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Abstract

Field-programmable gate arrays (FPGAs) have achieved well-demonstrated success

in a variety of real-time streaming applications, such as signal processing, machine

learning inference, and video processing. In these applications, the processing ac-

celerated by FPGAs is regular and ‘input-independent,’ and thus the designs’ be-

havior and performance are fixed. Accelerating real-time ‘input-dependent’ stream-

ing applications on FPGAs presents many interesting new challenges. For exam-

ple, network intrusion detection and prevention systems (IDS/IPS) need to identify

malicious network traffic, meaning different traffic will trigger different operations

– thus activating different resource and performance bottlenecks – and making a

static, fixed-performance FPGA design infeasible. Specifically, to achieve fixed per-

formance, the design must allocate resources for handling worst-case scenarios, even

if they happen rarely, thus losing the opportunity to use the same resources to im-

prove common-case performance. For instance, since regular expression patterns are

rarely triggered, the limited on-chip SRAM space could instead be used to make the

string pattern matching component – which is exercised by almost every packet –

larger and faster.

This thesis investigates novel design solutions to enable efficient handling of

stream processing with input dependence in the problem context of IDS/IPS. The

first part of this thesis focuses on achieving high performance under resource con-

straints for given inputs, by accelerating common cases while handling uncommon
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cases efficiently at different levels of the system. Specifically, we propose three ideas:

(1) FPGA-first architecture to allow the common datapath to sit entirely on FPGA

fabric, while only offloading the complex, rarely triggered last pipeline stage to the

CPU; (2) a fast-slow path design for TCP reassembly, where the rarely-triggered

slow path can have a memory-saving data structure with non-deterministic perfor-

mance without interfering with the performance of the fast path; and (3) hierarchical

filters that use compact filters in front to keep up with the line-rate and thus reduce

the resource consumption of the later, more expensive stages, which only need to

keep up with the hit rate of the previous filter.

A key concern of the aforementioned design approach is that it is vulnerable

to overfitting if the workload changes. The second part of this thesis tackles this

problem, allowing for efficient and easy adaptation of the design to changing inputs

at both compile time and runtime. In particular, we introduce two techniques: (1)

a disaggregated architecture that enables easy scaling up, down, or out of particular

components at compile time to cater to different expected traffic profiles; (2) a dy-

namic spillover mechanism to route the spillover traffic to backup streaming kernels

that can be brought up on demand to absorb the increase in workload at runtime.

Pigasus, the 100Gbps IPS embodying the ideas in this thesis, has been open-

sourced on https://github.com/cmu-snap/pigasus. End-to-end benchmark-

ing with a variety of traces shows that Pigasus IPS can operate at 100Gbps using

just 1 Intel Stratix 10 MX FPGA and an average of 5 cores of an Intel i9 processor,

50× more efficient than fixed-performance designs. The disaggregated architecture

shows better scalability, reusability, and portability, with negligible performance

and resource overhead relative to the static design. Finally, the dynamic spillover

mechanism can prevent the performance degradation or resource wastage caused

by the mismatch between the compile-time prediction of the traffic profile and the

runtime real traffic profile.
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Chapter 1

Introduction

In recent years, we have observed many successful instances where filed-programmable

gate arrays (FPGAs) were used to accelerate real-time streaming applications such

as signal processing [4, 5], machine learning inference [6, 7], video processing [8, 9],

etc. In order to meet the high bandwidth and low latency requirements, developers

typically need to extract the streaming processing kernels from applications and

spatially map them onto FPGAs in a pipeline fashion. A beneficial characteristic

of the above applications is that the processing accelerated by FPGAs is input-

independent, meaning that each of the input units (e.g., images) is processed by the

same set of streaming kernels in the same order, and often with the same perfor-

mance. As a result, the FPGA acceleration for these input-independent streaming

applications has fixed behavior and performance.

Accelerating real-time, input-dependent streaming applications on FPGAs

presents many interesting new challenges. In this thesis, we investigate how to

efficiently handle input-dependent streaming using network intrusion detection and

prevention systems (IDS/IPS) as a driving example. IDS/IPS are widely deployed
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to identify and prevent network threats by scanning network packets (including

payload) against a large number of rules [3, 10, 11, 12, 13, 14]. By nature, IDS/IPS

performance is input-dependent, as different packets will utilize different resources

and exercise different performance bottlenecks, thus making traditional static and

fixed-performance streaming FPGA design strategies infeasible. To achieve high

performance within the resource constraints, this thesis proposes a common-case

aware and adaptive design approach that efficiently handles the input-dependent

behaviors in a variety of deployment scenarios.

1.1 Motivation and Challenges

IDS/IPS are among the most performance intensive and complicated stateful net-

work applications. Today, we are faced with the need to build IDS/IPS applications

that can support line rates on the order of 100Gbps [15] with hundreds of thou-

sands [16] of concurrent flows1 and can match packets against tens of thousands of

rules [17]2.

Given the demanding performance requirements and complicated operations,

today’s software IDS/IPS are struggling to keep up. As shown in Figure 1.1, the

state-of-the-art software IDS/IPS Snort 3.0 – which is equipped with the high-

performance SIMD-accelerated Hyperscan [2] pattern-matching software library –

can only achieve about 1Gbps per high-end CPU core, which is two orders of mag-

nitude smaller than the 100Gbps line rate. Simply partitioning the traffic by flow

and distributing the traffic across hundreds of cores is not a cost-effective option.

1A term used in the network community. Here, we define it as a 5-tuple, i.e., source IP, desti-
nation IP, source port, destination port, protocol.

2There exist other models of IDS/IPS systems, including ‘anomaly-based’ models, which detect
whether a system is operating normally based on heuristics, and ‘script-based’ models, such as
Zeek [10, 11], which execute arbitrary user code over scanned traffic. These models are outside the
scope of this work.
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Figure 1.1: Line rate evolution [1] and state-of-the-art IDS/IPS performance [2]

This motivates us to pursue opportunities to accelerate IDS/IPS using FP-

GAs. Our goal is to support at least 100K flows and check at least 10K rules at

100Gbps line rates, using only a single server (explained more thoroughly in Sec-

tion 2.1).

While many prior works have integrated FPGAs with IDS/IPS process-

ing [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], for the most part, these have

followed traditional static and fixed-performance FPGA designs. These prior de-

signs were designed for the worst-case scenario instead of the common case, making

them excessively inefficient and prohibitively expensive. The high cost also re-

stricts prior works to focus on accelerating particular sub-task of IDS/IPS, as it is

considered too resource-intensive to try to map a complete IDS/IPS pipeline onto

an FPGA. Unfortunately, as we will show in Section 2.4.1, this single-task fixed-

performance offloading is insufficient to close the order-of-magnitude performance

gap to offer 100Gbps end-to-end performance. Therefore, we need a new way to
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efficiently handle input-dependent streaming on FPGAs.

1.2 Handling Input-Dependent Behaviors

This thesis presents new design techniques to efficiently handle input-dependent

streaming using IDS/IPS as the main example. The key insights are (1) that we

should fine-tune the design for common cases and handle uncommon cases efficiently

at different levels of the system to extract maximum performance with minimal

resources, and (2) that we should adapt the design for changing inputs at both

compile time and runtime to address the brittleness of designs tailored to common

cases.

To demonstrate the effectiveness of our method, we developed an end-to-end

IDS/IPS, called Pigasus, which can achieve 100Gbps supporting 100K flows and 10K

rules using a single server with one FPGA-based SmartNIC (Intel Stratix 10 MX

2100 FPGA) and, on average, 5 cores (Intel i9-9960X CPU). Pigasus is 100× faster

than a CPU-only baseline and 50× faster than prior FPGA designs. Furthermore,

it can be easily adapted to new deployment environments and shifting workloads.

In the remainder of this section, we give an overview of the five key ideas behind

Pigasus.

FPGA-first architecture: Traditional static and fixed-performance FPGA ID-

S/IPS accelerators [30, 29, 19] are excessively inefficient due to worst-case over-

provisioning, such that it is not affordable to offload a complete IDS/IPS from CPU

onto FPGA. We argue that in order to achieve a two-orders-of-magnitude speedup

of IDS/IPS, we need to reverse the roles of FPGAs and CPUs. In an FPGA-first

architecture, the FPGA serves as the primary processing unit, which has direct

connections to 100Gbps network transceivers and performs most of the packet pro-

4



cessing. Specifically, the ‘innocent’ packets (common case) will be entirely processed

by the highly parallel hardware datapath on FPGAs for high throughput and low

latency. Only ‘suspicious’ packets (uncommon case) will ever reach the CPU, which

works as the complexity offloader to the FPGA. This FPGA-first architecture makes

it possible to reach 100× speedup with minimal resource consumption.

Fast-slow path SRAM-based TCP reassembly: Prior approaches to FPGA-

based TCP reassembly use fixed-length (e.g. 64KB), statically allocated buffers

implemented in DRAM [29, 28]. However, as the network speed evolves from 1Gbps

or 10Gbps to 100Gbps and beyond, we need to use faster but much smaller FPGA

on-chip SRAM to buffer packets and track their order. Our idea is to create a

fast path for processing the in-order packets (common case) and a slow path for

processing the out-of-order (OOO) packets (uncommon case). This allows us to use

a memory-dense data structure to track OOO packets with little impact to overall

performance.

Hierarchical pattern matching: Traditional input-independent streaming string

search algorithms [19, 2] failed to scale to 10K rules while running at 100Gbps. Our

solution is to separate the need of line-rate support and hit-rate support through

hierarchical filters. The front-end compact filters keep up with the line-rate, check-

ing all packets against all rules (common case), while the back-end expensive filters

only need to keep up with the hit rate of the previous filters by checking suspicious

packets against partially matched rules (uncommon case).

Disaggregated service-oriented streaming design: For many years, FPGA

development has adhered to ‘ASIC-style’ design methodology; that is, once de-

ployed, the design rarely changes. This is fundamentally unsuitable for handling

input-dependent behaviors. To address this problem, we introduce a new design
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methodology. By disaggregating the system, parameterizing individual streaming

services, and connecting them to a common communication abstraction, the new

methodology offers a selection of designs – rather than a single design – from which

users can easily select the most efficient design at compile time as the deployment

environment changes.

Dynamic spillover mechanism: Conventional fixed-performance FPGA designs

are either impractical or not efficient enough to handle input traffic dynamism. In re-

sponse, we propose a dynamic spillover mechanism that introduces more computing

power on demand at runtime to absorb the temporary increases in workload. When

bursty traffic shows up, the backup streaming kernels (e.g., those implemented on

CPU) are temporarily brought up to process the spillover traffic. For most of the

time, the system does not need to allocate resources for these backup streaming

kernels.

1.3 Thesis Contributions

This thesis investigates how to efficiently handle input-dependent streaming in the

context of IDS/IPS on FPGAs. Specifically, it makes the following contributions:

• We propose an FPGA-first architecture, which inverts the conventional roles of

FPGAs and CPUs, allowing a common datapath to sit entirely on FPGA and

thus enabling a speedup of two orders of magnitude.

• We develop a fast-slow path SRAM-based TCP reassembly. By processing in-

order packets on a fast path and out-of-order packets on a slow path, we can

adopt a compact data structure on the slow path to save precious FPGA on-chip

memory without disrupting the overall performance.
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• We develop hierarchical pattern matchers that separate the need for line-rate

support and hit-rate support, allowing for fewer replicas of expensive filters in

later stages, thus saving resources without affecting the overall throughput.

• We introduce a disaggregated service-oriented streaming design methodology

that addresses the brittleness of our common-case-tailored design as the deploy-

ment environment changes at compile time.

• We design a dynamic spillover mechanism, which can dynamically handle the

case when expensive operations are triggered very frequently within a short

period of time, by routing the spillover traffic to backup streaming kernels. This

improves the resilience of our common-case-tailored design at runtime.

• To demonstrate the effectiveness of the above ideas, we develop an end-to-end

FPGA-based IDS/IPS, called Pigasus. Pigasus successfully met our target of

100Gbps, 10K rules, and 100K flows on a single server. Pigasus is open-sourced

at https://github.com/cmu-snap/pigasus and has been actively used

by researchers.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the back-

ground of IDS/IPS and FPGAs and explains why the conventional wisdom does

not work for input-dependent streaming. Chapter 3 presents the Pigasus system

overview, which provides necessary context for understanding the five key ideas in

this thesis. The first part of the thesis, including Chapters 4, 5, and 6, focuses

on how to extract maximum performance for given inputs using minimal resources.

Specifically, Chapter 4 presents the FPGA-first architecture. Chapter 5 presents

the fast-slow path SRAM-based TCP reassembly. Chapter 6 presents the hierarchi-

7
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cal pattern matching. The second part of the thesis, including Chapters 7 and 8,

focuses on addressing the brittleness of our common-case-tailored designs as deploy-

ment environments change and workloads shift. In particular, Chapter 7 presents

the disaggregated service-oriented streaming design. Chapter 8 presents the dy-

namic spillover mechanism. Finally, Chapter 9 concludes the thesis and discusses

future directions.
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Chapter 2

Background

This chapter first presents the background of IDS/IPS (Section 2.1) and FPGAs

(Section 2.2). Then, this chapter explains what the input-dependent behaviors are

in a real-world application and why they are unfavorable for FPGAs (Section 2.3).

Finally, this chapter describes the conventional wisdom (Section 2.4) – the straight-

forward ways to implement Pigasus – and why they do not work, motivating this

thesis.

2.1 IDS/IPS Background

The key goal of a rule-based IDS/IPS is to identify when a network packet triggers

any of the up to tens of thousands of rules. A given rule may specify one or several

patterns as shown in Figure 2.1. Patterns come in the following categories:

• (a) Header match: a filter over the flow 5-tuple (i.e., source IP, destination IP,

source port, destination port, protocol);

• (b) Flow state: check if the connection is ‘open,’ ‘established,’ or ‘to server’;
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alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (…; 
flow:to_server,established; 
content:"/Silverlight/GetPermissions.asp"; http_uri; 
content:"username="; …; http_client_body; 
pcre:”/(^|&)username=[^&]*?(x22|%22)[^&]*?(x29|%29)/Pi”;…)

a

b

c1

c2

d1

d2

e

Figure 2.1: A simplified Snort-compatible rule

• (c,d) String match: an exact match string to be detected within the TCP

bytestream or within a single UDP packet. One rule may contain multiple

string patterns. In Snort, for performance reasons, one of the string patterns

is selected as the special fast pattern. (d) refers to an identifier, specifying the

region of the flow in which this string should be searched;

• (e) Regular expression: a regular expression to be detected within the TCP

bytestream or within a single UDP packet.

Rules are detected at the granularity of a ‘Protocol Data Unit’ (PDU), i.e.,

a signature is only triggered if all matches are found within the same PDU (not over

the course of the entire flow). By default, a PDU consists of one packet, but it is

possible to define other protocol-specific PDUs spanning multiple packets (e.g., one

HTTP GET request).

When an IDS/IPS operates in detection mode, a triggered rule results in

an alert or an event to be recorded to a log. When an IDS/IPS operates in pre-

vention mode, a triggered rule may raise alerts, record events, or block traffic from

the offending flow or source. IPSes, hence, must operate inline over traffic and

are latency-sensitive – i.e., a packet may not be released to the network until af-

ter the IPS has completed scanning it. IDSes, on the other hand, may operate

asynchronously and are often deployed over a secondary traffic ‘tap’ which provides
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Parser Reassembly Multi-String Pattern
Match Full Match Action

Figure 2.2: Simplified Snort [3] IDS/IPS block diagram

copies of the active traffic.

IDS/IPS components: Figure 2.2 illustrates the key components of Snort [3],

the most widely-known open-source software IDS/IPS. In Snort, the network packet

is first parsed to extract the metadata, including packet size, IP addresses, ports,

etc. The Reassembly module is used to keep track of the TCP flow states (e.g.,

sequence number) and reorder out-of-order (OOO) packets, whose sequence numbers

are larger than the expected sequence numbers tracked by the flow table. The

Multi-String Pattern Match (MSPM) module checks packets against fast patterns

and header patterns. Specifically, the fast patterns of all the rules are constructed

together, such that a packet can be checked against all of them in parallel in one

pass. If the packet does not match any of the fast patterns, it will be safely identified

as an innocent packet. Otherwise, it will be further checked by the Full Match stage,

where the rest of the string patterns (non-fast patterns)1 and regular expressions of

the partially matched rules are fully evaluated. The Action unit conducts the alert,

log, or block actions.

Input-dependent behaviors in IDS/IPS: As one may already notice, an ID-

S/IPS has input-dependent behaviors by nature. For instance, some innocent packets

only need to be examined by the first three stages – Parser, Reassembly, and MSPM.

In contrast, the suspicious packets – including malicious packets and packets that

are falsely identified as positive – will be examined by all of the stages, thus taking

1In Pigasus, we move this portion out of the Full Match stage and implement it as another
level of filter in MSPM on FPGA instead to improve the performance. We explain more details in
Chapter 6.

11



more time. Such input-dependent behaviors exist in different aspects: the OOO

packets take more time than in-order packets, one packet can trigger a variable

number of partially matched rules each with variable performance, etc.

Software IDS/IPS performance: This work aims to be compatible with Snort

rulesets. In our experiments, we primarily work with the Snort Registered Ruleset,

which contains roughly 10,000 signatures [17]. This ruleset, combined with con-

versations with system administrators, sets our goal of supporting 10K rules. In

addition, we target 100Gbps as the state-of-the-art line-rate [15] and we aim to sup-

port 100K flows. To the best of our knowledge, there exists no measurement study

detailing how many flows to expect at 100Gbps, so we derive our 100K flow goal by

extrapolating a two-orders-of-magnitude growth factor from a 2010 study [16].

In 2019, Intel published Hyperscan [2], an x86-optimized library for perform-

ing both string matching and regular expression matching. Hyperscan is the key new

element in Snort 3.0, which is 8× faster than its predecessor [31, 32]. Nonetheless,

we find that Snort 3.0 cannot meet our goal of supporting 100Gbps, 100K flows,

and 10K rules on a single server.

We ran Snort 3.0 on a 3.6GHz server and measured the single-core throughput

over 7 publicly available network traces (described more thoroughly in Section 3.3.1).

We plot the results in Figure 2.3. This would require 125-667 cores or 4-21 servers

to support 100Gbps of throughput, even with the generous assumption that Snort

3.0 is capable of perfect multicore scalability.

The performance (100Gbps line-rate, real-time action under IPS mode) and

capacity (10K ruleset size, 100K flow states) requirements together with the complex

operations introduced by the input-dependent behaviors make the IDS/IPS a very

challenging application to accelerate.
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Figure 2.3: Single-core, zero-loss throughput achieved by Snort 3.0 with Hyperscan
over a range of empirical traces

2.2 FPGA Background

Why look to FPGAs to improve IDS/IPS? While there are many platforms

(‘accelerators’) that offer highly parallel processing, FPGAs are most promising

because (a) they are conveniently deployed as SmartNICs2 where they are poised to

operate on traffic without PCIe latency or bandwidth overheads [1, 33, 34], (b) they

are more flexible at interacting with memory and implementing customized data

structures compared to P4-switches [35, 36], (c) they are energy-efficient (using 4-

5× [37, 38, 39] fewer Watts than GPUs), and (d) they are more adaptive to various

changing deployment environments than ASICs and are programmable to allow

patches when new exploits emerge [40].

2Smart Network Interface Controller (SmartNIC) refers to an emerging type of NIC, which
extends traditional NICs with advanced functionality using programmable devices such as embedded
CPUs or FPGAs to accelerate the tasks that are normally processed by host CPUs.
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FPGA compute: FPGAs allow programmers to specify custom circuits using

register-transfer-level (RTL) code. However, implemented näıvely, FPGA-based de-

signs can be much slower than their CPU counterparts because FPGA clock rates

operate 5-20× slower than traditional processor clock rates. To achieve performance

speedups relative to CPUs, circuits must be designed with a high degree of paral-

lelism. FPGAs achieve parallelism either through pipeline parallelism, in which

different modules operate simultaneously over different data, or through data par-

allelism, in which copies of the same module are cloned to operate simultaneously

over different data.

FPGA memory: Today’s FPGAs offer programmers a suite of memory options.

Block RAM (BRAM) is the primary FPGA on-chip SRAM, because read requests

receive a response within one cycle. Furthermore, BRAM is very friendly to paral-

lelism. Our target FPGA (Intel Stratix 10 MX FPGA Development card [41]) offers

16MB of BRAM distributed to 6847 20Kb blocks. Divided into 20Kb blocks with

two ports each, it is possible to read from all BRAM blocks in parallel (and each

BRAM block twice) per cycle. When a developer wishes to issue more than two

parallel reads to a BRAM block per cycle, they may choose to replicate the block

to allow more simultaneous access to stored data.

Our target FPGA also offers 8GB of on-board DRAM (which takes about

100 nsec or 20 cycles of latency when running at 200MHz between read request and

response) and 10MB of embedded SRAM (eSRAM), another type of FPGA on-chip

SRAM (which takes fixed 12 cycles of latency between read request and response).

Because of the multi-cycle latency for these two classes of memory, they are not

suitable for storing data that must be read/written every cycle. Furthermore, both

are more bandwidth-limited than BRAM and offer fewer parallel lookups. However,
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as we will discuss in Section 3.2, pushing what data are feasible into these slower

classes of memory is necessary to free up as much BRAM as possible to support fast

common-case memory-intensive processing.

2.3 Why Input-Dependent Behaviors Are Challenging

for FPGAs?

If an application is input-independent, each input unit (e.g., a packet or an image)

will be processed by the same set of logic with fixed performance, yielding a static

and relatively simple design. Most prior FPGA accelerators fall into this category,

which also explains why FPGA design style has been static, i.e., assuming a one-shot

design will work for all scenarios.

However, if an application is input-dependent, FPGAs have to react differ-

ently based on the content of the input, leading to a much more complicated, dy-

namic, and non-deterministic design, requiring a different design mindset. In the

context of IDS/IPS, FPGAs have to deal with innocent traffic and malicious traffic

differently and handle a variable number of matches and all kinds of corner cases, all

of which have to be realized under strict performance and resource constraints. Since

the input could change drastically, any one-shot design will either cause performance

degradation or resource wastage as the deployment condition changes.

Simply adopting the conventional static, fixed-performance designs, which

requires provisioning for the worst case, is too inefficient and expensive to be prac-

tical. Therefore, we need a design that can achieve high performance using minimal

resources and be adaptive enough for shifting workloads and changing environments.
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2.4 Conventional Wisdom

In this section, we briefly discuss the conventional ways to implement IDS/IPS and

why they do not work.

2.4.1 Traditional FPGA Offload Paradigm

To avoid the challenges introduced by input-dependent behaviors, the traditional

FPGA offload paradigm favors designing for the worst case. Designing for the

worst case makes the FPGA implementation simple, regular, and deterministic,

but would incur resource over-provision. For example, Grapefruit [42], a state-of-

the-art regular expression engine for FPGAs, statically maps all regular expression

patterns on FPGAs to allow input-independent performance – matching one regular

expression takes the same time as matching all regular expressions. Unfortunately,

this is overkill, as we rarely need to check all regular expressions in the Full Matcher,

but the unused patterns still consume valuable FPGA resources.

Since designing for the worst case is so expensive, prior FPGA-accelerated

IDS/IPS work can only afford to accelerate a single task of the IDS/IPS end-to-end

system. For example, in many works [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],

FPGA is the ‘offloader’ of a specific task and the CPU is the ‘primary’ process-

ing unit, performing the majority of the processing and dealing with the input-

dependent behaviors. However, as we will show in Section 4, after the Hyperscan

improvement of the MSPM task by 8×, there is no single dominating task in Snort

3.0. Just accelerating a specific task on FPGA will not give us orders of magnitude

end-to-end speedup based on Amdahl’s law.
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2.4.2 Fixed-Buffer-Size TCP Reassembly

Hardware design often favors data structures that are fixed-length, constant-time,

and generally deterministic, and most TCP reassembly designs follow suit. For

instance, Yuan et al. [29] allocate a fixed 64KB packet buffer in DRAM and use

7 pairs of pointers to track the OOO state for each flow. By using static buffers,

these designs can achieve nearly constant-time insertion of out-of-order packets into

memory; furthermore, the memory consumed by any individual flow is fixed, so

freeing space is also deterministic. However, as the line-rate is increasing rapidly,

from 1Gbps or 10Gbps to 100Gbps and beyond, DRAM speeds are struggling to

keep up.

While using fast FPGA on-chip SRAM will address the speed problem, it

presents new challenges – the on-chip SRAM capacity is many orders of magnitude

smaller than DRAM capacity. Simply adopting the statically allocated fixed-size

buffer approach does not work for SRAM. For example, allocating 64KB for every

OOO flow [28] would require 64MB to support 1K OOO flows (typically 1% of the

100K flows).

2.4.3 Input-Independent Multi-String Pattern Matching

Classic FPGA-based multi-string pattern matching designs adopt state-machine ap-

proaches, which have input-independent performance [19]. In these designs, the

multiple string patterns are constructed as a state machine; each byte of the input

stream invokes a state transition. A rule will be matched when the input bytestream

exercises a certain state transition path, reaching the final state. The performance

is input-independent, since the system can always accept a fixed number of bytes per

cycle, no matter how many rules these bytes trigger. However, state-machine-based
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designs are very memory- and/or logic-consuming, and hence only work for up to a

few hundreds of rules.

An alternative is to use the Hash Table-based approach as used in the Hy-

perscan software library [2]. In this approach, the string patterns are hashed to

construct a Hash Table at compile time. During runtime, the hashed values of the

input bytes are used to index the Hash Table, determining whether or not there is a

match. When porting this algorithm from software to FPGA, the conventional wis-

dom of input-independent acceleration would require many replicas of the matcher

to keep up with the line-rate, exhausting the on-chip memory resource again.

2.4.4 ASIC-Style Design Methodology

For a long time, FPGA development (including Pigasus 1.0, the initial implementa-

tion of Pigasus) has been following the ASIC-style design methodology [43] – once a

design is deployed it rarely changes, just like an application-specific integrated circuit

(ASIC). This design style is fundamentally mismatched from the input-dependent

behaviors in applications.

As we have discussed, the key to extracting maximum performance using

minimal resources is to tune for the common case. However, as the deployment

environment changes, the common/uncommon case ratios could be different from the

initial setting, requiring re-tuning of the design to retain high efficiency, like scaling

out the performance-bottleneck sub-components for the new workload. With the

ASIC-style design methodology, such re-tuning requires digging into the codebase

and manually modifying the RTL code, which is challenging and unproductive.
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2.4.5 Static Handling of Burstiness

Since the design decision made at compile time may not accurately predict the traffic

profile at runtime, it is possible that the slow operations are triggered unexpectedly

frequently in a short period of time, leading to performance degradation. The

traditional FPGA designs either allocate enough processing power for the worst

case or introduce a big enough buffer to absorb the burstiness. Unfortunately, as

we discussed in Section 2.4.1, the worst-case-oriented designs are impractical, as the

resources needed are far beyond FPGA capacity.

Big buffers also do not work as (1) any small jitter in the 100Gbps traffic

can easily overflow our MB-level of buffer, and (2) we cannot buffer indefinitely due

to latency concerns.
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Chapter 3

Pigasus Overview

In this chapter, we present our research artifact, which provides necessary context

for understanding the key ideas of the remaining chapters. We first give an overview

of Pigasus and then describe our memory choices at system level before evaluating

the end-to-end system performance. In the next chapters, we will dive deeply into

each individual idea behind Pigasus.

3.1 Pigasus Datapath

Figure 3.1 depicts the major components of Pigasus’ architecture. The Parser,

Reassembler, and Multi-String Pattern Matcher (MSPM) are implemented in the

FPGA while the Full Matcher (the non-fast string pattern matching portion is im-

plemented in MSPM on FPGA, as explained in Chapter 6) is offloaded to the CPU.

The following describes how these pieces work together.
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Initial packet processing: Each packet first goes through a 100Gbps Ethernet

Core that translates electric signals from an Ethernet cable into raw Ethernet frames.

These frames are temporarily stored in the Packet Buffer; each frame’s header is

separately sent to the Parser – which extracts TCP/IP header fields as metadata

(e.g., sequence numbers, ports) for use by the Reassembler and MSPM – and then

forwards the header to the Reassembler.

Reassembler: The Reassembler sorts TCP packets from the same flow in order

so that they can be scanned contiguously (i.e., to identify matches that span across

multiple packets). The Reassembler is able to record the last few bytes of the

packet’s predecessor in that flow in order to enable cross-packet search in the MSPM.

UDP packets do not need reassembly and thus are forwarded through this stage

without processing. The key challenge in designing the Reassembler is doing so

at line-rate with state for 100K concurrent flows (explained more thoroughly in

Section 2.1).

Data mover: While the Parser and Reassembler operate on headers and metadata

alone, the MSPM operates on full packet payloads. The Data Mover receives the

(sorted) packet metadata from the Reassembler and issues requests to fetch raw

packets from the Packet Buffer so that they can be forwarded to the MSPM. This

module decouples the data movement task from Reassembler packet processing tasks

to give the Reassembler more cycle budget on processing packets.

Multi-string pattern matcher: The MSPM is responsible for (a) checking every

packet against the header match for all 10,000 rules (explained more thoroughly in

Section 2.1), (b) every index of every packet against the fast pattern for all 10,000

rules, and (c) checking the non-fast string patterns of a partial matched rule (this

functionality is in the Full Matcher in Snort, but Pigasus’ design accelerates this
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task on FPGA for better performance). Thus, it has the most demanding perfor-

mance requirements among Pigasus modules. At a 400MHz clock rate, the payload

matching alone requires searching 32 indices against all 10,000 signatures every clock

cycle.

DMA engine: For each packet, the MSPM outputs the set of rule IDs that the

packet partially matched. If the MSPM outputs the empty set, the packet is released

to the network; otherwise, it is forwarded to the DMA Engine which transfers the

packet to the CPU for Full Matching. To save on PCIe bandwidth, the DMA Engine

keeps a copy of the packets sent to the Full Matcher in FPGA-side DRAM (Check

Packet Buffer); this allows the Full Matcher to reply with a (packet ID, decision)

tuple as a response, rather than copying the entire packet back over PCIe after

processing.

Full matcher: On the software side, the Full Matcher polls a ring buffer which

is populated by the DMA Engine. Each packet carries metadata including the

rule IDs that the MSPM determined to be a partial match. For each rule ID, the

Full Matcher retrieves the complete rule (regular expressions and other fields of the

rules) and checks for a full match. It then writes its decision (forward or drop) to

a transmission ring buffer, which is polled by the DMA Engine on the FPGA side.

If the decision is to forward, the DMA Engine forwards the packet to the network;

otherwise, the packet is simply erased from the DMA Engine’s Check Packet Buffer.

3.2 Memory Resource Management

The core obstacle to seeing Pigasus fully realized is fitting all of the above func-

tionality (except the Full Matcher) within the limited memory on the FPGA. As
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discussed in Section 2.2, BRAM is the ‘best’ of the available memory: it is the only

class of memory that can perform read operations in one cycle, and it is also the

most parallel. However, it is limited to only 16MB even on a high-end Intel Stratix

10 MX FPGA. In this section, we discuss how we choose appropriate types of mem-

ory for different components to save BRAM, which is orthogonal with introducing

new resource-efficient algorithms described in the following chapters (Chapter 4,

Chapter 5, and Chapter 6).

In Pigasus, BRAM is reserved only for modules which require either latency-

sensitive or throughput-demanding memory accesses, namely the Reassembler and

the Multi-Pattern String Matcher. Specifically, the Reassembler performs flow table

lookup and update for each packet and thus requires low-latency memory access to

improve the packet rate. The MSPM requires high throughput as every index of

every packet must be checked against multiple tables (e.g. ShiftOR table, Hash

Table, different header tables, etc.) at 100Gbps.

To save BRAM, the other stateful modules such as the Packet Buffer and

DMA Engine are allocated to less powerful eSRAM and DRAM respectively.1 eS-

RAM and DRAM turn out to be sufficient for these tasks because the Packet Buffer

and DMA Engine have much less stringent demands in terms of bandwidth and

latency. In the case of the packet buffer, packet data is written and read only once

and hence bandwidth demand is low but still exceeds DRAM’s peak throughput; the

data mover prefetches each packets 12 cycles in advance of pushing it to the MSPM

keeping throughput high with a negligible latency impact. The DMA Engine uses

DRAM – which has the highest and variable latency and the lowest bandwidth – for

1FPGA manufacturers have been experimenting with varied classes of memory on-board the
FPGA over the past few years. From the manufacturers’ perspective, Pigasus can be seen as a
success story for how varied memory enables more diverse applications which tailor their memory
usage to per-task and data structure demands.

24



the Check Packet Buffer. Since on average only 5% of packets require Full Matching

functionality, this places little stress on DRAM bandwidth; the latency overhead

of DRAM, while high when compared to BRAM, is still 10× faster than the PCIe

latency suffered by packets sent to the CPU for full match.

Even though this leaves almost2 the full capacity of BRAM for the Reassem-

bler and Multi-String Pattern Matcher, realizing these modules is challenging. For

instance, using traditional NFA-based search algorithms for the MSPM, given the

public ruleset, would require 23MB – more than our 16MB BRAM capacity. Sim-

ilarly, statically allocating 64KB of out-of-order buffer per flow for even 1K flows

(out of 100K flows we need to support) easily exceeds 16MB. In the next three chap-

ters (Chapter 4, Chapter 5, and Chapter 6), we will show how our novel designs

efficiently use the limited BRAM without compromising performance.

3.3 Evaluation

In this section, we evaluate Pigasus and show that:

• Pigasus is at least an order of magnitude more efficient than state-of-art Snort

running in software, using 23− 200× fewer cores and 18− 62× less power;

• Pigasus’ performance gains are resilient to a variety of factors such as small

packets and the rule-match profile of the traffic;

• The Pigasus architecture actually has resource headroom, suggesting a roadmap

for handling even more complicated workloads.

We start by describing the evaluation setup we use for the rest of the section

before the detailed results.

2Some internal buffers/queues do use BRAM.

25



3.3.1 Setup

Implementation: We implement Pigasus using an Intel Stratix 10 MX FPGA

Development card [41] as the SmartNIC in a 16-core (Intel i9-9960X @ 3.1 GHz) host

machine. The Stratix 10 MX FPGA has 16MB of on-chip BRAM, 10MB of eSRAM,

and 8GB of off-chip DRAM. To implement Pigasus’ CPU/software components, we

adapt Snort 3.0 to allow it to receive reconstructed PDUs and rule IDs, coming from

the FPGA directly into its Full Matcher. We run Snort 3.0 software experiments in

an Intel i7-4790 CPU @ 3.60 GHz.

Traffic generator: We installed both DPDK Pktgen [44] and Moongen [45]

on a separate 4-core (Intel i7-4790 @ 3.6 GHz) machine with a 100Gbps Mellanox

ConnectX-5 EN network adapter. DPDK Pktgen achieves higher throughput when

replaying PCAP traces – up to 90Gbps – and hence we use the DPDK Packet

Generator when running experiments with recorded traces. Moongen is better at

generating synthetic traffic at runtime and can do so at up to the full 100Gbps

offered by the underlying network. We specify in each experiment which traffic

generator was used.

Traces and ruleset: We test Snort and Pigasus both using the publicly available

Snort Registered Ruleset (snapshot-29141) [17] and different traces from Strato-

sphere [46, 47]: CTU-Mixed-Capture-1–5, CTU-Normal-12, and CTU-Normal-7.

We refer to them as mix-1–5, norm-1, and norm-2, respectively. For the mixed

traces, we use the *before.infection pcaps. We use Stratosphere traces be-

cause their packet captures contain the original payloads, which is essential when

evaluating IDS/IPS. However, such traces are not captured at 100Gbps3. To test

the performance of Pigasus, we replay the trace at the full speed of the DPDK

3We could not find any public 100Gbps traces with meaningful payload.
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Pktgen.

Measuring throughput and latency: We measure throughput in two ways:

1. The Zero Loss throughput is measured by gradually increasing the packet gen-

erator’s transmission rate until the system (Snort or Pigasus) first starts dropping

packets; 2. The Average throughput is computed as the ratio of the cumulative size

of packets in the trace (in bits) to the total time required to process the trace. We

measure latency (at low load) using DPDK Pktgen’s built-in latency measurement

routine. Unfortunately, DPDK embeds timestamps in the packet body, which never

triggers the CPU-side Full Matching functionality. Instead, we measure the end-to-

end latency for Pigasus on an empirical trace using FPGA-side counters, and then

adding the baseline FPGA loopback latency to it.

3.3.2 End-to-End Performance and Costs

In this section, we compare the performance, power, and cost of Pigasus vs. Snort

and provide the resource breakdown of Pigasus.

Provisioning for 100Gbps throughput: Figure 3.2 reports the number of server

cores required to achieve 100Gbps for the evaluated Stratosphere traces for differ-

ent settings. The top half is under the assumption of loss-free processing without

buffering, while the bottom reports the steady-state core requirements based on the

assumption that we have an infinitely big buffer to buffer packets during the peak

periods and defer the full matching to allow the cores to catch up after the peak has

passed.

The Pigasus results are based on experiments where the system is tested at

increasing numbers of cores at maximum throughput, until we observe no packet

loss. However, mix-1 is special as the hardware datapath is the bottleneck which
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Figure 3.2: Number of cores required to process each trace at 100Gbps using Pigasus
(FPGA + CPUs) and Snort (traditional CPUs alone). Pigasus numbers are based
on implementation; Snort numbers are extrapolated from its single-core throughput
and assume perfect linear scaling.

can only achieve 55Gbps zero-loss throughput due to bursty matches in that trace.

Since the hardware datapath only occupies half of the FPGA, we assume that by

scaling up the performance bottleneck component (i.e., making that module 2×

larger), FPGA will not be the performance bottleneck. For the Snort experiments

we run Snort in both IDS and IPS mode (with DPDK) on a single core and increase

the throughput until it begins to drop packets. Note that while we report the actual

number of cores required to run Pigasus, for Snort we extrapolate the single-core

experiment to determine the number of cores that we would need to keep up with

100Gbps. This considers that Snort’s throughput scales linearly with the number of

cores and, therefore, represents an ideal lower bound to the actual number of cores
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Figure 3.3: CDF of latency of Pigasus vs. Snort

needed to run Snort. Overall, we see that Snort in IDS mode requires 23 − 185×

more cores than Pigasus (65× on average), and in IPS mode requires 23 − 200×

more cores (72× on average).

Latency: Of course, in a practical IPS we care not only about throughput/provi-

sioning but also per-packet latency. We plot the distribution of per-packet latency

in Figure 3.3. We find that Pigasus yields improvement of almost an order of mag-

nitude in the median latency, and up to 3× improvement in the tail latency. As

a point of comparison, we also show the baseline performance of a simple FPGA

loopback measurement (i.e., without any processing) and the Pigasus fast-path for

packets that do not need further CPU processing. We find that the Pigasus fast-path

is very efficient and almost comparable to the baseline. We also find that Pigasus

end-to-end latency only deviates substantially from the fast-path for the tail. While

we hypothesized some improvements in latency, we were puzzled by the magnitude

of the improvement. Investigating why Snort was so much slower revealed that
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on average, while Pigasus reduced the latency for the Reassembly (by 6µs), Parser

(by 4µs), and the MSPM (by 3µs) as expected relative to software, the additional

reduction came from avoiding packet I/O overhead in software (around 5µs).

Power footprint: Figure 3.4 depicts the estimated power consumption required

to achieve 100Gbps throughput for three configurations: Snort in IDS mode, Snort

in IPS mode, and Pigasus in IPS mode. On the CPU side, we use Intel’s Running

Average Power Limit (RAPL) interface [48] to measure per-core power consumption

in steady-state. To verify its accuracy, we also measured the power utilization using

an electricity usage monitor [49] and found consistent results. On the FPGA side,

we use the Board Test System [41] (part of Intel’s FPGA Development Kit) to

measure power dissipation in the FPGA core and I/O shell. We observe that, across

all traces, Snort (in either mode) has a 13 − 59× higher power consumption than

Pigasus (34× on average). We further note that the reported wattages for Pigasus

represent a conservative estimate; while the total power consumption on the FPGA

side is 40W, the core fabric accounts for just 13W, and the remainder is used for

I/O (including Ethernet). Conversely, we only charge Snort for power consumed

during compute tasks, ignoring other overages (such as Network I/O).

Cost: To estimate the Total Cost of Ownership (TCO), we consider both the

capital investment and the power cost for each configuration. To estimate the capital

investment, we use the per-core pricing data for the AMD EPYC 7452 CPU (32-

core CPU with $68.75 per core)4. For Pigasus, we also incorporate the market price

of an Intel Stratix 10 MX FPGA [41] ($10K). Assuming that the number of cores

needed in practice is between the Zero Loss and Average in Figure 3.2, we estimate

that the capital cost of the CPU-only solution is between $7,922 and $25,045, while

4We found the per-core cost of Intel Xeon or i9 processor is within the similar range.
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Figure 3.4: Estimated wattage to achieve 100Gbps

the capital cost of Pigasus is between $10,189 and $10,344. To estimate the power

costs, we assume a lifetime of 3 years and electricity cost at $0.1334/kWh (average

electricity rate in the US [50]). The power cost of the CPU-only solution at 9W/core

is between $3,636 and $11,494, while the cost for Pigasus is between $227 and

$298. Then, combining the capital investment and the power cost, the TCO of the

CPU-only solution is between $11,558 and $36,539, while the TCO of Pigasus is

between $10,416 and $10,642, saving between $1,142 and $25,897. We note that

these estimates consider retail prices and do not account for other operational costs,

such as cooling and rack space, which we expect to favor Pigasus. Moreover, for

100K flows and 10K rules, we only use about half of an Intel Stratix 10 MX FPGA;

one may consider adapting the design to a smaller FPGA, further reducing the cost

of Pigasus.
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Resource breakdown: Table 3.1 shows the FPGA resources used by each com-

ponent of Pigasus when configuring it to support 100K flows and 10K rules. As

we can see, the end-to-end design takes less than half of our board. In particular,

the String Matcher and Flow Reassembler use 6MB BRAM, an order of magnitude

smaller than existing FPGA designs.

We note that after DSP optimizations5, Pigasus does not use any DSPs while

maintaining almost the same amount of ALM usage compared with our OSDI pa-

per [51]. In our initial implementation of MSPM, we replicated the Hyperscan’s

multiplication-based hashing algorithm using DSP blocks. While the DSP blocks

were not the resource bottleneck and the other Pigasus components were not using

them, this implementation was non-ideal, as it missed some optimization opportu-

nities: (1) utilizing the ‘shifting window’ nature of MSPM to remove unnecessary

multiplications by breaking 64B multiplication to per-byte multiplication; (2) im-

plementing the sparse and narrow multiplication using LUTs instead of DSPs. As

a result, all of the DSPs blocks were gone; the LUTs that were used to distribute

the data among a large number of DSPs were saved (about the same number as

those consumed by the new design). The saved DSP resources can be used by other

applications in a multi-tenant scenario in the future. The optimization also reduces

the routing pressure and thus improves the compilation time by almost 2×.

Recall that our original goal was to achieve 100Gbps supporting hundreds

of thousands of flows matching tens of thousands of rules on a single server with a

reasonable cost/resource footprint. The above results suggest that Pigasus indeed

achieves this goal (with ample headroom).

5Optimized by outside contributor Dr. Moein Khazraee.
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Module ALM BRAM (MB) eSRAM (MB)

Packet Buffer 507 (0.1%) 0 (0%) 5.91 (50.0%)
Flow Reassembler 20,847 (3.0%) 2.61 (15.6%) 0 (0%)

String Matcher 141,946 (20.3%) 3.36 (20.1%) 0 (0%)
DMA Engine 1,718 (0.3%) 0.32 (1.9%) 0 (0%)

Instrumentation 1,155 (0.2%) 0 (0%) 0 (0%)
Vendor IPs 39,899 (5.7%) 1.14 (6.8%) 0 (0%)

Miscellaneous 10,827 (1.54%) 0.76 (4.6%) 0 (0%)

Full Design 216,899 (30.9%) 8.20 (49.0%) 5.91 (50.0%)

Table 3.1: Resource breakdown. Percentages are relative to the total amount of
resources in a Stratix 10 MX FPGA.

3.3.3 Microbenchmarks and Sensitivity Analysis

In this section, we present Pigasus’ performance sensitivity to traffic characteristics.

We probe deeper into Pigasus’ performance under differing levels of malicious traffic.

We further characterize the performance impact of packet size.

Dependence on CPU offload: We construct semi-synthetic traffic traces by

mixing malicious flows extracted from mix-1 trace with innocent trace norm-2 in

different proportions.6 Figure 3.5(a) depicts the dependence of zero-loss throughput

on the fraction of malicious flows (in terms of relative packet count). We report

results for Pigasus (using both 1 and 16 cores) and Snort IPS (with 1 core). We

observe that, as long as the percentage of malicious traffic is less than 15%, Pigasus

is able to process packets at line-rate using a single CPU core. With 16 cores,

Pigasus can process packets at line-rate for up to 50% of malicious traffic. After

the 50% mark, performance begins to degrade gradually. We repeated the same

experiments disabling the software component of Pigasus and observed that the

throughput matches the 16-core experiment, suggesting that the hardware is the

bottleneck. More specifically, the MSPM’s rule reduction logic is stressed by the

6Note that not every packet in a malicious flow triggers a match.
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large number of potential rule matches.

Figure 3.5(b) depicts the number of cores required to achieve 100Gbps as a

function of the fraction of packets from malicious flows for up to 50%. Results for

Snort are extrapolated from the single-core throughput. Despite the performance

degradation observed in (a), Pigasus scales considerably better than Snort, requir-

ing two orders of magnitude fewer cores. We also note that, while the hardware

only becomes the bottleneck at an extreme fraction of malicious traffic, the design

can be made even more robust using two hardware pipelines (discussed further in

Section 3.3.4).

Dependence on packet size: We consider the impact of packet size on Pigasus’

performance stemming from the linked-list-based TCP Reassembler design. We

configure the Moongen packet-generator to generate fixed-sized synthetic packets,

and measure end-to-end, zero-loss throughput as we vary the packet size. Figure 3.6

illustrates this dependence in terms of both Gbps and millions of packets per second.

We observe that, for packets exceeding 500B (comparable to average packet sizes

on the Internet [52]), Pigasus is capable of processing at line-rate. (More generally,

Pigasus, by design, can sustain 100Gbps as long as the average packet size is greater

than 500B over a window of 87µs estimated based on buffer size.)

3.3.4 Future Outlook

Supporting 100Gbps with 100K flows and 10K rules requires only about half of

the resources in our FPGA. We now explore what we can do with the additional

capacity.

One option is to duplicate the existing processing pipeline (which runs at

100Gbps/25Mpps) each to serve a different subset of flows, increasing the through-
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put to 200Gbps, at the cost of creating additional copies of all the MSPM engines.

Another option is to increase the number of supported flows or rules. Figure 3.7

depicts the three-way tradeoff between the scalability of the number of rules, con-

current flows, and replicated hardware pipelines. The design with two pipelines

benefits from better throughput but has less room for storing rules or flows. There

is plenty of scaling headroom in the Pigasus FPGA frontend design for more rules

and flows. In Chapter 7, we will show how we easily explore the design flexibility.
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Chapter 4

FPGA-First Architecture

After introducing the context of our Pigasus artifact in Chapter 3, we now present

the key insights behind Pigasus. In particular, Chapters 4 (the current chapter), 5,

and 6 together demonstrate our first insight – tune for the common case, while

handling the uncommon case in resource-efficient ways. In this chapter, we present

the design decision made at the end-to-end system level – FPGA-first architecture,

where we tailor the design for common traffic to achieve both high-performance and

low resource consumption simultaneously. This chapter is organized as follows: we

first describe the FPGA-first architecture and why it should be used; after summa-

rizing the principles of splitting a system between FPGA and CPU, we evaluate the

idea and briefly discuss the new challenges this FPGA-first architecture introduces.

4.1 What is FPGA-First Architecture?

Traditionally, FPGA acceleration for streaming applications generates static designs

with fixed performance. Since these designs are over-provisioned for the worst-case

scenario, they are too resource-consuming to be mapped on a single FPGA in the
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Figure 4.1: Traditional FPGA-as-offload scheme

context of IDS/IPS. Therefore, most of the existing FPGA-accelerated IDS/IPS

work [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] follows what we call an FPGA-

as-offload scheme, where the CPU is still the primary processing unit, and the FPGA

works as the offloader to CPU, accelerating a single task in an input-independent

manner. Figure 4.1 illustrates an example where the MSPM task is accelerated by

the FPGA offloader. The traffic goes to the CPU first through the NIC. The CPU

performs parsing, TCP reassembly, and then offloads the MSPM task to the FPGA

through PCIe. Once the packets are processed by the FPGA, they are sent back

to the CPU for further processing. Unfortunately, as we will show in Section 4.2,

accelerating a single task cannot improve the end-to-end system performance by an

order of magnitude.

FPGA-first architecture reverses the traditional roles of FPGA and CPU.

FPGA is now the primary compute platform – performing the majority of the work

– and the CPU is secondary, operating only as needed. More specifically, the FPGA

should have direct access to the input data and process the common cases, leaving
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Figure 4.2: FPGA-first architecture (yellow dashed line represents the common
path; green dashed line represents the uncommon path)

the uncommon cases to the CPU, which now works as a complexity offloader. Fig-

ure 4.2 depicts FPGA-first architecture in the context of IDS/IPS, where all packets

and all rules (common case) are processed in-line by the highly parallel FPGA dat-

apath while the suspicious packets with a few partially matched rules (uncommon

case) are sent to the CPU for full evaluation.

A key difference between FPGA-first architecture and other FPGA in-line

processing [1, 30] is that in FPGA-first architecture, FPGA itself is also the control

unit. In most existing FPGA in-line processing work, the CPU is still the control

unit that manages the flow states, steers traffic, and configures the ‘dumb’ FPGA

datapath. Since complex stateful operations like TCP reassembly have to be done

on the CPU, this model fundamentally limits the use of FPGAs – it sits in-line but

only works on simple and input-independent tasks such as checking IP addresses

or manipulating headers. In contrast, in the FPGA-first architecture, the FPGA

itself is responsible for managing the flow states and dynamically steering traffic

among streaming kernels, while the CPU is only responsible for handling the rarely

triggered complex corner cases in a stateless fashion.
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4.2 Why FPGA-First Architecture?

The FPGA-first architecture can balance the two conflicting requirements – high

performance and low resource utilization – by accelerating the common case en-

tirely on FPGA and offloading the uncommon case to CPU. Such balance could not

be achieved by either fixed-performance worst-case-oriented design or single-task

offloading on FPGA.

A straightforward way of handling input-dependent behaviors is to provision

for the worst case, such that a single design can meet the requirements under all cir-

cumstances. For instance, one may want to map all of the tasks to FPGA, disposing

the need for CPUs. Nevertheless, this worst-case-oriented design is infeasible, as it

provides few performance benefits compared with the common-case-tailored design

at a high resource cost in terms of memory.

For example, as we will see in Chapter 6, the Full Match stage only interacts

with ≈5% of packets in Pigasus. Hence, Full Match stage is not a performance

bottleneck for the majority of packets. Furthermore, regular expression parsing is

a very mature research area, and yet state-of-the-art hardware algorithms do not

reach our performance and memory demands for Pigasus. We estimate that Grape-

fruit [42], a state-of-the-art regular expression engine for FPGAs, would require

8MB of BRAM to statically map all the regular expressions from our ruleset on the

FPGA, and yet would still only keep up with a few Gbps of traffic. Hence, we would

likely need multiple replicas of the Grapefruit design – at least 24MB of BRAM – to

keep up with the average of 5Gbps of traffic that reach the Full Matcher. Therefore,

offloading regular expressions would exhaust our memory budget for little gain, in

that the majority of packets will never execute the Full Matcher anyway.

On the other hand, as the worst-case-oriented designs are too expensive to

41



be practical, most FPGA-accelerated IDS/IPS work focuses on creating accelerators

for a single task [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Unfortunately, a

basic analysis based on Amdahl’s law reveals why this approach fundamentally fails

in achieving high performance.

Figure 4.3 illustrates the fraction of CPU time spent on each task in Snort

3.0: Parsing, Reassembly, Multi-String Pattern Match, Full Match, and other tasks.

As we can see, no single task dominates CPU time – at most, MSPM consumes

46% of CPU time for the Mixed-4 trace. Note that MSPM used to be the per-

formance bottleneck before the appearance of Hyperscan pattern-matching library.

Different from the original state-machine-based Aho-Corasick algorithm [31], Hyper-

scan adopts a SIMD-accelerated ShiftOR filter + Hash Table filter solution, which

significantly improves the MSPM performance, yielding 8× end-to-end speedup on

modern CPUs [2]. Because of the significant improvement of Hyperscan, there is

little opportunity to improve the end-to-end speed by just accelerating a single task.

Using Amdahl’s law, we can see that even if MSPM were offloaded to an imaginary,

infinitely-fast accelerator, throughput would increase by only 85%, far from our two

orders of magnitude target.

The key lessons are (a) we should identify and accelerate the common case

at end-to-end system level, and (b) we should avoid worst-case-oriented design when

the performance gain cannot justify the cost of over-provisioning resources.

4.3 Principles of FPGA/CPU Splitting

Now, the natural question is which tasks should remain on the CPU? The general

principles are (a) the task should be less performance-critical, i.e., it takes a short

time to run on CPU and/or is triggered infrequently, (b) the task should be at the
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Figure 4.3: Fraction of CPU time spent performing each task in Snort 3.0 with
Hyperscan.

end of the processing pipeline to avoid multiple FPGA-CPU data movements, and

(c) the task should be expensive to implement on FPGA.

Following the above principles, we identify Full Match to be a good candidate

task. Full Match is only triggered by ≈5% of packets with ≈2.6 rules/packet, which

is clearly the uncommon case. As each packet-rule pair is processed sequentially,

it also fits the CPU’s von Neumann architecture. Furthermore, Full Match is the

last stage, so there will be no multiple round-trips between FPGA and CPU. Most

importantly, as we already discussed in Section 4.2, it is expensive to implement it

on the FPGA. That is why we decided to split the end-to-end system at the Full

Match stage.
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Figure 4.4: Number of cores required to process each trace at 100Gbps for different
designs.

4.4 Evaluation

Setup: To evaluate the effectiveness of FPGA-first architecture, we conduct two

experiments. In the first experiment, we compare the performance of the single-

task offload – ‘FPGA-as-offload’ – with our FPGA-first architecture. In the second

experiment, we compare the cost of the worst-case-oriented design – ‘FPGA-only’

– with the FPGA-first architecture. We use the same setup as described in Sec-

tion 3.3.1. We also plot the ‘CPU-only’ (Snort baseline) as a reference, which was

discussed in Section 3.3.2.

Comparing performance of FPGA-as-offload and FPGA-first: Figure 4.4

reports the number of cores needed to reach 100Gbps for different traces. The

CPU-only bar refers to Snort IPS, and the FPGA-first bar refers to Pigasus IPS.
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Figure 4.5: Estimated total cost of ownership (TCO) of different designs to reach
100Gbps

The FPGA-as-offload bar shows the extrapolated number of cores assuming max

single-task speedup. Specifically, we assume the performance bottleneck for each

trace shown in Figure 4.3 can be accelerated by an infinitely-fast implementation

without any FPGA-CPU communication overhead. As we can see in Figure 4.4,

even with this generous assumption, the FPGA-as-offload approach still has a huge

gap to reach 100Gbps with a single server, using 9 − 124× more cores than our

FPGA-first approach.

Comparing cost of FPGA-only and FPGA-first: The worst-case-oriented

design (‘FPGA-only’) assumes everything can be implemented on FPGAs, which

can theoretically match the performance of FPGA-first without using any CPU

cores. Figure 4.5 plots the estimated total cost of ownership (TCO) of CPU-only,
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FPGA-only, and FPGA-first. The TCO calculation follows the same steps as in

Section 3.3.2. The FPGA-only is more complicated. Despite the design complexity,

we assume the entire Full Match logic can be implemented on FPGA with 8MB

BRAM running at 1.6Gbps based on our estimation of Grapefruit design. For each

of the traces, depending on the different performance requirements of Full Match,

we may need different numbers of FPGA Full Match instances. If the total resources

exceed the board capacity, we assume we can allocate multiple FPGAs.

From Figure 4.5, we can see that as expected, FPGA-first costs much less

than FPGA-only, on average saving $31,900. The FPGA-only approach provisions

for the worst case, so the cost does not change between Zero Loss and Average.

Some traces (i.e., Mix-3, Mix-4) invoke the Full Matcher more frequently (up to

15.9% of traffic), and hence require more FPGA Full Match instances to keep up,

resulting in significant cost increase. For other traces like Norm-1 and Norm-2,

where less than 1% of traffic reach the Full Match stage, the FPGA Full Match

stage can coexist with the rest of the Pigasus pipeline on one FPGA, which explains

the same TCO of the FPGA-only and FPGA-first. However, given that the rest of

the Pigasus pipeline only occupies half of the board in FPGA-first, one may want

to map Pigasus to a middle-range FPGA, with half of the $10,000 price, or double

the performance with the extra space. Either way would be more cost-effective than

the FPGA-only approach.

Discussion: In summary, compared with FPGA-as-offload, the FPGA-first archi-

tecture makes 100× speedup possible by accelerating the majority of the processing.

Compared with FPGA-only, the FPGA-first architecture chooses to use a few CPUs

to handle uncommon cases, saving expensive and scarce FPGA resources. However,

this system-level design decision introduces new challenges. We now need to imple-
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ment most of the tasks on FPGAs and run them at 100Gbps. This is impossible if we

reuse existing FPGA-based TCP reassembly and MSPM designs due to high BRAM

consumption. In the next two chapters, Chapter 5 and Chapter 6, we will show how

we achieve the target performance with minimal resources for TCP reassembly and

MSPM, respectively.
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Chapter 5

Fast-Slow Path SRAM-Based

TCP Reassembly

A natural consequence of FPGA-first architecture (described in Chapter 4) is that

we now need to support TCP Reassembly on FPGA. In this chapter, we first describe

the requirements of TCP Reassembly and the design space. We then present our

fast-slow path SRAM-based design before evaluating it.

5.1 TCP Reassembly Requirements

Reassembly refers to the process of reconstructing a TCP bytestream in the presence

of packet fragmentation, loss, and out-of-order delivery. Reassembly is necessary for

IDS/IPS because the MSPM and Full Matcher must detect patterns (strings or

regular expressions) that may span across more than one packet. Figure 5.1 depicts

an illustrative example where the string pattern ‘Attack’ spans across the TCP

packet boundary. TCP Reassembly can reassemble Packet 1 and Packet 2 – even

when they arrive out of order – such that the MSPM and Full Matcher can still
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Figure 5.1: Illustrative example of TCP Reassembly

detect the string pattern ‘Attack.’ However, without TCP Reassembly, the out-

of-order (OOO) packets where Packet 2 (with ‘tack’) comes before Packet 1 (with

‘At’) will successfully bypass IDS/IPS without getting detected. As a consequence,

they will get reassembled at the end-host machine and the attack will be triggered.

This was a typical evading technique before TCP Reassembly becomes an essential

component of IDS/IPS [53].

Note that our goal is not to implement a full TCP endpoint, and hence we

are not responsible, e.g., for producing ACKs; the IDS/IPS is a passive observer

of traffic between two existing endpoints, merely reordering the packets it observes

for analysis. The key objective of our Reassembler is to perform this reordering

for hundreds of thousands of flows while operating at 100Gbps, within the memory

limitations of our FPGA.

5.2 Design Space for TCP Reassembly

Hardware design often favors data structures that are fixed-length, constant-time,

and generally deterministic, and most TCP Reassembly designs follow suit. For

instance, Yuan et al. [29] allocates a fixed 64KB packet buffer in DRAM and uses

7 pairs of pointers to track OOO state for each flow; similarly, Sidler et al. [28]

maps a fixed-sized ‘segment array’ in DRAM to track per-flow state. By using
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static buffers, these designs can achieve nearly constant-time insertion of out-of-

order packets into memory; furthermore, the memory consumed by any individual

flow is fixed, so freeing space is also deterministic. In addition, each flow is bounded

in its resource consumption, and so a highly out-of-order flow cannot take over the

available address space, starving other flows.

The above designs have been working well for 1Gbps or 10Gbps line-rate

network systems. However, as the line-rate reaches 100Gbps and keeps increasing

rapidly, DRAM-based packet buffering is struggling to keep up. A 100Gbps net-

work system needs to guarantee simultaneous 100Gbps write and 100Gbps read

constantly. That is 200Gbps, which is exactly the theoretical peak bandwidth of a

modern DDR4 3200 component (our board has a slower DRAM component, DDR4

2666). Considering that the effective bandwidth of DRAM is always lower than the

peak bandwidth, we need a different approach to buffer the packets.

One potential approach is to keep the same data structures but develop a logi-

cal single-address-space memory with guaranteed bi-directional 200Gbps bandwidth.

This is possible if we aggregate multiple channels (each channel has its own address

spaces) of DRAMs or even High Bandwidth Memory (HBM) for enough bandwidth

and use SRAM buffers in front to deliver rigid 200Gbps read/write bandwidth to

address the non-determinism of DRAM technology. However, multi-channel DRAM

and HBM may not be available to many FPGA boards, and it is very complicated to

balance between read/write accesses, different channels, and SRAM/DRAM while

delivering guaranteed performance.

We instead take the SRAM approach to leverage its high and deterministic

bandwidth. Unfortunately, simply adopting the statically allocated fixed-size buffer

approach does not work for SRAM as it both wastes memory and limits out-of-order
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flows. For example, allocating 64KB for each and every flow [28] would require

64MB to support 1K OOO flows (typically 1% of the total 100K flows [54]) – an

order of magnitude bigger than our FPGA on-chip memory capacity. On the other

hand, flows that do suffer a burst of out-of-order packets (perhaps due to network

loss) that exceeds the 64KB capacity cannot be served, even if there is memory

available. Therefore, we need a more efficient way to utilize the limited on-chip

memory resources.

For software developers, the obvious response to these challenges is to use

a more memory-dense data structure such as a linked list, where each arriving

segment is allocated on-demand and inserted into the list in order. Because memory

is allocated on demand, no memory is wasted, and those flows which need more

capacity can consume more as available. In our empirical traces, 0.3% of packets

arrive out-of-order, with ‘holes’ in the TCP bytestream typically filled in after 3

packet arrivals from the same flow. In a linked-list-based design, this means that on

average an out-of-order flow consumes 5K bytes at most.

From a hardware perspective, however, a linked list is an unorthodox choice:

pipeline parallelism depends on each stage of the pipeline taking a fixed amount of

time. Since linked lists have variable insertion times, depending on how far into

the list a segment must be inserted, linked lists can lead to pipeline stalls which

result in non-work-conserving behavior upstream from the slow pipeline stage, and

hence overall poor throughput. We find that by carefully designing the reassembly

pipeline as a combination of a fast path (only handling the common-case in-order

packets) and a slow path (that handles the uncommon-case out-of-order packets),

one can achieve the best of both worlds.
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Figure 5.2: Reassembly overview

5.3 Fast-Slow Path SRAM-Based Design

In this section, we describe our fast-slow path SRAM-based design. We first give an

overview of the design and show how packets trigger different operations. We then

describe in detail our three execution engines and flow table implementation.

5.3.1 Overview

Figure 5.2 presents the overview of our Reassembly design. When a packet enters

Reassembly, it will first fetch an unused ‘packet ID’ from the Free List, which tracks

the free slots in the Packet Buffer. Then, the Initial Processing unit will store the

packet to the 2KB (bigger than the 1500B Maximum Transmission Unit of a packet)

fixed slot indexed by the ‘packet ID’ in the Packet Buffer implemented in eSRAM1.

Note that the Packet Buffer is shared by all flows. At the same time, the extracted

metadata2 will be sent to the Flow Table. The Flow Table and OOO Linked List

(described more thoroughly in Section 5.3.3 and Section 5.3.2) will send the sorted

packet metadata to the Data Mover, which then fetches the actual packet from the

1We also provide a BRAM-variant design in case the target FPGA board does not have eSRAM.
2Metadata extracts packet information for easier processing, including 5-tuple, sequence number,

packet ID, etc. Each metadata is about 200 bits that can be moved around in a single cycle.
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Figure 5.3: Simplified examples of reassembly functionality

Packet Buffer using ‘packet ID’ and releases the ‘packet ID’ to the Free List for

recycling while forwarding the packet to the MSPM stage. This decouples per-flit3

data movement from the per-packet (or per-metadata) processing, giving more cycle

budget to the core reassembly logic, i.e. Flow Table, OOO Linked List.

Figure 5.3 illustrates how we handle scenarios of different packet orders. The

Flow Table is a Hash Table implemented in BRAM, mapping the classic flow 5-tuple

identifier to a table containing (a) the next expected sequence number for an in-order

packet, and (b) the pointer to the header node for a linked-list. Note that the OOO

Linked List is implemented in a separate BRAM, and its space is shared dynamically

by all of the flows. A linked-list node only stores the metadata (including ‘packet

ID’) of an out-of-order packet.

For example, in Figure 5.3, flow 1 is an out-of-order flow that has the pointer

to the linked-listed nodes and is waiting for the packet with sequence number ‘100.’

However, the incoming packet’s sequence range is 300-400, which will invoke linked-

list traversal before getting inserted. An in-order flow, such as flow 2, does not

3Flit is defined as the data unit processed by the FPGA datapath at one cycle. Flit size depends
on the design. In Pigasus, one flit is 512-bit or 64B. A packet may have multiple flits and hence
may take multiple cycles to move around.
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consume any storage capacity of the OOO Linked List and Packet Buffer. If the

first ‘hole’ of an out-of-order flow is filled (e.g. flow 3), then the linked-list node will

be released and the next expected sequence number will proceed to the last released

packet(e.g., 500 for flow 3). The released space of the OOO Linked List can be

dynamically used by new OOO packets by using the free list again. If the released

node is the last in the linked list, then this flow becomes in order.

5.3.2 Three Execution Engines

To avoid pipeline stalls due to variable-time packet insertions, Pigasus uses three

execution engines to manage the reassembly state, each of which handles a different

class of incoming packet metadata. The Fast Path processes in-order packets for

established flows; the Insertion Engine handles SYN packets for new flows; and the

OOO Engine handles OOO packets for existing flows. Because Pigasus is imple-

mented in hardware, these engines can all run simultaneously (on different packet

metadata) without stalling each other, but must be careful not to conflict in ac-

cessing the shared state in the Reassembly Flow Table. The flowchart in Figure 5.4

describes the sequence of steps that occur when packet metadata arrives at the

Reassembler.

Fast path: Upon arrival from the parser, each packet header is picked up by the

Fast Path, which looks up the flow’s entry in the Flow Table. If no entry exists for

that flow, the Fast Path pushes the packet metadata onto a queue for the Insertion

Engine and moves on to the next packet. If there exists an entry for that flow, but

(a) the packet metadata does not match the next expected sequence number in the

Flow Table, or (b) the pointer in the Flow Table is not null, the Fast Path pushes the

packet metadata on to a queue for the OOO Engine. Finally, if the packet metadata
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Figure 5.4: Reassembly Pipeline

does match the next expected sequence number in the flow, the Fast Path updates

the expected sequence number in the Flow Table to the sequence number for the

subsequent packet in the flow and pushes the current packet out towards the MSPM.

Every task on the Fast Path runs in constant time, and so throughput is guaranteed

through this engine to be 25 Million packets-per-second, which amounts to at least

100Gbps, so long as the average packet size is greater than 500B (Internet traces

typically have an average packet size of more than 800B [52]).

OOO engine: The OOO Engine does not run in constant time, instead dequeuing

packets provided for it from the Fast Path as it finishes operating over the previous

packet. For each dequeued packet, the OOO engine allocates a new node repre-

senting the packet’s starting and ending sequence numbers, traverses the linked list

for that flow, and inserts the newly allocated node at the appropriate location. If

the packet fills the first sequence number ‘hole’ in the linked-list, then the OOO

Engine removes the now-in-order packet headers from the list, releases them to the

MSPM, and also updates the Flow Table entry with the new linked-list head and

next expected sequence number. If all of the linked-list nodes are released, then this

flow becomes in-order, and the pointer field of the entry becomes null.
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Insertion engine: The Insertion Engine inserts new flow entries into the Flow

Table; like the OOO Engine, this path too can take variable time. We discuss the

Insertion Engine in more detail in the next subsection.

Overall, allocating memory on-demand avoids memory wastage and enables

Pigasus to better serve OOO flows that do have a higher memory requirement.

Additionally, bifurcating the reassembly pipeline into fast and slow paths prevents

out-of-order flows – which require non-deterministic amounts of time to be served

in our design – from impacting the performance of in-order flows, which represent

the common case.

5.3.3 Flow Table Implementation

While the Fast Path, Insertion Engine, and OOO Engine all operate simultane-

ously, they must synchronize over shared flow states (for instance, to keep the next

expected sequence number for each flow consistent). We briefly discuss the imple-

mentation of our Flow Table that provides fast and safe concurrent access to these

three engines.

The flow table design borrows a key data structure from FlowBlaze [55]:

an FPGA-based Hash Table that employs de-amortized cuckoo hashing [56, 57].

We illustrate this data structure in Figure 5.5. The design provides high memory

density (up to 97% occupancy using 4 or more sub-tables [55, 57, 56]), and worst-

case constant-time reads, writes, and deletions for existing entries. It also guarantees

that, for an Insertion Queue whose size is logarithmic in the number of flow table

entries (in practice, a small value), the queue will not overflow [56]. We implement

the Hash Table using dual-port BRAM, and the Insertion Queue using a parallel

shift-register (capable of storing 8 elements).
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The key to maintaining the Hash Table’s de-amortization property is the

Insertion Engine, which is responsible for inserting: (a) new flows, and (b) flows

that were previously evicted from the Hash Table during a ‘cuckoo’ step. Effectively,

the Insertion Engine dequeues an element from the front of the Insertion Queue and

attempts to insert it into the Hash Table. If at least one of the 4 corresponding Hash

Table entries is unoccupied, it simply updates the flow table and proceeds to the

next queued element; otherwise, it evicts one of the 4 flow table entries at random,

pushes the evicted entry onto the queue, and inserts the dequeued element in its

place.

To guarantee conflict-free flow table access, we have the following prioriti-

zation of operations to the table. First, note that the Fast Path and OOO Engine

never conflict over the same entry – the flow is either in order, or it is not. The

Insertion Engine can conflict with both the Fast Path and OOO Engine, as it may

try to ‘cuckoo’ entries. Hence, we enforce the following priorities: (1) Fast Path

> Insertion Engine (to ensure deterministic performance on the Fast Path), and

(2) Insertion Engine > OOO Engine (to ensure that the queue drains and since,
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empirically, the OOO path is underutilized). Since our BRAM is dual-ported, we

allow the Fast Path direct access to the Flow Table, while accesses originating from

the OOO Engine or Insertion Engine are managed by an arbiter that enforces the

aforementioned priority scheme.

5.4 Evaluation

Setup: We evaluate our fast-slow path SRAM-based TCP Reassembly design from

two aspects. First, we conduct a limit study where we stress our design using highly

out-of-order packets, as we observed experimentally that the slow path is mostly

idle when running over our empirical traces. Second, we compare the memory

consumption of our design and the static fixed-size buffer design.

Limit study of out-of-order degree: We characterize the OOO degree using

randomly generated synthetic packet traces controlled by two independent variables:
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the packet loss probability (lp) [58] and the recovery distance (rd).4 Figure 5.6 de-

picts the impact of these parameters on Pigasus’ end-to-end, zero-loss throughput.

We sweep the loss probability from 0.3% to 30%, and the recovery distance from

3 to 100. At typical values (lp = 0.3%, rd = 3), Pigasus achieves a throughput

of 100Gbps, which degrades gradually with increasing packet loss and recovery dis-

tance. It is worthwhile to note that, at typical packet loss rates, the Reassembler

can handle around 50 OOO packet arrivals without any degradation in end-to-end

throughput.

Memory consumption comparison with static buffer design: We plot the

packet buffer memory consumption of different designs when supporting different

numbers of ‘Active OOO Flows’ in Figure 5.7. ‘Active OOO Flows’ refers to the

number of OOO flows that are active at the same time. This number determines the

4Recovery distance is defined as the number of same-flow packets that arrive before a hole created
by a lost packet is filled. In Pigasus, this value determines the amount of work (in cycles) that the
OOO Engine must perform for each packet that arrives out-of-order.
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minimal packet buffer size before it overflows. If we follow the ‘Static Buffer’ design,

we will need 64KB for each of the OOO flows, exceeding the 30MB on-chip SRAM

(BRAM + eSRAM) capacity of our board with only 400 active OOO flows. Since

our target is 100K active flows, and about 1% of the active flows are OOO, ‘Static

Buffer’ obviously does not meet our requirement. Our design essentially allocates

the buffer space on-demand, with on average 6KB for each active OOO flow based

on our profile of the empirical traces. Therefore, we can support 100K flows (1K

OOO active flows) only using about 6MB of eSRAM.
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Chapter 6

Hierarchical Pattern Matching

Checking tens of thousands of string patterns against a 100Gbps bytestream makes

the Multi-String Pattern Match (MSPM) module by far the most operation-intensive

and performance-critical component in Pigasus. This chapter presents how we apply

our common-case tuning insight to MSPM, yielding 100Gbps performance, only

using 3.3MB of BRAM. Specifically, we use compact frontend filters to scan the

common case (all packets with all rules), which allows us to use fewer replications

of expensive backend filters to scan the uncommon case (suspicious packets with

partially matched rules). The chapter is organized as follows: we first describe the

role of MSPM and discuss why prior work does not work for us; then, we present

our hierarchical MSPM design and evaluation.

6.1 Role of Multi-String Pattern Matching

As explained in Section 2.1, a Snort rule comprises three classes of patterns: a

header match, a set of exact match strings, and a set of regular expressions. A

packet triggers the rule iff all patterns are identified.
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To avoid checking every single pattern for every index and every packet,

rulesets are designed for a two-step matching process. In Snort, the MSPM is

responsible for checking header matches and one, highly-selective exact match string,

called the fast pattern. Only packets which match both the header and the fast

pattern are forwarded to the Full Match stage, which checks regular expressions

and any secondary exact match strings (referred to as non-fast string patterns).

Pigasus’ MSPM checks for fast patterns, headers, and non-fast patterns, reducing

the load of Full Match on CPU.

6.2 Multi-String Pattern Matching Design Landscape

To the best of our knowledge, there are no other hardware or software projects

reporting multi-string matching of tens of thousands of strings at 100Gbps. In this

section, we describe the classic state-machine-based FPGA design and the Hash

Table-based software design – Hyperscan – which inspires our design.

State-machine-based FPGA design: Classic FPGA-based designs adopt a

state-machine approach, more specifically, Deterministic Finite Automaton (DFA) [59,

60] or Nondeterministic Finite Automaton (NFA) [19]. In these designs, the multiple

string patterns are constructed as a state-machine; each byte1 of the input stream

will invoke a state transition. A rule will be matched when the input bytestream

exercises a certain state transition path and reaches the final state of the rule. Mul-

tiple rules can be matched simultaneously, as rules with the same substrings may

share the same set of states. A nice property of this approach is that it is input-

independent – the system can always accept a fixed number of bytes per cycle, no

1Some work supports multi-striding – checking multiple bytes per cycle at the cost of decreased
clock frequency and exponential growth of resource utilization [19, 61].

62



matter how many rules these bytes trigger. In other words, the performance does

not depend on the content of the bytes.

However, state-machine-based designs are very memory/logic-consuming, and

hence only work for up to a few hundreds of rules. The state-of-the-art NFA-based

(already cheaper than its DFA counterpart) work [19] would require 23MB of BRAM

to represent the exact match search strings alone (ignoring the additional header

matches), which again exceeds the capacity of our board.

Snort 3.0 + hyperscan software design: In Snort 3.0, the MSPM is imple-

mented using Intel’s Hyperscan, illustrated in Figure 6.1.

Packets are first checked for their header match. Across all 10K rules, there

are only ≈400 unique header match values. Rules which share the same header

match fields are said to belong to the same port group. The port group module

outputs a set of port group IDs which the packet matches; this output set is never

empty, because some rules wildcard their header match and hence match all packets.

An average packet matches 2 port groups.

Packets are then checked for their fast pattern string match. For each port

group, there exists a string matcher which checks fast patterns for all rules within

that port group. Snort must check every string matcher for each port group the

packet matches.

Within the string matcher, Snort must iterate over every index of the pay-

load, checking whether it matches any of the fast patterns in the port group. Rather

than using a state machine to do this, Hyperscan uses a collection of Hash Tables.

For each possible fast pattern length2 a Hash Table is instantiated containing the

fast patterns of that length. Hyperscan then performs an exact-match lookup for

2Up to 8 bytes – longer fast patterns are truncated.
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Module is evaluated sequentially.

all substrings at each index, looking up whether or not the substring is in the Hash

Table – potentially (8× l) lookups for a packet of length l.

To reduce the number of expensive sequential lookups, each string matcher

contains a SIMD-optimized Shift-Or filter [62] prior to the Hash Table; this filter

outputs either a ‘0’ or ‘1’ for every byte index of the packet, indicating whether or

not that index matches any fast pattern in the Hash Tables; indices which result in

a ‘0’ output from the Shift-Or stage need not be checked. The leverage of SIMD

instructions contributes most to the substantial speedup over the state machine

approach.

The string matcher – combining Shift-Or and Hash Tables – then outputs

a set of rules which the packet matched both in terms of header and fast pattern;

together, the packet and the potential rule matches are passed to the full matcher.

However, for most packets, this stage outputs the empty set and the packet bypasses

the full match stage entirely.

6.3 Hierarchical Multi-String Pattern Matching

A straightforward port of the Snort 3.0 MSPM engines and data structures onto the

FPGA consumes 785KB of memory and forwards at a rate of 3.2Gbps. Taking ad-
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vantage of the high degree of parallelism offered by the FPGA, one could, in theory,

scale to 100Gbps via data parallelism, i.e., replicating this 32 times. Unfortunately,

doing so would require 25MB of BRAM. We now describe how Pigasus re-architects

the Hyperscan algorithm to achieve this high degree of parallelism within available

resources. Since this results in leftover memory, we can then extend Pigasus’ MSPM

to scan for non-fast string patterns as well.

As shown in Figure 6.2, Pigasus flips the order of Hyperscan’s MSPM, start-

ing with string matching before moving on to header matching (port grouping).
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6.3.1 Fast Pattern String Matching (FPSM)

To perform string matching, Pigasus (like Hyperscan) also has a filtering stage in

which packets traverse two parallel filters: a shift-or (borrowed from Hyperscan) and

a set of per-fast-pattern-length Hash Tables. We check the Shift-Or and (32 × 8)

Hash Tables in parallel. Hash Tables only store 1-bit values indicating whether a

given (index, length) tuple results in a match – but they do not store the 16-bit

rule ID to save memory consumption. The rule ID can be inferred from the (index,

length) tuple in the end of this FPSM stage, as we will discuss later in this section.

The output from the filters is ANDed together, reducing false positives from either

filter alone by 5×.

The Shift-Or and 1-bit Hash Table3 consume only 65KB and 25KB respec-

tively, thus they are relatively cheap to replicate 32× over in order to scale to

100Gbps. In theory, these filters can generate (32 × 8) matches per cycle (i.e., 8

matches per filter); however, in the common case, most packets and most indices do

not match any rules, and therefore require no further processing.4 This gives us the

opportunity to make subsequent pipeline stages narrower.

We design a ‘Rule Reduction’ module that selects non-zero rule matches from

the filter’s 256-bit wide vector output and narrows it down to 8 values. As shown

in Figure 6.3, the Rule Reduction logic is a binary tree of arbiters. However, we

observed empirically that some traces may generate a burst of rule matches, making

the Rule Reduction logic the performance bottleneck as each of the arbiters can only

serve one valid input at one time. Further investigation reveals that most of the

rules are redundant spatially (same rule generated across different byte positions)

3Subtly, this is not a true Bloom filter [63, 64] because we only perform one hash per input;
implementing multiple hashes increases resource utilization and complexity, we find, with little gain.

4Note that our filters never produce false negatives.
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Figure 6.3: Rule reduction logic

and temporally (same rule generated across different cycles). We add a small cache

(one entry) in front of the arbiter storing the last rule to reduce the load temporally.

The adjacent rule reduction units also merge their outputs if they are the same to

reduce the load spatially. Finally, we insert FIFOs between each reduction unit to

provide necessary elasticity. These shallow (32 or 64 depth) FIFOs are implemented

in LUTRAMs without wasting BRAMs, as BRAMs have minimal depth of 512.

After Rule Reduction, we only need to create 8 replicas of the 17KB Rule

Table. Using the (index, length) tuple that resulted in a match in the FPSM stage,

we look up the corresponding rule ID in the Rule Table. If a packet does not trigger

any rules, then it will be forwarded to Ethernet without entering the next filter. As

we will show in Section 6.4, with only 1.4MB BRAM consumption, this stage is able

to filter out 45% of packets and, more importantly, reduce the rule matching work

from 10K rules-per-packet to 3.9 rules-per-packet for the following stages.

Applying this filter first allows us to use fewer replicas of subsequent data

structures (which are larger and more expensive), since most bytestream indices

have already been filtered out by the string matcher. This enables high (effective)
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parallelism with a lower memory overhead.

6.3.2 Header Matching (HM)

In this stage, we use the packet header data to determine whether the matches pro-

duced by the previous (FPSM) stage are consistent with the corresponding rule’s

Port Group. Though at this point we only need to check 8 rules simultaneously, if

not designed carefully, the header matching logic could also be a memory or perfor-

mance bottleneck. The challenges come from the variety of matching scenarios. For

instance, a rule can belong to a variable number of Port Groups; each Port Group

can have a single port value, or a variable number of port ranges, or a variable size

list. We address the problem using a combination of specialization and reasonable

worst-case allocation to achieve input-independent performance with only 68KB for

each rule check unit.

Figure 6.4 illustrates our header matching design. Each Rule Unit matches

the packet’s (protocol, source port, destination port) with one rule ID. To catch up

with the hit rate of the previous FPSM filter stage, we need to replicate the Rule Unit

8 times. Within each Rule Unit, the rule ID is used to index the Rule2PG table

which returns up to 4 PortGroup IDs since one rule can belong to at most 4 Port

Groups. These PortGroup IDs are used to select the relevant PG Unit. Inside each

PG Unit, the PG Action returns an action – looking up a particular table. Here,

we specialize different cases (e.g., single port, ranges of ports, etc.) into separate

tables with different sizes and different types of memory (e.g., the Range and List

tables are very shallow, hence we map them to LUTRAM to avoid wasting BRAM

space). Moreover, we treat the HTTP Port Group specially, as it is the only case

that contains about 100 ports. After specialization, then it is reasonable to allocate
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for worst case to make the design fully pipelined, since the worst case now becomes

cheap enough. For example, the rest of the Port Groups only have up to 11 ports in

List and up to 4 different Ranges. In the end, all of the parallel table lookup results

are merged to generate the final match result.

Our initial design of the MSPM stopped here (at the Traffic Manager 2 stage

in Figure 6.2), aiming merely to reproduce Snort’s functionality, which only scans

for fast patterns and headers. Packets which matched the fast pattern and header

on at least one rule were sent to the CPU for processing, while packets which did

not produce any matches at either the FPSM or Header Matching stage were simply

streamed to the output interface.

This stage reduces the packet percentage from 45% to 7% with 3.2 rules-per-

packet using only 0.5MB of memory. Given that this amounted to a fraction of our

resource budget for the MSPM, we asked ourselves: can we do more?

6.3.3 Non-Fast Pattern String Matching (NFPSM)

Pigasus further filters down the packets and rules destined for the CPU to only 4.6%

of packets, with just 2.6 rules/packet (on average), by additionally searching for all

string matches within a rule on the board. Note that, on average, only 7% of packets
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reach the Non-Fast Pattern Matcher, and, by this point, we know which rules (on

average 3.2 of them) the packet might match on. Näıvely, one might iteratively

search for each string in the ≈ 3.2 rules, but because each packet has a variable

number of rules and each rule has a variable number of non-fast string patterns

(between 1 and 32) to check, this approach would likely lead to low throughput

and/or pipeline stalls.

Instead, Pigasus once again uses a set of Hash Tables (like in the FPSM)

to search for all strings simultaneously. It then creates a compact, bloom-filter-

like representation (‘fingerprint’) of the matched strings as shown in Figure 6.5. To

compute the fingerprint, we first represent the set of (index, length) tuples generated

by the 8 NFPSM Hash Tables as a 16-bit vector by setting bit[index mod 16] to

‘1’ for each length bucket. Next, for each bucket, all of the 16-bit vectors generated

for a given packet are ORed together to create a 16-bit ‘sub-fingerprint’ for that

bucket. Finally, these sub-fingerprints are concatenated into a 128-bit fingerprint

representing the entire packet.

The NFPSM can now look up a corresponding fingerprint – generated in the

same way – for each of the ≈ 3.2 rules, and can do a parallel set comparison between

the two fingerprints. If, for every bit in the rule’s fingerprint, the corresponding bit

in the packet’s fingerprint is also set, there is a high probability that all of the exact

match strings for the rule would match. But, if any of the corresponding bits are

not set, we can be certain that at least one of the non-fast pattern strings were not

matched, thus eliminating the rule as a potential match. The 4.6% of packets which

match at least one rule fingerprint are forwarded to the CPU; the remainder are

released as non-matching and therefore innocent packets.

It is worth noting that, as the last stage of our hierarchical filtering, the non-
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Figure 6.5: Rule matching fingerprints in the NFPSM

fast pattern matcher has the lowest throughput capacity. This saves on resources,

but can make the NFPSM vulnerable to overload. In Chapter 8, we introduce the

dynamic spillover mechanism to address this problem.

6.3.4 Discussion

By hierarchically filtering out packets, the MSPM reduces the amount of traffic

traversing each subsequent stage of the MSPM. This means that the earliest stages

require high levels of replication, but the latter stages can, on average, expect lower

throughput and hence require less replication. Consequently, latter stages require

lower memory consumption. End-to-end, the MSPM requires 3.3MB of memory,

fitting well within our BRAM bounds while doing more filtering than what a näıve

port of the Hyperscan algorithm would be capable of.

Although Hyperscan and Pigasus use the same set of datastructures, their

rearrangements reflect fundamental differences in how one optimizes software versus
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hardware.

Hyperscan first targets fitting table lookups in cache: this is the reason Hash

Table lookups are partitioned in port groups. In contrast, on the FPGA, we have

careful control of what data sits in fast BRAM versus slower eSRAM or DRAM –

thus, in the hardware design, all memory lookups take only one cycle. Secondary to

fitting in cache, Hyperscan aims to do as few table lookups as possible. In Pigasus,

on the other hand, any compute that can be easily parallelized is cheap – and hence

the first round of our filter does 256 Hash Table lookups in one cycle.

Pigasus’ primary objective, instead, is to fit in as little memory as possible.

Where Hyperscan can assume that caching and prefetching will provide a reason-

able illusion of infinite, processor-local memory, Pigasus must in practice fit all of

this data in BRAM and thus structures its Hash Tables to be memory-minimal in

aggregate.

6.4 Evaluation

Setup: We first evaluate the effectiveness of each filter layer by plotting the

percentage of packets that are matched and the number of rules matched per packet.

We then compare the memory consumption with other design options. Finally, we

list the resource breakdown of each filter and its sub-modules. The setup is same as

Section 3.3.1.

Match packet ratio of each filter: Figure 6.6 shows the percentage of total

packets that are matched by each filter. In other words, this is the percentage of

packets which are not filtered out by the current filter and thus enters the next stage.

As we can see, the multiple orthogonal filters are very effective – the geometric mean
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Figure 6.6: Match packet ratio of each filter stage

of packets that leave the final stage is only 4.6%. This is only achieved by applying

all three filters. For instance, if we just apply Fast Pattern String Matching, about

45% of the packets will enter the CPU. Furthermore, different traces show diverse

behaviors. For example, mix-3 and mix-4 have a high percentage of packets (14.9%

and 15.9%) that go to the CPU. But norm-1 and norm-2 have a very high fast

pattern matching ratio but a low header matching ratio. Further investigation of

norm-1 and norm-2 traces reveals that some TCP packets trigger a particular UDP

rule very often at the Fast Pattern Matching stage, but get rejected by the Header

Matching due to protocol mismatch.

Figure 6.7 shows the average number of rules per packet that leave each filter.

In the end, we only have 2.6 rules-per-packet5 for the CPU to check. The FPSM

effectively reduces the work from 10K rules-per-packet to on average 3.9 rules-per-

packet for latter stages, and HM further reduces to 3.2 rules-per-packet. Note that

5This value is slightly higher than what we reported in our OSDI paper [51]. This is because in
the OSDI paper we used an approximate metric to estimate the rules (i.e., rule flit, pack of multiple
and variable number of rules), but here we count the exact number of rules.
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Figure 6.7: Number of rules per packet of each filter stage

rules-per-packet is a normalized value, which does not always reduce as we pass a

filter. For example, in mix-5, the rules-per-packet of NFPSM is slightly higher than

HM. This is possible as NFPSM may filter out the packets with fewer rules, and

thus the leftover packets have on average more rules.

Resource consumption: Our hierarchical MSPM uses 3.3MB BRAM in total, an

order of magnitude smaller than the NFA-based solution, which would take 23MB

BRAM (only for fast pattern matching) and a straightforward input-independent

implementation of a Hash Table-based solution which would consume 25MB BRAM

(only for fast patterns and header matching).

Table 6.1 shows the resource breakdown of MSPM and each filter stage. The

configurations are: 32 Bytes-per-cycle FPSM, 8 rules-per-cycle HM, 16 Bytes-per-

cycle and 2 rules-per-cycle NFPSM. We note that we fully utilize the two ports of

BRAM block whenever possible to save memory. For example, the FPSM Shift-Or

instances only have 16 copies, as each two bytes can access the two ports of the
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Module ALM BRAM (MB)

FPSM 106,790 (15.2%) 1.57 (9.41%)
Shift-Or 694 (0.1%) 1.02 (6.08%)

Hashtable 40,962 (5.83%) 0.39 (2.34%)
Reduction 27317 (3.89%) 0 (0%)
Rule table 320 (0.05%) 0.17 (0.99%)

HM 12,601 (1.79%) 0.54 (3.21%)
Rule2PG table 200 (0.03%) 0.15 (0.88%)

PG Action table 0 (0%) 0.04 (0.23%)
Single table 0 (0%) 0.04 (0.23%)
Range table 1,920 (0.27%) 0 (0%)

List table 1,920 (0.27%) 0 (0%)
HTTP table 0 (0%) 0.31 (1.87%)

NFPSM 23,324 (3.32%) 1.25 (7.51%)
Shift-Or 1,712 (0.24%) 0.88 (5.26%)

Hashtable 13,252 (1.89%) 0.21 (1.29%)
Reduction 2,114 (0.30%) 0 (0%)

Fingerprint matcher 800 (0.11%) 0.16 (0.96%)

MSPM 142715 (20.31%) 3.36 (20.13%)

Table 6.1: Resource breakdown of MSPM and each filter. Percentages are relative
to the total amount of resources in a Stratix 10 MX FPGA.

same table simultaneously.

Discussion: Our MSPM design again adopts our common-case tuning insight,

separating the common case (all packets and all rules) from uncommon case (a few

suspicious packets and partially matched rules). This separation allows us to achieve

100Gbps overall throughput using only 3.3MB of BRAM for the empirical traces we

evaluated.

However, from Figure 6.6, one may already notice the diverse behaviors

among traces, suggesting that there is no ‘one-size-fits-all’ configuration, as a single

design can either cause performance degradation or waste resources. For instance,

for norm-1 and norm-2, adding a non-fast pattern filter does not help the perfor-

mance that much. However, if we remove this filter, the mix-1 to mix-5 traces will
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suffer from low performance. Therefore, users should be able to easily re-tune the

configuration at both compile time and runtime to efficiently adapt to new environ-

ments. Nevertheless, this is challenging as our initial design follows the traditional

static ‘ASIC-style’ design mindset, which assumes that once the implementation is

deployed it rarely changes. Combined with our common-case tuning insight, our

initial design is brittle to changing environments. In Chapter 7 and Chapter 8, we

will show how we address this problem at compile time and runtime respectively.
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Chapter 7

Disaggregated Service-Oriented

Streaming Design

In previous chapters (Chapters 4, 5, and 6), we focused on our first insight – tune

for common case, where we proposed multiple new ideas to improve the common-

case performance at different levels of the system, while minimizing the resource

consumption for a set of given inputs. While these specializations are crucial for

high efficiency, they can also lead to overfitting – the design works well for one trace

but may not be ideal for others (as discussed in Section 6.4). This is undesirable

given that a real-world deployment could be much more diverse than the set of

empirical traces we evaluated.

To address the overfitting problem caused by the common-case specialization,

we propose a disaggregated and dynamic architecture. In particular, we will focus

on the disaggregation in this chapter and defer the dynamic adaptation to the next

chapter (Chapter 8). The key difference between the disaggregated service-oriented

streaming design of Pigasus (Pigasus 2.0) and the initial ‘ASIC-style’ Pigasus design
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(Pigasus 1.0) is that Pigasus 1.0 is a one-shot design specialized for a single input

rate (100Gbps), a particular FPGA (Intel Stratix 10 MX), and specific empirical

traces (Stratosphere [46]), while Pigasus 2.0 is a design template that allows users

to conveniently recompose a library of disaggregated and parameterizable streaming

services through a common infrastructure abstraction to achieve best efficiency in

various deployment environments. The remainder of this chapter is organized as

follows: we first motivate the problem by showing the limitations of Pigasus 1.0

that follows the traditional design methodology and discuss related work in this

space; we then present Pigasus 2.0, a disaggregated service-oriented streaming design

template, and its use cases; finally, we evaluate the performance, resource utilization,

scalability, and portability of Pigasus 2.0.

7.1 Motivation

Pigasus 1.0 follows the traditional ‘ASIC-style’ design methodology [43], where a

design rarely changes once deployed. In this methodology, developers commit to

‘one-size-fits-all’ – a single design needs to work for all possible inputs, which is

probably fine for input-independent applications, but not for input-dependent appli-

cations such as IDS/IPS. As we have already shown in Section 6.4, the behaviors of

different traces vary a lot from each other, i.e., NFPSM is very effective for mix-2

to mix-5 traces, but not for norm-1 and norm-2. This suggests that for some inputs,

it might be more resource efficient to discard NFPSM completely with little perfor-

mance impact. Another possible scenario is that some stages (e.g., Header Match)

are triggered more often for particular inputs, requiring scaling up/out of that stage

to keep up with the target performance.

With Pigasus 1.0, there are two possible options to handle the aforementioned
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Figure 7.1: Scaling Pigasus as the Header Matcher becomes the bottleneck. Pi-
gasus 1.0 has to scale the entire pipeline while Pigasus 2.0 only needs to scale its
subcomponents.

scenarios: (1) duplicating the entire pipeline, and (2) modifying the internal designs

in Pigasus. While duplicating the Pigasus 1.0 pipeline entirely and distributing

traffic among the two pipelines can address the performance bottleneck of the Header

Match stage as illustrated in Figure 7.1, it is clearly not as resource efficient as

scaling up/out just the bottleneck stage itself. On the other hand, since the internal

modules are tightly coupled for best efficiency in Pigasus 1.0, it is labor-intensive

and error-prone for users to manually change the RTL codebase.

We were initially motivated by just handling different inputs efficiently, but

here we instead ask a more general question – how should we design Pigasus without

prior knowledge of the deployment environment (including the inputs, target FPGA,

and target performance), while allowing users to easily re-tune the design at compile

time for high efficiency.
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7.2 Related Work

Before we dive into the details of our design, we first present related efforts, some

of which served as inspiration for our design.

Hierarchical modular design practice: This is a common design practice

for developing a large complex system in RTL. We argue that it is necessary, but

not sufficient for our purpose. In particular, it misses (1) interface standardization

which allows easy management at the system-level even though it may sacrifice some

efficiency due to the generalization (e.g., packing/unpacking, encoding/decoding,

etc.); (2) parameterization that enables easy scaling up or scaling down of certain

modules without changing the RTL code; and (3) automatic system composition

that automates the tedious, error-prone process of recomposing modules whenever

a design changes.

IP developments: Intellectual Property (IP) based hardware design shares the

same insight with the ‘library’ in software development, wherein a well-encapsulated

functionality can be easily reused for many different designs. Today’s IP develop-

ment provides standard interfaces with parameterization. The Smart IP concept [65]

even encapsulates the IP authors’ domain knowledge for better debuggability and

parameter selection. Inspired by IP development, we argue that application devel-

opers should disaggregate a design and develop each building block as an IP, instead

of following the ‘ASIC-style’ design – creating a one-shot, highly customized imple-

mentation. In this way, at compile time, users can parameterize and compose those

IPs to best suit the new environment.

Design abstraction: This line of work also targets easy development but from a

different aspect of IP development. For instance, service-oriented architecture [66]
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decomposes the memory access operations from the processing kernel and forms a

‘memory service’ which raises the memory access abstraction from simple loads/s-

tores to ‘objects,’ e.g., adjacent node in graph, next image, etc. More importantly,

this work separates the ‘logical design’ from its ‘physical implementation,’ allowing

the same design to be easily implemented differently as the performance/resource

constraints or platforms change. This inspired us to propose a common commu-

nication abstraction for streaming applications for better portability and improved

design productivity.

7.3 Pigasus 2.0 Design

Our objective is to develop Pigasus in a way that it can be easily re-tuned for

high efficiency when the deployment environment – the inputs, the target FPGA,

and even the target performance – is different from our initial setting. To achieve

this goal, instead of providing a single design, we should provide a space of designs

and let users pick the most appropriate configuration for best efficiency in the new

deployment environment. Following this idea, we developed Pigasus 2.0, as shown

in Figure 7.2.

Pigasus 2.0 is a set of disaggregated, parameterizable services that allows

users to conveniently scale up/down certain building blocks to adapt for a new en-

vironment at compile time. The common communication abstraction for streaming

services further improves the productivity and portability by providing a rich set of

features and abstracting the platform-specific interfaces such as Ethernet, PCIe ven-

dor IPs, etc. Below, we describe the three key pieces of our solution: disaggregation,

parameterization, and communication abstraction.
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Figure 7.2: Pigasus 2.0 architecture. Streaming services are logically connected
through a common communication abstraction. The RTL implementation of the
communication abstraction is automatically generated at compile time.

7.3.1 Disaggregation

The root cause of the inefficient scaling in Pigasus 1.0 is that the tightly coupled

design can only be scaled at the granularity of the entire pipeline. After disaggre-

gating the design into smaller pieces, users can scale at the granularity of each IP

and hence achieve the target performance using much fewer resources. The next

question that comes up is to what extent should we disaggregate the design. If we

disaggregate it too little, we are less likely to gain the expected efficiency. On the

other hand, if we disaggregate it too much, then the overhead of standardizing the

interfaces would become noticeable and the many small services will also make it

harder for users to understand and reuse. To get a balanced disaggregation, we

follow the three principles below.

Minimal unit for scale out: After disaggregation, each streaming service should

be the minimal unit one would like to scale out. For instance, scaling out the

entire MSPM is too expensive if only the Header Match stage is the performance
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bottleneck. However, further breaking down the Header Match stage and scaling

out a particular sub-table (shown in Chapter 6) does not make sense for improving

the overall performance. Therefore, the Header Match stage is a good candidate.

Following this principle, we break the MSPM into 3 separate services: Fast-Pattern

String Match (FPSM), Header Match (HM), and Non-Fast-Pattern String Match

(NFPSM).

Preserve latency-sensitive loop: To maintain the latency-insensitive streaming

semantic, we should not break any latency-sensitive loops such as a memory read/re-

sponse. For example, the data mover in Figure 3.1 reads the actual Ethernet packet

data from the packet buffer implemented in SRAM, which takes a fixed number of

cycles to respond. In this case, since the data mover is tightly coupled with the

packet buffer, we encapsulate the packet buffer, data mover, and initial reassembly

logic in Pigasus 1.0 into a bigger reassembly service in Pigasus 2.0.

Expose the same standard interface: The interface exposed by each service

should be the same to allow easier management as we will show in Section 7.3.3. The

interface should also follow the industry standard for better compatibility. For in-

stance, we adopted the Avalon Streaming Interface [67], which can be easily adapted

to other standard streaming interfaces such as the AXI Streaming Interface [68].

The code Listing 7.1 shows the interface of a service. Each service contains three

channels: a packet channel for transferring packet data; a metadata channel for

additional information about each packet such as packet size, 5 tuples, etc.; and a

user data channel for passing any user-defined data, which is used for passing rules

in Pigasus. For the packet and user data channels, since the data size is variable

and can be bigger than 512-bit, we need out-of-band signals, i.e., startofpacket,

endofpacket, and empty, to track the boundary of the data block and padding bytes
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at the end of the data block.

module example_service (

// Input packet data

input logic [511:0] in_pkt_data,

input logic in_pkt_valid,

input logic in_pkt_startofpacket,

input logic in_pkt_endofpacket,

input logic [5:0] in_pkt_empty,

output logic in_pkt_ready,

// Input metadata

input metadata_t in_meta_data,

input logic in_meta_valid,

output logic in_meta_ready,

// Input user data

input logic [511:0] in_usr_data,

input logic in_usr_valid,

input logic in_usr_startofpacket,

input logic in_usr_endofpacket,

input logic [5:0] in_usr_empty,

output logic in_usr_ready,

// Output direction is omitted for simplicity

}

Listing 7.1: Service interface sample

7.3.2 Parameterization

To allow users to effortlessly reuse Pigasus in different environments, we provide a

range of parameters to trade off resource with performance/capacity for different

services. This is realized through a combination of SystemVerilog parameters and

Python-based Jinja2 templates, which are used when the former are not expressive
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enough. For instance, the many submodules in MSPM (e.g., Hash Tables, rule

reduction, etc.) are coded in Jinja2 templates which generate the final SystemVerilog

file. To make it simple, we provide a single entry file for the user to edit; the

parameters will be parsed and passed to the Jinja2 templates for code generation.

Table 7.1 shows the key parameters and their impact. Note that we currently

only support discrete power-of-2 values in the ranges listed in the ‘Support’ column,

while the pkt buffer in eSRAM only supports two configurations. The Num of flows

parameter can trade off BRAM consumption with flow capacity. The Pkt buffer is

unique, as we allow users to select BRAM-based implementation when eSRAM is

not available on the target FPGA, making the design more portable among different

FPGA platforms. FPSM width refers to how many bits this service can accept

per cycle, which will affect the BRAM/LUT utilization and performance. FPSM

reduction ratio refers to the rule reduction ratio of the FPSM. If the input traffic is

mostly innocent, it is more efficient to select a high reduction ratio such that the

following stages could be narrower. If the traffic generates lots of matches in FPSM,

it is recommended to use a low reduction ratio to allocate enough resources to avoid

performance degradation. HM width is the number of rules the Header Match stage

can process per cycle, since this stage does not need to check the bytes of the packet

data. NFPSM has parameters similar to the FPSM.

We note that some of the parameters are coupled. For example, if the FPSM

reduction ratio is high, the HM width should not exceed the final number of rules

produced by FPSM. Otherwise, some of the HM processing units will always be

idle. In addition, the parameters have limits, which are determined by either the

algorithm we used or an FPGA design practice. For instance, the 64bit minimal

width of FPSM and NFPSM are decided by the string matching algorithm, which
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Parameters Impact Support

Num of flows BRAM;flow capacity 2048-131072
Pkt buffer eSRAM;pkt capacity eSRAM: 2688,5376;

BRAM;pkt capacity BRAM: 512-2048
FPSM width BRAM/LUT;perf 64-512 bit

FPSM reduction ratio LUT;perf 2-64
HM width BRAM/LUT;perf 8-32 rules

NFPSM width BRAM/LUT;perf 64-512 bit
NFPSM reduction ratio LUT;perf 2-64

Table 7.1: Key parameters and their impact in Pigasus 2.0

takes at least 8B per cycle. The 512bit maximum width comes from an FPGA

design practice where an even wider signal should be avoided as it may cause routing

congestion and hence reduce the max frequency at which the design can run. If the

512bit version cannot meet the desired performance, one should consider scaling the

service by creating a replica, instead of making the single instance even wider.

7.3.3 Communication Abstraction

A streaming application can be logically considered to be a graph where the node

represents the streaming service and the edge represents the communication channel

between streaming services. When implementing streaming applications on FPGA,

developers have been following what we call ‘wire abstraction,’ where the channel is

implemented as directly-connected wire or FIFO. However, such a ‘wire abstraction’

makes porting and design exploration a time-consuming process, as developers have

to manually recompose the streaming services at the RTL level after any changes in

the logical connection or physical placement of the streaming services.

To tackle this problem, we propose a ‘communication abstraction’1 inspired

1This work is a collaboration with Joe Melber and Siddharth Sahay. I provide the RTL imple-
mentations of the building blocks, e.g., different FIFO implmentations, inter-FPGA communication,
etc. They encapsulate the building blocks with ‘service’ interfaces and generate the composition
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by service-oriented architecture [66], where all services are connected to a common

abstraction logically. In our communication abstraction, users can easily explore dif-

ferent design options – for instance, replicating/inserting/deleting streaming services

– and then recompose the services at a high level (e.g., Python). The compiler will

take care of the RTL implementation generation, which retains the same efficiency

as manual composition. Our communication abstraction also provides important

features for better portability, design productivity, and debuggability as follows:

Different channel implementations: Our communication abstraction provides

different physical implementations of the inter-service communication channel. This

is critical as new types of FPGA systems are emerging, such as Network-on-Chip

(NoC)-based FPGAs [69] or multi-FPGA systems [70], which are more promising in

flexibly handling input-dependent behaviors. Mapping Pigasus to such platforms is

more challenging than mapping to other monolithic FPGAs, as it requires chang-

ing the channel implementation to intra-FPGA (NoC) or inter-FPGA (Ethernet or

PCIe) communication. With the communication abstraction, users only need to se-

lect the appropriate type of inter-service channel at Python-level without worrying

about the RTL details.

Load balancing: We expect scaling out a specific streaming kernel will be a com-

mon design practice for new environments. As such, our communication abstraction

provides load balancing services internally, allowing users to simply create replicas

without being concerned about the load distribution and merging of results.

Instrumentation: This common communication abstraction is the natural place

to insert instrument probes to collect statistics as the data flows between streaming

kernels. This will give users the visibility into internal states, helping them to quickly

using their Python framework.
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identify performance bottlenecks or localize functionality bugs.

7.4 Potential Use Cases of Pigasus 2.0

By combining disaggregation, parameterazation, and the communication abstrac-

tion, Pigasus 2.0 enables easy compile-time re-tuning, which alleviates the brittle-

ness caused by common-case tuning. In this section, we demonstrate the potential

of Pigasus 2.0 by showcasing three examples.

Scale up performance bottleneck: As we briefly discussed in Section 7.1,

Pigasus 2.0 allows scaling up the performance bottleneck explicitly to achieve target

performance with minimal resource overhead. Figure 7.1 illustrates the case when

the Header Match stage becomes the performance bottleneck, where we can make

it wider without replicating the entire pipeline. This scale up/out is applicable to

any uncommon-case services, e.g., NFPSM.

Scale down to lower line-rate: With Pigasus 1.0, if the performance target of the

deployment is lower than 100Gbps, e.g., 50Gbps, to use Pigasus, users have to buy

an Intel Stratix 10 MX FPGA and run the 100Gbps pipeline, which is obviously not

cost effective. With Pigasus 2.0, users only need to change the width parameters of

FPSM, HM, and NFPSM without modifying any service-internal designs to generate

a 50Gbps design point. Since the resource consumption of a 50Gbps design point

would be lower than a 100Gbps pipeline, users can adopt smaller FPGAs to save

cost.

Map to multi-FPGA system: With the observation that network line-rates are

hitting 400Gbps, we envision that a single FPGA cannot host the entire pipeline,

and thus splitting the pipeline and mapping it onto multiple FPGAs to continue
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(b) Design 2, splitting at NFPSM service.

Figure 7.3: Explore different pipeline splitting on multi-FPGA system using com-
mon communication abstraction

capacity/performance scaling becomes necessary. Pigasus 2.0 provides inter-FPGA

communication as an infrastructural service, which boosts the design productivity

for multi-FPGA systems – users only need a few lines of Python code change to

generate the RTL implementation of different splitting points within minutes, as

shown in Figure 7.3.

7.5 Evaluation

Setup: We first evaluate the performance and resource overhead introduced by

disaggreation by comparing a design point of Pigaus 2.0 with Pigasus 1.0 under the

same setup. We then assess the scalability of Pigasus 2.0 using two cases, scaling

up a performance bottleneck and scaling down to serve a lower line-rate. Finally,

we demonstrate the portability and design productivity by implementing different

90



multi-FPGA partitioning designs.

Performance and resources: This experiment evaluates the overhead intro-

duced by disaggregation when compared with Pigasus 1.0, a tightly coupled, highly

specialized one-shot design. The design point of Pigasus 2.0 that shares the same

setting with Pigasus 1.0 does not introduce any performance degradation and only

introduces 2% (of total board capacity) of LUTs and BRAM overhead. Therefore,

disaggregating the design and standardizing the interfaces in Pigasus 2.0 does not

lose any efficiency.

Scalability: We conduct two experiments to demonstrate that disaggregation

allows more efficient scaling. In the first experiment, we make the case that Header

Match is the performance bottleneck as shown in Figure 7.1, and we compare the

resource consumption of ‘pipeline replication’ and ‘bottleneck scaling.’ To make the

Header Match stage the performance bottleneck, we generate a semi-synthetic trace

by extracting a highly matched packet from Mixed-1 trace and repeating it with an

adjusted sequence number to not confuse the Reassembly stage. This semi-synthetic

trace triggers many rule matches in FPSM. Since the Header Match stage is narrow,

the rule reduction logic in FPSM will create pipeline stalls and slow down the entire

system. With Pigasus 1.0, users have to replicate the entire pipeline in order to

maintain the 100Gbps throughput. With Pigasus 2.0, users can just scale up the

performance bottleneck – Header Match in this case – to let more rules go through.

Figure 7.4 depicts the resource saving between these two designs relative

to the single Pigasus 1.0 pipeline. ‘Pipeline Replication’ will double the resource

consumption. However, ‘Bottleneck scaling’ only introduces 10% more LUTs and

6% more BRAM to keep up with the 100Gbps line-rate for this new traffic profile.

In the second experiment, we make the case that users want to run Pigasus on
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Figure 7.4: Resource consumption of pipeline replication and bottleneck scaling

a 50Gbps link, and we compare the resource consumption of the ‘100Gbps pipeline’

with a ‘50Gbps pipeline.’ If the performance target is 50Gbps, with Pigasus 1.0,

users have to use it as is. In contrast, Pigasus 2.0 allows users to change the config-

urations to easily scale down performance-dependent modules to save resources.

Figure 7.5 depicts the per-module LUTs and BRAM consumption when

mapped to 50Gbps. The resource consumption is also normalized to a single 100Gbps

pipeline. Some of the modules are not performance-dependent, e.g., Reassembly and

DMA. Their resources depend on the flow capacity and packet buffer capacity, but

not the throughput. The resource consumption of FPSM, HM, NFPSM, and Vendor

IP depends on throughput. For instance, FPSM and NFPSM are now half the size as

before, and therefore use about half the resources compared to the 100Gbps pipeline.

HM is special, as it is already the minimal size (8 rules-per-cycle determined by the

algorithm) in the original 100Gbps pipeline. In the 50Gbps pipeline, the resource

consumption of HM remains the same. The saving in vendor IPs mostly comes from

changing PCIe IP core setting from Gen3 16 lanes (theoretical peak 128Gbps) to
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Figure 7.5: Resource consumption of 50Gbps pipeline relative to 100Gbps pipeline

Gen3 8 lanes (theoretical peak 64Gbps). Overall, the 50Gbps pipeline saves about

30% of resources compared to the 100Gbps pipeline.

Portability and design productivity: To demonstrate the portability and

design productivity of the communication abstraction, we port Pigasus to a multi-

FPGA system and then explore different cutting points as illustrated in Figure 7.3.

In this experiment, we connect two Intel Stratix 10 MX FPGAs through another

available 100Gbps Ethernet port. We chose the Mixed-5 trace for this experiment,

as it shows the most interesting filtering ratios as shown in Figure 6.6.

Figure 7.6 shows the zero-loss throughput of different splitting points when

normalized to the monolithic design. The splitting point means that we cut the

pipeline in front of that module. As we can see, different design points have different

performances. For instance, splitting in front of FPSM or HM may lead to lower

performance, as the percentage of traffic that has to go across FPGAs is high and

we need to pass the associated rules and metadata with the packets, which stressed
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Figure 7.6: Zero-loss throughput of different splitting points normalized to mono-
lithic design

the inter-FPGA link. For the NFPSM and DMA case, since most of the traffic

is already filtered out, the inter-FPGA link is not the bottleneck anymore. These

performance variances are input-dependent, suggesting that users should explore all

of these options before making the decision under a new deployment environment.

Pigasus 2.0’s communication abstraction allows users to switch design points with

only 17 lines of Python code changes and generate the RTL implementations of

all of these options within minutes. This significantly improves the productivity

compared to hand-crafting hundreds of lines of RTL for each design point.

Discussion: To alleviate the brittleness of the common-case tuning strategy, Pi-

gasus 2.0 enables compile-time re-tuning for high efficiency under new deployments.

In particular, disaggregation breaks the highly-specialized pipeline into individual

streaming services, and parameterization provides performance/capacity/resource

tradeoff for each service, enabling more efficient scaling. Since users need to tweak

the parameters and try different design options, it is crucial to make the exploration
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easy and fast. The common communication abstraction offers a rich set of features

and can be automatically generated from a high level, significantly improving the

portability and design productivity. While our compile-time re-targeting is effective

and easy to use, it fundamentally falls short in handling traffic dynamism. In the

next chapter (Chapter 8), we discuss how to adapt to dynamic traffic at runtime.
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Chapter 8

Dynamic Spillover Mechanism

In Chapter 7, we described how to efficiently adapt Pigasus for new workloads at

compile time. However, it is very challenging for a compile-time profile to accu-

rately predict the behaviors of real workloads at runtime. As such, the design

decision made at compile time is most likely to be imperfect, leading to either

under-provisioning, which harms performance, or over-provisioning, which wastes

resources. In this chapter, we introduce our dynamic spillover mechanism, which

can efficiently adapt to changing workloads. The key idea is to dynamically bring

up backup streaming services on-demand to absorb the variance of the traffic to

avoid over-provisioning at compile time. In the rest of this chapter, we first discuss

why existing approaches are insufficient. We then introduce our idea and discuss

different design alternatives for the backup streaming services. Finally, we evaluate

the effectiveness of our approach using a number of performance benchmarks.
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8.1 Motivation

The problem we are facing is that input-dependent behaviors can stress different

performance and resource bottlenecks in a burst at runtime. In other words, ex-

pensive operations may be triggered very frequently within a short period of time,

causing pipeline stalls and packet drops.

A straightforward solution is to allocate enough resources for the worst case.

In this way, we can safely create one implementation for deployment, which can

handle all possible cases without performance degradation. However, as we have

shown in Chapters 4, 5, and 6, the worst-case-oriented designs are too resource-

consuming to be practical.

That is why we choose to tune for the common case, allocating just enough

resources to bolster the common case performance. While tailoring for common

cases enables high performance using minimal resources, it also makes the design

brittle in the face of changing workloads. Taking hierarchical filters as an example,

at compile time users have to decide the size of each filter based on the profile of the

average filtering ratio to get a balanced and efficient design. However, at runtime,

the traffic could have significantly higher variance than the profiled traces indicated;

consequently, the last stage of filters might be stressed instantaneously, leading to

performance degradation.

A typical way of dealing with burstiness in traffic is using buffering; however,

at 100Gbps, small jitters in traffic can easily overflow our MB level of on-chip buffer

space. Moreover, due to the latency requirement of real-time processing (IPS mode),

one cannot buffer the traffic indefinitely.

To summarize, we cannot afford to provision for a worst-case-oriented design,

and buffering does not fundamentally solve the problem. Therefore, we need a new
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way to resolve the brittleness of our common-case-tailored design.

8.2 Dynamic Spillover Mechanism

Our idea is to prepare backup streaming services that can be dynamically brought

up on-demand. When the packets requiring expensive processing are sufficiently

spaced apart, which is the case most of the time, we only use primary streaming

services. Only during periods of heavy bursts – i.e., the load of the primary stream-

ing kernel exceeds a certain threshold – the backup streaming kernel will be fired

up to handle the spillover traffic until the primary streaming service’s load drops

below the threshold. In this way, we dynamically introduce more computing power

to absorb the burstiness while maintaining low resource consumption most of the

time.

This idea generalizes well to any streaming services that handle uncommon

and expensive cases. Furthermore, the backup streaming services can also be im-

plemented differently as long as they can be easily brought up. In this chapter, we

demonstrate the effectiveness of this idea with one use case, where we dynamically

route spillover traffic to the CPU when the NFPSM is under high load. We then

discuss other potential use cases.

8.2.1 NFPSM CPU Spillover

Non-Fast Pattern String Match (NFPSM) is the last pattern matching stage of the

MSPM module in Pigasus. Based on our profile of the empirical traces, we have

observed that on average, 7% of packets with 1.6 rules-per-packet traffic enter the

NFPSM as shown in Section 6.4. Thus, we allocate the NFPSM to be faster than

the average case; for instance, our NFPSM can sustain 50Gbps of packet traffic with
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Figure 8.1: Percentage of total packets processed by NFPSM and spillover

2 rules-per-packet. Although this exceeds the average service requirement, bursty

traffic can still overflow the NFPSM and thus stall the pipeline.

Figure 8.1 depicts the percentage of total packets that are processed by the

NFPSM and the spillover mechanism among different traces. For 4 of the 7 traces,

the NFPSM adequately serves the vast majority of traffic, while the spillover mech-

anism handles only a very small fraction (< 1%) of packets. However, for mix-1,

mix-3, and mix-4, noticeable amounts of traffic cannot be handled by NFPSM due

to burstiness.

To address this problem, we design a spillover path that can route the over-

flow traffic to the CPU as shown in Figure 8.2. We create a ‘Dispatcher’ in front

of NFPSM which monitors the load of NFPSM by continually checking the occu-

pancy of its input buffer. If the occupancy exceeds a runtime-configurable threshold,

the Dispatcher will route the spillover traffic to the DMA engine through a different

path. The DMA engine will merge the data from different paths and distribute them

to CPU cores. Once the load of NFPSM drops below the threshold, the Dispatcher
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Figure 8.2: NFPSM CPU spillover design

will only send data to NFSPM; the cores that handle the spillover traffic can now be

released. We highlight two important details. First, when overflow occurs, both NF-

PSM and the CPU are working; we are not completely bypassing NFPSM. Second,

the spillover traffic that is not processed by NFPSM will not break the correctness

of the system, as the CPU will perform a full evaluation of each packet-rule pair.

The existence of NFPSM is a performance/resource optimization. By temporarily

using a few more CPU cores, our system becomes more resilient to the dynamic

workload.

8.2.2 Potential Spillover Use Cases

The NFPSM CPU spillover is just one use case of the dynamic spillover mechanism

we consider in the current implementation of Pigasus. Nevertheless, this idea can be

applied to any subsystems that are susceptible to high (and unpredictable) variance

in traffic. For example, we can also apply this idea to the Header Match stage or

the OOO engine in the Reassembly stage. Furthermore, instead of using the CPU

for dynamically handling the spillover traffic, we can use Partial Reconfiguration

(PR) or even route the traffic to a separate backup FPGA. Below, we discuss how

PR and multi-FPGA can potentially help.

Partial reconfiguration: Partial Reconfiguration allows users to partially change
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the design at runtime by replacing a particular subcomponent of the running FPGA

design with a different, pre-compiled subcomponent without interfering with the

rest of the design. With this capability, we can dynamically instantiate a secondary

NFPSM PR instance to process the spillover traffic as illustrated in Figure 8.3.

This PR instance does not necessarily have to have the same configuration as the

primary NFPSM. Depending on the intensity of the burst and its duration, one can

instantiate different sizes of NFPSM PR to best suit the needs of the spillover traffic.

The challenge is that today, PR takes place at 10-100 milliseconds, a few

orders of magnitude higher than the target response time of 100 microseconds –

the maximum time our packet buffer can sustain without packet drops at 100Gbps.

This suggests that we should carefully manage how PR instances (either swaps in

or out) are scheduled. For instance, we should prefetch the PR instance as the load

ramps up, using CPU-based compute to handle the spillover traffic in the interim

(i.e., while PR takes place).

One caveat of the PR-based solution is that it assumes the space is available

when needed. In the case of a single application running aboard the FPGA, the

unused portion of the FPGA remains idle. Therefore, the PR solution makes more

sense in a multi-tenant environment where the FPGA is multiplexed spatially and

temporally among many users. If Pigasus needs a secondary NFPSM, then a low

priority task of a different user can be opted out temporarily in order to swap in

the required NFPSM filter.

Multi-FPGA: Another approach for implementing dynamic spillover is to use

multiple FPGAs. In this model, a backup FPGA will be repurposed at runtime

to handle the spillover traffic from the primary FPGA. The traffic can be routed

through the inter-FPGA communication channel, such as Ethernet and PCIe. This
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Figure 8.3: NFPSM Partial Reconfiguration spillover design

approach uses the same idea and encounters the same challenges as the PR approach

but at a different scale.

8.2.3 Easy Development

Pigasus 2.0’s disaggregated service-oriented design methodology enables users to

easily explore the many design alternatives for dynamic spillover presented above.

In Pigasus 2.0, the traffic dispatching, traffic merging, and inter-FPGA com-

munication that are frequently used by the dynamic spillover approach are all encap-

sulated as infrastructural streaming services. Users only need to specify the com-

position of these infrastructural services with processing services (e.g., NFSPM)

in Python to quickly generate various target designs. In our own experience, we

were able to generate the RTL implementations of the above PR and multi-FPGA

variants within minutes.

Currently, users are still responsible for tuning the spillover control policies

for the particular design, e.g., deciding when and how to spill over, manually adding

PR support for the secondary NFPSM instance, etc.
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Figure 8.4: Improvement in zero-loss throughput for the spillover design relative to
baseline (i.e., no spillover handling)

8.3 Evaluation

Setup: In this section, we evaluate the effectiveness of the spillover mechanism of

our NFPSM CPU Spillover implementation. We measure the zero-loss throughput

of two designs: one with spillover, and one without. We increase the ingress packet

rate until we observe a packet drop. The rest of the setup is identical to Section 3.3.1.

Performance comparison of with and without spillover: Figure 8.4 illus-

trates the zero-loss throughput comparison of designs with and without spillover

handling.

As we can see, for some of the traces (i.e., mix-2, mix-5, norm-1, and norm-

2), adding spillover does not improve the performance. That is because for these

traces, the NFPSM is not oversubscribed. However, for the bursty traces (i.e., mix-

1, mix-3, and mix-4), adding spillover can improve the performance by 1.43-2.75×.

This behavior is consistent with Figure 8.1, where in mix-1, mix-3, and mix-4, the
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NFPSM is insufficient to handle the bursty traffic, making the FPGA datapath the

performance bottleneck. After we enable the spillover path, the spillover traffic can

be dynamically processed by the CPU, enabling the design to operate at line-rate.
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Chapter 9

Conclusion

Traditional FPGA acceleration developments favor static, fixed-performance de-

signs. This straightforward strategy works well for input-independent streaming

applications, such as machine learning inference [6, 7], signal processing [4, 5], and

image/video processing [8, 71, 9], where the performance does not depend on the

contents of the input. However, such designs do not fit input-dependent streaming

applications such as IDS/IPS, where different inputs (i.e., packets) trigger differ-

ent operations leading to variable performance. When there is a large gap between

the worst case and the common case, existing fixed-performance FPGA designs that

over-provision the resources for the worst case are wasteful, inefficient, and, in many

cases, prohibitively expensive. This thesis investigates the question of how to ef-

ficiently handle input-dependent streaming on FPGAs in the context of IDS/IPS.

This work demonstrates that we should tune for the common case but adapt the

architecture as the input changes.

In the first part of this thesis, we focused on the common-case tuning. The

key idea is to judiciously balance the resource allocation – allocating more resources
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to improve common-case performance and using just enough resources for the un-

common case. In particular, we apply this idea to three places in Pigasus IDS/IPS.

First, at a system level, we propose an ‘FPGA-first’ architecture that uses FPGA

as the primary processing unit to handle the common case (innocent packets) en-

tirely on a highly-parallel FPGA datapath, while leaving uncommon case (suspicious

packets) to the CPU, which works as a complexity offloader to FPGA. In this way,

we save significant resources that would otherwise be used to implement expen-

sive (yet relatively infrequently used) regular expression matching on the FPGA.

However, this alone is insufficient because ‘FPGA-first’ requires mapping both Re-

assembly and MSPM on FPGA while supporting 100Gbps, 100K flows, and 10K

rules, which requires excessive BRAM resources using existing designs. Therefore,

for the Reassembler, we propose a fast-slow path design that allows the common

case (in-order packets) to fly through with high and deterministic performance, and

offload the uncommon case (out-of-order packets) to a slower but memory-efficient

engine. Finally, for the MSPM, we introduce a hierarchical filter that replicates

compact filters in front to process the common case (all packets with all rules),

enabling us to use fewer replicas of the more resource-intensive, backend filters to

handle the uncommon case (suspicious packets with fewer partially matched rules).

Pigasus, the end-to-end FPGA-based IDS/IPS we developed based on the above

ideas, can achieve 100Gbps using 1 FPGA and on average 5 CPU cores. This is

100× faster than a CPU-only baseline and 50× faster than existing FPGA designs.

However, the consequence of tuning for common-case performance is that we

may overfit to the empirical traces used to guide the design. If the traffic profile of a

real deployment does not match the empirical traces, variability in the traffic stream

will inevitably result in either performance degradation (due to under-provisioning)
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or resource wastage (due to over-provisioning). To address this brittleness, in the

second part of this thesis, we proposed two ideas, a disaggregated service-oriented

streaming architecture and a dynamic spillover mechanism, to adapt to changing

inputs at both compile time and runtime. In the context of our disaggregated ar-

chitecture, we argue that to handle input-dependent behaviors efficiently, instead

of relying on a ‘one-size-fits-all’ design, developers should create a space of designs

where the users can select the most efficient one at compile time. To achieve this

goal, the design should be disaggregated for efficient scaling, parameterized for easy

re-tuning, and connected to a common abstraction for better portability and de-

sign productivity. However, this compile-time re-targeting is insufficient to handle

the dynamism of the traffic. To address this final shortcoming, we propose a dy-

namic spillover mechanism that temporarily brings up backup streaming services at

runtime to migrate the performance bottleneck.

Overall, through the development of Pigasus IDS/IPS, we demonstrate that

we should tune for the common case but adapt the architecture as input changes.

Looking forward, we believe our insights and successes can more broadly inform

other input-dependent streaming applications beyond IDS/IPS.

9.0.1 Limitations and Future Directions

While Pigasus has demonstrated the effectiveness of our approach of handling input-

dependent streaming on FPGAs, there are still some important questions to be

answered. Here, we discuss the key limitations of Pigasus and the new research

opportunities it enables.

Application protocol parsing: Application protocol parsing is responsible for

taking a continuous bytestream and truncating it into application-specific messages
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(e.g., HTTP, DNS). Supporting application-level protocol parsing is critical for real-

world IDS/IPS deployment, since about 98.2% of the rules in the Snort ruleset [17]

are designed for checking application-level messages instead of individual packets.

Parsing application-level messages at line-rate efficiently is challenging. Dif-

ferent from transport-level parsing, which only needs to analyze a single packet at a

time, application-level parsing must parse messages from a continuous bytestream,

making it possible for a message to span across multiple packets. In order to keep

up with line-rate, the protocol parser must sit on the FPGA datapath – routing

data back and forth between the CPU and the FPGA for every packet would be

impractical.

To implement the protocol parser on the FPGA, one could develop and op-

timize a protocol parser specifically for each application. However, this is both

time-consuming and space-inefficient. Our preliminary analysis of different applica-

tion protocols suggests that an overlay approach is promising. In particular, we find

that these protocols share similar parsing mechanisms. For example, a parser might

first search for some known keywords and then extract the message length to infer

the message boundary. Because of the commonality, it is possible to use a handful

of tailored instructions to perform certain actions, such as searching keywords and

counting scanned bytes. Therefore, developing a framework that can execute these

instructions at line-rate would be sufficient to parse messages from many application

protocols.

Besides IDS/IPS, an application-level parser is also useful for other scenarios.

For example, applications that currently rely on TCP stack offloading could be

further optimized by also pushing some of their message parsing to an FPGA-

enhanced NIC.
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Quality of service: Since Pigasus serves on the front-lines of network defenses,

it is a prime target for attackers seeking to disrupt network service via Denial-of-

Service (DoS) attacks. Broadly speaking, DoS attacks seek to consume as much

of a target system’s resources (e.g., I/O, memory, compute) as possible, thereby

inhibiting its ability to serve legitimate user traffic. In order to guarantee high-

performance service at all times, it is important to design not just for the common

(or average) case, but also for the worst case (i.e., in an adversarial setting).

In most rule-based IDS/IPS implementations, the TCP Reassembly engine

tends to expose the most significant attack surface [54]; this is also true for Pigasus.

As described earlier, Pigasus performs bytestream reconstruction for out-of-order

TCP flows using linked lists. While this achieves high memory density (limited

FPGA memory being a key design consideration for Pigasus), it also enables an

adversary to induce large amounts of wasteful work in the system by creating heavily

out-of-order flows, starving innocent user traffic in the process. While Pigasus’ ‘fast-

slow’ path design helps protect innocent, in-order traffic from these malicious flows,

innocent, out-of-order flows are prone to significant throughput degradation.

Prior works attempt to address this problem in one of two ways: (1) using

ad hoc heuristics, e.g. restricting service to flows with at most one concurrent

out-of-order packet train [54] or no more than k (a constant number of) out-of-

order segments [29], or (2) explicitly identifying and dropping malicious traffic.

Unfortunately, neither of these strategies is sufficiently general and/or foolproof. For

instance, using the heuristics described above greatly inhibits the system’s ability

to serve moderately out-of-order flows, even when the system is underloaded. Also,

as exemplified by [53, 72], anomaly detection engines used to classify traffic as

innocent/malicious are often easily thwarted by a knowledgeable adversary.

109



While the ‘right’ mitigation strategy remains an open question, ongoing ef-

forts suggest that adversarial scheduling theory yields a promising new direction.

In particular, by prefacing the system with a carefully-designed scheduler (which

explicitly considers an adversary’s optimal decisions), we may be able to impose

theoretical bounds on the worst-case ‘harm’ an adversary can induce. Furthermore,

another potential complementary approach is to utilize the PR technique to dynam-

ically resolve adversary traffic.

Multi-FPGA acceleration: With the observation that network line-rates are

hitting 400Gbps, a natural question to ask is how to scale up IDS/IPS performance

beyond 100Gbps. While per-FPGA resource counts are steadily increasing, it is

not at a rate that is commensurate with networked application demands. There-

fore, using multiple FPGAs may be the only way that we can continue to scale

accelerators.

However, today, mapping resource-intensive applications to multiple FPGAs

is cumbersome. Developers have to manually partition the design and map com-

ponents to the right FPGA based on availability of resources, each component’s

resource requirements, inter-component communication requirements, and inter-

FPGA communication capacity. Besides the manual partition, developers often

need to implement purpose-built inter-FPGA communication infrastructure. This

results in poor productivity when mapping applications onto multiple FPGAs.

One possible solution is to take the application RTL code and automati-

cally generate a feasible partition. This partition must consider the constraints of

the multi-FPGA platform as well as the amount of resources needed to meet the

performance target. The multi-FPGA communication infrastructure should also be

automatically generated for developers. In the end, developers should ideally be
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able to map their applications onto multiple FPGAs as easily as mapping it onto a

‘single and big’ FPGA.

Interestingly, the need for multi-FPGA acceleration is not unique to an ID-

S/IPS like Pigasus. Any application that cannot fit within the footprint of a single

FPGA, e.g., persistent ML inference [6] and large-scale ML training, can benefit

from the same solution.
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Appendix A

Pigasus Artifact Appendix

A.1 Abstract

Pigasus has a hardware component that runs on an FPGA and a software component

which is adapted from Snort 3. The current version requires a host with a multi-

core CPU and an Intel Stratix 10 MX FPGA (with 100Gb Ethernet) [41]. Pigasus’

artifacts are open-source and publicly available.

We provide detailed instructions to reproduce Figure 3.2. This figure sup-

ports our main claim that Pigasus requires two orders of magnitude fewer cores than

the state-of-the-art Snort 3. In addition to the steps in this appendix and on the

repository README, we also provide video archives that reproduce Figure 3.2 for

both the Snort 3 Baseline1 and the Pigasus2 experiments.

A.2 Artifact Checklist

• Algorithm: Pigasus Multi-String Pattern Matcher.

1https://figshare.com/articles/media/snort_baseline_mp4/12922160
2https://figshare.com/articles/media/pigasus/12922178
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• Program: Snort 3 [73] for baseline experiments; DPDK pktgen [44] and Moon-

gen [45] to generate packets.

• Compilation: Intel Quartus Prime [74].

• Dataset: Stratosphere Laboratory Datasets [46].

• Run-time environment: System running Linux with Snort 3 [73] software de-

pendencies installed. Quartus 19.3 with Intel Stratix 10 device support is required to

load the bitstream to the FPGA.

• Hardware: Two servers, one with an Intel Stratix 10 MX FPGA [41] and another

with a DPDK-compatible 100Gb NIC. Power-measurement experiments require either

a CPU with a power measurement interface (e.g., RAPL [48]) or an external electricity

usage monitor.

• Execution: Disable power optimizations in the BIOS, isolate cores from the Linux

scheduler, and pin processes to cores.

• Experiments: Experiments are run manually with Pigasus on one machine and a

packet generator on another.

• Public link: https://github.com/cmu-snap/pigasus

• Code licenses: ‘BSD 3-Clause Clear License’ for the hardware component and

‘GNU General Public License v2.0’ for the software component. Check the repository

for details.

A.3 Description

How to access

To access the artifact, clone the repository from GitHub:

$ git clone https://github.com/cmu-snap/pigasus.git
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This repository also includes a README with the most up-to-date instruc-

tions on how to install and extend Pigasus.

Hardware dependencies

Pigasus requires a host with an Intel Stratix 10 MX FPGA [41]. This host should

have PCIe Gen3 or greater and a slot with 16 lanes for the FPGA. Experiments

require an extra host equipped with a DPDK-compatible 100Gb NIC to be used

as a packet generator. For the experiments, the two hosts are connected back-to-

back. The power-measurement experiments require either a CPU with a power

measurement interface (e.g., RAPL [48]) or the use of an external electricity usage

monitor.

Software dependencies

Pigasus’ software component is adapted from Snort 3 [73] and inherits the same

software dependencies. Appendix A.4 provides instructions on how to install those.

The provided implementation works on Linux only and was tested on Ubuntu 16.04

and 18.04. Experiments require the installation of vanilla Snort 3, for comparison,

as well as DPDK pktgen and Moongen in the packet generator host. To be able

to load the bitstream on the FPGA, an installation of Quartus 19.3 as well as the

Stratix 10 device support are required.3

Data sets

To obtain the Stratosphere traces, go to https://www.stratosphereips.org/

datasets-overview.

3Both can be obtained at: https://fpgasoftware.intel.com/19.3/.

114

https://www.stratosphereips.org/datasets-overview
https://www.stratosphereips.org/datasets-overview
https://fpgasoftware.intel.com/19.3/


A.4 Installation

These instructions assume that you already have the bitstream to be loaded on the

FPGA. For instructions on how to synthesize the design, refer to the repository

README.

Software configuration

In a system running a fresh install of Ubuntu 18.04, with the Pigasus repository

cloned to the home directory, start by setting the required environment variables

and useful aliases by adding the following to your .bashrc or equivalent:

export pigasus_rep_dir=$HOME/pigasus

export pigasus_inst=$HOME/pigasus_install

export LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}

export LUA_PATH="$pigasus_inst/include/snort/lua/?.lua;;"

alias pigasus="taskset --cpu-list 0 $pigasus_inst/bin/snort"

alias sudo=’sudo ’

Make sure you apply these changes:

$ source ˜/.bashrc

Then install the dependencies using the provided script:

$ cd $pigasus_rep_dir

$ ./install_deps.sh

Once the dependencies are installed, build Pigasus as follows:

$ cd $pigasus_rep_dir/software

$ ./configure_cmake.sh --prefix=$pigasus_inst --enable-pigasus --enable

-tsc-clock --builddir=build_pigasus
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$ cd build_pigasus

$ make -j $(nproc) install

Hardware configuration

To load the bitstream, make sure the Quartus tools are in your path by setting the

following environment variables in your .bashrc or equivalent:

# quartus_dir should point to the Quartus installation dir.

export quartus_dir=

export INTELFPGAOCLSDKROOT="$quartus_dir/19.3/hld"

export QUARTUS_ROOTDIR="$quartus_dir/19.3/quartus"

export QSYS_ROOTDIR="$quartus_dir/19.3/qsys/bin"

export IP_ROOTDIR="$quartus_dir/19.3/ip/"

export PATH=$quartus_dir/19.3/quartus/bin:$PATH

export PATH=$quartus_dir/19.3/modelsim_ase/linuxaloem:$PATH

export PATH=$quartus_dir/19.3/quartus/sopc_builder/bin:$PATH

Make sure you apply these changes:

$ source ˜/.bashrc

A.5 Evaluation and Expected Result

In what follows, we describe how to run the experiments to reproduce Pigasus results

from Figure 3.2. Before every experiment, we reload the bitstream on the FPGA

and reboot the server. This ensures that we always start from the same FPGA

state:

$ cd $pigasus_rep_dir/pigasus/hardware/hw_test/

$ ./load_bitstream.sh
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$ sudo reboot

Once the machine is back, to run the software component, first insert the kernel

module:

$ cd $pigasus_rep_dir/software/src/pigasus/pcie/kernel/linux

$ sudo ./install

Then, run Pigasus, using the following command:

$ cd $pigasus_rep_dir/software/lua

$ sudo pigasus -c snort.lua --patterns ./rule_list

The snort.lua uses the same syntax as in Snort 3; you should modify it to include

the Snort Registered Rule Set [17]. In our experiments, we modified the rules to

remove some features currently not supported by Pigasus, including services,

file data, and nocase. We also use the same modified rules in the baseline

experiment.

When Pigasus finishes the startup process, it will stop printing logs to the

screen. Once this happens, you can invoke the FPGA JTAG console to configure

the FPGA internal state. To do so, open another terminal and enter:

$ cd $pigasus_rep_dir/hardware/hw_test/

$ ./run_console

% source path.tcl

If the last command produces an error, exit the JTAG console with Ctrl+C and

rerun the last two commands. Once the last command runs successfully, type the

following commands to configure the buffer size, set the number of cores, and check

the FPGA internal state:

% set_buf_size 262143
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% set_core_num 1

% get_results

This last command should return all zeros, as no packets have been sent yet.

Now that Pigasus is running and properly configured, we can start the packet

generator on another machine. Here, we assume that DPDK pktgen is properly

configured on the other machine and has been started.

You can specify the rate to send packets, where 100 means 100% line-rate. To

ensure that DPDK pktgen will only send the trace once, specify the number of pack-

ets to match the trace size. The example pcap we are using is the norm-2.pcap,

which has 456,709 packets. After setting these parameters, you can start sending

packets.

Pktgen:/> set 0 count 456709

Pktgen:/> set 0 rate 100

Pktgen:/> str

Once the packet generator finishes sending packets, go back to the JTAG

console on the other host and type the following:

% get_results

This should return 456,709 received packets and 456,709 processing packets. This

means that Pigasus processed all of the packets sent at max rate, without loss.

Now stop Pigasus by going back to the first terminal and typing Ctrl+C. It

will print rx pkt, which should match the dma pkt reported by the FPGA in the

second terminal. This means that all packets sent from the FPGA to the CPU for

full evaluation were processed.
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A.6 Experiment Customization

Experiments may be customized to use different rulesets, different packet traces, and

even different designs. To allow easy design exploration for single-FPGA and two-

FPGA (connected through 100Gbps Ethernet) scenarios, we provide two Python

files, which can generate the new global parameter file struct s.sv and the new

top-level file top.sv (top 0.sv and top 1.sv for the two-FPGA scenario) in the

build directory after running the following commands:

$ cd $pigasus_rep_dir/hardware/fluid/

$ python3 ./pigasus/pigasus.py

$ python3 ./pigasus/pigasus_multi.py

To customize parameters, edit the PARAMETER CONFIGURATION sec-

tion in pigasus.py or pigasus multi.py. To customize connections, edit

the CONNECTIONS section in pigasus.py or pigasus multi.py. We pro-

vide a commented guide in both Python files to explore different design options.

For instance, in pigasus.py, you can remove the Header Match stage, and in

pigasus multi.py, you can select among the 4 premade cutting points.

To view the visualized connection graph of the top level, uncomment the

visualizer pass line in the pass manager at the end of the Python file. To generate

the visualizations, you need to have graphviz and PyGraphviz installed. The

generated figure services.gv.png is in the following directory:

$ cd $pigasus_rep_dir/hardware/fluid/
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A.7 Artifact Evaluation Methodology

Submission, reviewing, and badging methodology: https://www.usenix.org/

conference/osdi20/call-for-artifacts
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“Fast string searching on PISA,” in Proceedings of the 2019 ACM Symposium

on SDN Research, SOSR ’19, (New York, NY, USA), pp. 21–28, Association

for Computing Machinery, 2019. 2.2

[36] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and

E. Chen, “ClickNP: Highly flexible and high performance network processing

with reconfigurable hardware,” in Proceedings of the 2016 ACM SIGCOMM

Conference, SIGCOMM ’16, (New York, NY, USA), pp. 1–14, Association for

Computing Machinery, 2016. 2.2

[37] BERTEN, “GPU vs FPGA performance comparison.” http:

//www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_

Performance_Comparison_v1.0.pdf. 2.2

[38] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park,

126

http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf


“Kargus: A highly-scalable software-based intrusion detection system,” in Pro-

ceedings of the 2012 ACM Conference on Computer and Communications Secu-

rity, CCS ’12, (New York, NY, USA), pp. 317–328, Association for Computing

Machinery, 2012. 2.2

[39] H. Liu, S. Pai, and A. Jog, “Why GPUs are slow at executing NFAs and how to

make them faster,” in Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’20, (New York, NY, USA), pp. 251–265, Association for Computing

Machinery, 2020. 2.2

[40] A. Subramaniyan and R. Das, “Parallel automata processor,” in Proceedings

of the 44th Annual International Symposium on Computer Architecture, ISCA

’17, (New York, NY, USA), pp. 600–612, Association for Computing Machinery,

2017. 2.2

[41] “Intel Stratix 10 MX.” https://www.intel.com/content/www/us/en/

programmable/products/boards_and_kits/dev-kits/altera/

kit-s10-mx.html. 2.2, 3.3.1, 3.3.2, 3.3.2, A.1, A.2, A.3

[42] R. Rahimi, E. Sadredini, M. Stan, and K. Skadron, “Grapefruit: An open-

source, full-stack, and customizable automata processing on FPGAs,” in IEEE

28th Annual International Symposium on Field-Programmable Custom Com-

puting Machines, FCCM ’20, pp. 138–147, IEEE, 2020. 2.4.1, 4.2

[43] M. Nguyen, Dynamically Managing FPGAs for Efficient Computing. PhD the-

sis, Dec 2020. 2.4.4, 7.1

[44] “DPDK-pktgen.” https://github.com/Pktgen/Pktgen-DPDK. 3.3.1,

A.2

127

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://github.com/Pktgen/Pktgen-DPDK


[45] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “Moon-

gen: A scriptable high-speed packet generator,” in Proceedings of the 2015

Internet Measurement Conference, pp. 275–287, 2015. 3.3.1, A.2

[46] Stratosphere, “Stratosphere laboratory datasets,” 2015. Retrieved

March 13, 2020, from https://www.stratosphereips.org/

datasets-overview. 3.3.1, 7, A.2

[47] S. Garcia, “Modelling the network behaviour of malware to block malicious

patterns. the stratosphere project: a behavioural IPS,” Virus Bulletin, pp. 1–8,

2015. 3.3.1
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