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Abstract

How autonomous vehicles and human drivers share public transportation sys-

tems is an important problem, as fully automatic transportation environments are still

a long way off. Behavioral decision making serves as a key link in autonomous driv-

ing technology. Within conventional self-driving technology, heuristic-based rules-

enumeration methods fulfill major tasks for behavioral decision making. However,

for such a complex behavior as driving, the development of a suitable set of rules is

a laborious engineering task that does not guarantee an optimal policy. Reinforce-

ment learning (RL) is a decision-making method with strong recent successes that

is capable of solving for an optimal policy, and can map diverse observations to ac-

tions in a variety of complex situations. However, RL has its own problems, such

as exceptionally long training times, unstable training results and difficult reward

tuning.

In this thesis, we present a series of behavior planning structures and algo-

rithms that are based on the advantages coming from both reinforcement learning

and heuristic-based rules-enumeration. The resultant contributions include:

• Creation of an Automatically Generated Curriculum in order to increase the

learning speed for RL.

• Improvement of the policy network of RL with an LSTM module in order to

get better performance on a given task.

• Creation of a hierarchical RL structure with hybrid reward mechanism which

can accomplish the behavior decision procedure with the help of heuristic-

based methods.

• Application of the hierarchical RL structure to a comprehensive range of urban

intersection scenarios, to include approaching, observation, and traversing.
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Compared to traditional heuristic-based rules-enumeration methods, which need

a large amount of effort to design rules which can cover as many scenarios as pos-

sible, reinforcement learning can help to learn such an optimal policy automatically.

On the other hand, our algorithm can help RL to be more sample-efficient and con-

verges to an optimal policy faster than competing algorithms.
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Chapter 1

Introduction

1.1 From human driver to autonomous vehicle

An autonomous vehicle (AV) consists of three main systems: 1) Perception, 2) Planning and 3)

Control. By analogy with a human driver, perception can be compared to the human’s eyes, plan-

ning to the human’s brain and consciousness, and control to the human’s arms and legs. Figure

1.1 presents the architecture of an AV system and a human driver. Generally, the whole driving

system needs the sensors or human eyes to detect the environment and localize the vehicle. Then

according to the map information and the prediction of the events happening, the route planner

Figure 1.1: Comparison between autonomous vehicle architecture and human driver
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specifies the route from starting point to destination. The behavior planner then makes behavior-

level decisions for driving, like merging into the exit lane, turning left, etc. Then the autonomous

vehicle needs to generate the trajectory for the control system to follow, whereas human drivers

can control the car directly using their limbs, perceptions, and experience. The human brain and

consciousness are mysterious in many ways and contain various phenomena and characteristics

that are difficult to explain. Similarly, the planning part of driving is difficult, especially for new

human drivers, due to lack of experience.

In order to design a good behavior decision-making system for autonomous vehicles, an

understanding of how human drivers succeed or fail in making decisions while driving is helpful.

An economics perspective, in which the decision making model is based on heuristics and bias

[1], can be helpful here. This model identifies the cognitive biases of decision-makers, in this case

drivers. It assumes that decision makers develop heuristic rules based on their past experience.

These heuristics help to overcome the pressure and constraints coming from limited time in

which to make a decision, which will lead to biased decisions based on the indidividual personal

experience. As a result, driving is a skill for which practice makes perfect. Most decisions made

during driving rely on experience or ”prior knowledge” coming from what drivers have been

taught or what they have learned during practise while encountering a fast-changing driving

environment. For a healthy new driver who can perceive the surrounding environment clearly

and operate the steering wheel and pedals smoothly, the difficulties of driving normally come

from two aspects:

1. How to get a large amount of experience so that the drivers can use the correct heuristic

skills when encountering various situations.

2. How to apply prior knowledge to generate the correct response even under the pressure of

limited time.

In general, when we design the decision making module of an autonomous vehicle, it needs

to overcome these two difficulties for human drivers so that the system is capable of generaliz-
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ing the given prior knowledge in order to tackle a rapidly changing and unpredictable driving

environment.

1.2 Behavior decision making of autonomous driving

For the reasons described, a good autonomous vehicle decision-making system should have:

• adequate prior knowledge to deploy driving skills, handle various possible driving scenar-

ios, and obey traffic rules;

• flexible behavioral response in a complex and fast-changing environment;

• computational efficiency.

In previous work, researchers have proposed various methods for autonomous vehicle de-

cision making which fit into three main categories: 1) rules enumeration based on heuristics;

2) imitation learning based on prior knowledge of expert drivers; and 3) reinforcement learn-

ing through trial and error in simulation. The three types of approach gradually decrease the

dependence on pre-collected driving data from expert human drivers.

Heuristic-based rules development. This method entirely depends on prior knowledge

gained from expert drivers. Researchers generalize a series of driving rules from human ex-

perience to be a basis for autonomous vehicle behavior. Some of the rules are at the behavior

level, such as slowing down and stopping at a stop-sign. Others are more detailed, such as tra-

jectory and controller planning in order to drive smoothly when distance-keeping to a leading

vehicle. It is laborious and time-consuming to create a set of rules that can make the autonomous

vehicle capable of successfully handling the entire range of relevant driving situations.

Imitation learning. In order to lessen the work of designing a large number of rules, an

alternative method is to use imitation learning to create a driver model that is similar to human

experts. This method can significantly reduce the work of rules enumeration by training a model

automatically. With a sufficiently large dataset, the autonomous vehicle can perform decision

3



making in a way similar to that of the human driver model which is derived from the data.

However, this method is not flexible enough to handle scenarios not included in the training

dataset. For example, how to perform a lane-change and how to traverse an intersection requires

two separate datasets and training processes.

Reinforcement learning. The third method uses reinforcement learning (RL), which through

trial and error is able to solve for an optimal policy that can map various observations to corre-

sponding actions in complicated scenarios by training in simulation. This method also relies on

prior knowledge of driving from human experts in order to design the reward function, but this

requires small effort compared to rules development. The main advantage is the algorithm’s flex-

ibility in a wide range of scenarios, since the simulation can generate various scenarios during

the training process. However, low stability and heavy computational requirements make RL

difficult to use for general tasks in the autonomous vehicle domain. In most previous work ap-

plying RL to autonomous driving, RL is used for learning throttle and steering angle for various

scenarios or only learning behavior decisions at the higher level of a planning system and then

applying traditional control algorithms at the lower level.

The shortcomings of reinforcement learning methods can be summarized as:

• Low stability: Most existing reinforcement learning methods can only be applied to simple

autonomous driving scenarios. When the driving scenarios become more complicated, it

is hard to get stable performance, i.e., different and inconsistent actions may be generated

in the face of similar conditions.

• Single-scenario: Transferring reinforcement learning results from one autonomous driving

scenario to a totally different scenario is difficult. In particular, reward functions need to be

re-designed from scratch. Transfer learning algorithms can help to expand a given scenario

to another one with similar attributes, such as expanding single-lane driving behavior to

two lanes. However, transferring between lane-change and yield-to-obstacle is typically

not feasible.

4



• Inefficiency: For driving scenarios with changing environments which include unpre-

dictably interacting vehicles, learning from scratch with RL requires a large amount of

learning effort to converge to a satisfactory performance. In some cases, even thousands

of trials may not give acceptable performance.

In order to overcome these shortcomings, and meanwhile to prevent dependence on human

driver data collection, our work proposes corresponding solutions:

• Curriculum learning: In order to ensure good stability for RL algorithms as well as flex-

ibility in handling complicated scenarios under fast-changing environments like urban in-

tersections, we propose to use curriculum learning to initially learn simple scenarios, then

progress to more complex scenarios during the learning procedure.

• Hierarchical structure: We propose a hierarchical hybrid RL structure which uses RL to

generate optimal decisions at different planning levels, which can help to address com-

plex driving scenarios, including various sub-scenarios. For example, if the ego vehicle is

blocked by a front vehicle, the system is capable of simultaneously making higher-level be-

havioral decisions such as making a lane change or slowing down behind a leading vehicle

and low-level throttle, braking, and steering angle actions based on the behavioral decision

and environments. This kind of modularity makes the learning process more efficient and

makes it easier to validate the safety of each module.

• Heuristic exploration: We design heuristic-based exploration for reinforcement learning-

based methods such that the autonomous vehicle can quickly access successful policies in

the initial learning stages, which significantly reduces learning time.

Scenarios arising at urban intersections are particularly suitable for the application of the

resultant RL techniques. According to research, every year 40% of all crashes in the USA occur

at intersections. Especially at intersections that are not controlled by a traffic light, the driver

has to monitor all vehicles continuously and to estimate their intentions and velocities. Decision

making in such scenarios is hard even for expert human drivers. Multiple decisions need to be
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Figure 1.2: Intersection scenario for autonomous driving

made in a flash. In Figure 1.2, for example, when the blue vehicle is approaching an intersection

and wants to go straight, the driver needs to maneuver appropriately to avoid crashing into the

vehicle in front of it. Sometimes during rush hour, vehicles which want to turn right or left may

block the traffic so that a car waiting behind wanting to go straight needs to make a lane-change

or yield in order to go through. Meanwhile, the driver then needs to stop at the stop-line if

necessary and then slowly approach the intersection so that it will not block it or crash into other

vehicles approaching from other directions. Subsequently, the driver needs to decide when to

begin traversing the intersection. As the traffic increases and the desire of the drivers to make

fast progress grows, it is easy to make a mistake in any of these decisions that can lead to an

accident.

1.3 Problem statement and expected contributions

Previous work has presented various solutions to the problem of autonomous driving behavior

planning. Most of them can be categorized as heuristic-based or learning-based methods. The

advantage of heuristic-based methods is that one can design straightforward rules intuitively and
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can easily determine and explain the reasons for failure cases. However, designing and refining

such an algorithm is labor-intensive. On the other hand, a learning-based algorithm doesn’t

depend on rules, but instead automatically learns a policy. However, most machine-learning

algorithms, especially end-to-end methods, have problems with stability and universality for

complicated scenarios.

In this work, we want to build a behavior planner system which can combine the clarity and

explainability of rule-based methods with the power and flexibility of hierarchical learning-based

methods. As a result, we propose methods for addressing the three main problems in previous

work:

1. How does one make architectural changes to existing reinforcement learning algorithms in

order to improve the learning performance as well as to be more computationally efficient?

2. How does one embed heuristic-based rules into a learning-based system in order to reduce

the time and labor of designing and generalizing all the rules?

3. How does one design a decision making system that is able to deal with the broad range of

driving scenarios which may be encountered, especially at urban intersections?

The learning-based method used in this thesis to solve the behavior planning problem is

reinforcement learning (RL). Using reward functions designed based on drivers’ experience, the

resultant algorithms can automatically improve the behavior planner policy during the training

process. The main topic of this dissertation is to determine such policies for specific urban

scenarios, leading to the following contributions:

1. Creation of an Automatically Generated Curriculum in order to increase the learning speed

for RL.

2. Improvement of the policy network of RL with an LSTM module in order to get better

performance on a given task.

3. Creation of a hierarchical RL structure with hybrid reward mechanism which can accom-

plish the behavior decision procedure with the help of heuristic-based methods.

7



4. Application of the proposed hierarchical RL structure to a comprehensive range of urban

intersection scenarios, to include approaching, observation, and traversing.

The remainder of the thesis is structured as follows. Chapter 2 describes previous related

work, including work on various autonomous vehicle behavior planners. Chapter 3 describes

the thesis’ proposed algorithms, which implement effective behavior planning for self-driving.

Chapter 4 presents simulation experiments based on the methods described in Chapter 3 and cor-

responding results. Chapter 5 covers the real-world data collection system and the experiments

extracted from that. Finally, Chapter 6 presents conclusions.
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Chapter 2

Related Work

2.1 Decision making of Human drivers

Understanding how human drivers make decisions while driving can provide heuristics for au-

tonomous vehicles. For humans, the rational approach to decision-making emphasizes the use of

logic and complete rationality [2]. As described in Chapter 1, the behavioral approach towards

decision-making emphasizes that the decision makers are prone to varying degrees of rationality

while making decisions, which makes it hard to ensure complete rationality at all times. The

different levels of rationality in decisions lead to various models of behavioral decision-making.

According to economic theory, the model with the highest level of rationality is economic

rationality [3], which assumes that the decision-maker is perfectly rational and is aware of all

the available alternatives and their permutations and combinations while making decisions. This

model’s requirements are too stringent to apply to human drivers in realistic, real-world driving

situations. A less rational model is the bounded rationality model [4], which attempts to deal

with less ideal circumstances. The decision maker gets by with simple understandings and per-

ceptions of the problem, rather than fully analyzing all the possible situations. This process still

ignores the personal bias of the decision makers. In the next level, a decision under pressure of

limited time and changing environment can be applied, the heuristic and biases model [1], which
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identifies the cognitive biases of decision-makers. It assumes that the decision makers develop

heuristic rules based on their past experience. These heuristics help to overcome the pressure and

constraints coming from the limited time which will lead to biased decisions based on personal

experience.

The heuristic-based human decision making model provides an intuitive basis for an au-

tonomous vehicle behavior planner. In our work, we apply this kind of heuristic-based decision

making model for rules-enumeration as well as an exploration basis for the reinforcement learn-

ing which can be used to speed up the learning process.

2.2 Behavior Planner of Autonomous Vehicle

As introduced in Chapter 1, the autonomous driving planner module can be broken down into

three planners:

1. Route planner: According to the starting point or current position A and the destination

B, the planner uses the map information to determine a route based on requirements like:

fastest route, shortest route or highway-preferred.

2. Behavior planner: When following the given route, the vehicle’s behavior planner needs

to make some behavior-level decisions like turn-left, lane-change, follow-front-vehicle,

etc.

3. Trajectory planner: After making a behavior decision, the vehicle needs to plan a detailed

trajectory for some period of future time so that the controller can control the vehicle to

follow the trajectory.

This thesis focuses on the behavior planner of the autonomous vehicle, and this chapter de-

scribes related work. As introduced in Section 1.2, previous approaches proposed for the decision

making process of autonomous vehicles can be categorized into three types:

• Heuristic-based rules enumeration
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• Imitation learning

• Reinforcement learning

2.2.1 Heuristic-based rules enumeration

Some previous work related to behavioral decision-making applied heuristics to the behavior

planner of autonomous vehicles. For example, [5] proposed a slot-based approach to check if it

is safe to merge into lanes or across an intersection with moving traffic. This method is based

on the information of slots available for merging, which includes the size of the slot in the target

lane, and the distance between the ego-vehicle and front vehicle. Time-to-collision (TTC) [6] is

a heuristic-based algorithm which has normally been applied to intersection scenarios as a base-

line algorithm. Fuzzy logic is also a very popular heuristic-based approach to model the decision

making and behavior planning of autonomous vehicles. In contrast to vanilla heuristic-based

algorithms, fuzzy logic allows adding the uncertainty of the results into the decision process. [7]

used a fuzzy logic method to control the traffic flow in urban intersection scenarios, where the

vehicles have access to environment information via a vehicle-to-vehicle (V2V) system, which

has only been applied to a small number of public roads and vehicles. In [8], the researchers de-

veloped a fuzzy logic method for the application of steering control in roundabout scenarios. The

proposed heuristic-based methods rely heavily on the parameter tuning and each set of param-

eters is restricted to the corresponding scenarios and environments. The use of heuristics alone

makes it hard to make the algorithm sufficiently general when designing a high-performance

autonomous vehicle behavior planning system. Especially for complex urban scenarios, it is la-

borious and time-consuming to develop a set of rules with or without advanced technology which

can cover all possible cases.
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2.2.2 Imitation learning

Imitation learning is an alternative method for a self-driving behavior planner that requires a

large amount of data collected from human expert drivers. The fundamental imitation learning

algorithms can be categorized into behavior cloning, direct policy learning and inverse reinforce-

ment learning. Most behavior cloning approaches for self-driving involve collecting sensor data

from an autonomous vehicle and mapping them to actions such as throttle, brake and steering

angle by expert human drivers. [9] and [10] are examples of using behavior cloning in order

to mimic human driver data collected from real-world cars or high-fidelity simulations. This

kind of supervised learning algorithm can work well if the state-action pairs during testing are

similar to those during training and the assumption is met that the state-action pairs are indepen-

dent and identically distributed. However, for most driving scenarios, the driving process is a

Markov Decision Process in which the current state relies on the previous state, so that the error

for generating an action will continuously increase for an action generated by behavior cloning

only. Direct policy learning can improve behavior cloning by adding an interactive demonstra-

tor during training time. DAgger (Dataset Aggregation) [11] was proposed to train the actual

policy on all the previous training data and policy aggregation trains on-policy on the training

data received in the last iteration, then blends them together during the roll-out. [12] and [13]

applied DAgger in two different autonomous vehicle planning simulations. A more advanced

method is inverse reinforcement learning (IRL) [14], which tries to learn the reward function

of the environment based on the expert’s demonstrations instead of the expert’s actions directly.

Reinforcement learning is then applied to learn the optimal policy based on the learned reward.

[15] modeled the interaction between autonomous vehicles and human drivers by the method of

IRL in a simulated environment. The work simulated autonomous vehicles to motivate human

drivers’ reactions and acquired reward functions in order to plan better decisions while control-

ling autonomous vehicles. It is obvious that IRL can be a good method for autonomous vehicle

planning. However, the method needs two processes of reward learning and reinforcement learn-
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ing, which leads to difficult convergence during the training process. If the reward function is not

difficult to get from experts or it can be easily gotten from the heuristic rules described before,

reinforcement learning is easier to apply to the self-driving problem.

2.2.3 Reinforcement learning

Reinforcement learning (RL) has been applied to transfer multiple rules into a mapping function

or neural network. According to the previous section, this work will focus on the application

of RL to the behavior planner of the autonomous vehicle. Recently, various DRL algorithms

have shown advantages in handling high-dimensional sensory inputs with discrete or continuous

actions. Deep Q-Networks [16] (DQN) and its variants have been successfully applied to various

fields. However, DQN is restricted to the discrete action domain, which makes it hard to apply

to autonomous driving. DDPG [17], which was proposed by Lillicrap et al., adapted the ideas

underlying the success of DQN to the continuous action domain. The algorithm has shown ex-

cellent performance in finding optimal policies and is competitive with other planning algorithms

which need full access to the dynamics of the system. All these solutions have in common that

they model the problem as an MDP, i.e., they assume full knowledge of the environment, which

is often not true in the real world. As a result, based on the requirements for autonomous vehi-

cles, some advanced techniques based on RL have been proposed which can be be summarized

under three headings:

1. Acceleration of RL

2. LSTM-based RL structure

3. Hierarchical RL

1. Acceleration of reinforcement learning

For most reinforcement learning algorithms, a major challenge is the long training time needed

for the learning process. The goal is for the computational time for training to be less than
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the effort required to tune rules one by one in heuristic-based rules enumeration. Curriculum

learning [18] was proposed to speed up the learning process by first training the system on easy

tasks and then gradually increasing the complexity of the tasks presented to the learning agent.

Most of the work on curriculum learning has focused on simple scenarios which can be solved

by hand-designed curricula [19]. For more complex tasks, however, hand-designing curricula

is a difficult problem. Florensa et al. [20] proposed a curriculum generation method for rein-

forcement learning which trains the robot in reverse sequence: starting the learning process from

an initial position close to the destination, it gradually increases the distance towards a random

start configuration. However, the results are mainly based on static scenarios and not on change-

able environments. In contrast, the complexity of autonomous vehicle problems is based on the

different scenarios resulting from other vehicles’ interactions. Therefore, the reverse curricu-

lum approach cannot be applied directly in our work. [21] introduced an approach which can

generate a curriculum as a directed acyclic graph instead and did experiments on the agents us-

ing RL. [22] designed a Teacher-Student Curriculum which learns a curriculum by supervised

learning or reinforcement learning in order to complete some tasks which cannot be finished if

trained directly without a particular curriculum. Most of the reported work hasn’t been applied

to the autonomous vehicle planning problem, which is more complicated and contains greater

numbers of states and action choices. We therefore design some difficult cases at urban intersec-

tion scenarios for autonomous vehicles and propose a novel approach, Automatically Generated

Curriculum (AGC)-based RL, which can help to solve tasks with high-dimensional state spaces

with fewer training iterations based on DRL. We use a neural network to approximate the policy

function and apply an automatically generated curriculum-based RL method to learn the optimal

behavior policy and decrease the training time and number of training iterations.
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2. LSTM-based RL structure

Some previous work has shown the capability of controlling the autonomous vehicle to finish

some simple tasks via DQN or DDPG. However, in the same scenarios, if the observation of the

AV is occluded during navigation for some time, the results worsen significantly. Modeling the

problem as a Partially Observable Markov Decision Process (POMDP) [23] allows the algorithm

to consider these uncertainties in the decision process, which makes it more robust to real sensor

characteristics. [24] proposed to extend the DQN method for POMDP problems by learning the

optimal policy of a model-based RL problem. They used a fully-connected network to approxi-

mate the mapping function from observations and belief vectors to Q-values for different actions

in order to solve a POMDP problem through DQN. [25] proposed a method called Deep Recur-

rent Q-network (DRQN) which can be applied to a model-free representation by adding LSTM

layers in the policy network. The trained policy network is capable of capturing all the historical

information in the LSTM layer and the output actions are based on all the historical observa-

tions with the help of LSTM layers. Based on DRQN, [26] proposed an algorithm called Deep

Distributed Recurrent Q-networks (DDRQN) which not only used the previous observations but

also previous actions as the inputs. The results show the first success in learning communica-

tion protocols by RL. [27] is a recent method called Action-specific Deep Recurrent Q-Network

(ADRQN), which also used historical observations and actions as input to get an optimal policy.

However, instead of inputting all historical information into the LSTM layer, they used paired

last-step action and current-step observations as inputs into the LSTM layer for training, which

showed improved results on some POMDP tasks. [28] formulated the decision-making prob-

lem for autonomous vehicles under uncertain environments as a POMDP and trained a Bayesian

Network representation to deal with a T-shape intersection merging problem. [29] dealt with

the traversing problem via Deep Q-Networks combined with a long-term memory component.

They trained a state-action function Q to allow an autonomous vehicle to traverse intersections

with moving traffic. [30] used Deep Recurrent Q-network (DRQN) with states from a bird’s-eye
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view of the intersection to learn a policy for traversing the intersection. [31] proposed an effi-

cient strategy to navigate through intersections with occlusions by using the DRL method. The

previous algorithms have not extended from discrete to continuous actions, especially while con-

trolling the pedal and steering of the AV. In part of our work, we extend the original POMDP with

LSTM [30] structure to an application that can generate continuous instead of discrete actions

and modify the LSTM-based actor-critic network structure of reinforcement learning so that it

applies continuous actions during the training process.

3. Application of hierarchical RL

Based on the context of RL, compared to the POMDP model, a hierarchical model is easier to

train with less complicated model structure and meanwhile can handle more complicated scenar-

ios than can the vanilla RL by breaking the initial large network into several smaller networks.

[32] proposed the idea of options to generate actions at different levels. The options are used to

define a policy governing when the action policy is initialized and terminated. [33] introduced the

concept of hierarchical Q learning called MAXQ. They proved the convergence of MAXQ math-

ematically and showed lower computing time than the original Q learning experimentally. [34]

proposed an improved MAXQ method by combining the R-MAX [35] algorithm with MAXQ.

It has both the efficient model-based exploration of R-MAX and the opportunities for abstraction

provided by the MAXQ framework. [36] used the idea of the hierarchical model and transferred

it into parameterized action representations. They use a DRL algorithm to train high-level pa-

rameterized actions [37] and low-level actions together in order to get more stable results than

by getting the continuous actions directly. [38] presented hierarchical DQN (h-DQN), a method

which is based on the structure of DQN. H-DQN adds another high-level Q-value function to

learn a high-level policy while the DQN is responsible for the low-level policy. The algorithm is

effective on the sparse and delayed feedback of ATARI games.

Most previous work designs a single hierarchical structure which can be used to solve the en-
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tire problem. However, in most real-world cases, a complicated task such as behavior planning

for an autonomous vehicle may be composed of several sub-tasks. As a result, we propose to

build the HRL-structure according to the heuristic method so that the system can more easily fig-

ure out the local optimal policy based on local option choice and environment state. Meanwhile,

it can allow the validation of different local policies as a sub-function with full capabilities within

the hierarchical system instead of presenting a monolithic neural-network black-box policy.

2.3 Summary

Table 2.1 summarizes the advantages and disadvantages of former heuristic-based and learning-

based methods and compares them with our proposed approach to the autonomous driving be-

havior problem. The four respects in which the methods are compared are as follows:

• Validation: ease of validation among different situations.

• Labor Efficiency: degree of human design effort needed to implement the method.

• Computational Efficiency: degree of computational efficiency in getting the algorithm

results.

• Universality: degree of applicability to various scenarios.

We rank the different algorithms by number, where 1 represents worst performance and 5

means best performance. On the one hand, heuristic-based methods always involve the biases

inherent in different decision-makers and are constrained by the labor needed to enumerate more

and more rules in order to improve the approaches. On the other hand, learning-based methods

also involve human biases during the reward function design process and are hard to validate

among various situations because the policy network is more like a black box whose operation is

difficult to explain.

In order to alleviate the disadvantages of previous methods, instead of using demonstration

data directly, we include a heuristic-based rules-enumeration policy during the exploration pro-
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Table 2.1: Comparisons between different methods. 1 means worst and 5 means best for the

corresponding criteria.

Method Validation Labor Efficiency Computational Efficiency Universality

Heuristic-based 5 1 5 4

RL [16][17][39] 1 3 2 1

RL with curriculum (ours) 4 3 3 2

RL with LSTM (ours) 1 4 1 2

RL with hierarchical network (ours) 3 4 4 4

HRL 3 4 4 3

Hybrid HRL (ours) 5 5 5 5

cess which can save a large amount of computation time for human model extraction, as well as

initiate the learning process more quickly. We build the HRL-structure according to the heuristic

method so that the system can adjust the exploration rate according to the training results in real

time and meanwhile can more easily figure out the local optimal policy based on the environment.
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Chapter 3

Methods

3.1 Overview

In this chapter, we introduce the methodologies used in this thesis for the autonomous vehicle

behavior planner system. Both a heuristic-based rules-enumeration system and reinforcement-

learning-based methods are described and applied to the decision making system of autonomous

vehicles.

Previous work makes clear that rules-enumeration systems are able to deal with particular

scenarios in a straightforward way. A large amount of experience from human drivers can be

transformed into multiple rules that the behavior planner of the self-driving car will follow. A

challenge of this kind of method is how to transfer the vast experience efficiently into a set

of enumerable rules. This is where reinforcement learning (RL) can come into play. An RL-

based system is capable of automatically transferring driving experience into a general policy

which can avoid the enumeration process of the rules-based system. But the learning-based

method also brings new challenges such as computational efficiency, learning speed, and how

the transformation works.

As a result, our approach is to combine the two in a way that keeps the advantages and lessens

the disadvantages of each method. In response to the shortcomings of learning-based systems
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described in the previous chapter, this chapter describes approaches which improve current rein-

forcement learning algorithms in three main respects:

1. Automatically Generated Curriculum (AGC) RL methods still have convergence diffi-

culties with high-dimensional state space problems, such as autonomous vehicle decision-

making in urban environments. The main objective of our AGC approach is to apply deep

reinforcement learning (DRL) methods which can generate a curriculum sequence to ac-

celerate the training process for high-dimensional reinforcement learning problems with

pre-defined tasks.

2. LSTM-embedded module For some self-driving scenarios, POMDP can describe the

problem better then MDP. In such cases, a LSTM-module in the policy network of the

reinforcement learning problem can help the agent to memorize part of the historical states

and output an action under the current state with more prior knowledge. The proposed

method designs a LSTM-embedded actor-critic network which can generate continuous

actions based on the idea of DDPG.

3. Hierarchical structure with sub-goals Applying a neural network as a policy network or

value function network in reinforcement learning algorithms can simplify policy design or

expected rewards prediction. However, the network is like a black box when attempting

to validate different situations. For a similar alternative task, traditional RL needs to train

unique policies. As a result, our goal is to construct a single planning algorithm based on

hierarchical reinforcement learning (HRL). This can accomplish behavior planning in an

environment where the agent can pursue multiple sub-goals, and do so in such a way that

sub-goal policies can be reused for subsequent tasks in a modular fashion.

In Figure 3.1, according to the three main problems mentioned in Chapter 1, we depict the

corresponding proposed methods and what specific issues each of them addresses. In this chap-

ter, we will introduce the heuristic-based decision making system in Section 3.2, followed by

fundamental reinforcement learning algorithms in Section 3.3. In Sections 3.4 through 3.7, we
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Figure 3.1: Comparison between different RL methods

introduce our proposed approaches for extending the RL structure: Automatically Generated

Curriculum, RL with LSTM, and Hierchical RL, and RL with Prior Knowledge.

3.2 Heuristic-based Decision Making System

For the heuristic-based decision making system of an autonomous vehicle, a straightforward

method is to enumerate various scenarios that the autonomous vehicle may encounter. For exam-

ple, Figure 3.2 shows a decision-making structure for an autonomous vehicle under various urban

scenarios which are shown in corresponding colors. The system tries to cover as many situations

as possible for urban scenarios, but some parameter values still need to be tuned based on the

agent’s parameters, map information and surrounding human-driven vehicles’ behavior. In this

example, the decision-making structure is divided into four layers. As one proceeds from higher

to lower layers, the decisions become more detailed. Especially for the Action layer, accurate

parameter values need to be set according to different situations. For example, in a scenario of

following a lead vehicle and approaching an intersection, the exact distance to keep away from

the lead vehicle is dependent on the lane, traffic situation and ego agent’s intention.

The rule-based method has the problem of an unconstrained number of rules being needed in

order to cover as many scenarios as possible. However, expanding such a decision-making dia-
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Figure 3.2: Structure of heuristic-based decision making system

gram is labor-intensive. We introduce an AI-based method to avoid the heuristic-based method’s

rule enumeration process, but meanwhile, the skeleton of the decision-making structure is re-

tained and the machine learning methods are constructed based on such a skeleton so that the

new AI-based methods can be stable as well as intelligent.

3.3 Current Machine Learning Algorithms

Current machine learning algorithms can be categorized into three main types :

1. Supervised learning

Supervised learning is mainly applied to figure out a mapping function f(X) between a

set of data X and its label or the corresponding value of features for the data Y .

Y = f(x) (3.1)

By learning the collected data with its label or value of features, the algorithm can auto-
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matically predict the label or value of features for the new data which are unseen in the

dataset. The two major functions of supervised learning are classification and regression.

2. Unsupervised learning

Unlike supervised learning, where all collected data have been assigned labels or corre-

sponding values of features, unsupervised learning allows the automated search of a set of

data for patterns and information that haven’t been detected or identified before. Cluster-

ing is a typical application of unsupervised learning. Clustering algorithms can process a

set of data and find clusters or groups if they exist in the data.

3. Reinforcement learning Reinforcement learning (RL) is the third category of machine

learning methods. It can learn a policy ⇡ specifying how an intelligent agent ought to

take actions a in an environment in order to maximize cumulative reward r based on cur-

rent state s. Figure 3.3 shows a block diagram of RL: the algorithm updates the policy

⇡(st|at) while the agent is running in the environment.

Figure 3.3: Reinforcement learning algorithm

In previous work, mainly supervised learning and reinforcement learning have been applied

to improve the decision-making system of self-driving cars. But most supervised learning is

taught on limited scenarios and therefore fails when the environment changes. With the help of

simulation, RL can create a more robust policy through learning under multiple randomly gener-

ated simulated scenarios. In our research, we have shown that RL has the capability to improve

based on heuristic-based methods for the decision-making system. In Sections 3.3.1 through

3.3.4, we first introduce the fundamental reinforcement learning approaches (Deep Q-Learning,
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Double Deep Q-Learning, Deep Deterministic Policy Gradient, and Hierarchical Reinforcement

Learning) that are used in our algorithm and then describe how we improve the heuristic-based

method with the help of RL. In Sections 3.4 through 3.7, we introduce the three reinforcement-

learning-based approaches (Automatically Generated Curriculum, RL with LSTM, Hierarchical

RL and RL with Prior Knowledge ) developed in our work.

3.3.1 Deep Q-learning

Since they were proposed, Deep Q-Networks and Double Deep Q-Networks have been widely

applied in reinforcement learning problems. In Q-learning, an action-value function Q⇡(s, a)

is learned to get the optimal policy ⇡ which can maximize the action-value function Q⇤(s, a).

Hence, a parameterized action-value function Q(s, a|✓) is used with a discount factor �, as in

Equation 3.2.

Q⇤(s, a) = max
✓

Q(s, a|✓)

= r + �max
✓

Q(s0, a0|✓)
(3.2)

3.3.2 Double Deep Q-learning

For the setting of Deep Q-learning, the network parameter ✓ is optimized by minimizing the loss

function L(✓), which is defined as the difference between the predicted action-value Q and the

target action-value Y Q. ✓ can be updated with a learning rate ↵, as shown in Equation 3.3.

Y Q
t = Rt+1 + �max

a
Q(St+1, a|✓t)

L(✓) =
⇣
Y Q
t �Q(St, At|✓t)

⌘2

✓t+1 = ✓t + ↵
@L(✓)

@✓

(3.3)

For the Double Deep Q-learning setting, the target action-value Y Q is revised according to

another target Q-network Q
0 with parameter ✓0:

Y Q
t = Rt+1 + �Q(St+1, argmax

a
Q(St+1, a|✓t)|✓0t) (3.4)
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During the training procedure, techniques such as the ✏-greedy approach [40] and the priori-

tized experience replay approach [41] can be applied to improve the training performance.

3.3.3 Deep Deterministic Policy Gradient

For DQN and Double DQN, the policy can only generate a discrete action space, which is less

realistic than DDQG, which can generate continuous actions through the policy network. This al-

gorithm is able to find policies whose performance is competitive with those found by a planning

algorithm with full access to the dynamics of the domain and its derivatives. The critic-network

Q(s, a|✓Q) is updated by the same method used in Equation 3.3. The actor-network µ (st|✓µ)

which is used to output an optimal action is updated by using the sampled policy gradient in

Equation 3.5:

r✓µJ ⇡
1

N

X

i

raQ(s, a|✓Q)|s=si,a=µ(si)r✓µµ (st|✓µ) |si (3.5)

3.3.4 Hierarchical Reinforcement learning

For the HRL model [38] with sequential sub-goals, a meta controller Q1 generates the sub-goal

g for the following steps and a controller Q2 outputs the actions based on this sub-goal until the

next sub-goal is generated by the meta controller.

Y Q1

t =
t+1+NX

t0=t+1

Rt0 + �max
g

Q(St+1+N , g|✓t1)

Y Q2

t = Rt+1 + �max
a

Q(St+1, a|✓2t , g)

(3.6)

3.4 Automated Curriculum Generation

As machine learning-based approaches and especially deep reinforcement learning (DRL)-based

approaches have become very popular, the idea of applying DRL to autonomous driving scenar-

ios has gained some attention. Recent work on using deep RL for learning to cross intersections
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was able to show that it is able to learn successful policies that are comparable to or can even

outperform rule-based systems in terms of successfully reaching the goal [42]. Unlike rule-based

algorithms, RL can learn to deal with a continuously changing environment by trial and error.

Unlike supervised learning, RL does not need a large amount of labeled data to train a data-based

model. Rather than learning a mapping from input to label, RL enables an autonomous agent to

learn a mapping from environment states to agent actions from its experience, which is similar

to how humans learn to drive.

However, most DRL methods still have difficulty with problems with high-dimensional state

spaces such as autonomous vehicle decision-making in urban environments. The basic objective

in our work is to apply deep reinforcement learning (DRL) methods to train an agent that can

autonomously learn how to approach and traverse an urban stop-sign intersection by collecting

information on surrounding vehicles and the road. The problem with DRL algorithms such as

Deep Q-learning [16] (DQN) and Deep Deterministic Policy Gradient [17] (DDPG) is that they

need a long training period to get an acceptable result. In this section, we introduce an algorithm

called Automatically Generated Curriculum (AGC) that can generate a curriculum sequence to

accelerate the training process for high-dimensional reinforcement learning problems.

AGC-based reinforcement learning is a curriculum reinforcement learning method which

involves two levels of learning. The higher level is responsible for automatically generating a

curriculum according to total rewards of test samples after the current training iteration with

respect to each task. The lower level applies a traditional DRL algorithm such as DQN or DDPG

to train a policy. The actions considered can be either discrete or continuous.

Fig. 3.4 shows a flowchart for ACG-based DQN. The inner rectangle with a red dashed

outline is the DRL (DQN or DDPG) process and the outer part is the process for automatically

generating the curriculum used for training the DRL algorithm. In the outer part, the policy of

the curriculum generation is formulated as a k-armed bandit problem [43], where k is chosen

based on the number of tasks. In this work we use an action-value-based incremental method for
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Figure 3.4: Flowchart of Deep Reinforcement Learning with Automatically Generated Curricu-

lum Sequence

the ACG-based RL algorithm. We update the V function of the curriculum generation through

Equation 3.7 according to [43], in which n 2 [1, N ] is the task id and k specifies the training

iteration.

V k+1
n

= ↵rn + (1� ↵)V k

n
(3.7)

We use the value function Vi to evaluate the difficulty of each task i. Higher values indicate

that this kind of task is relatively easier to get a better performance on than other tasks. AGC-

based RL chooses the task to be trained in the next iteration via the Boltzmann distribution

exploration method: ⇡(cn|Vn) = exp(Vn)PN
n exp(Vn)

. An easier task with a higher Vn will result in a

higher probability to be chosen as the curriculum for the next training iteration.

DQN [16] and DDPG [17] usually store the last M experiences as tuples of st, at, rt, st+1, at+1

in a replay buffer B. The original algorithm uses uniform sampling, which gives equal impor-

tance to all the transitions in the replay memory and may result in an unbalanced memory with

more failure cases than success epochs. Here, the experiences during a training iteration are
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added to the Replay Buffer B such that it represents the probability of the current chosen task I

to be chosen in the next training iteration, which is ⇡(cI |V k+1
I ). This means that after training on

one task in one training iteration, if the training result improves the policy and gets better perfor-

mance, the experiences during the training iteration have a higher probability of being added to

the replay buffer. Meanwhile, if the transition is not chosen, it will be abandoned without storing

it in the buffer. As a result, the buffer only contains transitions which may include more buffers

that can help to train out a better result. The complete algorithm is shown in Algorithm 1.

3.5 Reinforcement Learning with LSTM

When applying autonomous driving technology to some real-world scenarios, environmental

uncertainties make the development of decision-making algorithms difficult. Modeling the prob-

lem as a Partially Observable Markov Decision Process (POMDP) [23] allows the algorithm to

consider these uncertainties in the decision process, which makes it more robust to real sensor

characteristics. As a result, in this section, we propose to model the decision making problem as

a POMDP and will use deep reinforcement learning (DRL) to optimize the policy for generating

continuous actions.

Figure 3.5 shows an example of when the POMDP model can be applied. The intersection

is four-way with two-way stop-sign traffic control. When the ego car can begin to approach the

intersection, the pink ray-trace shows the field-of-view of the ego car and when the car is far away

from the intersection, the visibility range is limited to the current lane but has no information

about the road to be crossed. With the help of the POMDP model, the ego car can predict

information through historical data.

For the partially observed MDP problem, we propose a network based on the ideas of DDPG

[17] and ADRQN [27] to generate continuous actions based on the observations coming from

previous steps. In the network, instead of using all the previous observations, only a fixed number

of previous steps nsteps = 20 are used as the inputs to the LSTM layer. Figure 3.6 shows the
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Figure 3.5: The proposed intersection traversal scenario with simulated ray traces. The ego

vehicle starts from the stop line with zero velocity and other simulated vehicles run in other

lanes using the Krauss Traffic Model.

Figure 3.6: POMDP with LSTM network for generating continuous actions.

structure of the proposed network. The input observation ot is a 126-D vector which generates a

3-D continuous action vector at through two 512-D LSTM layers and one fully connected (FC)

layer. Meanwhile, the observation vector followed by an FC layer concatenates with the action

vector coming from the previous step followed by an FC, and then followed by a 128-D LSTM
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layer and three FC layers to produce a 1-D Q-values Qt corresponding to the continuous action

vector.

3.6 Hierarchical Reinforcement Learning

Solving the POMDP with reinforcement learning (RL) [43] often requires storing a large number

of observations. For continuous action spaces, the POMDP system will be computationally

inefficient. As a result, we address the decision making problem by modeling it as an MDP

and learning a policy with RL using a hierarchical structure. Our goal is to construct a single

planning algorithm based on hierarchical reinforcement learning (HRL) which can accomplish

behavior planning in an environment where the agent pursues multiple sub-goals and to do so in

such a way that sub-goal policies can be reused for subsequent tasks in a modular fashion Fig.

3.7 shows the transition between rules-enumeration and reinforcement learning based methods.

Figure 3.7: Heuristic-based structure vs. HRL-based structure
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3.6.1 RL with Hierarchical Options

For MDP with hierarchical options, we use three networks to produce hierarchical options, low-

level actions, and Q-values. Unlike the POMDP network, the system does not take observations

from previous time-steps into account for the decision process. However, it uses hierarchical

options to make a decision on whether the ego vehicle can trust the environment or not. Then,

based on the observations and high-level decision, the agent makes the decision on the low-level

policies. The structure of the network is shown in Figure 3.8. The 126-D input state vector st is

followed by three FC layers in order to generate a 2-D Q-values Ot corresponding to two hier-

archical option candidates. Meanwhile, the input state vector produces a 2-D continuous action

vector at through four FC layers. Then, the state vector followed by an FC layer concatenates

with the action vector followed by one FC layer. The output produces a 1-D Q-values Qt which

corresponds to the action vector through four FC layers.

Figure 3.8: MDP with Hierarchical Options network for generating continuous actions.

The lower-level decision here means the acceleration or deceleration the agent takes at the

current step. The overall flow of the algorithm is given in Algorithm 2.
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3.6.2 Hybrid HRL

In this section we present our proposed model, which is a hierarchical RL network with an ex-

plicit attention model, hybrid reward mechanism and a hierarchical prioritized experience replay

training schema. We will refer to this model as Hybrid HRL.

Hierarchical RL with Attention

Hierarchical structures based on RL can be applied to learn a task with multiple sub-goals. For a

hierarchical structure with two levels, an option set O is assigned to the first level, whose object

is to select among sub-goals. The weight ✓ot is updated according to Equation 3.8.

O⇤
t+1 = argmax

o
Qo(St+1, o|✓ot )

Y Qo

t = Ro
t+1 + �Qo(St+1, O

⇤
t+1|✓o

0

t )

L(✓o) =
⇣
Y Qo

t �Qo(St, Ot|✓ot )
⌘2

(3.8)

After selecting an option o, the corresponding action set Ao represents the action candidates

that can be executed on the second level of the hierarchical structure with respect to the selected

option o. Some previous work proposed the Hierarchical Markov Decision Process (MDP) [44],

which shares the state set S among different hierarchical levels during the MDP or designs dif-

ferent states for changing sub-goals and applies initial and terminating condition sets to transfer

from one state set to another.

In many situations, the portion of the state set and the amount of abstraction needed to choose

actions at different levels of this hierarchy can vary widely. In order to avoid designing a myriad

of state representations corresponding to each hierarchy level and sub-goal, we share one state

set S for the whole hierarchical structure. Meanwhile, an attention model is applied to define

the importance of each state element I(s, o) with respect to each hierarchical level and sub-goal

and then use these weights to reconstruct the state sI . The weight ✓at is updated according to
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Equation 3.9.

A⇤
t+1 = argmax

a
Qa(SI

t+1, O
⇤
t+1, a|✓at )

Y Qa

t = Ra
t+1 + �Qa(SI

t+1, O
⇤
t+1, A

⇤
t+1|✓o

0

t )

L(✓a) =
⇣
Y Qa

t �Qa(SI
t , Ot, At|✓at )

⌘2

(3.9)

When implementing the attention-based HRL, we construct the option network and the action

network (Figure 3.9), which includes the attention mechanism as a softmax layer in the action-

value network Qa.

Hybrid Reward Mechanism

For a sequential sub-goals HRL model [38], the reward function is designed separately for the

sub-goals and main task. The extrinsic meta reward is responsible for the option-level task,

and meanwhile the intrinsic reward is responsible for the action-level sub-goals. For HRL with

parameterized actions [36], an integrated reward is designed to evaluate both option-level and

action-level together.

In our work, instead of generating one reward function which is applied to evaluate the fi-

nal outputs coming from both options and actions in one step together, we designed a reward

mechanism which can evaluate the goodness of option and action separately during the learn-

ing procedure. As a result, a hybrid reward mechanism is introduced so that: 1) the algorithm

gets the information of which reward function should be triggered to get rewards or penalties; 2)

meanwhile, a positive reward which benefits both option reward and action reward occurs if and

only if the whole task and the sub-goals in the hierarchical structure have all been completed.

Figure 3.10 demonstrates the idea for the hybrid reward mechanism.

Hierarchical Prioritized Experience Replay

In [41] the authors propose a framework for more efficiently replaying experience during the

training process in DQN so that the stored transitions {s, a, r, s0} with higher TD-error in the
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Figure 3.9: Hierarchical RL Option and Action Q-Network. FC stands for a fully connected

layer. Within all the FC layers, Linear activation functions are used to generate last layers in both

Option-Value and Action-Value networks. For the rest of the layers, ReLu activation functions

are applied.

previous training iteration result in a higher probability of being selected in the mini-batch for

training during the current iteration. However, in the HRL structure, the rewards received from

the whole system not only rely on the current level, but also are affected by the interactions

among different hierarchical levels.

For the transitions {s, o, a, ro, ra, s0} stored during the HRL process, the central observation

is that if the output of the option-value network o is chosen wrongly due to high error between
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Figure 3.10: Hybrid Reward Mechanism

predicted option-value Qo and the targeted option-value ro + �Qo(s0, o0), then the success or

failure of the corresponding action-value network is inconsequential to the current transition. As

a result, we propose a hierarchical prioritized experience replay (HPER) in which the priorities

in the option-level are based on error directly and the priorities in the lower level are based on the

difference between errors coming from two levels. Higher priority is assigned to the action-level

experience replay if the corresponding option-level has lower priority. According to Equations

3.8 and 3.9, the transition priorities for option and action level are given in Equation 3.10.

po =
��Y Qo �Qo(S,O|✓o)

��

pa =
���Y Qa

t �Qa(SI
t , Ot, At|✓at )

���� po
(3.10)

Based on the above-described approaches, the Hybrid HRL is shown in Algorithms 4, 5 and

6.

3.7 Reinforcement Learning with Prior Knowledge

In Chapter 1, we mentioned that prior knowledge is important for human drivers to drive ef-

fectively. How to incorporate prior knowledge or previously designed rules into the learning

procedure is a subject that we introduce in the current section.
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3.7.1 Exploration with heuristic

In reinforcement learning, the learning procedure is actually a process to transfer the prior knowl-

edge into policies. Some recent work [45][46] proposes to use demonstration knowledge in

the reinforcement learning procedures so that the algorithms can achieve more efficient learn-

ing. However, for the autonomous vehicle driving behavior decision-making problem, some

heuristic-based methods can provide imperfect but successful solutions to finish assigned tasks.

As a result, inspired by the ✏-greedy approach, we introduce the ✏-HeuristicExplore (Eq.3.11)

approach, which can explore the heuristic-based policies with higher probability during the early

training stage and meanwhile embed some random exploration and exploitation with lower prob-

ability.

a =

8
>>>>>><

>>>>>>:

rule-based action with probability ✏/2

random action with probability ✏/2

a⇤ with probability 1� ✏

(3.11)

a⇤ is the action received from exploitation. In this kind of method, the agent can get a

higher average reward at the beginning of training and less effective policies are stored in the

training replay buffer. As a result, the agent can access both high-quality (heuristic-based) and

random explorations during the whole training procedure. Meanwhile, the probability of ex-

ploring heuristic-based policies decreases during the training procedure. Instead of exploring

an unknown environment with totally random actions, the agent gets an idea of what action may

bring higher reward based on a rule-based algorithm which helps the agent to learn more quickly.

3.7.2 Adjusted heuristic exploration

Based on the heuristic-based exploration for ✏-greedy method, we further propose to adjust the

decay rate for ✏ according to changing total reward of the current epoch. When the average total

reward is higher than a period of previous epochs, ✏ is decreased during the training process.
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Otherwise, ✏ will increase to favor exploration over exploitation.

Algorithm 7 describes the main training approach for a three-layer autonomous vehicle plan-

ning system. Algorithm 8 describes the method flow of adjusted heuristic exploration during the

training process.

3.8 Summary

To sum up, DRL is promising for autonomous vehicle behavior planning problems in which

rule-based algorithms may have difficulties. However, DRL always needs a long training period

for a good result, and may result in unstable training performance or not be capable of solving

various scenarios with a single policy. As a result, based on traditional reinforcement learning

algorithms, we proposed three approaches which can improve the performance of RL. ACG-

based DRL (Section 3.4) can significantly reduce training time compared to plain DRL. An

LSTM-module (Section 3.5) embedded in the network during training can deal with the POMDP

problem by generating continuous actions. The hierarchical structure (Section 3.6) can increase

the possibility of validation for learning-based methods with modular sub-functions which take

advantage of a hybrid reward mechanism and heuristic-based exploration.
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Algorithm 1 Automatically Generated Curriculum for DQN
1: procedure AGC-RL

2: Construct an empty replay buffer B

3: for n 1 to N candidate tasks do

4: Randomly initialize critic network NNn

Qa with weights ✓n
Q

and the target critic network NNn

Qa0 with

weights ✓n
Q0 .

5: for e 1 to E epochs do

6: rn
e

, NNn

Qa , NNn

Qa0 , TBn = Train(taskn, NNn

Qa , NNn

Qa0 , B) and add TBn into B

7: V 0
n
= 1

E

P
e
rn
e

8: for k  0 to K training iterations do

9: P (n) = ⇡(cn|V k
n
) = exp(V k

n )PN
n exp(V k

n )

10: I = sample([1, · · · , N ], prob=[P (1), · · · , P (N)])

11: if k � 1 and sample([0, 1], prob=[P (n), 1� P (n)]) is 1 then:

12: Add TBn into B according to P (n)

13: for e 1 to E epochs do

14: rI
e
, NNn

Q
, TBn = Train(taskI , NN I

Qa , B)

15: for n 1 to N candidate tasks do

16: V k+1
n

= ↵ 1
E

P
e
rn
e
+ (1� ↵)V k

n

17: for e 1 to E epochs do

18: Get initial states s0 of taskn

19: for t 0 to T do

20: Select at = argmaxat Q
a(st, at) and execute at

21: st+1 = T (at, st), rne = rego + rtarget � �4Ikpi
target�pegok2=0 + �5Ikpdes�pegok2=0

22: procedure TRAIN(taskn, NNn

Qa , NNn

Qa0 , B)

23: Empty TBn and get initial states s0 of taskn, rn = 0

24: for t 0 to T do

25: Select at = ⇡(st) according to ✏ exploration and execute at to get new state st+1 = T (st, at).

26: Get reward rt and rn+ = rt

27: Add (st, at, rt, st+1) to the temporary Replay Buffer TBn and sample random mini-batch of M transi-

tions (si, ai, ri, si+1) from the replay buffer B.

28: Minimize critic loss: L =
P

i
(yi �Qa(si, ai|✓Q))2 where yi = ri + �Qa

0
(si+1, ai+1|✓Q

0
).

29: Update weights: ✓Q
0  ⌧✓Q + (1� ⌧)✓Q

0
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Algorithm 2 MDP with Hierarchical Options via RL
1: procedure HOMDP

2: Construct two empty replay buffers Ba and Bo.

3: Randomly initialize actor network NNa, critic network NNQ and option network NNO with weights ✓µ,

✓Q and ✓O and the corresponding target actor network NNµ
0
, critic network NNQ

0
and option network NNO

0

with weights ✓µ
0
, ✓Q

0
and ✓O

0
.

4: for e 1 to E epochs do

5: Get initial state s0. Initial option is o0 = SlowForward. ro = 0.

6: for t 1 to T time steps do

7: ot, at = GetAction(st, ot�1)

8: st+1, rt, done = StepForward(st, ot, at)

9: if ot is Forward then

10: ro+ = rt and add (st, ot, rt, st+1, done) to Bo.

11: if done then

12: Add (st, ot, ro, st+1, done) to Bo.

13: else

14: Add (st, ot, rt, st+1, done) to Bo.

15: Sample random mini-batch of M transitions (si, oi, ri, si+1) from Bo and (sj , aj , rj , sj+1) from

Ba.

16: oi+1 = argmaxo O0(si+1|✓O
0
). yo

i
= ri + �O0(si+1|✓O

0
).

17: Minimize Lo =
1

M

P
i
yo
i
�O(si|✓O) to update NNO.

18: yµ
j
= rj + �Q0(sj+1, aj+1|✓Q

0
)

19: Minimize Lµ = 1
M

P
j
yµ
j
�Q(si|✓Q) to update NNQ.

20: 1
M

P
j
rµ(sj)Q(sj , µ(sj)|✓Q)r✓µµ(sj |✓µ) is the policy gradient and is used to update actor net-

work.

21: Update the target networks: ✓z
0  ⌧✓z + (1� ⌧)✓z

0
for z in {µ,Q,O}.
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Algorithm 3 Get Action
1: procedure GETACTION(s, o)

2: if o is SlowForward then

3: o argmaxo O0(s|✓O0
) according to ✏ greedy.

4: a = 0.

5: if o is Forward then

6: a = µ(s|✓µ) +N where N is a random process.

Algorithm 4 Hierarchical RL with Attention State
1: procedure HRL-AHR()

2: Initialize option and action network Qo, Qa with weights ✓o, ✓a and the target option and action network

Qo
0
, Qa

0
with weights ✓o

0
, ✓a

0
.

3: Construct an empty replay buffer B with max memory length lB .

4: for e 0 to E training epochs do

5: Get initial states s0.

6: while s is not the terminal state do

7: Select option Ot = argmaxo Qo(St, o) based on ✏-greedy. Ot is the selected sub-goal that the

lower-level action will execute.

8: Apply attention model to state St based on the selected option Ot: SI
t
= I(St, Ot).

9: Select action At = argmaxa Qa(SI
t
, Ot, a) based on ✏-greedy.

10: Execute At in simulation to get St+1.

11: Ro
t+1, R

a
t+1 = HybridReward(St, Ot, At).

12: Store transition T into B: T =
�
St, Ot, At, Ro

t+1, R
a
t+1, St+1

 
.

13: Train the buffer ReplayBuffer(e).

14: if e mod n == 0 then

15: Test without action exploration with the weights from training results for n epochs and save the

average rewards.
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Algorithm 5 Hybrid Reward Mechanism
1: procedure HYBRIDREWARD()

2: Penalize Ro
t

and Ra
t

for regular step penalties (e.x.: time penalty).

3: for � in sub-goals candidates do

4: if � fails then

5: if option ot == � then

6: Penalize option reward Ro
t

7: else

8: Penalize action reward Ra
t

9: if task success (all � success) then

10: Reward both Ro
t

and Ra
t
.

Algorithm 6 Hierarchical Prioritized Experience Replay
1: procedure REPLAYBUFFER(e)

2: mini-batch size k, training size N , exponents ↵ and �.

3: Sample k transitions for option and action mini-batch:

MBg ⇠ P g =
pg↵

P
lB

0 pg
i

↵
, g 2 {o, a}

4: Compute importance-sampling weights:

wg =
[N · P g]��

maxi w
g

i

, g 2 {o, a}

5: Update transition priorities:

po =
���Y Q

o

t
�Qo(St, Ot|✓ot )

���

pa =
���Y Q

a

t
�Qa(SI

t
, Ot, At|✓at )

���� po

6: Adjust the transition priorities to be greater than 0: pa = pa �min(pa).

7: Perform gradient descent to update ✓g
t
= ✓g

t
+ ↵@L(✓g)

@✓g according to sample weights wg , g 2 {o, a}.

8: Update target networks weights ✓g
0
= ✓g , g 2 {o, a}.
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Algorithm 7 HybridHRL for three-layer planning system
1: procedure HYBRIDHRL()

2: Initialize behavior-layer and trajectory-layer network Qb, Qp with weights ✓b, ✓p and the target behavior

and trajectory network Qb
0
, Qp

0
with weights ✓b

0
, ✓p

0
.

3: Construct an empty replay buffer B with max memory length lB .

4: ✏ = 1, k is a predefined training period number.

5: for e 0 to E training epochs do

6: Get initial states s0.

7: while s is not the terminal state do

8: Select behavior decision Bt and Pt based on AdjustedHeuristicExploration().

9: Apply PID controller to trace the trajectory point Pt in simulation to get corresponding throttle,

brake and steering angle and results in the next state St+1.

10: rb
t+1, r

p

t+1 = HybridReward(St, Bt, Pt).

11: Store transition T into B: T =
�
St, Bt, Pt, rbt+1, r

p

t+1, St+1

 
.

12: Re =
P

t
rt

13:

14: if
P

e�2k
e�4k Re <

P
e

e�2k Re then

15: ✏ = ⌘✏, ⌘ 2 [0, 1]

16: else

17: ✏ = ✏/⌘, ⌘ 2 [0, 1]

18: Train the buffer.

Algorithm 8 Adjusted Heuristic Exploration
1: procedure ADJUSTEDHEURISTICEXPLORATION()

2: if (e/k) mod 2 = 0 then

3: if random() > ✏ then

4: action = FollowHeuristicRule()

5: else

6: action = FollowHeuristicRule() +N (µ,�)

7: else

8: action = argmaxaction Q(state, action)
return action
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Chapter 4

Simulation Experiments

4.1 Overview

In this chapter, we describe experiments corresponding to the approaches proposed in Chapter

3. Compared to the highway situation, urban scenarios are much more complicated with more

corner cases for self-driving cars. On the highway, both road structures and human vehicle

behavior are more well-traced and more predictable. In urban situations, road structure and shape

have more variation and owing to the range of different possible situations, human vehicles’

behavior is hard to predict, which makes it difficult for rule-based algorithms to generate a tidy

set of rules covering all situations. As a result, in the experiments, the proposed algorithms

are applied to behavior decision making of self-driving cars at urban intersections. For urban

intersections with traffic lights or signs only, heuristic-based rules-enumeration needs a large

amount of effort to design rules covering different situations like traffic-jam, unexpected lane-

change, stopped vehicles, etc. RL has the advantages of learning automatically and showing

better performance in the face of scenarios unseen during testing.

For each proposed algorithm in Chapter 3, we trained an agent in the simulation so that it

can learn how to finish different tasks according to designed situations in which heuristic-based

methods find it difficult to obtain good performance. Depending on the method, we tested both
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on discrete and continuous actions for various scenarios. Among different intersection types in

the US, stop-sign intersections need the most interaction between drivers. For example, for a

two-way (i.e., with only two directions governed by a stop sign) intersection (shown in Figure

4.1), the ego car is not allowed to interfere with the cars on the east-west road that has the right

of the way. As a result, heuristic-based methods may have difficulty, especially when the ego car

needs to negotiate with human drivers a lot. For the Automatically Generated Curriculum and RL

with LSTM-module experiments, we choose a four-way intersection with two-way stop-signs in

which the ego car starts from a lane with a stop-sign without front vehicles. The agent needs to

deal with the approaching vehicles from the crossed road in order to transverse the intersection.

That is also the scenario in which we initially tested the hierarchical structure. Moreover, we

added front vehicles in front of the ego car to increase the difficulty in the test scenarios and also

tested a two-lane intersection with traffic lights. In the next chapter, we discuss more scenarios

in the real world and apply the hierarchical structure to them.

4.2 Experiments for Automatic Curriculum Generation

We applied the automatic curriculum generation methods to the two scenarios which are pre-

sented in Figure 4.1. The scenario setup considered in this work is a four-way intersection with

two-way stop signs. In each scenario, the AV (green solid rectangle with the letter “A”) has to

reach a pre-defined destination (green hollow rectangle with the letter “A”). Vehicles shown as

blue rectangles with the letter “T” (front vehicle or approaching vehicles according to differ-

ent scenarios) are target vehicles within the ego vehicle’s visibility range whose information is

included in the state space. All the simulated vehicles in the scenario stay in their lanes with

constant velocities. Furthermore, all traffic participants except the AV will not change their tra-

jectory in response to the AV. According to human drivers’ knowledge, when approaching a

two-way stop-sign intersection, if the vehicle coming from the left is very close to the ego car,

the ego car should stop without hesitation.
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Figure 4.1: Two proposed intersection scenarios. Scenario 1 is for intersection traversing prob-

lem and Scenario 2 is for intersection approaching problem. In the plots, the cyan lines are stop

lines of the intersection corresponding to the red stop signs.

4.2.1 Experimental Setup

We modeled both scenarios as MDP and trained the Q-network with DQN and DDPG respec-

tively for intersection approaching and traversing scenarios. We trained an agent using a random

curriculum and compared the performance and the training time with an agent trained with the

Automatically Generated Curriculum approach.

By modeling the problem as an MDP, we solved the Intersection Traversing and Intersection

Approaching problems using Deep Q-learning [16] and Deep Deterministic Policy Gradient [17],

respectively. All the critic network and actor networks for DQN and DDPG are constituted by

two hidden layers with 600 and 300 nodes. The “ReLU” activation function is used for all hidden

layers and the “tanh” activation function is used for the actor output in DDPG. We set up a replay

buffer with a size of 500,000.

For every training epoch, a successful case means that there is no collision between the ego
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vehicle and other vehicles and the whole process can be finished within 2000 steps (200 seconds).

We use collision rate and number of steps to finish as metrics to evaluate the tasks.

For the intersection traversing problem, we created a set of six tasks according to different ini-

tial positions of the first approaching vehicles and for the intersection approaching problem; four

tasks were generated according to the initial positions of the ego vehicle. The initial positions

of the approaching simulated vehicles or ego vehicle are randomly generated for initialization at

the first epoch and different numbers in Fig. 4.2 correspond to different task IDs.

Figure 4.2: Intersection traversing problem is divided into six tasks according to initial position

of approaching human vehicles.

4.2.2 Results

In this section, we compare our automatic generated curriculum method with random curriculum

(original DQN and DDPG) and manually designed curriculum methods. We tested and compared

three methods in scenarios 1 and 2 and provide the results here.
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Random Curriculum

We applied the DQN or DDPG algorithm by generating curricula randomly, which means the

probability of each task to be chosen obeys a discrete uniform distribution. After training for

250,000 iterations, we can get an 80% success rate for the Traversing scenario and for the Ap-

proaching scenario, it takes 7,000 iterations to get to a success rate of 60%.

Manually Designed Curriculum

In order to manually design the curriculum, we firstly train DQN on each task separately. Ac-

cording to the different performance for each task, we manually design the curriculum, beginning

with the task which achieves a higher success rate more quickly.

Automatically Generated Curriculum

1. Intersection traversing problem

Applying the AGC-based approach, the probability of each task’s being chosen for the

next training iteration varies according to the mean rewards the task can get during the

current training iteration. Fig. 4.3 shows the probability density function for each task to

be chosen for the next training iteration for different tasks according to the AGC-based

model for the intersection traversing case. We see that in the first period (roughly before

the 100th training iteration), the system prefers Task 2 because training Task 1 can reach an

acceptable result easily and Task 2 is relatively simple compared to other tasks. However,

in the later training period, the most difficult tasks, Task 4 and 5, are preferred over other

tasks because they get the lowest scores when the other scenarios perform well.

We compare the success rate and mean reward values using random curriculum and AGC-

based DQN in Fig. 4.4 and Fig. 4.5. With the help of the AGC structure, the system

can reduce training time by a factor of six to reach a similar and more stable performance

compared to the vanilla DQN algorithm. In Fig. 4.5, we compared AGC with Random
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Figure 4.3: Probability of being chosen for next iteration of training for the intersection traversing

case

Curriculum and Manually Designed Curriculum (MDC). Especially for MDC, the system

performs well for some easy-to-handle tasks; however, when the difficulty increases and

the curriculum is not designed well, it may not achieve the expected result. Random Cur-

riculum can achieve an acceptable result after a long time of training.

Fig. 4.6 shows the critic loss of lower-level DQN. It shows that if DQN is trained directly

via random curriculum, the system is not stable, and as training time increases, the system

may have a divergent critic loss. However, the use of AGC helps the critic loss to gradually

decrease and although the chosen task keeps switching, the critic loss is bounded all the

time and tends to decrease with the increase of training time.

2. Intersection approaching problem

For the intersection approaching problem, we created a set of four tasks. Each task cor-

responds to a different range of initial positions for the ego vehicle. The initial distance

between the front vehicle and the AV is randomly generated and is greater than 10 meters.

The front vehicle always stops at the stop sign first and then traverses the intersection.

The initial velocity of the ego vehicle is randomly generated and is between 8 m/s and

12 m/s and the destination of the ego vehicle is to stop completely at the stop line. Fig.

4.7 compares the results between Random Curricula, Manually Designed Curriculum and
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Figure 4.4: Success rate of Random Curricula and AGC-based Model for the intersection travers-

ing case

Table 4.1: Results comparison for different methods with the same number of training iterations

Steps Collision Unfinished Not stop Success Mean Reward

Intersection Traverse

TTC 365 2.2% 10.5% N/A 87.3% 22.1

Random Curricula 294 25.6% 16.2% N/A 58.2% 67.3

AGC-based Curricula 206 13.5% 4.4% N/A 82.1% 132.1

Intersection Approaching
Random Curricula 183 22.5% 20.7% 15.6 % 41.2% 150.23

AGC-based Curricula 130 0.21% 0.10% 1.0% 98.69% 480.39

the AGC-based model. The AGC model takes fewer iterations to achieve a 99.2% success

rate, whereas the Random Curricula method has a success rate less than 80% after twice

as much training time and the manually designed curriculum is quite unstable when we

transfer from one task to another.
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Figure 4.5: Reward value of three methods for the intersection traversing case

4.2.3 Discussion

For testing the performance of the different methods, we train each model with the same number

of iterations and then use the result to test for 1,000 episodes with the task chosen at random in

each episode. The results of the test with different methods are shown in Table 4.1. Steps in the

table means the average number of time steps needed to finish the whole task. For the intersection

traverse scenario, we train the model for 100,000 iterations. TTC can have a higher success rate

than the RL-based methods, but from the steps metrics we can see that TTC uses a much more

conservative strategy than the AGC-based RL does. As a result, the number of time-steps needed

by the TTC-based method is higher than necessary to traverse the intersection. This resulted in

several unfinished episodes where the TTC method failed to traverse the intersection. For the
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Figure 4.6: Loss Function of Random Curricula and AGC-based Model for the intersection

traversing case

intersection approaching scenario, we train the model for 40,000 iterations and the AGC-based

model can get a much better performance on the test tasks. Except for the performance of the

mean reward, the steps metric also shows better results. We can see that the AGC-based methods

can finish the task in fewer time-steps, so that the ego car achieves the destination sooner than

with other methods.

4.3 Experiments for RL with LSTM-module and Hierarchi-

cal Option MDP

In this section, we present experiments and results corresponding to the proposed RL with

LSTM-module policy network (Section 3.5) and Hierarchical Option RL (Section 3.6.1). The

method will use multiple historical steps of states to generate actions that have memory of pre-
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Figure 4.7: Success rate of Random Curricula and AGC-based Model for the intersection ap-

proaching case

vious observations in order to deal with scenarios having occlusion of field of view at the inter-

section.

4.3.1 Scenarios

We tested our algorithm in the SUMO simulator [47] (Figure 4.8) with two scenarios which are

shown in Figure 4.9. It is an urban intersection with a stop sign in the lane of the ego-car (blue).

The cross-traffic vehicles (yellow) have the right of way, and the ego-car’s task is to enter traffic

safely without strongly disturbing the behavior of the other vehicles.

In the two scenarios, the initial positions of the ego vehicle, the position of the stop-line, the

position of the mid-point of the intersection and the position of the destination are all the same.

However, we change the position of the lower bound of the intersection in Scenario 2, which may

result in less information from the ego vehicle’s sensor ray traces, especially at the beginning of

each training epoch. This kind of situation is closer to real-world scenarios, in which the average
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Figure 4.8: Intersection traverse scenarios in SUMO

distance between the lower bound of the intersection and the stop-line is four to six meters. As a

result, most vehicles don’t roll all the way up to the edge of the intersection. The farther the stop-

line is away from the lower bound of the intersection, the more difficult it is to make a proper

decision on when to traverse, because the geometry of the intersection blocks visibility.

Figure 4.9: Two initial scenarios for experiments

4.3.2 Experiment Setup

In the representation of the state space, we assume that the map information is known by the

agent. We define the state space as containing the ego vehicle’s velocity v and road geometry
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information, including the distance between the ego vehicle and the lower intersection boundary

dlb, the mid-point dmp and the destination dgoal of the intersection. Figure 4.10 shows the ray-

trace geometric information related to the intersection and the generated/simulated rays. The

accompanying video1 shows the simulated ray trace representations during Go Straight, Turn

Right and Turn Left at the intersection in SUMO [47].

Figure 4.10: Explanation of state space and method of constructing ray trace system. FC means

the front center of the ego car.

During the traverse process, the vehicle has to either Go Straight, Turn Right or Turn Left

successfully while limiting the required interactions between the ego vehicle and other simulated

vehicles. To evaluate the effectiveness of the proposed algorithms, we tested the following four

methods:

1. time-to-collision (TTC) [6]

1https://youtu.be/5HMB8SWanW4
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2. DDPG [17]

3. our proposed POMDP with LSTM algorithm which is described in Section 3.5

4. our proposed Hierarchical Option RL algorithm which is described in Section 3.6.1

For the evaluation we applied the resulting policies for 1000 iterations on the Go Straight, Turn

Right and Turn Left task separately. We compared the different algorithms using five metrics:

• Percentage of Success: the percentage of epochs in which the ego vehicle successfully

reaches the destination.

• Percentage of Collision: the percentage of epochs in which the ego vehicle collides with

any other simulated vehicle before reaching the destination.

• Percentage of Unfinished cases: the percentage of epochs in which the ego vehicle does

not achieve the goal within 1000 simulation steps, which equals 100 seconds in the real

world.

• Total steps steptotal: the average number of total steps the ego vehicle takes to finish each

test iteration. Fewer steps means less time or more aggressive actions the ego car is taken

to finish the whole process.

• Percentage of Interaction stepinter

steptotal
: the average percentage of steps in each test iteration

in which the ego vehicle has an interaction with one of the other traffic participants. An

interaction is defined as an unscheduled behavior change of a vehicle in response to the ego

vehicle’s behavior. Other traffic participants can react to the ego vehicle if the ego vehicle

has passed the lower bound of the intersection and is within the visibility range of the

ego vehicle. More interactions means that the ego vehicle relies more on other vehicles’

decelerations to avoid collision.

• Total Reward
PT

t=0 rt: the reward the agent gets for each test iteration.
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4.3.3 Results

First, we compare the results for our two baselines (i.e., TTC and the vanilla DDPG) for both

scenarios (Figure 4.9). The results are shown in Table 4.2 . In Scenario One, DDPG outperforms

TTC in terms of the success rate, total steps to finish the traversing, and the interaction rate,

which is in alignment with other reported results [42] that use bird’s-eye-view data instead of ray

trace data. However, for Scenario Two, where there are more unobservable states initially and

during the training process, DDPG and TTC vary as to which has better performance. Although

DDPG has a higher success rate for Go Straight and Left Turn scenarios, it also has a higher

interaction rate, which means the lower collision rate is due at least in part to the other vehicles’

adjustments instead of the ego vehicle’s skill.

Next, we compared RL with LSTM module and HOMDP to get the results for Scenario Two

alone, which are presented in Table 4.3. In general, TTC can cause a higher collision rate and

may result in more interactions, which means the method relies on the other simulated vehicles

to yield to the ego vehicle in order to avoid collision, which is not similar to the situation in

the real world. The result from RL with LSTM module is more conservative, which causes more

unfinished failure cases, meaning the epochs in which the ego vehicle cannot finish the traversing

task within 1000 simulation steps. The HOMDP method, which is our main contribution, can

get the highest total reward and success rate for all the Go Straight, Turn Right and Turn Left

tasks. For the Go Straight and Turn Left tasks, the interaction rate is lowest with HOMDP, which

means the results rely least on the other vehicles’ yielding. HOMDP takes more total steps than

other methods (TTC for Go Straight and Turn Left task, RL with LSTM module for Turn Right

Task), which means HOMDP is a more conservative strategy which values the success rate most.

In Figure 4.11, we visualize typical interactions between the ego car and cross-traffic which

has the right of way using the time-to-collision method. We can see that, in these cases, the

ego car blocks traffic, causing the other vehicles to stop in order to traverse the intersection

successfully. Meanwhile, we also visualize the results for RL with LSTM module and HOMDP
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Table 4.2: Results for Scenarios One and Two with TTC and DDPG methods. Bold text indicates

the best result.

Task Metrics
Scenario One Scenario Two

TTC DDPG TTC DDPG

Go Straight

% Success 95.6 97.8 95.3 96.2

% Collision 2.6 2.2 4.7 3.1

% Unfinished 1.8 0.0 0.0 0.7

Total Steps 385 136 70 195

% Interaction 44.82 24.49 18.87 30.02

Reward 673 735 552 587

Turn Right

% Success 98.6 100.0 98.2 97.6

% Collision 1.4 0.0 1.8 2.4

% Unfinished 0.0 0.0 0.0 0.0

Total Steps 117 106 66 63

% Interaction 17.05 10.14 13.97 11.4

Reward 743 792 665 721

Turn Left

% Success 86.6 97.6 91.4 92.4

% Collision 1.0 2.0 8.6 5.4

% Unfinished 12.4 0.4 0.0 2.2

Total Steps 514 196 108 289

% Interaction 35.47 33.26 39.57 37.31

Reward -821 217 -437 -223

in Figure 4.12 and Figure 4.13 respectively. The Hierarchical Option RL performs significantly

better when encountering the cross-traffic: the ego agent can usually find a good slot to traverse

so that it doesn’t interact with coming vehicles frequently and doesn’t block the traffic. For more

details, the performance of all the policies for TTC, RL with LSTM module and HOMDP can be

seen in the video2.

2https://youtu.be/Rj5bYtKshh8
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Table 4.3: Results for Scenario Two with Four Methods Together. Bold text indicates the best

result.

Task Metrics
Scenario Two

TTC DDPG POMDP HOMDP

Go Straight

% Success 95.3 96.2 97.1 98.3

% Collision 4.7 3.1 1.7 1.7

% Unfinished 0.0 0.7 1.2 0.0

Total Steps 70 195 261 102

% Interaction 18.87 30.02 27.86 26.41

Reward 552 587 621 873

Turn Right

% Success 98.2 97.6 99.5 99.8

% Collision 1.8 2.4 0.5 0.2

% Unfinished 0.0 0.0 0.0 0.0

Total Steps 66 63 57 62

% Interaction 13.97 11.4 6.26 9.28

Reward 665 721 892 903

Turn Left

% Success 91.4 92.4 95.6 97.3

% Collision 8.6 5.4 2.4 2.6

% Unfinished 0.0 2.2 2.0 0.1

Total Steps 108 289 276 132

% Interaction 39.57 37.31 33.21 28.90

Reward -437 -223 213 632

4.4 Experiments for Hierarchical Reinforcement Learning

In this section, we apply the Hybrid Hierarchical RL which was introduced in Section 3.6 to the

behavior planning of a self-driving car and make comparisons with competing methods. The

main idea of the algorithm is to replace the action space of the original RL with the heuristic-

based rules-enumeration strategy. In the tested scenarios, we add leading vehicles in front of the

ego car to increase the difficulties with which the agent must deal. The results show that the

rule-based algorithm begins to perform worse than in the easier scenarios shown in the previous
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Figure 4.11: Interaction between ego car and other simulated vehicles when traversing 2-way

stop-sign intersection: Time-to-collision-based method.

Table 4.4: Results comparisons among different behavior policies

Rewards
Step

Step Penalty Performance Rate

Option Reward ro Action Reward ra Unsmoothness Unsafe Collision Not Stop Timeout Success

Rule 1 -36.82 -9.11 112 0.38 8.05 18% 82% 0% 0%

Rule 2 -28.69 0.33 53 0.32 6.41 89% 0% 0% 11%

Rule 3 26.42 13.62 128 0.54 13.39 31% 0% 0% 69%

Rule 4 40.02 17.20 149 0.58 16.50 14% 0% 0% 86%

Hybrid HRL 43.52 28.87 178 5.32 1.23 0% 7% 0% 93%

tests, whereas our approaches maintain a good performance in these scenarios.

4.4.1 Scenario

We tested our algorithm in MSC’s VIRES VTD, which is a complete simulation tool-chain for

driving applications [48]. Referring to Figure 4.14, we designed a task in which an autonomous

vehicle (green box with A) intends to stop at the stop-line behind a random number of front

vehicles (blue boxes with T ) which have random initial positions and behavior profiles. The two

sub-goals of the task in this scenario are designed as STOP AT STOP-LINE (SSL) and FOLLOW

FRONT VEHICLE (FFV).
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Figure 4.12: Interaction between ego car and other simulated vehicles when traversing 2-way

stop-sign intersection: RL with LSTM module.

4.4.2 Transitions

State

The state which is used to formulate the hierarchical deep reinforcement learning includes the

information of the ego car, which is useful for both sub-goals, and the related information that is
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Figure 4.13: Interaction between ego car and other simulated vehicles when traversing 2-way

stop-sign intersection: Hierarchical Option RL.

needed for each sub-goal.

s =


ve, ae, je, df , vf , af , dfc,

dfc
dfs

, dd, ddc,
ddc
dds

�
(4.1)

Equation 4.1 describes our state space, where ve, ae and je are respectively the velocity,

acceleration and jerk of the ego car, while df and dd denote the distance from the ego car to the

nearest front vehicle and the stop-line, respectively. A safety distance parameter is introduced as

a nominal distance behind the target object which can improve safety due to different sub-goals.
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Figure 4.14: Autonomous vehicle (green box with A) approaching stop-sign intersection

dfs = max

✓
v2e � v2f
2amax

, d0

◆
, dfc = df � dfs

dds =
v2e

2amax
, ddc = dd � dds

(4.2)

Here amax and d0 denote the ego car’s maximum deceleration and minimum allowable dis-

tance to the front vehicle, respectively, and dfc and ddc are the distance to the front car and the

safety margin distances between ego car and front vehicle. The initial positions of all the simu-

lated vehicles in front of the ego car are spaced arbitrarily. The distance from the nearest front

vehicle and the ego car is randomly set between the safety margin and the max range of sensor.

Option and Action

The option network in the scenario outputs the selected sub-goal: SSL or FFV. Then, according

to the option result, the action network generates the throttle or brake choices.

Reward Functions

Assume that for one step, the selected option is denoted as o, o 2 {d, f}. The reward function is

given by:

For each step:
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• Time penalty: ��1.

• Unsmoothness penalty if jerk is too large: �Ije>1.�2.

• Unsafe penalty: �Iddc<0 exp(�ddc
dds

)� Idfc<0 exp(�dfc
dfs

).

For the termination conditions:

• Collision penalty: �Idf=0.�3.

• Not stop at stop-line penalty: �Idd=0.v2e .

• Timeout: �Itimeoutd2d.

• Success reward: Idd=0.,ve=0�4

where �k are constants. Ic are indicator functions. Ic = 1 if and only if c is satisfied, otherwise

Ic = 0.

Assume that for one step, the selected option is denoted as o, o 2 {d, f} and the unselected

option is o�, o� 2 {f, d}:

sr = ��1 � Itimeoutd
2
d + Idd=0.,ve=0�4

roption = sr � Ido�c<0 exp(�
do�c

do�s
)� Ido�=0.v

2
e

raction = sr � Ije>1.�2 � Idoc<0 exp(�
doc
dos

)� Ido=0.�3

rtask = sr � Iddc<0 exp(�
ddc
dds

)� Idfc<0 exp(�
dfc
dfs

)

� Ije>1.�2 � Idf=0.�3 � Idd=0.v
2
e

(4.3)

where sr represents the portion of the reward common to roption, raction and rtask.

For comparison, we also formulate the problem without considering a hierarchical model via

Double DQN. Then rtask denotes the reward for achieving the task in this flattened action space.

4.4.3 Results

We compare the proposed algorithm with four rule-based algorithms and some traditional RL

algorithms mentioned before. Table 4.4 shows the quantitative results for testing the average
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Table 4.5: Different HRL-based policies

Hybrid Reward Hierarchical PER Attention Model

HRL0 ⇥ ⇥ ⇥

HRL1 p
⇥ ⇥

HRL2 p p
⇥

HRL3 p
⇥

p

Hybrid HRL
p p p

performance of each algorithm over 100 cases.

The competing methods include:

• Rule 1: the high-level option always chooses to Follow Front Vehicle (FFV).

• Rule 2: the high-level option always chooses to Stop at Stop-line (SSL).

• Rule 3: if dd > (df + car length), select FFV, otherwise choose SSL.

• Rule 4: if df > dfc, select FFV, otherwise choose SSL.

• Table 4.5 shows the techniques used in several different HRL-based algorithms, whose

results are shown in Figure 4.15.

Figure 4.15 compares the Hybrid HRL method with different setups of HRL algorithms.

The results show that the hybrid reward mechanism can perform better with the help of the

hierarchical PER approach.

Figure 4.16 depicts a typical case of the relative speed and position of the ego vehicle with

respect to the nearest front vehicle as they both approach the stop-line. In the bottom graph we

see the ego vehicle will tend to close the distance to the front vehicle until a certain threshold

(about 5 meters) before lowering its speed relative to the front vehicle to allow a certain buffer

between them. In the top graph we see that during this time the front vehicle begins to slow

rapidly for the stop-line at around 25 meters out before taxiing to a stop. Simultaneously, the ego
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Figure 4.15: Training results for HRL with various combinations of technologies we proposed

(Table 4.5). For each test result in the figure, it is an average performance from multiple training.
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Figure 4.16: Velocities of ego car and front vehicles

Figure 4.17: Attention value extracted from the attention layer in the model. dr and fr are ddc
dds

and dfc
dfs

in the introduced state, respectively.

vehicle opts to focus on stopping for the stop-line until it’s within a certain threshold of the front

vehicle, at which point it will attend to the front vehicle instead. Finally, after a pause the front

vehicle accelerates through the stop-line and at this point the ego vehicle immediately begins

focusing on the stop sign once again as desired.
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Figure 4.18: Performance rate of only training to Follow Front Vehicles during the training pro-

cess. Results from training include random actions taken according to explorations. Results from

testing show average performance by testing 200 cases based on the trained network after that

training epoch.

Figure 4.17 shows the results extracted from the attention softmax layer. Only the two state

elements with the highest attentions have been visualized. The upper sub-figure shows the rela-

tionship between the distance to the nearest front vehicle (y-axis) and the distance to the stop-line

(x-axis). The lower sub-figure is the attention value. When the ego car is approaching the front

vehicle, the attention is mainly focused on dfc
dfs

. When the front vehicle leaves without stop-

ping at the stop-line, the ego car transfers more and more attention to ddc
dds

during the process of

approaching the stop-line.

For the scenario of approaching the intersection with front vehicles, one of the methods is to

manually design all the rules. Another possibility is to design a rule-based policy of stopping at

the stop-line, which is relatively easy to model. Then we train a DDQN model (see Figure 4.18

for the training process) to be the policy of following front vehicles. Based on these two action-

level models, we train another DDQN model (see Figure 4.19 for the training process) to be the

policy governing which option is needed for approaching the stop-line with front vehicles. Dur-
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Figure 4.19: Performance rate of only training to choose the options between FFV or SSL based

on the designed rule-based or trained action-level policies. Results from Test show average

performance by testing 100 cases based on the trained network after that training epoch.

Figure 4.20: Performance rate of Hybrid HRL training process. Results from testing show aver-

age performance by testing 500 cases based on the trained network after that training epoch.

ing the training process, after every training epoch, the simulation will test 500 epochs without

action exploration based on the trained-out network. By applying the proposed hybrid HRL, all
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the option-level and action-level policies can be trained together (see Figure 4.20 for the training

process) and the trained-out policy can be separated if the target task only needs to achieve one

of the sub-goals. For example, the action-value network of Following Front Vehicle can be used

alone with the corresponding option input to the network. Then, the ego car can follow the front

vehicle without stopping at the stop-line.

4.5 Summary

In this chapter, we designed multiple experiments for autonomous vehicles to deal with different

scenarios at urban intersections. The results show that ACG-based RL (Section 4.2) can signifi-

cantly reduce the training time while achieving similar or better performance. An LSTM-based

module (Section 4.3) embedded in the actor-critic structure can help to improve the performance

of the agents for POMDP scenarios. The experiments show that the proposed extensions to hi-

erarchical reinforcement learning achieve improved convergence speed, sample efficiency and

scalability over traditional RL approaches. Results to date suggest our algorithm is a promising

candidate for future research, as it is able to outperform a suite of hand-engineered rules on a

simulated autonomous driving task in which the agent must pursue multiple sub-goals in order

to succeed.
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Chapter 5

Real-World Experiments

5.1 Overview

In this chapter, we apply the algorithms described in the previous chapters to some real-world

urban intersection scenarios. We first introduce UrbanFlow in Section 5.2, a data collection

and processing system we developed for urban intersection scenarios. Then based on some

particular cases, we compare the results obtained from heuristic-based rule-enumeration with

those obtained from our reinforcement-learning-based algorithms in Sections 5.3 and 5.4.

5.2 UrbanFlow

The current state of the art in acquiring and using real-world human driving data faces several

problems. First, some published work relies on privately collected datasets, the inaccessibility of

which makes them impossible to use as benchmarks for comparisons between various algorithms.

Second, some datasets are collected by autonomous vehicles from the perspective of the ego

vehicle. Although this perspective is ultimately the one available to an autonomous vehicle, it

is difficult for it to provide full sequences showing the social behavior of surrounding vehicles.

To derive models for such behavior, bird’s-eye view datasets are useful. In response to these
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Figure 5.1: The UrbanFlow dataset processing pipeline. The pipeline includes the drone data

collection and process flow from raw video data to the final trajectory data.

problems, we developed a method for benchmarking human driver behavior based on a bird’s-

eye-view data collection system via drone. Figure 5.1 shows the pipeline of the data processing

procedure.

5.2.1 Video Stabilization

The two main challenges for video stabilization are the robustness and the speed of the alignment

[49][50]. In this paper, we propose several steps for the video stabilization in order to deal with

the displacement of the drone during the data collection process. Figure 5.2 visualizes the flow

of the stabilization method. For each frame fn at time step n, the algorithm chooses a reference

frame fref according to the alignment evaluation score gotten from the result of the last time step

and corresponding homography matrix in order to get the stabilized frame. Firstly, a re-alignment

is performed when the result of the ECC alignment score is lower than a threshold. ECC takes

a lot of time to converge and is not adaptive to align the current frame with a reference frame

when their similarity is lower than a threshold. Secondly, since the alignment is time-consuming,
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it is only performed when a reference frame needs to be re-chosen. The homography matrix is

re-used for the following frames until a new reference frame is chosen when the evaluation score

drops to the threshold. Then, the homography matrix calculated from ECC alignment during

the previous step is used for initializing the guess for ECC in the next step to speed up the

convergence. Lastly, images are down-sampled [51] so that ECC uses fewer pixels during the

calculation.

Figure 5.2: Optimized stabilization method flow.

5.2.2 Object Detection

In the proposed pipeline, RetinaNet [52] is used for detecting vehicles in the images. The training

dataset contains all the bounding boxes and their corresponding labels for each image. The input

images are re-sized to ensure that the size of detection objects is greater than 32-by-32 pixels as

well as not too large for the GPU computational capability. Images are masked to crop out the

roads in order to make detection easier. RetinaNet was fine-tuned using pre-trained weights from

the COCO dataset [53].
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5.2.3 Map Construction and Coordinate Transition

The first step in the creation of the map is to crop the area of interest, which in this case is

the roads. To attack this problem, we took advantage of the image segmentation network ”U-

net”, described in Ronneberger et al. [54], with just a few adjustments based on the work of

Iglovikov et al. [55]. We preserve the decoder section of the network because by adding a large

number of feature channels, it allows the network to propagate context information to the higher-

resolution layers. The important change was in the encoder section, where it was replaced by the

down-sampling elements of the VGG16 architecture in order to take advantage of the pre-trained

weights in ImageNet [56], due to the limited quantity of the collected data.

Figure 5.3: Transition from original image-based coordinate to road-based Coordinate

After detecting the road and applying a color filter to detect the lane markings on the road,

we transform all the detected vehicle positions from the original image-based coordinates to the

road-based coordinates. Figure 5.3 shows the method for generating the road-based coordinates

based on a random road geometry which may occur in the real world. The method first chooses an
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origin and then proceeds to obtain the x-axis and y-axis along the lane markings which separate

the opposite directions of moving vehicles. For the given vehicles v1 and v2, the figure shows two

examples of how to extract the road-based positions. Finally, it is able to represent the vehicles’

information, which contains the following items:

• Local x and y based on the road-based coordinates

• Vehicle length and width

• Section ID i

• Lane ID l

5.2.4 Vehicle Tracking and Trajectory Smoothing

A Kalman filter [57] is used for tracking and trajectory smoothing. Based on the car’s dynamic

model, characteristics of the system noise and measurement noise, the measurement variables are

used as the input signal, and the estimation variables that we need to know are the output of the

filter. After the positions of vehicles have been transformed into the local (road) coordinates, we

apply the tracking algorithm to track each car. Meanwhile, we smooth each vehicle’s trajectory.

In the system, we use vehicle position as the state variable. F is the state transition matrix and H

is the measurement matrix. Vq(n) and Vp(n) represent the system noise and measurement noise,

respectively.

5.3 Urban Scenarios

In this section, we will show the results of applying HybridHRL to both two-level and three-level

planning systems in some urban scenarios. Figure 5.4 shows the hierarchical structure for the

behavior planning system with two or three decision making layers. The two-layer setup includes

a high-level behavior planner and a low-level controller. For a traditional planning system, the

trajectory planner can increase the car’s control stability. As a result, in the three-layer setup, we
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Figure 5.4: Hierarchical structure of planning system with hierarchical reinforcement learning

add an intermediate layer in order to output the target trajectory points. The system would first

output the high-level behavior decision. Then, depending on the decision, the trajectory layer

generates a corresponding target waypoint that the ego car intends to follow. Finally, the action

layer outputs the throttle, brake and steering angle.

Meanwhile, according to the scenarios we extracted from the UrbanFlow dataset, we com-

pare our algorithms with heuristic-based rules enumeration policies, as well as previous RL ap-

proaches. We tested our algorithm in MSC’s VIRES VTD (Virtual Test Drive) simulator.

5.3.1 Scenarios

Based on traffic data collected at an urban intersection in Pittsburgh, PA using UrbanFlow [58],

we identified two important cases where the human needs to make decisions that strongly depend

on human maneuvering skills. The accompanying video1 gives a clear idea of the behaviors

performred by Car 1 and Car 2. Figure 5.5 shows a snapshot of the two cases we will consider

here:

1. For Car 1: The white car is trying to turn left at a green light. However, in Pittsburgh,

1
https://youtu.be/JqzwGrtZOpY
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Figure 5.5: Human driver scenarios requiring skilled maneuvering to get through an urban inter-

section

most green traffic lights control both vehicles going straight and vehicles turning left. As

a result, the white car is blocked by vehicles going straight approaching from the opposite

direction. When training the policy in simulation, the initial positions of the ego agent and

other vehicles in the scene are all randomly assigned. There is no vehicle in front of the

ego agent initially.

2. For Car 2: The black car is trying to go straight at a green light. But because the white

car described above is blocked, the black car is blocked as well. As a result, the driver

needs to make a lane change in order to traverse the intersection during the current green

light. When training the policy in the simulation, the initial positions of the ego agent and

other vehicles in the scene are all randomly assigned. Either the left lane or right lane is

blocked randomly. Sometimes, there is no lane blocked and the ego vehicle is not required

to perform a lane-change behavior.
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5.3.2 MDP Transitions

In this part, we will introduce how to design the state, action and reward factors in the Markov

Decision Process for RL training.

State

For each of the two scenarios, we choose three nearest target vehicles to be included in the state

space. Figure 5.6 shows the ego agent and target vehicles under the two scenarios. The features

included in the state space can be categorized into two parts:

Figure 5.6: Green objects with letter A are the ego agent for two different scenarios. Cyan objects

with letter T are the selected target vehicles whose features are included in the state space.

• Ego agent features:

1) Vehicle dynamic features: velocity vego, acceleration aego, heading angle hego;

2) Localization features: lateral dinterx and longitudinal dintery distance related to the center

of the intersection, lateral distance to ego lane’s center dlc and target lane’s center dtlc;

3) For Left-Turn scenario: Subjective intention of waiting time feature: time spent waiting

at the intersection t;
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• Target vehicle features:

1) Vehicle dynamic features: velocity vt; acceleration at; heading angle ht;

2) Position relationship with ego car: relative distance dt to the ego agent; We use df to

specify the distance from ego to the front vehicle.

3) For Left-Turn scenario: time to collision ttc corresponding to the ego agent.

4) For Go-Straight scenario: safe margin distance from front vehicle to ego car:

ds =
v2ego/aego � v2front/afront

2
+ �1,

distance to safe margin corresponding to front vehicle: dc = dt� ds and safety coefficient:

e = dc
ds

.

Action

The hierarchical structure of the actions is designed according to the heuristic-based rules-

enumerations decision-making system that was introduced in Chapter 3, Figure 3.2. In Figure

5.4, we also show an example of how the actions are designed based on the FollowLeadVehicles

scenario. Based on the two-lane intersection traverse problem, we list our actions as follows:

• High-level behavior planner:

Left-turn scenario: LaneChange or FollowFrontVehicle.

Go-straight scenario: LeftTurn or Wait.

• Intermediate-level trajectory planner: the waypoint the agent intends to follow.

• Low-level controller: throttle or brake, steering angle

Reward function

The reward function design is based mainly on factors that appear to be important based on

human driving experience, which is subjective. But for this scenario, one can see that if one
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drives conservatively, Car 1 (that intends to turn left) may be stuck at the intersection until the

light turns red (which is what actually happens in the video). Car 2, which intends to go straight,

needs to wait until the next green-light period, and it is possible that another car in front of Car

2 also wants to make a left turn, so that Car 2 will be stuck for quite a long time. As a result,

we design the reward with aggressive intention to traverse the intersection as quickly as possible.

The reward function can be categorized into two parts:

• For each step:

1. Time penalty ��1;

2. Unsmoothness penalty if jerk is too large �Ijerk>1�2;

3. Unsafe penalty �Idc<0 exp�dc/ds�3;

4. Penalty for deviating from the lane center when doing lane keeping �Idlc>1�4dlc.

• For the termination conditions:

1. Collision penalty �Idf=0�5;

2. Timeout penalty. For example, the agent is stuck or waits too long to move forward

�Itimeoutd2destination;

3. Out of road penalty �Idlc>lanewidth
d2lc;

4. Success reward �6.

All the sigma parameters are tuned due to various road structure and scenarios.

5.3.3 Results

Left-turn scenario

In Table 5.1, we compare HybridHRL to the heuristic-based rules-enumeration policy which is

based on predicting the time difference of arrival at the potential collision point between the

target vehicles and the ego agent. Not only is the success rate improved by 47%, but each of
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Table 5.1: Results comparisons between heuristic-based rules-enumeration and HybridHRL for

left-turn scenario while applying two-layer planning system

Rewards
Steps

Performance Rate

Behavior Reward Throttle Reward Steering Reward Collision Out of Road Timeout Success

Rule 3.64 -16.50 0.48 249 19.35% 11.83% 17.20% 51.61%

HybridHRL 82.98 71.97 87.37 52 0.8% 0.4% 0.0% 98.8%

the failure metrics is reduced to less than 1%. For reward evaluated from each behavior level,

we found that both the behavior and controller decisions have higher rewards than the rule-based

method.

In Figure 5.7, we show the training and test reward against the number of epochs. During the

learning process, we train the agent for 10 epochs and then test for 10 epochs. For the training

process, the adjusted heuristic exploration approach 8 will be used and for the test process,

the actions are generated without exploration, which means it shows the real capability of the

policy network. During the initial training stage, we can see that with the help of heuristic-based

exploration, the training policy works much better than the test policy. However, after the test

policy begins to converge, the performance of each of the three networks surpasses that of the

training policy and begins to achieve better results.

In Figure 5.8, we compared the successful rate between the test policy results and the rule-

based method. As the traffic shown in the video is quite dense, Car 1 has difficulty figuring

out a good slot through which to make a left turn, even for the human driver in the video. The

learning-based methods can surpass the rule-based method after about 2000 epochs of training.

For the same environment setup, we compare the behavior planner and velocity profiles for

the rule-based method and HybridHRL. We set a constant time-to-collision threshold based on

the velocity and the relative distance of the target vehicle for the rule-based methods and tune

the threshold in order to get a relatively high average reward for a set of test cases. But due to

the high density of the traffic in the scene, the time-to-collision threshold is not robust to various

80



Figure 5.7: Reward for left-turn scenario during training process. The reward is an average per-

formance for 500 cases. The train X results mean the actions are selected with adjusted heuristic

exploration. The test X results mean the actions are selected directly through the network.

situations. An obvious drawback is that the behavior decision of the rule-based method waits a

much longer time than HybridHRL, which can quickly traverse the intersection with fewer steps.

Figures 5.9 and 5.10 compare the behavior-level decisions as well as the velocity profiles for the

rule-based method and HybridHRL. The positive x-axis direction is the axis of forward advance

in the original lane for the ego vehicle, and the y-axis is the direction of the lane into which the

car is turning. In the 3D plots, the rule-based method is more likely to choose WAIT during the

left turn, which makes the ego agent slow down frequently. In the sub-figures on the right, the

rule-based ego agent faces more target approaching vehicles than HybridHRL due to its waiting

behavior.
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Figure 5.8: Performance rate for left-turn scenario during training process. The rate is an average

performance for 500 test cases without explorations of the action space.

Figure 5.9: Heuristic-based rules-enumeration policy for left turn while encountering approach-

ing vehicles from the opposite direction. The left plot shows only the ego vehicle; the right plot

shows all vehicles.

Go-straight scenario

For the two-layer planning system, we visualize the behavior planner in Figure 5.11. For the rule-

based algorithm, we can see that the ego car may have the intention to make the lane-change, but
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Figure 5.10: HybridHRL for left turn while encountering approaching vehicles from the opposite

direction. The left plot shows only the ego vehicle; the right plot shows all vehicles.

not succeed in completing it, as shown in the upper-left subfigure by the initial horizontal blue

segment followed by a horizontal red segment. Here we design the intention separately from

the action, which means the ego car will also have a lane-change intention if the front vehicle

begins to block it. After the lane-change intention is activated, the ego car needs to evaluate the

environment to see if the action can be taken safely. However, from the HybridHRL result, we

find that the ego car may choose to follow the front car during the major time of the trip. The

lane change intention is quickly generated and goes away according to the environment changes

which make the higher level decision to be stable.

The steering controller did not always work well in the HybridHRL algorithm, especially for

some cases that did not need lane change (see the lower-right subfigure in Figure 5.11). When

the ego agent moved forward, it could not stay centered in the lane. As a result, we introduced

the three-layer planning system so that the trajectory planner can help to stabilize the controller.

In Table 5.2, we compare the HybridHRL and heuristic-based rules-enumeration policy. For

HybridHRL, we tested on both the two-layer and three-layer planning systems. When evaluating

the reward for the three-layer planning system, it shares the same reward mechanism with the

two-layer planning system.
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Figure 5.11: Behavior planner visualization for go-straight cases. For some situations when the

lane is not blocked, the lane-change behavior is unnecessary. Different-colored dots show the

corresponding behavior decisions that are selected.

Table 5.2: Results comparisons between heuristic-based rules-enumeration and HybridHRL for

go-straight scenario

Rewards
Step

Performance Metrics

Behavior Reward Throttle Reward Steering Reward Collision Out of Road Timeout Success

Rule 34.33 32.43 40.84 108 19.60% 0.0% 1.2% 79.8%

HybridHRL 2-layer 52.37 47.12 50.26 157 11.6% 3.7% 0.0% 84.7%

HybridHRL 3-layer 82.31 76.32 77.53 157 4.2% 0.2% 0.0% 95.6%

Moreover, we tested the scenario for other reinforcement learning algorithms and visualized

the training process in Figure 5.12. For the Double DQN (DDQN) method, we used ✏-greedy
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exploration and no hybrid reward mechanism was applied. For HybridHRL without heuristic

exploration, we applied the hybrid reward mechanism technique and the HybridHRL is for a two-

layer planning system. The HybridHRL trajectory point is for the three-layer planning system,

which also performs the best compared to the other methods. With the help of hybrid reward

mechanism and the heuristic-based exploration, the policy network can converge faster than the

original DDQN method. Meanwhile, with the help of the PID-controller instead of learning

steering angle and throttle directly, the agent can both achieve a higher performance and do it

much more quickly than Hybrid-HRL with the two-layer decision structure.

Figure 5.12: Training results of different RL algorithms for go-straight scenario.

In the following Figure5.13 compare the trajectories generated from both 2-layer and 3-layer

HybridHRL structure. With the 3-layer method, we can see that the trajectories yield less to the

center of the lane (at the center of the two green lane markers). For 2-layer’s structure, sometimes

the lane change cannot be performed well when it makes the higher level decision of lane change,

but at the lower level, the trajectory are still close to the original lane.
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Figure 5.13: Comparison between 2-layer and 3-layer HybridHRL structure. The upper row is

the trajectory generated from 2-layer HrybridHRL structure and the lower row is generated from

3-layer system. The green lines are the lane markers.

For both scenarios we include the dynamic results in the video2. The video illustrates the

planner results for both HybridHRL and rule-based decisions.

5.4 Failure cases

In this section, we compare the HybridHRL and rule-based methods by comparing several failure

cases. For various intersection scenarios, we visualize the results for both algorithms and discuss

the reasons for failure in each case.

5.4.1 Left-turn Scenario

In Figure 5.14 and Figure 5.15, we visualize the left-turn procedure with different decision mak-

ing strategies. In this case, the rules-enumeration decision strategy is based exclusively on a

constant time-to-collision value. As a result, when the traffic is dense as shown in the figures,

2
https://youtu.be/Wn3o0PwuVes

86

https://youtu.be/Wn3o0PwuVes


it is hard to find a slot for which the time-to-collision for all target vehicles is greater than the

threshold, which results in the ego car waiting a long time before turning left. From Figure 5.14

(a) to (b), the ego car moves forward a bit, but many target cars have already passed, and the ego

car is still stuck at the waiting to make a left-turn. Even after the ego car makes a decision to

turn, a target vehicle coming into the visibility range may cause the ego car to be unable to brake

or accelerate in time, leading to a crash. For HybridHRL, due to the flexibility of the decision,

which takes more features into consideration, the strategy of when to turn is quick and reliable

so that even when new vehicles come into the scene, the algorithm sticks with turning instead of

braking to avoid a possible crash under a similar situation. We can see from the figures that the

ego car traverses the intersection at the same time as other vehicles waiting at the intersection.

Figure 5.14: Turning left with rules-enumeration: Fail. The blue ego car begins to turn left in the

second sub-figure. But the ego car doesn’t move forward as quickly as needed because it detects

approaching vehicles and the approaching vehicles don’t slow down enough to avoid collision.

5.4.2 Go-straight Scenario

For the go-straight scenario, the following figures show a failure case for HybridHRL with the

two-layer method and a corresponding successful case for the heuristic-based method. In Figure

5.17, we can see that after the high-level behavior decision to make a lane-change, the ego car
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Figure 5.15: Turning left with HybridHRL: Success. Under the same conditions, the blue ego

car turns left decisively to pass in front of the approaching vehicles.

Figure 5.16: Lane change to move forward with Rules-enumeration: Success. In the third sub-

figure, the blue ego car begins to execute a lane-change.

makes a left lane change successfully. However, while the ego car begins to adjust itself to follow

the center of the new lane, it fails to adjust the steering angle and crashes into a car to its left.

When the HybridHRL method uses a two-layer hierarchical structure, we use RL to pick a low-

level control command, which is more erratic. As a result, we use the three-level hierarchical

structure to improve the trajectory planning of the decision making system.

In the following figures 5.16 and 5.19, we can see that the rule-based method is bad at high-
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Figure 5.17: Lane change to move forward with HybridHRL: Fail. In the second sub-figure,

the blue ego car successfully executes a lane-change into the target lane to get around blocked

front vehicles. However, after lane-changing, due to the unstable steering behavior, the blue car

deviates from the center of the lane sufficiently that it crashes into a vehicle to its left.

Figure 5.18: Lane change to move forward with Rules-enumeration: Fail.

level decision making and it crashes into the vehicle on the left while making the lane change. In a

similar situation, the three-layer HybridHRL method succeeds in making the lane-change as well

as maintaining the lane-following decisions at both levels with the help of the PID-controller.
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Figure 5.19: Lane change to move forward with HybridHRL: Success.

5.5 Summary

In this chapter, we first introduced our real-world traffic data collection system via drone and

then chose two scenarios that require skillful decisions and maneuvering by human drivers. We

showed that the rules-enumeration-based method has limited ability to deal with such decision-

making problems and that the Hybrid-HRL algorithm can improve the decisions with the help of

the approaches we discussed in Section 3.6.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In general, heuristic-based rules enumeration methods seem to be a plausible approach to de-

scribe the human decision process. Prior distance-based and time-to-collision-based (TTC-

based) algorithms include some parameter-tuning to deal with different scenarios. However,

tuning these parameters is laborious, since the algorithms are not easily adapted to various envi-

ronmental situations. They also require the design of a large number of distance-based rules to

handle different situations. Recently, as Deep reinforcement learning (DRL)-based approaches

have become very popular, the idea of applying DRL to autonomous driving scenarios has gained

attention, since it is able to learn successful policies that are comparable to or can even outper-

form rule-based systems in terms of successfully reaching the goal. Unlike rule-based algo-

rithms, RL can learn to deal with a continuously changing environment by trial and error. Unlike

supervised learning, RL does not need a large amount of labeled data to train a data-based model.

Rather than learning a mapping from input to label, RL enables an autonomous agent to learn a

mapping from environment states to agent actions from its experience, which is similar to how

humans learn to drive.

This dissertation applies various RL-based algorithms to improve autonomous driving per-
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formance compared to both rule-based methods and existing RL algorithms. We proposed an

automatic curriculum generation algorithm for the RL training process that can significantly

reduce training time while achieving similar or better performance. We also created an LSTM-

based and hierarchical-structure-based policy network which is able to improve the performance

of the agent when the ego-car faces limited-field-of-view situations. Based on the hierarchical

structure, we finally introduced a decision making system for autonomous vehicles that enables

the ego car to cooperate with human-driven cars in urban intersection scenarios, including lane-

change, intersection-traverse, and yielding scenarios.

For each algorithm, we conducted experiments by designing various scenarios: single-lane

stop-sign intersection approaching, multiple-lane traffic-light intersection approaching, inter-

sections with traffic light control of both left-turn and go-straight vehicles. According to the

results gained in simulation from synthetic data as well as from real human-driver data, our

decision-making structure enables improved performance compared to both traditional RL meth-

ods (DQN/DDQN/DDPG) and heuristic-based methods.

6.2 Future work

Currently, none of the scenarios in our work considers road geometry. We only consider straight

roads with a relatively good forward visibility range. Figure 6.1 shows two scenarios in which

the road geometry will play a key role when the ego vehicle is making a decision.

For scenario (a), the ego car wants to go straight to traverse the intersection. However, its

field of view is blocked due to the geometry of the road. If the ego is blocked by traffic ahead,

it may not have a good view to analyze the front and back target vehicles in order to make a

higher-level decision on whether a lane-change is safe and needed. Similarly for scenario (b),

when the ego vehicle intends to make a left turn at the intersection, it also doesn’t has a clear

field of view of approaching traffic. When the target vehicles are unobserved in the scenario,

the POMDP model can be applied to our hierarchical structure so that the system will be able to
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Figure 6.1: Scenarios requiring consideration of road geometry.

handle more complicated scenarios and also predict the surrounding environment. First, we need

to transfer the lateral and longitudinal position into a Frenet coordinate system to be compatible

with the road geometry. Second, a LSTM structure of the policy network is essential for action

output. As discussed in Section 3.5, this kind of policy network will be able to memorize multiple

historical observations to produce single- or multi-step actions. Finally, with this kind of road

geometry, the hierarchical system needs to have one more layer to determine whether the current

field of view is enough to make a high-level decision directly, or, due to the currently perceived

conditions, the ego should go for a conservative behavior in order to ensure safety.
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