
PLATEAU
12th Annual Workshop at the
Intersection of PL and HCI

Organizers:
Sarah Chasins,
Elena Glassman, and
Joshua Sunshine

This work is licensed under a
“CC BY 4.0” license.
cb

Change in Software Ecosystems
Social Challenges of Automating Upgrades
Gabriel Matute ∗1, Alvin Cheung †1 and Sarah E. Chasins ‡1

1University of California, Berkeley, CA

Abstract

As software continually changes, communities must propagate and adopt potentially disruptive updates. This
is difficult because software ecosystems are complex social systems that struggle with scale, mismatched
priorities, heterogeneous levels and areas of expertise, and limits on communication and collaboration. In this
paper, we aim to explore the social challenges of rolling out software changes. We first characterize some of
these challenges. Next we describe a community structure that has allowed some organizations to develop
efficient and scalable tooling for adapting code to handle software changes. We end by discussing current and
proposed solutions for propagating changes—and the problems they still face.

Keywords: Software ecosystems. Software evolution. Dependency management. Social computing.

Figure 1. Representation of the social challenges in a hypothetical software ecosystem from the perspec-
tive of a domain expert (top left) when introducing a change in software (rectangle) that might affect
its dependants (arrows). There is large number of community members (black figures) present, grouped
by their roles (labelled) and encompassed within different organizations (colored polygons) highlighting
the potentially different priorities and expertise that forms the ecosystem.

1 Software Ecosystems
Researchers have observed that software systems continually change and evolve [1]. Developers often
add or expand features. Sometimes these changes require refactoring the existing structure to increase
maintainability. New platforms or even government policies might require changes to adapt or remain
compliant. Finally, discovered issues might require corrections, like security fixes.

However, software does not exist in a vacuum. It is usually designed and implemented by many
different developers and domain experts. It is distributed and maintained by a potentially different set
of developers, IT operators, and system admins. It is then used by technical and non-technical users
to achieve a variety of tasks with diverse requirements. There are many human factors that affect
how changes propagate through a community.

∗Email: gmatute@berkeley.edu
†Email: akcheung@berkeley.edu
‡Email: schasins@berkeley.edu

1/6

https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0001-7785-1231
https://orcid.org/0000-0003-0557-3580
gmatute@berkeley.edu
akcheung@berkeley.edu
schasins@berkeley.edu

With a sufficient number of users of an API, it does not matter what you promise in
the contract: all observable behaviors of your system will be depended on by somebody.

—Hyrum‘s Law

2 Example Changes
Any discernible (and sometimes even apparently trivial) software change will affect, for better or
worse, its surrounding ecosystem. Many programming languages and tools give developers ways to
specify interfaces and manage dependencies, which can help users handle change-induced conflicts.
Nevertheless, as software is intrinsically part of a human ecosystem, many social factors affect the
ability of any automated tool to propagate changes.

To explore the social challenges of propagating an update, we present two hypothetical examples
of interface changes. These were manually crafted for simplicity, but were inspired from real changes
that different communities have struggled with. We then analyze the different factors that could play
into deploying each change within their given communities.

2.1 System Library
First, we consider an update to a C library (Lista 1) to get the system time. The library could update
the time representation, i.e. the type alias time_t, from an int to a long in order to extend the
range of possible values or to better reflect modern hardware.

Lista 1. C Library
// time.h

- typedef int time_t;
- typedef long time_t;

time_t time();

Lista 2. Library User
// user.c

set_deadline(int);

int now = time();
set_deadline(now + 3);

Nevertheless, as seen with recent attempts to update the C standard library [2], this is a change
that could potentially affect many users of the library. Type aliases do not introduce a new type
so the user code (e.g. Lista 2) might use int in its source, leading to a bug-prone narrowing or a
compilation error. Fixing the type of now to use the alias might just push the problem throughout
the codebase, in this example to the set_deadline call would inherit the problem after the change.
There might be hundreds of locations that might need to be updated in a single project.

Even after finding all affected code, it is not always clear how to update it. In the case above,
set_deadline might be in the interface of a different library, so updating the code could be hard or
even impossible. Additionally, it could be part of the public interface of the user’s library, so there
may be constraints from transitive clients or their other projects. For widely distributed libraries, it
might also be hard to reach all users affected by an incompatible change.

2.2 Browser API
Next, we look at a change to a Web API (Lista 3), specifically to the interface to add event handlers.
A handler may prevent propagation of an event, so they usually need to be processed sequentially
despite the significant impact on performance. To enable optimizations, there is an option to indicate
if a handler ever prevents propagation, set conservatively to allow them. If most handlers are passive,
the default could be changed to disable them and improve the navigation experience [3].

Gabriel Matute, Alvin Cheung, Sarah E. Chasins | PLATEAU | v.12 | n.1 | | 2021 2/6

Lista 3. Browser API
// window

class Target {
listen(event , cb, options) {

let defaults = {
- prevents: true;
+ prevents: false;

...

Lista 4. A Website
// user.js

let handler = event => {
if (some_cond)

event.prevent();
};

element.listen('tap', handler)

Clearly this change might break some websites. If anyone relied on the old behavior and attempts
to prevent an event the site might break unexpectedly. However, not every maintainer will be able to
understand or even learn of the subtle change. Browser developers won’t be able to reach every user
that owns or maintains a website. Even if they could, some of them might no longer be supported or
might not have anyone with the technical expertise to understand and update the codebase.

Different browsers might also choose if and when they adopt the new default, so users might need
to choose how to work around the offending browser. They have the alternatives , from dropping
support for that specific browser (potentially no code change), to monkey patching the API to opt-out
of the new behavior and its optimizations (likely a small change), or even to invest resources to update
the codebase to take advantage of the update (significant changes).

3 Social Challenges
Having considered some examples, we can notice some common themes.
• Scale: As the number of affected projects grows, so does the complexity of coordinating and

deploying changes across the community. Straightforward attempts to put any one team in charge
of manually identifying and fixing all the affected source code quickly becomes intractable. This
is one of the key reasons why some communities have produced automatic migration tools.

• Priorities: As a software ecosystem grows larger, there will be a variety of priorities within the
community. Organizations have different needs and goals, and individuals within the organizations
have their own values and motivations. Therefore, different segments of a community will exhibit
different levels of support for the same change. This suggests that tooling can empower developers
and users to control the propagation and adoption of updates.

• Expertise: As the scope of the community widens, so too does the diversity of expertise available
in the ecosystem. Although this often produces an exciting and thriving environment, it also
makes it harder to reach a shared understanding. A specific user might struggle to understand or
implement a change imposed by a dependency. Similarly, a developer might be a domain expert,
but not a language expert. This suggests that upgrade tools should be accessible and usable both
for the developers aiming to deploy their upgrade and for users aiming to adopt an upgrade.

• Visibility: In many software ecosystems, developers cannot see all or most of the code that uses
their software. Many users are within private organizations or simply do not share their work. If a
developer or maintainer cannot access the uses of their software, it becomes impossible to assess
the impact of changes or to aid in the upgrade process. This suggests that tools must account for
unknown use cases or allow for privacy-preserving coordination.

4 An Alternative Community Structure
One of the few software ecosystems that, by construction, lacks many of the challenges above is
corporate monorepos. For instance, in the Google monorepo [4], most source code is available in a
single centralized repository, with perfect visibility into all users of a package. A majority of developers
contributing to this ecosystem are software engineers by training, so they have a high degree of shared
background and expertise. Finally, they are all part of the same company, so they may share the goal
of maintaining the codebase. The main challenge of rolling out software changes in this ecosystem is
therefore scale. So how do they deploy their software changes?

Gabriel Matute, Alvin Cheung, Sarah E. Chasins | PLATEAU | v.12 | n.1 | | 2021 3/6

4.1 Pushing Upgrades
After realizing that many teams had to devote time to keep their software in a functional state after
announced deprecations, Google implemented an internal Churn Rule. This policy requires that core
library and API teams must do the work to upgrade their internal users or else keep their interfaces
backward-compatible [4]. This had a number of advantages. The team making the changes to client
code was the team that deeply understood what had changed and why. Also, only one team needed
to know how to make the changes—in contrast to the prior approach, in which every affected team
needed to learn how to make the changes—reducing duplicated effort across the organization.

Recent work by Google’s C++ team to incorporate type-safe time and duration interfaces into the
codebase [5] offers an example of how this push model for software changes works in practice. To
make the upgrade, the team developed a custom tool similar to a dataflow analysis that finds integral
values that sink into low-level functions known to take a time or duration. The tool then incrementally
converts these to the appropriate types. They automatically generated more than 20,000 changes over
millions of lines of code. Before the Churn Rule, users of the infrastructure would have had to make
these same tens of thousands of changes by hand, potentially even making the change too disruptive
for the team to consider it useful in the first place.

It is not immediately clear how this process could be replicated outside of such an environment.
The migration tool was difficult and time consuming to build. In a large and distributed open-source
community, can developers muster the resources to go through this difficult tool building process?
Outside of a corporate environment, developers may also lack the incentive to provide this level
of support for all the users who depend on their software, especially outside of their organization.
Without the monorepo itself, a migration tool may be hard to test and deploy. How would developers
find all the affected source code? What about source code that is not publicly available? How would
the tool or patches be distributed? Finally, the users themselves might have different preferences
about the best way to adopt a potentially disruptive change.

5 Current Approaches
We now turn to describing current solutions adopted in more challenging software ecosystems as well
as recent work that suggests promising directions.

5.1 Manual Coordination
The most common way of dealing with the social challenges around software changes is communication
and negotiation within the community [6]. For example, developers might coordinate parallel releases
to ensure that users have an easier time finding compatible versions of software. Project teams
might plan feature releases and get community feedback to ensure changes are acceptable and visible
to a wide swath of the ecosystem. Users themselves are often actively monitoring dependencies
and the dependencies’ communication channels, to plan ahead and receive forewarning about future
potentially-disruptive changes.

Some amount of human intervention and coordination will always be required, but there are
opportunities to improve these interactions. As an example, recent work has identified that many
developers struggle to collect information about their users when designing interfaces [7].

5.2 Package Managers
The most common software-supported approach for managing disruptive changes in software ecosys-
tems is the use of release versioning and package managers. A community sets a version convention
and uses specialized tools to fetch and upgrade dependencies. Examples of widely used standards are
Semantic Versioning[8] (i.e. MAJOR.MINOR.PATCH) and Calendar Versioning[9] (e.g. YY.MM.DD).

However, summarizing upgrade compatibility information into a few numbers has proven difficult.
Researchers have identified that assessing the compatibility between releases is hard for non-language
experts and that developers must make compromises when a change is unlikely to break most users [10].
Developers have also expressed that many simple changes (like renaming), become cost-prohibitive
when it would require introducing a backward-incompatible release [6].

Gabriel Matute, Alvin Cheung, Sarah E. Chasins | PLATEAU | v.12 | n.1 | | 2021 4/6

5.3 Source Transformation
Researchers are also actively exploring the use of domain-specific languages and tools for automating
source transformations. An early example of this approach is TXL, a declarative language that uses
a grammar and a set of rules to rewrite source code [11]. Recent examples of this approach include
Cubix [12] and Comby [13], which are similar tools targeting multi-language transformations.

Many languages also have associated tooling available to perform source transformations. For
example, the C++ Clang-Tidy[14] extensible framework allows developers to specify custom diagnostics
and even text-replacement fixes that can be automatically applied. The Go language goes a step
further and includes a simple rule rewrite engine with their built-in gofmt[15] command.

Using these tools requires substantial expertise. Not only do users need to learn the interface to
the tool, but they often need to understand low-level details of the language they are transforming. For
example, TXL users must port the grammar and understand its representation details when specifying
rules. Meanwhile, Clang-Tidy is already capable of understanding C++, but the user must learn the
internal, Clang-specific AST representation (with its quirks).

5.4 Program Synthesis
Source transformation tools can also be extended via program synthesis techniques to lower the
barriers to entry. LASE [16] and REFAZER [17] use input-output examples to synthesize generic and
reusable AST edit rules. In follow up work, Blue-Pencil [18] is even capable of synthesizing edits
in real-time and providing them as suggestions within an IDE.

As in many other program synthesis applications, it is not yet clear whether the generated edit
scripts are complete or easy for developers to understand. This technique also relies on the availability
and visibility of change adoption examples, which can be challenging for developers to obtain. Finally,
it is not clear how programmers trying to use these tools to update their dependencies can exercise
control over the edits to match their expectations or priorities.

5.5 Other Solutions
Researchers have also proposed many interesting approaches, specifically to centralize change man-
agement. For example, CatchUp! [19] is an Eclipse plugin that capture the use of IDE-provided
refactorings to generate edit scripts, which can then be replayed by external dependants of the soft-
ware when performing an upgrade. Another line of work produced a plugin to migrate between classes,
given a mapping between equivalent methods [20]. However, these approaches are only able to express
a limited set of transformations and have not seen major adoption.

6 Conclusion
Software ecosystems produce many social barriers to deploying changes. The streamlined process
employed in some corporate monorepos suggests that there are opportunities to automate and reduce
duplicated effort. We hope that by highlighting the social challenges inherent in modern software
ecosystems, we can inform the design of the next generation of software upgrade processes and tools.

7 Acknowledgements
This work is supported in part by the NSF through grants CA-HDR 2029457, CA-HDR 1936731, CA-
HDR 2033558, IIS-1546083, IIS-1955488, IIS-2027575, and CCF-1723352; DOE award DE-SC0016260;
the Intel-NSF CAPA center; and gifts from Apple, Adobe, Facebook, Google, and VMware.

Gabriel Matute, Alvin Cheung, Sarah E. Chasins | PLATEAU | v.12 | n.1 | | 2021 5/6

References
[1] M. Kim, N. Meng, and T. Zhang, “Software Evolution,” in Handbook of Software Engineering, S. Cha,

R. N. Taylor, and K. Kang, Eds. 2019, isbn: 978-3-030-00262-6. doi: 10.1007/978-3-030-00262-6_6.

[2] R. C. Seacord and NCC Group, “Add extended integer types without breaking the ABI,” 2020. [Online].
Available: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2465.pdf.

[3] Improving Scroll Performance with Passive Event Listeners, https : //developers . google . com/web/
updates/2016/06/passive-event-listeners.

[4] T. Winters, T. Manshreck, and H. Wright, Software Engineering at Google: Lessons Learned from
Programming Over Time. O’Reilly Media, 2020, isbn: 9781492082743.

[5] H. K. Wright, “Incremental Type Migration Using Type Algebra,” in IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2020. doi: 10.1109/ICSME46990.2020.00085.

[6] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to Break an API: Cost Negotiation and
Community Values in Three Software Ecosystems,” in ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2016, isbn: 9781450342186. doi: 10 . 1145 / 2950290 .
2950325.

[7] T. Zhang, B. Hartmann, M. Kim, and E. L. Glassman, “Enabling Data-Driven API Design with Commu-
nity Usage Data: A Need-Finding Study,” in CHI Conference on Human Factors in Computing Systems.
2020, isbn: 9781450367080. doi: 10.1145/3313831.3376382.

[8] Semantic versioning, https://semver.org.

[9] Calendar versioning, https://calver.org.

[10] P. Lam, J. Dietrich, and D. J. Pearce, “Putting the Semantics into Semantic Versioning,” in ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!), 2020, isbn: 9781450381789. doi: 10.1145/3426428.3426922.

[11] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow, “TXL: A rapid prototyping system for programming
language dialects,” Computer Languages, vol. 16, no. 1, 1991, ICCL’88-Part I Computer languages: A
perspective, issn: 0096-0551. doi: 10.1016/0096-0551(91)90019-6.

[12] J. Koppel, V. Premtoon, and A. Solar-Lezama, “One Tool, Many Languages: Language-Parametric
Transformation with Incremental Parametric Syntax,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA,
Oct. 2018. doi: 10.1145/3276492.

[13] R. van Tonder and C. Le Goues, “Lightweight Multi-Language Syntax Transformation with Parser Parser
Combinators,” in ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2019, isbn: 9781450367127. doi: 10.1145/3314221.3314589.

[14] Clang tidy, https://clang.llvm.org/extra/clang-tidy.

[15] Gofmt, https://pkg.go.dev/cmd/gofmt.

[16] N. Meng, M. Kim, and K. S. McKinley, “LASE: Locating and Applying Systematic Edits by Learning
from Examples,” in International Conference on Software Engineering (ICSE), 2013. doi: 10.1109/
ICSE.2013.6606596.

[17] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann,
“Learning Syntactic Program Transformations from Examples,” in IEEE/ACM International Conference
on Software Engineering (ICSE), 2017. doi: 10.1109/ICSE.2017.44.

[18] A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, and A. Udupa, “On
the Fly Synthesis of Edit Suggestions,” Proc. ACM Program. Lang., no. OOPSLA, Oct. 2019. doi:
10.1145/3360569.

[19] J. Henkel and A. Diwan, “CatchUp! Capturing and replaying refactorings to support API evolution,” in
International Conference on Software Engineering (ICSE), 2005. doi: 10.1109/ICSE.2005.1553570.

[20] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring Support for Class Library Migration,” 2005. doi: 10.
1145/1094811.1094832.

Gabriel Matute, Alvin Cheung, Sarah E. Chasins | PLATEAU | v.12 | n.1 | | 2021 6/6

https://doi.org/10.1007/978-3-030-00262-6_6
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2465.pdf
https://developers.google.com/web/updates/2016/06/passive-event-listeners
https://developers.google.com/web/updates/2016/06/passive-event-listeners
https://doi.org/10.1109/ICSME46990.2020.00085
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/3313831.3376382
https://semver.org
https://calver.org
https://doi.org/10.1145/3426428.3426922
https://doi.org/10.1016/0096-0551(91)90019-6
https://doi.org/10.1145/3276492
https://doi.org/10.1145/3314221.3314589
https://clang.llvm.org/extra/clang-tidy
https://pkg.go.dev/cmd/gofmt
https://doi.org/10.1109/ICSE.2013.6606596
https://doi.org/10.1109/ICSE.2013.6606596
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3360569
https://doi.org/10.1109/ICSE.2005.1553570
https://doi.org/10.1145/1094811.1094832
https://doi.org/10.1145/1094811.1094832

	Software Ecosystems
	Example Changes
	System Library
	Browser API

	Social Challenges
	An Alternative Community Structure
	Pushing Upgrades

	Current Approaches
	Manual Coordination
	Package Managers
	Source Transformation
	Program Synthesis
	Other Solutions

	Conclusion
	Acknowledgements

