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Abstract

Genome sequence analysis plays a pivotal role in enabling many medical and scienti�c

advancements in personalized medicine, outbreak tracing, the understanding of evolution,

and forensics. Modern genome sequencing machines can rapidly generate massive amounts

of genomics data at low cost. However, the analysis of genome sequencing data is currently

bottlenecked by the computational power and memory bandwidth limitations of existing

systems, as many of the steps in genome sequence analysis must process a large amount of

data. Moreover, as sequencing technologies advance, the growth in the rate that sequencing

devices generate genomics data is far outpacing the corresponding growth in computational

power, placing greater pressure on these bottlenecks.

Our goals in this dissertation are to (1) understand where the current tools and algorithms

do not perform well in order to develop better tools and algorithms, and (2) understand the

limitations of existing hardware systems when running these tools and algorithms in order to

design e�cient customized accelerators. Towards this end, we propose four major works, where

we characterize the real-system behavior of the genome sequence analysis pipeline and its

associated tools, expose the bottlenecks and tradeo�s of the pipeline and tools, and co-design

fast and e�cient algorithms along with scalable and energy-e�cient customized hardware

accelerators for the key pipeline bottlenecks to enable faster genome sequence analysis.

First, we comprehensively analyze the tools in the genome assembly pipeline for long

reads in multiple dimensions (i.e., accuracy, performance, memory usage, and scalability),

uncovering bottlenecks and tradeo�s that di�erent combinations of tools and di�erent under-

lying systems lead to. We show that we need high-performance, memory-e�cient, low-power,

and scalable designs for genome sequence analysis in order to exploit the advantages that

genome sequencing provides. Second, we propose GenASM, an acceleration framework that

builds upon bitvector-based approximate string matching (ASM) to accelerate multiple steps

of the genome sequence analysis pipeline. We co-design our highly-parallel, scalable and

memory-e�cient algorithms with low-power and area-e�cient hardware accelerators. We
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evaluate GenASM for three di�erent use cases of ASM in genome sequence analysis and show

that GenASM is signi�cantly faster and more power- and area-e�cient than state-of-the-art

software and hardware tools for each of these use cases. Third, we implement an FPGA-based

prototype for GenASM, where state-of-the-art 3D-stacked memory (HBM2) o�ers high memory

bandwidth and FPGA resources o�er high parallelism by instantiating multiple copies of the

GenASM accelerators. Fourth, we propose SeGraM, the �rst hardware acceleration framework

for sequence-to-graph mapping and alignment. Instead of representing the reference genome

as a single linear DNA sequence, genome graphs provide a better representation of the diversity

among populations by encoding variations across individuals in a graph data structure, avoid-

ing a bias towards any one reference. SeGraM enables the e�cient mapping of a sequenced

genome to a graph-based reference, providing more comprehensive and accurate genome

sequence analysis. For SeGraM, we co-design algorithms and accelerators for memory-e�cient

minimizer-based seeding and bitvector-based, highly-parallel sequence-to-graph alignment.

Compared to state-of-the-art software tools for sequence-to-graph mapping and alignment, we

show that SeGraM signi�cantly increases the throughput and reduces the power consumption

for both short and long reads.

Overall, we demonstrate that genome sequence analysis can be accelerated by co-designing

scalable and energy-e�cient customized accelerators along with e�cient algorithms for the

key steps of genome sequence analysis. We also hope that this dissertation inspires future

work in co-designing algorithms and hardware together to create powerful frameworks that

accelerate other genomics workloads and emerging applications.
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Chapter 1

Introduction

1.1 Problem and Dissertation Statement

Genome sequencing, which determines the DNA sequence of an organism, plays

a pivotal role in enabling many medical and scienti�c advancements in personalized

medicine[14, 92, 105, 54, 32], evolutionary theory [82, 254, 255], and forensics [325, 39, 25].

Modern genome sequencing machines [280, 210, 241, 242, 245, 135, 136, 137] can rapidly

generate massive amounts of genomics data at low cost [281, 16, 212, 20], but are unable

to extract an organism’s complete DNA in one piece. Instead, these machines extract

smaller random fragments of the original DNA sequence, known as reads. These reads

then pass through a computational process known as genome sequence analysis. However,

the analysis of genome sequencing data is currently bottlenecked by the computational

power and memory bandwidth limitations of existing systems, as many of the steps in

genome sequence analysis must process a large amount of data. Moreover, as sequencing

technologies advance, the growth in the rate that sequencing devices generate genomics

data is far outpacing the corresponding growth in computational power, placing greater

pressure on these bottlenecks.

Our goals in this dissertation are to (1) understand where the current tools and al-

gorithms do not perform well in order to develop better tools and algorithms, and (2)

1



understand the limitations of existing hardware systems when running these tools and

algorithms in order to design e�cient customized accelerators. Towards this end, we

propose four major works. First, we comprehensively analyze the tools in the genome as-

sembly pipeline for long reads in multiple dimensions (i.e., accuracy, performance, memory

usage, and scalability), uncovering bottlenecks and tradeo�s that di�erent combinations of

tools and di�erent underlying systems lead to. We show that we need high-performance,

memory-e�cient, low-power, and scalable designs for genome sequence analysis in order

to exploit the advantages that genome sequencing provides. Second, we propose GenASM,

an acceleration framework that builds upon bitvector-based approximate string matching

(ASM) to accelerate multiple steps of the genome sequence analysis pipeline. We co-design

our highly-parallel, scalable and memory-e�cient algorithms with low-power and area-

e�cient hardware accelerators. We evaluate GenASM for three di�erent use cases of ASM

in genome sequence analysis and show that GenASM is signi�cantly faster and more power-

and area-e�cient than state-of-the-art software and hardware tools for each of these use

cases. Third, we implement an FPGA-based prototype for GenASM, where state-of-the-art

3D-stacked memory (HBM2) o�ers high memory bandwidth and FPGA resources o�er

high parallelism by instantiating multiple copies of the GenASM accelerators. Fourth,

we propose SeGraM, the �rst hardware acceleration framework for sequence-to-graph

mapping and alignment. Instead of representing the reference genome as a single linear

DNA sequence, genome graphs provide a better representation of the diversity among

populations by encoding variations across individuals in a graph data structure, avoiding

a bias towards any one reference. SeGraM enables the e�cient mapping of a sequenced

genome to a graph-based reference, providing more comprehensive and accurate genome

sequence analysis. For SeGraM, we co-design algorithms and accelerators for memory-

e�cient minimizer-based seeding and bitvector-based, highly-parallel sequence-to-graph

alignment. Compared to state-of-the-art software tools for sequence-to-graph mapping

and alignment, we show that SeGraM signi�cantly increases the throughput and reduces

the power consumption for both short and long reads.
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Our dissertation statement is as follows: Genome sequence analysis can be ac-

celerated by co-designing fast and e�cient algorithms along with scalable and

energy-e�cient customized hardware accelerators for the key bo�leneck steps of

the pipeline. s

1.2 Overview of Our Approach

In line with our dissertation statement, we present four works, where we characterize

the real-system behavior of the genome sequence analysis pipeline and its associated

tools, expose the bottlenecks and tradeo�s of the pipeline and tools, and co-design fast

and e�cient algorithms along with scalable and energy-e�cient customized hardware

accelerators for the key pipeline bottlenecks to enable faster genome sequence analysis.

In our �rst work, we present the �rst work that analyzes state-of-the-art tools associated

with each step of the genome assembly pipeline using long reads. We analyze the tools

in multiple dimensions that are important for both developers and users/practitioners:

accuracy, performance, memory usage and scalability. We reveal new bottlenecks and

tradeo�s that di�erent combinations of tools and di�erent underlying systems lead to, based

on our extensive experimental analyses. We also provide guidelines for both practitioners,

such that they can determine the appropriate tools and tool combinations that can satisfy

their goals, and tool developers, such that they can make design choices to improve current

and future tools.

In our second work, we propose GenASM, the �rst approximate string matching (ASM)

acceleration framework for genome sequence analysis. GenASM performs bitvector-based

ASM, which can e�ciently accelerate multiple steps of genome sequence analysis. We

modify the underlying ASM algorithm (Bitap) to signi�cantly increase its parallelism and

reduce its memory footprint. Using this modi�ed algorithm, we design the �rst hardware

accelerator for Bitap. Our hardware accelerator consists of specialized systolic-array-based

compute units and on-chip SRAMs that are designed to match the rate of computation with

3



memory capacity and bandwidth, resulting in an e�cient design whose performance scales

linearly as we increase the number of compute units working in parallel. We demonstrate

that GenASM provides signi�cant performance and power bene�ts for three di�erent use

cases in genome sequence analysis. First, GenASM accelerates read alignment for both long

reads and short reads. For long reads, GenASM outperforms state-of-the-art software and

hardware accelerators by 116× and 3.9×, respectively, while reducing power consumption

by 37× and 2.7×. For short reads, GenASM outperforms state-of-the-art software and

hardware accelerators by 111× and 1.9×. Second, GenASM accelerates pre-alignment

�ltering for short reads, with 3.7× the performance of a state-of-the-art pre-alignment

�lter, while reducing power consumption by 1.7× and signi�cantly improving the �ltering

accuracy. Third, GenASM accelerates edit distance calculation, with 22–12501× and 9.3–

400× speedups over the state-of-the-art software library and FPGA-based accelerator,

respectively, while reducing power consumption by 548–582× and 67×. We also brie�y

discuss four other use cases that can bene�t from GenASM.

In our third work, we propose BitMAc, which is an FPGA-based prototype for GenASM.

In BitMAc, we map our GenASM algorithms on Stratix 10 MX FPGA with a state-of-

the-art 3D-stacked memory (HBM2), where HBM2 o�ers high memory bandwidth and

FPGA resources o�er high parallelism by instantiating multiple copies of the GenASM

accelerators. After re-modifying the GenASM algorithms for a better mapping to existing

FPGA resources, we show that BitMAc provides 64% logic utilization and 90% on-chip

memory utilization, while having 48.9 W of total power consumption. We compare BitMAc

with state-of-the-art CPU-based and GPU-based read alignment tools. Compared to the

alignment steps of the CPU-based read mappers, (1) for long reads, BitMAc provides 761×

and 136× speedup, while reducing power consumption by 1.9× and 2.0×, and (2) for short

reads, BitMAc provides 92× and 130× speedup, while reducing power consumption by

2.2× and 2.0×. We also show that BitMAc provides signi�cant speedup compared to the

GPU-based baseline, while reducing the power consumption.
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In our fourth work, we propose SeGraM, the �rst hardware acceleration framework

for sequence-to-graph mapping and alignment. Reference genomes are conventionally

represented as a linear sequence. However, this linear representation of the reference

genome results with ignoring the variations that exist in a population (i.e., genetic diversity)

and introducing biases for the downstream analysis. To address these limitations, recently,

graph-based representations of the genomes (i.e., genome graphs) have gained attention.

As shown in many prior works [18, 301, 279, 95, 166, 21, 111, 96, 36, 217, 164, 175, 157, 158],

sequence-to-sequence mapping is one of the major bottlenecks of the genome sequence

analysis pipeline and need to be accelerated using specialized hardware. Since graph-

representation of the genome is much more complex than the linear representation,

sequence-to-graph mapping is placing a greater pressure on this bottleneck. Thus, in

this work, our goal is to design a high-performance, scalable, power- and area-e�cient

hardware accelerator for sequence-to-graph mapping that support both short and long

reads. We base SeGraM on a memory-e�cient minimizer-based seeding algorithm and a

bitvector-based, highly-parallel sequence-to-graph alignment algorithm. We co-design both

of our algorithms with high-performance, area- and power-e�cient hardware accelerators.

SeGraM consists of two components: (1) MinSeed, which provides hardware support to

execute our minimizer-based seeding algorithm, and (2) BitAlign, which provides hard-

ware support to execute our bitvector-based sequence-to-graph alignment algorithm. For

sequence-to-graph mapping with long reads, we �nd that SeGraM achieves 8.8× and 7.3×

speedup over 12-thread execution of state-of-the-art sequence-to-graph mapping tools

(GraphAligner and vg, respectively), while reducing power consumption by 4.9× and 6.5×.

For sequence-to-graph mapping with short reads, we �nd that SeGraM achieves 168× and

726× speedup over 12-thread execution of GraphAligner and vg, respectively, while reduc-

ing power consumption by 4.7× and 4.9×. For sequence-to-graph alignment, we show that

BitAlign provides 41×–539× speedup over PaSGAL, a state-of-the-art sequence-to-graph

alignment tool.
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1.3 Contributions

This dissertation makes the following key contributions:

1. We present the �rst work that analyzes state-of-the-art tools associated with each

step of the genome assembly pipeline using long reads. For the 5 di�erent steps of

the pipeline, we analyze 12 di�erent tools and make 21 observations for these tools.

(a) We analyze the tools in multiple dimensions that are important for both de-

velopers and users/practitioners: accuracy, performance, memory usage and

scalability.

(b) We reveal new bottlenecks and tradeo�s that di�erent combinations of tools

and di�erent underlying systems lead to, based on our extensive experimental

analyses.

(c) We show that basecalling is the most important step of the pipeline to overcome

the high error rates of nanopore sequencing technology.

(d) We show that there is a tradeo� between accuracy and performance when

choosing the tool for the assembly step. Miniasm, coupled with an additional

polishing step can lead to faster overall assembly than using Canu itself, while

producing high-quality assemblies.

(e) We make observations that can guide researchers and practitioners in making

conscious and e�ective choices for each step of the genome assembly pipeline

using long reads. Also, with the help of bottlenecks we �nd, developers can

improve the current tools or build new ones that are both accurate and fast, in

order to overcome the high error rates of the long read sequencing technologies.

(f) We show that we need high-performance, memory-e�cient, low-power, and

scalable designs for genome sequence analysis in order to exploit the advantages

that genome sequencing provides.
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2. We present GenASM, a novel approximate string matching acceleration framework

for genome sequence analysis. GenASM is a power- and area-e�cient hardware

implementation of our new Bitap-based algorithms. GenASM is a fast, e�cient, and

�exible framework for both short and long reads, which can be used to accelerate

multiple steps of the genome sequence analysis pipeline.

(a) To avoid implementing more complex hardware for the dynamic programming

based algorithm [86, 158, 301, 117, 35, 155, 267, 53], we base GenASM upon the

Bitap algorithm [34, 317]. Bitap uses only fast and simple bitwise operations to

perform approximate string matching, making it amenable to e�cient hardware

acceleration. To our knowledge, GenASM is the �rst work that enhances and

accelerates Bitap.

(b) We modify Bitap to add e�cient support for long reads and enable parallelism

within each ASM operation. We also propose the �rst Bitap-compatible trace-

back algorithm. We open source our software implementations of the GenASM

algorithms [268].

(c) In GenASM, we co-design our modi�ed Bitap algorithm and our new Bitap-

compatible traceback algorithm with an area- and power-e�cient hardware

accelerator. Our hardware accelerator (1) balances the compute resources

with available memory capacity and bandwidth per compute unit to avoid

wasting resources, (2) achieves high performance and power e�ciency by

using specialized compute units that we design to exploit data locality, and

(3) scales linearly in performance with the number of parallel compute units

that we add to the system.

(d) We show that GenASM can accelerate three use cases of approximate string

matching (ASM) in genome sequence analysis (i.e., read alignment, pre-alignment

�ltering, edit distance calculation).
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(e) We �nd that GenASM is greatly faster and more power-e�cient for all three

use cases than state-of-the-art software and hardware baselines.

3. We propose BitMAc, where we leverage a modern FPGA with high-bandwidth mem-

ory (HBM) for presenting an FPGA-based prototype for our GenASM accelerators.

In BitMAc, we map GenASM on Stratix 10 MX FPGA with a state-of-the-art 3D-

stacked memory (HBM2), where HBM2 o�ers high memory bandwidth. We exploit

intra-level parallelism by instantiating multiple processing elements (PEs) for the

DC execution, and inter-level parallelism by running multiple independent GenASM

executions in parallel.

(a) We implement our DC and TB accelerator datapaths using SystemVerilog and

incorporate the M20Ks and the HBM2 interface for both top and bottom HBM2

stacks using M20K and HBM2 IPs. After re-modifying the GenASM algorithms

for a better mapping to existing FPGA resources, the �nal and complete BitMAc

design has 4 BitMAc accelerators connected to each pseudo-channel (128 in

total), where each BitMAc accelerator contains a DC accelerator with 16 PEs,

a TB accelerator, an FSM, and 13.2KB of M20Ks. We synthesize and place &

route the complete BitMAc design clocked at 200 MHz.

(b) We show that BitMAc provides 64% logic utilization and 90% on-chip memory

utilization, while having 48.9 W of total power consumption.

(c) We compare BitMAc with state-of-the-art CPU-based and GPU-based read

alignment tools and show that BitMAc provides signi�cant speedup compared

to the the baselines, while reducing the power consumption.

(d) We show that due to the simplicity of the GenASM algorithms, BitMAc is a

low-cost and scalable solution for bitvector-based sequence alignment.

4. We propose SeGraM, a hardware acceleration framework for sequence-to-graph

mapping and alignment. SeGraM targets both the seeding and alignment steps of

sequence-to-graph mapping, with support for both short (e.g., Illumina) and long
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(e.g., PacBio, ONT) read sequencing technologies. For seeding, we base SeGraM on a

memory-e�cient minimizer-based seeding algorithm, and for alignment, we develop

a new bitvector-based, highly-parallel sequence-to-graph alignment algorithm. We

co-design both of our algorithms with high-performance, area- and power-e�cient

hardware accelerators.

(a) To our knowledge, SeGraM is the �rst acceleration framework for sequence-to-

graph mapping and alignment. SeGraM aims to alleviate existing performance

bottlenecks for both short and long read analysis.

(b) We propose MinSeed, the �rst hardware accelerator for minimizer-based seed-

ing. MinSeed can be used for the seeding steps of both graph-based mapping

and traditional sequence-to-sequence mapping.

(c) We propose BitAlign, the �rst hardware accelerator for sequence-to-graph

alignment. BitAlign is based upon a new bitvector-based sequence-to-graph

alignment algorithm that we develop, and can be also used as a sequence-to-

sequence aligner.

(d) We couple SeGraM with high-bandwidth memory (HBM) to enable more ef-

fective data movement, exploit the high internal bandwidth, and improve the

overall performance and energy e�ciency.

(e) We evaluate SeGraM using a combination of accelerator synthesis and detailed

performance modeling. We �nd that SeGraM is signi�cantly more e�cient than

state-of-the-art sequence-to-graph mapping and sequence-to-graph alignment

tools.

1.4 Dissertation Outline

This dissertation is organized into 8 chapters. Chapter 2 describes necessary back-

ground on genome sequencing, sequencing technologies, genome sequence analysis, and
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genome graphs. Chapter 3 presents our experimental study of the genome assembly

pipeline using long reads. Chapter 4 presents GenASM, a high-performance and low-

power approximate string matching acceleration framework for genome sequence analysis.

Chapter 5 presents BitMAc, an FPGA-based near-memory prototype of the GenASM ac-

celerators. Chapter 6 presents SeGraM, the �rst hardware acceleration framework for

sequence-to-graph mapping. Chapter 7 presents the expected long-term impact of the

works in this dissertation and more generally, accelerating genome sequence analysis.

Finally, Chapter 8 presents conclusions and future research directions that are enabled by

this dissertation.
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Chapter 2

Background

We describe the necessary background on genome sequencing, genome sequence

analysis, genome assembly and read mapping pipelines, genome graphs, and sequence-to-

graph mapping to help the reader to understand our observations and proposed designs

for accelerating genome sequence analysis.

2.1 Genome Sequencing

Genome sequencing, which determines the DNA sequence of an organism, plays

a pivotal role in enabling many medical and scienti�c advancements in personalized

medicine [14, 92, 105, 54, 32], evolutionary theory [82, 254, 255], and forensics [325, 39, 25].

Modern genome sequencing machines [280, 210, 241, 242, 245, 135, 136, 137] can rapidly

generate massive amounts of genomics data at low cost [281, 16, 212, 20], but are unable to

extract an organism’s complete DNA in one piece. Instead, these machines extract smaller

random fragments of the original DNA sequence, known as reads.

State-of-the-art sequencing machines produce broadly one of two kinds of reads.

Short reads (consisting of no more than a few hundred DNA base pairs [50, 295]) are

generated using short-read sequencing (SRS) technologies [263, 303], which have been on

the market for more than a decade. Because each read fragment is so short compared to the

11



entire DNA (e.g., a human’s DNA consists of over 3 billion base pairs [306]), short reads

incur a number of reproducibility (e.g., non-deterministic mapping) and computational

challenges [90, 322, 321, 15, 296, 20, 18, 323, 212]. Long reads (consisting of thousands to

millions of DNA base pairs) are generated using long-read sequencing (LRS) technologies,

of which Oxford Nanopore Technologies’ (ONT) nanopore sequencing [280, 198, 200, 56, 70,

205, 42, 176, 147, 159, 151, 258] and Paci�c Biosciences’ (PacBio) single-molecule real-time

(SMRT) sequencing [83, 266, 264, 313, 219, 304, 202, 26] are the most widely used ones.

LRS technologies are relatively new, and they avoid many of the challenges faced by short

reads.

LRS technologies have three key advantages compared to SRS technologies. First, LRS

devices can generate very long reads, which (1) reduces the non-deterministic mapping

problem faced by short reads, as long reads are signi�cantly more likely to be unique and

therefore have fewer potential mapping locations in the reference genome; and (2) span

larger parts of the repeated or complex regions of a genome, enabling detection of genetic

variations that might exist in these regions [304]. Second, LRS devices perform real-

time sequencing, and can enable concurrent sequencing and analysis [257, 266, 193].

Third, ONT’s pocket-sized device (MinION [210]) provides portability, making sequencing

possible at remote places using laptops or mobile devices. This enables a number of new

applications, such as rapid infection diagnosis and outbreak tracing (e.g., COVID-19, Ebola,

Zika, swine �u [257, 316, 122, 153, 61, 113, 307, 84]). Unfortunately, LRS devices are much

more error-prone in sequencing (with a typical error rate of 10–15% [151, 312, 30, 304])

compared to SRS devices (typically 0.1% [106, 256, 108]), which leads to new computational

challenges [280].

2.2 Genome Sequence Analysis

Since the whole genome of most organisms cannot be sequenced all at once, the genome

is broken into smaller fragments. After each fragment is sequenced, small pieces of DNA
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sequences (i.e., reads) are generated. The locations of the sample fragments on the whole

genome are usually random. Thus, the sequences of DNA fragments (i.e., reads) should

pass through computational mechanisms to gather meaningful information out of them,

which is called genome sequence analysis.

There are two types of genome sequence analysis mechanisms: (1) assemble the reads

without a template reference sequence (i.e., de novo assembly), and (2) map the reads with

respect to a reference sequence (i.e., read mapping).

2.3 Genome Assembly Pipeline Using Long Reads

Figure 2-1 shows each step of the genome assembly pipeline using long reads. The

output of nanopore sequencers is raw signal data that represents changes in electric

current when a DNA strand passes through nanopore. Thus, the pipeline starts with the

raw signal data. The �rst step, basecalling, translates this raw signal output of MinION

into bases (A, C, G, T) to generate DNA reads. It is important to note that basecalling

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal data

Assembly

DNA reads

Overlaps

Draft assembly

Improved assembly Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of 
reads against 
draft assembly

Figure 2-1: Genome assembly pipeline using long reads, with its �ve steps and
the associated tools for each step.
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is the only step unique to nanopore sequencing, and the rest of the steps are applicable

for both of the long read sequencing technologies (ONT and PacBio). The second step

computes all pairwise read alignments or su�x-pre�x matches between each pair of reads,

called read-to-read overlaps. Overlap-layout-consensus (OLC) algorithms are used for

the assembly of nanopore sequencing reads since OLC-algorithms perform better with

longer error-prone reads [252]. OLC-based assembly algorithms generate an overlap graph,

where each node denotes a read and each edge represents the su�x-pre�x match between

the corresponding two nodes. The third pipeline step, genome assembly, traverses this

overlap graph, producing the layout of the reads and then constructing a draft assembly. To

increase the accuracy of the assembly, further polishing, i.e., post-assembly error correction,

may be required. The fourth step of the pipeline is mapping the original basecalled reads

to the generated draft assembly from the previous step (i.e., read mapping). The �fth and

�nal step of the pipeline is polishing the assembly with the help of mappings from the

previous step.

2.4 Read Mapping Pipeline

Another common approach for genome sequence analysis is to perform read mapping,

where each read of an organism’s sequenced genome is matched against the reference

genome for the organism’s species to �nd the read’s original location. As Figure 2-2 shows,

typical read mapping [182, 180, 14, 322, 174, 185] is a four-step process, which is also

known as seed-and-extend strategy. First, read mapping starts with indexing 0 , which is

an o�ine pre-processing step performed on a known reference genome. Second, once a

sequencing machine generates reads from a DNA sequence, the seeding process 1 queries

the index structure to determine the candidate (i.e., potential) mapping locations of each

read in the reference genome using substrings (i.e., seeds) from each read. Third, for each

read, pre-alignment �ltering 2 uses �ltering heuristics to examine the similarity between

a read and the portion of the reference genome at each of the read’s candidate mapping
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Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference 
genome

Hash table-based index
(pre-processed)

Candidate mapping 
locations

Optimal alignment

Remaining candidate 
mapping locations

Reads from 
sequenced genome

0

1

2

3

Figure 2-2: Four steps of read mapping.

locations. These �ltering heuristics aim to eliminate most of the dissimilar pairs of reads

and candidate mapping locations to decrease the number of required alignments in the next

step. Fourth, for all of the remaining candidate mapping locations, read alignment 3 runs

a dynamic programming based algorithm to determine which of the candidate mapping

locations in the reference matches best with the input read. As part of this step, traceback

is performed between the reference and the input read to �nd the optimal alignment,

which is the alignment with the highest likelihood of being correct (based on a scoring

function [109, 207, 310]). The optimal alignment is de�ned using a CIGAR string [183],

which shows the sequence and position of each match, substitution, insertion, and deletion

for the read with respect to the selected mapping location of the reference.

2.5 Genome Graphs

Genetic variation between individuals is observed by comparing the di�erences between

their two genomes. These di�erences, such as single-nucleotide polymorphisms (i.e., SNPs),

insertions and deletions (i.e., indels), and structural variations (i.e., SVs), maintain genetic
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diversity between populations and within communities [7]. However, the presence of

these genomic portions creates limitations for mapping the sequenced reads to a reference

genome [247, 72, 41, 116], since the reference is commonly represented as a linear DNA

sequence [273]. Using a single reference introduces reference allele bias, by emphasizing

the alleles (i.e., gene variants) that are present in the reference individual [247]. Alternate

locus sequences (i.e., ALT, alternative subsequences for diverging regions of the reference

DNA sequence [100, 148]) produced along with recent linear reference versions or utilizing

pangenome models to include the collection of population genomes [6, 247] can alleviate

the e�ect of reference allele bias. These factors lead to low read mapping accuracy around

the diversity regions (SNPs, indels and SVs) and eventually cause false detection of SVs [261].

Thus, the current practices for variant detection techniques mostly depend on complex

combinations of alignment patterns [13].

Sequence graphs of a genome are better suited for expressing the di�erences or am-

biguities in diversity regions than linear reference sequences [99]. Therefore, there is a

growing trend towards utilizing genome graphs [251, 228, 262, 99, 261, 163, 76] to more

e�ciently and accurately express the reference and its associated diversity annotations.

Genome graphs are also more e�ective for presenting pangenomes [247] and extending

the linear reference with alternate locus sequences to mitigate reference allele bias [72].

Genome graphs represent the reference genome and known genetic variations in the

population as a graph-based data structure. As we show in Figure 2-3, a node represents

one or more base pairs, and edges connect the base pairs in a node to all of the possible base

pairs that come next in the sequence, with multiple outgoing edges from a node capture

genetic variations. Thus, di�erent paths in the graph translate to di�erent sequences.

Genome graphs are growing in popularity for a number of applications, such as varia-

tion calling [99], genome assembly [58, 251, 326, 283], error correction [270], and multiple

sequence alignment [246, 177]. With an increasing importance and usage of genome

graphs, having e�cient tools for mapping genomic sequences to these graphs become

crucial.
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T
Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Reference #4: ACGACGT

Figure 2-3: Example of a genome graph that represents 4 related but di�erent
genomic sequences.

2.6 Sequence-to-Graph Mapping

Similar to conventional sequence-to-sequence mapping (Section 2.4), sequence-to-

graph mapping follows the seed-and-extend strategy. After constructing the graph using

a linear reference genome and the associated variations for that genome, the nodes’ of

the graph are indexed as a pre-processing step. Later, this index is used in the seeding

step, which aims to �nd seed matches between the query read and a region of the graph.

After optionally clustering or �ltering these seed matches with a �ltering or chaining

step, alignment is performed between all of the remaining seed locations of the graph and

the query read. Even though sequence-to-sequence mapping is a well-studied problem,

sequence-to-graph mapping is a newer problem and there are only a few existing tools,

which are optimized for only short reads or only long reads, or specialized for a speci�c

use cases.
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Chapter 3

Bottleneck Analysis of the

Genome Assembly Pipeline

Using Long Reads

Due to the repetitive regions in the genome, the short-read length of the most dominant

NGS technologies (e.g., 100-150 bp reads) causes errors and ambiguities for read mapping

[296, 90], and poses computational challenges and accuracy problems to de novo assembly

[15]. Repetitive sequences are usually longer than the length of a short read and an entire

repetitive sequence cannot be spanned by a single short read. Thus, short reads lead to

highly-fragmented, incomplete assemblies [198, 15, 200]. However, a long read can span

an entire repetitive sequence and enable continuous and complete assemblies.The demand

for sequencing technologies that can produce longer reads has resulted in the emergence

of even newer alternative sequencing technologies.

Nanopore sequencing technology [56] is one example of such technologies that can

produce long read lengths. Nanopore sequencing is an emerging single-molecule DNA

sequencing technology, which exhibits many attractive qualities, and in time, it could

potentially surpass current sequencing technologies. Nanopore sequencing promises
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high sequencing throughput, low cost, and longer read length, and it does not require an

ampli�cation step before the sequencing process [205, 42, 176, 147].

Using biological nanopores for DNA sequencing was �rst proposed in the 1990s [159],

but the �rst nanopore sequencing device, MinION [210], was only recently (in May 2014)

made commercially available by Oxford Nanopore Technologies (ONT). MinION is an

inexpensive, pocket-sized, portable, high-throughput sequencing apparatus that produces

data in real-time. These properties enable new potential applications of genome sequencing,

such as rapid surveillance of Ebola, Zika or other epidemics [257], near-patient testing

[258], and other applications that require real-time data analysis. In addition, the MinION

technology has two major advantages. First, it is capable of generating ultra-long reads (e.g.,

882 kilobase pairs or longer [151, 195]). MinION’s long reads greatly simplify the genome

assembly process by decreasing the computational requirements [198, 199]. Second, it is

small and portable. MinION is named as the �rst DNA sequencing device used in outer

space to help the detection of life elsewhere in the universe with the help of its size and

portability [223]. With the help of continuous updates to the MinION device and the

nanopore chemistry, the �rst nanopore human reference genome was generated by using

only MinION devices [151].

Nanopores are suitable for sequencing because they:

• Do not require any labeling of the DNA or nucleotide for detection during sequencing,

• Rely on the electronic or chemical structure of the di�erent nucleotides for identi�-

cation,

• Allow sequencing very long reads, and

• Provide portability, low cost, and high throughput.

Despite all these advantageous characteristics, nanopore sequencing has one major

drawback: high error rates. In May 2016, ONT released a new version of MinION with a

new nanopore chemistry called R9 [259], to provide higher accuracy and higher speed,
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which replaced the previous version R7. Although the R9 chemistry improves the data

accuracy, the improvements are not enough for cutting-edge applications. Thus, nanopore

sequence analysis tools have a critical role to overcome high error rates and to take better

advantage of the technology. Also, faster tools are critically needed to 1) take better

advantage of the real-time data production capability of MinION and 2) enable real-time

data analysis.

Our goal in this work is to comprehensively analyze current publicly-available tools for

nanopore sequence analysis to understand their advantages, disadvantages, and bottlenecks.

It is important to understand where the current tools do not perform well, to develop better

tools. To this end, we analyze the tools associated with the multiple steps in the genome

assembly pipeline using nanopore sequence data in terms of accuracy, speed, memory

e�ciency, and scalability.

3.1 Steps and Tools

3.1.1 Basecalling

When a strand of DNA passes through the nanopore (which is called the translocation

of the strand through the nanopore), it causes drops in the electric current passing between

the walls of the pore. The amount of change in the current depends on the type of base

passing through the pore. Basecalling, the initial step of the entire pipeline, translates the

raw signal output of the nanopore sequencer into bases (A, C, G, T) to generate DNA reads.

Most of the current basecallers divide the raw current signal into discrete blocks, which are

called events. After event-detection, each event is decoded into a most-likely set of bases.

In the ideal case, each consecutive event should di�er by one base. However, in practice,

this is not the case because of the non-stable speed of the translocation. Also, determining

the correct length of the homopolymers (i.e., repeating stretches of one kind of base, e.g.,

AAAAAAA) is challenging. Both of these problems make deletions the dominant error of
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nanopore sequencing [276, 69]. Thus, basecalling is the most important step of the pipeline

that plays a critical role in decreasing the error rate.

In this work, we analyze �ve state-of-the-art basecalling tools (Table 3-1). For a detailed

comparison of these and other basecallers (including Albacore [12], which is not freely

available, and Chiron [293]), we refer the reader to an ongoing basecaller comparison

study [314]. Note that this ongoing study does not capture the accuracy and performance

of the entire genome assembly pipeline using nanopore sequence data.

Table 3-1: State-of-the-art nanopore basecalling tools.

Tool Strategy Multi-threading Support Reference

Metrichor RNN (cloud-based) [206]

Nanonet RNN with -jobs parameter [221]

Scrappie RNN with export OMP_NUM_THREADS command [277]

Nanocall HMM with –threads parameter [67, 220]

DeepNano RNN no support; split dataset and run it in parallel [40, 71]

Metrichor

Metrichor [206] is ONT’s cloud-based basecaller, and its source code is not publicly

available. Before the R9 update, Metrichor was using Hidden Markov Models (HMM) [78]

for basecalling [259]. After the R9 update, it started using recurrent neural networks (RNN)

[274, 249] for basecalling [259].

Nanonet

Nanonet [221] has also been developed by ONT, and it is available on Github. Since

Metrichor requires an Internet connection and its source code is not available, Nanonet is

an o�ine and open-source alternative for Metrichor. Nanonet is implemented in Python.

It also uses RNN for basecalling [221]. The tool supports multi-threading by sharing the

computation needed to call each single read between concurrent threads. In other words,

only one read is called at a time.
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Scrappie

Scrappie [277] is the newest proprietary basecaller developed by ONT. It is named as

the �rst basecaller that explicitly addresses basecalling errors in homopolymer regions. In

order to determine the correct length of homopolymers, Scrappie performs transducer-

based basecalling [276]. For versions R9.4 and R9.5, Scrappie can perform basecalling with

the raw current signal, without requiring event detection. It is a C-based local basecaller

and is still under development [276].

Nanocall

Nanocall [67] uses Hidden Markov Models for basecalling, and it is independently

developed by a research group. It was released before the R9 update when Metrichor

was also using an HMM-based approach for basecalling, to provide the �rst o�ine and

open-source alternative for Metrichor. However, after the R9 update, when Metrichor

started to perform basecalling with a more powerful RNN-based approach, Nanocall’s

accuracy fell short of Metrichor’s accuracy [220]. Thus, although Nanocall supports R9 and

upper versions of nanopore data, its usefulness is limited [220]. Nanocall is a C++-based

command-line tool. It supports multi-threading where each thread performs basecalling

for di�erent groups of raw reads.

DeepNano

DeepNano [40] is also independently developed by a research group before the R9

update. It uses an RNN-based approach to perform basecalling. Thus, it is considered to

be the �rst RNN-based basecaller. DeepNano is implemented in Python. It does not have

multi-threading support.
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3.1.2 Read-to-Read Overlap Finding

Previous genome assembly methods designed for accurate and short reads (i.e., de Bruijn

graph (DBG) approach [251, 58]) are not suitable for nanopore reads because of the high

error rates of the current nanopore sequencing devices [168, 69, 200, 55]. Instead, overlap-

layout-consensus (OLC) algorithms [186] are used for nanopore sequencing reads since

they perform better with longer, error-prone reads. OLC-based assembly algorithms start

with �nding the read-to-read overlaps, which is the second step of the pipeline. Read-to-

read overlap is de�ned to be a common sequence between two reads [55]. GraphMap [290]

and Minimap [181] are the commonly-used state-of-the-art tools for this step (Table 3-2).

Table 3-2: State-of-the-art read-to-read overlap �nding tools.

Tool Strategy Multi-threading Support Reference

GraphMap k-mer similarity with –threads parameter [290, 112]

Minimap minimizer similarity with -t parameter [181, 209]

Note: Both GraphMap and Minimap also have read mapping functionality.

GraphMap

GraphMap �rst partitions the entire read dataset into k-length substrings (i.e. k-mers),

and then creates a hash table. GraphMap uses gapped k-mers, i.e., k-mers that can contain

insertions or deletions (indels) [290, 45]. In the hash table, for each k-mer entry, three

pieces of information are stored: 1) k-mer string, 2) the index of the read, and 3) the position

in the read where the corresponding k-mer comes from. GraphMap detects the overlaps by

�nding the k-mer similarity between any two given reads. Due to this design, GraphMap

is a highly sensitive and accurate tool for error-prone long reads. It is a command-line

tool written in C++. GraphMap is used for both 1) read-to-read overlap �nding with

the graphmap owler command and 2) read mapping with the graphmap align

command.
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Minimap

Minimap also partitions the entire read dataset into k-mers, but instead of creating a

hash table for the full set of k-mers, it �nds the minimum representative set of k-mers,

called minimizers, and creates a hash table with only these minimizers. Minimap �nds the

overlaps between two reads by �nding minimizer similarity. The goals of using minimizers

are to 1) reduce the storage requirement of the tool by storing fewer k-mers and 2) accelerate

the overlap �nding process by reducing the search span. Minimap also sorts k-mers for

cache e�ciency. Minimap is fast and cache-e�cient, and it does not lose any sensitivity

by storing minimizers since the chosen minimizers can represent the whole set of k-mers.

Minimap is a command-line tool written in C. Like GraphMap, it can both 1) �nd overlaps

between two read sets and 2) map a set of reads to a full genome.

3.1.3 Genome Assembly

After �nding the read-to-read overlaps, OLC-based assembly algorithms generate an

overlap graph. Genome assembly is performed by traversing this graph, producing the

layout of the reads and then constructing a draft assembly. Canu [169] and Miniasm [181]

are the commonly-used error-prone long-read assemblers (Table 3-3).

Table 3-3: State-of-the-art assembly tools.

Tool Strategy Multi-threading Support Reference

Canu OLC with error correction auto con�guration [169, 47]

Miniasm OLC without error correction no support [181, 208]

Canu

Canu performs error-correction as the initial step of its own pipeline. It �nds the

overlaps of the raw uncorrected reads and uses them for the error-correction. The purpose

of error-correction is to improve the accuracy of the bases in the reads [169, 48]. After the

error-correction step, Canu �nds overlaps between corrected reads and constructs a draft

assembly after an additional trimming step. However, error-correction is a computationally
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expensive step. In its own pipeline, Canu implements its own read-to-read overlap �nding

tool such that the users do not need to perform that step explicitly before running Canu.

Most of the steps in the Canu pipeline are multi-threaded. Canu detects the resources that

are available in the computer before starting its pipeline and automatically assigns number

of threads, number of processes and amount of memory based on the available resources

and the assembled genome’s estimated size.

Miniasm

Miniasm skips the error-correction step since it is computationally expensive. It

constructs a draft assembly from the uncorrected read overlaps computed in the previous

step. Although Miniasm lowers computational cost and thus accelerates and simpli�es

assembly by doing so, the accuracy of the draft assembly depends directly on the accuracy

of the uncorrected basecalled reads. Thus, further polishing may be necessary for these

draft assemblies. Miniasm does not support multi-threading.

3.1.4 Read Mapping and Polishing

In order to increase the accuracy of the assembly, especially for the rapid assembly

methods like Miniasm, which do not have the error-correction step, further polishing

may be required. Polishing, i.e., post-assembly error-correction, improves the accuracy

of the draft assembly by mapping the reads to the assembly and changing the assembly

to increase local similarity with the reads [196, 305, 69]. The �rst step of polishing is

mapping the basecalled reads to the generated draft assembly from the previous step. One

of the most commonly-used long read mappers for nanopore data is BWA-MEM [180].

Read-to-read overlap �nding tools, GraphMap and Minimap (Section 3.1.2), can also be

used for this step, since they also have a read mapping mode (Table 3-4).

After aligning the basecalled reads to the draft assembly, the �nal polishing of the

assembly can be performed with Nanopolish [196] or Racon [305] (Table 3-5).
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Table 3-4: State-of-the-art read mapping tools.

Tool Strategy Multi-threading Support Reference

BWA-MEM Burrows-Wheeler Transform with -t parameter [180, 46]

GraphMap k-mer similarity with –threads parameter [290, 112]

Minimap minimizer similarity with -t parameter [181, 209]

Table 3-5: State-of-the-art polishing tools.

Tool Strategy Multi-threading Support Reference

Nanopolish Hidden Markov Model with –threads, -P parame-

ters

[196, 222]

Racon Partial order alignment graph with –threads parameter [305, 260]

Nanopolish

Nanopolish uses the raw signal data of reads along with the mappings from the previous

step to improve the assembly base quality by evaluating and maximizing the probabilities

for each base with a Hidden Markov Model-based approach [196]. It can increase the

accuracy of the draft assembly by correcting the homopolymer-rich parts of the genome.

Although this approach can increase the accuracy signi�cantly, it is computationally

expensive, and thus time consuming. Nanopolish developers recommend BWA-MEM as

the read mapper before running Nanopolish [222].

Racon

Racon constructs partial order alignment graphs [177, 305] in order to �nd a consensus

sequence between the reads and the draft assembly. After dividing the sequence into

segments, Racon tries to �nd the best alignment to increase the accuracy of the draft

assembly. Racon is a fast polishing tool, but it does not promise a high increase in accuracy

as Nanopolish promises. However, multiple iterations of Racon runs or a combination

of Racon and Nanopolish runs can improve accuracy signi�cantly. Racon developers

recommend Minimap as the read mapper to use before running Racon, since Minimap is

both fast and sensitive [305].
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3.2 Experimental Methodology

3.2.1 Dataset

In this work, we use Escherichia coli genome data as the test case, sequenced using the

MinION with an R9 �owcell [194].

MinION sequencing has two types of work�ows. In the 1D work�ow, only the template

strand of the double-stranded DNA is sequenced. In contrast, in the 2D work�ow, with

the help of a hairpin ligation, both the template and complement strands pass through the

pore and are sequenced. After the release of R9 chemistry, 1D data became very usable in

contrast to previous chemistries. Thus, we perform the analysis of the tools on 1D data.

MinION outputs one �le in the fast5 format for each read. The fast5 �le format is

a hierarchical data format, capable of storing both raw signal data and basecalled data

returned by Metrichor. This dataset includes 164,472 reads, i.e., fast5 �les. Since all these

�les include both raw signal data and basecalled reads, we can use this dataset for both

1) using the local basecallers to convert raw signal data into the basecalled reads and 2)

using the already basecalled reads by Metrichor.

3.2.2 Evaluation Systems

In this work, for accuracy and performance evaluations of di�erent tools, we use three

separate systems with di�erent speci�cations. We use the �rst computer in the �rst part

of the analysis, accuracy analysis. We use the second and third computers in the second

part of the analysis, performance analysis, to compare the scalability of the analyzed tools

in the two machines with di�erent speci�cations (Table 3-6).

We choose the �rst system for evaluation since it has a larger memory capacity than a

usual server and, with the help of a large number of cores, the tasks can be parallelized

easily in order to get the output data quickly. We choose the second system, called desktop,

since it represents a commonly-used desktop server. We choose the third system, called

27



Table 3-6: Speci�cations of evaluation systems.

Name Model CPU

Speci�cations

Main Memory

Speci�cations

NUMA
*

Speci�cations

System 1 40-core Intel
®

Xeon
®

E5-2630 v4 CPU

@ 2.20GHz

20 physical cores

2 threads per core

40 logical cores with

hyper-threading
**

128GB DDR4

2 channels,

2 ranks/channel

Speed: 2400MHz

2 NUMA nodes, each

with 10 physical

cores, 64GB of mem-

ory and an 25MB of

last level cache (LLC)

System 2

(desktop)

8-core Intel
®

Core

i7-2600 CPU

@ 3.40GHz

4 physical cores

2 threads per core

8 logical cores with

hyper-threading
**

16GB DDR3

2 channels,

2 ranks/channel

Speed: 1333MHz

1 NUMA node, with 4

physical cores, 16GB

of memory and an

8MB of LLC

System 3

(big-mem)

80-core Intel
®

Xeon
®

E7-4850 CPU

@ 2.00GHz

40 physical cores

2 threads per core

80 logical cores with

hyper-threading
**

1TB DDR3

8 channels,

4 ranks/channel

Speed: 1066MHz

4 NUMA nodes, each

with 10 physical

cores, 256GB of

memory and an

24MB of LLC

*
NUMA (Non-Uniform Memory Access) is a computer memory design, where a processor accesses its local

memory faster (i.e., with lower latency) than a non-local memory (i.e., memory local to another processor in

another NUMA node). A NUMA node is composed of the local memory and the CPU cores (See Observation

6 in Section 3.3.1 for detail).

**
Hyper-threading is Intel’s simultaneous multithreading (SMT) implementation (See Observation 5 in

Section 3.3.1 for detail).

big-mem, because of its large memory capacity. This big-mem system can be useful for

those who would like to get results more quickly.

3.2.3 Accuracy Metrics

We compare each draft assembly generated after the assembly step and each improved

assembly generated after the polishing step with the reference genome, by using the

dnadiff command under the MUMmer package [211]. We use six metrics to measure

accuracy, as de�ned in Table 3-7: 1) number of bases in the assembly, 2) number of contigs,

3) average identity, 4) coverage, 5) number of mismatches, and 6) number of indels.

3.2.4 Performance Metrics

We analyze the performance of each tool by running the associated command-line of

each tool with the /usr/bin/time -v command. We use four metrics to quantify
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performance as de�ned in Table 3-8: 1) wall clock time, 2) CPU time, 3) peak memory

usage, and 4) parallel speedup.

Table 3-7: Accuracy metrics.

Metric Name De�nition Preferred Values

Number of bases Total number of bases in the assembly ≃ Length of reference

genome

Number of contigs Total number of segments in the assembly Lower (≃ 1)

Average identity Percentage similarity between the assembly and the

reference genome

Higher (≃ 100%)

Coverage Ratio of the number of aligned bases in the reference

genome to the length of reference genome

Higher (≃ 100%)

Number of mismatches Total number of single-base di�erences between the

assembly and the reference genome

Lower (≃ 0)

Number of indels Total number of insertions and deletions between

the assembly and the reference genome

Lower (≃ 0)

Table 3-8: Performance metrics.

Metric Name De�nition Preferred Values

Wall clock time Elapsed time from the start of a program to the end Lower

CPU time Total amount of time the CPU spends in user mode

(i.e., to run the program’s code) and kernel mode (i.e.,
to execute system calls made by the program)

*

Lower

Peak memory usage Maximum amount of memory used by a program

during its whole lifetime

Lower

Parallel speedup Ratio of the time to run a program with 1 thread to

the time to run it with N threads

Higher

*
If wall clock time < CPU time for a speci�c program, it means that the program runs in parallel.

3.3 Results and Analysis

In this section, we present our results obtained by analyzing the performance of

di�erent tools for each step in the genome assembly pipeline using nanopore sequence

data in terms of accuracy and performance, using all the metrics we provide in Table 3-7

and Table 3-8. Additionally, Table 3-9 shows the tool version, the executed command, and

the output of each analyzed tool. We divide our analysis into three main parts.

In the �rst part of our analysis, we examine the �rst three steps of the pipeline (cf.

Figure 2-2). To this end, we �rst execute each basecalling tool (i.e., one of Nanonet, Scrappie,

Nanocall or DeepNano). Since Metrichor is a cloud-based tool and its source code is not
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Table 3-9: Versions, commands to execute, and outputs for each analyzed tool.

Command
*

Output

Basecalling Tools
Nanonet–v2.0 nanonetcall fast5_dir/ --jobs N

--chemistry r9
reads.fasta

Scrappie–v1.0.1 (1)export OMP_NUM_THREADS=N
(2)scrappie events --segmentation
(2)Segment_Linear:split_hairpin
(2)fast5_dir/ ...

reads.fasta

Nanocall–v0.7.4 nanocall -t N fast5_dir/ reads.fasta
DeepNano–e8a621e python basecall.py –directory

fast5_dir/ --chemistry r9
reads.fasta

Read-to-Read Overlap Finding Tools
GraphMap–v0.5.2 graphmap owler -L paf -t N -r

reads.fasta -d reads.fasta
overlaps.paf

Minimap–v0.2 minimap -Sw5 -L100 -m0 -tN
reads.fasta reads.fasta

overlaps.paf

Assembly Finding Tools
Canu–v1.6 canu -p ecoli -d canu-ecoli

genomeSize=4.6m -nanopore-raw
reads.fasta

draft.fasta

Miniasm–v0.2 miniasm -f reads.fasta
overlaps.paf

draft.gfa –>
draft.fasta

Read Mapping Tools
BWA-MEM–0.7.15 (1)bwa index draft.fasta

(2)bwa mem -x ont2d -t N
(2)draft.fasta reads.fasta

mappings.sam –>
–> mappings.bam

Minimap–v0.2 minimap -tN draft.fasta
reads.fasta

mappings.paf

Polishing Tools
Nanopolish–v0.7.1 (1)python nanopolish_makerange.py

(2)draft.fasta | parallel -P M
(2)nanopolish variants --consensus
(2)polished.{1}.fa -w {1} -r reads.fasta
(2)-b mappings.bam -g draft.fasta
(2)-t N
(3)python nanopolish_merge.py
(3)polished.*.fa

polished.fasta

Racon–v0.5.0 racon (–sam) –bq
-1 -t N reads.fastq
mappings.paf/(mappings.sam)
draft.fasta

polished.fasta

*
N corresponds to the number of threads and M corresponds to the number of parallel jobs.

available, we cannot execute Metrichor and get the performance metrics for it. After

recording the performance metrics for each basecaller run, we execute either GraphMap or

Minimap followed by Miniasm, or Canu itself, and record the performance metrics for each

run. We obtain a draft assembly for each combination of these basecalling, read-to-read
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overlap �nding and assembly tools. For each draft assembly, we assess its accuracy by

comparing the resulting draft assembly with the existing reference genome. We show the

accuracy results in Table 3-10. We show the performance results in Table 3-11. We will

refer to these tables in Sections 3.3.1 – 3.3.3.

In the second part of our analysis, we examine the last two steps of the pipeline

(cf. Figure 2-2). To this end, for each obtained draft assembly, we execute each possible

combination of di�erent read mappers (i.e., BWA-MEM or Minimap) and di�erent polishers

(i.e., Nanopolish or Racon), and record the performance metrics for each step (i.e., read

mapping and polishing). We obtain a polished assembly after each run, and assess its

accuracy by comparing it with the existing reference genome. For these two analyses, we

use the �rst system, which has 40 logical cores, and execute each tool using 40 threads,

which is the possible maximum number of threads for that particular machine. We show

the accuracy results in Table 3-12. We show the performance results in Table 3-13. We will

refer to these tables in Section 3.3.4.

In the third part of our analysis, we assess the scalability of all of the tools that have

multi-threading support. For this purpose, we use the second and third systems to compare

the scalability of these tools on two di�erent system con�gurations. For each tool, we

change the number of threads and observe the corresponding change in speed, memory

usage, and parallel speedup. These results are depicted in Figures 3-1 – 3-5, and we will

refer to them throughout Sections 3.3.1 – 3.3.4.

Sections 3.3.1 – 3.3.4 describe the major observations we make for each of the �ve steps

of the pipeline (cf. Figure 2-2) based on our extensive evaluation results.

3.3.1 Basecalling Tools

As we discuss in Section 3.1.1, ONT’s basecallers Metrichor, Nanonet and Scrappie,

and another basecaller developed by Boza et al. (2017), DeepNano, use Recurrent Neural

Networks (RNNs) for basecalling whereas Nanocall developed by David et al. (2016) uses

Hidden Markov Models (HMM) for basecalling.
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Accuracy

Using RNNs is a more powerful basecalling approach than using HMMs since an RNN

1) does not make any assumptions about sequence length [292] and 2) is not a�ected by

the repeats in the sequence [292, 67, 40]. However, it is still challenging to determine the

correct length of the homopolymers even with an RNN.

In order to compare the accuracy of the analyzed basecallers, we group the accuracy

results by each basecalling tool and compare them according to the de�ned accuracy

metrics.

According to this analysis and the accuracy results shown in Table 3-10, we make the

following key observation.

Observation 1: The pipelines that start with Metrichor, Nanonet, or Scrappie as the

basecaller have similar identity and coverage trends among all of the evaluated scenarios (i.e.,

tool combinations for the �rst three steps), but Scrappie has a lower number of mismatches

and indels. However, Nanocall and DeepNano cannot reach these three basecallers’ accuracies:

they have lower identity and lower coverage.

Since Nanonet is the local version of Metrichor, Nanonet and Metrichor’s similar

accuracy trends are expected. In addition to the power of the RNN-based approach,

Scrappie tries to solve the homopolymer basecalling problem. Although Scrappie is in

an early stage of development, it leads to a smaller number of indels than Metrichor or

Table 3-10: Accuracy analysis results for the �rst three steps of the pipeline.

#

Bases

#

Contigs

Identity

(%)

Coverage

(%)

#

Mismatches

#

Indels

1 Metrichor + — + Canu 4,609,499 1 98.05 99.92 12,378 76,990

2 Metrichor + Minimap + Miniasm 4,402,675 1 87.71 94.85 249,096 372,704

3 Metrichor + GraphMap + Miniasm 4,500,155 2 86.22 96.95 237,747 360,199

4 Nanonet + — + Canu 4,581,728 1 97.92 99.97 11,971 83,248

5 Nanonet + Minimap + Miniasm 4,350,175 1 85.50 92.76 237,518 394,852

6 Nanonet + GraphMap + Miniasm 4,272,545 1 85.36 91.16 232,748 389,968

7 Scrappie + — + Canu 4,614,149 1 98.46 99.90 6,777 63,597

8 Scrappie + Minimap + Miniasm 4,877,399 8 86.94 90.04 184,669 363,025

9 Scrappie + GraphMap + Miniasm 4,368,417 1 86.78 89.86 189,192 372,245

10 Nanocall + — + Canu 1,299,808 86 93.33 28.93 21,985 61,217

11 Nanocall + Minimap + Miniasm 4,492,964 5 80.52 42.92 177,589 221,092

12 Nanocall + GraphMap + Miniasm 4,429,390 3 80.51 41.32 171,455 213,435

13 DeepNano + — + Canu 7,151,596 106 92.75 99.16 38,803 211,551

14 DeepNano + Minimap + Miniasm 4,252,525 1 82.38 65.00 199,122 335,761

15 DeepNano + GraphMap + Miniasm 4,251,548 1 82.39 64.92 197,914 335,064
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Nanonet. Nanocall’s poor accuracy results are due to the simple HMM-based approach it

uses. Although DeepNano performs better than Nanocall with the help of its RNN-based

approach, it results in a higher number of indels and a lower coverage of the reference

genome.

Performance

RNN and HMM are computationally-intensive algorithms. In HMM-based basecalling,

the Viterbi algorithm [93] is used for decoding. The Viterbi algorithm is a sequential tech-

nique and its computation cannot currently be parallelized with multithreading. However,

in RNN-based basecalling, multiple threads can work on di�erent sections of the neural

network and thus RNN computation can be parallelized with multithreading.

In order to measure and compare the performance of the selected basecallers, we

�rst compare the recorded wall clock time, CPU time and memory usage metrics of each

scenario for the �rst step of the pipeline. Based on the results provided in Table 3-11, we

make the following key observation.

Observation 2: RNN-based Nanonet and DeepNano are 2.6x and 2.3x faster than HMM-

based Nanocall, respectively. Although Scrappie is also an RNN-based tool, it is 5.7x faster

than Nanonet due to its C implementation as opposed to Nanonet’s Python implementation.

Table 3-11: Performance analysis results for the �rst three steps of the pipeline.
Step 1:

Basecaller

Step 2:
Read-to-Read Overlap Finder

Step 3:
Assembly

Wall

Clock

Time

(h:m:s)

CPU

Time

(h:m:s)

Memory

Usage

(GB)

Wall

Clock

Time

(h:m:s)

CPU

Time

(h:m:s)

Memory

Usage

(GB)

Wall

Clock

Time

(h:m:s)

CPU

Time

(h:m:s)

Memory

Usage

(GB)

1 Metrichor + — + Canu

—
*

—
*

—
*

— — — 44:12:31 502:18:56 5.76

2 Metrichor + Minimap + Miniasm 2:15 41:37 12.30 1:09 1:09 1.96

3 Metrichor + GraphMap + Miniasm 6:14 1:52:57 56.58 1:05 1:05 1.82

4 Nanonet + — + Canu

17:52:42 714:21:45 1.89

— — — 11:32:40 129:07:16 5.27

5 Nanonet + Minimap + Miniasm 1:13 18:55 9.45 33 33 0.69

6 Nanonet + GraphMap + Miniasm 3:18 48:27 29.16 32 32 0.65

7 Scrappie + — + Canu

3:11:41 126:19:06 13.36

— — — 33:47:41 385:51:23 5.75

8 Scrappie + Minimap + Miniasm 2:52 1:10:26 12.40 1:29 1:29 1.98

9 Scrappie + GraphMap + Miniasm 7:26 2:16:02 38.31 1:23 1:23 1.87

10 Nanocall + — + Canu

47:04:53 1857:37:56 37.73

— — — 1:35:23 27:58:29 3.77

11 Nanocall + Minimap + Miniasm 1:15 16:08 12.19 20 20 0.47

12 Nanocall + GraphMap + Miniasm 5:14 1:09:04 56.78 16 16 0.30

13 DeepNano + — + Canu

23:54:34 811:14:29 8.38

— — — 1:15:48 17:31:07 3.61

14 DeepNano + Minimap + Miniasm 1:50 24:30 11.71 1:03 1:03 1.31

15 DeepNano + GraphMap + Miniasm 5:18 1:17:06 54.64 58 58 1.10

*
We cannot get the performance metrics for Metrichor since its source code is not available for us to run the tool by ourselves.
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For a deeper understanding of these tools’ advantages, disadvantages and bottlenecks,

we also perform a scalability analysis for each basecaller by running it on the desktop server

and the big-mem server separately, with 1, 2, 4, 8 (maximum for the desktop server), 16, 32,

40, 64 and 80 (maximum for the big-mem server) threads, and measuring the performance

metrics for each con�guration. Metrichor and DeepNano are not included in this analysis

because Metrichor is a cloud-based tool and its source code is not available for us to change

its number of threads, and DeepNano does not support multi-threading. Figure 3-1 shows

the speed, memory usage and parallel speedup results of our evaluations. We make four

observations.
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Figure 3-1: Scalability results of Nanocall, Nanonet and Scrappie. Wall clock
time (a, b), peak memory usage (c, d), and parallel speedup (e, f) results obtained
on the desktop and big-mem systems. The left column (a, c, e) shows the results
from the desktop system and the right column (b, d, f) shows the results from

the big-mem system.
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Observation 3: When we compare desktop’s and big-mem’s single thread performance,

we observe that desktop is approximately 2x faster than big-mem (cf. Figure 3-1a and 3-1b).

This is mainly because of desktop’s higher CPU frequency (see Table 6). It is an

indication that all of these three tools are computationally expensive. Larger memory

capacity or larger Last-Level Cache (LLC) capacity of big-mem cannot make up for the

higher CPU speed in desktop when there is only one thread.

Observation 4: Scrappie and Nanocall have a linear increase in memory usage when

number of threads increases. In contrast, Nanonet has a constant memory usage for all

evaluated thread units (cf. Figure 3-1c and 3-1d).

In Scrappie and Nanocall, each thread performs the basecalling for di�erent groups of

raw reads. Thus, each thread allocates its own memory space for the corresponding data.

This causes the linear increase in memory usage when the level of parallelism increases.

In Nanonet, all of the threads share the computation of each read, and thus memory usage

is not a�ected by the amount of thread parallelism.

Observation 5: When the number of threads exceeds the number of physical cores, the

simultaneous multithreading overhead prevents continued linear speedup of Nanonet, Scrappie

and Nanocall (cf. Figure 3-1e and 3-1f).

Simultaneous multithreading (SMT) (i.e., running more than one thread per physical

core [204, 201, 297, 299, 81, 298, 324, 124]), or more speci�cally Intel’s hyper-threading (i.e.,

since we use Intel’s hyper-threading enabled machines (see Table 3-6)) helps to decrease

the total runtime but it does not provide a linear speedup with the number of threads

because of the CPU-intensive workload of Scrappie, Nanocall and Nanonet. If the threads

executed are CPU-bound and do not wait for the memory or I/O requests, hyper-threading

does not provide linear speedup due to the contention it causes in the shared resources for

the computation. This phenomenon has been analyzed extensively in other application

domains [204, 201, 297].

Observation 6: Data sharing between threads degrades the parallel speedup of Nanonet

when cores from multiple NUMA nodes take role in the computation (cf. Figure 3-1f).
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In Nanonet, data is shared between threads and each thread performs di�erent com-

putations on the same data. There are 4 NUMA nodes in big-mem (cf. Table 3-6), and

when data is shared between multiple NUMA nodes, this negatively a�ects the speedup

of Nanonet because accessing the data located in another node (i.e., non-local memory)

requires longer latency than accessing the data located in local memory. When multiple

NUMA nodes start taking role in the computation, Nanocall performs better in terms of

scalability since it does not require data sharing between di�erent threads.

Summary. Based on the observations we make about the analyzed basecalling tools,

we conclude that the choice of the tool for this step plays an important role to overcome the

high error rates of nanopore sequencing technology. Basecalling with Recurrent Neural

Networks (e.g., Metrichor, Nanonet, Scrappie) provides higher accuracy and higher speed

than basecalling with Hidden Markov Models, and the newest basecaller of ONT, Scrappie,

also has the potential to overcome the homopolymer basecalling problem.

3.3.2 Read-to-Read Overlap Finding Tools

As we discuss in Section 3.1.2, GraphMap and Minimap are the commonly-used tools

for this step. GraphMap �nds the overlaps using k-mer similarity, whereas Minimap �nds

them by using minimizers instead of the full set of k-mers.

Accuracy

As done in GraphMap, �nding the overlaps with the help of full set of k-mers is a

highly-sensitive and accurate approach. However, it is also resource-intensive. For this

reason, instead of the full set of k-mers, Minimap uses a minimum representative set of

k-mers, minimizers, as an alternative approach for �nding the overlaps.

In order to compare the accuracy of these two approaches, we categorize the results in

Table 3-10 based on read-to-read overlap �nding tools. In other words, we look at the rows

with the same basecaller (i.e., red-labeled tools) and same assembler (i.e., green-labeled

tools) but di�erent read-to-read overlap �nder (i.e., blue-labeled tools). After that, we
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compare them according to the de�ned accuracy metrics. We make the following major

observation.

Observation 7: Pipelines with GraphMap or Minimap end up with similar values for

identity, coverage, number of indels and mismatches. Thus, either of these read-to-read overlap

�nding tools can be used in the second step of the nanopore sequencing assembly pipeline to

achieve similar accuracy.

Minimap and GraphMap do not have a signi�cantly di�erent e�ect on the accuracy of

the generated draft assemblies. This is because Minimap does not lose any sensitivity by

storing minimizers instead of the full set of k-mers.

Performance

In order to compare the performance of GraphMap and Minimap, we categorize the

results in Table 3-11 based on read-to-read overlap �nding tools, in a similar way we

describe the results in Table 3-10 for the accuracy analysis. We also perform a scalability

analysis for each of these tools by running them on the big-mem server with 1, 2, 4, 8, 16,

32, 40, 64 and 80 threads, and measuring the performance metrics. Because of the high

memory usage of GraphMap, data necessary for the tool does not �t in the memory of

the desktop server and the GraphMap job exits due to a bad memory allocation exception.

Thus, we could not perform the scalability analysis of GraphMap in the desktop server.

Figure 3-2 depicts the speed, memory usage and parallel speedup results of the scala-

bility analysis for GraphMap and Minimap. We make the following three observations

according to the results from Table 3-11 and Figure 3-2.

Observation 8: The memory usage of both GraphMap and Minimap is dependent on the

hash table size but independent of number of threads. Minimap requires 4.6x less memory

than GraphMap, on average.

This is mainly because Minimap stores only minimizers instead of all k-mers. Storing

the full set of k-mers in GraphMap requires a larger hash table, and thus higher memory
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usage than Minimap. The high amount of memory requirement causes GraphMap to not

run on our desktop system for none of the selected number of thread units.
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Figure 3-2: Scalability results of Minimap and GraphMap. Wall clock time (a),
peak memory usage (b), and parallel speedup (c) results obtained on the

big-mem system.
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Observation 9: Minimap is 2.5x faster than GraphMap, on average, across di�erent

scenarios in Table 3-11.

Since GraphMap stores all k-mers, GraphMap needs to scan its very large dataset while

�nding the overlaps between two reads. However, in Minimap, the size of dataset that

needs to be scanned is greatly shrunk by storing minimizers, as we describe in Observation

8. Thus, Minimap performs much less computation, leading to its 2.5x speedup. Another

indication of the di�erent memory usage and its e�ect on the speed of computation is

the Last-Level Cache (LLC) miss rates of these two tools. The LLC miss rate of Minimap

is 36% whereas the LLC miss rate of GraphMap is 55%. Since the size of data needed by

GraphMap is much larger than the LLC size, GraphMap experiences LLC misses more

frequently. As a result, GraphMap stalls for longer, waiting for data accesses from main

memory, which negatively a�ects the speed of the tool.

Observation 10: Minimap is more scalable than GraphMap. However, after 32 threads,

there is a decrease in the parallel speedup of Minimap (cf. Figure 3-2c).

Because of its lower computational workload and lower memory usage, we �nd that

Minimap is more scalable than GraphMap. However, in Minimap, threads that �nish

their work wait for the other active threads to �nish their workloads, before starting new

work, in order to prevent higher memory usage. Because of this, when the number of

threads reaches a high number (i.e., 32 in Figure 3-2c), synchronization overhead greatly

increases, causing the parallel speedup to reduce. GraphMap does not su�er from such a

synchronization bottleneck and hence does not experience a decrease in speedup. However,

GraphMap’s speedup saturates when the number of threads reaches a high number due to

data sharing between threads.

Summary. According to the observations we make about GraphMap and Minimap,

we conclude that storing minimizers instead of all k-mers, as done by Minimap, does not

a�ect the overall accuracy of the �rst three steps of the pipeline. Moreover, by storing

minimizers, Minimap has a much lower memory usage and thus much higher performance

than GraphMap.
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3.3.3 Assembly Tools

As we discuss in Section 3.1.3, Canu and Miniasm are the commonly-used tools for

this step.
1

Accuracy

In order to compare the accuracy of these two tools, we categorize the results in

Table 3-10 based on assembly tools. We make the following observation.

Observation 11: Canu provides higher accuracy than Miniasm, with the help of the

error-correction step that is present in its own pipeline.

Performance

In order to compare the performance of Canu and Miniasm, we categorize the results

in Table 3-11 based on assembly tools, in a way similar to what we did in Table 3-10 for the

accuracy analysis. We could not perform a scalability analysis for these tools since Canu

has an auto-con�guration mechanism for each sub-step of its own pipeline, which does not

allow us to change the number of threads, and Miniasm does not support multi-threading.

We make the following observation according to the results in Table 3-11.

Observation 12: Canu is much more computationally intensive and greatly (i.e., by

1096.3x) slower than Miniasm, because of its very expensive error-correction step.

Summary. According to the observations we make about Canu and Miniasm, there

is a tradeo� between accuracy and performance when deciding on the appropriate tool

for this step. Canu produces highly accurate assemblies but it is resource intensive and

slow. In contrast, Miniasm is a very fast assembler but it cannot produce as accurate

draft assemblies as Canu. We suggest that Miniasm can potentially be used for fast initial

1
In addition, we attempted to evaluate MECAT [318], another assembler. We were unable to draw any

meaningful conclusions from MECAT, as its memory usage exceeds the 1TB available in our big-mem system.
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analysis and then further polishing can be applied in the next step in order to produce

higher-quality assemblies.

3.3.4 Read Mapping and Polishing Tools

As we discuss in Section 3.1.4, further polishing may be required for improving the

accuracy of the low-quality draft assemblies. For this purpose, after aligning the reads to

the generated draft assembly with BWA-MEM or Minimap, one can use Nanopolish or

Racon to perform polishing and obtain improved assemblies (i.e., consensus sequences).

Nanopolish accepts mappings only in Sequence Alignment/Map (SAM) format [183]

and it works only with draft assemblies generated with the Metrichor-basecalled reads.

On the other hand, Racon accepts both Pairwise Mapping format (PAF) mappings [181] and

SAM-format mappings, but it requires the input reads and draft assembly �les to be in fastq

format [57], which includes quality scores. However, by using the -bq -1 parameter, it

is possible to disable the �ltering used in Racon, which requires quality scores. Since our

basecalled reads are in fasta format [250], in our experiments, we convert these fasta �les

into fastq �les and disable the �ltering with the corresponding parameter.

BWA-MEM generates mappings in SAM format whereas Minimap generates mappings

in PAF format. Since Nanopolish requires SAM format input, we generate the mappings

only with BWA-MEM and use them for Nanopolish polishing, in our analysis. On the

other hand, since Racon accepts both formats, we generate the mappings and the overlaps

with both BWA-MEM and Minimap, respectively, and use them for Racon polishing, in our

analysis.

Accuracy

Table 3-12 presents the accuracy metrics results for Nanopolish (i.e., Rows 1-3) and

Racon (i.e., Rows 4-23) pipelines. Based on these results, we make two observations.

Observation 13: Both Nanopolish and Racon signi�cantly increase the accuracy of the

draft assemblies.

41



Table 3-12: Accuracy analysis results for the full pipeline with a focus on the
last two steps.

#

Bases

#

Contigs

Identity

(%)

Coverage

(%)

#

Mismatches

#

Indels

1 Metrichor + — + Canu + BWA-MEM + Nanopolish 4,683,072 1 99.48 99.93 8,198 15,581

2 Metrichor + Minimap + Miniasm + BWA-MEM + Nanopolish 4,540,352 1 92.33 96.31 162,884 182,965

3 Metrichor + GraphMap + Miniasm + BWA-MEM + Nanopolish 4,637,916 2 92.38 95.80 159,206 180,603

4 Metrichor + — + Canu + BWA-MEM + Racon 4,650,502 1 98.46 100.00 18,036 51,842

5 Metrichor + — + Canu + Minimap + Racon 4,648,710 1 98.45 100.00 17,906 52,168

6 Metrichor + Minimap + Miniasm + BWA-MEM + Racon 4,598,267 1 97.70 99.91 24,014 82,906

7 Metrichor + Minimap + Miniasm + Minimap + Racon 4,600,109 1 97.78 100.00 23,339 79,721

8 Nanonet + — + Canu + BWA-MEM + Racon 4,622,285 1 98.48 100.00 16,872 52,509

9 Nanonet + — + Canu + Minimap + Racon 4,620,597 1 98.49 100.00 16,874 52,232

10 Nanonet + Minimap + Miniasm + BWA-MEM + Racon 4,593,402 1 98.01 99.97 20,322 72,284

11 Nanonet + Minimap + Miniasm + Minimap + Racon 4,592,907 1 98.04 100.00 20,170 70,705

12 Scrappie + — + Canu + BWA-MEM + Racon 4,673,871 1 98.40 99.98 13,583 60,612

13 Scrappie + — + Canu + Minimap + Racon 4,673,606 1 98.40 99.98 13,798 60,423

14 Scrappie + Minimap + Miniasm + BWA-MEM + Racon 5,157,041 8 97.87 99.80 18,085 78,492

15 Scrappie + Minimap + Miniasm + Minimap + Racon 5,156,375 8 97.87 99.94 17,922 77,807

16 Nanocall + — + Canu + BWA-MEM + Racon 1,383,851 86 93.49 28.82 19,057 65,244

17 Nanocall + — + Canu + Minimap + Racon 1,367,834 86 94.43 28.74 15,610 55,275

18 Nanocall + Minimap + Miniasm + BWA-MEM + Racon 4,707,961 5 90.75 97.11 91,502 347,005

19 Nanocall + Minimap + Miniasm + Minimap + Racon 4,673,069 5 92.23 97.10 72,646 291,918

20 DeepNano + — + Canu + BWA-MEM + Racon 7,429,290 106 96.46 99.24 27,811 102,682

21 DeepNano + — + Canu + Minimap + Racon 7,404,454 106 96.03 99.21 34,023 110,640

22 DeepNano + Minimap + Miniasm + BWA-MEM + Racon 4,566,253 1 96.76 99.86 25,791 125,386

23 DeepNano + Minimap + Miniasm + Minimap + Racon 4,571,810 1 96.90 99.97 24,994 119,519

For example, Nanopolish increases the identity and coverage of the draft assembly

generated with the Metrichor+Minimap+Miniasm pipeline from 87.71% and 94.85% (Row 2

of Table 3-10), respectively, to 92.33% and 96.31% (Row 2 of Table 3-12). Similarly, Racon

increases them to 97.70% and 99.91% (Rows 6–7 of Table 3-12), respectively.

Observation 14: For Racon, the choice of read mapper does not a�ect the accuracy of

the polishing step.

We observe that using BWA-MEM or Minimap to generate the mappings for Racon

results in almost identical accuracy metric results. For example, when we use BWA-MEM

before Racon for the draft assembly generated with the Metrichor + Canu pipeline (Row 4

of Table 3-12), Racon results with 98.46% identity, 100.00% coverage, 18,036 mismatches

and 51,842 indels. When we use Minimap, instead (Row 5 of Table 3-12), Racon results

with 98.45% identity, 100.00% coverage, 17,096 mismatches and 52,168 indels, which is

almost identical to the BWA-MEM results.

Performance

In the �rst part of the performance analysis for Nanopolish, we divide the draft assem-

blies into 50kb-segments and polish 4 of these segments in parallel with 10 threads for

each segment. For Racon, each draft assembly is polished using 40 threads, but the tool, by
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default, divides the input sequence into windows of 20kb length. Table 3-13 presents the

performance results for Nanopolish (i.e., Rows 1-3) and Racon (i.e., Rows 4-23) pipelines.

Based on these results, we make the following two observations.

Observation 15: Nanopolish is computationally much more intensive and thus greatly

slower than Racon.

Nanopolish runs take days to complete whereas Racon runs take minutes. This is mainly

because Nanopolish works on each base individually, whereas Racon works on the windows.

Since each window is much longer (i.e., 20kb) than a single base, the computational

workload is greatly smaller in Racon. Also, Racon only uses the mappings/overlaps for

polishing, whereas Nanopolish uses raw signal data and an HMM-based approach in order

to generate the consensus sequence, which is computationally more expensive.

Observation 16: BWA-MEM is computationally more expensive than Minimap.

Although the choice of BWA-MEM and Minimap for the read mapping step does not

a�ect the accuracy of the polishing step, these two tools have a signi�cant di�erence in

performance.

Table 3-13: Performance analysis results for the full pipeline with a focus on
the last two steps.

Step 4: Read Mapper Step 5: Polisher

Wall

Clock

Time

(h:m:s)

CPU

Time

(h:m:s)

Memory

Usage

(GB)

Wall

Clock

Time

(h:m:s)

CPU

Time

(h:m:s)

Memory

Usage

(GB)

1 Metrichor + — + Canu + BWA-MEM + Nanopolish 24:43 15:47:21 5.26 5:51:00 191:18:52 13.38

2 Metrichor + Minimap + Miniasm + BWA-MEM + Nanopolish 12:33 7:50:54 3.75 122:52:00 4458:36:10 31.36

3 Metrichor + GraphMap + Miniasm + BWA-MEM + Nanopolish 12:47 7:57:58 3.60 129:46:00 4799:03:51 31.31

4 Metrichor + — + Canu + BWA-MEM + Racon 24:20 15:43:40 6.60 14:44 9:09:22 8.11

5 Metrichor + — + Canu + Minimap + Racon 3 1:35 0.26 15:12 9:45:33 14.55

6 Metrichor + Minimap + Miniasm + BWA-MEM + Racon 12:10 7:48:10 5.19 15:43 9:33:39 9.98

7 Metrichor + Minimap + Miniasm + Minimap + Racon 3 1:24 0.26 20:28 8:57:40 18.24

8 Nanonet + — + Canu + BWA-MEM + Racon 9:08 5:53:18 4.84 6:33 4:02:10 4.47

9 Nanonet + — + Canu + Minimap + Racon 2 54 0.26 6:45 4:17:26 7.93

10 Nanonet + Minimap + Miniasm + BWA-MEM + Racon 4:40 2:58:02 3.88 7:08 4:19:30 5.35

11 Nanonet + Minimap + Miniasm + Minimap + Racon 2 46 0.26 7:01 4:18:48 9.53

12 Scrappie + — + Canu + BWA-MEM + Racon 33:41 21:11:06 8.66 13:32 8:24:44 7.58

13 Scrappie + — + Canu + Minimap + Racon 3 1:39 0.27 18:45 7:43:17 13.20

14 Scrappie + Minimap + Miniasm + BWA-MEM + Racon 22:41 14:31:00 6.08 14:37 8:53:59 9.50

15 Scrappie + Minimap + Miniasm + Minimap + Racon 3 1:27 0.27 15:10 9:02:45 12.72

16 Nanocall + — + Canu + BWA-MEM + Racon 4:52 3:01:15 3.80 11:07 3:26:52 5.63

17 Nanocall + — + Canu + Minimap + Racon 3 1:16 0.22 7:28 2:50:35 3.62

18 Nanocall + Minimap + Miniasm + BWA-MEM + Racon 16:06 10:27:20 5.06 18:56 11:32:45 11.47

19 Nanocall + Minimap + Miniasm + Minimap + Racon 4 1:18 0.26 11:49 7:08:59 10.98

20 DeepNano + — + Canu + BWA-MEM + Racon 17:36 11:30:20 4.43 12:48 7:13:04 8.88

21 DeepNano + — + Canu + Minimap + Racon 3 1:24 0.28 11:39 6:55:01 3.73

22 DeepNano + Minimap + Miniasm + BWA-MEM + Racon 8:15 5:22:29 4.11 14:16 8:34:32 10.30

23 DeepNano + Minimap + Miniasm + Minimap + Racon 3 1:10 0.26 xxx:12:29 xxx7:55:32 17.11
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For a deeper performance analysis of these read mapping and polishing tools, we

perform a scalability analysis for each read mapper and each polisher by running them on

the desktop system and the big-mem system separately, with 1, 2, 4, 8 (maximum for desktop

server), 16, 32, 40, 64 and 80 (maximum for big-mem server) threads, and measuring the

performance metrics. Figure 3-3 shows the the speed, memory usage and parallel speedup

of BWA-MEM and Minimap. We make two observations.

Observation 17: On both systems, Minimap is greatly faster than BWA-MEM (cf. Fig-

ure 3-3a and 3-3b). However, when the number of threads reaches high value, Minimap’s

performance degrades due to the synchronization overhead between its threads (cf. Figure 3-3f).

!

"!!!

#!!!

$!!!

%!!!

&!!!!

&"!!!

&#!!!

&$!!!

! " # $ %

'
(
))
*+
),
-.

*/
01

2
*3
42

-5

671829*,:*/;92(<4

='>?@A@*B4C*@0D01(E*F<24.G,E

!

!"#

$

$"#

%

! % & ' (

)
*
+
,
-.

*
/
0
12
-3

4+
5
*
-67

8
9

:;/<*1-0=->?1*+@4

!

"

#

$

%

&

'

! # % ' (

)
*
+*
,,
-
,./

0
-
-
1
2
0

3245-+.67.89+-*1:

!"#

!$#

!%#

!

"!!!

#!!!!

#"!!!

$!!!!

$"!!!

%!!!!

%"!!!

! $! &! '! (!

)
*
++
,-
+.
/0

,1
23

4
,5
64

/7

893:4;,.<,1=;4*>6

?)@ABCB,D6E,B2F23*G,H:2IA343

!

"

#

$

%

&!

&"

! "! #! $! %!

'
(
)
*
+,

(
-
.
/0
+1

2)
3
(
+45

6
7

89-:(/+.;+<=/()>2

!&#

!

"

#!

#"

$!

$"

%!

%"

! $! &! '! (!

)
*
+*
,,
-
,./

0
-
-
1
2
0

3245-+.67.89+-*1:

!'#

!(#
!"#$%&'()*)!+#,(-.&/).0$%( !"#$%&'()1)!+#,(-.&/).0$%(

234567 893567::25;7

='>?@A@ @0D01(E

Figure 3-3: Scalability results of BWA-MEM and Minimap. Wall clock time (a, b),
peak memory usage (c, d), and parallel speedup (e, f) results obtained on the
desktop and big-mem systems. The left column (a, c, e) shows the results from
the desktop system and the right column (b, d, f) shows the results from the

big-mem system.
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On the desktop system, Minimap is 332.0x faster than BWA-MEM, on average (see

Figure 3-3a). On the big-mem system, Minimap is 294.6x and 179.6x faster than BWA-MEM,

on average, when the number of threads is smaller and greater than 32, respectively. This

is due to the synchronization overhead that increases with the number of threads used in

Minimap (see Observation 10). As we also show in Figure 3-3f, Minimap’s speedup reduces

when the number of threads exceeds 32, which is another indication of the synchronization

overhead that causes Minimap to slow down.

Observation 18: Minimap’s memory usage is independent of the number of threads and

stays constant. In contrast, BWA-MEM’s memory usage increases linearly with the number of

threads (cf. Figure 3-3c and 3-3d).

In Minimap, memory usage is dependent on the hash table size and is independent of

number of threads (see Observation 8). In contrast, in BWA-MEM, each thread separately

performs computation for di�erent groups of reads (as in Scrappie and Nanocall, see

Observation 4). This causes the linear increase in memory usage of BWA-MEM when the

number of threads increases.

Figure 3-4 shows the scalability results for Racon on the big-mem system. We obtain

the results on both of the systems. However, we only show the results for the big-mem

system since the results for both of the systems are similar. We separately test the tool

by using PAF mappings and SAM mappings. Based on the results, we make the following

observation.

Observation 19: Racon’s memory usage is independent of the number of threads for

both PAF mode and SAM mode. However, the memory usage of PAF mode is 1.86x higher than

the memory usage of SAM mode, on average (cf. Figure 3-4b).

The memory usage of Racon depends on the number of mappings received from the

fourth step since Racon performs polishing by using these mappings. Racon’s memory

usage is higher for the PAF mode because the number of mappings stored in the PAF �les

is greater than the number of mappings stored in the SAM �les (i.e., 1.4x). However, using
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Figure 3-4: Scalability results of Racon. Wall clock time (a), peak memory usage
(b), and parallel speedup (c) results obtained on the big-mem system.

PAF mappings or SAM mappings do not signi�cantly a�ect the speed (see Figure 3-4a) and

the parallel speedup (see Figure 3-4c) of Racon.

Figure 3-5 shows the scalability results for Nanopolish. We test the tool by separately

using a 25kb and a 50kb segment length to assess the scalability of the tool with respect to

the segment length, in addition to the scalability with respect to the number of threads.

We measure the performance metrics. We only show the results for the big-mem system
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Figure 3-5: Scalability results of Nanopolish. Wall clock time (a), peak memory
usage (b), and parallel speedup (c) results obtained on the big-mem system.

since the results for both of the systems are similar. Based on the results, we make the

following observation.

Observation 20: Nanopolish’s memory usage is independent of the number of threads.

However, its memory usage in dependent on the segment length (cf. Figure 3-5b).
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The memory usage of Nanopolish is not a�ected by the number of threads. However, it

is dependent on the segment length. Nanopolish uses more memory for longer segments.

When the segment length is doubled from 25kb to 50kb, the increase in the memory

usage (i.e., 2.7x) is greater than 2.0x. This is because the memory usage of Nanopolish

depends both on the length of the segment and the number of read mappings that map

to this segment. For both of the segments, the memory usage also a�ects the speed. The

Nanopolish run for the 25kb-segment is 2.7x faster than the run for the 50kb-segment (see

Figure 3-5a).

Observation 21: Nanopolish’s performance greatly degrades when the number of threads

exceeds the number of physical cores (cf. Figure 3-5c).

Hyper-threading causes a slowdown for Nanopolish because of the CPU-intensive

workload of Nanopolish and the resulting high contention in the shared resources between

the threads executing on the same core, as we discuss in Observation 5.

Summary. Based on the observations we make about tools for the optional last two

steps of the pipeline, we conclude that further polishing can signi�cantly increase the

accuracy of the assemblies. Since BWA-MEM and Nanopolish are more resource-intensive

than Minimap and Racon, pipelines with Minimap and Racon can provide a signi�cant

speedup compared to the pipelines with BWA-MEM and Nanopolish, while resulting with

high-quality consensus sequences.

3.4 Recommendations

3.4.1 Recommendations for Tool Users

Based on the results we have collected and observations we have made for each step of

the genome assembly pipeline using nanopore sequence data and the associated tools, we

make the following major recommendations for the current and future tool users.

• ONT’s basecalling tools, Metrichor, Nanonet, and Scrappie, are the best choices for

the basecalling step in terms of both accuracy and performance. Among these tools,
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Scrappie is the newest, fastest and most accurate basecaller. Thus, we recommend

using Scrappie for the basecalling step (See analysis in Section 3.3.1).

• For the read-to-read overlap �nding step, Minimap is faster than GraphMap, and

it requires low memory. Also, it has similar accuracy to GraphMap. Thus, we

recommend Minimap for the read-to-read overlap �nding step (See analysis in

Section 3.3.2).

• For the assembly step, if execution time is not an important concern, we recommend

using Canu since it produces much more accurate assemblies. However, for a fast

initial analysis, we recommend using Miniasm since it is fast and its accuracy can

be increased with an additional polishing step. If Miniasm is used for assembly, we

de�nitely recommend further polishing to increase the accuracy of the �nal assembly

(See analysis in Section 3.3.3). Even though polishing takes a similar amount of

time if we use Miniasm or Canu, the accuracy improvements are much smaller

for a genome assembled using Canu. We hope that future work can improve the

performance of polishing when the assembled genome already has high accuracy, to

reduce the execution time of the overall assembly pipeline.

• For the polishing step, we recommend using Racon since it is much faster than

Nanopolish. Racon also produces highly-accurate assemblies (See analysis in Sec-

tion 3.3.4).

• In the future, laptops may become a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good �t for in-�eld analysis. Compared

to the desktop and server platforms that we use to test our pipelines, a laptop has even

greater memory constraints and lower computational power, and we must factor

in limited battery life when evaluating the tools. Based on the scalability studies

we perform using our desktop and server platforms, we would likely recommend

using Minimap followed by Miniasm for the assembly step, and Minimap followed

by Racon for the polishing step, when performing assembly on a laptop. These three

49



tools use relatively low amounts of memory, and execute quickly, which we expect

would make the tools a good �t for the various constraints of a laptop. Despite

their low memory usage and fast execution, our recommended pipeline can produce

high-quality assemblies that are suitable for fast initial in-�eld analyses. We leave it

to future work to quantitatively study the genome assembly pipeline using nanopore

sequence data on laptops and other mobile devices.

3.4.2 Recommendations for Tool Developers

Based on our analyses, we make the following recommendations for the tool developers.

• The choice of language to implement the tool plays a crucial role regarding the overall

performance of the tool. For example, although the basecallers Scrappie and Nanonet

belong to the same family (i.e., they both use the more accurate RNNs for basecalling),

Scrappie is signi�cantly faster than Nanonet since Scrappie is implemented in C

whereas Nanonet is implemented in Python (See analysis in Section 3.3.1).

• Memory usage is an important factor that greatly a�ects the performance and the

usability of the tool. While developing new tools or improving the current ones,

the developers should be aware of the memory hierarchy. Data structure choices

that can minimize the memory requirements and cache-e�cient algorithms have

a positive impact on the overall performance of the tools. Keeping memory usage

in check with the number of threads can enable not only a usable (i.e., runnable on

machines with relatively small memories) tool but also a fast one. For example, we

�nd that GraphMap cannot even run with a single-thread in our desktop machine

due to excessively high memory usage (See analyses in Sections 3.3.1– 3.3.4).

• Scalability of the tool with the number of cores/threads is an important requirement.

It is important to make the tool e�ciently parallelized to decrease the overall runtime.

Design choices should be made wisely while considering the possible overheads that

parallelization can add. For example, we �nd that the parallel speedup of Minimap
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reduces when the number of threads reaches a high number due to a large increase

in the overhead of synchronization between threads (See analyses in Sections 3.3.1–

3.3.4).

• Since parallelizing the tool can increase the memory usage, dividing the input

data into batches, or limiting the memory usage of each thread, or dividing the

computation instead of dividing the dataset between simultaneous threads can

prevent large increases in memory usage, while providing performance bene�ts from

parallelization. For example, in Nanonet, all of the threads share the computation of

each read, and thus memory usage is not a�ected by the amount of thread parallelism.

As a result, Nanonet’s usability is not limited to machines with relatively larger

memories (See analyses in Sections 3.3.1– 3.3.4).

3.5 Summary

We analyze the multiple steps and the associated state-of-the-art tools in the genome

assembly pipeline using nanopore sequence data in terms of accuracy, speed, memory

e�ciency and scalability. We make four major conclusions based on our experimental

analyses of the whole pipeline. First, the basecalling tools with higher accuracy and

performance, like Scrappie, can overcome the major drawback of nanopore sequencing

technology, i.e., high error rates. Second, the read-to-read overlap �nding tools, Minimap

and GraphMap, perform similarly in terms of accuracy. However, Minimap performs better

than GraphMap in terms of speed and memory usage by storing only minimizers instead

of all k-mers, and GraphMap is not scalable when running on machines with relatively

small memories. Third, the fast but less accurate assembler Miniasm can be used for a

very fast initial assembly, and further polishing can be applied on top of it to increase the

accuracy of the �nal assembly. Fourth, a state-of-the-art polishing tool, Racon, generates

high-quality consensus sequences while providing a signi�cant speedup over another

polishing tool, Nanopolish.
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We hope and believe that our observations and analyses will guide researchers and

practitioners to make conscious and e�ective choices while deciding between di�erent

tools for each step of the genome assembly pipeline using long reads. We also hope that

the bottlenecks or the e�ects of design choices we have found and exposed can help

developers in building new tools or improving the current ones. Based on our analysis

and recommendations, we also show that we need high-performance, memory-e�cient,

low-power, and scalable designs for genome sequence analysis in order to exploit the

advantages that genome sequencing provides.

52



Chapter 4

GenASM: A High-Performance,

Low-Power Approximate String

Matching Acceleration

Framework for Genome

Sequence Analysis

Read mapping is one of the �rst key steps in genome sequence analysis. For both

short and long reads, multiple steps of read mapping must account for the sequencing

errors, and for the di�erences caused by genetic mutations and variations. These errors

and di�erences take the form of base insertions, deletions, and/or substitutions [224, 311,

287, 317, 216, 302]. As a result, read mapping must perform approximate (or fuzzy) string

matching (ASM). Several algorithms exist for ASM, but state-of-the-art read mapping

tools typically make use of an expensive dynamic programming based algorithm [287,

179, 225] that scales quadratically in both execution time and required storage. This ASM
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algorithm has been shown to be the major bottleneck in read mapping [18, 301, 95, 16,

119, 217, 131]. Unfortunately, as sequencing technologies advance, the growth in the

rate that sequencing devices generate reads is far outpacing the corresponding growth in

computational power [52, 16], placing greater pressure on the ASM bottleneck. Beyond

read mapping, ASM is a key technique for other bioinformatics problems such as whole

genome alignment (WGA) [73, 172, 43, 125, 275, 44, 75, 300, 187, 203, 182] and multiple

sequence alignment (MSA) [271, 49, 246, 123, 188, 227, 177, 226, 80], where two or more

whole genomes, or regions of multiple genomes (from the same or di�erent species), are

compared to determine their similarity for predicting evolutionary relationships or �nding

common regions (e.g., genes). Thus, there is a pressing need to develop techniques for

genome sequence analysis that provide fast and e�cient ASM.

In this work, we propose GenASM, an ASM acceleration framework for genome se-

quence analysis. Our goal is to design a fast, e�cient, and �exible framework for both

short and long reads, which can be used to accelerate multiple steps of the genome se-

quence analysis pipeline. To avoid implementing more complex hardware for the dynamic

programming based algorithm [86, 158, 301, 117, 35, 155, 267, 53], we base GenASM upon

the Bitap algorithm [34, 317]. Bitap uses only fast and simple bitwise operations to perform

approximate string matching, making it amenable to e�cient hardware acceleration. To

our knowledge, GenASM is the �rst work that enhances and accelerates Bitap.

4.1 Approximate String Matching (ASM)

The goal of approximate string matching [224] is to detect the di�erences and similari-

ties between two sequences. Given a query read sequence Q=[q1q2. . .qm], a reference text

sequence T=[t1t2. . . tn] (where m = |Q|, n = |T |, n ≥ m), and an edit distance threshold E,

the approximate string matching problem is to identify a set of approximate matches of Q

in T (allowing for at most E di�erences). The di�erences between two sequences of the

same species can result from sequencing errors [94, 26] and/or genetic variations [88, 13].
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Reads are prone to sequencing errors, which account for about 0.1% of the length of short

reads [106, 256, 108] and 10–15% of the length of long reads [151, 312, 30, 304].

The di�erences, known as edits, can be classi�ed as substitutions, deletions, or insertions

in one or both sequences [179]. Figure 4-1 shows each possible kind of edit. In ASM, to

detect a deleted character or an inserted character, we need to examine all possible pre�xes

(i.e., substrings that include the �rst character of the string) or su�xes (i.e., substrings that

include the last character of the string) of the two input sequences, and keep track of the

pairs of pre�xes or su�xes that provide the minimum number of edits.

AAAATGTTTAGTGCTACTTG

AAAATGTTTAGTGCTACTTG

Reference:

Read:
insertionsubstitutiondeletion

C

Figure 4-1: Three types of errors (i.e., edits).

Approximate string matching is needed not only to determine the minimum number

of edits between two genomic sequences, but also to provide the location and type of each

edit. As two sequences could have a large number of di�erent possible arrangements of

the edit operations and matches (and hence di�erent alignments), the approximate string

matching algorithm usually involves a traceback step. The alignment score is the sum of all

edit penalties and match scores along the alignment, as de�ned by a user-speci�ed scoring

function. This step �nds the optimal alignment as the combination of edit operations to

build up the highest alignment score.

Approximate string matching is typically implemented as a dynamic programming

based algorithm. Existing implementations, such as Levenshtein distance [179], Smith-

Waterman [287], and Needleman-Wunsch [225], have quadratic time and space complexity

(i.e., O(m× n) between two sequences with lengths m and n). Therefore, it is desirable to

�nd lower-complexity algorithms for ASM.
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4.2 Bitap Algorithm

One candidate to replace dynamic programming based algorithms for ASM is the Bitap

algorithm [34, 317]. Bitap tackles the problem of computing the minimum edit distance

between a reference text (e.g., reference genome) and a query pattern (e.g., read) with a

maximum of k many errors. When k is 0, the algorithm �nds the exact matches.

Algorithm 1 shows the Bitap algorithm and Figure 4-2 shows an example for the

execution of the algorithm. The algorithm starts with a pre-processing procedure (Line 4

in Algorithm 1; 0 in Figure 4-2) that converts the query pattern into m-sized pattern

bitmasks, PM. We generate one pattern bitmask for each character in the alphabet. Since

0 means match in the Bitap algorithm, we set PM[a][i] = 0 when pattern[i] = a, where

a is a character from the alphabet (e.g., A, C, G, T). These pattern bitmasks help us to

represent the query pattern in a binary format. After the bitmasks are prepared for each

character, every bit of all status bitvectors (R[d], where d is in range [0, k]) is initialized

to 1 (Lines 5–6 in Algorithm 1; 0 in Figure 4-2). Each R[d] bitvector at text iteration i

holds the partial match information between text[i : (n – 1)] (Line 8) and the query with

maximum of d errors. Since at the beginning of the execution there are no matches, we

initialize all status bitvectors with 1s. The status bitvectors of the previous iteration with

edit distance d is kept in oldR[d] (Lines 10–11) to take partial matches into consideration

in the next iterations.

The algorithm examines each text character one by one, one per iteration. At each

text iteration ( 1 – 5 ), the pattern bitmask of the current text character (PM) is retrieved

(Line 12). After the status bitvector for exact match is computed (R[0]; Line 13), the status

bitvectors for each distance (R[d]; d = 1...k) are computed using the rules in Lines 15–19.

For a distance d, three intermediate bitvectors for the error cases (one each for deletion,

insertion, substitution; D/I/S in Figure 4-2) are calculated by using oldR[d – 1] or R[d – 1],

since a new error is being added (i.e., the distance is increasing by 1), while the intermediate

bitvector for the match case (M) is calculated using oldR[d]. For a deletion (Line 15), we are
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Algorithm 1 Bitap Algorithm

Inputs: text (reference), pattern (query), k (edit distance threshold)

Outputs: startLoc (matching location), editDist (minimum edit distance)

1: n← length of reference text
2: m← length of query pattern
3: procedure Pre-Processing

4: PM←generatePatternBitmaskACGT(pattern) ◁ pre-process the pattern

5: for d in 0:k do
6: R[d]← 111..111 ◁ initialize R bitvectors to 1s

7: procedure Edit Distance Calculation

8: for i in (n-1):-1:0 do ◁ iterate over each text character

9: curChar← text[i]
10: for d in 0:k do
11: oldR[d]← R[d] ◁ copy previous iterations’ bitvectors as oldR

12: curPM← PM[curChar] ◁ retrieve the pattern bitmask

13: R[0]← (oldR[0]<<1) | curPM ◁ status bitvector for exact match

14: for d in 1:k do ◁ iterate over each edit distance

15: deletion (D)← oldR[d-1]
16: substitution (S)← (oldR[d-1]<<1)
17: insertion (I)← (R[d-1]<<1)
18: match (M)← (oldR[d]<<1) | curPM
19: R[d]← D & S & I & M ◁ status bitvector for d errors

20: if MSB of R[d] == 0, where 0 ≤ d ≤ k then ◁ check if MSB is 0

21: startLoc← i ◁ matching location

22: editDist← d ◁ found minimum edit distance

PREPROCESSING
Pattern Bitmasks:       

CTGA
PM(A) = 1110
PM(C) = 0111
PM(G) = 1101
PM(T) = 1011

State Vectors:

R0 = 1111  
R1 = 1111

Text[4]: CGTGA
oldR0 = 1111
oldR1 = 1111

R0 = (oldR0 << 1) | PM(A) 
= 1110

R1 =

= D & S & I & M = 1100

0 1

D : oldR0                = 1111  
S : oldR0 << 1           = 1110
I : R0 << 1              = 1100
M : (oldR1 << 1) | PM(A) = 1110 

Text[3]: CGTGA
oldR0 = 1110
oldR1 = 1100

R0 = (oldR0 << 1) | PM(G) 
= 1101

R1 =

= D & S & I & M = 1000

2

D : oldR0                = 1110  
S : oldR0 << 1           = 1100
I : R0 << 1              = 1010
M : (oldR1 << 1) | PM(G) = 1101 

Text[2]: CGTGA
oldR0 = 1101
oldR1 = 1000

R0 = (oldR0 << 1) | PM(T) 
= 1011

R1 =

= D & S & I & M = 0000

3

D : oldR0                = 1101  
S : oldR0 << 1           = 1010
I : R0 << 1              = 0110
M : (oldR1 << 1) | PM(T) = 1011 

Alignment Found @ Location=2

Text[1]: CGTGA
oldR0 = 1011
oldR1 = 0000

R0 = (oldR0 << 1) | PM(G) 
= 1111

R1 =

= D & S & I & M = 0000

4

D : oldR0                = 1011  
S : oldR0 << 1           = 0110
I : R0 << 1              = 1110
M : (oldR1 << 1) | PM(G) = 1101 

Alignment Found @ Location=1

Text[0]: CGTGA
oldR0 = 1111
oldR1 = 0000

R0 = (oldR0 << 1) | PM(C) 
= 1111

R1 =

= D & S & I & M = 0110

5

D : oldR0                = 1111  
S : oldR0 << 1           = 1110
I : R0 << 1              = 1110
M : (oldR1 << 1) | PM(C) = 0111 

Alignment Found @ Location=0

Text Region:
CGTGA

Query Pattern:
CTGA

Edit Distance 
Threshold (k): 

1

Figure 4-2: Example for the Bitap algorithm.
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looking for a string match if the current pattern character is missing, so we copy the partial

match information of the previous character (oldR[d – 1]; consuming a text character)

without any shifting (not consuming a pattern character) to serve as the deletion bitvector

(labeled as D of R1 bitvectors in 1 – 5 ). For a substitution (Line 16), we are looking for a

string match if the current pattern character and the current text character do not match,

so we take the partial match information of the previous character (oldR[d – 1]; consuming

a text character) and shift it left by one (consuming a pattern character) before saving it as

the substitution bitvector (labeled as S of R1 bitvectors in 1 – 5 ). For an insertion (Line 17),

we are looking for a string match if the current text character is missing, so we copy the

partial match information of the current character (R[d–1]; not consuming a text character)

and shift it left by one (consuming a pattern character) before saving it as the insertion

bitvector (labeled as I of R1 bitvectors in 1 – 5 ). For a match (Line 18), we are looking for

a string match only if the current pattern character matches the current text character, so

we take the partial match information of the previous character (oldR[d]; consuming a text

character but not increasing the edit distance), shift it left by one (consuming a pattern

character), and perform an OR operation with the pattern bitmask of the current text

character (curPM; comparing the text character and the pattern character) before saving

the result as the match bitvector (labeled as R0 bitvectors and M of R1 bitvectors in 1 – 5 ).

After computing all four intermediate bitvectors, in order to take all possible partial

matches into consideration, we perform an AND operation (Line 19) with these four

bitvectors to preserve all 0s that exist in any of them (i.e., all potential locations for a

string match with an edit distance of d up to this point). We save the ANDed result as the

R[d] status bitvector for the current iteration. This process is repeated for each potential

edit distance value from 0 to k. If the most signi�cant bit of the R[d] bitvector becomes 0

(Lines 20–22), then there is a match starting at position i of the text with an edit distance

d (as shown in 3 – 5 ). The traversal of the text then continues until all possible text

positions are examined.
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4.3 Motivation and Goals

Although the Bitap algorithm is highly suitable for hardware acceleration due to the

simple nature of its bitwise operations, we �nd that it has �ve limitations that hinder its

applicability and e�cient hardware acceleration for genome analysis. In this section, we

discuss each of these limitations. In order to overcome these limitations and design an

e�ective and e�cient accelerator, we �nd that we need to both (1) modify and extend the

Bitap algorithm and (2) develop specialized hardware that can exploit the new opportunities

that our algorithmic modi�cations provide.

4.3.1 Limitations of Bitap on Existing Systems

No Support for Long Reads. In state-of-the-art implementations of Bitap, the query

length is limited by the word size of the machine running the algorithm. This is due to

(1) the fact that the bitvector length must be equal to the query length, and (2) the need to

perform bitwise operations on the bitvectors. By limiting the bitvector length to a word,

each bitwise operation can be done using a single CPU instruction. Unfortunately, the lack

of multi-word queries prevents these implementations from working for long reads, whose

lengths are on the order of thousands to millions of base pairs (which require thousands of

bits to store).

Data Dependency Between Iterations. As we show in Section 4.2, the computed

bitvectors at each text iteration (i.e., R[d]) of the Bitap algorithm depend on the bitvectors

computed in the previous text iteration (i.e., oldR[d-1] and oldR[d]; Lines 11, 13, 15, 16,

and 18 of Algorithm 1). Furthermore, for each text character, there is an inner loop that

iterates for the maximum edit distance number of iterations (Line 14). The bitvectors

computed in each of these inner iterations (i.e., R[d]) are also dependent on the previous

inner iteration’s computed bitvectors (i.e., R[d-1]; Line 17). This two-level data dependency

forces the consecutive iterations to take place sequentially.
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No Support for Traceback. Although the baseline Bitap algorithm can �nd possible

matching locations of each query read within the reference text, this covers only the

�rst step of approximate string matching required for genome sequence analysis. Since

there could be multiple di�erent alignments between the read and the reference, the

traceback operation [215, 110, 109, 207, 310, 22, 89, 287, 311, 302] is needed to �nd the

optimal alignment, which is the alignment with the minimum edit distance (or with the

highest score based on a user-de�ned scoring function). However, Bitap does not include

any such support for optimal alignment identi�cation.

Limited Compute Parallelism. Even after we solve the algorithmic limitations of

Bitap, we �nd that we cannot extract signi�cant performance bene�ts with just algorithmic

enhancements alone. For example, while Bitap iterates over each character of the input

text sequentially (Line 8), we can enable text-level parallelism to improve its performance

(Section 4.5). However, the achievable level of parallelism is limited by the number of

compute units in existing systems. For example, our studies show that Bitap is bottlenecked

by computation on CPUs, since the working set �ts within the private caches but the

limited number of cores prevents the further speedup of the algorithm.

Limited Memory Bandwidth. We would expect that a GPU, which has thousands of

compute units, can overcome the limited compute parallelism issues that CPUs experience.

However, we �nd that a GPU implementation of the Bitap algorithm su�ers from the limited

amount of memory bandwidth available for each GPU thread. Even when we run a CUDA

implementation of the baseline Bitap algorithm [184], whose bandwidth requirements are

signi�cantly lower than our modi�ed algorithm, the limited memory bandwidth bottlenecks

the algorithm’s performance. We �nd that the bottleneck is exacerbated after the number

of threads per block reaches 32, as Bitap becomes shared cache-bound (i.e., on-GPU L2

cache-bound). The small number of registers becomes insu�cient to hold the intermediate

data required for Bitap execution. Furthermore, when the working set of a thread does

not �t within the private memory of the thread, destructive interference between threads

while accessing the shared memory creates bottlenecks in the algorithm on GPUs. We
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expect these issues to worsen when we implement traceback, which requires signi�cantly

higher bandwidth than Bitap.

4.3.2 Our Goal

Our goal in this work is to overcome these limitations and use Bitap in a fast, e�cient,

and �exible ASM framework for both short and long reads. We �nd that this goal cannot

be achieved by modifying only the algorithm or only the hardware. We design GenASM,

the �rst ASM acceleration framework for genome sequence analysis. Through careful

modi�cation and co-design of the enhanced Bitap algorithm and hardware, GenASM aims

to successfully replace the expensive dynamic programming based algorithm used for

ASM in genomics with the e�cient bitwise-operation-based Bitap algorithm, which can

accelerate multiple steps of genome sequence analysis.

4.4 GenASM: A High-Level Overview

In GenASM, we co-design our modi�ed Bitap algorithm for distance calculation (DC)

and our new Bitap-compatible traceback (TB) algorithm with an area- and power-e�cient

hardware accelerator. GenASM consists of two components, as shown in Figure 4-3:

(1) GenASM-DC (Section 4.5), which for each read generates the bitvectors and performs

the minimum edit distance calculation (DC); and (2) GenASM-TB (Section 4.6), which uses

the bitvectors to perform traceback (TB) and �nd the optimal alignment. GenASM is a

�exible framework that can be used for di�erent use cases (Section 4.8).

GenASM execution starts when the host CPU issues a task to GenASM with the

reference and the query sequences’ locations ( 1 in Figure 4-3). GenASM-DC reads the

corresponding reference text region and the query pattern from the memory. GenASM-DC

then writes these to its dedicated SRAM, which we call DC-SRAM ( 2 ). After that, GenASM-

DC divides the reference text (e.g., reference genome) and query pattern (e.g., read) into

multiple overlapping windows ( 3 ), and for each sub-text (i.e., the portion of the reference
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text in one window) and sub-pattern (i.e., the portion of the query pattern in one window),

GenASM-DC searches for the sub-pattern within the sub-text and generates the bitvectors

( 4 ). Each processing element (PE) of GenASM-DC writes the generated bitvectors to

its own dedicated SRAM, which we call TB-SRAM ( 5 ). Once GenASM-DC completes

its search for the current window, GenASM-TB starts reading the stored bitvectors from

TB-SRAMs ( 6 ) and generates the window’s traceback output ( 7 ). Once GenASM-TB

generates this output, GenASM computes the next window and repeats Steps 3 – 7 until

all windows are completed.

Host 
CPU

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

DC-SRAM

sub-text & 
sub-pattern

Read 
bitvectors

Find the 
traceback output

DC-Controller

Generate 
bitvectors

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

...

2

1

3

4

5 6

7

Figure 4-3: Overview of GenASM.

Our hardware accelerators are designed to maximize parallelism and minimize memory

footprint. Our modi�ed GenASM-DC algorithm is highly parallelizable, and performs only

simple and regular bitwise operations, so we implement the GenASM-DC accelerator as a

systolic array based accelerator. GenASM-TB accelerator requires simple logic operations

to perform the TB-SRAM accesses and the required control �ow to complete the traceback

operation. Both of our hardware accelerators are highly e�cient in terms of area and

power. We discuss them in detail in Section 4.7.
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4.5 GenASM-DC Algorithm

We modify the baseline Bitap algorithm (Section 4.2) to (1) enable e�cient alignment

of long reads, (2) remove the data dependency between the iterations, and (3) provide

parallelism for the large number of iterations.

Long Read Support. The GenASM-DC algorithm overcomes the word-length limit of

Bitap (Section 4.3.1) by storing the bitvectors in multiple words when the query is longer

than the word size. Although this modi�cation leads to additional computation when

performing shifts, it helps GenASM to support both short and long reads. When shifting

word i of a multi-word bitvector, the bit shifted out (MSB) of word i – 1 needs to be stored

separately before performing the shift on word i – 1. Then, that saved bit needs to be

loaded as the least signi�cant bit (LSB) of word i when the shift occurs. This causes the

complexity of the algorithm to be ⌈mw ⌉× n× k, where m is the query length, w is the word

size, n is the text length, and k is the edit distance.

Loop Dependency Removal. In order to solve the two-level data dependency limita-

tion of the baseline Bitap algorithm (Section 4.3.1), GenASM-DC performs loop unrolling

and enables computing non-neighbor (i.e., independent) bitvectors in parallel. Figure 4-4

shows an example for unrolling with four threads for text characters T0–T3 and status

bitvectors R0–R7. For the iteration where R[d] represents T2–R2 (i.e., the target cell shaded

in dark red), R[d – 1] refers to T2–R1, oldR[d – 1] refers to T1–R1, and oldR[d] refers to

T1–R2 (i.e., cells T2–R2 is dependent on, shaded in light red). Based on this example, T2–R2

depends on T1–R2, T2–R1, and T1–R1, but it does not depend on T3–R1, T1–R3, or T0–R4.

Thus, these independent bitvectors can be computed in parallel without waiting for one

another.

Text-Level Parallelism. In addition to the parallelism enabled by removing the loop

dependencies, we enable GenASM-DC algorithm to exploit text-level parallelism. This

parallelism is enabled by dividing the text into overlapping sub-texts and searching the

query in each of these sub-texts in parallel. The overlap ensures that we do not miss any
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possible match that may fall around the edges of a sub-text. To guarantee this, the overlap

needs to be of length m+k, where m is the query length and k is the edit distance threshold.

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −
#2 T1-R0 T0-R1 − −
#3 T2-R0 T1-R1 T0-R2 −
#4 T3-R0 T2-R1 T1-R2 T0-R3
#5 T0-R4 T3-R1 T2-R2 T1-R3
#6 T1-R4 T0-R5 T3-R2 T2-R3
#7 T2-R4 T1-R5 T0-R6 T3-R3
#8 T3-R4 T2-R5 T1-R6 T0-R7
#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7
#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1) 

data written to memory
data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7
#9 T1-R0
… …

#16 T1-R7
#17 T2-R0
… …

#24 T2-R7
#25 T3-R0

… …
#32 T3-R7

Figure 4-4: Loop unrolling in GenASM-DC.

4.6 GenASM-TB Algorithm

After �nding the matching location of the text and the edit distance with GenASM-DC,

our new traceback [215, 110, 109, 207, 310, 22, 89, 287, 311, 302] algorithm, GenASM-

TB, �nds the sequence of matches, substitutions, insertions and deletions, along with

their positions (i.e., CIGAR string) for the matched region (i.e., the text region that starts

from the location reported by GenASM-DC and has a length of m + k), and reports the

optimal alignment. Traceback execution (1) starts from the �rst character of the matched

region between the reference text and query pattern, (2) examines each character and

decides which of the four operations should be picked in each iteration, and (3) ends when

we reach the last character of the matched region. GenASM-TB uses the intermediate

bitvectors generated and saved in each iteration of the GenASM-DC algorithm (i.e., match,
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substitution, deletion and insertion bitvectors generated in Lines 15–18 in Algorithm 1).

After a value 0 is found at the MSB of one of the R[d] bitvectors (i.e., a string match is

found with d errors), GenASM-TB walks through the bitvectors back to the LSB, following

a chain of 0s (which indicate matches at each location) and reverting the bitwise operations.

At each position, based on which of the four bitvectors holds a value 0 in each iteration

(starting with an MSB with a 0 and ending with an LSB with a 0), the sequence of matches,

substitutions, insertions and deletions (i.e., traceback output) is found for each position of

the corresponding alignment found by GenASM-DC. Unlike GenASM-DC, GenASM-TB

has an irregular control �ow within the stored intermediate bitvectors, which depends on

the text and the pattern.

Algorithm 2 shows the GenASM-TB algorithm and Figure 4-5 shows an example for

the execution of the algorithm for each of the alignments found in 3 – 5 of Figure 4-2.

In Figure 4-5, <x, y, z> stands for patternI, textI and curError, respectively

(Lines 6–8 in Algorithm 2). patternI represents the position of a 0 currently being

processed within a given bitvector (i.e., pattern index), textI represents the outer loop

iteration index (i.e., text index; i in Algorithm 1), and curError represents the inner

loop iteration index (i.e., number of remaining errors; d in Algorithm 1).

When we �nd a 0 at match[textI][curError][patternI] (i.e., a match (M) is

found for the current position; Line 17), one character each from both text and query is

consumed, but the number of remaining errors stays the same. Thus, the pointer moves

to the next text character (as the text character is consumed), and the 0 currently being

processed (highlighted with orange color in Figure 4-5) is right-shifted by one (as the query

character is also consumed). In other words, textI is incremented (Line 28), patternI

is decremented (Line 30), but curError remains the same. Thus, <x, y, z> becomes

<x – 1, y + 1, z> after we �nd a match. For example, in Figure 4-5a, for Text[0], we have

<3, 0, 1> for the indices, and after the match is found, at the next position (Text[1]), we

have <2, 1, 1>.
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Algorithm 2 GenASM-TB Algorithm

Inputs: text (reference), n, pattern (query), m, W (window size), O (overlap size)

Output: CIGAR (complete traceback output)

1: <curPattern,curText>← <0,0> ◁ start positions of sub-pattern and sub-text

2: while (curPattern < m) & (curText < n) do
3: sub-pattern← pattern[curPattern:(curPattern+W)]
4: sub-text← text[curText:(curText+W)]
5: intermediate bitvectors← GenASM-DC(sub-pattern,sub-text,W)
6: patternI← W-1 ◁ pattern index (position of 0 being processed)

7: textI← 0 ◁ text index

8: curError← editDist from GenASM-DC ◁ number of remaining errors

9: <patternConsumed,textConsumed>← <0,0>
10: prev← "" ◁ output of previous TB iteration

11: while textConsumed<(W-O) & patternConsumed<(W-O) do
12: status← 0
13: if ins[textI][curError][patternI]=0 & prev=’I’ then
14: status← 3; add "I" to CIGAR; ◁ insertion-extend

15: else if del[textI][curError][patternI]=0 & prev=’D’ then
16: status← 4; add "D" to CIGAR; ◁ deletion-extend

17: else if match[textI][curError][patternI]=0 then
18: status← 1; add "M" to CIGAR; prev← "M" ◁ match

19: else if subs[textI][curError][patternI]=0 then
20: status← 2; add "S" to CIGAR; prev← "S" ◁ substitution

21: else if ins[textI][curError][patternI]=0 then
22: status← 3; add "I" to CIGAR; prev← "I" ◁ insertion-open

23: else if del[textI][curError][patternI]=0 then
24: status← 4; add "D" to CIGAR; prev← "D" ◁ deletion-open

25: if (status > 1) then
26: curError-- ◁ S, D, or I

27: if (status > 0) && (status != 3) then
28: textI++; textConsumed++ ◁ M, S, or D

29: if (status > 0) && (status != 4) then
30: patternI--; patternConsumed++ ◁ M, S, or I

31: curPattern← curPattern+patternConsumed
32: curText← curText+textConsumed

When we �nd a 0 at subs[textI][curError][patternI] (i.e., a substitution

(S) is found for the current position; Line 19), one character each from both text and query

is consumed, and the number of remaining errors is decremented (Line 26). Thus, <x, y, z>

becomes <x – 1, y + 1, z – 1> after we �nd a substitution (e.g., Text[1] in Figure 4-5b).
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Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Match(C)       Del(–)        Match(T)      Match(G) Match(A)
<3,0,1>       <2,1,1> <2,2,0>       <1,3,0> <0,4,0>

R0- : ....
R1-M : 0111

R0- : ....
R1-D : 1011

R0-M : 1011
R1- : ....

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Subs(C)       Match(T)      Match(G)       Match(A)
<3,1,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-S : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Insertion Example (Text Location=2)

Text[–]    Text[2]: T Text[3]: G    Text[4]: A

Ins(C)       Match(T)      Match(G)       Match(A)
<3,2,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-I : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Figure 4-5: Traceback example with GenASM-TB algorithm.

When we �nd a 0 at ins[textI][curError][patternI] (i.e., an insertion (I) is

found for the current position; Lines 13 and 21), the inserted character does not appear

in the text, and only a character from the pattern is consumed. The 0 currently being

processed is right-shifted by one, but the text pointer remains the same, and the number

of remaining errors is decremented. Thus, <x, y, z> becomes <x – 1, y, z – 1> after we �nd

an insertion (e.g., Text[–] in Figure 4-5c).

When we �nd a 0 at del[textI][curError][patternI] (i.e., a deletion (D) is

found for the current position; Lines 15 and 23), the deleted character does not appear

in the pattern, and only a character from the text is consumed. The 0 currently being

processed is not right-shifted, but the pointer moves to the next text character, and the

number of remaining errors is also decremented. Thus, <x, y, z> becomes <x, y + 1, z – 1>

after we �nd an insertion (e.g., Text[1] in Figure 4-5a).

Divide-and-Conquer Approach. Since GenASM-DC stores all of the intermediate

bitvectors, in the worst case, the length of the text region that the query pattern maps to

can be m + k, assuming all of the errors are deletions from the pattern. Since we need to
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store all of the bitvectors for m + k characters, and compute 4× k many bitvectors within

each text iteration (each m bits long), for long reads with high error rates, the memory

requirement becomes ~80GB, when m is 10,000 and k is 1,500.

In order to decrease the memory footprint of the algorithm, we follow two key ideas.

First, we apply a divide-and-conquer approach (similar to the tiling approach of Darwin’s

alignment accelerator, GACT [301]). Instead of storing all of the bitvectors for m + k text

characters, we divide the text and pattern into overlapping windows (i.e., sub-text and

sub-pattern; Lines 3–4 in Algorithm 2) and perform the traceback computation for each

window. After all of the windows’ partial traceback outputs are generated, we merge them

to �nd the complete traceback output. This approach helps us to decrease the memory

footprint from ((m + k) × 4 × k × m) bits to (W × 4 ×W ×W ) bits, where W is the

window size. This divide-and-conquer approach also helps us to reduce the complexity of

the bitvector generation step (Section 4.5) from ⌈mw ⌉ × n× k to ⌈Ww ⌉ ×W ×W . Second,

instead of storing all 4 bitvectors (i.e., match, substitution, insertion, deletion) separately,

we only need to store bitvectors for match, insertion, and deletion, as the substitution

bitvector can be obtained easily by left-shifting the deletion bitvector by 1 (Line 16 in

Algorithm 1). This modi�cation helps us to decrease the required write bandwidth and the

memory footprint to (W × 3×W ×W ) bits.

GenASM-TB restricts the number of consumed characters from the text or the pattern

to W-O (Line 11 in Algorithm 2) to ensure that consecutive windows share O characters

(i.e., overlap size), and thus, the traceback output can be generated accurately. The sub-

text and the sub-pattern corresponding to each window are found using the number

of consumed text characters (textConsumed) and the number of consumed pattern

characters (patternConsumed) in the previous window (Lines 31–32 in Algorithm 2).

Partial Support for Complex Scoring Schemes. We extend the GenASM-TB algo-

rithm to provide partial support (Section 4.10.2) for non-unit costs for di�erent edits and

the a�ne gap penalty model [109, 207, 310, 22]. By changing the order in which di�erent

traceback cases are checked in Lines 13–24 in Algorithm 2, we can support di�erent types
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of scoring schemes. For example, in order to mimic the behavior of the a�ne gap penalty

model, we check whether the traceback output that has been chosen for the previous

position (i.e., prev) is an insertion or a deletion. If the previous edit is a gap (insertion

or deletion), and there is a 0 at the current position of the insertion or deletion bitvector

(Lines 13 and 15 in Algorithm 2), then we prioritize extending this previously opened

gap, and choose insertion-extend or deletion-extend as the current position’s traceback

output, depending on the type of the previous gap. As another example, in order to mimic

the behavior of non-unit costs for di�erent edits, we can simply sort three error cases

(substitution, insertion-open, deletion-open) from the lowest penalty to the highest penalty.

If substitutions have a lower penalty than gap openings, the order shown in Algorithm 2

should remain the same. However, if substitutions have a greater penalty than gap open-

ings, we should check for the substitution case after checking the insertion-open and

deletion-open cases (i.e., Lines 19–20 should come after Line 24 in Algorithm 2).

4.7 GenASM Hardware Design

GenASM-DC Hardware. We implement GenASM-DC as a linear cyclic systolic

array [171, 170] based accelerator. The accelerator is optimized to reduce both the memory

bandwidth and the memory footprint. Feedback logic enabling cyclic systolic behavior

allows us to �x the required number of memory ports [170] and to reduce memory footprint.

A GenASM-DC accelerator consists of a processing block (PB; Figure 4-6a) along

with a control and memory management logic. A PB consists of multiple processing

elements (PEs). Each PE contains a single processing core (PC; Figure 4-6b) and �ip-�op-

based storage logic. The PC is the primary compute unit, and implements Lines 15–19

of Algorithm 1 to perform the approximate string matching for a w-bit query pattern.

The number of PEs in a PB is based on compute, area, memory bandwidth and power

requirements. This block also implements the logic to load data from outside of the array

(i.e., DC-SRAM; Figure 4-6a) or internally for cyclic operations.
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Figure 4-6: Hardware design of GenASM-DC.

GenASM-DC uses two types of SRAM bu�ers (Figure 4-6a): (1) DC-SRAM, which

stores the reference text, the pattern bitmasks for the query read, and the intermediate

data generated from PEs (i.e., oldR values and MSBs required for shifts; Section 4.5); and

(2) TB-SRAM, which stores the intermediate bitvectors from GenASM-DC for later use by

GenASM-TB. For a 64-PE con�guration with 64 bits of processing per PE, and for the case

where we have a long (10Kbp) read
1

with a high error rate (15%) and a corresponding text

region of 11.5Kbp, GenASM-DC requires a total of 8KB DC-SRAM storage. For each PE,

we have a dedicated TB-SRAM, which stores the match, insertion and deletion bitvectors

generated by the corresponding PE. For the same con�guration of GenASM-DC, each PE

requires a total of 1.5KB TB-SRAM storage, with a single R/W port. In each cycle, 192 bits

of data (24B) is written to each TB-SRAM by each PE.

When each thread (i.e., each column) in Figure 4-4 is mapped to a PE, GenASM-DC

coordinates the data dependencies across DC iterations, with the help of two �ip-�ops in

each PE. For example, T2–R2 in Figure 4-4 is generated by PEx in Cycley , and is mapped to

R[d]. In order to generate T2–R2, T2–R1 (which maps to R[d – 1]) needs to be generated

by PEx–1 in Cycley–1 ( 1 in Figure 4-6), T1–R1 (which maps to oldR[d – 1]) needs to be

generated by PEx–1 in Cycley–2 ( 2 ), and T1–R2 (which maps to oldR[d]) needs to be

generated by PEx in Cycley–1 ( 3 ), where x is the PE index and y is the cycle index. With

this dependency-aware mapping, regardless of the number of instantiated PEs, we can

successfully limit DC-SRAM tra�c for a single PB to only one read and one write per cycle.

1
Although we use 10Kbp-long reads in our analysis (Section 4.9), GenASM does not have any limitation

on the length of reads as a result of our divide-and-conquer approach (Section 4.6).
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GenASM-TB Hardware. After GenASM-DC �nishes writing all of the intermediate

bitvectors to TB-SRAMs, GenASM-TB reads them by following an irregular control �ow,

which depends on the text and the pattern to �nd the optimal alignment (by implementing

Algorithm 2).

In our GenASM con�guration, where we have 64 PEs and 64 bits per PE in a GenASM-

DC accelerator, and the window size (W ) is 64 (Section 4.6), we have one 1.5KB TB-SRAM

(which �ts our 24B/cycle × 64 cycles/window output storage requirement) for each of

the 64 PEs. As Figure 4-7 shows, a single GenASM-TB accelerator is connected to all of

these 64 TB-SRAMs (96KB, in total). In each GenASM-TB cycle, we read from only one

TB-SRAM. curError provides the index of the TB-SRAM that we read from; textI

provides the starting index within this TB-SRAM, which we read the next set of bitvectors

from; and patternI provides the position of the 0 being processed (Algorithm 2).

We implement the GenASM-TB hardware using very simple logic (Figure 4-7), which

1 reads the bitvectors from one of the TB-SRAMs using the computed address, 2 performs

the required bitwise comparisons to �nd the CIGAR character for the current position,

and 3 computes the next TB-SRAM address to read the new set of bitvectors. After

GenASM-TB �nds the complete CIGAR string, it writes the output to main memory and

completes its execution.
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Figure 4-7: Hardware design of GenASM-TB.
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Overall System. We design our system to take advantage of modern 3D-stacked

memory systems [104, 167], such as the Hybrid Memory Cube (HMC) [133] or High-

Bandwidth Memory (HBM) [154, 178]. Such memories are made up of multiple layers of

DRAM arrays that are stacked vertically in a single package. These layers are connected

via high-bandwidth links called through-silicon vias (TSVs) that provide lower-latency and

more energy-e�cient data access to the layers than the external DRAM I/O pins [68, 178].

Memories such as HMC and HBM include a dedicated logic layer that connects to the

TSVs and allows processing elements to be implemented in memory to exploit the e�cient

data access. Due to thermal and area constraints, only simple processing elements that

execute low-complexity operations (e.g., bitwise logic, simple arithmetic, simple cores) can

be included in the logic layer [37, 77, 97, 11, 10, 128, 127, 213, 38, 248, 164].

We decide to implement GenASM in the logic layer of 3D-stacked memory, for two

reasons. First, we can exploit the natural subdivision within 3D-stacked memory (e.g.,

vaults in HMC [133], pseudo-channels in HBM [154]) to e�ciently enable parallelism across

multiple GenASM accelerators. This subdivision allows accelerators to work in parallel

without interfering with each other. Second, we can reduce the power consumed for DRAM

accesses by reducing o�-chip data movement across the memory channel [213]. Both of

our hardware accelerators are highly e�cient in terms of area and power (Section 4.10.1),

and can �t within the logic layer’s constraints.

To illustrate how GenASM takes advantage of 3D-stacked memory, we discuss an exam-

ple implementation of GenASM inside the logic layer of a 16GB HMC with 32 vaults [133].

Within each vault, the logic layer contains a GenASM-DC accelerator, its associated DC-

SRAM (8KB), a GenASM-TB accelerator, and TB-SRAMs (64×1.5KB). Since we have small

SRAM bu�ers for both DC and TB to exploit locality, GenASM accesses the memory

and utilizes the memory bandwidth only to read the reference and the query sequences.

One GenASM accelerator at each vault requires 105–142 MB/s bandwidth, thus the total

bandwidth requirement of all 32 GenASM accelerators is 3.3–4.4 GB/s (which is much less

than peak bandwidth provided by modern 3D-stacked memories).
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4.8 GenASM Framework

We demonstrate the e�ciency and �exibility of the GenASM acceleration framework

by describing three use cases of approximate string matching in genome sequence analysis:

(1) read alignment step of short and long read mapping, (2) pre-alignment �ltering for

short reads, and (3) edit distance calculation between any two sequences. We believe the

GenASM framework can be useful for many other use cases, and we discuss some of them

brie�y in Section 4.11.

Read Alignment of Short and Long Reads. As we explain in Section 2.4, read

alignment is the last step of short and long read mapping. In read alignment, all of the

remaining candidate mapping regions of the reference genome and the query reads are

aligned, in order to identify the mapping that yields either the lowest total number of

errors (if using edit distance based scoring) or the highest score (if using a user-de�ned

scoring function). Thus, read alignment can be a use case for approximate string matching,

since errors (i.e., substitutions, insertions, deletions) should be taken into account when

aligning the sequences. As part of read alignment, we also need to generate the traceback

output for the best alignment between the reference region and the read.

For read alignment, the whole GenASM pipeline, as explained in Section 4.4, should be

executed, including the traceback step. In general, read alignment requires more complex

scoring schemes, where di�erent types of edits have non-unit costs. Thus, GenASM-TB

should be con�gured based on the given cost of each type of edit (Section 4.6). As GenASM

framework can work with arbitrary length sequences, we can use it to accelerate both

short read and long read alignment.

Pre-Alignment Filtering for Short Reads. In the pre-alignment �ltering step of

short read mapping, the candidate mapping locations, reported by the seeding step, are

further �ltered by using di�erent mechanisms. Although the regions of the reference at

these candidate mapping locations share common seeds with query reads, they are not

necessarily similar sequences. To avoid examining dissimilar sequences at the downstream
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computationally-expensive read alignment step, a pre-alignment �lter estimates the edit

distance between every read and the regions of the reference at each read’s candidate

mapping locations, and uses this estimation to quickly decide whether or not read alignment

is needed. If the sequences are dissimilar enough, signi�cant amount of time is saved by

avoiding the expensive alignment step [18, 21, 17, 322, 321].

In pre-alignment �ltering, since we only need to estimate (approximately) the edit

distance and check whether it is above a user-de�ned threshold, GenASM-DC can be used

as a pre-alignment �lter. As GenASM-DC is very e�cient when we have shorter sequences

and a low error threshold (due to the O(m× n× k) complexity of the underlying Bitap

algorithm, where m is the query length, n is the reference length, and k is the number of

allowed errors), GenASM framework can e�ciently accelerate the pre-alignment �ltering

step of especially short read mapping.
2

Edit DistanceCalculation. Edit distance, also called Levenshtein distance [179], is the

minimum number of edits (i.e., substitutions, insertions and deletions) required to convert

one sequence to another. Edit distance calculation is one of the fundamental operations

in genomics to measure the similarity or distance between two sequences [289]. As we

explain in Section 4.2, the Bitap algorithm, which is the underlying algorithm of GenASM-

DC, is originally designed for edit distance calculation. Thus, GenASM framework can

accelerate edit distance calculation between any two arbitrary-length genomic sequences.

Although GenASM-DC can �nd the edit distance by itself and traceback is optional

for this use case, DC-TB interaction is required in our accelerator to exploit the e�cient

divide-and-conquer approach GenASM follows. Thus, GenASM-DC and GenASM-TB

work together to �nd the minimum edit distance in a fast and memory-e�cient way, but

the traceback output is not generated or reported by default (though it can optionally be

enabled).

2
Although we believe that GenASM can also be used as a pre-alignment �lter for long reads, we leave

the evaluation of this use case for future work.
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4.9 Evaluation Methodology

Area and Power Analysis. We synthesize and place & route the GenASM-DC and

GenASM-TB accelerator datapaths using the Synopsys Design Compiler [4] with a typi-

cal 28nm low-power process, with memories generated using an industry-grade SRAM

compiler, to analyze the accelerators’ area and power. Our synthesis targets post-routing

timing closure at 1GHz clock frequency. We then use an in-house cycle-accurate simulator

parameterized with the synthesis and memory estimations to drive the performance and

power analysis.

We evaluate a 16GB HMC-like 3D-stacked DRAM architecture, with 32 vaults [133]

and 256GB/s of internal bandwidth [37, 133], and a clock frequency of 1.25GHz [133].

The amount of available area in the logic layer for GenASM is around 3.5–4.4 mm
2

per

vault [77, 37]. The power budget of our PIM logic per vault is 312mW [77].

Performance Model. We build a spreadsheet-based analytical model for GenASM-

DC and GenASM-TB, which considers reference genome (i.e., text) length, query read

(i.e., pattern) length, maximum edit distance, window size, hardware design parameters

(number of PEs, bit width of each PE) and number of vaults as input parameters and projects

compute cycles, DRAM read/write bandwidth, SRAM read/write bandwidth, and memory

footprint. We verify the analytically-estimated cycle counts for various PE con�gurations

with the cycle counts collected from our RTL simulations.

Read Alignment Comparisons. For the read alignment use case, we compare

GenASM with the read alignment steps of two commonly-used state-of-the-art read map-

pers: Minimap2 [182] and BWA-MEM [180], running on an Intel
®

Xeon
®

Gold 6126

CPU [146] operating at 2.60GHz, with 64GB DDR4 memory. Software baselines are run

with a single thread and with 12 threads. We measure the execution time and power con-

sumption of the alignment steps in Minimap2 and BWA-MEM. We measure the individual

power consumed by each tool using Intel’s PCM power utility [143].
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We also compare GenASM with a state-of-the-art GPU-accelerated short read alignment

tool, GASAL2 [9]. We run GASAL2 on an Nvidia Titan V GPU [233] with 12GB HBM2

memory [154]. To fully utilize the GPU, we con�gure the number of alignments per batch

based on the GPU’s number of multiprocessors and the maximum number of threads

per multiprocessor, as described in the GASAL2 paper [9]. To better analyze the high

parallelism that the GPU provides, we replicate our datasets to obtain datasets with 100K,

1M and 10M reference-read pairs for short reads. We run the datasets with GASAL2, and

collect kernel time and average power consumption using nvprof [234].

We also compare GenASM with two state-of-the-art hardware-based alignment ac-

celerators, GACT of Darwin [301] and SillaX of GenAx [95]. We synthesize and execute

the open-source RTL for GACT [66]. We estimate the performance of SillaX using data

reported by the original work [95].

We analyze the alignment accuracy of GenASM by comparing the alignment outputs

(i.e., alignment score, edit distance, and CIGAR string) of GenASM with the alignment

outputs of BWA-MEM and Minimap2, for short reads and long reads, respectively. We

obtain the BWA-MEM and Minimap2 alignments by running the tools with their default

settings.

Pre-Alignment Filtering Comparisons. We compare GenASM with Shouji [17],

which is the state-of-the-art FPGA-based pre-alignment �lter for short reads. For execution

time and �ltering accuracy analyses, we use data reported by the original work [17]. For

power analysis, we report the total power consumption of Shouji using the power analysis

tool in Xilinx Vivado [320], after synthesizing and implementing the open-source FPGA

design of Shouji [269].

Edit Distance Calculation Comparisons. We compare GenASM with the state-of-

the-art software-based read alignment library, Edlib [289], running on an Intel
®

Xeon
®

Gold 6126 CPU [146] operating at 2.60GHz, with 64GB DDR4 memory. Edlib uses the Myers’

bitvector algorithm [216] to �nd the edit distance between two sequences. We use the
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default global Needleman-Wunsch (NW) [225] mode of Edlib to perform our comparisons.

We measure the power consumed by Edlib using Intel’s PCM power utility [143].

We also compare GenASM with ASAP [35], which is the state-of-the-art FPGA-based

accelerator for computing the edit distance between two short reads. We estimate the

performance of ASAP using data reported by the original work [35].

Datasets. For the read alignment use case, we evaluate GenASM using the latest

major release of the human genome assembly, GRCh38 [3]. We use the 1–22, X, and Y

chromosomes by �ltering the unmapped contigs, unlocalized contigs, and mitochondrial

genome. Genome characters are encoded into 2-bit patterns (A = 00, C = 01, G = 10, T =

11). With this encoding, the reference genome uses 715 MB of memory.

We generate four sets of long reads (i.e., PacBio and ONT datasets) using PBSIM [236]

and three sets of short reads (i.e., Illumina datasets) using Mason [126]. For the PacBio

datasets, we use the default error pro�le for the continuous long reads (CLR) in PBSIM.

For the ONT datasets, we modify the settings to match the error pro�le of ONT reads

sequenced using R9.0 chemistry [152]. Both datasets have 240,000 reads of length 10Kbp,

each simulated with 10% and 15% error rates. The Illumina datasets have 200,000 reads of

length 100bp, 150bp, and 250bp, each simulated with a 5% error rate.

For the pre-alignment �ltering use case, we use two datasets that Shouji [17] provides

as test cases: reference-read pairs (1) of length 100bp with an edit distance threshold of 5,

and (2) of length 250bp with an edit distance threshold of 15.

For the edit distance calculation use case, we use the publicly-available dataset that

Edlib [289] provides. The dataset includes two real DNA sequences, which are 100Kbp

and 1Mbp in length, and arti�cially-mutated versions of the original DNA sequences with

measures of similarity ranging between 60%–99%. Evaluating this set of sequences with

varying values of similarity and length enables us to demonstrate how these parameters

a�ect performance.
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4.10 Results

4.10.1 Area and Power Analysis

Table 4-1 shows the area and power breakdown of each component in GenASM, and

the total area overhead and power consumption of (1) a single GenASM accelerator (in 1

vault) and (2) 32 GenASM accelerators (in 32 vaults). Both GenASM-DC and GenASM-TB

operate at 1GHz.

The area overhead of one GenASM accelerator is 0.334 mm
2
, and the power consump-

tion of one GenASM accelerator, including the SRAM power, is 101 mW. When we compare

GenASM with a single core of a modern Intel
®

Xeon
®

Gold 6126 CPU [146] (which we

conservatively estimate to use 10.4 W [146] and 32.2 mm
2

[60] per core), we �nd that

GenASM is signi�cantly more e�cient in terms of both area and power consumption. As

we have one GenASM accelerator per vault, the total area overhead of GenASM in all 32

vaults is 10.69 mm
2
. Similarly, the total power consumption of 32 GenASM accelerators is

3.23 W.

Table 4-1: Area and power breakdown of GenASM.

Component Area (mm2) Power (W)
GenASM-DC (64 PEs) 0.049 0.033

GenASM-TB 0.016 0.004
DC-SRAM (8 KB) 0.013 0.009

TB-SRAMs (64 x 1.5 KB) 0.256 0.055
Total − 1 vault (32 vaults) 0.334 (10.69) 0.101 (3.23)

4.10.2 Use Case 1: Read Alignment

SoftwareBaselines (CPU). Figure 4-8 shows the read alignment throughput (reads/sec)

of GenASM and the alignment steps of BWA-MEM and Minimap2, when aligning long

noisy PacBio and ONT reads against the human reference genome. When comparing with
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Figure 4-8: Throughput comparison of GenASM and the alignment steps of
BWA-MEM and Minimap2 for long reads.

BWA-MEM, we run GenASM with the candidate locations reported by BWA-MEM’s �lter-

ing step. Similarly, when comparing with Minimap2, we run GenASM with the candidate

locations reported by Minimap2’s �ltering step. GenASM’s throughput is determined by

the throughput of the execution of GenASM-DC and GenASM-TB with window size (W )

of 64 and overlap size (O) of 24.

As Figure 4-8 shows, GenASM provides (1) 7173× and 648× throughput improvement

over the alignment step of BWA-MEM for its single-thread and 12-thread execution,

respectively, and (2) 1126× and 116× throughput improvement over the alignment step of

Minimap2 for its single-thread and 12-thread execution, respectively.

Based on our power analysis with long reads, we �nd that power consumption of BWA-

MEM’s alignment step is 58.6 W and 109.5 W, and power consumption of Minimap2’s read

alignment step is 59.8 W and 118.9 W for their single-thread and 12-thread executions,

respectively. GenASM consumes only 3.23W, and thus reduces the power consumption

of the alignment steps of BWA-MEM and Minimap2 by 18× and 19× for single-thread

execution, and by 34× and 37× for 12-thread execution, respectively.

Figure 4-9 compares the read alignment throughput (reads/sec) of GenASM with that

of the alignment steps of BWA-MEM and Minimap2, when aligning short Illumina reads

against the human reference genome. GenASM provides (1) 1390× and 111× throughput

improvement over the alignment step of BWA-MEM for its single-thread and 12-thread exe-
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Figure 4-9: Throughput comparison of GenASM and the alignment steps of
BWA-MEM and Minimap2 for short reads.

cution, respectively, and (2) 1839× and 158× throughput improvement over the alignment

step of Minimap2 for its single-thread and 12-thread execution.

Based on our power analysis with short reads, we �nd that GenASM reduces the power

consumption over the alignment steps of BWA-MEM and Minimap2 by 16× and 18× for

single-thread execution, and by 33× and 31× for 12-thread execution, respectively.

Figure 4-10 shows the total execution time of the entire BWA-MEM and Minimap2

pipelines, along with the total execution time when the alignment steps of each pipeline

are replaced by GenASM, for the three representative input datasets. As Figure 4-10 shows,

GenASM provides (1) 2.4× and 1.9× speedup for Illumina reads (250bp); (2) 6.5× and 3.4×

speedup for PacBio reads (15%); and (3) 4.9× and 2.1× speedup for ONT reads (15%), over

the entire pipeline executions of BWA-MEM and Minimap2, respectively.
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Figure 4-10: Total execution time of the entire BWA-MEM and Minimap2
pipelines with and without GenASM.

Software Baselines (GPU). We compare GenASM with the state-of-the-art GPU

aligner, GASAL2 [9], using three datasets of varying size (100K, 1M, and 10M reference-
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read pairs). Based on our analysis, we make three �ndings. First, for 100bp Illumina reads,

GenASM provides 9.9×, 9.2×, and 8.5× speedup over GASAL2, while reducing the power

consumption by 15.6×, 17.3× and 17.6× for 100K, 1M, and 10M datasets, respectively.

Second, for 150bp Illumina reads, GenASM provides 15.8×, 13.1×, and 13.4× speedup over

GASAL2, while reducing the power consumption by 15.4×, 18.0×, and 18.7× for 100K,

1M, and 10M datasets, respectively. Third, for 250bp Illumina reads, GenASM provides

21.5×, 20.6×, and 21.1× speedup over GASAL2, while reducing the power consumption

by 16.8×, 20.2×, and 20.6× for 100K, 1M, and 10M datasets, respectively. We conclude

that GenASM provides signi�cant performance bene�ts and energy e�ciency over GPU

aligners for short reads.

Hardware Baselines. We compare GenASM with two state-of-the-art hardware

accelerators for read alignment: GACT (from Darwin [301]) and SillaX (from GenAx [95]).

Darwin is a hardware accelerator designed for long read alignment [301]. Darwin

contains components that accelerate both the �ltering (D-SOFT) and alignment (GACT)

steps of read mapping. The open-source RTL code available for the GACT accelerator of

Darwin allows us to estimate the throughput, area and power consumption of GACT and

compare it with GenASM for read alignment. In Darwin, GACT logic and the associated

128KB SRAM are responsible for �lling the dynamic programming matrix, generating

the traceback pointers and �nding the maximum score. Thus, we believe that it is fair to

compare the power consumption and the area of the GACT logic and GenASM logic, along

with their associated SRAMs.

In order to have an iso-bandwidth comparison with Darwin’s GACT, we compare

only a single array of GACT and a single set of GenASM-DC and GenASM-TB, because

(1) GenASM utilizes the high memory bandwidth that PIM provides only to parallelize

many sets of GenASM-DC and GenASM-TB, and a single set of GenASM-DC and GenASM-

TB does not require high bandwidth, and (2) all internal data of both GenASM and Darwin

is provided by local SRAMs. We synthesize both designs (i.e., GenASM and GACT) at an
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iso-PVT (process, voltage, temperature) corner, with the same number of PEs, and with

their optimum parameters.

As Figure 4-11 shows, for a single GACT array with 64 PEs at 1GHz, the throughput of

GACT decreases from 55,556 to 6,289 alignments per second when the sequence length

increases from 1Kbp to 10Kbp, while consuming 277.7 mW of power. In comparison, for a

single GenASM accelerator at 1GHz (with a 64-PE con�guration), the throughput decreases

from 236,686 to 23,669 alignments per second when the sequence length increases from

1Kbp to 10Kbp, while consuming 101 mW of power. This shows that, on average, GenASM

provides 3.9× better throughput than GACT, while consuming 2.7× less power. Thus,

GenASM provides 10.5× better throughput per unit power for long reads when compared

to GACT.
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Figure 4-11: Throughput comparison of GenASM and GACT from Darwin for
long reads.

As Figure 4-12 shows, we also compare the throughput of GenASM and GACT for

short read alignment (i.e., 100–300bp reads). We �nd that GenASM performs 7.4× better

than GACT when aligning short reads, on average. Thus, GenASM provides 20.0× better

throughput per unit power for short reads when compared to GACT.

We compare the required area for the GACT logic with 128KB of SRAM and the required

area for the GenASM logic (GenASM-DC and GenASM-TB) with 8KB of DC-SRAM and

96KB of TB-SRAMs, at 28nm. We �nd that GenASM requires 1.7× less area than GACT.

Thus, GenASM provides 6.6× and 12.6× better throughput per unit area for long reads

and for short reads, respectively, when compared to GACT.
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Figure 4-12: Throughput comparison of GenASM and GACT from Darwin for
short reads.

The main di�erence between GenASM and GACT is the underlying algorithms. GenASM

uses our modi�ed Bitap algorithm, which requires only simple and fast bitwise operations.

On the other hand, GACT uses the complex and computationally more expensive dynamic

programming based algorithm for alignment. This is the main reason why GenASM is

more e�cient than GACT of Darwin.

GenAx is a hardware accelerator designed for short read alignment [95]. Similar to

Darwin, GenAx accelerates both the �ltering and alignment steps of read mapping. Unlike

GenAx, whose design is optimized only for short reads, GenASM is more robust and

works with both short and long reads. While we are unable to reimplement GenAx, the

throughput analysis of SillaX (the alignment accelerator of GenAx) provided by the original

work [95] allows us to provide a performance comparison between GenASM and SillaX

for short read alignment.

We compare SillaX with GenASM at their optimal operating frequencies (2GHz for

SillaX, 1GHz for GenASM), and �nd that GenASM provides 1.9× higher throughput for

short reads (101bp) than SillaX (whose approximate throughput is 50M alignments per

second). Using the area and power numbers reported for the computation logic of SillaX,

we �nd that GenASM requires 63% less logic area (2.08 mm
2

vs. 5.64 mm
2
) and 82% less

logic power (1.18 W vs. 6.6 W).

In order to compare the total area of SillaX and GenASM, we perform a CACTI-based

analysis [315] for the SillaX SRAM (2.02 MB). We �nd that the SillaX SRAM consumes

an area of 3.47 mm
2
, resulting in a total area of 9.11 mm

2
for SillaX. Although GenASM

83



(10.69 mm
2
) requires 17% more total area than SillaX, we �nd that GenASM provides 1.6×

better throughput per unit area for short reads than SillaX.

Accuracy Analysis. We compare the traceback outputs of GenASM and (1) BWA-

MEM for short reads, (2) Minimap2 for long reads, to assess the accuracy and correctness

of GenASM-TB. We �nd that the optimum (W ,O) setting (i.e., window size and overlap

size) for the GenASM-TB algorithm in terms of performance and accuracy is W = 64 and

O = 24. With this setting, GenASM completes the alignment of all reads in each dataset,

and increasing the window size does not change the alignment output.

For short reads, we use the default scoring setting of BWA-MEM (i.e., match=+1,

substitution=-4, gap opening=-6, and gap extension=-1). For 96.6% of the short reads,

GenASM �nds an alignment whose score is equal to the score of the alignment reported

by BWA-MEM. This fraction increases to 99.7% when we consider scores that are within

±4.5% of the scores reported by BWA-MEM.

For long reads, we use the default scoring setting of Minimap2 (i.e., match=+2, substitution=-

4, gap opening=-4, and gap extension=-2). For 99.6% of the long reads with a 10% error rate,

GenASM �nds an alignment whose score is within ±0.4% of the score of the alignment

reported by Minimap2. For 99.7% of the long reads with a 15% error rate, GenASM �nds

an alignment whose score is within ±0.7% of the score of the alignment reported by

Minimap2.

There are two reasons for the di�erence between the alignment scores reported by

GenASM and the scores reported by the baseline tools. First, GenASM performs traceback

for the alignment with the minimum edit distance. However, the baseline can report an

alignment that has a higher number of edits but a lower score than the alignment reported

by GenASM, when more complex scoring schemes are used. Second, during the TB stage,

GenASM follows a �xed order at each iteration when picking between substitutions,

insertions, or deletions (based on the penalty of each error type). While we pick the error

type with the lowest possible cost at the current iteration, another error type with a higher
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initial cost may lead to a better (i.e., lower-cost) alignment in later iterations, which cannot

be known beforehand.
3

Although GenASM is optimized for unit-cost based scoring (i.e., edit distance) and

currently provides only partial support for more complex scoring schemes, we show that

GenASM framework can still serve as a fast, memory- and power-e�cient, and quite

accurate alternative for read alignment.

4.10.3 Use Case 2: Pre-Alignment Filtering

We compare GenASM with the state-of-the-art FPGA-based pre-alignment �lter for

short reads, Shouji [17], using two datasets provided in [17]. When we compare Shouji

(with maximum �ltering units) and GenASM for the dataset with 100bp sequences, we �nd

that GenASM provides 3.7× speedup over Shouji, while reducing power consumption by

1.7×. When we perform the same analysis with 250bp sequences, we �nd that GenASM

does not provide speedup over Shouji, but reduces power consumption by 1.6×.

In pre-alignment �ltering for short reads, only GenASM-DC is executed (Section 4.8).

The complexity of GenASM-DC is O(n × m × k) whereas the complexity of Shouji is

O(m × k), where n is the text length, m is the read length, and k is the edit distance

threshold. Going from the 100bp dataset to the 250bp dataset, all these three parameters

increase linearly. Thus, the speedup of GenASM over Shouji for pre-alignment �ltering

decreases for datasets with longer reads.

To analyze �ltering accuracy, we use Edlib [289] to generate the ground truth edit

distance value for each sequence pair in the datasets (similar to Shouji). We evaluate the

accuracy of GenASM as a pre-alignment �lter by computing its false accept rate and false

reject rate (as de�ned in [17]).

The false accept rate [17] is the ratio of the number of dissimilar sequences that are

falsely accepted by the �lter (as similar) and the total number of dissimilar sequences that

3
We can add support for di�erent orderings by adding more con�gurability to the GenASM-TB accelera-

tor, which we leave for future work.
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are rejected by the ground truth. The goal is to minimize the false accept rate to maximize

the number of dissimilar sequences that are eliminated by the �lter. For the 100bp dataset

with an edit distance threshold of 5, Shouji has a 4% false accept rate, whereas GenASM

has a false accept rate of only 0.02%. For the 250bp dataset with an edit distance threshold

of 15, Shouji has a 17% false accept rate, whereas GenASM has a false accept rate of only

0.002%. Thus, GenASM provides a very low rate of falsely-accepted dissimilar sequences,

and signi�cantly improves the accuracy of pre-alignment �ltering compared to Shouji.

While Shouji approximates the edit distance, GenASM calculates the actual distance.

Although calculation requires more computation than approximation, a computed distance

results in a near-zero (0.002%) false accept rate.
4

Thus, GenASM �lters more false-positive

locations out, leaving fewer candidate locations for the expensive alignment step to process.

This greatly reduces the combined execution time of �ltering and alignment. Thus, even

though GenASM does not provide any speedup over Shouji when �ltering the 250bp

sequences, its lower false accept rate makes it a better option for this step of the pipeline

with greater overall bene�ts.

The false reject rate [17] is the ratio of the number of similar sequences that are rejected

by the �lter (as dissimilar) and the total number of similar sequences that are accepted

by the ground truth. The false reject rate should always be equal to 0%. We observe

that GenASM always provides a 0% false reject rate, and thus does not �lter out similar

sequence pairs, as does Shouji.

4.10.4 Use Case 3: Edit Distance Calculation

We compare GenASM with the state-of-the-art edit distance calculation library, Edlib [289].

Figure 4-13 compares the execution time of Edlib (with and without �nding the traceback

4
The reason for the non-zero false accept rate of GenASM is that when there is a deletion in the �rst

character of the query, GenASM does not count this as an edit, and skips this extra character of the text

when computing the edit distance. Since GenASM reports an edit distance that is one lower than the edit

distance reported by the ground truth, if GenASM’s reported edit distance is below the threshold but the

ground truth’s is not, GenASM leads to a false accept.
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output) and GenASM when �nding the edit distance between two sequences of length

100Kbp, and also two sequences of length 1Mbp, which have similarity ranging from 60%

to 99% (Section 4.9). Since Edlib is a single-thread edit distance calculation tool, for a fair

comparison, we compare the throughput of only one GenASM accelerator (i.e., in one

vault) with a single-thread execution of the Edlib tool.

As Figure 4-13 shows, when performing edit distance calculation between two 100Kbp

sequences, GenASM provides 22–716× and 146–1458× speedup over Edlib execution

without and with traceback, respectively. GenASM has the same execution time for both

of the cases. When the sequence length increases from 100Kbp to 1Mbp, the execution

time of GenASM increases linearly (since W is constant, but m + k increases linearly).

However, due to its quadratic complexity, Edlib cannot scale linearly. Thus, for the edit

distance calculation of 1Mbp sequences, GenASM provides 262–5413× and 627–12501×

speedup over Edlib execution without and with traceback, respectively.

Figure 4-13: Execution time comparison of GenASM and Edlib for edit distance
calculation.

Although both the GenASM algorithm and Edlib’s underlying Myers’ algorithm [216]

use bitwise operations only for edit distance calculation and exploit bit-level parallelism,

the main advantages of the GenASM algorithm come from (1) the divide-and-conquer

approach we follow for e�cient support for longer sequences, and (2) our e�cient co-design

of the GenASM algorithm with the GenASM hardware accelerator.

Based on our power analysis, we �nd that power consumption of Edlib is 55.3 W and

58.8 W when �nding the edit distance between two 100Kbp sequences and two 1Mbp
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sequences, respectively. Thus, GenASM reduces power consumption by 548× and 582×

over Edlib, respectively.

We also compare GenASM with ASAP [35], the state-of-the-art FPGA-based accelerator

for edit distance calculation. While we are unable to reimplement ASAP, the execution

time and power consumption analysis of ASAP provided in [35] allows us to provide a

comparison between GenASM and ASAP. ASAP is optimized for shorter sequences and

reports execution time only for sequences of length 64bp–320bp [35]. Based on [35], the

execution time of one ASAP accelerator increases from 6.8 µs to 18.8 µs when the sequence

length increases from 64bp to 320bp, while consuming 6.8 W of power. In comparison,

we report that the execution time of one GenASM accelerator increases from 0.017 µs

to 2.025 µs when the sequence length increases from 64bp to 320bp, while consuming

0.101 W of power. This shows that GenASM provides 9.3–400× speedup over ASAP, while

consuming 67× less power.

4.10.5 Sources of Improvement in GenASM

GenASM’s performance improvements come from our algorithm/hardware co-design,

i.e., both from our modi�ed algorithm and our co-designed architecture for this algorithm.

The sources of the large improvements in GenASM are (1) the very simple computations

it performs; (2) the divide-and-conquer approach we follow, which makes our design

e�cient for both short and long reads despite their di�erent error pro�les; and (3) the very

high degree of parallelism obtained with the help of specialized compute units, dedicated

SRAMs for both GenASM-DC and GenASM-TB, and the vault-level parallelism provided

by processing in the logic layer of 3D-stacked memory.

Algorithm-Level. Our divide-and-conquer approach allows us to decrease the execu-

tion time of GenASM-DC from (
m×(m+k)×k

P×w ) cycles to ((
W×W×min(W ,k)

P×w )× m+k
W–O ) cycles,

where m is the pattern size, k is the edit distance threshold, P is the number of PEs that

GenASM-DC has (i.e., 64), w is the number of bits processed by each PE (i.e., 64), W is the

window size (i.e., 64), and O is the overlap size between windows (i.e., 24). Although the
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total GenASM-TB execution time does not change ((m + k) cycles vs. ((W – O)× m+k
W–O )

cycles), our divide-and-conquer approach helps us decrease the GenASM-DC execution

time by 3662× for long reads, and by 1.6 – 3.9× for short reads.

Hardware-Level. GenASM-DC’s systolic-array-based design removes the data de-

pendency limitation of the underlying Bitap algorithm, and provides 64× parallelism by

performing 64 iterations of the GenASM-DC algorithm in parallel. Our hardware acceler-

ator for GenASM-TB makes use of specialized per-PE TB-SRAMs, which eliminates the

otherwise very high memory bandwidth consumption of traceback and enables e�cient

execution.

Technology-Level. With the help of 3D-stacked memory’s vault-level parallelism,

we can obtain 32× parallelism by performing 32 alignments in parallel in di�erent vaults.

4.11 Other Use Cases of GenASM

We have quantitatively evaluated three use cases of approximate string matching for

genome sequence analysis (Section 4.10). We discuss four other potential use cases of

GenASM, whose evaluation we leave for future work.

Read-to-Read Overlap Finding Step of de Novo Assembly. De novo assembly [51]

is an alternate genome sequencing approach that assembles an entire DNA sequence

without the use of a reference genome. The �rst step of de novo assembly is to �nd read-

to-read overlaps since the reference genome does not exist [280]. Pairwise read alignment

(i.e., read-to-read alignment) is the last step of read-to-read overlap �nding [251, 182]. As

sequencing devices can introduce errors to the reads, read alignment in overlap �nding

also needs to take these errors into account. GenASM can be used for the pairwise read

alignment step of overlap �nding.

Hash-Table Based Indexing. In the indexing step of read mapping, the reference

genome is indexed and stored as a hash table, whose keys are all possible �xed-length

substrings (i.e., seeds) and whose values are the locations of these seeds in the reference
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genome. This index structure is queried in the seeding step to �nd the candidate matching

locations of query reads. As we need to �nd the locations of each seed in the reference text

to form the index structure, GenASM can be used to generate the hash-table based index.

Whole Genome Alignment. Whole genome alignment [75, 246] is the method of

aligning two genomes (from the same or di�erent species) for predicting evolutionary or

familial relationships between these genomes. In whole genome alignment, we need to

align two very long sequences. Since GenASM can operate on arbitrary-length sequences as

a result of our divide-and-conquer approach, whole genome alignment can be accelerated

using the GenASM framework.

Generic Text Search. Although GenASM-DC is optimized for genomic sequences (i.e.,

DNA sequences), which are composed of only 4 characters (i.e., A, C, G and T), GenASM-

DC can be extended to support larger alphabets, thus enabling generic text search. When

generating the pattern bitmasks during the pre-processing step, the only change that is

required is to generate bitmasks for the entire alphabet, instead of for only four characters.

There is no change required to the edit distance calculation step.

As special cases of general text search, the alphabet can be de�ned as RNA bases (i.e.,

A, C, G, U) for RNA sequences or as amino acids (i.e., A, R, N, D, C, Q, E, G, H, I, L, K, M, F,

P, S, T, W, Y, V) for protein sequences. This enables GenASM to be used for RNA sequence

alignment or protein sequence alignment [121, 287, 225, 189, 23, 24, 160, 225, 227, 123, 294,

79, 335].

4.12 Related Work

To our knowledge, this is the �rst approximate string matching acceleration framework

that enhances and accelerates the Bitap algorithm, and demonstrates the e�ectiveness of

the framework for multiple use cases in genome sequence analysis. Many previous works

have attempted to improve (in software or in hardware) the performance of a single step
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of the genome sequence analysis pipeline. Recent acceleration works tend to follow one of

two key directions [16].

The �rst approach is to build pre-alignment �lters that use heuristics to �rst check the

di�erences between two genomic sequences before using the computationally-expensive

approximate string matching algorithms. Examples of such �lters are the Adjacency Filter

[322] that is implemented for standard CPUs, SHD [321] that uses SIMD-capable CPUs,

and GRIM-Filter [164] that is built in 3D-stacked memory. Many works also exploit the

large amounts of parallelism o�ered by FPGA architectures for pre-alignment �ltering,

such as GateKeeper [18], MAGNET [19], Shouji [17], and SneakySnake [21]. A recent work,

GenCache [217], proposes an in-cache accelerator to improve the �ltering (i.e., seeding)

mechanism of GenAx (for short reads) by using in-cache operations [8] and software

modi�cations.

The second approach is to use hardware accelerators for the computationally-expensive

read alignment step. Examples of such hardware accelerators are RADAR [130], FindeR [334],

and AligneR [333], which make use of ReRAM based designs for faster FM-index search,

or RAPID [117] and BioSEAL [158], which target dynamic programming acceleration with

processing-in-memory. Other read alignment acceleration works include SIMD-capable

CPUs [65], multicore CPUs [101, 190], and specialized hardware accelerators such as GPUs

(e.g., GSWABE [190], CUDASW++ 3.0 [191]), FPGAs (e.g., FPGASW [86], ASAP [35]), or

ASICs (e.g., Darwin [301] and GenAx [95]).

In contrast to GenASM, all of these prior works focus on accelerating only a single

use case in genome sequence analysis, whereas GenASM is capable of accelerating at

least three di�erent use cases (i.e., read alignment, pre-alignment �ltering, edit distance

calculation) where approximate string matching is required.
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4.13 Summary

We propose GenASM, an approximate string matching (ASM) acceleration framework

for genome sequence analysis built upon our modi�ed and enhanced Bitap algorithm.

GenASM performs bitvector-based ASM, which can accelerate multiple steps of genome

sequence analysis. We co-design our highly-parallel, scalable and memory-e�cient algo-

rithms with low-power and area-e�cient hardware accelerators. We evaluate GenASM

for three di�erent use cases of ASM in genome sequence analysis for both short and long

reads: read alignment, pre-alignment �ltering, and edit distance calculation. We show that

GenASM is signi�cantly faster and more power- and area-e�cient than state-of-the-art

software and hardware tools for each of these use cases.
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Chapter 5

BitMAc: FPGA-Based

Near-Memory Acceleration of

Bitvector-Based Sequence

Alignment

Modern data-intensive applications demand high computation capabilities with strict

power constraints. Unfortunately, such applications su�er from a signi�cant waste of

both execution cycles and energy in current computing systems due to the costly data

movement between the computation units and the memory units [285, 213, 37, 284, 235,

214, 103, 107, 118, 87, 286]. GenASM-based sequence alignment (Chapter 4) is an example

for such applications.

Recent FPGAs couple a recon�gurable fabric with high-bandwidth memory (HBM)

to enable more e�cient data movement and improve overall performance and energy

e�ciency. This trend is an example of a paradigm shift to near-memory computing. In

this work, we propose BitMAc, where we leverage such an FPGA with high-bandwidth

93



memory (HBM) for presenting an FPGA-based prototype for our GenASM accelerators. In

BitMAc, we map GenASM on an FPGA with a state-of-the-art 3D-stacked memory (HBM2),

where HBM2 o�ers high memory bandwidth and FPGA resources o�er high parallelism by

instantiating multiple copies of the GenASM accelerators. We exploit intra-level parallelism

by instantiating multiple processing elements (PEs) for the DC execution, and inter-level

parallelism by running multiple independent GenASM executions in parallel. We show

that due to the simplicity of the GenASM algorithms, BitMAc is a low-cost and scalable

solution for bitvector-based sequence alignment, with its high energy-e�ciency and low

resource requirements.

5.1 Near-Memory Computing with Modern FPGAs

FPGAs are one of the most commonly used form of recon�gurable hardware engines

today, and their computational capabilities are greatly increasing every generation due

to increased number of transistors on the FPGA chips. Besides these increasing computa-

tional capabilities, modern FPGAs provide (1) an advanced technology node of 7-14nm

FinFET [142, 319] that o�ers higher performance, (2) di�erent types of on-chip memories

(e.g., M20Ks for Intel/Altera chips or UltraRAM (URAM) for Xilinx chips that o�er large

on-chip memory next to the logic, and (3) the integration of high-bandwidth memory

(HBM) on the same package with an FPGA that allows us to implement our accelerator

logic much closer to the memory with an order of magnitude more bandwidth than tradi-

tional DDR4-based FPGA boards [284, 285]. Thus, modern FPGA architectures can deliver

unprecedented levels of integration and compute capability due to these new advances

and features, which provide an opportunity to largely alleviate the memory bottleneck of

real-world data-intensive applications.

One example of such modern FPGAs is Intel’s Stratix 10 MX device [145]. Intel Stratix

10 MX integrates 3D-stacked High-Bandwidth DRAM Memory (HBM2) alongside a high-

performance monolithic 14 nm FPGA fabric die. The fabric die contains 2,100K logic
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elements (LEs), 94.5 Mbits of embedded eSRAM blocks (each with 47.25 Mbit), over 134

Mbits of embedded M20K memory blocks (each with 20 Kbit), and hard memory controllers.

In Figure 5-1, we show a high-level schematic of the Intel Stratix 10 MX device. The

FPGA fabric die is connected to two HBM stacks, each of which has 8GB of capacity and

8 independent channels or 16 independent pseudo-channels [154]. Since there are two

HBM stacks per each Stratix 10 MX device, in total we have 16GB of memory capacity

and 32 independent pseudo-channels. Each HBM2 channel supports a 128-bit DDR data

bus, thus, providing two independent 64-bit data bus for each pseudo-channel. For each

pseudo-channel, the accesses happen with the burst length of 4, thus at each access, a

pseudo-channel reads/writes 32B of data.

PC0 PC1 PC6 PC7PC2 PC3 PC8 PC9 PC14 PC15PC10 PC11 PC12 PC13PC4 PC5

eSRAM

eSRAM HBM2 IP (Top)

HBM2 IP (Bottom)
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Figure 5-1: High-level schematic of the Intel Stratix 10 MX device.
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The HBM2 IP includes a soft logic adaptor implemented in core logic to e�ciently

interface user logic to the HBM2 controller. The user interface to the HBM2 controller is

maintained through the AXI4 protocol [31]. The HBM2 IP provides 16 AXI interfaces for

each HBM2 controller, with one AXI interface available per HBM2 pseudo-channel. Thus,

each AXI interface supports a 256-bit wide write data and 256-bit wide read data interface

to/from the HBM2 controller.

5.2 BitMAc Implementation

In BitMAc, we map our GenASM accelerators and their associated SRAMs (See Sec-

tion 4.7) to the Intel Stratix 10 MX device. As we show in Figure 5-2, we map the DC

and TB datapaths along with the HBM2 interface to the FPGA core logic fabric. Due to

their larger total capacity, we map TB-SRAMs to the M20Ks. On the other hand, since

DC-SRAM is required only to store the input text and pattern, we store them into registers

and thus, map them to the core logic fabric as well.

5.2.1 Mapping TB-SRAMs to M20Ks

In our GenASM design, we set the window size (W) as 64 and at each cycle, we store 3

out of the 4 intermediate bitvectors (i.e., deletion, insertion, and match bitvectors since

substitution can be obtained using the deletion bitvector). However, for a better mapping,

here in our BitMAc design, to match the width of the data port of M20Ks (40 bits) and to

decrease the amount of data written to M20Ks, we set the window size as 60 and we store

only 2 out of the 4 intermediate bitvectors (i.e., deletion and match) since substitution

bitvector can be obtained using the deletion bitvector and if none of these 3 bitvectors

contain the 0-of-interest at the position-of-interest, it means that insertion bitvector has it,

thus it is not required to explicitly store the fourth bitvector. These changes enable us to

decrease the amount of data generated by each processing element of the DC accelerator
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Figure 5-2: The overview of a BitMAc accelerator attached to one
pseudo-channel of an Intel Stratix 10 MX device.

to be 120 bits (instead of the original 192 bits), which is 3 times of the width of an M20K

data bus.

Since we have 6847 many M20Ks in our FPGA and since we need 3 M20K ports for

each processing element, within our budget, we can instantiate 2282 many processing

elements (PEs). To be able to instantiate multiple BitMAc accelerators to exploit inter-level

parallelism, we set the number of PEs as 16, based on our empirical analysis. This enables

us to set the error threshold (k) for each window of the BitMAc execution as 15 since for
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each error value (0...k), we have one dedicated PE (Figure 4-4). With this con�guration, we

can instantiate maximum of 142 BitMAc accelerators on our FPGA.

5.2.2 Mapping DC and TB Datapaths to the FPGA Logic

We map the GenASM-DC and GenASM-TB datapaths to the FPGA logic without any

modi�cations. We also map our FSM design, which controls the memory accesses, DC and

TB executions to the FPGA logic. Di�erent than our GenASM design, we also implement

the memory components required to store the inputs and outputs of the system as registers,

instead of the DC-SRAM in the GenASM design. The reason of this design choice is to be

able to dedicate all of the M20Ks solely for storing the intermediate bitvectors.

5.2.3 Mapping of the Main Memory to the HBM2 Stacks

In order to exploit the high-bandwidth that the HBM2 stacks provide, we store our

inputs (text-pattern pairs) and output (CIGAR string) in the HBM2 memory. Since we

have 32 pseudo-channels in total, we can attach 4 BitMAc accelerators to each of these

pseudo-channels not to exceed our 142 accelerator limit (See Section 5.2.1).

Since at each burst access of a pseudo-channel, we can read/write 32B of data, we can

read one pair of a 60bp-length text (120 bits with a 2-bit implementation) and a 60bp-length

pattern (120 bits with a 2-bit implementation) at each burst. For a better memory alignment,

we can also set each of these sequences as 64bp (256 bits in total). Similarly, for the CIGAR

output, we can have maximum of 256 bits. Thus, in memory, we can reserve 64B memory

space for each pair of text and pattern (16B text + 16B pattern + 32B CIGAR output). This

also enables us to (1) have a single memory address counter for each pseudo-channel, and

(2) have 1 memory access for reading and 1 memory access for writing data from/to HBM2

for each window’s execution.
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5.3 Evaluation

5.3.1 Methodology

We implement our DC and TB accelerator datapaths using SystemVerilog and incorpo-

rate the M20Ks and the HBM2 interface for both top and bottom HBM2 stacks using M20K

IP and HBM2 IP of Intel Quartus Prime [144], respectively. The complete BitMAc design

has 4 BitMAc accelerators connected to each pseudo-channel (128 in total), where each

BitMAc accelerator contains a DC accelerator with 16 PEs, a TB accelerator, an FSM, and

13.2KB of M20Ks. We synthesize and place & route the complete BitMAc design clocked

at 200 MHz, and report the resource utilization and power analysis results based on the

compilation �ow that Intel Quartus Prime provides. We also modify the spreadsheet-based

analytical model of GenASM based on our new BitMAc design, and report our performance

results based on this analytical model.

We perform our BitMAc evaluation for the read alignment use case (See Section 4.8).

Similar to GenASM, we compare BitMAc with (1) the read alignment steps of Min-

imap2 [182] and BWA-MEM [180] as the CPU-based baselines, and (2) GASAL2 [9] as the

GPU-based baseline. We also compare BitMAc with GenASM to show the comparison for

the FPGA- and ASIC-based implementations, respectively. You can refer to Section 4.9 for

more details on the baselines and the datasets used.

5.3.2 Power Analysis

Table 5-1 shows the dynamic and total on-chip power dissipation of di�erent con�g-

urations of our BitMAc design on an Intel Stratix 10 MX device. We show that the total

power dissipation of a single BitMAc accelerator is 6 W. We also show that for 32 BitMAc

accelerators (one BitMAc accelerator per pseudo-channel), the total power dissipation is

17.2 W, and for 128 BitMAc accelerators (four BitMAc accelerators per pseudo-channel;

our complete design), the total power dissipation is 48.9 W.
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Table 5-1: On-chip power dissipation of the BitMAc design.

Component Dynamic On-Chip 
Power Dissipation 

Total On-Chip 
Power Dissipation 

DC Logic (16 PEs) 128.57 mW

TB Logic 10.24 mW

FSM Logic 3.15 mW

M20Ks 211.61 mW

Other 15.72 mW

Total − 1 BitMAc Accelerator 369.29 mW (0.4 W) 6043.24 mW (6.0 W)

Total − 32 BitMAc Accelerators
(1 per each pseudo-channel) 11569.92 mW (11.6 W) 17234.67 mW (17.2 W)

Total − 128 BitMAc Accelerators
(4 per each pseudo-channel) 43042.90 mW (43 W) 48935.65 mW (48.9 W)

When we look at the power dissipation analysis by block type for our complete BitMAc

design, we �nd that 59% of the total dissipation accounts for the M20Ks, 9% accounts

for the combination cells, 7% accounts for the register cells, 13% accounts for the clock

network, and 12% accounts for the static power dissipation. Thus, M20Ks are the main

contributors to the total on-chip power dissipation.

5.3.3 Performance Analysis

CPU-based Baselines. Figure 5-3 shows the read alignment throughput (reads/sec)

of BitMAc and the alignment steps of BWA-MEM and Minimap2, when aligning long

noisy PacBio and ONT reads against the human reference genome. As Figure 5-3 shows,

BitMAc provides 761× and 136× throughput improvement over the alignment steps of

BWA-MEM and Minimap2 for their 12-thread execution, respectively, while reducing the

power consumption by 1.9× and 2.0× for 12-thread execution.

Figure 5-4 compares the read alignment throughput (reads/sec) of BitMAc with that

of the alignment steps of BWA-MEM and Minimap2, when aligning short Illumina reads

against the human reference genome. We �nd that BitMAc provides 92× and 130×

throughput improvement over the alignment steps of BWA-MEM and Minimap2 for their
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12-thread execution, respectively, while reducing the power consumption by 2.2× and

2.0× for 12-thread execution.
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Figure 5-3: Throughput comparison of BitMAc and the alignment steps of
BWA-MEM and Minimap2 for long reads.
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Figure 5-4: Throughput comparison of BitMAc and the alignment steps of
BWA-MEM and Minimap2 for short reads.

GPU-based Baseline. We compare BitMAc with the state-of-the-art GPU aligner,

GASAL2 [9], using three datasets of varying size (100K, 1M, and 10M reference-read

pairs). Based on our analysis, we make three �ndings. First, for 100bp Illumina reads,

BitMAc provides 7.9×, 7.3×, and 6.8× speedup over GASAL2, while reducing the power

consumption by 2.9%, 12.3% and 13.7% for 100K, 1M, and 10M datasets, respectively. Second,

for 150bp Illumina reads, BitMAc provides 13.2×, 10.9×, and 11.1× speedup over GASAL2,

while reducing the power consumption by 1.5%, 15.6% and 19.1% for 100K, 1M, and 10M

datasets, respectively. Third, for 250bp Illumina reads, BitMAc provides 19.4×, 18.7×, and

19.0× speedup over GASAL2, while reducing the power consumption by 9.9%, 25.2% and

26.6% for 100K, 1M, and 10M datasets, respectively.
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5.3.4 FPGA Resource Utilization

We list the resource utilization of di�erent con�gurations of our BitMAc design on

an Intel Stratix 10 MX device in Table 5-2. We make four key observations. First, we �nd

that for the complete BitMAc design (128 BitMAc accelerators), the DC logic corresponds

to 73% of the logic utilization, the TB logic corresponds to 23% of the logic utilization,

the FSM logic corresponds to 1% of the logic utilization, and the memory interface logic

corresponds to 3% of the logic utilization. Second, we �nd that there is a linear scaling

of the FPGA resources with the number of instances we include in our design. Third, we

observe that the logic utilization (64%) is lower than the on-chip memory utilization (90%).

Fourth, due to high amount of data that needs to be stored for the TB execution on M20Ks,

we are bottlenecked by the amount of on-chip memory (i.e., M20Ks) we have. Because of

this limitation, we also cannot saturate the high bandwidth that multiple HBM2 stacks on

the FPGA provide. Thus, in order to scale further and fully exploit the high-bandwidth that

HBM2 stacks provide, we need (1) algorithm-level modi�cations to decrease the amount

of data that need to be stored in M20Ks, and (2) newer FPGA chips that provide a higher

amount of on-chip memory capacity.

Table 5-2: FPGA resource utilization of the BitMAc design.

Configuration Logic Utilization M20K eSRAM DSP

1 BitMAc Accelerator 0.5% 0.7% 0% 0%

32 BitMAc Accelerators
(1 per each pseudo-channel) 17.7% 22.4% 0% 0%

128 BitMAc Accelerators
(4 per each pseudo-channel) 64.3% 89.7% 0% 0%

5.3.5 FPGA-based BitMAc vs. ASIC-based GenASM

We also compare BitMAc with GenASM (Chapter 4) to show the comparison for the

FPGA- and ASIC-based implementations, respectively. For GenASM, we consider the
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con�guration explained in Section 4.9 and for BitMAc, we consider the con�guration

explained in Section 5.3.1. GenASM operates at 1GHz while having 64 PEs per accelerator

and 32 accelerators in total in its complete design. On the other hand, BitMAc operates at

200MHz while having 16 PEs per accelerator and 128 accelerators in total in its complete

design.

Based on our analysis, we �nd that BitMAc provides 1.18× throughput improvement

over GenASM for both short and long reads with the help of our algorithmic and hardware

design changes for a more e�cient FPGA mapping. However, due to the cost of recon-

�gurability of the FPGAs and dedicating the whole chip for the BitMAc design, a single

FPGA-based BitMAc accelerator increases the power consumption by 4× compared to a

single ASIC-based GenASM accelerator when we only take the dynamic on-chip power

dissipation into consideration. On the other hand, when we take the total on-chip power

dissipation into consideration, BitMAc increases the power consumption by 59×.

5.4 Summary

We propose BitMAc, where we leverage a modern FPGA with high-bandwidth memory

(HBM) for presenting an FPGA-based prototype for our GenASM accelerators. In BitMAc,

we map GenASM on Stratix 10 MX FPGA with a state-of-the-art 3D-stacked memory

(HBM2), where HBM2 o�ers high memory bandwidth and FPGA resources o�er high

parallelism by instantiating multiple copies of the GenASM accelerators.

After re-modifying the GenASM algorithms for a better mapping to existing FPGA

resources, we show that BitMAc provides 64% logic utilization and 90% on-chip memory

utilization, while having 48.9 W of total power consumption. We compare BitMAc with

state-of-the-art CPU-based and GPU-based read alignment tools. For long reads, BitMAc

provides 761× and 136× speedup over the alignment steps of the state-of-the-art read

mappers, BWA-MEM and Minimap2, respectively, while reducing power consumption by

1.9× and 2.0×. For short reads, BitMAc provides 92× and 130× speedup over the alignment
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steps of BWA-MEM and Minimap2, respectively, while reducing power consumption by

2.2× and 2.0×. We also show that BitMAc provides signi�cant speedup compared to

the GPU-based baseline, GASAL2. Thus, BitMAc is a low-cost and scalable FPGA-based

solution for bitvector-based sequence alignment.
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Chapter 6

SeGraM: A Hardware

Acceleration Framework for

Sequence-to-Graph Mapping

An emerging problem with using a single reference genome for an entire species is

the DNA variation that exists from organism to organism within a population (known

as genetic diversity), which results from DNA mutations over time. The use of a single

reference genome can bias the mapping process and downstream analysis towards the DNA

composition and variations present in the reference organism, because (1) the organism

whose DNA is being constructed may have a di�erent set of variations, and (2) the reference

organism’s variations might be uncommon among most organisms in the population [247].

As a result, the reconstructed DNA may not be a faithful reproduction of the original

sequence. Combined with errors that can be introduced during genome sequencing (with

error rates as high as 5–10% for long reads with thousands of base pairs [151, 312, 30, 304]),

reference bias can lead to signi�cant inaccuracies during mapping. This can create issues

for a wide range of genomic studies, from identifying mutations that lead to cancer, to
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tracking mutating variants of viruses such as SARS-CoV-2 [59], where the details of the

variation from the reference are critical to our understanding [27].

An emerging technique to overcome reference bias is the use of graph-based repre-

sentations of a species’ genome, known as genome graphs [251, 247]. A genome graph

represents the reference genome and known genetic variations in the population as a

graph-based data structure. A node represents one or more base pairs, and edges connect

the base pairs in a node to all of the possible base pairs that come next in the sequence,

with multiple outgoing edges from a node capture genetic variation. Genome graphs

are growing in popularity for a number of applications, such as variation calling [99],

genome assembly [58, 251, 326, 283], error correction [270], and multiple sequence align-

ment [246, 177].

For genome sequence analysis, instead of mapping an organism’s reads to the linear

DNA sequence of a single reference organism (known as sequence-to-sequence mapping),

sequence-to-graph mapping captures the inherent genetic diversity among a population and

can result in signi�cantly more accurate read mapping [99]. Like sequence-to-sequence

mapping, sequence-to-graph mapping follows the seed-and-extend strategy [262]. The �rst

time the graph is constructed, its nodes are indexed for fast lookup. During mapping, this

pre-processed index is used in the seeding step, which aims to �nd potential seed matches

between the query read and a region of the graph. After optionally clustering or �ltering

the potential matches, alignment is performed between all of the remaining seed locations

of the graph and the query read.

Due to its nascent nature, only a few software tools exist for graph-based genome

sequence analysis [228, 262, 99, 261, 163]. Given the additional complexities and overheads

of processing a genome graph instead of a linear reference genome, graph-based analysis

exacerbates analysis bottlenecks such as read-to-reference mapping. Our goal is to design

high-performance, scalable, power- and area-e�cient hardware accelerators that allevi-

ate bottlenecks in both the seeding and alignment steps of sequence-to-graph mapping,
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with support for both short (e.g., Illumina) and long (e.g., PacBio, ONT) read sequencing

technologies.

In this work, we propose SeGraM, a hardware acceleration framework for sequence-

to-graph mapping and alignment. For seeding, we base SeGraM on a memory-e�cient

minimizer-based seeding algorithm, and for alignment, we develop a new bitvector-based,

highly-parallel sequence-to-graph alignment algorithm. We co-design both of our algo-

rithms with high-performance, area- and power-e�cient hardware accelerators. SeGraM

consists of two components: (1) MinSeed, which provides hardware support to execute our

minimizer-based seeding algorithm e�ciently, and (2) BitAlign, which provides hardware

support to execute our bitvector-based sequence-to-graph alignment algorithm e�ectively.

To our knowledge, SeGraM is the �rst hardware acceleration framework for sequence-to-

graph mapping, MinSeed is the �rst hardware accelerator for minimizer-based seeding,

and BitAlign is the �rst hardware accelerator for sequence-to-graph alignment.

6.1 Minimizer-Based Indexing & Seeding

In many applications of string comparisons for sequence analysis, the �rst step is

to �nd the set of seeds to represent each sequence. Seeds are chosen from the set of

k-mers, which are exact matching subsequences of length k between the query sequence

and reference [265]. Considering ultra-long reads being produced by recent sequencing

machines, the size of the k-mer set can be enormous depending on k, making it hard to

store and process.

One possible approach for reducing storage requirements is to apply �xed k-mer

sampling methods [192]. Another approach divides the sequence into windows with a

prede�ned size and selects a k-mer from each window according to a scoring mechanism

as representatives. These unique k-mers, called minimizers [265, 272], ensure that two

di�erent sequences are represented with the same seed if they contain a long enough

107



common subsequence. Since minimizer-based seeding eliminates some possible k-mers,

sensitivity and speed can vary depending on the window size and scoring [150].

6.2 Sequence-to-Graph Alignment

The goal of aligning a sequence to a graph is �nding the path on the graph that yields

the sequence’s highest alignment score [149]. Sequence-to-graph alignment algorithm with

quadratic time complexity was �rst formulated by Navarro [224] and it traverses the DP

matrix row by row instead of the original column-wise fashion of linear alignment. After

calculating the terms on a row, the algorithm makes searches on the graph and propagates

the values to the next row. There are many e�orts for optimizing or accelerating the

dynamic programming for linear alignment. However, obtaining e�cient solutions for

sequence-to-graph alignment demands attention with the growing trend in genome graphs.

6.3 Motivation and Goal

As shown in GenASM (Chapter 4) and other prior works [18, 301, 95, 166, 21, 111, 96,

36, 217, 164, 175, 157, 158], sequence-to-sequence mapping is one of the major bottlenecks

of the genome sequence analysis pipeline and need to be accelerated using specialized

hardware. Since a graph-based representation of the genome is more complex than the

linear representation, sequence-to-graph mapping places greater pressure on this bottle-

neck. Thus, there is a pressing need to develop techniques that provide fast, e�cient, and

low-cost sequence-to-graph mapping, which support both short reads (e.g., Illumina reads)

and long reads (e.g., PacBio and ONT reads).

Even though there are several hardware accelerators designed to alleviate bottlenecks

in several steps of linear read mapping (e.g., pre-alignment �ltering [164, 21], sequence-to-

sequence alignment [301, 95, 279]), none of these designs can be employed directly for the
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sequence-to-graph mapping problem. This is because linear sequence mapping is a special

case of sequence-to-graph mapping, where all nodes have only one edge, and hence the

corresponding accelerators are limited to this special case, but unsuitable for the general

problem, where we also need to consider multiple edges that a node can have (i.e., hops).

However, with the growing importance and usage of genome graphs, it is crucial to have

e�cient designs for sequence-to-graph mapping, which are tuned to work with both short

and long reads.

In this work, our goal is to design a high-performance, memory-e�cient, and low-power

hardware acceleration framework for sequence-to-graph mapping and alignment. To this

end, we propose SeGraM, the �rst hardware acceleration framework for sequence-to-graph

mapping and alignment. For an e�cient and general-purpose acceleration, SeGraM aims to

accelerate both seeding and sequence-to-graph alignment steps of the sequence-to-graph

mapping pipeline, which are optimized for both short and long reads. We base SeGraM upon

a minimizer-based seeding algorithm and we propose a novel bitvector-based algorithm to

perform approximate string matching between a read and a graph-based reference. To our

knowledge, SeGraM proposes the �rst hardware accelerator for minimizer-based seeding

and the �rst hardware accelerator for sequence-to-graph alignment.

6.4 Overview of SeGraM

In SeGraM, we co-design our minimizer-based seeding algorithm and bitvector-based

sequence-to-graph alignment algorithm with highly parallel, low power, and area e�cient

accelerators. SeGraM consists of two main components: (1) MinSeed (MS), which �nds the

minimizers for a given query read and fetches the candidate seed locations for the selected

minimizers; and (2) BitAlign (BA), which for each candidate seed, aligns the query read for

the subgraph surrounding the seed and �nds the optimal alignment.
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Figure 6-1: Overview of SeGraM.

Before SeGraM execution starts, as the pre-processing steps, each chromosome’s graph

structure is generated, then each graph’s nodes are indexed, and both the resulting graph

and hash table index are pre-loaded to the main memory.

SeGraM execution starts when the query read is streamed from the host CPU and

MinSeed writes it to the read scratchpad ( 1 ). Using all of the k-mers of the query read,

MinSeed �nds the minimizers and writes them to the minimizer scratchpad ( 2 ). For each

minimizer, MinSeed fetches its frequency from the hash table at the main memory ( 3 ) and

�lters out the minimizers whose frequency is above an user-de�ned threshold ( 4 ). Next,

MinSeed fetches the seed locations of the remaining minimizers from the main memory,

and writes them to the seed scratchpad ( 5 ). Finally, MinSeed calculates the candidate

reference region for each seed ( 6 ), fetches the graph nodes from the memory for each

candidate region and writes them to the input scratchpad ( 7 ). Once MinSeed sends the

subgraph corresponding to the candidate reference region along with the query read,

BitAlign execution starts with generating the bitvectors ( 8 ) required for the distance

calculation step of the alignment (i.e., seed-extension). While generating these bitvectors,
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BitAlign writes them to the hop queues in order to handle the hops required for the graph

alignment ( 9 ), and also, to the bitvector scratchpad ( 10 ). Once BitAlign �nishes generating

and writing all the bitvectors, it starts reading them back from the bitvector scratchpad,

performs the traceback operation, and �nds the optimal alignment between the subgraph

and the query read ( 11 ).

6.5 Pre-Processing for SeGraM

SeGraM mechanism requires two pre-processing steps before starting its execution:

(1) generating the graph-based reference using a linear reference genome (i.e., as a FASTA

�le [140]) and its associated variations (i.e., as VCF �le(s) [240]), and topologically sorting

this graph [156]; and (2) indexing the nodes of this generated graph and generating the

hash table-based index.

Graph-based reference generation. As the �rst pre-processing step, we generate the

graph-based reference from the input FASTA �le and VCF �le(s) using the vg toolkit’s [99]

vg construct command. We generate one graph for each chromosome, and we set

the maximum sequence length of each node as 16Kbp. For the alignment step of sequence-

to-graph mapping, we need to make sure the nodes of our graphs are topologically sorted.

Thus, as our next step, we sort our graphs using the vg ids -s command. Then,

we convert our VG-formatted graphs to GFA-formatted [2] graphs using the vg view

command since GFA is easier to work with for the later steps of the pre-processing.

As we show in Figure 6-2, in order to store the graph-based reference, we generate three

separate table structures by using the GFA-formatted graphs: (1) the nodes table, which

stores the nodes of the graphs as the <node id> as the key and the <node’s sequence’s

length, starting address at the sequences table, node’s number of outgoing edges, starting

address at the edges table> as the value; (2) the sequences table, which stores the associated

sequences of each node; and (3) the edges table, which stores the associated outgoing

nodes (by node ID) of each node.
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Figure 6-2: Memory layout of the graph-based reference structure.

We use the stats (i.e., number of nodes, number of edges, and total sequence length) for

each chromosome’s associated graph to determine the data sizes of our graph structure.

Based on our analysis, we �nd that each node in the nodes table requires 32B per entry

and the total size of the nodes table is #nodes * 32B. Since we can store characters in the

sequences table using a 2-bit representation (since we only have 4 possible characters: A

(00), C (01), G (10), and T (11)), the total size is total sequence length * 2bit. We also �nd that

each entry in the edges table requires 4B, thus the total size of the edges table is #edges *

4B. In total, it takes 1.4 GB to store the graph structures for 24 chromosomes of the human

genome.

Hash table-based index generation. As the second pre-processing step, we generate

the hash table-based index for each of the generated graphs (one for each chromosome).

Di�erent than the traditional linear read mapping, in sequence-to-graph mapping’s in-

dexing step, the nodes of the graph structure are indexed and stored in the hash table. As

we explain in Section 6.6, since SeGraM performs minimizer-based seeding, we also use
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minimizers [265, 181, 182] as the keys and their exact matching locations in the graphs’

nodes as the values of the index while generating the index.

As we show in Figure 6-3, in order to store the hash table-based index, we use a three-

level structure. In the �rst-level of the hash table, similar to Minimap2 [182], we have

buckets to decrease the memory footprint of the index. Each entry in this �rst-level of

the index stores <starting address of the minimizers in the corresponding bucket in the

second-level, number of minimizers in the corresponding bucket>. In the second-level of

the hash table, we have the minimizers. Each entry in this second-level of the index stores

<hash value of the corresponding minimizer, starting address of the seed locations of the

corresponding minimizer in the second-level, number of locations of the corresponding

minimizer>. Minimizers are sorted based on their hash values in the second-level of the

index. Finally, in the third-level of the hash table, we have the seed locations. Each entry in

this third-level of the index stores <node ID of the corresponding seed location, relative

o�set of the corresponding seed location within the node>. Locations are grouped based

on their corresponding minimizers and sorted within each group based on their values.

First-level: Buckets

.

.

.

Second-level: Minimizers Third-level: Locations

#minimizers

.

.

.

hash value              #locations

.

.

.
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Figure 6-3: Memory layout of the hash table-based index structure.

We use the stats (i.e., number of distinct minimizers, total number of locations, maxi-

mum number of minimizers per bucket, and maximum number of locations per minimizer)

for each graph to determine the data sizes of our index structure. Based on our empirical

analysis, we �nd that 2
24

is the optimum number of buckets in terms of memory footprint

and the number of keys per each bucket. We also �nd that each bucket entry requires 4B
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of data, thus the total size of the �rst-level of the index is 2
24 * 4B. Each minimizer in the

second-level of the index requires 12B of data, thus the total size of the second-level of the

index is #distinct minimizers * 12B. Each location in the third-level of the index requires

8B of data, thus the total size of the third-level of the index is #total number of locations *

8B. In total, it takes 9.8 GB to store the hash table-based index for 24 chromosomes of the

human genome.

6.6 MinSeed Algorithm

We base our seeding algorithm, MinSeed, upon Minimap2’s minimizer-based seeding

algorithm (i.e., mm_sketch). A minimizer [265, 181, 182] is the smallest k-mer in a

window of w consecutive k-mers. The goals of using minimizers, or <w,k>-minimizers,

instead of the full set of k-mers, are to decrease the storage requirements of the index

by storing fewer number of k-mers, and speeding up the queries that are made to this

index. In Figure 6-4, we show an example of how <5,3>-minimizer of a sequence is selected

among the full set of k-mers. After �nding the 5 adjacent 3-mers, we sort them and select

the smallest. In this example, sorting is done simply by the lexicographical order.

Position 1 2 3 4 5 6 7

Sequence A G T A G C A

Full set of  
k-mers
with
minimizer
in red

A G T

G T A

T A G

A G C

G C A

Figure 6-4: Example of �nding the minimizers of a given sequence.

MinSeed algorithm starts with computing the minimizers of a given query read. Even

though using two loops such that the outer loop iterates over the query read while the

inner loop �nds the minimum k-mer within each window is an easy solution for minimizer
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computation, using a queue that caches the previous minimum k-mers can avoid the

inner loop and provide a O(m) complexity algorithm, where m is the length of the query

read [181, 182, 150].

After �nding the minimizers, MinSeed queries the hash table-based index stored in the

memory to fetch the frequencies (i.e., #locations) of each minimizer. If the frequency of a

minimizer is above the user-de�ned threshold, then it is discarded. If the minimizer is not

discarded, then all the seed locations for that minimizer is fetched from the index in the

memory.

After fetching all the seed locations, using the node ID and relative o�set of the seed

locations along with the relative o�set of the corresponding minimizer within the query

read, the rightmost and leftmost positions (i.e., right-extension and left-extension) of each

seed are calculated. As we show in Figure 6-5, to �nd the leftmost position of the seed

region (x), we need the start position of the minimizer within the query read (a), the start

position of the seed (c), and the error rate (E). Similarly, to �nd the rightmost position of

the seed region (y), we need the end position of the minimizer within the query read (b),

the end position of the seed (d), the query read length (m), and the error rate (E). Finally,

for each seed, the subgraph surrounded by these positions is fetched from the memory

and provided as the output of the MinSeed algorithm.

minimizer

seed

0 m‒1

x=? y=?

a b

c d

a m‒b‒1

a*(1+E) (m‒b‒1)*(1+E)

Figure 6-5: Calculations for �nding the candidate seed region.
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6.7 BitAlign Algorithm

After �nding the subgraphs, our new sequence-to-graph alignment algorithm, BitAlign,

performs distance calculation and traceback operations between the query read and the

subgraph in order to �nd the optimal alignment. In order to provide an e�cient, hardware-

friendly, and low-cost solution, we generalize the bitvector-based sequence alignment

algorithm, GenASM (Sections 4.5 and 4.6), for sequence-to-graph alignment and exploit

the bit-parallelism the algorithm provides.

The major di�erence between sequence-to-sequence alignment and sequence-to-graph

alignment is, in sequence-to-sequence alignment, we are only interested in the neighbor

(i.e., previous/adjacent) text character whereas in sequence-to-graph alignment, due to

possible incoming/outgoing edges from non-neighbor characters, we have to incorporate

those edges as well. More formally, in the original GenASM algorithm, edges were implicit:

the character at position i < n-1 had a single successor at position i+1, and iteration

i requires the results of i+1. In a graph however, edges must be stored explicitly: every

node i has a set of successors {j0,j1,...}, and iteration i now requires the results of

all jx . By topologically sorting the nodes, we ensure that ∀x.i < jx , and thus the results of

all successors are available in iteration i.

Thus, we modify the GenASM algorithm, such that while generating the bitvectors

during the distance calculation step, we not only consider the previous text character’s

bitvectors (oldR[d] bitvectors), but also all bitvectors that are corresponding to the outgoing

edges (or hops). For example, as we show in Figure 6-6, when generating the bitvectors

for the dark blue-shaded node, we need both light blue-shaded nodes’ bitvectors. On the

other hand, when generating the bitvectors for the dark red-shaded node, we only need

the light red-shaded node’s bitvectors.

In order to generalize the GenASM algorithm for sequence-to-graph alignment, in

BitAlign, we (1) �rst linearize the input subgraph (assuming it is topologically sorted),

(2) store the (R[d] bitvectors) for all the text iterations (not just for the previous one;
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oldR[d]), and (3) update how intermediate bitvectors (i.e., match, substitution, deletion,

and insertion) are calculated in order to incorporate the hops as well. We show the new

BitAlign algorithm in Algorithm 3. When calculating the deletion (D), substitution (S), and

match (M) bitvectors, we take the hops into consideration, whereas when calculating the

insertion (I ) bitvector, we do not need to.

A

T

G

T

C G A C G T

Figure 6-6: Example of the dependency between di�erent nodes of a graph
when generating bitvectors.

Algorithm 3 BitAlign Algorithm

Inputs: graph-nodes (reference), pattern (query), k (edit distance threshold)

Outputs: editDist (minimum edit distance), CIGARstr (traceback output)

1: n← length of linearized reference subgraph
2: m← length of query pattern
3: PM←genPatternBitmasks(pattern) ◁ pre-process the pattern

4: allR[n][d]← 111.111 ◁ init R[d] bitvectors for all characters

5: for i in (n-1):-1:0 do ◁ iterate over each graph node

6: curChar← graph-nodes[i].char
7: curPM← PM[curChar] ◁ retrieve the pattern bitmask

8: R0← 111...111 ◁ status bitvector for exact match

9: for j in graph-nodes[i].successors do
10: R0← ((R[j][0]<<1) | curPM) & R0

11: allR[i][0]← R0
12: for d in 1:k do
13: I← (allR[i][d-1]<<1) ◁ insertion

14: Rd← I ◁ status bitvector for d errors

15: for j in graph-nodes[i].successors do
16: D← allR[j][d-1] ◁ deletion

17: S← allR[j][d-1]<<1 ◁ substitution

18: M← (allR[j][d]<<1) | curPM ◁ match

19: Rd← D & S & M & Rd
20: allR[i][d]← Rd

21: <editDist, CIGAR>← traceback(allR, graph-nodes, pattern)
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For traceback in the style of GenASM, we need 3(k + 1) bitvectors to be stored per edge

in the graph. Since the number of edges in the graph can only be bounded very loosely,

the potential memory footprint increases signi�cantly, which is expensive to implement in

hardware. We solve this problem by storing only k + 1 bitvectors per node, from which the

3(k + 1) bitvectors per edge can be regenerated on-demand during traceback. While this

incurs a minor computational overhead, this modi�cation helps us to decrease the memory

footprint of the algorithm by 3× when the graph is a path, and additional edges incur

no memory overhead. Since memory is the main area and power cost of the alignment

hardware, this tradeo� is very favorable.

6.8 SeGraM Hardware Design

In SeGraM, we co-design our new MinSeed algorithm for seeding and new BitAlign

algorithm for sequence-to-graph alignment with specialized custom accelerators.

6.8.1 MinSeed Hardware

A MinSeed accelerator consists of: (1) three computation modules responsible for

�nding the minimizers from a query read, �ltering the frequencies of minimizers if above

a threshold, and �nding the associated regions of every seed location by calculating the

rightmost and leftmost positions; (2) three scratchpads for storing the query read, its

minimizers, and seed locations; and (3) the memory interface, which handles the frequency,

seed location, and subgraph accesses.

As we show in Figure 6-7, MinSeed accelerator gets the query read as the input and �nds

the subgraphs to align this query as the output. The computation modules are implemented

with a simple logic since we require basic logical operations (e.g., comparisons, simple

arithmetic operations, scratchpad R/W operations).
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Figure 6-7: Hardware design of MinSeed.

6.8.2 BitAlign Hardware

We implement the distance calculation (DC) hardware of BitAlign as a linear cyclic

systolic array-based accelerator. Since we need to incorporate the hops as well, in our

new design, we use hop queue registers in order to feed the bitvectors of non-neighbor

characters/nodes.

As we show in Figure 6-8, the generated R[d] bitvector from each processing element

(PE) is fed to the tail of the hop queue register of the current PE. Each hop queue register

then provides the stored bitvectors as the oldR[d] bitvectors to the same PE (required for

the match bitvector’s calculation) and as the oldR[d – 1] bitvectors to the next PE (required

for the deletion and substitution bitvectors’ calculation) in the next cycle.

TB-SRAMx

PC

PEx

TB-SRAMx+1

PC

Pex+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]
R[d]

Figure 6-8: Processing element (PE) design of BitAlign.
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We implement the successor relation as an adjacency matrix called hopBits (Figure 6-9).

Based on the hopBits of the current text character, either the actual hop bitvector or all

1s bitvector is used when calculating the match, deletion, and substitution bitvectors of

the current PE. R[d – 1] bitvector (required for the insertion bitvector’s calculation) is

directly provided by the previous PE (i.e., not through the hop queue registers). In order to

decrease the size of each hop queue register, based on our empirical analysis, we limit the

hop length to 12. Thus, each hop queue register contains 12 elements.

Linearized 
Sequence

NodeID 1 2 3 4 5 6 7 8 9 10

HopBits

0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 2
0 1 0 0 0 0 0 0 0 0 3
0 0 1 0 0 0 0 0 0 0 4
0 0 0 1 0 0 0 0 0 0 5
0 0 1 0 0 0 0 0 0 0 6
0 0 0 1 1 1 0 0 0 0 7
0 0 0 0 0 0 1 0 0 0 8
0 0 0 0 0 0 0 1 0 0 9
0 0 0 0 0 0 0 0 1 0 10

A T GTC G A C G T

Figure 6-9: Linearized input subgraph and the generated hopBits.

As we explain in Section 6.7, in order to decrease the memory footprint of the stored

bitvectors required for the traceback (TB) execution, we only store the ANDed version of

the intermediate bitvectors (R[d]) and re-compute the intermediate bitvectors (i.e., match,

substitution, deletion, and insertion) during the TB execution. Thus, each element of the

queue register has a length equal to the window size (W ), instead of 3 *W . Similarly, the

size of each TB-SRAM for each PE decreases with this design choice. Another required

change to the BitAlign hardware due to this design choice is for the TB accelerator design.
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After reading the R[d] bitvectors from the TB-SRAMs and before performing the bitwise

comparisons to �nd the CIGAR character for the current traceback iteration, we need an

additional step that re-generates the intermediate bitvectors using the R[d] bitvectors,

required for the TB execution.

Besides the TB-SRAMs, BitAlign also requires DC-SRAM to store the linearized refer-

ence graph, associated hopBits for each node, and the pattern bitmasks for the query read.

For a 128-PE con�guration with 128 bits of processing per PE, BitAlign requires a total of

24KB DC-SRAM storage. Also, each PE requires a total of 2KB TB-SRAM storage, with a

single R/W port (128KB, in total). In each cycle, 128 bits of data (16B) is written to each

TB-SRAM and to each hop queue register by each PE.

6.8.3 Overall System Design

Figure 6-10 shows the overall design of SeGraM. SeGraM is connected to a host system.

The host transfers a single query read to SeGraM, which is bu�ered before being processed.

We employ double bu�ering technique to hide the transfer latency. Our acceleration

platform consists of four HBM2E stacks [154], each with 8 channels. Next to each HBM2E

stack, we place one SeGraM module. A channel is exposed to SeGraM as a 256-bit wide

port. The theoretical bandwidth available per 3D stack of HBM2E is 307 GB/s [154]. Thus,

our complete accelerator design can leverage a peak theoretical bandwidth of 1.2 TB/s. By

placing SeGraM in the same package as the four HBM2E stacks, we mimic the con�guration

of current commercial devices such as GPUs [231, 232] and FPGA boards [5, 1]. This in-

package con�guration allows SeGraM to have high-bandwidth memory access without

limitations in area and thermal dissipation of other 3D-stacked memory technologies [133],

where accelerators can be placed in the logic layer of the 3D stack. We replicate the content

of each HBM2E stack (i.e., graph-based reference and hash tablebased index) among the 4

independent stacks. Within each stack, we distribute the graph and index structures of the

24 chromosomes based on their sizes among the 8 independent channels.
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The main computation pipeline of SeGraM consists of MinSeed and BitAlign modules.

A single SeGraM consists of 8 MinSeed modules that exploit data-level parallelism when

performing seeding. Each MinSeed module has exclusive access to one HBM2E channel.

This ensures full bandwidth exploitation without contention, and allows us to optimally

balance bandwidth and MinSeed’s compute throughput. The MinSeed module is responsible

for �nding the minimizers of a given query read and their associated seed locations that

are fed to our BitAlign module. Each MinSeed module is connected to a single BitAlign

module. The BitAlign module is responsible for performing alignment between each of

the seeds reported by the MinSeed module and the query read.

MinSeed

BitAlign

High Bandwidth Memory (HBM2)

MinSeed

BitAlign

MinSeed

BitAlign

MinSeed

BitAlign

. . .Host

Channels 
(8× per HBM2 stack)

MinSeed HW
(1× per channel)

BitAlign HW
(1× per MinSeed HW)

Figure 6-10: Overall system design of SeGraM.

We design the SeGraM mechanism in a pipelined fashion, such that we can hide the

latency of our MinSeed accelerator when performing seeding while running sequence-to-

graph alignment with our BitAlign accelerator. Thus, while BitAlign is running, MinSeed

can fetch the next set of minimizers, frequencies, and seeds from the main memory, and

write them to their associated scratchpads. In order to enable this, similar to the read

scratchpad, we employ double bu�ering technique for the minimizer and seed scratchpads,

not to overwrite the existing minimizers and seeds in those scratchpads that are being

executed with the BitAlign accelerator, in parallel.
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6.9 SeGraM as a Framework

With the help of the �exibility and decomposability of the SeGraM framework, we can

run each accelerator (i.e., MinSeed and BitAlign) separately or we can run them together

for end-to-end execution. Thus, we describe three use cases of SeGraM: (1) end-to-end

sequence-to-graph mapping, (2) sequence-to-graph alignment, and (3) seeding.

End-to-end sequence-to-graph mapping. For sequence-to-graph mapping, the

whole SeGraM design should be executed, since both seeding and alignment steps are

required, as we explain in Section 2.6. Thus, for this use case, both MinSeed and BitAlign

should be executed. Also, with the help of the inherited divide-and-conquer approach from

the GenASM algorithms, we can use SeGraM for performing sequence-to-graph mapping

for both short and long reads.

Sequence-to-graph alignment. Since as an input, BitAlign requires the subgraph

as the reference and the query read as the pattern, it can also act as a sequence-to-graph

aligner, without the need of an initial seeding tool/accelerator. Also, since sequence-

to-sequence alignment is a special and simpler variant of sequence-to-graph alignment,

BitAlign can also be used for that use case, when the linear input text is represented as a

graph, where the nodes only have a single edge.

Seeding. Similarly, MinSeed only can be used as the seeding module for both graph-

based mapping and linear traditional mapping. MinSeed is orthogonal to be coupled with

any alignment tool or accelerator.

6.10 Evaluation Methodology

Performance, Area and Power Analysis. We synthesize and place & route the

MinSeed and BitAlign accelerator datapaths using the Synopsys Design Compiler [4] with

a typical 28nm low-power process. Our synthesis targets post-routing timing closure

at 1GHz clock frequency. We use CACTI [315, 282] to estimate the area overhead and
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power consumption of the scratchpad in MinSeed and BitAlign. We then use an in-house

cycle-accurate simulator and a spreadsheet-based analytical model parameterized with the

synthesis and memory estimations to drive the performance analysis.

Baseline Tools. We compare SeGraM with two state-of-the-art sequence-to-graph

mappers: vg [99] and GraphAligner [262], running on an Intel
®

Xeon
®

Gold 6126 CPU [146]

operating at 2.60GHz, with 64GB DDR4 memory. We run both tools with 12 threads. We

measure the execution time and power consumption of the baseline tools. We measure the

individual power consumed by each tool using Intel’s PCM power utility [143]. We also

compare BitAlign with a state-of-the-art sequence-to-graph aligner, PaSGAL [149], and

also with three state-of-the-art sequence-to-sequence hardware aligners: Darwin [301],

GenAx [95], and GenASM [279]. For all these four baselines, we use the numbers reported

by their respective papers.

Datasets. We evaluate SeGraM using the latest major release of the human genome

assembly, GRCh38 [3], as the starting reference genome. For the variations, we use 7 VCF

�les for HG001-007 from the GIAB project (v3.3.2) [138].

As the read datasets, we generate four sets of long reads (i.e., PacBio and ONT datasets)

using PBSIM2 [237] and three sets of short reads (i.e., Illumina datasets) using Mason [126].

For the PacBio and ONT datasets, we have reads of length 10Kbp, each simulated with 5%

and 10% error rates. The Illumina datasets have reads of length 100bp, 150bp, and 250bp,

each simulated with a 1% error rate.

6.11 Results

6.11.1 Area and Power Analysis

Table 6-1 shows the area and power breakdown of the compute (i.e., logic) units and

the memory components (i.e., scratchpads) in SeGraM, and the total area overhead and

power consumption of (1) a single SeGraM accelerator (attached to a single channel), (2) 8
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Table 6-1: Area and power breakdown of SeGraM.

Component Area (mm2) Power (mW)

MinSeed – Logic 0.017 10.8

Read Scratchpad (6 KB) 0.009 1.9

Minimizer Scratchpad (40 KB) 0.061 6.9

Seed Scratchpad (4 KB) 0.006 2.5

BitAlign – DC Logic with HopQueueRegisters (64 PEs) 0.393 378.0

BitAlign – TB Logic 0.020 2.7

Input Scratchpad (DC-SRAM; 24 KB) 0.034 8.4

Bitvector Scratchpad (TB-SRAMs; 128 KB) 0.233 115.1

Total − 1 x SeGraM 0.773 526.3 (0.5 W)

Total − 8 x SeGraM 6.184 4210.4 (4.2 W)

Total − 32 x SeGraM 24.736 16841.6 (16.8 W)

SeGraM accelerators (in a single stack with 8 channels), and (3) 32 SeGraM accelerators (in

4 stacks). Our accelerators operate at 1GHz.

The area overhead of one SeGraM accelerator is 0.773 mm
2
, and the power consumption

of one SeGraM accelerator is 526 mW. We �nd that the main contributors for the area

overhead and power consumption are (1) hopQueueRegisters since they constitute more

than 60% of the area and power of BitAlign-DC logic, and (2) the bitvector scratchpads

(TB-SRAMs). As we have one SeGraM accelerator per channel, the total area overhead of

SeGraM attached to all 32 channels is 24.7 mm
2
. Similarly, the total power consumption of

32 SeGraM accelerators is 16.8 W.

6.11.2 Analysis of SeGraM

We compare end-to-end execution of SeGraM with two state-of-the-art sequence-to-

graph mapping tools, GraphAligner and vg. We compare both of the tools with SeGraM

for both long and short reads. We measure the execution time and power consumption of

the baseline tools for their seeding, �ltering/chaining, and alignment steps only (i.e., we

do not include the pre-processing steps, which are executed only once).
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Long Read Analysis. Figure 6-11 shows the read mapping throughput (reads/sec) of

SeGraM and GraphAligner, when aligning long noisy PacBio and ONT reads against the

graph-based representation of the human reference genome. We show that, on average,

SeGraM provides 8.8× throughput improvement over GraphAligner’s 12-thread execution.
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Figure 6-11: Throughput comparison of SeGraM and GraphAligner for long
reads.

Figure 6-12 shows the read mapping throughput (reads/sec) of SeGraM and vg, when

aligning long noisy PacBio and ONT reads against the graph-based representation of the

human reference genome. We show that, on average, SeGraM provides 7.3× throughput

improvement over vg’s 12-thread execution.
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Figure 6-12: Throughput comparison of SeGraM and vg for long reads.
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Based on our power analysis with long reads, we �nd that power consumption of

GraphAligner is 83 W and power consumption of vg is 109 W for their 12-thread execution.

Thus, SeGraM reduces the power consumption of GraphAligner and vg by 4.9× and 6.5×

over their 12-thread execution.

Short Read Analysis. Figure 6-13 shows the read mapping throughput (reads/sec) of

SeGraM and GraphAligner, when aligning short Illumina reads against the graph-based

representation of the human reference genome. We show that, on average, SeGraM

provides 168× throughput improvement over GraphAligner’s 12-thread execution.

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07

Illumina - 100bp Illumina - 150bp Illumina - 250bp AverageTh
ro

ug
hp

ut
 (s

ho
rt

 re
ad

s/
se

c)

GraphAligner (t=12) SeGraM

168𝑥

Figure 6-13: Throughput comparison of SeGraM and GraphAligner for short
reads.

Figure 6-14 shows the read mapping throughput (reads/sec) of SeGraM and vg, when

aligning short Illumina reads against the graph-based representation of the human reference
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Figure 6-14: Throughput comparison of SeGraM and vg for short reads.
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genome. We show that, on average, SeGraM provides 726× throughput improvement over

vg’s 12-thread execution.

Based on our power analysis with short reads, we �nd that power consumption of

GraphAligner is 79 W and power consumption of vg is 83 W for their 12-thread execution.

Thus, SeGraM reduces the power consumption of GraphAligner and vg by 4.7× and 4.9×

over their 12-thread execution.

Sources of Improvement. The sources of large performance improvements in SeG-

raM are (1) the e�cient and hardware-friendly underlying algorithms for both seeding

and sequence-to-graph alignment, (2) carefully designed dedicated scratchpads based on

the empirical data we collect for di�erent data structures (e.g., graphs, minimizers, seeds),

(3) hop queue registers, since they allow us to fetch all the bitvectors for the hops within a

single cycle, and (4) our pipelined overall design, where we can hide the execution latency

of MinSeed, with the BitAlign execution. Thus, even though we have to increase the sizes

of the scratchpads to allow double bu�ering and add hop queue registers for not increasing

the execution time required for sequence-to-graph alignment, these additional area and

power overheads help us to provide large increase in throughput for both short and long

reads.

6.11.3 Analysis of BitAlign

Sequence-to-Graph Alignment. As we explain in Section 6.9, BitAlign-only can be

used for sequence-to-graph alignment, without the need of a preceding seeding tool/accelerator.

We compare BitAlign with the state-of-the-art SIMD-based sequence-to-graph alignment

tool, PaSGAL [149]. PaSGAL is composed of three main steps: (1) DP-fwd, where the

input graph and query read are aligned using the dynamic programming based graph

alignment approach to compute the ending position of the alignment, without running

the traceback operation; (2) DP-rev, where graph and query are aligned in the reverse

direction to compute the starting position of the alignment, again without running the

traceback operation; and (3) Traceback, where using the starting and ending positions of
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the alignment, the corresponding section of the score matrix is re-calculated and traceback

is performed to �nd the optimal alignment.

Since the input of BitAlign is the subgraph and the query read, not the complete input

graph, we only compare BitAlign with the third step of PaSGAL for a fair comparison.

As we show in Figure 6-15, based on the results reported in [149] for the LRC-L1, LRC-

L2, MHC1-M1, and MHC1-M2 datasets, SeGraM provides 41×–539× speedup over the

48-thread AVX512-supported execution of PaSGAL.
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Figure 6-15: Performance comparison of SeGraM and PaSGAL for
sequence-to-graph alignment.

Compared to PaSGAL, BitAlign shows signi�cant speedup, especially for the long

read datasets (i.e., LRC-L2 and MHC1-M2). The reason of this is the inherited divide-and-

conquer approach that BitAlign follows. Instead of aligning the full subgraph and the

query read, with the help of the windowing approach, BitAlign manages to decrease the

complexity of sequence-to-graph alignment, and e�ciently aligns both short and long

reads.

Sequence-to-Sequence Alignment. Even though sequence-to-sequence alignment

tools or accelerators cannot be used for sequence-to-graph alignment since they do not con-

sider hops and only consider neighbor text characters, sequence-to-graph alignment tools

or accelerators can be used for the traditional sequence-to-sequence alignment problem.

Thus, BitAlign can be used for both sequence-to-sequence alignment and sequence-to-
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graph alignment. The cost of more functionality in BitAlign is the extra hop queue registers.

However, with the help of these additional memory components, we do not sacri�ce any

performance.

To show the e�ciency of BitAlign for this special use case of sequence-to-graph

alignment (i.e., sequence-to-sequence alignment), we compare BitAlign with the state-of-

the-art hardware accelerators for sequence-to-sequence alignment: GACT of Darwin [301],

SillaX of GenAx [95], and GenASM [279]. GACT is optimized for long reads, SillaX is

optimized for short reads, and GenASM is optimized for both short and long reads. We

use the optimum con�guration of each accelerator reported in their corresponding papers.

Based on our analysis with long reads, we �nd that, on average, SeGraM provides

4.8× and 1.2× throughput improvement over GACT of Darwin and GenASM, respectively,

while having 1.9× and 5.2× higher power consumption, and 1.4× and 2.3× higher area

overhead. For short reads, we �nd that, on average, SeGraM provides 2.4× and 1.3×

throughput improvement over SillaX of GenAx and GenASM, respectively.

6.11.4 Analysis of MinSeed

As we explain in Section 6.8.3, with the help of our pipelined design, MinSeed execution

is not on the critical path of the overall SeGraM execution. However, since MinSeed selects

the candidate seed locations and sends them to BitAlign for the �nal alignment, it plays a

critical role on the overall sensitivity of our approach. Since MinSeed does not perform

any �ltering approach to reduce the number of candidate seed regions that are sent for

alignment (except discarding the seeds that have higher frequency than the threshold,

which is an optimization that baseline tools already implement), SeGraM does not decrease

the sensitivity of the overall sequence-to-graph mapping execution.

Even though not having a �ltering mechanism increases the number of candidate seed

regions that are sent for the expensive alignment step, with our highly-e�cient BitAlign

accelerator, we alleviate this bottleneck that exists in other existing tools and provide

signi�cant improvement over the baseline tools, as we show in Section 6.11.2. For example,
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for a long read dataset, GraphAligner decreases the number of seeds extended from 77M

to 48K with its �ltering/chaining approaches. On the other hand, MinSeed sends 35M

seeds to our BitAlign accelerator, but still provides higher throughput than GraphAligner.

Similarly, for a short read dataset, GraphAligner decreases the number of seeds extended

from 828K to 11K, while MinSeed sends 375K seeds to our BitAlign accelerator, and still

provides much higher throughput. Thus, we show that SeGraM provides a highly sensitive

and also high-performance solution for sequence-to-graph mapping.

6.12 Related Work

To our knowledge, we are the �rst to propose (1) a hardware acceleration framework for

sequence-to-graph mapping (SeGraM), (2) a hardware accelerator for minimizer-based seed-

ing (MinSeed), and (3) a hardware accelerator for sequence-to-graph alignment (BitAlign).

No prior work has studied hardware for genome graph processing.

Software Tools for Sequence-to-Graph Mapping. Even though genome graphs

gain attention recently, there are only a few tools available specialized for sequence-

to-graph mapping or alignment. Examples of sequence-to-graph mapping tools are

GraphAligner [262], vg [99], and HISAT2 [163]. There are also some works which fo-

cus on alignment only, without an indexing and seeding step, such as PaSGAL [149] and

abPOA [98]. However, these are all software-based tools.

Hardware Accelerators for Genome Sequence Analysis. Existing hardware ac-

celerators for genome sequence analysis focus on accelerating only the traditional read

mapping (i.e., sequence-to-sequence) pipeline, and cannot support genome graphs as their

inputs. For example, ERT [291], NEST [132], SaVI [173], and MEDAL [131] accelerate the

seeding step of sequence-to-sequence mapping. Darwin [301], GenAx [95], GenASM [279],

and SeedEx [96] accelerate read alignment with only a single reference genome. These ac-

celerators have no way to track the multiple paths that need to be traversed in a graph, and

cannot be easily modi�ed to support multiple path tracking. SeGraM builds upon hardware
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components of GenASM, and incorporates new algorithms and hardware, to e�ciently

support genome graph mapping and alignment, and can also support sequence-to-sequence

mapping (as a graph where each node has only one outgoing edge).

There are also processing-in-memory (PIM) based accelerators for genome sequence

analysis, such as GRIM-Filter [164], RAPID [117], PIM-Aligner [29], RADAR [130], FindeR [334],

and AligneR [333]. However, similar to read alignment accelerators, they are tuned for a

single linear reference only, and cannot support genome graphs. Besides these accelerators

mostly focusing on the read mapping steps, there are also other PIM-based accelerators

that focus on other steps of the pipeline [280], such as PIM-Assembler [28] for genome

assembly and Helix [197] for nanopore basecalling.

6.13 Summary

Genome graphs are emerging representations for the DNA of a population, and over-

come the biases present in traditional genome sequence analysis, where a single reference

genome is used. Unfortunately, the additional overheads of sequence-to-graph mapping ex-

acerbate the read mapping bottleneck in the genome sequence analysis pipeline. To alleviate

this, we propose SeGraM, the �rst acceleration framework for sequence-to-graph mapping

and alignment. For SeGraM, we co-design algorithms and accelerators for memory-e�cient

minimizer-based seeding and bitvector-based, highly-parallel sequence-to-graph align-

ment.

For sequence-to-graph mapping with long reads, we �nd that SeGraM achieves 8.8×

and 7.3× speedup over 12-thread execution of state-of-the-art sequence-to-graph mapping

tools (GraphAligner and vg, respectively), while reducing power consumption by 4.9× and

6.5×. For sequence-to-graph mapping with short reads, we �nd that SeGraM achieves 168×

and 726× speedup over 12-thread execution of GraphAligner and vg, respectively, while

reducing power consumption by 4.7× and 4.9×. For sequence-to-graph alignment, we

show that BitAlign provides 41×–539× speedup over PaSGAL, a state-of-the-art sequence-
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to-graph alignment tool. We conclude that SeGraM is a high-performance and e�cient

hardware acceleration framework, which can accelerate multiple steps of the sequence-to-

graph mapping pipeline, and of the traditional read mapping pipeline.

133



Chapter 7

Importance of Accelerating

Genome Sequence Analysis

We believe the long-term impact of GenASM, BitMAc, SeGraM, and other works that

propose hardware acceleration for genome sequence analysis is three-fold:

Enabling Portable, Fast, and E�cient Genome Sequence Analysis. Recent ad-

vances have enabled genome sequencing anywhere in the world with cheap, portable

sequencing machines (e.g., ONT’s MinION). Soon, even smaller sequencing devices can

enable sequencing using smartphones. Such readily available sequencing technologies

can open up several new applications, such as bringing personalized medicine to rural or

remote areas, near-patient testing, and rapid infection diagnosis and outbreak tracing (e.g.,

COVID-19 [316, 122, 153, 61], Ebola [257, 113], Zika [84]). However, these applications

require memory-e�cient, low-power, and area-e�cient systems to process the gener-

ated genome sequence data, as laptops and mobile phones have limited resources (e.g.,

greater memory constraints, limited battery life). Our approach of co-designing scalable

and memory-e�cient algorithms with area- and power-e�cient hardware accelerators is

an important milestone, allowing genome sequence analysis to be performed in highly-

resource-constrained environments. Our genomics accelerators can even be implemented
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in the sequencing machine itself, eliminating expensive sequencer-to-computer data move-

ment and providing a single embedded solution for portable sequencing and sequence

analysis.

Rapid Genome Sequence Analysis for Pandemics. Rapid genome sequence analy-

sis plays a critical role during pandemics such as the current COVID-19 (i.e., SARS-CoV-2)

crisis in 2020-2021 [85, 129, 114]. Rapid analysis can (1) enable the quick detection of the

virus in human DNA samples; (2) enable the rapid identi�cation of the mutations, sources,

and transmission modes of the virus; (3) help with the development of new treatments; and

(4) help uncover why some people experience more severe symptoms and higher mortality

than others. Given the fast pace at which viruses can proliferate and mutate during a

pandemic, there is a need to perform large volumes of viral genomic analysis rapidly and

widely, as lost time or limited availability can hinder tracking and harm our ability to

control spread and mutations. Today, rapid genome sequence analysis is bottlenecked by

the limited computational power and memory bandwidth of existing systems. We believe

it is more important than ever to overcome these bottlenecks through the development of

high-e�ciency, low-cost solutions. Beyond the bene�ts that our genomics accelerators

already yield, we hope that our co-design approach sparks further research from both

academia and industry on developing even more powerful and e�cient solutions for rapid

genome sequence analysis of viruses.

Reducing Genomic Accelerator Costs with Multi-Purpose Frameworks. While

there is a pressing need for genomic sequence analysis hardware, any �xed-function

hardware incurs high per-unit costs, as the non-recurring engineering (NRE) costs can

be amortized over only the number of platforms that perform the speci�c function. To

signi�cantly lower NRE costs, we design GenASM and BitMAc to provide substantial

bene�ts for generic approximate string matching (a widely-used primitive for any text

search or error-aware pattern matching), while still optimizing their designs to maximize

bene�ts for genomic use cases. We believe that such an approach, with �exible frameworks

that can serve as general-purpose accelerators but include domain-speci�c optimizations,
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opens a promising pathway for a low-cost acceleration of other tasks. For example, other

bioinformatics workloads (e.g., a graph processing acceleration framework for genome

assembly, a neural network acceleration framework for nanopore basecalling or variant

calling [253]) can take a similar approach, making what would otherwise be high-cost

hardware much cheaper, and addressing key cost concerns in the healthcare industry. We

hope that our approach of reusing genome sequence analysis frameworks for general-

purpose acceleration will inspire future designers to consider NRE and incorporate general-

purpose support into their accelerators.
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Chapter 8

Conclusions and Future

Directions

8.1 Conclusions

In this dissertation, we characterize the real-system behavior of the genome sequence

analysis pipeline and its associated tools, expose the bottlenecks and tradeo�s of the

pipeline and tools, and co-design fast and e�cient algorithms along with scalable and

energy-e�cient customized hardware accelerators for the key pipeline bottlenecks to

enable faster genome sequence analysis. Our goals are to (1) understand where the current

tools and algorithms do not perform well in order to develop better tools and algorithms,

and (2) understand the limitations of existing hardware systems when running these tools

and algorithms in order to design e�cient customized accelerators. Towards this end, we

propose four major works.

First, we present the �rst work that analyzes state-of-the-art tools associated with each

step of the genome assembly pipeline using long reads. We analyze the tools in multiple

dimensions that are important for both developers and users/practitioners: accuracy,

performance, memory usage and scalability. We reveal new bottlenecks and tradeo�s that
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di�erent combinations of tools and di�erent underlying systems lead to, based on our

extensive experimental analyses. We also provide guidelines for both practitioners, such

that they can determine the appropriate tools and tool combinations that can satisfy their

goals, and tool developers, such that they can make design choices to improve current and

future tools.

Second, we propose GenASM, the �rst approximate string matching (ASM) acceleration

framework for genome sequence analysis. GenASM performs bitvector-based ASM, which

can e�ciently accelerate multiple steps of genome sequence analysis. We modify the

underlying ASM algorithm (Bitap) to signi�cantly increase its parallelism and reduce its

memory footprint. Using this modi�ed algorithm, we design the �rst hardware accelerator

for Bitap. Our hardware accelerator consists of specialized systolic-array-based compute

units and on-chip SRAMs that are designed to match the rate of computation with memory

capacity and bandwidth, resulting in an e�cient design whose performance scales linearly

as we increase the number of compute units working in parallel. We demonstrate that

GenASM provides signi�cant performance and power bene�ts for three di�erent use cases

in genome sequence analysis. First, GenASM accelerates read alignment for both long

reads and short reads. For long reads, GenASM outperforms state-of-the-art software and

hardware accelerators by 116× and 3.9×, respectively, while reducing power consumption

by 37× and 2.7×. For short reads, GenASM outperforms state-of-the-art software and

hardware accelerators by 111× and 1.9×. Second, GenASM accelerates pre-alignment

�ltering for short reads, with 3.7× the performance of a state-of-the-art pre-alignment

�lter, while reducing power consumption by 1.7× and signi�cantly improving the �ltering

accuracy. Third, GenASM accelerates edit distance calculation, with 22–12501× and 9.3–

400× speedups over the state-of-the-art software library and FPGA-based accelerator,

respectively, while reducing power consumption by 548–582× and 67×. We also brie�y

discuss four other use cases that can bene�t from GenASM.

Third, we propose BitMAc, which is an FPGA-based prototype for GenASM. In BitMAc,

we map our GenASM algorithms on Stratix 10 MX FPGA with a state-of-the-art 3D-stacked
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memory (HBM2), where HBM2 o�ers high memory bandwidth and FPGA resources o�er

high parallelism by instantiating multiple copies of the GenASM accelerators. After re-

modifying the GenASM algorithms for a better mapping to existing FPGA resources, we

show that BitMAc provides 64% logic utilization and 90% on-chip memory utilization, while

having 48.9 W of total power consumption. We compare BitMAc with state-of-the-art

CPU-based and GPU-based read alignment tools. Compared to the alignment steps of the

CPU-based read mappers, (1) for long reads, BitMAc provides 761× and 136× speedup,

while reducing power consumption by 1.9× and 2.0×, and (2) for short reads, BitMAc

provides 92× and 130× speedup, while reducing power consumption by 2.2× and 2.0×. We

also show that BitMAc provides signi�cant speedup compared to the GPU-based baseline,

while reducing the power consumption.

Fourth, we propose SeGraM, the �rst hardware acceleration framework for sequence-

to-graph mapping and alignment. Reference genomes are conventionally represented as a

linear sequence. However, this linear representation of the reference genome results with

ignoring the variations that exist in a population (i.e., genetic diversity) and introducing

biases for the downstream analysis. To address these limitations, recently, graph-based

representations of the genomes (i.e., genome graphs) have gained attention. As shown in

many prior works [18, 301, 279, 95, 166, 21, 111, 96, 36, 217, 164, 175, 157, 158], sequence-

to-sequence mapping is one of the major bottlenecks of the genome sequence analysis

pipeline and need to be accelerated using specialized hardware. Since graph-representation

of the genome is much more complex than the linear representation, sequence-to-graph

mapping is placing a greater pressure on this bottleneck. Thus, in this work, our goal is

to design a high-performance, scalable, power- and area-e�cient hardware accelerator

for sequence-to-graph mapping that support both short and long reads. We base SeGraM

on a memory-e�cient minimizer-based seeding algorithm and a bitvector-based, highly-

parallel sequence-to-graph alignment algorithm. We co-design both of our algorithms with

high-performance, area- and power-e�cient hardware accelerators. SeGraM consists of

two components: (1) MinSeed, which provides hardware support to execute our minimizer-
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based seeding algorithm, and (2) BitAlign, which provides hardware support to execute our

bitvector-based sequence-to-graph alignment algorithm. For sequence-to-graph mapping

with long reads, we �nd that SeGraM achieves 8.8× and 7.3× speedup over 12-thread

execution of state-of-the-art sequence-to-graph mapping tools (GraphAligner and vg,

respectively), while reducing power consumption by 4.9× and 6.5×. For sequence-to-

graph mapping with short reads, we �nd that SeGraM achieves 168× and 726× speedup

over 12-thread execution of GraphAligner and vg, respectively, while reducing power

consumption by 4.7× and 4.9×. For sequence-to-graph alignment, we show that BitAlign

provides 41×–539× speedup over PaSGAL, a state-of-the-art sequence-to-graph alignment

tool.

Overall, we demonstrate that genome sequence analysis can be accelerated by co-

designing scalable and energy-e�cient customized accelerators along with e�cient algo-

rithms for the key steps of genome sequence analysis.

8.2 Future Research Directions

This dissertation opens new avenues for genomics research. In this section, we describe

several such promising research directions in which the ideas and approaches in this

dissertation can be extended to provide more functionality or to accelerate other key steps

of the genome sequence analysis pipeline.

8.2.1 Algorithmic Enhancements to GenASM/BitAlign for Broader Functional-

ity

As we explain in Chapter 4, GenASM is the �rst work that enhances and accelerates

the Bitap algorithm for approximate string matching. We modify Bitap to add e�cient

support for long reads and enable parallelism within each ASM operation. We also propose

the �rst Bitap-compatible traceback algorithm. Later, as we explain in Chapter 6, we

further extend the GenASM algorithms and propose BitAlign, a novel bitvector-based
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sequence-to-graph alignment algorithm. However, currently, both the GenASM algorithm

and the BitAlign algorithm have a limitation, which a�ects their accuracy: they only

support Levenshtein distance (i.e., edit distance) calculation [179], where each error (i.e.,

substitution, insertion or deletion) has the same cost (i.e., 1). One future work would be to

extend both GenASM and BitAlign to fully support
1

di�erent costs for each error type and

a�ne gap penalty model, where gap openings and gap extensions are penalized di�erently.

Once the algorithms are modi�ed with this scoring extension, the hardware accelerators

need to be modi�ed to support these algorithmic changes. In order to e�ciently support

the changes, multiple components of the accelerators may need to be modi�ed or more

signi�cantly redesigned.

8.2.2 End-to-End Acceleration of the Mapping Pipeline

As we explain in Section 4.8, GenASM provides support for the read alignment and

pre-alignment �ltering steps of the read mapping (i.e., sequence-to-sequence mapping)

pipeline (Section 2.4). Even though GenASM is orthogonal to any indexing and seeding

approach, due to Amdahl’s Law, it is preferable to accelerate the entire read mapping

pipeline rather than its individual steps. Similar to the approaches followed by Illumina’s

DRAGEN platform [134] and NVIDIA’s Parabricks platform [230], in order to obtain larger

amounts of speedup, one future work would be extending our GenASM work such that all

of the steps of the read mapping pipeline would be accelerated as a complete hardware

accelerator design. This end-to-end design would also help us to reduce the high amount

of data movement that takes place while moving data between di�erent compute units

that perform di�erent steps of the pipeline.

Similarly, as we explain in Section 6.9, SeGraM provides support for the seeding and the

sequence-to-graph alignment steps of the sequence-to-graph mapping pipeline (Section 2.6).

Thus, another promising future work would be to incorporate the pre-processing steps of

1
GenASM currently o�ers partial support for non-unit costs for di�erent edits and the a�ne gap penalty

model (Section 4.6).
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sequence-to-graph mapping and also implementing e�cient pre-alignment �lters as part

of our SeGraM design for a more comprehensive and e�cient end-to-end design.

8.2.3 Bottleneck Analysis and Acceleration of Assembly with Long Reads

With the emergence of long read sequencing technologies (ONT [238] and PacBio [244]),

de novo assembly becomes a promising way of constructing the original genome. When we

analyze the genome assembly pipeline using nanopore (ONT) sequence data (Chapter 3),

we show that assembly is one of the most computationally-expensive steps of the pipeline.

We also show that there is a tradeo� between accuracy and performance when deciding

on the appropriate tool for this step. Thus, we believe that there is a need to design an

accelerator for generic graph processing algorithms that includes specialized support for

the assembly step of the pipeline, which will provide both high performance and high

accuracy.

The expected �rst step would be to comprehensively analyze the current state-of-the-art

long read assembly tools and revealing the bottlenecks in terms of performance, scalability,

and accuracy. This would enable to explore possible algorithmic changes and di�erent

acceleration mechanisms (e.g., specialized accelerators, in-memory processing engines, and

SIMD architecture) to resolve the bottlenecks. Even though many prior works (e.g., [330,

328, 11, 10, 218, 288, 278, 229, 115, 161, 64, 327, 329, 102, 331, 243, 120, 63, 332, 62, 33, 74, 308,

162, 309]) have proposed hardware accelerators for generic graph processing algorithms,

e�ciently using these accelerators for genome assembly is an important but unexplored

research problem. Thus, exploring state-of-the-art graph processing accelerators and

analyzing their suitability for the requirements of the assembly step would be bene�cial.

A related direction is to co-design an assembly algorithm with an e�cient hardware

accelerator and evaluate this design with real or simulated long read datasets to assess

the performance and accuracy of the approach. Furthermore, exploring how to support

di�erent steps of the genome sequence analysis pipeline as well as generic graph processing

algorithms with the proposed design would be bene�cial.
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8.3 Final Concluding Remarks

In this dissertation, we have demonstrated that genome sequence analysis can be ac-

celerated by co-designing scalable and energy-e�cient customized accelerators along with

e�cient algorithms for the key steps of genome sequence analysis. First, we comprehensively

analyze the tools in the genome assembly pipeline for long reads in multiple dimensions

(i.e., accuracy, performance, memory usage, and scalability), uncovering bottlenecks and

tradeo�s that di�erent combinations of tools and di�erent underlying systems lead to.

We show that we need high-performance, memory-e�cient, low-power, and scalable

designs for genome sequence analysis in order to exploit the advantages that genome

sequencing provides. Second, we propose GenASM, an acceleration framework that builds

upon bitvector-based approximate string matching (ASM) to accelerate multiple steps

of the genome sequence analysis pipeline. We co-design our highly-parallel, scalable

and memory-e�cient algorithms with low-power and area-e�cient hardware accelera-

tors. Third, we implement an FPGA-based prototype for GenASM, where state-of-the-art

3D-stacked memory (HBM2) o�ers high memory bandwidth and FPGA resources o�er

high parallelism by instantiating multiple copies of the GenASM accelerators. Fourth,

we propose SeGraM, the �rst hardware acceleration framework for sequence-to-graph

mapping and alignment. SeGraM enables the e�cient mapping of a sequenced genome to

a graph-based reference, providing more comprehensive and accurate genome sequence

analysis. We conclude and hope that this dissertation inspires future work in co-designing

algorithms and hardware together to create powerful frameworks that accelerate other

genomics workloads and emerging applications.
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Other Works of the Author

Throughout the course of my Ph.D. study, I have worked on several di�erent topics

with many fellow graduate students from Carnegie Mellon University, ETH Zurich, and

other institutions. In this chapter, I would like to acknowledge these works.

I have worked on a number of other projects on genomics. In collaboration with Jeremie

S. Kim, we propose GRIM-Filter [164], a novel seed location �ltering algorithm, which

is optimized to exploit 3D-stacked memory systems that integrate computation within a

logic layer stacked under memory layers, to perform processing-in-memory (PIM). We

also propose AirLift [165], a fast and comprehensive technique for remapping alignments

from one genome to another. AirLift greatly reduces the time to perform end-to-end

BAM-to-BAM [139] (i.e., binary alignment/map format; binary version of SAM (sequence

alignment/map format [239, 141, 183]) remapping on a read set from one reference genome

to another while maintaining high accuracy and comprehensiveness that is comparable to

fully mapping the read set to the new reference.

In collaboration with Can Firtina, we propose Apollo [91], the �rst machine learning-

based universal technology-independent assembly polishing algorithm. Apollo enables all

available reads to contribute to assembly polishing and scales well to polish an assembly of

any size (e.g. both small and large genome assemblies) within a single run. Apollo corrects

errors in an assembly by using read-to-assembly alignment regardless of the sequencing

technology used to generate reads.

In collaboration with Mohammed Alser, we propose a survey on state-of-the-art algo-

rithmic methods and hardware-based acceleration approaches for genome analysis [16].

We cover the algorithmic approaches that exploit the structure of the genome as well as

the structure of the underlying hardware, and the hardware-based acceleration approaches

that exploit specialized microarchitectures or various execution paradigms (e.g., processing

inside or near memory).
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I have also worked on a number of non-genomics focused projects. In collaboration

with Saugata Ghose, we propose an experimental study, where we rigorously analyze

the combined DRAM–workload behavior for 9 di�erent DRAM types and 115 modern

applications and multiprogrammed workloads [104].

In collaboration with Gagandeep Singh, we propose a work, where we leverage an

FPGA coupled with high-bandwidth memory (HBM) for improving the pre-alignment

�ltering step of genome analysis and representative kernels from a weather prediction

model [284].
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