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Abstract

The advent of deep learning based artificial perception models has revolutionized
the field of computer vision. These methods take advantage of the ever-growing
computational capacity of machines and the abundance of human-annotated data
to build supervised learners for a wide-range of visual tasks. However, the reliance
on human-annotated is also a bottleneck for the scalability and generalizability of
these methods. We argue that in order to build more general learners (akin to an
infant), it is crucial to develop methods that learn without human-supervision. In
this thesis, we present our research on minimizing the role of human-supervision
for two key problems: Representation and Recognition.

Recent self-supervised representation learning (SSL) methods have demon-
strated impressive generalization capabilities on numerous downstream tasks. In
this thesis, we investigate these approaches and demonstrate that they still heavily
rely on the availability of clean, curated and structured datasets. We experimentally
demonstrate that these learning capabilities fail to extend to data collected “in-the-
wild” and hence, expose the need for better benchmarks in self-supervised learning.
We also propose novel SSL approaches that minimize this dependence on curated
data.

Since exhaustively collecting annotations for all visual concepts is infeasible,
methods that generalize beyond the available supervision are crucial for building
scalable recognition models. We present a novel neural network architecture that
takes advantage of the compositional nature of visual concepts to construct image
classifiers for unseen concepts. For domains where collecting dense annotations is
infeasible, we present an “understanding via associations” paradigm which refor-
mulates the recognition problem as identification of correspondences. We apply this
to videos and show that we can densely describe videos by identifying dense spatio-
temporal correspondences to other similar videos. Finally, to explore the human
ability of generalizing beyond semantic categories, we introduce the “Functional Cor-
respondence Problem” and demonstrate that representations that encode functional
properties of objects can be used to recognize novel objects more efficiently.
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Chapter 1

Introduction

Visual perception is arguably the least understood component of human intelligence.
Humans (and most animals) possess the remarkable ability to generate meaningful
interpretations from the images sensed by the eyes. We unconsciously identify low
level cues like depth and object boundaries, and also instantaneously perform com-
plex reasoning tasks like recognizing semantics of objects and scenes, anticipating
hidden 3D structure, anticipating motion of objects (including other humans), etc. In
order to perform these tasks, we rely on knowledge and experience gathered through
our exploration of the world (see [84]). Perhaps a more impressive attribute is the
efficiency in amount of additional knowledge required for learning novel concepts.
For example, we can generally interact with unseen objects without having observed
it in the past. We can even identify previously unseen objects simply based on a
description. Understanding and imitating these learning capabilities has been an
elusive goal of artificial intelligence research for many decades.

Nevertheless, the field of Computer Vision has made tremendous strides towards
building artificial models to perceive and understand the visual world. Approaches
for detecting objects, recognizing faces and recognizing human actions have been
successfully deployed around us in our everyday lives. The success can be largely
attributed to the ever-increasing computational power available to us in conjunction
with the development of artificial perception models using deep learning. However,
there is another (sometimes) under-appreciated actor behind the success stories in
AI: human supervised data.

In [119], deep neural networks were brought to the forefront of AI research
by demonstrating an impressive leap in image classification performance. Prior
to this work, the well-established approaches for solving computer vision tasks
relied on expert designed features to extract the relevant information in images.
In contrast, in [119] it was shown that deep neural networks can be directly op-
timized on large-scale datasets to learn extremely powerful and discriminative
representations. Following the success of [119] on the large-scale human supervised
dataset ImageNet[37], similar datasets have emerged for most visual recognition
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tasks like Object Detection[136], Action Recognition[57, 111, 214] and even robotic
grasping[181]. Most of the recent success in Computer Vision has been a result of
exploring deep learning based architectures on these supervised datasets.

More broadly, human supervised data has been extensively used in Computer
Vision to address two important related problems:

• Representation: The problem of encoding visual signals by extracting relevant infor-
mation such that downstream reasoning tasks can be made simpler.
Convolutional neural networks (CNNs) optimized on large-scale human-
annotated datasets simultaneously learn to represent visual signals in the
intermediate layers. These representations have been shown to possess remark-
able generalization capabilities[27, 71]. For almost a decade now, state-of-the-
art approaches for most computer vision tasks have relied on a representation
constructed by optimizing a CNN for classifying the ImageNet dataset.

• Recognition: The problem of reasoning about the encoded visual signals to identify
visual concepts based on a desired semantic categorization.
Some common recognition problems addressed in computer vision research
are image classification, object detection/segmentation and action recognition.
Several large-scale supervised datasets have been collected for each of these
problems, depicting images/videos with human annotations from a predefined
vocabulary. State-of-the-art recognition models[27, 71, 72, 92] generally involve
neural network architectures that are desiged for the specific task, whose
parameters optimized using the supervision from the human annotations.

Despite this progress, the capabilities of our current representation and recognition
models are significantly inferior compared to human perception systems. One ques-
tion that naturally arises is: can we simply collect larger human-annotated datasets
to make progress towards more robust and general visual perception models?
Limited Scale of Supervised Datasets
The scale of the datasets we currently use in Computer Vision is negligible compared
to the amount of visual data available on the web or the amount of visual data
observed in the life of an infant. The primary reason for this is the cost (in time and
money) of annotating images and videos. For reference, collecting the outline of a
single object takes between 54 seconds and 79 seconds[14]. Recent studies show that
we upload 400 million pictures every day and about 300 hours of video content every
minute. Based on these observations, it is clearly impractical to attempt to annotate
any significant fraction of this data. This is also evident from the fact that over the last
decade, we have made limited progress towards a dataset larger than ImageNet[37].
Therefore, purely relying on human-supervised datasets significantly constrains the
amount of knowledge that can be leveraged by our learning algorithms.
Limited Taxonomy of Supervised Datasets:
Annotating samples also requires curating a collection of images or videos drawn
from all the data available to us. Since visual concepts follow a long-tailed distribution[234],
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these sampled sets do not cover a large number of infrequent concepts. Furthermore,
curation of datasets has generally required predefining a vocabulary of relevant
concepts (either for curating samples or for usage as target labels). This focus on
small vocabularies restricts the ability of our models to develop any general under-
standing of the concepts in the real world. For example, the most common object
detection models are built on the MS-COCO[136] allowing us to detect only 80 object
categories.
Learning beyond Supervisable Concepts
Current deep learning methods demonstrate impressive performance for learning
from supervised datasets and generalizing to unseen instances of the supervised
concepts. However, as alluded to earlier, human perception capabilities stretch far
beyond identifying learned concepts. We learn to identify most visual concepts with-
out any external supervision[108]. We learn to imagine/identify unseen concepts
described as a composition of learned concepts (for example, you can imagine a red
elephant). We can identify concepts that have no associated names. We can learn
new concepts with as few as a single observation. At the moment, it is unclear how
these capabilities can be learned in a supervised manner.

Due to these challenges, it has become clear that we can rely on humans only for
limited amounts of supervision. In this thesis, we present our research on minimizing
the role of human supervision for the representation and recognition problems.

1.1 Overview of the Thesis

This thesis is divided into three parts: (I) Learning Representations without Su-
pervision, (II) Semantic Recognition beyond Supervision and (III) Representation
Beyond Semantics.

Part I: Learning Representations without Supervision
We first study the problem of constructing better representations without human-

supervision. This problem is addressed in literature as self-supervised representa-
tion learning, a learning paradigm where supervision is automatically obtained
from the data without the need for human annotation. Research in this direc-
tion has explored innovative approaches for obtaining supervision like predict-
ing relative locations of patches[47], colorizing images[271], matching temporally
tracked patches[247] and predicting motion cues[177, 183]. More recently, the self-
supervised representations learned through instance classification[29–31, 91, 97, 173,
184, 256] have demonstrated great success, even outperforming ImageNet-based
representations on some tasks[23].

In Chapter 2, we investigate the efficacy of the representations learned by con-
trastive learning methods to develop a deeper understanding. We present a frame-
work to quantify the invariances learned in these representations. We show that
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the artificial augmentations used in these approaches, lead to improved occlusion
invariance compared to an ImageNet-based representation. However, they suffer
at learning other invariances. Based on these inferences, we propose an approach
to improve invariances in these representations by using the naturally occurring
transformations in videos.

In Chapter 3, we further investigate the efficacy of representations learned using
contrastive learning in more challenging training setups. We observe that while
these methods produce strong representations, they rely on the clean curated struc-
ture of the ImageNet dataset. In realistic in-the-wild setups, contrastive learning
methods are faced with three challenges: data and computational inefficiency, non-
IID data and non-stationary semantic distributions. As a first step to remedy these
issues, we propose simple replay buffer based approaches that demonstrate superior
performance on downstream tasks compared to off-the-shelf contrastive learning
methods.

Part II: Semantic Recognition beyond Supervision
Recognizing semantic concepts like objects and actions is an important problem

in computer vision with innumerable applications. However, there are practically
infinite number of concepts that occur in our visual world. The traditional method
of collecting supervised data for the relevant concepts is not scalable to capture the
diversity of concepts. In Chapter 4, we propose an approach to build models to rec-
ognize a large number of visual concepts beyond those concepts where supervision
is available. We begin by observing that the visual world is highly compositional.
For example, an “old tree” is the composition of the “old” and “tree” concepts and
an “old car” is the composition of the same “old” concept with the “car” concept.
We present an approach for image classification in the zero-shot learning setting that
leverages this compositional nature of object-attribute concepts to build classifiers
for unseen concepts. We present a modular neural network that captures the rich
interactions between instances, objects and attributes.

For some recognition problems, collecting annotations is not merely an expensive
endeavor, but could also be infeasible. For example, consider the problem of building
a dense “understanding” of videos. Most related computer vision methods deal
with identifying coarse high-level semantics like action labels, temporal location of
actions, language descriptions, etc. However, a dense understanding would involve
explaining every pixel, patch, object part, etc. Clearly, all such concepts to be rec-
ognized can not even be enumerated here. In Chapter 5, we present a solution for
dense video understanding using a ”understanding via associations” paradigm. The
key insight is that videos can be described by finding dense spatial and temporal
correspondences to other videos. We present a weakly supervised cycle-consistency
loss that only uses video level category labels. We show that our method can im-
prove on ImageNet-based representations and identify the correspondences, thereby
eliminating the need for any dense human annotations.
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Part III: Representation beyond Semantics
Visual recognition problems in computer vision have primarily focused on iden-

tifying semantic categories. One way to interpret this goal is to find similarities or
correspondences between instances of a category. However, humans possess the
ability to reason beyond semantic categories. For example, if we have to, we can use
a shoe to hammer a nail. Here, we are able to identify correspondences between a
shoe and a hammer - the corresponding grasp location, the corresponding head used
to hit and so on. In Chapter 6, we formulate the learning of this ability in Computer
Vision as the Functional Correspondence Problem. We present the FunKPointdataset
comprising on task-dependent keypoints for various objects. We leverage to learn
a task-driven representation for objects and demonstrate that we can successfully
identify functional correspondences between objects. Furthermore, we show that
such functional representations generalize better for image-classification tasks in a
few-shot learning setting.

Chapter 7: Conclusion and Future Research
Finally, in Chapter 7 we present a summary of the thesis. We also identify a

few crucial future directions of research for making progress towards more general
computer vision models that learn with minimal human guidance.
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Part I

Learning Representations without
Supervision
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Chapter 2

Demystifying Contrastive
Self-Supervised Learning:
Invariances, Augmentations and
Dataset Biases

2.1 Introduction

Inspired by biological agents and necessitated by the manual annotation bottleneck,
there has been growing interest in self-supervised visual representation learning.
Early work in self-supervised learning focused on using “pretext” tasks for which
ground-truth is free and can be procured through an automated process [48, 247].
Most pretext tasks include prediction of some hidden portion of input data (e.g.,
predicting future frames [173] or color of a grayscale image [271]). However, the
performance of the learned representations have been far from their supervised
counterparts.

The past six months have been revolutionary in the field of self-supervised
learning. Several recent works [29, 91, 97, 158, 173] have reported significant im-
provements in self-supervised learning performance and now surpassing supervised
learning seems like a foregone conclusion. So, what has changed dramatically? The
common theme across recent works is the focus on the instance discrimination
task [52] – treating every instance as a class of its own. The image and its augmenta-
tions are positive examples of this class; all other images are treated as negatives.
The contrastive loss[97, 173] has proven to be a useful objective function for instance
discrimination, but requires gathering pairs of samples belonging to the same class
(or instance in this case). To achieve this, all recent works employ an “aggressive”
data augmentation strategy where numerous samples can be generated from a single
image. Instance discrimination, contrastive loss and aggressive augmentation are
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the three key ingredients underlying these new gains.
While there have been substantial gains reported on object recognition tasks,

the reason behind the gains is still unclear. Our work attempts to demystify these
gains and unravel the hidden story behind this success. The utility of a visual
representation can be understood by investigating the invariances (see Section 2.4.1
for definition) it encodes. First, we identify the different invariances that are crucial
for object recognition tasks and then evaluate two state of the art contrastive self-
supervised approaches [91, 158] against their supervised counterparts. Our results
indicate that a large portion of the recent gains come from occlusion invariances. The
occlusion invariance is an obvious byproduct of the aggressive data augmentation
which involves cropping and treating small portions of images as belonging to the
same class as the full image. When it comes to viewpoint and category instance
invariance there is still a gap between the supervised and self-supervised approaches.

Occlusion invariance is a critical attribute for useful representations, but is arti-
ficially cropping images the right way to achieve it? The contrastive loss explicitly
encourages minimizing the feature distance between positive pairs. In this case, the
pair would consist of two possibly non-overlapping cropped regions of an image.
For example, in the case of an indoor scene image, one sample could depict a chair
and another could depict a table. Here the representation would be forced to be
bad at differentiating these chairs and tables - which is intuitively the wrong objec-
tive! So why do these approaches work? We hypothesize two possible reasons: (a)
The underlying biases of pre-training dataset - Imagenet is an object-centric dataset
which ensures that different crops correspond to different parts of same object; (b)
the representation function is not strong enough to achieve this faulty objective,
leading to a sub-optimal representation which works well in practice. We demon-
strate through diagnostic experiments that indeed the success of these approaches
originates from the object-centric bias of the training dataset. This suggests that
the idea of employing aggressive synthetic augmentations must be rethought and
improved in future work to ensure scalability.

As a step in this direction, in this paper, we argue for usage of a more natural form
of data for the instance discrimination task: videos. We present a simple method
for leveraging transformations occurring naturally in videos to learn representa-
tions. We demonstrate that leveraging this form of data leads to higher viewpoint
invariance when compared to image-based learning. We also show that the learned
representation outperforms MoCo-v2 [30] trained on the same data in terms of
viewpoint invariance, category instance invariance, occlusion invariance and also
demonstrates improved performance on object recognition tasks.

2.2 Related Work

A large body of research in Computer Vision is dedicated to training feature extrac-
tion models, particularly deep neural networks, without the use of human-annotated
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Figure 2.1: Aggressive Augmentation Constrastive self-supervised learning methods em-
ploy an aggressive cropping strategy to generate positive pairs. Through this strategy, an
image (left) yields many non-overlapping crops (right) as samples. We can observe that the
crops do not necessarily depict objects of the same category. Therefore, a representation that
matches features of these crops would be detrimental for downstream object recognition
tasks.

data. These learned representations are intended to be useful for a wide range of
downstream tasks. Research in this domain can be coarsely classified into gen-
erative modeling [46, 117, 132, 147, 223, 236] and self-supervised representation
learning[48, 50, 68, 247].

Pretext Tasks Self-supervised learning involves training deep neural networks by
constructing “pretext” tasks for which data can be automatically gathered without
human intervention. Numerous such pretext tasks have been proposed in recent
literature including predicting relative location of patches in images[48], learning
to match tracked patches[247], predicting the angle of rotation in an artificially
rotated image[68], predicting the colors in a grayscale image[271] and filling in
missing parts of images[178]. These tasks are manually designed by experts to
ensure that the learned representations are useful for downstream tasks like object
detection, image classification and semantic segmentation. However, the intuitions
behind the design are generally not verified experimentally due to the lack of a
proper evaluation framework beyond the metrics of the downstream tasks. While
we do not study these methods in our work, our proposed framework to understand
representations (Section 2.4) can directly be applied to any representation. In many
cases, it can be used to verify the motivations for the pretext tasks.

Instance Discrimination Most recent approaches that demonstrate impressive
performances on downstream tasks involve training for Instance Discrimination. Dat-
ing back to [52], the task of instance discrimination involves treating an image and
it’s transformed versions as one single class. However, the computational costs of
performing instance discrimination on large datasets had impeded it’s applicabil-
ity to larger deep neural networks. In NPID[256], the computational expense was
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avoided using a non-parametric classification method leveraging a memory bank
of instance representations. MOCO[91], MOCO-v2[30] adopted the contrastive
learning framework(see Section 2.3) and maintain a queue of negative features
which is updated at each iteration. PIRL[158] proposes learning of features which
are invariant to the transformations proposed in “pretext” tasks and also uses the
memory bank proposed in [256]. At the core, these approaches employ a common
mechanism of generating samples for an instance’s class - aggressively augmenting
the initial image[29, 97, 173, 226].

SSL from Videos Self-supervised learning research has also involved leveraging
videos for supervision [177, 247, 249, 250]. Specifically, approaches such as [247]
and [249] attempt to encode viewpoint and deformation invariances by tracking
objects in videos. [177] uses an off-the-shelf motion segmentation as the ground
truth for training a segmentation model. Inspired by these works, we propose an
approach that tracks regions using weaker self-supervised learning features and uses
the tracks to learn better representations within the contrastive learning framework.

Understanding Self-Supervised Representations Self-supervised learning meth-
ods are evaluated by using the learned representations (either by finetuning or train-
ing an additional neural network) to perform numerous downstream tasks[79]. This
evaluation framework provides a utilitarian understanding of the representations
and fails to provide any insights about why a self-supervised learning approach
works for a specific downstream task. There has been some research on developing
a more fundamental understanding of the representations learned by deep neural
networks in supervised settings [12, 76, 208, 209, 275].

We focus on representations learned by constrastive self-supervised learning
methods. In [227], empirical evidence is provided showing that reducing the mutual
information between the augmented samples, while keeping task-relevant informa-
tion intact improves representations. In the context of object recognition, this implies
that the category of the augmented sample (task-relevant information) should not
change. In our work, we show that the common augmentation methods used in
MOCO, MOCOv2, SimCLR, do not explicitly enforce this and instead rely on a
object-centric training dataset bias (see Section 2.4.2). In [242], the contrastive loss is
analyzed to show that it promotes two properties ‘alignment’ (closeness of features
of positive pairs) and ‘uniformity’ (in the distribution of features on a hypersphere).
In our work, we focus on understanding why the learned representations are use-
ful for object recognition tasks. We study two aspects of the representations: 1)
invariances encoded in the representations and their relation to the augmentations
performed on images and 2) the role of the dataset used for training.

2.3 Contrastive Representation Learning
Contrastive learning [97, 173] is general framework for learning representations
that encode similarities according to pre-deterimined criteria. Consider a dataset
D = {xi|xi ∈ Rn, i ∈ [N ]}. Let us assume that we have a way to sample positive
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pairs (xi, x
+
i ) ∈ D × D for which we desire to have similar representations. We

denote the set of all such positive pairs by D+ ⊂ D × D. The contrastive learning
framework learns a normalized feature embedding f by optimizing the following
objective function:

L(D,D+) = −
∑

(x,x+)∈D+

exp[ f(x)ᵀ f(x+)/τ ]

exp[ f(x)ᵀ f(x+)/τ ] +
∑

x−∈D
(x,x−)/∈D+

exp[ f(x)ᵀ f(x−)/τ ]

(2.1)
Here τ is a hyperparameter called temperature. The denominator encourages

discriminating negative pairs that are not in the positive set D+. In practice, this
summation is expensive to compute for large datasets D and is performed over K
randomly chosen negative pairs for each x. Recent works have proposed approaches
to scale up the number of negative samples considered while retaining efficiency
(see Section 5.2). In our experiments, we adopt the approach proposed in [30].

The contrastive learning framework relies on the ability to sample positive pairs
(xi, x

+
i ). Self-supervised approaches have leveraged a common mechanism: each

sample x is transformed using various transformation functions t ∈ T to generate
new samples. The set of positive pairs is then considered asD+ = {(ti(x), tj(x)) | ti, tj ∈
T, x ∈ D} and any pair (ti(x), tk(x

′)) is considered a negative pair if x 6= x′.
The choice of transformation functions T controls the properties of the learned

representation. Most successful self-supervised approaches [29, 30, 91, 256] have
used: 1) cropping sub-regions of images (with areas in the range 20%-100% of the
original image), 2) flipping the image horizontally, 3) jittering the color of the image
by varying brightness, contrast, saturation and hue, 4) converting to grayscale and 5)
applying gaussian blur. By composing these functions and varying their parameters,
infinitely many transformations can be constructed.

2.4 Demystifying Contrastive SSL
The goal of self-supervised learning in Computer Vision is to learn visual represen-
tations. But what is a good visual representation? The current answer [79] seems
to be: a representation that is useful for downstream tasks like object detection,
image classification, etc. Therefore, self-supervised representations are evaluated
by directly measuring the performance on the downstream tasks. However, this
only provides a very utilitarian analysis of the the learned representations. It does
not provide any feedback as to why an approach works better or insights into the
generalization of the representation to other tasks. Most self-supervised learning
approaches[30, 48, 91, 247] provide intuitions and conjectures for the efficacy of
the learned representations. However, in order to systematically understand and
improve self-supervised learning methods, a more fundamental analysis of these
representations is essential.
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2.4.1 Measuring Invariances
Invariance to transformations is a crucial component of representations in order
to be deployable in downstream tasks. A representation function h(x) defined on
domain X is said to be invariant to a transformation t : X −→ X if h(t(x)) = h(x). An
important question to ask is what invariances do we need?

An ideal representation would be invariant to all the transformations that do not
change the target/ground-truth label for a task. Consider a ground-truth labeling
mechanism y = Y(x) (where x ∈ X , y ∈ Y such that Y is the set of all labels). An
ideal representation h∗(x) would be invariant to all the transformations t : X −→ X
that do not change the target i.e. if Y(t(x)) = Y(x), then h∗(t(x)) = h∗(x). In object
recognition tasks, a few important transformations that do not change the target
are viewpoint change, deformations, illumination change, occlusion and category
instance invariance. We seek representations that do not change too much when
these factors are varied for the same object.

We formulate an approach to measure task-relevant invariances in representa-
tions. We adopt the approach proposed in [76] with some modifications to incor-
porate dependence on the task labels. Consider a representation h(x) ∈ Rn where
each dimension is the output of a hidden unit. According to [76], the i-th hidden
unit is said to fire when sihi(x) > ti where the threshold ti is chosen according to a
heuristic described next and si ∈ {−1, 1} allows a hidden unit to use either low or
high activation values to fire. For each hidden unit, si is selected to maximize the
considered invariance. Using this definition, a firing representation f(x) ∈ Rn can be
constructed where each dimension is the indicator of the corresponding hidden unit
firing i.e. fi(x) = 1(sihi(x) > ti).

The global firing rate of each hidden unit is defined as G(i) = E(fi(x)). This
is controlled by the chosen threshold ti. In this work, we choose the thresholds
such that G(i) = 1/|Y|. Intuitively, we choose a threshold such that the number of
samples the hidden unit fires on is equal to (or close to) the number of samples in
each class1.

A local trajectory T (x) = {t(x, γ) | ∀γ} is a set a transformed versions of a reference
input x ∈ X under the parametric transformation t. For example, for measuring
viewpoint invariance, T (x) would contain different viewpoints of x. The local firing
rate for target y, is defined as:

Ly(i) =
1

|Xy|
∑
z∈Xy

1

|T (z)|
∑

x∈T (z)

fi(x) where Xy = {x|x ∈ X ,Y(x) = y} (2.2)

Intuitively, Ly(i) measures the fraction of transformed inputs (of target y) on
which the i-th neuron fires. Normalizing the local firing rate by the global firing rate
gives us the target conditioned invariance for the i-th hidden unit as Iy(i) =

Ly(i)
G(i) .

1Note that this heuristic is only applicable for datasets with uniformly distributed targets and has
been presented to simplify notation. See supplementary material Appendix 2.A for a more general
formulation of this heuristic.
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The final Top-K Representation Invariance Score (RIS) can be computed by averaging
target conditioned invariance for top-K neurons (selected to maximize RIS) and
computing the mean over all targets. We convert the Top-K RIS to a percentage of
the maximum possible value (i.e. for all neurons Ly(i) = 1 ∀y ∈ Y). For discussion
on differences from [76], please see supplementary material Appendix 2.A.

We can now investigate the invariances encoded in the constrastive self-supervised
representations and their dependence on the training data. Since we wish to study the
properties relevant for object recognition tasks, we focus on invariances to viewpoint,
occlusion, illumination direction, illumination color, instance and a combination of
instance and viewpoint changes. We now describe the datasets used to evaluate
these invariances and will publicly release the code to reproduce the invariance
evaluation metrics on these datasets.

Occlusion: We use the training set of the GOT-10K tracking dataset[100] which
consists of videos, every frame annotated with object bounding boxes and the amount
of occlusion (0-100% occlusion discretized into 8 bins). We crop each bounding
box to create a separate image. Local trajectories consisting of varying occlusions are
constructed for each video by using one sample for each unique level of occlusion.

Viewpoint+Instance and Instance We use the PASCAL3D+ dataset[259] which
consists of images depicting objects from 12 categories, annotated with bounding
boxes and the viewpoint angle with respect to reference CAD models. We again crop
each bounding box to create a separate image. Local trajectories consisting of objects
from the same category, but different viewpoints are collected by ensuring that each
trajectory only contains one image for each unique viewpoint. Additionally, we can
construct local trajectories containing objects belonging to the same category and
depicted in the same viewpoint, restricting the transformation to instance changes
only.

Viewpoint, Illumination Direction and Illumination Color The ALOI dataset[66]
contains images of 1000 objects taken on a turntable by varying viewpoint, illumi-
nation direction and illumination color separately. Therefore, the dataset directly
provides 1000 local trajectories for each of the annotated properties.

Discussion The aggressive cropping in MOCO and PIRL creates pairs of im-
ages that depict parts of objects, thereby simulating occluded objects. Therefore,
learning to match features of these pairs should induce occlusion invariance. From
our results, we do observe that the self-supervised approaches MOCO and PIRL
have significantly higher occlusion invariance compared to an Imagenet supervised
model. PIRL has slightly better occlusion invariance compared to MOCO which be
attributed to the more aggressive cropping transformation used by PIRL. However,
the self-supervised approaches are inferior at capturing viewpoint invariance, and
significantly inferior at instance and instance+viewpoint invariance. This can be
attributed to the fact that instance discrimination explicitly forces the self-supervised
models to minimize instance invariance.
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Table 2.1: Invariances learned from Imagenet: We compare invariances encoded in super-
vised and self-supervised representations learned on the Imagenet dataset. We consider
invariances that are useful for object recognition tasks. See text for details about the datasets
used. We observe that compared to the supervised model, the contrastive self-supervised
approaches are better only at occlusion invariance.

Dataset Method Occlusion Viewpoint Illumination Dir. Illumination Color Instance Instance+Viewpoint
Top-10 Top-25 Top-10 Top-25 Top-10 Top-25 Top-10 Top-25 Top-10 Top-25 Top-10 Top-25

Imagenet Sup. R50 80.89 74.21 89.54 82.62 94.63 89.08 99.88 99.38 66.11 59.44 70.17 63.47
Imagenet MOCOv2 84.19 77.88 85.15 75.08 90.28 80.76 99.66 97.11 62.49 55.01 67.4 60.52
Imagenet PIRL 84.46 78.38 85.8 76.08 87.7 78.45 99.68 97.19 52.97 46.79 57.01 51.03

2.4.2 Augmentation and Dataset Biases
The results above raise an interesting question: how do self-supervised approaches
outperform even supervised approaches on occlusion invariances. As discussed
above, the answer lies in how contrastive self-supervised learning construct positive
examples. Most approaches treat random crops (from 20% to 100% of original image)
of images as the positive pairs which essentially is matching features of partially
visible (or occluded) images. Note that PIRL[158] follows an even more agressive
strategy: dividing a random crop further into a 3x3 grid.

But this aggressive augmentation comes at a cost. Consider the example of an
indoor scene shown in the Figure 2.1(left). Random cropping leads to samples
like those shown in Figure 2.1(right). Contrastive learning on such positive pairs
effectively forces the couch, dining table, refridgerator and the window to have
similar representations. Such a representation is clearly not beneficial for object
discriminating tasks. However, the learned approaches still demonstrate strong
results for image classification. We hypothesize that this could be due to two reasons:
(a) Bias: The pre-training datasets and downstream tasks are biased; (b) Capacity:
the capacity of current representation function is low. While the objective being
optimized is incorrect, current networks can only provide sub-optimal optimization
which in practice is effective. In this paper, we focus on the first hypothesis.
Biases: Contrastive self-supervised approaches are most commonly trained on the
ImageNet dataset. Images in this dataset have an object-centric bias: single object is
depicted, generally in the center of the image. This dataset bias is highly advanta-
geous for constrastive self-supervised learning approaches since the random crops
always include a portion of an object and not include objects from other categories.
While PIRL [158] has also used YFCC[224] which are less biased, the evaluation
framework does not effectively evaluate the discriminative power. For example, in
image classification, if test images very frequently contain both couches and tele-
vision, representations that do not differentiate them can still achieve seemingly
impressive performances. Furthermore, background features are generally strongly
tied with the objects depicted. We believe that these biases exist in the standard
classification benchmark - Pascal VOC[56].

In order to verify the hypothesis of pre-training dataset bias, we first construct
a new pre-training and downstream image classification task. We pretrain self-
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supervised models on the MSCOCO dataset[136] which is more scene-centric and
does not suffer the object-centric bias like Imagenet. Instead of using the standard
VOC classification benchmark for evaluation, we crop the annotated bounding boxes
in this dataset to include only one object per image (referred to as Pascal Cropped
Boxes). This allows us to focus on the model’s discriminative power.

In this experiment, we train three MOCOv2 models: trained on 118K MSCOCO
images, trained on a randomly sampled 10% subset of ImageNet (similar number
of images as MSCOCO) and trained on a dataset of 118K cropped bounding boxes
from the MSCOCO dataset. The results are shown in Table 2.2. We observe that
MOCOv2 trained on MSCOCO outperforms the model trained on MSCOCO Boxes
on the standard Pascal dataset (Column 1). This could be due to two reasons: 1)
due to the co-occurrence and background biases of Pascal (discussed above) which
is favorable for models trained on full MSCOCO images or 2) MSCOCO Cropped
boxes represent a significantly smaller number of pixels and diversity of samples
compared to the full MSCOCO. On the other hand, the trend is reversed when tested
on Pascal cropped boxes (Column 2). In this setting, the MOCOv2 model trained on
full COCO images cannot rely on co-occurrence statistics and background. However,
The object-centric bias of the MSCOCO cropped boxes leads to higher discrimination
power. A similar trend is observed in comparison to the MOCOv2 model trained
on the Imagenet 10% (which also possesses a strong object-centric bias) 2. This
indicates that the aggressive cropping is harmful in object discrimination and does
not lead to right representation learning objective unless trained on an object-centric
dataset.

2.5 Learning from Videos
Since our analysis suggests that aggressive cropping is detrimental, we aim to explore
an alternative in order to improve the visual representation learned by MOCOv2.
Specifically, we would like to focus on improving invariance to viewpoint and de-
formation since they are not captured by the MOCOv2 augmentation strategy. One
obvious source of data is videos since objects naturally undergo deformations, view-
point changes, illumination changes and are frequently occluded. We refer to these
transformations collectively as Temporal Transformations. Since we seek represen-
tations that are invariant to these transformations, such videos provide the ideal
training data. Consider the dataset of videos v ∈ V where each video v = (vi)

N(v)
i=1 is

a sequence of N(v) frames.
Baseline The naive approach for learning representations from this dataset

2An alternative explanation for the drop in performance could be the domain change i.e. full scene
images are shown during training, but cropped boxes are used for testing. In order to discredit this
explanation, we create a separate test-dataset consisting of the subset of Pascal VOC07 test images
which depict either table or chair in the image, but not both. We observe that on the table vs chair full
image classification task, the representation trained on COCO-Boxes outperforms full COCO-image
pre-training. Specifically, COCO-R50 has mAP of 73.64 and COCO-Boxes has mAP of 74.92
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Table 2.2: Discriminative power of representations: We compare representations trained
on different datasets, in supervised and self-supervised settings, on the task of image classifi-
cation. We observe that representations trained on object-centric datasets, like Imagenet and
cropped boxes from MSCOCO, are better at discriminating objects. We also demonstrate that
the standard classification setting of Pascal VOC is not an ideal testbed for self-supervised
representations since it does not test the ability to discriminate frequently co-occurring
objects.

Dataset Method Pascal Pascal Cropped Boxes ImageNet
Mean AP Mean AP Top-1 Acc

ImageNet Supervised 87.5 90.13 76.5
ImageNet MOCOv2 83.3 90.03 67.5
ImageNet PIRL 81.1 84.82 63.6
ImageNet 10% MOCOv2 62.32 73.85 38.53
MSCOCO MOCOv2 64.39 71.94 33.64
MSCOCO Boxes MOCOv2 59.6 75.29 34.24
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Figure 2.2: Leveraging Temporal Transformations: We propose an approach to leverage
the naturally occurring transformations in videos and learn representations in the MOCOv2
framework. The Frame Temporal Invariance model uses full frames and tracked region
proposals separated in time as the query and key. See supplementary material.

would be to consider the set of all frames {zi|z ∈ V, i ∈ N(z)} and apply a self-
supervised contrastive learning method. We evaluate this baseline by training
MOCOv2 on frames extracted from TrackingNet[165] videos. Note that in practice
we extract 3 frames per video (giving 118K frames in total) uniformly spaced apart
in time.

Frame Temporal Invariance The baseline approach ignores the natural trans-
formations occurring in videos. We therefore propose an alternative approach to
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leverage these temporal transformations to learn viewpoint invariant representa-
tions. We first construct a dataset of pairs of frames: Vpairs = {(zi, zi+k) | z ∈ V, i ∈
N(z), i mod k = 0}. In each of these pairs, zi+k captures a naturally transformed
version of zi and vice versa. For training under contrastive learning, we can create a
set of 118K positive pairs by applying the standard transformations on these frames
separately. Following the notation in Section 2.3, D+ = {(ti(zi), tj(zi+k)) | ti, tj ∈
T, (zi, zi+∆) ∈ Vpairs}where T is the set of transformations used in MOCO-v2.

While this captures the temporal transformations occurring in the frames, the
learned features focus on scene representations i.e. the whole frame. In order to be
effective for object recognition tasks, we desire representations that encode objects
robustly. As also demonstrated in Section 2.4.2, training on images that are not object-
centric decreases the robustness of the representations. Therefore, we propose an
extension to the Frame Temporal Invariance model.

Region Tracker Each frame zi is further divided into R regions {zri }Rr=1 using
an off-the-shelf unsupervised region proposal method[231]. In order to find tem-
porally transformed versions of each region, we track the region in time through
the video. This is done by matching each region zri to a region in a subsequent
frame zsi+∆ by choosing the minimum distance between the region features i.e.
s = arg minr′ d(zri , z

r′
i+∆). While any unsupervised feature representation can be

used for this, we use the baseline model described above and pool features at layer3
of the ResNet using ROI-Pooling[71]. By recursively matching regions between
{zri }Rr=1, {zri+∆}Rr=1

, {zri+2∆}Rr=1
, ..., we can generate tracks of the form (zri , z

s
i+k) that

lie above a certain threshold of cumulative match scores. These tracks can be used
as positive pairs for contrastive learning. We employ a similar training approach
as the Frame Temporal Invariance model, but with an additional contrastive loss
to match positive region pairs and discriminate negative region pairs. We provide
more concrete implementation details in the supplementary material.

Table 2.3: Evaluating Video representations: We evaluate our proposed approach to learn
representations by leveraging temporal transformations in the contrastive learning framework.
We observe that leveraging frame-level and region-level temporal transformations improves
the discriminative power of the representations. We present results on four datasets -
Pascal, Pascal Cropped Boxes, Imagenet (image classification) and ADE20K (semantic
segmentation).

Dataset Pascal Pascal Cropped Boxes ImageNet ADE20K
Mean AP Mean AP Top-1 Mean IOU Pixel Acc.

Baseline MOCOv2 61.8 70.91 30.33 14.69 61.78
Frame Temp. Invariance 63.89 72.17 29.34 14.41 61.85
Ground Truth Tracks 66.21 76.16 37.45 14.69 61.78
Region Tracker 66.47 75.86 36.51 15.28 63.29

We now evaluate the representations learned from videos using the proposed
approaches. First, we perform a quantitative evaluation of the approaches on down-
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Table 2.4: Invariances of Video representations: We evaluate the invariances in the repre-
sentations learned by our proposed approach that leverages frame-level (row 2) and region-
level (row 3, 4) temporal transformations. We observe compared to the Baseline MOCOv2
model, the models that leverage temporal transformations demonstrate higher viewpoint
invariance, illumination invariance, category instance invariance and instance+viewpoint
invariance.

Method Occlusion Viewpoint Illumination Dir. Illumination Col. Instance Instance+Viewpoint
Top-10 Top-25 Top-10 Top-25 Top-10 Top-25 Top-10 Top-25 Top-10 Top-25 Top-10 Top-25

Baseline MOCOv2 81.73 75.35 81.55 71.71 82.19 72.45 98.78 93.58 43.76 40.43 48.85 45.76
Frame Temp. Invariance 79.92 73.33 83.87 74.86 84.47 75.57 99.18 96.03 42.98 39.42 47.81 44.26
Ground Truth Tracks 81.52 74.6 84.82 75.3 88.28 78.51 99.92 98.31 47.51 42.93 53.47 48.63
Region Tracker 83.26 76.52 84.97 76.18 88.3 79.34 99.77 97.7 48.81 44.38 53.31 49.04
Imagenet 10% MOCOv2 84 78.26 80.42 70.42 81.9 72.27 98.29 92.71 46.23 42.65 48.54 45.46
Imagenet MOCOv2 84.19 77.88 85.15 75.08 90.28 80.76 99.66 97.11 62.49 55.01 67.4 60.52

stream tasks. We then analyze the invariances learned in this representation by
following the framework established in Section 2.4.1.

2.5.1 Evaluating Temporal Invariance Models

We evaluate the learned representations for the task of image classification by training
a Linear SVMs (for Pascal, Pascal Cropped boxes) and a linear softmax classifier (for
Imagenet). We also evaluate on the task of semantic segmentation on ADE20K[276]
by training a two-layered upsampling neural network[142]. In Table 2.3, we report
the evaluation metrics to compare the three models presented in Section 2.5. The
Ground Truth tracks model uses annotated tracks rather than unsupervised tracks.
We observe that the Frame Temporal Invariance representation outperforms the
Baseline MOCO model on the Pascal classification tasks. We additionally observe that
the Region-Tracker achieves the best performance on these all tasks demonstrating
stronger discriminative power.

2.5.2 Analyzing Temporal Invariance Models

The Frame Temporal Invariance and Region-Tracker representations were explicitly
trained to be robust to the naturally occurring transformations in videos. Intuitively,
we expect these representations to have higher viewpoint invariance compared to
the Baseline MOCO. In Table 2.4, we report the Top-K RIS percentages for the three
representations. Our analysis confirms that the two proposed representations indeed
have significantly higher viewpoint invariance. Most importantly, we observe that
the Region-Tracker model has significantly higher viewpoint and illumination dir.
invarance compared to MOCOv2 trained on a 10% subset of Imagenet (same number
of samples) and is comparable to the MOCOv2 model trained on full Imagenet (10x
the number of samples).
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2.6 Conclusion

The goal of this work is to demystify the efficacy of constrastive self-supervised
representations on object recognition tasks. We present a framework to evaluate
invariances in representations. Using this framework, we demonstrate that these self-
supervised representations learn occlusion invariance by employing an aggressive
cropping strategy which heavily relies on an object-centric dataset bias. We also
demonstrate that compared to supervised models, these representations possess
inferior viewpoint, illumination direction and category instance invariances. Finally,
we propose an alternative strategy to improve invariances in these representations
by leveraging naturally occurring temporal transformations in videos.
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Appendices

Appendix 2.A Comparison of Invariance Measure to Good-
fellow et. al[76]

In Section 2.4.1 of the main text, we presented an approach to measure invariances
in representations. This approach was directly adopted from [76] with some minor
modifications. In this section, we describe these differences and the motivation for
these modifications.

In our work, we wish to measure invariances encoded in representations while
accounting for the discriminative power of the representations. However, in [76],
the focus is purely on measuring invariances which in many cases could assign
higher scores to representations that are not discriminative. This is manifested in
the following changes:

• Chosen Thresholds In [76], the threshold for each hidden unit is chosen to be
a constant such that the global firing rate is 0.01 (i.e. the hidden unit fires on
1% of all samples). In contrast, in our work, we choose an adaptive threshold
for each class in the dataset. For a specific class y, we choose the threshold such
that the global firing rate is Gy(i) = P (y) (i.e. the fraction of samples having
label y). This allows each hidden unit the ability to fire on all samples having
class y. In contrast, the threshold chosen in [76] could lead to a hidden unit
firing on only a fraction of the samples of class y (if p(y) > 0.01). Consider a
hidden unit that consistently has higher activations for samples of class y. Such
a hidden unit is optimally invariant and discriminative, by could have lower
invariance scores under the heuristic of [76] when a local trajectory contains
a higher-scoring and a lower-scoring sample of y. Note that the heuristic
presented in the main paper for simplicity of notation is only applicable for
datasets with uniform distribution of labels where Gy(i) = P (y) = 1/|Y|.

• Local Firing Rate Since in our work we choose thresholds that are class-
dependent, we need to compute separate local firing rates considering the
local trajectories for each class Ly(i). This has the added benefit of assign-
ing equal importance to samples of each class, especially in class-imbalanced
datasets. This is in contrast to [76], where a single local firing rate is computed
across all local trajectories of all classes (denoted by L(i) in [76]). This assigns
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higher weights to classes with larger number of samples, hence disregarding
the discriminative power of representations.

• Invariance Scores Since in our work we compute class-dependent local firing
rates, we first compute task-dependent invariance scores Iy(i) = Ly(i)/Gy(i).
The Top-K hidden units are chosen for each class separately and the mean
task-dependent invariance score is computed.

I(f) =
1

|Y|
∑
y∈Y

1

K

[
max
|C|=K

∑
i∈C
C⊆[n]

Iy(i)
] (2.3)

In [76], the Top-K hidden units are chosen across all classes, again penalizing
hidden units that are optimally discriminative and invariant for specific classes.

We believe that these modifications are essential to measure invariances in rep-
resentations that are intended to be used in tasks that require discrimination of
classes.

Appendix 2.B Visualizing Local Trajectories

In this section, we visualize local trajectory examples for each of the invariance results
in the main text. In Figure 2.B.1, we present local trajectories created to measure
occlusion, instance and viewpoint+instance invariance. For invariances measured
on the ALOI[66] dataset, please visit this webpage to visualize the dataset.

Appendix 2.C Intra-Instance Invariance to Sythetic Transforms

In this section, we analyze the invariance of MOCO-v2[30] and ImageNet-supervised
representations to the synthetic transforms used in self-supervised contrastive rep-
resentation learning methods. We consider two representations from MOCOv2 -
one taken before the final MLP and one taken after the final MLP.

In order to compute the invariance score(from Section2.4.1), we consider 10000
images randomly from ImageNet. We create the “trajectories” by generating 10 in-
stances for each image using the transforms defined in MOCO-v2[30]. In Figure 2.C.1,
we present the invariance score of the three representations while considering differ-
ent fractions of the representations for the top-K invariant neurons. We observe that
the MOCO-v2 representation after the MLP layers is the most invariant. Additionally,
we observe that small portions (¡50%) of the MOCO-v2 representation before the
MLP layers is also more invariant than the supervised representation.

As explained in Section 2.4.1, the invariance score ensures that each neuron is
class-discriminative by allowing it to fire on a limited number of samples. Without
accounting for class-discrimination, we can also measure the cosine similarity of all
pairs of samples in the instance trajectories. This gives us a measure of invariance of
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Viewpoint + Instance Trajectory

Occlusion Trajectories

Instance Trajectory

Figure 2.B.1: Local Trajectories: We present example local trajectories for measuring occlu-
sion invariance, instance invariance and viewpoint+instance invariance.

the full representation by measuring average similarity between two transformed
versions of an instance. In Table 2.C.1, we report these average similarity scores. We
observe that both MOCO-v2 representations (before and after the MLP) demonstrate
significantly higher invariance to the synthetic transforms.

Table 2.C.1: Intra-Instance Cosine Similarity: We measure the average similarity of two
instances generated by synthetically transforming a single image. We compute the average
similarity using 10000 images and 45 instance pairs per image.

Supervised MOCO-v2 (before MLP) MOCO-v2 (after MLP)
Avg. Cosine Similarity 0.844 0.878 0.911

Appendix 2.D Implementation Details: Learning from Videos

In Section 2.5 of the main text, we present an approach to leverage naturally oc-
curring temporal transformations to train models in the MOCOv2 framework[30]. In
Algorithm 1, we provide pseudo-code to allow reproducibility of this method. In
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Figure 2.C.1: Intra-Instance Invariance: We measure the invariance to synthetic transforms
used in self-supervised contrastive representation learning methods. We present the in-
variance score of different portions of supervised ImageNet-based representation and the
MOCO-v2 representation taken before and after the final MLP layers.

this section, we also describe the dataset creation, unsupervised tracking method
and other implementation details.

Dataset Creation For experiments in Section 5, we use the TrackingNet
dataset[165] that consists of 30K video sequences. In order to increase the size
of the dataset, from each video we extract 4 temporal chunks of 60 consecutive
frames such that the chunks are maximally spaced apart in time. Each chunk is
considered a separate video for all training purposes.

Generating Tracks For each frame, we extract region proposals using the
unsupervised method - selective search[231]. We choose the top 300 region proposals
for frames which produce more than 300 regions. Following the notation from the
main text, each video v = (vi)

N(v)
i=1 is a sequence ofN(v) frames. Each frame consists of

R regions {zri }Rr=1. The matching score between region zri and a region zr′j is defined
as the cosine similarity between their features f i.e. max(0, dcos(f(zri ), f(zr

′
j ))). Here

the features f(x) are extracted by ROI-pooling the layer 3 of the ResNet model f . The
score of a track from region zri to region zr′j is defined using the following recursive
expression:

S(zri , z
r′
j ) =

∑
k

j − i− 1

j − i S(zri , z
k
j−1) ∗max(0, dcos(f(zkj−1), f(zr

′
j ))) (2.4)

S(zrt , z
k
t+1) = max(0, dcos(f(zrt ), f(zkt+1)) ∀r, t, k (2.5)

For any pair of frames, we only consider tracks that have a score above a chosen
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Algorithm 1: MoCo-style Pseudocode for Frame Temporal Invairance.
1# f_q, f_k: encoder networks for query and key
2# queue: dictionary as a queue of K keys (CxK)
3# m: momentum
4# t: temperature
5# use_tracks: True for Frame Temporal Invariance with tracks
6
7def get_loss_and_keys(x1, x2):
8x_q = aug(x1) # a randomly augmented version
9x_k = aug(x2) # another randomly augmented version
10q = f_q.forward(x_q) # queries: NxC
11k = f_k.forward(x_k) # keys: NxC
12k = k.detach() # no gradient to keys
13# positive logits: Nx1
14l_pos = bmm(q.view(N,1,C), k.view(N,C,1))
15# negative logits: NxK
16l_neg = mm(q.view(N,C), queue.view(C,K))
17# logits: Nx(1+K)
18logits = cat([l_pos, l_neg], dim=1)
19# contrastive loss, Eqn.(1)
20labels = zeros(N) # positives are the 0-th
21loss = CrossEntropyLoss(logits/t, labels)
22return loss, k
23
24f_k.params = f_q.params # initialize
25for x1, x2 in loader: # load a minibatch of frame pairs x1, x2 with N samples
26loss, k = get_loss_and_keys(x1, x2)
27
28if use_tracks:
29x1_patch, x2_patch = sample_track(x1, x2) # Sample a patch pair tracked from frame x1 to frame x2
30loss_patch, k_patch = get_loss_and_keys(x1_patch, x2_patch)
31loss = 0.5*loss + 0.5*loss_patch
32
33# SGD update: query network
34loss.backward()
35update(f_q.params)
36
37# momentum update: key network
38f_k.params = m*f_k.params+(1-m)*f_q.params
39
40# update dictionary
41enqueue(queue, k) # enqueue the current minibatch
42dequeue(queue) # dequeue the earliest minibatch
43
44if use_tracks:
45enqueue(queue, k_patch)
46dequeue(queue)

threshold.
Sampling Frames Training the Frame Temporal Invariance model requires

sampling pairs of frames that are temporally separated Vpairs = {(zi, zi+k) | z ∈ V, i ∈
N(z), i mod k = 0}. We sample frames that are at least k = 40 frames apart.

Implementation Details We use ResNet-50 as the backbone following the archi-
tecture proposed in [30] for all models. We also use the same hyperparameters as
MOCOv2 [30]. In order to extract features for patches (line 10,11 of Algorithm 1
when xq, xk are patches) in the Frame Temporal Invariance with tracks model, we
use ROI-Pooling[71] at layer3 of the ResNet model. We plan to publicly release the
code upon acceptance, for reproducing all the results presented in the main text.
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Chapter 3

The Challenges of Continuous
Self-Supervised Learning

3.1 Introduction

We are witnessing yet another paradigm shift in the field of computer vision: from
supervised to self-supervised learning (SSL). This shift promises to unleash the
true potential of data, as we are no longer bound by the cost of manual labeling.
Unsurprisingly, recent work has begun to scale current methods to extremely large
datasets of up to 1 billion images [22, 24, 77, 78, 80] with the hope of learning better
representations. In this paper, we pose the question: Are we ready to deploy SSL
in-the-wild to harness the full potential of unlimited data?

While SSL promises to exploit the infinite stream of data generated on the internet
or by a robotic agent, current practices in SSL still rely on the traditional dataset
setup. Images and videos are accumulated to create a training corpus, followed
by optimization on hundreds of shuffled passes through the data. The primary
reason for working with datasets is the need for reproducible benchmarks, but one
question remains: is this traditional static learning setup right for benchmarking
self-supervised learning? Does this setup accurately reflect the challenges of a self-
supervised system deployed in the wild? We believe the answer is NO. For example,
consider a self-supervised system attempting to learn representations of cars over
the years from the web. Current setups only evaluate static learning and do not
evaluate the ability to adapt representations to new car models (and not forget old
ones). Another example is to consider a deployed robotic self-supervised learning
agent that actively collects frames from its video feed. This data is heavily structured
and correlated due to temporal coherence. However, existing SSL benchmarks do
not reflect this challenge since they rely on datasets that can be randomly sampled
to produce IID samples.

In this paper, we move past dataset-driven SSL and investigate the efficacy of ex-
isting methods on the Continuous Self-Supervised Learning problem. More specif-
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Figure 1: Conventional vs. Continuous Self-Supervised Learning. The conventional setup
of fixed datasets for SSL violates key properties exhibited by data continuously gathered
in-the-wild: infinite, non-IID and non-stationary semantics. Hence, for SSL methods that
aim to be deployed in-the-wild, the conventional setup serves as a poor benchmark. In
this work, we introduce the problem of continuous self-supervised learning to facilitate the
evaluation of such methods and expose novel challenges.

ically, we explore the challenges faced in two possible methods of deployment: (a)
an internet-based SSL model which relies on continuously acquired images/videos;
(b) an agent-based SSL system that learns directly from an agent’s sensors. Both
settings rely on a streaming data source that continuously generates new data, pre-
senting three unique challenges that should be reflected when benchmarking SSL
approaches (see Figure 1).

First, storing infinite amounts of data is not feasible and obtaining data in the
wild often incurs a cost of time due to bandwidth or sensor speed limitations. As a
result, epoch-based training is impossible, and a naive deployment of conventional
SSL approaches, using each sample only once, would lead to inefficient learners,
often waiting for data to be made available, while under-utilizing the data at its
disposal. One solution is to rely on replay buffers to decouple data acquisition from
the training pipeline. The first question we pose is how effective replay mechanism
are at allowing representations to continue to improve while data is being collected?

Second, streaming data sources cannot be “shuffled” to create mini-batches of IID
samples. Instead, the ordering of samples is dictated by the source itself. We show
that this creates challenges for conventional representation learning approaches,
as training data is not necessarily IID. Hence, we also pose the question of how to
adapt existing SSL methods to learn robust representations under various non-IID
conditions?

Third, real-world data is non-stationary. For example, a higher number of football-
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related images are seen during the world cup. Also, robots exploring indoor environ-
ments observe temporally clustered semantic distributions - a sequence of bedroom
objects, followed by a sequence of kitchen objects, and so on. An intelligent lifelong
learning system should be able to continuously learn new concepts without forget-
ting old ones from non-stationary data distributions. However, we show empirically
that conventional contrastive learning approaches can overfit their representations
to the current distribution, displaying signs of forgetting. We thus pose the question
of how to design SSL methods that can learn under non-stationary conditions?

Overall, the main contributions of this work can be summarized as follows. We
identify three critical challenges that arise in the continuous self-supervised learning
setup, namely, training efficiency, robustness to non-IID data streams and learning
under non-stationary semantic distributions. For each challenge, we construct a
curated data stream that simulates this challenge and quantitatively demonstrate
the shortcomings of existing SSL methods. We also propose initial solutions to these
problems, with the goal of encouraging further research along these directions. We
explore the idea of Buffered SSL, which involves augmenting existing approaches
with a replay buffer to improve training efficiency. Second, we propose a novel method
to handle non-IID data streams by decorrelating stored samples. Finally, we show
that decorrelated buffers also prevent forgetting and improve continual learning under
non-stationary data distributions.

3.2 Related Work

Self-supervised visual representation learning is now a mature area of research,
capable of producing models that even outperform fully supervised methods when
transferred to a variety of downstream tasks [24, 31, 85, 91]. Despite forgoing the
use of labeled data, these methods are still trained on fixed-size curated datasets
originally developed for the supervised setting. This paper explores the various
challenges of deploying self-supervised learning systems truly in-the-wild.

Self-supervised learning has a long history in computer vision [21, 36, 126, 150,
162, 204] aiming to learn representations of visual data by solving tasks that can be
defined without human annotations. A breadth of methodologies has been proposed
from generative models such as denoising auto-encoders [236], sparse coding [131,
171, 172], inpainting [178] and colorization [42, 125, 271], to methods that learn
representations predictive of spatial context [49, 69, 169], temporal context [59, 159,
177, 186, 239, 247], or concurrent modalities like audio [8, 36, 164, 175], text [41, 75,
187] or speech [153, 154].

One successful approach is to learn transformation invariant representations [29,
51, 88, 91, 158, 173, 191, 257]. Prior work has developed improved image aug-
mentations [29, 158], backbone models [25, 77], stable (slow-moving) learning
targets [24, 33, 91], and transformation invariant loss functions [25, 31, 85, 173, 268].
As a result, SSL has produced impressive models that improve state-of-the-art on a
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Figure 2: Overview: We investigate the problem of continuous self-supervised learning,
exposing three challenges faced by SSL methods deployed in-the-wild. First, the infinite
nature of data streams implies that samples cannot be repeated. We show that augmenting
an existing SSL method [31] with replay buffers can significantly alleviate this issue. Second,
data gathered continuously in-the-wild is often temporally correlated, violating the IID
assumption of optimization algorithms. We show that enhancing replay buffers to maintain
minimally redundant samples (MinRed), we can generate data that are less correlated.
Finally, semantic distributions of data gathered in-the-wild are non-stationary. This poses
the challenge of “forgetting” concepts seen in past distributions. We show that MinRed
buffers can also alleviate the issue of “forgetting” by collecting unique samples from various
semantic groups.

diverse set of downstream tasks like recognition [24, 25], detection [91] and video
object segmentation [25].

Given its success, a few attempts have been made to scale SSL to large uncu-
rated datasets, such as YFCC-100M [22, 80] and Instagram-1B [24, 77]. Goyal et
al. [80] showed that tasks such as colorization [271], context prediction [169] and
rotation [69] have diminishing returns on large datasets, due to the low complexity
of the task, and argued for the development of more complex tasks. Transformation
invariance objectives, coupled with heavy data augmentations, have increased the
task’s complexity substantially. As a result, recent attempts of scaling up augmenta-
tion invariance [24, 77, 78] have seen some performance gains. However, we argue
that these methods are still not ready to be deployed truly in-the-wild. Beyond the
difficulties of training on uncurated data, already studied in prior work [24, 77],
training on fixed datasets ignores important challenges of streaming data, such as
the non-iid nature of streaming sources, data acquisition costs, and model saturation
due to its fixed capacity.

Continual and lifelong learning: The ability to continuously learn new concepts
or tasks over time is often referred to as lifelong learning [225] or never-ending
learning [32, 160]. Lifelong learning has traditionally been studied in supervised
and reinforcement learning settings. In both cases, the model is expected to learn
from a set of distinct tasks presented sequentially, without forgetting previous
ones [118, 134, 190, 228, 269]. However, these works usually assume access to full
supervision in the form of class labels or external rewards, not available in the
streaming setup.

Techniques developed for supervised continual learning are nevertheless useful

28



in the Continuous SSL problem. Rehearsal techniques [5, 19, 193, 199, 213] store
and replay a small set of training samples from previous tasks to avoid forgetting
previously learned skills or concepts. While there is no notion of well-defined tasks
in Continuous SSL, we show that replay buffers help improve training efficiency.
We also propose replay buffers that minimize the redundancy of stored memories
to decorrelate highly correlated streaming sources. Beyond rehearsal techniques,
expandable models [203, 265] have also been used to reduce catastrophic forgetting
in supervised continual learning. This is often accomplished either by progressively
growing the model each time a new task is added [133, 203, 265], or maintaining
a common backbone model which is adapted to each task separately using small
task-specific adaptation blocks [148, 163, 193]. The lack of well-defined tasks in
streaming SSL makes lifelong learning more challenging, as it needs to learn from
data distributions that may shift over time.
Lifelong Generative Models: None of the existing literature has investigated how
discriminative self-supervised representation learning methods perform in the full
continuous learning setup (streaming, non-IID and non-stationary data). However,
recent works [1, 189, 192, 263] have attempted to address a sub-problem of ours,
i.e., learning self-supervised representations using generative models in a continual
learning setting where the domain of data exhibits significant shifts during training.
These works present approaches to locate domain shifts in order to avoid the prob-
lem of catastrophic forgetting. These techniques are made possible by the fact that
training data is constructed by collecting samples from images in significantly differ-
ent datasets - for example, [263] uses Celeb-A[141] faces followed by 3D-Chair[9]
images). In contrast, we consider a more realistic setting of ImageNet images with a
smoothly changing distribution of classes. Furthermore, as highlighted above, these
works do not address other critical challenges of deploying SSL in-the-wild, as they
are limited to epoch-based optimization, do not consider non-curated and/or high
correlated streaming sources, data efficiency, or the issue of early convergence.

3.3 Problem Setup and Challenges

The goal of this work is to investigate the efficacy of self-supervised representation
learning on a continuous source of streaming data generated in the real world,
which we refer to as the continuous self-supervised learning problem. First, we describe
the distinction between conventional training and the continuous self-supervised
learning setup. We then discuss the various unique challenges that appear in the
continuous case.

3.3.1 Streaming vs Conventional Self-Supervised Learning
Existing self-supervised learning methods rely on fixed-size datasets. These datasets
D = {x1, . . . ,xN} are finite (i.e., N << ∞), immutable (i.e., D does not change)
and readily available (i.e., all its samples xi can be easily accessed at all times). Due
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to these properties, samples can be indexed, shuffled, and accessed at any point in
training. Conventional SSL takes advantage of these possibilities by iterating over
the datasets multiple times (epochs).

In contrast, Continuous SSL relies on a streaming source S , defined as a time-series
of unlabeled sensory data S = (x1,x2, . . . ,xT ), potentially of infinite length T −→∞.
At any given moment in time t, fetching data from a streaming source S yields the
current sample xt. Future samples {xτ∀τ > t} are not accessible at time t, and past
samples {xτ∀τ < t} are only accessible if stored when fetched.

In the Continuous SSL setup, one important parameter is the ratio between the
data loading time tdata and the time taken to perform one optimization step topt. In
most deployment setups tdata > topt, due to slower data transfer speed or low sensor
frame rates. Therefore, even with parallelization, optimization algorithms can wait
idle for tidle = tdata − topt. Therefore, SSL methods developed for the continuous
setup should be able to efficiently and continually build better representations, while
training on samples obtained from a streaming source.

3.3.2 Why Continuous SSL? Does scaling the number of unique images
help representation learning?

To understand the effect of increasing the scale of training data (potentially to
infinite), we indexed all Creative Commons images uploaded to the photo-sharing
website Flickr.com between 2008 and 2021. We then used this index to create datasets
of varying sizes, and train visual representations through self-supervision over
multiple epochs in the Conventional SSL setup.

We adopt SimSiam [31] as a prototypical example of contrastive learning meth-
ods, which have been shown to be effective for Conventional SSL. SimSiam learns
representations by optimizing the augmentation invariance loss

L(x1, x2) = −sg(z1)T g(z2)− sg(z2)T g(z1) (3.1)

where x1 and x2 are two random transformations of an image x, zi = f(xi) is
the model output representations, sg(·) the stop gradient and g(·) a prediction head.
Refer to [31] for full details. Figure 3 shows the linear classification accuracy on
ImageNet for models trained on different datasets as a function of the number of
model updates. Unsurprisingly, training with more diverse data leads to better rep-
resentations. This highlights the benefits of scaling unique images, which Continuous
SSL will take to the extreme.

3.3.3 Challenges of Continuous SSL

Learning representations in the Continuous SSL setup poses novel challenges that
Conventional SSL methods do not face.

- Epochs vs One Pass Streaming sources do not allow revisiting samples obtained
in the past unless they were stored. Since storing the full stream is infeasible due
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Figure 3: ImageNet downstream accuracy of a SimSiam model trained on datasets of different
sizes with a ResNet-18 backbone.

to the potentially infinite length, Continuous SSL methods are required to learn
representations in “one pass” over the samples.

- Sampling Efficiency Sampling data from streaming sources in the real world can
be inefficient due to sensor frame rates or bandwidth limitations. This significantly
increases the time taken to learn representations as optimization algorithms may
have to wait idly while waiting for data.

- Correlated Samples Many streaming sources in the wild exhibit temporal coher-
ence. For example, consecutive frames from online videos or from a robot exploring
its environment display minimal changes. Such correlations break the IID assump-
tion on which conventional optimization algorithms rely.

- Lifelong learning Access to infinite streams of data provides us the opportunity
to continuously improve visual representations. However, the non-stationary nature
of data streams in the wild cause conventional SSL methods to quickly forget features
that are no longer relevant for the current distribution. This poses another challenge:
as we continuously acquire new data, how can Continuous SSL methods integrate
new concepts in their representations without forgetting previously learned ones?

While all these challenges co-exist in the wild, evaluating current SSL methods
directly would prevent us from analyzing each one comprehensively and in isolation.
Instead, we disentangled each challenge by designing a set of data streams that
highlight each problem separately, and assess its effect on existing SSL methods. This
helps us building a thorough characterization of each challenge and inform us on how
to tackle them. We believe a disentangled analysis will help the community build
intuitions about the impact of each challenge on continuous SSL as a whole. Section
§3.4 introduces the challenge of one pass training and computational efficiency.
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Section §3.5 introduces the non-iid data setup, and Section §3.6 analyses the lifelong
learning setting.

3.4 Efficient Training

Computational and data efficiency are two challenges that currently prevent SSL
from being deployed on continuous data streams in-the-wild. For most practical
applications, tdata : toptim might be high, so SSL methods should use idle time to
improve the models. Second, fetching new samples can still be costly. For example,
exploration robots often run on batteries, and web crawlers are limited by network
bandwidths. Trivially deploying current SSL methods to the streaming setup would
discard each batch of data after being used once. However, current deep learning
optimization practices show that iterating over the same samples over multiple
epochs helps learn better representations. For example, supervised learning on
ImageNet [93, 120] iterates over the dataset 100 times, and SSL approaches [29] have
been shown to keep improving even after seeing each sample 800 times. Therefore,
we would like to answer the question of how to improve data efficiency while still
following the streaming setting.

3.4.1 Buffered Self-Supervised Learning

We present a simple solution to the challenges above. The key idea is to maintain
a fixed-size replay buffer that stores a small number of recent samples. This idea is
inspired by experience replay [135] commonly used in reinforcement learning [7, 161,
206] and supervised continual learning [99, 199]. As shown in Figure 4a, the replay
buffer decouples the streaming source from the training pipeline. The streaming
data can be added to the replay buffer when available, replacing the oldest samples
(i.e. first-in-first-out (FIFO) update rule). Simultaneously, mini-batches of training
data can be generated at any time by randomly sampling from the buffer. As shown
in Figure 4b, replay buffers allow us to continue training during the otherwise idle
wait time tidle. Replay buffers also allow us to reuse samples by sampling them
multiple times, hence reducing the total data cost. We refer to this approach as
Buffered Self-Supervised Learning.

3.4.2 Single-pass training experiments

We study the effectiveness of replay buffers when training with a single pass of the
data. We trained ResNet-18 SimSiam models with and without replay buffers, with
various amounts of idle time tidle = tdata − toptim. All models were trained using the
first 20 million images in our Flickr index as the streaming source.

Figure 5 shows the ImageNet linear classification performance for increasing tdata.
By maintaining a small replay buffer (containing only the most recent 64k images),
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Figure 5: Streaming SSL with limited
bandwidth. Comparison of buffered and
non-buffered approaches for various lim-
ited bandwidth settings. tdata : toptim de-
notes the ratio of data acquisition time
to the optimization time. Buffered SSL
can take advantage of the idle time to ef-
fectively improve the learned representa-
tions instead of waiting idly for new data.

Buffered SSL was able to make good use of the idle time and improve representations
significantly (41.4% accuracy on ImageNet) over the bottlenecked Conventional SSL
approach (32.5% ImageNet accuracy). Replay buffers also improve data efficiency
in the Continuous SSL setup, as each sample can be reused multiple times. Data
usage is proportional to the hyper-sampling rate K, defined as the ratio between
the number of mini-batches generated for training and acquired from the streaming
source.

To understand the limits of hyper-sampling, we trained a ResNet-18 SimSiam
model with a replay buffer for a fixed amount of updates (780 000 iterations). Table 1
shows a comparison of Buffered SSL at varying hyper-sampling rates K, to Con-
ventional SSL trained on the same amount of data, and Epoch-based SSL methods
trained for K epochs. Epoch-based SSL and Buffered SSL are optimized with the
same number of updates, but the former violates the streaming setup. Despite being
required to train on a single pass of the data, Buffered SSL with a hyper-sampling rate
of K = 10 achieved similar performance to epoch-based training, even for buffers as
small as 64K images (0.3% of the 20M unique images seen). Table 1 also shows that,
as hyper-sampling rates increase, the size of the replay buffer becomes critical. For
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Table 1: Data Efficiency: Augmenting SSL methods with replay buffers can improve ef-
ficiency allowing us to train on data streams with one pass. We show that Buffered SSL
methods outperform the Conventional SSL methods and achieve performances close to
training for multiple epochs.

Epochs Hyper
Sampling

Memory
Size

ImageNet
Top1 Acc

iNaturalist
Top1 Acc

Training DB: Flickr 20M
Conventional SSL 1 - - 32.3 9.8
Buffered SSL 1 10 16K 41.4 16.7
Buffered SSL 1 10 64K 41.8 17.3
Buffered SSL 1 10 256K 41.5 17.5
Epoch-based SSL∗ 10 - - 41.9 17.5
Training DB: Flickr 5M

Conventional SSL 1 - - 14.5 2.8
Buffered SSL 1 40 16K 39.9 16.1
Buffered SSL 1 40 64K 41.0 17.1
Buffered SSL 1 40 256K 41.5 17.3
Epoch-based SSL∗ 40 - - 41.8 17.0
Training DB: Flickr 1M

Conventional SSL 1 - - 8.0 1.5
Buffered SSL 1 200 16K 30.5 9.5
Buffered SSL 1 200 64K 36.4 14.3
Buffered SSL 1 200 256K 38.8 15.5
Epoch-based SSL∗ 200 - - 41.7 17.3
∗Epoch-based SSL violates the streaming setting (reference only).

example, for K = 200, Buffered SSL still improves significantly over Conventional
SSL on the same amount of data, regardless of buffer size. However, better repre-
sentations are learned as the buffer size increases. Since, in high hyper-sampling
regimes, the buffer is updated slowly with new images from the streaming source,
increasing the buffer size prevents the model from quickly overfitting to the samples
in the buffer.

3.5 Correlated Data Sources

Visual data obtained in-the-wild is often correlated and non-IID. For example, video
feed from a self-driving car collects very similar consecutive frames. This is in stark
contrast to the data used in Conventional SSL methods. For example, the ImageNet
dataset allows sampling images from a collection of 1000 uniformly distributed
object classes. Even methods trained on larger datasets like Instagram-1B [77, 80]
are less likely to encounter heavily correlated samples in the mini-batches. However,
the constant flow of data in the Continuous SSL setup generally violates these
assumptions even in the static image setup (images uploaded near events are likely
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Table 2: Visually Correlated SSL: Linear classification performance of buffered and un-
buffered SimSiam representations trained on data sources with high temporal coherence.
MinRed buffers learns better representations by decorrelating the data.

Epochs Hyper
Sampling

Memory
Size

ImageNet
Top1 Acc

iNaturalist
Top1 Acc

Streaming source: Kinetics (Nseq =16)

Conventional SSL 5 - - 17.7 3.0
Buffered SSL 1 5 64K 25.9 8.4
Buffered SSL (MinRed) 1 5 64K 26.2 7.9
Decorrelated source∗ 5 - - 25.9 7.9
Streaming source: Kinetics (Nseq =64)

Conventional SSL 5 - - 7.6 0.8
Buffered SSL 1 5 64K 11.7 1.4
Buffered SSL (MinRed) 1 5 64K 31.2 9.9
Decorrelated source∗ 5 - - 30.7 9.9
Streaming source: Krishna CAM

Conventional SSL 5 - - 0.4 0.03
Buffered SSL 1 5 16K 0.5 0.05
Buffered SSL (MinRed) 1 5 16K 15.2 3.43
Buffered SSL 1 5 64K 1.7 0.07
Buffered SSL (MinRed) 1 5 64K 17.9 5.91
Decorrelated source∗ 5 - - 19.2 6.94
∗Decorrelated sources violate the streaming setting (reference only).

to be highly correlated).
Let (xi : i ∈ D) be a sequence of samples. When xi is generated by randomly

sampling from a large dataset, samples are close to IID. Hence, the probability pc
that two samples xi and xj are highly correlated is low, pc ≈ 0. Correlated samples
may indicate images that are visually very similar or visually dissimilar but depict
similar semantic content. However, in the Continuous SSL setup, the IID assumption
is generally violated, leading to pc >> 0. Under the assumption that consecutive
samples in a continuous stream of data have the same correlation probability pc,
the likelihood of a random pair in a batch (xi, . . . , xi+b) of size b being correlated
(correlation likelihood) is large, and given by

LSeq = Pc(b, pc) =
2

b(b− 1)

b−1∑
i=1

b∑
j=i+1

pj−1
c =

2pc
b(b− 1)

( pbc − 1

(1− pc)2
+ b

pc
1− pc

)
. (3.2)

Introducing a replay buffer of size B >> b, as proposed in §3.4.1, lowers the
correlation likelihood to LFIFO = Pc(B, pc) ≈ b

BLSeq < Pc(b, pc)
1, and enables more

effective representation learning.

1Approximation holds for large values of B and b, and pc 6= 1.
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Figure 6: Estimate of within batch correlation while training w/ and w/o replay buffers.

3.5.1 Minimum Redundancy Replay Buffer

While replay buffers are able to reduce the correlation likelihood, prohibitively
large replay buffers (B >> b) are required to significantly lower LFIFO in heavily
correlated setups (pc ≈ 1). In order to overcome this, we propose a modified replay
buffer to only retain de-correlated samples, thereby actively reducing pc. We call
this the Minimum Redundancy Replay Buffer (MinRed).

To accomplish this, we rely on the learned embedding space to identify redun-
dant samples. Consider a replay buffer B with a maximum capacity of B, already
containing B samples with representation z̄i. To add a new sample x to B, we rely
on the cosine distance between all pairs of samples to discard the most redundant:

B ← B\i∗ ∪ {x} where i∗ = arg min
i∈B

min
j∈B

dcos(z̄i, z̄j). (3.3)

In other words, we discard the sample with minimum distance to its nearest neighbor.
To represent instances, we track the features z̄i of all samples in the buffer using a
moving average z̄i=αz̄i + (1− α)zi, where zi=f(xi) is the current feature of the ith
sample, and α the moving average coefficient. Since redundant samples are dropped
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from the buffer, the probability pc of two consecutive samples in the buffer being
correlated decreases. If this probability decreases from pc to ηpc where η << 1,
the correlation likelihood is lowered to LMinRed = Pc(B, ηpc) < Pc(B, pc), which
facilitates representation learning.

3.5.2 Experiments with non-IID data streams

We assess the performance of SSL methods on two data streams with heavy temporal
coherence. The first data stream is created by concatenating samples from videos in
the Kinetics dataset [27]. From each video, we sample Nseq frames at random and
add them sequentially to the data stream. The second training stream is taken as
consecutive frames from the KrishnaCAM dataset2 [217] which records ego-centric
videos spanning nine months of the life of a computer vision graduate student. On
each stream, we train the baseline SimSiam (Conventional SSL), SimSiam augmented
with replay buffers (Buffered SSL) and SimSiam augmented with MinRed buffers
(Buffered SSL (MinRed)). We evaluate these representations by training a linear
classifier on the ImageNet [37] and iNaturalist [233] datasets. Results are shown in
Table 2. We observe that the correlated nature of the data heavily disrupts training of
the conventional models. While the regular replay buffers alleviate this issue to some
extent, learned representations still suffer when trained on heavy correlated data
streams (as in Kinetics Nseq =64 and KrishaCAM). Finally, the proposed MinRed
buffers demonstrate significant gains in these setups. Models trained with MinRed
buffers are generally very close to the “oracle” setting of training from completely
decorrelated streams of data (i.e. randomly sampling from the collection of all frames
from all videos, and thus violating the streaming assumption).
Correlation of training samples: One of the benefits of Buffered SSL is the ability
to generate training samples with low correlation likelihood and thus closer to IID.
We analyzed the contents of the replay buffer over the duration of training to track
the correlation likelihood (see Figure 6). We confirmed that the contents of MinRed
replay buffers are significantly less correlated than FIFO buffers. In KrishnaCAM,
MinRed buffers tend to maintain memories of past unique frames for longer periods
of time. In Kinetics, MinRed buffers also yield training mini-batches with frames
from a larger number of unique videos.

3.6 Lifelong Self-Supervised Learning

As we explore the world, we come across different distributions of object classes,
some previously seen and some unseen. For example, we see furniture and appli-
ances every day. But we also encounter novel concepts like zebras when we visit
a zoo. This suggests that the distribution of semantic classes is often correlated in

2Concatenated videos are looped over 10 times to create a large stream.
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Figure 7: Continual unsupervised representation learning on full ImageNet (14M images).
The dataset is partitioned in 4 separate tasks which are seen in a sequenceDp1→Dp2→Dp3

→Dp4. Forgetting 7a is measured by computing the relative accuracy drop on each task after
training on data of the task itself. Minimum redundancy buffers naturally retain instances
from previous tasks, thus mitigating the catastrophic forgetting observed with conventional
SSL and regular replay buffers. Generalization 7b is measured as the overall accuracy across
all 15790 full ImageNet classes. By ensuring that images from past class distributions are
not forgotten, minimum redundancy buffers can learn better representations overall. All
results are averaged over 3 different sequences pi.

time with occasional changes in distribution. However, Conventional SSL methods
learn from a limited vocabulary of concepts that is repeatedly seen thousands of
times (often uniformly). This provides a simplification of the learning setup that
does not reflect the non-stationary nature of concepts in-the-wild.

3.6.1 A non-stationary data stream to benchmark SSL

To evaluate deployable SSL methods, we must use benchmarks that simulate the non-
stationary semantic distributions we encounter in-the-wild. Inspired by supervised
continual learning [118, 134], we introduce a setup with smooth shifting semantic
distributions. Partitions will be made publically available.

First, we create four datasetsD1,D2,D3,D4 by splitting the classes of the ImageNet-
21K dataset [37]. We create the splits based on the Wordnet [156] hierarchy such
that each Di contains images from semantically similar classes. For each class, we
hold out 25 images per class for evaluation. The training data stream is created
by sampling images at random from the four datasets {Dp1 ,Dp2 ,Dp3 ,Dp4} where
[p1, p2, p3, p4] is a permutation of the sequence [1, 2, 3, 4]. Images are sampled from
the datasets sequentially such that images from Dpi are seen only after most images
of Dpi−1 are sampled (see Appendix for a detailed description of the sampling pro-
cedure), simulating a smooth change in semantic distribution. The goal is to learn a
representation that can discriminate concepts from all datasets without overfitting
or forgetting concepts seen earlier.

3.6.2 Experiments with non-stationary distributions

We train representations using conventional SimSiam, SimSiam with replay buffers
(§3.4.1) and SimSiam with minimum redundancy buffers (§3.5.1) on a single pass
of this stream of data. During evaluation, we train a linear classifier on the learned
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representations to recognize all classes in the ImageNet-21k dataset, and measure
the accuracy on the held-out set of each Dpi separately. All results were averaged
over 3 permutations of p1, . . . , p4.

Figure 7a plots the drop in classification accuracy on each dataset Dpi after the
representation is trained on new dataDpi+1 , Dpi+2 , etc., relative to the initial accuracy
at the end of training on Dpi . This serves as a measure of forgetting - a larger drop
indicates that the representation is losing its ability to discriminate older classes.
The results show that all methods suffer from forgetting. However, SimSiam with
MinRed buffers displays less forgetting compared to conventional and buffered
SimSiam. Intuitively, this can be attributed to the MinRed criteria that leads to
retention of images from the older semantic distributions. Figure 7b also shows
the accuracy on all classes as training progresses. We observe that SimSiam with
MinRed buffers consistently yields better generalization. In supplementary material,
we also evaluated the learned representations on unseen classes, by testing only
on future data streams Dpi+t . Since MinRed buffers maintain training buffers with
wider coverage of semantics, the learned representations were also shown to be
more generalizable even to unseen concepts.

3.7 Discussion and Future Work

In this work, we exposed three challenges that require investigation to build robust
deployable self-supervised learners. We improve the efficiency of Continuous SSL
by leveraging replay buffers to revisit old samples. In future work, developing
approaches for quickly rejecting samples by preemptively evaluating their value
might yield improved data efficiency. We also propose a novel minimum redundancy
buffer to discard correlated samples allowing us to mimic the generation of IID
training data, even in highly correlated settings. An alternative future direction
could focus on learning representations that take advantage of the correlated nature
of the data stream to learn from fine-grained discrepancies.

In data streams with non-stationary semantic distributions, we show that MinRed
buffers alleviate the issue of catastrophic forgetting, as they are capable of main-
taining unique samples from past distributions. However, we observed signs of
saturating generalization as new concepts are introduced. Some possible reasons
could be: 1) the cosine decay learning rate schedule and 2) the fixed capacity of our
models that prohibits learning a large sequence of novel concepts. In preliminary
experiments (see supplementary material), we saw that training with a constant
learning rate (on 100M images from Flickr) does not lead to significant improve-
ments in performance. We also observed that trivially expanding the architecture at
regular intervals does not lead to noticeable improvements. However, we believe
that further exploration in this direction is required to continually learning novel
concepts in a self-supervised manner.
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3.8 Conclusion

One of the grand goals of self-supervised learning is to build systems capable of
continually learning from unlimited sources of unlabelled data. However, due to the
need for benchmarking, existing SSL methods have primarily focused on curated
datasets of limited size. Unfortunately, while the existing approaches work well
in the dataset setup, we are still not close to deployable continual self-supervised
methods. In this work, we advocate for a more realistic SSL setup that will facilitate
deployment, while retaining the benefits of benchmarking. To this end, we identified
three broad challenges of deployable SSL - training efficiency, correlated data, and
lifelong learning, - and proposed potential solutions to address them. We believe
however that further research is needed to develop deployable systems that deliver
on the promise of self-supervised learning, and hope future efforts in SSL research
focus on these challenges.
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Appendices

Appendix 3.A Additional results

3.A.1 Generalization towards unseen categories

To assess the open set generalization ability of models trained with Minimum Redun-
dancy (MinRed) buffers, we extended the continual learning experiment described
in Section 6.2 and Figure 7 of the main paper, and further evaluate on future data
partitions, i.e., data partitions containing categories yet unseen in the training se-
quence. The results are shown in Fig. 3.A.1. Training models with MinRed buffers
also lead to better generalizable towards unseen categories. This is likely explained
by the fact that MinRed buffers maintain higher semantic diversity in the training
data, which encourages the model to learn more general representations, likely to
generalize better to unseen categories.

3.A.2 Buffer contents during lifelong learning

To understand why MinRed buffers allow SimSiam to learn from non-stationary
distributions with less forgetting (Section 6 of the paper), we analysed the contents
of the buffer used to generate training samples. Figure 3.A.2 shows the number of
images in the buffer from each of the Dp1, . . . , Dp4 partitions, as training progresses
from Dp1 to Dp4. As can be seen, only MinRed buffers are capable of retaining
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Figure 3.A.1: Open set generalization. While training on the data stream used for assessing
continual learning, we also evaluated the models on future data partitions, which contain
images from images from categories not yet seen during training. By training models with
MinRed buffers, we can learn representations the can better generalize to unseen categories.
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images from prior distributions. Since these images can then be sampled for training,
MinRed buffers enable continual training with less forgetting.

3.A.3 Learning rate schedules for continual learning

The cosine learning rate schedule is not applicable to continuous SSL, as it requires
a pre-determined end. We tested several learning rate schedules. Results are shown
in Figure 3.A.3. With a simple constant learning rate, models can still learn from a
continuous (non-stationary) data stream, while still being able to achieve similar
performances in the static case, when combined with a short learning rate decay
before evaluation.
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of training.
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Appendix 3.B Pseudo-code for Buffered SSL with MinRed
buffer

Algorithm 2:

1 def train(f, SimSiam, stream, num_updates):
2 B = [] # Init empty buffer
3 for ims in stream: # Load batch from stream
4 Add2Buffer(B, ims)
5
6 # Hyper-sampling: Update num_updates times
7 for _ in range(num_updates):
8 # Sample batch from buffer
9 x = RandomSample(B)

10 x1, x2 = aug(x), aug(x)
11 z1, z2 = f(x1), f(x2)
12
13 # Track features
14 TrackRepresentations(B, x, (z1+z2)/2)
15
16 # Compute loss and update models
17 L = SimSiam(z1, z2)
18 L.backward() # Back-propagation
19 update(f, SimSiam) # SGD update
20
21 def Add2Buffer(B, ims):
22 n_excess = len(B) + len(ims) - maxlen(B)
23 if n_excess > 0: # If full, remove n_excess.
24 for _ in range(n_excess):
25 # Pairwise dist
26 d = pdist(B.feat, B.feat)
27
28 # Distance to nearest neig
29 d_nneig = d.min(dim=1)
30
31 # Remove sample with smallest d_nneig
32 i_redundant = d_nneig.argmin(dim=0)
33 B.remove(i_redundant)
34
35 # Add new images to buffer
36 for x in ims:
37 B.add(x)
38
39 def TrackRepresentations(B, x, z, alpha=0.5):
40 # EMA update
41 B.feat[x] = alpha*B.feat[x] + (1 - alpha)*z
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Chapter 4

Task-Driven Modular Networks
for Zero-Shot Compositional
Learning

4.1 Introduction

Feature

Modular

Cute Cat

Classifier
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Modular

Wet Cat
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Figure 1: We investigate how to build a classifier on-the-fly, for a new concept (“wet dog”)
given knowledge of related concepts (“cute dog”, “cute cat”, and “wet cat”). Our approach
consists of a modular network operating in a semantic feature space. By rewiring its primitive
modules, the network can recognize new structured concepts.

How can machines reliably recognize the vast number of possible visual concepts?
Even simple concepts like “envelope” could, for instance, be divided into a seemingly



infinite number of sub-categories, e.g., by size (large, small), color (white, yellow),
type (plain, windowed), or condition (new, wrinkled, stamped). Moreover, it
has frequently been observed that visual concepts follow a long-tailed distribution
[205, 234, 253]. Hence, most classes are rare, and yet humans are able to recognize
them without having observed even a single instance. Although a surprising event,
most humans wouldn’t have trouble to recognize a “tiny striped purple elephant
sitting on a tree branch”. For machines, however, this would constitute a daunting
challenge. It would be impractical, if not impossible, to gather sufficient training
examples for the long tail of all possible categories, even more so as current learning
algorithms are data-hungry and rely on large amounts of labeled examples. How
can we build algorithms to cope with this challenge?

One possibility is to exploit the compositional nature of the prediction task. While
a machine may not have observed any images of “wrinkled envelope”, it may have
observed many more images of “white envelope”, as well as “white paper” and
“wrinkled paper”. If the machine is capable of compositional reasoning, it may be
able to transfer the concept of being “wrinkled” from “paper” to “envelope”, and
generalize without requiring additional examples of actual “wrinkled envelope”.

One key challenge in compositional reasoning is contextuality. The meaning of an
attribute, and even the meaning of an object, may be dependent on each other. For
instance, how “wrinkled” modifies the appearance of “envelope” is very different
from how it changes the appearance of “dog”. In fact, contextuality goes beyond
semantic categories. The way “wrinkled” modifies two images of “dog” strongly
depends on the actual input dog image. In other words, the model should capture
intricate interactions between the image, the object and the attribute in order to perform
correct inference. While most recent approaches [157, 168] capture the contextual
relationship between object and attribute, they still rely on the original feature space
being rich enough, as inference entails matching image features to an embedding
vector of an object-attribute pair.

In this paper, we focus on the task of compositional learning, where the model
has to predict the object present in the input image (e.g., “envelope”), as well as its
corresponding attribute (e.g., “wrinkled”). We believe there are two key ingredients
required: (a) learning high-level sub-tasks which may be useful to transfer concepts,
and (b) capturing rich interactions between the image, the object and the attribute. In
order to capture both these properties, we propose Task-driven Modular Networks
(TMN).

First, we tackle the problem of transfer and re-usability by employing modular
networks in the high-level semantic space of CNNs [94, 127]. The intuition is that
by modularizing in the concept space, modules can now represent common high-
level sub-tasks over which “reasoning” can take place: in order to recognize a new
object-attribute pair, the network simply re-organizes its computation on-the-fly by
appropriately reweighing modules for the new task. Apart from re-usability and
transfer, modularity has additional benefits: (a) sample efficiency: transfer reduces
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to figuring out how to gate modules, as opposed to how to learn their parameters;
(b) computational efficiency: since modules operate in smaller dimensional sub-
spaces, predictions can be performed using less compute; and (c) interpretability:
as modules specialize and similar computational paths are used for visually similar
pairs, users can inspect how the network operates to understand which object-
attribute pairs are deemed similar, which attributes drastically change appearance,
etc. (§4.4.2).

Second, the model extracts features useful to assess the joint-compatibility between
the input image and the object-attribute pair. While prior work [157, 168] mapped
images in the embedding space of objects and attributes by extracting features only
based on images, our model instead extracts features that depend on all the members
of the input triplet. The input object-attribute pair is used to rewire the modular
network to ultimately produce features invariant to the input pair. While in prior
work the object and attribute can be extracted from the output features, in our model
features are exclusively optimized to discriminate the validity of the input triplet.

Our experiments in §4.4.1 demonstrate that our approach outperforms all previ-
ous approaches under the “generalized” evaluation protocol on two widely used
evaluation benchmarks. The use of the generalized evaluation protocol, which tests
performance on both unseen and seen pairs, gives a more precise understanding of
the generalization ability of a model [28]. In fact, we found that under this eval-
uation protocol baseline approaches often outperform the current state of the art.
Furthermore, our qualitative analysis shows that our fully differentiable modular
network learns to cluster together similar concepts and has intuitive interpretation.

4.2 Related Work

Compositional zero-shot learning (CZSL) is a special case of zero-shot learning
(ZSL) [121, 124, 176, 258]. In ZSL the learner observes input images and correspond-
ing class descriptors. Classes seen at test time never overlap with classes seen at
training time, and the learner has to perform a prediction of an unseen class by lever-
aging its class descriptor without any training image (zero-shot). In their seminal
work, Chao et al. [28] showed that ZSL’s evaluation methodology is severely limited
because it only accounts for performance on unseen classes, and they propose i) to
test on both seen and unseen classes (so called “generaralized” setting) and ii) to
calibrate models to strike the best trade-off between achieving a good performance
on the seen set and on the unseen set. In our work, we adopt the same methodology
and calibration technique, although alternative calibration techniques have also been
explored in literature [20, 140]. The difference between our generalized CZSL setting
and generalized ZSL is that we predict not only an object id, but also its attribute.
The prediction of such pair makes the task compositional as given N objects and M
attributes, there are potentially N ∗M possible pairs the learner could predict.

Most prior approaches to CZSL are based on the idea of embedding the object-
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attribute pair in image feature space [157, 168]. In our work instead, we propose to
learn the joint compatibility [129] between the input image and the pair by learning
a representation that depends on the input triplet, as opposed to just the image.
This is potentially more expressive as it can capture intricate dependencies between
image and object-attribute pair.

A major novelty compared to past work is also the use of modular networks.
Modular networks can be interpreted as a generalization of hierarchical mixture of
experts [55, 105, 109], where each module holds a distribution over all the modules
at the layer below and where the gatings do not depend on the input image but on a
task descriptor. These networks have been used in the past to speed up computation
at test time [3] and to improve generalization for multi-task learning [152, 200],
reinforcement learning [60], continual learning [232], visual question answering [6,
180], etc. but never for CZSL.

The closest approach to ours is the concurrent work by Wang et al. [251], where
the authors factorize convolutional layers and perform a component-wise gating
which depends on the input object-attribute pair, therefore also using a task driven
architecture. This is akin to having as many modules as feature dimensions, which
is a form of degenerate modularity since individual feature dimensions are unlikely
to model high-level sub-tasks.

Finally, our gating network which modulates the computational blocks in the
recognition network, can also be interpreted as a particular instance of meta-learning [207,
237], whereby the gating network predicts on-the-fly a subset of task-specific param-
eters (the gates) in the recognition network.

4.3 Approach

Consider the visual classification setting where each image I is associated with a
visual concept c. The manifestation of the concepts c is highly structured in the visual
world. In this work, we consider the setting where images are the composition of an
object (e.g., “envelope”) denoted by co, and an attribute (e.g., “wrinkled”) denoted
by ca; therefore, c = (co, ca). In a fully-supervised setting, classifiers are trained for
each concept c using a set of human-labelled images and then tested on novel images
belonging to the same set of concepts. Instead, in this work we are interested in
leveraging the compositional nature of the labels to extrapolate classifiers to novel
concepts at test time, even without access to any training examples on these new
classes (zero-shot learning).

More formally, we assume access to a training set Dtrain = {(I(k), c(k)) | k =
1, 2, ..., Ntrain} consisting of image I labelled with a concept c ∈ Ctrain, with Ctrain ⊂
Co×Ca = {(co, ca) | co ∈ Co, ca ∈ Ca}where Co is the set of objects and Ca is the set of
attributes.

In order to evaluate the ability of our models to perform zero-shot learning, we
use a similar validation (Dval) and test (Dtest) sets consisting of images labelled
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Figure 2: Toy illustration of the task-driven modular network (TMN). A pre-trained ResNet
trunk extracts high level semantic representations of an input image. These features are then
fed to a modular network (in this case, three layers with two modules each) whose blocks
are gated (black triangle amplifiers) by a gating network. The gating network takes as input
an object and an attribute id. Task driven features are then projected into a single scalar
value representing the joint compatibility of the triplet (image, object and attrtibute). The
overlaid red arrows show the strength of the gatings on each edge.

with concepts from Cval and Ctest, respectively. In contrast to a fully-supervised
setting, validation and test concepts do not fully overlap with training concepts, i.e.
Cval\Ctrain 6= ∅, Ctest\Ctrain 6= ∅ and Ccal∩Ctrain 6= ∅, Ctest∩Ctrain 6= ∅. Therefore, models
trained to classify training concepts must also generalize to “unseen” concepts to
successfully classify images in the validation and test sets. We call this learning
setting, Generalized Zero-Shot Compositional learning, as both seen and unseen
concepts appear in the validation and test sets. Note that this setting is unlike
standard practice in prior literature where a common validation set is absent and
only unseen pairs are considered in the test set [157, 168, 251].

In order to address this compositional zero-shot learning task, we propose a
Task-Driven Modular Network (TMN) which we describe next.

4.3.1 Task-Driven Modular Networks (TMN)

The basis of our architecture design is a scoring model [129] of the joint compatibility
between image, object and attribute. This is motivated by the fact that each member
of the triplet exhibits intricate dependencies with the others, i.e. how an attribute
modifies appearance depends on the object category as well as the specific input
image. Therefore, we consider a function that takes as input the whole triplet and
extracts representations of it in order to assign a compatibility score. The goal of
training is to make the model assign high score to correct triplets (using the provided
labeled data), and low score to incorrect triplets. The second driving principle is
modularity. Since the task is compositional, we add a corresponding inductive bias
by using a modular network. During training the network learns to decompose each
recognition task into sub-tasks that can then be combined in novel ways at test time,

49



consequently yielding generalizeable classifiers.
The overall model is outlined in Fig. 2. It consists of two components: a gating

model G and a feature extraction model F . The latter F consists of a set of neural
network modules, which are small, fully-connected layers but could be any other
parametric differentiable function as well. These modules are used on top of a
standard ResNet pre-trained trunk. Intuitively, the ResNet trunk is used to map
the input image I to a semantic concept space where higher level “reasoning” can
be performed. We denote the mapped I in such semantic space with x. The input
to each module is a weighted-sum of the outputs of all the modules at the layer
below, with weights determined by the gating model G, which effectively controls
how modules are composed.

Let L be the number of layers in the modular part of F , M (i) be the number of
modules in the i-th layer, m(i)

j be j-th module in layer i and x(i)
j be the input to each

module1, then we have:

x
(i)
j =

M(i−1)∑
k=1

g
(i)
k→j ∗ o

(i−1)
k , (4.1)

where ∗ is the scalar-vector product, the output of the k-th module in layer (i− 1)

is o(i−1)
k = m

(i−1)
k

[
x

(i−1)
k

] and the weight on the edge between m
(i−1)
k and m

(i)
j is

denoted by g(i)
k→j ∈ R. The set of gatings g = {g(i)

k→j | i ∈ [1, L], j ∈ [1,M (i)], k ∈
[1,M (i−1)]} jointly represent how modules are composed for scoring a given concept.

The gating network G is responsible for producing the set of gatings g given a
concept c = (co, ca) as input. co and ca are represented as integer ids, and are then
embedded using a learned lookup table2. These embeddings are then concatenated
and processed by a multilayer neural network which computes the gatings as:

G(c) = [q
(1)
1→1, q

(1)
2→1, ....q

(L)

M(L−1)→M(L) ], (4.2)

g
(i)
k→j =

exp[q
(i)
k→j ]∑M(i−1)

k′=1 exp[q
(i)
k′→j ]

. (4.3)

Therefore, all incoming gating values to a module are positive and sum to one.
The output of the feature extraction network F is a feature vector, o(L)

1 , which is
linearly projected into a real value scalar to yield the final score, sc(I, (co, ca)). This
represents the compatibility of the input triplet, see Fig. 2.

1We set o(0)1 = x, M (0) = 1, and M (L) = 1.
2Our framwork can be trivially extended to the case where co and ca are structured, e.g., word2vec

vectors [155], enabling generalization to novel objects and attributes.
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4.3.2 Training & Testing

Our proposed training procedure involves jointly learning the parameters of both
gating and feature extraction networks (without fine-tuning the ResNet trunk for
consistency with prior work [157, 168]). Using the training set described above, for
each sample image I we compute scores for all concepts c = (co, ca) ∈ Ctrain and
turn scores into normalized probabilities with a softmax: pc = exp[sc]∑

c′∈Ctrain exp[sc′ ]
. The

standard (per-sample) cross-entropy loss is then used to update the parameters of
both F and G: L(I, ĉ) = − log pĉ, if ĉ is the correct concept.

In practice, computing the scores of all concepts may be computationally too
expensive if Ctrain is large. Therefore, we approximate the probability normalization
factor by sampling a random subset of negative candidates [15].

Finally, in order to encourage the model to generalize to unseen pairs, we regu-
larize using a method we dubbed ConceptDrop. At each epoch, we choose a small
random subset of pairs, exclude those samples and also do not consider them for
negative pairs candidates. We cross-validate the size of the ConceptDrop subset for
all the models.

At test time, given an image we score all pairs present in Ctest ∪ Ctrain, and select
the pair yielding the largest score. However, often the model is not calibrated for
unseen concepts, since the unseen concepts were not involved in the optimization of
the model. Therefore, we could add a scalar bias term to the score of any unseen
concept [28]. Varying the bias from very large negative values to very large positive
values has the overall effect of limiting classification to only seen pairs or only unseen
pairs respectively. Intermediate values strike a trade-off between the two.

4.4 Experiments

We first discuss datasets, metrics and baselines used in this paper. We then report
our experiments on two widely used benchmark datasets for CZSL, and we conclude
with a qualitative analysis demonstrating how TMN operates.

Datasets We considered two datasets. The MIT-States dataset [103] has 245 object
classes, 115 attribute classes and about 53K images. On average, each object is
associated with 9 attributes. There are diverse object categories, such as “highway”
and “elephant”, and there is also large variation in the attributes, e.g. “mossy” and
“diced” (see Fig. 4 and 7 for examples). The training set has about 30K images
belonging to 1262 object-attribute pairs (the seen set), the validation set has about
10K images from 300 seen and 300 unseen pairs, and the test set has about 13K
images from 400 seen and 400 unseen pairs.

The second dataset is UT-Zappos50k [266, 267] which has 12 object classes and
16 attribute classes, with a total of about 33K images. This dataset consists of different
types of shoes, e.g. “rubber sneaker”, “leather sandal”, etc. and requires fine grained
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classification ability. This dataset has been split into a training set containing about
23K images from 83 pairs (the seen pairs), a validation set with about 3K images
from 15 seen and 15 unseen pairs, and a test set with about 3K images from 18 seen
and 18 unseen pairs.

The splits of both datasets are different from those used in prior work [157,
168], now allowing fair cross-validation of hyperparameters and evaluation in the
generalized zero-shot learning setting. We will make the splits publicly available to
facilitate easy comparison for future research.

Architecture and Training Details The common trunk of the feature extraction
network is a ResNet-18 [94] pretrained on ImageNet [202] which is not finetuned,
similar to prior work [157, 168]. Unless otherwise stated, our modular network has
24 modules in each layer. Each module operates in a 16 dimensional space, i.e. the
dimensionality of x(i)

j and o(i)
j in eq. 4.1 is 16. Finally, the gating network is a 2 layer

neural network with 64 hidden units. The input lookup table is initialized with
Glove word embeddings [179] as in prior work [168]. The network is optimized by
stochastic gradient descent with ADAM [115] with minibatch size equal to 256. All
hyper-parameters are found by cross-validation on the validation set (see §4.4.1.1
for robustness to number of layers and number of modules).

Baselines We compare our task-driven modular network against several baseline
approaches. First, we consider the RedWine method [157] which represents objects
and attributes via SVM classifier weights in CNN feature space, and embeds these
parameters in the feature space to produce a composite classifier for the (object,
attribute) pair. Next, we consider LabelEmbed+ [168] which is a common composi-
tional learning baseline. This model involves embedding the concatenated (object,
attribute) Glove word vectors and the ResNet feature of an image, into a joint feature
space using two separate multilayer neural networks. Finally, we consider the recent
AttributesAsOperators approach [168], which represents the attribute with a matrix
and the object with a vector. The product of the two is then multiplied by a projection
of the ResNet feature space to produce a scalar score of the input triplet. All methods
use the same ResNet features as ours. Note that architectures from [157, 168] have
more parameters compared to our model. Specifically, RedWine, LabelEmbed+ and
AttributesAsOperators have approximately 11, 3.5 and 38 times more parameters
(excluding the common ResNet trunk) than the proposed TMN. We also adapt a
more recent ZSL approach [258] (referred as “FeatureGen”) and train it for the CZSL
task. This work proposes to use adversarial training to generate feature samples for
the unseen classes.

Metrics We follow the same evaluation protocol introduced by Chao et al. [28] in
generalized zero-shot learning, as all prior work on CZSL only tested performance on
unseen pairs without controlling accuracy on seen pairs. Most recently, Nagarajan

52



Table 1: AUC (multiplied by 100) for MIT-States and UT-Zappos. Columns correspond to
AUC computed using precision at k=1,2,3.

MIT-States UT-Zappos

Val AUC Test AUC Val AUC Test AUC
Model Top k → 1 2 3 1 2 3 1 2 3 1 2 3
AttrAsOp [168] 2.5 6.2 10.1 1.6 4.7 7.6 21.5 44.2 61.6 25.9 51.3 67.6
RedWine [157] 2.9 7.3 11.8 2.4 5.7 9.3 30.4 52.2 63.5 27.1 54.6 68.8
LabelEmbed+ [168] 3.0 7.6 12.2 2.0 5.6 9.4 26.4 49.0 66.1 25.7 52.1 67.8
FeatureGen [258] 3.1 6.9 10.5 2.3 5.7 8.8 20.1 45.1 61.1 25.0 48.2 63.21
TMN (ours) 3.5 8.1 12.4 2.9 7.1 11.5 36.8 57.1 69.2 29.3 55.3 69.8

Table 2: Best seen and unseen accuracies, and best harmonic mean of the two. See companion
Fig. 3 for the operating points used.

MIT-States UT-Zappos

Model Seen (#) Unseen (×) HM (�) Seen Unseen HM
AttrAsOp 14.3 17.4 9.9 59.8 54.2 40.8
RedWine 20.7 17.9 11.6 57.3 62.3 41.0
LabelEmbed+ 15.0 20.1 10.7 53.0 61.9 40.6
FeatureGen 24.8 13.4 11.2 61.9 52.8 40.0
TMN (ours) 20.2 20.1 13.0 58.7 60.0 45.0

et al. [168] introduced an “open world” setting whereby both seen and unseen pairs
are considered during scoring but only unseen pairs are actually evaluated. As
pointed out by Chao et al. [28], this methodology is flawed because, depending
on how the system is trained, seen pairs can evaluate much better than unseen
pairs (typically when training with cross-entropy loss that induces negative biases
for unseen pairs) or much worse (like in [168] where unseen pairs are never used
as negatives when ranking at training time, resulting in an implicit positive bias
towards them). Therefore, for a given value of the calibration bias (a single scalar
added to the score of all unseen pairs, see §4.3.2), we compute the accuracy on both
seen and unseen pairs, (recall that our validation and test sets have equal number of
both). As we vary the value of the calibration bias we draw a curve and then report
its area (AUC) to describe the overall performance of the system.

For the sake of comparison to prior work, we also report the “closed-world”
accuracy [157, 168], i.e. the accuracy of unseen pairs when considering only unseen
pairs as candidates.
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Figure 3: Unseen-Seen accuracy curves on MIT-States dataset. Prior work [168] reported
unseen accuracy at different (unknown) values of seen accuracy, making comparisons
inconclusive. Instead, we report AUC values [28], see Tab. 1.

4.4.1 Quantitative Analysis

The main results of our experiments are reported in Tab. 1. On both datasets we
observe that TMN performs consistently better than the other tested baselines. We
also observe that the overall absolute values of AUC are fairly low, particularly on the
MIT-States dataset which has about 2000 attribute-object pairs and lots of potentially
valid pairs for a given image due to the inherent ambiguity of the task.

The importance of using the generalized evaluation protocol becomes apparent
when looking directly at the seen-unseen accuracy curve, see Fig. 3. This shows that
as we increase the calibration bias we improve classification accuracy on unseen
pairs but decrease the accuracy on seen pairs. Therefore, comparing methods at
different operating points is inconclusive. For instance, FeatureGen yields the best
seen pair accuracy of 24.8% when the unseen pair accuracy is 0%, compared to TMN
which achieves 20.2%, but this is hardly a useful operating point.

For comparison, we also report the best seen accuracy, the best unseen accuracy
and the best harmonic mean of the two for all these methods in Tab. 2. Although our
task-driven modular network may not always yield the best seen/unseen accuracy,
it significantly improves the harmonic mean, indicating an overall better trade-off
between the two accuracies.

Our model not only performs better in terms of AUC but also trains efficiently.
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Table 3: Ablation study: Top-1 valid. AUC; see §4.4.1.1 for details.
Model MIT-States UT-Zappos

TMN 3.5 36.8
a) without task driven gatings 3.2 32.7
b) like a) & no joint extraction 0.8 20.1
c) without ConceptDrop 3.3 35.7

Table 4: AUC(*100) on validaton set of MIT-States varying the number of modules per layer
and the number of layers.

Modules

Layers 12 18 24 30
1 1.86 2.14 2.50 2.51
3 3.23 3.44 3.51 3.44
5 3.48 3.31 3.24 3.19

We observed that it learns from fewer updates during training. For instance, on the
MIT-States datatset, our method reaches the reported AUC of 3.5 within 4 epochs. In
contrast, embedding distance based approaches such as AttributesAsOperators [168]
and LabelEmbed+ require between 400 to 800 epochs to achieve the best AUC values
using the same minibatch size. This is partly attributed to the processing of a
larger number of negatives candidate pairs in each update of TMN(see §4.3.2). The
modular structure of our network also implies that for a similar number of hidden
units, the modular feature extractor has substantially fewer parameters compared
to a fully-connected network. A fully-connected version of each layer would have
D2 parameters, if D is the number of input and output hidden units. Instead, our
modular network has M blocks, each with ( DM )2 parameters. Overall, one layer of
the modular network has D2/(M ∗ ( DM )2) = M times less parameters (which is also
the amount of compute saved). See the next section for further analogies with fully
connected layers.

4.4.1.1 Ablation Study

Our first control experiment assesses the importance of using a modular network by
considering the same architecture with two modifications. First, we learn a common
set of gatings for all the concepts; thereby removing the task-driven modularity. And
second, we feed the modular network with the concatenation of the ResNet features
and the object-attribute pair embedding; thereby retaining the joint modeling of the
triplet. To better understand this choice, consider the transformation of layer i of the
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Figure 4: t-SNE embedding of Attribute-Object gatings on MIT-States dataset. Colors indi-
cate high-level WordNet categories of objects. Text boxes with white background indicate
examples where changing the attribute results in similar gatings (e.g., large/small table);
conversely, pairs in black background indicate examples where the change of attribute/object
leads to very dissimilar gatings (e.g., molten/brushed/coil steel, rusty water/rusty wire).

modular network in Fig. 2 which can be equivalently rewritten as:[
o

(i)
1

o
(i)
2

]
= ReLU(

[
g
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1→1m

(i)
1 g
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assuming each square block m
(i)
j is a ReLU layer. In a task driven modular

network, gatings depend on the input object-attribute pair, while in this ablation
study we use gatings agnostic to the task, as these are still learned but shared across all
tasks. Each layer is a special case of a fully connected layer with a more constrained

56



Figure 5: Examples of task driven topologies learned in TMN. Edges whose associated
weight is within 3% of the highest weight for that edge are displayed. Source features x at
the bottom are projected to a scalar score at the top. Each subplot compares the gatings of
two object-attribute pairs. The red edges are the edges that are common between the two
pairs. The green and the blue segments are edges active only in one of the two pairs. Left:
two sets of pairs sharing the same attribute, “wrinkled”. Right: Two sets of pairs sharing the
same object, “fish”. Top: examples of visually similar pairs. Bottom: example of visually
dissimilar pairs (resulting in less overlapping graphs).

parameterization. This is the baseline shown in row a) of Tab. 3. On both datasets
performance is deteriorated showing the importance of using task driven gates.
The second baseline shown in row b) of Tab. 3, is identical to the previous one
but we also make the features agnostic to the task by feeding the object-attribute
embedding at the output (as opposed to the input) of the modular network. This
is similar to LabelEmbed+ baseline of the previous section, but replacing the fully
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Figure 6: t-SNE embedding of the output features (penultimate layer) on MIT-States dataset.
Red markers show valid (image, object, attribute) triplets (from either seen or unseen pairs),
while blue markers show invalid triplets.

connected layers with the same (much more constrained) architecture we use in
our TMN (without task-driven gates). In this case, we can see that performance
drastically drops, suggesting the importance of extracting joint representations of
input image and object-attribute pair. The last row c) assesses the contribution to
the performance of the ConceptDrop regularization, see §4.3.2. Without it, AUC has
a small but statistically significant drop.

Finally, we examine the robustness to the number of layers and modules per layer
in Tab. 4. Except when the modular network is very shallow, AUC is fairly robust to
the choice of these hyper-parameters.

Table 5: Edge analysis. Example of the top 3 object-attribute pairs (rows) from MIT-States
dataset that respond most strongly on 6 edges (columns) connecting blocks in the modular
network.

dry river tiny animal cooked pasta unripe pear old city
dry forest small animal raw pasta unripe fig ancient city
dry stream small snake steaming pasta unripe apple old town
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Figure 7: Example of image retrievals from the test set when querying an unseen pair (title
of each column).

4.4.2 Qualitative Analysis

Task-driven modular networks offer both an increase in performance and improved
interpretability. In this section, we explore simple ways to visualize them and inspect
their inner workings. We start by visualizing the learned gatings in three ways. First,
we look at which object-attribute pair has the largest gating value on a given edge of
the modular network. Tab. 5 shows some examples indicating that visually similar
pairs exhibit large gating values on the same edge of the computational graph.
Similarly, we can inspect the blocks of the modular architecture. We can easily do so
by associating a module to those pairs that have largest total outgoing gatings. This
indicates how much a module effects the next layer for the considered pair. As shown
in Tab. 6, we again find that modules take ownership for explaining specific kinds
of visually similar object-attribute pairs. A t-SNE [146] embedding of the gating
values associated with all the object-attribute pairs provides a more comprehensive
visualization, as shown in Fig. 4. This visualization shows that the gatings are mainly

Table 6: Module analysis. Example of the top 3 object-attribute pairs (rows) for 6 randomly
chosen modules (columns) according to the sum of outgoing edge weights in each pair’s
gating.

dark fire large tree wrinkled dress small elephant pureed soup
dark ocean small tree ruffled dress young elephant large pot
dark cloud mossy tree ruffled silk tiny elephant thick soup
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organized by visual similarity. Within this map, there are clusters that correspond
to the same object with various attributes. Instances where the attribute greatly
changes the visual appearance of the object are interesting exceptions (“coiled steel”
VS “molten steel”, see other examples highlighted with dark tags). Likewise, pairs
sharing the same attribute may be located in distant places if the object is visually
dissimilar (“rusty water” VS ”rusty wire”). The last gating visualization is through
the topologies induced by the gatings, as shown in Fig. 4.B.1, where only the edges
with sufficiently large gating values are shown. Overall, the degree of edge overlap
between object-attribute pairs strongly depends on their visual similarity.

Besides gatings and modules, we also visualized the task-driven visual features
o

(L)
1 , just before the last linear projection layer, see Fig. 2. The map in Fig. 6 shows

that valid (image, object, attribute) triplets are well clustered together, while invalid
triplets are nicely spread on one side of the plane. This is quite different than
the feature organization found by methods that match concept embeddings in the
image feature space [157, 168], which tend to be organized by concept. While TMN
extracts largely task-invariant representations using a task-driven architecture, they
produce representations that contain information about the task using a task-agnostic
architecture3. TMN places all valid triplets on a tight cluster because the shared top
linear projection layer is trained to discriminate between valid and invalid triplets
(as opposed to different types of concepts).

Finally, Fig. 7 present image retrieval results. Given a query of an unseen object-
attribute pair, the highest scoring images in the test set are returned. The model is
able to retrieve relevant images despite not having been exposed to these concepts
during training.

4.5 Conclusion

The distribution of highly structured visual concepts is very heavy tailed in nature.
Improvement in sample efficiency of our current models is crucial, since labeled
data will never be sufficient for concepts in the tail of the distribution. A promising
approach is to leverage the intrinsic compositionality of the label space. In this
work, we investigate this avenue of research using the Zero-Shot Compositional
Learning task as a use case. Our first contribution is a novel architecture: TMN, which
outperforms all the baseline approaches we considered. There are two important
ideas behind its design. First, the joint processing of input image, object and attribute
to account for contextuality. And second, the use of a modular network with gatings
dependent on the input object-attribute pair. Our second contribution is to advocate
for the use of the generalized evaluation protocol which not only tests accuracy on
unseen concepts but also seen concepts. Our experiments show that TMN provides

3A linear classifier trained to predict the input object-attribute pair achieves only 5% accuracy on
TMN’s features, 40% on LabelEmbed+ features and 41% on ResNet features.
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better performance, while being efficient and interpretable. In future work, we will
explore other gating mechanisms and applications in other domains.
Acknowledgements This work was partly supported by ONR MURI N000141612007 and Young
Investigator Award. We would like to thank Ishan Misra, Ramakrishna Vedantam and Xiaolong Wang
for the helpful discussions.
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Appendices

Appendix 4.A Hyperparameter tuning

The results we reported in the main paper were obtaining using the best hyper-
parameters found on the validation set. We used the same cross-validation procedure
for all methods, including ours. Here, we present the ranges of hyper-parameters
used in the grid-search and the selected values.

4.A.1 Task Driven Modular Networks

Hyper-parameter values:
• Feature extractor learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.001)
• Gating network learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.01)
• Number of sampled sampled negatives for Eq 3: for MIT States 200, 400, 600

(chosen: 600), for UT-Zappos we choose all negatives
• Batch size: 64, 128, 256, 512 (chosen: 256)
• Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen:

5%)
• Number of modules per layer: 12, 18, 24, 30 (chosen: 24)
• Output dimensions of each module: 8, 16 (chosen: 16)
• Number of layers: 1, 2, 3, 5 (chosen: 3 for MIT States, 2 for UT-Zappos)

4.A.2 LabelEmbed+

Hyper-parameter values:
• Learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.0001 for MIT States, 0.001 for

UT-Zappos)
• Batch size: 64, 128, 256, 512 (chosen: 512)
• Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen:

5%)

4.A.3 RedWine

Hyper-parameter values:
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• Learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.01)
• Batch size: 64, 128, 256, 512 (chosen: 256 for MIT States, 512 for UT-Zappos)
• Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen:

0%)

4.A.4 Attributes as Operators

Hyper-parameter values:
• Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen:

5%)
Learning rate, batch size, regularization weights chosen from the original paper and
executed using the implementation at: https://github.com/Tushar-N/attributes-as-operators.
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Appendix 4.B Additional Topology Visualizations

Figure 4.B.1: Additional Examples of task driven topologies learned in TMN (similar to
Figure 5 of the main text).
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Chapter 5

Aligning Videos in Space and
Time

5.1 Introduction

Ask not “what is this?”, ask “what is this like”.
Moshe Bar

What does it mean to understand a video? The most popular answer right now is
labeling videos with categories such as “opening bottle”. However, action categories
hardly tell us anything about the process – it doesn’t tell us where is the bottle or
when it was opened, let alone the different other states it can exist in, and what parts
are involved in what transitions. Dense semantic labeling is a non-starter because
exhaustive and accurate labels for objects, their states and actions are not easy to
gather.

In this paper, we investigate the alternative of understanding via association, i.e.
video understanding by extracting visual correspondences between training and test
videos. Focusing on ‘what is a given video like’, rather than ‘what class it belongs
to’, side-steps the problem of hand-defining a huge taxonomy and dense labeling.
Inspired by this, in this paper, we focus on the task of creating associations or visual
correspondences across training and test videos. More specifically, we try to align
videos in both space and time. This poses two core and inter-related questions: (a)
what is the granularity of visual correspondence? (b) what is the right distance
metric or features to extract this correspondence?

Let us focus on the first issue: the granularity, i.e. the level at which we should
establish correspondence: pixel-level, patch-level or frame-level. The trade-off here is
between discriminability and the amount of data required for good correspondences.
While full frames are more discriminative (and easy to match), they are also quite
specific. For example, finding a frame that depicts the same relation between the
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Video 2

Video 1

intra-video (tracking) inter-video (correspondence) 

good-cycle 
(both correspondence right)

 bad-cycle  
(atleast one correspondence is wrong)

Figure 1: Learning Correspondence via Cycle Supervision. Features that allow sequences
of matches (cycles) that begin and end at the same patch are desired.

bottle and the cup as shown in Figure 1 would require large amounts of training data
before a good full-frame correspondence can be found. Consequently, past work with
hand-crafted descriptors focused on establishing visual correspondence by matching
interest points [144, 238] and image patches [218]. However, given lack of dense
supervision, recent work that tries to revisit these ideas through learning [54] seeks to
correspond whole frames, through temporal consistency of frames. While this works
well for full frame correspondence, it doesn’t produce patch-level correspondences
which is both richer, and more widely applicable. This motivates our pursuit for a
method to obtain dense patch-level correspondences across videos.

The second issue at hand is of how to learn a distance metric (or equivalently an
appropriate feature space) for extracting visual correspondences. Classical work
focused on using manually-defined features [144, 238] with a variety of distance
metrics. However, given the widespread effectiveness of supervised end-to-end
learning for computer vision tasks [119] (including visual correspondence [198]), it
is natural to ask how to leverage learning for this task, i.e. what is the right objective
function and supervision for learning features for obtaining correspondences? The
conventional approach would be to reuse generic features from a standard task such
as image classification or action recognition. As our experiments will demonstrate,
neither features learned for ImageNet classification, nor ones trained for action
recognition generate good correspondences due to their inability to encode object
states. At the same time, direct manual annotation for visual correspondence across
videos is challenging and infeasible to scale. This necessitates design of a self-
supervised approach.

Interestingly, some recent efforts pursue this direction, and exploit consistency
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in correspondences as supervision to learn frame-level correspondence [54], or
intra-video correspondence (tracking) [250]. Our proposed method extends these
methods to learn patch-level correspondences across videos via cross video cycle-
consistency. During training, given a pair of videos, we compute matches for a patch
forward in time in the first video, then match to a patch in the second video, match
this patch backward in time in the second video and finally match back to a patch
in the first video. This sequence of patches is referred to as a ‘cycle’. Cycles that
start and end at overlapping patches are encouraged to score higher than cycles
that connect non-overlapping patches (see Figure 1). This allows our approach
to generate finer level correspondence across videos (as SIFT Flow[138] does for
images), while also harnessing the capabilities of the modern end-to-end learning
approaches. Our experiments show that features learned using our approach are
more effective at corresponding objects in the same state across videos, than features
trained for ImageNet classification, or for action classification.

5.2 Related Work

Our work learns space-time visual correspondence by use of cycle consistency.
In this section, we present a survey of related literature on video understanding
(datasets, tasks and techniques), correspondence techniques in videos, and use of
self-supervision and cycle consistency for learning features and correspondences.
Video Datasets and Tasks. A number of past efforts have been devoted to collect-
ing new video understanding datasets, and extending static image tasks to videos.
Leading efforts in recent times include datasets like Kinetics [111], AvA [86], Cha-
rades [214], EPIC Kitchen [35], VLOG [64], MultiTHUMOS [264]. While some
of these datasets focus on action classification, a number of them investigate new
tasks, such as temporal action localization [264], detection of subjects, verbs and
objects [86], classification in first-person videos [35], and analysis of crowd-sourced
videos [81, 214]. These works extend video understanding by scaling it up.
Architectures for Action Classification. Researchers have also pursued design of
expressive neural network architectures for the task of action classification [27, 215,
229, 235, 241, 260]. Some works investigate architectures to encourage the modelling
of time flow [159, 210], or long-range temporal dependencies [58, 246, 255], or object
tracking [70]. While these models often capture useful intuitions, their focus is still
on optimizing models for the task of action classification. Hence, even though the
model has the right inductive biases, learning is bottle-necked by the low-entropy
output space that of action class labels.
Beyond Action Recognition. Many efforts have also pursued the task of detailed
video understanding in recent times. For example, video prediction tasks [40, 130]
have the promise to go beyond action classification, as they force the model to predict
much more than what can be effectively annotated. Wang et al. [244] model actions
as operators that transform states of objects, and Nagarajan et al. [167] learn about
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how humans interact with different objects. In contrast, we take a non-parametric
approach, and understand videos by understanding what they are like, and corre-
sponding them with other videos in space and time.
Cycle Consistency and Correspondence. Forward-backward consistency and cycle
consistency have been used in computer vision for establishing correspondence
in an unsupervised manner [110, 211]. Zhou et al. [278] use cycle-consistency to
establish dense correspondence between 3D shapes, Godard et al. [73], use cycle
consistency for learning to predict depth, Zhu et al. [279] use cycle consistency to
learn how to generate images, and Wang et al. [250] use cycle consistency to learn
features for correspondence over time in videos. Work from Wang et al. [250] is a
primary motivation for our work, and we investigate use of cycle consistency to learn
cross-video correspondences. To our knowledge, ours is the first work to investigate
spatio-temporal alignment across videos with cycle consistency.
Spatial Correspondence. Finding correspondences across video frames is a funda-
mental problem and has been actively studied for decades. Optical flow [17] seeks to
establish correspondences at the pixel-level. While numerous effective approaches
have been proposed [145, 151, 221, 222], optical flow estimation is still challenging
over long time periods, and fails across videos. This issue is partially alleviated
by performing correspondence at a patch level. SIFT Flow[138], a seminal work in
this domain, uses SIFT descriptors [144] to match patches across scene. SIFT Flow
can be used to transfer labels from training data to test samples in many applica-
tions [65, 137, 201, 270]. However, patch correspondence approaches [89, 113, 277],
rely on the local appearance of the patches for matching. We use a similar method
to obtain spatio-temporal correspondences across videos, but account for the object
states and not just the local appearance.
Cross-video Spatio-Temporal Alignment. Past works have studied spatio-temporal
alignment in videos. Sermanet et al. [210] learn time sensitive features in a super-
vised manner by collecting time aligned data for an action. Alayrac et al. [4] learn
features sensitive to object states by classifying object bounding box into before
or after action. Dwibedi et al. [54] focus on learning temporal correspondence by
enforcing consistency in nearest neighbors at frame-level. This focus on frame-level
modeling ignores spatial alignment. In contrast, we focus on corresponding image
patches across videos in time and space. This leads to learning of state-sensitive object
representations (as opposed to scene representations). We are not aware of any
past work that tackles the problem of establishing spatio-temporal correspondences
across videos.
Self-supervision. A number of past works employ self-supervised learning to al-
leviate the need for semantic supervision from humans to acquire generic image
representations. Past works have employed images [47, 272], videos [159, 177, 210,
248, 250], and also motor actions [2, 106]. Our alignment of videos in space and
time, can also be seen as a way to learn representations in a self-supervised manner.
However, we learn features that are sensitive to object state, as opposed to generic
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Figure 2: What is a good correspondence? A good correspondence is a match where patches
correspond to the same semantic part, and are in the same state with respect to the depicted
action.
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Figure 3: Overview: Given tracks in two video of the same class (shown by white dotted
lines), we learn an embedding to correspond patches across videos. This is done by comput-
ing cycles (pair of cross-video edges) that correctly track a patch back to itself. We compute
the best cycle that corresponds a patch to itself (shown in green) and encourage it to have a
higher similarity than the best cycle that corresponds a patch to a different patch (shown in
red) via a margin loss.

image features learned by these past methods.

5.3 Alignment via Cross-Video Cycle Consistency

Our goal is to learn how to spatio-temporally align two videos. We tackle this
problem by extracting patch level visual correspondence across two videos. But
what defines a good correspondence? A good spatio-temporal correspondence is
one where two patches from different videos are linked when they depict the same
objects (or their parts) and are in similar states. For example, two patches depicting
rim of the cups are in correspondence as shown in Figure 2 because the patches
correspond to same part and the cups are in same state (tilted for pouring). On
the other hand, the other two correspondences are bad because either the patches
correspond to different object parts or the states of object do not match.

While it is easy to learn features that can correspond the same objects in various
states over time by learning to track [248, 250], it is far more challenging to learn
features that correspond different objects in the same state. We specifically tackle
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this problem in our proposed approach. One of the biggest challenge here is the
supervision. It is difficult to obtain supervision for such a dense correspondence
task, thus we pursue a weakly-supervised approach. Our central idea is to employ
cross-video cycle-consistency. Specifically, we create cycles in videos of the same action
class, that track patches within a video, match it to a patch in another video, track
this patch back in time, and then match back to the original video. Figure 3 illustrates
the idea. Cycles that can track back to the same patch are encouraged (green cycle),
while cycles that get back to a different patch in the first video are discouraged (red
cycles). Enforcing this objective on a large collection of foreground patches would
lead to choosing semantically aligned tracks. However, note that this could lead to
some trivial cycles involving very short (or single frame) tracks in the second video.
It is important to disregard such solutions in order to focus on cycles where object
states vary (we disregard cycles that involve tracks of length 3 or less). We now
formally describe the training objective.

5.3.1 Formulation

Let’s assume we have a tracker T , that given a video V , produces a set of tracks on
the video. We will use V i

m:n to denote the sequence of patches in track i starting from
frame m and ending at frame n. The image patch for track i in frame m is denoted
as V i

m (see Figure 4). In this work, for obtaining tracks, we use the tracker proposed
in [250] which is trained in an unsupervised manner. fθ, realized via convolutional
neural networks, denotes the desired feature embedding that establishes visual
correspondence across different videos.
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Figure 4: Formulation: The score of a cycle is sum of the scores of two jumps as per fθ.
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Consider the cycle shown in Figure 4: V i
m → V i

n →W j
q →W j

p → V k
m. This cycle

has following jumps: forward-tracking in V , matching V toW , backward-tracking in
W and matching back fromW to V . We represent this cycle as {V i

m:n,W
j
p:q, V k

m}. The
score of this cycle can be expressed as the sum of patch similarities of the matches
involved. However, note that the first and third matches in a cycle are extracted
using off-the-shelf tracker, therefore do not depend on fθ and can be assumed to
have a constant score. Therefore, the final score of a cycle can be computed using
cosine similarity s as:

S({V i
m:n,W

j
p:q, V

k
m}) = s(fθ(V

i
n), fθ(W

j
q ))︸ ︷︷ ︸

Jump from video V (frame n,
patch i) to video W (frame q,

patch j)

+ s(fθ(W
j
p ), fθ(V

k
m))︸ ︷︷ ︸

Jump from video W (frame p,
patch j) to video V (frame m,

patch k)

(5.1)

Given a starting patch V i
m and an ending patch V k

m, there can be numerous cycles
depending on the length n considered in video V , the segment (p, q) of video W
considered and the track j chosen in video W . When the patches V i

m and V k
m are

highly overlapping, we expect the best cycle to have a high score. On the other hand,
when these patches do not overlap, we want all the cycles to score low. We formulate
this objective to optimize fθ as a margin loss. First, for the pair of patches V i

m, V
k
m,

we compute the score of the best cycle as:

κ(V i
m, V

k
m) = max

n,p,q,j
S({V i

m:n,W
j
p:q, V

k
m}) (5.2)

The margin loss can then be formulated as:
max

[
0,−κ(V i

m, V
i+
m ) + κ(V i

m, V
i−
m ) + δ

]
∀i+, i− : IoU(V i

m, V
i+
m ) ≥ 0.5 and IoU(V i

m, V
i−
m ) < 0.5 (5.3)

where, δ is the fixed margin. This can be optimized using stochastic gradient descent,
to learn function fθ.

We found that using a soft version of the max function (Γ as defined below) instead
of the max function in Eq. 5.2 was important for training. Soft version of max function,
Γ is defined as follows:

Γ(x) =
∑
c

xc
exc∑
c′ e

xc′
(5.4)

Here c represents a cycle and xc represents the score of that cycle. This prevents
the model from getting stuck in the local minima of greedily boosting the single
best cycle. The soft version of max also allows computation of gradients w.r.t all
patches that participate in score computation, thereby updating the representations
of a larger number of samples.
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5.3.2 Using Features for Spatio-Temporal Alignment

The representation fθ trained using our approach can be used to extract cross-video
correspondences at the level of patches, tracks, frames and videos:
Patch Correspondence. fθ can be used to correspond image patches. As fθ learns
features sensitive to state of the object, it allows us to correspond and retrieve objects
that are in the same state. See Section 5.4 for results.
Track Correspondence. Cycles in our formulation correspond tracks with one an-
other. Given a set of tracks in videos V and W , we correspond each track i in video
V , to the track in W that maximizes the score in Eq. 5.1:

arg max
j

(
max
n,p,q

S
(
{V i

m:n,W
j
p:q, V

i
m}
))

. (5.5)

Temporal Alignment. We compute the similarity between a given pair of frames
(Vm and Wp) in the two videos V and W by computing the total similarity between
corresponding patches in the two frames:

T (Vm,Wp) =
∑
i

max
j

s
(
fθ(V

i
m), fθ(W

j
p )
)
. (5.6)

These frame-level similarities can be used to obtain sub-video alignments. For
example, if one wants to align K frames in video 1 to K frames in video 2 we can
pick temporally-consistent top-K correspondences.
Video Retrieval. fθ provides a natural metric for retrieving videos. Given a query
video V and a set of videosW , we retrieve the most similar video to V , by maximizing
the total frame-level temporal alignment score:

W = arg max
W∈W

∑
m

max
p

T (Vm,Wp). (5.7)

5.4 Experiments

Our goal is to demonstrate that we can align videos in space and time by lever-
aging fθ learned using cross-video cycle-consistency supervision. Quantitatively
measuring performance of dense spatio-temporal alignment is challenging due to
the lack of ground-truth data. Therefore, in order to demonstrate the effectiveness
of our approach, our experiments involve factored quantitative evaluations, and
qualitative visualizations. More specifically, we study performance of our model at
track correspondence, and temporal alignment.
Datasets: We perform alignment experiments on the Penn Action Dataset [273] and
the Pouring Dataset [210].
Baselines: We compare our learned features to three alternate popular feature
learning paradigms that focus on:
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• semantics (image classification, object detection),
• local patch appearance (object trackers),
• motion and therefore object transformations (action classification models).

For models that capture semantics, we compare to ImageNet-trained ResNet-18
model layer4 features (earlier layers do not improve results significantly), and a
Mask-RCNN [92] object detection model trained on the MS-COCO [136] dataset.
These models capture rich object-level semantics. For models that capture local
patch appearance, we compare to features obtained via learning to track from Wang
et al. [250]. Lastly, for models that focus on motion, we compare to features obtained
via training for action classification on Kinetics [111] (ResNet-3D-18), and for frame-
level action classification on Penn Action Dataset. Note, these together represent
existing feature learning paradigms. Comparisons to these help us understand the
extent to which our learned representations capture object state. Lastly, we also
compare to recent paper from Dwibedi et al. [54] which only performs temporal
alignment. To demonstrate the need for also modeling spatial alignment, we a
consider a spatial downstream task of detecting the contact point between the thumb
and a cup in the Pouring Dataset (since models from [54] are only available for the
Pouring Dataset).
Tracks: We use an off-the-shelf tracker[250] to obtain tracks on videos for training
and testing. Since we wish to focus on the foreground of videos for alignment, the
pre-processing requires extracting tracks of foreground patches. To show robustness
to patch extraction mechanism, we experiment with the following patch generation
schemes (use of more sophisticated schemes is future work). For the Penn Action
dataset, we track patches sampled on human detections from a Mask-RCNN detec-
tor [92]. For the Pouring dataset, we perform foreground estimation by clustering
optical flow. As an ablation, we also experiment with ground-truth tracks of human
keypoints in Penn Action dataset.
Training Details. We use a ResNet-18 [95] pre-trained on the ImageNet dataset [38]
as our backbone model, and extract features from the last convolutional layer using
RoI pooling. These features are further processed using 2 fully connected layers
(and ReLU non-linearities) to obtain a 256-dimensional embedding for the input
patch. We optimize the model using the Adam optimizer [116], with a learning rate
of 0.0001, and a weight decay of 0.00001. We train the model for 30000 iterations on
the Penn Action dataset and 500 iterations on the Pouring Dataset with each batch
consisting of 8 pairs of videos. For computational efficiency, we divide each video
into 8 temporal chunks. During training, we randomly sample one frame from each
chunk to construct a sequence of 8 frames.

5.4.1 Qualitative Results

First we show some qualitative results of correspondences that can be extracted by
our approach. Figure 5 shows some examples. We show the query frame on the
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Figure 5: Nearest neighbor patch correspondence. For random patches in query videos
(left), we show the nearest neighbor patch across all frames (right) in a video retrieved
using our method. We observe that our learned feature space is sensitive to the state of the
object. Example in row 2 further highlights this point where our features match similar
appearing patches differently based on the state of the person in the query. Row 3 shows an
example from the Pouring dataset.

left, and the corresponding nearest neighbor patch across all frames on the right.
We observe that our model matches based on both the appearance and the state of
the object. Next, we show that our approach can temporally align videos. Figure 6
visualizes temporal alignment on the pouring task.

Finally, we qualitatively compare the correspondence using our features com-
pared to ImageNet and action classification features. Figure 7 shows the spatio-
temporal alignment on Penn-Action dataset. Given a query video, we retrieve the
most similar video based on spatio-temporal alignment. We use human keypoints to
form tracks. The spatial alignment is shown by shape and color of keypoints, and the
temporal alignment is shown in vertical (frames on top and bottom are temporally
aligned). As compared to baseline methods, our approach is able to retrieve a more
similar video, better align the frames in time, and more accurately correspond tracks
with one other.

5.4.2 Quantitative Evaluation

Evaluating Temporal Alignment. Given a query video, we first obtain the closest
video and then do temporal alignment as described in Section 5.3.2. For a given
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Figure 6: Qualitative Results on Pouring Dataset: We show qualitative examples of re-
trieval and temporal alignment (query on left, retrieval on right) from the Pouring Dataset,
based on the similarity metric learned by our model.

Table 1: Temporal Alignment on Penn Action Dataset [273]: We measure temporal align-
ment by measuring alignment in keypoint configuration at point of temporal alignment.

Method Temporal Alignment Error ↓
ImageNet features 0.509
Features from Mask-RCNN [92] 0.504
Features from cycle-consistency based tracker [250] 0.501
Features from Kinetics [111] action classification model 0.492
Features from action classification 0.521
Our features (using tracks from [250] to train) 0.448

pair of frames Vm and Wp, we densely sample foreground patches and compute an
average similarity using fθ as the feature extractor. We can then temporally align
the frames of videos V and W using the similarity measure in Eq. 5.6. Starting with
8 frames each, we align 4 frames from the query video to 4 frames in the retrieved
video.

We evaluate the quality of the temporal alignment, by comparing the pose con-
figuration of the human in the aligned frames (i.e. is the human in the same state
in query and retrieved video). More specifically, we use the ground truth keypoint
annotations to estimate and compare the angle between the surrounding limbs at left
and right knee, left and right elbow, left and right hip and the neck. We report the av-
erage absolute angle difference over all joints (lower is better) in Table 1. We observe
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Figure 7: We show qualitative examples of retrieval and spatio-temporal alignment on the
Penn Action Dataset to compare different feature spaces. The top row shows snapshots
from the query video, the second row shows video retrieved from our model (trained on
tracks from [250]), the third row shows retrievals using ImageNet features, and the fourth
row shows retrievals using features obtained by finetuning on the dataset using the class
labels. Each columns shows temporally aligned frames, while coloured markers show spatial
alignment. For all methods, we use keypoint tracks at inference time in order to showcase
spatial alignment.

that features learned using our proposed cross-video cycle consistency leads to better
temporal alignment than features from ImageNet classification, Mask-RCNN [92],
frame and video classification, and intra-video correspondence [250].
Evaluating Spatial Alignment with Patches. Our proposed model can also perform
spatial alignment. Given temporally aligned video frames, we use the similarity
function s with the learned features fθ to correspond image patches in temporally
aligned video frames. We measure the quality of alignment by counting how many of
the corresponding keypoints lie in aligned patches. We report the average accuracy
using various feature extractors in Table 2.
Evaluating Keypoint Tracks Correspondence. Given a track in query video V , a
spatially aligned track in reference video W can be identified, by using the same
similarity function s with the learned features fθ. We evaluate this by aligning
keypoint tracks provided in the Penn Action dataset. Given a track of a keypoint in
video V , we measure the accuracy which the aligned track corresponds to the same
keypoint in video W . We report this accuracy in Table 3. Note that this alignment
uses keypoint tracks only for performing inference and quantitative evaluations.
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Table 2: Spatial Alignment on Penn Action Dataset [273]: We measure spatial alignment
by measuring how accurately we can match keypoint by corresponding random patches
between query and reference videos.

Method Spatial Alignment Accuracy ↑
ImageNet features 0.153
Features from Mask-RCNN [92] 0.202
Features from cycle-consistency based tracker [250] 0.060
Features from Kinetics [111] action classification model 0.150
Features from action classification 0.157
Our features (using tracks from [250] to train) 0.284

Model was trained using tracks from Wang et al. [250] on foreground patches as
before.

5.4.3 Ablations

Additionally, we also compare to 3 variants of our model, to understand the effec-
tiveness of the different parts of our model. We discuss spatial alignment results (as
measured by accuracy at keypoint track correspondence).
Impact of quality of tracks used during training. We experiment with using tracks
derived from ground truth key-point labels during training. We find that this leads
to better features, and achieves a keypoint track correspondence accuracy of 0.650
vs. 0.551 when using tracks from Wang et al. [250]. The next ablations also uses
ground-truth tracks for training.
Not searching for temporal alignment during training. Our formulation searches
over temporal alignment at training time. This is done by searching for frames to
jump between the two videos (max over n, p and q in Eq. 5.2). In this ablation, we
learn features without searching for this temporal alignment, i.e. simply assume
that the frames are aligned. The resulting features are worse at spatial alignment
(keypoint track correspondence accuracy of 0.584 vs. 0.650).
Importance of reference video retrieval. As a first step for spatio-temporal align-
ment, we retrieve the best video to align. In order to ablate the performance of this
retrieval task, we measure the average keypoint track correspondence accuracy by

Table 3: Track Correspondence on Penn Action Dataset [273]: We measure spatial align-
ment by measuring how accurately we can match keypoint tracks across videos. We compare
our learned cross-video features with those obtained by pre-training on ImageNet and for
action classification on the Penn Action dataset.

Method Track Correspondence Accuracy ↑
ImageNet features 0.252
Features from action classification 0.110
Our features (using tracks from [250] to train) 0.551
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aligning all the queries to all reference videos. We observe that the accuracy drops
by 15% indicating that the retrieval step is effective at choosing relevant videos.

5.4.4 Comparison on Pouring Dataset

Method Accuracy ↑
ImageNet features 27.1%
TCC [54] 32.7%
Ours 38.6%

We now show the necessity of learning spatial
alignment by considering a spatial downstream
task of predicting contact locations. We annotate
the Pouring Dataset [210] with locations of the
contact point between the human thumb and the
cup. We train a linear 1× 1 convolution layer on
the spatial features in various models to predict
the probability of the contact point. We compare features from our model that are
sensitive to locations of objects, vs. features from Dwibedi et al. [54] that only focus
on learning good temporal alignment. We split the data into 210 training and 116
test images. We train a linear classifier on top of different features. Table shows
the Percentage of Correct Keypoint (PCK) [262] metric for the localization of this
contact point within a 16px× 16px neighborhood of the ground truth. We see that
our features perform better than both ImageNet features, and features from [54].
Thus, features that are sensitive to object locations are essential for obtaining a rich
understanding of videos.

5.5 Discussion

In this work, we address the problem of video understanding in the paradigm of
“understanding via associations”. More specifically, we address the problem of find-
ing dense spatial and temporal correspondences between two videos. We propose a
weakly supervised cycle-consistency loss based approach to learn meaningful repre-
sentations that can be used to obtain patch, track and frame level correspondences.
In our experimental evaluation, we show that the features learned are more effective
at encoding the states of the patches or objects involved in the videos compared
to existing work. We demonstrate the efficacy of the spatio-temporal alignment
through exhaustive qualitative and quantitative experiments conducted on multiple
datasets.
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Part III

Representation beyond Semantics
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Chapter 6

The Functional Correspondence
Problem

6.1 Introduction

To perceive an affordance is not to classify an
object. The fact that a stone is a missile does not
imply that it cannot be other things as well. It
can be a paperweight, a bookend, a hammer, or
a pendulum bob.

James J. Gibson

Computer vision and visual representation learning has been bound by shackles
of semantic categories. Our training data is built with semantic categories - ImageNet
has 1K categories of breeds of dogs, cats and mushrooms. Our supervision is
semantic categories. And our evaluation tasks are semantic – image classification,
object detection, image segmentation and list goes on. So it is not surprising that our
approaches are bound by the limits of semantic categories. Our representations are
not effective in capturing affordances for robotics tasks. And our representations fail
to generalize effectively to new object categories due to focus on learning intra-class
invariances. On the other hand, humans have marvelous ability to think beyond
categories. We can use a screwdriver for opening screws but also to clean printer,
hammer nails and what-not. Clearly, our current semantically-driven computer
vision needs rethinking.

In classical computer vision, semantics did not play such an important role.
Instead, correspondence was cited as one of the most important tasks in the field of
computer vision. It is also the fundamental goal of visual representation learning – an
embedding space where similar objects/parts/pixels have similar embedding. In an
anecdotal conversation about the three most important problems in computer vision,
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Figure 1: Given a pair of images, functional correspondence establish correspondence
between points that are functionally the same. In this example, we hold the body of the bottle
when pouring but the neck when pounding, therefore we can establish correspondence
(bottle body, shoe front) for pouring and correspondence (bottle neck, shoe front) for
pounding.

Takeo Kanade stated that they are “Correspondence, Correspondence, Correspondence”.
Yet, this fundamental task of visual correspondence is ambiguous and ill-defined.
What is visual correspondence? Does there exist correspondence between any pair of
images? The visual correspondence problem is most well-defined and often studied
in context of tracking and multi-view reconstruction where the goal is to create
correspondences between two images of same object [243]. It has also been studied
in the context of semantic categories where the goal is to create correspondences
between images of object instances from same categories [114, 170]. But it often
stops at cat what are the right correspondences between two seemingly different
object categories (for example, a bottle and a shoe)?

In contrast, we humans can identify correspondences between semantically dif-
ferent objects. We unconsciously use this ability to transfer our object manipulation
skills to novel objects in order to efficiently accomplish everyday tasks. Specifically,
humans possess three interesting capabilities: (a) the ability to visually infer affor-
dances for objects, (b) the ability to generalize beyond semantic categories and (c)
the ability to adapt affordances for different tasks. In order to facilitate exploration
of these capabilities, we introduce the problem of functional correspondence. Given
images of two objects, we ask a simple question: for a given task, what would be
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the set of correspondence between two objects? For example, the correspondences
between shoe and bottle for the task of pouring are shown in the figure 1. The
grasp locations are shown by green, storage by orange and pouring spout by red
keypoints. On the the other hand, the correspondences between shoe and bottle for
the task of pounding (hitting with a force) are quite different and shown in figure 1.
Note that the correspondence between two objects is driven by both 3D shape and
physical/material properties.

We also introduce a new dataset called FunKPoint (Section 6.3). FunKPoint has
ground-truth keypoints labeled for 10 tasks across 20 object categories. We also pro-
pose a modular task-driven architecture. More specifically, our modular architecture
computes the image representation given an input task. We show our architecture
is highly effective in modeling functional correspondences although there is still
a significant gap with respect to human performance. But most importantly, in
proof-of-concept experiments, we demonstrate the underlying promise of learning
functional correspondence. Because our task has functional supervision and there is
cross-category supervision, our representation can outperform semantically-learned
representations for few-shot learning.

6.1.1 Why Functional Correspondence?

In this paper, we introduce the problem of functional correspondence. We believe
this task forms the core of visual learning because of the following reasons:

(a) Object Affordances and Functional Representations: Ability to predict ob-
ject affordances is a cornerstone of human intelligence and a key requirement for
robotics tasks. The task of functional correspondence allows us to learn functional
representations useful for robotics tasks. But more importantly, beyond predicting
primary affordances (screwdriver is used for screwing), humans are really good at
predicting secondary affordances (how we can use novel objects to fulfil the task –
e.g. using screwdriver to clean paper jam in printer). Modeling functional corre-
spondences across different object categories should help in predicting novel use of
objects.

(b) Generalization Beyond Semantic Categories: Unlike other vision tasks such
as object classification/detection or even learning 3D from image collections, this task
cuts across object semantics. It attempts to model commonalities across different
categories of object and hence open up the possibility of generalization beyond
semantic categories.

(c) Task-Driven Representation: Finally, the ground-truth is conditioned on
the task itself, the correspondences between pair of objects depends on how you
envision using these objects. This allows us to formulate a task-driven representation
(unlike current existing task-agnostic ConvNet representations).
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6.2 Related Work

Correspondences: The correspondence problem has always been a focus of the
computer vision community, and many sub-problems have been proposed with
solutions offered. The classical correspondence problem establish correspondence
between different views of the same object. Such correspondence is crucial for multi
view geometry based algorithms and are typically solved by matching local descrip-
tors of interesting points [13, 16, 90, 143, 144]. More recently, researchers looked
into category-level correspondence [114, 170, 196, 197, 230], which does not restrict
correspondence to a single instance. Such methods often model correspondence in
deep feature space, and relies on simulated transformations for training. Because
object of the same category usually perform similar actions, our work could also
establish correspondence at category level. However, we consider any object, re-
gardless of its object class, could correspond if they share parts that have similar
functional semantics. Thus, our functional correspondence could be considered more
general in that we also establish cross-category correspondences.

Dense correspondence between pixels across video frames (optical flow) is also
studied as a separate problem. Traditionally, the optical flow estimation problem is
addressed as an energy minimization problem based on color constancy [18, 98, 194,
219]. Recent optical flow estimation algorithms make use of neural networks [10,
101, 107, 112] as models and explores self-supervision as the training method [74,
139]. Another line of work focuses on the mid-level optical flow problem [104, 123,
243] where consistency between the regions around the pixels is also considered.
Such approaches often leverage the spatial temporal coherence nature of videos to
provides a natural supervision signal. However, because the main training loss is
usually a photometric loss, the learned correspondence is inevitably local. In this
work, we try to establish a higher level functional correspondence. Such correspondence
involves a knowledge of object affordances, which is still hard to learn from unlabeled
raw videos.
Functional Representations and Affordances: The core idea of affordances was
introduced by James J. Gibson [67]. Gibson described object affordances as “op-
portunities for interactions”. Inspired by Gibson’s idea of affordances, a long-term
goal for robotic perception has been to perform function recognition [195, 220].
Approaches such as [220, 254] used manually-defined rules to predict affordances.
However, these approaches were too brittle and failed to generalize.

In recent years, with the advances in 3D scene understanding and with the large-
scale availability of interaction data the idea of affordances has been revisited as
well [34, 63, 82, 87, 274]. Approaches such as [87, 274] have attempted to use 3D
understanding followed by affordance estimation. More recently, approaches have
tried to collect large-scale data for affordance estimation [245] and used ConvNets
to predict affordances in the scene [62, 240]. AffordanceNet [44] simultaneously
localizes multiple objects and predicts pixel-wise affordances by training on a large-
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scale dataset with affordance labels. In contrast, our approach focuses on affordances
as a vehicle to target generalization beyond semantic categories and learn task-
driven representations. More specifically, we target using primary and secondary
object affordances to learn visual correspondences across different object categories.
Our work is also closely related to some recent work in robotics which focuses
on extraction of keypoints for robotics tasks [61, 149]. However, in most of these
scenarios, the goal is to learn to predict dense keypoints/correspondences across two
objects of same categories. In this work, we focus on the more general problem of
how to do task-driven functional correspondences across multiple object categories.
Task-Driven Representations and Modular Networks: Classification models in
deep learning have largely been trained as discriminative models[96, 119, 216].
Recently, energy based models[128] have gained popularity and demonstrated
success on image classification[83], continual learning[53], compositional zero-shot
learning[185, 252] and generative modeling of text[11]. In [185, 252], the key idea
is to construct a task-dependent (or label-dependent) neural network for classifying
whether an image belongs to the considered label. In [185], this compatibility of
an image x to a label y is computed using a sequence of neural network modules
which are reweighted using a function of the considered label y. The modular
architecture proposed in [185] allows sharing of learned filters across different labels
which is crucial for domains where the labels are heavily related. These modular
neural networks have also demonstrated great success in multi-task reinforcement
learning[43, 261] where modules are shared among related tasks to learn policies
efficiently. For estimating functional correspondences, we require representations
that vary according to the considered task. Therefore, we adopt a similar modular
task-driven architecture for learning a task-dependent representation which also
allows us to share neural network modules between related tasks.

6.3 The FunKPoint Dataset

To explore the study of functional correspondences, we present a novel dataset: FunK-
Point (short for Functional KeyPoints). FunKPoint consists of 2K objects covering 20
object categories. In order to learn and evaluate functional correspondences between
pairs of images, we require dense human annotations of such correspondences.
However, such an approach is unscalable due to the quadratic number of image
pairs and pixels. Instead, we first identify 5 semantically meaningful points that are
essential for each task. For each task, we then collect annotations for the 5 keypoints
for each relevant object image. Figure 2 shows examples from the dataset. Note that
a single image could be labeled differently for each task. In total, around 24K such la-
beled keypoints are obtained. Any two objects that can be used to perform an action
are then used to establish a correspondence relationship (w.r.t. that action). This
correspondence between two images, conditioned on a specific action, is referred
to as a Functional Correspondence. For example, in the top left figure of Fig. 2, both
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Intra-category correspondence Inter-category correspondence

Action: Scoop

Action: Poke

Action: Pull out a nail

Action: Mash/Pound

Action: Mix

Action: Scrape

Action: PourAction: FlipAction: Lift Something

Figure 2: The FunKPoint Dataset: Here we present examples from the proposed dataset.
For each image and associated task, we collect human annotations for 5 keypoints. Associat-
ing keypoints between images provides us with numerous intra-category and inter-category
functional correspondences.

hammers can be used to pull out a nail, so a functional correspondence relationship
(consists of 5 pairs of corresponding points) could be established between the two
objects. Similarly, both the spoon and the frying pan (Fig. 2 top-middle) can be
used to scoop things, so we can also generate a functional correspondence relationship
between them.

Data Collection First, we curate an action vocabulary consisting 10 common tasks
(or actions). Our action vocabulary is inspired from the TaskGrasp [166] dataset,
which focuses on task-dependent robot grasps. Therefore, the 10 actions in our
vocabulary are not only common, but also useful as a benchmark in robotics. For
each action, we identify 5 object categories that can be used to perform that task.
Note that many object categories can be relevant for multiple tasks. This allows us
to generate different correspondence for the same objects under the condition of
performing different tasks. For example, the object category frying pan has 2 possible
actions (among others): Scoop and Mash/Pound. The rim of the pan is a functional
keypoint that is important for scooping, but for pounding, the bottom of the pan
becomes the relevant functional keypoint. See Table 1 for the list of 20 objects and
their associated tasks.

For each of the 20 object categories, we collect 100 images from the ImageNet
dataset [39], but supplementing with creative commons images from Google image
search to reach 100. Note we manually filter out images that contain multiple object
instances, missing parts or occluded parts.

We use Amazon Mechanical Turk to collect human annotations for the keypoints.
Each (image, task) pair is labeled with the 5 functional key points as well as a choice
of labelling difficulty (between easy, medium or hard). In the interface, we provide a
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Table 1: Object categories corresponding to 10 action classes used in FunKPoint:

Action Objects

Pour bottle, frying pan, watering can, cup, dustpan
Scoop spoon, basket, cup, frying pan, shoe
Mix spoon, tablefork, spatula, tongs, whisk
Mash/Pound bottle, frying pan, hammer, ladle, shoe
Lift Something ladle, tablefork, basket, tongs, dustpan
Scrape scraper, tablefork, spatula, trowel, spoon
Poke scraper, watering can, screwdriver, trowel, scissors
Brush/Dust whisk, scrub brush, toothbrush, scraper, spoon
Pull out a nail hammer, ladle, scissors, frying pan, tablefork
Flip spoon, tablefork, spatula, ladle, tongs
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Figure 3: Approach: We use a task-driven modular architecture for learning functional
representations. We show that the learned representation can be effectively used to identify
functional correspondences between objects. Note that we show 3 modules per layer here
only for illustration, see supplementary material for the chosen value for this hyperparameter.

simple definition for each point, current action, and also examples of labeled images.
See supplementary material for a visualization of the interface. As explained, each
object could be associated with multiple actions (see Supp. for statistics). From the
collected data, we create a train split containing 4044 (image, task) pairs and a test
split contains 741 (image, task) pairs.

6.4 Approach

Estimating semantic correspondences has been well studied in the past. Most approaches[114,
170, 196, 197, 230] involve learning a pixel or patch level representation which can be
used to match corresponding points on similar objects. As we will demonstrate via
experiments, for the problem of functional correspondence, such representations are
not suitable. We wish to estimate correspondences even across semantically varied
objects and second, the correspondences vary according to the task being performed.
Therefore, we propose an approach that produces task-driven representations that
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can be used to find functional correspondences across varied objects.
First, we formalize the problem setup of functional correspondence. Consider

two images I depicting an object o and I ′ depicting an object o′ such that both objects
can be used to perform task t. Given any point p on object o, the goal of the functional
correspondence problem is to estimate the functionally corresponding location p′ on
object o′. However, as described in Sec 6.3, we only have access to correspondences
for specific keypoints due to the prohibitive cost of annotation. Therefore, for each
task t ∈ T that can be performed with object o, we have a set of functional keypoints
{pt1, pt2, ..., ptK}. The goal of the functional correspondence problem can then be
restated as estimation of the functionally corresponding locations of the keypoints
{p′t1, p′t2, ..., p′tK} on object o′.

Recently, task-driven classifiers have gained popularity for the problem of zero-
shot learning[185, 252]. Taking inspiration from these approaches, we adopt a
similar approach to learn a task-driven representation. More formally, we propose a
model Fθ with parameters θ which takes as input an image I, a task t and outputs
a representation f = Fθ(I, t). In order for the representation f to be useful for
functional correspondence, we propose to learn the parameters θ using the dataset
presented in Sec 6.3. The goal is to ensure that the representation f at location p of
an image I and location p′ of an image I ′ are identical only when p, p′ are functional
correspondences. To achieve this, we propose a contrastive learning objective [174]
as follows:

L(I, I ′, t, θ) =

K∑
k=1

− log
exp (f [ptk]

ᵀ f ′[p′tk])∑
p′ exp (f [ptk]ᵀ f ′[p′])

(6.1)

where f = Fθ(I, t), f ′ = Fθ(I ′, t)
f [p] is the indexed feature f at spatial location p

here ptk, p′tk are the k-th functional keypoints for task t in image images I, I ′ re-
spectively. Intuitively, minimizing this objective effectively minimizes the distance
between features of functionally corresponding points in the two images (numerator)
and maximizes the distance between the feature of a keypoint and the features at all
non-corresponding locations p′ (denominator). Note that the locations p′ includes
all keypoint and non-keypoint locations.

This general contrastive learning formulation can be applied to any convolutional
neural network architecture that jointly encodes the image I and task t. In order to
model the dependencies between functional keypoints of different tasks, we propose
to use a modular architecture allowing us to share filters across tasks. We adopt
the architecture proposed in [185]. For the sake of completeness, we describe the
architecture here in detail.
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6.4.1 Implementation Details

Figure 3 shows an overview of our proposed model F . For an image I, we first
extract task-agnostic features using a ResNet trunk upto the conv4 x layer (defined
in [96]) as r = R(I). For an image with dimensions H ×W , the representation r
has spatial dimensions H/16×W/16 with a C dimensional feature at each location.
The representation r is then processed by a modular task-driven feature extractor T
to produce the final features f = T (I, t).

The modular task-driven feature extractor T consists ofNT layers with each layer
comprising ofMT modules except for the last layer which comprises of a single module.
A module can be any differentiable operation. In our proposed architecture, we use
convolution layers with batch normalization[102] and ReLU activation functions
(see supplementary for details of kernel size, number of filters, etc). We denote
the j-th module of the i-th layer as Tij . Given a task-dependent weight tensor
Wt ∈ RNT−1×MT×MT for task t, the output of a module Tij is computed as:

oij = Tij
( MT∑

k=1

Wt[i, j, k] ∗ o(i−1)k

)
(6.2)

Intuitively, the input to a module is a weighted sum of the outputs of the modules
in the previous layer. For modules in the first layer, the inputs are taken as the
task agnostic representation produced previously i.e. o0k = r. Finally, the output
task-dependent representation is taken as the input of last module o(NT )1.

Note that we assumed that we are given a task-dependent weight tensor Wt ∈
RNT−1×MT×MT . This weight tensor is estimated using a separate fully-connected
neural network G known as the gating network (see supplementary for parameter
details). The gating network takes as input a task-embedding t and outputs the
weight tensor asWt = G(t). As explained in [185], the input weights to each module
(W [i, j, :]) needs to be projected to the probability simplex using a softmax operation
to encourage separate paths for different tasks. In summary, the output feature
representation is computed as f = T

[
R(I),G(t)

].
6.4.2 Training

The objective presented in Equation 6.1 is used to learn the parameters θ which com-
prises of the gating network G, modules Tij and task embeddings t (which are ini-
tialized randomly for each task). We pretrain the ResNet model R on ImageNet[39]
and fix its parameters. We optimize the parameters using SGD with a learning rate
of 0.01, weight decay of 0.00001 and momentum of 0.9. Each batch consists of 256
pairs of images randomly sampled from the training split of the FunKPoint dataset.

88



6.5 Experiments

Modeling functional correspondences provides numerous practical benefits. In this
section, we demonstrate this by evaluating our presented model on a suite of tasks.
First, we show that our model can effectively identify functional correspondences
and outperform numerous baseline methods. We then demonstrate the efficacy of
our learned representation for few-shot learning, grasp prediction, and ADROIT
manipulation tasks [188]. Note that due to the domain of our training data, we focus
our experiments on manipulation related datasets for all tasks.

Pour

Mix

Mash

Lift a nail

Poke

Figure 4: Qualitative Correspondences. We demonstrate some qualitative correspondences
generated by our algorithm. Squares indicate predicted functionally corresponding key-
points in the second image and circles indicate ground truth keypoints in both images.
Notice how the correspondences differ for input task. For example, for the task of mashing/-
pounding the bottle base corresponds with hammerhead. Similarly for poking, the spout of
watering can corresponds to the tip of gardening tool.

6.5.1 Functional Correspondences

We first evaluate the performance of our model on the task of estimating functional
correspondences. We create an evaluation benchmark of (training image,test im-
age, task) triplets using the FunKPointdataset. As explained earlier, each image is
associated with 5 keypoint annotations. The goal is to identify the location of each
keypoint in the test image using the associated train image and task.

Given representations of the train and test images ftrain, ftest, the corresponding
test image location for a training image keypoint ptrain can be identified as:

ptest = arg max
p

(ftrain[ptrain]ᵀ ftest[p]) (6.3)
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We use the PCK metric to evaluate the quality of estimated keypoints. An
estimated keypoint in the test image is considered correct if it lies within 23 pixels
from the ground truth annotation.

The ImageNet baseline involves using features from a pretrained ResNet-50
conv4 x layer (same as the trunk of our model) to compute the correspondences.
We also compare to self-supervised semantic correspondence estimation model pre-
sented in [122] and features from a task-agnostic affordance estimation method [45].
Finally, we evaluate three variants of our model. Ours with task-embedding refers
to our full model. Ours without task-embedding (uniform) refers to a model with
Wt[i, j, k] = 1/MT i.e. the gating weights are constant, uniform and not dependent
on the task embedding t. Ours without task-embedding (learned) refers to a similar
task-independent model, where a single learned gating weight Wt is shared for all
tasks. We observe that our proposed model substantially outperforms the ImageNet
model and self-supervised learning methods. This further illustrates the difference
between learning representations for semantic and functional correspondence. In
the ablation of our model, we observe that our proposed model outperforms its
task-independent variants by a substantial margin. This emphasizes the need for
task-dependent features since functional correspondences are closely tied to the task
considered.

We also train a variant of our task-dependent model by initializing from a self-
supervised learning method DINO [26]. We observe that while this underperforms
the model initialized from ImageNet, it still significantly outperforms all the baseline
methods. This indicates that learning using the FunKPoint dataset is crucial.

Finally, we measure the consistency of annotations across humans in the func-
tional correspondences by collecting a second set of human annotations. We observe
that the new annotations of correspondence achieve a PCK of 82.5%. Additionally,
on a subset of randomly chosen 200 pairs of images, we collected annotations from 4
humans. We observe that the median distance between estimated functional key-
points was 13.07 pixels. These results demonstrate the ambiguity in the functional
correspondence task is minimal.

In Figure 4, we present a visualization of the estimated correspondences for five
tasks. We observe that our model is able to learn inter-category correspondences.
For example, it is able to learn correspondence between bottlehead and pan spouts
for pouring. Some interesting correspondences include correspondence between
hammerhead and sole of the shoe and correspondence between spout and tip of
gardening-tool. While our model was trained to estimate correspondences for key-
points, our model learns to estimate correspondences for all points on objects. In
Figure 5, we visualize densely sampled points on objects and their estimated cor-
respondences on test images. While our model is trained on 5 key points in each
image, we observe that the model can approximately associate each densely sampled
locations on the reference object to the functionally appropriate location on the target
object. For example, the rim of the mug in the first image is appropriately associated
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Table 2: Correspondences Quantitative Evaluation:

Method PCK

ImageNet (ResNet50) 22.0
MAST [122] (ResNet18) 8.3
AffordanceNet [45] 15.3
Ours without task-embedding (uniform) 52.8
Ours without task-embedding (learned) 52.5
Ours with task-embedding 58.4
Ours with task-embedding (+DINO Init.) 43.5
Human Annotator 82.5

Table 3: Fewshot Learning Accuracy: We observe that the representation learned for
functional correspondence (row 3) demonstrates superior generalization in a few-shot
learning setup compared to the baseline ImageNet-based representation (row 1) and an
ImageNet representation finetuned to classify the objects in the FunKPoint dataset (row 2).

Method Accuracy

1-shot 2-shot 5-shot

ImageNet 44.68 52.52 54.63
ImageNet FT FunKPoint 45.03 53.91 55.55
Ours 47.46 55.68 56.32

with the spout of the watering can.

6.5.2 Few-shot Generalization

Classification of objects requires understanding its appearance and 3D structure.
However, exhaustively modeling appearance and 3D properties from a few samples
is challenging and ambiguous in many cases. For example, observing an image
of a white conical coffee mug could lead to the belief that all mugs are conical.
What we need is a way to use the data from other categories to help learn what
makes mug a mug? Since, in the task of functional correspondence, we already label
correspondences across multiple categories, our learned model might have better
ability to create cross-category generalization. This is the hypothesis we want to test
in this experiment.

First, we curate a small dataset of 5 manipulable objects (shovel, water jug, coffee
mug, wok and letter opener) with 20 images each. We create train-test splits by
including 1, 2 or 5 images for each object in the train set and the rest in the test set.
In each of the settings, we generate 3 different random samples for the splits leading
to a total of 9 unique splits.

We train a linear classifier to classify the features extracted from our proposed
model. Since our model extracts task-dependent features, for each image, we con-
catenate the features extracted for all 10-tasks and perform spatial average pooling to
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Pour

Scoop

Mix

Mash

Poke

Figure 5: Beyond Keypoint Correspondences: The representation learned by our proposed
model can be used effectively to identify dense functional correspondences from a reference
image (left in each pair) to target images (right in each pair). The colors indicate matched
points. Observe that the identified correspondences (same color points) are consistent in
terms of functionality.

reduce the dimensionality. As a baseline, we similarly train a linear classifier on the
ResNet-50 conv4 x features pretrained on ImageNet. For a fair comparison, we also
finetune an ImageNet representation to classify objects in our presented FunKPoint
dataset. We present the results in Table 3. The representation learned by our model
outperforms the ImageNet based representation on all three settings by substantial
margins. We also note that our model outperforms the representation optimized
for classifying the objects in the FunKPoint dataset. This indicates that the task of
functional correspondence leads to representations that generalize better to novel
manipulable objects.

6.5.3 Grasp Prediction

Functional representations are ideally suited for facilitating downstream robotic
manipulation tasks. A common challenge addressed in robotic manipulation is
the task of grasp prediction. In [182], this is formalized as prediction of grasp
success given an image and a hypothesized grasp angle. For this task, we evaluate
the efficacy of the features learned by performing functional correspondence. We
extract features using our proposed model, concatenate with the hypothesized grasp
angle (as a discretized 18-way one-hot vector), the extracted feature is then fed into
a 2-layer neural network appended at the end of the modular network to predict
the grasp success label. The feature extractor and the classifier are jointly finetuned
on the training set of the benchmark using a smaller learning rate of 2e−4, until the
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model converges. As a baseline, we use an ImageNet-based ResNet-50 (similarly
truncated at layer3 as ours). Table 4 contains the numerical results for our model
on the Grasp benchmark. Our method outperform the baseline method by 1.7%
accuracy, demonstrating the advantage of functional representations.

Table 4: Classification accuracy on Grasp Dataset [182]:

Method Accuracy

ImageNet 88.17
ImageNet FT FunKPoint 88.64
Ours 89.85

6.5.4 ADROIT Manipulation Task

A lot of recent research has focused on learning robotic manipulation of objects
through reinforcement learning. In this section, we investigate whether standard
reinforcement learning (RL) based methods can take advantage of functional rep-
resentations. We adopt the method proposed in RRL [212], a simple RL algorithm
that uses pre-trained ResNet [96] features which can be easily replaced by our rep-
resentation. We evaluate this algorithm on the ADROIT manipulation suite [188],
which consists of several complex dexterous manipulation tasks. In the Tool Use
task environment, we evaluate for the task of hammering a nail.

In Figure 6, we present the success rate of our representation compared to the
baseline ImageNet-based based features. We observe that our representation leads
to improved sample efficiency and final performance at convergence. We believe
these results demonstrate the promise of functional representations for robotics
problems. We hope that this will inspire more exhaustive investigations of functional
representations and their role in robotics.
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Figure 6: RL-based Manipulation: We evaluate on the hammering a nail Tool Use task (top)
introduced in [188]. We observe that our functional representation demonstrates improved
sample efficiency and success rate compared to a baseline ImageNet-based representations
that does not encode functional aspects of objects.

94



Appendices

Appendix 6.A Annotation Interface

Figure 6.B.2 shows the annotation interface we used in the Amazon Mechanical
Turk system. The image for labelling is shown to the left, together with the specific
action we are considering. In the middle, we show 5 examples of labelled images.
To the right, we show specific instructions and definitions of each point that is being
labelled. Both image examples and point definition are conditioned on the given
action. Three extra constraints are put on the labelled points:

1. The worker must add all keypoint annotations and use each label only once
2. The worker must annotates all points inside the given “Image Area”.
3. The worker must add annotation for the difficulty.
The labelling process took around 5 days. We then check for errors in the anno-

tations and relabel as described in the main text.

Appendix 6.B Annotation Difficulties

Figure 6.B.1 shows the level of difficulties provided by the annotators. Note annota-
tors could be different for different categories, and the difficulty values may not be
consistent across all annotators (different annotators may feel different difficulty for
labelling the same image). Here, 0 means Easy, 0.5 means Medium and 1 means Hard.
The values shown are computed from an average over all objects in the class. As one
could expect, screwdriver is the easiest object category because there are very little
ambiguities in defintions of each point and the shape variations are small. Two most
difficult object classes are baskets and dustpan. The potential reason could be their
large shape variance. For baskets, there are woven basket, shopping basket, basket
with lids, without lids, and many others. Similarly, dustpan could have different
handle length and orientation. Some so called lobby dustpans could have another
structure that functions as a lid. As comparison, the easier object classes such as
bottle, cup and tablefork have relatively little shape variance.
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Figure 6.B.1: Level of difficulties for each object category.

Figure 6.B.2: Annotation interface: The workers are asked the label the image to the left
with instructions and examples given.

Appendix 6.C Implementation Details

In this section, we provide additional hyperparameter details to facilitate easy repro-
duction of our results.

As explained in Sec 4.1 of the main text, our proposed model is inspired from the
task-driven modular networks proposed in [185]. We design the modular network
as 4 layers with 6,6,6,1 modules in each layer respectively. Here we present the
hyperparameters of the convolution layers:
1st layer: 128 filters, kernel size=7, stride=1, padding=3
2nd layer: 128 filters, kernel size=3, stride=1, padding=1
3rd layer: 128 filters, kernel size=3, stride=1, padding=1
4th layer: 128 filters, kernel size=1, stride=1, padding=0

We train the modules using SGD with learning rate 0.01, momentum 0.9 and
weight decay 0.00001 with a batch size of 256. The gating network takes as input a 100-
dimensional embedding based on the task under consideration. The 10 embeddings
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for the 10 tasks in the FunKPoint dataset are randomly initialize and learned during
the optimization process. The gating network consists of a 2-layer fully-connected
neural network with a hidden embedding size of 100.

Appendix 6.D Dataset Statistics

As explained in the main text, each object could be associated with multiple actions.
This leads to varying number of keypoint annotations based on object category. In
Figure 6.D.1, we present these statistics:
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Figure 6.D.1: Number of keypoint annotations for each object category.
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Chapter 7

Conclusion and Future Research

In this thesis, we investigate approaches for minimizing the role of human-supervision
in representation and recognition problems. The exploration of approaches for learning
visual perception models without supervision possesses the potential for more scal-
able, robust and generalizable systems that can enable a wider range of applications.
We believe that learning without human supervision is also crucial for bridging the
gap between current computer vision systems and the extraordinary capabilities of
human visual perception.

In Part I of this thesis, we investigated and exposed the limitations of current state-
of-the-art self-supervised representation learning methods. We demonstrate that
experimenting with curated datasets has led to methods that heavily leverage dataset
biases (Chapter 2, Chapter 3). In order to allow scaling up of these methods, we
propose approaches to alleviate the dependence on clean and curated data (Chapter
2, Chapter 3). In future research, in order to disallow similar unintentional biases,
we believe it is crucial to construct realistic training and evaluation benchmarks that
reflect the data observed in-the-wild.

In Part II, we presented a novel modular neural network architecture (Chapter 4)
that facilitates construction of classifiers for compositions of seen concepts without
additional supervision. The idea of leveraging compositionality can be extended
beyond object-attribute annotations to free-form descriptions of images which are
more readily available. We also present the novel “understanding via associations”
paradigm for describing visual signals by finding other associated samples (Chapter
5). We apply this to dense video understanding by proposing a weakly-supervised
cycle-consistency loss. We show that using this method, we can retrieve similar
videos,identify dense spatio-temporal correspondences and densely describe a video
via associations.

Finally, in Part III, we propose and investigate the novel “Functional Corre-
spondence Problem”. In this work, we explore beyond the extensively addressed
computer vision problems of identifying semantic similarity. We propose an ap-
proach to identify correspondences between objects of different semantic categories
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based on the intended functionality. We believe that further research on identifying
functional correspondences between objects can enable robotic applications that are
not limited to interacting with known object categories.
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