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Abstract 

The freight transportation sector is a growing contributor to global greenhouse gas emissions, 

and successful emissions mitigation requires studying its impacts in different contexts. However, 

an evaluation of different decarbonizing strategies across nations is missing in the literature. This 

dissertation consists of two methodologically distinct but related studies looking at the 

environmental, climate, and public health impacts of freight transportation. 

 

In the second chapter, I look at these impacts in the context of ocean shipping in India and 

explore the emissions reduction potential of shore power in India. However, given how dirty and 

emissions-intensive India’s electricity generation currently is, I show that shore power is not a 

cost-effective strategy to reduce air pollutants and greenhouse gas emissions in India. 

 

In the third chapter, I evaluate freight trucking pollution impacts across the contiguous United 

States and the implications of trucking pollution on minority group populations. Based on my 

analysis, I find that the environmental and climate social costs due to freight trucking in the US 

result in ~$17B in environmental damages and ~$25B in climate damages, respectively. Further, 

more trucking pollution occurs in counties and census tracts with a higher proportion of Black 

and Hispanic populations. 

 

In a final chapter, I conclude with further discussion of the findings of this work, explain how 

they are broadly valuable for policymakers, some more general conclusions. 
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1 Chapter 1. Background and Introduction 

1.1 Greenhouse gas (GHG) emissions from international transportation 

Article 2 of the Paris Agreement establishes the goal of limiting the increase in average global 

temperature since pre-industrial levels to “well below 2°C” and to pursue “efforts to limit the 

temperature increase to 1.5°C”.1 Meeting these goals will require a rapid and massive reduction 

in GHG emissions by transitioning existing fossil fuel-reliant energy infrastructure to low-carbon 

sources. Despite the role that access to low-cost fossil fuels has played in modernizing our lives, 

the negative environmental, climate, and human health costs of relying on fossil fuels to society 

are enormous.2,3 Projected future increases of GHG emissions such as carbon dioxide (CO2) 

through human activity are a big concern. Presently, CO2 emissions from transportation are 

roughly 25% of global CO2 emissions, with road transport accounting for ~72% of those 

emissions.4 Further, CO2 emissions from transport are growing the fastest of any sector, and 

globally, transportation may become the highest-emitting sector by 2040.5 Despite existing 

regulations to limit them, emissions from transportation are expected to increase in the coming 

decades (Figure 1.1). According to the International Transport Forum (ITF), global freight 

transport accounts for ~7% of global CO2 emissions.6 Compared to rail, ocean and inland 

shipping, and aviation, road freight transportation is the most emission-intensive per ton-mile of 

freight transported and accounted for ~30% of the global transport CO2 emissions in 2020 

(Figure 1.2).7 Since the 2000s, heavy-duty vehicles’ energy consumption and tailpipe CO2 

emissions grew ~2.6% each year, with trucks accounting for ~80% of that growth.8 
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Figure 1.1 Global transport emissions from all modes (rail, road, aviation, shipping, etc.). Historical values 

are shown as black and blue. Emissions resulting from 2018 policies are shown in red; emissions after 

accounting for additionally announced policies are shown in orange; emissions to limit average global 

temperature rise to below 2°C are shown in green. The light green box shows ranges of global transport 

emissions across all modes to be compatible with 1.5°C whereas the dark green box shows only road 

transport emissions that are agreeable with 1.5°C temperature rise scenario. The figure is from Axsen et al.4 

 

 
Figure 1.2 Global transport CO2 emissions by mode. Road freight sector emissions grew ~2.6% each year 

from 2000 to 2020. The plot was produced by the author using International Energy Agency data.7 
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1.2 Why focus on freight transportation? 

Even though the freight sector is a growing contributor to global GHG emissions, more than half 

of all countries do not collect any national road freight activity information9 and the sector is 

largely unregulated in many countries across the globe. Although passenger vehicles contribute 

the most GHG emissions from transport, they are probably also easier to decarbonize.10 

Accordingly, in this thesis, we choose to focus exclusively on freight transportation. There are a 

few other reasons for this. First, road freight vehicles rely almost exclusively on petroleum-

derived fuels1 and account for ~40% of directly emitted CO2
 from transport.11 Due to growth in 

international trade and the expansion of global supply chains, global freight activity is expected 

to grow 2.6-fold between 2015 and 2050.12 Thus, no matter the mitigation strategy under 

consideration, evaluating freight transportation emissions is going to be an important discussion 

for any nation trying to formulate a decarbonization policy for the coming decades. Another 

reason for the focus on freight transportation is that historically, there has been relatively less 

focus and research on freight vehicles compared to passenger vehicles.4,13 In the context of light-

duty vehicles (LDVs), cost-effective strategies exist such as vehicle electrification, fuel 

switching, and improving vehicle efficiency. However, the situation is more complicated for 

freight vehicles as optimal fuel choices and subsequent emissions reduction strategies depend 

upon the category of freight mode (ship, car, train, airplane), type of load being shipped (long 

distance versus short distance), energy density of storage or alternative fuel, and the vehicle 

performance in different geographic terrains and weather conditions. Because of these factors, 

today no simple pathway exists to smoothly decarbonize freight transportation, especially for 

 
1 According to the International Energy Agency (IEA), road freight transportation is the primary end-user of diesel 

fuel and accounts for roughly half of the global diesel demand. Gasoline as a fuel plays a much smaller role in 

freight transportation and is used mainly by light commercial vehicles.11 
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hard to decarbonize modes such as long-distance road transportation, marine shipping, and 

aviation.10 Also, it remains to be seen whether technology choices such as electric batteries and 

hydrogen or ammonia are long-term practical solutions for one or more of the long-distance 

freight modes. Third, vehicles miles traveled (VMT) due to freight activity are projected to 

increase in the coming decades, faster in developing countries (India and China) than in 

developed countries in the European Union and North America.14 With the stringency of air 

pollution control and fuel standards in other transport sectors, the proportion of emissions 

attributable to freight is likely to gain more importance in the coming decades. 

Much like climate policy, designing an effective transportation policy for the long-term requires 

more than just “muddling through.”15 Getting locked in on a technology pathway or investing in 

a particular strategy that does not scale well with future technological and socio-economic 

developments is a significant risk for achieving decarbonization objectives. Therefore, 

understanding the pathways to emissions mitigation and their interactions with projected 

increases in freight traffic across modes (rail, ships, trucks), choice and cost-effectiveness of 

sustainable freight infrastructure projects to pursue while evaluating the impacts of freight 

transportation emissions in an economy are vital questions to answer for researchers and 

policymakers. 

1.3 Air quality impacts of freight transportation emissions 

Freight transportation is dominated by diesel engines that are a significant source of air 

pollutants such as oxides of nitrogen (NOx), sulfur dioxide (SO2), and fine particulate matter 

(PM2.5, includes elemental carbon).16,17 NOx is a highly reactive group of gasses that include 

nitrous oxide (NO2) and nitric oxide (NO) among other compounds. Exposure to high NO2 

concentration causes human respiratory airway inflammation and prolonged exposure leads to 
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the development of asthma.18 In addition, it reacts with ammonia (NH3) and volatile organic 

compounds (VOCs) to form secondary PM2.5 and ground-level ozone (O3), both of which 

aggravate lung diseases and cause health complications in humans.19 SO2 is released in the 

ambient environment through electricity generation from power plants along with other 

industrial and mobile emission sources. It causes acid rain and has adverse impacts on human 

respiratory system.20 Additionally, it leads to the formation of other particles that contribute to 

particulate matter (PM) pollution. PM is a mixture of solid particles and aerosols and includes 

PM10 (particles with an aerodynamic diameter of ≤10 µm) and PM2.5 (particles with an 

aerodynamic diameter of ≤2.5 µm).21 Primary PM2.5 occurs in the direct emissions from mobile 

sources, industrial activity, coal-based electric power generation and other stationary sources. 

Secondary PM2.5 formation occurs when criteria air pollutants (CAPs) like SO2 and NOx react 

chemically with other atmospheric pollutants and gases to form small particles. Exposure to 

PM2.5, has deleterious impact on the environment (acid rain, damage to sensitive ecosystems)22 

and on human health (heart and lung disease, asthma, aggravated respiratory function).23–25 

Ambient PM2.5 is a major risk factor for public health2 and resulted in ~4.1M premature deaths 

globally in 2019 mostly in India (980,000 premature deaths) and China (1.4M premature 

deaths).26,27 Although measures have been taken to reduce PM2.5 emissions in developing and 

developed countries, exposure to PM2.5 continues to be a public health risk. 

Thus, from both a decarbonization and an air quality perspective, it is imperative to reduce the 

emissions intensity of the freight sector. According to a framework proposed by McKinnon,28 

transport emissions can be curtailed by five strategies: (1) reducing freight transportation demand 

by restructuring supply chains, (2) increasing fuel efficiency, and (3) reducing the carbon 

intensity of transportation fuel, (4) modal shift (i.e., shifting to a lower carbon-intensity mode), 



 6 

and (5) improving vehicle utilization through capacity expansion of the vehicles and loading 

rates. A combination of one or more of these strategies can be used to help achieve the Paris 

agreement targets. 

1.4 Thesis Outline 

This dissertation contributes to filling knowledge gaps in contexts where freight sector emissions 

are significant but have been historically understudied due to the unavailability of data and/or 

lack of methods. Through this work, I explore technologies and mitigation strategies that allow 

us to reduce CAPs and GHG emissions. The original work in the thesis consists of two distinct 

but related research studies to reduce freight sector emissions in India and the United States 

(US). 

Chapter 2 conducts a rigorous environmental benefit-cost analysis (BCA) of using shore power 

in India to reduce emissions by supplying electricity from the shore to cargo vessels docked in 

major ports in India, instead of having those vessels produce their own electricity by burning 

relatively high-sulfur diesel in on-board generators. Based on a unique vessel activity dataset I 

was able to compile from the Government of India (GoI), my co-authors and I find that shore 

power is not a cost-effective strategy to cut air pollution in India and does not reduce premature 

mortality significantly. This result is timely because the GoI has begun investing in deploying 

shore power infrastructure at ports in India. While electrification may have benefits in the long 

term, given how dirty electricity generation is today in India, we believe that the government is 

better off using its resources to clean up power generation in India. 

Chapter 3 focuses on developing a method to spatially resolve the environmental, climate, and 

public health impacts of freight trucking in the contiguous United States. We use data from the 

US federal government and estimate the environmental, climate, and public health air pollution 
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damages at the county level for all contiguous states. We also quantify the extent of imports of 

air pollution damages due to freight trucking at the county level while evaluating the 

environmental justice implications of these damages for different demographic groups. My 

colleagues and I find that freight trucking NOx and CO2 emissions form a non-trivial share of 

total US emissions. We also observe that air pollution due to freight trucking disproportionately 

impacts people of color: more freight pollution occurs in census tracts with a higher proportion 

of Black residents and areas with a higher proportion of Black and Hispanic residents are more 

likely to experience higher pollution from other counties. 

Finally, in Chapter 4, I synthesize the findings of the previous chapters and discuss additional 

possibilities for extending aspects of this work in the future. 

Building on the data and tools developed for the work in Chapter 3, I include a future work 

chapter in the Appendix that describes work that will be completed in the near future. It explores 

the environmental effects of two technological revolutions (automation and vehicle 

electrification) on the freight trucking industry. Using the most recent commodities flow survey 

(CFS) data for the year 2017, I plan to evaluate the impacts of electrification and automation in 

the long-haul trucking segment.  
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2 Chapter 2. Environmental and Health Consequences of Shore 

Power for Vessels Calling at Major Ports in India 

Abstract 

To reduce local air pollution, many ports in developed countries require berthed ships to use 

shore-based electricity instead of burning diesel to meet their electricity requirement for loads 

such as lights, cargo-handling equipment, and air conditioning. The benefits of this strategy in 

developing countries remain understudied. Based on government data for all major ports in 

India, we find that switching from high-sulfur fuel to shore power reduces hoteling emissions of 

PM2.5 by 88%; SO2 by 39%; NOx by 85%; but increases CO2 emissions by 12%. Switching from 

low-sulfur fuel reduces hoteling emissions of PM2.5 by 46% and NOx by 84% but increases SO2 

emissions by 240% and CO2 emissions by 17%. The lifetime cost savings from the switch to 

electricity are $73M for high-sulfur fuel and $370M for low-sulfur fuel. We estimate that 

switching from high-sulfur fuel to shore power might avoid at most a couple of dozen premature 

deaths each year, whereas switching from low-sulfur fuel could lead to a slight increase in 

premature mortality. Therefore, policymakers must first clean up power generation for shore 

power to be a viable strategy to improve air quality in Indian port cities. 

 

 

 

This chapter has been published as: Lathwal P, Vaishnav P and Morgan M G 2021 Environmental and health 

consequences of shore power for vessels calling at major ports in India Environmental Research Letters 16 064042 

Online: https://doi.org/10.1088/1748-9326/abfd5b29 
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2.1 Introduction 

The electrification of applications that currently involve the combustion of fossil fuels has been 

widely promoted as a strategy to achieve decarbonization and to reduce local air pollution.10,30 

However, the effectiveness of this strategy depends on the local electricity generation mix over 

the lifetime of the product or infrastructure that is electrified. Indeed, scholars have raised grave 

concerns about the conventional wisdom that electrification by itself produces an environmental 

benefit. For example, in much of the eastern United States, electric vehicles do more damage to 

human health and the environment than do gas-electric hybrids.31,32 In this analysis, we ask 

whether the benefits of electrification exceed the costs in a sector and context that has drawn 

relatively little attention: ocean shipping in India. 

The combustion of shipping fuels emits criteria pollutants such as fine particulate matter (PM2.5), 

oxides of nitrogen (NOx),  sulfur dioxide (SO2)33–36, that damage the environment34,37, and 

human health.38,39 Criteria pollutants from ships caused ~60,000 premature deaths world-wide in 

2015.40 That number is expected to increase to ~250,000 premature deaths in 2020.39 Global 

shipping accounted for 2.6% of the global carbon dioxide (CO2) emissions in 2012.41 If left 

unregulated, CO2 emissions from international shipping are expected to grow between 50% and 

250% by 2050.41 While electrified ocean shipping remains elusive, there is great interest in the 

electrification of various port operations,42–44 and in the electrification of a ship’s operations 

when it is in port.45–48 The second strategy has been shown to produce a net benefit in many ports 

in the United States and Europe to the extent that some ports have started to mandate it.49 In this 

paper, we test a hypothesis that would seem to follow logically from these findings: given that 

ships that berth at Indian ports are allowed to burn far dirtier fuel than ships in Europe and North 

America are, and given that Indian cities are far more densely populated than those in Europe 
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and North America, the electrification of a ship’s operations in port might be expected to 

produce a large benefit. Indeed, the logic of this hypothesis is so compelling that the Government 

of India has begun to invest in the provision of electricity to ships in port.50 Our results suggest 

that this strategy is unlikely to be of much value for cargo vessels docked in major Indian ports 

until such time as the electricity generation that provides shore power is outfitted with much 

better pollution controls. 

The International Maritime Organization (IMO) regulates pollution from ocean shipping. IMO’s 

revised Maritime Agreement Regarding Oil Pollution (MARPOL) Annex VI, effective from 

January 1, 2020 (see Appendix A 5.1.1) seeks to reduce SO2 emissions from ocean shipping. 

Before this regulation came into effect, ships could burn fuel with up to 3.5% sulfur. Under this 

regulation, ocean-going vessels (OGVs) are permitted to use fuel with up to 0.5% sulfur (5,000 

ppm) outside the emission control areas (ECAs). The IMO has designated four ECAs (the North 

Sea, the Baltic Sea, the US Caribbean, and the coastal waters of Canada and the US), where 

permissible sulfur content of the fuel being used is 0.1% sulfur (1,000 ppm).51 India is not a part 

of an IMO ECA and hence ships at the Indian coast burn 0.5% sulfur fuel. 

Asia had the largest share52 of world seaborne trade in 2018 with the continent accounting for 

41% of total loaded and 61% of total unloaded goods.53 Emissions from seaborne trade in East 

Asia have been estimated to result in between 14,500 and 37,500 premature deaths globally each 

year.36 To address this, countries such as China have capped sulfur content in marine fuels to 

0.5% sulfur (5,000 ppm) by designating domestic emission control areas (DECAs) across its 

national coastline and installing shore power at Chinese ports. In 2020, 493 berths in Chinese 

ports are expected to be equipped with shore power infrastructure.54 
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Similar steps are being taken by the Government of India (GoI) to curtail air pollution. 

Beginning in 2020, new regulations tightened the standard for the sulfur content of on-road 

diesel from 350 ppm55 to 10ppm.56 Also, ocean freight through Indian ports is expected to grow 

at 18% per annum57,58 and GoI is building shore power infrastructure at Indian ports as part of 

their “Green Ports Initiative”.59,60 There are Indian ports such as the V.O. Chidambaranar (VOC) 

Port in Tamil Nadu (southern India) that already use shore power. Finally, the cities adjacent to 

India’s ports are more densely populated than those in Europe and North America. For example, 

Mumbai has a population density of 31,000/km2 and Gandhidham, which adjoins India’s largest 

major port (Deendayal Port), has a population density of 8,000/km2 (see Appendix A 5.1.2). By 

comparison, the Los Angeles region, home to the two largest U.S. ports, has a population density 

of <3000/km2.61 For all these reasons, we anticipate that because the relative share of local SO2 

emissions from shipping in Indian port cities is likely to increase, shore power could potentially 

benefit air quality at major ports in India. Despite these developments, we are not aware of a 

rigorous environmental benefit-cost analysis of shore power in India. Literature on shipping 

impacts for India is sparse, presumably because of a lack of public data on Indian ports. Our 

study fills this gap. 

In this analysis, we explore the potential of shore power as a strategy for India’s 12 major ports. 

We assume an electricity system where the dominant source of load-following electricity is coal 

over the entire lifetime of any vessel that is switched to shore power. We report the results for 

2017, the base year of the analysis when there is virtually no post-combustion scrubbing of 

emissions from coal-fired power plants. We also repeat the analysis for 2030 and assume that by 

then the emissions intensity of coal-fired plants is substantially reduced through the installation 

of air pollution control technology. In each case, we assume that the system remains static over 
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the period of the analysis. Furthermore, we (1) quantify the annual emissions of ships berthed at 

major ports in India in 2017-2018, (2) assess the contribution of berthed ship emissions as a 

proportion of total emissions in cities near major ports, (3) develop bottom-up hourly emission 

inventories for all major ports on the basis of vessel activity and fuel consumption calculations 

and use those results to estimate the change in emissions that would be achieved if ships were 

instead supplied with electricity generated on the shore, (4) estimate the change in vessel 

operator’s fuel costs if they were to switch to shore power instead of burning Marine Gas Oil 

(MGO, 0.5% S), or Residual Oil (RO, 2.7% S) for meeting their load requirement, (5) estimate 

the net health and environmental consequences of switching to shore power in port cities. We 

assess these questions under two fuel use scenarios: first, assuming that ships burn lower-sulfur 

MGO to generate electricity, as required by international law from January 1, 2020, onwards, 

and second assuming that they continue to burn high-sulfur RO in their on-board generators as in 

the past. Finally, we evaluate the environmental and human health impacts from fuel switching 

only for PM2.5, SO2, NOx, and CO2, although we acknowledge that there are other pollutants 

such as mercury (Hg) from coal burning that may pose severe human health risks.62 

2.2 Prior Work 

Many studies have shown that, in North America, Europe and Asia, the environmental and health 

benefits of shore power exceed the costs. Vaishnav and colleagues conducted a study on US 

ports and calculated an estimated social benefit of $70-$150 million per year by retrofitting one-

fourth to two-thirds of all vessels calling at US ports.47 

Winkel et. al quantified the economic and environmental benefits of shore power in Europe 

while accounting for barriers in its implementation.48 The health benefits of shore power in the 

study were estimated to be €2.63 billion and €2.93 billion for 2010 and 2020 respectively.48 In 
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2010, a UK study estimated that using shore power reduced the emissions from berthed vessels 

by 91.6% for NOx; 75.6% for carbon monoxide (CO); 45.8% for SO2; and 24.5% for CO2.45 The 

authors of the study also looked at the potential of shore power to reduce at-berth CO2 emissions 

across countries and found it to be most effective in Norway (99.5% reduction), France (85% 

reduction), Japan (35.8% reduction), UK (24.5% reduction), and Italy (27.3% reduction).45 Wang 

et al. found that the adoption of shore power at the port of Shenzhen in 2020 would reduce SO2 

by 88%, nitrogen dioxide (NO2) by 94%, particulate matter (PM) by 95% and CO2 by 37% but it 

seems to be a more expensive strategy compared to fuel switching.46 If 80% of the container 

ships docking at the port of Shenzhen were to use shore power in 2020, then the per-tonne costs 

of reducing NO2, PM, SO2, and CO2 were estimated to be $56K, $1.4M, $290K and $2,300 

respectively.46 While recent shipping studies in Asia focus on East Asia36,63 and China,64–66, very 

few studies67,68 address the problem of air pollution from ocean shipping in India. 

We are aware of two studies that systematically assessed emissions from ships in major ports in 

India. The first study by Joseph et al.67 relies on assumptions from the late 1990s for estimating 

auxiliary engine load factors. The analysis was conducted for the Jawaharlal Nehru Port (JNPT) 

for the year 2006 and the authors determine the emissions contribution of total suspended 

particulate (TSP) matter, respirable particulate matter (PM10), SO2 for different port activities 

(port operations, construction, road transport) and find that TSP contributions dominated 

accounting for 68.5% of the total pollutant load and the minimum contribution was from SO2 

(5.3%). The paper found that maximum NOx was emitted by the road transport sector and 

maximum SO2 emissions in the port were from the maritime sector. The second study looked at 

emissions during 2013-2014 in the port of Kolkata (eastern coast of India).68 The authors 

estimated annual emissions for Kolkata port for NOx, SOx, PM10, PM2.5, CO, hydrocarbons (HC) 
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and CO2 during ships’ different activity modes (reduced speed zone, maneuvering and hoteling) 

and found NOx, SO2 emissions to be the dominant among pollutant species. The authors 

attributed the high emissions to the longer length of the shipping channel, use of bunker fuel, 

non-compliance of vessels with IMO’s emission standards and long turnaround time at berth. 

The study is limited in that the authors studied the emissions only at this one port for 2013-2014. 

Kolkata Port’s shipping activity has increased to ~32%69 by 2017-2018 and the emissions at the 

port are likely higher than what is reported in the paper. Finally, there are two big facilities under 

the jurisdiction of the Kolkata Port Trust, namely, (1) Kolkata Docking System (KDS) and, (2) 

Haldia Dock Complex (HDC), (located about 104 km away from KDS).68 Mandal et al. appears 

not to have included HDC, which may also have resulted in an underestimate of emissions. In 

our analysis, we have estimated emissions at both KDS and HDC. 

2.3 Materials and Methods 

 
Figure 2.1 Geographic location of India’s 12 Major Ports ~7,500 km coastline. HDC (shown as Haldia Port in 

the map) is governed by the Kolkata Port Trust; 70 but is considered a separate port in this analysis. 
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2.3.1 Study Area and Scope 

Figure 2.1 shows the 12 major ports in India which are governed by the Ministry of Shipping 

(MoS) through respective Port Trusts (geographic details in Appendix A 5.2.1).71 These are the 

ports primarily visited by the large cargo vessels that are the focus of this paper. They handled 

~680 million tonnes (MT) of cargo from April 2017 to March 2018.72 By comparison, the Port of 

Los Angeles (POLA) handled ~195 million metric revenue tonnes (MMRT) of cargo from July 

2017 to June 2018.73 

In addition to the major ports there are over 200 non-major ports, many of which are not 

equipped to handle large cargo vessels. Many fishing vessels call at small and unofficial ports 

and undoubtedly contribute to pollution near these ports. However, it is not clear that they 

produce a significant amount of electricity for hoteling loads or that they could be profitably 

switched to shore power. As explained in Appendix A 5.2.1, since the focus of our analysis is on 

reducing pollution by switching to shore power at major ports, small fishing vessels and non-

major ports are not included in the analysis. 

2.3.2 Vessel Call Information 

Through correspondence and meetings with stakeholders at various levels in the MoS, GoI, Port 

Trusts, Indian Ports Association (IPA), the Indian Coast Guard (ICG) and the Indian Army, we 

obtained vessel activity data for all 12 major ports in India. Our vessel call dataset consists of 

detailed information on ships, including each ship’s IMO registration number, Maritime Mobile 

Service Identity (MMSI), a unique 9-digit number which identifies each ship’s Automatic 

Identification System (AIS) station, Vessel Name, Vessel Type, Deadweight Tonnage (DWT), 

Gross Register Tonnage (GRT), Flag, Cargo information (for some ports), pilotage time, berth 

arrival and berth departure time. 
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These data are all for the same one-year time window: March 2017-March 2018. In the raw data, 

there were some vessel calls at ports for which the IMO registration number and MMSI 

information was missing. To obtain this information from online data at MarineTraffic, we 

developed a web scraper in the Python programming language to find the vessel IMO number, 

MMSI number, vessel age, and vessel type based on vessel name, GRT and DWT. In our 

analysis, we consider only vessels that remain in port for longer than 5 hours, and less than 230 

hours, which is the 98th percentile of the durations of all port calls. The lower limit excludes 

vessels that do not spend sufficient time in port to be connected to shore power; the upper limit 

excludes vessels that may be in port, but not active. The details of how we processed the raw 

data obtained from port authorities for analysis are in Appendix A 5.2.2. 

2.3.3 Emissions Calculation 

The emissions for OGVs for each vessel call were estimated according to the following equation: 

𝑬𝒊,𝒋 = 𝑬𝑭𝒊 × 𝑨𝒋 × 𝒕𝒋 

Where: 

𝑬𝒊,𝒋 = Total emissions, in tonnes, for pollutant i (PM2.5, SO2, NOx and CO2) for vessel call j 

𝑬𝑭𝒊 = Emission factor for pollutant i expressed in g/kWh of electricity generated by the 

auxiliary engine 

𝑨𝒋 = Auxiliary engine’s actual operating load for vessel call j (in kW) based on the vessel type 

and its size 

𝒕𝒋 = the time (in hours) the vessel spent hoteling during vessel call j 

The emission factors for PM2.5, NOx, SO2 and CO2 were obtained from EPA guidelines for 

compiling mobile emissions inventories.74 A similar approach was used by Mandal et al.68 and 

Joseph et al.67 
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The total time spent by a vessel hoteling at the port was determined by subtracting berth arrival 

time from the berth departure time in our datasets. Finally, we multiplied the emission factors by 

estimates of the hoteling load (expressed in kWh) for different vessel types and sizes to get 

emissions of respective vessel calls. While we calculated emissions for each vessel call, the 

results reported below are aggregated by vessel, vessel type, and as annual totals. The emission 

calculations were performed both for RO and MGO. 

2.3.4 Auxiliary Engine Power 

The auxiliary hoteling loads were estimated by multiplying the total berthing time (in hours) and 

the auxiliary engine load under operation (in kW) of the vessel of a given type and size. Our 

calculation is based on the approximation that the auxiliary hoteling load of a vessel scales 

linearly with its capacity in deadweight tonnes. In addition to using Goldsworthy et al.,75 

auxiliary engine load estimates, we compared the vessel sizes and ages in our dataset, against 

those that called at POLA and Port of Long Beach (POLB) (see Appendix A Figure 5.3). We 

found that the vessels in our dataset are of a comparable vintage to the ones in those ports. As 

such, we assumed that applying the relationship between vessel size and auxiliary loads observed 

in POLA76 and POLB’s77 2017 emissions inventory is appropriate (see Appendix A 5.3). 

2.3.5 India’s State Grid Emission Factors 

We assumed that a vessel would require at maximum the same amount of electricity from shore 

power as it gets from running its on-board generator. The World Bank reports transmission and 

distribution (T&D) losses for India as ~19%78, including theft 79. The actual technical losses are 

unknown.  We assume T&D losses to be 10%. Coal contributed ~76% to aggregate electricity 

generation in India during 2017-2018.80 In our analysis, we assume that 76% of India’s 

electricity in 2017 came from coal based electric power generation, but all of its load-following 
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electricity —which is what is relevant to the discussion of shore power—comes from coal. 

Besides coal, gas generates ~4%; the rest is generated by non-emitting sources.80 We neglect air 

emissions from natural gas-fired power generation. Since all other sources of power used in India 

produce no emissions from combustion, we assume that all power sector emissions come from 

the combustion of coal. 

For shore-based electricity, we use the dataset from Oberschelp et al.81, which provides annual 

coal based PM2.5, SO2, NOx and CO2 emissions of coal power plants at the generating unit level 

for the year 2012. Using the latitude and longitude of coal powered generating units from 

Oberschelp et al.81, we aggregated the coal power plant emissions at the state level for India. We 

use Central Electricity Authority’s (CEA) data to determine total electricity generation in Indian 

states in 2012.82 To calculate the emission factor, we divide emissions from coal-fired electricity 

generation in each state by the total electricity generation in the same state to arrive at state level 

PM2.5, SO2, NOx and CO2 emission factors (in g/kWh) for electricity generation. The estimates 

of state and regional level emission factors for India’s grid electricity generation are reported in 

Appendix A 5.4. 

2.3.6 Energy Costs and Savings 

To estimate the mass of fuel used, our analysis assumes that auxiliary engines produce ~720g of 

CO2 per kWh for RO and ~680g of CO2 per kWh for MGO.83,84 We assume an emission 

intensity of ~3.1 kg CO2 per kg83 of fuel burnt for marine fuel.83 Thus, RO produces ~4.3 

kWh/kg fuel and MGO produces ~4.5 kWh/kg fuel. In combination, these numbers allowed us to 

estimate the mass of bunker fuel needed to produce the required energy. We obtained the price 

per ton (December 19, 2018) of both RO ($445 per metric ton) and MGO ($725 per metric ton) 

from Petrol Bunkering Group in Colombo Port, Sri Lanka85 and multiplied this by the mass of 
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fuel consumed during a vessel call to calculate the fuel cost. The attractiveness of shore power 

depends on the local price of electricity. Therefore, we used the state-average price of electricity 

for the industrial and high-voltage consumers from their respective electricity regulatory 

commissions and converted from rupees to dollars per kWh using the market exchange rate on 

November 30, 2018.86 These tariffs were used to calculate the fuel cost for supplying shore 

power to the vessels and are reported in Appendix A 5.5. For each vessel call, we subtracted the 

cost of electricity from the cost of RO or MGO to calculate the net savings and estimated the 

total savings from shore power that would accrue to the vessel over its remaining lifetime. 

Because 96% of the vessels in our dataset are less than 27 years old, we choose 27 years as the 

vessel lifetime and calculated the net present value of annual savings using a discount rate of 7%. 

Assuming that shoreside facilities to supply power exist, if the present value of these savings 

exceeds the cost of retrofitting the vessel, a vessel operator would reduce costs by retrofitting to 

receive shore power. 

2.3.7 Comparison with Total Emissions in the Area 

We used the Emission Database for Global Atmospheric Research (EDGAR) 2015 emissions 

inventory87 to estimate the proportion of the pollution in the major port cities that is caused by 

OGVs. We selected 0.1 deg. × 0.1 deg. cells to include the port cities we were studying. We 

ensured that the selected cells included the international and domestic airports, oil refinery, and 

the industrial areas of those cities. Specific information on the geographical extent of selected 

areas is in Appendix A 5.6. The most recent year for which the EDGAR emissions inventory is 

available is 2010. To project emissions to 2017 and beyond, we assumed that those emissions 

would grow in line with the economy and with the volume of trade in goods through Indian 

ports. We assumed that, between 2020 and 2030, emissions of all pollutants from international 
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and domestic air transport, industrial and residential sectors grow at 6% per year88, in line with 

Organisation for Economic Co-operation and Development’s (OECD) projections for India’s 

gross domestic product (GDP) growth in 2020-2030. From 2007-2017, the volume of seaborne 

trade through Indian ports grew at 3%.89,90 We assume a 3% growth rate each year for Indian 

shipping and run a sensitivity analysis for the 18% growth rate projected by GoI57,58 during 

2017-2025. We conducted the analysis for both RO and MGO at both growth rates and assumed 

that these growth rates remain constant until 2030. We assumed that the non-marine 

transportation sector grows by 9.7% per year91 until 2032, in accordance with the projections of 

the erstwhile Indian Planning Commission, as noted in Kaack et al.9 Finally, we assumed that the 

power generation sector grows by 5% per year from 2017-2030 based on projections for 2015-

2030 from a study of Indian thermal power plants92 and Brookings India electricity demand 

estimates for 2030.93 In our results, we account for the effect of cleaning up of the coal power 

generation sector between 2017 and 2030 by scaling the coal power plant emission factors. We 

reduce the NOx emission index by a factor of 10 (i.e., to 10% of its current value), SO2 emission 

index by a factor of 20, and the PM2.5 emission index by a factor of 250 when considering the 

emissions from coal power generation during 2017 and 2030. These factors were derived from 

the new power plant emissions standards promulgated by the Government of India and 

summarized in Table 1 of Center for Study of Science Technology and Policy (CSTEP) report.92 

2.3.8 Health Effects of Pollution Reduction 

We estimate the percentage contribution of shipping emissions to the total city emissions in 2017 

relative to EDGAR emissions inventory.87 We multiply the percentage share of shipping in the 

city (in 2017) and the percentage change in emissions at each port after switching from RO and 

MGO to shore power to estimate the percentage of pollution reduced in each city. We use the 



 21 

estimated reduction in city pollution for PM2.5, SO2, and NOx to approximate potential health 

benefits. Table 2. of Lee et al.94 provides estimates of absolute change in mortality across each of 

the Global Burden of Disease (GBD) regions for a 10% change in local PM2.5 precursor 

emissions. From this, we estimated the change in mortality in South Asia, per unit change in 

emissions of PM2.5 precursor pollutants. As described in 5.7 and 5.9.6.1 of Appendix A, we 

obtain a regional estimate of the change in premature mortality given a percentage increase in 

emissions of different particulate matter precursor pollutants (black carbon (BC), SO2 and NOx). 

After accounting for population in cities located near Indian major ports, we were able to make a 

very rough estimate of the annually avoided premature mortality in major port cities (see 

Appendix A 5.9.6.1). 

2.3.9 Cost of Grid Extension, Shore Infrastructure, and Vessel Retrofitting 

We estimate the cost of extending the distribution line from the nearest substation to the port to 

provide grid electricity supply at berth. We obtained the sub-station data from Power System 

Operation Corporation Limited.95 The distribution network is assumed to be connected to a 3-

phase distribution transformer and a 33-kV line is sufficient to meet the hourly peak loads of 

auxiliary engines at each major port (details in Appendix A 5.8). The cost per mile (~$25,000 per 

mile) of extending a 33-kV line was taken from GoI’s electricity authority guidance document96 

and its maintenance cost was assumed to be 3% of the capital cost.97,98 

The total cost of grid extension is the sum of line extension and line maintenance costs for all 

ports. Shore power projects usually have a life of 20 years99 and we use this as the useful life of 

the shore power system. The cost of installing a shore power system at the port is assumed to be 

~$4.5M based on estimates from shore power equipment manufacturers. To determine the total 

number of shore power systems required by the ports, we find the number of vessels 
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simultaneously docked at each port during each hour of the year. We assume that the maximum 

of this number represents the number of charging points needed at each port. The total cost of 

deploying shore power systems is determined by summing the cost of installing shore power 

systems across all ports. The cost to the vessel operator of retrofitting a ship with shore power 

infrastructure (including cabling, switchboards, transformer, frequency converters and 

mechanical modifications) is between $300K-$2M.46 The total cost of retrofitting is determined 

by summing the cost of vessel retrofit for all the berthed vessels. 

2.4 Results and Discussion 

Table 2.1 Summary statistics of ships calling at major ports in India 2017-2018. 5,732 unique ships visited 

major ports during the year. 

Vessel class Vessel 

calls 

Unique 

vessels 

Total 

hours  

(1000s) 

Average 

call 

duration 

(hours) 

Average 

auxiliary 

capacity  

(kW) 

Total 

energy 

use 

(GWh) 

Mean 

age 

(yrs.) 

Auto Carrier 343 181 9 26 730  6.6 13 

Bulk 5,833 2,560 430 74 380  170  9 

Container 4,933 577 170 35 640  95  13 

Crude Oil Tank

er 

1,210 444 56 46 1,100  60  13 

General Cargo 2,292 575 150 64 630  100  14 

Passenger 473 40 25 54 2,800  54  20 

RoRo 23 12 1.5 63 95  0.16  10 

Tanker 6,830 1,343 270 39 610  160  12 

All Major Ports 21,937 5,732 1,100 50 630  650  13 

 

Our analysis is based on a dataset, which we believe is comprehensive, of the 21,937 port calls 

that 5,732 unique vessels made to the 12 major Indian ports in 2017-18 (see Appendix A table 

5.9). The average at-berth duration across all ports was ~50 hours per vessel per call. Table 2.1 

shows that the calls were dominated by tanker ships (chemical tankers, oil products tankers, 

LNG and liquefied petroleum gas (LPG) tankers), bulk carriers and container ships. On average, 

bulk carriers had the longest stays averaging 3 days per berth call. Auto-carriers had the shortest 
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stays, averaging just over 1 day per berth call. Averaged across all types of vessels at each port, 

the shortest average vessel call duration was for Jawaharlal Nehru Port in Mumbai (JNPT; 28 

hours). The longest average vessel call duration was at the ports of Kolkata (77 hours) and 

Haldia (53 hours). 
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2.4.1 Environmental Consequences 
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Figure 2.2 Annual emissions contributions for PM2.5, SO2, NOx and CO2 to total city emissions in (a) 2017 and 

(b) 2030 from berthed ships burning MGO at major ports. The shipping growth rate in (a, b) is assumed to be 

3% per year (2007-2017 Indian shipping annual growth rate)89,90. 

 

2.4.1.1 Relative Contribution of Major Port Emissions to Total City Emissions 

Ships berthed at major ports are a significant source of local SO2 and NOx emissions in Indian 

port cities. If shipping activity were to grow at 3% per year (2007-2017 Indian shipping growth 

rate)89,90 and ships were to continue burning RO or MGO, then the relative share for emissions 

from berthed ships for both fuel types decrease in 2030, except for increase in shipping’s share 

of NOx emissions at some ports. The emissions from berthed ships burning MGO as a 

percentage of total city emissions in 2017 and 2030 are shown in Figure 2.2 (see Appendix A 

Table 5.26). For the case where berthed ships burn RO, their percentage contribution to total city 

emissions in 2017 and 2030 is included in Appendix A Table 5.25. If shipping activity were to 

grow in line with the sensitivity analysis scenario wherein the volume of trade grows at 18% 

annually57,58, we anticipate the relative proportion of emissions from ships to increase (see 

Appendix A Tables 5.27 and 5.28). This growth is due to the reduction of the emissions intensity 

of other sectors as standards such as Bharat Stage VI, which will reduce the sulfur content of 

road diesel by a factor of 50, come into force. India has also started to require that SO2, PM2.5, 

and NOx emissions from coal fired power plants—which have so far been unabated—be 

drastically reduced by implementing post-combustion treatment of flue gases.92,100 In this case, 

NOx emissions from berthed ships will constitute a major portion of the total city emissions. 

2.4.1.2 Annual Emissions from Ships Berthed at Major Ports 

The annual PM2.5, SO2, NOx and CO2 from ships burning RO at major Indian ports was 850, 

7,700, 9,500 and 470,000 tonnes, respectively (see Appendix A Table 5.29). If ships were to 

burn MGO, then the annual PM2.5, SO2, NOx and CO2 at Indian major ports are estimated to be 
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190, 1,400, 9,000 and 450,000 tonnes respectively (see Appendix A Table 5.29). Our analysis 

has produced a unique annual hourly inventory of PM2.5, SO2, NOx and CO2 emissions from 

berthed vessels for India’s 12 major ports (details in Appendix A 5.9.3). 

2.4.1.3 Change in Emissions if Vessels Switch to Shore Power 

 
Figure 2.3 Change in total emissions (in tonnes) for (a) PM2.5, (b) SO2, (c) NOx, and (d) CO2 at major ports, if 

ships were to use shore power instead of burning MGO for meeting their electricity requirement. Baseline 

emission factors are based on the grids of the state in which the port is located. However, the high and low 

estimates (indicated by the yellow whiskers) are based on East, West, North, and South regional grids. 

 

Because of the low sulfur content of MGO, and assuming that the high sulfur intensity of India’s 

power system remains unchanged when vessels are required to burn MGO, if vessels switched 

from burning MGO to shore power, net emissions of PM2.5 would decline by 46% (86 tonne 

reduction); NOx emissions would fall by 84% (7,500 tonne reduction), but SO2 and CO2 
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emissions would increase by 240% (3,300 tonne increase) and by 17% (75,000 tonne increase), 

respectively (see Appendix A Tables 5.31 and 5.32). The case for the switch from RO to shore 

power is discussed in Appendix A 5.9.4. The annual PM2.5, SO2, NOx, and CO2 emissions from 

grid electricity in 2017 was 100, 4,700, 1,500, and 520,000 tonnes respectively (Appendix A 

Table 5.30). 

Figure 2.3 explains the change in emissions for different pollutant categories when ships switch 

from burning MGO to shore power for the 12 ports we studied. For MGO, switching to shore 

power increases SO2 emissions across 11 out of 12 ports except for Cochin. This is due to the 

lower amount of sulfur emitted by the combustion of fuel in comparison to burning coal for 

electricity generation. The source of electricity generation in Cochin is hydropower and thus SO2 

emissions from the grid don’t increase from the switch.101 We also estimate the change in 

emissions when ships switch from burning RO to shore power across major ports (see Appendix 

A Figure 5.9, Tables 5.31 and 5.32). For RO, switching to shore power increases SO2 emissions 

at Chennai, V.O. Chidambaranar (VOC), Kamarajar and Paradip ports. Chennai, VOC and 

Kamarajar are located in the state of Tamil Nadu, where lignite is burned for power 

generation.102 Paradip port is located in the state of Odisha (eastern India), where low grade coal 

from Mahanadi Coalfields is used for power generation (see Appendix A Figure 5.10).103,104 

Because of the low quality of coal use, the emissions factors for generating units in Tamil Nadu 

and Odisha are an order of magnitude higher than other states (see Appendix A Table 5.17). 

2.4.2 Annual Fuel Cost Savings due to Switching from Fuel Oil to Shore Power 

The median savings per vessel call for switching from RO and MGO to shore power is $210 and 

$1,500, respectively (see Appendix A Table 5.34). The median annual fuel cost savings per 

vessel for switching from RO to shore power is $610 and the median annual fuel cost savings per 
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vessel for switching from MGO to shore power is $3,700 (see Appendix A Figure 5.11(a)). The 

savings are greatest for bulk carriers, tanker and general cargo ships. 

Over the expected life of all vessels, using a discount rate of 7%, switching from RO and MGO 

to shore power yields a net private benefit of $73M and $370M, respectively (see Appendix A 

Table 5.33). While the median lifetime savings per vessel for switching from RO to shore power 

is $5,300, the median lifetime savings per vessel for switching from MGO to shore power is 

$33,000 (see Appendix A Figure 5.11(b)). The typical cost of retrofitting a vessel is $300K- 

$2M.46 For RO, only 0.2% of the vessels (9 vessels) had annual savings above $300K and for 

MGO, 2.4% of the vessels (138 vessels) had savings above $300K. Thus, very few ship 

operators would reduce their fuel costs enough to pay for the cost of retrofitting their ships for 

shore power. 
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2.4.3 Health Consequences 

 
Figure 2.4 Estimates of premature deaths avoided across major ports by switching from RO (a, c) and MGO 

(b, d) to shore power in 2017 and 2030 by treating each city as a homogeneous well mixed region. The growth 

in shipping is assumed to be 3% each year89,90 and the error bars represent 95% confidence interval (CI). 

 

It is difficult to quantify the effect of a shift to shore power on premature mortality without 

running integrated air quality assessment models. However, a zeroth-order analysis, performed 

by treating each city as a homogeneous well mixed region suggests that switching from RO to 

shore power in the absence of emissions regulation for power generation and transportation 

sector might avoid of the order of 40 premature deaths each year (see Appendix A Table 5.35). 

Switching from MGO to shore power might avoid roughly five premature deaths each year (see 

see Appendix A Table 5.36). 
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If shipping grows at 3% per year,89,90 as it has in the decade from 2007 to 2017, while power 

generation and road transportation become cleaner, switching from RO and MGO to shore power 

in 2030 would avoid roughly ten premature deaths each year (see Appendix A Tables 5.37 and 

5.38). Figure 2.4, respectively, show the health benefits of switching from RO and MGO to 

shore power in 2017 and 2030, although these numbers are highly uncertain and should merely 

be treated as an indication that the effect of shore power on premature mortality is likely to be 

small. For RO, the analysis suggests that, in Tamil Nadu, any shift to shore power would 

increase premature mortality, since much of the state’s electricity is generated by burning lignite. 

Further, this suggests that the decision of the VOC port in Tamil Nadu to start deploying shore 

power60 at VOC-II and VOC-III berths105 may actually be detrimental to air quality and human 

health. Until the GoI enforces its proposed regulations for cleaning the power generation sector, 

switching from MGO to shore power would increase premature mortality in the states of Gujarat, 

Tamil Nadu and West Bengal. On the other hand, if shipping grows at 18% per year57,58 as 

India’s Ministry of Shipping projects, while power generation and road transportation become 

cleaner, switch from RO and MGO to shore power in 2030 would avoid roughly 100 and 40 

premature deaths annually (see Appendix A Table 5.12, Tables 5.39 and 5.40).  

In the absence of chemical transport models, it is possible to qualitatively assess the effect of a 

switch to shore power on the concentration of pollutants. A switch from fuel oil to shore power 

moves pollution emissions from high population density areas (near the port) to a lower density 

area (near power plants). For example, an analysis of the wind rose for the city of Cochin (refer 

to Appendix A Figure 5.14) shows that pollution from the port is likely to be blown toward 

densely- populated areas of Cochin for 9 months of the 12 months of the year. The nearest coal-

fired power plant (Mettur Thermal Power Station; capacity: 1,440 MW) is situated ~260 km 
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away and has a population density of ~730 people per km2 in nearby region. As such, our initial 

hypothesis would be that any reduction in pollution at the port would improve the air quality 

over Cochin and be beneficial for the health of its residents. The effect is similar across other 

major ports including the ones where electricity generation is coal based (see Appendix A 

5.9.6.2). 

2.4.4 Cost Effectiveness of Shore Power in India 

The total cost, for all 12 ports of constructing and maintaining overhead power lines from the 

nearest substation to the port is $1.5M (i.e., an annual amortized cost over 20 years, discounted 

at 12% of ~$200K). Our analysis showed that, to obtain the benefits described above, 249 berths 

would need to be equipped for shore power across the country. The total cost of installation of 

shore side infrastructure for all the ports is ~$1.1B. This translates roughly to an annual 

amortized cost of ~$140M-$150M. Given that we estimate that a shift to shore power from RO is 

likely to avoid of the order of 40 premature deaths each year, this suggests a cost effectiveness of 

~$4 million per premature death avoided. If ships use low-sulfur fuel (e.g., MGO), little public 

health benefit is likely to accrue. As discussed previously, for vessel operators, the benefits of 

shore power, as measured by lower fuel costs, are unlikely to exceed the costs of retrofit. We 

also conducted a sensitivity analysis to the local price of electricity for RO and MGO. This has 

been discussed in Appendix A 5.10.2. 

2.4.5 Effect of Renewable Electricity Generation 

We estimate the cost of supplying electricity to berthed ships via installing grid connected solar 

photovoltaic (PV) systems in the ports. The net cost of installing solar PV systems to the port 

including system capital cost, maintenance cost, feed-in revenue to the port and electricity 

procurement cost across the major ports is ~$0.4B (see Appendix A 5.10.3). This translates to 
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annual amortized cost of $52M-$55M to the ports, net of the avoided cost of purchasing 

electricity. Since it is reasonable to assume that the marginal source of electricity at all locations 

in India is currently always unabated coal, a switch to a solar PV system sized to supply the 

annual demand for electricity for berthed ships would produce zero net emissions and completely 

eliminate the emissions generated by burning oil (RO/ MGO). For ships burning RO, a switch to 

solar PV would avoid roughly 50 premature deaths each year (see Appendix A Table 5.45) 

resulting in a cost effectiveness of ~$1M per premature death avoided. In the case of ships 

burning MGO, this will avoid roughly 20 premature deaths (see Appendix A Table 5.46) with a 

cost effectiveness of ~$3M per premature death avoided. 

2.5 Conclusions 

Our results indicate that for most vessels, the cost to install the technology and enable the vessel 

to connect to shore power exceeds the net private benefit to vessel operators. The switch to shore 

power is unlikely to produce a net public benefit now or in the near future until the grid has 

become cleaner. On the basis of net private benefit, operators would choose to retrofit only about 

0.2% of the vessels in our dataset to receive shore power. Thus, on its own, installation of the 

shore power infrastructure would not likely incentivize significant uptake of shore power use for 

vessels. In many cases, a shift to shore power would move pollution away from densely 

populated cities to the less densely populated areas where power plants are typically situated. 

Since it is impossible to quantify the effect of this shift without using chemical transport models, 

our analysis tacitly assumes that the ports and power plants are part of a single well-mixed cell. 

With this assumption, and given the current Indian electricity generation mix, we observe 

relatively modest public health benefits from a switch to shore power. Based on these results and 

without more detailed analysis—which our hourly emissions inventory could facilitate—the 
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government would be ill-advised to incentivize vessel retrofits or to construct the costly 

infrastructure needed to provide shore power. We identify several sources of uncertainty and 

Appendix A 5.10 discusses how we address them. 

India’s trade with China is growing at ~19% per year.106 China has declared DECAs across its 

coastline and is promoting shore power use.107 Here we have only accounted for vessel calls at 

major Indian ports. For vessels calling at both Chinese and Indian ports, and which have been 

retrofitted to receive shore power in response to Chinese regulations, it would be cheaper to use 

shore power at Indian ports than burning low sulfur fuel. 

Our analysis provides some evidence that emissions at Indian ports could be cut by making ports 

more efficient. For example, our raw data suggest that at the port of New Mangalore, the loading 

and unloading rate in 2017 was ~10 containers per hour, compared to ~50 containers per hour at 

POLA in 2013.108 

In summary, until the bulk power supply in India is cleaned up, or ports develop their own 

cleaner sources of power, our study finds that switching berthed vessels to shore power at major 

ports in India is unlikely to yield a public benefit large enough to justify an investment that 

private sector actors are unlikely to make themselves. For this reason, national policy by GoI 

should focus on cleaning up the power sector in India. 
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3 Chapter 3. Pollution from Freight Trucks in the Contiguous 

United States: Public Health Damages and Implications for 

Environmental Justice 

Abstract 

PM2.5 produced by freight trucking gives rise to significant adverse impacts on human health. 

Here we explore the spatial distribution of freight trucking emissions and demonstrate that the 

public health impacts disproportionately affect certain racial and ethnic groups. Based on the US 

federal government data, we quantify heterogeneity of trucking emissions and find that ~10% of 

NOx and ~12% of CO2 emissions from all sources in the US come from freight trucks annually. 

The environmental and climate social cost due to NOx, PM2.5, SO2, and CO2 from freight 

trucking in the US are estimated respectively to be $11B, $5.5B, $100M, and $25B (assuming a 

social cost of carbon of $40 per ton). If a quarter of the freight currently carried on trucks could 

be moved to rail that would reduce PM2.5 emissions by 1.3%, NOx emissions by 9%, and CO2 

emissions by 22%. Texas, Pennsylvania, Indiana, New Jersey, and New York export ~49% of 

total annual US trucking pollution damage, while at the same time Texas, New York, 

Pennsylvania, New Jersey, and Illinois import ~44% of total annual trucking pollution damage. 

We demonstrate that more freight pollution occurs in both counties and census tracts with a 

higher proportion of Black and Hispanic residents. A higher proportion of Black and Hispanic 

residents are also more likely to experience importers of pollution from other counties. Local 

agencies should consider these effects while evaluating the equity of prospective emissions 

reduction strategies. 
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This chapter is intended for submission to the Proceedings of the National Academies of Sciences (PNAS) as: 

“Lathwal P., Vaishnav P., Morgan M. G., Pollution from Freight Trucks in the Contiguous United States: Public 

Health Damages and Implications for Environmental Justice.” 

3.1 Introduction 

Medium and heavy-duty vehicles (MHDVs) account for ~21% of transport sector’s energy use109 

and ~24% of total transportation greenhouse gas (GHG) emissions.110 Transportation is the 

largest source of greenhouse gas emissions in the United States, accounting 29% of total 

emissions in 2019. They are also a major source of pollutants such as fine particulate matter 

(PM2.5), oxides of nitrogen (NOx), and GHGs, especially carbon dioxide (CO2).111,112 While 

reducing emissions from freight trucking is desirable, and mitigation costs are lower for road 

transport than for other modes4, the tight coupling between economic growth and road freight 

makes it difficult to achieve reductions.14 In 2017, the most recent year for which Commodity 

Flow Survey (CFS) data are available, freight trucks carried ~72% ($10.4 trillion) of total 

domestic freight by value.113 Absent major policy interventions, as other transportation modes 

become cleaner, and the volume of freight truck VMT114  grows, the proportion of emissions 

from freight trucking will likely increase in the coming decades. 

Air pollutant emissions have steadily declined in the US over the decades due to federal 

emissions control regulation such as the Clean Air Act (CAA)115, and the switch to ultralow 

sulfur fuel diesel (ULSD).116 Yet, it is estimated that exposure to PM2.5 continues to cause 

between ~85,000 and 200,000117–119 premature deaths each year in the US. While current policies 

prioritize emissions reduction, they provide little guidance on addressing environmental justice 

when implementing air pollution reductions or on how to address distributional impacts.120 Even 

though absolute PM2.5 concentrations have declined by ~70% since early 1980s,121 racial-ethnic 

and socio-economic disparities 122–126 continue to exist.119,121 A recent paper by Tessum et al.119 
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found higher than average PM2.5 exposures across minority groups in comparison to white 

population from different sources. Although the authors report overall disparity in exposure 

through population-weighted ambient concentrations, no study has explored the impacts of air 

pollution on racial and ethnic minorities from the freight trucking sector using a bottom-up 

inventory. Our analysis fills this gap. 

The design of effective abatement policies to curtail air pollution from freight trucking requires 

granular and high-quality information on emissions from trucks. The most comprehensive 

publicly available emissions inventory in the US is produced by the Environmental Protection 

Agency (EPA) and is called the National Emissions Inventory (NEI).127 This is a national 

compilation of emissions by the US EPA from different local agencies and is released 

approximately every 3 years (the most recent version is for 2017). For on-road mobile sources 

such as trucks, the EPA uses emissions reported by local agencies.128 As such, estimates can vary 

at the local level depending on the method used to aggregate emissions in different counties. 

Many counties do not report their information: just over 50% of the counties submitted 

information to EPA for compilation in NEI 2017.128 For counties that do not submit data, EPA 

estimates county emissions based on historical information the EPA has for the county. As a 

result, there are methodological differences and potential inconsistencies in how the NEI 

estimates emissions for each county. Developing our own emissions inventory allows us to 

follow a methodologically consistent approach. The advantages of developing an emissions 

inventory from the “bottom-up” are well documented in the literature.112,129,130 For instance, the 

US EPA distributes emissions based on road lengths and population and not on actual road 

activity. Consequently, this leads to the under-estimation of emissions on rural interstate 
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highways that are sparsely populated but are heavily traversed by freight trucks. Building a 

bottom-up emissions inventory allows us to avoid that. 

In this study, we explore the environmental and public health impacts from freight trucking 

sector and make three contributions to the literature. First, we conduct a bottom-up assessment, 

which is spatially resolved and based on the most recently available national freight data, the 

Freight Analysis Framework Version 4 (FAF4),131 of freight trucking emissions for the 

contiguous US. We report environmental, climate, and public health air pollution monetized 

damages due to freight trucking at the county level for the contiguous states.  

Second, we quantify the extent of air pollution health damages that are being exported from or 

imported to individual counties due to freight trucking activity. Since emission sources at 

distances as great as 800 km can cause air pollution related health damages132, the burden of 

freight trucking on human health impacts that arise from emissions within and outside a county’s 

boundary may be considerably different. We develop our estimates using publicly available data 

from the US federal government (FAF4 data) which we combine with the reduced complexity 

model (RCM) Estimating Air Pollution Social Impact Using Regression (EASIUR)133,134 and the 

source-receptor Air Pollution Social Cost Accounting (APSCA) model.132 In doing so, we 

explore the spatial heterogeneity in air pollution damages at the county level based on source-

receptor relationships. We focus on air pollution damages attributable to outdoor PM2.5 exposure 

because it is responsible for ~90% of all air pollution related health damages.135  

Third, we perform the analysis at the resolution of individual counties and census tracts to 

estimate air pollution related health damages and distributional effects. We observe distributional 

impacts of air pollution across racial and ethnic groups both at the county and at the census tract 

resolution. 
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3.2 Materials and Methods 

3.2.1 Study Area and Scope 

Our study includes freight shipments in the 48 contiguous US states (excluding Alaska, Hawaii, 

Puerto Rico, and other US territories). Figure 3.1 describes the method we use to compute 

trucking emissions, air pollution, and climate change damages. We consider the county as the 

basic unit of spatial resolution for calculating monetized damages and the census tract for the 

environmental justice results in our work. The reference year used in the study is 2017, as the 

latest year for which the national emissions inventory (NEI) is available.127 This allows us to 

compare our emissions results with the NEI. The approach we use to extract freight trucking 

emissions from the NEI is discussed in Appendix B 6.1. 

 
Figure 3.1 Step process detailing our modeling approach. 
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3.2.2 Data 

We use the Federal Highway Administration’s (FHWA’s) FAF4 data131 to estimate freight 

flowing through 132 domestic zones in the US. It builds on the CFS data,113 which is a publicly 

available dataset and provides information on national freight flows in the US. As a result, the 

FAF4 information is more comprehensive in coverage than the CFS data because it includes 

industries and shipments that are not included in CFS while providing shipment information at 

the county level.136 Although a more recent version of the Freight Analysis Framework Version 

5 (FAF5) is available, it has yet to be updated with information on county level freight 

shipments. Thus, we use the FAF4 data throughout the analysis except for our analysis of modal 

shift to class-1 railroads where we use the CFS data. Additionally, FAF4 data includes a shape 

file of FAF4 zones providing detailed information on the road network (~446,000 miles; see 

Figure 3.2(A)) and relevant freight attributes such as the annual average daily traffic volumes on 

road segments, road lengths and route type. The distribution of trucking VMT by road type is 

included in Appendix B 6.2. To explore the environmental justice implications of air pollution 

related damages, we use census data from the US Census Bureau.137 

3.2.3 Estimating freight trucking VMT 

Road length: The FAF4 road network data consist of road links (RLs) and average daily long 

distance and local truck traffic counts for different freight vehicles in 2012. We estimate the 

route road length (in miles) for each road link by taking the difference between the starting and 

ending mile posts reported in the data for each road link. We dropped 94 out of 670,045 road 

links for where the result is a negative road length, which we assume to be an error in recording 

the observations. Links with negative lengths account for ~0.01% of the total so that dropping 

them should have a negligible effect on the results. 
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Annual average truck counts: For determining vehicle categories for freight truck counts, we 

assume that all long-haul highway trips are conducted by heavy duty tractor-trailer diesel trucks 

(class 8b or above) whereas all non-long haul (local) highway freight trips are conducted by 

single unit trucks (class 6 trucks). Since freight trucking is mostly diesel powered, we assume 

based on Bickford et al.130 that 98% of all trucks in our freight data are diesel trucks. 

Furthermore, the reported average daily truck counts include non-cargo freight vehicles such as 

commuter and transit buses. In 2012, there were 765,000 bus registrations out of ~58 million 

truck registrations (excluding sport utility vehicles, vans, and other light vehicles).138,139 Thus, to 

exclusively reflect diesel cargo freight trucks in our truck counts and remove the effect of buses 

and other non-cargo vehicles, we adjust the daily average truck count on each road link by 

subtracting 1% of total vehicle counts on each link. Mathematically, we express annual MHDV 

daily truck traffic on each road link as: 

Equation 3.1 

𝑴𝑯𝑫𝑽𝒊,𝒅𝒂𝒊𝒍𝒚 = 𝑭𝑨𝑭𝑨𝑨𝑫𝑻𝑻𝒊,𝒅𝒂𝒊𝒍𝒚 ∗ 𝑫𝑭 ∗ 𝑻𝑭 

Where, 

𝑴𝑯𝑫𝑽𝒊,𝒅𝒂𝒊𝒍𝒚 is the daily average MHDV count on a road link i (expressed as volume per 

day per section of the road) 

𝑭𝑨𝑭𝑨𝑨𝑫𝑻𝑻𝒅𝒂𝒊𝒍𝒚 is the FAF4 annual average daily truck traffic for long-distance and non-

long distance freight trucks on road link i (expressed as volume per day per section of the 

road) 

𝑫𝑭 is the diesel fraction to adjust vehicle counts to include only diesel freight trucks and its 

value is assumed to be 0.98 from literature130 
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𝑻𝑭 is the truck fraction to remove the effect of commuter and transit buses from the annual 

average daily truck traffic counts. Its value is assumed to be ~0.99 based on the vehicle 

registration data 

Annual Freight Trucking Vehicle Miles Traveled: We estimate the daily medium and heavy-

duty vehicle miles traveled (MHDVMT) for each road link by multiplying MHDVi,daily by the 

length of the road segment. We annualize the VMT on each road link by multiplying by 365. 

However, the MHDVMT obtained is for the year 2012, and the base year of our analysis is 2017. 

Using annual VMT data140 provided by the US Department of Transportation (DOT), we 

estimate compounded annual growth rate (CAGR) increase in MHDVMT between 2012 and 

2017. The MHDVMT in 2017 for each road link is then estimated as: 

Equation 3.2 

𝑴𝑯𝑫𝑽𝑴𝑻𝒊 = 𝑴𝑯𝑫𝑽𝒊,𝒅𝒂𝒊𝒍𝒚 ∗ 𝑹𝑳𝒊 ∗ 𝒀𝒆𝒂𝒓𝒅𝒂𝒚𝒔 ∗ 𝑮𝑭𝑽𝑴𝑻 

Where, 

𝑴𝑯𝑫𝑽𝑴𝑻𝒊 is the annualized VMT for medium and heavy-duty vehicles in 2017 for each 

road link i 

𝑴𝑯𝑫𝑽𝒊,𝒅𝒂𝒊𝒍𝒚 is the daily average medium and heavy-duty vehicle count on a road link i 

(expressed as volume per day per section of the road) 

𝑹𝑳 is length of the road segment (in miles) for each road link i 

𝒀𝒆𝒂𝒓𝒅𝒂𝒚𝒔 is 365, the number of days in a year  

𝑮𝑭𝑽𝑴𝑻 = (𝟏 + 𝑪𝑨𝑮𝑹𝑽𝑴𝑻)𝟐𝟎𝟏𝟕−𝟐𝟎𝟏𝟐 is the growth in MHDVMT between 2012 and 2017. 

𝑪𝑨𝑮𝑹𝑽𝑴𝑻 is estimated to be 2% each year based on authors’ calculations from freight 

trucks’ VMT data140 provided by the US DOT. 
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3.2.4 Estimating spatially resolved emissions arising from freight trucking 

We estimate spatially resolved emissions at the county level for PM2.5, SO2, NOx, and CO2 in 

each county by multiplying MHDVMT by the lifetime VMT weighted emission factors (in 

g/mile) from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation 

(GREET) model141 (see Appendix B 6.3) for all the road segments contained in the county. For 

PM2.5 emissions, we include tire and break wear emissions in addition to primary PM2.5 

emissions. Absent better data, we use a constant emission factor irrespective of whether the road 

is in an urban or rural area, even though emission factors may likely be higher in urban areas. To 

examine the implications of doing this, we perform a sensitivity analysis with a different set of 

emission factors for heavy duty trucking. The results are included in Appendix B 6.3. We sum 

the air pollutant and GHG emission estimates from road links within a county to estimate county 

level total for 2017. The emissions at the county level are estimated as: 

Equation 3.3 

𝑬𝒌,𝒑 = ∑ 𝑴𝑯𝑫𝑽𝑴𝑻𝒊 ∗ 𝑬𝑭𝒑

𝒊∈𝑲

 

Where, 

𝑬𝒌,𝒑 is the total MHDV emissions (in tons) for pollutant p (PM2.5, SO2, NOx, CO2) in each 

county, k 

𝑴𝑯𝑫𝑽𝑴𝑻𝒊 is the VMT on road segment i for MHDVs  

𝑬𝑭𝒑 is the emission factor (in g/mile) for pollutant p for the freight truck category under 

consideration 

K is the set of all road segments i contained within county k. The sum is performed over all 

the road segments i that are contained within the county k 
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3.2.5 Estimating public health and climate damages due to freight trucking 

Using state-of-the-art chemical transport models (CTMs) to estimate the concentration of air 

pollutants that results from emissions is very computationally intensive. In order to reduce the 

computational burden for policy analysis, air quality researchers have developed integrated 

RCMs to estimate monetized air pollution damages. RCMs divide the entire US into a grid of 

cells and include a set of look up tables of marginal social costs (MSC; in US $ per ton of 

pollutant emitted) for emissions associated with each grid cell. For our analysis, we assume that 

trucking emissions are marginal so that the public health damages due to CAPs are a simple 

product of total emissions and MSC for a given pollutant species, location, and height. While the 

MSC for CAPs is sensitive to location and height, the MSC for CO2 does not depend on these 

factors, and we estimate damages from CO2 emissions by multiplying emissions by a social cost 

of carbon (which we assume to be $40 per ton CO2).142  

We use an RCM called EASIUR133,134 to estimate marginal damages due to primary PM2.5, SO2, 

and NOx. for 148*112 cells with each grid cell 36 km*36 km in size. Since we are interested in 

on-road freight transport emissions, we use the annual MSC associated with all area sources with 

a zero-stack height. We ignore seasonal variation. Next, we conduct an overlay analysis and find 

how much of each county’s area lies within the bounds of each grid cell. We repeat this exercise 

for each grid cell in the contiguous US and distribute the marginal social costs through a 

weighting factor based on the area of county contained in each grid cell. Finally, we calculate the 

marginal damages as a product of the MSC in each county multiplied by the emissions of a 

particular pollutant species at a given location. EASIUR assumes a value of statistical life (VSL) 

of $8.6M (2010 US $) and a social cost of carbon of $40 per ton of CO2.143 The marginal 

damages are then converted to 2017 dollars using the Consumer Price Index (CPI).144 
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Mathematically, this can be expressed as: 

Equation 3.4 

𝑴𝑫𝒑 =  ∑ 𝑴𝑺𝑪𝒌,𝒑 ∗ 𝑬𝒌,𝒑 ∗ 𝒇𝑪𝑷𝑰

𝒌

 

Where, 

𝑴𝑫𝒑 is the marginal damage in 2017 dollars for the US for pollutant p (PM2.5, SO2, and 

NOx)  

𝑴𝑺𝑪𝒌,𝒑 is the marginal social cost in county k for pollutant p (expressed in US $ per ton of 

pollutant emitted) 

𝑬𝒌,𝒑 is the emissions for county k for pollutant p (expressed in tons) 

𝒇𝑪𝑷𝑰 is the consumer price index adjustment for 2017 (constant value) 

EASIUR provides an estimate of all the damages that occur everywhere from the emissions that 

originate within county, regardless of where those damages occur. To understand where 

damages occur, we employ source-receptor relationships from the APSCA model to spatially 

disaggregate social cost of pollutants.132 As a boundary check, we also calculate air pollution 

damage estimates from freight trucking at the source counties using another RCM called the Air 

Pollution Emission Experiments and Policy Version 3 (AP3).145 In both cases, we find 

reasonable consistency. The results of the comparison of the public health damages from freight 

trucking are included in Appendix B 6.4. 

3.2.6 Emissions reduction due to modal shift to rail 

According to the Association of American Railroads (AAR), US railroads move a ton of freight 

roughly 472 miles with a gallon of diesel fuel.146 Thus, shifting freight tonnage from diesel 

freight trucks to class-1 railroads holds significant potential for GHG mitigation. We assume that 

all trips greater than 300 miles might be shifted to rail and use data from CFS 2017. CFS 
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provides information on 5,978,523 shipments and each shipment record has shipment value 

along with a weighting factor. Multiplying the shipment value with the assigned weighting factor 

allows us to estimate total ton-miles shipped each year for trips.147 This can be expressed as: 

Equation 3.5 

𝑻𝒐𝒏 − 𝒎𝒊𝒍𝒆𝒔𝒍 =  ∑ 𝑾𝒆𝒊𝒈𝒉𝒕𝒊𝒏𝒈 𝑭𝒂𝒄𝒕𝒐𝒓𝒍 ∗ (
𝑺𝒉𝒊𝒑𝒎𝒆𝒏𝒕 𝑾𝒆𝒊𝒈𝒉𝒕𝒍

𝟐𝟎𝟎𝟎
)

𝒏

𝒔=𝟏

∗ 𝑺𝒉𝒊𝒑𝒎𝒆𝒏𝒕 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑹𝒐𝒖𝒕𝒆𝒅𝒍 

Where, 

 𝑻𝒐𝒏 − 𝒎𝒊𝒍𝒆𝒔𝒍 are ton-miles of shipment l 

𝑾𝒆𝒊𝒈𝒉𝒕𝒊𝒏𝒈 𝑭𝒂𝒄𝒕𝒐𝒓𝒍 is the weighting factor of shipment l 

𝑺𝒉𝒊𝒑𝒎𝒆𝒏𝒕 𝑾𝒆𝒊𝒈𝒉𝒕𝒍 is the weight of the shipment l. We divide this by 2000 since the 

shipment weight is in pounds 

𝑺𝒉𝒊𝒑𝒎𝒆𝒏𝒕 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑹𝒐𝒖𝒕𝒆𝒅𝒍 is the routed distance between the origin and destination of 

the shipment l 

We assume that all freight trucking beyond 300 miles is conducted by long-haul heavy-duty 

tractor-trailer diesel trucks and assume that each truck carries on average 20 tons of freight. The 

approach used to estimate emissions factors (in g/ton-mile) both for heavy duty diesel truck and 

Class 1 railroad is provided in Appendix B 6.5. Next, we estimate total emissions for PM2.5, SO2, 

NOx, and CO2 for freight trucks and rail. Finally, we estimate the percentage change that results 

from a switching 5% to 50% of ton-miles from freight trucks to rail. 

3.2.7 Impact of freight trucking pollution across demographic groups 

While the monetized environmental and climate change impacts are felt across different 

geographical sub-units, here, we focus on the distributional effects of freight trucking emissions 

on different ethnic and racial subgroups. This is important because the literature shows that, 

historically, adverse air pollution-related health impacts have been inequitable.122–126 To evaluate 
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differences in the impacts of pollution from freight trucking on different racial groups, we use 

county level population data from US Census Bureau’s 2010 decennial census.137 Based on 

county as the unit of spatial aggregation, we focus on seven self-identified racial and ethnic 

subgroups, selected so that they are mutually exclusive: (1) Black or African American alone 

(variable code P003003), (2) Hispanic or Latino origin by race (variable code P005010), (3) 

American Indian and Alaskan Native alone (variable code P003004), (4) Asian alone (variable 

code P003005), (5) Native Hawaiian and Other Pacific Islander alone (variable code P003006), 

(6) some other race alone (variable code P003007), and (7) two or more races (variable code 

P003008). We model emissions for pollutant p (PM2.5, SO2, and NOx) in county c as a function 

of the demographic and other attributes of the census tract where the emissions occur and an 

unobserved error term (𝜖𝑝,𝑐). 𝜷 is the modeled coefficient for each corresponding independent 

variable X for county c. The model specification is: 

Equation 3.6 

𝒀𝒑,𝒄(𝑿) = 𝜷𝟎 + 𝜷𝒂𝒓𝒆𝒂𝒍𝒐𝒈(𝑿𝒄
𝒂𝒓𝒆𝒂) + 𝜷𝒃𝒍𝒂𝒄𝒌𝑿𝒄

𝒃𝒍𝒂𝒄𝒌 + 𝜷𝒂𝒎𝒆𝒓𝒊𝒏𝒅𝑿𝒄
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 + 𝜷𝒉𝒂𝒘𝑿𝒄

𝒉𝒂𝒘

+ 𝜷𝒂𝒔𝒊𝒂𝒏𝑿𝒄
𝒂𝒔𝒊𝒂𝒏 + 𝜷𝒉𝒊𝒔𝒑𝑿𝒄

𝒉𝒊𝒔𝒑
+ 𝜷𝒕𝒘𝒐𝒎𝒐𝒓𝒆𝑿𝒄

𝒕𝒘𝒐𝒎𝒐𝒓𝒆 + 𝜷𝒕𝒐𝒕𝒑𝒐𝒑𝐥𝐨𝐠 (𝑿𝒄
𝒕𝒐𝒕𝒑𝒐𝒑

)

+ 𝜷𝒎𝒆𝒅𝒊𝒏𝒄𝐥𝐨𝐠 (𝑿𝒄
𝒎𝒆𝒅𝒊𝒏𝒄) + 𝝐𝒑,𝒄 

Where, 

𝒀𝒑,𝒄 is the log of freight trucking emissions for pollutant p (PM2.5, SO2, and NOx) in county c 

𝑿𝒄
𝒂𝒓𝒆𝒂 is the area of the county c 

𝑿𝒄
𝒃𝒍𝒂𝒄𝒌 is the proportion of the total population in county c that is black 

𝑿𝒄
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 is the proportion of the total population in county c that is American Indian and 

Alaska native 
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𝑿𝒄
𝒉𝒂𝒘 is the proportion of the total population in county c that is Hawaiian and other Pacific 

Islanders 

𝑿𝒄
𝒂𝒔𝒊𝒂𝒏 is the proportion of the total population that is Asian in county c 

𝑿𝒄
𝒉𝒊𝒔𝒑

 is the proportion of the total population in county c identifying as Hispanic or Latino 

𝑿𝒄
𝒕𝒘𝒐𝒎𝒐𝒓𝒆 is the proportion of the total population identifying in county c as having two or 

more races 

𝑿𝒄
𝒕𝒐𝒕𝒑𝒐𝒑

 is the total population in county c 

𝑿𝒄
𝒎𝒆𝒅𝒊𝒏𝒄 is the median income of the house hold in county c 

We then perform the same analysis at the census tract level. To calculate the emissions that occur 

within each census tract, we download census tract shapefiles from the U.S. Census Bureau. 148 

Using the shapefile of the FAF4 road network, we estimate the centroid of each road segment. 

We then use the “rgeos” package in the R programming environment to identify which census 

tract each road segment centroid is located in. We repeat the calculations described in Equation 

3.3 of section 3.2.4 but sum the emissions that occur along each road segment over all the road 

segments that fall within a census tract (instead of summing over all the road segments that fall 

within a county). 

Finally, the effect of trucking emissions on minority populations in the census tract is evaluated 

using linear regression. We model emissions for pollutant p (PM2.5, SO2, and NOx) in census 

tract t as a function of the demographic and other attributes of the census tract where the 

emissions occur and an unobserved error term (𝜖𝑝,𝑡). 𝜷 is the modeled coefficient for each 

corresponding independent variable X for census tract t. The model specification is: 

Equation 3.7 
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𝒀𝒑,𝒕(𝑿) = 𝜷𝟎 + 𝜷𝒂𝒓𝒆𝒂𝒍𝒐𝒈(𝑿𝒕
𝒂𝒓𝒆𝒂) + 𝜷𝒃𝒍𝒂𝒄𝒌𝑿𝒕

𝒃𝒍𝒂𝒄𝒌 + 𝜷𝒂𝒎𝒆𝒓𝒊𝒏𝒅𝑿𝒕
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 + 𝜷𝒉𝒂𝒘𝑿𝒕

𝒉𝒂𝒘

+ 𝜷𝒂𝒔𝒊𝒂𝒏𝑿𝒕
𝒂𝒔𝒊𝒂𝒏 + 𝜷𝒉𝒊𝒔𝒑𝑿𝒕

𝒉𝒊𝒔𝒑
+ 𝜷𝒕𝒘𝒐𝒎𝒐𝒓𝒆𝑿𝒕

𝒕𝒘𝒐𝒎𝒐𝒓𝒆 + 𝜷𝒕𝒐𝒕𝒑𝒐𝒑𝐥𝐨𝐠 (𝑿𝒕
𝒕𝒐𝒕𝒑𝒐𝒑

)

+ 𝜷𝒎𝒆𝒅𝒊𝒏𝒄𝐥𝐨𝐠 (𝑿𝒕
𝒎𝒆𝒅𝒊𝒏𝒄) + 𝜷𝑮𝑫𝑷𝐥𝐨𝐠 (𝑿𝒕

𝑮𝑫𝑷) + 𝝐𝒑,𝒕 

Where, 

𝒀𝒑,𝒕 is the log of freight trucking emissions for pollutant p (PM2.5, SO2, and NOx) in census 

tract t 

𝑿𝒕
𝒂𝒓𝒆𝒂 is the area of the census tract t 

𝑿𝒕
𝒃𝒍𝒂𝒄𝒌 is the proportion of the total population in the census tract t that is black 

𝑿𝒕
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 is the proportion of the total population in the census tract t that is American Indian 

and Alaska native 

𝑿𝒕
𝒉𝒂𝒘 is the proportion of the total population in the census tract t that is Hawaiian and other 

Pacific Islanders 

𝑿𝒕
𝒂𝒔𝒊𝒂𝒏 is the proportion of the total population that is Asian in census tract t 

𝑿𝒕
𝒉𝒊𝒔𝒑

 is the proportion of the total population in census tract t identifying as Hispanic or 

Latino 

𝑿𝒕
𝒕𝒘𝒐𝒎𝒐𝒓𝒆 is the proportion of the total population identifying in census tract t as having two 

or more races 

𝑿𝒕
𝒕𝒐𝒕𝒑𝒐𝒑

 is the total population in census tract t 

𝑿𝒕
𝒎𝒆𝒅𝒊𝒏𝒄 is the median income of the house hold in census tract t 

𝑿𝒕
𝑮𝑫𝑷 is the GDP of the county where the census tract t is located 

To assess what factors affect whether the county where the census tract is located is a net 

importer or exporter, we run a logit model specification which is expressed as: 



 50 

Equation 3.8 

𝒍𝒐𝒈𝒊𝒕 (𝒑𝒑,𝒕(𝒙)) = 𝒍𝒐𝒈 (
𝒑(𝒙)

𝟏 − 𝒑(𝒙)
) = 𝜼𝒑,𝒕(𝒙) 

𝜼𝒑,𝒕(𝒙) = 𝜷𝟎 + 𝜷𝒂𝒓𝒆𝒂𝒍𝒐𝒈(𝑿𝒕
𝒂𝒓𝒆𝒂) + 𝜷𝒃𝒍𝒂𝒄𝒌𝑿𝒕

𝒃𝒍𝒂𝒄𝒌 + 𝜷𝒂𝒎𝒆𝒓𝒊𝒏𝒅𝑿𝒕
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 + 𝜷𝒉𝒂𝒘𝑿𝒕

𝒉𝒂𝒘

+ 𝜷𝒂𝒔𝒊𝒂𝒏𝑿𝒕
𝒂𝒔𝒊𝒂𝒏 + 𝜷𝒉𝒊𝒔𝒑𝑿𝒕

𝒉𝒊𝒔𝒑
+ 𝜷𝒕𝒘𝒐𝒎𝒐𝒓𝒆𝑿𝒕

𝒕𝒘𝒐𝒎𝒐𝒓𝒆 + 𝜷𝒕𝒐𝒕𝒑𝒐𝒑𝒍𝒐𝒈 (𝑿𝒕
𝒕𝒐𝒕𝒑𝒐𝒑

)

+ 𝜷𝒎𝒆𝒅𝒊𝒏𝒄𝒍𝒐𝒈 (𝑿𝒕
𝒎𝒆𝒅𝒊𝒏𝒄) + 𝜷𝑮𝑫𝑷𝒍𝒐𝒈 (𝑿𝒕

𝑮𝑫𝑷) + 𝝐𝒑,𝒕 

Where, 

𝒑(𝒙) is the probability of the county where the census tract t is located of being a net 

importer or exporter for pollutant p (PM2.5, SO2, and NOx) 

𝑿𝒕
𝒂𝒓𝒆𝒂 is the area of the census tract t 

𝑿𝒕
𝒃𝒍𝒂𝒄𝒌 is the proportion of the total population in the census tract t that is black 

𝑿𝒕
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 is the proportion of the total population in the census tract t that is American Indian 

and Alaska native 

𝑿𝒕
𝒉𝒂𝒘 is the proportion of the total population in the census tract t that is Hawaiian and other 

Pacific Islanders 

𝑿𝒕
𝒂𝒔𝒊𝒂𝒏 is the proportion of the total population that is Asian in census tract t 

𝑿𝒕
𝒉𝒊𝒔𝒑

 is the proportion of the total population in census tract t identifying as Hispanic or 

Latino 

𝑿𝒕
𝒕𝒘𝒐𝒎𝒐𝒓𝒆 is the proportion of the total population identifying in census tract t as having two 

or more races 

𝑿𝒕
𝒕𝒐𝒕𝒑𝒐𝒑

 is the total population in census tract t 

𝑿𝒕
𝒎𝒆𝒅𝒊𝒏𝒄 is the median income of the house hold in census tract t 

𝑿𝒕
𝑮𝑫𝑷 is the GDP of the county where the census tract t is located 



 51 

3.3 Results 

3.3.1 Freight Trucking Emissions in the US 

Table 3.1 shows freight trucking emissions for the year 2017. We also compare these estimates 

with available values from the US EPA’s economy wide NEI 2017. While the methods and 

scales used in compiling NEI 2017 are different than those for the FAF4 data, the comparison 

serves as a check that results are comparable. We observe that NOx and CO2 emissions from 

diesel freight trucks are a non-trivial share of total US emissions. The estimated emissions 

diverge from values estimated by 2017 NEI between 11% and 47% for different pollutants and 

the directionality of the difference is not preserved across pollutant/ GHG type. The largest 

differences arise for PM2.5 (FAF4 less by 46%) and CO2 (FAF4 larger by 47%). There are 

several possible reasons for this. First, we observe that VMT estimated from FAF4 data is ~30% 

larger than the VMT reported for 2017 by US Department of Transportation (DOT).140 This 

VMT difference is propagated in the analysis when we estimate emissions for different 

pollutants and GHGs in our work. Second, FAF4 models truck-counts and distributes them into 

long distance and non-long-distance freight routes whereas the NEI estimates are based on the 

Highway Performance Monitoring System (HPMS) data that are supplied to MOtor Vehicle 

Emission Simulator (MOVES) model to estimate VMT across counties.149 Accordingly, there is 

an underlying difference in how VMT estimates are measured in the two datasets. Third, FAF4 

provides an average daily vehicle count on each road segment but provides no information on the 

type of vehicle category traveling on the roads. Hence, it is challenging to determine the type of 

truck and to use specific vehicle emission factors for other vehicle categories such as refuse 

trucks. Finally, FAF4 excludes idling emissions and intra-FAF zone trips less than 50 are not 

included in the FAF4 data. 
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Table 3.1 Freight trucking emissions comparison between FAF4 and NEI for 2017. NOx and CO2 constitute a 

non-trivial share of US emissions. The difference in estimates column provides the percentage difference of 

FAF4, 2017 diesel truck emission estimates from NEI, 2017 diesel truck emission values. The estimates in the 

last two columns provide percentage contribution of freight trucking emissions to total US emissions from 

FAF4 and NEI data. These are obtained by dividing the FAF4 and NEI freight trucking emissions by 

emissions from all sources in NEI, 2017. 

Pollutant FAF4 freight 

trucking 

emissions (in 

tons) 

NEI freight 

trucking 

emissions (in 

tons) 

% 

Diff 

Total NEI 

emissions 

(tons) 

% US emissions 

from MHDVs in 

FAF4 data 

% US emissions 

from MHDVs in 

NEI data 

PM2.5 28K 51K -46% 5.2M 0.53% 1.0% 

SO2 4.6K 3.7K 24% 2.5M 0.18% 0.10% 

NOx 1.1M 1.3M -11% 11M 10% 12% 

CO2 640M 430M 47% 5.3B 12% 8.2% 

 

3.3.2 Environmental Impacts of Freight Trucking 

Figure 3.2(B-D) shows county level spatial distribution of PM2.5, NOx, and SO2 emissions from 

MHDV trucking. Based on where the freight trucking activity occurs, we observe that NOx 

trucking emissions are high in counties in the northeast, southern, and western parts of the US. 

The emissions burden is highest in the counties that include the road network in the FAF4 

network (see Figure 3.2(A)). 
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Figure 3.2 (A) FAF4 road network in the contiguous US. These routes comprise ~446,000 miles of roads. The 

dataset includes interstate highways, national highway system (NHS) roads, rural and urban principal 

arterials along with intermodal connectors. (b, c, d) PM2.5, SO2, and NOx emissions (in tons) from freight 

trucks at the county level in the US in 2017. (B-D) County level spatial distribution of PM2.5, NOx, and SO2 

emissions from MHDV trucking. The spatial distribution of CO2 emissions is similar to other air pollutants 

shown in the figure. 
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3.3.3 Spatially Resolved Public Health Impacts of Freight Trucking 

 
Figure 3.3 (A-C) Public health damages from PM2.5, SO2, and NOx due to freight trucking aggregated at the 

source counties. The source county damage shows total air pollution damage that occurs across all other 

counties due to the freight trucking activity originating from the source county. It includes the air pollution 

damage that occurs from the county within itself. (D-F) Public health damages from PM2.5, SO2, and NOx due 

to freight trucking aggregated at the receptor counties. The receptor damage at a county includes total air 

pollution damage due to freight trucking activity occurring in other counties. It includes the damage that 

occurs within the receptor county due to freight trucking activity within the receptor county. 

 

We estimate the total annual public health damage resulting from diesel trucks for PM2.5, SO2, 

and NOx, to be $5.5B, $100M, $11B, respectively, and the societal damage from CO2 emissions 
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to $25B, assuming a social cost of carbon of $40 per ton.143 While the numbers for  PM2.5, SO2, 

and NOx, are estimates of the human health damage that occurs everywhere from emissions that 

originate in each county, here we also estimate the damages that occur within each county from 

the emissions within that county and from other counties. This allows us to estimate the total 

damage that occurs within each county and whether the county is a net importer or exporter of 

air pollution damages. We do so by disaggregating these damages using APSCA. APSCA 

provides receptor resolved air pollution damages at the county level. Figure 3.3(A-C) show 

public health PM2.5, SO2, and NOx damages resolved at the source counties due to freight 

trucking in the US for 2017. This is the total damage from emissions that originate in a particular 

county and includes the damage caused by source county emissions activity within the county 

itself. If we exclude the air pollution damage that the source county causes within itself, we 

observe that the counties located in the states of Texas ($3.4B), Pennsylvania ($1.5B), Indiana 

($1.1B), New Jersey ($1B), and New York ($800M) contribute ~49% of all exported air 

pollution related damages occurring in the US. A map of net exporter and net importer counties 

is included in Appendix B Figure 6.2. 

Figure 3.3(D-F) show public health PM2.5, SO2, and NOx damages resolved at the receptor 

counties due to freight trucking in the US for 2017. This is the total damage a county receives 

from emissions occurring in other counties, including from the emissions that occur within the 

county. Cumulatively, the counties located in the states of Texas ($2.7B), New York ($1.4B), 

Pennsylvania ($1.1B), New Jersey ($930M), and Illinois ($850M) receive ~44% of all imported 

annual air pollution damage due to freight trucking in the contiguous US. 



 56 

3.3.4 Modal shift from freight trucks to Class-1 railroads 

The relationship between the ton-miles shifted to rail and emissions reduction is linear. If we 

move 5% and 50% of the total ton-miles in the CFS that are hauled by freight trucks to Class-1 

rail, we observe a reduction of SO2 emissions (4% to 43% reduction) and CO2 emissions (4% to 

43% reduction). However, the shift in ton-miles does not reduce PM2.5 appreciably (see 

Appendix B Figure 6.4). We also do not calculate how the distribution of emissions would 

change if freight were shifted to rail, but it is possible that such a shift might also have adverse 

distributional outcomes. 

3.3.5 Environmental Justice Implications 

While it is difficult to accurately determine air pollutant exposure concentrations without running 

a CTM, the results included below provide a first order estimate of air pollution emissions in 

counties and census tracts where minority population groups reside. We observe that freight 

trucking emissions of PM2.5, SO2, and NOx are significantly higher in counties with higher Black 

and Hispanic populations (Table 3.2). This effect is also preserved at the census tract level 

(Table 3.3). If the Black population in the county increases by 1 percentage point, the emissions 

in that county are 1.8 (1.1-2.9) percentage points higher. Similarly, if the Hispanic population in 

the county increases by 1 percentage point, then the emissions in that county are 20 (14-28) 

percentage points higher. The effect of emissions also decreases in census tracts that have higher 

average household median income in the census tract (0.1% decrease in emissions for a 

percentage point increase in average median household income). A detailed description of the 

distribution of the dependent and independent variables including additional diagnostic testing is 

enclosed in Appendix B 6.6. 

Table 3.2 Effect of freight trucking PM2.5, SO2, and NOx emissions on racial and ethnic subgroups at the 

county level. The dependent variable is the log of PM2.5, SO2, and NOx emissions emitted by freight trucks in 

counties. For predictor variables that are log values, the relationship can be estimated as %ΔYp = %β×ΔXc. 
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For predictors that are not log values, the relationship is estimated as %ΔYp = 100 × (eβ-1). These numbers 

are statistically significant and the numbers in the parenthesis show 99% confidence intervals. 

Predictors 
𝒀𝒑(𝑿)= log(PM2.5) 𝒀𝒑(𝑿)= log(NOx) 𝒀𝒑(𝑿)= log(SO2) 

β Estimates β Estimates β Estimates 

(Intercept) -21.06 (-23.44, -18.68) -19.42 (-22.22, -16.62) -23.16 (-25.60, -20.72) 

𝒍𝒐𝒈(𝑿𝒄
𝒂𝒓𝒆𝒂) 0.33 (0.28, 0.38) 0.35 (0.29, 0.41) 0.33 (0.28, 0.39) 

𝑿𝒄
𝒃𝒍𝒂𝒄𝒌 1.06 (0.75, 1.36) 1.08 (0.72, 1.44) 1.06 (0.74, 1.37) 

𝑿𝒄
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 -0.19 (-0.86, 0.47) -0.26 (-1.04, 0.52) -0.21 (-0.89, 0.47) 

𝑿𝒄
𝒉𝒂𝒘 -31.36 (-69.62, 6.91) -29.58 (-74.67, 15.51) -31.07 (-70.30, 8.15) 

𝑿𝒄
𝒂𝒔𝒊𝒂𝒏 -5.16 (-7.70, -2.62) -6.13 (-9.12, -3.13) -5.32 (-7.92, -2.72) 

𝑿𝒄
𝒕𝒘𝒐𝒎𝒐𝒓𝒆 -4.06 (-8.46, 0.33) -3.62 (-8.80, 1.56) -4 (-8.50, 0.51) 

𝑿𝒄
𝒉𝒊𝒔𝒑

 3.05 (2.72, 3.38) 3.13 (2.74, 3.52) 3.07 (2.73, 3.41) 

𝐥𝐨𝐠 (𝑿𝒄
𝒎𝒆𝒅𝒊𝒏𝒄) 0.76 (0.56, 0.97) 0.87 (0.63, 1.11) 0.78 (0.57, 0.99) 

𝐥𝐨𝐠 (𝑿𝒄
𝒕𝒐𝒕𝒑𝒐𝒑

) 0.64 (0.61, 0.68) 0.66 (0.62, 0.70) 0.64 (0.61, 0.68) 

Observations 3106 3106 3106 

R2/R2 adjusted 0.499 / 0.498 0.437 / 0.435 0.489 / 0.488 

 

Table 3.3 Effect of freight trucking PM2.5, SO2, and NOx emissions on racial and ethnic subgroups at the 

census tract level. The dependent variable is the log of PM2.5, SO2, and NOx emissions emitted by freight 

trucks in census tracts. For predictor variables that are log values, the relationship can be estimated as %ΔYp 

= %β×ΔXt. For predictors that are not log values, the relationship is estimated as %ΔYp = 100 × (eβ-1). These 

numbers are statistically significant and the numbers in the parenthesis show 99% confidence intervals. 

Predictors 
𝒀𝒑(𝑿)= log(PM2.5) 𝒀𝒑(𝑿)= log(NOx) 𝒀𝒑(𝑿)= log(SO2) 

β Estimates β Estimates β Estimates 

(Intercept) -12.50 (-13.02, 11.97)  -9.59 (-10.16, -9.02) -14.42 (-14.95, -13.89) 

𝒍𝒐𝒈(𝑿𝒕
𝒂𝒓𝒆𝒂) 0.50 (0.48, 0.51)  0.54 (0.52, 0.55) 0.50 (0.49, 0.51) 

𝑿𝒕
𝒃𝒍𝒂𝒄𝒌 0.75 (0.66, 0.84)  0.79 (0.69, 0.89) 0.75 (0.66, 0.84) 

𝑿𝒕
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 -0.68 (-1.02, -0.33)  -0.79 (-1.17, -0.41) -0.69 (-1.04, -0.34) 

𝑿𝒕
𝒉𝒂𝒘 -2.79 (-7.54, 1.95) -3.70 (-8.86, -1.46) -2.92 (-7.71, 1.87)  

𝑿𝒕
𝒂𝒔𝒊𝒂𝒏 -0.80 (-1.04, -0.55)  -0.61 (-0.88, -0.34) -0.77 (-1.02, -0.52) 

𝑿𝒕
𝒕𝒘𝒐𝒎𝒐𝒓𝒆 -9.05 (-10.24, -7.86)  -9.01 (10.30, -7.71) -9.04 (-10.24, -7.83) 

𝑿𝒕
𝒉𝒊𝒔𝒑

 0.64 (0.54, 0.74)  0.73 (0.63, 0.84) 0.66 (0.56, 0.75) 

𝐥𝐨𝐠 (𝑿𝒕
𝒕𝒐𝒕𝒑𝒐𝒑

) 0.24 (0.21, 0.27)  0.24 (0.20, 0.28) 0.24 (0.20, 0.28) 

𝐥𝐨𝐠 (𝑿𝒕
𝒎𝒆𝒅𝒊𝒏𝒄) -0.10 (-0.14, -0.05)  -0.12 (-0.17, -0.07) -0.10 (-0.14, -0.05) 

𝐥𝐨𝐠 (𝑿𝒕
𝑮𝑫𝑷) 0.05 (0.04, 0.06)  0.05 (0.03, 0.06) 0.05 (0.04, 0.06) 

Observations 57766 57766 57766 

R2/R2 adjusted 0.23/0.23 0.224/0.224 0.230/0.229 
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We also run a model specification (Table 3.4) to gauge whether a county is likely to be an 

exporter or importer based on the total air pollution damage that the county imports or exports. 

We observe that census tracts with Black, American Indian, and two or more non-white 

populations have higher odds of being an importer of air pollution damage due to freight trucks. 

Table 3.4 Odds ratios of a county being an importer. These numbers are statistically significant and the 

numbers in the parenthesis show 99% confidence intervals. 

Predictors Odds ratio of being an importer 

(Intercept) 0.02 (0.01, 0.03) 

𝒍𝒐𝒈(𝑿𝒕
𝒂𝒓𝒆𝒂) 0.94 (0.92, 0.95) 

𝑿𝒕
𝒃𝒍𝒂𝒄𝒌 2.48 (2.19, 2.80) 

𝑿𝒕
𝒂𝒎𝒆𝒓𝒊𝒏𝒅 2.02 (1.38, 3.00) 

𝑿𝒕
𝒉𝒂𝒘 0 (0.00, 1.75) 

 

𝑿𝒕
𝒂𝒔𝒊𝒂𝒏 0.94 (0.66, 1.34) 

𝑿𝒕
𝒕𝒘𝒐𝒎𝒐𝒓𝒆 49.18 (11.26, 215.72) 

𝑿𝒕
𝒉𝒊𝒔𝒑

 0.32 (0.28, 0.35) 

𝐥𝐨𝐠 (𝑿𝒕
𝒕𝒐𝒕𝒑𝒐𝒑

) 0.95 (0.91, 0.99) 

𝐥𝐨𝐠 (𝑿𝒕
𝒎𝒆𝒅𝒊𝒏𝒄) 1.21 (1.14, 1.28) 

𝐥𝐨𝐠 (𝑿𝒕
𝑮𝑫𝑷) 1.32 (1.30, 1.34) 

 

3.4 Conclusions and Policy Implications 

Our results suggest that freight trucking contributes significantly to NOx and CO2 emissions in 

the contiguous US. A potential medium-term solution is to shift a fraction of the freight from 

trucks to railroads to reduce GHG emissions.  

We also find that more freight trucking emissions occur in census tracts containing larger 

proportions of Black and Hispanic populations. While such disproportionate air pollution 

impacts have been noted in general terms in the research literature, our work documents this 

effect arising specifically from trucking sector in our work. This disproportionate effect is the 

result of years of racially and other socially insensitive infrastructure citing policy.150,151 Our 
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findings indicate that areas with higher proportions of minority populations have higher 

likelihood of being an importer of air pollution damages. Therefore, local governments should 

consider conducting more research in areas with high trucking activity emissions to examine 

whether there are ways to reduce some of the air pollution effects felt by vulnerable population 

groups. This work also has implications for local governments trying to formulate future 

emissions reduction policies, especially when air pollution arises from geographical areas that 

are not within their administrative control. 
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4 Chapter 4: Conclusions and Policy Implications 

In this brief final chapter, I summarize the key findings of my work and outline how I believe it 

is relevant for policymakers involved in public decision-making. 

In Chapter 2,29 I find that given the current generation mix in India, switching to shore-power 

will be ineffective in improving local air quality in India. The reduction in premature mortality is 

likely small. These results ought to prompt a reevaluation of the Government of India’s (GoI's) 

preferred strategies for reducing urban air pollution, as they have already started deploying shore 

power infrastructure at ports in India. More generally, the findings of our work are likely to be 

applicable to developing countries with a dominant fossil-fuel-based electricity generation mix 

where the location of population, ports, and generators are not widely separated. Governments in 

such situations should consider prioritizing investments to reduce the emissions intensity of the 

power generation sector before or at least in parallel with efforts to electrify other sectors. 

In Chapter 3, I develop an approach to estimate the annual monetized impact of air pollution 

damages due to freight trucking. The monetized environmental and climate air pollution 

damages due to freight trucking roughly amount to $40B each year. This is approximately a third 

of total transportation related air pollution damages in the US (~ $120B).152 These social costs 

can be expected to increase each year with burgeoning consumer demand and uptake in e-

commerce. We also find that NOx and CO2 emissions and related public health damages arising 

from freight trucking contribute an important share of total US emissions and will likely increase 

as a proportion of economy-wide emissions in the coming decades. As the Biden Administration 

puts in place policies to decarbonize the electricity system by 2035,153 devising a feasible 

strategy to reduce the emissions intensity of medium and long-haul trucking should play a crucial 

role in meeting those goals successfully. Our results also show that air pollution due to freight 
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trucking disproportionately impacts people of color: more freight pollution occurs in census 

tracts with a higher proportion of Black residents. Counties with a higher proportion of Black 

and Hispanic residents are more likely to be importers of pollution from other counties. This 

finding is timely because the Biden administration is working on an infrastructure deal154 that 

provides ~$580B over a decade for repairing and rebuilding the nation's highways, bridges, 

railroads, and other essential services. Therefore, it is an opportune moment to undo the harm 

caused by decades of socially unjust and racially insensitive infrastructure policies. 

There has been a rush amongst truck manufacturers towards making electric and autonomous 

trucks. However, this has been subject to much hype over the years.155 Future work that I plan, 

that is described in Appendix C, will allow me to assess the consequences of shifting to electric 

autonomous freight trucking. In that work, I will seek to evaluate where long-haul electric 

trucking technology stands today and assess automated trucks in terms of their potential social 

benefits and costs. 
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5 Appendix A: Supplementary Information for Chapter 2 

5.1 IMO MARPOL history and population densities of major port cities 

5.1.1 IMO International Convention for the Prevention of Pollution from Ships 

(MARPOL) 

Annex VI “Regulation for the Prevention of Air Pollution from Ships” of MARPOL regulates 

the international standards for NOx, SOx, and PM emissions from ships. As of October 22, 2019, 

the convention has been ratified by 158 contracting states and covers ~99% of the gross tonnage 

of world’s merchant fleet.156 The Annex VI standards were developed in 1997 and came into 

effect starting 2005 which were then revised and adopted in October 2008.157 Finally, the revised 

regulation came into effect in July 2010.158 Among the key developments were the introduction 

of emission control areas (ECAs) to reduce air pollution in ecologically sensitive sea areas as 

well as the introduction of a global sulfur cap in marine fuel use. The global sulfur limit was 

reduced from 3.50% to 0.50% from 1 January 2020 onwards. 

Table 5.1 gives a list of ECAs across the world. Also, there are three regional domestic emission 

control areas (DECAs)159 in China covering Yangtze River Delta, the Bohai Rim, and the Pearl 

River Delta that aren’t under the regulatory oversight of IMO MARPOL Annex VI. 

Table 5.1 List of ECAs adoption, their entry into force, and the effective date of implementation. The table 

has been adapted from IMO website.160 

Special Areas Adopted 
Date of Entry into 

Force 
In Effect From 

Baltic Sea (SOx) 

Baltic Sea (NOx) 

26 Sept 1997 

7 July 2017 

19 May 2005 

1 Jan 2019 

19 May 2006 

1 Jan 2021 

North Sea (SOx) 

North Sea (NOx) 

22 Jul 2005 

7 July 2017 

22 Nov 2006 

1 Jan 2019 

22 Nov 2007 

1 Jan 2021 

North American ECA  

(SOx and PM); 

(NOx) 

  

26 Mar 2010 

  

  

1 Aug 2011 

  

  

1 Aug 2012 

1 Jan 2016 

United States  

Caribbean Sea ECA 

(SOx and PM); 

 (NOx) 

  

  

26 Jul 2011 

  

  

  

1 Jan 2013 

  

  

  

1 Jan 2014 

1 Jan 2016 
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5.1.2 Population densities of cities near major ports in India 

Table 5.2 gives population densities for cities that are adjacent to the major ports in India. The 

population density was maximum for the city of Mumbai (31,000 persons per km2) and 

minimum for Tuticorin (~400 persons per km2). 

Table 5.2 Population density of cities located near major ports in India. 

Port City Population density (people per km2) 

Chennai 26,553161 

Kochi 7,139162 

Mumbai 30,716163 

Kolkata 24,679164 

Haldia 1400165 

Mangalore 3,220166 

Mormugao 3,450167 

Tuticorin 378168 

Visakhapatnam 3,800169 

Gandhidham 8,384170 

Paradip 2,931171 

 

5.2 Materials and Methods 

5.2.1 Study Area and Scope 

Table 5.3 shares geographic details of the major ports. 

Table 5.3 Indian Major Ports with their latitude, longitude and state information. 

Port State Port Latitude Port Longitude Remarks 

Chennai Tamil Nadu 13.0815° N 80.2921° E 
 

Kochi Kerala 9.9546° N 76.2678° E also known as 

Cochin Port 

Deendayal Gujarat 23.01666° N 70.2166° E formerly known 

as Kandla Port 

Jawaharlal Nehru 

(JNPT) 

Maharashtra 18.9499° N 72.9512° E also known as 

JNPT, Nhava 

Sheva 

Kamarajar Tamil Nadu 13.2593° N 80.3374° E formerly known 

as Ennore Port 

Kolkata West Bengal 22.5461° N 88.3149° E 
 

Haldia West Bengal 22.0447°N 88.0888°E 
 

Mormugao Goa 15.4088N 73.8011E 
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Mumbai Maharashtra 18.9000° N 72.8166° E 
 

New Mangalore Karnataka 12.9281° N 74.8222° E 
 

Paradip Odisha 20.2654°N 86.6762°E 
 

V.O. Chidambaranar 

(VOC) 

Tamil Nadu 8.7563° N 78.1791° E formerly known 

as Tuticorin Port 

Visakhapatnam Andhra Pradesh 17.6868° N 83.2903° E also known as 

Vizag Port 

 

Emissions contribution of cargo vessels at small ports: There are 205 non-major ports in the 

country out of which only a few are developed for cargo operations. In 2017-2018, major ports 

accounted for 58% of total freight cargo by volume across the county (see page 11).172 Roughly 

~33% non-major ports (i.e., 68) handled cargo and constituted 42% of the total cargo traffic 

handled by the end of 2018 (see page 8 and page 11).172  Table 5.4 below provides overview of 

non-major ports’ cargo statistics in India. In December 2018, India had a registered fleet of 1,400 

vessels out of which 944 vessels were involved in coastal trade and the remainder 456 vessels 

were involved in overseas trade. The coastal vessel fleet in India constituted ~0.7% of the gross 

register tonnage (GRT) compared to major ports in 2018 (see Table 3.6).173 Nearly 98% of all 

coastal ships registered in India were less than 10,000 tonnes in size.173 In our data on major 

ports, we observe that ~87% of all ocean-going cargo vessels were greater than 10,000 tonnes in 

size (median GRT: 32,297 tonnes; mean GRT: 36,268 tonnes; min GRT: 396 tonnes, and max 

GRT: 167,572 tonnes). 

Table 5.4 Summary statistics of non-major ports in India. This data is collated from Government of India 

(GoI’s) annual report on ports’ statistics (page XIV) for the year 2017-2018.173 

State Region # Non-Major Ports Cargo Traffic  

(Million Tonnes) 

% Cargo 

Share 

Gujarat West Coast 46 370.77 70.1 

Andhra Pradesh East Coast 12 86.29 16.3 

Maharashtra West Coast 48 37.91 7.2 

Odisha East Coast 13 22.6 4.3 

Tamil Nadu East Coast 16 1.1 0.2 

Karnataka West Coast 9 0.68 0.1 

Goa West Coast 5 0.07 0 
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Daman & Diu West Coast 2 9.67 1.8 

Kerala West Coast 17 

Lakshadweep West Coast 10 

Puducherry East Coast 3 

West Bengal East Coast 1 

Andaman & Nicobar 

Islands 

East Coast 23 

Total 
 

205 529.09 100 

 

Emissions contributions from boats and fishing vessels: According to a 2010 emissions 

assessment174 conducted for the city of Mumbai, we observe that cargo vessel emissions 

(containers, bulk carriers, and general cargo) dominate fishing vessel emissions. We reproduce 

the results of the report and also estimate the percentage share of fishing activity emissions 

around Mumbai relative to all other vessel categories (see Table 5.5). Thus, the relative share of 

fishing activity at major ports is small compared to other vessel categories. 

Table 5.5 Emissions burden (in tons) for marine vessels in the city of Mumbai for the year 2010.174 

Vessel Category PM (tons) SO2 (tons) NOx (tons) 

Bulk 1.2 13 12 

Container 0.1 0.7 0.7 

General Cargo 0.5 5.4 4.9 

Fishing Vessels 0 0.4 0.3 

Total Annual Emissions 1.8 20 18 

% share of fishing activity 

emissions 

2% 2% 2% 

 

5.2.2 Vessel Call Information 

We obtained vessel call information from the Port Trusts, with the approval of the Secretary of 

Shipping, Ministry of Shipping (MoS), Joint Secretary (Ports), MoS, and Chairperson of major 

port trusts. In our data collection efforts, we were supported by the Managing Director (MD), 

Indian Ports Association (IPA), Executive Director (ED), IPA, Former Additional Director 

General (ADG) of Artillery, Indian Army, and ADG, Indian Coast Guard (ICG). This 
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information is collected by the Port Trust’s traffic or research department. The raw vessel 

activity information shared by the ports included the vessel call number (VCN), a unique 

registration number which was used to identify a particular vessel call at the port level, the ship’s 

name, time of vessel arrival at the berth, time of vessel departure from the berth, type of cargo, as 

well as deadweight tonnage (DWT) and GRT for the vessels. 

Table 5.6 shares the date-time window of the vessel activity information shared by major ports. 

The datasets received from the ports were approximately one-year duration from March 2017 to 

March 2018 except for the ports of Chennai (1.5 years) and Kamarajar (1.6 years). So, for the 

vessel activity datasets of Chennai and Kamarajar, we used the March 2017-March 2018 data for 

these ports. Haldia Dock Complex (HDC), shared data from April 2018-March 2019 so we use 

April 2018- March 2019 time period data for HDC. 

Table 5.6 Date and time windows for vessel activity data shared by major ports of India. Chennai and 

Kamarajar ports shared vessel activity data which spanned >1 year. HDC shared data from April 2018 to 

March 2019. 

Port State Min Date Max Date Years 

Chennai Tamil Nadu 3/25/17 9/26/18 1.5 

Cochin Kerala 4/1/17 3/31/18 1.0 

Deendayal Gujarat 3/28/17 3/31/18 1.0 

Jawaharlal Nehru 

Port (JNPT) 

Maharashtra 3/30/17 3/31/18 1.0 

Kamarajar Tamil Nadu 3/30/17 10/30/18 1.6 

Kolkata West Bengal 3/27/17 3/29/18 1.0 

Haldia West Bengal 4/13/18 3/30/19 1.0 

Mormugao Goa 3/14/17 3/29/18 1.0 

Mumbai Maharashtra 3/25/17 3/30/18 1.0 

New Mangalore Karnataka 3/28/17 3/31/18 1.0 

Paradip Odisha 9/1/17 8/29/18 1.0 

VOC Tamil Nadu 3/29/17 3/30/18 1.0 

Vizag Andhra 

Pradesh 

3/31/17 3/31/18 1.0 
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5.2.2.1 Scraping the vessel call information 

The raw vessel activity data from Port Authorities was missing in key attributes, for instance, 

ship’s IMO registration number or MMSI number. In many cases, vessel type of the ships wasn’t 

shared in the raw dataset. These parameters were required to determine the vessel type and size 

of the auxiliary engine (in kW) of the ship’s onboard diesel generator, vis-à-vis for the type of 

vessel under consideration. In order to find the missing attributes, we built a web scraper in 

python which utilized the website MarineTraffic 175 to complete missing information. The 

scraper obtained data from the website MarineTraffic175, which is a partially open database that 

provides a number of vessel characteristics along- with real time positions and position history of 

ships. The website has over 600,000 registrations176 and 20 million visits177 on their platform 

every month. It uses 2,000 Automatic Identification System (AIS) stations to collate data across 

165 countries.178 Also, MarineTraffic has a memorandum of understanding (MoU) with the 

United Nations Conference on Trade and Development (UNCTAD)179,180 and collaborates with 

IMO on their projects. This gave us assurance about the reliability and trustworthiness of the 

database. Wherever available, the scraper used the available vessel information such as the 

vessel name, DWT, GRT and the vessel flag to ping an automated query via the Google’s 

Custom Search JSON API181 which opened the MarineTraffic website link from the Google 

search results and scraped the webpage for the relevant information. Since it was possible that 

the search results weren’t accurate for the web scraper, we established boundary checks, for 

example, (1) GRT and DWT comparison for given and scraped vessel records before accepting a 

scraped search result to our dataset, (2) logical flags which gave a true or false value reflecting 

whether a vessel’s information was scraped successfully or not depending on the available vessel 
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information from the ports. For the cases where logical flags were false, we searched for the 

information manually. 

5.2.2.2 Cleaning the vessel call information 

Out of the 41 vessel categories, 25 were relevant for our study and 16 other categories were 

rejected. Categories of ships included in the analysis were (1) Passenger/Cargo Ship, (2) Oil 

Products Tanker, (3) Container Ship, (4) Crude Oil Tanker, (5) Passenger Ship, (6) General 

Cargo, (7) Oil/Chemical Tanker, (8) Ro-Ro Cargo, (9) Cement Carrier, (10) Vehicle Carrier, (11) 

LNG Tanker, (12) Deck Cargo Ship, (13) Cargo/ Containership, (14) Chemical Tanker, (15) 

Bulk Carrier, (16) Ro-Ro/ Container Carrier, (17) LPG Tanker, (18) Heavy Load Carrier, (19) 

Wood Chips Carrier, (20) Asphalt/Bitumen Tanker, (21) Tanker, (22) OBO Carrier, (23) Self 

Discharging Bulk Carrier, (24) Reefer, and (25) Shuttle Tanker. Categories of ships which were 

discarded in this analysis were (1) Offshore Supply Ship, (2) Suction Dredger Pontoon, (3) Tug, 

(4) Barge, (5) Hopper Dredger, (6) Research/Survey Vessel, (7) Yacht, (8) Fishery Research 

Vessel, (9) Anchor Handling Vessel, (10) Navy, (11) Fishing Vessel, (12) Inland Cargo, (13) 

Crew Boat, (14) Fire Fighting Vessel, (15) Replenishment Vessel, and (16) Unknown category 

of vessels. We grouped the above categories according to the classification shown in Table 5.7. 

Table 5.7 Classification used for grouping different vessel types. 

S No. Vessel Type Vessel group class 

1 BULK CARRIER Bulk 

2 SELF DISCHARGING BULK CARRIER 

3 CARGO/CONTAINERSHIP Container 

4 CONTAINER SHIP 

5 CEMENT CARRIER  

 

 

General Cargo 

6 DECK CARGO SHIP 

7 GENERAL CARGO 

8 HEAVY LOAD CARRIER 

9 REEFER 

10 WOOD CHIPS CARRIER 



 69 

11 CRUDE OIL TANKER Crude Oil Tanker 

12 SHUTTLE TANKER 

13 ASPHALT/BITUMEN TANKER  

 

 

 

Tanker 

14 CHEMICAL TANKER 

15 LNG TANKER 

16 LPG TANKER 

17 OBO CARRIER 

18 OIL PRODUCTS TANKER 

19 OIL/CHEMICAL TANKER 

20 TANKER 

21 PASSENGER SHIP Passenger 

22 PASSENGER/CARGO SHIP 

23 RO-RO CARGO Ro-Ro 

24 RO-RO/CONTAINER CARRIER 

25 VEHICLES CARRIER Auto Carrier 

 

In the analysis, we ignore shift cases within the port (i.e., ships being moved within the port 

depending on berth availability). Also, we reject any vessel call less than or equal to 5 hours in 

berthing duration (~0.2% out of 23,755 vessel calls). It takes roughly between 20 minutes and 2 

hours182 to connect a ship to shore power system and similar time frame to disconnect the ship 

from shore power connection. This is because vessels with port call duration of less than or equal 

to 5 hours won’t have enough time to connect to shore power. Table 5.8 shows quantiles of port 

call duration for different vessel categories. There are port calls which have really high values for 

time spent at ports. Hence, these values can bias the analysis. In order to control for these effects, 

we consider only those vessel calls which are less than or equal to ~228 hours (98th percentile of 

port call duration across different vessel categories). Port call durations which were greater than 

228 hours were dropped from our analysis. 

Table 5.8 Quantile distributions of port call duration (in hours) in ports’ vessel data. We also observe that 

there is a long tail of port call duration for some vessel categories in the raw dataset which can induce bias in 

our results, if we assume that vessels connect to shore power in the remaining time spent at port. So, we delete 

all vessel calls which have port call duration > 98th percentile of call duration (~ 228 hours) in the dataset. 

Vessel type Total hours Call duration (in hours) 
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Unique 

vessels 

Vessel 

Calls 

1% 10

% 

50% 98% 100% 

Asphalt/Bitumen 

Tanker 

18 140             6.4K  16  21  29  220  414  

Bulk Carrier 2,699 6,500         570K  16  30  65  330  2.4K  

Cargo/Containersh

ip 

10 120           10K    7  12  47  170  4.4K  

Cement Carrier 7 150               

8.4K  

  18   26   52  120  190  

Chemical Tanker 58 270 10K   8  15   31   120    180  

Container Ship 579 5,100         190K       6   12      27  120  7.3K  

Crude Oil Tanker 453 1,300           77K  14   26  42  150  8.8K  

Deck Cargo Ship 4 9                940  35  61  85  230  240  

General Cargo 585 2,300         190K    5   15   50  240  15K  

Heavy Load 

Carrier 

15 25             1.7K    8  13   41  280   340  

LNG Tanker 9 13                410  20     22  24    75     76  

LPG Tanker 184 1,100            51K  11   19   34  180  1.7K  

OBO Carrier 1 1                  46  46  46  46    46    46  

Oil Products 

Tanker 

205 1,900       92K    10    21   35  130  3.2K  

Oil/Chemical 

Tanker 

900 3,800      150K    9  15  33  120  1.5K  

Passenger ship 30 130           16K    6    9  12  2.2K  3.4K  

Passenger/Cargo 

ship 

13 390          56K   7  29  54  1.3K  7.3K  

Reefer 1 1              180  180  180  180  180   180  

Ro-Ro Cargo 10 19             1.3K    9  26  75  120   140  

Ro-Ro/Container 

Carrier 

2 5                150    6    8  35   48     49  

Self-Discharging 

Bulk Carrier 

2 6               920  31  37  110  440   500  

Shuttle Tanker 1 1                  37  37  37  37  37     37  

Tanker 3 3               99  24  26  35   40    40  

Vehicles Carrier 222 460           12K   5   8  16  120  270  

Wood Chips 

Carrier 

3 18             2.3K  26  85  130  190  200  
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Table 5.9 shows the number of vessel calls dropped at each step of the data cleaning process. In 

the end, our vessel call data consisted of 21,937 unique vessel calls made by 5,732 unique ships. 

The distribution of port call duration in the annual vessel activity data is shown in Figure 5.1. 

Table 5.9 Snapshot of vessel calls at each point of the cleaning process. Indian major ports received 24,202 

vessel calls in 2017-2018 out of which 21,937 were relevant for our study. 

Vessel type Unique 

vessel calls 

Relevant 

cargo vessel 

categories 

Rejecting 

outlier port 

call 

durations 

(98th%ile 

cutoff) 

Cleaned 

annual 

vessel 

activity 

Anchor Handling Vessel 10 0 0 0 

Asphalt/Bitumen Tanker 138 138 135 124 

Barge 23 0 0 0 

Bulk Carrier 6,462 6,462 6,139 5,828 

Cargo/Containership 122 122 120 120 

Cement Carrier 154 153 153 153 

Chemical Tanker 269 269 267 262 

Container Ship 5,132 5,121 5,089 4,813 

Crew Boat 1 0 0 0 

Crude Oil Tanker 1,262 1,259 1,249 1,209 

Deck Cargo Ship 9 9 8 7 

Firefighting Vessel 31 0 0 0 

Fishery Research Vessel 1 0 0 0 

Fishing Vessel 1 0 0 0 

General Cargo 2,338 2,335 2,258 2,089 

Heavy Load Carrier 25 25 24 24 

Hopper Dredger 8 0 0 0 

Inland Cargo 134 0 0 0 

LNG Tanker 13 13 13 13 

LPG Tanker 1,094 1,094 1,078 1,033 

Navy 3 0 0 0 

OBO Carrier 1 1 1 1 

Offshore Supply Ship 139 0 0 0 

Oil Products Tanker 1,937 1,936 1,917 1,775 

Oil/ Chemical Tanker 3,785 3,784 3,773 3,619 

Passenger Ship 128 127 119 118 

Passenger/Cargo Ship 390 390 369 355 
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Reefer 1 1 1 1 

Replenishment Vessel 2 0 0 0 

Research/Survey Vessel 17 0 0 0 

Ro-Ro Cargo 19 19 19 18 

Ro-Ro/Container Carrier 5 5 5 5 

Self-Discharging Bulk Carrier 6 6 5 5 

Shuttle Tanker 1 1 1 1 

Suction Dredger Pontoon 30 0 0 0 

Tanker 3 3 3 3 

Tug 20 0 0 0 

Unknown 1 0 0 0 

Vehicles Carrier 464 464 461 343 

Wood Chips Carrier 18 18 18 18 

Yacht 5 0 0 0 

All Major Ports 24,202 23,755 23,225 21,937 

 

 
Figure 5.1 Distribution of vessel call duration (in hours) in the annual vessel activity across major ports in 

India. There were 21,937 vessel calls in 2017- 2018 with a median vessel call duration of ~39 hours and mean 

vessel call duration of ~50 hours. 

 

Table 5.10 and Table 5.11 provide summary statistics of vessel call data at the port level. 
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Table 5.10 Port call distribution of different vessel types across major ports in India. Deendayal port had the 

highest energy consumption of ~77 GWh at berth. Additionally, JNPT had the shortest port call duration 

(~28 hours) compared to Kolkata where the port call duration was the longest (~77 hours). 

Port Vessel class Total energy 

required 

(MWh) 

Average port call 

duration (hours) 

Average auxiliary 

power (kW) 

Chennai Auto Carrier 1.7K  48  780  

Bulk 4.6K 86  320  

Container 14K  32  770  

Crude Oil Tanker 5K  63  1K 

General Cargo 11K  52  540  

Passenger 6K  80  2.2K  

RoRo 8  32  84  

Tanker 
13K  53  570  

Total 
55K  50  670  

Cochin Auto Carrier 4  8  525  

Bulk 520  94  250  

Container 5.7K  17  630  

Crude Oil Tanker 5.8K  47  1.1K  

General Cargo 4.3K  53  620  

Passenger 32K  57  1.9K  

RoRo 5  30  38  

Tanker 
6.9K  42  650  

Total 
55K  38  940  

Deendayal Auto Carrier 31  59  520  

Bulk 19K 76  360  

Container 1.6K 24  620  

Crude Oil Tanker 17K  47  1.2K  

General Cargo 11K  54  620  

RoRo 8  57  71  

Tanker 
29K  36  640  

Total 
77K  49  620  

Haldia Auto Carrier 240  54  550  

Bulk 26K  71  410  

Container 3.5K  33  380  

Crude Oil Tanker 1.8K  47  800  

General Cargo 3.3K  71  830  

Tanker 
25K  45  570  

Total 
61K  55  490  

JNPT Bulk 62  16  490  
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Container 41K  27  860  

Crude Oil Tanker 930  38  760  

General Cargo 4.5K  57  850  

Tanker 
10K  29  630  

Total 
57K  28  80  

Kamarajar Auto Carrier 1.6K  14  740  

Bulk 7.7K  49  410  

Container 42  17  600  

Crude Oil Tanker 470  34  720  

General Cargo 370  44  800  

RoRo 1  7  95  

Tanker 
5.4K  33  660  

Total 
16K  37  560  

Kolkata Auto Carrier 43  13  270  

Bulk 1.5K  108  340  

Container 13K  83  220  

General Cargo 8.6K  86  470  

Passenger 5.2K  145  1.9K  

Tanker 
4.8K  45  410  

Total 
33K  77  340  

Mormugao Bulk 11K  66  420  

Container 2.1K  31  570  

Crude Oil Tanker 420  28  710  

General Cargo 21K  102  870  

Passenger 3.9K  11  7.2K  

Tanker 
3K  27  650  

Total 
42K  59  930  

Mumbai Auto Carrier 2.8K  31  780  

Bulk 17K  115  320  

Container 50  63  630  

Crude Oil Tanker 7.3K  42  1K  

General Cargo 16K  59  520  

Passenger 5.9K  27  5.5K  

RoRo 130  91  130  

Tanker 
23K  39  620  

Total 
72K  59  670  

New Mangalore Auto Carrier 5  9  525  

Bulk 7.1K  65  380  
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Container 2.9K  39  530  

Crude Oil Tanker 7.7K  45  970  

General Cargo 3.3K  42  720  

Tanker 
16K  40  650  

Total 
37K  46  630  

Paradip Bulk 34K  61  400  

Container 460  42  430  

Crude Oil Tanker 8.5K  43  1.2K  

General Cargo 1.8K 42  690  

Tanker 
7.9K  37  680  

Total 
53K  55  530  

Vizag Auto Carrier 100  93  550  

Bulk 24K  81  400  

Container 5.2K  26  660  

Crude Oil Tanker 5K  50  1K  

General Cargo 8K  66  850  

Passenger 1.4K  35  2.1K  

RoRo 5  45  100  

Tanker 
14K  37  580  

Total 
58K  56  570  

VOC Auto Carrier 20  37  550  

Bulk 13K  85  350  

Container 5.9K 27  480  

Crude Oil Tanker 250  87  970  

General Cargo 7.1K  65  540  

RoRo 3  75  38  

Tanker 
4.7K  48  490  

Total 
31K  56  450  
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Table 5.11 Port call distribution and unique vessels across individual major ports. Port of Deendayal received highest number of vessel calls (2,654 

calls) compared to Kamarajar port which received the least number of vessel calls (794 calls). 

Port Total 

Vessel 

calls 

Avg. call 

duration 

(hours) 

# Vessel calls by port 

   
Auto 

Carrier 

Bulk Container Crude Oil 

Tanker 

General 

Cargo 

Passenger RoRo Tanker 

Chennai 1,589 50 51 163 538 75 332 33 3 394 

Cochin 1,421 38 1 18 563 112 151 312 4 260 

Deendayal 2,654 49 1 681 112 299 283 0 2 1,276 

Haldia 2,250 55 8 900 249 46 52 0 0 995 

JNPT 2,469 28 0 8 1,767 32 88 0 0 574 

Kamarajar 794 37 153 370 4 19 12 0 1 235 

Kolkata 1,238 77 12 42 677 0 227 19 0 261 

Mormugao 960 59 0 381 117 21 223 49 0 169 

Mumbai 2,124 59 113 439 2 177 405 40 11 937 

New 

Mangalore 

1,323 46 1 283 144 175 101 0 0 619 

Paradip 1,892 55 0 1,344 25 156 56 0 0 311 

VOC 1,308 56 1 441 443 3 223 0 1 196 

Vizag 1,915 56 2 763 292 95 139 20 1 603 
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5.2.2.3 Data Validation 

Here, we validate our datasets with publicly available information from the GoI. For all the ports, 

we removed non-cargo vessels, navy ships and any ships with port call duration > 228 hours 

(~9.5 days; 98th percentile of the port call duration in our data set). The ports report vessel calls 

and not unique vessels in their Annual Administration Reports. This was confirmed with the 

traffic managers at respective ports. 

Chennai Port: According to Chennai Port Trust’s Annual Administration Report for 2017-

2018183, the port handled 1,852 merchant vessels and 549 government vessels in the entire year 

(Pg. 21). Amongst these, there were 1,567 cargo vessel calls (see Table No. 7A, Pg. 80) 183 

excluding the 33 passenger vessel calls. The data shared by port to us had 2,401 (1852+549) 

vessel calls. The cleaned dataset consists of 1,589 vessel calls that includes 1,556 cargo vessel 

calls and 33 passenger vessel calls. Also, the average berthing time both in the annual report and 

our data is 2.1 days (Pg. 82). Additionally, the report shares the activity details of select ships. 

We compare and validate our data with the sample of ships mentioned in the annual report in 

Table 5.12. 

Table 5.12 Comparison of ships mentioned in the Chennai Annual Administration Report 2017-2018183 with 

vessel details in authors' cleaned dataset. 

Serial 

Number 

Annual Report Data Our Data 

1 MV MAERSK KURE with deadweight tonnage 

(DWT) 90,456 tonnes arrived on 02/24/2018. 

MAERSK KURE (IMO: 9085522) with DWT 

84,900 tonnes arrived on 02/24/2018 and 

departed on 02/26/2018 

2 MT FOUR SMILE with DWT 160,572 tonnes 

arrived on 03/16/2018. 

FOUR SMILE (IMO: 9189146) with DWT 

160,573 tonnes arrived on 03/16/2018 and 

departed on 03/18/2018 

3 MT ANKLESHWAR with DWT 147,563.7 

tonnes arrived on 09/23/2017 

ANKLESHWAR (IMO: 9074860) with DWT 

147,563 tonnes arrived on 09/23/2017 and 

departed on 09/26/2017 

4 Passenger ship MV MAGELLAN arrived on 

04/08/2017 

Passenger ship MAGELLAN (IMO: 8217881) 

with DWT 7,186 tonnes on 04/08/2017 and 

departed on 04/08/2017 
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Deendayal Port: The port handled 2,747 cargo vessel calls in 2017-2018 (Pg. 22).184 In 

comparison, we have 2,654 cargo vessel calls in our data. The average berthing duration both in 

the annual report and our data is 2.0 days (Pg. 41).184 Additionally, the port received 1,585 tanker 

vessel calls (Pg. 35) compared to 1,575 tanker vessel calls in our dataset. 

Kamarajar Port: The port handled 794 cargo vessel calls185 in 2017-2018. Our dataset consisted 

of 794 cargo vessel calls. 

Kolkata and Haldia Port: In 2017-2018, Kolkata Port handled 1,196 cargo vessel calls 

(excluding passenger ships) at Kolkata Dock System (KDS) (Table VIII, Pg. 96) and 2,316 cargo 

vessel calls at the Haldia Dock Complex (HDC) (Table VIII, Pg. 97).186 After cleaning the raw 

vessel data from ports, there were 1,219 cargo vessel calls at KDS and 2,250 cargo vessel calls at 

HDC. Also, KDS handled ~640,000 TEUs (Twenty-foot equivalent units) of container traffic 

(see Table 2.5 on Pg. 19).187 This included ~330,000 imported TEUs and ~310,000 exported 

TEUs. In our dataset, the total number of containers handled at KDS were ~640,000 TEUs and 

consisted of ~330,000 imported TEUs and ~310,000 exported TEUs. Our raw data didn’t include 

details for HDC, so we weren’t able to compare the TEUs for HDC. 

Mumbai Port: In 2017-2018, the port handled 2,210 cargo vessel calls and 40 passenger vessel 

calls (Table VII, Pg. 42).187 Our data consists of 2,124 vessel calls that includes 2,084 cargo 

vessel calls and 40 passenger vessel calls. The average berthing duration at the port for cargo 

ships was 2.2 days (Table VIII).187 In comparison, the average berthing duration in our data for 

cargo ships was 2.4 days. 

New Mangalore Port: The port handled 1,360 cargo vessel calls (Table C-II).188 After cleaning 

the data, we were left with 1,323 cargo vessel calls. The average berthing duration at the port 
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was 1.9 days (Table P-I AR).188 In comparison, the average berthing duration at the port in the 

cleaned dataset is 1.9 days. 

Paradip Port: The port handled 1,840 vessel calls (Pg. 11) in 2017-2018 that included 1,831 

cargo vessel calls (see Table O-I on Pg. 58).189 The raw data shared by the port had 1,905 cargo 

vessels. After cleaning the data, we have 1,892 cargo vessel calls. Table 5.13 shows a 

comparison of cargo vessels for different ship categories between values reported in the annual 

report and our dataset. 

Table 5.13 Comparison of vessel categories between cleaned data with those mentioned in Paradip Annual 

Administration Report 2017-2018.189 

Vessel Category Annual Report Vessel Calls Cleaned Data Vessel Calls 

Container 22 25 

Bulk Carrier (break, dry, liquid) 1,345 1,344 

General Cargo 0 56 

Tankers (liquid bulk) 464 467 

Total 1,831 1,892 

 

VOC Port: The port received 1,482 vessel calls (see Table 7, Pg. 87) in 2017-2018 and the 

average berthing duration of 2.2 days (see Table 8, Pg. 88).190 After cleaning the data, we have 

1,308 vessel calls in the dataset. The average berthing duration in our dataset was 2.3 days. 

Visakhapatnam Port: The port handled 2,015 vessel calls in 2017-2018 (Pg. 1).191 This included 

1,977 cargo vessel calls with an average berthing duration of 2.4 days (see Annexure-21, Pg. 90). 

From the 1,973 vessel calls shared by the port, we removed non-cargo ships, navy ships and 

ships with outlier port call duration. Finally, we have 1,915 vessel calls in our dataset that 

consists of 1,895 cargo vessel calls and 20 passenger vessel calls. The average berthing duration 

in our dataset was 2.3 days. 
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5.3 Determining Auxiliary Engine Loads 

We spoke to people working in marine emissions assessment to seek guidance for calculating 

auxiliary engine loads of vessels calling at Indian ports. We communicated with (1) Prof. James 

J Corbett (Associate Director for Marine Policy Program, School of Marine Science and Policy, 

University of Delaware)192, (2) Prof. Anthony F. Molland (author of ‘The Maritime Engineering 

Reference Book: A Guide to Ship Design, Construction and Operation’; Emeritus Professor, 

University of Southampton, UK)193, (3) Dr. Louis Browning (Technical Director, ICF)194, (4) 

Ms. Guiselle Aldrete (author of ‘Port of Long Beach’s 2018 Inventory’; Consultant, Starcrest 

Consulting Group)195, (5) Mr. Abhijit Aul (Regulatory Affairs Lead, Lloyd’s Register)196, (6) 

Brett Goldsworthy197 (Researcher, University of Tasmania, Australia) and (7) Laurie 

Goldsworthy198 (Research Fellow, Australian Maritime College, University of Tasmania, 

Australia). Goldsworthy et al.75 conducted a study to estimate auxiliary engine power defaults at 

berth and validated it against local survey of ships. They compiled auxiliary engine operating 

loads in Table 1 of the paper 75 from sources such as the Third IMO Greenhouse Gas Study 

201441, Starcrest’s Port of Los Angeles (POLA)76 and Port of Long Beach (POLB)77 emissions 

inventory. For vessel categories which weren’t available in the Goldsworthy paper, we used 

auxiliary engine load values from POLB, 2017.199 The auxiliary engine emission factors (in 

g/kWh) for ships were taken from Table 2-16 in US EPA’s report74 on preparing mobile source 

emission inventories and are reproduced in Table 5.14 below. 

Table 5.14 Ships' auxiliary engine emission factors (in g/kWh) for different pollutant types. These are taken 

from US EPA’s report.74 

Fuel Type Sulfur NOx 

(g/kWh) 

PM2.5 

(g/kWh)  

SOx 

(g/kWh) 

CO2 

(g/kWh) 

RO (2.7% S) 2.70% 14.7 1.32 11.98 722.54 

MGO  

(0.5% S) 

0.50% 13.9 0.29 2.12 690.71 
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We were recommended to calculate auxiliary engine loads for each ship instead of using a 

default bin value for a given size of vessel due to differences in auxiliary engine usage and ship 

mix at ports. Table 5.15 provides vessel categories and their auxiliary engine power defaults (in 

kW) used in this study. We adjusted auxiliary engine loads for different vessel categories 

depending on the vessel size. The underlying assumption was that the auxiliary engine load of a 

ship varies linearly with the ship’s DWT. However, for passenger ships, we were advised to use 

the passenger capacity of ship (PAX) instead of DWT to determine auxiliary engine loads of the 

ships. Therefore, we estimate auxiliary engine loads for all vessel categories using their DWT 

except for passenger ships, where we use their PAX to estimate hoteling loads. 

Table 5.15 AE power defaults (in kW) by vessel category at berth. For passenger ships, we use PAX instead of 

DWT to linearly interpolate their hoteling loads. The values in Min. DWT and Max. DWT column for 

passenger ships denote the capacity of the passenger ships denote the capacity of the passenger ship in the 

table below. For categories which didn't have a range of auxiliary power information available, we used a 

constant linear function. 

Vessel class Min. AE 

capacity 

(kW) 

Max. AE 

capacity 

(kW) 

Min. DWT 

(tonnes) 

Max. 

DWT 

(tonnes) 

Capacity 

units 

Auto Carrier 0 1,284 0 31,143 

DWT 

(expressed 

in tonnes) 

Bulk 0 280 0 9,999 

Bulk 280 280 10,000 34,999 

Bulk 280 370 35,000 59,999 

Bulk 370 600 60,000 99,999 

Bulk 600 600 100,000 199,999 

Bulk 600 600 200,000 299,999 

Container <1000 0 340 3,816 15,704 

Container-1000 340 600 15,716 27,604 

Container-2000 600 700 27,616 39,504 

Container-3000 700 940 39,516 63,304 

Container-5000 940 970 63,316 99,004 

Container-8000 970 1,000 99,016 146,604 

Container-12000 1,000 1,200 146,616 176,366 

Container-14500 1,320 1,320 176,366 182,304 

General Cargo 0 120 0 4,999 

General Cargo 120 330 5,000 9,999 

General Cargo 970 970 10,000 70,000 
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RoRo 0 229 0 43,878 

Crude Oil 

Tanker 

0 250 0 4,999 

Crude Oil 

Tanker 

250 375 5,000 9,999 

Crude Oil 

Tanker 

375 625 10,000 19,999 

Crude Oil 

Tanker 

625 750 20,000 59,999 

Crude Oil 

Tanker 

750 750 60,000 79,999 

Crude Oil 

Tanker 

750 1,000 80,000 119,999 

Crude Oil 

Tanker 

1,000 1,250 120,000 199,999 

Crude Oil 

Tanker 

1,500 1,500 200,000 399,999 

Tanker 0 250 0 4,999 

Tanker 250 375 5,000 9,999 

Tanker 375 625 10,000 19,999 

Tanker 625 750 20,000 59,999 

Tanker 750 750 60,000 79,999 

Tanker 750 1,000 80,000 119,999 

Tanker 1,000 1,250 120,000 199,999 

Tanker 1,500 1,500 200,000 299,999 

RoRo 0 229 0 43,878 

Passenger 0 3,000 0 1,500 

Number of 

Passengers 

Passenger 3,000 6,500 1,500 2,000 

Passenger 6,500 9,500 2,000 2,500 

Passenger 9,500 10,000 2,500 3,000 

 

Table 5.16 provides vessel information about passenger ships in our dataset that we collected 

manually. 

Table 5.16 Auxiliary capacity information of passenger ships in our dataset. We collated passenger capacities 

of respective ships from online sources such as the manufacturers of these ships and government records. 

Vessel name IMO 

number 

DWT 

(tonnes) 

Auxiliary 

capacity 

(kW) 

Passenger 

capacity 

(persons) 

LAKSHADWEEP SEA 9448102 779 731 250 

ISLAND SKY 8802894 695 652 116 
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KAVARATTI 9238260 2387 2241 700 

ARABIAN SEA 9448097 725 681 250 

LAGOONS 9651010 1179 1107 400 

ARTANIA 8201480 4661 4375 1188 

AZAMARA JOURNEY 9200940 2700 2534 694 

SEVEN SEAS 

VOYAGER 

9247144 5400 5069 706 

INSIGNIA 9156462 2700 2534 824 

CORALS 9651008 1179 1107 400 

MINICOY 9224075 183 172 150 

VALIYAPANI 9372951 43 40 150 

EUROPA 2 9616230 5285 4961 516 

PARALI 9372937 43 40 150 

AMINDIVI 9217101 183 172 150 

SKIP JACK 9382657 68 64 50 

KALIGHAT 8713926 719 675 400 

WORLD ODYSSEY 9141807 3460 3248 520 

SEABOURN ENCORE 9731171 7000 6571 604 

NAUTICA 9200938 2948 2767 824 

STAR LEGEND 9008598 5170 4853 208 

SILVER SPIRIT 9437866 3882 3644 608 

SILVER DISCOVER 8800195 938 880 128 

NIPPON MARU 8817631 4840 4543 532 

PACIFIC PRINCESS 9187887 3376 3169 826 

BLACK WATCH 7108930 5656 5309 330 

MAGELLAN 8217881 7186 6745 1452 

NANCOWRY 8606434 5014 4706 1200 

HS MARCO POLO 6417097 5180 4862 1250 

SWARAJ DWEEP 9101168 4701 4413 1200 

CAMPBELL BAY 9309124 1128 1059 500 

NICOBAR 8606161 4963 4659 1200 

HARSHA VARDHANA 7219026 5269 4946 748 

VIKING SUN 9725433 4797 4503 930 

MEIN SCHIFF 1 9106297 6500 6101 2894 

COSTA LUMINOSA 9398905 7600 7134 2826 

SILVER WHISPER 9192179 2980 2797 382 

CELEBRITY 

CONSTELLATION 

9192399 11763 11042 2038 

COSTA 

NEOCLASSICA 

8716502 7781 7304 1680 
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MEIN SCHIFF 5 9753193 7900 7415 2790 

AIDABELLA 9362542 8765 8227 2500 

LUCKY SEVEN 8943703 4000 3755 892 

ARCADIA 9226906 10939 10268 2388 

 

We also see that the reported container vessel sizes range from 1,000 to 14,500 Twenty-Foot 

Equivalents (TEUs). However, our dataset had DWT as a measure of the tonnage. Thus, it 

became necessary to establish a relationship between TEU and DWT using linear regression. The 

linear relationship between DWT and TEU was found to be the following for container ships in 

the dataset: 

𝑫𝑾𝑻 = 𝟑𝟖𝟏𝟓. 𝟕 + 𝟏𝟏. 𝟗 × 𝑻𝑬𝑼 

The linear relationship was statistically significant (Figure 5.2) and was used to estimate the 

auxiliary load for all the vessel calls that were made by container ships. This allowed us to 

compute DWT for respective container ships which were later used to bound container of 

different sizes. Despite this, there were 64 vessel calls (63 containers and 1 general cargo) out of 

23,755 calls for which auxiliary loads weren’t in the capacity bins. These comprised ~0.2% of 

our vessel call data and their hoteling loads were determined using the “Container <1000” TEUs 

vessel category. 
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Figure 5.2 Scatterplot of linear regression relationship between TEU and DWT for 577 container ships. The 

red line shows the least squares fit (R2=0.9747 and p-value~0). 

 

Below, we describe several examples of how data were obtained from www.marinetraffic.com 

and how we used this information to calculate auxiliary loads for vessels in our dataset. 

Example 1: 

Known fields: 

Port-Visakhapatnam; Vessel Name-APOLLO; IMO Number-9114608, DWT-148,435; GRT-

79,832 

Unknown fields:  

Vessel Type, Aux. Load 

Our python scraper does an automated Google search by stringing together all the known 

information about a vessel to generate a Google search string in the following format: 

query = name + " vessel " + "gross tonnage " + str(original_grt) + " marinetraffic" 

For the above example, this Google search query translates to  

APOLLO vessel gross tonnage 79,832 marinetraffic 

http://www.marinetraffic.com/
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Our scraper parses through the HTML page and finds the ship’s Vessel Type. The vessel type of 

the ship was found to be Crude Oil Tanker. Before accepting the search result, the scraper does 

a check based on the observed GRT from the raw data and found GRT on marinetraffic.  

𝒊𝒇 𝒇𝒐𝒖𝒏𝒅𝒈𝒓𝒕 𝒂𝒏𝒅 (𝒂𝒃𝒔(𝐦𝐢𝐧𝒊𝒎𝒖𝒎𝒈𝒓𝒕 − 𝒐𝒓𝒈𝒊𝒏𝒊𝒂𝒍𝒈𝒓𝒕) < 𝟒𝟎𝟎): 

𝒎𝒂𝒕𝒄𝒉 = TRUE 

In this case, the GRT noted both in the port records given to us and in www.marinetraffic.com’s  

records was 79,832. As such, the abs(minimumgrt – originalgrt) is 0 and the search result is 

recorded in a .csv file with the details from marinetraffic. 

From Table 1 of Goldsworthy et al., we assign it to the following capacity bin: 

Min Aux. Load(kW) Max Aux. Load(kW) Min DWT(Tonnes) Max DWT(Tonnes) 

1,000   1,250   120,000  199,999 

Now, applying linear interpolation to the above, we get 

𝐴𝑢𝑥𝐿𝑜𝑎𝑑 = 𝐷𝑊𝑇 ∗ (
𝑀𝑎𝑥𝑎𝑢𝑥 − 𝑀𝑖𝑛𝑎𝑢𝑥

𝑀𝑎𝑥𝐷𝑊𝑇 − 𝑀𝑖𝑛𝐷𝑊𝑇
) + (

𝑀𝑖𝑛𝑎𝑢𝑥 ∗ 𝑀𝑎𝑥𝐷𝑊𝑇 − 𝑀𝑖𝑛𝐷𝑊𝑇 ∗ 𝑀𝑎𝑥𝑎𝑢𝑥

𝑀𝑎𝑥𝐷𝑊𝑇 − 𝑀𝑖𝑛𝐷𝑊𝑇
) 

𝐴𝑢𝑥𝐿𝑜𝑎𝑑 = 148,435 ∗ (
1250 − 1,000

199,999 − 120000
) + (

1,000 ∗ 199,999 − 120,000 ∗ 1,250

199,999 − 120,000
) 

𝑨𝒖𝒙 𝑳𝒐𝒂𝒅 ≈ 𝟏, 𝟎𝟖𝟗 𝒌𝑾 

Example 2: 

Known fields: 

Port-Chennai, Vessel Name-MESSINI, GRT-25,499 

Unknown fields: 

IMO Number, Vessel Type, Aux. Load, DWT 

Our python scraper does an automated Google search by stringing together all the known 

information about a vessel to generate a Google search string in the following format: 

http://www.marinetraffic.com’s/
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query = name + " vessel " + "gross tonnage " + str(original_grt) + " marinetraffic" 

For the above example, this Google search query translates to  

MESSINI vessel gross tonnage 25,499 marinetraffic 

Our scraper parses through the HTML page and finds the ship’s IMO Number, DWT, and Vessel 

Type. The IMO Number of the ship is 9142942, its DWT is 34,167 tonnes and the vessel type 

was found to be Container Ship. Before accepting the search result, the scraper does a check 

based on the observed GRT from the raw data and found GRT on marinetraffic.  

𝒊𝒇 𝒇𝒐𝒖𝒏𝒅𝒈𝒓𝒕 𝒂𝒏𝒅 (𝒂𝒃𝒔(𝐦𝐢𝐧𝒊𝒎𝒖𝒎𝒈𝒓𝒕 − 𝒐𝒓𝒈𝒊𝒏𝒊𝒂𝒍𝒈𝒓𝒕) < 𝟒𝟎𝟎): 

𝒎𝒂𝒕𝒄𝒉 = TRUE 

Again, abs(minimumgrt – originalgrt) is 0 and the search result is recorded in a .csv file with the 

details from www.marinetraffic.com. We had to scrape the DWT since we didn’t have it in the 

raw data, and it was found to be 34,167 tonnes. Since this is a container ship, we need to convert 

the DWT to TEU for assigning auxiliary load. We found a linear regression relationship between 

DWT and TEUs in our data set for all the container ships. This relationship was found to be as 

follows: 

𝑫𝑾𝑻 = 𝟑𝟖𝟏𝟓. 𝟕 + 𝟏𝟏. 𝟗 × 𝑻𝑬𝑼 

Using this linear relationship, we found that this ship belongs to container 2000 to container 

2999 bin range. From Table-1 of Goldsworthy et al., we assign it to the following capacity bin: 

Min Aux. Load(kW) Max Aux. Load(kW) Min DWT(Tonnes) Max DWT(Tonnes) 

600   700   27,616   39,504 

Now, applying linear interpolation to the above, we get 

𝐴𝑢𝑥𝐿𝑜𝑎𝑑 = 𝐷𝑊𝑇 ∗ (
𝑀𝑎𝑥𝑎𝑢𝑥 − 𝑀𝑖𝑛𝑎𝑢𝑥

𝑀𝑎𝑥𝐷𝑊𝑇 − 𝑀𝑖𝑛𝐷𝑊𝑇
) + (

𝑀𝑖𝑛𝑎𝑢𝑥 ∗ 𝑀𝑎𝑥𝐷𝑊𝑇 − 𝑀𝑖𝑛𝐷𝑊𝑇 ∗ 𝑀𝑎𝑥𝑎𝑢𝑥

𝑀𝑎𝑥𝐷𝑊𝑇 − 𝑀𝑖𝑛𝐷𝑊𝑇
) 

http://www.marinetraffic.com/
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𝐴𝑢𝑥𝐿𝑜𝑎𝑑 = 34,167 ∗ (
700 − 600

39,504 − 27,616
) + (

600 ∗ 39,504 − 27,616 ∗ 700

39,504 − 27,616
) 

𝑨𝒖𝒙 𝑳𝒐𝒂𝒅 ≈ 𝟔𝟓𝟓 𝒌𝑾 

Example 3: 

Known fields: 

Port-Cochin, Vessel Name-ARABIAN SEA, DWT-725, GRT-3,261 

Unknown fields: 

IMO Number, Vessel Type, Aux. Load 

Our python scraper does an automated Google search by stringing together all the known 

information about a vessel to generate a Google search string in the following format: 

query = name + " vessel " + "gross tonnage " + str(original_grt) + " marinetraffic" 

For the above example, this Google search query translates to  

ARABIAN SEA vessel gross tonnage 3,261 marinetraffic 

Our scraper parses through the HTML page and finds the ship’s IMO Number and Vessel Type. 

The IMO Number of the ship is 9448097 and its vessel type was found to be Passenger Ship. 

Before accepting the search result, the scraper does a check based on the observed GRT from the 

raw data and found GRT on marinetraffic.  

𝒊𝒇 𝒇𝒐𝒖𝒏𝒅𝒈𝒓𝒕 𝒂𝒏𝒅 (𝒂𝒃𝒔(𝐦𝐢𝐧𝒊𝒎𝒖𝒎𝒈𝒓𝒕 − 𝒐𝒓𝒈𝒊𝒏𝒊𝒂𝒍𝒈𝒓𝒕) < 𝟒𝟎𝟎): 

𝒎𝒂𝒕𝒄𝒉 = TRUE 

The GRT in the raw data was 3,261 and that on www.marinetraffic.com was 3,261, so, the 

abs(minimumgrt – originalgrt) is 0 and the search result is recorded in a .csv file with the details 

from marinetraffic. For passenger ships, we used passenger capacity (PAX) compared to DWT 

as a measure of loading of the ship. The passenger capacity of the ship is 250 people. From 

Table-1 of Goldsworthy et al., we assign it to the following capacity bin: 

http://www.marinetraffic.com/
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Min Aux. Load(kW) Max Aux. Load(kW) Min Passengers Max Passengers 

0   3,000   0   1,500 

Now, applying linear interpolation to the above, we get 

𝐴𝑢𝑥𝐿𝑜𝑎𝑑 = 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 ∗ (
𝑀𝑎𝑥𝑎𝑢𝑥 − 𝑀𝑖𝑛𝑎𝑢𝑥

𝑀𝑎𝑥𝑝𝑎𝑥 − 𝑀𝑖𝑛𝑝𝑎𝑥
) + (

𝑀𝑖𝑛𝑎𝑢𝑥 ∗ 𝑀𝑎𝑥𝑝𝑎𝑥 − 𝑀𝑖𝑛𝑝𝑎𝑥 ∗ 𝑀𝑎𝑥𝑎𝑢𝑥

𝑀𝑎𝑥𝑝𝑎𝑥 − 𝑀𝑖𝑛𝑝𝑎𝑥
) 

𝐴𝑢𝑥𝐿𝑜𝑎𝑑 = 250 ∗ (
3,000 − 0

1,500 − 0
) + (

0 ∗ 1,500 − 0 ∗ 3000

1,500 − 0
) 

𝑨𝒖𝒙 𝑳𝒐𝒂𝒅 ≈ 𝟓𝟎𝟎 𝒌𝑾 

Similarly, auxiliary loads for other vessels were estimated. Hopefully, this should further clarify 

as to how we estimated auxiliary engine loads for vessels in our dataset. 

Comparison of Vessel Ages and Sizes at Indian and Californian Ports: Since some of the 

auxiliary engine power values came from Californian vessels at POLA and POLB, we compared 

ages and sizes of ships calling at Indian and Californian ports. Data about vessels visiting 

Californian ports (POLA and POLB) were obtained from the lead author of an earlier study of 

shore power at these ports.47 In an initial comparison (Figure 5.3 (a)-(b)), we observed that the 

vessels calling at Indian major ports were of roughly the same vintage as those calling at POLA 

and POLB but were typically somewhat smaller than their counterparts in California. 

  

(a) (b) 
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Figure 5.3 (a) distribution of vessel sizes. The vast majority of vessels calling at the Indian ports are smaller 

than the ones calling at California. (b) Distribution of ages of vessels calling at Californian and Indian major 

ports. The data suggests that the that the vessels calling at the ports have similar ages. 

 

Comparison of vessel call duration at Indian and Californian Ports: We also compared the time 

spent at berth by vessels calling at Indian and Californian ports. Figure 5.4 shows cumulative 

distribution functions (CDF) for time spent at berth by vessels calling at Indian major ports 

against those located in California. We observe that the median port call duration for major ports 

(39 hours) is higher than that for Californian ports (9 hours). But the average port call duration 

for Californian ports (82 hours) is higher than that of major ports (50 hours). 

 
Figure 5.4 Frequency plot of port call duration of Indian major ports. We only consider vessels which stayed 

in the port greater than or equal to 5 hours and less than or equal to 228 hours. 
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5.4 India’s Grid Electricity Emission Factors 

Coal based power generation between 2012 and 2017: While the total thermal power capacity 

has increased by ~96% between 2010 and 2015 (see Table 1 of Sahu et al.),200 only 16% of the 

total installed capacity was based on super-critical technology and the remaining 84% utilized 

sub-critical technology in 2015.201 There were no ultra-super-critical technology based thermal 

power plants then. Moreover, an ultra-super-critical equipped thermal power plant generates only 

~14% less SO2 in comparison to a sub-critical power plant.202 Thus, emission regulations that 

mandate post combustion treatments have a much greater effect on emissions than the 

technology type of the coal power plant.202 In India, mandates for post-combustion treatment 

have been delayed. Hence, using emission factors based on coal power generation in 2012 

doesn’t affect our results very much because there aren’t any retrofits installed by the power 

plant operators until 2017 to curtail the thermal power generation emissions. 

Coal based power generation between 2017 and 2030: In 2015, the Ministry of Power 

introduced a set of new emission standards for coal-based power plants and pledged that all new 

coal capacity additions will be supercritical units as part of the 13th plan period (2017 

onwards).203 Thus, most of the new coal capacity after 2017 will be less polluting and the coal 

power plant operators are required to retrofit their facilities with emissions control technology in 

this decade. However, all power plants in 2017 were given a 5-year extension to retrofit their 

thermal units by 2022. Despite the seven years since the initial notification, a report from the 

Centre for Science and Environment (CSE) finds that ~70% of coal power plants will continue to 

be non-compliant with the emission standards by 2022.204 Still, in our results, we have accounted 

for the effect of cleaning up of the coal power generation sector between 2017 and 2030 by 

scaling the coal power plant emission factors in the states where the ports are located. We scale 
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NOx emission factor by 10, SO2 emission factor by 20, and PM2.5 emission factor by 250 when 

considering the emissions from coal power generation during 2017 and 2030. These scaling 

factors were derived from a report published by Center for Study of Science, Technology, and 

Policy in 2018.92 

In our analysis, we assume that a kilowatt-hour of electricity supplied to a ship produces the 

same emissions as the average kilowatt-hour of electricity generated in the state. Mathematically, 

the emission factor in a particular state can be expressed as: 

𝑬𝑭 =
𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒄𝒐𝒂𝒍 + 𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒏𝒂𝒕.𝒈𝒂𝒔 + 𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒓𝒆𝒏. + 𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒏𝒖𝒄𝒍.

𝑻𝒐𝒕𝒂𝒍 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏
 

𝑬𝑭 =
(𝑬𝑭𝒄𝒐𝒂𝒍 ∗ 𝑷𝒓𝒐𝒑𝒄𝒐𝒂𝒍 + 𝑬𝑭𝒏𝒂𝒕.𝒈𝒂𝒔 ∗ 𝑷𝒓𝒐𝒑𝒏𝒂𝒕.𝒈𝒂𝒔 + 𝑬𝑭𝒓𝒆𝒏. ∗ 𝑷𝒓𝒐𝒑𝒓𝒆𝒏. + 𝑬𝑭𝒏𝒖𝒄𝒍. ∗ 𝑷𝒓𝒐𝒑𝒏𝒖𝒄𝒍.) ∗ 𝑻𝒐𝒕𝒂𝒍 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝑻𝒐𝒕𝒂𝒍 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏
 

Here, 

EF = Emission factor (in g/kWh) for pollutant PM2.5, SO2, NOx and CO2 in the state 

𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒄𝒐𝒂𝒍= Emissions from coal combustion during electricity generation 

𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒏𝒂𝒕.𝒈𝒂𝒔= Emissions from natural gas during electricity generation 

𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒓𝒆𝒏.= Emissions from renewables (solar, wind, hydro) during electricity generation 

𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔𝒏𝒖𝒄𝒍.= Emissions from nuclear during electricity generation 

𝑬𝑭𝒄𝒐𝒂𝒍= Emission factor of coal (in g/kWh) 

𝑬𝑭𝒏𝒂𝒕.𝒈𝒂𝒔= Emission factor of natural gas (in g/kWh) 

𝑬𝑭𝒓𝒆𝒏.= Emission factor of renewables (in g/kWh) 

𝑬𝑭𝒏𝒖𝒄𝒍.= Emission factor of nuclear (in g/kWh) 

𝑷𝒓𝒐𝒑𝒄𝒐𝒂𝒍= Proportion of coal in the electricity generation mix 

𝑷𝒓𝒐𝒑𝒏𝒂𝒕.𝒈𝒂𝒔= Proportion of natural gas in the electricity generation mix 

𝑷𝒓𝒐𝒑𝒓𝒆𝒏.= Proportion of renewables (solar, wind, hydro) in the electricity generation mix 
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𝑷𝒓𝒐𝒑𝒏𝒖𝒄𝒍.= Proportion of nuclear in the electricity generation mix 

𝑻𝒐𝒕𝒂𝒍 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏= Total electricity generation from all sources in the state 

Total generation cancels out throughout the equation. The first term in the numerator stays but 

the second term is eliminated because the proportion of natural gas is small (~4%); the third and 

fourth term is eliminated because the emissions index from renewables and nuclear is zero. 

Then the equation becomes 

𝑬𝑭 =
(𝑬𝑭𝒄𝒐𝒂𝒍 ∗ 𝑷𝒓𝒐𝒑𝒄𝒐𝒂𝒍 ∗ 𝑻𝒐𝒕𝒂𝒍 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏)

𝑻𝒐𝒕𝒂𝒍 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏
 

 
Figure 5.5 India’s power generation mix in 2017 by different fuel sources. The total electricity generation as 

of 03/31/2018 was ~1,300,000 GWh.205 

 

Figure 5.5 shows India’s electricity generation mix with coal being the leading source of fuel for 

electricity generation. Based on our assumptions, more electricity needs to be generated in power 

plants to meet the energy demand of the vessels as there is some energy loss in transmission and 
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distribution (T&D). We address the emissions intensity sensitivity by performing our analysis at 

the state level while bounding the minimum and maximum values of emissions’ intensities of 

grid electricity in respective states. Figure 5.6 and Table 5.17 provides state and regional 

emission factors for PM2.5, SO2, NOx and CO2 for states where the major ports are located. Also, 

the state of Goa doesn’t have its own generating units and purchases power from power stations 

(mostly thermal) from the regional grid.206 So, we use the average emission factors for the 

western region in the case of Goa. 

 
Figure 5.6 Regional emission factors for PM2.5, SO2, NOx and CO2 Indian States. Red color denotes the mean 

value of emission factor in each region. We use state data on generation from the Central Electricity 

Authority (CEA)82 and combine it with peer reviewed data on annual coal generation at the state level in 

India in 201281,207 to estimate these values. 

 

Table 5.17 State level emission factors from previous figure for PM2.5, SO2, NOx and CO2. All values are in 

g/kWh and reported up to two significant digits. Baseline emission factors are for the state’s electricity grid. 

The ranges in parenthesis signify minimum and maximum values of emission factors for the region (east, 

west, north, and south). SO2 emission factor for Tamil Nadu and Odisha are an order of magnitude higher 

than other states. 

State PM2.5 (g/kWh) SO2 (g/kWh) NOx (g/kWh) CO2 (g/kWh) 



 95 

Gujarat 0.12 (0.067-0.12) 7.0 (2.1-7.0) 1.3 (1.3-1.3) 560 (460-560) 

Maharashtra 0.067 (0.067-0.12) 2.1 (2.1-7.0) 1.3 (1.3-1.3) 460 (460-560) 

Andhra 

Pradesh 

0.057 (0.002-0.20) 1.9 (0.065-17) 1.0 (0.038-1.6) 310 (13-510) 

Tamil Nadu 0.20 (0.002-0.20) 17 (0.065-17) 1.4 (0.038-1.6) 510 (13-510) 

West Bengal 0.24 (0.009-0.47) 6.8 (0.42-97) 3.7 (0.18-11) 1400 (64-3800) 

Odisha 0.38 (0.009-0.47) 13 (0.42-97) 7.4 (0.18-11) 2400 (64-3800) 

Kerala 0.002 (0.002-0.20) 0.065 (0.065-

17) 

0.038 (0.038-

1.6) 

13 (13-510) 

Karnataka 0.083 (0.002-0.20) 2.6 (0.065-17) 1.6 (0.038-1.6) 510 (13-510) 

Goa 0.095 (0.067-0.12) 4.5 (2.1-7.0) 1.3 (1.3-1.3) 510 (460-560) 

 

Table 5.18 shows electricity grid emission factors used in the analysis for 2017 and 2030. 

Table 5.18 Electricity grid emission factors used for coal fired power plants for the year 2017 and 2030. For 

2030, we assume that retrofits to curb PM2.5, SO2, and NOx would be introduced at coal power plants as per 

GoI’s directives and thus we scale the emission factors accordingly. We scale NOx emission factor by 10, SO2 

emission factor by 20, and PM2.5 emission factor by 250 when considering the emissions from coal power 

generation between 2017 and 2030.92 

Port State 2017 Grid Emission Factors (g/kWh) 2030 Grid Emission Factors (g/kWh) 

PM2.5 SO2 NOx CO2 PM2.5 SO2 NOx CO2 

Chennai Tamil Nadu 0.2 17 1.4 510 0.00078 0.85 0.14 510 

Cochin Kerala 0.002 0.065 0.038 13 0.000008 0.0033 0.0038 13 

Deendayal Gujarat 0.12 7 1.3 560 0.00049 0.35 0.13 560 

JNPT Maharashtra 0.067 2.1 1.3 460 0.00027 0.1 0.13 460 

Kamarajar Tamil Nadu 0.2 17 1.4 510 0.00078 0.85 0.14 510 

Kolkata West Bengal 0.24 6.8 3.7 1400 0.00098 0.34 0.37 1400 

Haldia West Bengal 0.24 6.8 3.7 1400 0.00098 0.34 0.37 1400 

Mormugao Goa 0.095 4.5 1.3 510 0.00038 0.23 0.13 510 

Mumbai Maharashtra 0.067 2.1 1.3 460 0.00027 0.1 0.13 460 

New 

Mangalore 

Karnataka 0.083 2.6 1.6 510 0.00033 0.13 0.16 510 

Paradip Odisha 0.38 13 7.4 2400 0.0015 0.64 0.74 2400 

VOC Tamil Nadu 0.2 17 1.4 510 0.00078 0.85 0.14 510 

Vizag Andhra 

Pradesh 

0.057 1.9 1 310 0.00023 0.097 0.1 310 

All Ports 
 

0.15 7.5 2.1 730 0.0006 0.38 0.21 730 
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5.5 Energy Cost and Savings 

The exchange rate of US dollar (USD) to Indian Rupee (INR) used was Rs. 68.96 (November 30, 

2018).86 Table 5.19 provides electricity tariffs in states where the major ports are located. 

Table 5.19 Electricity tariffs for supplying shore power electricity to major ports. 

Port State Electricity tariff 

(Rs/kWh) 

Electricity tariff ($/kWh) 

Chennai Tamil Nadu 6.35208 0.09 

Cochin Kerala 5.80209 0.08 

Deendayal Gujarat 6.60210 0.10 

JNPT Maharashtra 6.00211 0.09 

Kamarajar Tamil Nadu 6.35208 0.09 

Kolkata West Bengal 7.13212 0.10 

Haldia West Bengal 7.13212 0.10 

Mormugao Goa 9.20213 0.09 

Mumbai Maharashtra 6.00211 0.09 

New Mangalore Karnataka 7.15214 0.10 

Paradip Odisha 5.30215 0.08 

VOC Tamil Nadu 6.35208 0.09 

Visakhapatnam Andhra 

Pradesh 

4.75216 0.07 

 

5.6 Global Emissions Inventory Comparison 

The Emission Database for Global Atmospheric Research (EDGAR) 2015 emissions inventory87 

comprises of emissions from various categories. We grouped these sources in broad sectors, 

namely, (1) Energy, (2) Ships, (3) Air, (4) Industry, (5) Transport, and (6) Residential. Table 5.20 

provides the classification of sectors that we used from EDGAR 2015 emissions inventory to 

estimate city emissions where the major ports are located. 

Table 5.20 Sector classification that we used in estimating EDGAR city emissions from various sources in 

port cities. 

Sector Sub Sector 

Energy Power Industry (ENE) 

Ships Shipping (TNR_Ship) 

Air Aviation climbing&descent (TNR_Aviation_CDS) 
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Aviation cruise (TNR_Aviation_CRS) 

Aviation landing&takeoff (TNR_Aviation_LTO) 

Industry Combustion for manufacturing (IND) 

Fuel exploitation (PRO) 

Fossil Fuel Fires (FFF) 

Chemical processes (CHE) 

Food and Paper (FOO_PAP) 

Non-ferrous metals production (NFE) 

Non-metallic minerals production (NMM) 

Oil refineries and Transformation industry 

(REF_TRF) 

Iron and steel production (IRO) 

Solvents and products use (PRU_SOL) 

Transport Railways, pipelines, off-road transport (TNR_Other) 

Road transportation no resuspension (TRO_noRES) 

Road transportation resuspension (TRO_RES) 

Residential Energy for buildings (RCO) 

Solid waste incineration (SWD_INC) 

Solid waste landfills (SWD_LDF) 

 

Table 5.21 provides the latitude and longitudes of the areas where 0.1 deg. × 0.1 deg. cells were 

selected to estimate relative contribution of berthed ships to total city emissions. 

Table 5.21 Port latitude and longitude considered for EDGAR city level emissions estimation. The latitude 

and longitude ranges show the city rectangle area which was considered for calculating contributions of 

major ports’ emissions in the city. The area ranges included major sources of pollution in the city such as 

airports, oil refineries and industrial areas. 

Major Port Port Latitude Port Longitude Latitude 

Range 

Longitude 

Range 

Chennai 13.08  80.29 12.80-13.30 80.00-80.40 

Cochin 9.95  76.26 9.90-10.20 76.20-76.40 

Deendayal 23.01  70.21 22.90-23.20 70.00-70.30 

JNPT 18.94  72.95 18.90-19.10 72.70-73.00 

Kamarajar 13.25  80.33 12.90-13.30 79.70-80.40 

Kolkata 22.54  88.31 22.00-22.70 88.00-88.50 

Haldia 22.04  88.08 22.00-22.70 88.00-88.50 

Mormugao 15.40  73.80 15.30-15.40 73.70-73.90 

Mumbai 18.90  72.81 18.90-19.10 72.70-73.00 

New Mangalore 12.92  74.82 12.80-13.00 74.70-74.90 

Paradip 20.26  86.67 20.20-20.30 86.40-86.70 



 98 

VOC 8.75  78.17 8.70-8.80 78.00-78.30 

Vizag 17.68 83.29 17.70-17.80 83.10-83.30 

 

Power sector growth rate assumptions: We relied on a Center for Study of Science, Technology 

and Policy (CSTEP) report that uses state level generation emission factors and annual coal 

consumption at the plant level to model coal-based emissions from 2015-2030. The SOx, NOx 

and PM10 emissions from coal power generation grew from 6,449, 2,996, 605 kilotons (kT) in 

2015 to 13,494, 6050, and 790 kT in 2030 respectively.92 We assume that the increase in 

emissions in representative of growth in the power generation sector and thereby assume a 5% 

yearly growth rate from 2017-2030. Additionally, we validated our estimation via other growth 

projections sources such as the Brookings India’s projection for grid electricity requirement, 

which predicted similar growth rates for the power sector (4.6%-5.6% per year).93 

5.7 Health Effects of Pollution Reduction 

To determine annually avoided premature deaths in port cities, we estimate percentage reduction 

in ports at berth pollution while taking into account the population of port cities. The population 

of port cities are provided in Table 5.22. Table 2 of Lee et al.94 provides absolute change in 

global premature mortality avoided across each of the 21 global burden of disease (GBD) regions 

for black carbon (BC), SO2 and NOx to a 10% reduction in precursor emissions. We use BC 

estimates instead of PM2.5 for estimating health effects due to PM2.5 changes. From Table 2, the 

premature deaths avoided in South Asia were SO2- 5,600 (4,700-6,500); NOx- 1,600 (1,300-

1,900); and black carbon (BC)- 330 (280-380). The range in parenthesis shows a 95% confidence 

interval (CI). 
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Table 5.22 2019 population of cities located near major ports in India. 

Port Cities Population (2019) 

Chennai (located near Chennai and Kamarajar port) 11M161 

Kochi 3M217 

Gandhidham (located near Deendayal port) 370K218 

Kolkata 15M164 

Haldia 170K219 

Mormugao 180K167 

Mumbai (located near Mumbai and JNPT port) 20M220 

Mangalore (located near New Mangalore port) 620K166 

Paradip 69K221 

Tuticorin (located near VOC port) 570K168 

Vizag 4.3M169 

 

5.8 Cost of Grid Extension, Shore Infrastructure and Vessel Retrofitting 

We estimate the maximum hourly load demand at berth and establish that a 33-kV line is 

sufficient to meet the hourly peak loads of auxiliary engines at all ports as shown in Table 5.23. 

Table 5.23 Port-wise hourly peak berthing load, hourly excess solar generation, transformer ratings, number 

of circuit breakers and cables needed. 

Port Hourly Max Berth 

Load (MW) 

Hourly Max Solar 

Gen. (MW) 

Chennai 13 24 

Cochin 34 24 

Deendayal 16 31 

Haldia 13 25 

JNPT 10 22 

Kamarajar 4 6 

Kolkata 11 15 

Mormugao 46 19 

Mumbai 29 30 

New Mangalore 9 16 

Paradip 11 23 

VOC 7 13 

Vizag 14 25 

Table 5.24 shows the distance between the port and the nearest available substation. 
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Table 5.24 Distance from the port to the nearest distribution substation. 

Port Port Lat. Port 

Long. 

Sub 

Station 

Lat. 

Sub Station 

Long. 

Distance  

(in miles) 

Chennai 13.0815 80.2921 13.0963912 80.3066884 1 

Cochin 9.9546 76.2678 9.87524876 76.3016032 6 

Deendayal 23.01666 70.2166 23.1543316 70.1062696 12 

JNPT 18.9499 72.9512 18.9060914 72.9821779 4 

Kamarajar 13.2593 80.3374 13.2018393 80.3176312 4 

Kolkata 22.5461 88.3149 22.5646042 88.3149442 1 

Haldia 22.0447 88.0888 22.0262806 88.1401794 4 

Mormugao 15.4088 73.8011 15.4570222 73.8318855 4 

Mumbai 18.9 72.8166 18.9308377 72.8617593 4 

New Mangalore 12.9281 74.8222 12.8144974 74.8967631 9 

Paradip 20.2654 86.6762 20.2817459 86.6341554 3 

VOC 8.7563 78.1791 8.75320468 78.1258279 4 

Vizag 17.6868 83.2903 17.6719108 83.3005694 1 

 

5.9 Extended Results and Discussion 

5.9.1 Major ports’ emissions as a proportion of total city emissions 

Table 5.25 and Table 5.26 share pollutant burden which ports contribute to local air quality in the 

nearby cities for RO and MGO fuel type. The compounded annual growth rate (CAGR) is 

assumed to be ~3% each year which was the decadal growth rate in Indian shipping from 2007-

2017.89,90 

Table 5.25 Major ports’ contribution to city emissions in 2017 and 2030 when berthed ships burn RO. 

Growth rate in shipping is assumed to be 3% annually from 2017-2030.89,90 

Port 

  

At berth emissions as % of 

total city emissions 2017 

At berth emissions as % of 

total city emissions 2030 

%PM2.5 %SO2 %NOx %PM2.5 %SO2 %NOx 

Chennai 0.19 0.49 0.81 0.21 0.16 0.65 

Cochin 1.0 5.3 4.6 0.56 0.63 2.1 

Deendayal 4.3 16 16 2.9 4.3 8.1 

JNPT 0.43 1.4 1.6 0.21 0.15 0.77 

Kamarajar 0.05 0.14 0.22 0.06 0.05 0.17 

Kolkata 0.09 0.31 0.51 0.06 0.06 0.35 
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Haldia 0.16 0.57 0.94 0.11 0.10 0.65 

Mormugao 3.7 32 23 1.8 3.5 9.1 

Mumbai 0.54 1.8 2.0 0.27 0.20 0.98 

New Mangalore 1.4 8.0 6.6 0.80 1.2 3.1 

Paradip 4.7 1.5 33 2.4 0.11 15 

VOC 0.30 0.48 1.1 1.2 0.13 2.3 

Vizag 0.09 0.23 0.54 0.06 0.02 0.40 

 

Table 5.26 Major ports’ contribution to city emissions in 2017 and 2030 when berthed ships burn MGO. 

Growth rate in shipping is assumed to be 3% annually from 2017-2030.89,90 

Port 

  

At berth emissions as % of 

total city emissions 2017 

At berth emissions as % of 

total city emissions 2030 

%PM2.5 %SO2 %NOx %PM2.5 %SO2 %NOx 

Chennai 0.04 0.09 0.77 0.05 0.03 0.62 

Cochin 0.22 0.98 4.4 0.12 0.11 2.0 

Deendayal 0.97 3.2 15 0.65 0.78 7.7 

JNPT 0.09 0.26 1.5 0.05 0.03 0.73 

Kamarajar 0.01 0.03 0.21 0.01 0.01 0.16 

Kolkata 0.02 0.06 0.48 0.01 0.01 0.33 

Haldia 0.04 0.1 0.89 0.03 0.02 0.62 

Mormugao 0.83 7.8 22 0.41 0.64 8.6 

Mumbai 0.12 0.33 1.9 0.06 0.04 0.93 

New Mangalore 0.31 1.5 6.2 0.18 0.22 2.9 

Paradip 1.1 0.26 31 0.54 0.02 15 

VOC 0.07 0.09 1.0 0.26 0.02 2.2 

Vizag 0.02 0.04 0.51 0.01 0.0 0.37 

 

Table 5.27 and Table 5.28 share pollutant burden of shipping in port cities for RO and MGO 

when the CAGR is assumed to be 18%.57,58 This is the projected growth rate for Indian shipping 

by the GoI for the period 2017-2025. 

Table 5.27 Major ports’ contribution to city emissions in 2017 and 2030 when berthed ships burn RO. 

Growth rate in shipping is assumed to be 18% annually from 2017-2030.57,58 

Port 

  

At berth emissions as % of 

total city emissions 2017 

At berth emissions as % of 

total city emissions 2030 

%PM2.5 %SO2 %NOx %PM2.5 %SO2 %NOx 

Chennai 0.19 0.5 0.8 1.7 1.3 5.4 
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Cochin 1.0 5.3 4.6 4.3 4.7 16 

Deendayal 4.3 16 16 20 26 44 

JNPT 0.43 1.4 1.6 1.7 1.2 6.2 

Kamarajar 0.05 0.1 0.2 0.44 0.36 1.4 

Kolkata 0.09 0.3 0.5 0.48 0.43 2.9 

Haldia 0.16 0.6 0.9 0.89 0.79 5.2 

Mormugao 3.7 32 23 13 22 47 

Mumbai 0.54 1.8 2.0 2.1 1.5 7.8 

New Mangalore 1.4 8.0 6.6 6.1 8.9 21 

Paradip 4.7 1.5 33 16 0.86 61 

VOC 0.30 0.5 1.1 8.7 1.0 16 

Vizag 0.09 0.2 0.5 0.48 0.19 3.0 

 

Table 5.28 Major ports’ contribution to city emissions in 2017 and 2030 when berthed ships burn MGO. 

Growth rate in shipping is assumed to be 18% annually from 2017-2030.57,58 

Port 

  

At berth emissions as % of 

total city emissions 2017 

At berth emissions as % of 

total city emissions 2030 

%PM2.5 %SO2 %NOx %PM2.5 %SO2 %NOx 

Chennai 0.04 0.09 0.77 0.27 0.17 3.5 

Cochin 0.22 0.98 4.4 0.72 0.65 11 

Deendayal 0.97 3.2 15 3.7 4.4 33 

JNPT 0.09 0.26 1.5 0.27 0.16 4.1 

Kamarajar 0.01 0.03 0.21 0.07 0.05 0.93 

Kolkata 0.02 0.06 0.48 0.08 0.06 1.9 

Haldia 0.04 0.10 0.89 0.15 0.11 3.5 

Mormugao 0.83 7.8 22 2.4 3.6 36 

Mumbai 0.12 0.33 1.9 0.35 0.20 5.2 

New Mangalore 0.31 1.5 6.2 1.0 1.3 15 

Paradip 1.1 0.26 31 3.1 0.11 50 

VOC 0.07 0.09 1.0 1.5 0.14 11 

Vizag 0.02 0.04 0.51 0.08 0.03 2.1 

 

5.9.2 At Berth Emissions from burning RO and MGO 

Table 5.29 provides PM2.5, SO2, NOx and CO2 emissions by burning RO and MGO. Additionally, 

the table provides load demand, energy available for meeting the requirement, annual electricity 
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cost, annual fuel cost and net savings at the port level by switching from RO and MGO to shore 

based electricity. 
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Table 5.29 Annual emissions from berthed ships for PM2.5, SO2, NOx, CO2, port’s electricity load, fuel cost and savings. 

Port Price Demand Supply Elec 

Cost 

Residual Oil (RO; 2.7% S) Marine Gas Oil (MGO; 0.5% S) 

Fuel 

cost 

Savings PM2.5 SO2 NOx CO2 Fuel 

cost 

Savings PM2.5 SO2 NOx CO2 

$/kWh GWh GWh M $ M $ M $ MT MT MT 1000 MT M $ M $ MT MT MT 1000 MT 

Chennai 0.09  55  61  4.9  5.6  0.7  72  650  800  39  8.7  3.8  16  120  760  38  

Cochin 0.08  55  61  4.4  5.7  1.3  73  660  810  40  8.8  4.4  16  120  760  38  

Deendayal 0.10  77  86  7.7  8.0  0.3  100  930  1.1K 56  12.0  4.6  22  160  1.1K  54  

JNPT 0.09  57  63  5.1  5.9  0.8  75  680  830  41  9.1  4.0  16  120  790  39  

Kamarajar 0.09  16  17  1.4  1.6  0.2  21  190  230  11  2.5  1.1  5  33  220  11  

Kolkata 0.10  33  36  3.3  3.4  0.1  43  390  480  24  5.2  2.0  10  69  450  23  

Haldia 0.10  61  67  6.1  6.3  0.2  80  730  890  44  9.7  3.6  18  130  840  42  

Mormugao 0.09  42  46  3.8  4.3  0.6  55  500  610  30  6.7  2.9  12  88  580  29  

Mumbai 0.09  72  80  6.5  7.5  1.0  95  870  1.1K  52  12  5.1  21  150  1K  50  

New Mangalore 0.10  37  41  3.7  3.8  0.1  49  450  550  27  5.9  2.2  11  79  520  26  

Paradip 0.08  53  59  4.2  5.5  1.2  70  630  780  38  8.4  4.2  15  110  730  36  

VOC 0.09  31  34  2.8  3.2  0.4  41  370  450  22  4.9  2.2  9  65  430  21  

Vizag 0.07  58  64  4.0  6.0  1.9  76  690  850  42  9.2  5.2  17  120  800  40  

All Major Ports 0.09  650  720  58  67  8.7  850  7.7K  9.5K  470  100  45  190  1.4K  9K  450  
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Table 5.30 provides PM2.5, SO2, NOx and CO2 emissions from shore power to meet berthed 

vessels’ load requirement. 

Table 5.30 Annual emissions from shore power to meet berthing load requirement at ports. The 2030 scenario 

assumes that air pollution control technologies for PM2.5, SO2, and NOx have been installed on coal power 

plants. 

Port 2017 2030 (when the grid is cleaner) 

PM2.5 

(MT) 

SO2 

(MT) 

NOx 

(MT) 

CO2 

(MT) 

PM2.5 

(MT) 

SO2 

(MT) 

NOx 

(MT) 

CO2 

(MT) 

Chennai 12 1K 87 31K 0 52 9 31K 

Cochin 0 4 2 780 0 0 0 780 

Deendayal 10 600 110 48K 0 30 11 48K 

JNPT 4 130 82 29K 0 7 8 29K 

Kamarajar 3 290 25 8.8K 0 15 3 8.8K 

Kolkata 9 250 130 51K 0 12 13 51K 

Haldia 16 460 250 94K 0 23 25 94K 

Mormugao 4 210 59 24K 0 11 6 24K 

Mumbai 5 170 100 37K 0 8 10 37K 

New 

Mangalore 

3 110 67 21K 0 5 7 21K 

Paradip 22 750 430 140K 0 37 43 140K 

VOC 7 580 49 17K 0 29 5 17K 

Vizag 4 120 66 20K 0 6 7 20K 

All Major 

Ports 

   100  4.7K  1.5K  520K  0  240  150  520K  

 

5.9.3 Hourly Load Profile and Hourly Emissions Inventory 

Figure 5.7 shows hourly emissions for SO2 for each hour of the year across the port of Chennai 

and Cochin. The hourly emissions inventory for other ports were similar. There were some ports 

such as Chennai and Kamarajar, which shared vessel activity data for more than one year. For 

calculating hourly emissions inventory for ports where more than one-year of data are available, 

we took the mean value of emissions in 2017 and 2018 to be representative of the hourly 

emissions. Further, the hourly bins had vessels coming in and going out at edge points. For 

instance, a vessel calling in at 12:55 pm is considered in the 12:00-13:00 hours hourly bin. 
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However, it only spent 5 minutes in that window. In order to account for edge effects and avoid 

inflation in emission estimates, we balanced this by counting the vessel in the window on only 

one side (either arrival or departure) instead of counting it in both hourly windows of arrival and 

departure. 

 
Figure 5.7 Hourly SO2 emissions from berthed ships at Chennai and Kochi from 01/01/2017 00:00 hours to 

01/01/2018 00:00 hours. The emissions of PM2.5 and NOx approximately follow identical hourly profiles for 

other major ports. 

 

Figure 5.8(a) provides monthly energy requirement of berthed ships (in GWh). While the need 

for electricity remains more or less roughly constant in ports with some minor fluctuations, we 

observe some seasonality in electricity requirement in summer (April-May) and winter (October-

December) months for Mormugao, Cochin and Mumbai. The daily energy consumption pattern 

of berthed ships is shown in Figure 5.8(b). 
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(a) 

 
(b) 

Figure 5.8  (a) Monthly AE load requirement (in GWh) for all berthed ships at major ports from 01/01/2017 

00:00 hours to 01/01/2018 00:00 hours. (b) Daily AE load requirement (in GWh) for all berthed ships at 

major ports. 
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5.9.4 Change in emissions if vessels were to switch to shore power 

The case for switching from RO to shore power is shown in Figure 5.9. 

  

(a) (b) 

  

(c) (d) 

Figure 5.9 Change in total emissions (in tonnes) at major ports, if ships were to use shore power instead of 

burning RO for meeting their electricity requirement. 

 

If ships were to switch from RO to shore power, emissions from berthed ships would decline for 

PM2.5 by 88% (750 tonne reduction), for SO2 by 39% (3,000 tonne reduction), for NOx by 85% 

(8,000 tonne reduction), but increase for CO2 by 12% (55,000 tonne increase). Table 5.31 and 

Table 5.32 provide the percentage and absolute change in emissions if the vessels were to switch 

from burning RO and MGO to shore power at major ports. 
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Table 5.31 % change in emissions by switching from RO and MGO to shore power at major ports in 2017- 

2018. 

Pollutant or 

GHG 

RO (2.7% S) MGO (0.5% S) 

Min 

change 

Change Max 

change 

Min 

change 

Change Max 

change 

PM2.5 -93% -88% -81% -69% -46% -12% 

SO2 -78% -39% 190% 24% 240% 1,500% 

NOx -90% -85% -73% -89% -84% -71% 

CO2 -35% 12% 95% -32% 17% 100% 

 

Table 5.32 Total emissions change (in tonnes) by switching from RO and MGO to shore power at major ports 

in 2017- 2018. 

Pollutant or 

GHG 

RO (2.7% S) MGO (0.5% S) 

Min 

change 

Change Max 

change 

Min 

change 

Change Max 

change 

PM2.5 -790 -750 -690 -130 -86 -23 

SO2 -6K -3K 15K 330 3.3K 21K 

NOx -8.5K -8K -6.9K -8K -7.5K -6.4K 

CO2 -160K 55K 440K -140K 75K 460K 

 

Figure 5.10 shows ports for which SO2 emission factors were an order of magnitude higher 

compared to other major ports. 
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Figure 5.10 SO2 emission hotspots in India. Paradip, Chennai, Kamarajar and VOC are located near thermal 

power plants which use low grade coal for power generation. Hence, their emission factors are higher 

compared to other major ports. The base map has been adapted from the global SO2 hotspots tracker and is 

publicly available.222 

 

5.9.5 Annual Fuel Cost Savings and Lifetime Savings 

Table 5.33 and Table 5.34 provide the annual fuel cost savings by vessel category and port on an 

annual, per call and per vessel basis. Figure 5.11 shows distribution of annual and lifetime 

savings for the switch from RO and MGO to shore power. 

Table 5.33 Fuel cost savings and lifetime savings (in US $) by switching from RO and MGO to shore power at 

major ports. For both fuel types, the savings are highest for bulk carriers, tanker and general cargo ships. 

The useful life of the vessel is assumed to be 27 years which is the 96th percentile of vessel age in our dataset. 

Vessel Category RO (2.7% S) MGO (0.5% S) 

Annual 

Savings 

Savings 

Per Call 

Savings 

Per 

Vessel 

Lifetime 

Savings 

Annual 

Savings 

Savings 

Per 

Call 

Savings 

Per 

Vessel 

Lifetime 

Savings 
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(in US $) 

Auto Carrier 86K 250 480 780K 460K 1.3K 2.5K               4.1M  

Bulk 2.5M 430 980 24M 12M 2.0K 4.6K           110M  

Container 1.2M 250 2.1K 10M 6.6M 1.3K 11K             53M  

Crude Oil Tanker 780K 640 1.8K 5.7M 4.2M 3.4K 9.4K             31M  

General Cargo 1.3M 570 2.3K 11M 7.0M 3.1K 12K             59M  

Passenger 1M 2.1K 25K 8M 4.1M 8.6K 100K             29M  

RoRo 2.2K 95 180 23K 11K 490 940                120K  

Tanker 1.8M 270 1.4K 13M 11M 1.6K 8.2K             84M  

Total 8.7M   73M 45M   370M 

 

Table 5.34 Port-wise annual savings, average savings per call and median savings per call. 

Port name RO (2.5% S) MGO (0.5% S) 

Annual 

Savings 

Savings per 

Call 

Median 

Savings 

Annual 

Savings 

Savings 

per Call 

Median 

Savings 

(in US $) 

Chennai       730K              460              320       3.8M        2,400          1,700  

Cochin       1.3M           900           370     4.4M     3,100      1,300  

Deendayal    260K            97             79  4.6M    1,700      1,400  

Haldia    200K            89               80     3.6M     1,600  1,500  

JNPT    750K          310           270     4.0M     1,600     1,400  

Kamarajar     210K          260          250    1.1M     1,400      1,300  

Kolkata    110K            87            56    2.0M     1,600      1,000  

Mormugao    550K           580          330    2.9M    3,000      1,800  

Mumbai    960K           450          330     5.1M     2,400      1,700  

New Mangalore    120K            93            76    2.2M    1,700      1,400  

Paradip 1.2M          650          500     4.2M     2,200      1,700  

VOC  410K          310          240     2.2M    1,700      1,200  

Vizag 1.9M       1,000           790     5.2M     2,700      2,100  

All Major Ports 8.7M          400          210        45M    2,100       1,500  
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(a) (b) 

Figure 5.11 (a) Distribution of annual fuel cost savings for switching from RO and MGO to shore power 

across major ports. (b) Distribution of lifetime fuel cost savings for switching from RO and MGO to shore 

power across major ports. Median savings were higher for MGO compared to RO in both cases. 

 

5.9.6 Health Effects of Switching from RO and MGO to Shore Power 

We consider two scenarios. In the first case, we assume shipping growth rate to be 3% per year 

(2007-2017 Indian shipping growth)89,90 and in the second case, we assume shipping growth rate 

to be 18% per year (GoI projection).57,58 

5.9.6.1 Health Consequences Across Port Cities 

Table 5.35 and Table 5.36 provide estimates of avoided premature deaths by switching from RO 

and MGO to shore power in 2017. The growth in shipping in each of these scenarios is assumed 

to be 3% per year (2007-2017 Indian shipping growth).89,90 Table 5.37 and Table 5.38 show total 

annually avoided premature mortality per port in 2030 by switching from RO and MGO to shore 

power when the power generation and transportation sector become cleaner.  

To illustrate our method, let’s take the example of the change of PM2.5 pollution on premature 

mortality in Chennai due to switch from RO to shore power when growth in shipping is assumed 

to be ~3% each year.89,90 In 2017, PM2.5 from shipping contributed 0.19% to total city emissions 
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(compared to total EDGAR emissions) in Chennai and the switch from RO to shore power 

reduced PM2.5 emissions in the port by 84%. The total PM2.5 emissions by switching from RO to 

shore power in Chennai was reduced by 0.16% (0.19% multiplied by 84%). We used BC 

estimates for estimating health effects of PM2.5 changes. A 10% change in BC emissions in South 

Asia helped avoid 330 (280-380; 95% CI) premature deaths and the population of South Asia 

was assumed to be 1,447,648,000.90 After adjusting these numbers for the population of Chennai 

(~11M), this translates to 0.04 (0.034 to 0.046) avoided deaths due to PM2.5 reduction in the city 

(see Chennai Port PM2.5 results in Table 5.35). This approach was used to estimate health effects 

for different pollutant types across other major ports. 
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Table 5.35 Avoided premature mortality by switching from RO to shore power in 2017-2018. The growth in shipping is assumed to be 3% each year.89,90 

Also, we assume that no emissions control has been enforced on power generation and road transportation. All values are reported up to 2 significant 

digits and the parentheses show 95% confidence interval (CI). 

Port PM2.5 SO2 NOx Avoided Premature 

Mortality 

Chennai 0.04 (0.034 to 0.046) -1.2 (-0.99 to -1.4) 0.85 (0.72 to 0.99) -0.28 (-0.23 to -0.33) 

Cochin 0.068 (0.058 to 0.078) 6 (5.1 to 7) 1.5 (1.3 to 1.8) 7.6 (6.4 to 8.8) 

Deendayal 0.033 (0.028 to 0.037) 0.78 (0.65 to 0.91) 0.6 (0.51 to 0.7) 1.4 (1.2 to 1.6) 

JNPT 0.18 (0.16 to 0.21) 9.1 (7.6 to 11) 3.1 (2.6 to 3.6) 12 (10 to 14) 

Kamarajar 0.011 (0.0092 to 0.012) -0.33 (-0.28 to -0.39) 0.24 (0.2 to 0.27) -0.088 (-0.073 to -0.1) 

Kolkata 0.023 (0.02 to 0.026) 0.65 (0.55 to 0.76) 0.6 (0.5 to 0.69) 1.3 (1.1 to 1.5) 

Haldia 0.00049 (0.00042 to 0.00056) 0.014 (0.012 to 0.016) 0.013 (0.011 to 0.015) 0.027 (0.023 to 0.031) 

Mormugao 0.014 (0.012 to 0.016) 1.3 (1.1 to 1.5) 0.41 (0.34 to 0.47) 1.7 (1.4 to 2) 

Mumbai 0.24 (0.2 to 0.27) 12 (9.7 to 13) 4 (3.4 to 4.6) 16 (13 to 18) 

New Mangalore 0.019 (0.016 to 0.021) 1.5 (1.2 to 1.7) 0.4 (0.33 to 0.46) 1.9 (1.6 to 2.2) 

Paradip 0.005 (0.0042 to 0.0057) -0.007 (-0.0059 to -0.0082) 0.11 (0.093 to 0.13) 0.11 (0.091 to 0.13) 

VOC 0.0032 (0.0027 to 0.0037) -0.06 (-0.051 to -0.07) 0.062 (0.052 to 0.071) 0.0046 (0.004 to 0.0052) 

Vizag 0.0086 (0.0073 to 0.0098) 0.31 (0.26 to 0.36) 0.24 (0.2 to 0.28) 0.56 (0.47 to 0.64) 

All Ports 0.64 (0.55 to 0.74) 30 (25 to 34) 12 (10 to 14) 42 (36 to 49) 
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Table 5.36 Avoided premature mortality by switching from MGO to shore power in 2017-2018. The growth in shipping is assumed to be 3% each 

year.89,90 Also, we assume that no emissions control has been enforced on power generation and road transportation. All values are reported up to 2 

significant digits and the parentheses show 95% confidence interval (CI). 

Port PM2.5 SO2 NOx Avoided Premature 

Mortality 

Chennai 0.0026 (0.0022 to 0.003) -2.9 (-2.4 to -3.3) 0.8 (0.67 to 0.93) -2.1 (-1.7 to -2.4) 

Cochin 0.015 (0.013 to 0.017) 1.1 (0.91 to 1.3) 1.4 (1.2 to 1.7) 2.5 (2.1 to 2.9) 

Deendayal 0.0044 (0.0037 to 0.005) -1.2 (-1 to -1.4) 0.57 (0.48 to 0.66) -0.64 (-0.54 to -0.75) 

JNPT 0.032 (0.027 to 0.037) -0.17 (-0.14 to -0.2) 3 (2.5 to 3.4) 2.8 (2.4 to 3.3) 

Kamarajar 0.00071 (0.0006 to 0.00081) -0.81 (-0.68 to -0.95) 0.22 (0.19 to 0.26) -0.59 (-0.5 to -0.69) 

Kolkata 0.00041 (0.00035 to 0.00047) -0.81 (-0.68 to -0.94) 0.55 (0.46 to 0.64) -0.26 (-0.21 to -0.3) 

Haldia 0.0000089 (0.0000075 to 0.00001) -0.017 (-0.015 to -0.02) 0.012 (0.0099 to 0.014) 

-0.0055 (-0.0046 to -

0.0065) 

Mormugao 0.0022 (0.0018 to 0.0025) -0.76 (-0.63 to -0.88) 0.39 (0.32 to 0.45) -0.37 (-0.31 to -0.43) 

Mumbai 0.041 (0.035 to 0.047) -0.22 (-0.18 to -0.25) 3.7 (3.2 to 4.3) 3.6 (3 to 4.1) 

New Mangalore 0.003 (0.0026 to 0.0035) -0.13 (-0.11 to -0.15) 0.37 (0.31 to 0.43) 0.24 (0.21 to 0.28) 

Paradip -0.00073 (-0.00062 to -0.00084) -0.04 (-0.033 to -0.046) 0.098 (0.083 to 0.11) 0.058 (0.049 to 0.067) 

VOC 0.00021 (0.00018 to 0.00024) -0.15 (-0.12 to -0.17) 0.058 (0.049 to 0.067) -0.089 (-0.075 to -0.1) 

Vizag 0.0015 (0.0013 to 0.0018) -0.0012 (-0.001 to -0.0014) 0.22 (0.19 to 0.26) 0.22 (0.19 to 0.26) 

All Ports 0.1 (0.087 to 0.12) -6.1 (-5.1 to -7.1) 11 (9.6 to 13) 5.4 (4.6 to 6.3) 
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Table 5.37 Avoided premature mortality by switching from RO to shore power in 2030. The growth in shipping is assumed to be 3% each year.89,90 Also, 

this is under the assumption that power generation and road transportation have become cleaner. All values are reported up to 2 significant digits and 

the parentheses show 95% confidence interval (CI). 

Port PM2.5 SO2 NOx Avoided Premature 

Mortality 

Chennai 0.052 (0.044 to 0.06) 0.63 (0.53 to 0.73) 0.76 (0.64 to 0.88) 1.4 (1.2 to 1.7) 

Cochin 0.038 (0.032 to 0.043) 0.72 (0.6 to 0.83) 0.7 (0.59 to 0.82) 1.5 (1.2 to 1.7) 

Deendayal 0.025 (0.021 to 0.028) 0.6 (0.5 to 0.69) 0.33 (0.28 to 0.38) 0.95 (0.8 to 1.1) 

JNPT 0.098 (0.083 to 0.11) 1.2 (1 to 1.4) 1.7 (1.4 to 2) 3 (2.5 to 3.5) 

Kamarajar 0.013 (0.011 to 0.015) 0.17 (0.15 to 0.2) 0.2 (0.17 to 0.23) 0.39 (0.32 to 0.45) 

Kolkata 0.021 (0.018 to 0.024) 0.3 (0.25 to 0.35) 0.56 (0.47 to 0.65) 0.88 (0.74 to 1) 

Haldia 0.00044 (0.00038 to 0.00051) 0.0065 (0.0054 to 0.0075) 0.012 (0.01 to 0.014) 0.019 (0.016 to 0.022) 

Mormugao 0.0075 (0.0064 to 0.0087) 0.24 (0.2 to 0.28) 0.18 (0.15 to 0.21) 0.43 (0.36 to 0.49) 

Mumbai 0.12 (0.11 to 0.14) 1.5 (1.3 to 1.8) 2.2 (1.8 to 2.5) 3.8 (3.2 to 4.4) 

New Mangalore 0.011 (0.0097 to 0.013) 0.29 (0.25 to 0.34) 0.21 (0.18 to 0.24) 0.52 (0.43 to 0.6) 

Paradip 0.0037 (0.0032 to 0.0043) 0.0027 (0.0023 to 0.0032) 0.11 (0.093 to 0.13) 0.12 (0.098 to 0.14) 

VOC 0.015 (0.013 to 0.018) 0.026 (0.022 to 0.031) 0.14 (0.12 to 0.16) 0.18 (0.15 to 0.21) 

Vizag 0.006 (0.0051 to 0.0069) 0.04 (0.034 to 0.046) 0.19 (0.16 to 0.22) 0.23 (0.2 to 0.27) 

All Ports 0.42 (0.35 to 0.48) 5.7 (4.8 to 6.7) 7.3 (6.1 to 8.4) 13 (11 to 16) 
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Table 5.38 Avoided premature mortality by switching from MGO to shore power in 2030. The growth in shipping is assumed to be 3% each year.89,90 

Also, this is under the assumption that power generation and road transportation have become cleaner. All values are reported up to 2 significant digits 

and the parentheses show 95% confidence interval (CI). 

Port PM2.5 SO2 NOx Avoided Premature 

Mortality 

Chennai 0.011 (0.0097 to 0.013) 0.067 (0.056 to 0.078) 0.72 (0.61 to 0.83) 0.8 (0.67 to 0.93) 

Cochin 0.0084 (0.0071 to 0.0096) 0.13 (0.11 to 0.15) 0.67 (0.56 to 0.77) 0.8 (0.67 to 0.93) 

Deendayal 0.0055 (0.0047 to 0.0064) 0.092 (0.077 to 0.11) 0.31 (0.26 to 0.36) 0.41 (0.34 to 0.48) 

JNPT 0.021 (0.018 to 0.025) 0.2 (0.17 to 0.23) 1.6 (1.4 to 1.9) 1.8 (1.5 to 2.1) 

Kamarajar 0.0029 (0.0025 to 0.0034) 0.019 (0.016 to 0.022) 0.19 (0.16 to 0.22) 0.21 (0.17 to 0.24) 

Kolkata 0.0045 (0.0038 to 0.0052) 0.046 (0.038 to 0.053) 0.53 (0.44 to 0.61) 0.58 (0.49 to 0.67) 

Haldia 0.000097 (0.000082 to 0.00011) 0.00097 (0.00082 to 0.0011) 0.011 (0.0095 to 0.013) 0.012 (0.01 to 0.014) 

Mormugao 0.0017 (0.0014 to 0.0019) 0.039 (0.033 to 0.046) 0.17 (0.14 to 0.2) 0.21 (0.18 to 0.24) 

Mumbai 0.027 (0.023 to 0.031) 0.26 (0.22 to 0.3) 2.1 (1.7 to 2.4) 2.3 (2 to 2.7) 

New Mangalore 0.0025 (0.0021 to 0.0029) 0.05 (0.042 to 0.058) 0.2 (0.17 to 0.23) 0.25 (0.21 to 0.29) 

Paradip 0.00083 (0.00071 to 0.00096) 0.00034 (0.00029 to 0.0004) 0.1 (0.088 to 0.12) 0.11 (0.089 to 0.12) 

VOC 0.0034 (0.0029 to 0.0039) 0.0028 (0.0024 to 0.0033) 0.13 (0.11 to 0.16) 0.14 (0.12 to 0.16) 

Vizag 0.0013 (0.0011 to 0.0015) 0.0068 (0.0057 to 0.0079) 0.18 (0.15 to 0.2) 0.18 (0.16 to 0.21) 

All Ports 0.091 (0.078 to 0.11) 0.91 (0.76 to 1.1) 6.9 (5.8 to 8) 7.9 (6.6 to 9.1) 
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Table 5.39 and Table 5.40 provide estimates of avoided premature deaths by switching from RO 

and MGO to shore power in 2030. The growth in shipping is assumed to be 18% per year (GoI 

projection).57,58
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Table 5.39 Avoided premature mortality by switching from RO to shore power in 2030. The growth in shipping is assumed to be 18% each year.57,58 

Also, this is under the assumption that power generation and road transportation have become cleaner. All values are reported up to 2 significant digits 

and the parentheses show 95% confidence interval (CI). 

Port PM2.5 SO2 NOx Avoided Premature 

Mortality 

Chennai 0.41 (0.35 to 0.47) 4.8 (4 to 5.6) 6.3 (5.3 to 7.3) 12 (9.7 to 13) 

Cochin 0.29 (0.25 to 0.33) 5.4 (4.5 to 6.3) 5.3 (4.4 to 6.1) 11 (9.2 to 6.1) 

Deendayal 0.17 (0.14 to 0.19) 3.6 (3 to 4.2) 1.8 (1.5 to 2.1) 5.6 (4.7 to 2.1) 

JNPT 0.77 (0.65 to 0.88) 9.2 (7.7 to 11) 14 (12 to 16) 24 (20 to 16) 

Kamarajar 0.11 (0.091 to 0.12) 1.4 (1.1 to 1.6) 1.7 (1.4 to 2) 3.2 (2.7 to 2) 

Kolkata 0.16 (0.14 to 0.19) 2.4 (2 to 2.7) 4.6 (3.8 to 5.3) 7.1 (6 to 5.3) 

Haldia 0.0035 (0.0029 to 0.004) 0.05 (0.042 to 0.058) 0.096 (0.08 to 0.11) 0.15 (0.13 to 0.11) 

Mormugao 0.053 (0.045 to 0.061) 1.5 (1.3 to 1.8) 0.92 (0.78 to 1.1) 2.5 (2.1 to 1.1) 

Mumbai 0.97 (0.83 to 1.1) 12 (9.8 to 14) 17 (14 to 20) 30 (25 to 20) 

New Mangalore 0.086 (0.073 to 0.099) 2.1 (1.8 to 2.5) 1.5 (1.2 to 1.7) 3.7 (3.1 to 1.7) 

Paradip 0.025 (0.022 to 0.029) 0.021 (0.018 to 0.025) 0.44 (0.37 to 0.51) 0.48 (0.41 to 0.51) 

VOC 0.11 (0.096 to 0.13) 0.2 (0.17 to 0.24) 1 (0.84 to 1.2) 1.3 (1.1 to 1.2) 

Vizag 0.047 (0.04 to 0.054) 0.31 (0.26 to 0.36) 1.4 (1.2 to 1.7) 1.8 (1.5 to 1.7) 

All Ports 3.2 (2.7 to 3.7) 43 (36 to 50) 56 (47 to 65) 100 (86 to 120) 
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Table 5.40 Avoided premature mortality by switching from MGO to shore power in 2030. The growth in shipping is assumed to be 18% each year.57,58 

Also, this is under the assumption that power generation and road transportation have become cleaner. All values are reported up to 2 significant digits 

and the parentheses show 95% confidence interval (CI). 

Port PM2.5 SO2 NOx Avoided Premature 

Mortality 

Chennai 0.067 (0.057 to 0.077) 0.39 (0.33 to 0.45) 4.1 (3.4 to 4.7) 4.6 (3.8 to 5.3) 

Cochin 0.049 (0.041 to 0.056) 0.74 (0.62 to 0.86) 3.5 (3 to 4.1) 4.3 (3.6 to 4.1) 

Deendayal 0.031 (0.027 to 0.036) 0.52 (0.44 to 0.6) 1.3 (1.1 to 1.5) 1.9 (1.6 to 1.5) 

JNPT 0.13 (0.11 to 0.14) 1.2 (0.99 to 1.4) 9.1 (7.7 to 11) 10 (8.8 to 11) 

Kamarajar 0.017 (0.015 to 0.02) 0.11 (0.092 to 0.13) 1.1 (0.91 to 1.3) 1.2 (1 to 1.3) 

Kolkata 0.026 (0.022 to 0.03) 0.27 (0.22 to 0.31) 3 (2.6 to 3.5) 3.3 (2.8 to 3.5) 

Haldia 0.00056 (0.00048 to 0.00065) 0.0057 (0.0048 to 0.0066) 0.064 (0.054 to 0.074) 0.07 (0.059 to 0.074) 

Mormugao 0.0096 (0.0082 to 0.011) 0.22 (0.19 to 0.26) 0.7 (0.59 to 0.81) 0.93 (0.79 to 0.81) 

Mumbai 0.16 (0.14 to 0.18) 1.5 (1.3 to 1.7) 12 (9.7 to 13) 13 (11 to 13) 

New Mangalore 0.015 (0.012 to 0.017) 0.29 (0.24 to 0.33) 1 (0.86 to 1.2) 1.3 (1.1 to 1.2) 

Paradip 0.0048 (0.0041 to 0.0055) 0.002 (0.0017 to 0.0023) 0.36 (0.3 to 0.42) 0.37 (0.31 to 0.42) 

VOC 0.02 (0.017 to 0.022) 0.017 (0.014 to 0.019) 0.71 (0.6 to 0.82) 0.75 (0.63 to 0.82) 

Vizag 0.0077 (0.0066 to 0.0089) 0.04 (0.033 to 0.046) 1 (0.85 to 1.2) 1.1 (0.89 to 1.2) 

All Ports 0.53 (0.45 to 0.61) 5.3 (4.4 to 6.1) 38 (32 to 44) 43 (37 to 50) 



 121 

Figure 5.12 shows total annually avoided premature mortality in 2030 by switching from RO and 

MGO to shore power when shipping grows at 18% per year 57,58 and the power generation and 

transportation sector become cleaner. 

  

(a) (b) 

Figure 5.12 (a-b) Avoided premature mortality in 2030 by switching from RO (left) and MGO (right) to shore 

power. The growth in shipping is assumed to be 18% each year.57,58 Also, this is under the assumption that 

power generation and road transportation become cleaner. 

 

Figure 5.13 provides change in premature mortality estimates with percentage change in 

electricity grid desulphurization. 
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Figure 5.13 Change in premature mortality with % change in grid desulphurization for 2020. Positive values 

indicate premature mortality avoided and negative values indicate premature mortality across port cities. We 

assume that ships use MGO in 2020 and the shipping growth is assumed to be 3% each year from 2017-

2020.89,90 We find that the switch over occurs roughly around ~70% of grid desulphurization. 

 

5.9.6.2 Shifting Pollution to Lesser Populated Areas 

Cochin Port 

Figure 5.14 provides a qualitative understanding of the situation for the port of Kochi, which is in 

the city center and part of a metropolitan area with a population density of ~4,100 people per 

km2. 
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Figure 5.14 Map showing the location of the port and city of Kochi, as well as the population densities of the 

adjoining areas. The location of the powerplants was obtained from Carbon Brief’s coal plant tracker,223 and 

the population densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 The 

reader can refer to the wind rose for Kochi here.225 

 

Chennai Port and Kamarajar Port 

Figure 5.15 shows Chennai city center and part of a metropolitan area with a population density 

of ~25,000 people per km2. We also show the location of Chennai and Kamarajar ports that are 

located in the state of Tamil Nadu (southern India). The wind blows inland for much of the year 

in Chennai, meaning that pollution from the port is likely blowing over the densely populated 

city. The nearest coal-fired power plants are Vallur Thermal Power Plant (capacity: 1,500 MW) 

and North Chennai Thermal Power Station (capacity: 1,830 MW). They are located ~16 km 

away (over the crow distance) in a region with a considerably lower population density. The 

wind blowing over the power plant blows from the north-north east towards the city about a 

quarter of the time. Thus, we observe an air quality benefit in shifting pollution away from a 

higher population density area to a lower population density area. 



 124 

 
Figure 5.15 Map showing the location of ports and the city of Chennai, as well as the population densities of 

the adjoining areas. The location of the powerplants was obtained from Carbon Brief’s coal plant tracker,223 

and the population densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 

The reader can refer to the wind rose for Chennai here.226 

 

Deendayal Port 

Figure 5.16 shows population density of Gandhidham which is ~870 persons per km2. The wind 

blows predominantly from northwest throughout the year. The nearest thermal power station is 

Mundra Thermal Power Station (capacity: 4,620 MW) and is located ~68 km away (over the 

crow distance) in a region of low population density (200 persons per km2). Thus, there is some 

air quality benefit in switching from burning diesel to grid-based electricity at Deendayal Port. 
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Figure 5.16 Map showing the location of Deendayal Port and the city of Gandhidham, as well as the 

population densities of the adjoining areas. The location of the powerplant was obtained from Carbon Brief’s 

coal plant tracker,223 and the population densities were obtained from Socioeconomic Data and Applications 

Center (SEDAC).224 The reader can refer to the wind rose for Kandla here.227 

 

Mumbai Port and JNPT Port 

Figure 5.17 shows the locations of the ports and parts of Mumbai (~33,000 persons per km2) and 

Navi Mumbai (~2,000 persons per km2). The wind blows inland from the sea ~81% of the time 

in a year. The nearest thermal power station is Trombay Thermal Plant (capacity: 750 MW) and 

is located ~8 km away (over the crow distance) from the ports. It has a population density of 

~30,000 persons per km2 around it. Thus, there is some air quality benefit in switching from 

burning diesel to grid-based electricity at the ports. 
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Figure 5.17 Map showing the location of Mumbai and JNPT Port and parts of Mumbai, along with 

population densities of the adjoining areas. The location of the powerplant was obtained from Carbon Brief’s 

coal plant tracker,223 and the population densities were obtained from Socioeconomic Data and Applications 

Center (SEDAC).224 Wind rose for the city of Mumbai in 2017-2018.228 

 

Kolkata Port 

Figure 5.18 shows the port and city of Kolkata. The population density of the city is ~29,000 

persons per km2. The wind rose diagram shows that wind predominantly blows from south- 

southwest to north- northeast direction for ~40% of the year. This suggests that pollution from 

the port blows away from the nearby population to the people staying north of the port. The 

nearest thermal power station is Southern Thermal Power Station (capacity: 136 MW) and is 

located ~6 km away (over the crow distance) from the port. The area near the power station has a 

population density of ~23,000 persons per km2. This suggests that there is little air quality 

benefit in switching to shore power at the port of Kolkata. 
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Figure 5.18 Map showing the location of the port and city of Kolkata, along with population densities of the 

adjoining areas. The location of the powerplant was obtained from Carbon Brief’s coal plant tracker,223 and 

the population densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 Wind 

rose for the city of Kolkata in 2017-2018.228 

 

Haldia Port 

Figure 5.19 shows the location of HDC and the city of Haldia that has a population density of 

~850 persons per km2. The wind rose diagram shows that the wind blows from south to north 

direction ~ 57% of the time (roughly 5,000 hours) in the year. The nearest power station is 

Haldia Energy Power Station (Capacity: 1,200 MW) and is located ~11 km away (over the crow 

distance) in an area that has a population density of ~1,000 persons per km2. Thus, there is 

negative air quality benefit as we are moving pollution from a low population density to a high 

population density area. 
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Figure 5.19 Map showing the location of HDC and the city of Haldia, along with population densities of the 

adjoining areas. The location of the powerplant was obtained from Carbon Brief’s coal plant tracker,223 and 

the population densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 The 

reader can refer to the wind rose for Haldia here.229 

 

New Mangalore Port 

Figure 5.20 provides geographic location for the port of New Mangalore and the city of 

Mangalore which has a population density of ~1,800 persons per km2. The nearest thermal power 

station (Udipi Power Corporation Limited; Capacity- 1,200 MW) is situated ~26 km away (over 

the crow distance) from the port and the adjoining region has a population density of ~600 

persons per km2. This improves air quality around the port as we move pollution from a high 

population density area to a low population density area. 
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Figure 5.20 Map showing the location of New Mangalore port and city of Mangalore, along with population 

densities of the adjoining areas. The location of the powerplant was obtained from CarbonBrief’s coal plant 

tracker,223 and the population densities were obtained from Socioeconomic Data and Applications Center 

(SEDAC).224 Windrose for the city of Mangalore in 2017-2018.228 

 

Paradip Port 

Figure 5.21 show the port and part of the city of Paradip that has a population density of ~1,800 

persons per km2. Although there are a number of thermal power plants in Paradip, but almost all 

of them are captive in nature as in they serve manufacturing and oil refineries. So, the state grid 

is supplied by coal power plants in Talcher. The nearest thermal power plants are Talcher 

Thermal Power Station (TTPS; capacity- 460 MW) and Talcher Super Thermal Power Station 

(TSTPS; capacity- 3,000 MW) and are located ~190 km away from the port. The region near the 

power plant has a population density of ~540 persons per km2. So, there is an air quality benefit 

to the residents of Paradip if we were to use shore power instead of burning diesel. 
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Figure 5.21 Map showing the location of Paradip port and city of Paradip, along with population densities of 

the adjoining areas. The location of the powerplant was obtained from Carbon Brief’s coal plant tracker,223 

and the population densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 

The reader can refer to the wind rose for Paradip here.230 

 

VOC Port (Tuticorin) 

Figure 5.22 shows the VOC port and a part of the city of Tuticorin. The population density of the 

area is ~1,300 persons per km2. The nearest thermal power plant is a set of stations- Neyveli 

Thermal Power Station I (capacity: 1,090 MW) and Neyveli Thermal Power Station II (capacity: 

1,970 MW) and located ~0.3 km from the port. The wind rose diagram shows that the wind 

blows from northwest and west to east ~22% of the year. There seems to be no air quality benefit 

in terms of air quality if we were to burn coal to supply berthing ships instead of burning diesel. 
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Figure 5.22 Map showing the location of VOC port and the city of Tuticorin and its population density. The 

location of the powerplant was obtained from Carbon Brief’s coal plant tracker,223 and the population 

densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 Windrose for the city 

of Tuticorin in 2017-2018.228 

 

Vizag Port 

Figure 5.23 shows the Vizag Port and the nearby city of Visakhapatnam that has a population 

density of ~3,000 persons per km2. The nearest thermal power plant is Simhadri NTPC Power 

Plant (capacity: 2,000 MW) and is located ~24 km away. The region near the power plant has a 

population density of ~1,300 persons per km2. The wind blows from west and southwest to east 

and north east ~33% of the year. So, there seems to be air quality benefit around the port city in 

switching from burning diesel to shore power. 
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Figure 5.23 Map showing the location of Vizag port and the city of Visakhapatnam and its population density. 

The location of the powerplant was obtained from Carbon Brief’s coal plant tracker,223 and the population 

densities were obtained from Socioeconomic Data and Applications Center (SEDAC).224 Windrose for the city 

of Visakhapatnam in 2017-2018.228 

 

5.10 Sensitivity Analysis 

5.10.1 Sources of uncertainty 

There are a several sources of uncertainty in the emission factors of ships and we have attempted 

to address them while conducting the analysis. The major sources of uncertainty in our work and 

the steps taken to address them is shown in Table 5.41 below. 

Table 5.41 Sources of uncertainty and uncertainty analysis conducted by the authors. 

S.No. Uncertainties How the authors addressed the uncertainty 

1. Do California estimate of 

auxiliary engine loads 

apply to vessels calling at 

major ports in India? 

We match for vessel size and compare ages for vessels in 

both California ports and Indian major ports. This is 

shown in Figure 5.3. 

2. Vessel call information 

for major ports 

We use primary data from the Ministry of Shipping 

(MoS), GoI. 

3. Type of fuel oil used for 

on-board generation at 

berth 

We have performed our analysis both for high sulfur fuel 

(also known as RO; 2.7% S) and Marine Gas Oil (MGO; 

0.5% S). We include the results of MGO in main 

manuscript and keep the results for RO in the SI. This is 

because, starting 01 January 2020, all vessels outside the 

emission control areas (ECAs) are mandated to use 

MGO.231 We assume that Indian ports are in compliance 

of this directive by the International Maritime 

Organization (IMO). 
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5.10.2 Price of Electricity 

MGO: For an operator to become indifferent between the marginal (i.e., fuel) cost of shore 

power and burning MGO for on-board generation, the price of electricity would need to rise in 

Chennai by 78%, in Cochin by 100%, in Deendayal by 60%, in JNPT by 78%, in Kamarajar by 

78%, in Kolkata by 60%, in Haldia by 60%, in Mormugao by 78%, in Mumbai by 78%, in New 

Mangalore by 60%, in Paradip by 100%, in VOC by 78% and in Visakhapatnam (Vizag) by 

128% respectively.  

RO: To make operators indifferent between the fuel costs associated with shore power, and using 

on- board generation powered by RO, the price of electricity would need to rise in Chennai by 

15%; in Cochin 29%, in Deendayal by 3%, in JNPT by 15%, in Kamarajar by 15%, in Kolkata 

by 3%, in Haldia by 3%, in Mormugao by 15%, in Mumbai by 15%, in New Mangalore by 3%, 

in Paradip by 29%, in VOC by 15% and in Visakhapatnam (Vizag) by 48% respectively. 

5.10.3 Electricity Generation Source 

The capital cost of installing a solar photovoltaic (PV) system was assumed to be ~$1,000 per 

kW.232 As is the current practice in the industry, we assume a maintenance cost of 1% for solar 

PV system.233 We use a loan rate ranging from 11.50%-12.50%234 for developing the solar PV 

projects at ports in India. Using NREL’s PV Watts calculator235, we determined annual hourly 

panel output at respective ports and matched it to the hourly load demand of berthed ships. For 

times when renewable electricity generation wasn’t available (nighttime) or sufficient (cloud 

cover), the ships were assumed to be powered through grid electricity. During times of excess 

solar generation, the solar PV system reduces equivalent amount of grid emissions by supplying 

electricity back to the grid, essentially providing emissions free electricity. Thus, the electricity 
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generated through solar PV annually completely meets the annual auxiliary engine load demand 

of berthed ships. 

 Due to the low penetration of natural gas in the Indian electricity grid, the source of generation 

of electricity is coal. We assume that the marginal emissions due to grid electricity generation at 

any given location are roughly identical at all hours. So, the surplus electricity production from 

the solar PV system can be assumed to offset emissions from grid-based electricity for the load 

demand of berthed ships. 

Table 5.42 provides the technical specifications of the solar panels assumed in the analysis. 

These were taken from the NREL PV Watts Calculator.235 The cost of purchasing electricity 

from the grid across major ports is provided in Table 5.19. In the case of excess solar power 

generation, the system supplies electricity back to the grid. The feed-in tariff for power generated 

through solar photovoltaic system was assumed to be $0.035 per kWh.236 According to the 

guidance from the Central Electricity Regulatory Commission (CERC), the power factor for 

renewable generation projects is assumed to be 0.95 (lagging).237 

Table 5.42 Specifications for the PV panels used in the solar PV system. These were used to estimate hourly 

annual solar generation at the respective ports. 

Parameter Value 

Elevation (m): 0 

DC System Size (kW): 4 

Module Type: Standard 

Array Type: Fixed (open rack) 

Array Tilt (deg): 7 

Array Azimuth (deg): 180 

System Losses: 14.08 

Invert Efficiency: 96 

DC to AC Size Ratio: 1.2 

Capacity Factor (%) 17.6  
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Table 5.43 provides the annual electricity required for berthed ships across the year and the size 

of solar PV system needed to meet that electricity demand. 

Table 5.43 Annual port energy requirement and solar PV system capacity. 

Port Annual Port Energy 

Requirement (GWh) 

Solar PV System 

Capacity (kW) 

Chennai 55 35,960 

Cochin 56 36,327 

Deendayal 78 49,554 

JNPT 58 38,493 

Kamarajar 16 10,430 

Kolkata 33 23,605 

Haldia 61 43,899 

Mormugao 42 27,765 

Mumbai 73 46,654 

New Mangalore 38 24,507 

Paradip 54 37,093 

VOC 31 19,935 

Vizag 58 38,716 

 

Table 5.44 shows the annual electricity purchase cost, solar feed-in revenue, solar PV system 

capital cost and the maintenance cost of the solar PV system. 

Table 5.44 Port-wise cost of electricity purchase, solar PV system and maintenance cost, 

solar feed-in revenue. 

Ports Annual 

Electricity 

Expense (M $) 

Solar Feed-

in Revenue 

(M $) 

Solar PV 

Cost (M $) 

Solar PV 

Maintenance 

Cost (100k $) 

Chennai 4.9  1.1  36  3.6  

Cochin 4.4  1.1  36  3.6  

Deendayal 7.7  1.6  50  5.0  

JNPT 5.1  1.2  38  3.8  

Kamarajar 1.4  0.3  10  1.0  

Kolkata 3.3  0.7  24  2.4  

Haldia 6.1  1.3  44  4.4  

Mormugao 3.8  1.0  28  2.8  

Mumbai 6.5  1.5  47  4.7  

New 

Mangalore 

3.7  0.8  25  2.5  
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Paradip 4.2  1.1  37  3.7  

VOC 2.8  0.6  20  2.0  

Vizag 4.0  1.2  39  3.9  

Total Costs 58  14 430  43  

 

Table 5.45 and Table 5.46 show the health impacts of supplying electricity to berthed ships via 

grid connected solar PV system. 

Table 5.45 Avoided premature mortality by switching from RO to shore power. We assume that electricity in 

this case is supplied through solar panels and is emissions free. The growth in shipping is assumed to be 3% 

each year.89,90 

Port PM2.5 SO2 NOx Avoided 

Premature 

Mortality 

Chennai 0.047 (0.04 to 0.055) 2 (1.7 to 2.4) 0.96 (0.8 to 1.1) 3.1 (2.6 to 3.5) 

Cochin 0.068 (0.058 to 0.078) 6.1 (5.1 to 7.1) 1.5 (1.3 to 1.8) 7.7 (6.4 to 8.9) 

Deendayal 0.036 (0.031 to 0.042) 2.2 (1.9 to 2.6) 0.67 (0.56 to 0.77) 2.9 (2.5 to 3.4) 

JNPT 0.2 (0.17 to 0.22) 11 (9.4 to 13) 3.5 (2.9 to 4) 15 (13 to 17) 

Kamarajar 0.013 (0.011 to 0.015) 0.58 (0.49 to 0.68) 0.26 (0.22 to 0.31) 0.86 (0.72 to 1) 

Kolkata 0.029 (0.025 to 0.033) 1.8 (1.5 to 2.1) 0.83 (0.7 to 0.96) 2.6 (2.2 to 3.1) 

Haldia 0.00062 (0.00053 to 

0.00071) 0.038 (0.032 to 0.044) 

0.018 (0.015 to 

0.02) 

0.056 (0.047 to 

0.065) 

Mormugao 0.015 (0.013 to 0.017) 2.3 (1.9 to 2.6) 0.45 (0.38 to 0.52) 2.7 (2.3 to 3.2) 

Mumbai 0.25 (0.21 to 0.29) 14 (12 to 17) 4.4 (3.7 to 5.1) 19 (16 to 22) 

New 

Mangalore 0.02 (0.017 to 0.023) 1.9 (1.6 to 2.2) 0.45 (0.38 to 0.52) 2.4 (2 to 2.8) 

Paradip 0.0073 (0.0062 to 0.0084) 0.039 (0.033 to 0.045) 0.25 (0.21 to 0.29) 0.29 (0.25 to 0.34) 

VOC 

0.0039 (0.0033 to 0.0044) 0.1 (0.088 to 0.12) 

0.069 (0.058 to 

0.08) 0.18 (0.15 to 0.21) 

Vizag 0.009 (0.0076 to 0.01) 0.38 (0.32 to 0.44) 0.26 (0.22 to 0.3) 0.64 (0.54 to 0.75) 

All Ports 0.69 (0.59 to 0.8) 43 (36 to 50) 14 (11 to 16) 57 (48 to 66) 

 

Table 5.46 Avoided premature mortality by switching from MGO to shore power. We assume that electricity 

in this case is supplied through solar panels and is emissions free. The growth in shipping is assumed to be 

3% each year.89,90 

Port PM2.5 SO2 NOx Avoided 

Premature 

Mortality 

Chennai 0.01 (0.0089 to 0.012) 0.36 (0.3 to 0.42) 0.91 (0.76 to 1) 1.3 (1.1 to 1.5) 

Cochin 0.015 (0.013 to 0.017) 1.1 (0.94 to 1.3) 1.4 (1.2 to 1.7) 2.6 (2.2 to 3) 

Deendayal 0.0083 (0.007 to 0.0095) 0.45 (0.38 to 0.53) 0.64 (0.54 to 0.74) 1.1 (0.92 to 1.3) 

JNPT 0.043 (0.037 to 0.05) 2 (1.7 to 2.3) 3.3 (2.8 to 3.8) 5.3 (4.5 to 6.2) 
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Kamarajar 0.0028 (0.0024 to 0.0033) 0.1 (0.086 to 0.12) 0.25 (0.21 to 0.29) 0.36 (0.3 to 0.41) 

Kolkata 0.0063 (0.0054 to 0.0073) 0.31 (0.26 to 0.37) 0.78 (0.66 to 0.91) 1.1 (0.93 to 1.3) 

Haldia 0.00014 (0.00012 to 

0.00016) 

0.0067 (0.0056 to 

0.0078) 

0.017 (0.014 to 

0.019) 

0.024 (0.02 to 

0.027) 

Mormugao 0.0034 (0.0029 to 0.0039) 0.55 (0.46 to 0.63) 0.43 (0.36 to 0.5) 0.98 (0.82 to 1.1) 

Mumbai 0.055 (0.047 to 0.063) 2.6 (2.2 to 3) 4.2 (3.5 to 4.8) 6.8 (5.7 to 7.9) 

New 

Mangalore 0.0044 (0.0038 to 0.0051) 0.36 (0.31 to 0.42) 0.43 (0.36 to 0.5) 0.8 (0.67 to 0.92) 

Paradip 

0.0017 (0.0014 to 0.0019) 

0.007 (0.0059 to 

0.0081) 0.24 (0.2 to 0.28) 0.25 (0.21 to 0.29) 

VOC 0.00085 (0.00072 to 

0.00098) 0.019 (0.016 to 0.022) 

0.065 (0.055 to 

0.076) 

0.085 (0.071 to 

0.098) 

Vizag 0.002 (0.0017 to 0.0023) 0.067 (0.056 to 0.078) 0.24 (0.21 to 0.28) 0.31 (0.26 to 0.36) 

All Ports 0.15 (0.13 to 0.18) 7.9 (6.7 to 9.2) 13 (11 to 15) 21 (18 to 24) 

 

5.10.4 Switchover Analysis 

We conduct an analysis to estimate the switchover point at which the vessel operator is 

indifferent between using marine fuel oil and grid electricity. While we don’t know what the 

exact emission factors are for each of the coal power plants in the respective states, we can at the 

very least determine the percentage change required in those emission factors to an extent where 

it doesn’t matter whether a ship uses shore-based electricity or fuel oil to power their auxiliary 

engines at berth. The results from this calculation are included in Table 5.47. 

Table 5.47 % difference in emission factors at which the vessel operator becomes indifferent in burning diesel 

oil in ships’ on-board generator versus using grid-electricity. The green values show that the electricity grid is 

cleaner. The value in the cell indicates the percentage change in the grid emission factor for in-situ electricity 

generation using ships’ on-board generators to be the cleaner option. The red values show that in-situ 

electricity generation using ships’ on-board generators is cleaner. The numbers indicate the proportional 

change in grid electricity emission factors needed for shore power to be the cleaner alternative. 

State RO (2.7% S; High Sulfur Fuel) MGO (0.5% S; Low Sulfur Fuel) 

% Diff 

PM2.5 

% Diff 

SO2 

% Diff 

NOx 

% Diff 

CO2 

% Diff 

PM2.5 

% Diff 

SO2 

% Diff 

NOx 

% Diff 

CO2 

Gujarat 980% 70% 1,100% 28% 140% -70% 1,000% 23% 

Maharashtra 1,900% 480% 1,000% 58% 330% 2% 970% 51% 

Andhra 

Pradesh 

2,200% 520% 1,300% 140% 410% 9% 1,300% 130% 

Tamil Nadu 570% -29% 930% 42% 48% -88% 870% 36% 

West Bengal 440% 76% 300% -48% 19% -69% 280% -51% 

Odisha 250% -6% 100% -70% -23% -83% 89% -71% 

Kerala 66,000% 18,000% 39,000% 5,500% 14,000% 3,200% 36,000% 5,300% 
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Karnataka 1,500% 360% 810% 43% 250% -18% 760% 37% 

Goa 1,300% 160% 1,000% 42% 210% -53% 980% 35% 

Min. Diff 250% -29% 100% -70% -23% -88% 89% -71% 

Max. Diff 66,000% 18,000% 39,000% 5,500% 14,000% 3,200% 36,000% 5,300% 
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6 Appendix B: Supplementary Information for Chapter 3 

6.1 Extracting freight trucking emissions from the National Emissions 

Inventory (NEI), 2017 

In our study, we assume that a dominant share of US freight tonnage is carried by diesel freight 

trucks. According to the Transportation Energy Databook, we observe that long-haul heavy-duty 

trucks (class 7 or above) account for ~86% of all energy use in the US.238 Also, we use National 

Emissions Inventory (NEI), 2017 127 as a reference for our results. 

To estimate percentage freight trucking air pollutant and GHG contributions from the NEI, we 

consider emissions from all sources included in the NEI: point, non-point, on-road, non-road, 

and wildfire events. We exclude non-contiguous US states (Alaska, Hawaii, Puerto Rico, Virgin 

Islands, American Samoa, Guam, and other non-contiguous territories). Next, we merge the NEI 

with the source classification codes (SCCs) that the US EPA uses to classify different activities 

that contribute to emissions. SCC provide “a unique source category-specific process or function 

that emits air pollutants.”239 Within the on-road sources, there are 16 vehicle categories included 

in the “SCC level three description” where the fuel used is “diesel fuel”. These are, (1) passenger 

truck, (2) light commercial truck, (3) single unit short-haul truck, (4) single unit long-haul truck, 

(5) refuse truck, (6) combination short-haul truck, (7) combination long-haul truck, (8) truck (9), 

tank cars and trucks, (10) automobiles/truck assembly operations, (11) automobiles and light 

trucks, (12) tank truck cleaning, (13) intercity bus, (14) transit bus, (15) school bus, and (16) 

motor home. Out of these, we only include 5 truck categories (i.e. (3) single unit short-haul 

truck, (4) single unit long-haul truck, (5) refuse truck, (6) combination short-haul truck, (7) 

combination long-haul truck) that are relevant for diesel freight trucking. We include these five 

truck categories that are relevant for medium and heavy-duty freight trucking and exclude the 
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others such as passenger truck, tank cars and trucks, automobiles/truck assembly operations, 

automobiles and light trucks, and tank truck cleaning. The excluded truck categories belong 

either to the passenger vehicle fleet or are involved in other local operations and don’t engage in 

freight trucking on the road network. Table 6.1 below provides emissions for pollutants and 

greenhouse gas (GHG) from the NEI, 2017. 

Table 6.1 Freight trucking emissions from the NEI, 2017 data.127 

Pollutant NEI total emissions, 

2017 

NEI trucking 

emissions, 2017 

% of total US 

emissions 

PM2.5          5,241,695   51,043  1.0% 

SO2          2,473,626   3,672  0.10% 

NOx        10,941,637   1,274,074  12% 

CO2   5,257,719,247   432,404,593  8.2% 

 

6.2 Freight Analysis Framework 4 (FAF4) Road Network 

FAF4 data consists of ~450k miles of roads consisting of interstate highways, urban and rural 

principal arterials.Table 6.2 provides percentage distribution of vehicle miles travelled (VMT) by 

single unit and combination trucks on roads in the FAF4 dataset. 

Table 6.2 VMT by single unit and combination trucks by type of road in the FAF4 dataset. A major share of 

combination truck VMT is traversed on the interstate highways whereas the VMT is more distributed for SU 

trucks. 

Road Type % Combination truck 

VMT 

% Single unit 

truck VMT 

1: Interstate 80% 32% 

2: Other Freeways and Expressways 4% 13% 

3: Other Principal Arterial 13% 38% 

4: Minor Arterial 3% 13% 

5: Major Collector 1% 4% 

6: Minor Collector 0% 0% 

 

6.3 Emission factors for single unit and combination trucks 

We use emission factors for single unit and combination trucks from the Greenhouse gases, 

Regulated Emissions, and Energy use in Technologies (GREET) Model.141 Table 6.3 reproduces 
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the emission factors for PM2.5, SO2, NOx, and CO2 for single unit (class-6 trucks) and 

combination trucks (class 8 or above) that we use in our study. 

Table 6.3 Lifetime mileage weighted emission factors (in g/mile) for single unit and combination trailer 

freight diesel trucks for model year (MY) 2017. The values are from Table A16 and Table A22 as reported in 

the GREET study.141 

Pollutant/ 

GHG 

Emission Factor for combination 

trailer truck (in g/mile) 

Emission Factor for single unit 

truck (in g/mile) 

PM2.5 0.086 0.0467 

SO2 0.0149 0.0070 

NOx 4.585 0.9383 

CO2 1588 1414 

 

We use emission factors (expressed in g/kg-fuel) for long-haul freight trucking reported in Table 

S8 of Tong et al.240 Using an average fuel economy of 6.3 miles per diesel gallon equivalent241 

for long-haul freight trucking, we convert the emission factors to g/mile. Next, we weight the 

emission factors using lifetime miles for a combination tractor (Table 2-28)242 to estimate 

lifetime mileage weighted emission factors. Tong et al.’s 240 method is different than ours in that 

they estimate tail pipe emissions profiles using empirical data, literature, and GREET model.141 

They use a mass-balance approach and harmonize emissions from literature for different air 

pollutants and greenhouse gases. Table 6.4 reports emissions comparison for long-haul freight 

trucking using Tong et al.240 emission factors and GREET model emission factors.141 

Table 6.4 Comparison of long-haul freight trucking emissions (in tons) using lifetime mileage weighted 

emission factors reported in Tong et al. 240 and GREET model.141 

Pollutant/ GHG Long-haul trucking emissions 

(in tons) using Tong et al. 

emission factors 

Long-haul trucking emissions 

(in tons) using GREET 

emission factors. 

PM2.5 5.5K 17K 

SO2 80 3K 

NOx 108K 920K 

CO2 32M 31M 
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6.4 Comparison of freight trucking air pollution related public health 

damages from different models 

In this section, we compare the results of freight trucking air pollution related social costs for 

two reduced complexity models (RCMs): Estimating Air pollution Social Impact Using 

Regression (EASIUR)133,134 and Air Pollution Emission Experiments and Policy Version 3 

(AP3).145 While these social costs are broadly consistent, we see a slight deviation from the y-x 

line for SO2 and NOx damages (see Figure 6.1). 

  
(a) (b) 
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(c)  
Figure 6.1 Comparison of freight trucking air pollution related public health social costs (in log10 tons) from 

EASIUR and AP3. We observe that social costs from both the models roughly lie on the y=x line. 

 

Figure 6.2 provides map of counties that are net exporters and net importers of freight trucking 

air pollution related human health damages in the contiguous US. 

 
Figure 6.2 Net exporter and importer counties of freight trucking pollution based on social costs from the 

EASIUR model. Blue indicates counties that are net exporters of trucking pollution related health damages 

whereas red indicates counties that are net importers of trucking pollution related health damages. The map 

indicates damages in arcsinh scale, and the unit is 2017 US $. 

 

6.5 Modal shift: Shifting tonnage from freight trucks to railroads 

To conduct the modal shift analysis, we rely on a set of assumptions. Firstly, we only account for 

modal shifts for class-1 freight rail and ignore other categories of railroads such as passenger and 

commuter rail, class-2 and class-3 railroads. Secondly, we use an approximation for adjusting 

freight rail emission factors. Usually, the US EPA reports locomotive emission factors in g/gal 

instead of g/ton-mile. While it is desirable to have emission factors for rail in g/ton-mile of 

freight hauled, it has its own limitations. Depending on the terrain where the railroad is 
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operating, the useful work done to haul a ton-mile of freight varies.243 We can adjust emission 

rates expressed in g/gal to reflect equivalent g/ton-mile emission factor by dividing the emission 

factor in g/gal by the freight rail fuel efficiency. We discuss the approach adopted to estimate 

emission factors for different pollutant and GHG in the subsequent sections. 

6.5.1 Emission factors for Class-1 railroad 

PM2.5 emission factor: For locomotives, particulate matter (PM) emissions are expressed as PM10 

(i.e., particles that are up to 10 microns in diameter) or PM2.5 (i.e., particles that are up to 2.5 

microns in diameter). According to the US EPA guidance, we assume that for class-1 rail, PM2.5 

emissions are nearly 97% of all PM10 emissions.243 From Table 4 in 2017 US rail national 

emissions inventory (NEI), we find that the weighted PM10 emission factor after accounting for 

locomotives fleet mix in 2017 is 3.944 g/gal. Thus, the PM2.5 emission factor is 3.82568 g/gal. 

NOx emission factor: The NOx emission factor is 134.770 g/gal and is the same as used in the 

2017 US rail NEI. 

SO2 and CO2 emission factor: These are independent of the railroad engine characteristics and 

largely dependent on the amount of sulfur and carbon present in the diesel fuel. For SO2 and 

CO2, we use the following equation from the US EPA guidance document243 to estimate 

emission factor. 

Equation 6.1 

𝑺𝑶𝟐 (
𝒈

𝒈𝒂𝒍
) = (𝒇𝒖𝒆𝒍 𝒅𝒆𝒏𝒔𝒊𝒕𝒚) ∗ (𝒄𝒐𝒏𝒗𝒆𝒓𝒔𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓) ∗ (𝟔𝟒 𝒈 𝑺𝑶𝟐 𝟑𝟐 𝒈 𝑺⁄ ) ∗ (𝑺 𝒄𝒐𝒏𝒕𝒆𝒏𝒕 𝒐𝒇 𝒇𝒖𝒆𝒍) 

We assume that the fuel used is ultra-low sulfur diesel (ULSD) with sulfur content of 15 ppm 

and the density of the diesel fuel is 3,200 g/gal. Further, the fraction of fuel sulfur converted to 

SO2 is assumed to be 97.8 %.243 Using these numbers, the SO2 emission factor comes out to be 

𝑺𝑶𝟐  (
𝒈

𝒈𝒂𝒍
) = (𝟑, 𝟐𝟎𝟎) ∗ (𝟎. 𝟗𝟕𝟖) ∗ (𝟐) ∗ (𝟏𝟓 ∗ 𝟏𝟎−𝟔) =  𝟎. 𝟎𝟗𝟑𝟖𝟖𝟖 𝒈/𝒈𝒂𝒍  
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Similarly, we estimate the CO2 emission factor using the following equation: 

Equation 6.2 

𝑪𝑶𝟐  (
𝒈

𝒈𝒂𝒍
) = (𝒇𝒖𝒆𝒍 𝒅𝒆𝒏𝒔𝒊𝒕𝒚) ∗ (𝟒𝟒 𝒈 𝑪𝑶𝟐 𝟏𝟐 𝒈 𝑪⁄ ) ∗ (𝑪 𝒄𝒐𝒏𝒕𝒆𝒏𝒕 𝒐𝒇 𝒇𝒖𝒆𝒍) 

The density of the diesel fuel is assumed to be 3,200 g/gal and the carbon content of the fuel is 

87 % on a mass basis.243 Therefore, the CO2 emission factor is 

𝑪𝑶𝟐 (
𝒈

𝒈𝒂𝒍
) = (𝟑, 𝟐𝟎𝟎) ∗ (𝟑. 𝟔𝟕) ∗ (𝟎. 𝟖𝟕) = 𝟏𝟎, 𝟐𝟏𝟕 𝒈/𝒈𝒂𝒍 

According to the Association of American Railroads (AAR), in 2019, class-1 rail roads had a 

freight rail fuel efficiency of 472 ton-miles per gallon (see Figure 6.3).146 We divide the g/gal 

emission rates by 472 ton-miles/gal provides a rough measure of g/ton-mile of emission rates for 

class-1 rail. Table 6.5 provides the emission factors for railroad expressed in g/ton-mile. 

 
Figure 6.3 Freight rail fuel efficiency of freight railroads from 1980-2019. The figure is from AAR report.146 

 



 146 

Table 6.5 Emission factors for class-1 railroad expressed in g/ton-mile for 2017. 

Pollutant/ GHG EF rail (in g/ton-mile) 

PM2.5 0.1575 

SO2 0.0049 

NOx 0.0001 

CO2 10.6427 

 

Finally, we estimate the emissions change if a certain proportion of the freight ton-miles were 

shifted from diesel freight trucks to class-1 railroads. Figure 6.4 shows percentage change in 

emissions by shifting part of the freight tonnage to rail. We find that this strategy reduces SO2 

and CO2 emissions considerably. 

 
Figure 6.4 % change in PM2.5, SO2, NOx, and CO2 emissions if a percentage of the total freight ton-miles are 

shifted from diesel freight trucks to Class-1 railroads. 
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6.6 Distributional effects of freight trucking air pollution 

The following are preliminary results from an analysis that we run to estimate distributional 

impacts and explore environmental justice implications of freight trucking air pollution on 

minority groups. These results are subject to change as we get the manuscript ready for 

publishing owing to adjustments and other changes owing to missing value treatment and 

changes to how we extract the US census bureau data. 

6.6.1 Satisfying linear regression assumptions 

In order to use linear least squared regression, we satisfy the Gauss-Markov assumptions in our 

analysis. These are: 

(1) Linearity in parameters 

In this case, we have to be able to write a model such that 𝑦𝑖 = 𝑋𝑖𝛽𝑖 for yi and Xi but the 

variables themselves can have non-linear transformations. Our model specifications satisfy this 

requirement and the only non-linear transformation we apply is the log transform to all 

dependent variables and some independent variables. 

(2) Random sampling 

This condition allows us to take the results of our sample regression specification and be able to 

apply it to the true population regression. To the best of our ability and knowledge, we have 

attempted to satisfy this condition while collating data and avoided introducing any bias in the 

data. 

(3) Zero conditional mean of errors 

This is popularly known as the omitted variable bias. This means that anything that is not in the 

model specification but potentially related with the independent and dependent variable could 

bias our estimates. In our modeling, we take great care in ensuring that we satisfy this 
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requirement by including census relevant variables that could influence freight trucking 

emissions. 

(4) No perfect collinearity 

In our analysis, we ensure that we exclude variables that are linear functions of each other 

because it results in poor specification of the regression model. 

6.6.2 Distribution of dependent variables 

We hypothesize that the errors in our regression relationship function 𝑦𝑖 = 𝛽0 + 𝛽𝑖𝑥𝑖 + 𝜖𝑖  are 

normally distributed such that 𝜖𝑖~𝑁(0, 𝜎2). Next, we look at plot the quantiles of our dependent 

variables against quantiles of normal distribution. The plot of the quantiles of two distributions 

against each other is called a quantile-quantile plot (Q-Q plot). The advantage of using a Q-Q 

plot is that it allows us to simulate as many draws from the normal distribution as possible to 

satisfactorily represent the distribution. Figure 6.5 shows Q-Q plots for dependent variables. We 

see that the log-transformed variables are much closer to the normal distribution. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 6.5 Q-Q plot of untransformed dependent variables (PM2.5, SO2, and NOx emissions). The 

untransformed variables are non-linear (a,c,e; left panel) whereas the log transformed dependent variables, 

i.e., log(PM2.5), log(SO2), and log (NOx) emissions (b,d,f; right panel) are distributed normally. 

 

We run three different model specifications for PM2.5, SO2, and NOx emissions from freight 

trucking. 

6.6.3 Distribution of independent variables 

Table 6.6 provides a summary of dependent and independent variables that we use in our 

analysis. We calculate proportions of different racial and ethnic sub-groups at the county level 

from the total population provided in the census data. Additionally, we log transform the area of 

the county, median county level household income, and the total population of the county. 
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Table 6.6 Description of independent variables used in the regression analysis. 

Variables Description 

𝒀𝒑,𝒄(𝑿) 
log of freight trucking emissions for pollutant p ∈ (PM2.5, SO2, and NOx) in 

county c 

𝑿𝒄
𝒂𝒓𝒆𝒂 area of the county c 

𝑿𝒄
𝒃𝒍𝒂𝒄𝒌  proportion of the total population in the county c that is black 

𝑿𝒄
𝒂𝒎𝒆𝒓𝒊𝒏𝒅  

proportion of the total population in the county c that is American Indian and 

Alaska native 

𝑿𝒄
𝒉𝒂𝒘  

proportion of the total population in the county c that is Hawaiian and other 

Pacific Islanders 

𝑿𝒄
𝒂𝒔𝒊𝒂𝒏  proportion of the total population in the county c that is Asian 

𝑿𝒄
𝒉𝒊𝒔𝒑

  
proportion of the total population in the county c identifying as Hispanic or 

Latino 

𝑿𝒄
𝒕𝒘𝒐𝒎𝒐𝒓𝒆  

proportion of the total population in the county c that identifies as having two 

or more races 

𝑿𝒄
𝒕𝒐𝒕𝒑𝒐𝒑

  total population in county c 

𝑿𝒄
𝒎𝒆𝒅𝒊𝒏𝒄  median household income in county c 

 

Figure 6.6 shows the histograms of independent variables included in the analysis. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 
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(i)  

Figure 6.6 Distribution of independent variables that are included in the model specification. 

6.6.4 Studentized Regression Residual Plots 

Another method to evaluate conditional distribution of dependent variables is to look at the 

distribution of the regression residuals. If our regression relationship is such that 𝑦𝑖 = 𝛽0 +

𝛽𝑖𝑥𝑖 + 𝜖𝑖  and the errors are normally distributed 𝜖𝑖~𝑁(0, 𝜎2), then the residuals are also 

normally distributed. Thus, if we assume that our errors come from a normal distribution, then 

we can compare the studentized residuals to a standard normal distribution. We notice that the 

distribution of residuals looks tame for the three model specifications (see Figure 6.7). 
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Figure 6.7 Regression residual plots for the three model specifications. 
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7 Appendix C: Environmental Impacts of Electrification and 

Automation of Freight Trucking in the United States (Future 

Work Chapter) 

Abstract 

Freight trucks are a major source of CAPs and GHG emissions. In this analysis, we explore the 

environmental impacts of electrification and automation on short distance and long-distance 

freight trucking in the US. Based on government data, we outline how to quantify the 

environmental impacts and cost savings of electrifying short-haul (<300 miles) freight trucking 

in the US. We also describe a benefit-cost analysis (BCA) on the impact of electrifying last mile 

journeys of long-haul freight trips while automating the highway leg of the long-haul freight trips 

in the US. The results of this future work will allow policy makers to understand the effects of 

automation and electrification for long and short distance shippers while enabling them to design 

targeted freight decarbonization policies in the near future. 
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7.1 Introduction 

The transportation sector is a critical element of the US economy and contributed ~9% of US 

gross domestic product (GDP) in 2018.244 Pressures from increasing globalization and economic 

activity have led to a significant increase in road freight activity. Between 1975 and 2015, road 

freight activity increased “2.5-fold”14 in the U.S. and this trend is projected to continue due to 

growth in freight demand and developments such as e-commerce. 

Increased freight vehicle miles traveled (VMT) corresponds to an increased concentration of 

criteria air pollutants (CAPs) and damaging impacts of negative air pollution externalities. In the 

past, emissions control regulations such as the Clean Air Act (CAA) in the 1970s and ultra-low 

sulfur diesel (ULSD) in 2006 have tried to limit the extent of these damages by successfully 

reducing concentrations of ambient air pollutants. For instance, under the CAA, hourly sulfur 

dioxide (SO2) and oxides of nitrogen (NOx) concentrations have fallen by 89% and 50%. Instead 

of a cross-sector overarching regulation, the approach to achieving the next wave of emissions 

reductions could focus on a series of sector specific strategies based on technological advances to 

reduce the emissions intensity of the fuels. 

This holds true for the freight transportation sector as well and in order to reduce the emissions 

footprint of shipped goods, it would be wise to experiment with different strategies while 

accounting for the costs and tradeoffs involved. Electrification is of particular interest because of 

its potential to decarbonize other sectors such as the passenger vehicles sector.245 In fact, there is 

a lot of interest in electrifying and automating operations in the trucking industry. This 

proposition is particularly attractive because it comes with twin benefits. Electrification allows 

us to reduce freight trucking emissions by switching to electricity instead of burning diesel and 

gasoline for trucking operations. Automation can help to improve the economics of tracking for 
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shippers and large trucking companies. Furthermore, this strategy may improve supply chain 

productivity since automation allows freight shippers to operate continuously even during the 

time intervals when freight trucks with human drivers are idle in order to allow drivers sufficient 

rest to operate safely. In fact, many companies are trying to implement the “transfer hub” model 

wherein part of the journey in the urban areas is completed by a driver behind the wheel and the 

highway leg of the journey is automated.246 

7.2 Methods 

 
Figure 7.1 Flow chart showing datasets and methods to estimate emissions from short-haul and long-haul 

freight trucking. 

 

Figure 7.1 shows a flow chart to help the reader better understand our approach. To estimate the 

environmental impacts of automating and electrifying trucks, we use the latest available 

Commodities Flow Survey (CFS) dataset from the US government for the year 2017. The CFS 

2017 dataset provides origin and destinations of long and short distance trips conducted by 

freight trucks along with relevant conversion factors to estimate the route lengths of the freight 
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trips. To conduct the analysis for short distance freight trucks, we filter the dataset for records 

where the travel distance for shipments was less than 300 miles, which constitute about 17% of 

the ton-miles traveled by heavy trucks (see Figure 7.2). 

 
Figure 7.2 Percentage share of freight ton-miles by distance range in miles. 

 

We plan two analyses. In the first analysis, we will assess the health and environmental benefits 

of shifting to electric Class 8 trucks for all trips that are shorter than 300 miles. We choose 300 

miles as an initial threshold, because this is about the maximum range that an electric semi-truck 

can attain without an unacceptable reduction in payload carrying capacity, assuming current 

lithium-ion battery technology.247 Roughly ~61% of the freight trips in the CFS data are less than 

300 miles. Next, we will use the regional electricity generation mix at the origin of the trip to 

estimate the magnitude of emissions generated by the grid for charging the truck. We will also 

estimate the emissions from using diesel fuel for short haul trucks over the same trip length. The 
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difference between the emissions from electrifying the trip and conducting the same journey with 

diesel trucks will provide us with emissions change for the trips. We will aggregate these 

emissions reductions for all shipments for all US states to arrive at net environmental benefit or 

cost from electrifying short distance freight trucking. 

In the second analysis, we will assess the potential benefits of the automation of long-haul 

trucking. One way in which this could occur is by the adoption of the freight transfer hub model, 

illustrated in Figure 7.3 from Viscelli (2020).248 In this model, at the origin, human-driven prime 

movers haul loaded trailers from urban centers to transfer hubs at the edge of interstate 

highways. At the transfer hub, the trailers are transferred to autonomous prime movers, which 

haul them along the interstate to another transfer hub close to the destination. At the destination 

transfer hub, the trailer is detached from the autonomous prime-mover and attached to a human-

driven prime mover for the “last mile” of the journey. 

 
Figure 7.3 Schematic of the transfer hub model for autonomous long-haul trucking. From Viscelli (2020).248 

 

We assess the benefits, in terms of reduced CO2 emissions and local air quality, of electrifying 

the short haul legs at the start and end of the interstate journey. We will apportion the length of 

the road segment in various counties while providing us with other details of the journey such as 
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the travel time for the trip, the permissible speed limit on the road network, share of miles 

traveled on highways, urban, and rural areas. From the CFS data, we find that ~6% of the trip 

journey is performed within urban and densely populated areas and this portion of the trip can be 

electrified. For the remainder of the long-distance part of the journey, we assume that it can be 

automated. We estimate emissions from the electricity grid for electrifying the short distance legs 

of the long-haul trip. Under this scenario, there may be environmental benefits in the urban leg of 

the trip of emitting less CAPs in a densely populated cites which have adverse human health 

impacts. For the highway leg of the trip, the economic benefits may be in terms of time and cost 

savings. We estimate the change in emissions from electrifying and automating the long-distance 

trip relative to the scenario when this journey is undertaken by a diesel-powered long-distance 

freight truck (class 8 or above). 
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