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Abstract

Most computer vision models in deployment today describe the pixels
of images. This does not suffice, because images are only projections of
the scene in front of the camera. In this thesis we build representations
that attempt to describe the scene itself. We call these representations
“amodal” (i.e., without modality), emphasizing the fact that they describe
elements of the scene for which we have no sensory input.

We present two methods for amodal visual scene representation. The
first focuses on modelling space, and proposes geometry-based methods
for lifting images into 3D maps, where the objects are complete, despite
partial occlusions in the imagery. We show that this representation allows
for self-supervised learning from multi-view data, and yields state-of-
the-art results as a perception system for autonomous vehicles, where
the goal is to estimate a “bird’s eye view” semantic map from multiple
sensors. The second method focuses on modelling time, and proposes
geometry-free methods for tracking image elements through partial and
full occlusions across a video. Using learned temporal priors and within-
inference optimization, we show that our model can track points across
occlusions, and outperform flow-based and feature-matching methods on
fine-grained multi-frame correspondence tasks.
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Chapter 1

Introduction

1.1 Motivation

Computer vision has made tremendous progress in describing the pixels of images.
Every image, however, is only a projection of the scene in front of the camera,
and these projections bring nuisance artifacts, such as occlusions and perspective
distortions. By featurizing pixels, we are allowing our visual representations to reflect
all of those same artifacts. In this thesis, we argue that we should featurize the scene
itself, not just the pixels it projects to. Scene representations are unconstrained
by what the pixels happen to show frame-by-frame, and can leverage spatial and
temporal priors that are true in “scene space” but not true in “pixel space”, such
as the fact that objects have complete 3D shapes, and the fact that things persist
over time. We call our scene representations “amodal” (i.e., without modality), since
they describe elements of the scene for which we have no sensory input. We are
also motivated here by the human ability of “amodal completion” [107], which is the
perception of whole objects when our sensory input only shows parts. For example,
when we see a cat behind a picket fence, we perceive a whole cat, rather than just
the visible parts. Computer vision models with this ability can be expected to detect
and track objects more effectively, and be less sensitive to occlusions.

In this thesis, we present two methods for amodal visual scene representation.
The first focuses on modelling space, and proposes geometry-based methods for lifting
images into 3D maps, where the objects are complete, despite partial occlusions in
the imagery. We show that this representation allows for self-supervised learning
from multi-view data, and yields state-of-the-art results as a perception system for
autonomous vehicles, where the goal is to estimate a “bird’s eye view” semantic map
from multiple sensors. The second method focuses on modelling time, and proposes
geometry-free methods for tracking image elements through partial and full occlusions
across a video. Using learned temporal priors and within-inference optimization, we
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show that our model can track points across occlusions, and outperform flow-based
and feature-matching methods on fine-grained multi-frame correspondence tasks.

Besides trading focus on space vs. time, and geometry-based vs. geometry-free
models, our two broad approaches can be distinguished at a fundamental level using
terminology from fluid mechanics, as Eulerian vs. Lagrangian [184]. In the Eulerian
(geometry-based) approach, we estimate features at fixed stations in a map. In the
Lagrangian (geometry-free) approach, we follow particles, and each particle has its
own travelling coordinate system. As might be expected, the two approaches have
different strengths, and we expect future work will combine or at least alternate
between them, depending on the requirements of the task at hand.

1.2 Geometry-Based Amodal Scene

Representations

The majority of the thesis uses geometry-based models to build amodal representations
of the scene. By this, we mean: models that take input from one or more sensors, and
leverage the geometry of the sensor setup to produce a representation of the metric
3D space depicted in the observations.

In Chapter 2, we develop a method for learning amodal 3D scene representations,
using multi-view geometry to drive a self-supervised loss. We motivate our approach
with predictive coding theories [41, 129], which suggest that the brain learns by
predicting observations at various levels of abstraction. Given images and pointclouds
obtained from a static scene, we ask the model to predict how the scene would look
from a held-out viewpoint. We then reveal the new viewpoint, and compare the
revealed features to the predicted features. If the model does not correctly predict
the features of the held-out view, it receives a signal to update its parameters. Note
that this task does not require any human-provided annotations; the training signal
is freely available to a mobile agent in a 3D world who can estimate its egomotion
[117]. In our experiments, we explore the link between view-predictive learning and
the emergence of amodal 3D perception. To the best of our knowledge, this is the
first work that empirically shows view prediction to be a scalable self-supervised task
beneficial to 3D object detection.

In Chapter 3, we build on amodal prediction across views, to obtain correspon-
dences across time. We hypothesize that appearance-based correspondences learned
in static scenes will also work well in dynamic scenes. This is motivated by the fact
that the content of dynamic scenes is the same as the content of static scenes—cars
are cars, whether they are speeding down the highway or sitting in a parking lot. We
couple our geometry-based feature learning approach with a simple tracking pipeline,
and show that the learned visual feature representations can accurately track moving
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objects in 3D, in challenging environments with a moving camera.

A computational challenge in these 3D feature learning efforts is resolution. Most
of the works in this thesis use a voxel-based representation of 3D space, whose
computational expense grows cubically with resolution. We explore this issue in
Chapter 4, by switching to a high-fidelity continuous 3D representation, allowing the
model to produce sub-voxel features at arbitrary resolutions. This change improves
both detection and tracking accuracy. In this chapter we also investigate our method’s
ability to correspond parts across objects, and observe that our accuracy here is still
low. These results reveal new challenges for self-supervised correspondence learning.

A critical assumption in the work thus far is that we can actually obtain multi-view
correspondence in scenes, using knowledge of egomotion, which then allows us to
learn amodal completion and feature correspondence. In Chapter 5 we give up this
assumption, and learn from single-view observations. We present a model that takes
a real pointcloud as input and produces a densified pointcloud as output, and we
show that this leads to improved detection performance. This fits with our intuition:
models that understand complete 3D scenes from their input—which is a pre-requisite
for view prediction—do better than models which only perceive the scene surface.

Finally, Chapter 6 deploys our 3D scene representation on a competitive task:
“bird’s eye view” semantic mapping for autonomous vehicles. With only minor
modifications to the model from Chapter 2, we obtain a model which matches the
accuracy of current published systems, which are specialized for the task. We further
show that if we incorporate the available data from radar, which is typically ignored,
we exceed the state-of-the-art.

1.3 Geometry-Free Amodal Scene

Representations

The second part of the thesis uses geometry-free models to build amodal representa-
tions of the scene. While the first part focused on amodal completion of 3D shapes
and objects (i.e., space), this part focuses on amodal completion of trajectories (i.e.,
time). Here we also shift from an Eulerian approach to a Lagrangian approach:
Instead of representing a video by updating the per-timestep features at fixed 3D
locations, we focus on individual particles, and update their positions as we follow
them across time.

To build our amodal temporal representation of scenes, in Chapter 7 we revisit Sand
and Teller’s “particle video” approach [141]. This approach assumes a permanence
about scene particles, which is typically reserved for objects. We argue that particles
(i.e., parts of objects, and sub-part points), should be tracked across occlusions and
appearance changes, using temporal priors. Typically, occlusion-resistant object
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tracking relies on category-specific detectors (e.g., tracking people relies on per-frame
person detection [23]), but detectors are unavailable for arbitrary particles. We
therefore implement our amodal “particle” tracker using components that drive
the current state-of-the-art in optical flow, such as dense cost maps and iterative
optimization. We train our models using long-range amodal point trajectories mined
from existing optical flow datasets that we synthetically augment with occlusions.
We test our approach in trajectory estimation benchmarks and in keypoint label
propagation tasks, and it compares favorably against state-of-the-art optical flow and
feature tracking methods.

1.4 Overview

The thesis is split into two parts, corresponding to the two approaches just described.
Most of the chapters within the parts are standalone papers. We provide the
publication references here, partly as outline, but more importantly to give credit to
all authors:

1. Geometry-Based Amodal Scene Representations

• Chapter 2: Learning from Unlabelled Videos with Contrastive Predictive
Neural 3D Mapping [54] (ICLR 2020)

• Chapter 3: Tracking Emerges by Looking Around Static Scenes with
Neural 3D Mapping [55] (ECCV 2020)

• Chapter 4: CoCoNets: Continuous Contrastive 3D Scene Representations
[84] (CVPR 2021)

• Chapter 5: Self-Supervised Pointcloud Completion Improves Object De-
tection (unpublished)

• Chapter 6: A Baseline for Neural 3D Mapping, Without Depth or Egomo-
tion (unpublished)

2. Geometry-Free Amodal Scene Representations

• Chapter 7: Particle Videos Revisited: Tracking Through Occlusions Using
Point Trajectories [56] (arXiv)

Finally, Chapter 8 provides a summary, and suggests future work.
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Geometry-based amodal scene
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Chapter 2

Learning from Unlabelled Videos
with Contrastive Predictive Neural
3D Mapping

2.1 Introduction

Predictive coding theories [41, 129] suggest that the brain learns by predicting
observations at various levels of abstraction. These theories currently have extensive
empirical support: stimuli are processed more quickly if they are predictable [101, 121],
prediction error is reflected in increased neural activity [7, 129], and disproven
expectations lead to learning [145]. A basic prediction task is view prediction:
from one viewpoint, predict what the scene would look like from another viewpoint.
Learning this task does not require supervision from any annotations; supervision
is freely available to a mobile agent in a 3D world who can estimate its egomotion
[117]. Humans excel at this task: we can effortlessly imagine plausible hypotheses
for the occluded side of objects in a photograph, or guess what we would see if we
walked around our office desks. Our ability to imagine information missing from
the current image view—and necessary for predicting alternative views—is tightly
coupled with visual perception. We infer a mental representation of the world that is
3-dimensional, in which the objects are distinct, have 3D extent, occlude one another,
and so on. Despite our 2-dimensional visual input, and despite never having been
supplied a bounding box or segmentation mask as supervision, our ability for 3D
perception emerges early in infancy [153, 154].

In this chapter, we explore the link between view-predictive learning and the
emergence of 3D perception in computational models of perception, on mobile agents
in static and dynamic scenes. Our models are trained to predict views of static scenes
given 2.5D (color and depth; RGB-D) video streams as input, and are evaluated on
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Figure 2.1: Semi-supervised 3D object detection. Pre-training with view-
contrastive prediction improves results, especially when there are few 3D bounding
box annotations.

their ability to detect objects in 3D. Our models map the 2.5D input streams into
3D feature volumes of the depicted scene. At every frame, the architecture estimates
and accounts for the motion of the camera, so that the internal 3D representation
remains stable under egomotion. The model projects its inferred 3D feature maps to
novel viewpoints, and matches them against visual representations extracted from
the target view. We propose contrastive losses to measure the match error, and
backpropagate gradients end-to-end in our differentiable modular architecture. At
test time, our model forms plausible 3D completions of the scene given RGB-D video
streams or even a single RGB-D image as input: it learns to fill in information behind
occlusions, and infer the 3D extents of objects.

We evaluate the trained 3D representations in two tasks. (1) Semi-supervised
learning of 3D object detectors (Figure 2.1): We show that view-contrastive pre-
training helps detect objects in 3D, especially in the low-annotations regime. (2)
Unsupervised 3D moving object detection (Figure 2.3-right): Our model can detect
moving objects in 3D without any human annotations, by forming a 3D feature
volume for each timestep, then estimating the motion field between volumes, and
clustering the motion into objects.

We have the following contributions over prior works:

1. Novel view-contrastive prediction objectives: We show that our con-
trastive losses outperform RGB regression [34, 171] and variational auto-encoder
(VAE) alternatives [36] in semi-supervised 3D object detection.
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2. A novel unsupervised 3D moving object detection method: By esti-
mating 3D motion inside egomotion-stabilized 3D feature maps, we can detect
moving objects unsupervised, outperforming 2.5D baselines and iterative gener-
ative what-where VAEs of previous works [63, 81].

3. Simulation-to-real transfer of the acquired 3D feature representations:
We show that view-contrastive pre-training in simulation boosts the performance
of 3D object detection in real data.

2.2 Related work

Predictive coding Predictive coding theories suggest that much of the learning in
the brain is of a predictive nature [41, 129]. Recent work in unsupervised learning
of word representations has successfully used ideas of predictive coding to learn
word representations by predicting neighboring words [104]. Many challenges emerge
in going from a finite-word vocabulary to the continuous high-dimensional image
data manifold. Unimodal losses such as mean squared error are not very useful
when predicting high dimensional data, due to the stochasticity of the output space.
Researchers have tried to handle such stochasticity using latent variable models [94]
or autoregressive prediction of the output pixel space, which involves sampling each
pixel value from a categorical distribution conditioned on the output thus far [173].
Another option is to make predictions in a feature space which is less stochastic than
the input. Recently, [113] followed this direction and used an objective that preserves
the mutual information between “top-down” contextual features predicted from input
observations, and “bottom-up” features produced from future observations; it applied
this objective in speech, text, and image crops. The view-contrastive loss proposed in
this work is a non-probabilistic version of their contrastive objective. However, our
work focuses on the video domain as opposed to image patches, and uses drastically
different architectures for both the top-down and bottom-up representations, involving
a 3D egomotion-stabilized bottleneck.

View prediction View prediction has been the center of much recent research
effort. Most methods test their models in single-object scenes, and aim to generate
beautiful images for graphics applications [74, 139, 147, 161], as opposed to learning
general-purpose visual representations. In this work, we use view prediction to help
object detection, not the inverse. Eslami et al. [36] attempted view prediction in full
scenes, yet only experimented with toy data containing a few colored 3D blocks. Their
model cannot effectively generalize beyond the training distribution, e.g., cannot
generalize across scenes of variable numbers of objects. The work of Tung et al. [171]
is the closest to our work. Their model is also an inverse graphics network equipped
with a 3-dimensional feature bottleneck, trained for view prediction; it showed strong
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generalization across scenes, number of objects, and arrangements. However, the
authors demonstrated its abilities only in toy simulated scenes, similar to those
used by Eslami et al. [36]. Furthermore, they did not evaluate the usefulness of the
learned features for a downstream semantic task (beyond view prediction). This
raises questions on the scalability and usefulness of view prediction as an objective
for self-supervised visual representation learning, which our work aims to address.
We compare against the state-of-the-art model of Tung et al. [171] and show that the
features learned under our proposed view-contrastive losses are more semantically
meaningful (Figure 2.1). To the best of our knowledge, this is the first work that
can discover objects in 3D from a single camera viewpoint, without any human
annotations of object boxes or masks.

3D feature representations A long-standing debate in Computer Vision is
whether it is worth pursuing 3D models in the form of binary voxel grids, meshes, or
3D pointclouds as the output of visual recognition. The “blocks world” of [134] set as
its goal to reconstruct the 3D scene depicted in the image in terms of 3D solids found
in a database. Pointing out that replicating the 3D world in one’s head is not enough
to actually make decisions, [8] argued for feature-based representations, as done by
recent work in end-to-end deep learning [87]. Our work proposes learning-based 3D
feature representations in place of previous human-engineered ones, attempting to
reconcile the two sides of the debate.

Some recent works have attempted various forms of map-building [52, 60] as a
form of geometrically-consistent temporal integration of visual information, in place
of geometry-unaware long short-term memory (LSTM; 61) or gated recurrent unit
(GRU; 22) models. The closest to ours are Learned Stereo Machines (LSMs; 74),
DeepVoxels [147], and Geometry-aware Recurrent Neural Nets (GRNNs; 171), which
integrate images sampled from a viewing sphere into a latent 3D feature memory
tensor, in an egomotion-stabilized manner, and predict views. All of these works
consider very simplistic non-photorealistic environments and 2-degree-of-freedom
cameras (i.e., with the camera locked to a pre-defined viewing sphere). None of these
works evaluate the suitability of their learned features for a downstream task. Rather,
their main objective is to accurately predict views.

Motion estimation and object segmentation Most motion segmentation
methods operate in 2D image space, and use 2D optical flow to segment moving objects.
While earlier approaches attempted motion segmentation completely unsupervised, by
exploiting motion trajectories and integrating motion information over time [9, 111],
recent works focus on learning to segment objects in videos, supervised by annotated
video benchmarks [39, 78]. Our work differs in the fact that we address object
detection and segmentation in 3D as opposed to 2D, by estimating 3D motion of the
“imagined” (complete) scene, as opposed to 2D motion of the observed scene.
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2.3 Contrastive Predictive Neural 3D Mapping

We consider a mobile agent that can move about the scene at will. The agent has a
color camera with known intrinsics, and a depth sensor registered to the camera’s
coordinate frame. At training time, the agent has access to its camera pose, and it
learns in this stage to imagine full 3D scenes (via view prediction), and to estimate
egomotion (from ground-truth poses). It is reasonable to assume that a mobile agent
who moves at will has access to its approximate egomotion, since it chooses where to
move and what to look at [117]. Active vision is outside the scope of this work, so
our agent simply chooses viewpoints randomly. At test time, the model estimates
egomotion on-the-fly from its RGB-D inputs. We use groundtruth depth provided by
the simulation environment, and we will show in Sec. 2.4 that the learned models
generalize to the real world, where (sparser) depth is provided by a LiDAR unit.
We describe our model architecture in Sec. 2.3.1, our view-contrastive prediction
objectives in Sec. 2.3.2, and our unsupervised 3D object segmentation method in
Sec. 2.3.3.

2.3.1 Neural 3D Mapping

Our model’s architecture is illustrated in Figure 2.2-left. It is a recurrent neural
network (RNN) with a memory state tensor M(t) ∈ Rw×h×d×c, which has three
spatial dimensions (width w, height h, and depth d) and a feature dimension (c
channels per grid location). The latent state aims to capture an informative and
geometrically-consistent 3D deep feature map of the world space. Therefore, the
spatial extents correspond to a large cuboid of world space, defined with respect to
the camera’s position at the first timestep. We refer to the latent state as the model’s
imagination to emphasize that most of the grid locations in M(t) will not be observed
by any sensor, and so the feature content must be “imagined” by the model.

Our model is made up of differentiable modules that go back and forth between
3D feature imagination space and 2D image space. It builds on the recently proposed
geometry-aware recurrent neural networks (GRNNs) of [171], which also have a 3D
egomotion-stabilized latent space, and are trained for RGB prediction. Our model
can be considered a type of GRNN. In comparison to [171]:

• Our egomotion module can handle general camera motion, as opposed to a
2-degree-of-freedom sphere-locked camera. This is a critical requirement for
handling data that comes from freely-moving cameras, such as those mounted
on mobile vehicles, as opposed to only orbiting cameras.

• Our 3D-to-2D projection module decodes the 3D map into 2D feature maps, as
opposed to RGB images, and uses view-contrastive prediction as the objective,
as opposed to regression.
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Figure 2.2: Contrastive predictive neural 3D mapping. Left: Learning visual
feature representations by moving in static scenes. The neural 3D mapper learns
to lift 2.5D video streams to egomotion-stabilized 3D feature maps of the scene by
optimizing for view-contrastive prediction. Right: Learning to segment 3D moving
objects by watching them move. Non-zero 3D motion in the egomotion-stabilized 3D
feature space reveals independently moving objects and their 3D extent, without any
human annotations.

We briefly describe each neural module of our architecture next. Implementation
details are in the appendix.

2D-to-3D unprojection This module converts the input RGB image I(t) ∈
Rw×h×3 and pointcloud D(t) ∈ Rn×3 into 3D tensors. The RGB is “unprojected” into
a 3D tensor U (t) ∈ Rw×h×d×3 by filling each 3D grid location with the RGB value
of its corresponding subpixel. The pointcloud is converted to a 3D occupancy grid
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O(t) ∈ Rw×h×d×1, by assigning each voxel a value of 1 or 0, depending on whether or
not a point lands in the voxel. We then convert the concatenation of these tensors
into a 3D feature tensor F (t) ∈ Rw×h×d×c, via a 3D convolutional encoder-decoder
network with skip connections. We L2-normalize the feature in each grid cell.

Egomotion estimation This module computes the relative 3D rotation and
translation between the current camera pose (at time t) and the reference pose (from

time 1), allowing us to warp the feature tensor F (t) into a registered version F (t)
reg.

In principle any egomotion estimator could be used here, but we find that our 3D
feature tensors are well-suited to a 3D coarse-to-fine alignment search, similar to
the 2D process in the state-of-the-art optical flow model PWC-Net [156]. Given
the 3D tensors of the two timesteps, F (1) and F (t), we incrementally warp F (t) into
alignment with F (1), by estimating the approximate transformation at a coarse scale,
then estimating residual transformations at finer scales. This is done efficiently with
6D cross correlations and cost volumes. Following PWC-Net, we use fully-connected
layers to convert the cost volumes into motion estimates. While our neural architecture
is trained end-to-end to optimize a view prediction objective, our egomotion module
by exception is trained supervised using pairs of frames with annotated egomotion.
In this way, it learns to be invariant to moving objects in the scene.

Latent map update This module aggregates egomotion-stabilized (registered)
feature tensors into the memory tensor M(t). On the first timestep, we set M(1) = F (1).
On later timesteps, we update the memory with a simple running average.

3D-to-2D projection This module “renders” the 3D feature state M(t) into a
2D feature map of a desired viewpoint V(k). We first warp the 3D feature map M(t)

into a view-aligned version M(t)
viewk

, then map it to a 2D feature map M
(t)
viewk

with a
2-block 2D ResNet [57].

3D object detection Given images with annotated 3D object boxes, we train
a 3D object detector that takes as input the 3D feature map M(t), and outputs 3D
bounding boxes for the objects present. Our object detector is a 3D adaptation of
the state-of-the-art 2D object detector, Faster-RCNN [131]. The model outputs 3D
axis-aligned boxes with objectness confidences.

2.3.2 Contrastive Predictive Training

Given a set of input RGB images (I(0), . . . , I(n)), pointclouds (D(0), . . . , D(n)), and
camera poses (V (0), . . . , V (n)), we train our model to predict feature abstractions
of an unseen input (I(n+1), D(n+1), V (n+1)), as shown in Figure 2.2-left. We con-
sider two types of representations for the target view: a top-down one, T =
f [(I(0), D(0), V (0)), . . . , (I(n), D(n), V (n)), V (n+1)], where f is the top-down feature pre-
diction process, and a bottom-up one, B = g[I(n+1), D(n+1)], where g is the bottom-up
feature extraction process. Note that the top-down representation has access to the
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viewpoint V (n+1) but not to observations from that viewpoint (I(n+1), D(n+1)), while
the bottom-up representation is only a function of those observations.

We construct 2D and 3D versions of these representation types, using our archi-
tecture modules:

• We obtain T 3D = M(n) by encoding the set of inputs from indices 1, . . . , n.

• We obtain B3D = F (n+1) by encoding the single input from index n + 1.

• We obtain T 2D = M
(n)
viewn+1

by rendering M(n) from viewpoint V (n+1).

• We obtain B2D = F (n+1) by convolving I(n+1) with a 3-block 2D ResNet [57].
Finally, the contrastive losses pull corresponding (top-down and bottom-up)

features close together in embedding space, and push non-corresponding ones beyond
a margin of distance:

L2D
contrast =

∑
i,j,m,n

max
(
Y2D
ij,mn(∥T 2D

ij − B2D
mn∥22 − α), 0

)
, (2.1)

L3D
contrast =

∑
i,j,k,m,n,o

max
(
Y3D
ijk,mno(∥T 3D

ijk − B3D
mno∥22 − α), 0

)
, (2.2)

where α is the margin size, and Y is 1 at indices where T corresponds to B, and
−1 everywhere else. The losses ask tensors depicting the same scene, but acquired
from different viewpoints, to contain the same features. The performance of a metric
learning loss depends heavily on the sampling strategy used [143, 151, 152]. We use
the distance-weighted sampling strategy proposed by [189] which uniformly samples
“easy” and “hard” negatives; we find this outperforms both random sampling and
semi-hard sampling [143].

2.3.3 Unsupervised 3D Moving Object Detection

Upon training, our model learns to map even a single RGB-D input to a complete
3D imagination, as we show in Figure 2.2-right. Given two temporally consecutive
and egomotion-stabilized 3D maps F (t),F (t+1)

reg , predicted independently using inputs
(I(t), D(t)) and (I(t+1), D(t+1)), we train a motion estimation module to predict the
3D motion field W(t) between them, which we call 3D imagination flow. Since we
have accounted for camera motion, this 3D motion field should only be non-zero
for independently moving objects. We obtain 3D object proposals by clustering
the 3D flow vectors, extending classic motion clustering methods [9, 111] to an
egomotion-stabilized 3D feature space, as opposed to 2D pixel space.

Estimating 3D Imagination Flow

Our 3D “imagination flow” module is a 3D adaptation of the PWC-Net 2D optical flow
model [156]. Note that our model only needs to estimate motion of the independently-
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moving part of the scene, since egomotion has been accounted for. It works by
iterating across scales in a coarse-to-fine manner; at each scale, we compute a 3D cost
volume, convert these costs to 3D displacement vectors, and incrementally warp the
two tensors to align them. We use two self-supervised tasks:

1. Synthetic rigid transformations: We apply random rotations and translations
to F (t) and ask the model to recover the dense 3D flow field that corresponds
to the transformation.

2. Unsupervised 3D temporal feature matching:

Lwarp =
∑
i,j,k

||F (t)
i,j,k − warp(F (t+1)

reg ,W(t))i,j,k||22, (2.3)

where “warp” is an operation that back-warps F (t+1)
reg to align it with F (t),

using the estimated flow W(t). We apply the warp with a differentiable 3D
spatial transformer layer, which does trilinear interpolation to resample each
voxel. This extends self-supervised 2D optical flow [203] to 3D feature constancy
(instead of 2D brightness constancy).

We found that both types of supervision are essential for obtaining accurate 3D flow
field estimates. Since we are not interested in the 3D motion of empty air voxels,
we additionally estimate 3D voxel occupancy, and supervise this using the input
pointclouds. We describe our 3D occupancy estimation in more detail in the appendix.
At test time, we set the 3D motion of all unoccupied voxels to zero.

The proposed 3D imagination flow enjoys significant benefits over 2D optical flow
or 3D scene flow. It does not suffer from occlusions and dis-occlusions of image content
or projection artifacts [155], which typically transform rigid 3D transformations into
non-rigid 2D flow fields. In comparison to 3D scene flow [62], which concerns visible 3D
points, 3D imagination flow is computed between visual features that may never have
appeared in the field of view, but are rather filled in by the model (i.e., “imagined”).

3D Moving Object Segmentation

We obtain 3D object segmentation proposals by thresholding the 3D imagination
flow magnitude, and clustering voxels using connected components. We score each
component using a 3D version of a center-surround motion saliency score employed
by numerous works for 2D motion saliency detection [42, 98]. This score is high when
the 3D box interior has lots of motion but the surrounding shell does not. This results
in a set of scored 3D segmentation proposals for each video scene.
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2.4 Experiments

We train our models in CARLA [34], an open-source photorealistic simulator of urban
driving scenes, which permits moving the camera to any desired viewpoint in the
scene. We obtain data from the simulator as follows. We generate 1170 autopilot
episodes of 50 frames each (at 30 FPS), spanning all weather conditions and all
locations in both “towns” in the simulator. We define 36 viewpoints placed regularly
along a 20m-radius hemisphere in front of the ego-car. This hemisphere is anchored
to the ego-car (i.e., it moves with the car). In each episode, we sample 6 random
viewpoints from the 36 and randomly perturb their pose, and then capture each
timestep of the episode from these 6 viewpoints. We generate train/test examples
from this, by assembling all combinations of viewpoints (e.g., N ≤ 5 viewpoints as
input, and 1 unseen viewpoint as the target). We filter out frames that have zero
objects within the metric “in bounds” region of the GRNN (32m× 32m× 4m). This
yields 172524 frames (each with multiple views): 124256 in Town1, and 48268 in
Town2. We treat the Town1 data as the “training” set, and the Town2 data as the
“test” set, so there is no overlap between the train and test images.

For additional testing with real-world data, we use the (single-view) object detec-
tion benchmark from the KITTI dataset [43], with the official train/val split: 3712
training frames, and 3769 validation frames.

We evaluate our view-contrastive 3D feature representations in three tasks: (1)
semi-supervised 3D object detection, (2) unsupervised 3D moving object detection,
and (3) 3D motion estimation. We use [171] as a baseline representing the state-of-
the-art, but evaluate additional related works in the appendix.

2.4.1 Semi-Supervised Learning of 3D Object Detection

We use the proposed view-contrastive prediction as pre-training for 3D object detection.
Prior work has evaluated self-supervised 2D deep features in this way, by re-purposing
them for a 2D detection task Doersch et al. [32]. We pretrain the inverse graphics
network weights, and then train a 3D object detector module supervised to map
a 3D feature volume M to 3D object boxes, as described in Section 2.3.1. We are
interested in seeing the benefit of this pre-training across different amounts of label
supervision, so we first use the full CARLA train set for view prediction training
(without using box labels), and then use a randomly-sampled subset of the CARLA
train set for box supervision; we evaluate on the CARLA validation set. We varied
the size of the box supervision subset across the following range: 100, 200, 500,
1000, 10000, 80000. We show mean average precision (at an IoU of 0.75) for car
detection as a function of the number of annotated 3D bounding box examples in
Figure 2.1. We compare our model against a version of our model that optimizes
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Method
mAP@IOU

0.33 0.50 0.75

No pre-training (random init.) .59 .52 .17

View regression pret., frozen .64 .54 .15

View regression pret., finetuned .65 .55 .18

View-contrastive pret., frozen .67 .58 .15

View-contrastive pret., finetuned .70 .60 .19

Table 2.1: CARLA-to-KITTI feature transfer. We train a 3D detector module
on top of the inferred 3D feature maps M using KITTI 3D object box annotations

for RGB regression, similar to [171] but with a 6 DoF camera motion as opposed to
2 DoF, as well as a model trained from random weight initialization (i.e., without
pre-training). After pre-training, we freeze the feature layers after view predictive
learning, and only supervise the detector module; for the fully supervised baseline
(from random initialization), we train end-to-end.

As expected, the supervised model performs better with more labelled data. In
the low-data regime, pre-training greatly improves results, and more so for view-
contrastive learning than RGB learning. We could not compare against alternative
view prediction models as the overwhelming majority of them consider pre-segmented
scenes (single object setups; e.g., 74) and cannot generalize beyond those settings.
The same is the case for the model of [36], which was greatly outperformed by GRNNs
in the work of [171].

Sim-to-Real (CARLA-to-KITTI) Transfer

We evaluate whether the 3D predictive feature representations learned in the CARLA
simulator are useful for learning 3D object detectors in the real world by testing on
the real KITTI dataset [43]. Specifically, we use view prediction pre-training in the
CARLA train set, and box supervision from the KITTI train set, and evaluate 3D
object detection in the KITTI validation set.

Existing real-world datasets do not provide enough camera viewpoints to support
view-predictive learning. Specifically, in KITTI, all the image sequences come from a
moving car and thus all viewpoints lie on a near-straight trajectory. Thus, simulation-
to-real transferability of features is especially important for view predictive learning.

We show sim-to-real transfer results in Table 2.1. We compare the proposed
view-contrastive prediction pre-training with view regression pre-training and random
weight initialization (no pre-training). In all cases, we train a 3D object detector
on the features, supervised using KITTI 3D box annotations. We also compare
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Input RGBs
Input  

pointclouds
Estimated ego-
stabilized flow

Ground-truth  
object flow Moving object proposals

Color map

Figure 2.3: 3D feature flow and object proposals, in dynamic scenes. Given
the input frames on the left, our model estimates dense egomotion-stabilized 3D flow
fields, and converts these into object proposals. We visualize colorized pointclouds
and flow fields in a top-down (bird’s eye) view.

freezing versus finetuning the weights of the pretrained inverse graphics network. The
results are consistent with the CARLA tests: view-contrastive pre-training is best,
view regression pre-training is second, and learning from annotations alone is worst.
Note that depth in KITTI is acquired by a real LiDAR sensor, and therefore has
lower density and more artifacts than CARLA, yet our model generalizes across this
distribution shift.

2.4.2 Unsupervised 3D Moving Object Detection

In this section, we test our model’s ability to detect moving objects in 3D with no
3D object annotations, simply by clustering 3D motion vectors. We use two-frame
sequences of dynamic scenes from our CARLA validation set, and split it into two
parts for evaluation: scenes where the camera is stationary, and scenes where the
camera is moving. This splitting is based on the observation that moving object
detection is made substantially more challenging under a moving camera.

We show precision-recall curves for 3D moving object detection under a stationary
camera in Figure 2.4. We compare our model against a similar one trained with RGB
view regression [171] and a 2.5D baseline. The 2.5D baseline computes 2D optical flow
using PWC-Net [156], then proposes object masks by thresholding and clustering 2D
flow magnitudes; these 2D masks are mapped to 3D boxes by segmenting the input
pointcloud and fitting boxes to the points. Our model outperforms the baselines. Note
that even with ground-truth 2D flow, ground-truth depth, and an oracle threshold, a
2.5D baseline can at best only capture the currently-visible fragment of each object.
As a result, a 3D proposal computed from 2.5D often underestimates the extent of
the object. Our model does not have this issue, since it imagines the full 3D scene at
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Figure 2.4: Unsupervised 3D moving
object detection with a stationary
camera.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

GT-stab. 3D flow (.444 mAP)
Estim.-stab. 3D flow (.439 mAP)
Unstab. 2.5D flow (.036 mAP)
GT-stab. 2.5D flow (.001 mAP)

Figure 2.5: Unsupervised 3D moving
object detection with a moving cam-
era

each timestep.

We show precision-recall curves for 3D moving object detection under a moving
camera in Figure 2.5. We compare our model where egomotion is predicted by our
neural egomotion module, against our model with ground-truth egomotion, as well
as a 2.5D baseline, and a stabilized 2.5D baseline. The 2.5D baseline uses optical
flow estimated from PWC-Net as before. To stabilize the 2.5D flow, we subtract the
ground-truth scene flow from the optical flow estimate before generating proposals.
Our model’s performance is similar to its level in static scenes, suggesting that the
egomotion module’s stabilization mechanism effectively disentangles camera motion
from the 3D feature maps. The 2.5D baseline performs poorly in this setting, as
expected. Surprisingly, performance drops further after stabilizing the 2D flows for
egomotion. We confirmed this is due to the estimated scene flow being imperfect:
subtracting ground-truth scene flow leaves many motion fragments in the background.
With ground-truth 2D flow, the baseline performs similar to its static-scene level.

We have attempted to compare against the unsupervised object segmentation
methods proposed in Kosiorek et al. [81] and Hsieh et al. [63] by adapting the publicly
available code to the task. These models consume a video as input, and predict the
locations of 2D object bounding boxes, as well as frame-to-frame displacements, in
order to minimize a view regression error. We were not able to produce meaningful
results from these models. The success of Hsieh et al. [63] may partially depend on
carefully selected priors for the 2D bounding box locations and sizes, to match the
statistics of the “Moving MNIST” dataset used in that work (as suggested in the
official code). For our CARLA experiments, we do not assume knowledge of priors
for box locations or sizes.

19



2. Learning from Unlabelled Videos with Contrastive Predictive Neural 3D Mapping

Method Full Static Moving

Zero-motion 0.19 0.0 6.97

View regression pret. 0.77 0.63 5.55

View-contrastive pret. 0.26 0.17 3.33

Table 2.2: Mean endpoint error of the 3D flow in egomotion-stabilized
scenes. View-contrastive features lead to more accurate motion estimation. Error is
L1 in voxel units.

2.4.3 3D Motion Estimation

In this section, we evaluate accuracy of our 3D imagination flow module. The previous
section evaluated this module indirectly since it plays a large part in unsupervised
3D moving object detection; here we evaluate its accuracy directly. We use two-frame
video sequences of dynamic scenes from our CARLA validation set.

We compare 3D flow trained over frozen 3D feature representations obtained from
the proposed view-contrastive prediction, against flow trained over frozen features
from the baseline RGB regression model [171]. We also compare against a zero-motion
baseline that predicts zero motion everywhere. Since approximately 97% of the voxels
belong to the static scene, a zero-motion baseline is very competitive in an overall
average. We therefore evaluate error separately in static and moving parts of the
scene. We show the motion estimation errors in Table 2.2. Our method achieves
dramatically lower error than the RGB regression baseline, which suggests that the
proposed view-contrastive objectives in 3D and 2D result in learning features that
are correspondable across time, even for moving objects, despite the fact that the
features were learned using only multi-view data of static scenes.

2.4.4 Limitations

The proposed model has two important limitations. First, our work assumes an
embodied agent that can move around at will. This is hard to realize in the real
world, and indeed there are almost no existing datasets with enough camera views to
approximate this. Second, our model architecture consumes a lot of GPU memory,
due to its extra spatial dimension . This severely limits either the resolution or the
metric span of the latent map M. On 12G Titan X GPUs we encode a space sized
32m× 32m× 8m at a resolution of 128 × 128 × 32; with a batch size of 4, iteration
time is 0.2s/iter. Supervised 3D object detectors typically cover twice this metric
range. Sparsifying our feature grid, or using points instead of voxels, are clear areas
for future work.
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2.5 Conclusion

We propose models that learn space-aware 3D feature abstractions of the world
given 2.5D input, by minimizing 3D and 2D view-contrastive prediction objectives.
We show that view-contrastive prediction leads to features useful for 3D object
detection, both in simulation and in the real world. We further show that the ability
to visually imagine full 3D egomotion-stable scenes allows us to estimate dense 3D
motion fields, where clustering non-zero motion allows objects to emerge without any
human supervision. Our experiments suggest that the ability to imagine 3D visual
information can drive 3D object detection. Instead of learning from annotations, the
model learns by moving and watching objects move [46].
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Chapter 3

Tracking Emerges by Looking
Around Static Scenes, with Neural
3D Mapping

3.1 Introduction

A large part of the real world almost never moves. This may be surprising, since
moving entities easily attract our attention [40], and because we ourselves spend
most of our waking hours continuously in motion. Objects like roads and buildings,
however, stay put. Can we leverage this property of the world to learn visual features
suitable for interpreting complex scenes with many moving objects?

In this paper, we hypothesize that a correspondence module learned in static
scenes will also work well in dynamic scenes. This is motivated by the fact that the
content of dynamic scenes is the same as the content of static scenes. We would like
our hypothesis to be true, because correspondences are far cheaper to obtain in static
scenes than in dynamic ones. In static scenes, one can simply deploy a Simultaneous
Localization and Mapping (SLAM) module to obtain a 3D reconstruction of the
scene, and then project reconstructed points back into the input imagery to obtain
multiview correspondence labels. Obtaining correspondences in dynamic scenes would
require taking into account the motion of the objects (i.e., tracking).

We propose to leverage multiview data of static points in arbitrary scenes (static
or dynamic), to learn a neural 3D mapping module which produces features that are
correspondable across viewpoints and timesteps. The neural 3D mapper consumes
RGB-D (color and depth) data as input, and produces a 3D voxel grid of deep features
as output. We train the voxel features to be correspondable across viewpoints, using
a contrastive loss. At test time, given an RGB-D video with approximate camera
poses, and given the 3D box of an object to track, we track the target object by
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generating a map of each timestep and locating the object’s features within each map.
In contrast to models that represent video streams in 2D [176, 180, 182], our

model’s 3D scene representation is disentangled from camera motion and projection
artifacts. This provides an inductive bias that scene elements maintain their size and
shape across changes in camera viewpoint, and reduces the need for scale invariance
in the model’s parameters. Additionally, the stability of the 3D map under camera
motion allows the model to constrain correspondence searches to the 3D area where
the target was last seen, which is a far more reliable cue than 2D pixel coordinates.
In contrast to models that use 2.5D representations (e.g., scene flow [102]), our neural
3D maps additionally provide features for partially occluded areas of the scene, since
the model can infer their features from context. This provides an abundance of
additional 3D correspondence candidates at test time, as opposed to being limited to
the points observed by a depth sensor.

Our work builds on geometry-aware recurrent neural networks (GRNNs) [171].
GRNNs are modular differentiable neural architectures that take as input RGB-D
streams of a static scene under a moving camera and infer 3D feature maps of the
scene, estimating and stabilizing against camera motion. The work of Harley et
al. [54] showed that training GRNNs for contrastive view prediction in static scenes
helps semi-supervised 3D object detection, as well as moving object discovery. In
this paper, we extend those works to learn from dynamic scenes with independently
moving objects, and simplify the GRNN model by reducing the number of losses and
modules. Our work also builds on the work of Vondrick et al. [176], which showed that
2D pixel trackers can emerge without any tracking labels, through self-supervision on
a colorization task. In this work, we show that 3D voxel trackers can emerge without
tracking labels, through contrastive self-supervision on static data. In the fact that
we learn features from correspondences established through triangulation, our work
is similar to Dense Object Nets [37], though that work used object-centric data, and
used background subtraction to apply loss on static objects, whereas in our work we
do moving-object subtraction to apply loss on anything static. We do not assume a
priori that we know which objects to focus on.

We test the proposed architectures in simulated and real datasets of urban driving
scenes (CARLA [34] and KITTI [43]). We evaluate the learned 3D visual feature
representations on their ability to track objects over time in 3D. We show that the
learned visual feature representations can accurately track objects in 3D, simply
supervised by observing static data. Furthermore, our method outperforms 2D and
2.5D baselines, demonstrating the utility of learning a 3D representation for this task
instead of a 2D one.

The main contribution of this paper is to show that learning feature correspon-
dences from static 3D points causes 3D object tracking to emerge. We additionally
introduce a neural 3D mapping module which simplifies prior works on 3D inverse
graphics, and learns from a simpler objective than considered in prior works.
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3.2 Related Work

Learning to see by moving Both cognitive psychology and computational vision
have realised the importance of motion for the development of visual perception [46,
187]. Predictive coding theories [41, 129] suggest that the brain predicts observations
at various levels of abstraction; temporal prediction is thus of central interest. These
theories currently have extensive empirical support: stimuli are processed more
quickly if they are predictable [101, 121], prediction error is reflected in increased
neural activity [7, 129], and disproven expectations lead to learning [145]. Several
computational models of frame predictions have been proposed [36, 113, 129, 161, 171].
Alongside future frame prediction, predicting some form of contextual or missing
information has also been explored, such as predicting frame ordering [86], temporal
instance-level associations [180] color from grayscale [176], egomotion [1, 70] and
motion trajectory forecasting [177]. Most of these unsupervised methods are evaluated
as pre-training mechanisms for object detection or classification [54, 106, 177, 180].

Video motion segmentation literature explores the use of videos in unsupervised
moving object discovery [122]. Most motion segmentation methods operate in 2D
image space, and cluster 2D optical flow vectors or 2D flow trajectories to segment
moving objects [9, 38, 111], or use low-rank trajectory constraints [19, 25, 167]. Our
work differs in that we address object detection and segmentation in 3D as opposed
to 2D, by estimating 3D motion of the “imagined” (complete) scene, as opposed to
2D motion of the pixel observation stream.

Vision as inverse graphics Earlier works in Computer Vision proposed casting
visual recognition as inverse rendering [112, 204], as opposed to feedforward labelling.
The “blocks world” of Roberts [134] had the goal of reconstructing the 3D scene
depicted in the image in terms of 3D solids found in a database. A key question
to be addressed is: what representations should we use for the intermediate latent
3D structures? Most works seek to map images to explicit 3D representations,
such as 3D pointclouds [170, 175, 190, 206], 3D meshes [75, 95], or binary 3D voxel
occupancies [74, 168, 191]. The aforementioned manually designed 3D representations,
e.g., 3D meshes, 3D keypoints, 3D pointclouds, 3D voxel grids, may not be general
enough to express the rich 3D world, which contains liquids, deformable objects,
clutter, dirt, wind, etc., and at the same time may be over descriptive when detail
is unnecessary. In this work, we opt for learning-based 3D feature representations
extracted end-to-end from the RGB-D input stream as proposed by Tung et al. [171]
and Harley et al. [54]. We extend the architectures of those works to handle and
learn from videos of dynamic scenes, as opposed to only videos of static scenes.
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Figure 3.1: Tracking emerges by looking around in static scenes, with neural
3D mapping. Left: Training regime. Our learned 3D neural mapper f maps
RGB-D inputs into featurized 3D scene maps. Points that correspond across multiple
views, provided by static data or selected by a reliability network g, provide labels
for a contrastive learning objective. Right: Testing regime. Given an object box
in the zeroth frame, our encoder creates features for the object, and searches for
re-occurences of those features in the 3D scene maps of future time steps. The model
then explains the full-object motion via a robust estimate of the rigid transformation
across frames. Each estimated transformation is used to initialize the search region in
the next timestep. Our model does not use any human supervision, and never trains
explicitly for tracking; instead, it is supervised only by observing static points in 3D
scenes.

3.3 Learning to Track with Neural 3D Mapping

We consider a mobile agent that can move around in a 3D scene, and observe it
from multiple viewpoints. The scene can optionally contain dynamic (moving and/or
deforming) objects. The agent has an RGB camera with known intrinsics, and a
depth sensor registered to the camera’s coordinate frame. It is reasonable to assume
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that a mobile agent who moves at will has access to its approximate egomotion, since
it chooses where to move and what to look at [117]. In simulation, we use ground
truth camera poses; in real data, we use approximate camera poses provided by an
inertial navigation system (GPS and IMU). In simulation, we use random viewpoints;
in real data, we use just one forward-facing camera (which is all that is available).
Note that a more sophisticated mobile agent might attempt to select viewpoints
intelligently at training time.

Given the RGB-D and egomotion data, our goal is to learn 3D feature repre-
sentations that can correspond entities across time, despite variations in pose and
appearance. We achieve this by training inverse graphics neural architectures that
consume RGB-D videos and infer 3D feature maps of the full scenes, as we describe
in Section 3.3.1. To make use of data where some parts are static and other parts are
moving, we learn to identify static 3D points by estimating a reliability mask over
the 3D scene, as we describe in Section 3.3.2. Finally, we track in 3D, by re-locating
the object within each timestep’s 3D map, as described in Section 3.3.3. Figure 3.1
shows an overview of the training and testing setups.

3.3.1 Neural 3D Mapping

Our model learns to map an RGB-D (RGB and depth) image to a 3D feature map
of the scene in an end-to-end differentiable manner. The basic architecture is based
on prior works [54, 171], which proposed view prediction architectures with a 3D
bottleneck. In our case, the 3D feature map is the output of the model, rather than
an intermediate representation.

Let M ∈ RW×H×D×C denote the 3D feature map representation, where W,H,D,C
denote the width, height, depth and number of feature channels, respectively. The
map corresponds to a large cuboid of world space, placed at some pose of interest
(e.g., surrounding a target object). Every (x, y, z) location in the 3D feature map M
holds a C-length feature vector that describes the semantic and geometric content of
the corresponding location of the world scene. To denote the feature map of timestep
i, we write M(i). We denote the function that maps RGB-D inputs to 3D feature
maps as f : (I,D) 7→ M. To implement this function, we voxelize the inputs into a
3D grid, then pass this grid through a 3D convolutional network, and L2-normalize
the outputs.

Tung et al. [171] learned the parameters of f by predicting RGB images of unseen
viewpoints, and applying a regression loss; Harley et al. [54] demonstrated that this
can be outperformed by contrastive prediction objectives, in 2D and 3D. Here, we
drop the view prediction task altogether, and focus entirely on a 3D correspondence
objective: if a static point (x, y, z) is observed in two views i and j, the corresponding

features mi = M(i)
x,y,z,mj = M(j)

x,y,z should be similar to each other, and distinct from
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other features. We achieve this with a cross entropy loss [16, 58, 113, 151]:

Li,j = − log
exp(m⊤

i mj/τ)∑
k ̸=i exp(m⊤

i mk/τ)
, (3.1)

where τ is a temperature parameter, which we set to 0.07, and the sum over k ̸= i
iterates over non-corresponding features. Note that indexing correctly into the 3D
scene maps to obtain the correspondence pair mi,mj requires knowledge of the relative
camera transformation across the input viewpoints; we encapsulate this registration
and indexing in the notation Mx,y,z. Following He et al. [58], we obtain a large pool
of negative correspondences through the use of an offline dictionary, and stabilize
training with a “slow” copy of the encoder, fslow, which is learned via high-momentum
updates from the main encoder parameters.

Since the neural mapper (a) does not know a priori which voxels will be indexed
for a loss, and (b) is fully convolutional, it learns to generate view-invariant features
densely in its output space, even though the supervision is sparse. Furthermore,
since (a) the model is encouraged to generate correspondable features invariant to
viewpoint, and (b) varying viewpoints provide varying contextual support for 3D
locations, the model learns to infer corrrespondable features from limited context,
which gives it robustness to partial occlusions.

3.3.2 Inferring static points for self-supervision in dynamic
scenes

The training objective in the previous subsection requires the location of a static point
observed in two or more views. In a scenario where the data is made up entirely of
static scenes, as can be achieved in simulation or in controlled environments, obtaining
these static points is straightforward: any point on the surface of the scene will suffice,
provided that it projects into at least two camera views.

To make use of data where some parts are static and other parts are moving,
we propose to simply discard data that appears to be moving. We achieve this by
training a neural module to take the difference of two scene features M(i),M(j) as
input, and output a “reliability” mask indicating a per-voxel confidence that the
scene cube within the voxel is static: g : (sg(M(i) − M(j))) 7→ RW,H,D, where sg
stops gradients from flowing from g into the function f which produces M(i),M(j).
We implement g as a per-voxel classifier, with 2-layer fully-connected network applied
fully convolutionally. We do not assume to have true labels of moving/static voxels,
so we generate synthetic labels using static data: given two maps of the same scene
M(i),M(j), we generate positive-label inputs with M(i) − M(j) (as normal), and
generate negative-label inputs with M(i) − shuffle(M(j)), where the shuffle operation
ruins the correspondence between the two tensors. After this training, we deploy this
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network on pairs of frames from dynamic scenes, and use it to select high-confidence
static data to further train the encoder f .

Our training procedure is then: (1) learn the encoder f on static data; (2) learn
the reliability function g; (3) in dynamic data, finetune f on data selected by g. Steps
2-3 can be repeated a number of times. In practice we find that results do not change
substantially after the first pass.

3.3.3 Tracking via point correspondences

Using the learned neural 3D mapper, we track an object of interest over long temporal
horizons by re-locating it in a map produced at each time step. Specifically, we
re-locate each voxel of the object, and use these new locations to form a motion field.
We convert these voxel motions into an estimate for the entire object by fitting a
rigid transformation to the correspondences, via RANSAC.

We assume we are given the target object’s 3D box on the zeroth frame of a test
video. Using the zeroth RGB-D input, we generate a 3D scene map centered on the
object. We then convert the 3D box into a set of coordinates X0, Y0, Z0 which index
into the map. Let mi = M(0)

xi∈X0,yi∈Y0,zi∈Z0
denote a voxel feature that belongs to

the object. On any subsequent frame t, our goal is to locate the new coordinate of
this feature, denoted xt

i, y
t
i , z

t
i . We do so via a soft spatial argmax, using the learned

feature space to provide correspondence confidences:

(xt
i, y

t
i , z

t
i) =

∑
x∈X,y∈Y,z∈Z

(
exp(m⊤

i M
(t)
x,y,z)∑

x2∈X,y2∈Y,z2∈Z exp(m⊤
i M

(t)
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)
, (3.2)

where X, Y, Z denote the set of coordinates in the search region. We then compute
the motion of the voxel as (δtxi

, δtyi , δ
t
zi

) = (xt
i, y

t
i , z

t
i)− (xi, yi, zi). After computing the

motion of every object voxel in this way, we use RANSAC to find a rigid transformation
that explains the majority of the correspondences. We apply this rigid transform to
the input box, yielding the object’s location in the next frame.

Vondrick et al. [176] computed a similar attention map during tracking (in 2D),
but did not compute its soft argmax, nor explain the object’s motion with a single
transformation, but rather propagated a “soft mask” to the target frame, which is
liable to grow or shrink. Our method takes advantage of the fact that all coordinates
are 3D, and makes the assumption that the objects are rigid, and propagates a
fixed-size box from frame to frame.

We empirically found that it is critical to constrain the search region of the tracker
in 3D. In particular, on each time step we create a search region centered on the
object’s last known position. The search region is 16m × 2m × 16m large, which
is half of the typical full-scene resolution. This serves three purposes. The first is:
it limits the number of spurious correspondences that the model can make, since

29



3. Tracking Emerges by Looking Around Static Scenes, with Neural 3D Mapping

it puts a cap on the metric range of the correspondence field, and thereby reduces
errors. Second: it “re-centers” the model’s field of view onto the target, which allows
the model to incorporate maximal contextual information surrounding the target.
Even if the bounds were sufficiently narrow to reduce spurious correspondences, an
object at the edge of the field of view will have less-informed features than an object
at the middle, due to the model’s convolutional architecture. The third reason is
computational: even 2D works [176] struggle with the computational expense of the
large matrix multiplications involved in this type of soft attention, and in 3D the
expense is higher. Searching locally instead of globally makes Eq. 3.2 tractable.

3.4 Experiments

We test our model in the following two datasets:

1. Synthetic RGB-D videos of urban scenes rendered in the CARLA
simulator [34]. CARLA is an open-source photorealistic simulator of urban
driving scenes. It permits moving the camera to any desired viewpoint in the
scene. We obtain data from the simulator as follows. We begin by generating
10000 autopilot episodes of 16 frames each, at 10 FPS. We define 18 viewpoints
along a 40m-radius hemisphere anchored to the ego-car (i.e., it moves with the
car). In each episode, we sample 6 random viewpoints from the 18 and randomly
perturb their pose, and then capture each timestep of the episode from these 6
viewpoints. We discard episodes that do not have an object in-bounds for the
duration of the episode.

We treat the Town1 data as the “training” set, and the Town2 data as the “test”
set, so there is no overlap between the train and test sets. This yields 4313
training videos, and 2124 test videos.

2. Real RGB-D videos of urban scenes, from the KITTI dataset [43].
This data was collected with a sensor platform mounted on a moving vehicle,
with a human driver navigating through a variety of areas in Germany. We use
the “left” color camera, and LiDAR sweeps synced to the RGB images.

For training, we use the “odometry” subset of KITTI; it includes egomotion
information accurate to within 10cm. The odometry data includes ten sequences,
totalling 23201 frames.

We test our model in the validation set of the “tracking” subset of KITTI,
which has twenty labelled sequences, totalling 8008 frames. For supervised
baselines, we split this data into 12 training sequences and 8 test sequences. For
evaluation, we create 8-frame subsequences of this data, in which a target object
has a valid label for all eight frames. This subsequencing is necessary since
objects are only labelled when they are within image bounds. The egomotion
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Input frame 0 Search region Neural map Estimated trajectory GT trajectory

Figure 3.2: Visualization of tracking inputs, inferred 3D scene features, and
tracking outputs. Given the input frame on the left, along with a 3D box specifying
the object to track, the model (1) creates a search region for the object centered on
the object’s position (bird’s eye view of occupancy shown), (2) encodes this region
into a 3D neural map (bird’s eye view of PCA compression shown), and (3) finds
correspondences for the object’s features. The top three rows show CARLA results;
the bottom three rows show KITTI results.

information in the “tracking” data is only approximate.

We evaluate our model on its ability to track objects in 3D. On the zeroth frame, we
receive the 3D box of an object to track. On each subsequent frame, we estimate the
object’s new 3D box, and measure the intersection over union (IOU) of the estimated
box with the ground truth box. We report IOUs as a function of timesteps.
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Input frame 0 2D Neural map Estimated traj. GT trajectory

Figure 3.3: Visualization of tracking inputs, inferred 2D scene features,
and tracking outputs, for our adaptation of Dense Object Nets [37]. This
model operates in the same way as our full 3D one, but creates features in 2D, and
unprojects them to a sparse 3D grid for tracking.

3.4.1 Baselines

We evaluate the following baselines.

• Unsupervised 3D flow [54]. This model uses an unsupervised architecture
similar to ours, but with a 2-stage training procedure, in which features are
learned first from static scenes and frozen, then a 3D flow module is learned
over these features in dynamic scenes. We extend this into a 3D tracker by
“chaining” the flows across time, and by converting the trajectories into rigid
motions via RANSAC.

• 2.5D dense object nets [37]. This model learns to map input images into
dense 2D feature maps, and uses a contrastive objective at known correspon-
dences across views. We train this model using static points for correspondence
labels (like our own model). We extend this model into a 3D tracker by “un-
projecting” the learned embeddings into sparse 3D scene maps, then applying
the same tracking pipeline as our own model.

• 2.5D tracking by colorization [83, 176]. This model learns to map input
images into dense 2D feature maps, using an an RGB reconstruction objective.
The model trains as follows: given two RGB frames, the model computes a
feature map for each frame; for each pixel of the first frame’s feature map, we
compute that feature’s similarity with all features of the second frame, and then
use that similarity matrix to take a weighted combination of the second frame’s
colors; this color combination at every pixel is used as the reconstruction of
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the first frame, which yields an error signal for learning. We extend this model
into a 3D tracker in the same way that we extended the “dense object nets”
baseline.

• 3D neural mapping with random features. This model is equivalent to
our proposed model but with randomly-initialized network parameters. This
model may be expected to perform at better-than-chance levels due to the
power of random features [128] and due to the domain knowledge encoded in
the architecture design.

• 3D fully convolutional siamese tracker (supervised) [4]. This is a
straightforward 3D upgrade of a fully convolutional 2D siamese tracker, which
uses the object’s feature map as a cross correlation template, and tracks the
object by taking an argmax of the correlation heatmap at each step. It is
necessary to supervise this model with ground-truth box trajectories. We
also evaluate a “cosine windowing” variant of this model, which suppresses
correlations far from the search region’s centroid [4].

• 3D siamese tracker with random features. This model is equivalent
to the 3D siamese supervised tracker, but with randomly-initialized network
parameters. Similar to the random version of 3D neural mapping, this model
measures whether random features and the implicit biases are sufficient to track
in this domain.

• Zero motion. This baseline simply uses the input box as its final estimate for
every time step. This baseline provides a measure for how quickly objects tend
to move in the data, and serves as a lower bound for performance.

All of these are fairly simple trackers. A more sophisticated approach might incre-
mentally update the object template [99], but we leave that for future work.

Ablations. We compare our own model against the following ablated versions. First,
we consider a model without search regions, which attempts to find correspondences
for each object point in the entire 3D map at test time. This model is far more
computationally expensive, since it requires taking the dot product of each object
feature with the entire scene. Second, we consider a similar “no search region” model
but at half resolution, which brings the computation into the range of the proposed
model. This ablation is intended to reveal the effect of resolution on accuracy. Third,
we omit the “static point selection” (via the function g). This is intended to evaluate
how correspondence errors caused by moving objects (violating the static scene
assumption) can weaken the model.
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Figure 3.4: Single-object tracking accuracy, in mean IOU across time, in
CARLA (left) and KITTI (right). Methods are sorted in the legend in decreasing
order of mean IOU.

3.4.2 Quantitative results

We evaluate the mean 3D IOU of our trackers over time. Figure 3.4-left shows the
results of this evaluation in CARLA. As might be expected, the supervised 3D trackers
perform best, and cosine windowing improves results.

Our model outperforms all other unsupervised models, and nearly matches the
supervised performance. The 2.5D dense object net performs well also, but its
accuracy is likely hurt by the fact that it is limited exclusively to points observed
in the depth map. Our own model, in contrast, can match against both observed
and unobserved (i.e., hallucinated or inpainted) 3D scene features. The colorization
model performs under the 2.5D dense object net approach, likely because this model
only indirectly encourages correspondence via the colorization task, and therefore is
a weaker supervision than the multi-view correspondence objectives used in the other
methods.

Random features perform worse than the zero-motion baseline, both with a neural
mapping architecture and a siamese tracking architecture. Inspecting the results
qualitatively, it appears that these models quickly propagate the 3D box off of the
object and onto other scene elements. This suggests that random features and the
domain knowledge encoded in these architectures are not enough to yield 3D trackers
in this data.

We perform the same evaluation in KITTI, and show the results in Figure 3.4-right.
On this benchmark, accuracies are lower for all models, indicating that the task
here is more challenging. This is likely related to the fact that (1) the egomotion
is imperfect in this data, and (2) the tracking targets are frequently farther away
than they are in CARLA. Nonetheless, the ranking of methods is the same, with our
3D neural mapping model performing best. One difference is that cosine windowing
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actually worsens siamese tracking results in KITTI. This is likely related to the fact
that egomotion stabilization is imperfect in KITTI: a zero-motion prior is only helpful
in frames where the target is stationary and camera motion is perfectly accounted
for; otherwise it is detrimental.

We additionally split the evaluation on stationary vs. moving objects in CARLA.
We use a threshold of 1m total distance (in world coordinates) across the 8-frame
trajectories to split these categories. At the last timestep, the mean 3D IOU for
all objects together it is 0.61 (as shown in Figure 3.4-left); for static objects only,
the value is 0.64; for moving objects only, it is 0.56. This suggests that the model
tracks stationary objects more accurately than moving objects, likely because their
appearance changes less with respect to the camera and the background.

Finally, we evaluate the top two models in CARLA using the standard 2D tracking
metrics, multi-object tracking accuracy (MOTA) and multi-object tracking precision
(MOTP) [3], though we note that our task only has one target object per video. We
find that the 3D siamese + cosine model (supervised) achieves a MOTA of 0.9578 and
MOTP of 0.7407, while our model achieves MOTA 0.9125 and MOTP 0.8384. This
suggests that the supervised tracker makes fewer misses, but our method delivers
slightly better precision.

3.4.3 Qualitative results

We visualize our tracking results, along with inputs and colorized visualizations of our
neural 3D scene maps, in Figure 3.2. To visualize the neural 3D maps, we take a mean
along the vertical axis of the grid (yielding a “bird’s eye view” 2D grid), compress
the deep features in each grid cell to 3 channels via principal component analysis,
normalize, and treat these values as RGB intensities. Comparing the 3D features
learned in CARLA vs those learned in KITTI reveals a very obvious difference: the
KITTI features appear blurred and imprecise in comparison with the CARLA features.
This is likely due to the imperfect egomotion information, which leads to slightly
inaccurate correspondence data at training time (i.e., occasional failures by the static
point selector g).

In Figure 3.3, we visualize the features learned by Dense Object Nets in this data.
From the PCA colorization it appears that objects are typically colored differently
from their surroundings, which is encouraging, but the embeddings are not as clear as
those in the original work [37], likely because this domain does not have the benefit
of background image subtraction and object-centric losses.

3.4.4 Ablations

We evaluate ablated versions of our model, to reveal the effect of (1) search regions, (2)
resolution, and (3) static point selection in dynamic scenes. Results are summarized
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Method Mean IOU

Ours in CARLA 0.61

. . . without search regions 0.40

. . . without search regions, at half resolution 0.25

Ours in KITTI 0.46

. . . without static point selection 0.39

Table 3.1: Ablations of our model.

in Table 3.1.

Without search regions, the accuracy of our model drops by 20 IOU points, which is
a strong impact. We believe this drop in performance comes from the fact that search
regions take advantage of 3D scene constancy, by reducing spurious correspondences
in far-away regions of the scene.

Resolution seems to have a strong effect as well: halving the resolution of the
wide-search model reduces its performance by 15 IOU points. This may be related to
the fact that fewer points are then available for RANSAC to find a robust estimate
of the object’s rigid motion.

Since static point selection is only relevant in data with moving objects, we perform
this experiment in KITTI (as opposed to CARLA, where the training domain is all
static by design). The results show that performance degrades substantially without
the static point selection. This result is to be expected, since this ablation causes
erroneous correspondences to enter the training objective, and thereby weakens the
utility of the self-supervision.

3.4.5 Limitations

The proposed model has three important limitations. First, our work assumes access
to RGB-D data with accurate egomotion data at training time, with a wide variety
of viewpoints. This is easy to obtain in simulators, but real-world data of this
sort typically lies along straight trajectories (as it does in KITTI), which limits the
richness of the data. Second, our model architecture requires a lot of GPU memory,
due to its third spatial dimension. This severely limits either the resolution or the
metric span of the latent map M. On 12G Titan X GPUs we encode a space sized
32m× 4m× 32m at a resolution of 128 × 32 × 128, with a batch size of 4; iteration
time is 0.2s/iter. Sparsifying our feature grid, or using points instead of voxels, are
clear areas for future work. Third, our test-time tracking algorithm makes two strong
assumptions: (1) a tight box is provided in the zeroth frame, and (2) the object is
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rigid. For non-rigid objects, merely propagating the box with the RANSAC solution
would be insufficient, but the voxel-based correspondences might still be helpful.

3.5 Conclusion

We propose a model which learns to track objects in dynamic scenes just from
observing static scenes. We show that a multi-view contrastive loss allows us to learn
rich visual representations that are correspondable not only across views, but across
time. We demonstrate the robustness of the learned representation by benchmarking
the learned features on a tracking task in real and simulated data. Our approach
outperforms prior unsupervised 2D and 2.5D trackers, and approaches the accuracy
of supervised trackers. Our 3D representation benefits from denser correspondence
fields than 2.5D methods, and is invariant to the artifacts of camera projection, such
as apparent scale changes of objects. Our approach opens new avenues for learning
trackers in arbitrary environments, without requiring explicit tracking supervision: if
we can obtain an accurate pointcloud reconstruction of an environment, then we can
learn a tracker for that environment too.
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Chapter 4

CoCoNets: Continuous Contrastive
3D Scene Representations

4.1 Introduction

Understanding the three-dimensional structure of objects and scenes may be a key for
success of machine perception and control in object detection, tracking, manipulation
and navigation. Exciting recent works have explored learning representations of
objects and scenes from multiview imagery and capture the three-dimensional scene
structure implicitly or explicitly with 3D binary or feature grids [147, 168, 169], 3D
point feature clouds [185], implicit functions that map continuous world coordinates to
3D point occupancy [17, 20, 44, 103, 115, 149], as well as 1D or 2D feature maps [36].
These methods typically evaluate the accuracy of the inferred 3D scene occupancy
[17, 20, 103, 110, 115, 168] and the fidelity of image views rendered from the 3D
representation [36, 85, 105, 149, 185], as opposed to the suitability of representations
for downstream semantic tasks. Methods that indeed focus on rendering photo-
realistic images often give up on cross-scene generalization [105, 133], or focus on
single-object scenes [149]. Methods that instead focus on learning semantically
relevant scene representations are expected to generalize across scenes, and handle
multi-object scenes. In the 2D image space, contrastive predictive coding has shown to
generate state-of-the-art visual features for correspondence and recognition [53, 113],
but does not encode 3D scene structure. In 3D voxel feature learning methods [54, 55],
convolutional latent 3D feature grids encode the 3D structure and a view contrastive
objective learns semantically useful 3D representations, but the grid resolution limits
the discriminability of the features learnt. Recent exciting works combine 3D voxel
grids and implicit functions and learn to predict 3D scene and object 3D occupancy
from a single view with unlimited spatial resolution [118, 124]. The model proposed in
this work brings together these two powerful ideas: 3D feature grids as a 3D-informed
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neural bottleneck for contrastive view prediction [54], and implicit functions for
handling the resolution limitations of 3D grids [118].

We propose Continuous Contrastive 3D Networks (CoCoNets), a model that
learns to map RGB-D images to infinite-resolution 3D scene feature representations
by contrastively predicting views, in an object and scene agnostic way. Our model is
trained to predict views of static scenes given 2.5D (color and depth; RGB-D) video
streams as input, and is evaluated on its ability to detect and recognize objects in 3D.
CoCoNets map the 2.5D input streams into 3D feature grids of the depicted scene.
Given a target view and its viewpoint, the model first warps its inferred 3D feature
map from the input view to a target view, then queries point features using their
continuous coordinates, and pulls these features closer to the point features extracted
from the target view at the same 3D locations. We use a contrastive loss to measure
the matching error, and backpropagate gradients end-to-end to our differentiable
modular architecture. At test time, our model forms plausible 3D completions of the
scene given a single RGB-D image as input: it learns to fill in information behind
occlusions, and infer the 3D extents of objects.

We demonstrate the advantages of combining 3D neural bottleneck, implicit
functions and contrastive learning for 3D representation learning by comparing our
model against state-of-the-art self-supervised models, such as i) contrastive learning
for pointclouds [192], which shares a similar loss but not the amodal predictive ability
of our model, ii) contrastive neural mapping [55], which can amodally inpaint a 3D
discrete feature grid but suffers from limited spatial grid resolution, and iii) Dense
Object Nets [37], which self-learns 2D (instead of 3D) feature representations with
a triangulation-driven supervision similar to (i). Our experimental results can be
summarized as follows: (1) 3D object tracking and re-identification: We show that
scene representations learnt by CoCoNets can detect objects in 3D across large frame
gaps better than the baselines [37, 55, 192]. (2) Supervised 3D object detection:
Using the learnt 3D point features as initialization boosts the performance of the state-
of-the-art Deep Hough Voting detector of [127]. (3) 3D cross-view and cross-scene
object 3D alignment: We show that the learnt 3D feature representations can infer
6DoF alignment between the same object in different viewpoints, and across different
objects of the same category, better than [37, 55, 192]. We further show that our
model can predict image views (with or without depth as input) and 3D occupancies
that outperform or are on par with the state-of-the-art view and occupancy prediction
models [36, 124, 171].

In summary, the main contribution of this paper is a model that learns infinite-
resolution 3D scene representations from RGB-D posed images, useful for tracking
and corresponding objects in 3D, pre-training 3D object detectors, and predicting
views and 3D occupancies. We set a new state-of-the-art in self-supervision of 3D
feature representations.
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4.2 Related work

Learning to 3D reconstruct objects and scenes Learning to infer 3D recon-
structions of objects and scenes from single images or videos has been the goal of
recent deep geometrical methods, that have explored a variety of explicit 3D repre-
sentations, such as 3D point clouds [91, 109], 3D binary voxel occupancies [168, 195],
or 3D meshes [47, 75]. Since detailed 3D supervision is only possible in large scale in
simulation, many approaches attempt supervision from RGB or depth map prediction
through differentiable rendering of the inferred 3D reconstruction [47, 75]. To handle
limitations of spatial resolution of 3D voxel grids, recent approaches represent 3D ob-
ject occupancy with implicit functions parameterized by deep neural networks trained
to map continuous world 3D coordinates to the corresponding point 3D occupancy
values [17, 20, 103, 115]. While these methods train one 3D shape implicit function
per object, by assigning a 1D latent embedding to each object, some works [118, 124]
train 3D grids of functions where each function takes care of estimating the occupancy
of points in the vicinity of the corresponding 3D voxel centroid. These latter methods
enjoy the generalization of 3D convolutions and can scale to multi-object scenes,
while implicit functions parametrized by non-convolutional, fully connected networks
are mostly limited to single object scenes [20]. Our approach also employs 3D grids
of functions which predict feature embeddings for the corresponding continuous 3D
world coordinates as opposed to merely occupancy.

Neural image synthesis with 3D inductive biases Deep image generative
networks have shown compelling results in generating photorealistic images that
match the image statistics of the unlabelled image collections they are trained on [48].
They are based on variational autoencoders [80], generative adversarial networks [6],
generative flows [79], or autoregressive image pixel generators [173]. However, these
2D generative models learn to parameterize the manifold of 2D natural images, and
struggle to generate images that are multi-view consistent, since the underlying 3D
scene structure cannot be exploited. Generative models trained from multi-view data
can render arbitrary views of an input scene [74, 139, 147, 161, 164]. Such multi-view
generative models often restrict themselves to single-object scenes [108, 146, 149] or
to a single complex scene without aiming at cross-scene generalization [105, 133], with
the goal of generating high fidelity photorealistic images, replacing hand-engineered
graphics engines. Their architectures incorporate many inductive biases of graphics
engines, such as 3D-to-2D rendering modules [164] and explicit feature transformations
to handle viewpoint changes [171]. Their lack of cross-scene generalization or their
limitation to single object scenes makes it hard to adopt their inferred feature
representations for visual recognition.
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Learning visual feature representations by self-supervised view prediction
Recent methods learn neural scene representations by predicting views of a scene under
known egomotion [36, 54, 147, 149]. View prediction, as opposed to the related and
very effective objective of feature learning via triangulation [192], results in explicitly
or implicitly amodal representations, i.e., representations that can predict information
missing from the input observations [107], as opposed to simply featurizing the visible
image pixels [37]. Different view prediction methods for learning representations
vary with respect to the amount of their reasoning regarding geometry and the
underlying 3D structure of the scene [165]. The generative query network (GQN)
of Eslami et al. [36] showed that it can predict alternative views of toy simulated
scenes without explicit 3D structure inference, and demonstrated the usefulness of
the inferred representations as pre-training for reinforcement behaviour learning tasks.
Geometry-aware recurrent networks of Tung et al. [171] use a latent 3D feature
map in their bottleneck for view prediction and demonstrate superior generalization,
granted from the 3D convolutional inductive bias. Harley et al. [54] uses a similar
3D latent feature grid but optimizes for contrastive prediction as opposed to RGB
regression, and demonstrate its usefulness for 3D object tracking and 3D moving
object segmentation. Our work optimizes a contrastive view prediction objective
similar to [54] but uses a 3D grid of implicit functions as its latent bottleneck. We
empirically show that the emergent 3D feature representations are more accurate
in 3D object tracking and visual correspondence than the features obtained from
existing state-of-the-art 3D feature learning methods.

4.3 Continuous Contrastive 3D Networks

(CoCoNets) for Learning Amodal Visual

Representations

We consider a mobile agent that can move about the scene and has access to its
egomotion. The agent has a color camera with known intrinsics, and a depth sensor
registered to the camera’s coordinate frame. We use groundtruth depth provided by
the simulation environment, and we will show in Sec. 4.4 that the learned models
generalize to the real world, where (sparser) depth is provided by a LiDAR unit.

CoCoNets learn 3D visual feature representations by collecting posed images in
static scenes and doing contrastive view prediction. We describe the architecture
in Sec. 4.3.1. We then evaluate the correspondability of the resulting 3D feature
representations in 3D object re-identification and tracking in dynamic scenes (Section
4.4.1), as pre-training for 3D object detection (Section 4.4.2), and cross-object semantic
visual correspondence (Section 4.4.3).
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Figure 4.1: Continuous Convolutional Contrastive 3D Networks (CoCoNets)
are trained to lift 2.5D images to 3D feature function grids of the scene by optimizing
for view-contrastive prediction. (a) In the top-down path, the model encodes RGB-
D images into a 3D feature map M ∈ Rw×h×d×c, and uses explicit 3D feature
transformations (translation and 3D rotation) to account for changes of viewpoint
between the input and target views. (b) In the bottom-up path, we encode the
RGB-D of the target viewpoint into a 3D feature cloud. (c) Given continuous 3D
world coordinates (X, Y, Z) and its embedded code v(X,Y,Z) inferred via trilinear
interpolation, a fully connected network maps the coordinates and the embedded
code, to the feature vector of the 3D point at location (X, Y, Z). (d) Metric learning
losses in 3D tie the two point cloud representations together.
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4.3.1 Continuous Contrastive 3D Networks (CoCoNets)

Our model’s architecture is illustrated in Figure 4.1. It is a neural network with a three-
dimensional neural bottleneck M ∈ Rw×h×d×c, which has three spatial dimensions
(width w, height h, and depth d) and a feature dimension (c channels per grid
location).

The latent state aims to capture an informative and geometrically-consistent 3D
deep feature map of the world space. Therefore, the spatial extent corresponds to a
large cuboid of world space, defined with respect to the camera’s position at the first
timestep. Each voxel in the 3D feature map M corresponds to a cuboid in the 3D
scene depicted in the RGB-D image.

To be able to generate features at infinite spatial resolution, i.e., to featurize
continuous 3D physical points within a voxel, we use implicit function parametrization.
Our model’s architecture of interpolating within a voxel grid resembles that of Peng
et al. [118]. Let (X, Y, Z) denote the continuous world coordinate of a 3D point
whose feature we wish to infer. First, we trilinearly interpolate the feature grid to
obtain a a c-dimensional feature vector at point (X, Y, Z). Denoting this trilinearly
interpolated feature vector as p for input point (X, Y, Z), we further obtain a 3d
location conditioned feature vector using ϕ(p, x), where ϕ is a small fully-connected
network. Finally we obtain our 32-dimensional embedding vector using fθ(p, ϕ(p, x)),
where fθ represents a multi-block fully connected ResNet.

A similar fully-connected ResNet parametrization provides a point’s binary oc-
cupancy o(X,Y,Z), and its RGB color value c(X,Y,Z). The three ResNets that predict
features, occupancy and RGB values of 3D points do not share weights. During train-
ing, we use the point cloud of the target viewpoint to query our model for features,
occupancies and colors in the corresponding visible 3D point locations and propagate
gradients in an end-to-end manner to the same feature voxel 3D map M. We denote
the operation of obtaining point features, occupancies and colors by querying the
feature map at continuous locations by Ff (M, (X, Y, Z)) ,Fo (M, (X, Y, Z)) , and
F c (M, (X, Y, Z)). At test time, we query the model in both visible and non visible
3D point locations, to obtain an amodal completed 3D point feature cloud.

CoCoNets is made up of differentiable modules that go back and forth between 3D
feature space and 2D image space. It can take as input a variable number of RGB-D
images both at training time and test time. For simplicity, in our experiments we
encode only a single view input at both train and test time.

2D-to-3D unprojection (Figure 4.1 (a, b)) This module converts the input
RGB image I ∈ Rw×h×3 and depth map D ∈ Rn×3 where, n is the size of the point-
cloud) into 3D tensors using available camera intrinsics. The RGB is “unprojected”
into a 3D tensor U ∈ Rw×h×d×3 by filling each 3D grid location with the RGB value
of its corresponding subpixel. The pointcloud is converted to a 3D occupancy grid
O ∈ Rw×h×d×1, by assigning each voxel a value of 1 or 0, depending on whether or not

44



4. CoCoNets: Continuous Contrastive 3D Scene Representations

Figure 4.2: 3D object tracking using CoCoNets. Given the cropped RGB-D
image Iobj of the object to track at t = 0, our model infers the 3D object feature
map Mobj, and queries it using xyz0, the point cloud of the object, to obtain object
point features. Similarly, it obtains the point features of the entire scene at timestep
t. Finally, it does cross correlation between these features to get xyzN , where each
ith point in xyzN is the point from the scene whose feature matched best with the
feature for ith point in xyz0. We then apply RANSAC on xyz0 and xyzN to obtain
the location of the car at timestep t.

a point lands in the voxel. We then convert the concatenation of these tensors into a
3D feature tensor M ∈ Rw×h×d×c, via a 3D convolutional encoder-decoder network
with skip connections. We L2-normalize the feature in each grid cell.

3D-to-2D projection This module first warps the 3D feature map M to align
it to the target viewpoint, yielding MV . It then generates a 3D feature point cloud
by querying the model at the 3D point locations visible from the target viewpoint,
provided by the target depth map Dtarget. It also generates a 2D feature map by
computing for each visible 3D point the corresponding 2D pixel location using the
camera intrinsics, (x, y) = f X

Z
, f Y

Z
, and copying the 3D point feature into that location

in the 2D feature map. Note that each 3D feature point is mapped independently to
2D, in contrast to neural renderers that convolutionally map feature maps to image
views [36, 147]. This independent point-by-point rendering is closer to the spirit of
graphics operations [149].

3D contrastive learning of point features Given a pair of input RGB
images (Iinp, Itarget), depth maps (Dinp, Dtarget), and the camera pose change between
input and target views V , we consider two types of representations for the target
view:

• a top-down one, MV
inp (Figure 4.1 (a)) by encoding the input RGB-D image

(Iinp, Dinp) and orienting the feature map to the target viewpoint, and predicting
the features for the target 3D points in Dtarget by querying the functions in MV

inp,

obtaining the feature cloud {
(
X, Y, Z,F(MV

inp, (X, Y, Z))
)
} for (X, Y, Z) ∈
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Dtarget (Figure 4.1 (c)).

• a bottom-up one, Mtarget (Figure 4.1 (b)) by simply encoding the target RGB-
D image Itarget, Dtarget and predicting the features for the target 3D points
in Dtarget, obtaining the feature cloud {(X, Y, Z,F(Mtarget, (X, Y, Z)))} for
(X, Y, Z) ∈ Dtarget (Figure 4.1 (c)).

We use a contrastive InfoNCE loss [113] (Figure 4.1 (d)) to pull corresponding top-
down and bottom-up point features close together in embedding space and push
non-corresponding ones farther away:

L = − log
exp( q·k+

τ
)∑K

i=0 exp q·ki
τ

, (4.1)

where τ is a temperature hyper-parameter and the sum in the denominator is over one
positive and K negative samples. In the numerator, q represents Ff (Minp, (i, j, k)),
and k+ is its corresponding positive sample Ff (Mtarget, (m,n, o)). The dot product
computes a similarity. In practice, we randomly sample corresponding points from the
top-down or bottom-up feature clouds at each training iteration. We also maintain a
large pool of negative pairs in a dictionary, using the approach proposed by He et
al.[58].

Our metric learning loss, if applied only on 3D points visible from both input and
target views, coincides with the point contrastive metric learning of Xie et al. [192], a
state-of-the-art 3D point feature learning method. CoCoNets can handle input and
target views that actually have few or no points in common. We compare against Xie
et al.’s state-of-the-art 3D feature learning model in our experiments, and demonstrate
the importance of amodal completion for feature learning.

Occupancy prediction and RGB view regression We train a separate CoCoNet
model to predict occupancy and RGB in novel viewpoints, which we denote CoCoNets-
OccRGB. We use a standard binary cross entropy loss for the occupancy, and a
regresion loss for RGB. The model predicts point clouds in target viewpoints and
infers their occupancy and color from the implicit function grids Fo,F c. Specifically,
to predict a target RGB view and its occupancy given a source RGB-D image, after
encoding and orienting the 3D feature map M to the target viewpoint, we predict
the point occupancies of the target view, and predict the point RGB colors for the
occupied points. These are then projected to the image space in the target view.

Jointly training RGB and occupancy prediction with contrastive view prediction
did not improve discriminability of our feature representations. The novelty of
our paper is in using voxel-implicit architectures for amodal contrastive 3D feature
learning as opposed to 3D occupancy prediction [118, 124], or in addition to it.

RGB view regression without depth input Additionally, we also make use of
NeRF’s volumetric renderer [105], with features extracted from Minput as priors, to
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render novel views using just a single RGB image (no depth information) as input.
We call this CoCoNetsNoDepthRGB. Qualitative results from this model can be seen in
Figure 4.5.

4.4 Experiments

Useful visual feature representations are expected to correspond visual entities across
variations in pose and appearance, as well as across intra-category variability. We
evaluate the correspondability of our 3D scene representations in 3D object tracking
and object re-identification, 3D pose estimation and cross-object correspondence. We
further evaluate our features as pre-training for 3D object detector for the state-of-
the-art method of [127]. Our experiments aim to answer the following questions:

1. Is amodal completion important for learning scene representations useful for
visual correspondence, across time and across scenes? To this end, we compare
3D feature representations learned by CoCoNets against contrastive point clouds
[192] that do not consider amodal completion but share a similar contrastive
objective for 3D points visible in both scenes.

2. Is our 3D function parameterization important for learning discriminative visual
representations? To this end, we compare with 3D contrastive neural mapping
of Harley et al. [54] that does not consider continuous functions, but rather
uses discrete 3D feature maps as the neural bottleneck.

3. Does the performance of 3D object detectors in pointclouds improve when using
CoCoNets as initialization of the point features, and by how much? To this
end, we compare with VoteNet [127], a model that uses PointNet++ [126] as
their feature extractor and deep Hough voting for 3D object detection in point
clouds.

4. Is the continous 3D convolutional bottleneck of CoCoNets useful for view
prediction? To this end, we compare image views rendered from our model in
novel scenes with images from GQN [36], which does not consider 3D neural
bottleneck, and GRNN [171], which has a discrete 3D convolutional bottleneck.

We train and test CoCoNets in the simulated datasets of CARLA [34], ShapeNet [14]
and test them further—without training—in the real-world KITTI dataset [43].
CARLA is an open-source photorealistic simulator of urban driving scenes, which
permits moving the camera to any desired viewpoint in the scene. ShapeNet is a large
scale 3D object repository which again permits camera placement at will. KITTI is
an urban driving scene dataset collected from a camera mounted on a car.
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4.4.1 Self-supervised 3D object tracking and
re-indentification

Setup We evaluate the 3D feature representations of CoCoNets in their ability to
track a 3D object over time, as well as across large frame gaps, a task known as object
re-identification. Given the 3D bounding box of an object in the first frame, we are
interested in tracking the object in subsequent frames. We first infer 3D features
for object points visible in the first frame. For subsequent timesteps, we predict the
amodal complete 3D feature cloud of the scene from a single view by querying our
model in a set of visible and invisible 3D point locations. We found this uniform
random sampling of query point set strategy to suffice for our tasks, though more
elaborate strategies that focus on querying points close to object surfaces can be
used, such as Marching Cubes [96], which has been used by previous 3D implicit
shape function models for learning object occupancy to obtain a watertight mesh
[44, 118, 124]. Given the object feature point cloud and the amodal scene feature
cloud, we obtain a rigid body transformation (3D rotation and translation) by solving
the orthogonal Procrustes problem [142], and use RANSAC to find the transformation
that satisfies most inliers as shown in Figure 4.2, where inlier point matches are
obtained by thresholding inner products at 0 between the object 3D point features
and 3D point features of the target scene. We find the object 3D box in the target
scene by warping the box b0 using the obtained transformation. Note that we do not
restrict our model to search locally only for a matching object, but search over the
whole scene which makes the task harder. Such object matching across frame gaps is
important for re-detecting an object after occlusions. It is also a good test for the
discriminability of the features, since they are not assisted by temporal continuity or
local search regions.

Evaluation and comparison with baselines We compare CoCoNets against the
following baselines (we use names indicative to the differences and characteristics):
i) 3DVoxContrast of Harley et al.[55] , ii) 3DPointContrast of Xie et al.[192] iii)
2.5DDenseObjectNets of Florence et al. [37], which uses triangulation supervision
to train 2D deep feature maps, then lifts them to 3D point feature clouds using the
available depth map.

We follow the experimental setup of Harley et al.[55], which uses video sequences
of 10 timesteps. For 3DVoxContrast, we first use multiview RGB-D data with known
egomotion to train a model using 3D contrastive losses. Upon training, 3DVoxContrast
maps a single RGB-D image to a discrete 3D feature map. Then, 3DVoxContrast
uses this model for tracking by solving orthogonal procrustes problem with RANSAC
between voxel features as opposed to point features. For 3DPointContrast, upon
training the model, we compute RANSAC on the cross-correlation scores between
point features from the visible 3D points on the object at frame 0 and the visible
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Method CARLA KITTI

CoCoNets (ours) 0.61 0.54

3DPointContrast [192] 0.55 0.48

3DVoxContrast [55] 0.37 0.23

2.5DDenseObjectNets [37] 0.24 0.19

Table 4.1: 3D object tracking IOU after 10 timesteps.

Method
mAP@IOU

0.25 0.30 0.40 0.50

VoteNet [127] 0.32 0.26 0.24 0.20

CoCoNet-VoteNet(Ours) 0.51 0.47 0.41 0.32

Table 4.2: Comparing VoteNet with CoCoNet-VoteNet on mAP for different
IOUs. Pre-training the 3D point cloud features with CoCoNets significantly boosts
performance.

point cloud at each subsequent frame. Our method also considers amodal completed
point cloud at each frame. For 2.5DDenseObjectNets, upon training the model, we
apply RANSAC much the same way as in the 3DPointContrast model.

We show quantitative tracking results for our model and baselines on the CARLA
and KITTI datasets in Table 4.1. Figure 4.3 visualizes 3D object trajectories over
time from an overhead view. Note that we do not use any locality search, i.e., each
model searches across the whole target frame for the configuration of the object. Our
model achieves superior performance on 3D object tracking than all the baselines. It
dramatically outperforms 3DVoxContrast, which highlights the importance of high
spatial resolution for 3D feature learning and correspondence. It also outperforms
3DPointContrast, which highlights the importance of amodal completion supported by
our model. Lastly, all 3D methods outperform 2.5DDenseObjectNets which highlights
the effectiveness of learning features in a metric 3D feature space.

4.4.2 Supervised 3D object detection in point clouds

Setup We test the 3D feature representations obtained by CoCoNets in their ability
to boost the performance of a supervised 3D object detector when used as initialization.
We use VoteNet [127], a state-of-the-art 3D object detector that combines the classic
ideas of Hough voting in a deep neural network architecture that computes point
features, uses them to vote for locations and sizes of the 3D object boxes, and
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Input RGB
Input 


Occupancy Neural Map Estimated 

trajectory GT trajectory

Figure 4.3: Self-supervised 3D object tracking. In the 1st and 2nd column we
visualize the RGB and depth from the first frame, which is given as input to our
model, along with a 3D box specifying the object to track. In the 3rd column we
visualize our inferred point features by projecting them to the same RGB image
and then doing PCA compression. In the last 2 columns we show the estimated
and ground truth trajectories. The top three rows show our results on CARLA; the
bottom three rows show our KITTI results.

aggregates the votes to propose 3D object bounding boxes with associated confidence,
in an end-to-end differentiable framework. We modify VoteNet [127] by replacing their
point cloud feature extractor backbone with a trained CoCoNet; we will refer to this
as CoCoNet-VoteNet. The original backbone in VoteNet uses PointNet++ [126] to
compute point features. Both the VoteNet backbone and CoCoNet-VoteNet backbone
sample 1024 points from the dense point cloud using farthest point sampling. The
subsequent voting and proposal modules of VoteNet then operate on these sampled
point features to make the final predictions. In both cases, upon initialization, the
3D point features are trained end-to-end supervised for the 3D object detection task.
We show below that our pre-training gives a significant boost to 3D object detection
performance.
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Method cross-object cross-view

3DVoxContrast [55] 0.18 0.21

3DPointContrast [192] 0.09 0.14

CoCoNets (Ours) 0.18 0.58

Table 4.3: Cross-object and cross-view 3D alignment accuracies in Shapenet
dataset (mean over 4 classes: Aeroplane, Mug, Car, Chair).

Evaluation and comparison with baselines We evaluate both models on the
CARLA dataset in the task of predicting 3D axis aligned car bounding boxes. We
show the mean average precision (mAP) scores for both the models for different
IoU thresholds in Table 4.2. CoCoNet-VoteNetoutperforms VoteNet across all IoU
thresholds.

4.4.3 Cross-view and cross-object 3D alignment

Setup We evaluate the correspondability of our 3D feature representations by
testing how well they can align different views of the same instance, and different
instances that belong to the same object category. Given the amodal 3D feature
point clouds extracted for two objects in random viewpoints, we use orthogonal
Procrustes problem with RANSAC to estimate the 3D rigid body transformation
that aligns them, similar to tracking a car in Section 4.4.1. Estimating fine grained
correspondences between objects, once their rigid alignment has been estimated, is
obtained using iterative closest point method [2].

Evaluation and comparison with baselines We investigate two different setups:
i) Given two viewpoints of the same object, our goal is to estimate the relative
3D rotation between them. ii) Given two objects of the same category in random
viewpoints, our goal is to estimate a rigid 3d alignment between them. We compare
our model against baselines 3DVoxContrast and 3DPointContrast, for which we
use RANSAC on voxel and point features, respectively, to estimate a 3D rigid
transformation for the two objects.

The inferred 3D alignment is considered correct if each of the yaw, roll, and
pitch angles are within 10◦ of their respective ground truth values. In Table 4.3
we show the cross-view (same-object) and cross-object 3D alignment accuracy for
our model and the baselines. Our model performs the same as 3DVoxContrast on
cross-object alignment, and outperforms both models on cross-view alignment. Note
that cross-object alignment is much harder than cross-view for all three models.
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CoCoNets (Ours) GRNN Ground TruthGQN

Figure 4.4: Novel view prediction. We compare CoCoNets, GQN [36], and
GRNN [171] on the CLEVR [72] dataset.

4.4.4 Generalization in view prediction

We evaluate CoCoNets-OccRGB in its ability to predict plausible images in scenes
with novel number of objects, novel object appearance, and novel arrangements. We
compare against state-of-the-art view prediction models. We further evaluate its
ability for 3D occupancy prediction and completion.

We compare CoCoNets in RGB prediction against generative query network
(GQN) [36] and geometry-aware recurrent networks (GRNN) [171]. We adapted GQN
code to use posed RGB-D images as input. GQN uses a 2D latent feature space to
encode the RGB-D input image, and GRNN uses a discrete latent 3D feature map of
the scene. Our model uses a grid of functions and does not suffer from resolution
limitations of the 3D feature map.

CoCoNets predicts RGB images for target viewpoints as described in Sec. 4.3.1.
Figure 4.4 shows the view generation results for CoCoNets, GQN, and GRNN.

4.4.5 Limitations

CoCoNets might be extended to operate without the availability of depth maps at
either train or test time using a differential rendering module [149], as shown in
Figure 4.5.
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Input View

Ground truth
target view

Predicted
target view

Figure 4.5: RGB view regression on the ShapeNet dataset using
CoCoNetsNoDepthRGB.

4.5 Conclusion

We present a method for learning 3D visual feature representations by self-supervised
view and depth prediction from posed RGB and RGB-D images. Our networks
lift input 2.5D images of objects and scenes into latent thee-dimensional function
grids, which can be decoded to infinite-resolution 3D occupancy and 3D feature
predictions of the object or scene. Our networks are trained by predicting views
using a contrastive mutual information maximization objective. We evaluate the
emergent 3D visual feature representations in 3D object tracking in dynamic scenes
and in cross-view and cross-object alignment estimation. We empirically demonstrate
that the features are semantically meaningful and outperform popular point-based
supervision [192] which does not consider 3D completion, and discrete voxel 3D latent
feature maps of previous works [54, 55] which are limited by the spatial resolution
of the 3D feature grid. Moreover, our models can better generalize to novel scenes
with unseen number and appearance of objects than networks that do not encode 3D
structure [36] or do not incorporate 3D convolutional modules [149]. They make a
step towards self-supervised learning of amodal 3D feature representations, which we
show are useful for 3D object tracking and correspondence. Avenues for future work
include learning such representations directly from dynamic videos, and relaxing the
egomotion and depth supervision.
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Chapter 5

Self-Supervised Pointcloud
Completion Improves Object
Detection

5.1 Introduction

Object detection in point clouds is made difficult partly by the sparsity of the data
collected by the sensor. Un-occluded objects a few meters from a modern Lidar unit
may have hundreds of point returns, and these objects are typically detected with
high accuracy, but objects that are far away, or partially occluded, may only have a
few points describing them, and this sparsity of signal leads to missed detections.

Previous work has shown that if new points are added at the surfaces of objects,
they can be detected more easily. Yin et al. [202] tackled this problem directly, and
proposed to add points at object surfaces with the help of a 2D (image-based) detector.
In contrast, Yi et al. [200] added points without detecting objects, by training a
model to take a real pointcloud as input and produce a denser version as output,
supervised by a Poisson surface reconstruction of the scene, using data aggregated
across multiple views. A downside of multi-view aggregation is that it assumes the
scene is static – moving objects produce points across their entire range of motion,
and these need to be carefully eliminated to avoid artifacts in the reconstruction.
Both of these methods show an improvement in detection performance, after the
densification. We follow these works’ strategy of isolating the completion problem
from the rest of the vision pipeline, but we propose a method that requires neither
detection, nor multi-view aggregation.

We propose to learn pointcloud densification self-supervised. At training time, we
drop points from the pointcloud to form the model’s input, and treat the original
pointcloud as the model’s target. At test time, the real pointcloud becomes the
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Sparsified pointcloud Real pointcloud Densified pointcloud

Training input/target pair Testing input/output pair

Figure 5.1: Inputs and outputs, at training time and test time. At training
time, we drop points from the original pointcloud, and train the model to add points,
using sparse supervision computed from the original points. At test time, we provide
the model with the true pointcloud as input, and it hallucinates points at likely
locations.

model’s input, and the model generates a densified output, for which we do not
have a ground-truth target. Figure 5.1 illustrates this strategy. A similar approach
was recently proposed for indoor scene reconstruction [27]. In that problem setting,
multi-view reconstruction of the scene geometry from depth maps leaves “holes” that
need filling; the authors proposed to randomly drop frames from the reconstruction,
creating additional holes for which they have ground truth, and thereby learn a
prior that can fill the true holes. The current work can be seen as a more extreme
implementation of the same core idea, but dropping data from a single timestep of
capture, rather than dropping frames from a multi-frame capture.

Importantly, we do not prevent the model from “hallucinating” points outside
the sensed set, when it is learning to complete the scene. While we treat the entire
observed pointcloud as “positives” for a binary cross entropy loss, we do not treat
all other locations as “negatives”, but instead compute sparse negative labels by
tracing the freespace ray between each point and the sensor origin, and further discard
voxels that are ambiguous according to the ray trace, with a simple heuristic. This
conservative supervision strategy ensures that we do not provide the model with
erroneous labels (up to sensor noise), and only use the “known” part of the scene to
supervise the completion.

In principle, any model can be trained for this completion task, but given the
sparse supervision and the train-test gap, it is critical to avoid overfitting. Toward
this goal, we take into account the fact that the pointcloud is collected by a spinning
Lidar unit, and we propose a model which is rotation-invariant along the sensor’s
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spin axis, and sensitive to distance along each ray. In other words, we force the model
to use the same completion prior at every degree of rotation, but allow different
strategies across the length of a ray. These choices reflect the properties of the
sparsity pattern: when inference is aligned with the ray direction, locations before
an observed point are reliably freespace, and locations beyond an observed point are
either free or occupied; furthermore, observations near the camera are more likely to
be dense, requiring less inpainting, and observations far from the camera are likely
to be sparse, requiring more inpainting. This knowledge is not available, for example,
to a translation-equivariant model such as a standard convolutional network, because
such a model would not be informed of which locations in the space are “before” or
“beyond” an observed point, or “near” or “far” from the sensor.

We demonstrate our approach in the KITTI urban scenes benchmark [43], and show
that when we train and test our computer vision models on the densified pointclouds,
they achieve higher accuracy in detection and semantic segmentation, compared to
models trained and tested on real pointclouds. We also observe qualitatively that our
completed pointclouds contain rounded convex shapes for the objects, similar to the
true shapes, apparently encoding a prior of convexity [73].

5.2 Related Work

5.2.1 Pointcloud and occupancy completion

As mentioned in the introduction, prior work has tackled the pointcloud completion
problem under slightly more constrained settings than considered here, with good
results. Yin et al. [202] add points near object surfaces, by detecting and segmenting
objects in 2D, sampling pixel coordinates within the mask, and using depth values
retrieved from nearest neighbors in the projected pointcloud to create new 3D points.
Our method instead adds points everywhere (including on non-object surfaces, and
within object interiors), and does so unsupervised, without the use of a detector.
Similar to our method, Yi et al. [200] added points everywhere, without detecting
objects, but they trained their model with a dense reconstruction of the scene, created
by first aggregating pointclouds from multiple timesteps and then fitting a surface
mesh with a Poisson method. A dense supervision target is indeed ideal, but requires
either a static scene assumption, or careful (possibly manual or heuristic-based)
removal of the moving objects from the aggregated pointcloud, so as to avoid large
artifacts in the surface reconstruction. In our method, we use data from individual
Lidar sweeps, without aggregating, and thereby avoid the difficulty of moving objects
(ignoring motion within a single sweep, which is 10hz). For indoor scenes and for
objects, recent methods fit implicit functions to the points in the input 3D shape,
and leverage priors learned either within a sample or across samples to estimate
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“complete” shapes and scenes [17, 27, 103, 115, 118]. All of these works arguably share
our strategy of creating an artificial sparse-to-dense problem, forcing the model to
learn a prior that fills gaps accurately, but exclusive to the context of object-centric or
room-centric reconstruction settings, and without targeting a downstream semantic
task. In these settings, relatively complete scans can be obtained by capturing all
surfaces with a moving depth sensor, while the room/object itself is static, and later
solving for the camera poses. In our setup, we use a single timestep of capture as our
densest “target”, and therefore do not assume the scene is static, and do not need to
solve for sensor poses.

5.2.2 Super-resolution

Our strategy of “sparsifying” the available pointclouds to form input-target pairs for
a “densification” model is essentially the same strategy used to train neural networks
for image super-resolution [183]. These methods downsample the available images to
form input-target pairs for an upsampling model. We note also that super-resolution
has been shown helpful to downstream image-based vision tasks [28], which is in
line with our observation that pointcloud densification is helpful to downstream
pointcloud-based vision tasks.

5.2.3 Managing invariances for pointcloud data

In pointcloud processing literature, there is great interest and active search for
architectures that have desirable invariances built in [24, 125]. Of particular interest
here are rotation-equivariant pointcloud networks [15, 29, 89], which ensure that
as the input to the model rotates, the outputs rotate by the same amount. This
allows the model to take into account invariances across the axes made equivariant,
by using the same operation across these dimensions. Note for example that the
convolution operator, which is translation equivariant, exploits invariance of texture
and shape across the axes of translation, by repeating the use of a 2D kernel across
2D space. The particular equivariance explored in this work is along the spin axis
of the sensor, which can be called yaw equivariance. This has been achieved before
with spherical projection (a.k.a. range images) followed by 2D convolution [188], as
well as cylindrical or polar 3D convolutions [130, 205, 207]. Our model is similar in
spirit to these, but only has yaw equivariance, whereas these other works typically
use at least one more axis of equivariance, such as along the vertical dimension (for
the 2D and 3D works), or along the forward direction (for the 3D works). Our model
is instead sensitive (i.e., variant) to changes along the vertical and forward axes, with
the reason being that the scene completion problem itself varies along these axes
(at least for urban scenes sensed by Lidar): lower positions on the vertical axis are
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Figure 5.2: Pointcloud completion is not translation-invariant, but rather
rotation-invariant. Standard convolutional models assume a translational invariance
in the task, but this is not entirely appropriate for pointclouds captured by Lidar.
Square crops of cars at different translational positions, as shown on the left, actually
require different computation to complete their shapes. In contrast, for pie slices at
different angular positions, as shown on the right, the same strategy can be used
across crops. This is the invariance exploited by our model.

more likely ground instead of air, and distant positions on the forward axis require
integrating more information from context compared to close-up positions.

5.3 Pointcloud completion model

5.3.1 Setup and overview

Our model takes as input a Lidar pointcloud with an arbitrary number of points, and
produces a voxelized cylinder of occupancy estimates, of a pre-specified metric size
and resolution, centered at the sensor.

We name our method a “pie slice” model, because it divides the cylinder into
sectors – i.e., pie slices – and solves for each of the sectors independently. This means,
for each sector of the cylinder, it orients the pointcloud so that the considered slice
is at zero degrees (i.e., the canonical position), then estimates occupancy for voxels
within that slice, and finally orients the outputs to their appropriate position in the
cylinder.

The key motivation for dividing the scene into pie slices is illustrated in Figure 5.2.
Since the pointcloud is captured by a spinning Lidar unit, the occlusion pattern is
the same across rotations about the spin axis. By dealing with pie-slice crops in our
model, instead of, for example, square crops extracted translationally (as done in
standard convolution), we provide the model with an accurate inductive bias for the
task at hand.
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The model has a few major hyperparameters. First is the number of sectors
in the cylinder (i.e., number of pie slices), which we denote with K. This can be
equivalently defined by the number of degrees in a sector. More sectors means more
yaw equivariance, but also less computation shared between slices. In principle, a
model like this can be made pitch-equivariant as well, by dividing the pie slices into
bins according to pitch angle, but for the current setting this seems inappropriate,
due to the fact that different shapes/surfaces appear at different pitch angles.1

The second important hyperparameter is the metric span of the cylinder, defined
by a diameter (or radius) and height. This is chosen to be the metric span of the
downstream task, i.e., the span we would like the detector to operate in.

The third hyperparameter is the number and distribution of estimates within the
canonical pie slice. Depending on the task, different distributions may be appropriate,
such as denser sampling near the camera and sparser sampling far away. In our
experiments we use approximately-uniform sampling, defined by sampling M farthest
points on the floor of the pie slice, and for each of these 2D coordinates, using a
constant vertical resolution of H, so that for each coordinate we produce a “pillar” of
occupancy estimates.

5.3.2 Architecture

Our model takes as input a pointcloud with N points. We assume that the pointcloud
is captured by a Lidar unit, and is therefore centered at the sensor origin. As output,
the model produces an M ×H matrix, containing M “pillars” of occupancy estimates,
each of height H. Each of the M pillars corresponds to a discrete index at the base
of the voxelized cylinder, within the canonical pie slice.

The main model is preceded by a “rotate” step, which puts the slice of interest at
0 degrees (the canonical orientation), and succeeded by an “un-rotate” step, which
puts the output into alignment with the original input.

The architecture of our within-slice model is illustrated in Figure 5.3. The
architecture is inspired by Perceiver models [67, 68], which use a learnable set of
vectors to cross-attend into high-dimensional input, producing a flexible representation
with dimensionality suitable for further processing. After rotating the pointcloud to
the canonical orientation, we attach sinusoidal position embeddings to the points,
and cross-attend with M learnable vectors with channel dimension C, using the
standard query-key-value attention operator [174], producing a new matrix shaped
M × C, which is a compression of the input. Here, while standard Perceiver models
use self-attention between the M “tokens” to process them, we instead choose to
use an MLP-Mixer [166], as this led to faster convergence than self-attention in our

1We have also experimented with a per-ray model, where essentially K ≈ ∞ and the M estimates
lie along a single line, but it was too slow to be practical for study.
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Figure 5.3: Architecture of our “pie slice” model. Given a pointcloud as input,
the model considers the span of only a few degrees at a time (i.e., one pie slice).
The model begins by orienting the full pointcloud so that the slice of interest is at
0 degrees, then tokenizes the pointcloud by attending with a learnable set of M
latents, then processes these tokens with an MLP-Mixer model, which produces a set
of occupancy pillars (of height H) that we can rearrange at the base of the pie slice
with a pre-defined indexing operation. Finally, these outputs are “un-rotated” to put
them in their correct place in the full reconstruction.
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experiments. The MLP-Mixer ends with a linear layer, producing H channels per
token, leading to output that we can use as occupancy logits. Note that the M
learnable latents have fixed coordinates in the canonical pie slice, and so these tokens
can each learn to attend to their relevant region of the pointcloud, and information is
subsequently propagated between tokens by the MLP-Mixer, allowing the model to
use multi-token context to fill gaps.

5.3.3 Training

At training time, the input to our model is a random fraction of the true pointcloud.
Note that if we provided the full pointcloud as input, the model would simply estimate
occupancy at all provided points and no more; providing a subset at training time
forces the model to estimate additional occupied space.

We create sparse occupancy ground-truth by voxelizing the full input pointcloud.
We create sparse freespace ground-truth by tracing the ray from each point to the
sensor origin, but these rays must be filtered slightly before voxelization.

As illustrated in Figure 5.4, simply taking all voxels intersected by freespace rays
leads to some erroneous ground truth, particularly with beams which meet their
surfaces a very acute angle. For example, when tracing the ray for a ground point
detected far away from the sensor, the ray may cross through several voxels which
are actually at the same height as the sensed “ground” voxel, and therefore it is
unlikely that these are truly freespace. We filter these with a heuristic strategy, which
simply asks for the ray to travel a certain threshold distance along any axis direction
before we take its voxel intersections as freespace. Since this error is essentially a
voxelization error, we may choose this threshold to coincide with the length of a voxel.
We qualitatively note that without this strategy, the densified pointclouds closely
reflect the sampling pattern of the original sensor.

To supervise the model, we need to retrieve labels that correspond to the predicted
pillars. To do this, we use the 3D coordinates of all the estimates to compute
corresponding voxel indices in the ground truth, and supervise the subset of estimates
which have ground truth available.

We supervise the model with a binary cross entropy loss,

L =
∑
i

yi log ŷi + (1 − yi) log(1 − ŷi), (5.1)

where ŷ is the labels, and y is the set of estimated logits, and the sum iterates over
indices with valid labels. To prevent the model from learning an overall bias between
freespace and occupied space, we compute this loss in two averages: within freespace
labels, and within occupied labels, yielding a balanced loss.
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Figure 5.4: Detailed view of label creation strategy. We take all voxels which
contain a Lidar return as occupied space. For freespace, we obtain most of the labels
by taking non-occupied voxels intersected by lidar beams, but this also yields some
erroneous labels. We filter out these errors with a heuristic strategy, described in the
text.
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5.3.4 Implementation details

At training time, we shuffle the pointcloud and take a random 1
16

of the points to use
as input. At test time, we use the entire pointcloud.

We encode the input pointcloud with sinusoidal position embeddings with 64
dimensions for each axis, and concatenate these embeddings with the un-normalized
3D coordinates, yielding 195 channels per point.

The learnable tokens used for cross attention have 128 channels each. The MLP-
Mixer has 12 blocks, with latent dimension 128, and expansion factor 4 in each of the
blocks. The last layer has channel dimension H.

We set M , the number of pillars (and the number of cross-attention tokens), to
be 768. We set the angle of the pie slices to be 5 degrees, which translates to K = 72.
At a square resolution of 256 × 256 around the circle, this correspond to nearly 100%
density within each pie slice. At training time, we sample 128 slices at random degrees
within a single pointcloud to form a batch.

At test time, for each pie slice, we collect coordinates whose occupancy estimate
(after sigmoid activation) is above a threshold of 0.8, and treat these coordinates
as new candidate “points”. We discard candidates which intersect freespace rays
computed from the original pointcloud, and finally concatenate the rest to the set of
original points. This concatenation serves as input to our downstream vision models.

Our model takes approximately 0.1 seconds per pie slice. The model is extremely
memory-heavy, due to the large MLP-Mixer, and due to the first cross-attention
layer (which is especially expensive at test time since we no longer sub-sample the
pointcloud). Producing the full cylinder of estimates simultaneously requires four
V100 GPUs in parallel.

5.4 Experiments

We train and test our model in the KITTI [43] urban scenes dataset. We use
annotations from the “vehicle” class in the detection benchmark.

While the model training is focused entirely on pointcloud completion, we are
actually interested to see if the densified pointclouds lead to improved performance
in downstream tasks, such as segmentation and detection.

Note that after densifying the pointcloud, it becomes more appropriate to use
standard translational convolutions for the vision model, because the data no longer
reflects the sampling pattern of the sensor, and instead is approximately uniform.
We therefore follow recent related work for pointcloud vision architectures, and use a
CenterPoint as our base architecture [201].
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Figure 5.5: Pointcloud inputs (top), and corresponding completions (bot-
tom). Our model often converts objects into full rounded convex shapes.

5.4.1 Qualitative results

We first inspect the completed pointclouds qualitatively. Figure 5.5 shows a sample
of the outputs, in a bird’s eye view (top down). In the project website, we provide a
continuous video of these visualizations, across a sequence from the dataset.

We observe that at the object regions, our completed pointclouds show rounded
convex shapes, similar to the shapes of the real objects. This is interesting, because
the model never receives supervision for “full” objects, and yet the fullness emerges.
This can be interpreted as a learned preference for convexity [73]. One possible reason
for this emergence is that the model is implicitly recognizing the objects at some
level, and it is transferring shape information from close-up well-observed cars to the
far-away (or partially occluded) poorly-observed cars. A perhaps simpler explanation
is that the model occasionally receives supervision to encourage a convex shape, since
freespace rays may cut through flared-out shape estimates, but it will never receive
supervision to encourage a concave shape, because concavities on the occluded side
do not contribute to the set of freespace rays, much in the same way that concavities
do not contribute to visual hulls [26].
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Input Detection mAP

Pointclouds from pie slice model (ours) 0.67

Pointclouds from convolutional model [200] 0.59

Real pointclouds 0.57

Table 5.1: Detection mean average precision (mAP) in the KITTI validation
set.

Input Segmentation IOU

Pointclouds from pie slice model (ours) 0.66

Pointclouds from convolutional model [200] 0.63

Real pointclouds 0.62

Table 5.2: Segmentation intersection over union (IOU) in the KITTI validation
set.

5.4.2 Quantitative results

We compare our completion model against a standard convolutional model, similar
to the one used by Yi et al. [200], on the downstream computer vision tasks. We are
interested to see if the completions improve performance, when we use the completed
pointclouds instead of the original pointclouds.

Table 5.1 shows our results in detection, evaluated in mean average precision (mAP)
at an intersection-over-union threshold of 0.5. Our model delivers an absolute boost
of 0.10 mAP over the baseline, while the convolutional model shows an improvement
of 0.02. Inspecting the convolutional model’s output, we observe that it has not
learned to effectively inpaint the scene, and instead mostly copies the input to the
output and adds relatively few points. Lowering the convolutional model’s threshold
for point addition often worsens results, since it then yields more incorrect points.

Table 5.2 shows the same experiment for pointcloud segmentation. Here, the
model is segmenting the entire (potentially densified) pointcloud, but we evaluate
only on “original” points. In this evaluation the models perform more similarly, but
the pie slice model still slightly outperforms the baselines.

5.4.3 Limitations

We have experimented also in the Nuscenes dataset [11], with so-far negative results.
We believe this is due to the lower density of points in that dataset, due to the
32-beam sensor, compared to the 64-beam sensor as in KITTI. We plan to evaluate
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also in the Waymo dataset [157], which has 64 beams like KITTI does.
Our model does not deal with the temporal dimension of the problem. Modern

detectors typically use multi-sweep data as input [201], and this improves results over
using single-sweep input, despite the fact that moving cars leave artifacts. Integrating
information across time is a clear avenue for future work.

5.5 Conclusion

We propose a pointcloud completion model, which is self-supervised from single-sweep
Lidar data, and exploits an rotation-invariance of the completion task caused by the
Lidar sensor itself. We show that the completions appear to contain closed object
contours, suggesting that some concept of objectness or at least convexity emerged
through the self-supervised training. We further show that the completions lead to
an improvement in downstream vision performance, as evaluated in detection and
segmentation accuracy. Given that this self-supervision is “free” with Lidar data,
and given that large-scale collection of unlabelled Lidar data is relatively easy (and
perhaps done already by several car companies), we think this is a scalable way to
improve computer vision performance for autonomous vehicles in the real world.
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Chapter 6

A Baseline for Neural 3D Mapping,
Without Depth or Egomotion

6.1 Introduction

There is great interest in building 3D-aware perception systems for autonomous
vehicles, under various sensor platforms, which typically constitute multiple RGB
cameras, multiple radar units, and optionally a Lidar unit. Vision systems which use
Lidar data in combination with camera data are currently the most accurate [201, 202],
but Lidar sensors are arguably too expensive for large-scale use, so attaining similar
accuracy without the use of Lidar is an attractive research goal.

Recent work in this area has developed sophisticated methods for bird’s eye view
inference from multi-view RGB data, from one or more timesteps, with significant
innovations in the techniques for “lifting” features from the 2D image plane(s) to 3D.
In particular, recent methods focus on producing a “bird’s eye view” representation
of the 3D space around the vehicle, instead of a fully-3D one, because this suffices
to capture the information required for driving-related tasks, such as navigation,
obstacle detection, and moving-obstacle forecasting. In this 2D-to-2D mapping task,
(mapping the image plane to the ground plane,) prior work has proposed using a
homography to warp features directly onto the ground [12], using depth estimates
to place features at their approximate 3D locations [119, 144], using MLPs with
various geometric biases [49, 59, 138], and using geometry-aware transformers [137].
This series of innovations has of course been accompanied by rising accuracy in the
considered tasks, such as vehicle and lane detection.

In this paper, we propose a simple baseline model, where the “lifting” step is a
non-parametric 3D unprojection, i.e., tiling features across their corresponding 3D
rays, as done in some earlier 3D scene representation work (e.g., [54]). When this
simple method is paired with appropriate data augmentation and high-resolution
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input, it can match the performance of state-of-the-art models. We further show
that if we incorporate the available data from radar, which is typically either ignored
or discarded due to its sparsity and noise, we exceed the state-of-the-art. This is a
pleasant surprise, because prior work has attempted to fuse information from RGB
and radar with mostly negative results [59]. In light of our experiments, it appears
that end-to-end training is the key to effective RGB+radar fusion, and enables the
metric signal embedded in radar to contribute a large performance boost.

6.2 Related Work

A major differentiator in prior work is the precise operator for “lifting” 2D perspective-
view features to 3D, or directly to the ground plane.

Parameter-free unprojection: This strategy, pursued in a variety of object
and scene representation models [18, 54, 148], uses the camera geometry to define
a mapping between voxels to their projected coordinates, and collects features by
bilinearly sampling at the projected coordinates. This places each image feature into
multiple 3D coordinates, essentially tiling the feature along the ray’s extent in the
volume. This method of lifting is not typically used in bird’s eye view semantic tasks.

Depth-based unprojection: Several works estimate per-pixel depth with a
monocular depth estimator, either pre-trained for depth estimation [92, 144] or trained
simply for the end-task [64, 119, 178], and used the depth to place features at their
estimated 3D locations. This is an effective strategy, but note that if the depth
estimation is perfect, it will only place “truck” features at the front visible surface
of the truck, rather than fill the entire truck volume with features. We believe this
detail is one reason that naive unprojection performs competitively with depth-based
unprojection.

Homography-based unprojection: Some works estimate the ground plane
instead of per-pixel depth, and use the homography that relates the image to the
ground to create a warp [12, 93], transferring the features from one plane to another.
This operation tends to produce poor results when the scene itself is non-planar (e.g.,
tall objects get spread out over a wide area).

MLP-based unprojection: A popular approach is to convert a vertical-axis
strip of image features to a forward-axis strip of ground-plane features, with an MLP
[59, 88, 114]. An important detail here is that the initial ground-plane features are
considered aligned with the camera frustum, and they are therefore warped into a
rectilinear space using the camera intrinsics. Some works in this category use multiple
MLPs, dedicated to different scales [135, 138], or to different categories [49]. As this
MLP is parameter-heavy, Yang et al. [199] propose a cycle-consistency loss (mapping
backward to the image-plane features) to help regularize it.

Geometry-aware transformer-like models: An exciting new trend is to
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Figure 6.1: A baseline for neural 3D mapping. We begin by featurizing each
input view, with an EfficientNet. Using a set of 3D coordinates around the ego-vehicle,
we bilinearly sample features from all the views at the projected locations, yielding a
3D volume of features. We optionally add radar information, then reduce the vertical
dimension of the volume, and process it with a Resnet-18 (which is 2D). Finally,
independent task heads produce the quantities of interest, such as segmentation,
centerness scores, and an offset field.

transfer features using model components taken from transformer literature. Saha
et al. [137] begin by defining a relationship between each vertical scan-line of an
image, and the ground-plane line that it projects to, and show that transformer self-
attentions can learn an effective “translation” function between the two coordinate
systems. Defining this transformer at the line level helps provide inductive bias to the
model, since the lifting task should be similar across lines. BEVFormer [90], which is
concurrent with our work, proposes to use deformable attention operations to collect
image features for a pre-defined grid of 3D coordinates. This is similar to the bilinear
sampling operation in the parameter-free unprojection, but with approximately 10×
more samples, learnable offsets for the sampling coordinates, and a learnable kernel
on their combination.

Implicit models: Another recent trend is to define an implicit function over
the metric span of interest, provide the function access to the information computed
from the perspective views, and query the function during inference to obtain either
an intermediate representation [21] or final estimates [136]. These have not yet been
evaluated on bird’s eye view semantic tasks, but they appear to be effective for driving
command prediction and 3D reconstruction.
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6.3 Neural 3D Mapping Model

6.3.1 Setup and overview

Our model takes as input multi-view camera data, as captured by an autonomous
vehicle, and optionally radar data as well. We assume that the data is synchronized
across sensors. We assume that the intrinsics and extrinsics of each sensor are known.

The model has a 3D metric span, with the larger axes being forward/backward
and left/right. Following the baselines in this task, we set this span to 100m× 100m.
We set the up/down span to 10m. This volume is centered and oriented according to
a reference camera, which is typically the front camera. We denote the left-right axis
with X, the up-down axis with Y , and the forward-backward axis with Z.

The model can use as input a flexible number of cameras and radar units, and
optionally a Lidar unit. In the dataset used in the experiments, we have 6 cameras,
pointing front, front-left, front-right, back-left, back, and back-right, and 5 radar
units, pointing front, left, right, back-left, and back-right. The sensor setup is shown
in Figure 6.1-left. We use the Lidar unit only for comparison, and focus on the RGB
and RGB+radar cases.

Our model computes features from each camera view, then uses the intrinsics
and extrinsics to cast the features along their 3D rays, creating a 3D volume of
features. If radar is provided, we rasterize its returns into a bird’s eye view image, and
concatenate this with the feature volume. We then compress the vertical dimension,
and process the resulting featuremap with a 2D convolutional net. Finally, task
heads produce quantities of interest, such as segmentation, centerness scores, and an
offset map, all in a 2D bird’s eye view. The segmentation map contains a categorical
distribution over semantic categories. The centerness map indicates probabilities
of a grid cell being the center of an object. The offset map contains a vector field,
where each vector points to the nearest object center. An overview of this model is
illustrated in Figure 6.1.

6.3.2 Model

We begin by processing the RGB images, shaped 3 × H × W , into informative
featuremaps. For this, we use an EfficentNet-B4 [160]. We upsample the output
of the fourth “reduction layer” and concatenate it with the third “reduction layer”
output, and apply two convolution layers with instance normalization and ReLU
activations [31], arriving at feature maps with shape C ×H/8 ×W/8 (one eighth of
the image resolution).

We define a voxel resolution for our 3D span, yielding a set of discrete 3D
coordinates. We project all coordinates into all featuremaps, and bilinearly sample
features there, yielding a 3D feature volume from each camera. We compute a binary
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“valid” volume per camera at the same time, indicating if the 3D coordinate landed
within the camera frustum. We then take a valid-weighted average across the set of
volumes, reducing our representation down to a single 3D volume of features, shaped
C × Z × Y ×X.

We next incorporate radar information, if available, and reduce the vertical
dimension of the volume, yielding a bird’s eye view plane of features. When radar
is not available, we simply take a sum across the vertical dimension, which achieves
a change in tensor dimensions C × Z × Y × X → C × Z × X. When radar is
available, we first rasterize it to a bird’s eye view plane, creating a binary image that
matches the resolution of the 3D volume. We then rearrange the feature volume
dimensions, so that the vertical dimension extends the channel dimension, as in
C×Z×Y ×X → (C ·Y )×Z×X. We then concatenate the radar, and apply a 3×3
convolution kernel to compress the extended channels back down to a dimensionality
of C, which achieves (C · Y + 1) ×Z ×X → C ×Z ×X. If Lidar is provided, we use
it the same way as radar.

At this point, we have a single plane of features, representing a bird’s eye view of
the scene. We process this with three blocks of a Resnet-18 [57], then use additive skip
connections with bilinear upsampling to gradually bring the deeper features to the
input resolution, and finally apply task-specific heads. Each head is two convolution
layers with instance normalization, and ReLU after the norm in the first layer.

We use three task heads: segmentation, centerness, and offset. The segmentation
head produces per-pixel vehicle/background segmentation. The centerness head
produces a heatmap where high values indicate high probability that the grid cell is
an object center. The offset head produces a vector field where, within each object
mask, each vector points to the center of that object.

We train the segmentation head with a cross entropy loss, and supervise the
centerness and offset fields with an L1 loss. We compute the ground truth from 3D
box annotations. We use an uncertainty-based learnable weighting [77] to balance
the three losses.

Compared to related models, the architecture choices for the perspective-view and
bird’s-eye-view encoders are most similar to those in Lift-Splat [119] and FIERY [64].
Our 2D-to-3D lifting step is the same as Neural 3D Mapping [54, 55], and is similar
to Lift-Splat but without any depth estimation. Our multi-task setup is the same as
FIERY [64]. In some experiments, we will compare against methods that integrate
information across time, and we note that these make use of egomotion to put features
from multiple timesteps into alignment on the bird’s eye view map, while our model
performs inference on each timestep independently and therefore does not require
egomotion input.
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6.3.3 Implementation details

We vary the input resolution across experiments, but our main model uses an RGB
input resolution of 448 × 960. After the EfficientNet, the resulting feature maps are
56 × 120. We use a feature dimension (i.e., channel dimension) of 128.

Our 3D resolution is 200 × 8 × 200, and our final output resolution is 200 × 200.
Our 3D metric span is 100m × 10m × 100m. This corresponds to voxel lengths of
0.5m× 1.25m× 0.5m (in Z, Y,X order).

The EfficientNet is pre-trained for image classification on ImageNet [30]. The
Resnet-18 is trained from scratch.

At training time, we randomly sample 5 out of the 6 cameras. We also randomly
select a camera to be the “reference” camera, which randomizes the orientation of
the 3D volume (as well as the rasterized annotations). We apply random cropping on
the RGB input, by resizing the original images to 558 × 992, and taking a random
448 × 960 crop inside (and updating the intrinsics accordingly). At test time, we
use all 6 cameras, we use the “front” camera as the reference camera, and we take a
center crop.

We train the model end-to-end for 300,000 iterations, with a batch size of 8, with
the Adam-W optimizer [97] at a constant learning rate of 3e-4. We distribute the
batch across four V100 GPUs.

The model runs at 5hz. The main bottleneck to speed is the EfficientNet, due to
the high RGB resolution.

6.4 Experiments

We train and test our model in the NuScenes [11] urban scenes dataset. We use
annotations from the “vehicle” superclass, which includes bicycle, bus, car, con-
struction vehicle, emergency vehicle, motorcycle, trailer, and truck. We evaluate on
vehicle/background segmentation, using the intersection-over-union (IOU) metric
in a bird’s eye view. (We treat centerness and offset as auxiliary tasks, and do not
evaluate them on the test set.)

6.4.1 How much does each modality contribute?

We first experiment with different modality combinations, to see how much each can
contribute to performance. In these experiments, our RGB resolution is 224 × 480.

We summarize the results in Table 6.1. We also include results from FISHING [59],
which is a multi-modal model similar to ours, except that the 2D-to-3D lifting step is
managed by an MLP rather than being parameter-free, and each modality is trained
separately, rather than fused into a single model trained end-to-end.
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Method Input IOU

Ours radar 19.1

Ours RGB 34.5

Ours Lidar 44.5

Ours RGB+radar 42.1

Ours RGB+Lidar 51.7

FISHING [59] RGB 30.0

FISHING [59] Lidar 44.3

FISHING [59] RGB+Lidar 40.9

Table 6.1: Segmentation IOU in the NuScenes validation set, over different modality
combinations, compared to another multi-modal model. Note that in this evaluation,
the RGB resolution for our model is 224 × 480, and the resolution for FISHING is
192 × 320.

Within single modalities, radar-alone does badly, RGB-alone does better, and
Lidar-alone does best. Interestingly, RGB+radar improves by 8 points over RGB-
alone, which suggests that the radar contains information that is difficult to extract
from the RGB. We believe this is, precisely, metric information about the scene layout.
The RGB+Lidar model performs the best overall, which is consistent with related
work [201].

Compared to FISHING, our model achieves similar accuracy for the single-modality
models, but obtains substantially better results for the multi-modality models, likely
due to our end-to-end training, which better fuses the information from the sensors.
While the FISHING model includes a radar branch, the authors did not report its
NuScenes results in the paper, claiming that the data is “too sparse” [59]; we believe
this sparsity is compensated for by end-to-end training.

6.4.2 How much does input resolution contribute?

Methods in the literature vary in terms of their input resolution. We believe this is
an important factor for performance, and so we evaluate our RGB-only model across
different input resolutions, and note the resolutions of the baselines. In methods cases
where the paper does not list the resolution, we have retrieved the information from
the public code (if available). Table 6.2 summarizes the results.

Our model obtains a sizeable 5 point boost from doubling the input resolution.
In the related work, we see that in general, higher resolution is accompanied by
better performance, and chronologically there has been an increase in resolution.
BEVFormer[90] is concurrent with our work, and uses the full input resolution without
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Method RGB resolution IOU

Ours 224 × 480 34.5

Ours 448 × 960 39.1

View Parsing Network [114] 224 × 400 23.9

Pyramid Occupancy Networks [135] 600 × 800 31.4

FISHING [59] 192 × 320 30.0

Lift, Splat [119] 224 × 480 32.1

FIERY [64] 448 × 960 35.8

Translating Images into Maps [137] - 38.9

BEVFormer [90] 900 × 1600 43.2

Table 6.2: Segmentation IOU in the NuScenes validation set, over different input
resolutions, for models using RGB alone. Related works are sorted in chronological
order. *The IOU for View Parsing Network was retrieved from Roddick et al. [135],
who re-implemented it to compute this metric.

any downsampling, and achieves the best results.

6.4.3 How much do augmentations contribute?

Prior work has used random cropping in the RGB input, and random camera dropout.
As far as we are aware, prior work has not randomized the camera selected to be
the “reference” camera, which dictates the orientation of the 3D coordinate system.
This yields a boost of 1.7 points in performance, as shown Table 6.3. We believe that
randomizing this factor helps reduce overfitting in the bird’s eye view module. We
have observed anecdotally that without this augmentation, the segmented cars have a
slight bias for certain orientations in certain positions; with the augmentation added,
this bias disappears.

We have also experimented with color, contrast, and blur augmentations, and
found that these worsened results. This is surprising, because such augmentations are
well-known to be beneficial in image classification. It may be that the model benefits
from sensitivity to these factors in the current data.

6.4.4 How high can we push performance, with everything
together?

Using high-resolution input, all augmentations, and fusing radar with RGB, we obtain
a new best result of 49.5. We compare this against the state of the art, including also
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Method Augmentations IOU

Ours Random crop, random 5/6 cameras 40.0

Ours Random crop, random 5/6 cameras, random refcam 41.7

Table 6.3: Segmentation IOU in the NuScenes validation set, over different aug-
mentation settings, for models using RGB alone, with resolution 448 × 960.

Method Inputs IOU

FIERY [64] RGB 35.8

FIERY [64] RGB+Time 38.2

Translating Images into Maps [137] RGB 38.9

Translating Images into Maps [137] RGB+Time 41.3

BEVFormer [90] RGB 43.2

BEVFormer [90] RGB+Time 46.7

Ours RGB 41.7

Ours RGB+radar 49.5

Table 6.4: Segmentation IOU in the NuScenes validation set, for recent high-
performing models.

methods that integrate information across time. Our model exceeds the rest, including
the concurrent BEVFormer [90] when it uses temporal information, although that
model does better than our RGB-alone model. Integrating over time is orthogonal to
the strengths of our model, so it should be possible to push results higher with time.
Note also that integrating over time is accomplished in these works using egomotion
information (which we do not use), to put features from multiple timesteps into
alignment on the bird’s eye view map.

We visualize a random sample of results in Figure 6.2. We also visualize corre-
sponding Lidar and radar returns, to show the scene structure as captured by those
sensors. Qualitatively, the radar is indeed sparse as noted in related work, but we
believe it gives valuable hints about the metric scene structure, which, when fused
with information acquired from RGB, enables higher-accuracy semantic segmentation
in the bird’s eye view.

6.5 Conclusion

Bird’s eye view estimation of driving-relevant information is a rapidly-advancing
area. Recent works have developed sophisticated methods for transferring data from

77



6. A Baseline for Neural 3D Mapping, Without Depth or Egomotion

the 2D image views onto the 2D ground plane, typically using cameras alone or
cameras in combination with Lidar. In this paper, we explore a simple baseline
model, with a non-parametric 2D-to-3D step, and surprisingly show that it performs
competitively with the state-of-the-art, and outperforms most methods when certain
augmentations are added. We then reconsider the assumption that radar data is too
sparse to be useful, and propose a simple strategy to fuse its noisy returns with the
3D representation acquired from RGB, and exceed the performance of all published
models, including ones that integrate information across time. We hope that this
simple model will serve as a useful baseline in the future.
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Lidar with labels Radar Vehicle labels Vehicle segmentation

Figure 6.2: Visualization of Lidar vs radar, and results. From left to right:
voxelized lidar in a bird’s eye view, with ground truth boxes overlaid; voxelized radar
in a bird’s eye view, vehicle labels, and vehicle segmentation estimates.
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Chapter 7

Particle Videos Revisited: Tracking
Through Occlusions Using Point
Trajectories

7.1 Introduction

In 2006, Sand and Teller [141] wrote that there are two dominant approaches to
motion estimation in video: feature matching and optical flow. This is still true today.
In their paper, they proposed a new motion representation called a “particle video”,
which they presented as a middle-ground between feature tracking and optical flow.
The main idea is to represent a video with a set of particles that move across multiple
frames, and leverage long-range temporal priors while tracking the particles.

Methods for feature tracking and optical flow estimation have greatly advanced
since that time, but there has been relatively little work on estimating long-range
trajectories at the pixel level. Feature correspondence methods [13, 181] currently
work by matching the features of each new frame to the features of one or more source
frames [83], without taking into account temporal context. Optical flow methods
today produce such exceedingly-accurate estimates within pairs of frames [162] that
the motion vectors can often be chained across time without much accumulation of
error, but as soon as the target is occluded, it is no longer represented in the flow
field, and tracking fails.

Particle videos have the potential to capture two key elements missing from
feature-matching and optical flow: (1) persistence through occlusions, and (2) multi-
frame temporal context. If we attend to a pixel that corresponds to a point on the
world surface, we should expect that point to exist across time, even if appearance
and position and visibility all vary somewhat unpredictably. Temporal context is
of course widely known to be relevant for flow-based methods, but prior efforts to
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Figure 7.1: Deep particle video. Our method takes an RGB video as input, and
estimates trajectories for any number of target pixels. Top-left: target pixels are
marked with dots; bottom-left: estimated trajectories. Right: estimated trajectories
overlaid on the first frame of the input video.

take multi-frame context into account have yielded only small gains. Flow-based
methods mainly use consecutive pairs of frames, and occasionally leverage time with
a simple constant-velocity prior, which weakly conditions the current flow estimate
on previous frames’ flow [132, 162].

We propose Deep Particle Video (DPV), a new particle video method, which
takes a T -frame RGB video as input, along with the (x, y) coordinate of a target to
track, and produces a T × 2 matrix as output, representing the positions of the target
across the given frames. The model can be queried for any number of particles, at
any positions within the first frame’s pixel grid. A defining feature of our approach,
which differentiates it from both the original particle video method and modern
flow methods, is that it makes an extreme trade-off between spatial awareness and
temporal awareness. Our model estimates the trajectory of every target independently.
Computation is shared between particles within a video, which makes inference fast,
but each particle produces its own trajectory, without inspecting the trajectories of
its neighbors. This extreme choice allows us to devote the majority of parameters
into a module that simultaneously learns (1) temporal priors, and (2) an inference
mechanism that searches for the target pixel’s location in all input frames. The value
of the temporal prior is that it allows the model to fail its correspondence task at
multiple intermediate frames. As long as the pixel is “found” at some sparse timesteps
within the considered temporal span, the model can use its prior to estimate plausible
positions for the remaining timesteps. This is helpful because appearance-based
correspondence is impossible in some frames, due to occlusions, moving out-of-bounds,
or difficult lighting.

We train our model entirely in synthetic data, which we call FlyingThings++,
based on the FlyingThings [100] optical flow dataset. Our dataset includes multi-
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frame amodal trajectories of various lengths, with challenging synthetic occlusions
caused by moving and static objects. In our experiments on both synthetic and real
video data, we demonstrate that our particle trajectories are more robust to occlusions
than flow trajectories—they can pick up an entity upon re-appearance—and also
provide smoother and finer-grained correspondences than current feature-matching
methods, thanks to its temporal prior. We also propose a method to link the
model’s moderate-length trajectories into arbitrarily-long trajectories, relying on a
simultaneously-estimated visibility cue. Figure 7.1 displays sample outputs of our
model on RGB videos from the DAVIS benchmark [123]. We plan to publicly release
our code, model weights, and data.

7.2 Related Work

7.2.1 Optical flow

While earlier optical flow methods use optimization techniques to estimate motion
fields between two consecutive frames [10, 158], recent methods learn such displace-
ment fields supervised from synthetic datasets [33, 65]. Many recent works use
iterative refinements for flow estimation by leveraging coarse-to-fine pyramids [156].
Instead of coarse-to-fine refinements, RAFT [162] mimics an iterative optimization
algorithm, and estimates flow through iterative updates of a high resolution flow field
based on 4D correlation volumes constructed for all pairs of pixels from per-pixel
features. Inspired by RAFT, we also perform iterative updates of the position es-
timations using correlations as an input, but unlike RAFT we additionally update
features.

Ren et al. [132] propose a fusion approach for multi-frame optical flow estimation.
The optical flow estimates of previous frames are used to obtain multiple candidate
flow estimations for the current timestep, which are then fused into a final prediction
by a learnable module. In contrast, DPV explicitly reasons about multiframe context,
and iteratively updates its estimates across all frames considered. Note that without
using multiple frames, it is impossible to recover an entity after occlusion. Janai et
al. [69] is closer to our method, since it uses 3 frames as multiframe context, and
explicitly reasons about occlusions. That work uses a constant velocity prior [140]
to estimate motion during occlusion. In contrast, DPV devotes a large part of the
model capacity to learning an accurate temporal prior, and iteratively updates its
estimates across all frames considered, in search of the object’s re-emergence from
occlusion. Note that without using multiple frames, it is impossible to recover an
entity after occlusion. Additionally, our model is the only work that aims to recover
amodal trajectories that do not terminate at occlusions but rather can recover and
re-connect with a visual entity upon its re-appearance.
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Figure 7.2: Architecture of Deep Particle Video (DPV). Given an RGB video
as input, along with a location in the first frame indicating what to track, our model
initializes a multi-frame trajectory, then computes features and correlation maps, and
iteratively updates the trajectory and its corresponding sequence of features, with a
deep MLP-Mixer model.

7.2.2 Feature matching

Wang and Jabri et al. [66, 181] leverage cycle consistency of time for feature matching.
This allows unsupervised learning of features by optimizing a cycle consistency
loss on the feature space across multiple time steps in unlabelled videos. Lai et
al. [82, 83] and Yang et al. [196] learn feature correspondence through optimizing
a proxy reconstruction objective, where the goal is to reconstruct a target frame
(color or flow) by linearly combining pixels from one or more reference frames. The
combination weights are obtained by computing affinities between the features from
the target frame and features from the reference frame(s).

Instead of using proxy tasks, supervised approaches [45, 71, 179, 186] directly
train models using ground truth correspondences across images. Features are usu-
ally extracted per-image and a transformer-based processor locates correspondences
between images. In this work, we reason about point correspondences over a long
temporal horizon, incorporating motion context, instead of using pairs of frames like
these works.

7.3 Deep Particle Video (DPV)

7.3.1 Setup and overview

We name our model Deep Particle Video (DPV), taking conceptual inspiration from
Particle Video [141]. DPV takes as input an RGB video with T frames, and the (x1, y1)
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coordinate of a single point on the first frame, indicating the target to track. As
output, the model produces a T × 3 matrix, containing T tracked coordinates (xt, yt)
across time, along with visibility/occlusion estimates vt ∈ [0, 1]. The model can be
queried for N target points in parallel, and some computation will be shared between
them, but the model does not share information between the targets’ trajectories.

At training time, we query the model with points for which we have ground-truth
trajectories and visibility labels. We supervise the model’s (xt, yt) outputs with a
regression objective, and supervise vt with a classification objective. At test time,
the model can be queried for the trajectories of any number of points.

We use the words “point” and “particle” interchangeably to mean the things we
are tracking, and use the word “pixel” more broadly to indicate any discrete cell
on the image grid. Note that although the tracking targets are specified with single
pixel coordinates, tracking successfully requires (at least) taking into account the
local spatial context around the specified pixel, and therefore the model is somewhat
sensitive to scale and resolution.

Our overall approach has four stages, somewhat similar to the RAFT optical flow
method [162]: extracting visual features (Section 7.3.2), initializing a list of positions
and features for each target (Section 7.3.3), locally measuring appearance similarity
(Section 7.3.4), and repeatedly updating the positions and features for each target
(Section 7.3.5). Figure 7.2 shows an overview of the method.

7.3.2 Extracting features

We begin by extracting features from every frame of the input video. In this step,
each frame is processed independently with a 2D convolutional network (i.e., no
temporal convolutions). The network produces features at 1/8 resolution.

7.3.3 Initializing each target

After computing feature maps for the video frames, we compute a feature vector
for the target, by bilinearly sampling inside the first feature map at the first (given)
coordinate, obtaining a feature vector f1.

We use this sampled feature to initialize a trajectory of features, by simply tiling
the feature across time, yielding a matrix F0 sized T × C, where C is the channel
dimension. This initialization implies an appearance constancy prior.

We initialize the target’s trajectory of positions in a similar way. We simply copy
the initial position across time, yielding a matrix X 0, shaped T ×2. This initialization
implies a zero-velocity prior, which essentially assumes nothing about the target’s
motion.

During inference, we will update the trajectory of features, tracking appearance
changes, and update the trajectory of positions, tracking motion.
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7.3.4 Measuring local appearance similarity

We would like to measure how well our trajectory of positions, and associated
trajectory of features, matches with the pre-computed feature maps. We compute
visual similarity maps by correlating each feature f t with the feature map of the
corresponding timestep, and then obtain “local” scores by bilinearly sampling a
crop centered at the corresponding position (xt, yt). This step returns patches of
un-normalized similarity scores, where large positive values indicate high similarity
between the target’s feature and the convolutional features at this location. We
denote the initial set of scores as C0, shaped T × P · P , where P is the size of the
patch extracted from each correlation map.

Similar to RAFT [162], we find it is beneficial to create a spatial pyramid of these
score patches, to obtain similarity measurements at multiple scales. This makes our
score matrix T × P · P · L, where L is the number of levels in the pyramid.

7.3.5 Iterative updates

The main inference step for our model involves updating the sequence of positions,
and updating the sequence of features. To perform this update, we take into account
all of the information we have computed thus far: the position matrix X k, the
feature matrix Fk, and the correlation matrix Ck, indicated here with superscript k
to emphasize that these inputs will change across iterative inference steps.

Instead of using absolute positions X k, we subtract the given position (x1, y1)
from each element of this matrix, making it into a matrix of displacements. (On the
first iteration, it will in fact be all zeros, since X 0 is initialized from (x1, y1).) Using
displacements instead of absolute positions makes all input trajectories appear to start
at (0, 0), which makes our model translation-invariant. We additionally concatenate
sinusoidal position encodings of the displacements [174], motivated by the success of
these encodings in vision transformers [35].

To process this broad set of inputs, we concatenate them all on the channel
dimension, yielding a new matrix shaped T ×D, and process this with a 12-block
MLP-Mixer [166], which is a parameter-efficient all-MLP architecture with design
similarities to a transformer. As output, this module produces updates for the
sequence of positions and sequence of features, dX and dF , which we apply with:

Fk+1 = Fk + dF ,

X k+1 = X k + dX .
(7.1)

After each update, we compute new correlation pyramids at the updated coordi-
nates, using the updated features.

The update module is iterated K times. After the last update, the positions XK

are treated as the final trajectory, and the features FK are sent to a linear layer to
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estimate per-timestep visibility logits V .

7.3.6 Supervision

We supervise the model using the L1 distance between the ground-truth trajectory
and the estimated trajectory (across iterative updates), with exponentially increasing
weights, similar to RAFT [162]:

Lmain =
K∑
k

γK−k||X k −X ∗||1, (7.2)

where K is the number of iterative updates, and we set γ = 0.8. Note that this
loss is applied even when the target is occluded, or out-of-bounds, which is possible
since we are using synthetically-generated ground truth. This is the main loss of the
model, and the model can technically train using only this, although it will not learn
visibility estimation and convergence will be slow.

On the model’s visibility estimates, we apply a cross entropy loss:

Lce = V∗ logV + (1 − V∗) log(1 − V). (7.3)

We find it accelerates convergence to directly supervise the score maps to peak in
the correct location (i.e., the location of the true correspondence) when the target is
visible:

Lscore = − log(exp(ci)/
∑
j

exp(cj))1{V∗ ̸= 0}, (7.4)

where cj represents the match score at pixel j, and i is pixel index with the true
correspondence.

We average all losses across all targets within a batch. We set the coefficient of
every loss to 1.

7.3.7 Test-time trajectory linking

At test time, it is often desirable to generate correspondences over longer timespans
than the training sequence length T . To generate these longer trajectories, we may
repeat inference starting from any timestep along the estimated trajectory, treating
(xt, yt) as the new (x1, y1), and thereby “continuing” the trajectory up to (xt+T , yt+T ).
However, doing this naively (e.g., always continuing from the last timestep), can
quickly cause tracking to drift.

It is first of all crucial to avoid continuing the trajectory from a timestep where
the target is occluded. Otherwise, the model will switch to tracking the occluder.
To avoid these identity switches, we make use of our visibility estimates, and seek
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the farthest timestep whose visibility score is above a threshold. Note that seeking
farthest visible timestep allows the model to skip past frames where the target was
momentarily occluded, as long as the temporal span of the occlusion is less than
the temporal span of the model (T ). Visibility estimates always begin near 1, since
the model is trained assuming the provided (x1, y1) indicates the true target, so we
exclude the first several timesteps from this selection process, forcing the model to
choose a timestep from the later part of the trajectory. We initialize the threshold
conservatively at 0.99, and decrease it in increments of 0.01 until a valid selection is
found.

Even with visibility-aware trajectory linking, the model can “forget” what it was
originally tracking, since the target initialization strategy involves bilinearly sampling
at the new (x1, y1) location whenever a new link is added to the chain. We therefore
employ a second strategy, which is simply to always initialize F0 using the features
found at the very first timestep. Intuitively, this locks the model into tracking the
“original” target. This does create a slight mismatch between the target features
and the convolutional feature maps on the current frame, but we find that this is
effectively compensated for by the internal update mechanism. We have also tried
a strategy of initializing with the last FK output by the model, but this leads to
unstable behavior.

7.4 Implementation details

CNN: Our CNN uses the “BasicEncoder” architecture from the official RAFT
codebase [163]. This architecture has a 7×7 convolution with stride 2, then 6 residual
blocks with kernel size 3 × 3, then a final convolution with kernel size 1 × 1. The
CNN has an output dimension of C = 256.

Local correlation pyramids: We use three levels in our correlation pyramids,
with radius 4. This translates to three 9 × 9 correlation patches per timestep.

MLP-Mixer: The input to the MLP-Mixer is a sequence of relative coordinates,
features, and correlation pyramids. The coordinates are made “relative” by subtracting
the first position, meaning the first element of this sequence is (0, 0), and other elements
of the sequence can be interpreted as flow vectors originating from the first timestep’s
absolute position. The per-timestep inputs are flattened, then treated as a sequence
of vectors (i.e., “tokens”) for the MLP-Mixer. We use the MLP-Mixer architecture
exactly as described in the original paper; at the end of the model there is a mean
over the sequence dimension, followed by a linear layer that maps to a channel size of
T · (C + 2).

Updates: We reshape the MLP-Mixer’s outputs into a sequence of feature
updates and a sequence of coordinate updates. We apply the coordinate updates
directly (with addition). We use separate linear layers to apply the updates for the
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instance-level and pixel-level features (i.e., ϕ in Equation 1 from the main paper).
We train and test with 8 updates, but we find that performance is similar if we train
with 4 (and still test with 8).

Visibility: We use a linear layer to map the last update iteration’s pixel-level
feature sequence into visibility logits.

Optimization: We train with a batch size of 4, distributed across four GPUs.
At training time, we use a resolution of 368 × 496. For each element of the batch,
we randomly sample 32 trajectories whose initial timestep is marked “visible” in
the ground truth (so that the tracking targets always begin within-bounds and un-
occluded). We train for 500,000 steps, with a learning rate of 1e-4 with a 1-cycle
schedule [150], using the AdamW optimizer and clipping gradients to [−1, 1]. Training
takes approximately 5 days on four GeForce RTX 2080s.

Hyperparameters: We use T = 8 (timesteps considered by the MLP-Mixer),
and K = 8 (update iterations). The model can in general be trained for any T , but
we found that the model was more difficult to train at T = 16 and T = 32, likely
because the complexity of trajectories grows rapidly with their length under our
model, as there is no weight sharing across time. On the other hand, the temporal
sensitivity allows our model to learn more complex temporal priors. We found that
K > 8 performs similar to K = 8, and so use K = 8 because it is faster.

Complexity: Speed: When the number of targets is small enough to fit on a GPU
(e.g., 128 targets for a 12G GPU), our model is faster than RAFT (340ms vs. 2000ms
at 480 × 1024). RAFT is comparatively slow because (1) it is too memory-heavy to
compute all frames’ flows in parallel, so we must run it T − 1 times, and (2) much
computation is spent on non-target pixels. Memory: Our model’s memory scales
with T · N , where N is the number of particles being tracked, due to the iterated
MLP-Mixer which consumes a T -length sequence of features per particle.

Code: DPV is implemented in Pytorch [116]. We will publicly release the code
for the model and training procedure.

7.5 Experiments

We train our model in a modified version of FlyingThings [100], which we name
FlyingThings++ (discussed more below).

We evaluate our model on tracking objects in FlyingThings++, tracking vehicles
and pedestrians in KITTI [43], tracking heads in a crowd in CroHD [159], and
finally, propagating keypoints in animal videos in BADJA [5]. We visualize trajectory
estimates in DAVIS videos in Figure 7.1, to illustrate the method’s generality, and
visualize the estimates against ground truth in Figures 7.4 and 7.3.
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7.5.1 Training data: FlyingThings++

We created a synthetic dataset based on FlyingThings [100], which is a dataset
typically used to train optical flow models (usually in combination with other datasets).
We chose FlyingThings because (1) its visuals and motions are extremely complex,
which gives hope of generalizing to other data, and (2) it provides 10-frame videos
with ground-truth forward and backward optical flow (as opposed to 2-frame videos),
from which we can mine multi-step trajectory ground truth.

To create ground truth multi-frame trajectories, we chain the ground-truth flows
forwards, and discard chains that fail a forward-backward consistency check (e.g., by
landing on occluders). Through this process we create a sparse set of 4-frame and
8-frame trajectories. To this set we also add 2-frame trajectories from the raw flow
fields.

The forward-backward consistency check ensures that the trajectories are accurate,
but it leaves us with a library of trajectories where the target is visible on every
timestep. Therefore, it is necessary to add new occlusions on top of the video. We
do this on-the-fly during batching: for each FlyingThings video in the batch, we
randomly sample an object from an alternate FlyingThings video, paste it directly
on top of the current video, overwriting the pixels within its mask on each frame.
We then update the ground-truth to reflect the new visibility in the occluded area
on each frame, as well as update the trajectory list to include the trajectories of the
added object.

Combining all videos with at least 32 valid 8-frame trajectories, we obtain a total
of 4311 training videos, and 734 test videos. To expand the breadth of the training
set, we augment the data on-the-fly with color and brightness changes, random scale
changes, random crops which randomly shift across time, random Gaussian blur, and
random horizontal and vertical flips.

7.5.2 Baselines

In our experiments we consider the following baselines.
Recurrent All-Pairs Field Transforms (RAFT) [162] represents the state-

of-the-art in optical flow estimation, where a high resolution flow field is refined
through iterative updates, based on lookups from a 4D cost volume constructed
between all pairs of pixels. Note that similar to our method, RAFT has been trained
on FlyingThings (including occlusions and out-of-bounds motions), but only has a
2-frame temporal span. To generate multi-frame trajectories with RAFT at test time,
we compute flow with all consecutive pairs of frames, and then compute flow chains
at the pixels queried on the first frame. To continue chains that travel out of bounds,
we clamp the coordinates to the image bounds and sample at the edge of the flow
map.
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DINO [13] is a vision transformer (ViT-S [35] with patch size 8) trained on
ImageNet with a self-supervision objective based on a knowledge distillation setup
that builds invariance to image augmentations. To use this model for multi-frame
correspondence, we use the original work’s code for instance tracking, which uses
nearest neighbor between the initial frame and the current frame, as well as nearest-
neighbor between consecutive frames, and a strategy to restrict matches to a local
neighborhood around previous matches. We report results with and without this
“windowing” strategy.

TimeCycle [181] learns correspondences between pixels from different frames
by optimizing an objective that encourages correspondences to be cycle-consistent
across time (i.e., forward-backward consistency), including across frame skips. This
method tracks the same way as DINO, by computing feature affinity across frames
and reporting nearest neighbors.

Contrastive Random Walk (CRW) [66] treats the video as a space-time
graph, with edges containing transition probabilities of a random walk, and computes
long-range correspondences by walking across the graph. Similar to TimeCycle [181],
the model is trained with cycle-consistency.

Memory-Augmented Self-supervised Tracker (MAST) [83] learns corre-
spondences between features by reconstructing the target frame with linear combina-
tions of reference frames. At test time the correspondences are predicted autoregres-
sively. The model is trained on OxUvA [172] and YouTube-VOS [194]

Video Frame-level Similarity (VFS) [193] learns an encoder that produces
frame-level embeddings which are similar within a video, and dissimilar across videos.
This model is trained on Kinetics-400 [76].

ImageNet ResNet [57] is a ResNet50 supervised for classification with ImageNet
labels, and evaluated the same way as DINO.

7.5.3 Trajectory estimation in FlyingThings++

Using 8-frame videos from the FlyingThings++ test set as input, we estimate trajecto-
ries for all pixels for which we have ground-truth, and evaluate the Euclidean distance
between each estimated trajectory and its corresponding ground truth, averaging
over all 8 timesteps. We are especially interested in measuring how our model’s
performance compares with the baselines when the target gets occluded or flies out of
frame. To create controlled out-of-bounds and occlusion tests, we first take a central
crop of each video, sized 368 × 496, providing us with some trajectories that fly out
of the crop. Second, we implement a simple controllable occlusion strategy, where we
replace a 200 × 200 square in frames 2-5 with gray pixels.

We compare our model against DINO [13], representing the state-of-the-art for
feature matching, and RAFT [162], representing the state-of-the-art for flow. Table 7.1
shows the results across the different evaluations on the test set. DINO struggles
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Method Vis. OOB Occ

DINO [13] 32.4 75.4 68.13

RAFT [162] 9.05 19.41 36.30

DPV (ours) 7.19 18.48 18.41

Table 7.1: Trajectory estimation error in FlyingThings++. DPV is more
robust to targets moving out-of-bounds or becoming occluded.

Method Veh. Ped.

DINO [13] 12.5 11.5

RAFT [162] 5.6 5.4

DPV (ours) 5.0 5.3

Table 7.2: Trajectory estimation error in KITTI. DPV performs slightly better
than RAFT; DINO lags behind both.

across all splits and performs worse on occluded pixels than on visible ones. RAFT
obtains high accuracy for visible pixels, but its errors increase as the occlusions
become more difficult. Our model performs similarly to RAFT on visible pixels, but
it is somewhat robust to occlusions. Inspecting the results manually, we see that
RAFT’s trajectories become “stuck” in the region of the added occluder, which makes
sense because flows there do not reflect the motion of the targets. Our model, in
contrast, is able to locate the targets after they re-emerge from the occluder, and
inpaint the missing portions of the trajectories.

7.5.4 Trajectory estimation in KITTI

We additionally evaluate on an 8-frame point trajectory dataset that we created from
the “tracking” subset of the KITTI [43] urban scenes benchmark. To create 8-frame
trajectories, we sample a 3D box annotation that has at least 8 valid timesteps,
select a LiDAR point within the box on the first timestep, transform it in 3D to
its corresponding location on every other step, and project this location into pixel
coordinates.

In Table 7.2 we see that RAFT and our method perform approximately on par
with one another (with our method winning by less than one point), but DINO’s
error is nearly twice this. We evaluate separately on vehicles and pedestrians since
occlusions are more common with pedestrians, but we note that pedestrians also
move more slowly, so the average errors are similar. Qualitative results for our model
are shown in Figure 7.3-middle.
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Method Vis. Occ.

DINO [13] 21.84 43.34

RAFT [162] 12.24 21.16

DPV (ours) 8.26 15.93

Table 7.3: Trajectory estimation error in CroHD. DPV achieves better accuracy, for
both visible and occluded targets.

Figure 7.3: Qualitative results in FlyingThings++ (left), KITTI (middle),
and CroHD (right). We visualize a video with the mean of its RGB. We trace the
estimates with pink-to-yellow trajectories, and show ground truth in blue-to-green.
FlyingThings++ is chaotic, but training on this data allows our model to generalize.

7.5.5 Trajectory estimation in CroHD

We additionally evaluate on the Crowd of Heads Dataset (CroHD) [159], which
consists of high-resolution (1920 x 1080) videos of crowds, with annotations tracking
the heads of people in the crowd. We evaluate on 8-frame sequences extracted from
the dataset, using an FPS of 12.5. We filter out targets whose motion is below a
threshold distance, and split the evaluation between targets that are visible and those
that undergo occlusions. The results are shown in Table 7.3. In this data, DPV
outperforms RAFT and DINO by a wide margin, both visibility settings. DINO
struggles overall, likely because the motions in this dataset are small, and DINO is
only able to track at a coarse resolution. Qualitative results for our model are shown
in Figure 7.3-right.
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Method bear camel cows dog-a dog horse-h horse-l Avg.

Win. DINO [13] 77.9 69.8 83.7 17.2 46.0 29.1 50.8 53.5

Win. ResNet [57] 70.7 65.3 71.7 6.9 27.6 20.5 49.7 44.6

Win. TimeCycle [181] 13.6 10.0 8.0 3.4 9.8 7.9 13.1 9.4

Win. CRW [66] 63.2 75.9 77.0 6.9 32.8 20.5 22.0 42.6

Win. VFS [193] 63.9 74.6 76.2 6.9 35.1 27.2 40.3 46.3

DINO [13] 75.0 59.2 70.6 10.3 47.1 35.1 56.0 50.5

ImageNet ResNet [57] 65.4 53.4 52.4 0.0 23.0 19.2 27.2 34.4

TimeCycle [181] 13.6 8.4 14.4 3.4 5.7 13.2 13.6 10.3

CRW [66] 66.1 67.2 64.7 6.9 33.9 25.8 27.2 41.7

VFS [193] 64.3 62.7 71.9 10.3 35.6 33.8 33.5 44.6

MAST [83] 51.8 52.0 57.5 3.4 5.7 7.3 34.0 30.2

RAFT [162] 64.6 65.6 69.5 13.8 39.1 37.1 29.3 45.6

DPV (ours) 72.7 84.9 78.6 34.2 46.6 46.7 51.4 59.3

Table 7.4: PCK-T in BADJA. In this evaluation, keypoints are initialized in the
first frame of the video, and are propagated to the end of the video; PCK-T measures
the accuracy of this propagation. In each column, we bold the best result, and
underline the second-best. Above the middle bar, we give methods a spatial window
(marked “Win.”) to constrain how they propagate labels, which encodes domain
knowledge about the span of plausible motions in the domain (which is a common
strategy in existing work). Below the bar, we run each method in the unconstrained
setting. Our method wins in most videos, but DINO performs well also.

7.5.6 Keypoint propagation in BADJA

BADJA [5] is a dataset of animal videos with keypoint annotations. These videos
overlap with the DAVIS dataset [123], but include keypoint annotations. Keypoint
annotations exist on approximately 1/5 frames, and the standard evaluation is
Percentage of Correct Keypoint-Transfer (PCK-T), where keypoints are provided on
a reference image, and the goal is to propagate these annotations to other frames. A
keypoint transfer is considered correct if it is within a distance of 0.2

√
A from the

true pixel coordinate, where A is the area of the ground-truth segmentation mask on
the frame.

We note that some existing methods test on a simplified version of this keypoint
propagation task, where the ground-truth segmentation is available on every frame of
the video (e.g., [197, 198]). Here, we focus on the harder setting, where the ground-
truth mask is unknown. Similarly, we have found that feature-matching methods (e.g.,
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First frame + target DINO trajectory RAFT trajectory DPV trajectory (ours)

Figure 7.4: Comparison with baselines in BADJA, on videos with occlusions.
For each method, we trace the estimated trajectory with a pink-to-yellow colormap.
The sparse ground truth is visualized with cyan x ’s. In the video on the first row,
all methods perform fairly well, though DINO and RAFT drift slightly toward the
horse’s body. In the second video, the target (on the dog’s tail) leaves the image
bounds then returns into view. In the third video, the target (on the horse’s leg) is
momentarily occluded, causing RAFT to lose track entirely.

[13]) constrain their correspondences to a local spatial window around the previous
frame’s match. We report results for these methods with the qualifier “Windowed”,
but focus again on the un-constrained version of the problem, where keypoints need
to be propagated from frame 1 to every other frame, with no other knowledge about
motion or position.

Table 7.4 shows the results of the BADJA evaluation. On four of the seven videos,
our model produces the best keypoint tracking accuracy, as well as the best on average,
by a margin of 9 points. DINO [13] obtains the best accuracy in the remaining videos,
though its widest margin over our model is just 5 points. Interestingly, windowing
helps DINO (and other baselines) in some videos but not in others, perhaps because
of the types of motions in DAVIS. We note that DAVIS has an object-centric bias
(i.e., the target usually stays near the center of the frame), which translation-sensitive
methods like DINO can exploit, since their features encode image position embeddings;
RAFT and DPV track more generally. In Figure 7.4 we visualize DINO, RAFT, and
DPV trajectories on targets that undergo momentary occlusions, illustrating how
DINO tracks only coarsely, and how RAFT loses track after the occlusion.
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7.6 Ablation on visibility-aware linking

In this section we evaluate the effect of visibility-aware trajectory linking instead of
naive linking.

Our trajectory linking strategy relies on visibility estimates produced by the
model. Without using these estimates, we may still link trajectories naively (i.e.,
greedily), by chaining the 8-frame trajectories end-to-end. We evaluate this choice in
BADJA keypoint propagation, and show the result in Table 7.5. Naive linking indeed
gives worse PCK-T, but the margin is only 0.2 points. This may suggest that the
visibility estimator is not generalizing well to the new video domain. Alternatively,
this may be showing a small effect because the metric is dominated by trajectories
that stay visible for the full duration of the video, as evidenced by DINO obtaining
50.5 PCK-T with no strategy for managing occlusions at all (see Table 4 from main
paper).

Method Average PCK-T

Without visibility-aware linking 59.1

With visibility-aware linking 59.3

Table 7.5: Effect of visibility-aware linking on keypoint propagation in
BADJA. Linking trajectories from locations estimated to be “visible” yields a small
improvement in average PCK-T.

7.6.1 Limitations

Our model has two main limitations. First is our unique extreme tradeoff, of spatial
awareness for temporal awareness. Although this maximizes the power of the temporal
prior in the model, it sacrifices potentially valuable information that could be shared
between trajectories. We are indeed surprised that single-particle tracking performs
as well as it does, considering that spatial smoothness is known to be essential for
accurate optical flow estimation. Extending our architecture to concurrent estimation
of multiple point trajectories is a direct avenue for future work.

Our second main limitation stems from the MLP-Mixer. Due to this architecture
choice, our model is not recurrent across time. Although longer trajectories can be
produced by re-initializing our inference at the tail of an initial trajectory, our model
will lose the target if it stays occluded beyond the model’s temporal window. We
have tried models that are convolutional across time, and that use self-attention
across the sequence length, but these did not not perform as well as the MLP-Mixer
on our FlyingThings++ tests. Taking advantage of longer and potentially varying
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temporal context would help the model track through longer periods of ambiguity,
and potentially leverage longer-range temporal priors.

7.7 Conclusion

We propose Deep Particle Video (DPV), a method for multi-frame point trajectory
estimation through occlusions. Our method combines cost volumes and iterative
inference with a multi-frame temporal deep network, which jointly reasons about
location and appearance of visual entities across multiple timesteps. We argue that
optical flow, particle videos, and feature matches cover different areas in the spectrum
of pixel-level correspondence tasks. Particle videos benefit from temporal context,
which matching-based methods lack, and can also survive multi-frame occlusions,
which is missing in flow-based methods. Given how tremendously useful optical flow
and feature matching have been for driving progress in video understanding, we hope
the proposed multi-frame trajectories will spark interest in architectures and datasets
designed for longer-range fine-grained correspondences.
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Chapter 8

Conclusion and future work

This thesis proposes methods for computer vision architectures to estimate amodal
scene representations, modelling space and time in a scene-centric space, as opposed
to modelling in pixel-space. The underlying idea is that computer vision models are
more effective when they assume certain basic facts about the world: it is 3D, it
obeys physical and geometric constraints, and it is largely made up of entities which
persist across time. By incorporating inductive biases and supervision signals derived
from these basic facts, we can deliver improvements in object detection and tracking,
and provide a platform for building increasingly useful structured representations of
the world.

In our ongoing and future work, we are actively considering the following problems:
• For the geometry-based 3D mapping work, the primary goal is to scale up.

Chapter 5 is a first step toward practical large-scale learning from unlabelled
data, by learning from real data captured by a sensor platform on a moving
vehicle. It should be possible to push this much further, since such sensor
platforms quickly capture terabytes of diverse data simply by driving around.
It should be possible to merge the Lidar-completion-based learning with the
contrastive learning strategy pursued in the other chapters. In particular,
we are interested in using the multi-modal aspect of the data, and temporal
information, to drive prediction tasks across modalities and across time.

• For driving-based representations, such as the one explored in Chapter 6, it
would be interesting to learn representations which optimize a behavioral end-
task, rather than a vision-based one. For example, Philion et al. [51, 120] recently
proposed a metric to evaluate vision systems based on how plans generated
from the estimates differ from plans that would be generated by ground-truth
information. End-task learning, with scene/object/point representations at the
bottleneck, would be very exciting future work.

• For the geometry-free tracking work, the goals are to track particles for arbitrary
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timespans, improve individual point tracking by tracking supporters [50], and
track simultaneously at multiple levels of abstraction. Besides the direct benefits
of fine-grained correspondence, part of the motivation here is that higher level
abstractions become easier when the low-level correspondences are worked
out. For example, this work could extend to grouping pixels into objects,
grouping object instances into higher-level groups, and even distinguishing
“stuff” categories from “thing” categories.

• The geometry-free “particle” representation can be naturally merged with the
geometry-based scene representations, to serve as a tracker and forecaster,
for entities of interest. An excellent outcome here would be a fully persistent
representation, where the background is propagated across time using egomotion,
and all detected non-background elements are propagated with forecasters of
varying complexity (depending on the complexity and importance of each
target).

Overall, we argue that computer vision models should treat their input data as mere
projections of a physical 3D world—where things have complete shapes, and persist
over time—and seek to describe that complete world, instead of merely describing
the input. From this perspective, “describing what we see” is only a small part of
the vision problem; we also need to describe what we cannot see.
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zstein, and Michael Zollhöfer. DeepVoxels: Learning persistent 3D feature
embeddings. In CVPR, 2019. 9, 10, 39, 41, 42, 45

[148] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wet-
zstein, and Michael Zollhofer. Deepvoxels: Learning persistent 3d feature
embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2437–2446, 2019. 70
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