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ABSTRACT

Virtual assistants have become an essential part in many people’s lives today. These di-

alogue systems perform services given users’ voice commands, such as controlling devices,

searching for information, or performing conversational tasks such as booking of events or

navigation instruction. However, today’s dialogue systems face challenges, because (1) they

are implemented using a pipeline of multiple independently optimized modules which do not

necessarily provide the best performance when integrated together and (2) they are limited

to utilizing only unimodal input, i.e. speech input from the user. The modularized system

design induces a disconnect between each module’s and the quality of the overall dialogue

system, and it also makes it difficult to update the entire system for a new task as every

module will need to be changed. While the multimodal context contains rich information

of the users and their surrounding environments, many dialogue systems in today’s virtual

assistants interact with the users utilizing only their language input via a speech interface.

As dialogue systems only utilize speech input, they are unable to provide services which

require understanding the user or environmental context, for example conversing with a user

regarding their physical surroundings.

In this thesis, we mitigate the limitations of prior dialogue systems in two ways: (1) we

propose an end-to-end model which fuses the separate components in a standard spoken

dialogue system together and (2) we leverage multimoal contextual cues from the user and

the environment, to enable a dialogue system that can interact with the user based on their
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physical surroundings. We introduce end-to-end learning for scalable dialogue state tracking,

where the model directly predicts dialogue states from natural language input and can handle

unseen slot values. We enhance our speech recognition system using multimodal input with

the target speaker’s mouth movements and learned speaker embedding to improve robustness

in noisy cocktail party environments. Finally, we apply end-to-end and multimodal learning

on two situated dialogue tasks: vision-grounded instruction following and video question

answering. The situated dialogue model directly takes as input the multimodal language and

visual context from the user and the environment, and outputs system actions or natural

language responses. Compared to prior methods, our proposed situated dialogue systems

showed improved speech recognition accuracy, dialog state tracking accuracy, task success

rate and response generation quality.
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Chapter 1

Introduction

1.1 Motivation and Research Problem

Virtual assistants, such as Amazon Alexa [153] and Google Assistant [154], are becoming

increasingly intelligent and prevalent in our lives [94, 30, 84]. Instructed via the speech

interface, they are able to perform tasks of various complexities, from setting up a reminder,

answering factoid questions, to buying a product online and making a restaurant reservation.

Conventional spoken dialogue systems are generally a pipeline of the following modules:

(1) speech recognition interface to transcribe user’s speech into text, (2) spoken language

understanding to extract task-related information from a user response, (3) dialogue state

tracking to track the user’s goals in the course of multiple dialogue turns, (4) dialogue policy

to decide the dialogue system’s action, (5) response generation to convert the dialogue action

to a natural language response, and (6) text-to-speech engine to convert the system response

into auditory form.

There are several limitations coming from the modularized design of the conventional sys-

tems:

1. Because these modules are trained independently with their own objectives, instead of

1



towards the final output quality (i.e., quality of system response), there is a disconnect

between the performance of the intermediate modules and the quality of the overall

system.

2. In the production system, when one module is updated, all of its subsequent mod-

ules need to be re-trained with the updated inputs to ensure the performance during

inference. This reduces the flexibility for intermediate module update.

Besides the limitations from the complex modularized architecture, another challenge that

the conventional dialogue systems face is the scenario of noisy background with overlapping

speech. This results in limited speech recognition accuracy in the dialogue systems, and the

speech recognition errors can propagate to the downstream modules. Furthermore, using

only the user’s speech as input, conventional spoken dialogue systems are usually limited

to perform software tasks, or at most triggering pre-programmed smart hardware devices.

Several multimodal dialogue applications can not be realized without taking into account

the rich multimodal context information of the user and their surrounding environment.

For example, in visual question answering, a user can have a conversation with the system

regarding what happens in their physical world. In vision-grounded instruction following, a

user can ask the agent to perform an action in the physical space. Both of these applications

require the system to have visual perception of the environment.

We can use multimodal context from the user and the environment to mitigate these limita-

tions. To handle the problem of noisy speech input, we can use the visual cues from the user

to improve speech recognition, because visual cures are invariant to acoustic interference.

We can also incorporate the contextual visual cues from the environment for the multimodal

situated dialogue tasks.
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1.2 Thesis Outline

In this thesis, we aim to improve the dialogue systems via (1) learning an end-to-end model

which fuses separate modules in the pipeline to directly optimize the objective of interest, and

(2) leveraging multimodal context from the user and the environment for situated dialogue

interaction.

In Chapter 2, we review the related literature and state-of-the-art approaches on the situated

dialogue tasks.

In Chapter 3, we study end-to-end dialogue state tracking. Without a separate language

understanding module, the dialogue state tracker directly predicts the dialogue states from

natural language dialogue text input. Based on the state-of-the-art pretrained BERT lan-

guage model, our state tracker does not require a predefined ontology for slot values, and

thus is scalable for unseen slot values.

In Chapter 4, we extend the conventional audio-only Speech Recognizer with the multimodal

context from the user, in order to address speech recognition in adverse acoustic environments

where background speech signals and noise drastically deteriorate recognition accuracy. We

propose to use the visual information and machine learned speaker embedding from the

speech to adapt the acoustic models. They provide correlated and supplementary information

on top of the acoustic signal and are robust against environmental acoustic noise.

In Chapter 5, we explore policy learning strategies for vision-grounded instruction following

agents. The agent policy is an end-to-end model that takes the dialogue text from the

human and contextual visual cues from the environment as input and predicts an action.

The agent’s goal is to understand the natural language instruction given by the user, execute

a series of actions to navigate the indoor environment based on its visual perception and

eventually complete the instruction. We experiment with curriculum learning and human-

agent dialogue to boost the agent’s policy training efficiency.
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In Chapter 6, we consider response generation for video question answering (VideoQA). The

end-to-end VideoQA model receives multimodal inputs: a textual question from the user

and a video. The goal is to generate natural language answers to the question grounded

on the video content. We propose a question-guided video feature extraction mechanism

to extract, summarize and filter the video features based on the question to provide more

relevant information for answer generation.

In Chapter 7, we conclude the thesis and discuss future research directions.
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Chapter 2

Background

2.1 Scalable Dialogue State Tracking

Dialogue state tracking (DST), a core component in today’s task-oriented dialogue systems,

maintains user’s intentional states through the course of a dialogue. The dialogue states

predicted by DST are used by the downstream dialogue management component to produce

API calls to a backend database and generate responses to the user [20]. A dialogue state is

often expressed as a collection of slot-value pairs. The set of slots and their possible values

are often domain-specific, defined in a domain ontology. Many state-of-the-art approaches

operate on a fixed ontology, by performing classification over a predefined set of slot values

or iteratively scoring slot-value pairs from the ontology [92, 134, 127]. However, such

models can be inefficient or infeasible when the ontology is dynamic (e.g., movie, restaurant),

innumerable (e.g., time), or simply not exposed by an external database [96, 131].

In Chapter 3 of this thesis, we study one practical problem in DST – scalability with unknown

ontology and unseen slot values, with a specific condition: the target slot value (except for

none and dontcare) always appears as word segment in the dialogue context. Previous

approaches often require a candidate list, which can be an exhaustive list of n-grams in
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the dialogue context or slot tagging outputs from a separate language understanding (LU)

module [96, 126, 118]. Using n-gram candidate generation might be inefficient because the

number of candidates the DST scorer needs to iterate through is proportional to the length

of the dialogue context. Although the LU-generated candidate list can be shorter, the DST

scorer cannot recover from missing target candidates incurred by LU errors [96, 131].

2.2 Bidirectional Encoder Representations from Trans-

former (BERT)

BERT [140] is a multi-layer bidirectional Transformer encoder [103], which is a stack of

multiple identical layers each containing a multi-head self-attention and a fully-connected

sub-layer with residual connections [61]. The input to BERT is a sequence of tokens, which

can be concatenation of a pair of sentences. The input sequence is prepended by a special

[CLS] token whose final hidden state is used as the aggregate sequence representation. The

final hidden states of the other tokens are used as token-level representations. Besides word

embedding and positional embedding used in the original Transformer model, BERT’s input

layer adds an additional segment embedding to differentiate tokens from the pair of sentences.

To learn bidirectional contextualized representations and inter-sentence relationship, BERT

model is pre-trained on two unsupervised language modeling tasks: masked language model-

ing [1] and next sentence prediction, using the BooksCorpus [54] and the English Wikipedia

corpora. The procedures of language model pre-training are detailed in [140]. With extra

projection layers and fine-tuning the deep structure, BERT has been successfully applied to

various tasks such as reading comprehension, named entity recognition, sentiment analysis,

etc.
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2.3 Robust Speech Recognition

Speech recognition is an essential front-end of a dialogue system, where the speech of the

user of interest needs to be extracted and transcribed from the acoustic signal input. Ro-

bust Speech Recognition in cocktail-party environments aims to recognize the speech of an

individual speaker from a background containing many concurrent voices, and has attracted

researchers for decades [5, 18]. Current ASR systems can decode clear speech well in rela-

tively noiseless environments. However, in a cocktail-party environment, their performance is

severely degraded in the presence of loud noise or interfering speech signals, especially when

the acoustic signal of the speaker of interest and the background share similar frequency and

temporal characteristics [7].

Some previous approaches to this problem can be: multimodal robust features and blind

signal separation, or a hybrid of both. In ASR systems, it is common to adapt a well-

trained, general acoustic model to new users or environmental conditions. [29] proposed to

supply speaker identity vectors, i-vectors as input features to a deep neural network (DNN)

along with acoustic features. [33] extended [29] by factorizing i-vectors to represent speaker

as well as acoustic environment. [4] trained speaker-specific parameters jointly with acoustic

features in an adaptive DNN-hidden Markov model (DNN-HMM) for word recognition. [25,

38, 31] proposed training speaker-specific discriminant features (referred to as speaker codes

and bottleneck features) for fast DNN-HMM speaker adaptation in speech recognition. [26]

extended the speaker codes approach to convolutional neural network-HMM (CNN-HMM)

systems. [42] investigated different NN architectures of learning i-vectors for input feature

mapping.

Audio-Visual Speech Recognition

Inspired by humans’ ability to use other sensory information like visual cues and knowledge

about the environment to recognize speech, research in audio-visual ASR has also demon-
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strated the advantage of using audio-visual features over audio-only features in robust speech

recognition. The McGurk effect was introduced in [2], which illustrates that visual informa-

tion can affect human’s interpretation of audio signals. In [5], low dimensional lip movement

vectors, eigenlips, were used to complement acoustic features for ASR. In [9], generalized ver-

sions of HMMs, factorial HMM and the coupled HMM, were used to fuse auditory and visual

information, in which the HMM parameters were able to be trained with dynamic Bayesian

networks. In [23], the authors proposed a DNN-based approach to learning multimodal fea-

tures and a shared representation between modalities. In [43], the authors presented a deep

neural network that used a bilinear softmax layer to account for class specific correlations

between modalities. In [44], a deep learning architecture with multi-stream HMM model was

proposed. Using noise-robust acoustic features extracted by autoencoders and mouth region

of interest (ROI) image features extracted by CNNs, this approach achieved higher word

recognition rate than the use of non-denoised features or normal HMMs. [56] proposed an

active appearance model-based approach to extracting visual features of jaw and lip ROI on

four image streams which were then combined with acoustic features for in-car audio-visual

ASR.

Blind Signal Separation

Traditional cocktail-party ASR methods suggest performing blind signal separation prior to

auditory speech recognition of individual signals. Blind signal separation aims at estimating

multiple unknown sources from the sensor signals. When there is only a single-channel signal

available, source separation on the cocktail-party problem becomes even more difficult [14].

A main assumption in the signal separation is that speech signals from different sources are

statistically independent [7]. Another common assumption of signal separation is that all

the sources have zero-mean and unit variance for the convenience of performing Indepen-

dent Component Analysis [6, 8]. However, these two assumptions are not always correct in

practice. Therefore, we try to lift these assumptions by directly recognizing single-channel
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signals of overlapping speech in this work.

2.4 Speaker Embedding Models

Speaker embedding models are widely used as the front-end of speaker verification and

identification systems. The models are trained to map variable length speech utterances

into a feature space. And the back-end classifiers use the projected embedding as input

features to make decisions. Traditionally, Gaussian Mixture Model-Universal Background

Models (GMM-UBMs) are used to extract i-vectors [22], which are useful speaker embedding

to model speaker and channel variability at the same time. i-vectors are generated by

computing and optimizing sufficient statistics to fit the acoustic features of speech utterances.

There have been many previous approaches to replacing the GMM-UBM with Deep Neural

Networks (DNNs) for speaker embedding extraction [80, 114, 115, 88, 90, 64, 125, 70, 99,

102, 108, 132, 110]. Speaker embedding is also useful for adapting acoustic models in speech

recognition [39, 80, 114, 88, 64, 125, 102, 110]. [64] and [29] adapt DNN acoustic models

to a target speaker by concatenating the input acoustic features with GMM-UBM-based

and Hidden Markov Model-based i-vectors respectively. In [62], DNN acoustic models are

adapted to noisy and reverberant acoustic environments for robust speech recognition, by

concatenating acoustic features with environment embeddings, which are bottleneck features

extracted from an environment recognition DNN. However, the aforementioned methods

require the embedding estimation to be performed on the fly. In other words, after an

utterance is received, the speech recognizer has to wait until the embedding is extracted

from the current input signal, before transcribing starts.

2.5 Instruction Following

Instructions following has attracted extensive research attention. [17] trains a RL agent

to map natural language instructions in troubleshooting manuals and game tutorials to

sequence of actions. [19] trains a RL agent to interpret instructions to draw a path on a
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map from natural language dialogue input.

In recent years, more research focuses on learning to follow instructions which are grounded

or embodied in the physical world. Many simulation platforms are introduced for training

and testing vision-grounded instruction following agents. For example, MiniGrid [113] and

BabyAI [139] offer 2D maze-like environments, and DeepMind Lab [55] is a 3D environment

simulator. [82] trains a RL agent to follow multi-word instructions, including moving around

and manipulating objects in a multi-room 3D environment based on DeepMind Lab using

curriculum learning and multi-task learning techniques.

Compared with the Vision-and-Language Navigation task [112, 116], such as Room-to-Room

dataset [79], in which visual observations are real building scenes, instruction-following agents

deal with simulated and simplistic visual input. On the other hand, the simulation envi-

ronments provide high flexibility and randomness to create complex room layouts and agent

and object settings. The highly diversified training data can help the agent generalize to

unseen room environments.

2.6 Visual Question Answering

In recent years, research on visual question answering has accelerated following the release

of multiple publicly available datasets. These datasets include COCO-QA [46], VQA [77],

and Visual Madlibs [52] for image question answering and MovieQA [71], TGIF-QA [83],

and TVQA [120] for video question answering.

Image Question Answering

The goal of image question answering is to infer the correct answer, given a natural language

question related to the visual content of an image. It assesses the system’s capability of

multimodal understanding and reasoning regarding multiple aspects of humans and objects,

such as their appearance, counting, relationships and interactions [120]. State-of-the-art

image question answering models make use of spatial attention to obtain a fixed length
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question-dependent embedded representation of the image, which is then combined with the

question feature to predict the answer [75, 74, 86, 111]. Dynamic memory [63, 73] and

co-attention mechanism [65, 121] are also adopted to model sophisticated cross-modality

interactions.

Video Question Answering

VideoQA is a more complex task. As a video is a sequence of images, it contains not only

appearance information but also motion and transitions. Therefore, VideoQA requires spa-

tial and temporal aggregation of image features to encode the video into a question-relevant

representation. Hence, temporal frame-level attention is utilized to model the temporal dy-

namics, where frame-level attribute detection and unified video representation are learned

jointly [107, 106, 93]. Similarly, [120] uses Faster R-CNN [47] trained with the Visual

Genome [89] dataset to detect object and attribute regions in each frame, which are used as

input features to the question answering model. Previous works also adopt various forms of

external memory [49, 63, 59] to store question information, which allows multiple iterations

of question-conditioned inference on the video features [95, 87, 109, 117, 141].

Video Question Answering Dialogue

Recently in DSTC7, [135] introduces the Audio-Visual Scene-aware Dialog (AVSD) dataset

for multi-turn VideoQA. In addition to the challenge of integrating the questions and the

dynamic scene information, the dialogue system also needs to effectively incorporate the

dialogue context for coreference resolution to fully understand the user’s questions across

turns. To this end, [136] uses two-stream inflated 3D ConvNet (I3D) model [78] to ex-

tract spatiotemporal visual frame features (I3D-RGB features for RGB input and I3D-flow

features for optical flow input), and propose the Naïve Fusion method to combine multi-

modal inputs based on the hierarchical recurrent encoder (HRE) architecture [81]. [119]

extends the Naïve Fusion approach and propose the Attentional Fusion method which learns

multimodal attention weights to fuse features from different modalities. [151] modify the
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Attentional Fusion method and propose to use Maximum Mutual Information (MMI) [3] as

the training objective. Besides the HRE architecture, the multi-source sequence-to-sequence

(Multi-Source Seq2Seq) architecture with attention [76, 58] is also commonly applied [148,

143, 150]. Previous works [149, 144, 148] also explore various attention mechanisms to incor-

porate the different modal inputs, such as hierarchical attention [91] and cross attention [97].

For modeling visual features, [145] proposes to use Dynamic memory networks [63] and [147]

proposes to use feature-wise linear modulation layers [124].
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Chapter 3

End-to-End Dialogue State Tracking

We propose BERT-DST, an end-to-end dialogue state tracker based on the pretrained BERT

language model. It directly predicts dialogue states from natural language utterances input,

without using a separate language understanding model.

Our proposed application of BERT to scalable DST is in spirit similar to the Stanford

Question Answering Dataset (SQuAD) task [67]. In SQuAD, the input is a question and a

reading passage. If the reading paragraph contains the answer to the question, the output

is a segment of text from the paragraph, represented by its span (start and end positions).

Otherwise, the model should output unanswerable. Similarly, in our targeted case of scalable

DST, a slot’s value can be none, dontcare, or a word segment from the dialogue context.

Our proposed framework uses BERT’s contextualized sentence-level and token-level repre-

sentations to determine the type of slot value (none, dontcare, or span), and the span of

the specified slot value from the dialogue context. Using BERT as dialogue context encoder

provides the following advantages. The contextualized word representations are suitable

for extracting slot values from contextual patterns. With large-scale language model pre-

training, BERT’s word representations are good initialization to be fine-tuned to our DST

problem.
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3.1 Model

The BERT-DST model architecture is shown in Figure 3.1. For each user turn, the model

takes the recent dialogue context as input and outputs the turn-level dialogue state. First,

the dialogue context input is encoded by the BERT-based encoding module to produce con-

textualized sentence-level and token-level representations. The sentence-level representation

is then used by the classification module to generate a categorical distribution over three

types of slot values: none, dontcare or a span from the input. The span prediction module

gathers the token-level representations and outputs the slot value’s start and end positions.

Finally, an update mechanism is used to track dialogue states across turns.

...
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... ......
...

...

end position
distribution

[CLS]      which         movie          would           you              like           [SEP]            12            angry           men              at             8:00             pm
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Figure 3.1: Architecture of the proposed BERT-DST framework. The diagram is color-coded
such that modules with the same color share the same parameters. For each user turn, BERT-
DST takes as input the recent dialogue context (system utterance in previous turn and the
user utterance), and outputs turn-level dialogue state. BERT dialogue context encoding
module ΦBERT (blue) produces contextualized sentence-level and token-level representations
of the dialogue context. The per-slot classification module Φcls (red) uses the sentence-level
representation to generate a categorical distribution over three types of slot values {none,
dontcare and span}. The per-slot span prediction module Φspan (green) gathers the token-
level representations and output the start and end positions (span) of the slot value. Note
that the dialogue context encoding module ΦBERT allows parameter sharing across all slots.
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Dialogue Context Encoding

The dialogue context encoding module is based on BERT. We use the the previous turn’s

system utterance and the current turn’s user utterance as dialogue context input, and pass it

to BERT’s bidirectional Transformer encoder, which outputs a sentence-level and token-level

representation of the dialogue context input.

The first token is [CLS], followed by the tokenized system utterance, [SEP], and tokenized

user utterance. Let [x0, x1, · · · , xn] denote the input token sequence. BERT’s input layer

embeds each token xi into an embedding ei. , which is the sum of three embeddings:

BERTinput(xi) = Etok(xi) + Eseg(i) + Epos(i)

= ei ∈ Rd, ∀ 0 ≤ i ≤ n (3.1)

where Etok(xi) is WordPiece embedding [72] for token xi, Eseg(i) ∈ {efirst, esecond} is segment

embedding whose value is determined by whether the token belongs to the first or second

sentence, and Epos(i) is positional embedding [130] for the i-th token.

The embedded input sequence [e0, · · · , en] is then passed to BERT’s bidirectional Trans-

former encoder, whose final hidden states are denoted by [t0, · · · , tn].

[t0, · · · , tn] = BiTransformer([e0, · · · , en])

ti ∈ Rd, ∀ 0 ≤ i ≤ n (3.2)

The contextualized sentence-level representation t0, i.e., the final state corresponding to

the [CLS] token, is passed to the classification module. The contextualized token-level

representations [t1, · · · , tn] are used by the span prediction module.

The parameters in the dialogue context encoding module, denoted by ΦBERT, are initialized

from a pre-trained BERT checkpoint and then fine-tuned on our DST dataset.
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Slot State Classification

The classification module’s input is the sentence-level representation t0 from the dialogue

context encoding module. For each slot s ∈ S in the collection of all informable slots, S the

classification module’s prediction the value of s is one of the three classes {none, dontcare,

span}.

as = Ws
clst0 + bscls = [asnone, asdontcare, asspan] ∈ R3 (3.3)

ps = softmax(as) = [psnone, psdontcare, psspan] (3.4)

slot_values = argmaxc∈{none, dontcare, span}(psc) (3.5)

The per-slot classification parameters, denoted by Φs
cls = {Ws

cls,bcls}, are trained from

scratch on our DST dataset.

Slot Value Span Prediction

For each informable slot, s ∈ S the span prediction module takes as input the token-level

representations [t1, · · · , tn] from the dialogue context encoding module. Each token repre-

sentation ti is linearly projected through a common layer whose output values αsi and βsi

correspond to start and end positions respectively. Softmax is then applied to the position

values to produce a probability distribution over all tokens, by which the slot value span

(start and end positions) of the slot can be determined.

[αsi , βsi ] = Ws
spanti + bsspan ∈ R2,∀ 1 ≤ i ≤ n (3.6)

psα = softmax(αs) (3.7)

psβ = softmax(βs) (3.8)

start_poss = argmaxi(psα,i) (3.9)

end_poss = argmaxi(psβ,i) (3.10)
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The per-slot span prediction parameters, denoted by Φs
span = {Ws

span,bsspan}, are trained

from scratch on our DST dataset.

Dialogue State Update Mechanism

To track dialogue states across turns, we employ a rule-based update mechanism. In each

turn, if the model’s turn prediction for a slot is dontcare or a specified value (i.e., any value

other than none), it will be used to update the dialogue state. Otherwise, the dialogue state

of the slot remains the same as the previous turn.

Parameter Sharing

Although our classification and span prediction modules are slot-specific, we notice that the

contextualized representations generated by the dialogue context encoding module can be

shared among slots; i.e., we can apply parameter sharing in the dialogue context encoding

module across all slots. Sharing dialogue context encoder parameters ΦBERT across all slots

not only drastically reduces the number of model parameters. It also allows knowledge

transfer among slots, which may potentially benefit contextual relation understanding. In

the following sections, we call the joint architecture of slot-specific BERT-DST models as

BERT-DST_SS and the BERT-DST model with encoding module parameter sharing as

BERT-DST_PS.

Slot Value Dropout

Slot value dropout, or targeted feature dropout, was originally proposed to address the under-

training problem of contextual features in slot-filling [37, 131]. The problem happens when

models tend to overfit to frequent slot values in training data instead of learning contextual

patterns, which adversely harms the performance on Out-of-Vocabulary (OOV) slot values.

To improve the robustness for unseen slot values, in the training phase, we replace each of

the target slot value tokens by a special [UNK] token at a certain probability.
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3.2 Experiments

We evaluate our models using joint goal accuracy [32], a standard metric for DST. The

model’s prediction has to jointly match all the informable slot labels to be considered correct.

Datasets

Table 3.1: Statistics of Sim-M, Sim-R, DSTC2 and WOZ 2.0 datasets. The number of
dialogues is given for train, dev and test sets respectively. The slots containing OOV values
are marked in bold. Parentheses represent
(# unique OOV values in dev set / # unique values in dev set;
# unique OOV values in test set / # unique values in test set).

Datasets # Dialogues SlotsTrain Validation Test
Sim-M 384 120 264 date, time, num_tickets, theatre_name,

movie (5/5; 26/26)
Sim-R 1116 349 775 date, time, category, price_range, rat-

ing, num_people, location, meal, restau-
rant_name (5/19; 9/23)

DSTC2 1612 506 1117 area, price range, food (1/73; 0/74)
WOZ 2.0 600 200 400 area (0/6; 1/7), price range, food (1/65;

2/72)

We evaluate our models on four benchmark datasets: Sim-M, Sim-R [128], DSTC2 [32] and

WOZ 2.0 [104]. The statistics of the datasets are shown in Table 3.1.

Sim-M and Sim-R are specialized for scalable DST, which contain human-paraphrased sim-

ulated dialogues in the movie and restaurant domains. They have span annotations for

all specified slot values (i.e. values other than none and dontcare) in the system and user

utterances. In the event that the target slot value has multiple spans in the dialogue con-

text, we use the span of the last occurrence as reference. The prevalence of out-of-vocabulary

(OOV) values in Sim-M’s movie and Sim-R’s restaurant_name slots makes them particularly

challenging and suitable for scalable DST evaluation.

DSTC2 and WOZ 2.0 are standard benchmarks for task-oriented dialogue systems, which
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are both in the restaurant domain and share the same ontology. In DSTC2, automatic

speech recognition (ASR) hypotheses of user utterances are provided to assess DST models’

robustness against ASR errors, so we use the top ASR hypothesis for validation and testing.

In WOZ 2.0, the user interface is typing and collection of user utterances exhibit higher degree

of lexical variation. ASR errors and flexible language use can cause problems in defining slot

value spans, which is basis for our targeted scalable DST condition. The problem arises

when erroneous ASR hypotheses do not contain a user’s intended specified value or the user

uses a creative expression in which a clear boundary of a value’s span can be hard to define.

For example, "My wife thinks she likes international but I don’t want to take out a loan." is

annotated with price_range=cheap. Such challenging instances in DSTC2 and WOZ 2.0

set the performance upper bound for our proposed scalable DST framework.

Note that in the evaluation, we do not apply an output canonicalization step to handle other

possible valid variations of span. Therefore our model’s predicted slot value span has to

exactly match the label span to be considered correct.

Training Details

We use the pre-trained [BERT-Base, Uncased] model which has 12 hidden layers of 768

units and 12 self-attention heads for lower-cased input text. The span prediction loss for

{none, dontcar} slots is set to zero. The total loss is defined as (0.8Lxentcls + 0.1Lxentspan_start +

0.1Lxentspan_end), where Lxent denotes the cross entropy loss for the corresponding prediction

target. We update all layers in the model using ADAM optimization [34] with an initial

learning rate 2e−5 and early stopping on the validation set. During training, we use 30%

dropout rate [36] on the dialogue context encoder outputs. We also experiment with various

rates of slot value dropout.
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Table 3.2: Joint goal accuracy comparisons with prior approaches on Sim-M and Sim-R
datasets. * indicates statistically significant improvement over BERT-DST model (paired
sample t-test; p < 0.01). † indicates the corresponding model should be considered as a kind
of oracle because the candidates are ground truth slot-tagging labels, i.e. the targeted slot
value is guaranteed to be in the candidate list and considered by DST.

DST Models Sim-M Sim-R
DST + LU Candidates [126] 50.4% 87.1%
DST + Oracle Candidates† [96] 96.8% 94.4%
BERT-DST_SS 71.6% 87.4%

+ slot value dropout 76.3%* 87.6%
BERT-DST_PS 72.3% 88.6%*

+ slot value dropout 80.1%* 89.6%*

Results

Table 3.2 presents the performance of the proposed BERT-DST models compared to prior

work on the scalable DST datasets Sim-M and Sim-R. In [126, 96], the DST component

scores slot values from a candidate list, which is slot tagging predictions of a jointly-trained

language understanding component (DST + LU Candidates), or the ground truth slot tag-

ging labels (DST + Oracle Candidates). We compare our proposed model with the (DST +

LU Candidates) baseline because in practice an oracle candidate list that always contains the

target slot label is rarely available. On both Sim-M and Sim-R, BERT-DST_SS outperforms

the baseline model. We attribute the performance gain to the effective contextualized rep-

resentations obtained from the BERT dialogue encoding module. BERT-DST_PS with slot

value dropout achieves further statistically significant improvement over BERT-DST_SS.

The comparison of per-slot and joint goal accuracy of the different BERT-DST models is

shown in Figure 3.2. We observe that it is mainly the slots with OOV values (movie for

Sim-M and restaurant_name for Sim-R) that benefit from the encoder parameter sharing

and slot value dropout techniques. The accuracy improvement on these bottleneck slots

eventually leads to gain in the joint goal accuracy.

To investigate the effect of slot value dropout, we compare the performance with different
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Figure 3.2: Per-slot and joint goal accuracy of the proposed models on Sim-M and Sim-R
datasets

slot value dropout probabilities of BERT-DST_PS on Sim-M and Sim-R datasets, as shown

in Figure 3.3. While a proper selection of slot value dropout rate can result in slight im-

provement on Sim-R, the effect of slot value dropout is more pronounced on Sim-M. Because

of the high OOV value rate of the movie slot (100% OOV in test set), higher slot value

dropout rate can be helpful for extracting unseen slot values from contextual patterns.

Table 3.3 presents the performance of BERT-DST with prior approaches on the standard

DSTC2 andWOZ 2.0 datasets. Our work is more comparable with the top group frameworks,

which are also designed for scalable DST to handle unknown ontology. The middle group of

models require a predefined ontology to perform classification or scoring over a predefined

set of possible slot values. On DSTC2, BERT-DST_PS shows comparable performance

with prior scalable DST models, although not as high as the state-of-the-art models. On

WOZ 2.0, BERT-DST_PS achieves competitive results with state-of-the-art models, which

demonstrates BERT-DST’s capability in understanding sophisticated language. Note that
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Table 3.3: Joint goal accuracy comparison with prior approaches on DSTC2 and WOZ 2.0
datasets. We report the average and standard deviation of test set accuracy of 5 model
runs with random training data shuffling and normal initialization on classification and span
prediction weights.

DST Models DSTC2 WOZ 2.0
DST + LU Candidates [126] 67.0% -
DST + n-gram Candidates [118] 68.2±1.8% -
DST + Oracle Candidates [96] 70.3% -
Pointer Network [131] 72.1% -
Delex.-Based Model [92] 69.1% 70.8%
Delex. + Semantic Dict. [92] 72.9% 83.7%
Neural Belief Tracker [92] 73.4% 84.2%
GLAD [134] 74.5±0.2% 88.1±0.4%
StateNet [127] 75.5% 88.9%

BERT-DST_PS 69.3±0.4% 87.7±1.1%
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Figure 3.3: Comparison of different slot value dropout probabilities of the BERT-DST_PS
model on Sim-M and Sim-R datasets.

it is not our goal to achieve state-of-the-art performance on the standard datasets. Instead,

BERT-DST is tasked to handle unknown ontology and unseen slot values and does not

require a separate candidate generation module.

3.3 Conclusion

We introduce BERT-DST, a scalable end-to-end dialogue state tracker that directly predicts

slot values from the dialogue context with no dependency on candidate generation. In our

framework, BERT is adopted to produce contextualized representations of dialogue context
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which are used to by the classification and span prediction modules to predict the slot value

as none, dontcare or a text span in the dialogue context. The advantages of using BERT as

dialogue context encoder include: (1) The contextualized word representations are suitable

for extracting slot values from semantic context. (2) Pre-trained on large-scale language

modeling datasets, BERT’s word representations are good initialization to be fine-tuned to

our DST problem. Moreover, we employ parameter sharing in the BERT dialogue encoder

across all slots, which reduces the number of model parameters. Contextualized language

representation can also benefit from more training examples of other slots. To prevent

overfitting, we apply the slot value dropout technique. This step is critical for extracting

unseen slot values from their contextual patterns. Empirical evaluation shows our model

with cross-slot parameter sharing outperforms prior work on the benchmark scalable DST

datasets Sim-M and Sim-R, and achieves competitive performance on the standard DSTC2

and WOZ 2.0 datasets.
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Chapter 4

Robust Speech Recognition Using

Multi-Modal Input

Robust speech recognition in cocktail party environments remains a challenging task in

Automatic Speech Recognition (ASR). While current ASR systems have competitive perfor-

mance in a low noise environment, their performance deteriorates when background noise or

background speech is present.

In many real-world applications, before a speaker starts talking, a speech recognizer (such

as a social robot) may already have access to the speaker’s acoustic or visual data via

one’s mobile phones and social media, and could extract relevant speaker characteristics,

ready to be used as additional features for speech recognition even before a speech signal

is uttered by the target user. Moreover, the recognizer may know the speaker’s identity by

face recognition or various biometric identification methods and could use the identity to

retrieve the speaker’s information from the database of pre-extracted speaker embedding.

In this chapter, we tackle multi-modal speaker-targeted ASR of multi-speaker acoustic input

signals in cocktail-party environments without the use of blind signal separation [57, 137].

With the term speaker-targeted model, we refer to a speaker-independent model with speaker
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Figure 4.1: Speaker-targetd acoustic modeling pipeline. The arrow connecting the target
speaker embedding and the acoustic model is a dashed arrow. The audio-only model is
illustrated without the dashed arrow. The speaker-targeted model is illustrated with the
dashed arrow, where the target speaker embedding supplied as additional input feature
to the acoustic model. The target speaker embedding is represented as a one-hot vector
when the target speaker’s identity is known and exists in training data; otherwise it can be
extracted by a speaker embedding model given the available target speaker data (a speech
segment or face image).

identity information input.

Speaker-Targeted Acoustic Model Pipeline We propose a pipeline of speaker-targeted

acoustic model to recognize the speech of a target speaker from a mixture of speech signals

[114, 88, 125, 110], as shown in Figure 4.1.

We complement the acoustic features with information of the target speaker’s identity in em-

beddings similar to i-vectors in [29], along with raw pixels of the target speaker’s mouth ROI

images, to supply multimodal input features to a hybrid DNN-HMM for speech recognition in

cocktail-party environments. In particular, we focus on recognizing a target speaker’s speech

from overlapping speech signals of two speakers: the target and the background speaker.
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4.1 Audio-Visual Speaker-Targeted Speech Recognition

We approach this problem using DNN acoustic models with different combinations of addi-

tional modalities: visual features and speaker embedding information. The acoustic features

are filterbank features extracted from the audio signals where two speakers’ speech is mixed

on a single acoustic channel. The visual features are raw pixel values of the mouth ROI

images of the target speaker whose speech the system is expected to recognize. The speaker

identity information is represented by the target speaker’s ID-embedding.

4.1.1 Model

DNN acoustic models have been widely and successfully used in ASR [24]. Let x be a window

of acoustic frames (i.e., context of filterbanks), the standard DNN acoustic models model

the posterior probability:

p(y|x) = DNN(x) (4.1)

where y is a phoneme label or alignment (i.e., from GMM-HMM) and DNN is a deep neural

network with softmax outputs. The DNN is typically trained to maximize the log probability

of the phoneme alignment or minimize the cross-entropy error. However, this optimization

problem is difficult when x = x1 +x2 is a superposition of two signals x1 and x2 (i.e., cocktail

party).

we extend the previous traditional DNN acoustic models to leverage additional information in

order to model our phonemes. By leveraging combinations of the visual features and speaker

identity information, the standard DNN acoustic model is extended to have multimodal

inputs.

We train the DNN acoustic models with four possible combinations of input features: (1)

audio-only, (2) audio-visual, (3) speaker-targeted audio-only and (4) speaker-targeted audio-
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visual in two steps: speaker-independent models training followed by speaker-targeted models

training. The details of the two steps are described in the following sub-sections.

Two-Speaker Speaker-Independent Models First, we leverage the visual information

of the speaker’s mouth region in conjunction with the acoustic features. The standard DNN

acoustic model:

p(y|x) = DNNA(x) (4.2)

with additional input of visual features becomes:

p(y|x,w) = DNNAV(x,w) (4.3)

where w are the visual features. In this step, speaker-independent audio-only model DNNA

and audio-visual model DNNAV are trained for the two-speaker cocktail-party problems.

The acoustic and visual features are concatenated directly as DNN inputs for the audio-

visual model. The speaker-independent models are illustrated in Figure 4.2, where the

figure without the dashed arrow represents the audio-only model, and the figure with the

dashed arrow represents the audio-visual model.

Two-Speaker Speaker-Targeted Models Secondly, we try to leverage the speaker iden-

tity information to extend the previous models, DNNA and DNNAV. DNNA is extended to:

p(y|x, z) = DNNAI(x, z) (4.4)

and DNNAV is extended to:

p(y|x,w, z) = DNNAVI(x,w, z) (4.5)
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Figure 4.2: Speaker-independent models. This figure illustrates a DNN architecture, where
the phoneme labels are modeled in the output layer. The arrow connecting the visual features
(mouth ROI pixels) and the input layer is a dashed arrow. The speaker-independent audio-
only model is illustrated without the dashed arrow. The speaker-independent audio-visual
model is illustrated with the dashed arrow, where the acoustic features (filterbank features)
and video features are concatenated as DNN inputs.

where z are the speaker identity information. In this step, we adapt the audio-only and

audio-visual speaker-independent models to speaker-targeted models respectively (i.e., from

DNNA to DNNAI and from DNNAV to DNNAVI) by hinting the network which target speaker

to attend to by supplying speaker identity information as input. The speaker identity in-

formation is represented by an embedding that corresponds to the target speaker’s ID. We

investigate three ways to fuse the audio-visual features with the speaker identity information:

(A) Concatenating the speaker identity directly with audio-only and audio-visual features.

(B) Mapping speaker identity into a compact but presumably more discriminative embed-

ding and then concatenating the compact embedding with audio-only and audio-visual

features.

(C) Connecting the speaker identity to a later layer than audio-only and audio-visual fea-

tures.
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The three fusion techniques introduce the three variants (A), (B) and (C) of both the speaker-

targeted models DNNAI and DNNAVI. The speaker-targeted models of the three invariants

are shown in Figure 4.3, where the figures without the dashed arrow represent the audio-only

models, and the figures with the dashed arrow represent the audio-visual models.

(A) concatenating the
speaker identity directly
with audio-only and
audio-visual features

(B) mapping speaker
identity into a compact
but presumably more
discriminative embedding
and then concatenating
the compact embedding
with audio-only and
audio-visual features

(C) connecting the speaker
identity to a later layer
than audio-only and
audio-visual features

Figure 4.3: Three variants of speaker-targeted models. These figures illustrate three fusion
techniques of audio-visual features with speaker identity information in a DNN architecture,
where the phoneme labels are modeled in the output layer. The arrows connecting the visual
features and the input layers are dashed arrows. The speaker-targeted audio-only models
are illustrated without the dashed arrows. The speaker-targeted audio-visual models are
illustrated with the dashed arrows, where the acoustic and video features are concatenated
as DNN inputs.

Moreover, we train single-speaker speaker-independent models in comparison with the two-

speaker speaker-independent models. We also train 6 randomly-selected speaker’s speaker-

dependent models (adapted from speaker-independent models as well) to compare with the

speaker-targeted models.
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4.1.2 Experiments

Dataset

The GRID corpus [13] is a multi-speaker audio-visual corpus. This corpus consists of high-

quality audio and video recordings of 34 speakers in quiet and low-noise conditions. Each of

the speakers read 1000 sentences which are simple six-word commands obeying the following

syntax:

$command $color $preposition $letter $digit $adverb

We use the utterances of 31 speakers (16 males and 15 females) from the GRID corpus,

excluding speaker 2, 21 and 28 and part of the utterances of the remaining 31 speakers due

to the availability of mouth ROI image data. In the one-speaker datasets, there are 15395

utterances in the training set, 548 in the validation set, and 540 in the testing set, following

the convention of CHiME Challenge [27]. The GRID corpus utterances that don’t belong to

the one-speaker datasets are termed background utterance set. To simulate the overlapping

speech audios for the two-speaker datasets, we mix the target speaker and a background

speaker’s utterances with equal weights on a single acoustic channel using SoX software

[155]. The background speaker’s utterances are randomly selected from the background

utterance set excluding the utterances of the target speaker. The resulting mixed audio’s

length is as long as the length of the target speaker’s utterance. Since we also train speaker-

dependent speech recognizers for individual speakers, for each target speaker’s utterance, we

mix it with more background utterances of other speakers in order to generate enough data

for speaker-dependent training. There are in total of 523430 utterances in the training set,

548 in the validation set, and 540 in the testing set in the two-speaker datasets.

Feature Extraction

Audio Features Log-mel filterbank features with 40 bins are extracted, and a context of

±5 frames was used for audio input features (i.e., 440 = 40 ∗ (5 + 1 + 5) dimensions per
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Figure 4.4: Facial landmarks extracted by IntraFace

acoustic feature x).

Visual Features We use target speaker’s mouth ROI images’ pixel values as visual fea-

tures. The facial landmarks are first extracted by IntraFace software [50] as shown in Fig-

ure 4.4, and each video frame is cropped into a 60 pixel * 30 pixel mouth ROI image [53]

according to the mouth region landmarks (i.e., 1800 = 60 ∗ 30 dimensions per visual fea-

ture w). The gray-scale pixel values are then concatenated with audio features to form

audio-visual features.

Speaker Identity Information Speaker identity information is represented by the target

speaker’s ID-embedding, which is simply a one-hot vector of thirty-three 0s and a single 1,

[0, · · · , 0, 1, 0, · · · , 0], in which the entry of 1 corresponds to the target speaker’s ID (i.e., 34

dimensions per speaker identity embedding z).

Training Details

Here we describe the architecture of our DNNs. The number of hidden layers for audio-

only models and speaker-independent audio-visual models is 4, while it is 5 for speaker-

targeted and speaker-dependent audio-visual models. Each hidden layer contains 2048 nodes.

Rectified linear function (ReLU) is used for activation in each hidden layer. The output layer

has a softmax of 2371 phoneme labels. We use stochastic gradient descent with a batch size

of 128 frames and a learning rate of 0.01.

Results

The aforementioned single-speaker models are used to decode the single-speaker testing

dataset, while the two-speaker models are used to decode the two-speaker testing dataset.
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Table 4.1: WER comparisons of single-speaker models on GRID corpus

audio-only audio-visual
speaker-independent 0.3% 0.4%

Table 4.2: WER comparisons of two-Speaker models on GRID corpus

audio-only audio-visual
speaker-independent 26.3% 4.4%
speaker-targeted A 4.0% 3.6%
speaker-targeted B 3.6% 3.9%
speaker-targeted C 4.4% 4.4%
speaker-dependent 3.9% 3.4%

Table 4.1 shows the WER of single-speaker models. Table 4.2 shows the WER of two-speaker

models. The audio-only baseline for two-speaker cocktail-party problem is 26.3%. The results

of speaker-independent models for single-speaker and two-speaker suggest that automatic

speech recognizers’ performance degrades severely in cocktail-party environments compared

to low-noise conditions. It is also demonstrated that the introduction of visual information

to acoustic features can reduce WER significantly in cocktail-party environments, improving

the WER to 4.4%, although it may not help when the environmental noise is low. WER

comparisons between two-speaker’s audio-only speaker-independent and speaker-targeted

models suggest that using speaker identity information in conjunction with acoustic features

achieves a better improvement on WER, reducing WER up to 3.6%.

The results of two-speaker’s speaker-targeted models A, B, and C suggest a weak tendency

that providing speaker information in earlier layers of the network seems to have advantage.

WER comparisons between two-speaker speaker-dependent and speaker-targeted models sug-

gest an intuitive result that a speaker-dependent ASR system which is optimized for one

specific speaker performs better than a speaker-targeted ASR system which is optimized for

multiple speakers simultaneously. We also find the introduction of visual information im-

proves the WER of speaker-dependent acoustic models while it doesn’t improve the speaker-
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Figure 4.5: WER comparisons of two-speaker models for individual speakers on GRID cor-
pus. WER of two-speaker models for individual speakers are illustrated. The dashed line
is plotted on the right vertical axis which represents the speaker-independent audio-only
model. The solid lines and markers are plotted on the left vertical axis. Speaker-dependent
models for speaker 1, 17, 22, 24, 25 and 30 are plotted in markers. The chart demonstrates
a similar trend between different models’ performance on individual speakers.

targeted acoustic models. We subscribe this finding to the limitation of the capacity of the

neural network architecture that we use for both models, that it is able to optimize for one

specific speaker’s visual information in a speaker-dependent model, but not powerful enough

to learn a unified optimization for all 31 speakers’ visual information in a single speaker-

targeted model. Figure 4.5 illustrates the WER of the individual speakers. A similar trend

between different models’ performance on individual speakers is demonstrated.

4.2 Offline Speaker Embedding Estimation

Since real-time visual information used in audio-visual speech recognition may not always

be available, we further propose an offline speaker embedding estimation model that only re-

quires very low resource of speaker data [138]. We investigate three types of text-independent

speaker embedding models (i-vector, x-vector and f-vector), using a speech segment or face

image as input to generate speaker embedding and compare their performance in different

speaker and environment conditions.

4.2.1 Speaker Embedding Models

We train and compare three types of text-independent speaker embedding models. i-vector

and x-vector models are audio-based, taking a speech segment of the target speaker as input,
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Figure 4.6: TDNN based x-vectors ex-
tractor. TDNN-based model extracts x-
vectors from bottleneck features given the
target speaker’s speech segment as in-
put. The TDNN model is pre-trained for
speaker recognition.

Figure 4.7: Facenet: CNN-based face vec-
tors extractor. FaceNet extracts f-vectors
from an input face image of the target
speaker. FaceNet is a deep Convolutional
Neural Network of Inception-ResNet ar-
chitecture pre-trained on triplet loss.

and the f-vector model is vision-based, taking a face image of the target speaker as input.

GMM-UBM i-vector Model Firstly, we consider the conventional i-vector extractor [22].

We use a 512-component diagonal Gaussian Mixture Model-Universal Background Models

(GMM-UBMs). Iteratively, we update the UBM components’ means (factor loading sub-

matrices), and collect sufficient statistics to estimate i-vectors, using the EM algorithm.

Then Linear Discriminant Analysis (LDA) is used to reduce the dimension of i-vectors to

128. i-vector extractor training is performed at frame-level MFCC features. In the inference

phase, given a speech segment of the target speaker, we extract a frame-level i-vector every

10 frames, and the i-vector speaker embedding is extracted by taking the average of all the

frame-level i-vectors across the entire segment.

TDNN-based x-vector Model The second speaker embedding model is a speaker recog-

nition model, with the Time-Delay Neural Network (TDNN) architecture as in [99]. The

input of the model is the MFCC features of all frames across a speech segment, and the

output of the model is a speaker label. It is trained on multiclass cross entropy loss, to
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differentiate the 1228 speakers in the training set. The architecture of the TDNN model for

speaker embedding is shown in Figure 4.6. The first four layers are time-delay and fully-

connected layers which take a context of MFCC features as input to generate a frame-level

representation. The middle statistical pooling layer aggregates all frame-level representations

of the entire speech segment, and concatenates the mean and standard deviation as statisti-

cal features. The last three layers are fully-connected layers and a softmax output layer for

speaker classification. In the inference phase, we use the bottleneck features from the second

to last hidden layer, projected through LDA to 128-dimensional, as speaker embedding. We

call it x-vector.

CNN-based f-vector Model The third speaker embedding model we consider is FaceNet [48].

It is a deep Convolutional Neural Network (CNN) which takes face images as input and out-

puts 128 dimensional embeddings which are L2 normalized (rescaled to a unit hypersphere).

It is trained on triplet loss, where each triplet training example consists of three face images:

an anchor, a positive, and a negative image. The anchor and positive images belong to the

same speaker, and the negative image belongs to another speaker. Triplet loss of a triplet

training example is given by:

[
‖ea − ep‖2

2 − ‖ea − en‖2
2 + α

]
+

(4.6)

where ea, ep, en represent the face embeddings of the anchor, positive and negative face

images, α is the distance margin, and the operator [x]+ = max(x, 0). Training on triplet loss

essentially forces the network to project the face images such that face image embeddings of

the same speaker have small Euclidean distances and the face image embeddings of distinct

speakers have large distances. We use a FaceNet model with the Inception ResNet v1

architecture, described in [100], which was pre-trained on the MS-Celeb-1M dataset [60],

as shown in Figure 4.7. In the inference phase, we supply a face image of the target speaker

as input to the FaceNet model and use the 128-D vector output as speaker embedding. If
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more than one face image of the target speaker is provided, we use the average of all the

128-D vector outputs as speaker embedding. We call it f-vector.

4.2.2 Experiments

Table 4.3: Statistics of TED-LIUM2 corpus

Train Validation Test
Number of videos 1444 8 11
Number of utterances 97876 507 1155
Duration of videos (hours) 341.6 1.7 2.9
Number of speakers 1228 8 11

Dataset

For the dataset of single-speaker scenario, we directly use the real-world acoustic data from

the TED-LIUM corpus release 2 [35]. We augment the dataset with the speaker face images.

The speaker face images are obtained by applying face detection and tracking on the video

frames of TED talks, which are downloaded from TED.com. Table 4.3 lists the statistics

of the TED-LIUM2 corpus dataset. To simulate the overlapping speech audios for the two-

speaker scenario, we mix two utterances with equal energy on a single acoustic channel using

SoX software, one from the target speaker and the other from a background speaker. The

same mixture process is applied for each split of the dataset, which we describe as follows.

Take the training split for example. Each of the utterances in the split will be used as the

target speaker’s speech. For each target speech utterance, we randomly select a different

speaker’s utterance from the same split as the background speech, so that there is no overlap

in background speech utterances between different datasets. The length of the resulted mixed

audio is as long as that of the target speaker’s utterance. Both datasets of the single-speaker

and two-speaker scenarios have the same split as the TED-LIUM corpus release 2.

Speaker Embedding Robustness against Environment Variation

To evaluate the speaker embedding robustness against environment variation, we compare

two sources of the target speaker’s information (i.e. a segment of speech or a face image)
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1. Same Env: information from the same environment as the input speech to be recog-

nized, achieved by randomly selecting another utterance in the same TED talk of the

target speaker’s speech.

2. Diff Env: information from a different environment as the input speech to be recog-

nized, achieved by randomly selecting an utterance in another TED talk of the target

speaker.

as input to speaker embedding models. The former condition signifies the effect of speaker

embedding if we know how the target speaker sounds or looks like in the exact environment

for speech recognition. The latter condition represents the situation when we only know what

the target speaker sounds or looks like in a different environment from speech recognition,

which is more likely to happen in the real world and helps us validate the robustness of

target speaker embeddings with respect to different environments.

Training Details

Here we describe the architectures of our DNN models. Our acoustic model is a TDNN-

based chain model [66]. Let t denote the current timestep. At the input layer, we splice

together the 40-bin MFCC features of frames at {t − 1, t, t + 1} and the 128-dimensional

speaker embedding. The first hidden layer is fully connected of 450 nodes. Each of the

second to sixth hidden layers has 450 nodes and splices the output of the previous layer at

times {t − 1, t, t + 1}, {t − 1, 0, t + 1, t + 2}, {t − 3, t, t + 3}, {t − 3, t, t + 3}, {t − 6, t − 3, t}

respectively. The output layer is a softmax function of 3683 phoneme classes. We train with

stochastic gradient descent (SGD) with a batch size of 128 frames and an initial learning

rate of 0.001. The input layer of our TDNN-based x-vector model is 40-bin MFCC features.

Each of the first 3 hidden layers has 512 nodes and splices the output of the previous layer

at times {t− 2, t− 1, t, t+ 1, t+ 2}, {t− 2, t, t+ 2}, {t− 3, t, t+ 3} respectively. The fourth

and fifth layers are fully connected of 512 and 1500 nodes. After the statistical pooling layer

are two fully-connected layers of 512 nodes. We use SGD with a batch size 64 frames and
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an initial learning rate of 0.001. All the nonlinearities for the hidden fully-connected and

time-delay layers are rectified linear units followed by batch normalization.

Results

Table 4.4: WER comparisons of single-speaker models on TED-LIUM2 corpus

Audio-only 14.8%
Speaker Embedding Same Env Diff Env

i-vector 14.2% 15.4%
x-vector 14.2% 14.3%
f-vector 14.4% 14.4%

Table 4.5: WER comparisons of two-speaker models on TED-LIUM2 corpus

Audio-only 65.7%
Speaker Embedding Same Env Diff Env

i-vector 29.5% 52.4%
x-vector 34.6% 41.0%
f-vector 54.5% 51.2%

Table 4.4 shows the Word Error Rate (WER) of the single-speaker models. Table 4.5 shows

the WER of the two-speaker models. Comparing the results of the single-speaker and two-

speaker models, we observe that ASR performance degrades severely in cocktail-party en-

vironments compared to single-speaker conditions which have lower background interfering

speech. The audio-only baseline without using a static target speaker embedding input for

two-speaker cocktail-party problem achieves 65.7% WER. It is demonstrated that using all

three types of speaker embedding as an additional feature can reduce the WER significantly,

improving WER to as low as 29.5%. Even in relatively lower noise environments, the re-

sults of single-speaker show that using any of the three types of speaker embedding as an

additional feature still provides a small gain, reducing the WER from 14.8% to as low as

14.2%.

Moreover, we compare the performance of the three types of speaker embedding. When the

target speaker embedding is extracted using the speaker data from the same environment
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as speech recognition, i-vector shows better performance than x-vector and f-vector in both

single-speaker and cocktail-party conditions. However, when the target speaker embedding is

extracted using the speaker data from a different environment, x-vector and f-vector outper-

form i-vector. This suggest i-vector may tend to overfit the exact speaker and environment

condition, while x-vector and f-vector show robustness against environment changes. This

is expected because i-vector accounts for both speaker and environment acoustic variations

at the same time, while x-vector and f-vector are trained to discriminate speaker identi-

ties, regardless of environments. We also observe that x-vector outperforms f-vector in both

conditions. While f-vector characterizes the target speaker’s identity (or even gender) from

the speaker’s face image, it does not have acoustic information about the target speaker’s

voice attributes. On the other hand, x-vector, using speech segment as input to the speaker

embedding model, not only represents the target speaker’s identity, but also retains one’s

voice characteristics.

4.3 Conclusions

In this chapter, we first propose a speaker-targeted audio-visual DNN-HMMmodel for speech

recognition in cocktail-party environment. Different combinations of acoustic and visual fea-

tures and speaker identity information as DNN inputs are presented. Experimental results

suggest that the audio-visual model achieves significant improvement over the audio-only

model. Introducing speaker identity information introduces an even more pronounced im-

provement. Combining both approaches, however, does not significantly improve perfor-

mance further.

Secondly, we present using a static target speaker embedding as additional acoustic mod-

eling input feature for speaker-targeted speech recognition in cocktail party environments.

We investigate three types of text-independent speaker embedding extraction models, using

the target speaker’s data as simple as a short speech segment or a face image. i-vector is ex-

tracted by the GMM-UBM with speech segment of the target speaker. x-vector is extracted
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from the bottleneck features of a TDNN-based speaker recognizer given a speech segment of

the target speaker. f-vector is extracted by a CNN of Inception-ResNet architecture trained

on triplet loss given an input face image of the target speaker. Empirical evaluation is per-

formed on the TED-LIUM corpus release 2 by overlapping a target speaker and a background

speaker’s speech signals. We show that using the target speaker embedding reduces WER

over the acoustic feature only model from 65.7% to 29.5% in two-speaker settings. Compar-

ing the three types of speaker embedding, i-vectors tend to overfit to specific speaker and

environment conditions and show the best performance when the environment of speaker

data matches that of speech recognition, while x-vectors and f-vectors are more robust with

respect to environment variations, as they are trained to differentiate speakers.
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Chapter 5

Policy for Vision-Grounded

Instruction Following

In this chapter, we focus on dialogue policy learning on the task of vision-grounded instruc-

tion following [122, 139, 152]. In our setting, the agent receives an instruction (switch an

appliance or fetch an object) in text form and learns to navigate and manipulate objects to

complete the instruction in a simulated indoor multi-room environment, as shown in Fig-

ure 5.1. Vision-grounded instruction following involves understanding both the language

and visual context (instruction description, the objects and the environment surrounding

the agent) and decision making (a policy that outputs a series of actions for the agent to

carry out in order to complete the instruction).

Unlike studies on Vision-and-Language Navigation which focus on understanding the com-

plex and photo-realistic visual scenes from collections of real buildings scanned data, we train

our instruction following agent using a simulator which maximizes the randomness of the en-

vironment layout, object positions and appearances to enable Domain Randomization [101].

Despite simplifying the visual understanding aspect, our goal is to train an instruction fol-

lowing agent that is able to generalize to act in diversified unseen environments. We create a
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series of subtasks which are simplified from the target task along two complexity dimensions:

instruction variety and spatial layout.

Example Instruction 1: You must fetch the purple cup.
Example Instruction 2: Go turn on the tv in the living room.

Figure 5.1: Example illustration of the vision-grounded instruction following task. The goal
of the agent (represented by the red arrow) is to complete the given instruction by navigating
the environment.

5.1 Vision-Grounded Instruction Following Framework

Reinforcement Learning Environment Setup

MiniGrid Our training environment is based on the Minimalistic Gridworld Environ-

ment (MiniGrid) [113] package’s Multiroom task and Fetch task with several modifications.

Within the 25 by 25 grid area, in each episode, the number of rooms is randomly chosen

between 2 to 4, the width and height of each room is randomly chosen from 6 to 9 grid

cells, and the room layout and door locations are also randomly generated. The rooms are

randomly assigned to have different functions and the furniture and appliances are chosen

and placed randomly. Household objects randomly chosen from 5 types and 5 colors are also

placed at randomly locations. The number of objects is defined to be the number of rooms

plus one. The details of furniture and appliances for different room types and the types and

colors of objects are listed in Table 5.1. The agent’s starting position and orientation are
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Room type Furniture and Appliances
living room sofa, table, TV, light, trash bin
kitchen refrigerator, coffeemaker, dishwasher, table, light, trash bin
bedroom bed, table, wardrobe, TV, light, trash bin
bathroom washer, toilet, light, trash bin

Object types pen, book, cup, bowl, shirt
Object colors red, green, blue, yellow, purple

Table 5.1: Household furniture, appliances and objects defined in our vision-grounded in-
struction following environment.

also randomly determined in the beginning of each episode.

We choose to extend the MiniGrid training framework for its strength in Domain Random-

ization [101, 123]. MiniGrid provides high flexibility to create complex room layouts and its

object, furniture and appliance positions are completely random. By training the model that

works across the highly diversified simulated environments, we expect the agent to generalize

better to unseen room environments.

Instruction We define two types of instructions to instruct the agents: (1) fetch the

specified object, e.g. "get the orange cup in the kitchen", and (2) switch the specified

appliance (light or TV), e.g. "please switch on the light in the bedroom". For the fetch

instruction, task success is achieved when the agent picks up the specified object. For the

switch instruction, task success is achieved when the agent operates the specified appliance

to be on. When the agent takes more than max_step steps before completing the instructed

task, it is counted as task failure. Because in our environment the objects have more variety

than appliances, which makes the fetch instruction more challenging, we set each episode

to have 75% probability to have the fetch instruction and 25% for the switch instruction.

For both instructions, we use multiple forms of natural language expressions to mimic real

human’s instructions.

Subtasks In the target task, there are two kinds of instructions: switch appliances (light

and TV) and fetch objects (5 types in 5 colors) in a 2-to-4-room environment. We define a
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series of subtasks as simplified versions of the target task along two complexity dimensions:

instruction variety and spatial layout, as shown in Figure 5.2, based on heuristic.

Instruction 
Variety

Spatial 
Layout

2 room

2-to-4 room

target task

2-to-3 room

switch appliances ✓ ✓ ✓ ✓

fetch objects
(# types, #colors) (2, 2) (3, 3) (4, 4) (5, 5)

Trajectory C

Trajectory A

Trajectory B

Figure 5.2: The target task (represented by the black dot) can be simplied to easier subtasks
along two complexity dimensions: instruction variety and spatial layout. The subtasks are
the grid points. The spatial layout dimension can be divided to three levels of complexity:
2 room, 2-to-3 room, and 2-to-4 room. The instruction variety dimension can be divided
to four levels of complexity: switch appliances plus fetch objects of four levels of varieties.

Reinforcement Learning Agent

Agent Model

Action The agent’s actions include six basic motions: turn left, turn right, move forward,

operate furniture or appliance, pick up object, and put down object, with three additional

dialogue actions: inquire best motion action, inquire navigation hint, and inquire recognition

hint.

Observation In every step, the agent’s observations include the agent’s partially observ-

able view image (defined to be 7 by 7 grid area) and an instruction description text received in

the beginning of an episode. The image input feature dimension is 7x7x3; the first two dimen-

sions are 7*7 grid cells of the agent’s partially observable front view (with occlusion by walls

and closed doors), and the third dimension is a grid cell’s 3-tuple state: (object_type, ob-

ject_color, object_status). We define two additional observation inputs to support human-

agent dialogue communication: response from the human collaborator to answer the agent’s
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query and the number of remaining_dialogue_turns. We define max_dialogue, the number

of dialogue exchanges allowed in each episode. In the beginning of an episode, remain-

ing_dialogue_turns will be set to max_dialogue. When the agent takes one of the dialogue

actions at step t, it will receive a response from the human collaborator in its observation

at step t+ 1, and the value remaining_dialogue_turns will be decremented by 1. When the

number of dialogue exchanges exceeds max_dialogue dialogue actions (i.e., the agent’s ob-

servation of remaining_dialogue_turns is 0), even when the agent takes one of the dialogue

actions to inquire the human collaborator, it will not receive a response.
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Figure 5.3: Instruction following agent model architecture. The response from human col-
laborator input is optional.

Model Architecture The model architecture for our instruction following agent is shown

in Figure 5.3. The agent has four sources of observations as input: instruction description,

view image, response from the human collaborator, and number of remaining dialogue turns.

The text of instruction description and response from the human collaborator are both
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tokenized and mapped by the shared word embedding. Then they are encoded by their

respective GRU network to produce the utterance-level encoding vectors (final hidden states

of GRU). The view image is encoded by a Convolutional Neural Network (CNN), composed of

a convolutional layer, a maxpooling layer, and then two convolutional layers, which produces

the image encoding. The integer value of the number of remaining dialogue turns is projected

through a fully connected layer which generates the encoding for remaining dialogue turns.

All the encodings (image, instruction, response, and dialogue turn) are concatenated, and

then fed as input to three feedforward networks of one fully-connected hidden layer. One

network is the actor network for motion actions, predicting a distribution over the 6 motion

actions. The second network is actor for dialogue actions, predicting a distribution over the

3 dialogue actions. And the third network’s output is the critic’s estimated value of the

current state. To encourage the agent to take the dialogue actions only when it is confused

about which motion actions to take, we introduce a gating mechanism to control the flow of

the dialogue action predictions, and use the entropy of the motion actions to approximate

the agent’s confusion level. When the entropy of the motion action distribution is above the

entropy_threshold, the gate lets the dialogue action distribution pass; otherwise the dialogue

actions will be set to zero likelihood. Finally the distributions of the motion actions and

the dialogue actions are concatenated and normalized as the the overall actor network’s

prediction.

Policy Learning

The agent’s model network is trained using the Advantage Actor-Critic (A2C) [105] algo-

rithm. The critic network learns to estimate the value function V , which is then used to

calculate the advantage function:

A(st, at) = Q(st, at)− V (st) (5.1)

= rt+1 + γV (st+1)− V (st) (5.2)
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The actor network parameterizes the policy, and is updated in the direction suggested by

the critic network, similar to other policy gradient algorithms. The policy gradient can be

written as:

∇θJ(θ) ∼
T−1∑
t=0
∇θ log πθ(at|st)(rt+1 + γV (st+1)− V (st)) (5.3)

=
T−1∑
t=0
∇θ log πθ(at|st)A(st, at) (5.4)

5.2 Curriculum Learning

The principle of curriculum learning is starting with simpler training samples and gradually

increasing the complexity of training data, such that training on such curriculum will help

the performance on the target task [16, 45].

A series of subtasks is selected to form the learning curriculum. Then the instruction follow-

ing agent will be trained for a number of steps in each subtask according to the curriculum.

This type of curriculum learning strategy can be categorized in the task-specific curriculum

learning family [16]. We explore two types of curriculum learning strategies to boost RL

agent’s training: manually designed curriculum and automatic curriculum.

5.2.1 Manual Curriculum

To manually design a learning curriculum, we consider the following hyperparameters: sub-

task trajectory, curriculum pacing and subtask ordering.

Subtask Trajectory Because the subtask complexity is two-dimensional, there exist mul-

tiple subtask trajectories from the simplest task to the target task in monotonically increas-

ingly complexity, e.g. trajectory A, B, and C as shown in Figure 5.2.

Curriculum Pacing The pace of the curriculum determines the number of training steps

to spend on each subtask in the curriculum. We compare different training steps in a fixed

pacing function, where all subtasks are trained with the same number of steps.
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Subtask Ordering Does ordering of the subtasks in the learning curriculum affect learn-

ing effectiveness? Besides the regular increasing complexity curriculum, we also consider

an "anti" curriculum where the subtasks appear in decreasing complexity, and a "random"

curriculum with randomly shuffled subtask order.

5.2.2 Automatic Curriculum

While it is possible to manually design a reasonable learning curriculum by carefully choos-

ing the subtask trajectories, ordering and pacing, we are also interested in generating the

curriculum automatically. [146] proposed the Teacher-Student Curriculum Learning, where

the agent model (Student) is trained according to the curriculum generated by the Teacher

model. The Teacher model uses the Student’s past episode returns as input, and at each

timestep it predicts a subtask for the Student to practice for a few episodes and the episode

returns are fed as input back to the Teacher model. The goal of the Teacher is to maximize

the sum of performance for all the subtasks, with the assumption that the performance gain

on subtasks will translate to improved performance in the target task.

Learning the Teacher model can be formulated as a non-stationary multi-armed bandit prob-

lem. Let’s denote the subtasks as {u1, · · · , uK}. The horizon is denoted as T . In each

timestep t, the Teacher picks a subtask ut = uk, k ∈ [K]. The Student trains on uk and

returns the episode return xt. The teacher’s goal is to maximize ∑T
t=1 xt.

We compare three types of mutli-armed bandit algorithms to train the Teacher model: Online

Algorithm, Window Algorithm, and Sampling Algorithm [129].

Online Algorithm In Online Algorithm, we define the Teacher’s reward rt as the change

in student’s episode return rt = xt−xt′ , where t′ is the previous timestep when uk was trained

on. And we approximate the expected reward Q for different subtasks using exponentially

weighted moving average as Qt+1(ut) = αrt + (1− α)Qt(ut) , where α is learning rate. The

next subtask ut+1 is drawn from the Boltzmann distribution p(u) = eQt+1(u)/τ∑K

k=1 e
Qt+1(uk)/τ , where

τ is the temperature of Boltzmann distribution.
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Window Algorithm The Window Algorithm shares the same definition and update rule

of expected reward Q and subtask selection policy as Online Algorithm. The only difference

is that the reward rt is instead defined as the slope of the subtask uk’s last N episode returns

{xt, xt′ , · · · , xt(N)}, calculated using linear regression.

Sampling Algorithm In Sample Algorithm, the Teacher’s reward has the same definition

as Online Algorithm. Inspired by Thompson Sampling [21], we store the last N episode

returns {xt, xt′ , · · · , xt(N)} in a buffer for each subtask uk. Subtask selection is done by

sampling a recent reward from each of the subtasks’ buffer, and the subtask whose buffer

yields the highest sampled reward is chosen as ut+1.

5.2.3 Experiments
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Figure 5.4: Learning curves comparing subtask trajectories. Training on the target task
begins at the vertical line. We plot the mean and one standard deviation of four runs of
random initialization for each agent variant. Trajectory B shows statistically significant
improvement over Trajectory C and Baseline (p < 0.05 in Welch’s t-test).

The learning curves of manual curriculum learning are shown in Figure 5.4 through 5.6.

For subtask trajectory, we compare three trajectories (A: instruction-first, C: spatial-first,

and B: alternating-axes) with increasing complexity, as shown in the Figure 5.2. Figure 5.4

shows that training with the curriculum following the trajectories A, B and C all outperform

the baseline (only training on the target task from the beginning), and trajectory B has the

best performance. In the following experiments, we use Trajectory B as the default manual
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Figure 5.5: Learning curves comparing curriculum pacing step sizes. Each subtask is repre-
sented by one color, with the same color scheme as Figure 5.2. Training on the target task
is represented using black color.

curriculum. In Figure 5.5, we compare training each subtask for 400K, 500K, 600K, 700K, or

800K steps respectively in a fixed pacing schedule. We observe that a moderate pacing which

balances between under training and over training on subtasks shows the best performance

and outperforms the baseline. In Figure 5.6, we observe that the "anti" curriculum provides

a small performance gain compared with the baseline. It is noteworthy that a "random"

curriculum’s performance is comparable as the regular curriculum.

Find the best hyperparameters to manually design a learning curriculum requires expert

knowledge or a great amount of search efforts. In Figure 5.7, we evaluate learning the cur-

riculum automatically with different Teacher-Student Curriculum Learning algorithms. It’s

shown that when spending the same number of training steps, automatic curricula achieve

matching performance compared with the carefully-designed manual curriculum and outper-

form the baseline.

5.3 Human-Agent Dialogue Collaboration

Inspired by the extensive studies on Human-Agent Collaboration [68] and Human-Robot

Collaboration [142, 15], where the human and agent share the same goal and cooperate
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Figure 5.6: Learning curves comparing subtask ordering. Training on the target task begins
at the vertical line. We plot the mean and one standard deviation of four runs of random
initialization for each agent variant. Regular Curriculum, Random Curriculum and Anti
Curriculum all show statistically significant improvement over Baseline (p < 0.05 in Welch’s
t-test).

to achieve the goal, we propose to incorporate a human collaborator via natural language

dialogue to assist the agent’s policy learning. In the human-agent dialogue, the agents receive

the human collaborator’s responses in text form, the same way it receives the instruction

description. Since human guidance is more expensive to obtain, we specify a limit for the

number of dialogue exchanges allowed per episode: max_dialogue. The dialogue is solicited

by the agent, inquiring hints from the human collaborator to help it complete the instruction.

5.3.1 Dialogue Acts

We consider three types of dialogue exchanges: inquire best motion action for direct control

over the agent actions, and two high level hints inquire navigation hint and inquire recognition

hint.

Inquire best motion action (motion) Inquiry for the navigation hint asks the human

collaborator what motion action is optimal in the current step. For example, the agent’s

query is "What is the optimal action now?", and the responses can be "Turn left.", "Turn

right.", "Move forward.", "Open it.", "Pick it up.", or "Put it down."
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Figure 5.7: Learning curves comparing Teacher-Student Curriculum Learning algorithms.
After the vertical line, the agent begins training on the target task. We plot the mean and
one standard deviation of four runs of random initialization for each agent variant. Manual
Curriculum, TS Sampling Curriculum, and TS Window Curriculum show statistically signif-
icant improvement over Baseline, and Manual Curriculum also shows statistically significant
improvement TS Online Curriculum (p < 0.05 in Welch’s t-test).

Inquire navigation hint (nav) Inquiry for the navigation hint asks the human collabo-

rator whether the agent is in the right room where the goal object is located. The purpose of

the hint is to help the agent navigate to the right position. For example, the agent’s query

is "Am I in the right room?", and the responses from the human collaborator can be "Yes,

you are in the right place." or "I think you are in the wrong room."

Inquire recognition hint (rec) The goal of the recognition hint is to supplement the

agent’s object recognition ability. Inquiry for the recognition hint asks the human collabora-

tor whether the goal object is in the agent’s current point of view. For example, the agent’s

query is "Am I looking at the right target?", and the responses from the human collaborator

can be "The target object is here." or "That is not what we are looking for."

We use multiple forms of natural language expressions as the human collaborator’s responses

in our rule-based user simulator.
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5.3.2 Experiments

Agent Variants

Baseline Agent The baseline agent is directly trained on the target task from the begin-

ning.

Dialogue Agent (Dial) The Dial agent is directly trained on the target task with human-

agent dialogue.

Curriculum Learning Agent (CL) The CL agent is trained according to the curriculum

designed by the human collaborator. It is trained for the same number of steps on each of

the subtasks in the curriculum, and then trained on the target task.

Curriculum Learning Agent followed by Dialogue Finetuning (CL+DialFinetune)

The CL+DialFinetune agent is trained with the same curriculum as the CL agent, except

that after training on the target task, the agent’s model is finetuned using dialogue with

human collaborator in the last few steps.

Curriculum Learning Agent with Dialogue Subtasks (CL+Dial) The CL+Dial

agent is trained with the same curriculum similar as the CL agent, except that in every

training episode the agent is equipped with human-agent dialogue.

Training details

We set max_step to 800, meaning that the episode will be terminated and counted as failure

when the agent takes more than 800 steps in an episode. We set max_dialogue to be 20.

The word embedding dimension is 32. The GRU networks for encoding instruction descrip-

tion and human response are both single-layer and have output dimension 64. The output

channels of the three convolutional layers are 16, 32, and 64 respectively, and their kernels all

have size 2x2, followed by ReLU activations. The maxpooling layer after the first convolu-

tional layer’s kernel size is 2x2 as well. The fully-connected layer for encoding the remaining

dialogue turns has output dimension 20, and uses ReLU activation. The fully-connected
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Figure 5.8: Learning curves comparing agent variants. We plot the mean and one stan-
dard deviation of four runs of random initialization for each agent variant. Dial, CL,
CL+DialFinetune, and CL+Dial all show statistically significant improvement over Base-
line; CL+DialFinetune and CL+Dial show statistically significant improvement over Dial;
CL+Dial shows statistically significant improvement over CL; CL+Dial also shows statisti-
cally significant improvement over CL+DialFinetune (p < 0.05 in Welch’s t-test).

hidden layer in the critic network and the actor networks for motion and dialogue actions all

have dimension 64 with Tanh activations. We set the entropy_threshold to 1.5 (maximum

entropy of a 6-class categorical distribution is ln(6) ≈ 1.8).

In the A2C algorithm to learn the agent’s policy, we use 0.99 discount factor and λ = 0.95

for the generalized advantage estimation, and we use RMSprop optimizer with 0.001 learning

rate, smoothing factor α = 0.99, and ε = 10−8.

For curriculum learning, we choose the default curriculum (Trajectory B), comprising five

subtasks followed by the target task, starting from the simplest subtask with alternating

complexity increase along the instruction variety and spatial layout dimensions, as shown as

Figure 5.2. The CL, CL+DialFinetune, and CL+Dial agents are trained on each subtask for

600K steps (total of 3M steps for subtask training), and then trained on the target task. All

variants of agents are trained until 5M steps. The finetuning stage of the CL+DialFinetune

agent is the last 600K steps (from 4.4M to 5M steps).
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Table 5.2: Evaluation results comparing agent variants on 150 evaluation episodes. Success
Rate shows the portion of successful episodes. Motion Steps and Dialogue Steps show the
average number of motion actions and dialogue actions taken per episode in the successful
episodes. The results are computed from four runs of random initialization for each agent
variant. ∗ represents statistically significant improvement over Baseline, and † represents
statistically significant improvement over Dial (p < 0.05 in McNemar’s test).

Baseline Dial CL CL+DialFinetune CL+Dial
Success Rate 77.2% 84.0%∗ 84.8%∗ 87.0%∗ 87.3%∗†
Motion Steps (Success episodes) 99.2 78.4 79.8 73.0 67.4
Dialogue Steps (Success episodes) - 3.3 - 5.4 2.8

Results

The learning curves comparing the different agent variants are shown in Figure 5.8. It

shows that, within the same number of total training steps, the agents which are trained

on human-designed curriculum (CL, CL+DialFinetune and CL+Dial) achieve faster perfor-

mance convergence and higher success rate compared with the baseline.

For evaluation, we focus on the easier episodes where one or more agents succeed and exclude

the episodes where none of the agents succeed. The evaluation results are presented in

Table 5.2. We present three metrics: Success Rate, Average Motion Steps in successful

episodes, and Average Dialogue Steps in successful episodes. The Success Rate metric shows

the portion of successful episodes out of all evaluation episodes. The Motion Steps and

Dialogue Steps metrics show the average number of motion actions and dialogue actions

taken per episode among the successful episodes. We can see that both curriculum learning

and human-agent dialogue improve the success rate compared with the baseline. Among the

successful episodes, the agents with human-agent dialogue have fewer motion steps, which

suggests that responses from human collaborator can help the agent learn policies which

have better route efficiency.

Figure 5.9 shows evaluation results breakdown across task difficulty. We divide the tasks

into three levels of difficulties: Same Room (easy), Next Room (medium), and Other Room
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(hard), representing three types of topology of the agent’s initial position and the goal object

or appliance’s position. Same Room represents the condition when the agent’s initial position

is in the same room as the goal object or appliance, Next Room signifies the two rooms are

connected by a door, and Other Room represents that there are one or two rooms in between

the agent’s initial room and the goal room. We can observe the trend that the success rate

consistently decreases as the task difficulty increases, and the number of motion and dialogue

steps increase with the task difficulty.

5.4 Conclusion

We develop a reinforcement learning framework for learning the vision-grounded instruction

following agent which enables Domain Randomization. First, we propose to train a vision-

grounded instruction following agent with curriculum learning, using manually-designed cur-

ricula and the automatic curricula learned by Teacher-Student Curriculum Learning. In the

manual curricula, the subtasks’ trajectory, ordering and pacing are carefully designed with

human heuristic. We utilize Teacher-Student Curriculum Learning to automatically gener-

ate learning curricula. Secondly, the agent can solicit hints from human collaborators in

the human-agent dialogue. Experiments show that training with carefully-designed manual

curricula and automatically learned curricula is able to accelerate the learning speed on the

target task. It’s also shown through empirical evaluation that the human-agent dialogue

boosts the agent task success rate and the resulted policies lead to more efficient routes.
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Figure 5.9: Evaluation results breakdown across task difficulty on 150 evaluation episodes.
The task difficulty is divided into three levels: Same Room (easy), Next Room (medium),
and Other Room (hard). In the subfigures (B) Motion Steps and (C) Dialogue Steps, the
box and whisker plots show the min, 25% percentile, 50% percentile, 75% percentile and
max of the steps. The results are computed from four runs of random initialization for each
agent variant. 59
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Chapter 6

Response Generation for Video

Question Answering

In this chapter, we explore the application of a dialogue system for question answering,

in particular to answer questions regarding content in videos. Video question answering

(VideoQA) systems provide a convenient way for humans to acquire visual information about

the environment. If a user wants to obtain information about a dynamic scene, one can

simply ask the VideoQA system a question in natural language, and the system generates

a natural language answer. The task of a VideoQA dialogue system is described as follows.

Given a video as grounding evidence, in each dialogue turn, the system is presented a question

and is required to generate an answer in natural language. Figure 6.1 shows an example of

multi-turn VideoQA. It is composed of a video clip and a dialogue, where the dialogue

contains open-ended question answer pairs regarding the scene in the video. In order to

answer the questions correctly, the system needs to be effective at understanding the question,

the video and the dialogue context altogether.

Recent work on VideoQA has shown promising performance using multimodal attention

fusion for combination of features from different modalities [106, 109, 133, 117]. However,
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User System

Video

Can you tell me what is happening in the video?

A person is packing a bag and then looking into the mirror.

Is the person a woman?

No, the person is a youngman.

What room is this person in ?

It looks like a bedroom or a dorm room.

What color are the walls?

The walls look like light purple.

Figure 6.1: An example from the AVSD dataset. Each example contains a video and its
associated question answering dialogue regarding the video scene.

one of the challenges is that the length of the video sequence can be very long and the

question may concern only a small segment in the video. Therefore, it may be time inefficient

to encode the entire video sequence using a recurrent neural network.

6.1 Model

We formulate the multi-turn VideoQA task as follows. Given a sequence of raw video

frames f , the embedded question sentence x = {x1, . . . , xK} and the single concatenated

embedded sentence of the dialogue context d = {d1, . . . , dM}, the output is an answer

sentence y = {y1, . . . , yN}.

The architecture of our proposed model is illustrated in Figure 6.2. First the Video Frame

Feature Extraction Module extracts the I3D-RGB frame features from the video frames.

The Question-Guided Video Representation Module takes as input the embedded question

sentence and the I3D-RGB features, and generates a compact video representation for each

token in the question sentence. In the Video-Augmented Question Encoder, the question
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Figure 6.2: Overview of the proposed multi-turn VideoQA model. First the I3D-RGB frame
features are extracted. The question-guided video representation module takes as input the
question sentence and the I3D-RGB features, generates a video representation for each token
and applies gating using question as guidance. Then the question tokens are augmented by
the per-token video representations and encoded by a bidirectional LSTM encoder. Similarly,
the dialogue context is encoded by a bidirectional LSTM encoder. Finally, the LSTM answer
decoder predicts the answer sequence.

tokens are first augmented by their corresponding per-token video representations and then

encoded by a bidirectional LSTM. Similarly, in the Dialogue Context Encoder, the dialogue

context is encoded by a bidirectional LSTM. Finally, in the Answer Decoder, the outputs

from the Video-Augmented Question Encoder and the Dialogue Context Encoder are used

as attention memory for the LSTM decoder to predict the answer sentence. Our encoders

and decoder work in the same way as the multi-source sequence-to-sequence models with

attention [76, 58].

Video Frame Feature Extraction

We use the I3D-RGB frame features as the visual modality input, which are pre-extracted

and provided in the AVSD dataset [135]. Here we briefly describe the I3D-RGB feature

extraction process, and we refer the readers to [78] for more details of the I3D model.

Two-stream Inflated 3D ConvNet (I3D) is a state-of-the-art action recognition model which
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operates on video inputs. The I3D model takes as input two streams of video frames: RGB

frames and optical flow frames. The two streams are separately passed to a respective 3D

ConvNet, which is inflated from 2D ConvNets to incorporate the temporal dimension. Two

sequences of spatiotemporal features are produced by the respective 3D ConvNet, which

are jointly used to predict the action class. The I3D-RGB features provided in the AVSD

dataset are intermediate spatiotemporal representations from the "Mixed_5c" layer of the

RGB stream’s 3D ConvNet. The AVSD dataset uses the I3D model parameters pre-trained

on the Kinetics dataset [85]. To reduce the number of parameters in our model, we use

a trainable linear projection layer to reduce the dimensionality of I3D-RGB features from

2048 to 256. Extracted from the video frames f and projected to a lower dimension, the

sequence of dimension-reduced I3D-RGB frame features are denoted by r = {r1, . . . , rL},

where ri ∈ R256,∀i.

Question-Guided Video Representation

We use a bidirectional LSTM network to encode the sequence of question token embedding

x = {x1, . . . , xK}. The token-level intermediate representations are denoted by xtok =

{xtok1 , . . . , xtokK }, and the embedded representation of the entire question is denoted by xsen.

These outputs will be used to guide the video representation.

~h0 = ~hK+1 = 0 (6.1)

~hk = LSTMforw
guide(xk,~hk−1) (6.2)

~hk = LSTMback
guide(xk, ~hk+1) (6.3)

xtokk = ~hk ⊕ ~hk (6.4)

∀k ∈ {1, . . . , K}

xsen = ~hK ⊕ ~h1 (6.5)
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where ⊕ denotes vector concatenation; ~h and ~h represent the local forward and backward

LSTM hidden states.

Per-Token Visual Feature Summarization Generally the sequence length of the video

frame features is quite large, as shown in Table 6.1. Therefore it is not computationally

efficient to encode the video features using a recurrent neural network. We propose to use

the attention mechanism to generate a context vector to efficiently summarize the I3D-RGB

features. We use the trilinear function [97] as a similarity measure to identify the frames most

similar to the question tokens. For each question token xk, we compute the similarity scores

of its encoded representation xtokk with each of the I3D-RGB features r. The similarity scores

sk are converted to an attention distribution watt
k over the I3D-RGB features by the softmax

function. And the video summary vk corresponding to the question token xk is defined as

the attention weighted linear combination of the I3D-RGB features. We also explored using

dot product for computing similarity and empirically found out it yields suboptimal results.

sk,l = trilinear(xtokk , rl) (6.6)

= Wsim[xtokk ⊕ rl ⊕ (xtokk � rl)] (6.7)

∀l ∈ {1, . . . , L}

watt
k = softmax(sk) (6.8)

vk =
L∑
l=1

watt
k,l rl (6.9)

∀k ∈ {1, . . . , K}

where � denotes element-wise multiplication, and Wsim is a trainable variable.

Visual Feature Gating Not all details in the video are important for answering a ques-

tion. Attention helps in discarding the unimportant frames in the time dimension. We pro-

pose a gating mechanism which enables us to perform feature selection within each frame.

We project the sentence-level question representation through fully-connected layers to gen-
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erate a gate vector, and perform element-wise multiplication of the video summary for each

question token with the gate vector to generate a gated visual summary. We project the

sentence-level question representation xsen through fully-connected layers with ReLU non-

linearity to generate a gate vector g. For each question token xk, its corresponding video

summary vk is then multiplied element-wise with the gate vector g to generate a gated vi-

sual summary vgk. We also experimented applying gating on the dimension-reduced I3D-RGB

features r, prior to the per-token visual feature summarization step, but it resulted in an

inferior performance.

g = sigmoid(Wg, 1(ReLU(Wg, 2x
sen + bg, 2) + bg, 1) (6.10)

vgk = vk � g (6.11)

∀k ∈ {1, . . . , K}

where Wg, 1, bg, 1, Wg, 2, bg, 2 are trainable variables.

Video-Augmented Question Encoder

Given the sequence of per-token gated visual summary vg = {vg1, . . . , vgK}, we augment

the question features by concatenating the embedded question tokens x = {x1, . . . , xK}

with their associated per-token video summary. The augmented question features are then

encoded using a bidirectional LSTM. The token-level video-augmented question features are
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denoted by qtok = {qtok1 , . . . , qtokK }, and the sentence-level feature is denoted by qsen.

~h0 = ~hK+1 = 0 (6.12)

~hk = LSTMforw
ques(xk ⊕ v

g
k,
~hk−1) (6.13)

~hk = LSTMback
ques(xk ⊕ v

g
k,

~hk+1) (6.14)

qtokk = ~hk ⊕ ~hk (6.15)

∀k ∈ {1, . . . , K}

qsen = ~hK ⊕ ~h1 (6.16)

where ~h and ~h represent the local forward and backward LSTM hidden states.

Dialogue Context Encoder

Similar to the video-augmented question encoder, we encode the embedded dialogue context

tokens d = {d1, . . . , dM} using a bidirectional LSTM. The embedded token-level representa-

tions are denoted by dtok = {dtok1 , . . . , dtokM }.

~h0 = ~hM+1 = 0 (6.17)

~hm = LSTMforw
dial (dm,~hm−1) (6.18)

~hm = LSTMback
dial (dm, ~hm+1) (6.19)

dtokm = ~hm ⊕ ~hm (6.20)

∀m ∈ {1, . . . ,M}

where ~h and ~h represent the local forward and backward LSTM hidden states.

Answer Decoder

The final states of the forward and backward LSTM units of the question encoder are used

to initialize the state of answer decoder. Let yn be the output of the decoder at step n,
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where 1 ≤ n ≤ N , y0 be the special start of sentence token and yemb
n be the embedded

representation of yn. At a decoder step n, the previous decoder hidden state hn−1 is used to

attend over qtok and dtok to get the attention vectors hatt, qn and hatt, dn respectively. These

two vectors retrieve the relevant features from the intermediate representations of the video-

augmented question encoder and the dialogue context encoder, both of which are useful for

generating the next token of the answer. At each decoder step, the decoder hidden state hn

is used to generate a distribution over the vocabulary. The decoder output y∗n is defined to

be argmaxyn p(yn|y≤n−1).

h0 = qsen (6.21)

sqn,k = v>ans, q tanh(Wans, q[hn−1 ⊕ qtokk ]) (6.22)

∀k ∈ {1, . . . , K}

wq
n = softmax(sqn) (6.23)

hatt, qn =
K∑
k=1

wq
n,k q

tok
k (6.24)

sdn,m = v>ans, d tanh(Wans, d[hn−1 ⊕ dtokm ]) (6.25)

∀m ∈ {1, . . . ,M}

wd
n = softmax(sdn) (6.26)

hatt, dn =
M∑
m=1

wd
n,m dtokm (6.27)

hn = LSTMans(yemb
n−1, [hatt, qn ⊕ hatt, dn ⊕ hn−1]) (6.28)

p(yn|y≤n−1) = softmax(Wanshn + bans) (6.29)

∀n ∈ {1, . . . , N}

where h represents the local LSTM hidden states, andWans, q,Wans, d,Wans, bans are trainable

variables.
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Table 6.1: Statistics of AVSD dataset. We use the official training set, and the public (i.e.,
prototype) validation and test sets. We also present the average length of the question token
sequences and the I3D-RGB frame feature sequences to highlight the importance of time
efficient video encoding without using a recurrent neural network. The sequence lengths
of the questions and I3D-RGB frame features are denoted by K and L respectively in the
model description.

Training Validation Test
# of dialogues 7659 732 733
# of turns 153,180 14,680 14,660
# of words 1,450,754 138,314 138,790
Avg. length of 8.5 8.4 8.5question (K)
Avg. length of 179.2 173.0 171.3I3D-RGB (L)

6.2 Experiments

Dataset

We consider the Audio-Visual Scene-aware Dialog (AVSD) dataset [135] for evaluating our

proposed model in single-turn and multi-turn VideoQA. We use the official release of train

set for training, and the public (i.e., prototype) validation and test sets for inference. The

AVSD dataset is a collection of text-based human-human question answering dialogues based

on the video clips from the CHARADES dataset [69]. The CHARADES dataset contains

video clips of daily indoor human activities, originally purposed for research in video activity

classification and localization. Along with the video clips and associated question answering

dialogues, the AVSD dataset also provides the pre-extracted I3D-RGB visual frame features

using a pre-trained two-stream inflated 3D ConvNet (I3D) model [78]. The pre-trained I3D

model was trained on the Kinetics dataset [85] for human action recognition.

In Table 6.1, we present the statistics of the AVSD dataset. Given the fact that the lengths

of the I3D-RGB frame feature sequences are more than 20 times longer than the questions,

using a recurrent neural network to encode the visual feature sequences will be very time
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Table 6.2: NLG evaluation metrics comparison with existing approaches on AVSD dataset:
Naïve Fusion [136, 151], Attentional Fusion [119, 151], Multi-Source Sequence-to-Sequence
model [148], Modified Attentional Fusion with Maximum Mutual Information objective [151]
and Hierarchical Attention with pre-trained embedding [144], on the AVSD public test set.
For each approach, we report its corpus-wide scores on BLEU-1 through BLEU-4, METEOR,
ROUGE-L and CIDEr. We report the mean and standard deviation scores of 5 runs using
random initialization and early stopping on the public (prototype) validation set.

Single-Turn VideoQA Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
Naïve Fusion 27.7 17.5 11.8 8.3 11.7 28.8 74.0
Multi-source Seq2Seq - - - 8.83 12.43 34.23 95.54
Ours 29.56±0.75 18.60±0.49 13.16±0.33 9.77±0.21 13.19±0.20 34.29±0.19 101.75±1.03

Multi-Turn VideoQA Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
Naïve Fusion 27.7 17.6 12.0 8.5 11.8 29.0 76.5
Attentional Fusion 27.6 17.7 12.2 8.7 11.7 29.3 78.7
Modified Attn. Fusion 27.7 17.6 12.0 8.5 11.8 29.0 76.5
+MMI objective 28.3 18.1 12.4 8.9 12.1 29.6 80.5

Hierarchical Attention 29.1 18.6 12.6 9.0 12.7 30.1 82.4
+pre-trained embedding 30.7 20.4 14.4 10.6 13.6 32.0 99.5

Multi-Source Seq2Seq - - - 10.58 14.13 36.54 105.39
Ours 30.52±0.34 20.00±0.20 14.46±0.14 10.93±0.11 13.87±0.10 36.62±0.23 113.28±1.37

consuming, as the visual frames are processed sequentially. Our proposed question-guided

video representation module summarizes the video sequence efficiently - aggregating the

visual features by question-guided attention and weighted summation and performing gating

with a question-guided gate vector, both of which can be done in parallel across all frames.

Training Details

We implement our models using the Tensor2Tensor framework [130]. The question and

dialogue context tokens are both embedded with the same randomly-initialized word em-

bedding matrix, which is also shared with the answer decoder’s output embedding. The

dimension of the word embedding is 256, the same dimension to which the I3D-RGB fea-

tures are transformed. All of our LSTM encoders and decoder have 1 hidden layer. Bah-

danau attention mechanism [40] is used in the answer decoder. During training, we apply

dropout rate 0.2 in the encoder and decoder cells. We use the ADAM optimizer [41] with

α = 2× 10−4, β1 = 0.85, β2 = 0.997, ε = 10−6, and clip the gradient with L2 norm threshold

2.0 [28]. The models are trained up to 100K steps with early stopping on the validation

BLEU-4 score using batch size 1024 on a single GPU. During inference, we use beam search
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decoding with beam width 3. We experimented with word embedding dimension {256, 512},

dropout rate {0, 0.2}, Luong and Bahdanau attention mechanisms, {1, 2} hidden layer(s)

for both encoders and the decoder. We found the aforementioned setting worked best for

most models.

Results

Comparison with Existing Methods We evaluate our proposed approach using the

same natural language generation evaluation toolkit NLGEval [98] as the previous ap-

proaches. The corpus-wide scores of the following unsupervised automated metrics are

reported, including BLEU-1 through BLEU-4 [10], METEOR [12], ROUGE-L [11] and

CIDEr [51]. The results of our models in comparison with the previous approaches are

shown in Table 6.2. We report the mean and standard deviation scores of 5 runs using

random initialization and early stopping on the public (prototype) validation set. We apply

our model in two scenarios: single-turn and multi-turn VideoQA. The only difference is that

in single-turn VideoQA, the dialogue context encoder is excluded from the model.

First we observe that our proposed multi-turn VideoQA model significantly outperforms the

single-turn VideoQA model. This suggests that the additional dialogue context input can

provide supplementary information from the question and visual features, and thus is help-

ful for generating the correct answer. Secondly, comparing the single-turn VideoQA models,

our approach outperforms the existing approaches across all automatic evaluation metrics.

This suggests the effectiveness of our proposed question-guided video representations for

VideoQA. When comparing with previous multi-turn VideoQA models, our approach that

uses the dialogue context (questions and answers in previous turns) yields state-of-the-art

performance on the BLEU-3, BLEU-4, ROUGE-L and CIDEr metrics and competitive re-

sults on BLEU-1, BLEU-2 and METEOR. It is worth mentioning that our model does not

use pre-trained word embedding or audio features as in the previous hierarchical attention

approach [144].
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Table 6.3: Ablation study on the AVSD validation set. We observe that the performance
degrades when either of both of the question-guided per-token visual feature summarization
(TokSumm) and feature gating (Gating) techniques are removed.

Model BLEU-4 METEOR ROUGE-L CIDEr
Ours 10.94 13.73 36.30 111.12
-TokSumm 10.46 13.49 35.81 110.08
-Gating 10.59 13.64 36.11 108.51
-TokSumm-Gating 10.06 13.20 35.35 104.01

Ablation Study and Weights Visualization We perform ablation experiments on the

validation set in the multi-turn VideoQA scenario to analyze the effectiveness of the two

techniques in the question-guided video representation module. The results are shown in

Table 6.3.

Question-Guided Per-Token Visual Feature Summarization (TokSumm) Instead

of using token-level question representations xtok = {xtok1 , . . . , xtokK } to generate per-token

video summary v = {v1, . . . , vK}, we experiment with using the sentence-level representation

of the question xsen as the query vector to attend over the I3D-RGB visual features to create a

visual summary v, and use v to augment each of the question tokens in the video-augmented

question encoder.

sl = trilinear(xsen, rl) (6.30)

∀l ∈ {1, . . . , L}

watt = softmax(s) (6.31)

v =
L∑
l=1

watt
l rl (6.32)

We observe the performance degrades when the sentence-level video summary is used instead

of the token-level video summary.

Figure 6.3 shows an example of the attention weights in the question-guided per-token visual

feature summarization. We can see that for different question tokens, the attention weights
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Figure 6.3: Visualization of question-guided per-token visual feature summary weights on
a question. Each row represents the attention weights watt

k of the corresponding encoded
question token xtokk over the I3D-RGB visual features. We can observe that the attention
weights are shifted to focus on the relevant segment of the visual frame features for the
question tokens “after the younger man leaves <eos>?"

Figure 6.4: Visualization of question-guided gate weights g for some example questions.
Across the questions about similar subjects, we observe a similar trend of weight distribution
over visual feature dimensions. Conversely, questions about different topics show different
gate weights patterns.

are shifted to focus on the different segment in the sequence of the video frame features.

Question-Guided Visual Feature Gating (Gating) We also experiment with using the

non-gated token-level video summary v = {v1, . . . , vK} to augment the question information

in the video-augmented question encoder. We observe the model’s performance declines

when the question-guided gating is not applied on the video summary feature. Removing

both the per-token visual feature summarization and the gating mechanism results in further

degradation in the model performance.
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Figure 6.4 illustrates the question-guided gate weights g of several example questions. We

observe that the gate vectors corresponding to the questions regarding similar subjects assign

weights on similar dimensions of the visual feature. Although many of the visual feature

dimensions have low weights across different questions, the feature dimensions of higher gate

weights still exhibit certain topic-specific patterns.

6.3 Conclusion

In this chapter, we present an end-to-end trainable model for single-turn and multi-turn

VideoQA. Our proposed framework takes the question, I3D-RGB video frame features and

dialogue context as input. Using the question information as guidance, the video features

are summarized as compact representations to augment the question information, which are

jointly used with the dialogue context to generate a natural language answer to the question.

Specifically, our proposed question-guided video representation module is able to summarize

the video features efficiently for each question token using an attention mechanism and

perform feature selection through a gating mechanism. In empirical evaluation, our proposed

models for single-turn and multi-turn VideoQA outperform existing approaches on several

automatic natural language generation evaluation metrics. Detailed analyses are performed,

and it is shown that our model effectively attends to relevant frames in the video feature

sequence for summarization, and the gating mechanism shows topic-specific patterns in the

feature dimension selection within a frame.
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Chapter 7

Conclusion and Future Work

In this thesis, we improve the conventional spoken dialogue systems via learning an end-to-

end model which fuses separate modules in the pipeline and leveraging multimodal context

from the user and the environment for situated dialogue interaction. First, we study end-to-

end and scalable dialogue state tracking. Without using a separate language understanding

module, the model directly predicts dialogue states from natural language input and does not

require a predefined ontology for slot values. For robust speech recognition in situated dia-

logues, we propose to recognize users’ speech using multimodal input by enhancing our speech

recognizer with visual information and speaker embedding to make it robust against adverse

acoustic environments. We then train an end-to-end model for vision-grounded instruction

following and boost the agent’s policy training via curriculum learning and human-agent

dialogue. The agent is trained to navigate through the environment, execute the instruc-

tion given by the user based on visual perception, and converse with human collaborator to

receive feedback. Finally, we consider end-to-end dialogue model for video question answer-

ing, where the system’s task is to generate natural language answers to questions regarding

content in videos by extracting the relevant information from multimodal inputs: textual

question and video grounding evidence.
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For future work, we propose two directions: Multimodal Learning and Multi-Domain Dia-

logue.

Multimodal Learning In our current solutions, we leverage visual cues on top of either

the speech or textual user input. In some situated dialogue interactions, more modalities may

be available at the same time, including audio, text, video, and other contextual information,

e.g. date, time, temperature, location. A model that jointly incorporates the multiple present

modalities from user and environmental context will be the most useful.

Multi-Domain Dialogue Our current solutions are trained specifically for their individ-

ual domain, e.g. vision-grounded instruction following and video question answering, and the

models are trained to learn domain specific skills. A future direction is to perform knowledge

transfer on multiple domain datasets in the training process and learn a unified multimodal

model across the different domains of situated dialogue interactions.
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