CSTR-DSR network leads to the best overall

performance in this study.

The dynamic optimization models mentioned in Chapter 4 and 5 are able to generate optimal reac-

tor configuration along with the optimal operation recipe. However, the model performance could

degenerate when uncertainty comes into play. In the next chapter, we apply two methods: back-off

and multi-scenario (MS) to analyze the impact of kinetic uncertainty on reactor network design.
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Chapter 6 Reactor Network Design Under

Uncertainty

The dynamic optimization models mentioned in Chapter 4 and Chapter 5 are able to generate

optimal reactor configuration along with the optimal operation recipe. However, the model perfor-

mance could degenerate when uncertainty comes into play. In this chapter, we apply two methods:

back-off and multi-scenario (MS) strategy to analyze the impact of kinetic uncertainty on reactor

network design. Back-off belongs to robust optimization approach. It shrinks the feasible region

by introducing back-off terms to the inequality constraints. We adopted an iterative approach to

calculate the back-off terms. For the MS method, we first find the scenarios that are worst-case

violations of inequality constraints. Then, we solve the MS problem with current number of sce-

narios and obtain the optimal common decision profile (q). Next, we fix q and sample over the

uncertainty range, and solve the equations to check for infeasible constraints. If there is no con-

straint violation, then stop. Else add the worst infeasible point as new scenario and go back to

solve the MS problem again. Case studies are presented at the end to show the effectiveness of the

these two approaches.

6.1 Literature Review

The common strategies that deal with uncertainty can be divided into two categories: the robust op-

timization approach and the stochastic programming approach. The robust optimization approach
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allows optimal solutions to be obtained without any additional measurements, which means it does

not take reactive actions and recourse variables in consideration. Hence, optimal solutions obtained

by the robust optimization is more conservative. A bilevel minmax approach is a typical robust op-

timization formulation. The lower level problem finds the worst scenario, while the upper level

finds the optimal solution based on the worst case. However, the chance for the worst case to occur

is extremely low. Therefore, the bilevel formulation is often conservative. And its performance

deteriorates when the most probable uncertainty level is realized by additional measurements.

Beside the bilevel formulation, there are other ways to quantify the worst scenario. Back-off

method seeks the problem feasibility by adding back-off terms into the original inequality con-

straints to tighten the constraints and shrink the feasible region of the optimization problem. In

this way, feasibility for the worst case is ensured. In this approach, quantifying and calculating

the back-off terms is the key. Visser et al. encountered parametric uncertainties when dealing with

an end-point optimization problem in a batch process [87]. Back-off method was introduced to

handle the uncertainty in parameters. And the back-off terms were calculated by linearizing the

the constraints and the time-varying state space. Diehl et al. also applied the linearized formulation

along with the dual norm to derive analytical solution for the robust optimization problem. How-

ever, linearization may not result in accurate back-off terms when the problem is highly nonlinear.

Galvanin et al. calculated the back-off terms from the predictions of constraint responses for given

parameter distribution [88]. And then, the back-off terms are applied in the optimal design prob-

lem to ensure the optimality and feasibility of the problem. Srinivasan et al. proposed an iterative

approach to obtain the back-off terms [89]. First, an initial guess is used to initialize the back-off

terms, and the optimization problem with the guessed back-off terms is solved. The back-off terms

are then updated by using the probability density functions of the states obtained at the optimal

solution.

As mentioned before, stochastic programming approach is another common strategy to deal with

uncertainty. It assumes the probability distribution of the parameter uncertainty is known and ap-

plied in order to obtain the best expected performance. In order to have a better estimation for
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the probability distribution of the uncertain parameter, additional measurements and recourse vari-

ables are utilized to make the optimal trajectory more flexible. After we have a clear estimation

for the uncertain parameters, reactive actions for different uncertainty levels can be applied. The

biggest advantage of stochastic programming approach is that it is less conservative compared to

the traditional robust optimization. However, its problem size is relatively large, since different

uncertainty levels or multiple scenarios need to be considered.

Back in 1995, Ruppen et al. came up with a discretized approach to deal with uncertainty in a

batch process [91]. A discrete probability distribution of the uncertain parameters is assumed.

This leads to a differential algebraic optimization problem (DAE) including several model descrip-

tions, each corresponding to a grid point in parameter space. The DAE is then transformed to an

algebraic optimization problem using a time parameterization based on the method of orthogonal

collocation. This idea has been extended to other fields, such as nonlinear model predictive control

(NMPC). Yu et al. proposed a parallelizable advanced-step multistage NMPC [92]. It can provide

a non-conservative robust control solution, which can solve two types of uncertainty: model pa-

rameters and unmeasured noise. Although stochastic programming and its applications prove it is

less conservative, and more flexible, the increased problem size and computational cost is still a

major concern.

In this work, multi-scenario approach is adopted to handle the uncertainty in kinetic parameters.

This is done by first finding the scenarios that are worst-case violations of inequality constraints.

Then, solve the MS problem with current number of scenarios and obtain the optimal common de-

cision profile (q). Fix q and sample over the uncertainty range to find constraint violations. If there

is no constraint violation, then stop. Otherwise add the worst infeasible point as a new scenario

and go back to solve MS problem again. A more detailed procedure is described in next section.
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6.2 Back-off Method

Back-off method is a type of robust optimization. It aims to find the worst scenario, then optimize

the problem based on it. Therefore, back-off method is more conservative compared with stochas-

tic programming. On the other hand, stochastic programming dramatically increases the model

size and the computational cost. The idea behind back-off is to shrink the feasible region by intro-

ducing the back-off terms to the inequality constraints. The original problem can be formulated as

Eqn. 6.1, where x and u represent the state and decision variable, respectively. θ is the uncertain

parameter vector.

min f(u)

s.t. g(x, u, θ) = 0

h(x, u, θ) ≤ 0

(6.1)

In order to ensure that all the inequality constraints can be satisfied at all levels of uncertainty,

back-off terms are introduced. The problem formulation with back-off term is presented in Eqn.

6.2, where θ̄ denotes the uncertain parameter at nominal value, bc stands for the positive back-off

term.

min f(u)

s.t. g(x, u, θ̄) = 0

h(x, u, θ̄) + bc ≤ 0

bc ≥ 0

(6.2)

As mentioned in the previous section, when dealing with a nonlinear system, it is not ideal to ap-

ply linearization to calculate the back-off terms. First, it may lead to inaccurate back-off terms.

Second, analytic solution is expensive to derive for large system. Therefore, in this work we ap-

ply an iterative method to derive the back-off terms. And the detailed procedure is described below.
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• Step 1. Solve the original optimization problem in Eqn. 6.1 at nominal level. Obtain the

optimal decision profiles u∗.

• Step 2. Assume the probability distributions of the uncertain parameters are known. Sample

n points based on the distribution. Apply Monte Carlo simulation with decision profiles

fixed to the optimal nominal values u∗ to obtain the values of inequality constraints as well

as the sensitivity information of the variables to uncertainties.

• Step 3. Utilize the Monte Carlo simulation results and Eqn. 6.3 to calculate the back-off

terms. The value of the back-off term depends on two factors: tuning parameter η and the

sample standard deviation S of the inequality constraint h. η is determined by the confidence

level c, which is the probability of inequality constraint that is valid (c = P (h(x, u, θ) ≤ 0).

When the confidence level c = 1, the problem is feasible for all θ ∈ Θ. Larger η would

results from a greater confidence level (choose c = 0.99, then η = 3).

h̄ =

∑n
i=1 hi
n

S2 =

∑n
n=1(hi − h̄)2

n− 1

bc = ηS

(6.3)

• Step 4. Solve the optimization problem in Eqn. 6.2 with the back-off terms obtained from

step 3. Record the new optimal decision profiles u∗∗.

• Step 5. Update the back-off terms by performing the Monte Carlo simulation with optimal

decision profiles fixed to u∗∗.

• Step 6. (Optional) Stop if the convergence criterion is reached (|bk+1
c − bkc | ≤ ε). If not, go

back to step 4 with the updated back-off terms.
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Figure 6.1. Back-off Method Flow Chart

6.3 Multi-scenario Approach

The original dynamic optimization problem without uncertainty (uncertain parameters are at the

nominal values) can be summarized as follows:

min f(q)

s.t. gi(x, q, u, θ̄) = 0, i = 1..ng

hj(x, q, u, θ̄) ≤ 0, j = 1..nh

(6.4)
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where x represents the state variables, q denotes the decision variables that play important roles

in the objective function. On the other hand, u are the decision variables that do not participate

in the objective function. θ̄ stands for the uncertain parameters that are at the nominal value.

gi(·) represents the equality constraints. There are ng equality constraints. hj(·) represents the

inequality constraints. And the inequality constraint’s amount is nh.

The multi-scenario formulation below applies to capital cost or other objective functions that do

not depend on u.

min f(q)

s.t. gi(x, q, u, θ) = 0, i = 1..ng

hj(x, q, u, θ) ≤ 0, j = 1..nh

∀θ ∈ Θ

(6.5)

Although q is independent of θ, x and u vary for each θ. Therefore, it is an infinite dimensional

problem. Normally, θ is discretized along with x and u, leading to the formulation below:

min f(q)

s.t. gi,k(xk, q, uk, θk) = 0, i = 1..ng, k = 1..ns

hj,k(xk, q, uk, θk) ≤ 0, j = 1..nh, k = 1..ns

(6.6)

where ns is the number of scenarios. In order to figure out the sufficient level of discretization, we

first assume monotonicity of Θ on inequality constraint h, then apply a two stage approach.

Monotonic assumption

Implicitly eliminate state variables and equations, assume that5xg(x, q, u, θ) is nonsingular ∀(x, q, u, θ).

Then for x(q, u, θ) and hj(x(q, u, d), q, u, θ) ≤ 0, dhj
dθ

=
∂hj
∂θ

+ dx
dθ

∂hj
∂x

=
∂hj
∂θ
− 5θg(5xg

−1)
∂hj
∂θ

.

For g(x, q, u, θ) = 0 and all fixed q, u, θ, we assume that dhj
dθ

is monotonic. Under these conditions,
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θ̂ = arg max h(x, q, u, θ) is a vertex of Θ. More specifically,

θ̂kj (x) =


θkmax,

dhj
dθk

> 0

θkmin,
dhj
dθk

< 0

θ̄,
dhj
dθk

= 0

For all inequalities hj ≤ 0, j = 1...nh, we include the critical vertex θ̂j and solve the reduced MS

problem:

min f(q)

s.t. gi,k(xk, q, uk, θk) = 0, i = 1..ng, k = 1..nh

hj,k(xk, q, uk, θk) ≤ 0, j = 1..nh, k = 1..nh

(6.7)

Notice that f(q) in formulation 6.6≥ f(q) in formulation 6.7, since x, q, and u obtained by formu-

lation 6.6 are always feasible for formulation 6.7. On the other hand, based on the monotonicity

assumption, f(q) from formulation 6.7 is also feasible for problem 6.6. Therefore, f(q) for formu-

lation 6.7 is the same as in problem 6.6. Since the monotonic assumption may not always hold, a

feasibility test is applied for all j = 1..nh.

max βj = hj(x, q, u
∗, θ)

s.t. gi(x, q, u
∗, θ) = 0, i = 1..ng

(6.8)

where u∗ is optimal solution obtained from Eqn. 6.7. If β > 0, then add the critical θ as a new

scenario and solve Eqn. 6.7 again. The steps to obtain a robust and optimal reactor configuration

under uncertainty are outlined below and the flowchart is presented in Fig. 6.2.

• Step 1. Solve the optimization problem in Eqn. 6.4 with uncertain parameters at the nominal

value, and obtain the optimal decision profiles q∗ and u∗. Record the value of each inequality
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constraint hj(x∗, q∗, u∗, θ̄), j = 1...nh.

• Step 2. Find the scenarios that are worst-case violations of constraints. Assume the uncertain

parameters affecting the inequality constraints monotonically.

– Set θ = [θ1, θ2..., θnd ], where nd is total number of the uncertain parameters.

– Set θk = [θ1, θ2..., θk+δ∗θk..., θnd ], k = 1...nd, where δ represent a small perturbation

to the uncertain parameters.

– For k = 1...nd, solve gi(x, q∗, u∗, θk) = 0 and record the value of the inequality con-

straint hj(x, q∗, u∗, θk) = hj,k

– If hj,k − hj(x
∗, q∗, u∗, θ̄) > 0, set θkj = θkU , where θU represents the upper range of

uncertain parameter.

– If hj,k − hj(x
∗, q∗, u∗, θ̄) < 0, set θkj = θkL, where θL represents the lower range of

uncertain parameter.

– If hj,k − hj(x
∗, q∗, u∗, θ̄) = 0, set θkj = θ̄k, where θ̄ represents the nominal value of

uncertain parameter.

– In the end, we would obtain nh number of worst cases θ. However, some worst cases

might be duplicates. Hence, we use ns to represent the number of worst scenarios,

where ns ≤ nh

• Step 3. Solve the MS problem with m = 1...ns and obtain the optimal solution for decision

variable q∗∗.

min f(q)

s.t. gi,m(xm, q, um, θm) = 0, i = 1..ng,m = 1...ns

hj,m(xm, q, um, θm) ≤ 0, j = 1..nh,m = 1...ns

(6.9)

• Step 4. Fix q with the optimal solution in the previous step. And conduct a Monte Carlo

sampling over the uncertainty range Θ to sample no number of scenarios. For each new
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uncertain parameter set θo, o = 1...no, solve the optimization problem below to check for

feasibility. If there no constraint violation, then stop. Otherwise, add the worst infeasible

point as a new scenario and go back to step 3 to solve the MS problem again.

min f(q∗∗) + C ∗
nh∑
j=1

pj

s.t. gi(x, q
∗∗, u, θo) = 0, i = 1..ng

hj(x, q
∗∗, u, θo) ≤ pj, j = 1..nh

pj ≥ 0, j = 1..nh

(6.10)

Figure 6.2. Multi-scenario Flow Chart
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6.4 CSTR Configuration Design Under Uncertainty

In rigid polyol production, there exist various sources of uncertainties. In Chapter 3, we work

on kinetic parameter estimation. Due to limited experimental data, the confidence ranges of the

kinetic parameters are quite large. Since kinetic parameters play an important role in the model

performance and accuracy, we focus on developing operating recipe for CSTR reactor structure

which is applicable to produce three kinds of polymers over a wide range of kinetic parameters.

All three rigid polyols follow the reactor scheme described in Table 5.2. However, each polyol is

formulated by different initiator and monomer, as described in Table 5.1. In addition, Tables 5.3,

and 5.4 show the kinetic parameters at nominal values for monomer PO and EO, respectively. In

this study, we assume that the kinetic parameters of monomer PO are uncertain, and the uncertainty

range is listed in Table 6.1, where the subscript ini, prop, trf represent the initiation, propagation

and transfer reaction, respectively. A stands for Arrhenius constant, Ea is the active energy.

Table 6.1 Uncertain Kinetic Parameters of PO with Corresponding Deviation

Model Parameter Deviation Unit

Aini ln(A) = 30 ± 1.9 cm3

mol∗min

Eaini E = 18.6 ± 1.5 kcal
mol

Aprop ± 10%

Eaprop ± 10%

Atrf ± 10%

Eatrf ± 10%

The detailed model is shown in Chapter 5. It contains three main parts: 1). mass balance for ini-

tiator, monomer and growing/dormant product/unsaturated polymers, 2). energy balance for heat

exchange between reactor and cooling jacket, 3). product quality and safety specifications. Since
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inequality plays an important role when dealing with uncertainty, we label these specifications for

convenience, where subscript p stands for polymer type p ∈ A,B,C, n is the CSTR index, l is the

polymer chain length, m represents monomer, cat denotes catalyst. The superscript LB and UB

represent the lower and upper bound, respectively.

• 1. An upper bound for PDI – h1(p) = PDIp − PDIUBp ≤ 0.

• 2. A lower bound for production – h2(p) = productionLBp − productionp ≤ 0

• 3. An upper bound for outlet weight percentage of monomer – h3(p) = WPm,p,N −

MAXmo ≤ 0.

• 4. An upper bound for outlet weight percentage of catalyst – h4(p) = WPcat,p,N−WPUB
cat,p ≤

0.

• 5. An upper bound for adiabatic temperature – h5(p, n) = κWPm,p,n + Tn − Tsafety ≤ 0.

• 6. An upper bound for heat released during the process – h6(p, n) = Hp,n−MAX UAn ≤ 0.

• 7. A lower bound for molar flow rate of catalyst – h7(p, n) =
∑

l(FGp,n,l
+FQp,n,l

)−Fcatp,n ≤

0,

• 8. A lower bound for OH number – h8(p) = OH numLB
p −OH nump ≤ 0.

• 9. An upper bound for OH number – h9(p) = OH nump −OH numUB
p ≤ 0.

The objective function is minimizing the capital cost and the CSTR optimization problem can be

summarized as follows, where n is the index of CSTR, q stands for common decision variable

(does not vary with polymer type), including reactor volume, heat exchanger capacity MAXUAn,

monomer injection points (binary variable β, and separation unit capacity MAXMO. On the con-

trary, u represents decision variable that depends on polymer type. It contains reactor temperature,

feeding rates of monomer, catalyst and initiator. p denotes the polymer types. There are three kinds
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of polymers: A, B, and C. g(·) and h(·) represent the equality and inequality constraint, respec-

tively. Equality constraints come from mass and energy balance. Inequality constraints result from

the safety and product specifications. θ is the uncertain kinetics parameter.

min CC = f(q)

s.t. gp(xp(n), q(n), up(n), θp) = 0, p ∈ {A,B,C}

hp(xp(n), q(n), up(n), θp) ≤ 0, p ∈ {A,B,C}

βn ∈ {0, 1}

(6.11)

The CSTR model at nominal value can be solved by MINLP solver sbb, and the optimal decision

profile can be found in Section 5.4.1.

6.4.1 Back-off Results

The optimal CSTR structure at nominal value consists of four CSTRs in series. Only the first

three CSTRs come with monomer injection points (monomer is added to the first three CSTRs).

In addition, catalyst is fed to the first CSTR only. The detailed decision profile is described in

Table 5.10. The decision profile is fixed to the optimal solution at nominal value, and Monte Carlo

simulation is carried out with the number of trials m = 100. Fig. 6.3 shows the sampling points.
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Figure 6.3. Sampling Points

The relative standard deviations S (scaled with corresponding upper or lower bound) for each

inequality are listed in Table 6.2. The standard deviation for polymer B is relative small with those

of polymer A and C. This is expected, since only the parameter uncertainty in PO kinetics, are

considered and polymer B is based on EO kinetics.
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Table 6.2 Standard Deviations of Inequality Constraints

Inequality Constraint Polymer A Polymer B Polymer C

h1 0.28 0.00 0.24

h2 0.0024 0.00 0.0020

h3 0.14 0.00 0.20

h4 0.00 0.00 0.0018

h5(1) 0.055 0.00052 0.15

h5(2) 0.058 0.00 0.076

h5(3) 0.033 0.0079 0.11

h5(4) 0.0044 0.00 0.0064

h6(1) 0.025 0.00029 0.077

h6(2) 0.042 0.00028 0.074

h6(3) 0.036 0.0073 0.11

h6(4) 0.025 0.0073 0.096

h7(1) 0.071 0.00 0.030

h7(2) 0.066 0.0049 0.056

h7(3) 0.073 0.00 0.053

h7(4) 0.068 0.00 0.078

h8 0.046 0.00 0.063

h9 0.043 0.00 0.059

After obtaining the standard deviation, back-off terms can be calculated using bc = η ∗ S. And

the optimization problem in Eqn. 6.2 can be solved with the back-off terms. For this study, η

can only extend to 0.019, which means only 1.54% of the uncertainty range can be covered by

the back-off method. We start to observe constraint violations when the uncertainty range exceeds

1.54%. There are 7 constraint violations in total. Fig. 6.4 and 6.5 shows the PDI and OH number
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constraint violations, respectively. The x-axis is the uncertainty range in percentage and the y-axis

is the violation percentage based on its corresponding bound. Since the lower bound for molar

flow rate of catalyst is not a fixed value, the violation amount is scaled to a constant. The first

constraint being violated is the PDI constraint of polymer A, its violation amount could reach 90%

if 100% of the uncertainty range was covered. The PDI constraint of polymer C is violated when

the uncertainty range goes to 30%. Its biggest violation amount is close to 65%. The violations

for OH number are much lower compared with the ones for PDI constraint. When the uncertainty

range approaches to 15%, the violation in catalyst molar flow rate constraint starts to appear.

Figure 6.4. PDI Constraint Violation
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Figure 6.5. OH Number Constraint Violation

Figure 6.6. Molar Flow Rate of Catalyst Constraint Violation

Although the back-off method can only cover a small fraction of the uncertainty range, the capital

cost is already 1.52 times larger than the one at nominal value. The relative optimal decision

variables (scale to upper limit) are displayed in Tables 6.3 and 6.4. After applying the back-off

method, the optimal values for reactor size, heat exchanger capacity, and separation unit capacity

increase. In additional, the number of monomer injection points increases from 3 to 4. Therefore,

the uncertainty in kinetic parameters has a strong effect on the CSTR structure design. Because of
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the conservative design for the back-off method, it will not be considered for the DSR and CSTR

followed by a DSR cases.

Table 6.3 Back-off Optimal Decision Profile for Common Decision Variable q

Common Decision Variable Relative Optimal Value

V1 0.016

V2 0.027

V3 0.041

V4 0.21

HX1 1.05

HX2 1.02

HX3 0.87

HX4 0.97

SU 15910
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Table 6.4 Back-off Optimal Decision Profile

Decision Variable Polymer A Polymer B Polymer C

FRini 0.28 0.11 0.15

FRcat 1.00 ∗ 10−3 3.50 ∗ 10−4 2.00 ∗ 10−3

FRm,1 0.092 0.048 0.052

FRm,2 0.068 0.017 0.024

FRm,3 0.058 0.028 0.00

FRm,4 0.025 0.020 0.0034

T1 1.00 0.95 1.00

T2 1.00 0.92 1.00

T3 1.00 1.00 0.83

T4 1.00 0.91 0.75

6.4.2 Multi-scenario Results

Step 1. Optimization at nominal value

In order to satisfy all the product and safety specifications, at least 4 CSTRs are required. And 4

CSTRs in series has the lowest capital cost according to Fig. 5.9. In addition, the optimal reactor

configuration contains 3 monomer injection points (no monomer injection point for the last CSTR)

and 1 catalyst injection point. The optimal decision profile is listed in Table 5.10.

Step 2. Find the scenarios that are worst-case violations of constraints

According to Table 6.1, there are 6 uncertain kinetic parameters (nd = 6). For k = 1...nd, we

perturb the kth kinetic parameter with δ = 0.01, and simulate the results with decision profile

being fixed to the optimal results obtained from step 1. Then, evaluate the effect of the uncertain

parameters on inequality constraints by calculating dhj
dθk

. If it is greater than 0, then we set θkj to its

upper range and use ′+′ to denote it. If it is less than 0, then we set θkj to its lower range and use
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′−′ to denote it. If it equals to 0, then we set θkj to its nominal value and use ′0′ to denote it. In the

end, we would obtain a set of kinetic parameters for each inequality constraint. For this case study,

there are 6 unique sets of kinetic parameters, which are displayed in Table 6.5.

Table 6.5 Worst Scenarios

Model Parameter S1 S2 S3 S4 S5 S6

Aini + + - 0 + +

Aprop + + - 0 + +

Atrf + + - 0 + +

Eaini + + - 0 + +

Eaprop + - - 0 - 0

Eatrf + + - 0 - -

Step 3. Solve the MS problem

The multi-scenario method can cover 2.3% of the uncertainty range listed in Table 6.1. When

the uncertainty range expands beyond 2.3%, we start to observe constraint violations. The first

constraint that is violated is the PDI constraint for polymer A, followed by polymer C’s PDI con-

straint. Fig. 6.7 shows the violation percentage based on corresponding upper bounds. Although

PDI constraint of polymer A starts to be violated when uncertainty range expands beyond 2.3%,

the violation amount is below 10% when uncertainty range reaches 30%. When the uncertainty

range goes to 40%, PDI constraint for polymer C starts to be violated. Finally, when we reach

100% of the uncertainty range, the violation percentages are 41.7% and 26.5% for PDI constraint

of polymer A and C, respectively.
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Figure 6.7. Constraint Violations

The capital cost for the multi-scenario model is 1.07 times larger than the capital cost at nominal

value. It consists of 4 CSTRs, 4 monomer injection points and 1 catalyst injection point (catalyst

is injected into the first CSTR only). The relative values of decision variables are displayed in

Tables 6.6, 6.7, 6.8 and 6.9. These decision variables are scaled based on their upper bounds. V

is the reactor volume, HX represents the heat exchanger capacity. SU stands for the capacity

of the monomer separation unit. FR represent the feeding rate. T is temperature. The numeric

subscript denotes the index of CSTR. The subscript ini, cat and m stands for initiator, catalyst,

and monomer, respectively. If we compare the MS optimal common decision profile with the one

at nominal value, it is not hard to observe that MS formulation requires larger reactor, higher ca-

pacities for heat exchanger and separation unit. This is expected, since the MS method includes

multiple worst cases besides the one at nominal value. The feeding profiles of MS are close to the

ones at nominal value. For polymer B, the feeding and temperature profiles do not vary with differ-

ent scenarios. This is expected, since we only assume the kinetic parameters related to monomer
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PO are uncertain. And polymer B is polymerized by EO, which has certain kinetics.

Table 6.6 MS Optimal Decision Profile for Common Decision Variable q

Common Decision Variable Relative Optimal Value

V1 0.00226

V2 0.00414

V3 0.00560

V4 0.08304

HX1 1.157

HX2 0.320

HX3 0.276

HX4 0.850

SU 5810

Table 6.7 MS Optimal Decision Profile for Polymer A

Decision Variable S1 S2 S3 S4 S5 S6

FRini 0.093 0.089 0.087 0.093 0.089 0.093

FRcat 2.59 ∗ 10−4 2.59 ∗ 10−4 2.59 ∗ 10−4 2.59 ∗ 10−4 2.59 ∗ 10−4 2.59 ∗ 10−4

FRm,1 0.029 0.029 0.029 0.027 0.029 0.029

FRm,2 0.021 0.021 0.022 0.022 0.022 0.021

FRm,3 0.016 0.018 0.018 0.018 0.017 0.015

FRm,4 0.0072 0.0068 0.0066 0.0070 0.0074 0.0086

T1 1.00 1.00 1.00 0.96 1.00 1.00

T2 1.00 1.00 1.00 1.00 1.00 0.99

T3 1.00 1.00 1.00 1.00 1.00 1.00

T4 1.00 1.00 1.00 1.00 1.00 1.00
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Table 6.8 MS Optimal Decision Profile for Polymer B

Decision Variable S1 S2 S3 S4 S5 S6

FRini 0.11 0.11 0.11 0.11 0.11 0.11

FRcat 3.45 ∗ 10−4 3.45 ∗ 10−4 3.45 ∗ 10−4 3.45 ∗ 10−4 3.45 ∗ 10−4 3.45 ∗ 10−4

FRm,1 0.053 0.053 0.053 0.053 0.053 0.053

FRm,2 0.016 0.016 0.016 0.016 0.016 0.016

FRm,3 0.013 0.013 0.013 0.013 0.013 0.013

FRm,4 0.030 0.030 0.030 0.030 0.030 0.030

T1 1.00 1.00 1.00 1.00 1.00 1.00

T2 1.00 1.00 1.00 1.00 1.00 1.00

T3 1.00 1.00 1.00 1.00 1.00 1.00

T4 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.9 MS Optimal Decision Profile for Polymer C

Decision Variable S1 S2 S3 S4 S5 S6

FRini 0.16 0.15 0.15 0.15 0.15 0.15

FRcat 0.011 0.011 0.011 0.011 0.011 0.011

FRm,1 0.062 0.051 0.047 0.060 0.056 0.069

FRm,2 0.012 0.011 0.00019 0.011 0.011 0.011

FRm,3 0.013 0.015 0.015 0.0016 0.0024 0.0008

FRm,4 0.00 0.0004 0.017 0.0052 0.017 0.0062

T1 0.89 0.97 0.79 0.94 0.91 0.97

T2 1.00 1.00 0.95 0.93 0.91 0.94

T3 0.98 1.00 0.97 0.93 1.00 0.92

T4 0.87 0.87 0.74 0.86 0.84 0.87
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Step 4. Feasibility test through Monte Carlo simulation

In order to verify the monotonic assumption, m points are sampled over the uncertainty range Θ.

For each point, we exam its feasibility by solving the problem in Eqn. 6.10 with the common

decision variable q fixed to the MS optimal solution. For this case study, m = 110. In order

to present the sampling points in a two dimensional plot, principal component analysis (PAC) is

applied to lower the uncertain vector θ from 6-dimension to 2-dimension. In Fig. 6.8, the green

dots represent the new sampling points, and the red dots denote the six scenarios applied in the MS

formulation from step 3. After PCA, S1, S2, S5, and S6 are very close to each other, and collapse

into one point (the red dot on the left).

Figure 6.8. Sampling Points

For all the sampling points, the optimization problem in Eqn. 6.10 is feasible, which confirms the

monotonic assumption. The box plots below show the distributions for the values of inequality

constraints. Box Plot displays the summary of the set of data values having properties like min-
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imum (Q1 - 1.5*IQR), first quartile (Q1), median (Q2), third quartile (Q3) and maximum (Q3 +

1.5*IQR). IQR stands for the interquartile range, which equals to Q3 - Q1. If a value is above the

maximum or below the minimum, it is considered as an extreme value and denoted by a circle. In

the box plot, a box is created from the first quartile to the third quartile, a horizontal line is also

there which goes through the box at the median. Here x-axis denotes the polymer type, while the

y-axis shows the frequency distribution.

Fig. 6.9 shows the distribution of the PDI constraint. The PDI value of Polymer A is very close to

its upper bound. On the contrary, for polymer B, its PDI value is well below the upper limit.

Figure 6.9. Distribution of PDI Constraint h1

For all three polymers, the median of production constraint is near 0, which means for half of the

cases, the production rate is at its lower bound. Polymer C is more flexible regarding this constraint

compared with the other two polymers.
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Figure 6.10. Distribution of Production Constraint h2

For the outlet weight percentage of monomer constraint, medians of polymers A and B are near 0

(at upper bound). For most of the cases, the constraint value for polymer C is well below the upper

limit.

Figure 6.11. Distribution of Outlet Weight Percentage of Monomer Constraint h3

For the outlet weight percentage of catalyst constraint, the values of polymers A and B are always

at 0 (at upper bound). For half of the cases, the constraint values for polymer C are below the upper

limit.

140



CHAPTER 6. REACTOR NETWORK DESIGN UNDER UNCERTAINTY

Figure 6.12. Distribution of Outlet Weight Percentage of Catalyst Constraint h4

For the adiabatic temperature constraint, the highest values for all polymers are below 0, which

means the adiabatic temperature constraint is not active.

Figure 6.13. Distribution of Adiabatic Temperature Constraint h5

For polymer B, its heat release amount is near or at the upper bound. However, the heat release

amounts for polymers A and C are well below the upper bound. This is expected, since polymer B

is based on EO, which would generate more heat per mole of reacted monomer.
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Figure 6.14. Distribution of Heat Release Constraint h6

For polymers A and B, the catalyst molar flow rate constraint is always at its lower bound. This is

not the case for Polymer C, since we have a high tolerance regarding catalyst amount in the reactor

for polymer C.

Figure 6.15. Distribution of Catalyst Molar Flow Rate Constraint h7

Combining Figs. 6.16 and 6.17 we can tell that Polymer B tends to have an OH number close to

its upper bound. On the contrary, the OH number for polymer C is close to its lower limit.
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Figure 6.16. Distribution of OH Number Lower Bound Constraint h8

Figure 6.17. Distribution of OH Number Upper Bound Constraint h9

6.5 DSR Configuration Design Under Uncertainty

According to Section 5.4.1, with the help of DSR, polymers with lower PDIs could be generated.

Since PDI constraints are the ones that can be easily violated in the CSTR configuration design

under uncertainty, we expect reactor networks contain DSR to handle a wider range of uncertainty.
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In the section, we apply the MS method to two reactor designs that contain DSR: single DSR and

a CSTR followed by a DSR, to examine the impact of uncertainty in kinetic parameters.

6.5.1 Single DSR

The six scenarios in Table 6.5 have been applied to the single DSR MS design. This design

can cover 100% of the uncertainty range. In addition, the optimal design contains 13 monomer

injection points and its optimal capital cost is 2.37 times larger than the one at nominal value. The

increase in capital cost is caused by the increase in reactor volume, capacities of heat exchanger and

separation unit. The relative optimal feeding rates of initiator and catalyst, as well as the optimal

capacities of heat exchanger and separation unit are listed in Table 6.10. And the relative optimal

monomer feeding rates and temperature profiles for these six scenarios are shown in Figs. 6.18,

6.19 and 6.20. All of these relative values are scaled to their upper bounds. The optimal profiles

of polymer B do not vary with scenario, since we are only considering the parameter uncertainty

in PO kinetics and polymer B is based on monomer EO, whose kinetics are certain.
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Table 6.10 MS Optimal Decision Profile of Single DSR

Scenario S1 S2 S3 S4 S5 S6

Polymer A

FRini 0.089 0.089 0.091 0.089 0.091 0.12

FRcat 2.58 ∗ 10−4 2.71 ∗ 10−4 2.70 ∗ 10−4 2.62 ∗ 10−4 2.78 ∗ 10−4 3.33 ∗ 10−4

Polymer B

FRini 0.10 0.10 0.10 0.10 0.10 0.10

FRcat 3.46 ∗ 10−4 3.46 ∗ 10−4 3.46 ∗ 10−4 3.46 ∗ 10−4 3.46 ∗ 10−4 3.46 ∗ 10−4

Polymer C

FRini 0.45 0.34 0.50 0.37 0.38 0.52

FRcat 0.034 0.027 0.038 0.028 0.030 0.043

HX 13.60

wpKOH,N 1940

(a) Feed Profile (b) Temperature Profile

Figure 6.18. MS Decision Profiles of Single DSR for Product A
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(a) Feed Profile (b) Temperature Profile

Figure 6.19. MS Decision Profiles of Single DSR for Product B

(a) Feed Profile (b) Temperature Profile

Figure 6.20. MS Decision Profiles of Single DSR for Product C

100 points are sampled to verify the MS results’ feasibility. These 6-dimension kinetic parameter

vectors are projected into 2-dimension using PCA and are denoted by the green dots in Fig. 6.21.

The red dots represent the six scenarios applied in the MS formulation. S1, S2, S5, and S6 collapse

into one point after projection (the rightmost point). The middle dot is S4, and the red dot on the

left is S3.
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Figure 6.21. Sampling Points Projected in 2D

For all the sampling points, we obtain a feasible solution to Eqn. 6.10, which confirms the mono-

tonic assumption. The box plots below show the value distributions of inequality constraints. Fig.

6.22 shows the distribution of the PDI constraint. For polymer A, the median of the constraint

value is at zero, which implies the PDI constraint is active for the most of the time. For the other

two products, the PDI constraint’s medians are away from zero. This is expected, since polymer A

has the lowest PDI upper limit, followed by polymer C.

Figure 6.22. Distribution of PDI Constraint h1
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For polymers A and B, the medians of production constraint are near zero, which means for half

of the cases, the production rate is at its lower bound. Polymer C is more flexible regarding this

constraint compared with the other two polymers.

Figure 6.23. Distribution of Production Constraint h2

For the outlet weight percentage of monomer constraint, all the medians are away from zero.

Therefore, the separation unit capacity is larger enough to cover all the cases.

Figure 6.24. Distribution of Outlet Weight Percentage of Monomer Constraint h3

For the outlet weight percentage of catalyst constraint, the constraint values of polymers A and
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B are always zero (at upper bound). The median of polymer C is a little bit below zero. This is

expected, since polymer C has a higher upper limit for this constraint.

Figure 6.25. Distribution of Outlet Weight Percentage of Catalyst Constraint h4

For the adiabatic temperature constraint, the highest constraint values for all polymers are below

zero, which means the adiabatic temperature constraint is not active.

Figure 6.26. Distribution of Adiabatic Temperature Constraint h5

According to Fig. 6.27, polymer C tends to release more heat during the reaction. This is expected

since polymer C has the highest production rate.
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Figure 6.27. Distribution of Heat Release Constraint h6

For polymers A and B, the catalyst molar flow rates are always at lower bounds. This is not the

case for Polymer C, since we have a high tolerance regarding catalyst amount in the outlet stream

for polymer C. Hence, more catalyst is fed to reactor when producing polymer C.

Figure 6.28. Distribution of Catalyst Molar Flow Rate Constraint h7

Combining Figs. 6.29 and 6.30 we can find that Polymer B tends to have an OH number close to

its upper bound. On the contrary, the OH numbers for polymers A and C are close to their lower

limit.
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Figure 6.29. Distribution of OH Number Lower Bound Constraint h8

Figure 6.30. Distribution of OH Number Upper Bound Constraint h9

6.5.2 CSTR Followed by a DSR

The MS design containing the scenarios in Table 6.5 can cover the whole uncertainty range. The

optimal design contains one CSTR followed by a DSR with 5 monomer injection points and its

optimal capital cost is 3.55 times higher than the one at nominal value. The increase in capital cost
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is caused by the increase in reactor volume (both CSTR and DSR), capacities of heat exchanger

and separation unit. The relative optimal feeding rates of monomer to the CSTR, initiator, and

catalyst, as well as the optimal capacities of heat exchanger, separation unit, and CSTR volume,

temperature are listed in Table 6.11. And the relative optimal monomer feeding rates to the DSR

and DSR temperature profiles for these six scenarios are shown in Figs. 6.31, 6.32 and 6.33. All

of these relative values are scaled to their upper bounds. The optimal profiles of polymer B do

not change with scenario, since it uses EO for polymerization, and there is no uncertainty in EO

kinetics.

Table 6.11 MS Optimal Decision Profile of CSTR Followed by a DSR

Scenario S1 S2 S3 S4 S5 S6

Polymer A

FRini 0.087 0.087 0.22 0.082 0.22 0.14

FRcat 2.58 ∗ 10−4 2.58 ∗ 10−4 6.67 ∗ 10−4 2.69 ∗ 10−4 6.67 ∗ 10−4 6.67 ∗ 10−4

FRmo (CSTR) 0.039 0.016 0.17 0.029 0.17 0.092

T (CSTR) 1.00 1.00 1.00 1.00 1.00 1.00

Polymer B

FRini 0.091 0.091 0.091 0.091 0.091 0.091

FRcat 4.02 ∗ 10−4 4.02 ∗ 10−4 4.02 ∗ 10−4 4.02 ∗ 10−4 4.02 ∗ 10−4 4.02 ∗ 10−4

FRmo (CSTR) 0.081 0.081 0.081 0.081 0.081 0.081

T (CSTR) 1.00 1.00 1.00 1.00 1.00 1.00

Polymer C

FRini 0.40 0.51 0.51 0.35 0.51 0.52

FRcat 0.030 0.038 0.041 0.027 0.041 0.045

FRmo (CSTR) 0.19 0.18 0.19 0.054 0.19 0.19

T (CSTR) 1.00 1.00 1.00 1.00 1.00 1.00

HX (CSTR) 8.29

HX (DSR) 4.40

wpKOH,N 0.01733

V (CSTR) 1
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(a) Feed Profile (b) Temperature Profile

Figure 6.31. MS Decision Profiles of CSTR Followed by a DSR for Product A

(a) Feed Profile (b) Temperature Profile

Figure 6.32. MS Decision Profiles of CSTR Followed by a DSR for Product B

(a) Feed Profile (b) Temperature Profile

Figure 6.33. MS Decision Profiles of CSTR Followed by a DSR for Product C
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We verify the feasibility of the MS design with 100 Monte Carlo samples of uncertain parameters,

as shown in Fig. 6.21. For all the sampling points, we obtain a feasible solution to Eqn. 6.10,

which implies the MS design should work for any point in the uncertainty range. The box plots

below show the value distributions of inequality constraints. Fig. 6.34 shows the distribution of

the PDI constraint. For polymers A and C, the medians of the constraint value are at zero, which

implies the PDI constraint is active for the most of the time. For polymer B, the PDI constraint’s

median is below zero. This is expected, since polymer B has the highest PDI upper limit.

Figure 6.34. Distribution of PDI Constraint h1

The median production rate of polymer A is the lowest, followed by polymers B and C. The

outlet weight percentage of monomer constraint is always active for all three polymers, since the

separation unit capacity is near zero, as shown in Table 6.11.
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Figure 6.35. Distribution of Production Constraint h2

For the outlet weight percentage of catalyst constraint, the constraint values of polymers A and

B are always zero (at upper bound). The median of polymer C is a little bit below zero. This is

expected, since polymer C has a higher upper limit for this constraint.

Figure 6.36. Distribution of Outlet Weight Percentage of Catalyst Constraint h4

For the adiabatic temperature constraint, it is active in CSTR, but inactive in DSR.
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Figure 6.37. Distribution of Adiabatic Temperature Constraint in CSTR h5

Figure 6.38. Distribution of Adiabatic Temperature Constraint in DSR h5

According to Fig. 6.39 and 6.40, polymer B tends to release more heat during the production in

both CSTR and DSR. This is expected since polymer B and C have similar production rate, and

polymer B is based on EO, which would generate more heat per mole of consumption.
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Figure 6.39. Distribution of Heat Release Constraint in CSTR h6

Figure 6.40. Distribution of Heat Release Constraint in DSR h6

For polymers A and B, the catalyst molar flow rates are always active for both CSTR and DSR.

This is not the case for Polymer C, since we have a high tolerance regarding catalyst amount in

the outlet stream for polymer C. Hence, more catalyst can be added to the reactor when producing
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polymer C.

Figure 6.41. Distribution of Catalyst Molar Flow Rate Constraint in CSTR h7

Figure 6.42. Distribution of Catalyst Molar Flow Rate Constraint in DSR h7

Combining Fig. 6.43 and 6.44 we can tell that the OH numbers are closer to their lower bounds

for all three polyol products.
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Figure 6.43. Distribution of OH Number Lower Bound Constraint h8

Figure 6.44. Distribution of OH Number Upper Bound Constraint h9

6.6 Conclusions

The objective of this study is to analyze the effect of uncertainty in kinetic parameters on configu-

ration design. In order to design a reactor network that would be feasible for any kinetic parameter

set in the uncertainty range, back-off and multi-scenario method are adopted. The back-off method
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is more conservative than the multi-scenario approach, since MS allows different scenario to have

different operating recipe, while the common decision variables (reactor volume, injection points,

capacity of heat exchanger and separation unit) are the same for all the scenarios. However, back-

off method can operate without any additional measurements or resources. In order to apply MS

in reality, we need to come up with a way to measure or estimate the kinetic parameters online.

When we apply the back-off method to the CSTR design, 1.54% of the uncertainty range can be

covered. And 7 inequality constraints would be violated if the uncertainty range exceeded 1.54%.

While the MS approach can cover 2.3% of the uncertainty range in CSTR design. And 2 inequal-

ities would be violated when the uncertainty range exceeded 2.3%. Figs. 6.45 and 6.46 compares

the violation amounts for these two different methods. The violations of MS occur after the back-

off violations. And the violation amounts for MS are less than the back-off violation amounts.

When the uncertainty range reaches 100%, the violation amounts of MS are half of the back-off

violation amounts. In addition, according to Tables 6.3 and 6.6, the optimal reactor size, capacities

of heat exchanger and monomer separation unit obtained by the back-off method are much larger.

Furthermore, the optimal capital cost obtained from the back-off formulation is 1.42 times of MS

optimal capital cost. All of these confirm that back-off method is more conservative than the MS

approach.

Figure 6.45. Violation Amount for PDI Constraint of Polymer A
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Figure 6.46. Violation Amount for PDI Constraint of Polymer C

We also apply the MS method to reactor networks that contain DSR, since DSR would result in

polymers owning lower PDIs compared with CSTR, and PDI constraint is the one that is violated

in the CSTR design. Both single DSR and CSTR followed by a DSR configurations can cover

100% of the uncertainty range. Table 6.12 summaries the relative optimal capital cost (scaled to

the optimal capital cost of single DSR in Section 5.4.1) for each reactor network. Single DSR with

13 monomer injection points is the ideal configuration to handle uncertainty in kinetic parameters.

It can cover the full uncertainty range, while it has a low relative capital cost.

Table 6.12 Relative Optimal Capital Cost for Different Reactor Networks

CSTR (Back-off) CSTR (MS) DSR (MS) CSTR + DSR (MS)

Uncertainty range can be covered 1.54% 2.30% 100.00% 100.00%

Relative optimal capital cost 4.35 3.06 2.37 3.87

161



Chapter 7 Conclusions

This work adopts model-based optimization, which is a classic strategy for process optimization.

It has been widely used in multiple fields, including control, integration and online implement.

Although nonlinear dynamic optimization problem requires high computational cost, it is valuable

since it can capture detailed dynamic behavior in the process and provide more accurate solutions,

especially when dealing with processes that are highly nonlinear.

The aim of this work is to design continuous reactor networks that are able to produce polymers

that meet product specifications, as well as corresponding operating recipes. With the support of

the advanced dynamic optimization methods, we construct detailed optimization models to esti-

mate kinetic parameters, to design optimal reactor configurations and to adopt back-off and multi-

scenario approach to deal with uncertainty in the polymerization process. This chapter summarizes

the results of each chapter and recommend some future directions.

7.1 Summary and Contributions

Chapter 1 first analyzes the advantages and disadvantages of continuous process. Then, it explains

the motivation behind this project, which is switching the polymer production from the existing

semi-batch reactor to continuous process to lower the capital cost and to satisfy the increasing

demand for rigid polyols. In addition, we introduce two important methods in reactor network

design: superstructure approach and attainable region. The former one can determine the objective

value, the optimal reactor network and operating conditions simultaneously. However, the optimal

solution is only as rich as the proposed superstructure and the model formulations are typically
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nonconvex, leading to many near-optimal solutions. Attainable region aims to find all possible

outputs for all possible reactor configurations. However, attainable regions with more than two

dimensions are hard to construct. At the end of this chapter, we mention two categories to deal

with uncertainty: robust optimization and stochastic programming. Robust optimization is more

conservative, but it does not require any additional measurement or resources.

Chapter 2 introduces the dynamic optimization approach, which is core technique that has been

adopted throughout the entire thesis. It can also be applied to online applications, including pre-

dictive control, state estimation and online process identification. There are two general ways to

solve a dynamic optimization problem: sequential approach and simultaneous method. Since se-

quential approach cannot handle path and inequality constraints directly in the sensitivity analysis,

we adopt the simultaneous collocation method to discretize the continuous horizon into a finite el-

ement mesh. In this way, DAE problem is converted into NLP, which can be solved by sequential

quadratic programming (SQP) method, generalized reduced gradient (GRG) method, and interior

point method.

Chapter 3 aims to estimate the kinetic parameters for a polymerization process. The detailed reac-

tion scheme, data sources as well as the dynamic optimization model formulation can be found in

this chapter. In summary, there are six unknown kinetic parameters, two kinds of data sources. The

optimal results obtained from these two data sources are not consistent with each other. This may

be caused by the incompatibility of these two data sources. In addition, despite which data source

is applied, more than half of the kinetic parameters cannot be estimated independently when the

bounds for activation energies are not present. After adding the bounds for activation energies,

fewer kinetic parameters have large standard deviations, but the activation energies solve to lower

bounds (should probably be fixed).

Chapter 4 focuses on developing continuous reactor networks that are able to produce rigid polyols

under strict product and safety specifications. Meanwhile, optimal operating conditions that would

lead to the minimum capital cost are determined. In order to achieve this goal, we combine the

ideas in Feinberg’s works (CSTR and DSR play important roles in shaping the attainable region
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boundary) and Lakshmanan’s papers (solving reactor modules in an increasing manner). We first

examine the reactor network with one CSTR or one DSR. Then, we enrich the reactor design by

adding additional CSTR/DSR. This process is continued until there is no improvement in the ob-

jective function. In the end, five reactor networks are derived and compared. For each reactor

network, the model consists of three main parts: material balance, energy balance, product and

safety specifications. The results are summarized as following:

• Single CSTR: Product specifications cannot be satisfied, if only one CSTR is utilized.

• Single DSR: A DSR with 10 monomer injection pints has the lowest capital cost among the

five examined reactor networks. In order to obtain the optimal injection profile, we discretize

the DSR into 40 zones with equal volume and come up with an iterative approach (Fig. 4.3).

• Two CSTRs in series: The capital cost of two CSTRs in series is 2.64 times bigger than the

one of DSR. Majority of the monomers are fed to the first reactor. Hence, the second reactor

is functioned as a digestion system.

• CSTR followed by a DSR: The capital cost of two CSTRs in series is 1.2 times bigger than

the one of DSR. Two monomer injections per DSR are enough to produce the desired rigid

polyol. In the reactor configuration, the majority of the reactions occur within the CSTR.

And the DSR is used to further digest the unreacted monomer in the reactor.

• DSR followed by a CSTR: As the number of monomer injection points per DSR reaches 6,

the CSTR residence time drops to zero. This implies that is is not necessary to add a CSTR

behind a DSR. Single DSR is enough to produce desired polymer.

Chapter 5 continues to study reactor network design. The objective to construct reactor networks

that are able to produce multiple rigid polyols with product and safety constraints. Based on the

results in the previous chapter, we determine to study three networks.

• Single DSR: Instead of discretizing the DSR into zones with fixed volume, we discretize

the DSR into zones with different volume (volume of each zone is an independent decision
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variable). In this way, optimal injection profile can be obtained without going through the

iterative approach proposed in the previous chapter. The optimal result is consistent with

the one in the previous chapter, that a DSR with 10 monomer injection points has the lowest

capital cost. In addition, we discover that polymer B is the dominant product in DSR design

due to faster kinetics.

• CSTRs in series: At least 4 CSTRs are required in order to allow all three polymers to satisfy

their product specifications. The capital cost of 4 CSTRs in series is 2.86 times larger than

the one of single DSR. In addition, polymer A is the dominant product in CSTR design.

• CSTR followed by a DSR: This reactor design requires at least 6 injection points in total, one

for the CSTR and 5 for the DSR. Its capital cost is 1.09 times bigger than the DSR capital

cost.

Chapter 5 also focuses on generating Pareto charts between new sales (sales - operating cost) and

capital cost. All three reactor networks mentioned above can eventually reach the same amount of

product sales, since the limitation for raw material is the same for all the cases. However, single

DSR tends to consume more utility due to dramatic temperature changes in the reactor. Therefore,

the network with 4 CSTRs plateaus with higher net sales. However, in order to obtain the same

amount of sale, the network with 4 CSTRs requires a higher capital investment. In contrast, the

CSTR followed by a DSR configuration leads to higher net sales than DSR alone.

Chapter 6 studies the effect of uncertainty in kinetic parameters on different configuration designs.

In order to design a reactor network that would work for any kinetic parameter pair in the uncer-

tainty range, back-off and multi-scenario method are adopted. For CSTR design, 1.54% of the

uncertainty range can be covered by the back-off method. And 7 inequality constraints would be

violated if the uncertainty range exceeds 1.54%. The MS approach can cover 2.3% of the uncer-

tainty range. And 2 inequalities would be violated when the uncertainty range exceeds 2.3%. The

back-off method is more conservative than the multi-scenario approach, since MS allows different

scenarios to have different operating recipes, while the common decision variables are the same
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for all the scenarios. However, back-off method can operate without any additional measurements

or resources. In order to apply MS in reality, we need to come up with a way to measure or esti-

mate the kinetic parameters online. The MS design for the single DSR and CSTR followed a DSR

configurations can cover the full uncertainty range. In addition, single DSR with 13 monomer

injection points has the lowest capital cost.

7.2 Recommendations for Future Work

7.2.1 Model Development of Rigid Polyol Production

The dynamic optimization models developed in Chapter 4 and 5 are able to deliver optimal reactor

network and operating conditions by including the mass balance, energy balance, product and

safety constraints into the model. However, in order to make them the representatives of the actual

processes, we need to complete several additional tasks.

• In order to verify the models and estimate the kinetic parameters, model validation through

lab-scale experiment or computational simulations is required. According to Chapter 6,

small perturbation in the kinetic parameters can have a strong impact on the reactor structure

and the operating recipe.

• The reactor networks developed in this work only involve polymerization with a single

monomer. We could analyze how does copolmerization affect the current reactor design.

Will the current reactor configuration be suitable for copolymerization process?

• More complex kinetics, such as catalyst deactivation and fouling could be considered. Since

we have an upper limit for the catalyst outlet weight percentage, and a lower bound for the

catalyst molar flow rate, it would be a challenge to design a reactor network that would

function in the presence of catalyst deactivation. And fouling would impact the efficiency of

heat transfer and the safety specification.
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7.2.2 Online Optimization and Control

This work is focused on off-line reactor network and recipe design. However, with the presence

of uncertainty, the model performance weakens. Back-off and MS methods are adopted to deal

with the uncertainty. MS approach is less conservative, but it requires additional measurements to

estimate the uncertain kinetics. Hence, in order to apply MS in reality, we need to focus on these

tasks:

• Measure the reactor temperature, composition in the reactor or collect other information

online to estimate the kinetic parameters.

• Generate operating recipe based on the estimated kinetics to make sure the product can meet

the specifications.

• Include online state estimation and optimal control to predict the future dynamic behavior

over a time horizon and address the operating conditions as needed.

7.2.3 Grade Transition

In Chapter 5, continuous reactor networks that are able to produce multiple rigid polyols are de-

veloped. However, we have not studied the grade transition, which can provide potential values in

reducing the transition time as well as decreasing the off-grade product. Based on the type of prod-

uct specification, two optimization approaches can be considered. One is for single-value product

property targets and the other one is for specification bands.

7.2.4 Integration of Demand Forecasting, Scheduling and Real-time Opti-

mization

Factories, plants, supply chains, and distribution systems are planned to flow perfectly and waste

nothing, but everyday “surprises” ripple through these complex systems, wreaking villainous havoc.

94% of the world’s waste is industrial. $446 billion of excess inventory is standard in supply chains.
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The real cost of poor quality and downtime is $861 and $ 689 billion, respectively. In order to re-

duce the cost, we need to integrate demand, supply, scheduling and real-time optimization.

Starting from the demand forecasting, future demand can be estimated using traditional time-series

model, such as ARIMA or deep learning network, including convolution and recurrent neutral net-

works. Based on the accurate predicting for future demand, inventory information, and grade tran-

sition, production scheduling can be addressed by formulating and solving mixed integer dynamic

optimization problems. During production, NMPC can also be adopted to ensure the product meets

specifications. And the inventory information can be updated based on the output of production.
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Appendix A Nomenclature

Notation
Notation used in the reactor model

A = Arrhenius constant

C = set of components in the process in Chapter 4; concentration in Chapter 5

COMP = set of components in the process

Cp = heat capacity

Ea = activation energy

F = molar flow rate at the outlet stream

F 0 = molar flow rate at the inlet stream

FR = feeding rate

Hcool = monomer cooling

Hp = provided cooling

Hr = heat released

Hrxn = heat of reaction

k = rate constant

Ṁ = mass flow rate

Mn = number average molecular weight

MON = set of monomers in the process

Mw = weight average molecular weight
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MW = molecular weight

M̄W = average molecular weight

N = set of CSTR or DSR zone

R = gas constant

PDI = polydispersity index

PR = production rate

r = reaction rate

T = temperature

Tad = adiabatic temperature

Tf temperature of the feed

Tsafety = upper bound for adiabatic temperature

V = volume

wt = weight percentage

V̇ = volumetric flow rate

τ = residence time

ρ = density

σ = mole fraction of unalkoxylated active sites of initiator

[·] = concentration

Superscripts

b = solution mixture inside the reactor

m = monomer

n = index of each CSTR or each DSR zone

∗ = value at the bound
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Subscripts

c = components involved in the process

cat = catalyst

l = chain length of polymer

LB = lower bound

m = monomer

N = final CSTR or DSR zone

n = index of each CSTR or each DSR zone

p = polymer type ∈ {A,B,C}

rxn = reaction index ∈ {i, p, t} in Chapter 4; reaction index ∈ {ini, prop, trf} in Chapter 5

UB = upper bound

s = chain length of polymer

Reactions

e, exc = exchange

i, ini = initiation

p, prop = propagation

t, trf = transfer

Notation used in the dynamic optimization formulation
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CC = capital cost

ε = capital cost factor

f = cost function

g = equality constraint

h = inequality constraint

J = injection profile

K = maximum number of finite element

u = decision variable

V = DSR volume

y = algebraic state variable

z = differential state variable

ż = differential equation

Ω = polynomial of order K

τ = normalized volume

Superscripts

L = lower bound

U = upper bound

Subscripts
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i = index of finite element

j = index of collocation point

k = index of collocation point

N = final CSTR/DSR zone

n = index of each CSTR or each DSR zone

Vf = end of DSR

β = binary variable for monomer injection
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