
MIXED-INTEGER OPTIMIZATION FOR
NANOMATERIAL DESIGN AND OPTIMIZATION

UNDER UNCERTAINTY FOR NONLINEAR PROCESS
MODELS

Submitted in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

Chemical Engineering

natalie malka isenberg

B.S., Chemical Engineering, University of Pittsburgh, Pittsburgh, PA

Carnegie Mellon University
Pittsburgh, PA

December, 2021

Copyright c© 2021 Natalie Malka Isenberg
All rights reserved.

To my parents, Ariella and Jeffrey

A C K N O W L E D G M E N T S

My time spent in the Chemical Engineering department at Carnegie Mellon
University (CMU) has challenged me intellectually and given me countless
opportunities to learn and grow as a scientist. This would not have been
possible without the exemplary community of researchers, mentors, and
friends at CMU.

Firstly, I would like to extend my gratitude to my academic advisor,
Chrysanthos Gounaris. Chrysanthos has taught me how to be an effective
communicator and problem solver, and I learned to be a more detail-
oriented person through our time working together. I am fortunate to have
worked with someone as inventive and driven as Chysanthos. And most
importantly, I am thankful for his compassion whenever I struggled in
this process.

Next, I would like to thank my thesis committee members: Profes-
sor Nikolaos Sahinidis, Professor Zachary Ulissi, Professor Fatma Kılınç-
Karzan, Professor Debangsu Bhattacharyya, and Dr. John D. Siirola, for
their time and thoughtful feedback on my thesis work.

I am also very grateful for the financial support I received from the
Institute for the Design of Advanced Energy Systems (IDAES) during my
studies as well as support from the Department of Energy, Office of Science
Graduate Student Research Fellowship to participate in an internship at the
Sandia National Laboratories in Albuquerque, New Mexico, and support
from the National Science Foundation under grant CMMI 1634594.

I would also like to thank a group of outstanding collaborators with
whom I had the pleasure of working over the course of my thesis work,
including Dr. John Siirola, Professor Debangsu Bhattacharyya, Paul Akula,
Dr. David Miller, Dr. John Eslick, Dr. Michael Taylor, Zihao Yan, Prof.
Giannis Mpourmpakis, and Dr. Christopher Hanselman and Xiangyu Yin.

I would like to thank my undergraduate research mentor at the Univer-
sity of Pittsburgh, Professor Goetz Veser, who mentored me through my
first opportunity in hands-on research and encouraged me to pursue a
research career.

While at CMU, I worked with outstanding individuals whom I also
consider dear friends. From my own cohort of graduate students, I want
to thank Nicholas Golio for being a good friend and confidant. From our
research group, I cannot thank Anirudh Subramanyam, Nikos Lappas,
Christopher Hanselman, and Akang Wang enough for mentoring me in my
first years as a doctoral student. These individuals set a golden standard

iv

for me in my work which I will always strive to meet. And for the rest of
the research group: Hua Wang, Aliakbar Izadkhah, Xiangyu Yin, William
Strahl, Ilayda Akkor and Jason Sherman, I am so glad we got the chance
to work together and share coffees and white board discussions.

In addition to groupmates, I was very fortunate to be at CMU the same
time as many other wonderful people in the process systems engineering
(PSE) group: Saif, David B., David T., Marissa, Yixin, Devin, Carlos, and
many others, thank you for the brainstorming sessions and other good
times. Overall, working in the PSE group at CMU provided an amazing
learning experience where I got to meet and work beside some of the most
talented folks I have ever met.

I need to thank my partner of eight years, Connor, for all of his support
during this process. Connor provided sanity checks, encouragement, and
was often my first resource for working through problems (especially if
they were programming related).

Finally, I would like to thank my family. My parents, Ariella and Jeffrey,
who are so over-the-top supportive of me, they would be proud of me
for remembering to tie my shoes on any given day. My siblings, Ben and
Danielle, who are my best friends. My family in Israel: Chana, Clara, Yossi,
and Nava and everyone else who have been constantly asking me when
I will be done with school for the past five years. To my cousin James,
my uncles Israel and Shlomo, my grandparents Jean & Abe, and Malka &
Emil. I wish you were here to share this with me. And I thank you all for
setting me on my current path.

Natalie Malka Isenberg
Pittsburgh, PA
September 17, 2021

v

A B S T R A C T

In the first part of this work, we consider small nanoparticles, a.k.a. nan-
oclusters, of transition metals. Transition metal nanoclusters have been
studied extensively for a wide range of applications due to their highly
tunable properties dependent on size, structure, and composition. For
these small particles, there has been considerable effort towards theoreti-
cally predicting what is the most energetically favorable arrangement of
atoms. To that end, we develop a computational framework that couples
density-functional theory calculations with mathematical optimization
modeling to identify highly stable, mono-metallic transition metal nan-
oclusters at various sizes.

Next, we devise a novel computational framework for the robust opti-
mization of highly nonlinear, non-convex models that possess uncertain
data. The proposed method is a generalization of a robust cutting-set algo-
rithm that can handle models containing irremovable equality constraints,
as is often the case with models in the process systems engineering domain.
Additionally, we accommodate general forms of decision rules to facilitate
recourse in second-stage degrees of freedom. Our proposed approach is
demonstrated on three process flowsheet models, including a relatively
complex model for amine-based CO2 capture. Finally, we propose an
open-source robust optimization solver implementation of our cutting-set
approach called PyROS. PyROS is a Python-based robust optimization
meta-solver for solving non-convex, two-stage optimization models using
adjustable robust optimization. The PyROS solver enables facile robust
optimization tasks given a deterministic model and description of un-
certainty. With each of the applications presented here, we illustrate that
mathematical optimization modeling and algorithms can be effectively
utilized to address open problems in engineering.

vi

P U B L I C AT I O N S

The following papers related to the work presented in this thesis have
been published, submitted, or are in preparation to be submitted in peer-
reviewed journals:

1. N. M. Isenberg, M. G. Taylor, Z. Yan, C. L. Hanselman, G. Mpourm-
pakis and C. E. Gounaris. “Identification of optimally stable nanoclus-
ter geometries via mathematical optimization and density-functional
theory.” Molecular Systems Design & Engineering 5 (1) (2020), pp.
232-244.

2. N. M. Isenberg, P. Akula, J. C. Eslick, D. Bhattacharyya, D. C. Miller,
and C. E. Gounaris. “A generalized cutting-set approach for non-
linear robust optimization in process systems engineering.” AIChE
Journal 67 (5) (2021), e17175.

3. N. M. Isenberg, J. D. Siirola, and C. E. Gounaris. “PyROS: a Py-
omo Robust Optimization Solver for nonlinear robust optimization.”
Manuscript in preparation.

vii

C O N T E N T S

1 introduction 1

1.1 Nanocluster Structure Elucidation 1

1.2 Thesis Aims for Optimal Nanocluster Design 2

1.3 Robust Optimization for Nonlinear Problems 3

1.4 Thesis Aims for Nonlinear Robust Optimization 5

2 optimal design of transition metal nanoclusters 7

2.1 Introduction . 7

2.2 Nanocluster Geometry Optimization 7

2.3 Mathematical Optimization-based Design 9

2.3.1 Optimization Model 10

2.3.2 Concave Objective Function 11

2.3.3 Symmetry Breaking 14

2.3.4 Improving Numerical Tractability 14

2.4 Optimal Designs . 16

2.5 Conclusions . 17

2.6 Notation . 19

2.7 Appendix . 20

3 metal-specific nanocluster cohesive energy 22

3.1 Introduction . 22

3.2 Metal-specific Nanocluster Geometry Optimization 22

3.3 Metal-specific Optimal Designs 25

3.4 Conclusions . 27

3.5 Notation . 30

3.6 Appendix . 31

4 modeling nanocluster geometry relaxations 33

4.1 Introduction . 33

4.2 Cohesive Energy and Relaxed Structures 34

4.3 MILP Modeling for Relaxed Nanoclusters 34

4.4 Conclusions . 36

4.5 Notation . 37

5 the generalized robust cutting-set algorithm 38

5.1 Introduction . 38

5.2 The Robust Counterpart to a Process Design Formulation . 39

5.2.1 The Generalized Robust Cutting-Set Algorithm . . . 42

viii

contents

5.2.2 Decision Rules . 46

5.3 Implementation Details . 47

5.3.1 Solving Master Problems 48

5.3.2 Separation Approach 49

5.3.3 Decision Rules Polishing 50

5.4 Evaluation of Robust Solution Quality 52

5.5 Conclusions . 53

5.6 Appendix . 54

5.6.1 Convergence Proof . 54

5.7 Notation . 56

6 nonlinear robust optimization case studies 57

6.1 Introduction . 57

6.2 Case Study I: Reactor-Separator 58

6.2.1 Case Study I Results 59

6.3 Case Study II: Reactor-Heater 63

6.3.1 Case Study II Results 64

6.4 Case Study III: MEA-solvent CO2 Separation Flowsheet . . 67

6.4.1 Case Study III Results 69

6.5 Discussion on Choosing Form of Recourse Policy 74

6.6 Conclusions . 76

6.7 Appendix . 77

6.7.1 Reactor Separator Model 78

6.7.2 Reactor Heater Model 83

6.7.3 CO2 Capture Flowsheet Model 86

7 pyros : the pyomo robust optimization solver 94

7.1 Introduction . 94

7.2 PyROS Methodology . 96

7.2.1 Polynomial Coefficient Matching 97

7.2.2 PyROS Separation Procedure 97

7.3 PyROS Solver Interface . 98

7.3.1 Uncertainty Sets . 99

7.3.2 PyROS Options . 103

7.3.3 Calling PyROS . 105

7.4 Tractability and Performance 110

7.5 Conclusions . 112

7.6 Appendix . 113

7.6.1 Construction of Benchmark Problems 113

7.6.2 PyROS Termination Conditions 115

7.6.3 Pyomo Subsolver Statuses in PyROS 115

8 conclusions and future work 118

8.1 Contributions . 118

ix

contents

8.2 Future Directions . 120

bibliography 124

x

L I S T O F TA B L E S

Table 2.1 Representative optimally-cohesive nanocluster ge-
ometries, as predicted by the MILP-model maxi-
mizing the SRB cohesive energy. 17

Table 3.1 Comparison of a few optimal nanocluster struc-
tures as determined by the SRB function (first row)
and the new optimal structures determined by the
corrected models for different metals (second row). 26

Table 6.1 Optimal values of first-stage variables and costs for
the reactor-separator model. 59

Table 6.2 Optimal values of second-stage variables and costs,
under the nominal realization of uncertainty, for
the reactor-separator model. 60

Table 6.3 Expected values and standard deviations of second-
stage variables and costs for the reactor-separator
model. 60

Table 6.4 Total number of iterations and CPU time spent
within the GRCS algorithm when addressing the
reactor-separator model. The total time includes
the time to execute the algorithm and subordinate
solver calls. The percentage of time spent on master
and separation problems only includes the total
execution time for the respective subordinate solvers. 61

Table 6.5 Optimal values of first-stage variables and costs for
the reactor-heater model. 64

Table 6.6 Optimal values of second-stage variables and costs,
under the nominal realization of uncertainty, for
the reactor-heater model. 65

Table 6.7 Expected values and standard deviations of second-
stage variables and costs for the reactor-heater model. 65

Table 6.8 Total number of iterations and CPU time spent
within the GRCS algorithm when addressing the
reactor-heater model. The total time includes the
time to execute the algorithm and subordinate
solver calls. The percentage of time spent on mas-
ter and separation problems only includes the total
execution time for the respective subordinate solvers. 66

xi

list of tables

Table 6.9 Optimal values of first-stage variables and costs for
the CO2 capture flowsheet model. 70

Table 6.10 Optimal values of second-stage control and other
key variables, as well as total and second-stage
costs, evaluated under the nominal realization of
uncertainty, for the CO2 capture flowsheet model. . 72

Table 6.11 Expected values and standard deviations of second-
stage control and other key second-stage variables,
and second-stage costs, for the CO2 capture flow-
sheet model. 72

Table 6.12 Total number of iterations and CPU time spent
within the GRCS algorithm when addressing the
CO2 capture flowsheet model. The total time in-
cludes the time to execute the algorithm and subor-
dinate solver calls. The percentage of time spent on
master and separation problems only includes the
total execution time for the respective subordinate
solvers. 73

Table 6.13 Evolution of robust feasibility for the reactor-
separator design across different recourse policies.
The † annotations refer to non-robust solutions that
happened to remain feasible under all chosen real-
ization samples; in these cases, we instead report
the magnitude of violations, as identified by the
respective separation problems. 82

Table 6.14 Evolution of robust feasibility for the reactor-heater
design across different recourse policies. The † an-
notations refer to non-robust solutions that hap-
pened to remain feasible under all chosen realiza-
tion samples; in these cases, we instead report the
magnitude of violations, as identified by the respec-
tive separation problems. 85

Table 6.15 Evolution of robust feasibility for the CO2 capture
flowsheet across different recourse policies. The †

annotations refer to non-robust solutions that hap-
pened to remain feasible under all chosen realiza-
tion samples; in these cases, we instead report the
magnitude of the violation, as identified by the re-
spective separation problem. 93

Table 7.1 Capabilities of robust optimization tools for han-
dling nonlinear uncertain optimization problems. . 95

xii

list of tables

Table 7.2 Tabulated information regarding pre-implemented
uncertainty set classes in PyROS, including uncer-
tainty set name, mathematical representation as a
constraint, and inferred bounds. 102

Table 7.3 Details regarding models used to derive robust op-
timization test problems for benchmarking PyROS. 110

Table 7.4 Example instance information for derived bench-
mark problems from base problem s381. 111

Table 7.5 Overall performance statistics (statuses at termina-
tion and average time and iterations) for benchmark
problems solved via PyROS. 112

Table 7.6 Robust worst-case objective values ζ∗ for 5-D box
uncertainty sets for a 353 problem instance. 112

Table 7.7 Uncertainty set information to generate the uncer-
tainty sets used in the PyROS benchmarking study. 114

Table 7.8 PyROS Return Statuses. 115

Table 7.9 Mapping Pyomo sub-solver termination conditions
to PyROS master and separation problem actions. . 116

xiii

L I S T O F F I G U R E S

Figure 2.1 Square Root Bond-cutting model for cohesive en-
ergy (dimensionless) of an FCC atom i, plotted
against CNi. Also shown are the secant lines used to
exactly represent the evaluations of cohesive energy
at integral CNi values. 12

Figure 2.2 Best solutions and best upper bounds at termination
for N = 4− 100, using the MILP model without
(2.2a) and with (2.2b) algorithmic enhancements. . . 18

Figure 2.3 Most cohesive structure according to the SRB cohe-
sive energy function for every N. 21

Figure 3.1 Parity plots between cohesive energies calculated
by the SRB model (y-axis), with and without metal-
specific corrections, and by DFT (x-axis) for various
metals. 28

Figure 3.2 Metal-specific corrections to the original SRB model
for cohesive energy, identified via constrained re-
gression based on DFT predicted values. 29

Figure 3.3 New optima at various N, as determined by the
Cu-corrected function for cohesive energy. 31

Figure 3.4 New optima at various N, as determined by the
Au-corrected function for cohesive energy. 31

Figure 3.5 New optima at various N, as determined by the
Ag-corrected function for cohesive energy. 32

Figure 3.6 New optima at various N, as determined by the
Pd-corrected function for cohesive energy. 32

Figure 3.7 New optima at various N, as determined by the
Pt-corrected function for cohesive energy. 32

Figure 5.1 The generalized robust cutting-set algorithm. 44

Figure 5.2 Implementation details of the generalized robust
cutting-set algorithm. 48

Figure 6.1 Flowsheet (a) and reaction mechanism (b) repre-
senting the reactor-separator system considered in
Section 6.2, as adapted from Grossmann and Sar-
gent [46]. 58

Figure 6.2 Evolution during the GRCS algorithm of the robust
feasibility of the reactor-separator designs using the
static approximation policy. 62

xiv

list of figures

Figure 6.3 Flowsheet representing the reactor-heater system
considered in Section 6.3, as adapted from Hale-
mane and Grossmann [50] 63

Figure 6.4 Evolution during the GRCS algorithm of the robust
feasibility of the reactor-heater designs using the
static approximation policy. 66

Figure 6.5 Flowsheet representing the MEA-based CO2 cap-
ture flowsheet considered in Section 6.4, as adapted
from Mores et al. [87]. 67

Figure 6.6 Evolution during the GRCS algorithm of the robust
feasibility of the MEA-based CO2 capture flowsheet
using the static approximation policy. 74

Figure 6.7 Evolution during the GRCS algorithm of the robust
feasibility of the reactor-separator designs using
affine decision rules. 80

Figure 6.8 Evolution during the GRCS algorithm of the robust
feasibility of the reactor-separator designs using
quadratic decision rules. 81

Figure 6.9 Evolution during the GRCS algorithm of the robust
feasibility of the reactor-heater designs using affine
decision rules. 85

Figure 6.10 Evolution during the GRCS algorithm of the ro-
bust feasibility of the reactor-heater designs using
quadratic decision rules. 85

Figure 6.11 Evolution during the GRCS algorithm of the robust
feasibility of the MEA-based CO2 capture flowsheet
using affine decision rules. 92

Figure 8.1 Illustration of how initialization of master prob-
lems (MPk+1) in the GRCS can be improved based
on information from previous master (MPk) and
separation problems (SPk). 122

xv

1
I N T R O D U C T I O N

Small transition metal nanoclusters possess properties that are highly
dependent on size, shape, and composition. Optimizing these material
parameters can lead to drastically improved material performance for
application in catalysis,[2, 9, 63, 113] electronics,[57] and biological sys-
tems.[29] One key research question in the study of small transition metal
nanoclusters is to identify the most stable morphology for a nanocluster of
exactly N metal atoms.[6] While it is possible to determine stable sizes of
small nanoclusters experimentally by measuring the frequency in which
those sizes appear during synthesis, morphological trends in small clusters
are difficult to elucidate since small particles cannot be observed in high
enough resolution to discern specific atomic arrangements.[79] Therefore,
understanding small nanocluster morphology requires complimentary
theoretical calculations and predictions.

1.1 nanocluster structure elucidation

In order to determine the most stable structure for a nanocluster, one
must identify the configuration of atoms with the lowest total energy, as
assessed with some empirical or semi-empirical function, or some ab initio
calculation for the potential energy.[7]

One approach is to use a meta-heuristic type algorithm for identifying a
putative minimum of the potential energy surface (PES) to identify a low
potential energy arrangement for a N-atom nanocluster. The selection of a
PES for a metallic nanocluster presents another heuristic choice, as their
are many variations among PES functions. Examples of PES functions
utilized in the literature include the n-body Gupta[40, 84] potential, Morse
potential[32, 99], or Lennard-Jones pair potentials.[31, 100, 126] The Gupta
potential is known to provide the most accurate predictions for metallic
clusters because it is derived from the second-moment approximation
of the electron density of states in the tight-binding model, unlike the
Morse and Lennard-Jones potentials which are simpler pairwise additive
potentials. Density-functional theory (DFT) based methods have also been

1

1.2 thesis aims for optimal nanocluster design

used as a means for predicting nanocluster structures at energy minima
for both mono- and bi-metallic systems.[16, 127] Utilizing DFT for certain
transition metals can capture energy phenomena related to relativistic
effects at small sizes, as is the case with small gold nanoclusters.[48]

The task of identifying a potential energy minimum given a potential
energy representation becomes an optimization problem in the continuous
space of interatomic distances to compute attractive and repulsive forces.
Solving these optimization problems is challenging, as determining the
global minimum energy structure for a nanocluster of N atoms is a highly
combinatorial problem that is a member of the NP-hard complexity class
of computational problems [135]. This means that, in principle, one might
be required to evaluate the energy of each possible arrangement of atoms,
which is generally an intractable task. Despite such challenges, sophisti-
cated meta-heuristic search algorithms have been employed to search for
minimum energy mono- and bi-metallic nanocluster morphologies.[30, 54]
Approaches of this type include genetic algorithms,[28] basin-hopping,[8]
and simulated annealing.[38] Ab initio molecular dynamics simulations
have also been applied to minimizing potential energy surfaces for nan-
oclusters. [124] While the reported structures are in general highly stable,
and may indeed be ground state geometries, they are not provably optimal
against the stability metric used because meta-heuristic search algorithms
use arbitrary termination criteria that lack guarantees of searching the
entire solution space. Without a proof of optimality upon completion, such
algorithms might converge to a local minimum, as opposed to the true,
global minimum.

And while a good locally optimal solution may be sufficient for further
computational studies, the local optimum may be entirely morphologically
different than the global optimum. Therefore, it is important to consider
methods for identifying the true globally optimal solution so that we can
learn trends in morphology among highly stable nanoclusters. This is
what motivates the approach proposed in this thesis for mathematical opti-
mization and modeling of transition metal nanoclusters. Such a treatment
can provide a proof of global optimality, which is a novel feature of the
approach.

1.2 thesis aims for optimal nanocluster design

In this thesis, we propose a complementary approach for optimal nan-
ocluster design that is a mathematical optimization-based framework. In
this framework, we formulate a mixed-integer linear programming (MILP)
model for determining minimum energy structures of three-dimensional,
mono-metallic nanoclusters. The distinctive feature of our approach is that,
when solved to algorithmic termination by an appropriate MILP numerical

2

1.3 robust optimization for nonlinear problems

solver, the model returns a low energy nanocluster that is guaranteed to
be globally optimal up to the accuracy of the energy functional used and
the flexibility afforded by the explicitly encoded lattice. Next, we evaluate
the optimal predicted structures via density-functional theory (DFT) for
their true cohesive energies. These DFT predicted cohesive energies are
then used to further improve structure-function predictions for use in
optimization. This work-flow is extensible to other systems, and has been
used by Yin et al. [141] to identify optimally cohesive bimetallic transition
metal nanocluster structures.

The contributions of the present work are three-fold. First, we use
rigorous mathematical modeling and optimization to identify highly co-
hesive mono-metallic nanocluster geometries at various sizes. Next, we
use density-functional theory cohesive energy predictions to regress metal-
specific models for nanocluster cohesive energy. And finally, we conduct a
comprehensive computational study to identify sequences of minimum
energy structures unique to different metals and for a wide range of sizes
(number of atoms).

The relevant chapters of this thesis are organized as follows: In Chapter 2,
we present a mathematical modeling approach for identifying optimal
N-atom mono-metallic nanoclusters via cohesive energy. In Chapter 3,
we build a work-flow between mathematical optimization and density-
functional theory for devising metal-specific cohesive energy functions.
Finally, Chapter 8 provides a summary of the key contributions of the
work presented in these chapters, as well as future research directions.

1.3 robust optimization for nonlinear problems

Data in mathematical optimization models are often subject to some level
of uncertainty. The latter can originate from measurement errors and the
use of empirical data, economic stochasticity (e.g., market prices), or vari-
ations in the process environment (e.g., feedstock quality). For chemical
process models, uncertainty most often originates from a lack of knowl-
edge regarding underlying physical properties, such as thermodynamic
and kinetic properties, or constants associated with the prevailing heat
and mass transport phenomena. In the context of process systems engi-
neering, where critical design and control decisions are made by solving
models that are subject to such uncertainties, it is especially important
to understand the effects of parametric uncertainties on the performance
of the chosen solutions, and if significant, to mitigate uncertainty during
the optimization phase so that any resulting design is safely and robustly
implemented.

Due to the ubiquitous existence of uncertainty in process systems en-
gineering models, there exists a breadth of literature in developing and

3

1.3 robust optimization for nonlinear problems

applying risk-averse optimization approaches. Early work in the field
introduced two-stage nonlinear programming formulations with bounded
uncertain parameters[46], two-stage stochastic programming approaches[1,
95], chance-constrained optimization[132], and flexibility analysis formula-
tions and algorithms[45, 111][44] for handling process systems engineering
design under uncertainty. More recently, work by Li and Grossmann [75]
proposed a novel algorithmic approach for solving convex, nonlinear
stochastic programming problems with mixed-integer recourse with appli-
cations in batch plant design and planning with uncertainties in demands
and prices. Kelley, Baldick, and Baldea [65] developed a framework to
account for uncertainty via chance-constraints in dynamically-constrained
scheduling problems, demonstrating this methodology on a complex air
separation unit. Finally, Wang et al. [128] devised an approach for handling
parameter uncertainty in solid-liquid batch reactors wherein worst-case
values for parameters in the uncertainty space are iteratively added as
scenarios to the optimal control problem.

In the chemical process design context, optimization models typically
possess complex nonlinearities, including many non-convexities origi-
nating from physical and chemical equations. These nonlinearities can
be in terms of both decision variables and uncertain parameters in the
model, meaning that traditional duality-based reformulation methods in
the RO literature may lead to either overly conservative or non-robust
solutions due to violations of certain underlying assumptions. To address
this, Bertsimas, Nohadani, and Teo [14] proposed a local search algorithm
for identifying robust feasible solutions to uncertain optimization prob-
lems with non-convex inequality constraints. Additionally, there have been
recent advances in the development of novel methods and applications
of RO methods to nonlinear process systems engineering models, includ-
ing general nonlinear programming robust counterpart formulations[148],
robust counterparts with local linearization of nonlinear uncertain con-
straints and a novel sampling algorithm[143], application to the pooling
problem utilizing a cutting-plane solution algorithm[133], application to
water treatment network operation[62], robust counterpart derivation for
the synthesis of fuel refineries under cost uncertainty[81], and design and
operation of process systems with resilience to disruptive events[43], to
name but a few.

We acknowledge that there remains a practical need to develop general
RO approaches that can identify robust solutions in nonlinear, non-convex
process models that consist mostly of equality constraints or state equa-
tions, which cannot be readily simplified or solved out of the formulation.
Such constraints ubiquitously arise in process design models due to the
extensive use of empirical property correlations and the presence of recycle
streams in process flowsheets, among other reasons. For these classes of

4

1.4 thesis aims for nonlinear robust optimization

problems, there is currently no RO solution approach that guarantees ro-
bust solutions against the entire uncertainty space. To that end, we propose
an extension to the robust-cutting plane method proposed by Mutapcic
and Boyd [91], which we refer to as the generalized robust cutting-set
(GRCS) approach [59]. We aim for the latter to be capable of certifying
fully robust solutions to non-convex optimization problems with a large
contingent of equality constraints, as well as be valid for models with
nonlinearities and non-convexities from both the decision variables and
uncertain parameters.

The GRCS algorithm has two key features. First, it handles equality
constraints systematically and without reformulation. To achieve this, the
algorithm sequentially hedges against realizations of parametric uncertain-
ties by maintaining copies of state variables and equations for each added
uncertain parameter realization to ensure the feasibility of the master
problem state equations. Second, it uses general decision rules, as applied
in the area of adjustable robust optimization[10], in order to handle control
variables, which can be thought of as second-stage variables in process
design contexts. We also present PyROS, an open-source, Python-based
implementation of a robust optimization solver for nonlinear models. Py-
ROS utilizes the GRCS algorithm to automatically identify robust solutions
to general uncertain, nonlinear optimization models. PyROS features an
interface for specifying uncertainty sets, first- and second-stage variables,
and decision rule relationships. Through PyROS, we provide a novel ca-
pability to easily study the effects of uncertainty and the nature of robust
solutions for general nonlinear models.

1.4 thesis aims for nonlinear robust optimization

The key contributions of this thesis are presented here. First, we provide a
formal robust optimization framework in the context of complex, highly
non-convex, equality-constrained process design models via the GRCS
algorithm. Second, we demonstrate the effective use of nonlinear decision
rule functions in decreasing the adaptivity gap in solving the two-stage
problem, i.e., increasing second-stage flexibility to approach true two-stage
optimality.We illustrate the tractability of our proposed approach on a
number of case studies, including a complex equation-oriented flowsheet
model for an amine solvent-based carbon capture process. Finally, we
present PyROS, a robust optimization solver capability within the Python
algebraic modeling language, Pyomo, which implements our novel RO
approach.

The relevant chapters of this thesis are organized as follows: In Chapter 5,
we explain the details of our proposed RO approach, including the problem
formulation, solution algorithm, and implementation details. We then

5

1.4 thesis aims for nonlinear robust optimization

showcase several case studies in Chapter 6 to illustrate the performance
of the GRCS algorithm on real process systems models. Next, the GRCS
algorithm-based solver PyROS is introduced and discussed in Chapter 7.
Finally, we conclude with some remarks on contributions and future work
in Chapter 8.

6

2
O P T I M A L D E S I G N O F T R A N S I T I O N M E TA L
N A N O C L U S T E R S

2.1 introduction

It is well known that the physical and chemical behaviors of small nanopar-
ticles are governed by size, geometry, as well as composition or the
presence of a support. For example, small supported gold nanoparti-
cles (Aun, n ≤ 20) were shown by Sanchez et al. [103] to display enhanced
catalytic activity for low temperature oxidation of CO. Furthermore, it was
determined that this enhanced catalytic behavior began at nanoclusters
where n ≥ 8. Additional research by Cai, Guo, and Liu [18] has shown that
the arrangement of supported Au atoms in either a single 2-D layer or 3-D
nanoclusters has a direct impact on catalytic activity for CO oxidation. This
illustrates the impact that tunable properties, such as size and geometry,
can have on nanocluster performance. This strongly motivates efforts to
theoretically predict and study trends in structure and functionality for
small metallic nanoclusters.

In this chapter, we will consider the problem of identifying the optimal
arrangement of N atoms in mono-metallic transition metal nanocluters.
We will devise a mixed-integer linear program (MILP) for identifying
the optimal placement of N atoms against an objective of maximizing
the stability of the nanocluster. Solving the resulting MILP models at
various N values retrieves the proven optimal arrangement of atoms for
the selected objective function of minimizing nanocluster energy.

2.2 nanocluster geometry optimization

The geometry of a minimum energy nanocluster of a given size is assumed
in this chapter to be the one that attains the maximum cohesive energy
(Ecoh). The cohesive energy is chosen as a good proxy for the particle’s
overall stability because it measures the cumulative strength of interatomic
bonding between atoms. Cohesive energy is an important, size-dependent

7

2.2 nanocluster geometry optimization

property of nanomaterials, and can be used to understand thermal stability
properties such as melting point and vacancy formation energy. [119, 151]

As a first pass, our mathematical model utilizes an analytical cohesive
energy function first proposed by Tománek, Mukherjee, and Bennemann
[115], which stipulates that the contribution of each atom to the total
cohesive energy of a particle in a metallic nanocluster depends only on the
square-root of its coordination number (CN), i.e., the number of neighbors
surrounding this atom within the lattice. It has been shown that square-
root coordination number-based models of cohesive energy provide good
agreement with predictions of cohesive energy for transition metals when
compared to more costly DFT predictions.[83]

Previous work has successfully utilized CN as a catalytic site descriptor
to design transition metal surfaces via mixed-integer linear programming
techniques.[51] The work presented in this chapter extends such tech-
niques towards the design of three-dimensional nanoclusters. Notably, the
rigorous optimality guarantees afforded to us by the MILP-based approach
often allow us to identify unintuitive and previously unconsidered designs
that complement the breadth of existing results in the identification of
low-energy small nanoclusters. It should be noted, however, that the new
approach only seeks structures on a predefined, discrete lattice. This means
that only structures that conform to the chosen lattice can be identified as
optimal, highlighting the need for the user to provide a lattice input that
can accommodate reasonable expectations about the geometry of highly
cohesive structures.

The cohesive energy, Ecoh, of a material represents the energetic benefit
imparted when neutral metal atoms come together from infinite separation
to form a crystalline solid. It has been shown that the moment expan-
sion method for determining the electron density-of-states can accurately
describe cohesion in transition metals.[25, 110] Based on this result, a
transition metal atom contributes to the cohesiveness of a nanocluster
proportionally to the square root of its coordination number.[25, 110, 115]
Therefore, the average (per atom) cohesive energy of a transition metal
nanocluster can be represented as a function of the coordination numbers
of all its N atoms according to Equation 2.1.

Ecoh =
EBULK

coh
N

N

∑
i=1

√
CNi

CNmax
+ ER (2.1)

In the above equation, CNi refers to the coordination number attained
by the ith atom, CNmax is an integer parameter specifying the maximum
attainable coordination number for a given crystal lattice, EBULK

coh is the
cohesive energy of the bulk material, and ER is a residual energy term.
The residual term ER represents repulsive interactions between atoms in a
nanocluster at non-equilibrium interatomic distances. Whereas this term is

8

2.3 mathematical optimization-based design

especially prevalent at small sizes N,[34] there generally exists no closed-
form representation for it. Hence, we shall initially neglect it by assuming
ER=0. This model with no residual energy term is also referred to as the
Square Root Bond-cutting (SRB) model for cohesive energy.[140] Importantly,
the SRB model is MILP-representable via standard modeling methods
described in the following sections, opening up interesting possibilities for
its inclusion as the basis of a tractable optimization model for nanocluster
design.

From this point onwards, when we refer to cohesive energy, we will
be referring to its dimensionless form, which is the above defined quantity
(Ecoh) normalized to (divided by) the value of EBULK

coh , and which can thus
attain values between 0 and 1, irrespective of the identity of the material
involved.

2.3 mathematical optimization-based design

We shall now propose a mathematical optimization modeling frame-
work for determining the minimum cohesive energy structures of three-
dimensional, mono-metallic nanoclusters. In this framework, sites on a
crystal lattice are indexed via the set i ∈ I. We refer to this set as a canvas,
as it constitutes the space wherein an allotment of N atoms can be placed
to design the nanoclusters. For each lattice site i, we introduce a binary
design variable, Yi, to indicate the presence or not of an atom on this site.
If Yi = 1, an atom exists at canvas location i, while if Yi = 0, the canvas site
is devoid of an atom. Using this framework, it is possible to represent any
nanocluster design as a collection of “0/1” values for all design variables
in the canvas.

The size and shape of the canvas should be carefully selected by the
modeler. For example, if one wishes to design a face-centered cubic (FCC)
nanocluster with N = 100 atoms, a possible canvas to use would be a
cuboctahedral geometry and 561 lattice sites (i.e., 5 shells of a perfect
cuboctahedron). However, one should keep in mind that the difficulty of
solving the nanocluster optimization model depends upon the size of the
canvas (degrees of freedom) in relation to how much of the canvas should
be occupied (size of nanocluster), and that there exists a trade-off between
numerical tractability and flexibility to accommodate any conceivable
nanocluster design of a particular size N. Finally, it should be noted that,
although we focus this study on FCC nanoclusters, the concept of a canvas,
and thus our proposed optimization model, can be easily extended for the
design of nanoclusters with any crystalline geometry.

9

2.3 mathematical optimization-based design

2.3.1 Optimization Model

Given degrees of freedom Yi to indicate placement of atoms as well as
auxiliary variables CNi to encode the coordination number at every canvas
location i ∈ I,ii the basic optimization model to identify maximally cohesive
transition-metal nanoclusters is given below in Equations 2.2 through 2.10.

max
Yi ,CNi

1
N
√

CNmax
∑
i∈I

√
CNi (2.2)

s.t. ∑
i∈I

Yi = N (2.3)

{Yi = 1} ⇒
{

CNi ≤ ∑
j∈Li

Yj

}
∀i ∈ I (2.4)

{Yi = 1} ⇒ {CNi ≥ CNmin} ∀i ∈ I (2.5)

{Yi = 0} ⇒ {CNi ≤ 0} ∀i ∈ I (2.6)

0 ≤ CNi ≤ CNmax ∀i ∈ I (2.7)

Yi ∈ {0, 1} ∀i ∈ I (2.8)

All atoms are connected (2.9)

Nanoclusters are non-hollow (2.10)

The model’s objective function, Equation 2.2, consists of the (dimensionless)
SRB cohesive energy function, which we seek to maximize. Equation 2.3
defines the nanocluster’s size (number of atoms), where N is an integer
parameter of the model to be provided as a constant. For occupied canvas
locations, Equations 2.4 set the auxiliary variables CNi to their applicable
values,iii where the sets Li have been defined to represent the neighboring
sites to each location i. At the same time, Equations 2.5 ensure that all
atoms adhere to some minimum value, CNmin, which is provided to
avoid low-coordinated, unrealistic atom placement. Equations 2.6 enforce
that, if no atom is placed at a location i, then the corresponding CNi
variable attains the value of 0, and hence, prohibit unoccupied locations
from contributing to the objective function. Note that the implication
constraints 2.4 through 2.6 can be transformed to standard linear equations
using well-known MILP modeling techniques, such as the so-called big-M
reformulation, which is what we used in our implementation.

Equations 2.7 declare the non-negativity of the coordination number
variables, as well as enforce applicable upper bounds on their possible val-

ii In this context, the “coordination number of an unoccupied location is regarded to be
equal to 0.

iii We remark that coordination numbers are defined here via ≤ inequality constraints (as
opposed to strict equalities) at the interest of yielding an MILP model with tighter LP
relaxations. Due to the direct maximization of variables CNi in the objective function, the
coordination number evaluations will be exact at any optimal solution.

10

2.3 mathematical optimization-based design

ues. Here, the upper bound of CNmax is chosen as the maximum achievable
coordination number in a given canvas, as determined by the applicable
lattice. Finally, Equation 2.8 explicitly enforces the integrality constraint for
the binary variables Yi.iv We remark that, for the FCC geometry used in
this study, we use constant values CNmin = 3 and CNmax = 12, meaning
that any given atom is allowed to have at least three and at most twelve
nearest neighbors. For other crystalline geometries, other appropriate
values should be used (e.g., for body-centered cubic, CNmax=8).

There also exist two additional requirements on our nanocluster designs,
namely those of connectivity and non-hollowness. The purpose of requiring
connectedness is to avoid presumed solutions where the N atoms have
been divided into two or more smaller nanoclusters. The requirement
for non-hollowness is imposed to avoid nanocluster designs that feature
void enclosed volume. Because it is not straightforward to represent such
requirements as explicit constraints on our model’s decision variables,
we are only presenting them conceptually in Equations 2.9 and 2.10,
respectively. These two constraints are enforced dynamically during the
solution procedure via a lazy-constraint interface, which is available in
modern MILP solvers. Omitting many details at the interest of brevity,
the main idea is to inspect every design as soon as it is returned by the
numerical solver, and if found to be either disconnected or hollow, to add
an integer cut constraint to the model so as to explicitly render this specific
design infeasible, eliminating the possibility that this design persists as
the final optimal solution identified by the framework.

2.3.2 Concave Objective Function

We remark that the objective function is a non-linear, concave function in
variables CNi. Whereas at first glance this equation appears incompatible
with an MILP model, we can reformulate it into an MILP-representable
form due to the special mathematical structure of the model, namely the
integrality of variables CNi and the fact that we seek to maximize such a
concave function. More specifically, we introduce a new set of auxiliary
variables, CNRi, to represent the square root value of the coordination
number at each canvas location i ∈ I, adding also the following bound
definitions.

0 ≤ CNRi ≤
√

CNmax ∀i ∈ I (2.11)

We can now choose to model the square root of the coordination number
not as a smooth function, rather as a set of secant lines passing through

iv Note how the integrality of variables CNi need not be explicitly declared, as it is implied
by the integrality of variables Yi.

11

2.3 mathematical optimization-based design

points on the curve
√

CNi at integer values of CNi, as shown in Figure 2.1
for the case of an FCC lattice. Note how this approximation of the square
root function is exact at all locations of interest, namely the integer values
of CN. The secant-line definition of CNRi is then imposed in the model
via Equations 2.12, where α` and β` are appropriate constants to represent
the slope and intercept, respectively, of each consecutive secant line `.

CNRi ≤ α`CNi + β` ∀i ∈ I, ∀` ∈ {1, 2, . . . , CNmax} (2.12)

CNi

√ C
N

i/
√

12

0 1 2 3 4 5 6 7 8 9 101112
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 2.1: Square Root Bond-cutting model for cohesive energy (dimensionless)
of an FCC atom i, plotted against CNi. Also shown are the secant lines
used to exactly represent the evaluations of cohesive energy at integral
CNi values.

Finally, the objective function is then replaced with Equation 2.13. Note
that, because we are maximizing the cohesive energy, the optimizer has
the incentive to choose the exact value of the applicable (intersection
of) secant lines, as it is the maximally attainable value permitted by the
inequalities 2.12. Hence, this substitution models the SRB cohesive energy
not only in a linear form, but also exactly (i.e., without approximation
error).

1
N
√

CNmax
∑
i∈I

CNRi (2.13)

2.3.2.1 Opportunities for Second-Order Conic Programming Reformulations

The cohesive energy objective function is effectively a maximization of
a sum of square roots of integer variables, CNi. Because the square-root

12

2.3 mathematical optimization-based design

function is concave and non-decreasing, maximization of such an objective
leads to a convex optimization problem. Furthermore, such a formula-
tion can be represented as an second-order conic program (SOCP). By
definition, an SOCP is an optimization model in which a linear objective
function is minimized over the intersection of an affine set and the product
of second order (i.e. quadratic) cones. SOCP problems are convex opti-
mization problems that are known to be solveable in polynomial time via
interior point methods. Although we have not verified the performance of
applying the SOCP modeling approach, we provide an overview of how
to apply SOCP to the nanocluster design problem.

As shown below in Equations 2.14–2.15, we first transform a simplified
square-root coordination number objective via an epigraph reformulation
using the scalar auxiliary variables ti ∈ R+ ∀i ∈ I.

max
ti ,CNi

∑
i∈I

ti (2.14)

s.t.
√

CNi ≥ ti ∀i ∈ I (2.15)

We then focus on transforming the constraint in 2.15 into a second-order
conic constraint. This is done by the transformation shown in 2.16.

√
CNi ≥ ti ⇔ CNi ≥ t2

i ⇔
∥∥∥∥∥ 1− CNi

2ti

∥∥∥∥∥
2

≤ 1 + CNi ∀i ∈ I (2.16)

Although the integrality of CNi variables is not explicitly enforced in our
optimization formulation shown above, the presence of binary Yi variables
means the resulting formulation with second-order conic constraints leads
to a mixed-integer second-order conic program (MISOCP). The area of
mixed-integer conic programming is a relatively newer field of research
with applications in areas such as portfolio optimization and network
design and operation.[11] To solve these MISOCP problems, a branch-
and-cut algorithm is often employed along with an interior point solver
amenable to solving SOCPs. Additional work has been done to improve
the solution algorithms for MISOCP. For example, convex hull inequalities
have been derived to describing disjunctive conic sets[66, 67] as well as
rounding cuts to improve branch-and-cut performance.[3] Solving the
nanocluster geometry optimization via the MISOCP approach would
provide an interesting tractability comparison to an MILP approach that
has been tested through our work.

13

2.3 mathematical optimization-based design

2.3.3 Symmetry Breaking

Due to the highly symmetric nature of crystallographic spaces, there exist
many isomorphically equivalent ways to represent the same nanocluster
in a canvas, by means of rotation, translation and reflection operations.
More specifically, the FCC lattice is close-packed and has two-, three-
and four-fold axes of symmetry. Symmetry of this form makes the MILP
model more difficult to solve to optimality due to the large number of
equivalent, feasible solutions. In order to mitigate this effect, Equations 2.17

and 2.18 were added to the model as symmetry-breaking constraints. These
constraints aim to eliminate some isomorphic solutions from the design
space, while guaranteeing that at least one representative solution remains
feasible in the resulting model, and hence, that at least one isomorphic
equivalent of the optimal nanocluster is accessible from the design space
induced by the model.

∑
i∈I+s

Yi − ∑
i∈I−s

Yi ≥ 0 ∀s ∈ {1, 2, 3} (2.17)

∑
i∈I+s

Yi − ∑
i∈I−s

Yi ≤ ∑
i∈I0

s

Yi ∀s ∈ {1, 2, 3} (2.18)

The sets I+s , I−s and I0
s in the symmetry-breaking constraints represent

suitable partitions of the canvas, as dictated by three intersecting crys-
tallographic planes, s. Any lattice site i in the canvas can be viewed as
either being “above” plane s, i ∈ I+s , “below” plane s, i ∈ I−s , or “on”
plane s, i ∈ I0

s . By restricting the distribution of atoms in the canvas to be
approximately balanced, many isomorphically equivalent solutions are
removed from the set of feasible solutions.

2.3.4 Improving Numerical Tractability

The mathematical optimization model presented in the previous section
can be addressed by any off-the-shelf MILP solver. However, the latter
being a form of numerical software, it is subject to numerical tractability
issues when applied on models that feature large feasible spaces, such
as those that arise when we use large values of N. In order to improve
solution performance at all N values we wish to consider in this study,
we choose to apply our model sequentially, increasing the value of N one
at a time. As we do so, we adapt the canvas for optimizing the N-atom
nanocluster based on the shape of the optimal (N − 1)-atom design. In
addition, recognizing that in large clusters there is a significant amount
of bulk atom sites, we fix certain binary variables in central locations of
the canvas, again being informed by optimal solutions preceding in the

14

2.3 mathematical optimization-based design

sequence. Below we elaborate further on these algorithmic enhancements
to our framework.

2.3.4.1 Adaptively select the canvas size and shape

In order to ensure that the MILP solver has enough degrees of freedom
to enumerate and identify the optimal nanocluster at a given size, a
sufficiently large canvas must be used. Ideally, this size of the canvas
should be as large as possible, so that the MILP solver has access to
a design space that is guaranteed to include the optimal nanocluster
geometry. However, the tractability of the problem scales inversely with
the size of the canvas. In order to alleviate this issue, the shape and size
of the canvas is determined by the optimal solution of the (N − 1)-atom
nanocluster. Starting with N = 4, where the optimal solution is easily
determined (e.g., using the unenhanced framework) to be a tetrahedron,v

all following canvases can be constructed by taking the (N − 1)-atom
optimal nanocluster and expanding it by two complete shells around
that particle. We have empirically determined that this procedure leads
to sufficiently large design spaces, as maximizing cohesive energy will
tend toward centralized, roughly spherical shapes. It also ensures that the
canvas is not excessively large at smaller values of N.vi

2.3.4.2 Fixing select atom positions

Another enhancement we have applied in order to improve our frame-
work’s numerical tractability is the fixing (to the value of 1) of certain Yi
variables based on optimal solutions at smaller N values. This decreases
the complexity of the optimization problem by decreasing its degrees of
freedom (number of the unfixed binary decision variables). Physically, this
forces some lattice positions to be occupied by an atom in all solutions
considered in the design space.

The algorithm for selecting which atoms to fix is as follows. If N ≥ m,
consider the set of the previous m optimal nanoclusters, O = {N − 1, N −
2, . . . , N − m}. Enumerate all rotations of each of the nanoclusters in O
that satisfy the symmetry-breaking constraints of Equations 2.17 and 2.18,
and denote the set of these transformed nanoclusters as O∗. The atoms that
will be fixed at lattice locations i are those that appear in all nanoclusters in
the set O∗. In other words, if a particular atom is present in the m previous
optimal solutions, we expect it to arise again in the current solution. In

v The design problem is technically infeasible for values of N ≤ 3, due to the requirement
for minimum coordination equal to 3 for all atoms.

vi In practice, canvases designed this way will not be regular cuboctahedra, though this
poses no concern in terms of defining the optimization model, which can be cast for any
irregularly shaped canvas I.

15

2.4 optimal designs

this work, m = 6 was used at all N sizes, because that setting was found
to provide sufficiently conservative sets of lattice locations to fix, while
also significantly improving the tractability at all N.

2.4 optimal designs

The nanocluster optimization model was solved with and without the
numerical enhancements of canvas sizing and atom fixing. In the model
instances solved without enhancements, the canvas was taken to be the
561 lattice site cuboctahedron. Resulting cohesive energies at consecutive
sizes N are shown in Figures 2.2a and 2.2b. Each model was solved using
the MILP solver CPLEX 12.8,[26] using a one hour time limit and four
threads in parallel mode. Additionally, each run was provided with an
initial solution via the MIP start feature of this solver. The initial solution
used at a given N was generated by taking the (N − 1)-atom nanocluster
solution and attaching on its surface a single atom in the most favorable
(out of all feasible options) position.

First, it should be noted that, as N increases, the best integer solutions
asymptotically approach the value of 1; that is, the optimal cohesive ener-
gies approach the bulk cohesive energy of the material, which is consistent
with the expected behavior of the SRB function. However, there are some
instances where the cohesive energy does not trend monotonically as N
increases. This has been observed in the literature and can be explained
via the concept of magic number effects.[36]

It is also clear that, without enhancements, the solver fails to prove
the optimality of its best identified designs (red dots) for cases as low as
N = 10. This is likely due to poor LP relaxations that are observed while
integrality is relaxed, as the mass of all N atoms is diffused across all sites
in the canvas.It is also clear that, without enhancements, the solver fails to
prove the optimality of its best identified designs (red dots) for cases as
low as N = 10.

On the other hand, once the proposed enhancements are enabled, the
performance of the MILP solver drastically improves, and the solver is able
to close the optimality gap in all cases except the regimes N = 54− 64 and
N = 70− 80, where some very small gaps remain. This can be explained
by inspecting how the set of central fixed atoms evolves over N. In the
ranges where the upper and lower bound are not equal at termination,
there are approximately ten fewer fixed binary variables, when compared
to the following and preceding sequences. This increase in free binary
variables decreases the tractability of these instances, as compared to those
with fewer degrees of freedom, leading to non-zero, yet small, gaps after
the imposed time limit.

16

2.5 conclusions

Table 2.1: Representative optimally-cohesive nanocluster geometries, as predicted
by the MILP-model maximizing the SRB cohesive energy.

N=10 N=20 N=30 N=40 N=50

N=60 N=70 N=80 N=90 N=100

Table 2.1 shows some representative optimal solutions. We observe that
these generally possess a somewhat octahedral shape, in accordance with
empirical expectation. Furthermore, it is worthy to note that there was
never a case when, by solver termination, the unenhanced framework had
identified an integral solution that was better that the one having been
identified by the enhanced framework. To this end, we believe that the
algorithmic enhancements do not cause optimal solutions to be eliminated
from the design spaces, and hence, they are welcome to adopt moving
forward inasmuch as they improve tractability without any deterioration
in solution optimality. Schematics of all optimal structures are plotted in
Appendix 2.7.

2.5 conclusions

In this chapter, we have identified a suitable representation of the cohesive
energy of a transition metal nanoparticle for use in a mixed-integer linear
optimization problem. We then propose an MILP model for identifying
optimally cohesive nanocluster structures where the size of the nanocluster,
N, is a parameter. We solve this optimization problem with and without
numerical efficiencies to identify proven optimal structures. As is expected,
because of the implicit definition of the FCC canvas, optimal solutions
at various sizes are fragmented octahedra. The accuracy of the results
acquired via the MILP modeling framework presented here is highly de-
pendent on the form of energy function utilized in the objective. Therefore,
there is a need to identify coordination-based cohesive energy functions
which more accurately capture metal-specific behaviors.

17

2.5 conclusions

0 10 20 30 40 50 60 70 80 90 100
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N

E c
oh

Best integer solution
Best bound (no enhancements)

(a)

0 10 20 30 40 50 60 70 80 90 100
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N

E c
oh

Best integer solution
Best bound (with enhancements)

(b)

Figure 2.2: Best solutions and best upper bounds at termination for N = 4− 100,
using the MILP model without (2.2a) and with (2.2b) algorithmic
enhancements.

18

2.6 notation

2.6 notation

Indices

i canvas (lattice) location

j neighboring canvas (lattice) location

s symmetry plane

` secant line index

Sets

I canvas (lattice) locations

Li neighboring canvas (lattice) locations to location i

I+s locations strictly above the symmetry plane s

I−s locations strictly below the symmetry plane s

I0
s locations laying directly on symmetry plane s

Binary Variables

Yi presence of an atom at canvas (lattice) location i

Continuous Variables

CNi coordination number of atom at location i

CNRi square root of the coordination number of atom at location i

Parameters

CNmax maximum possible coordination number (corresponding to crystal
lattice bulk coordination number)

CNmin minimum allowed coordination number for an atom in the
nanocluster

N number of atoms

α` slope of the secant line defining CNRi

β` intercept of the secant line defining CNRi

19

2.7 appendix

2.7 appendix

Optimal Nanoclusters

We present here the detailed list of nanocluster designs identified via our
optimization framework. Figure 2.3 depicts the optimal clusters identified
by maximizing the SRB function for cohesive energy.

20

2.7 appendix

N=13 N=14 N=15 N=16 N=17 N=18 N=19 N=20

N=21 N=22 N=23 N=24 N=25 N=26 N=27 N=28

N=29 N=30 N=31 N=32 N=33 N=34 N=35 N=36

N=37 N=38 N=39 N=40 N=41 N=42 N=43 N=44

N=45 N=46 N=47 N=48 N=49 N=50 N=51 N=52

N=53 N=54 N=55 N=56 N=57 N=58 N=59 N=60

N=61 N=62 N=63 N=64 N=65 N=66 N=67 N=68

N=69 N=70 N=71 N=72 N=73 N=74 N=75 N=76

N=77 N=78 N=79 N=80 N=81 N=82 N=83 N=84

N=85 N=86 N=87 N=88 N=89 N=90 N=91 N=92

N=93 N=94 N=95 N=96 N=97 N=98 N=99 N=100

Figure 2.3: Most cohesive structure according to the SRB cohesive energy function
for every N.

21

3
M E TA L - S P E C I F I C N A N O C L U S T E R C O H E S I V E E N E R G Y

3.1 introduction

The model of cohesive energy utilized in Chapter 2 does not reference
atomic species, meaning the cohesive energy determined by the square
root bond-cutting (SRB) model is agnostic to chemistry. For this reason,
the SRB model for cohesive energy is known to be an approximation
for the true cohesive energy of small metallic clusters. Firstly, the SRB
cohesive energy model neglects the residual (repulsive) energy term for
non-ideal interatomic interactions proposed by Tománek, Mukherjee, and
Bennemann [115] Secondly, the SRB dimensionless cohesive energy model
has no metal-specific considerations, essentially assuming that all metals
will form bonds in the same way, which is a poor assumption for small
nanoclusters where quantum effects are prominent. Thus, there exists a
need to develop more accurate, metal-specific, yet still MILP-representable,
formulas for cohesive energy that correct the SRB model.

3.2 metal-specific nanocluster geometry optimization

The workflow for identifying metal-specific square root bond-cutting
models for cohesive energy optimization is outlined in the following
section. First, the enhanced optimization framework, in its original form
using the SRB model as its objective, was utilized to identify a set of highly
cohesive nanocluster geometries at a range of sizes. For this, we used the
solution pool of the CPLEX solver, which allows us to identify the k-best
integral solutions to an MILP model at a computational cost that is only
marginally higher than that of a standard run to identify just the (one)
optimal solution. More specifically, for sizes N = 13− 25, the best k = 10
nanocluster geometries were collected, with an additional data point at
N = 20 to include a perfect tetrahedron. For N = 26− 40, we collected
the best k = 3 nanocluster geometries, while for N = 41− 100, only the
optimal nanocluster was collected. This led to a total of 236 highly cohesive
nanoclusters, with most of the data in the N = 13− 40 size regime. With

22

3.2 metal-specific nanocluster geometry optimization

all values of N, a four hour time limit was imposed to collect such solution
pools.

The identified optimal and near-optimal structures were then evaluated
with density function theory (DFT) for their “true” cohesive energies
in the context of five transition metals of interest, namely silver (Ag),
gold (Au), copper (Cu), palladium (Pd) and platinum (Pt). These metals
were chosen due to their array of applications in catalysis and alternative
energy applications.[21, 68, 142] All DFT calculations were performed
in the CP2K computational package [58] with the PBE functional [94],
DZVP basis set [118], and GTH pseudopotentials.[41] These methods have
been successfully used in the past to evaluate the energetics of metal
clusters.[140] Note that we used the MILP-predicted optimal clusters as
input structures for the DFT calculations, with their interatomic distances
being set to those in the bulk. The bulk cohesive energy, as calculated by
PBE, was used as a consistent energy reference for our comparisons with
DFT. Single-point energy evaluations were performed on the interatomic
scaled monometallic clusters.[60]

Parity plots between the energies predicted by the SRB cohesive energy
function and by DFT are shown in Figure 3.1 (black dots). From the
parity plots of Figure 3.1, it is clear that the SRB cohesive energy is over-
estimating the cohesive energy in all cases. This is likely due to (metal)
group-dependent effects such as stresses and surface relaxations,[70, 82]
which are not considered by the metal-agnostic SRB function and which
may be the source of the prediction errors observed. We remark that, in
our DFT calculations, metal-specific stresses are present because we do
not relax the nanoclusters and rather constrain the atoms to sit on perfect
lattices with set bulk interatomic spacings. The latter can deviate from
DFT-calculated spacings and can also change in a metal-dependent fashion
at the nanoscale.

The degree of error varies across metals. In fact, the SRB function esti-
mates the cohesive energy of the Group 11 metals (Au, Ag, Cu) significantly
better than the Group 10 metals (Pd, Pt). In general, the approximation
is poorer at lower cluster sizes, and better at larger sizes. Indeed, the
SRB approximation is known to increase in accuracy for all metals as
nanoclusters approach bulk material size. Finally, it should be noted that
the outlier in each plot of parity is the N = 20 tetrahedron. This structure
is known to exhibit special quantum effects that enhance its stability in
DFT calculations for Group 10 metals like Au.[76, 97] Hence, it is not
surprising that the SRB model, which ignores such effects, does a poor job
at predicting its cohesive energy.

Using the parity plots from the previous analysis as a guide, metal-
specific corrective terms in the coordination-dependent function for cohe-
sive energy can now be identified using a constrained regression process.

23

3.2 metal-specific nanocluster geometry optimization

The focus has been on deriving corrections that are MILP-representable,
so that they can be embedded in our MILP-based nanocluster design
framework. Furthermore, it is desirable for these corrections to reference
quantities already encoded in our optimization formulation (e.g., the co-
ordination numbers CNi), so as not to further increase its complexity. To
achieve this, a linear regression was performed. The general form for the
corrected dimensionless cohesive energy models (Em

coh, where the super-
script m stands in for a specific metal) is shown in Equation 3.1. The basis
functions–or features–we used to determine the regression coefficients γm

k
are the fractions, f CNk, of atoms in the nanocluster that attain a specific
coordination number k (between the admissible values CNmin and CNmax),
as per the definition of Equation 3.2. Conceptually, this selected functional
form of Em

coh captures metal-specific cohesive energies via an “offset” from
the SRB model prediction.

Em
coh = ESRB

coh +
CNmax

∑
k=CNmin

γm
k f CNk (3.1)

f CNk :=
1
N

(
N

∑
i=1

1{CNi=k}

)
∀k ∈ {CNmin, . . . , CNmax} (3.2)

The constrained regression optimization model used to identify co-
efficients for the metal-specific cohesive energy functions is shown in
Equations 3.3– 3.6. This regression model, which is parameterized by the
metal type m, was applied separately for each specific investigated in this
study. The objective function (Eqn. 3.3) represents the sum of squared
errors for each of the n = 236 nanocluster structures used as input data
(see Section 3.2 for further details as to the origin of these structures). The
error for a particular nanocluster structure j is calculated as the difference
between its DFT-predicted cohesive energy and its evaluation of energy
Em

coh from Equation 3.1. In order to ensure the same linearization methods
can be used on the new objective function in the context of the MILP opti-
mization model (see discussion in Section 2.3.2), constraints for concavity
of the new Em

coh functions are added to the regression via Equations 3.4.
Additionally, a set of hierarchical constraints (Eqns. 3.5) is added to enforce
that the cohesive energy functions increase monotonically with CN, while
the assertion in Equation 3.6 enforces that no correction is required for the
contribution of bulk atoms, which always equals one (in dimensionless

24

3.3 metal-specific optimal designs

terms). Together, these constraints ensure that no individual atom’s energy
contribution surpasses that of the bulk.

min
γm

k

n

∑
j=1

(
EDFT

coh,j −
(

ESRB
coh,j +

12

∑
k=3

γm
k f CNk,j

))2

(3.3)

s.t.

√
k

12
+ γm

k ≥

√

k+1
12 + γm

k+1 +
√

k−1
12 + γm

k−1

2

 ∀k = {4, . . . , 11}

(3.4)√
k

12
+ γk ≤

√
k + 1

12
+ γk+1 ∀k = {3, . . . 11}

(3.5)

γm
12 = 0 (3.6)

After solving the regression model above, we obtain metal-specific
variations of the cohesive energy from the SRB model, as shown in Fig-
ure 3.2. The most dramatic shifts in the per-atom energy contributions
are exhibited for the case of Pd, which reflects the fact that the SRB func-
tion over-estimates the DFT-predicted energies the most. Interestingly, for
the cases of Pd, Cu and Au, there are consistent decreases in energetic
contributions from all CN values, while the Pt and Ag models promote
contributions (i.e., impart cohesive energy greater than the SRB model)
from highly-coordinated atoms. We note that these results may, in part,
be due to the fact that transition metals are well-known to possess metal-
dependent nanoscale strain,[7, 82] which could be captured here through
the metal-specific deviations from the SRB function.

3.3 metal-specific optimal designs

Using the collected DFT data and methods outlined previously, metal-
specific functions for nanocluster cohesive energy were regressed to predict
nanocluster cohesive energies with greater accuracy. The same set of highly
cohesive nanoclusters is evaluated with the metal-specific cohesive energy
models and plotted against the DFT predictions in Figure 3.1. It is clear
that the new cohesive energy function predicts the cohesive energies of
these nanoclusters much better than the original SRB function.

In fact, because of the shifts in per-CN cohesive energy contributions in
the surrogate models for each metal m, Em

coh, it is possible that the optimal,
most cohesive structures at a certain size N might change from what was
determined previously using merely the SRB function. In order to design
transition metal nanoclusters that are guaranteed to possess maximal
cohesive energies against the more accurate, DFT-based evaluation, the

25

3.3 metal-specific optimal designs

surrogate cohesive energy functions were embedded in the formulation
of our mathematical optimization model. More specifically, the original
objective function (Eqn. 2.2) of the optimization model was replaced with
the surrogate models by simply shifting the set-points of the secant lines
(Fig. 2.1). Apart from this change in the objective function, the rest of
the optimization model remained unchanged. Examples of new optima
determined this way are shown in Table 3.1. New optima identified for
all sizes N and metals m we considered in this study are depicted in the
Appendix 3.6.

N=19 N=22 N=36 N=42 N=83

SR
B

M
et

al
-s

pe
ci

fic

Pd19 Ag22 Au36 Cu42 Pt83

Table 3.1: Comparison of a few optimal nanocluster structures as determined by
the SRB function (first row) and the new optimal structures determined
by the corrected models for different metals (second row).

It should be noted that the nature of the canvas used in this study (FCC
lattice) means that only FCC structures are identified here as optimally
cohesive. This can be a valid assumption for certain regimes, such as in
the case of smaller Pd clusters that have been shown to trend toward FCC
structures over non-crystalline alternatives.[37] Furthermore, the modified
octahedral shape of many of the optimal nanoclusters predicted by our
framework at intermediate sizes are in agreement with some previously
reported results.[47, 137, 144] However, we should acknowledge that non-
FCC structures featuring decahedral[104] or icosahedral[7, 56] geometries
can also arise in transition metal nanoclusters. This is due to the fact that
such 5-fold symmetric structures maximize the coordination of surface
atoms, which is especially favored at small N where the strain induced
by this surface packing is not prohibitive. Whereas the current study
did not search over the space of non-FCC geometries, and thus could
not obtain results reflecting the above cases, our framework could be
modified to do so via the use of appropriately defined canvases that
can accommodate all reasonably expected possibilities regarding non-
FCC placements, including 5-fold symmetric lattices. In addition, we

26

3.4 conclusions

could introduce additional terms to our objective function of cohesive
energy so as to reproduce special cases of enhanced stability that arise
due magic number phenomena via electronic shell closures[36] (e.g., the
N = 20 Au tetrahedron[70, 76]) or relativistic effects[96] (e.g., planar Au
nanoclusters[4, 56, 136, 138]). In any case, it should be highlighted that,
once optimal FCC structures are obtained under the current model setup,
it is advisable to subject them to local energetic relaxation using any
appropriate, sophisticated functional of choice, in order to determine the
precise off-lattice placement, whenever applicable.

3.4 conclusions

In this chapter, we have identified metal-specific corrective factors for the
square root bond-cutting model for several transition metals. We accom-
plished this by evaluating a suite of SRB-proven optimal nanoclusters
with density-functional theory to determine the DFT-predicted cohesive
energies. We utilized the DFT predictions for each transition metal stud-
ied in a sum-squared errors constrained regression to identify a convex,
metal-specific cohesive energy function. These metal-specific cohesive en-
ergies were utilized in a MILP model to identify several new metal-specific
optimal geometries at various sizes. This chapter has shown that there
is a benefit to pairing rigorous optimization approaches with complex,
computation chemistry methods when studying nanoclusters.

27

3.4 conclusions

0.60 0.70 0.80 0.90

0.60

0.70

0.80

0.90

EDFT
coh

E
fu

nc
co

h

Ag

SRB function

Ag corrected

0.60 0.70 0.80 0.90

0.60

0.70

0.80

0.90

EDFT
coh

E
fu

nc
co

h

Au

SRB function

Au corrected

0.60 0.70 0.80 0.90

0.60

0.70

0.80

0.90

EDFT
coh

E
fu

nc
co

h

Cu

SRB function

Cu corrected

0.60 0.70 0.80 0.90

0.60

0.70

0.80

0.90

EDFT
coh

E
fu

nc
co

h

Pd

SRB function

Pd corrected

0.60 0.70 0.80 0.90

0.60

0.70

0.80

0.90

EDFT
coh

E
fu

nc
co

h

Pt

SRB function

Pt corrected

Figure 3.1: Parity plots between cohesive energies calculated by the SRB model (y-
axis), with and without metal-specific corrections, and by DFT (x-axis)
for various metals.

28

3.4 conclusions

CNi

E
fu

nc
co

h,
i

2 3 4 5 6 7 8 9 10 11 12
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Ag
Au
Cu
Pd
Pt
SRB

Figure 3.2: Metal-specific corrections to the original SRB model for cohesive
energy, identified via constrained regression based on DFT predicted
values.

29

3.5 notation

3.5 notation

Indices

n number of data points used for SSE regression

m metal type

k coordination number breakpoints for the secant lines

Continuous Variables

Em
coh metal-specific cohesive energy

f CNk fraction of total atoms in nanocluster with coordination number k

γm
k regression coefficient for secant line at coordination number k for

metal m

ESRB
coh,j cohesive energy predicted by SRB optimization for nanocluster j

EDFT
coh,j cohesive energy predicted by DFT for nanocluster j

Parameters

CNmax maximum possible coordination number (corresponding to crystal
lattice bulk coordination number)

CNmin minimum allowed coordination number for an atom in the
nanocluster

N number of atoms

30

3.6 appendix

3.6 appendix

Optimal Nanoclusters

Figures 3.3 through 3.7 show optima identified by maximizing the metal-
specific functions (Em

coh) of cohesive energy. Note that, at the interest of
space, we only present the structures that differ from the ones predicted
by the SRB function in Figure 2.3.

N=22 N=23 N=28 N=42 N=44 N=49 N=58 N=76

N=81 N=83 N=85 N=87 N=90 N=92 N=93 N=94

N=95 N=97 N=99

Figure 3.3: New optima at various N, as determined by the Cu-corrected function
for cohesive energy.

N=19 N=22 N=23 N=28 N=30 N=35 N=36 N=42

N=44 N=46 N=49 N=53 N=58 N=64 N=66 N=74

N=76 N=85 N=90 N=92 N=93 N=94 N=99

Figure 3.4: New optima at various N, as determined by the Au-corrected function
for cohesive energy.

31

3.6 appendix

N=22 N=23 N=28 N=35 N=36 N=42 N=44 N=49

N=50 N=58 N=73 N=74 N=76 N=82 N=83 N=84

N=85 N=87 N=89 N=90 N=92 N=93 N=94 N=97

N=99

Figure 3.5: New optima at various N, as determined by the Ag-corrected function
for cohesive energy.

N=16 N=19 N=22 N=28 N=42 N=49 N=58 N=72

N=74 N=76 N=81 N=85 N=90 N=91 N=92 N=94

N=95 N=96 N=97

Figure 3.6: New optima at various N, as determined by the Pd-corrected function
for cohesive energy.

N=15 N=17 N=19 N=22 N=23 N=26 N=28 N=30

N=34 N=35 N=36 N=42 N=49 N=50 N=51 N=58

N=59 N=70 N=71 N=72 N=73 N=76 N=82 N=83

N=84 N=85 N=89 N=90 N=91 N=92 N=94 N=97

Figure 3.7: New optima at various N, as determined by the Pt-corrected function
for cohesive energy.

32

4
M O D E L I N G N A N O C L U S T E R G E O M E T RY
R E L A X AT I O N S

4.1 introduction

At very small sizes of nanoclusters, the effect of surface strain is more
prominent and has an impact on nanocluster geometry.[7] This leads to
non-FCC or non-crystalline structures for certain metal nanoclusters at
small N. Such structures need not obey crystallographic translational sym-
metry, and may take on 5-fold icosahedral or decahedral symmetries. The
transition from non-crystalline geometry to bulk FCC geometry has been
studied in the literature both experimentally[69] and theoretically[130]
and has been shown to occur at different sizes for different metals.

In general, our nanocluster design framework is not restricted to a partic-
ular crystallographic lattice type, but does assume a priori knowledge of a
uniform crystal geometry for specifying the canvas. In the work presented
thus far, our MILP optimization framework has focused on purely FCC
structures by utilizing an FCC canvas, which can be a valid assumption for
certain transition metals at certain sizes. For example, a study by Futschek,
Marsman, and Hafner [37] found that N=11, 12, and 13 Pd clusters take
on FCC structures over the non-crystalline or relaxed alternatives. And
in general, at small N, non-crystalline, icosahedral structures maximize
the coordination numbers of surface atoms, but the strain induced by this
surface packing increases with the size of the nanocluster and makes them
unfavorable at larger N. In principle, the selection of the canvas used in
the MILP optimization can aide in this task. Simply selecting an icosa-
hedral or decahedral canvas would lead to the identification of optimal
5-fold symmetric structures at given sizes. Another more pressing question
is how to account for off-lattice or relaxed structures. These have been
observed in predictions by Darby et al. [27] in small mono-metallic gold
nanoclusters, and highly stable amorphous Au55 structures were found by
Garzon and Posada-Amarillas [39] and Häkkinen et al. [49]. Modeling the
space to describe amorphous structures in three dimensions would prove
to be intractable in the MILP modeling framework considered here, as

33

4.2 cohesive energy and relaxed structures

the canvas would need to effectively represent all of R3. Therefore, in this
chapter, we propose a modeling approach and MILP model for optimizing
nanocluster cohesive energy for off-lattice, relaxed FCC structures.

4.2 cohesive energy and relaxed structures

To encode relaxed crystal structures, modifications to our MILP models
can be made to optimize over “sub-lattices" of a crystallographic lattice,
which can be viewed as a finer discretization of space. The sub-lattice
is a set of additional points that lie off of crystal lattice sites which are
feasible atom locations. This modeling approach will require the usage of
an effective coordination number ECNi to capture attractive and repulsive
cohesive energy contributions based on inter-atomic distances, as these
distances can be non-ideal in the proposed sub-lattice model. The effective
coordination number has been used by Shandiz [106] when calculating the
cohesive energy of a nanoparticle in order to account for different bond
lengths. Their proposed functional relationship for effective coordination
number ECNi for a given atom i is shown in Equation 4.3. In the proposed
model, the average cohesive energy is a function of the effective coordi-
nation number, which depends on the energy change due to the relaxed
bond lengths. Effective coordination number is determined by multiply-
ing a parameter ci raised to the −m power by the ideal site coordination
number (i.e. nearest neighbor count, CNi). Here, ci represents the reduced
bond length parameter for the relaxed bond and m is also an adjustable
parameter that varies according the the nature of the bond.

ECNi = c−m
i CNi (4.1)

We note that the original derivation for the square-root relationship for
cohesive energy by Tománek, Mukherjee, and Bennemann [115] utilizes
that effective coordination number, which was taken as the true coordina-
tion number in our original model due to the assumption of equilibrium
distances.

4.3 milp modeling for relaxed nanoclusters

In the model considered in Equations 4.2–4.14, we will assume we have
a set of what we will call on-lattice canvas locations I which represent a
crystal lattice, such as a close-packed FCC lattice. In addition, we define an
off-lattice, or sub-lattice, set Ki, per on-lattice location i ∈ I which represents
the possible non-ideal lattice positions for location i. We note that i ∈ Ki,
meaning the ideal on-lattice point is a part of the sub-lattice. Therefore,
the binary decision of placing at atom at location i will now be tied to

34

4.3 milp modeling for relaxed nanoclusters

a decision of which sub-lattice site k ∈ Ki to occupy. The placement of
an atom at an ideal lattice location is indicated by the binary variable Pi,
while the actual sub-lattice location is determined by the binary variable
Qik.

The model we will consider is concerned with defining bonds between
first-neighbors. These bonds are defined between the sub-lattice locations
k ∈ Ki, l ∈ Kj for the ideal lattice locations i, j ∈ I, i 6= j and are defined
by the binary variable Xijkl . Finally, we must consider how the variables
described here relate to the cohesive energy.

In this model, we will consider an effective coordination number of
each occupied lattice position, ECNi, which accounts for the impact that
non-ideal inter-atomic distances has on cohesive energy. Because our sub-
lattice is still a finite set of points, the ECNi variable also has discrete
values which depend on the number and location of sub-lattice positions
Ki. Similar to the model shown in Chapter 2, we can use a secant line
representation for the square-root of ECNi via the auxiliary variable Ei.

max
Pi ,Qik ,

Xijkl ,ECNi ,Ei

1
N
√

ECNmax
∑
i∈I

Ei (4.2)

s.t. ∑
k∈Ki

Qik = Pi ∀ i ∈ I (4.3){
Xijkl

}
⇒ {Qik} ∀ i ∈ I, ∀ j ∈ I, i 6= j, ∀ k ∈ Ki, ∀ l ∈ Kj

(4.4){
Xijkl

}
⇒
{

Qjl
}

∀ i ∈ I, ∀ j ∈ I, i 6= j, ∀ k ∈ Ki, ∀ l ∈ Kj
(4.5)

{Pi} ⇒

ECNi = ∑
j∈Li

∑
k∈Ki

∑
l∈Kj

αijklXijkl

 ∀ i ∈ I (4.6)

{¬Pi} ⇒ {ECNi = 0} ∀ i ∈ I (4.7)

Ei ≤ βsECNi + γs ∀ i ∈ I, ∀s ∈ S (4.8)

∑
i∈I

Pi = N (4.9)

Pi ∈ {0, 1} ∀ i ∈ I (4.10)

Qik ∈ {0, 1} ∀ i ∈ I, ∀ k ∈ Ki
(4.11)

Xijkl ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ I, i 6= j, ∀ k ∈ Ki, ∀ l ∈ Kj
(4.12)

ECNi ∈ [0, ECNmax] ∀ i ∈ I (4.13)

Ei ∈ R ∀ i ∈ I (4.14)

35

4.4 conclusions

The objective function 4.2 aims to maximize the average dimensionless
cohesive energy of the nanocluster. The constraints 4.3 – 4.7 encode im-
plication logic for linking binary decisions to the value of the effective
coordination number at each canvas location. The constraint in 4.8 encodes
the secant lines representing the cohesive energy at each ECNi, while
constraint 4.9 restricts the size of the nanocluster to N. The parameter
ECNmax represents the upper limit to effective coordination number given
the sub-lattice choice per lattice location i.

The remaining research questions for this MILP model are with re-
spect to how to determine the scaling αijkl parameters, and how to select
sub-lattices. In our bond-centric MILP model, we are grouping the bond
length deviation parameter shown in Equation 4.1 into the αijkl constant.
The purpose of the scaling parameter αijkl is to capture any cohesive
energy contributions due to non-ideal bond lengths caused by either repul-
sive energy contributions or surface relaxations. In a relaxed nanocluster,
the atoms may occupy off-lattice, or non-equilibrium, positions. Under
these conditions, a repulsive energy contribution is required to apply the
square-root bond cutting model utilized in previous chapters.[90, 115] The
remaining research effort for this MILP model would be to identify a αijkl
for different transition metals, possibly via hard-core potentials. How to
select sub-lattice geometries is also an open question for this modeling
approach. There is an opportunity to try different, regular arrangements
of off-lattice locations, or more irregular patterns.

4.4 conclusions

In this chapter, we address the ongoing need to develop an MILP modeling
framework for tractable off-lattice nanocluster geometry optimization. We
pose a preliminary MILP model for achieving this goal that relies on
the definition of a sub-lattice canvas. In this canvas, we allow a finite
number of off-lattice locations for atoms in the nanocluster. This treatment
requires the definition of an effective coordination number that accounts
for the effect of non-ideal inter-atomic distances on cohesive energy. There
is a remaining need to derive meaningful scaling parameters for the
effective coordination number that are consistent with the repulsive effects
predicted by existing hard-core potentials.

36

4.5 notation

4.5 notation

Indices

i on-lattice canvas location

j neighboring on-lattice canvas location

k off-lattice canvas location

l neighboring off-lattice canvas location

s secant line index

Sets

I on-lattice canvas locations

Li neighboring on-lattice canvas locations to location i

Ki off-lattice canvas locations for location i

Kj off-lattice canvas locations for neighboring location j

Binary Variables

Pi presence of an atom at on-lattice location i

Qik presence of an atom at on-lattice location i at sub-lattice location k

Xijkl presence of a bond between atom i at sub-lattice locations k and
atom j at sub-lattice location l

Continuous Variables

ECNi effective coordination number of atom at location i

Ei square-root of the scaled, effective coordination number of atom at
location i

Parameters

ECNmax maximum possible effective coordination number

N number of atoms

αs slope of the secant line defining Ei

βs intercept of the secant line defining Ei

αijkl repulsive energy scaling factor for effective coordination number

37

5
T H E G E N E R A L I Z E D R O B U S T C U T T I N G - S E T
A L G O R I T H M

5.1 introduction

Within the field of mathematical programming, robust optimization (RO)
is a well-established approach for formulating and solving risk-averse
models. The vast majority of the RO literature investigates its applica-
tion on linear and convex models. Specifically, linear and convex RO and
adjustable robust optimization (ARO)[10], wherein a subset of variables
become “wait-and-see” decisions via functional dependence on the uncer-
tainty, have had much success in identifying robust solutions to a variety
of problems such as process scheduling[71–73, 107, 146], model-predictive
control[114, 147], vehicle routing[109], project scheduling[15], industrial
steam system optimization[150], and resilient network design[80], among
many other settings. It has also been shown by Zhang, Grossmann, and
Lima [145] that there are theoretical similarities between robust opti-
mization and flexibility analysis when applied to linear systems, which
highlights the fact that optimization under uncertainty has long been an
area of focus within chemical engineering that has led to the development
of novel methodologies.

A less widely utilized RO solution approach is the robust cutting-set
algorithm (RCS), which was first proposed by Mutapcic and Boyd [91]
as an adaptation of Kelley’s cutting-set approach[64] for application to
inequality-only constrained robust optimization problems. In the RCS
algorithm, the robust counterpart is solved by iterating between two sub-
problems, namely the master and the separation problems. In the master
subproblem, optimal designs are identified that are robust against a care-
fully chosen finite set of uncertain parameter realizations. Then, given
a master subproblem solution, the separation subproblem is solved to
identify violating parameter realizations that are to be added back to the
master problem, with the process repeating until no more violations can
be found. This algorithmic solution approach is generally applicable to
any continuous optimization problem, so long as the model possesses only

38

5.2 the robust counterpart to a process design formulation

inequality constraints and/or equality constraints that can be reformulated
via direct state-variable elimination

In this chapter, we aim to extend the aforementioned developments
in robust optimization for process systems engineering by proposing
a generalized robust cutting-set algorithm (GRCS). The generalization
refers to the ability to handle general, two-stage nonlinear optimization
problems, where nonlinearities may appear in the uncertain parameters or
first- and second-stage variables. The resulting subproblem formulations
and algorithmic procedure for applying the GRCS are presented here.

5.2 the robust counterpart to a process design formula-
tion

We begin the derivation of the robust counterpart with the definition of
variables, parameters, and function mappings. For a process optimization
model, we define design variables x ∈ X ⊆ Rm, control variables z ∈ Rn,
state variables y ∈ Ra, and all potentially uncertain input data q ∈ Rw.
The domain of the design variables, x ∈ X , is defined here abstractly to
represent non-uncertain constraints involving just these variables. Most
often, this domain incorporates the applicable variable bounds. The design
variables (e.g., equipment sizes) are also referred to as first-stage variables,
as they have to be committed upon before the true realization of the
parameters q is known. In contrast, the control variables (e.g., flowrates,
as manipulated via a valve) are also referred to as second-stage variables,
as in principle their values can be adjusted after this realization is known.
Finally, the state variables y are those second-stage variables that do not
constitute degrees of freedom, rather they depend on the values of x, z,
and q.

In process design optimization models, the objective function considered
is most often an economic one, such as some net present value or some
equivalent annual cost (or profit). Its general form is shown in Equation 5.1,
where we split the objective into two parts, first-stage (i.e., investment)
costs, f1(x), where f1 : Rm 7→ R, and second-stage (i.e., operational) costs,
f2 (x, z, y, q), where f2 : Rm+n+a 7→ R. Here, ζ represents the objective
function value, which is to be minimized.

ζ = f1(x) + f2(x, z, y, q) (5.1)

Note how, by definition, the first-stage costs depend exclusively on
the design variables and have no dependence on uncertain parameters.
At the same time, both first- and second-stage variables are allowed to
inform second-stage costs, which represents the most general case. For
example, one may choose to not explicitly model the design of a pump,
thus eliminating the freedom to control a given flowrate. However, the

39

5.2 the robust counterpart to a process design formulation

state variable for that flowrate, which is evaluated at a particular design
and control setting, could still induce an operational cost. There is also
clear motivation to allow first-stage design variables to effect second-stage
costs. For example, the height of the distillation column is chosen at the
first stage, yet this height factors into calculating power consumption and
the corresponding fluid pumping costs at the second stage.

Given q0 to be a specific realization of the input data q, the determin-
istic formulation of a generic process design model is shown in Equa-
tions 5.2a–5.2c. Constraints 5.2b correspond to a set of inequality con-
straints gi : Rm+n+a 7→ R, i ∈ I , to which we will be referring to as
performance constraints. The latter typically express desirable levels of sys-
tem performance metrics, such as product yields, utilities usage, or safety
thresholds, but a few examples. Explicit bounds on the z variables are
also considered as part of the gi constraints, for notational convenience.
The equality constraints 5.2c, hj : Rm+n+a 7→ R, j ∈ J , are a system of
state equations that define the state variables y. Note that we pose no
restriction on the nature of the objective or constraints, meaning they may
be linear or nonlinear (convex or non-convex) in either the model variables,
parameters, or both.

min
x∈X ,

z∈Rn,y∈Ra

f1 (x) + f2
(
x, z, y; q0) (5.2a)

s.t. gi
(
x, z, y; q0) ≤ 0 ∀i ∈ I (5.2b)

hj
(
x, z, y; q0) = 0 ∀j ∈ J (5.2c)

The above formulation is deterministic because it only considers a single
value for each parameter in the model. However, if the input parameter
data are indeed uncertain, and if that uncertainty is properly characterized,
then the above deterministic model can be be used as the basis to casting
a robust optimization model. More specifically, let us postulate that the
uncertain data q may attain values from within a general uncertainty set,
Q ⊂ Rw. The form of the (often multidimensional) uncertainty set is
chosen by the modeler in each case, usually with the help of a suitable
parameter estimation method. Typically, the “shape” of the set is such that
it captures known correlations among the uncertain parameters, while
the “size” of the set is tuned to reflect a desirable confidence interval
for their realization. In principle, the uncertainty sets in our framework
can take on any form, e.g., a continuous convex or non-convex set, or a
disjoint set (e.g., a set of discrete points representing scenarios). Without
loss of generality, however, in the remainder of this thesis we will limit our
attention to uncertainty sets that are continuous and compact. Convexity
is not a necessary property for our sets.

Given uncertain parameters and an associated uncertainty set, q ∈ Q,
Equations 5.3a–5.3c represent the robust counterpart formulation of the

40

5.2 the robust counterpart to a process design formulation

previously shown deterministic model. This robust counterpart constitutes
a two-stage, min-max-min formulation, where decisions x are taken before
the realized value of the uncertain parameters is known, while decisions z
are taken after this is the case. Due to their nature as state variables, values
for variables y are also chosen after the realization of the uncertainty. We
assume that all state variables are non-trivial, meaning they are coupled to
uncertain parameters q or second-stage variables z and cannot be simply
solved out of the model equations.

min
x∈X

max
q∈Q

min
z∈Rn,y∈Ra

f1 (x) + f2 (x, z, y, q) (5.3a)

s.t. gi (x, z, y, q) ≤ 0 ∀i ∈ I (5.3b)

hj (x, z, y, q) = 0 ∀j ∈ J (5.3c)

In its current form, the robust counterpart allows total flexibility for the
control variables within the inner minimization problem. To simplify
the two-stage robust counterpart, we employ decision rules (DR), which
have been ubiquitously used in the area of adjustable robust optimization
(ARO) to convert second-stage variables into a function of the uncertain
parameters q and new first-stage decision variables d (the parameterization
of the decision rules themselves). ARO with affine decision rules, i.e.
an affine relationship between uncertain parameters and second-stage
variables, was first proposed by Ben-Tal et al. [10]. In process systems
engineering applications, affine decision rules have also been used to solve
two-stage robust optimization problems in the contexts of water treatment
networks[62] and steel-making processes[98]. ARO with generalized affine
decision rules for mixed-integer linear optimization models has also been
recently demonstrated by Avraamidou and Pistikopoulos [5] via a multi-
parametric programming approach.

We note that the motivation for strictly affine decision rules to preserve
linear model structure does not apply here, as most chemical process
models possess nonlinearities. Here, we present a general functional re-
lationship for decision rules, as shown in Equations 5.4, to highlight the
fact that the proposed approach can admit any general, nonlinear decision
rule function. In this equation, each control variable z`, l ∈ {1, .., n}, has a
functional dependence on the uncertain parameters q and the correspond-
ing first-stage variables, d`. More specifically, d` ∈ Rp, ∀` ∈ {1, . . . , n},
are mutually exclusive subvectors of d that are only referenced in the
specific decision rule function v` : Rp+w 7→ R associated with each z`. In
Section 5.2.2, we will specify the general form of Equation 5.4 to consider
constant, affine, and quadratic decision rules, which we will later employ
in our computational studies.

z` = v` (d`, q) ∀` ∈ {1, . . . , n} (5.4)

41

5.2 the robust counterpart to a process design formulation

The application of this general decision rules relationship modifies the
robust counterpart to formulation RC, which is shown in Equations 5.5a–
5.5e. Note how the functional dependence of the control policy on the
realization of uncertainty, as expressed via the decision rules, is chosen at
the first stage. Furthermore, an auxiliary epigraph variable ζ ∈ R has been
incorporated to push the objective function to the set of constraints, for
convenience. It is assumed from this point forward that any given values of
x, z and q map to a unique value of y. Under this assumption, y are simply
evaluated in the maximization step.i Furthermore, the inner minimization
problem possesses no degrees of freedom and merely evaluates the (robust)
feasibility and (worst-case) objective value resulting from our first-stage
decisions.

(RC) : min
x∈X ,

d`∈Rp ∀`
max
q∈Q,

z∈Rn,y∈Ra

min
ζ∈R

ζ (5.5a)

s.t. ζ ≥ f1 (x) + f2 (x, z, y, q) (5.5b)

gi (x, z, y, q) ≤ 0 ∀i ∈ I (5.5c)

s.t. hj (x, z, y, q) = 0 ∀j ∈ J (5.5d)

z` = v` (d`, q) ∀` ∈ {1, . . . , n}
(5.5e)

The above model enforces the robust feasibility of the overall design
under the postulated control policy, which suffices to qualify the design as
robust. However, we remark that the decision maker need not commit a
priori to following this policy, as it may lead to overly restrictive control
actions in light of certain realizations. In practice, the recourse actions to be
followed will be determined a posteriori by solving an optimal control (or
operational) optimization problem after the uncertainty parameters have
revealed their true values for the operating period of interest. We elaborate
further on these issues in Section 5.4, where we calculate expected second-
stage variable values to a posteriori assess the overall performance and cost
of the robust designs.

5.2.1 The Generalized Robust Cutting-Set Algorithm

In this section, we devise a cutting-set based solution approach to address
formulation RC. The generalized robust cutting-set algorithm (GRCS)
defines certain subproblems: a master problem and a set of separation
problems, one for each constraint 5.5b and 5.5c. As this is an iterative

i This unique mapping from (x, z, q) to y is a reasonable assumption for most process
models. If this assumption does not hold, however, the offending elements of vector y
should be regarded as flexible, second-stage variables and handled in the same way as the
z variables.

42

5.2 the robust counterpart to a process design formulation

solution approach, the master and separation problems are solved in
alternating fashion until converging to the robust solution. To that end,
these problems are denoted and indexed as MPk, SPperf

i , ∀i ∈ I , and
SPobj. Here, k is the iteration index, i is used for the separation problems
to denote which performance constraint gi (out of a total of |I| such
constraints) the problem refers to, while the superscript “obj” implies
that the last problem is associated with the epigraph constraint 5.5b. A
flowchart representing the algorithm is shown in Figure 5.1.

The initial master problem, MP0, is initialized to be the deterministic
model, defined for some nominal value of the uncertain parameters, q0.
In each iteration, the master problem MPk is solved and requires that
the solution is feasible against all realizations qk, k ∈ K, that have been
identified during the GRCS algorithm’s progression. In the separation
problems SPperf

i , we search for new realizations of uncertainty that render
the master problem solution infeasible, leading to a constraint violation in
one or more of the gi inequality constraints. Then, the parameter realization
that corresponds to the largest relative constraint violation, q∗, is identified.
If a violation is indeed identified in the current iteration of the algorithm,
a full copy of the second stage variables is defined and all constraints
(i.e., objective epigraph, performance constraints, state equations, decision
rules), instantiated for the offending realization q∗, are added back to the
master problem using these variables (along with the original, common
set of first stage variables). Conversely, if there are no violations identified
in SPperf

i , for any i ∈ I , when solved to global optimality, then the current
design x∗ is deemed robust feasible. At that point, the separation effort
could switch focus to solving problem SPobj so as to identify realizations
q∗ that yield worse objective value than the one currently at hand, in order
to reach worst-case optimality.

The formulations and solution approaches for these subproblems will
be explained in more detail in the following sections, but before we do so,
it is important to discuss convergence properties. We start by noting that
Mutapcic and Boyd [91] provide a proof of convergence for their original
cutting-set method. In that proof, it is argued that convexity of the model
is not required to prove convergence, but it is assumed to ensure tractable
subproblem solving steps. Hence, by following a similar proof as in the
above reference, we can guarantee convergence in terms of total number
of iterations for the GRCS algorithm presented here, as long as any and
all master and separation subproblems that arise are tractable. This is
shown in an adapted proof in Appendix 5.6. Of course, the latter is an
assumption that may or may not hold in the context of process design
models of interest to this work, given that the subproblems generated by
our algorithm will be non-convex, in general. Indeed, the presence of non-
linear irremovable state equations hj, j ∈ J , in the proposed master and

43

5.2 the robust counterpart to a process design formulation

k = 0
K = {0}

Solve MPk

MPk feasible?Problem is
robust infeasible

Solve
SPperf

i , ∀i ∈ I

Any violation?
Identify maximally
violating realization

Solve SPobj
k

Any violation?
Return x∗, d∗` ∀`, ζ∗

as robust optimal solution

Add to MPk:
ζ ≥ f1 (x) + f2

(
x, zk, yk; qk)

gi(x, zk, yk; qk) ≤ 0 ∀i ∈ I
hj(x, zk, yk; qk) = 0 ∀j ∈ J

zk
` = v`

(
d`; qk) ∀` ∈ {1, . . . , n}

x∗, d∗` ∀`, ζ∗ Yes

No

Yes

No

No Yes

qk ← q∗

k← k + 1
K ← K ∪ {k + 1}

Figure 5.1: The generalized robust cutting-set algorithm.

separation problem formulations will generally preempt the non-convexity
of the subproblems. From this perspective, if a pathological subproblem
is generated during the progression of the GRCS algorithm such that
the subordinate (local or global) nonlinear programming solver cannot
converge to an optimal solution, then the overall algorithm will also stall.
Despite this possibility, however, we should mention that we have had
empirical success in using the GRCS algorithm to solve various rather
complex process systems models in reasonable time scales, as we later
demonstrate in Chapter 6.

5.2.1.1 The Master Problem

The general form of the master problem is shown in Equations 5.6a–
5.6e. In this formulation, control variables, state variables and uncertain

44

5.2 the robust counterpart to a process design formulation

parameters are indexed over a set K, which is the set of iterations of the
GRCS algorithm.

(MPk) : min
x∈X ,ζ∈R
d`∈Rp ∀`,

zk∈Rn, yk∈Ra ∀k

ζ (5.6a)

s.t. ζ ≥ f1 (x) + f2

(
x, zk, yk; qk

)
∀k ∈ K (5.6b)

gi

(
x, zk, yk; qk

)
≤ 0 ∀k ∈ K, ∀i ∈ I

(5.6c)

hj

(
x, zk, yk; qk

)
= 0 ∀k ∈ K, ∀j ∈ J

(5.6d)

zk
` = v`

(
d`; qk

)
∀k ∈ K, ∀` ∈ {1, . . . , n}

(5.6e)

Note how the constraints in formulation MPk are cast for all iterations
k ∈ K, meaning that the number of constraints in the master problem
increases by (1 + |I|+ |J |+ n) in each iteration. Furthermore, note how
a separate set of state variables yk has been defined for each uncertain
realization qk that is explicitly referenced in this formulation, which is
necessary due to the implicit dependence of variables y on uncertain
parameters q in the robust counterpart. Similarly, separate sets of second-
stage variables are also considered to reflect the fact that different values
(zk) for the control action might have to be chosen, if a different realization
of the uncertain parameters (qk) prevails. We remark that, unlike the case
of implicit state variables, the introduction of separate copies of the control
variables in MPk is not strictly necessary, as in the actual implementa-
tion, one may simply substitute variables zk

` out of the formulation using
Equations 5.6e.

5.2.1.2 The Separation Problems

Each separation problem SPperf
i seeks to identify, if one exists, a realization

of the uncertain parameters belonging to the uncertainty set, i.e., q ∈ Q,
which renders the optimal design (and associated control policy) from the
most recently solved master problem, MP|K|−1, infeasible with respect to
performance constraint gi. The general formulation for these separation
problems is shown in Equations 5.7a–5.7c. A strictly positive optimal ob-
jective value in this problem reveals that there exists a realization of the
uncertain parameters (the separation problem’s optimal solution itself)
that makes the master problem solution, (x∗, d∗), infeasible with respect
to constraint gi. Conversely, a non-positive globally optimal value is a cer-
tificate that the master solution will satisfy constraint gi for all realizations

45

5.2 the robust counterpart to a process design formulation

in the uncertainty set. Note that a separation problem of this type must be
solved successively for each performance constraint gi, i ∈ I , in order to
verify the overall robustness of the master solution.

(SPperf
i) : max

q∈Q,
z∈Rn,y∈Ra

gi (z, y, q; x∗) (5.7a)

s.t. hj (z, y, q; x∗) = 0 ∀j ∈ J (5.7b)

z` = v` (q; d∗`) ∀` ∈ {1, . . . , n} (5.7c)

In a similar fashion, the separation problem SPobj seeks to identify, if
one exists, a realization of the uncertain parameters that would lead the
most recently identified design (and associated control policy) to a worse
objective value than the one the master problem solution suggested. The
general formulation for this separation problem is shown in Equations 5.8a–
5.8c. The optimal objective value of this problem being strictly positive
signifies that there exists a realization of the uncertain parameters (the
separation problem’s optimal solution itself) that would have evaluated
the master problem solution, (x∗, d∗), to a worse objective, and hence,
the solution has not been properly adjudicated in terms of its worst-
case performance. Conversely, a non-positive globally optimal value is a
certificate that this has occurred.

(SPobj) : max
q∈Q,

z∈Rn,y∈Ra

f1 (x∗) + f2 (z, y, q; x∗)− ζ∗ (5.8a)

s.t. hj (z, y, q; x∗) = 0 ∀j ∈ J (5.8b)

z` = v` (q; d∗`) ∀` ∈ {1, . . . , n} (5.8c)

We highlight that the above formulations are parameterized over the set
of first-stage design variables and decision rules, which are fixed to the
optimal values from the previous master problem solution, x∗ and d∗. At
the same time, the uncertain parameters q constitute here decision variables
that are free to take on any value in the uncertainty set Q. This form of
the separation problem differs from the original cutting-plane algorithm
proposed by Mutapcic and Boyd [91] due to the necessity of carrying
though the block of state equations hj (Equations 5.7b and 5.8b) to evaluate
the state variables y that are associated with the solution of the separation
problem. Additionally, decision rule relationships (Equations 5.7c and 5.8c)
must also be included in the formulation so as order to evaluate the control
actions in the context of the separation problem’s optimal solution.

5.2.2 Decision Rules

In this section, we specify the form of the decision rule functions v`
we consider in this study. More specifically, we consider three forms

46

5.3 implementation details

that we refer to as the static approximation, affine decision rules, and
quadratic decision rules. We highlight that Bertsimas, Iancu, and Parrilo
[12] have explored polynomial decision rule relationships, including cubic
ones, for linear dynamical systems affected by uncertainty. To the best
of our knowledge, however, this work is the first to apply nonlinear
decision rules in the context of nonlinear optimization models such as
those arising in process design applications. For convenience, we will
partition the variables d` into intercepts, d0

` , coefficients for linear terms d1
` ,

and coefficients for quadratic terms d2
` to include both squares and bilinear

terms.

v`(d0
`) = d0

` ∀` ∈ {1, . . . , n} (5.9)

v`(d0
` , d1

` , q) = d0
` +

w

∑
r=1

d1
`,r qr ∀` ∈ {1, . . . , n} (5.10)

v`(d0
` , d1

` , d2
` , q) = d0

` +
w

∑
r=1

d1
`,r qr +

w

∑
r=1

w

∑
s=r

d2
`,r,s qr qs ∀` ∈ {1, . . . , n} (5.11)

The form of the static approximation is shown in Equations 5.9. In this
case, each control variable is chosen to a single value, and there is no
flexibility in the control to respond to the uncertainty, once the latter is
revealed. Effectively, the control variables are treated as first-stage decision
variables. The affine decision rules are presented in Equations 5.10, and
they constitute an affine relationship between the (first-stage) decision rule
variables, d, and the uncertain parameters, q. Finally, we show the form for
the quadratic decision rules in Equations 5.11, which constitutes a more
general, nonlinear function that features also square and bilinear terms in
the uncertain parameters. The modeler selects whether to utilize the static
approximation, affine or quadratic decision rules in each case. Typically,
this selection will be based on experience with the specific application of
interest, in terms of the trade-off between computational tractability and
extent of (and desire to reduce) the two-stage adaptivity gaps that arise.

5.3 implementation details

In this section, we outline various important details regarding our im-
plementation of the proposed GRCS algorithm. For many aspects of the
algorithm, we recognize that there exist other options for implementation,
and we elaborate on which options we selected in each case. Those choices
have been largely informed by their effect on overall tractability, as as-
sessed via the computational case studies we conducted to address various
complex process models. Those studies are presented later in Chapter 6.
A modified and more detailed flowchart illustrating the implementation
details outlined in this section is presented in Figure 5.2.

47

5.3 implementation details

k = 0
K = {0}

Solve MPk
locally

MPk feasible?

Polish
decision rules

Problem is
robust infeasible

Solve
SPperf

i , ∀i ∈ I
locally

Any violation > ε?

Solve
SPperf

i , ∀i ∈ I
globally

Any violation > ε?
Return x∗, d∗` ∀`, ζ∗

as robust fea-
sible solution

Add to MPk:
gi(x, zk, yk; qk) ≤ 0 ∀i ∈ I
hj(x, zk, yk; qk) = 0 ∀j ∈ J

zk
` = v`

(
d`; qk) ∀` ∈

{1, . . . , n}

Identify maximally vi-
olating realization, q∗

qk ← q∗

Yesx∗, ζ∗

No

d∗` ∀`

No

No Yes

k← k + 1
K ← K ∪ {k + 1}

Yes

Figure 5.2: Implementation details of the generalized robust cutting-set algorithm.

5.3.1 Solving Master Problems

We first note that, in our implementation of the GRCS algorithm, we
choose to solve all master problems MPk locally, using a local nonlinear
programming (NLP) solver. This is done given the relative inability of
today’s global NLP solvers to solve to zero gap the complex process
design models we are interested in addressing in this study, even in their
deterministic version. This shortfall is of course exacerbated by the fact
that the master problem size increases in each iteration. The choice to solve
master problems locally comes at the expense of not being able to assert
traditional robust optimality of the final solutions, rather only their robust
feasibility. We note, however, that the GRCS algorithm could in principle
prove robust optimality, provided all master problems are solved globally
at each iteration.

In light of the above, it becomes superfluous to seek to solve problems
SPobj at the interest of separating realizations that lead to worst-case
objectives. Therefore, in this work, we only separate problems SPperf

i , which
suffices to guarantee robust feasibility of the final solutions. Furthermore,

48

5.3 implementation details

we target to identify master problem solutions that perform best in the
nominal case, i.e., q ← q0. This is done by setting the set of realizations
associated with constraints 5.6b to only include q0; that is, K ← {0} for
(only) constraints 5.6b when solving every iteration of the master problem.
The choice of the nominal values of the uncertain parameters, q0, is in
principle left for the modeler. Here, we consider q0 as the most likely
realization of q, as determined in expectation, which is also often used in
process systems contexts for “deterministic” optimization. In addition to
solving master problems targeting to minimize nominal costs, care can be
taken to limit the variance of second-stage costs, e.g., by including p-robust
constraints[108] to limit their increase in other, non-nominal scenarios.

5.3.2 Separation Approach

In order to guarantee the robust feasibility of the final solution determined
by the GRCS algorithm, the separation problems must be solved to global
optimality for each and every performance constraint. This ensures that
there are no realizations of the uncertain parameters (within the uncer-
tainty set) that render the final robust design infeasible. Unlike master
problems, the size and dimensionality of separation problems are much
smaller, making them tractable for global optimization in this setting. Re-
gardless, the repeated execution of global optimization runs might still
add up to significant computational burden. To that end, we choose in our
implementation to first solve each separation problem locally. If violating
parameters can be identified in this manner, the algorithm can proceed
with its next iteration, defining the new master problem based on the
local solution of a separation problem. However, whenever the local search
returns no violation for each and every performance constraint, we do
proceed to solve the separation problem using a global solver, in order
to assert robust feasibility. This protocol reduces the overall number of
expensive calls to a global optimization solver, and has been found to
improve overall algorithm performance.

We now offer some remarks regarding the selection of which violating
realization is chosen to iterate the GRCS algorithm when more than one
performance constraints gi exist in a model (i.e., |I| > 1). In such a
case, there may be different violating uncertainty realizations identified
in separation. Whereas any and all of them could be chosen as critical
scenarios against which to explicitly insure feasibility in the subsequent
master problem iteration, we recognize that choosing more than one
scenario would contribute to rapid increase of the master problem size
beyond what is absolutely necessary. Therefore, in our implementation,
we choose to only add a single violation, which is selected as follows. Let
IV ⊆ I be the subset of performance constraints that can be violated in the

49

5.3 implementation details

context of the most recent master problem solution. More specifically, given
(zi,∗, yi,∗, qi,∗) as the optimal solution of problem SPperf

i , we consider i ∈ IV

when gi
(
zi,∗, yi,∗, qi,∗; x∗

)
> ε, where ε ∈ R+ is a small tolerance. Once the

realizations qj,∗ that maximally violate each of the constraints j ∈ IV have
been determined, we generate a matrix of dimensions |IV | × |IV |, where
each entry ei,j represents the violation of constraint gi associated with row
i under the uncertain parameter realization qj,∗ associated with column j;
that is, ei,j := max{gi

(
zj,∗, yj,∗, qj,∗; x∗

)
, 0}. The entries are normalized by

dividing each of them with the largest value in their row, leading to the
maximum entry in each row being equal to one. The maximally violating
realization to be added back to the next iteration of the master problem, q∗,
is then picked as the one associated with the column possessing the largest
sum of entries; that is, q∗ = qγ,∗, where γ := arg maxj∈IV{∑i∈IV ei,j}.

5.3.3 Decision Rules Polishing

It is a well-known fact that the use of decision rules often leads to solution
degeneracy. In particular, when one solves the master problem at a given
iteration k, there may exist many equivalently optimal combinations of
decision rule coefficients d that satisfy Equations 5.6e. To that end, when
using affine and quadratic decision rules, we augment our implementation
with an additional post-processing step after solving the master problem,
which we refer to as the decision rules polishing step. The purpose of this
step is to comb through the set of equivalently optimal decision rules
and to judiciously pick a specific, desirable policy. In our context, we
consider decision rule coefficient values, d` ∈ Rp, ` ∈ {1, . . . , n}, to be
more desirable, if their relative magnitude is collectively smaller. To achieve
this, we solve the auxiliary optimization problem shown in Equations 5.12a–

50

5.3 implementation details

5.12h as soon as an optimal solution x∗ with optimal objective value ζ∗ is
obtained from the master problem in each iteration k.

min
d`∈Rp ∀`,

τ0
` ∈R+, τ1

` ∈Rw
+, τ2

` ∈Rw×w
+ ∀`,

zk∈Rn, yk∈Ra ∀k

n

∑
l=1

(
τ0

l +
w

∑
r=1

τ1
`,r +

w

∑
r=1

w

∑
s=r

τ2
`,r,s

)
(5.12a)

s.t. ζ∗ ≥ f1 (x∗) + f2
(
z0, y0; x∗, q0) (5.12b)

gi

(
zk, yk; x∗, qk

)
≤ 0 ∀k ∈ K, ∀i ∈ I

(5.12c)

hj

(
zk, yk; x∗, qk

)
= 0 ∀k ∈ K, ∀j ∈ J

(5.12d)

zk
` = v`

(
d`; qk

)
∀k ∈ K, ∀` ∈ {1, . . . , n}

(5.12e)

− τ0
` ≤ d0

` ≤ +τ0
` ∀` ∈ {1, . . . , n}

(5.12f)

− τ1
`,r ≤ d1

`,r q0
r ≤ +τ1

`,r ∀` ∈ {1, . . . , n}, ∀r ∈ {1, . . . , w}
(5.12g)

− τ2
`,r,s ≤ d2

`,r,s q0
r q0

s ≤ +τ2
`,r,s ∀` ∈ {1, . . . , n}, ∀r,s∈{1,...,w}:

{s≥r}
(5.12h)

In the above formulation, the objective function 5.12a minimizes the
L1-norm of the vector of terms appearing in the applicable decision rule
function, where τ are non-negative auxiliary variables introduced to rep-
resent the absolute values of each and every such term. Here, we focus the
presentation on the case of quadratic decision rules as per Equations 5.11,
noting that a reduced version of this formulation applicable for the case of
affine decision rules can be obtained by simply fixing all τ2

` variables to
zero.ii We remark that the objective of the above formulation focuses on the
decision rules evaluated under the nominal realization of uncertainty q0,
corresponding to control actions z0, but other selections (e.g., an average
of all realizations qk) could be readily used instead. Constraint 5.12b is
added to ensure that we are searching over the set of optimal decision
rule policies, i.e., those that induce the same objective value as the master
problem solution,iii, while constraints 5.12c–5.12e are added to ensure that

ii In the case of a quadratic decision rule function, it holds by construction that p :=
1 + w + w(w + 1)/2.

iii Since ζ∗ is the minimal objective value of the master problem, requiring that the objective
of the polishing problem attains a value no greater than ζ∗ is equivalent to requiring
that its solution corresponds to one of the equivalently optimal solutions of the master
problem.

51

5.4 evaluation of robust solution quality

we are searching over decision rule policies that remain feasible for the
original master problem. Finally, constraints 5.12f–5.12h achieve the de-
sired definition for variables τ as the absolute values of the corresponding
decision rule function terms.

5.4 evaluation of robust solution quality

The GRCS is designed to address primarily two-stage decision problems,
wherein recourse decisions are permitted to adapt to undesirable devi-
ations in performance caused by parameter uncertainty. These recourse
decisions are represented in this presentation by the variables z, where
for modeling convenience, we chose to limit them to values attained via
decision rule relationships. In principle, however, an operator making
decisions in the second stage is not beholden to the optimal decision
rule functions and has the ability to respond to the actual realization of
the uncertainty in an unrestricted fashion. Therefore, from a practical
perspective, it is important to quantify the range of possible values for
second-stage decision variables and the corresponding expectation and
variance of the second-stage costs they might induce. These metrics allow
the modeler to assess the accuracy of the decision rule approximation for
a given recourse action, and to explicitly build confidence regarding the
overall economic performance of the robust design at hand. In this section,
we illustrate how to compute the expected operating costs and expected
control variable values, as well as the associated variances, for a given
robust feasible design x∗.

To compute these expected values, we solve a set of optimization prob-
lems where the control variables are free to take on any feasible value. We
start with the deterministic formulation in Equations 5.2a–5.2c and fix the
first-stage design variables to the robust design, x ← x∗. Then, we assign
a randomly sampled value to the uncertain parameters, q← qs, resulting
in the model shown in Equations 5.13a–5.13c.

min
z∈Rn,y∈Ra

f2 (z, y; x∗, qs) (5.13a)

s.t. gi (z, y; x∗, qs) ≤ 0 ∀i ∈ I (5.13b)

hj (z, y; x∗, qs) = 0 ∀j ∈ J (5.13c)

This optimization model is then solved for a set S of uncertainty sce-
narios, qs, s ∈ S , which have been suitably defined to this purpose.iv In
order to determine desirable metrics about their distribution, the optimal
solutions, (z∗, y∗), and optimal second-stage costs, f2 (z∗, y∗; x∗, qs), are

iv We remark that the chosen scenarios may be samples from within the uncertainty set, i.e.,
qs ∈ Q, or may be out-of-sample scenarios.

52

5.5 conclusions

thus recorded under each scenario.v More specifically, given probabilities
ps for all sampled scenarios s ∈ S , Equations 5.14 and 5.15 are used to
compute the expected operating costs and their standard deviation. The
expected second-stage costs may be considered when comparing robust
feasible designs obtained via the GRCS algorithm to any deterministically
optimal design, in order to elucidate the overall cost increase for insuring
design robustness.

E[f2] = ∑
s∈S

ps f2 (z∗, y∗; x∗, qs) (5.14)

σ[f2] =
√

∑
s∈S

ps (f2 (z∗, y∗; x∗, qs)−E[f2])
2 (5.15)

Using similar formulas, the above-described after-the-fact analysis is
also useful to understand the range of control variable actions, namely
E[z`] and σ[z`] for all ` ∈ {1, . . . , n}, that shall be required to achieve
robust feasibility in the context of a given design. We demonstrate such
analyses in the computational case studies we present in the next section.

5.5 conclusions

In this chapter we have outlined modeling and algorithmic approaches
for applying robust optimization to general two-stage nonlinear problems.
We generalize the robust cutting-set algorithm and the corresponding
master and separation subproblems to accommodate uncertain optimiza-
tion problems with nonlinear or non-convex constraints, which include
irremovable state equations. We consider a single-stage robust counterpart
with general nonlinear decision rules, but focus only on constant, affine,
and quadratic relationships between uncertain parameters and first-stage
variables. Given the decision rule approximation, we provide practical
schemes for mitigating degeneracy in decision rules via a polishing for-
mulation, as well as a scheme for retrieving expected second-stage costs
under fully-adaptive recourse variables. We have shown that for general
nonlinear problems which are common in process engineering, robust
optimization is a viable approach for identifying risk-averse solutions.

v We remark that the first-stage costs would not vary depending on the scenario qs, since
the design variables, x∗, are kept fixed in this analysis.

53

5.6 appendix

5.6 appendix

5.6.1 Convergence Proof

This proof is based on the resulting proof found in Mutapcic and Boyd
[91] which relies on ideas from the cutting-set method proof in Kelley [64].

Remark 1. We propose that in the case that second-stage decision variables z
are static, they can be considered part of the first-stage variable vector x. We
assume that in the case that the z variables are adaptive, they reside in the group
of state variables y, and additional decision rule variables d are then part of
first-stage variables x, while the decision rule functions become part of the set of
state equations hj. This covers all cases for handling second-stage variables in the
GRCS algorithm.

Assumption 1. We assume that the state variables y are uniquely defined via
corresponding state equations hj by a selection of x and q (or just q in the case of
z variables).

Assumption 2. We concatenate the vectors x and y to a single vector v =

(x, y). We assume that the set of feasible solutions to the nominal problem, Snom

is bounded. Additionally, we assume inequality constraints gi are uniformly
Lipschitz continuous in both state and decision variables, v, on the set Snom. This
implies that there exists a constant C such that the following holds:

|gi(v1, q)− gi(v2, q)| ≤ C||v1 − v2|| (5.16)

for all inequality constraints, i = 1, ..., m, all pairs of variable vectors, v1, v2 ∈
Snom, and all uncertain parameter realizations, q ∈ Q.

Assumption 3. We assume one cannot guarantee a globally optimal solution
is obtainable for all iterations k of the separation problems, SPk. As is the case
in our implementation of the GRCS, we instead assume that an local solutions
are obtained at all intermediate iterations. At the final separation problem, we
assume a global optimal solution is obtainable to confirm there no longer exists
a realization of uncertain parameters q ∈ Q which makes our current optimal
solution vk∗ infeasible. Also, we do not assume the inequality constraint functions
gi are convex in v for each q ∈ Q, and thus, the global optimization step may be
intractable.

Proof. We take S k
master to be the set of feasible solutions to the kth master

problem MPk. The vector vk∗ represents the optimal solution to MPk.
If for k = 1, ..., K the GRCS has not terminated, this proof will provide

an upper bound on how large the total number of iterations can be with
respect to the robustness tolerance TOL and the Lipschitz constant, C.

54

5.6 appendix

Let k be an index for a violating uncertain parameter realization qk

identified in separation problem SPk and then added to the set K. This qk

satisfies the following, given the previous master problem solution vk∗:

gi(vk∗, qk) = Violation(vk∗) > TOL, (5.17)

All following solutions in the algorithmic progression, vs ∈ S s
master with

s > k, must be feasible for gi(vs, qk) ≤ 0, since this constraint is explicitly
enforced in the sth master problem.

In other words, this means that the following is true:

gi(vs, qk) ≤ 0 for s > k, (5.18)

We can then combine (5.17) and (5.18) to show that for k < s,

gi(vk∗, qk)− gi(vs, qk) > TOL (5.19)

By also considering the Lipschitz condition from (5.16), we can also
show

||vk∗ − vs|| > TOL
C

(5.20)

for k < s. The relationship in (5.20) states that the ratio TOL/C is a
lower bound on the distance between any two solution vectors in v1, ..., vK.

Next, we will use an argument based on volumes to show how this lower
bound on solution distances relates to K, the total number of iterations. We
select Bk to be the ball of radius TOL/C with its center at vk∗ for all k. By
conclusions drawn via (5.20), we know these balls do not intersect because
TOL is a small, non-zero constant and thus the distance ||vk∗ − vs|| must
be non-zero. Therefore, the total volume represented by these k balls is K
times the volume of a single ball. This quantity is Kβn(TOL/C)n, where
βn is the volume of the unit ball in Rn, i.e. βn = πn/2

Γ(n/2+1)Rn where R = 1
is the radius and Γ is Euler’s gamma function.

We define another ball B to be the ball with a radius R that contains
the set of solutions to the nominal problem, Snom. Then the balls B1, ..., BK

are contained in the ball B̃, which is B with radius R + TOL/C. Thus, we
know that the total volume of the balls B1, ..., BK must be less than the
volume of B̃, which is βn(R + TOL/C)n. Therefore, we can show

Kβn(TOL/C)n ≤ βn(R + TOL/C)n (5.21)

which we can simplify to determine the bound

K ≤
(

RC
TOL

+ 1
)n

(5.22)

55

5.7 notation

The right hand side gives an upper bound on the number of iterations
before the GRCS terminates, which is related to the robust feasibility
tolerance, TOL, the radius of the ball enclosing the feasible set, R, the
dimensionality of the ball containing the feasible set, n, and the Lipschitz
constant, C.

5.7 notation

Indices

i inequality constraints

j equality constraints

k iterations of the GRCS

l second-stage variables

s uncertain parameter scenarios

Sets

I set of inequality (performance)
constraints

J set of equality (state) equations

K set of GRCS iterations

Q uncertainty set

S finite set of uncertain parameter scenarios

Continuous Variables

x ∈ X ⊆ Rm first-stage (design) variables

z ∈ Rn second-stage (control) variables

y ∈ Ra state variables

d ∈ Rp decision rule variables

τ0
` ∈ R+, τ1

` ∈ Rw
+, τ2

` ∈ Rw×w
+ ∀` decision rule polishing variables

q ∈ Q uncertain parameters

q0 ∈ Rw nominal uncertain parameter values

ζ ∈ R objective function value

Functions

g inequality constraints

h equality constraints

f1 first-stage costs

f2 second-stage costs

v decision rule function

E(·) expectation of

σ(·) standard deviation of

56

6
N O N L I N E A R R O B U S T O P T I M I Z AT I O N C A S E S T U D I E S

6.1 introduction

We present a set of three case studies to illustrate the performance of
the GRCS algorithm in identifying robust feasible solutions to nonlinear
process optimization problems. In Case Study I, we focus on a reactor-
separator process. In Case Study II, we study a reactor-heater process.
Finally, in Case Study III, we consider a highly complex, high-fidelity
flowsheet model for amine solvent-based CO2 separation from flue gas.
All models were implemented using Pyomo[52, 53] and tools from the
Institute for the Design of Advanced Energy Systems (IDAES) integrated
framework[85, 93]. We used IPOPT[125] paired with the HSL MA27[33]
linear solver as the local optimization solver. Given the built-in flexibility of
our implementation, the global solver Antigone[86] was utilized to confirm
robust feasibility in Case Study I, while the global solver BARON[112]
was employed for Case Studies II and III. Each case study was solved
on a desktop computer featuring four Intel i7-6700 3.4 GHz processors
and 16 GB RAM. All solvers were configured with an optimality tolerance
of 1× 10−6, while the tolerance for identifying normalized violations
of performance constraints via solving separation problems was set to
1× 10−4. In Case Studies I and II, we showcase the capabilities of all
three decision rule types, as the overall model sizes were amenable to
the addition of more complex and nonlinear decision rule functions. In
the final case study, we only consider the static approximation and affine
decision rules policies.

In all cases, we use the static approximation solutions to MP1 and
SP1,i∀i ∈ I to initialize the MP1 and SP1,i∀i ∈ I under the affine and
quadratic decision rules cases. This is because the static approximation
MP1 and SP1, i ∀i ∈ I solutions are feasible and best-known solutions in
the affine and quadratic cases.

57

6.2 case study i : reactor-separator

6.2 case study i : reactor-separator

The flowsheet illustrating the reactor-separator system is shown in Fig-
ure 6.1a, and has been previously studied in Grossmann and Sargent
[46], Rooney and Biegler [101], and Yuan, Li, and Huang [143]. In this
design problem, we are modeling the isothermal, liquid-phase conversion
of reactant A into a desired product C via a set of four first-order chem-
ical reactions, which are outlined in Figure 6.1b. Products D and E are
undesirable side-products in the reaction network.

F

xa xb xc xd xe

V

Fprod

Fa0

Ca0

δ

β

(a)

A B C

D E

k1 k2

k3 k4

(b)

Figure 6.1: Flowsheet (a) and reaction mechanism (b) representing the reactor-
separator system considered in Section 6.2, as adapted from Gross-
mann and Sargent [46].

Using this reaction network information and the process flowsheet, we
can cast the deterministic model shown in Section 6.7.1.1 of the Appendix.
The objective function in Equation 6.1a corresponds to the equivalent annu-
alized cost using a capital recovery factor (CRF) of 0.09, which corresponds
to an operating lifetime of 25 years under an 8% annual interest rate [87].
The inequality constraint of Equation 6.1h states that feasible designs must
yield at least 40

mol
hr of product C. An additional inequality constraint,

Equation 6.1i, limits the amount of byproduct D recycled. Both of these
inequalities are considered performance constraints that are subject to
separation steps in the GRCS algorithm. All other constraints are either
state equations or second-stage variable bounds, the latter of which are
also subject to separation.

58

6.2 case study i : reactor-separator

In summary, the deterministic reactor-separator model consists of nine
decision variables, six equality constraints, two inequality constraints
(excluding variable bounds), and twelve parameters of which four will
be considered in this work as being uncertain. More specifically, the first-
stage decision variable is the volume of the reactor, V, while the second-
stage control variables are the recycle ratios δ and β, which represent
the fractions of A and B, and D and E recycled, respectively. The mole
fractions (xa, . . . , xe) as well as the flowrate F constitute state variables.
For this study, the known parameters are the inlet concentration of the
reactant Ca0 = 10 mol

m3 and the inlet flowrate of the reactant Fa0 = 100 mol
hr .

The uncertain data are the reaction rate constants ki , i = {1, 2, 3, 4},
which are correlated in a four-dimensional ellipsoidal uncertainty set. The
original data for describing this set (mean, standard deviation) can be
found in Rooney and Biegler [101] and are also reported in Section 6.7.1.3
of the Appendix, for convenience. Thus, for the application of the GRCS
algorithm, x = (V), z = (δ, β), all other variables are state variables y,
while q = (k1, k2, k3, k4).

6.2.1 Case Study I Results

Results for the optimal first-stage variables and costs for the deterministic
and robust feasible cases are shown in Table 6.1. The reactor volume, V,
identified in the robust solutions is larger than that of the deterministic
solution, in order to insure against the postulated uncertainty. This is
likely due to the fact that feasible robust solutions must permit sufficient
production of product C and sufficient recycle of byproduct D across the
range of values for ki , i = {1, 2, 3, 4}, which in turn requires increased
reactor sizes than the deterministic case. However, it is important to note
that, as recourse flexibility increases via the use of more involved decision
rules, the reactor volume as well as the first-stage cost decreases.

Deterministic Static Approx. Affine DR Quadratic DR

V (m3) 103.18 105.50 103.56 103.20

f1 (x∗) ($/yr) 9,973.32 10,426.31 10,047.29 9,978.13

Table 6.1: Optimal values of first-stage variables and costs for the reactor-separator
model.

The optimal values for second-stage variables and costs for the determin-
istic and robust feasible cases are shown in Table 6.2. When we compare
the values of the control variables δ and β in the deterministic case against
the robust feasible values corresponding to the nominal realization of
the uncertainty, we see that the values for the recycle ratio δ increases in
the latter case. This leads to an increase in nominal second-stage costs

59

6.2 case study i : reactor-separator

when compared to the deterministic solution. However, if we consider the
expected second-stage variable values and costs in Table 6.3, they more
closely match the deterministic case solution. In particular, full-flexibility
in second-stage control has a significant economic benefit over more re-
strictive decision rule policies. Interestingly, if we pay attention to the
expected robust feasible objective values, representing the total expected
cost E[ζ] = f1(x∗) + E[f2], the affine and quadratic decision rules solu-
tions result in overall lower costs than the static approximation policy,
even when considering the associated variance.

Deterministic Static Approx. Affine DR Quadratic DR

δ
(

mol A + mol B
total mol

)
0.46 0.68 0.66 0.64

β
(

mol D + mol E
total mol

)
0.016 0.017 0.017 0.018

f2
(
z∗, y∗; q0) ($/yr) 8,843.27 13,250.84 12,881.24 12,614.63

Table 6.2: Optimal values of second-stage variables and costs, under the nominal
realization of uncertainty, for the reactor-separator model.

Static Approx. Affine DR Quadratic DR

E[δ]± σ[δ]
(

mol A + mol B
total mol

)
0.45 ± 0.07 0.46 ± 0.07 0.46 ± 0.07

E[β]± σ[β]
(

mol D + mol E
total mol

)
0.016 ± 0.0004 0.016 ± 0.0004 0.016 ± 0.0004

E[f2]± σ[f2] ($/yr) 8,395.78 ± 1,240.87 8,758.91 ± 1,245.64 8,829.64 ± 1,246.56

E[ζ]± σ[f2] ($/yr) 18,822.10 ± 1,240.87 18,806.20 ± 1,245.64 18,805.77 ± 1,246.56

Table 6.3: Expected values and standard deviations of second-stage variables and
costs for the reactor-separator model.

A noteworthy observation in this case study is the fact that E[ζ]SA >

E[ζ]ADR > E[ζ]QDR. This means that, for this system, there is an economic
benefit in utilizing more flexible, nonlinear decision rules over the tradi-
tional affine or inflexible cases. We also note that, when compared to the
deterministic optimal equivalent annual cost, ζdet = 18, 816.59 ($/yr), the
robust feasible designs incur in expectation a comparable cost. Indeed,
E[ζ]/ζdet ≈ 1 and σ[f2]/E[ζ] ≈ 0.066 for all three recourse policies, indi-
cating that all robust designs are likely to yield actual costs that do not
significantly deviate from those of the deterministic design.

The total number of iterations of the GRCS and the total CPU time for
completing the GRCS algorithm are shown in Table 6.4. This table also
reports the fraction of total time spent on master and separation subprob-
lems via calls to subordinate solvers, as well as the residual fraction spent
on code overhead, which primarily includes time for Pyomo model manip-
ulations. Clearly, for this case study, which features a high-dimensional
uncertainty set and multiple inequality constraints, the number of itera-

60

6.2 case study i : reactor-separator

tions increases with affine and quadratic decision rules. This hints to the
likelihood of decreased tractability when more flexible decision rules are
used in conjunction with complex models, though the relatively small
size of the underlying model in this case study caused no computational
issues. Whereas the total times are generally small, a significant portion is
spent in solving separation problems. This is due to the fact that there are
multiple such problems to be solved in each iteration, as well as the fact
that a number of calls to global solvers are required to confirm robustness.

Static Approx. Affine DR Quadratic DR

of GRCS iterations 4 9 9

Total CPU time (s) 10.3 11.4 33.2

% spent on master problems 0.1 0.2 0.1

% spent on separation 81.8 75.9 91.2

% overhead time 18.1 23.9 8.7

Table 6.4: Total number of iterations and CPU time spent within the GRCS al-
gorithm when addressing the reactor-separator model. The total time
includes the time to execute the algorithm and subordinate solver calls.
The percentage of time spent on master and separation problems only
includes the total execution time for the respective subordinate solvers.

Additionally, we plot in Figure 6.2 the GRCS progression towards robust
feasibility at each iteration of the GRCS for the static approximation re-
course policy. The trajectories of the algorithm under affine and quadratic
decision rule policies are deferred to the Appendix (see Figures 6.7 and
6.8). Each plot depicts the performance of designs at a given iteration k, as
determined from the master problem MPk. The plots are generated by eval-
uating each optimal design via the same set S of 200 uniformly-sampled
realizations qs ∈ Q, s ∈ S . Feasibility of each design at a realization qs is
determined via one of the two constraints in Equations 6.1h and 6.1i. We
remark that, although the constraints for bounds on control variables δ

and β were included in the set of constraints subject to separation, they
never led to a violation across the range of values within the uncertainty
set, and are hence not referenced in this analysis. The constraint for which
feasibility is shown in a given plot is determined by which constraint
yielded a maximum violation in the separation problem SPk,i.

For each point in the plots, the solution is either feasible and represented
as a blue dot, or is infeasible and represented as a red dot. All points shown
as a green triangle are the realizations at which the current design is explic-

61

6.2 case study i : reactor-separator

itly robust against.i All points represented as yellow crosses are violating
points identified in solving SPk,i at the current iteration k. Constraints
under these realizations will thus be appended in subsequent iterations
of the master problem. We also note that, because the uncertainty set
considered in the reactor-separator model is four-dimensional, we merely
project to the two dimensions with the largest variance, namely k3 and k4,
and the black dotted lines represent the projection of the boundary of the
uncertainty set in these two dimensions.

The plots reveal two regions in which each of the inequality constraints
are active and lead to constraint violations. The main region of infeasibility
for constraint 6.1h is in the upper-right end of the uncertainty set, while
the region where violations for constraint 6.1i occur in the lower-left end.
The trajectory towards robustness against each performance constraint is
easily seen over progressive iterations of the algorithm for each recourse
policy case, as the region of red infeasible sample points becomes blue.
The amount of infeasibility that persists in each iteration is quantified in
Table 6.13 of the Appendix.

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design (k =
0); feasibility against
constraint (6.1h).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign (k = 1);
feasibility against
constraint (6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Robust feasible de-
sign (k = 2); fea-
sibility against con-
straint (6.1h).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(d) Final GRCS design
(k = 3); fully robust
feasible.

Figure 6.2: Evolution during the GRCS algorithm of the robust feasibility of the
reactor-separator designs using the static approximation policy.

i For example, the nominal realization q0 is used as early as the first master problem to
initialize the GRCS algorithm, and hence every master problem solution is explicitly robust
against the nominal point.

62

6.3 case study ii : reactor-heater

6.3 case study ii : reactor-heater

In this case study, we consider the flowsheet shown in Figure 6.3, which
represents a reactor-heater system previously studied in Halemane and
Grossmann [50], Varvarezos, Biegler, and Grossmann [120], Rooney and
Biegler [102], and Yuan, Li, and Huang [143]. This system consists of a
reactor and heat exchanger with a single first-order, exothermic reaction
to convert reactant A to product B. The task is to identify a design that
achieves the target of 90% conversion of reactant A, while minimizing
equivalent annual cost.

F0

CA0

T0

V

T1

CA1

F1,T1

A

T2

Fw

Tw1Tw2

Figure 6.3: Flowsheet representing the reactor-heater system considered in Sec-
tion 6.3, as adapted from Halemane and Grossmann [50]

The deterministic reactor-heater model consists of ten decision variables,
five equality constraints, four inequality constraints (excluding variable
bounds), and ten parameters of which two will be considered uncertain.
The complete NLP model for the reactor-heater flowsheet, as well as a table
of pertinent data, are shown in Sections 6.7.2.1 and 6.7.2.2 of the Appendix,
respectively. The objective function in Equation 6.2a seeks to minimize
the equivalent annual cost, including annualized capital cost and yearly
operating cost terms taken from Varvarezos, Biegler, and Grossmann [120].
The set of state equations J includes Equations 6.2b–6.2f, while the set
of performance constraints I includes Equations 6.2g–6.2n as well as the
bounds on second-stage variables in Equations 6.2o and 6.2p.

In this optimization model, the size of the reactor V and the area of
the heat exchanger A are the first-stage decision variables, while the two
second-stage variables are the flowrates F1 and Fw dictating utility usage.
The remaining variables, xA, T1, T2, Tw1, Tw2, and ∆Tln

ii constitute state
variables. The uncertainty considered in this example lies in the Arrhenius

ii Note that we made use of the Underwood formula[117] to approximate ∆Tln, which was
found to be helpful in avoiding numerical issues with the NLP solvers.

63

6.3 case study ii : reactor-heater

rate constant for the reaction taking place in the reactor, k0, and overall
heat transfer coefficient in the heat exchanger, U. Thus, x = (V, A), z =

(F1, Fw), all other variables are state variables y, and q = (k0, U). For this
study, we postulate that the two aforementioned uncertain parameters are
independent to each other, and therefore utilize a simple two-dimensional
box uncertainty set. The data for the nominal values and uncertainty
deviations of k0 and U can be found in Section 6.7.2.3 of the Appendix.

6.3.1 Case Study II Results

Results for the optimal first-stage variables and costs for the deterministic
and robust feasible cases are shown in Table 6.5. In this case study, the
GRCS algorithm returned the same robust solution for the affine and
quadratic decision rules. This outcome is possible due to the fact that a
feasible solution with affine decision rules is also a feasible solution under
quadratic decision rules, and it just so happens that, for this particular
model and uncertainty set, greater flexibility via quadratic decision rules
does not improve upon the robust feasible solution. This observation
alludes to the possibility that the extra computational burden to consider
more involved recourse policies might not always yield a payoff. To that
end, the modeler has a critical role to play in judiciously selecting the form
of decision rule to be employed in the context of each particular model.
In Section 6.5, we provide additional remarks on the selection of recourse
policy.

When comparing the deterministic first-stage variables to the robust
solutions, we see that there is an increase in reactor volume and heat
exchanger area for robust solutions. The robust designs must satisfy the
constraint regarding production of product A for all uncertain parameter
values within the uncertainty set, and this is accomplished via larger
capacity facilitated by larger equipment.

Deterministic Static Approx. Affine DR Quadratic DR

V (m3) 4.43 4.98 4.94 4.94

A (m2) 9.70 9.97 9.92 9.92

f1 (x∗) ($/yr) 5,374.66 5,596.62 5,575.26 5,575.26

Table 6.5: Optimal values of first-stage variables and costs for the reactor-heater
model.

The optimal values for second-stage variables and costs for the deter-
ministic and robust feasible cases are shown in Table 6.6, where we note
that these do not change substantially under the case of the nominal re-
alization. When we compare the values of the control variables, F1 and
Fw, in the deterministic case against their robust feasible values, we notice

64

6.3 case study ii : reactor-heater

that the values of these flowrates increase, which leads to an increase in
second-stage costs. This can be explained by the fact the reaction produc-
ing product A is exothermic, requiring increased circulation through the
cooler in the robust designs. In regards to expected second-stage variable
values and costs shown in Table 6.7, we observe that these values are actu-
ally greater than the nominal values in the previous table. This may be an
indicator of the optimizer taking advantage of the nominal second-stage
cost, f2

(
x, z, y; q0), in the objective. In the case of the nominal uncertain

parameter realization, q0, the robust feasible design requires slightly lower
flowrates, and correspondingly a lower second-stage cost. However, in
expectation, these flowrates will be higher, as reported in Table 6.7. It is
also interesting to note that decision rules seem to help alleviate some of
the conservativeness of the static approximation solution, as they strictly
improve in terms of equivalent annual cost, both nominal and expected.

Deterministic Static Approx. Affine DR Quadratic DR

F1 (kmol/hr) 94.19 95.77 95.69 95.69

Fw (kmol/hr) 1,754.75 1,782.49 1,784.21 1,784.21

f2
(
z∗, y∗; q0) ($/yr) 4,107.47 4,175.15 4,177.78 4,177.78

Table 6.6: Optimal values of second-stage variables and costs, under the nominal
realization of uncertainty, for the reactor-heater model.

Static Approx. Affine DR Quadratic DR

E[F1]± σ[F1] (kmol/hr) 96.98 ± 9.82 96.80 ± 9.63 96.80 ± 9.63

E[Fw]± σ[Fw] (kmol/hr) 1,809.47 ± 97.89 1,798.57 ± 94.64 1,798.57 ± 94.64

E[f2]± σ[f2] ($/yr) 4,236.47 ± 264.11 4,214.15 ± 256.51 4,214.15 ± 256.51

E[ζ]± σ[f2] ($/yr) 9,833.10 ± 264.11 9,789.41 ± 256.51 9,789.41 ± 256.51

Table 6.7: Expected values and standard deviations of second-stage variables and
costs for the reactor-heater model.

The total number of iterations of the GRCS algorithm, its total CPU time
and the fraction of total time spent on various portions of the algorithm are
shown in Table 6.8. The number of iterations and CPU times are relatively
small, due to the small scale and good tractability of the deterministic
optimization problem. As in the previous example, the majority of the
GRCS algorithm’s time is spent solving separation problems. The algorith-
mic overhead tasks also consumed a significant fraction of the total CPU
time, noting though that the very small total CPU times do not encourage
general insights.

In Figure 6.4, we show the progression of feasibility over each iteration
of the GRCS for the case of the static approximation recourse policy.
Similar plots for the cases of affine and quadratic decision rule policies are

65

6.3 case study ii : reactor-heater

Static Approx. Affine DR Quadratic DR

of GRCS iterations 3 3 3

Total CPU time (s) 1.3 2.9 4.0

% spent on master problems 0.5 0.3 0.4

% spent on separation 49.0 66.5 66.0

% overhead time 50.5 33.2 33.6

Table 6.8: Total number of iterations and CPU time spent within the GRCS al-
gorithm when addressing the reactor-heater model. The total time
includes the time to execute the algorithm and subordinate solver calls.
The percentage of time spent on master and separation problems only
includes the total execution time for the respective subordinate solvers.

provided in the Appendix (see 6.9 and 6.10). In these plots, the designs
from each iteration of the master problem are evaluated across a set S
of 200 uniformly-sampled realizations qs ∈ Q, s ∈ S . The feasibility
of a design under a realization qs is defined against the performance
constraint in Equation S2n, as this was the only inequality constraint in
the formulation that led to violations in the separation problems solved.
In other words, for points shown in blue, the design leads to xA ≥ 0.9,
while for points shown in red, xA < 0.9. Figure 6.4a, which is a plot
depicting the feasibility of the nominal deterministic design under various
uncertain parameter realizations, clearly shows a horizontal division in the
uncertainty set between a region of feasibility and a region of infeasibility.
More specifically, while the nominal realization, q0 = (U0, k0

0), is included
in the region of feasibility, most points with k0 < k0

0 render the design
infeasible. Interestingly, the first violating parameter realization identified
in separation, q1, is a non-vertex point on the border of the otherwise
polyhedral uncertainty set. The amount of infeasibility that persists in
each iteration is quantified in Table 6.14 of the Appendix.

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design (k =
0); feasibility against
constraint (6.2n.

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign (k = 1);
feasibility against
constraint (6.2n).

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Final GRCS design
(k = 2); fully robust
feasible.

Figure 6.4: Evolution during the GRCS algorithm of the robust feasibility of the
reactor-heater designs using the static approximation policy.

66

6.4 case study iii : mea-solvent co2 separation flowsheet

6.4 case study iii : mea-solvent co2 separation flowsheet

The final example studied here is a complete equation-oriented model
for post-combustion CO2 capture using a monoethanolamine (MEA) sol-
vent. The complete flowsheet for the process is shown in Figure 6.5. The
key units in this process include the absorber and regenerator (stripper)
columns, the cross heat exchanger, and the reboiler and condenser. The
electrolyte non-random two-liquid (e-NRTL) model[55] was used to rep-
resent the vapor-liquid equilibrium, while an enhancement factor[131] is
used to characterize the effect of liquid phase reaction on the mass transfer
rate between the liquid and gas phases. The latter was based on a two-film
model, wherein mass transfer occurs via molecular diffusion through a
stagnant film of a given thickness and the bulk phase is well mixed[149].
In addition, our process model includes rigorous submodels to describe
gas-liquid reactions, surface tension, diffusivity, and heat transfer. The
mass and energy balances in the column models are differential equa-
tions, as the concentrations of vapor and liquid components as well as the
temperature varies along the length of the columns. Some representative
model equations are shown in Section 6.7.3.3 of the Appendix and have
first been presented in Chinen et al. [24] for a solvent-based carbon capture
system. Notably, the simulation model of the flowsheet, featuring zero
degrees of freedom and 30 finite elements to discretize the differential
equations, is a system of 4,334 variables and 4,327 constraints.

A
b

s
o

rb
e
r

R
e
g

e
n

e
ra

to
r

Qreb

Areb

Qcond

Acond

Flue gas

Flue gas

Axhx

Labs

Dabs

Lreg

Dreg

Ppump

VMEA-TK VH2O-TK

Cooling water

Steam

CO2

Solvent

Figure 6.5: Flowsheet representing the MEA-based CO2 capture flowsheet con-
sidered in Section 6.4, as adapted from Mores et al. [87].

In our study, we seek to design a process for treating 1,000 mol/s of
flue gas, with the main performance constraint calling for the process
to achieve 85% CO2 capture. Therefore, we augmented the simulation
model to include degrees of freedom for investments to install capacity
for the various utilities and an overall economic objective to minimize the
equivalent annual cost (EAC). We adapted the straightforward algebraic
formulation of Mores et al. [87] and utilize simple capital cost correlations
from Towler and Sinnott [116] and Seider, Seader, and Lewin [105] to

67

6.4 case study iii : mea-solvent co2 separation flowsheet

demonstrate relative impact on EAC of our robust optimization approach.
Note that we do not account for uncertainty in costs and that the use of
more rigorous costing methods are outside the scope of this work. The full
set of equations defining the EAC function can be found in Section 6.7.3.2
of the Appendix.

After the above augmentations, the deterministic optimization model
we used consists of 4,342 decision variables, 4,327 equality constraints, and
13 inequality constraints (excluding variable bounds). The main first-stage
design variables correspond to the sizing of major equipment, namely
the diameters of the columns, Dabs and Dreb, the heights of the columns,
Labs and Lreg), and the total surface area of the cross heat exchanger,
Axhx. There are also several first-stage variables introduced in the model
to properly capture the investment costs for the installed capacities of
necessary utilities. These include the power to pump CO2-rich solvent
from the absorber bottom to the inlet of the regenerator, Ppump, volumes
of storage tanks for the hold-up of H2O and MEA solvent to supply
to the make-up mixer, VMEA−TK and VH2O−TK, as well as the effective
surface areas of the reboiler and condenser, Areb and Acon, respectively. In
summary, x=(Dabs, Dreg, Labs, Lreg, Axhx, Ppump, VMEA−TK, VH2O−TK, Areb,
Acon). The second-stage control variables are the heat duties supplied to
the reboiler and condenser, thus z = (Qreb, Qcond). All remaining variables
are considered to be state variables y.

Potential sources of uncertainty have been studied in the literature[24,
88], while the optimization under uncertainty of the absorber column unit
for MEA-based post-combustion carbon capture has been studied also
in [20]. Here, we expand upon previous works by studying the entire
process flowsheet, presenting solutions obtained via our novel algorithm.
More specifically, we postulate an ellipsoidal uncertainty set representing
the 95% confidence interval around two parameters, q = (b1, b2), used to
calculate equilibrium constants Keq,r, r ∈ {1, 2} via Equations 6.3m in Sec-
tion 6.7.3.3 of the Appendix. Here, the index r refers to two solvent-phase
reactions considered in the kinetic model[89]. We stress that parameters
b1 and b2 participate non-linearly in the set of equations defining the
equilibrium constants, while the latter are further non-linearly related to
the overall mass transfer coefficient between the vapor and liquid phases.
As we shall show later, this leads to interesting regions of feasibility of
the deterministic design within the uncertainty set. Details regarding the
uncertainty set used, including the mean and covariance matrix values,
are provided in Section 6.7.3.4 of the Appendix.

There are several inequality constraints in the model representing re-
quirements on performance. These include a constraint on the fraction of

CO2 captured, i.e., ηCO2 ≥ 0.85, where ηCO2 =
yin

CO2
−yout

CO2
yin

CO2

and yCO2 is the

68

6.4 case study iii : mea-solvent co2 separation flowsheet

gas phase mole fraction of CO2. In addition, explicit constraints on the
superficial vapor velocities at the bottom of the absorber and the top of the
regenerator are imposed, in order to prevent flooding. These constraints
can be found in Section 6.7.3.3 of the Appendix (Equations 6.3n–6.3r).

Additional inequality constraints of interest are the bounds on the
control variables, namely the reboiler and condenser duties. The latter
include trivial “zero” bounds to limit their sign (Equations 6.3u and 6.3v) as
well as induced bounds due to the availability of steam (Equation 6.3w) and
cooling water (Equation 6.3x), respectively. In the case of affine decision
rules, these bounds must be included in the set of performance constraints
to be separated against. All other equations in the model represent state
equations, in which the uncertain parameters participate nonlinearly and
implicitly. Additionally, we note that the flue gas flowrate at the bottom of
the absorber is fixed to 1,000

mol
s , while the solvent flowrate at the top of

the absorber is fixed to 3.64
kmol

s . The solvent’s temperature at this inlet is
calculated as a state variable in the model. The solvent make-up is set to
be 27.5% wt. MEA at the outlet of the make-up mixer.

6.4.1 Case Study III Results

For this case study, we only consider the static approximation and affine
decision rules as our two recourse policies. Results under quadratic re-
course are not presented due to the fact that the subordinate nonlinear
optimization solver failed to converge while attempting to solve a sub-
problem generated at an intermediate iteration of the GRCS algorithm.
This is an example of how the overall performance of the GRCS algorithm
depends on the ability of the employed subordinate solvers to identify opti-
mal solutions to subproblems at each and every iteration and in reasonable
computational times.

The optimal values for first-stage variables and costs for the determinis-
tic and robust feasible solutions are shown in Table 6.9. Our deterministic
design is consistent with general trends established in optimal designs
previously presented in the literature[35, 87], such as the fact that the
absorber height is greater than the regenerator column, as well as a drum-
like regenerator column wherein L/D ≈ 1. One possible motivation for
this is to drive down capital and utility costs associated with pumping
the solvent to the top of a higher regenerator column, at the expense of
increased reboiler duty. This may also be motivated by the presence of
explicit constraints to limit the superficial vapor velocity within a fraction
of the flooding velocity at the regenerator bottom, since an increase in
diameter corresponds to a decrease in velocity for a given volumetric
flowrate.

69

6.4 case study iii : mea-solvent co2 separation flowsheet

We begin by comparing the deterministic solution to the robust solutions.
First, we notice that the robust solutions (static approximation and affine
decision rules) feature decreased heights of both columns as well as
an increased diameter of the regenerator column, as compared to the
deterministic solution. As a result of the reboiler column height decrease
in the robust solutions, there is also a corresponding decrease in the
required pump power. Additionally, there is an increase in heat transfer
surface area in the reboiler and condenser. This can be attributed to the
increase in reboiler and condenser heat duties, contributing to achieving
robust feasibility. This also relates to the decrease in the robust values of
cross heat exchanger surface area, since more heat transfer load between
streams can be taken on by the larger condenser and reboiler.

Next, we consider notable differences between the robust solutions
determined via the static approximation and affine DR policy. First, we
see that the optimal surface areas for the heat exchanger, reboiler and
condenser are smaller in magnitude in the case of an affine decision
rule policy, when compared to the static approximation. Because the
affine decision rules allow for more flexible heat transfer policies in the
second-stage, there is less need to invest in larger equipment, such as
heat transfer surface areas, in the first-stage. This decrease in heat transfer
surface areas in the affine case leads to a corresponding increase in the
regenerator column height, which is necessary for achieving sufficient
CO2 regeneration at the implied lower reboiler and condenser duties. In
spite of the above differences, the first-stage capital costs appear to be very
similar in all three solutions.

Deterministic Static Approx. Affine DR

Labs (m) 7.57 6.00 6.93

Dabs (m) 4.95 4.96 4.96

Lreg (m) 4.00 3.00 3.52

Dreg (m) 3.44 4.04 4.00

Axhx (m2) 4,734 3,928 3,764

Ppump (kW) 4.44 3.67 4.28

VMEA−TK (m3) 2.25 3.46 3.48

VH2O−TK (m3) 11,541 13,300 13,486

Areb (m2) 179.4 813.4 797.4

Acon (m2) 191.8 2,116.8 2,034.0

f1 (x∗) (MM$/yr) 2.06 2.07 2.09

Table 6.9: Optimal values of first-stage variables and costs for the CO2 capture
flowsheet model.

Table 6.10 presents information related to the second-stage variables
and costs, under the scenario of nominal uncertainty realization. In this

70

6.4 case study iii : mea-solvent co2 separation flowsheet

case, the robust reboiler heat duty, Qreb, is much higher than the optimal
value in the deterministic case, as is also the flowrate of solvent supplied
to the regenerator. This is illustrating a trade-off wherein the shorter, more
drum-like regenerator columns require higher reboiler duties to achieve
the lower lean loading values. The decrease in column height also allows
for larger flowrates of solvent due to a decreased pumping requirement. As
expected, robustness comes at a noticeable increase in total cost, which is
necessary for the design to possess enough flexibility to remain operational
(feasible) under a wide range of scenarios (uncertainty set). It is important
to note, however, that the use of affine decision rules leads to a robust
feasible solution with a slightly lower nominal EAC, when compared
to the static approximation policy, which demonstrates reduction of the
two-stage adaptivity gap. In addition to the optimal deterministic second-
stage variables and costs, Table 6.10 also shows the optimal values for
several state variables of interest. These include the CO2 capture, denoted
as ηCO2 , the lean loading calculated as α =

xCO2
xMEA

, where xCO2 and xMEA
are liquid phase mole fractions, as well as several key flowrates related
to the pumping utility (Fin

reg,liq) and the solvent make-up supplied by the
mixer at the top of the absorber (Fin

mix,MEA and Fin
mix,H2O). We see that the

nominal capture for the robust solutions, in both the affine decision rule
and static approximation cases, is larger than the deterministic case. To
achieve feasibility against all uncertain parameter realizations, there must
be a degree of “over-design” when considered in light of a subset of
realizations in the uncertainty set. This means that, for some realizations,
and in particular the nominal realization, the robust design will exceed
the requirements of the performance constraints. Additionally, we see that
lean loading values are lower in the robust solutions, when compared to
the deterministic case, due to the increase in the robust reboiler duties.

The expected values and standard deviations for the second-stage costs
and variables are shown in Table 6.11. We note that the expected second-
stage costs are significantly lower than their values when the nominal
realization prevails. This can be attributed to the fact that the expected
values are determined without a particular decision rule policy in place,
instead being calculated in light of unrestricted recourse potential. By
simply allowing for more flexibility in second-stage recourse, there is a
broader range of operating points available, which can decrease the second-
stage costs. Unlike in the previous case studies, the affine decision rules
solution does not result in lower overall expected costs when compared
to the static approximation solution, albeit these costs show less variation.
Note that the trade-offs between first-stage investment costs and second-
stage operating costs are more complex in this system, and since the
economic objective function only considers the nominal scenario, we do

71

6.4 case study iii : mea-solvent co2 separation flowsheet

not get a guarantee that the designs under the more flexible recourse
policy will be lower in expectation.

In terms of control variables, Table 6.11 reveals that the need for reboiler
duty is generally more stable than the need for condenser duty. Indeed, as
different scenarios were sampled, the latter ranged quite a bit more on a
relative scale, leading to a more skewed distribution with an elongated tail.
Overall, the range of values that these duties would have to attain under
the various sampled scenarios is larger in the design stemming from the
affine decision rules policy, which can be explained by the fact that this
design was explicitly chosen to perform under a wider range of control
variable values.

Deterministic Static Approx. Affine DR

Qreb (MW) 18.14 41.10 39.05

Qcon (MW) -4.54 -25.18 -22.89

ηCO2

(
molCO2
totalmol

)
0.85 0.93 0.96

α
(

mol CO2

mol MEA

)
0.22 0.17 0.17

Fin
reg,liq (kg/s) 84.84 92.10 91.22

Fin
mix,MEA (kg/s) 0.03 0.04 0.04

Fin
mix,H2O (kg/s) 4.44 4.85 5.00

f2
(
z∗, y∗; q0) (MM$/yr) 5.19 8.83 8.67

ζ∗ (MM$/yr) 7.25 10.90 10.76

Table 6.10: Optimal values of second-stage control and other key variables, as
well as total and second-stage costs, evaluated under the nominal
realization of uncertainty, for the CO2 capture flowsheet model.

Static Approx. Affine DR

E[Qreb]± σ[Qreb] (MW) 18.57 ± 0.55 19.27 ± 4.42

E[Qcon]± σ[Qcon] (MW) -0.935 ± 1.36 -1.86 ± 4.87

E[ηCO2]± σ[ηCO2] 0.85 ± 0.00 0.86 ± 0.03

E[α]± σ[α]
(

mol CO2

mol MEA

)
0.24 ± 0.03 0.24 ± 0.03

E[Fin
reg,liq]± σ[Fin

reg,liq] (kg/s) 83.63 ± 0.51 83.87 ± 1.52

E[Fin
mix,MEA]± σ[Fin

mix,MEA] (kg/s) 0.03 ± 0.00 0.03 ± 0.00

E[Fin
mix,H2O]± σ[Fin

mix,H2O] (kg/s) 5.89 ± 0.34 5.79 ± 0.27

E[f2]± σ[f2] (MM$/yr) 5.51 ± 1.38 5.63 ± 0.78

Table 6.11: Expected values and standard deviations of second-stage control and
other key second-stage variables, and second-stage costs, for the CO2

capture flowsheet model.

The iterations count and algorithm execution times for the CO2 capture
flowsheet study are shown in Table 6.12. When compared to the previous

72

6.4 case study iii : mea-solvent co2 separation flowsheet

case studies, the total CPU times are much higher due to the larger
model size and complexity. For reference, the deterministic version of the
CO2 capture flowsheet model already requires 31 seconds of CPU time
to optimize locally. Table 6.12 also reveals that, despite the number of
iterations being the same in both cases, the total CPU time for the affine
decision rules is roughly 50% higher than the static approximation case,
alluding to the fact that the complexity of the GRCS is directly related to
the complexity of the decision rule relationship used. Additionally, we see
the same trend as in previous case studies wherein the percentage of time
spent solving separation problems is significantly larger than that spent
solving the master problems. We also see that there is significant overhead
time spent outside of subordinate solver optimization calls. In particular,
due to the larger models involved in this case study, there are significantly
more constraints and variables that need to be copied at each iteration as
the master problem formulation evolves, leading to increased times spent
towards Pyomo model building.

Static Approx. Affine DR

of GRCS iterations 5 5

Total CPU time (s) 1,030.0 1,543.4

% spent on master problems 19.4 16.2

% spent on separation 48.6 51.2

% overhead time 32.0 32.6

Table 6.12: Total number of iterations and CPU time spent within the GRCS
algorithm when addressing the CO2 capture flowsheet model. The
total time includes the time to execute the algorithm and subordinate
solver calls. The percentage of time spent on master and separation
problems only includes the total execution time for the respective
subordinate solvers.

Figure 6.6 presents the progression of feasibility over each iteration of
the GRCS under the static approximation policy. The progression under
affine decision rules can be found in the Appendix (Figure 6.11). As
before, designs are evaluated in light of 200 uniformly-sampled realizations
qs ∈ Q, s ∈ S . Here, feasibility of the designs primarily refers to the CO2

capture constraint and the upper bound constraining the superficial vapor
velocity in the absorber, as these were the only inequality constraints to
lead to violations in the separation step. The nominal design performance
shown in Figure 6.6a reveals that there exist two disjoint regions within
the uncertainty set that render the nominal solution infeasible, which is
indicative of the nonlinear manner in which the uncertain parameters
affect design feasibility. Regardless, after a few iterations of the GRCS
algorithm, the design becomes robust feasible across the totality of the

73

6.5 discussion on choosing form of recourse policy

uncertainty set. The amount of infeasibility that persists in each iteration
is quantified in Table 6.15 of the Appendix. It is also worth noting that, in
this example, all of the violating parameter realizations added to master
problems were points from the boundary of the ellipsoidal uncertainty set.

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)
Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design (k =
0); feasibility against
constraint (6.3n).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign (k = 1);
feasibility against
constraint (6.3n).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Intermediate de-
sign (k = 2);
feasibility against
constraint (6.3r).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(d) Intermediate design
(k = 3); feasi-
bility against con-
straint (6.3r).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(e) Final GRCS design
(k = 4); fully robust
feasible.

Figure 6.6: Evolution during the GRCS algorithm of the robust feasibility of the
MEA-based CO2 capture flowsheet using the static approximation
policy.

6.5 discussion on choosing form of recourse policy

In this section, we summarize some empirical findings and conclusions
pertaining to the performance of the different recourse policies, hoping
to inform a future modeler that wishes to address other process design
models via our GRCS algorithm. First, we note that, in each of the examples
investigated, the costs of designs determined via affine and quadratic
decision rules are relatively close to each other, while they both differ more
significantly from the deterministic and static approximation costs. From
this perspective, our results clearly support the incentive to choose some
kind of decision rule (i.e., affine or quadratic) over the static approximation
recourse policy.

The choice to deviate from affine decision rules and invoke quadratic
rules was less clearly motivated in our investigations. For example, the

74

6.5 discussion on choosing form of recourse policy

results for Case Study I showed a small, yet strict, improvement in expec-
tation (i.e., E[ζ]ADR > E[ζ]QDR), while in Case Study II, the two equally-
robust solutions where the same. For a general model, there is no a-priori
indicator to predict whether the invocation of quadratic decision rules
will or will not improve the results derived with affine decision rules.
Certainly, as one considers hierarchies of decision rules (e.g., going from
affine to quadratic to cubic, or even, to quartic polynomials), diminishing
returns are expected due to the closure of the two-stage adaptivity gap,
and the modeler has an incentive to empirically investigate that. This in
fact strengthens the need for an algorithm like GRCS, which can con-
sider different decision rule functions in a modular manner, enabling the
modeler to perform such investigations.

One should also keep in mind that the GRCS algorithm also admits
non-polynomial rules, which cannot be hierarchically compared to those
tested here; those non-polynomial rules may prove to perform particularly
well in certain models. We should also highlight that there generally
exist opportunities to employ the more involved decision rule forms
only for a carefully select subset of second-stage decisions, leaving the
remaining ones to be decided based on simpler recourse policies (e.g.,
static approximation). Whereas at the interest of brevity such strategy was
not explored in this work, anyone wishing to apply the GRCS algorithm
presented here can readily do so.

Finally, any potential savings in terms of second-stage costs have to be
viewed in light of the computational burden associated with choosing more
involved decision rule functions, as the complexity of solving the resulting
optimization subproblems is expected to increase, in general. For example,
in cases when variables z and y as well as parameters q participate linearly
in the deterministic model, and the uncertainty set is polyhedral, quadratic
decision rules may not be preferable, since they will change the class of the
underlying separation problems from linear to nonlinear. In contrast, if the
deterministic model is already nonlinear, as is often the case in the process
systems engineering context, then quadratic decision rules are a plausible
option. Whether or not the additional nonlinearities from the quadratic
decision rules lead to exceedingly difficult numerical issues when paired
with a particular model and solver would need to be explored in each
case. Eventually, the practitioner must empirically determine the trade-
off between solution quality and tractability, recognizing that employing
higher order polynomial decision rules will come at a computational cost,
in general.

75

6.6 conclusions

6.6 conclusions

In this chapter, we applied the generalized robust-cutting set (GRCS)
algorithm for identifying robust feasible solutions to three two-stage,
nonlinear process systems models under uncertainty. Through these case
studies, we showed that flexibility in recourse is inversely related to total
costs, notably demonstrating the use of nonlinear decision rules towards
this. To conclude, our work builds upon existing literature by applying
general, model-agnostic robust optimization methodologies to process
systems engineering models. With this capability, practitioners of process
design under uncertainty can readily identify risk-averse solutions that
are explicitly robust against user-defined uncertainty sets.

76

6.7 appendix

6.7 appendix

This Appendix includes detailed model formulations, certain parameter
values, data to generate the postulated uncertainty sets for the uncertain
parameters, as well as various figures and tables with detailed results, for
the Case Studies presented in Chapter 6. More specifically, information
for Case Studies I, II and III can be found in Sections 6.7.1, 6.7.2 and 6.7.3,
respectively.

77

6.7 appendix

6.7.1 Reactor Separator Model

6.7.1.1 Model Formulation

The complete mathematical model for the reactor-separator case study is
presented in Equations 6.1a–6.1k.

min
V,δ,β,F

xa,xb,xc,xd,xe

CRF(c1V2) + c2c3F [δ (xa + xb) + β (xD + xE)] (6.1a)

s.t. Fa0 − xaF (1− δ)− Ca0xaV (k1 + k3) = 0 (6.1b)

− xbF (1− δ) + Ca0Vxak1 − Ca0Vxb (k2 + k4) = 0 (6.1c)

− xcF + Ca0Vxbk2 = 0 (6.1d)

− xdF (1− β) + Ca0Vxak3 = 0 (6.1e)

− xeF (1− β) + Ca0Vxbk4 = 0 (6.1f)

xa + xb + xc + xd + xe = 1 (6.1g)

Fxc ≥ χ (6.1h)

Fxdβ ≥ ω (6.1i)

0 ≤ δ ≤ 1 (6.1j)

0 ≤ β ≤ 1 (6.1k)

6.7.1.2 Certain Parameter Data

The following table includes the certain parameter data for the reactor-
separator case study.

Parameter Value

Ca0 10 (mol
m3)

Fa0 100 (mol
hr)

CRF 0.09 (1
yr)

χ 40 (mol c
hr)

ω 0.4 (mol d
hr)

c1 10 $/m3

c2 0.125 $/mol

c3 8,760 (hr
yr)

6.7.1.3 Uncertain Parameter Data (Ellipsoidal Set)

The relevant data required to construct the applicable uncertainty set is
presented in the below table.

78

6.7 appendix

Parameter (hr−1) Mean Std. Deviation

k1 0.9945 0.02075

k2 0.5047 0.01340

k3 0.3866 0.01176

k4 0.3120 0.01099

covk1,k1,k3,k4 =

4.3056× 10−4 −2.9751× 10−7 5.4880× 10−5 8.2415× 10−5

−2.9751× 10−7 1.7956× 10−4 2.8223× 10−5 8.5252× 10−5

5.4880× 10−5 2.8223× 10−5 1.3830× 10−4 4.5623× 10−5

8.2415× 10−5 8.5252× 10−5 4.5623× 10−5 1.2078× 10−4

6.7.1.4 Results

In Figures 6.7 and 6.8, we plot the algorithmic progression towards robust
feasibility at each iteration of the GRCS under the affine and quadratic
decision rule policies. These plots can be interpreted in the same manner
as Figure 6.2 in the chapter corresponding to the static approximation
case.

Furthermore, results that quantify how infeasibility is progressively
diminished along each solution trajectory are provided in Table 6.13. For
each recourse policy, we report the number of points from the sample set S
that lead to infeasibility of the provisional design against each performance
constraint and at each iteration. We also report the average infeasibility
across all sampled realizations.

79

6.7 appendix

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design
(k = 0); feasibility
against constraint
(6.1h).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign
(k = 1); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Intermediate de-
sign
(k = 2); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(d) Intermediate de-
sign
(k = 3); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(e) Intermediate de-
sign
(k = 4); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(f) Intermediate design
(k = 5); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(g) Intermediate de-
sign
(k = 6); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(h) Intermediate de-
sign
(k = 7); feasibility
against constraint
(6.1h).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(i) Final GRCS design
(k = 8); fully robust
feasible.

Figure 6.7: Evolution during the GRCS algorithm of the robust feasibility of the
reactor-separator designs using affine decision rules.

80

6.7 appendix

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design
(k = 0); feasibility
against constraint
(6.1h).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign
(k = 1); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Intermediate de-
sign
(k = 2); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(d) Intermediate de-
sign
(k = 3); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(e) Intermediate de-
sign
(k = 4); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(f) Intermediate design
(k = 5); feasibility
against constraint
(6.1h).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(g) Intermediate de-
sign
(k = 6); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(h) Intermediate de-
sign
(k = 7); feasibility
against constraint
(6.1i).

0.34 0.36 0.38 0.40 0.42
k3 (h−1)

0.28

0.30

0.32

0.34

0.36

k
4
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(i) Final GRCS design
(k = 8); fully robust
feasible.

Figure 6.8: Evolution during the GRCS algorithm of the robust feasibility of the
reactor-separator designs using quadratic decision rules.

81

6.
7

a
p

p
e

n
d

i
x

Static Approximation Affine DR Quadratic DR

k
infeas.

of (6.1h)

Avg. infeas.

of (6.1h)

infeas.

of (6.1i)

Avg. infeas.

of (6.1i)

infeas.

of (6.1h)

Avg. infeas.

of (6.1h)

infeas.

of (6.1i)

Avg. infeas.

of (6.1i)

infeas.

of (6.1h)

Avg. infeas.

of (6.1h)

infeas.

of (6.1i)

Avg. infeas.

of (6.1i)

0 96 2.65× 10−1
98 4.65× 10−3

96 2.65× 10−1
98 4.65× 10−3

96 2.65× 10−1
98 4.65× 10−3

1 0 — 98 4.65× 10−3
0 — 90 8.77× 10−3

0 — 93 1.25× 10−2

2 0 2.68× 10−3†
0 — 0 — 22 7.45× 10−4

0 — 58 3.69× 10−3

3 0 — 0 — 0 — 4 6.70× 10−5
0 — 11 2.88× 10−4

4 0 — 1 4.48× 10−6
0 — 0 2.76× 10−3†

5 0 — 0 5.73× 10−4†
0 2.21× 10−2†

0 —

6 0 — 0 1.43× 10−4†
0 — 0 6.78× 10−4†

7 0 4.91× 10−3†
0 — 0 — 0 1.69× 10−4†

8 0 — 0 — 0 — 0 —

Table 6.13: Evolution of robust feasibility for the reactor-separator design across different recourse policies. The † annotations refer to
non-robust solutions that happened to remain feasible under all chosen realization samples; in these cases, we instead report the
magnitude of violations, as identified by the respective separation problems.

8
2

6.7 appendix

6.7.2 Reactor Heater Model

6.7.2.1 Model Formulation

The complete mathematical model for the reactor-heater case study is
presented in Equations 6.2a–6.2p.

min
V,A,Fw,F1

xA,T1,T2,Tw1,Tw2,∆Tln

0.3
(
2304V0.7 + 2912A0.6)+ 8760(2.2e−4Fw + 8.82e−4F1)

(6.2a)

s.t. F0xA − k0 exp (−E/RT1)CA0 (1− xA)V = 0 (6.2b)

F0cp (T0 − T1)− F1cp (T1 − T2) + (−∆HR) F0xA = 0
(6.2c)

F1cp (T1 − T2) = AU∆Tln (6.2d)

∆Tln =
(T1 − Tw2)− (T2 − Tw1)

ln ((T1 − Tw2) / (T2 − Tw1))
(6.2e)

F1cp (T1 − T2) = Fwcpw (Tw2 − Tw1) (6.2f)

311 ≤ T1 ≤ 389 (6.2g)

311 ≤ T2 ≤ 389 (6.2h)

300 ≤ Tw2 ≤ 380 (6.2i)

T1 − T2 ≥ 0 (6.2j)

Tw2 − Tw1 ≥ 0 (6.2k)

T1 − Tw2 ≥ 11.1 (6.2l)

T2 − Tw1 ≥ 11.1 (6.2m)

xA ≥ 0.9 (6.2n)

0 ≤ Fw ≤ 5, 000 (6.2o)

0 ≤ F1 ≤ 5, 000 (6.2p)

6.7.2.2 Certain Parameter Data

The following table includes the certain parameter data for the reactor-
heater case study.

83

6.7 appendix

Parameter Value

CA0 32.04 (kmol/m3)

T0 333.0 (K)

Tw1 300.0 (K)

E/R 555.6 (K)

−∆HR 23,260.0 (kJ/kmol)

cp 167.4 (kJ/kg K)

cpw 4.184 (kJ/kg K)

F0 45.36 (kmol/hr)

6.7.2.3 Uncertain Parameter Data (Box Set)

The relevant data required to construct the applicable uncertainty set is
presented in the below table.

Parameter Nominal Value ±Deviation

U (kJ/m2 h K) 1,635.0 20%

k0 (hr-1) 12.0 10%

6.7.2.4 Results

In Figures 6.9 and 6.10, we plot the algorithmic progression towards robust
feasibility at each iteration of the GRCS under the affine and quadratic
decision rule policies. These plots can be interpreted in the same manner
as Figure 6.4 in the chapter corresponding to the static approximation
case.

Furthermore, results that quantify how infeasibility is progressively
diminished along each solution trajectory are provided in Table 6.13. For
each recourse policy, we report the number of points from the sample set S
that lead to infeasibility of the provisional design against each performance
constraint and at each iteration. We also report the average infeasibility
across all sampled realizations.

84

6.7 appendix

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design
(k = 0); feasibility
against constraint
(6.2n).

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign
(k = 1); feasibility
against constraint
(6.2n).

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Final GRCS design
(k = 2); fully ro-
bust feasible.

Figure 6.9: Evolution during the GRCS algorithm of the robust feasibility of the
reactor-heater designs using affine decision rules.

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design
(k = 0); feasibility
against constraint
(6.2n).

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign
(k = 1); feasibility
against constraint
(6.2n).

1400 1600 1800 2000
U (kJ/m2hK)

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

k
0
(h

−
1
)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Final GRCS design
(k = 2); fully ro-
bust feasible.

Figure 6.10: Evolution during the GRCS algorithm of the robust feasibility of the
reactor-heater designs using quadratic decision rules.

Static Approximation Affine DR Quadratic DR

k
infeas.

of (6.2n)

Average

infeas. of (6.2n)

infeas.

of (6.2n)

Average

infeas. of (6.2n)

infeas.

of (6.2n)

Average

infeas. of (6.2n)

0 94 2.59× 10−3
94 2.59× 10−3

94 2.59× 10−3

1 1 3.19× 10−4
1 3.78× 10−4

0 2.73× 10−3†

2 0 — 0 — 0 —

Table 6.14: Evolution of robust feasibility for the reactor-heater design across
different recourse policies. The † annotations refer to non-robust so-
lutions that happened to remain feasible under all chosen realization
samples; in these cases, we instead report the magnitude of violations,
as identified by the respective separation problems.

85

6.7 appendix

6.7.3 CO2 Capture Flowsheet Model

6.7.3.1 Model Notation

Sets

V Vapor phase components {MEA, CO2, N2, H2O}
L Liquid phase components {MEA, CO2, H2O}

Variables

Ci,v Molar concentration of species i in vapor phase (mol/m3)

uv Vapor phase velocity (m/s)

Ni,v Net specific molar transfer rate of species i from vapor to liquid phase (mol/m3s)

ri,v Rate of generation of species i in vapor phase (mol/m3s)

εV Vapor fraction

Ci,l Molar concentration of species i in liquid phase (mol/m3)

ul Liquid phase velocity (m/s)

Ni,l Net specific molar transfer rate of species i from liquid to vapor phase (mol/m3s)

ri,l Rate of generation of species i in liquid phase (mol/m3s)

εL Liquid fraction

Ki,v Overall mass transfer coefficient in vapor phase of species i (m/s)

Ctot,v Total vapor phase concentration (mol/m3)

Ntot,v Total net specific molar transfer rate of species i from vapor to liquid phase (mol/m3s)

yi Mole fraction of species i vapor phase

y∗,eq
i Equilibrium mole fraction of species i vapor phase

ae Specific vapor-liquid interfacial area (m2/m3)

t Time (s)

z Length of column (m)

6.7.3.2 Economic Objective Function

The objective of the MEA-based CO2 capture flowsheet model is presented
in this section.

86

6.7 appendix

ζ = ACC + TOMC

ACC = CRF TPC

CRF =
i(i + 1)n

(i + 1)n − 1

TPC = ∑
k

PCk k ∈ {abs, reg, xhx, pump, MEA, H2O, reb, con}

TOMC = λ1TPC + λ2UMUC

UMUC = ∑
i

UCi i ∈ {pump, reb, con, MEA, H2O}

where: i = 8%, n = 25 yr, λ1 = 0.3863, and λ2 = 1.05.

capital costs :

• Absorber and Regenerator Columns:

PCi = PCvessel,i + PCpacking,i i ∈ {abs, reg}

PCvessel,i = PC0
vessel,i

(
Avessel,i

A0
vessel,i

)0.6

i ∈ {abs, reg}

Avessel,i = πDiLi +
1
2

πD2
i i ∈ {abs, reg}

PC0
vessel,i = exp

(
7.2756 + 0.18255 ln

(
W0

i
)
+ 0.02297 ln

(
W0

i
)2
)

i ∈ {abs, reg}
W0

i = (0.08 ft)ρsteel A0
vessel,i i ∈ {abs, reg}

PCpacking,i = PC0
packing,i

(
Vi

V0
packing,i

)0.6

i ∈ {abs, reg}

Vvessel,i =
1
4

πD2
i Li i ∈ {abs, reg}

PC0
packing,i = V0

packing,iCp i ∈ {abs, reg}

where: W0
i in lbs, ρsteel = 490 lb/ft3, Cp = 250 $/ft3, while A0

vessel,i =

2, 518.76 ft2 and V0
packing,i = 6, 427 ft3, for i being both absorber and

regenerator.

• Heat Exchanger (Floating Head Type):

PC0
xhx = exp

(
11.667− 0.8709 ln

(
A0

xhx
)
+ 0.09005 ln

(
A0

xhx
)2
)

PCxhx = PC0
xhx

(
Axhx

A0
xhx

)0.6

where: A0
xhx = 9, 687 ft2.

87

6.7 appendix

• Pump:

PC0
pump = a + b

(
P0

pump

)n

PCpump = PC0
pump

(
Ppump

P0
pump

)0.6

where: a = 580, 000, b = 20, 000, n = 0.6, and P0
pump = 250 kW.

• MEA and H2O Storage Tanks:

PC0
tank,i = a + b

(
V0

tank,i
)n

i ∈ {MEA, H2O}
Vtank,i = Fin

mix,i MWiti/ρi i ∈ {MEA, H2O}

PCtank,i = PC0
tank,i

(
Vtank,i

V0
tank,i

)0.6

i ∈ {MEA, H2O}

where: a = 113, 000, b = 3, 250, n = 0.65, MWMEA = 0.06108 kg/-
mol, MWH2O = 0.01802 kg/mol, ρMEA = 1, 010 kg/m3, ρH2O = 997
kg/m3, tMEA = 1 day and tH2O = 30 days, while V0

tank,MEA =

V0
tank,H2O = 100 m3.

• Reboiler (Kettle Vaporizer Type):

PC0
reb = exp

(
11.967− 0.8709 ln

(
A0

reb
)
+ 0.09005 ln

(
A0

reb
)2
)

PCreb = PC0
reb

(
Areb

A0
reb

)0.6

Areb =
Qreb

Ureb∆T

where: A0
reb = 1, 076 ft2, and Ureb = 1, 360.3 W

m2K .

• Condenser (Floating Head Type):

PC0
con = exp

(
11.667− 0.8709 ln

(
A0

con
)
+ 0.09005 ln

(
A0

con
)2
)

PCcon = PC0
con

(
Acon

A0
con

)0.6

Acon =
Qcon

Ucon∆T

where: A0
con = 9, 687 ft2, and Ucon = 320.2 W

m2K .

utility costs :

• Electricity (Pump):

88

6.7 appendix

UCpump = PpumpP0
elec

where: P0
elec = 0.06 $/kWh.

• Steam (Reboiler):

UCreb = FstP0
st

Fst =
Qreb

∆Hvap
st

where: P0
st = 14.5 $/ton, and ∆Hvap

st = 2, 114.3 MJ/ton.

• Cooling Water (Condenser):

UCcon = FcwP0
cw

Fcw =
−Qcon

Cp,cw∆Tcw

where: P0
cw = 0.0329 $/ton, Cp,cw = 4.184 MJ/ton K and ∆Tcw = 15K.

• Make-up Streams (MEA and H2O Hold-up):

UCi = Fin
mix,i MWiP0

i i ∈ {MEA, H2O}

where: P0
MEA = 1, 250 $/ton, P0

H2O = 0.04 $/ton, MWMEA = 0.06108
kg/mol, and MWH2O = 0.01802 kg/mol.

6.7.3.3 Model Equations

Some representative constraints of the MEA-based CO2 capture flowsheet
model is presented in this section, focusing mainly on equations to model
the absorber and regenerator columns. Although the mole balance equa-
tions are presented here with dynamic terms in time, the present study
was performed at steady-state conditions.

89

6.7 appendix

mole balance equations :

εV
∂Ci,V

∂t
= −∂(Ci,VuV)

∂z
− Ni,V + ri,V ∀i ∈ V (6.3a)

ri,V = 0 ∀i ∈ V (6.3b)
∂Ci,V

∂t
= 0 ∀i ∈ V (6.3c)

εL
∂Ci,L

∂t
=

∂(Ci,LuL)

∂z
+ Ni,L + ri,L ∀i ∈ L (6.3d)

ri,L = 0 ∀i ∈ L (6.3e)

εL = 1− εV (6.3f)
∂Ci,L

∂t
= 0 ∀i ∈ L (6.3g)

(6.3h)

mass transfer equations :

Ni,V = Ki,V aeCtot,V(yi − y∗,eq
i) ∀i ∈ V (6.3i)

Ni,V = Ni,L ∀i ∈ L (6.3j)

reaction kinetics model :

2 MEA + CO2
Keq,1−−⇀↽−− MEA+ + MEACOO− (6.3k)

MEA + CO2 + H2O
Keq,2−−⇀↽−− MEA+ + HCO3

− (6.3l)

Keq,i = exp
(

ai + bi ln(TL) + ciT−1
L

)
∀i ∈ {1, 2} (6.3m)

where: a1 = 198.9, b1 = −1, 986, c1 = −32.71, a2 = 167.0, b2 = −2, 102,
and c2 = −26.51.

90

6.7 appendix

performance constraints :

ηCO2 ≥ 0.85 (6.3n)

ubottom
v,abs ≥ 0.5ubottom

f ,abs (6.3o)

ubottom
v,abs ≤ 0.8ubottom

f ,abs (6.3p)

utop
v,reg ≥ 0.5utop

f ,reg (6.3q)

utop
v,reg ≤ 0.8utop

f ,reg, (6.3r)

where:

ui
f ,j =

[(
gε3

a

)(
ρL

ρV

)(
µL

µw

)−0.2

exp
(
−4H0.25)]0.5

∀i ∈ {top, bottom} , ∀j ∈ {abs, reg}

H =
FL

FV

(
ρV

ρL

)0.5

ε = 0.97, a = 250 m2/m3, g = 9.8 m/s2

decision variable bounds :

3.0 m ≤ Lj ≤ 50.0 m ∀j ∈ {abs, reg} (6.3s)

0.5 m ≤ Dj ≤ 20.0 m ∀j ∈ {abs, reg} (6.3t)

Qreb ≥ 0 (6.3u)

Qcon ≤ 0 (6.3v)

utility availability bounds :

Fst ≤ 0.020ton/s (6.3w)

Fcw ≤ 0.420ton/s (6.3x)

6.7.3.4 Uncertain Parameter Data (Ellipsoidal Set)

The relevant data required to construct the applicable uncertainty set is
presented in the below table.

Parameter Mean

b1 (K) -1,986.0

b2 (K) -2,102.0

covb1,b2 =

(
+1.173 −1.112

−1.112 +1.983

)
× 106

91

6.7 appendix

6.7.3.5 Results

In Figure 6.11, we plot the algorithmic progression towards robust feasi-
bility at each iteration of the GRCS under the affine decision rule policy.
These plots can be interpreted in the same manner as Figure 6.6 in the
chapter corresponding to the static approximation case.

Furthermore, results that quantify how infeasibility is progressively
diminished along each solution trajectory are provided in Table 6.15. For
each recourse policy, we report the number of points from the sample set S
that lead to infeasibility of the provisional design against each performance
constraint and at each iteration. We also report the average infeasibility
across all sampled realizations.

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(a) Nominal design
(k = 0); feasibility
against constraint
(6.3n).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−3600

−3000

−2400

−1800

−1200

−600

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(b) Intermediate de-
sign
(k = 1); feasibility
against constraint
(6.3n).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(c) Intermediate de-
sign
(k = 2); feasibility
against constraint
(6.3p).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(d) Intermediate de-
sign
(k = 3); feasibility
against constraint
(6.3p).

−3000 −2500 −2000 −1500 −1000
b1 (K)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

b
2
(K

)

Feasible sample

Infeasible sample

Explicitly feasible

Violation

(e) Final GRCS design
(k = 4); fully ro-
bust feasible.

Figure 6.11: Evolution during the GRCS algorithm of the robust feasibility of the
MEA-based CO2 capture flowsheet using affine decision rules.

92

6.7 appendix

Static Approximation Affine DR

k
infeas.

of (6.3n)

Average

infeas. of (6.3n)

infeas.

of (6.3p)

Average

infeas. of (6.3p)

infeas.

of (6.3n)

Average

infeas. of (6.3n)

infeas.

of (6.3p)

Average

infeas. of (6.3p)

0 120 3.51× 10−2
93 2.96× 10−3

120 3.51× 10−2
93 2.96× 10−3

1 17 3.00× 10−3
47 2.74× 10−4

4 6.00× 10−4
36 3.90× 10−4

2 0 — 19 1.31× 10−4
0 — 27 1.31× 10−4

3 0 — 0 1.24× 10−3†
0 — 0 1.36× 10−3†

4 0 — 0 — 0 — 0 —

Table 6.15: Evolution of robust feasibility for the CO2 capture flowsheet across dif-
ferent recourse policies. The † annotations refer to non-robust solutions
that happened to remain feasible under all chosen realization samples;
in these cases, we instead report the magnitude of the violation, as
identified by the respective separation problem.

93

7
P Y R O S : T H E P Y O M O R O B U S T O P T I M I Z AT I O N S O LV E R

7.1 introduction

The robust optimization literature has begun addressing increasingly com-
plex and practical problems of interest. In medical logistics applications,
robust optimization formulations have been devised and solved for allo-
cating medical evacuation assets [61] and ambulance deployment [13]. In
the area of renewable energy, Xiong, Jirutitijaroen, and Singh [139] pro-
pose a two-stage RO formulation for the unit commitment problem under
uncertainty from renewable wind energy resources. Correspondingly, this
expansion in relevant applications for RO methods has created an interest
in expanding the available software tools for automatic robust optimiza-
tion. To date, there have been a number of software tools developed for
automatically applying robust optimization methods for solving uncer-
tain optimization problems. Table 7.1 summarizes the type of uncertain
optimization problems handled by the available tools for automatic RO,
with a specific focus on the classes of non-linear and non-convex problems
handled by each tool.

The AML column refers to the programming language or algebraic
modeling language through which the tool is callable. The Convex and
Non-convex NLP columns denote whether or not the tool can solve convex
or non-convex deterministic non-linear optimization models under uncer-
tainty. The Non-convex in parameters column indicates whether the tool can
handle the case of nonlinear (and/or non-convex) participation of uncer-
tain parameters within the model constraints. The Two-stage and Multi-stage
columns indicate whether the tool can handle two- or multi-stage robust
optimization problems. The column Uncertain equalities indicates whether
uncertain parameters may participate in equality constraints within the
uncertain optimization problem. Finally, the column Open source signi-
fies whether the software is available without a license (excluding any
potentially required subordinate solver licenses).

The AIMMS Robust Optimization extension is an add-on to AIMMS1

for automatically casting and solving robust counterparts for deterministic

94

7.1 introduction

Tool AML Convex NLP Non-convex NLP Non-convex in parameters Two-stage Multi-stage Non-fixed Recourse Uncertain equalities Open source

AIMMS RO AIMMS 3 3

JuMPeR Julia 3 3

ROC++ C++ 3 3 3

ROME MATLAB 3 3 3

ROModel Pyomo 3 3 3 3

SIPAMPL AMPL 3 3

YALMIP MATLAB 3 3

PyROS Pyomo 3 3 3 3 3 3 3

Table 7.1: Capabilities of robust optimization tools for handling nonlinear uncer-
tain optimization problems.

LPs or MIPs. There are three explicitly supported uncertainty set types:
box, ellipsoidal, and a convex hull of supplied finite set of scenarios.
Additionally, AIMMS supports two- and multi-stage recourse via linear
decision rules.

JuMPeR2 is a robust optimization toolbox implemented in the Julia pro-
gramming language with the JuMP AML. Similar to AIMMS RO, JuMPeR
can solve deterministic LP or MIP models under uncertainty via robust
optimization. JuMPeR also allows the user to select from two RO solution
approached – the robust counterpart formulation or a robust cutting-plane
algorithm. The JuMPeR package also provides pre-implemented uncer-
tainty set classes for polyhedral sets, ellipsoidal sets, and an interface for
custom, user-defined sets.

ROC++3, published by Vayanos, Jin, and Elissaios [122], provides a
modeling framework for RO in C++. ROC++ can solve uncertain LP and
MIP models under two-stage or multi-stage recourse. Recourse is handled
in ROC++ via constant, piecewise constant, or linear decision rules, as
well as finite adaptability [121]. In order to specify uncertainty sets on a
robust optimization model in ROC++, the user must specify the explicit
constraints representing the set. The uncertainty sets supported in ROC++
include ellipsoidal and polyhedral sets. Furthermore, ROC++ provides
support for endogenous uncertainty.

The MATLAB modeling language ROME4 can also be used to repre-
sent and solve multi-stage uncertain optimization problems via robust
counterpart reformulation and linear decision rules to a deterministic
equivalent for solving via commercial solvers [42]. A related tool, RSOME5

which has recently been made available via Python, utilizes robust stochas-
tic optimization to solve the same class of problems, and even supports
distributionally robust optimization [22] [23].

YALMIP6 was a MATLAB toolbox initially devised for solving semidef-
inite programs, but has been extended to robust optimization. YALMIP
can solve single-stage convex deterministic optimization models under un-
certainty and supports polyhedral, ellipsoidal, and other conic uncertainty
sets [78] [77].

95

7.2 pyros methodology

SIPAMPL7 solves models in AMPL via a native semi-infinite program-
ming solver. SIPAMPL does not support recourse and thus is suitable for
single-stage robust optimization [123].

Recently, ROModel8 [134] has been proposed for modeling and solving
two-stage robust optimization problems via linear decision rules and
both reformulation-based and cutting-plane based solution approaches.
ROModel provides interfaces for defining polyhedral, ellipsoidal, and
custom user-defined uncertainty sets. ROModel is implemented in Python
via the AML Pyomo.

In this work, we propose PyROS, the Pyomo Robust Optimization
Solver. PyROS is a robust optimization solver in Python and Pyomo for
solving general nonlinear robust optimization problems. The existing
software in RO is able to handle a many classes of robust optimization
problems, but PyROS aims to expand capabilities for solving nonlinear
robust optimization problems.

The contributions made through PyROS are outlined here. First, PyROS
is the first automatic robust optimization tool for handling general, non-
linear (convex or non-convex) uncertain optimization problems. PyROS is
capable of solving nonlinear models containing implicitly defined state
variables and state equations without any required reformulation from the
user or within the underlying algorithm. PyROS operates entirely on the
deterministic optimization model provided by the user and solves the ro-
bust optimization problem with user-provided data regarding uncertainty
in the deterministic model parameters.

Secondly, in all of the tools noted above, fixed recourse is required. This
means that the coefficients of the adjustable variables may not be po-
tentially uncertain. This is not a requirement within PyROS due to the
underlying GRCS algorithm utilized. The authors are not aware of any
other RO software that supports such problems, making PyROS a novel
extension to existing capabilities in the field.

Additionally, for solving two-stage problems, PyROS implements con-
stant, affine, and quadratic decision rules for handling recourse variables.
To date, there is no explicit support for quadratic decision rules in the
existing software tools.

7.2 pyros methodology

The PyROS solver employs the GRCS as the underlying robust optimiza-
tion scheme. The advantage of this approach is that it requires no refor-
mulation of the deterministic model and can thus be applied to a broad
range of deterministic model types. The generalized robust cutting-set
algorithm (GRCS) is a meta-algorithm for determining robust solutions
to general two-stage, nonlinear programming problems. The theory is

96

7.2 pyros methodology

explained in detail in Chapter 5. Here, we will reiterate the GRCS method-
ology in Section 5.2.1, as well as explain additions or modifications to the
GRCS made in PyROS. We explain the addition of coefficient matching
capabilities in PyROS for handling general uncertain equality constraints
in Section 7.2.1. We also outline modified algorithmic procedures for iden-
tification of worst-case objective and discrete scenario uncertainty sets in
separation in Section 7.2.2.

7.2.1 Polynomial Coefficient Matching

We note that any equality constraints of the form h(x, z, q) = 0 ∀q ∈ Qmay
also be part of the canonical uncertain optimization problem, D. These
uncertain equality constraints are not explicit state variable definitions,
but instead restrict the feasible values of the x and z variables due to the
robustness requirement on the constraint.

In the case that these uncertain equality constraints are polynomial in
uncertain parameters q, a matching of polynomial coefficients scheme can be
used to reduce the uncertain equality to a set of certain equalities h̃(x) = 0.
First, the decision rule approximation is applied to achieve the following
substitution: z` ← v` (d`, q) ∀` ∈ {1, . . . , n}. Because the d` variables
are first-stage and can be grouped with x in this context, this reduces
the uncertain equality h(x, z, q) = 0 to h(x, q) = 0. Then, polynomial
coefficients of q are grouped and set to zero to create the constraints
h̃(x) = 0. Thus, the original uncertain h(x, z, q) = 0 ∀q ∈ Q constraints
are replaced with the certain h̃(x) = 0 constraints in the master problem
formulation as part of the definition of variables x and are therefore part of
X . The uncertain equalities of this form are also correspondingly omitted
from the separation problem formulation.

7.2.2 PyROS Separation Procedure

The key algorithmic feature of the separation problem is with regards
to worst-case violation identification. At each iteration of the PyROS
solution algorithm, a single violating parameter realization is identified to
be added to the following master problem. Although multiple violations
could be added in principle, this is done to limit the rate of growth of the
master problem in constraints and state variables. The worst-case violation
selection scheme in PyROS is explained here.

We identify a set IV such that IV ⊆ I represents the subset of in-
equality constraints that lead to violations in the context of the most
recent master problem solution. A constraint i is considered part of the

set IV if
gi(zi,∗,yi,∗,qi,∗;x∗)

max{1, |gi(z0,y0,q0;x∗)|} > ε, where ε ∈ R+ is a small tolerance and

97

7.3 pyros solver interface

(zi,∗, yi,∗, qi,∗) is the optimal solution to the separation problem SPi. The
ratio used to determine constraint violations here normalizes against the
absolute value of the nominal scenario for each constraint.

Once the realizations qj,∗ that maximally violate each of the constraints
j ∈ IV have been determined, we generate a matrix of dimensions
|IV | × |IV |, where each entry ei,j represents the violation of constraint
gi associated with row i under the uncertain parameter realization qj,∗

associated with column j; that is, ei,j := max{ gi(zi,∗,yi,∗,qi,∗;x∗)
max{1, |gi(z0,y0,q0;x∗)|} , 0}. The

violating realization that is added back to the next iteration of the master
problem, q∗, is chosen to have the largest sum across the columns of this re-
sulting scaled violations matrix, meaning it leads to the largest magnitude
net constraint violation across the constraints in the set IV .

In the case that the provided uncertainty set is a set of discrete scenar-
ios, either via a DiscreteScenarioSet or IntersectionSet object, PyROS
implements a custom separation protocol. In this case, PyROS solves the
formulation in Equations 7.1a-7.1b. In this separation scheme, the un-
certainty set is a finite set of scenarios, QD and the uncertain parameter
realizations in the set are qs ∈ QD, s = {1, . . . , S}. The discrete scenario
separation routine will then loop over each scenario s not already ac-
counted for in the master problem (i.e. s /∈ K) and solve the resulting
separation problem.
For all i ∈ I :

For all s ∈ {1, . . . , S} if s /∈ K :

(SPs
i) : max

z∈Rn,y∈Ra
gi (z, y; qs, x∗) (7.1a)

s.t. hj (z, y; qs, x∗) = 0 ∀j ∈ J (7.1b)

z` = v` (qs; d∗`) ∀` ∈ {1, . . . , n} (7.1c)

In this case, the separation problem reduces to simply evaluating the
state variables y and second-stage degrees of freedom z given each scenario
in the uncertainty set. Then, the worst-case realization is identified via the
standard separation procedure outlined previously.

7.3 pyros solver interface

PyROS is implemented in Pyomo, a Python based algebraic modeling
language [17, 52]. Pyomo contains many advanced, contributed packages
which extend the AML capabilities. For example, pyomo.dae [92] is a
framework in Pyomo for representing optimization models containing
differential and algebraic variables, and pyomo.sp [129] is a package within
Pyomo for solving stochastic programming problems. With the inclusion of
PyROS, Pyomo now contains a generic cutting-set based solver capability
for non-linear robust optimization problems.

98

7.3 pyros solver interface

One of the novel utilities of the PyROS solver capability within Pyomo is
that it is easily callable on any existing deterministic Pyomo optimization
model and requires few additional solver arguments. This allows for a
seamless transition for Pyomo users from their existing models to robust
optimization capabilities.

PyROS is designed to require several specifications from the user, which
are as follows:

• The deterministic optimization model

• List of first-stage (“design”) degree of freedom variables

• List of second-stage (“control”) degree of freedom variables

• List of parameters to be considered uncertain

• The uncertainty set

• Subordinate local and global NLP optimization solvers

Of the list of required arguments, the uncertainty set and subordinate
NLP solvers are the only additional modeling components that the user
must instantiate. The subordinate solvers are required for solving the
master and separation subproblems within the algorithm. We note that
in all cases, a global NLP solver must be provided to certify robustness
(feasibility or optimality) before termination. Additionally, any free model
variables not specified as first- or second-stage when calling the PyROS
solver is assumed to be state variables. How the uncertainty sets are
specified for PyROS is further explained in Section 7.3.1.

7.3.1 Uncertainty Sets

The key modeling component of PyROS are the uncertainty set classes.
These classes represent data containers which encapsulate pertinent data
for defining a mathematical uncertainty set. PyROS includes several pre-
implemented uncertainty set classes that represent uncertainty set types
corresponding to common sets in the robust optimization literature. See
Table 7.2 for the comprehensive list of these sets, their mathematical repre-
sentations, and the derived inferred bounds on the uncertain parameters
defining the set. In PyROS, these inferred bounds on the uncertain param-
eters become part of the separation problem in the definition of q ∈ Q.

In the following sections, we offer a brief explanation for each of the
available uncertainty set types in PyROS.

99

7.3 pyros solver interface

7.3.1.1 Box Sets

The box uncertainty set (BoxSet) represents a n-dimensional hyper-
rectangle. We refer to this as a box set because the set is devised such
that each uncertain parameter q ∈ Rn may attain values from within box
bounds, i.e. lower and upper bounds, q` ∈ Rn, qu ∈ Rn.

7.3.1.2 Cardinality Sets

The cardinality, or gamma, uncertainty set (CardinalitySet) states that
uncertain parameters q ∈ Rn may deviate from their nominal value q0 ∈
Rn by no more than the positive deviations q̂ ∈ Rn

+, and the total amount
of positive deviations is bounded by parameter Γ. When one selects Γ = 0,
the uncertainty set reduces to a singleton set containing only the nominal
point, q0. When Γ = n, then the uncertainty set becomes an n-dimensional
hyper-rectangle.

7.3.1.3 Budget Sets

The budget set (BudgetSet) in PyROS is the intersection of the positive or-
thant with L ∈N budget constraints. The budget constraints are specified
via parameters b` ∈ RL

+, the budget constraint upper bounds, and B`, the
set representing uncertain parameter participation in a given budget `.

7.3.1.4 Factor Model Sets

The factor model set (FactorModelSet) states that uncertain parameters
q are in the set defined by additive disturbances Ψξ about the nominal
realization, q0. The disturbances, which are a linear combination of the
independent factors ξ, are in part defined by the matrix Ψ ∈ Rn×F

+ , and we
choose to only permit positive disturbances here. Similar to the cardinality
set, the parameter β bounds the number of independent factors which
can attain their extreme values via the upper bound of βF. Factor model
sets are often proposed such that F � n, making the uncertainty set lower
dimensionality in the space of the variables ξ.

7.3.1.5 Polyhedral Sets

The general polyhedral set (PolyhedralSet) is provided to allow more for
the specification of polyhedra not representable in the other specialized
polyhedral sets (e.g. box, gamma, budget, and factor model). The user
must simply specify the coefficient matrix A ∈ Rm×n and right-hand side
vector, b ∈ Rm. The linear constraints defining the polyhedral set must
lead to a closed and bounded set containing the nominal point, q0, to
ensure non-emptiness.

100

7.3 pyros solver interface

7.3.1.6 Ellipsoidal Sets

We provide two constructors for ellipsoidal uncertainty sets in the case
that the ellipsoid is axes-parallel (AxisAlignedEllipsoidalSet) or more
general ellipsoidal sets (EllipsoidalSet). The ellipsoidal uncertainty sets
represent the case that uncertain parameters are believed to be random
variables coming from a multivariate normal distribution with mean q0

and covariance Σ. In the case of an axes-parallel ellipsoid, the covariance
is simply a diagonal matrix of variances in each dimension.

7.3.1.7 Discrete Sets

The discrete sets (DiscreteScenarioSet) in PyROS represent a set of
finitely many scenarios, S, from which the uncertain parameters may
attain values. This uncertainty set may be constructed using previous
observations for the uncertain parameters.

Each of the outlined uncertainty set classes are derived from the ab-
stract base class called UncertaintySet. PyROS provides advanced un-
certainty set capabilities via the UncertaintySet abstract base class and
the IntersectionSet class. With the abstract base class, users can easily
translate a mathematical representation of any convex, compact set for use
in robust optimization. The IntersectionSet class allows users to pose an
uncertainty set that is the (non-empty) intersection of any finite number of
PyROS UncertaintySet-derived objects. If the proposed set intersection
is indeed empty, PyROS will throw an error directing the user to ensure
a non-empty intersection. Additionally, the PyROS UncertaintySet pro-
vides an abstract method for user-defined uncertainty sets. This allows
users to easily translate a mathematical representation of a closed and
bounded set to an UncertaintySet object.

101

7.
3

p
y

r
o

s
s

o
l

v
e

r
i
n

t
e

r
f

a
c

e

PyROS Object Input Data Set Representation Interval Enclosure for Parameters qi , i ∈ {1 . . . n}
BoxSet q` ∈ Rn , qu ∈ Rn : q` ≤ qu QX = {q ∈ Rn : q` ≤ q ≤ qu} q`i ≤ qi ≤ qu

i

CardinalitySet Γ ∈ [0, n], q̂ ∈ Rn
+ , q0 ∈ Rn

QC =
{

q ∈ Rn : q = q0 + (q̂ ◦ ξ) for some ξ ∈ ΞC

}
ΞC =

{
ξ ∈ [0, 1]n :

n
∑
i=1

ξi ≤ Γ

}
q0

i ≤ qi ≤ q0
i + min {Γ, 1} q̂i

BudgetSet b` ∈ RL
+ , B` ⊂N, L ∈ R QB =

q ∈ Rn
+ : ∑

i∈B`

qi ≤ b` ∀` ∈ {1, . . . , L}

 0 ≤ qi ≤ min
`∈{1,...,L}:

i∈B`

{b`}

FactorModelSet β ∈ [0, 1], Ψ ∈ Rn×F
+ , q0 ∈ Rn

QF =
{

q ∈ Rn : q = q0 + Ψξ for some ξ ∈ ΞF

}
ΞF =

ξ ∈ [−1, 1]F ,

∣∣∣∣∣∣
F
∑
f=1

ξ f

∣∣∣∣∣∣ ≤ βF

 q0
i −
bβFc

∑
j=1

Ψi f j
+ (βF− bβFc)Ψi fbβFc+1

≤ q0
i +
bβFc

∑
j=1

Ψi f j
+ (βF− bβFc)Ψi fbβFc+1

PolyhedralSet A ∈ Rm×n , b ∈ Rm , q0 ∈ Rn : Aq0 ≤ bi QP = {q ∈ Rn : Aq ≤ b} Numerically determined by solving LPs

AxisAlignedEllipsoidalSet α ∈ Rn
+ , q0 ∈ Rn QA =

q ∈ Rn : ∑
i=1:
{αi>0}

(
qi − q0

i
αi

)2

≤ 1, qi = q0
i ∀i : {αi = 0}

 q0
i − αi ≤ qi ≤ q0

i + αi

EllipsoidalSet P ∈ Sn×n
+ , s ∈ R+ , q0 ∈ Rn QE =

{
q ∈ Rn : (q− q0)>Σ−1(q− q0) ≤ s

}
q0

i − s (Σii)
1/2 ≤ qi ≤ q0

i + s (Σii)
1/2

UncertaintySet m ∈N+ , gi : Rn 7→ R ∀i ∈ {1....m} , q0 ∈ Rn : gi(q0) ≤ 0i ∀i ∈ {1...m} QU = {q ∈ Rn : gi(q) ≤ 0 ∀i ∈ {1, . . . , m}} Numerically determined by solving NLPs globally

DiscreteScenarioSet S ∈N, qs ∈ Rn QD = {qs : s = 0, . . . , S} min
s∈{0,...,S}

{
qs

i
}
≤ qi ≤ max

s∈{0,...,S}
{

qs
i
}

IntersectionSet Qi ⊂ Rn ∀i ∈ {1, . . . , m} QI =

q ∈ Rn : q ∈
⋂

i∈{1,...,m}
Qi

 Numerically determined.

Table 7.2: Tabulated information regarding pre-implemented uncertainty set classes in PyROS, including uncertainty set name, mathematical
representation as a constraint, and inferred bounds.

i By ensuring a user-supplied point, such as the nominal point q0, is in the set, we can guarantee non-emptiness of the set.

1
0

2

7.3 pyros solver interface

7.3.2 PyROS Options

In addition to the solver arguments required by PyROS, there are addi-
tional user options which can be specified via keyword arguments or via
an options dictionary. Some of the key user options are outlined in this
section.

7.3.2.1 Objective Focus

PyROS currently supports two options for robust optimization objective
function targets specified via the option objective_focus. This option is
set by selecting one of the ObjectiveFocus types, outlined below:

ObjectiveFocus.nominal The nominal objective is the sum of
first- and (nominal) second-stage
objective function terms, shown in
5.6b for the nominal uncertain
parameter realization, q0. Selecting
nominal objective can only lead to a
proven robust feasible solution.

ObjectiveFocus.worst_case The worst-case objective is shown in
5.5b. Selecting worst-case objective
guarantees robust optimality.

The objective_focus option is closely related to another op-
tion, solve_masters_globally. In the case that the selected objec-
tive function focus is ObjectiveFocus.worst_case, then selecting
solve_masters_globally = True can provide guarantees of robust op-
timality in the case that the deterministic problem leads to non-convex
master problems. We note that for sufficiently large problems, solving
the master problem globally at each iteration may lead to algorithmic
slow down. Therefore, the default setting for solve_masters_globally in
PyROS is False. Note that this implies that PyROS defaults to proving
robust feasibility, regardless of the objective function focus.

Additionally, PyROS provides a user option for p-robustness [108]. The
p-robustness constraints utilized in PyROS, shown in Equation 7.2, can be
added via the option p_robustness and then supplying the value of the
non-negative parameter, ρ.

f1 (x) + f2 (x, zp, yp; qp) ≤ (1 + ρ)[f1 (x) + f2
(
x, z0, y0; q0)] ∀p ∈ P

(7.2)

Here, the set P is a finite set of realizations from the uncertainty set,
Q, and may be chosen from the set of violating parameter realizations,

103

7.3 pyros solver interface

K. The constraints in 7.2 define a bound on the ratio of the objective that
any scenario may exhibit relative to the nominal objective. In the case that
the nominal objective is selected, p-robustness constraints can be added in
order to bound the second-stage objective value contribution relative to
other, non-nominal scenarios to potentially improve the robust objective
value.

7.3.2.2 Decision Rules

The decision rules in PyROS are specified via the decision_rule_order
option. This parameter can take a value from the set {0, 1, 2}, as follows:

decision_rule_order = 0 Constant decision rules, e.g. the static
approximation. In this case,
second-stage degrees of freedom are
first-stage decisions not influenced by
uncertain parameter realization
information revealed in the
second-stage.

decision_rule_order = 1 Affine decision rules. In this case,
second-stage degrees of freedom
depend on uncertain parameter
realizations via an affine function of
|q| uncertain parameters.

decision_rule_order = 2 Quadratic decision rules. In this case,
second-stage degrees of freedom
depend on uncertain parameter
realizations via a complete
homogeneous symmetric polynomial
of degree 2 in |q| uncertain
parameters, with an additional
intercept (constant) term.

7.3.2.3 Separation Options

PyROs implements several efficiencies for the separation subproblem
which may benefit the user. Firstly, PyROS allows for the specification
of an option called separation_priority_order, which allows the user
to specify a priority value for which inequality constraints to separate.
This is specified via a dictionary which maps inequality constraint names
in the deterministic model to positive integer priorities for separation.
Constraints not referenced in the dictionary assume a priority of 0 (low-

104

7.3 pyros solver interface

est priority). By default, the in the case of ObjectiveFocus.worst_case =
True, the worst-case objective is relegated to separation priority 0. Any in-
equality constraints that originated from bounds on second-stage variables
are also given priority 0.

Within the algorithm, the priority-ranked inequality constraints are
considered as objectives in separation. These ranked objectives are sepa-
rated in order of decreasing priority, until a violation is identified. Once a
violation is found, the separation subroutine returns.

An additional option for separation subproblems is the
bypass_local_separation option, which will direct PyROS to uti-
lize the specified global_solver(s) for all separation subproblems. By
default, PyROS only utilizes the global NLP subsolver at the final iteration
to confirm the robustness of the solution.

7.3.3 Calling PyROS

For the following section, we will consider the simple robust optimization
model presented in [74] and shown in Equations 7.3a – 7.3b. This problem
features a certain quadratic objective and an uncertain inequality constraint
that is nonlinear in the uncertain parameter u. The uncertainty set in this
example is simply an interval on the uncertain parameter u.

min
x≥0

(x1 − 4)2 + (x2 − 1)2 (7.3a)

s.t.
√

ux1 − ux2 ≤ 2 ∀u ∈ [
1
4

, 2] (7.3b)

1 # Import the Pyomo modeling environment and the PyROS module
2 from pyomo.environ import *
3 import pyomo.contrib.pyros as pyros
4

5 # Write the deterministic Pyomo model
6 m = ConcreteModel ()
7 m.x1 = Var(initialize = 0, bounds = (0, None))
8 m.x2 = Var(initialize = 0, bounds = (0, None))
9 m.u = Param(initialize = 1.125, mutable = True)

10

11 m.con = Constraint(expr = sqrt(m.u) * m.x1 - m.u * m.x2 <= 2)
12 m.obj = Objective(expr = (m.x1 - 4)**2 + (m.x2 - 1)**2)
13

14 # Define the uncertainty set
15 interval = pyros.BoxSet(bounds = [(0.25 , 2)])
16

17 # Instantiate the PyROS solver
18 pyros_solver = SolverFactory("pyros")
19

20 # Define subsolvers utilized in the algorithm
21 local_subsolver = SolverFactory("ipopt")
22 global_subsolver = SolverFactory("baron")
23

24 # Call the PyROS solver
25 results = pyros_solver.solve(model = m,
26 first_stage_variables = [m.x1, m.x2],
27 second_stage_variables = [],
28 uncertain_params = [m.u],
29 uncertainty_set = interval ,
30 local_solver = local_subsolver ,
31 global_solver = global_subsolver ,

105

7.3 pyros solver interface

32 options = {
33 "objective_focus": pyros.ObjectiveType.worst_case ,
34 "solve_master_globally": True
35 })

Code 7.1: Example of how to solve a robust optimization problem using the
PyROS solver given a deterministic Pyomo model.

Given the mathematical formulation, we can write a Pyomo model
representing the deterministic optimization problem and illustrate the
usage of PyROS to solve the uncertain optimization problem, shown in
Code 7.1.

Note that the deterministic Pyomo optimization model to be solved
must be instantiated with any prospective uncertain parameters as Pyomo
Param objects with the property mutable=True. Alternatively, the direc-
tive Param.DefaultMutable = True can be added after the Pyomo import
statement and before defining the model object.

The PyROS solver is callable through the Pyomo SolverFactory in the
same way as all other optimization solver. Because PyROS utilizes Pyomo
optimization solver objects to solve master and separation subproblems, we
provide a table mapping Pyomo solver statuses to PyROS GRCS algorithm
actions in Table 7.9 of Appendix 7.6.3.

In general, PyROS accepts optimal or feasible solutions from the
subordinate solvers for both the master and separation subproblems
when appropriate for algorithmic correctness. If a master problem is
determined to be infeasible by the subordiante solver, PyROS will re-
turn with a pyrosTerminationCondition.robust_infeasible status, as
explained in Table 7.8 in Appendix 7.6.2. In the case that a subsolver
returns any other status, backup solvers may be employed via the
backup_local_solvers or backup_global_solvers options. If all solver
resources are unable to identify an acceptable solution to a subprob-
lem in PyROS, a pyrosTerminationCondition.subsolver_error status
is returned. The user may then optionally retrieve the pathological
subproblem for debugging purposes as a text file by setting the Py-
ROS option keepfiles=True and specifying a writable directory via the
subproblem_file_directory option.

The PyROS solver requires additional functional arguments to solve an
uncertain optimization via the generalized robust cutting-set algorithm.
These required arguments are explained here with respect to keyword
designations in PyROS. First, the partition of degrees of freedom into first-
and second-stage decision variables must be provided as positional ar-
guments via first_stage_variables and second_stage_variables. The
second-stage variables are meant to represent potential second-stage de-
grees of freedom that can be adjusted after the first-stage variables are
determined. Therefore, true state variables abiding by the assumption out-
lined in Chapter 5, Section 5.2 should be excluded from the second-stage

106

7.3 pyros solver interface

variables list provided here. Next, the parameters (as Pyomo Param objects)
which will be considered uncertain are provided via uncertain_params,
along with the uncertainty set representing the set of possible values
for said parameters via uncertainty_set. The final set of required argu-
ments are the subsolvers to be utilized in solving sequential master and
separation subproblems within the underlying GRCS algorithm. PyROS
requires at least one local and one global NLP solver to be specified via
local_solver and global_solver. These should be Pyomo Solver objects
referencing the appropriate optimization solvers.

In the example shown in Code 7.1, there are only first-stage de-
grees of freedom, therefore both m.x1 and m.x2 are passed via the
first_stage_variables argument, while an empty list is passed for the
second_stage_variables argument. The uncertain parameter m.u is sup-
plied via the uncertain_params. The uncertainty set object is defined as
an interval on the sole uncertain parameter, m.u, via a one dimensional
BoxSet and is supplied via the uncertainty_set object. For this example,
we illustrate the creation of subsolvers for IPOPT[125] (local NLP solver)
and BARON[112] (global NLP solver) and pass them with the arguments
local_solver and global_solver.

In this example, we will select a worst-case objective and global
master problem solutions via the options objective_focus and
solve_master_globally. As outlined in Section 7.3.2.1, this will allow
us to identify worst-case robust optimal solutions to the problem.

When we solve the above model, we retried the expected optimal so-
lution shown in Leyffer, Menickelly, Munson, Vanaret, and Wild [74]:
(x1 := 3.52, x2 := 1.55) with an optimal (worst-case) objective value of 0.53.

PyROS is able to solve this model in 3 iterations and 0.24 seconds.
The first iteration is simply solving the deterministic problem, then
identifying a violating parameter realization. Over the course of the
solve execution, PyROS identified two violating parameter realizations
to add back to the master problem before terminating with status
pyrosTerminationCondition.robust_optimal.

In the case of adjustable second-stage degrees of freedom, PyROS
implements polynomial order 0, 1, and 2 decision rules via the option
decision_rule_order. As noted in Section 7.3.2.2, PyROS supports deci-
sion rules representing the complete homogeneous symmetric polynomials
of degree decision_rule_order in the space of the uncertain parameters.
This leads to decision rule functions that are the sum of all monomials of
total degree from 0,...,decision_rule_order in the uncertain parameters.
An example of how to specify this solve command via the options dictio-
nary is shown in Code 7.2. In this case, we specify m.x2 as a second-stage
degree of freedom via second_stage_variables, and we select a decision
rule order of 2. We note that if a decision rule order of 0 is selected, this

107

7.3 pyros solver interface

reduces to solving the static approximation via constant decision rules.
Additionally, if a decision rule order of 1 or 2 is selected, but no second-
stage degrees of freedom are specified, PyROS does not apply the decision
rule approximation.

1 # Call the PyROS solver with second -stage degrees of freedom
2 results = pyros_solver.solve(model = m,
3 first_stage_variables = [m.x1],
4 second_stage_variables = [m.x2],
5 uncertain_params = [m.u],
6 uncertainty_set = interval ,
7 local_solver = local_subsolver ,
8 global_solver = global_subsolver ,
9 options = {

10 "objective_focus": pyros.ObjectiveType.worst_case ,
11 "solve_master_globally": True ,
12 "decision_rule_order": 2
13 })

Code 7.2: Example of how to solve a robust optimization problem with uncertain
equality constraints using the PyROS solver given a deterministic
Pyomo model.

When we solve the above model, we retried the same optimal solution
as before. For this small example, we see that there is no improvement in
robust cost with second-stage recourse. PyROS is able to solve this model
in 4 iterations and 1.17 seconds.

To illustrate the PyROS capability of handling general nonlinear prob-
lems featuring equality constraints, we augment the formulation above
and instead solve the model shown in Equations 7.4a – 7.4c.

min
x≥0

(x1 − 4)2 + (x2 − 1)2 (7.4a)

s.t.
√

ux1 − ux2 ≤ 2 ∀u ∈ [
1
4

, 2]

(7.4b)

u2(x2 − 1) + u(x3
1 + 0.5)− 5ux1x2 + u(x1 + 2) = 0 ∀u ∈ [

1
4

, 2]

(7.4c)

In this case, we have an additional equality constraint shown in Equa-
tion 7.4c. This uncertain equality constraint is non-linear in the uncertain
parameter u and the variable x1. In the notation of the robust counterpart,
this equality constraint is of the form h(x, q) = 0 ∀q ∈ Q and represents a
more general uncertain equality, as it does not represent a state variable
definition. In PyROS, this equality is handled via coefficient matching, as
outlined in Section 7.2.1.

A constraint of the form h(x, q) = 0 ∀q ∈ Q restricts the feasible
set. In order to be satisfied for all uncertain parameter realizations, the
coefficient terms on uncertain parameters must go to zero in order for
the constraint to be trivially satisfied. In PyROS, coefficient matching is
used to replace equations of the form h(x, q) = 0 ∀q ∈ Q by grouping

108

7.3 pyros solver interface

coefficients of polynomial powers of uncertain parameters q to create
a new set of constraints h̃(x) = 0. In the master problem, the certain
equalities h̃(x) = 0 ∈ X replace the uncertain equalities h(x, q) = 0 ∀q ∈
Q. In the separation problem, this sort of equality constraint need not
be carried through to the separation formulation, since it is not a state
variable definition. In this section, we also note that PyROS can execute the
coefficient matching procedure for constraints with second stage variables
h(x, z, q) = 0, although it is not shown in this example.

In the example shown in Code 7.4, PyROS identifies the following
h̃(x) = 0 constraints:

x3
1 − 5x1x2 + x1 + 2.5 = 0 (7.5a)

x2 − 1 = 0 (7.5b)

Equation 7.5a represents the coefficients of u terms, while Equation 7.5b
represents the coefficients of u2 terms. It is immediately apparent from
Equation 7.5b that x2 := 1. Given this, the cubic equation in 7.5a has
three real roots at -2.26, 0.72, and 1.54. Each of these solutions for x1 are
feasible in light of Constraint 7.4b. Therefore, the optimizer selects the
value which minimizes the objective, leading to x1 := 1.54. This leads to
a final objective value of 6.03 and PyROS solves the problem at the first
iteration in 0.22 seconds. The extra restrictions imposed by the uncertain
equality constraint leads to a significant objective increase here. However,
this solution satisfies Equation 7.4b for all realization of u, and therefore
represents the robust optimal solution. If 7.4b was not robustly satisfiable,
PyROS would instead return with a proven robust infeasible status. The
benefit of this coefficient matching procedure is that PyROS may more
quickly identify robust infeasible problems or robust optimal solutions
due to the additional constraints.

1 # Import the PyROS module
2 import pyomo.contrib.pyros as pyros
3

4 # Specify (lb, ub) tuples
5 parameter_bounds = [(0.25 , 2), (0.5, 1.5)]
6

7 # Define the uncertainty set
8 box_set = pyros.BoxSet(bounds = parameter_bounds)

Code 7.3: Example of how to solve a robust optimization problem with uncertain
equality constraints using the PyROS solver given a deterministic
Pyomo model.

1 # Import the Pyomo modeling environment and the PyROS module
2 from pyomo.environ import *
3 import pyomo.contrib.pyros as pyros
4

5 # Write the deterministic Pyomo model
6 m = ConcreteModel ()
7 m.x1 = Var(initialize = 0, bounds = (0, None))
8 m.x2 = Var(initialize = 0, bounds = (0, None))
9 m.u = Param(initialize = 1.125, mutable = True)

10

109

7.4 tractability and performance

11 m.con = Constraint(expr = sqrt(m.u) * m.x1 - m.u * m.x2 <= 2)
12 m.eq_con = Constraint(expr = m.u**2 * (m.x2 - 1) + m.u * (m.x1**3 - 0.5) + m.u * (m.x1 - 2)

== 0)
13 m.obj = Objective(expr = (m.x1 - 4)**2 + (m.x2 - 1)**2)
14

15 # Define the uncertainty set
16 interval = pyros.BoxSet(bounds = [(0.25 , 2)])
17

18 # Instantiate the PyROS solver
19 pyros_solver = SolverFactory("pyros")
20

21 # Define subsolvers utilized in the algorithm
22 local_subsolver = SolverFactory("ipopt")
23 global_subsolver = SolverFactory("baron")
24

25 # Call the PyROS solver
26 results = pyros_solver.solve(model = m,
27 first_stage_variables = [m.x1, m.x2],
28 second_stage_variables = [],
29 uncertain_params = [m.u],
30 uncertainty_set = interval ,
31 local_solver = local_subsolver ,
32 global_solver = global_subsolver ,
33 options = {
34 "objective_focus": pyros.ObjectiveType.worst_case ,
35 "solve_master_globally": True
36 })

Code 7.4: Example of how to solve a robust optimization problem with uncertain
equality constraints using the PyROS solver given a deterministic
Pyomo model.

Additional PyROS user options can be found in the Pyomo doc-
umentation https://pyomo.readthedocs.io/en/latest/contributed_
packages/pyros.html.

7.4 tractability and performance

A comprehensive set of tests are presented here to validate and qualify
PyROS solver performance on representative problems.

A library of 6,264 test instances was derived from the base models
specified in Table 7.3. The test instances possess an array of different
uncertainty set types and sizes, different degree of freedom partitions
between first- and second-stage decisions, and different decision rule
relationships. The procedure for deriving these test instances is outlined
in Appendix 7.6.1.

Model Name No. Variables No. State Variables No. Parameter Data No. Constraints No. Inequality Constraints No. Equality Constraints Nonlinear Objective Notes

optcntrl 32 20 62 21 1 20 3 Quadratic objective and (in)equalities

353 5 2 17 4 2 2 Linear objective, quadratic equality

lewispol 7 3 6 9 6 3 3 Quadratic objective, cubic terms in inequalities

haverly 12 7 4 9 2 7 Bilinear terms in equalities

s381 13 1 41 4 3 1 Linear objective and constraints

s382 13 1 71 4 3 1 Square root and quadratic terms in constraints

Table 7.3: Details regarding models used to derive robust optimization test prob-
lems for benchmarking PyROS.

The base models used to create the test instances were chosen to rep-
resent an array of nonlinear characteristics, as shown in the Notes col-
umn. The models also vary in number of degrees of freedom, number
of potentially uncertain parameter data, and number of state variables.

110

https://pyomo.readthedocs.io/en/latest/contributed_packages/pyros.html
https://pyomo.readthedocs.io/en/latest/contributed_packages/pyros.html

7.4 tractability and performance

Some example statistics regarding the test instances are shown in Ta-
ble 7.4. This information is ultimately passed as arguments to construct
UncertaintySet object (see Appendix 7.6.1.2) or as arguments to the Py-
ROS solve command.

Model Name Uncertainty Set Type Uncertainty Set Description First-stage DOF Second-stage DOF Uncertain Parameters Decision rule order

s381 BoxSet +/− 15% nominal x1, x2, x3 x4, . . . , x12 p0, p10 0

s381 BoxSet +/− 15% nominal x1, x2, x3 x4, . . . , x12 p0, p10 1

s381 BoxSet +/− 15% nominal x1, x2, x3 x4, . . . , x12 p0, p10 2

. . .

s381 AxisAlignedEllipsoidalSet +/− 20% nominal x1, . . . , x12 p0, p10, p20, p29 0

s381 AxisAlignedEllipsoidalSet +/− 20% nominal x1, . . . , x12 p0, p10, p20, p29 1

s381 AxisAlignedEllipsoidalSet +/− 20% nominal x1, . . . , x12 p0, p10, p20, p29 2

Table 7.4: Example instance information for derived benchmark problems from
base problem s381.

We solved each of the model instances shown here using PyROS with
BARON 21.1.3 with CPLEX 12.10 as the LP sub-solver. The PyROS runs
were conducted with a time limit of 300 seconds and a robust feasibility
tolerance of 1× 10−3. All computational experiments were conducted on
an a single thread of an Intel(R) Xeon(R) CPU E5-2687Wv3 @ 3.10GHz
with 64GB of RAM.

A summary of PyROS return statuses across all the instances is shown in
Table 7.5. Given the total number of instances solved, PyROS can identify
robust optimal solutions to 87% of the instances. From the results, we can
see that the haverly instances featured more time out and sub-solver error
statuses. For these small problems, we do not expect time out instances
to arise due to increasing master problem size at each iteration. Instances
which time out may be due to numerical sub-solver difficulties that arise
due to bilinear terms and other complex, compound polynomials, or
due to the selection of robust feasibility tolerance which leads to stalling
algorithmic progress.

We note that at the time these results were collected, some of these time
out and error statuses are known to arise due to existing Pyomo/BARON
solver interface issues due to spurious constraints written to the model
file. We also highlight that across the models tested, the average CPU time
is low relative to the time limit. This is because the vast majority of PyROS
instances terminate quickly and in very few iterations. The pathological
instances that time out at the time limit are far fewer than those which
solve almost instantaneously.

From the suite of results, we will highlight some interesting outcomes
with respect to hierarchical uncertainty sets. For example, the box sets
utilized for each test problem are designed such that Qc

X = {q ∈ Rn : q` ≤
q ≤ qu : q` := [q0 − cq0], qu := [q0 + cq0] ∀c ∈ {0, 0.15, 0.30}}. Therefore,
we naturally have Q0

X ⊂ Q15
X ⊂ Q30

X . In Table 7.6, we show how the value
of the robust worst-case objective value ζ∗ evolves for a particular instance
of the s353 test problem.

111

7.5 conclusions

Model Name No. Robust Opt./Feas. No. Time Outs No. Sub-solver Error Average CPU Time (s) Average No. Iterations

optcntrl 1,060 16 4 42.4 2.0

s353 846 18 0 9.84 1.3

lewispol 1,072 5 3 21.1 1.1

haverly 918 83 79 58.6 3.3

s381 1073 5 2 22.9 2.2

s382 990 67 23 40.4 2.4

hydro 757 200 112 118.2 3.8

optmass 951 127 2 59.6 2.1

hydrothermal 601 384 94 175.4 1.9

himmelp6 772 9 83 51.0 2.1

Total 9,040 914 402

Table 7.5: Overall performance statistics (statuses at termination and average time
and iterations) for benchmark problems solved via PyROS.

Model Name Uncertainty Set Type Uncertainty Set Description First-stage DOF Second-stage DOF Uncertain Parameters Decision rule order ζ∗

s353 BoxSet +/− 0% nominal x1 x2, x3 p0, p2, p4, p5, p8 0 -39.9

s353 BoxSet +/− 15% nominal x1 x2, x3 p0, p2, p4, p5, p8 0 -37.7

s353 BoxSet +/− 30% nominal x1 x2, x3 p0, p2, p4, p5, p8 0 -35.5

Table 7.6: Robust worst-case objective values ζ∗ for 5-D box uncertainty sets for a
353 problem instance.

In the deterministic base model for s353, the optimal objective value
is −39.9, as shown in the tabulated results. When we consider the price-
of-robustness for this hierarchy of box uncertainty sets, we see that ζ∗,0 ≤
ζ∗,15 ≤ ζ∗,30. This is expected, as increasing robustness by optimizing
in light of a larger uncertainty set incurs an increase in the final robust
objective value. This illustrates an additional utility in PyROS for simple
price-of-robustness analyses via hierarchical uncertainty sets.

7.5 conclusions

In this chapter we introduced PyROS, a Python-based robust optimization
solver in Pyomo for solving nonlinear, two-stage robust optimization
problems. We showcased the facile use of the robust optimization solver
through the Pyomo solver interface and outlined the set of options available
to the user. PyROS has been shown to be an effective solver for identifying
robust solutions to general nonlinear robust optimization problems. The
automatic robust optimization capabilities in PyROS will allow owners
of nonlinear uncertain optimization models to study various topics of
interest, such as the price of robustness and the effects of uncertainty set
selection and recourse flexibility.

112

7.6 appendix

7.6 appendix

7.6.1 Construction of Benchmark Problems

Because there is no test suite available for general two-stage nonlinear
robust optimization problems, the instances used in the benchmarking
study had to be generated from the initial problems listed in Table 7.3.
First, an analysis was done to determine which variables in each model
constitute a degree of freedom (DOF) and which are state variables. Given
the set of free variables, we generate 5 instances with 5 partitions between
first- and second-stage degrees of freedom. We split the degrees of freedom
by selecting a fraction n of the DOF as first-stage decision variables, where
n = {0, 1

4 , 1
2 , 3

4 , 1}, and the remaining DOF become second-stage. Next,
a set of 5 parameters is selected to be potentially uncertain. Given this
information, a suite of uncertainty sets with different geometries and sizes
were devised for each of the variable partitions. More details regarding
this procedure are provided here.

7.6.1.1 Selecting Uncertain Parameters

From the set of numerical parameter data within the deterministic model,
a subset of 5 parameters was chosen to be potentially uncertain. For
consistency between each problem instance, the following set of rules for
selecting these parameters was followed:

First, select a parameter from the objective. Second, select a parameter
from a non-linear (if any exist, else linear) equality constraint wherein at
least 1 state variable participates. Third, select a parameter from a non-
linear (if any exist, else linear) inequality constraint. Fourth, select another
parameter from the objective. Fifth, select another parameter from a linear
(if any exist, else non-linear) equality constraint.

In the case where there are no equality constraints, the second parameter
is chosen from a non-linear (if any exist, else linear) inequality. In the case
that there are no parameters in the objective, the first and fourth parameters
are chosen from either a non-linear (if any exist, else linear) inequality
constraint.

Given the 5 potentially uncertain parameters, uncertainty sets ranging
from 1- to 5-dimensions were devised for each PyROS UncertaintySet
type. These are outlined in Table 7.7. In the case of FactorModelSet un-
certainty sets, all parameter data in the model was considered uncertain.
This way, the dimensionality of the space of the uncertain parameters is
significantly larger than that of the individual factors.

113

7.6 appendix

We note that since the scale of the numerical parameter data within
each problem varied, we normalize all parameter data to a value of 1 for
relative scaling of the uncertainty sets.

7.6.1.2 Uncertainty Set Construction for Benchmark Instances

In this section we describe the uncertainty set construction for the bench-
marking study in Section 7.4 wherein all uncertain parameters q are
normalized to a nominal value of 1, i.e. q0 = [1]n. Each set is defined for
uncertain parameters q with 2, 3, 4, and 5 dimensions. The relevant set
information is given in Table 7.4.

Set Type Set Parameter Definitions

BoxSet q` := [q0 − cq0], qu := [q0 + cq0], ∀c ∈ {0.15, 0.30}

CardinalitySet Γ :=

d
|q|
2 e |q| ≥ 2

d |q|3 e |q| ≥ 3
, q̂ := [0.3q0]

BudgetSet

L := 1, b` := [(1 + 0.1)∑n
i=1 q0

i], B` := {1, . . . , n} |q| ≥ 2

L := (|q|2), b` := 2[q0 + 0.1q0], B` := B2
ii |q| ≥ 3

FactorModelSet
β ∈ {0, 0.25, 0.5, 0.75, 1}, F ∈ {3, 4, 5}

Ψ ∼ Nn×F(µ, σ2) : 0.1 ≤ ∑F
j=1 Ψi,j ≤ 0.2 ∀i ∈ {1, . . . , n}

PolyhedralSet Qp := {q ∈ Rn : qi ≥ q0
i ∀i ∈ {1, . . . , n}, ∑n

i (qi − q0
i) ≤ (q0 + 0.25q0)}

AxisAlignedEllipsoidalSet α := [0.2]n

EllipsoidalSet See below.

DiscreteScenarioSet
S ∈ {10, 15, 20}

QS
D =

{
qs ∼ Nn(µ, σ2) : q0 − 0.3q0 ≤ q ≤ q0 + 0.3q0, s = 0, . . . , S

}
: Q10

D ⊂ Q15
D ⊂ Q20

D

IntersectionSet

QI =
{

q ∈ Rn : q ∈ QX
⋂

QA

}
QX :=

{
q ∈ Rn : q0 − 0.15q0 ≤ q ≤ q0 + 0.15q0} , QA :=

q ∈ Rn : ∑
i=1

(
qi − q0

i
0.2

)2

≤ 1

Table 7.7: Uncertainty set information to generate the uncertainty sets used in the

PyROS benchmarking study.

To construct the non-axis aligned ellipsoidal uncertainty sets in Table 7.7,
the following protocol was followed to determine the shape matrices, P.

1. |q| := 2, α = [0.30, 0.10], 45◦ rotation applied in q1 − q2 plane.

2. |q| := 3, α = [0.30, 0.20, 0.10], 45◦ rotations applied in q1 − q2, q1 −
q3 planes.

3. |q| := 4, α = [0.30, 0.20, 0.20, 0.10], 45◦ rotations applied in q1 −
q2, q1 − q3, q2 − q3 planes.

4. |q| := 5, α = [0.30, 0.25, 0.20, 0.15, 0.10], 45◦ rotations applied in q1 −
q2, q1 − q3, q2 − q3, q1 − q4 planes.

ii The set B2 represents the set created from all combinations of 2 elements from the set
B` := {1, . . . , n}.

114

7.6 appendix

For each dimension noted in the list below, the vector a represents the
half-lengths for the initial axis-aligned ellipsoid. These values are used
to construct a diagonal covariance matrix. A sequence of 45◦ rotations
was applied via multiplying the corresponding covariance matrix with
an appropriate rotation matrix. This results in the shape matrix for the
rotated ellipsoid.

7.6.2 PyROS Termination Conditions

Table 7.8 in this section outlines the PyROS solver return statuses and
what conditions must be met for the status to be returned.

PyROS Return Status Conditions When Status Is Returned

robust_optimal objective_focus=worst_case AND solve_masters_globally=True AND no violations in global separation

robust_feasible (objective_focus=nominal OR solve_masters_globally=False) AND no violations in global separation

robust_infeasible Master problem subsolver returned infeasible

max_iter Exceeded max_iter GRCS iterations

time_out Exceeded pyros_time_limit seconds, including time spent by user-supplied solver(s)

subsolver_error User-supplied solver(s) did not return acceptable status (see Table 7.9)

Table 7.8: PyROS Return Statuses.

7.6.3 Pyomo Subsolver Statuses in PyROS

Table 7.9 in this section explains how native Pyomo solver return codes
are handled within the PyROS solver. All PyROS sub-solvers are Pyomo
solver objects which return specific statuses that are interpreted by PyROS
via the tabulated information below.

115

7.6 appendix

Pyomo Termination Condition

of User-Supplied Solver
Pyomo Solver Status PyROS Master Action PyROS Separation Action

optimal ok Accept solution

globallyOptimal ok Accept solution

locallyOptimal ok Accept solution

feasible ok Try next backup solver∗ If g(.) > 0, accept solution. Else, try next backup solver.∗

maxTimeLimit ok Try next backup solver∗

maxIterations ok Try next backup solver∗

maxEvaluations ok Try next backup solver∗

minStepLength ok Try next backup solver∗

minFunctionValue ok Try next backup solver∗

other ok Try next backup solver∗

unbounded warning Try next backup solver∗

infeasible warning Return robust_infeasible Try next backup solver∗

infeasibleOrUnbounded warning Try next backup solver∗

invalidProblem warning Try next backup solver∗

intermediateNonInteger warning Try next backup solver∗

noSolution warning Try next backup solver∗

solverFailure error Try next backup solver∗

internalSolverError error Try next backup solver∗

error error Try next backup solver∗

unknown unknown Try next backup solver∗

userInterrupt aborted Return subsolver_error

resourceInterrupt aborted Return subsolver_error

licensingProblems aborted Return subsolver_error
∗ If no backup solver available, return subsolver_error.

Table 7.9: Mapping Pyomo sub-solver termination conditions to PyROS master
and separation problem actions.

116

NOTES

notes

1AIMMS. See https://www.aimms.com
2JuMPeR. See https://github.com/IainNZ/JuMPeR.jl
3ROC++. See https://sites.google.com/usc.edu/robust-opt-cpp/
4ROME. See https://robustopt.com/resources.html
5RSOME. See https://www.rsomerso.com/
6YALMIP. See https://yalmip.github.io/
7SIPAMPL. See http://www.norg.uminho.pt/aivaz/sipampl.html
8ROModel. See https://github.com/cog-imperial/romodel

117

8
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we have proposed mathematical optimization approaches
for the study of nanocluster morphology. Using this approach, we were
able to identify highly stable, unintuitive nanocluster morphologies for
small transition metal nanoclusters.

We also propose extensions to existing robust optimization methods
in order to address general uncertain nonlinear optimization problems.
We implement our proposed method in a general solver called PyROS.
In doing so, we have lowered the barrier to researchers for applying
robust optimization for general nonlinear programming problems. Here,
we summarize the key contributions of the work presented in this thesis
and then present several future research directions.

8.1 contributions

In Chapter 2, we proposed a mathematical optimization approach for
identifying optimally cohesive transition metal nanoclusters.

• We devised a discrete, three-dimensional design space called a canvas
to represent crystallographic arrangements of atoms in a nanocluster.

• A structure-function relationship between cohesive energy and lo-
cal atom coordination was identified as mixed-integer linear repre-
sentable.

• A mixed-integer linear programming model to identify arrangements
of atoms in a canvas which maximizes the total cohesive energy of
the resulting nanocluster was devised and solved to identify optimal
nanocluster geometries for various numbers of atoms.

In Chapter 3, we identified metal-specific cohesive energy functions via
regression with density-functional theory data, as well as new optimal
nanocluster geometries at certain sizes.

• By comparing with density-functional theory evaluations of cohe-
sive energy, we showed that the square root bond-cutting model of

118

8.1 contributions

cohesive energy typically overestimates energetic contributions for
an array of transition metals.

• We utilized the density-functional theory predictions to regress cor-
rected, metal-specific structure-function relationships between coor-
dination number and cohesive energy.

• We embedded our corrected cohesive energy functions as objective
functions in our nanocluster optimization model and identified new
optimal geometries for certain metals at various sizes.

In Chapter 4, we proposed a preliminary mathematical optimization
approach and formulation for discrete nanocluster optimization with off-
lattice locations.

• We acknowledged the need to capture non-ideal inter-atomic dis-
tances between atoms of relaxed or non-crystallographic nanoclusters
in our mixed-integer linear programming modeling framework.

• We proposed an off-lattice canvas for specifying a set of finite, non-
ideal lattice locations for each atom in the nanocluster.

• We drafted a mixed-integer linear programming model for identify-
ing maximally cohesive nanoclusters given an off-lattice canvas.

In Chapters 5 and 6, we identified a need for generally applicable meth-
ods for applying robust optimization methodology to process systems
engineering-type problems. We then provided three process systems engi-
neering case studies wherein we utilized the generalized robust cutting-set
algorithm to identify robust solutions.

• We first proposed a generalized robust cutting-set algorithm to iden-
tify solutions for two-stage nonlinear robust optimization models.

• We proposed general nonlinear decision rules for improving recourse
flexibility in the adjustable robust optimization framework.

• We outlined a general methodology for evaluating robust solution
quality by calculating second-stage variable and objective expecta-
tions.

• We provide several case studies to show that the generalized ro-
bust cutting-set algorithm can identify robust solutions in light of
postulated uncertainty sets for complex, nonlinear process models.

Finally, in Chapter 7, we have shown how the generalized robust cutting-
set algorithm has been implemented in the algebraic modeling language,
Pyomo, to provide generic robust optimization solver capability.

119

8.2 future directions

• We outlined the PyROS solver capabilities and other key elements,
such as the provided classes for defining uncertainty sets.

• We illustrate how to use PyROS as a solver via the existing Pyomo
solver interface.

• We show key performance evaluations of the solver via a suite of
benchmark instances.

8.2 future directions

Here, I propose several areas of future research based on the work pre-
sented in this thesis.

In the context of the nanocluster design project, there is work to be
done regarding how to incorporate repulsive energy term in the cohesive
energy evaluation. In the case the atoms in the nanocluster are at non-
equilibrium distances, repulsive effects arise. Currently, we propose this
may be handled via effective coordination number and an appropriate
scaling parameter, likely determined via density-functional theory evalua-
tions. Alternatively, we may consider incorporating hard-core potentials
directly into the objective function to account for the repulsive energy
effects. Additional work would need to be done to consider how these can
be treated in a mixed-integer linear context. Another potential research
direction for the mixed-integer linear modeling of nanomaterials could
be to work with larger fragments of matter as building blocks, instead
of singular atoms. This can improve tractability at nanoscales of interest
(more than 100 atoms). There is also an opportunity to consider the impact
of symmetry breaking constraints on the MILP model tractability in the
context of a branch-and-cut solver. Conducting a study to understand
the impact of the existing canvas symmetry breaking constraints will
motivate improving these constraints to further reduce the number of
isomorphically equivalent solutions explored.

Furthermore, there is an opportunity to consider discrete nanocluster or
nanomaterial optimization under epistemic uncertainty. Work by Yin et al.
[141] has shown how square root bond-cutting models of cohesive energy
can be used to identify optimally cohesive bimetallic nanoclusters. In this
model of cohesive energy, data for the dimer bond dissociation energies
(BDE) is used. However, these data have uncertainty associated with them
that then factor into the calculation of bond weighting factors. To identify
optimally cohesive bimetallic nanoclusters in light of this uncertainty,
it is possible to pose the bimetallic nanocluster design problem as a
robust optimization task wherein the discrete decisions to place atoms in
the canvas are the primary decision made under BDE uncertainty. This
framework may be posed as a single-stage decision making task, in which

120

8.2 future directions

no recourse is permitted, or a multi-stage decision making task in which
uncertainty is revealed progressively and recourse decisions are made in
response. For this research direction, it is important to understand the
nature of the uncertainty present in the model and to pose meaningful
uncertainty sets, as well as which decision making framework is most
suitable.

Finally, it is worth noting that the MILP modeling framework can be
extended to identify optimal nanocluster geometries against any structure-
function relationships of interest. The key research task in this context
is to identify an MILP representable structure function relationship. By
employing a similar work-flow as described in this Thesis, we can use
density-functional theory data to regress surrogate models with coordina-
tion number-based descriptors. Such a surrogate model can then be used
to cast and solve an MILP formulation for optimal structures.

The generalized robust cutting-set algorithm also has many natural
extensions to be considered in the future, as well as some efficiencies to
consider. For example, we know that the master problems grow at each
iteration, but there is special structure in the constraints because they
are effectively duplicated at every uncertain parameter realization. This
special structure could be exploited to expedite the identification of master
solutions. Additional extensions may arise when considering a mixed-
integer context. There are opportunities for supporting discrete variables
in the first-stage, second-stage, or state variables of the deterministic
problem. There is likely much more to consider regarding other algorithmic
implications for mixed-integer support in the generalized robust cutting-
set algorithm. However, we outline several general ideas here:

In the case that first-stage variables are mixed-integer, the GRCS mas-
ter problems simply become mixed-integer optimization problems which
require appropriate optimization solvers. The separation problems are
unchanged, as first-stage variables are fixed in separation. The case that
second-stage variables are binary is slightly different. Decision rule func-
tions utilized must be binary-valued to enforce the logical nature of the
second-stage variable domains in both the master and separation subprob-
lems. The case that state variables are binary can be thought of conceptually
as representing model uncertainty. The key detail in this case would be to
ensure that all binary state variables map to 0-1 values for all uncertain
parameter realizations in the postulated uncertainty set.

There is also an opportunity to improve the tractability of sequential
master problems in the GRCS by considering the special structure of the
master problems. This structure is illustrated in Figure 8.1. In the first
box, we show the constraints for a master problem at iteration k, MPk. In
solving this master problem, we identify feasible first-stage variables x∗

and d∗. The first-stage variable values are used in the following separation

121

8.2 future directions

problem, SPk, to identify a violating parameter realization qk∗ . Solving
SPk also leads to feasible values for state and second-stage variables, yk∗

and zk∗ , in light of the previous optimal design (x∗, d∗) and violation qk∗ .
When we add the k∗ violation to the following master problem MPinit

k+1, all
constraints are feasible in light of the MPk and SPk solutions, excluding
the inequality constraints that led to violations in SPk. These infeasible
inequalities are shown in the red box in 8.1. Therefore, there is potential to
utilize slack variables or an objective penalty to drive MPinit

k+1 to a feasible
initial point. This feasible initial point for the master problem can improve
the numerical performance of the subsolvers used in the GRCS.

𝑴𝑷𝒌+𝟏
𝒊𝒏𝒊𝒕𝑴𝑷𝒌

𝑺𝑷𝒌

Figure 8.1: Illustration of how initialization of master problems (MPk+1) in the
GRCS can be improved based on information from previous master
(MPk) and separation problems (SPk).

Additionally, there should be targeted efforts made to reduce the rate
at which master problems grow in the constraints and variables. This
will become especially important for large-scale deterministic models.
One possible approach may be to update which qk are part of the master
problem at each iteration. It is possible that, after some iterations, a given
realization qk being explicitly accounted for in the master problem is
redundant in light of another realization in the set K. This means that all
variables yk, zk and constraints hj, gi, v` for that given k may be removed.
Performing some “clean-up”of the master problems as the algorithm
progresses may abet the model growth, at the cost of some additional
computations to determine redundant qk.

We also propose a few efficiencies that may be added to PyROS. Cur-
rently, PyROS assumes that both a local and global subsolver are required
to prove robust optimality. This is because we make no assumptions re-
garding the convexity of the subproblems solved in PyROS. However, with
automatic model structure identification, as is available with the Pyomo
package SUSPECT developed by Ceccon, Siirola, and Misener [19], PyROS
could detect when global optimization solvers are required for solving
both master and separation subproblems. This has the potential to improve
numerical performance in PyROS. Additionally, the concept of general de-

122

8.2 future directions

cision rules could be explored in the context of PyROS. Currently, PyROS
supports constant, affine, and quadratic decision rule relationships. There
is an additional opportunity to devise a targeted study regarding the im-
pact of decision rule flexibility on closing the adaptivity gap in two-stage
robust optimization problems. This could be conducted in the context
of increasing polynomial order decision rule functions, or with general
nonlinear decision rule relationships. PyROS may be modified to support
other nonlinear decision rule functions to improve the approximation of
the fully adaptive case.

123

B I B L I O G R A P H Y

Acevedo, J. and E. N. Pistikopoulos (1998). “Stochastic optimization based
algorithms for process synthesis under uncertainty.” Computers & Chemi-
cal Engineering 22.4-5, pp. 647–671 (cit. on p. 4).

Aiken III, J. D. and R. G. Finke (1999). “A review of modern transition-
metal nanoclusters: their synthesis, characterization, and applications
in catalysis.” Journal of Molecular Catalysis A: Chemical 145.1-2, pp. 1–44

(cit. on p. 1).
Atamtürk, A. and V. Narayanan (2007). “Cuts for conic mixed-integer

programming.” In: International Conference on Integer Programming and
Combinatorial Optimization. Springer, pp. 16–29 (cit. on p. 13).

Austin, N., J. Johnson, and G. Mpourmpakis (2015). “Au13: CO adsorbs,
nanoparticle responds.” Journal of Physical Chemistry C 119, pp. 18196–
18202 (cit. on p. 27).

Avraamidou, S. and E. N. Pistikopoulos (2020). “Adjustable robust opti-
mization through multi-parametric programming.” Optimization Letters
14.4, pp. 873–887 (cit. on p. 41).

Baletto, F. (2018). “Structural properties of sub nanometer metallic clus-
ters.” Journal of Physics: Condensed Matter (cit. on p. 1).

Baletto, F. and R. Ferrando (2005). “Structural properties of nanoclusters:
Energetic, thermodynamic, and kinetic effects.” Reviews of modern physics
77.1, p. 371 (cit. on pp. 1, 25, 26, 33).

Barcaro, G., L. Sementa, and A. Fortunelli (2014). “A grouping approach to
homotop global optimization in alloy nanoparticles.” Phys. Chem. Chem.
Phys. 16 (44), pp. 24256–24265 (cit. on p. 2).

Bell, A. T. (2003). “The impact of nanoscience on heterogeneous catalysis.”
Science 299.5613, pp. 1688–1691 (cit. on p. 1).

Ben-Tal, A., A. Goryashko, E. Guslitzer, and A. Nemirovski (2004). “Ad-
justable robust solutions of uncertain linear programs.” Mathematical
Programming 99.2, pp. 351–376 (cit. on pp. 5, 38, 41).

Benson, H. Y. and Ü. Sağlam (2013). “Mixed-integer second-order cone
programming: A survey.” In: Theory Driven by Influential Applications.
INFORMS, pp. 13–36 (cit. on p. 13).

Bertsimas, D., D. A. Iancu, and P. A. Parrilo (2011). “A hierarchy of near-
optimal policies for multistage adaptive optimization.” IEEE Transactions
on Automatic Control 56.12, pp. 2809–2824 (cit. on p. 47).

124

bibliography

Bertsimas, D. and Y. Ng (2019). “Robust and stochastic formulations for
ambulance deployment and dispatch.” European Journal of Operational
Research 279.2, pp. 557–571 (cit. on p. 94).

Bertsimas, D., O. Nohadani, and K. M. Teo (2010). “Nonconvex robust opti-
mization for problems with constraints.” INFORMS Journal on Computing
22.1, pp. 44–58 (cit. on p. 4).

Bruni, M. E., L. D. P. Pugliese, P. Beraldi, and F. Guerriero (2017). “An ad-
justable robust optimization model for the resource-constrained project
scheduling problem with uncertain activity durations.” Omega 71, pp. 66–
84 (cit. on p. 38).

Buendía, F., J. A. Vargas, M. R. Beltrán, J. B. Davis, and R. L. Johnston
(2016). “A comparative study of Au m Rh n (4≤ m+ n≤ 6) clusters in
the gas phase versus those deposited on (100) MgO.” Physical Chemistry
Chemical Physics 18.32, pp. 22122–22128 (cit. on p. 2).

Bynum, M. L. et al. (2021). Pyomo—Optimization Modeling in Python. Vol. 67.
Springer Nature (cit. on p. 98).

Cai, Y., Y. Guo, and J. Liu (2020). “Geometric effect of Au nanoclusters
on room temperature CO oxidation.” Chemical Communications 56.6,
pp. 876–879 (cit. on p. 7).

Ceccon, F., J. D. Siirola, and R. Misener (2020). “SUSPECT: MINLP special
structure detector for Pyomo.” Optimization Letters 14.4, pp. 801–814

(cit. on p. 122).
Cerrillo-Briones, I. M. and L. A. Ricardez-Sandoval (2019). “Robust opti-

mization of a post-combustion CO2 capture absorber column under pro-
cess uncertainty.” Chemical Engineering Research and Design 144, pp. 386

–396 (cit. on p. 68).
Che, G., B. B. Lakshmi, C. R. Martin, and E. R. Fisher (1999). “Metal-

nanocluster-filled carbon nanotubes: catalytic properties and possible
applications in electrochemical energy storage and production.” Lang-
muir 15.3, pp. 750–758 (cit. on p. 23).

Chen, Z., M. Sim, and P. Xiong (2020). “Robust stochastic optimization
made easy with RSOME.” Management Science 66.8, pp. 3329–3339 (cit.
on p. 95).

Chen, Z. and P. Xiong (2021). “RSOME in Python: An Open-Source Package
for Robust Stochastic Optimization Made Easy” (cit. on p. 95).

Chinen, A. S. et al. (2018). “Development of a Rigorous Modeling Frame-
work for Solvent-Based CO2 Capture. 1. Hydraulic and Mass Transfer
Models and Their Uncertainty Quantification.” Industrial & Engineering
Chemistry Research 57.31, pp. 10448–10463 (cit. on pp. 67, 68).

Cleri, F. and V. Rosato (1993). “Tight-binding potentials for transition
metals and alloys.” Physical Review B 48.1, p. 22 (cit. on p. 8).

Corp., I. (2017). IBM ILOG CPLEX Optimizer 12.8.0 (cit. on p. 16).

125

bibliography

Darby, S., T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts (2002a).
“Theoretical study of Cu Au nanoalloy clusters using a genetic algo-
rithm.” The Journal of Chemical Physics 116.4, pp. 1536–1550 (cit. on p. 33).

Darby, S., T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts (2002b).
“Theoretical study of Cu–Au nanoalloy clusters using a genetic algo-
rithm.” The Journal of Chemical Physics 116.4, pp. 1536–1550 (cit. on p. 2).

De, M., P. S. Ghosh, and V. M. Rotello (2008). “Applications of nanoparticles
in biology.” Advanced Materials 20.22, pp. 4225–4241 (cit. on p. 1).

Doye, J. P. K. and D. J. Wales (1998). “Thermodynamics of Global Opti-
mization.” Phys. Rev. Lett. 80 (7), pp. 1357–1360 (cit. on p. 2).

Doye, J. P. and L. Meyer (2005). “Mapping the magic numbers in binary
Lennard-Jones clusters.” Physical review letters 95.6, p. 063401 (cit. on
p. 1).

Doye, J. P. and D. J. Wales (1997). “Structural consequences of the range of
the interatomic potential a menagerie of clusters.” Journal of the Chemical
Society, Faraday Transactions 93.24, pp. 4233–4243 (cit. on p. 1).

Duff, I. S. and J. K. Reid (1982). MA27-a set of Fortran subroutines for solving
sparse symmetric sets of linear equations. UKAEA Atomic Energy Research
Establishment (cit. on p. 57).

Ferrando, R, A Fortunelli, and G Rossi (2005). “Quantum effects on the
structure of pure and binary metallic nanoclusters.” Physical Review B
72.8, p. 085449 (cit. on p. 9).

Fisher, K. S. et al. (2005). Integrating MEA regeneration with CO2 compression
and peaking to reduce CO2 capture costs. Tech. rep. Trimeric Corporation
(cit. on p. 69).

Fournier, R. and S. Bulusu (2013). “Closed-Shell Metal Clusters.” In: Metal
Clusters and Nanoalloys. Springer, pp. 81–103 (cit. on pp. 16, 27).

Futschek, T, M Marsman, and J Hafner (2005). “Structural and magnetic
isomers of small Pd and Rh clusters: an ab initio density functional
study.” Journal of Physics: Condensed Matter 17.38, p. 5927 (cit. on pp. 26,
33).

Garzón, I. L. et al. (1998). “Lowest Energy Structures of Gold Nanoclus-
ters.” Phys. Rev. Lett. 81 (8), pp. 1600–1603 (cit. on p. 2).

Garzon, I. L. and A. Posada-Amarillas (1996). “Structural and vibrational
analysis of amorphous Au 55 clusters.” Physical Review B 54.16, p. 11796

(cit. on p. 33).
Garzón, I. et al. (1998). “Lowest energy structures of gold nanoclusters.”

Physical review letters 81.8, p. 1600 (cit. on p. 1).
Goedecker, S., M. Teter, and J. Hutter (1996). “Separable dual-space Gaus-

sian pseudopotentials.” Phys. Rev. B 54 (3), pp. 1703–1710 (cit. on p. 23).
Goh, J. and M. Sim (2011). “Robust optimization made easy with ROME.”

Operations Research 59.4, pp. 973–985 (cit. on p. 95).

126

bibliography

Gong, J. and F. You (2018). “Resilient design and operations of process sys-
tems: Nonlinear adaptive robust optimization model and algorithm for
resilience analysis and enhancement.” Computers & Chemical Engineering
116, pp. 231–252 (cit. on p. 4).

Grossmann, I. E., B. A. Calfa, and P. Garcia-Herreros (2014). “Evolution
of concepts and models for quantifying resiliency and flexibility of
chemical processes.” Computers & Chemical Engineering 70, pp. 22–34

(cit. on p. 4).
Grossmann, I. E. and C. A. Floudas (1987). “Active constraint strategy

for flexibility analysis in chemical processes.” Computers & Chemical
Engineering 11.6, pp. 675–693 (cit. on p. 4).

Grossmann, I. E. and R. W. H. Sargent (1978). “Optimum design of chem-
ical plants with uncertain parameters.” AICHE Journal 24.6, pp. 1021–
1028 (cit. on pp. 4, 58).

Häberlen, O. D., S.-C. Chung, M. Stener, and N. Rösch (1997). “From
clusters to bulk: A relativistic density functional investigation on a series
of gold clusters Au n, n= 6,. . . , 147.” The Journal of chemical physics 106.12,
pp. 5189–5201 (cit. on p. 26).

Häkkinen, H., M. Moseler, and U. Landman (2002). “Bonding in Cu, Ag,
and Au clusters: relativistic effects, trends, and surprises.” Physical review
letters 89.3, p. 033401 (cit. on p. 2).

Häkkinen, H. et al. (2004). “Symmetry and electronic structure of noble-
metal nanoparticles and the role of relativity.” Physical review letters 93.9,
p. 093401 (cit. on p. 33).

Halemane, K. P. and I. E. Grossmann (1983). “Optimal process design
under uncertainty.” AIChE Journal 29.3, pp. 425–433 (cit. on p. 63).

Hanselman, C. L. and C. E. Gounaris (2016). “A mathematical optimization
framework for the design of nanopatterned surfaces.” AIChE Journal
62.9, pp. 3250–3263 (cit. on p. 8).

Hart, W. E., J.-P. Watson, and D. L. Woodruff (2011). “Pyomo: modeling and
solving mathematical programs in Python.” Mathematical Programming
Computation 3.3, pp. 219–260 (cit. on pp. 57, 98).

Hart, W. E. et al. (2017). Pyomo–optimization modeling in python. Second.
Vol. 67. Springer Science & Business Media (cit. on p. 57).

Hartke, B. (1993). “Global geometry optimization of clusters using genetic
algorithms.” The Journal of Physical Chemistry 97.39, pp. 9973–9976 (cit. on
p. 2).

Hessen, E. T., T. Haug-Warberg, and H. F. Svendsen (2010). “The refined
e-NRTL model applied to CO2–H2O–alkanolamine systems.” Chemical
Engineering Science 65.11, pp. 3638–3648 (cit. on p. 67).

Hijazi, I. A. and Y. H. Park (2010). “Structure of pure metallic nanoclusters:
Monte Carlo simulation and ab initio study.” The European Physical
Journal D 59.2, pp. 215–221 (cit. on pp. 26, 27).

127

bibliography

Huang, D., F. Liao, S. Molesa, D. Redinger, and V. Subramanian (2003).
“Plastic-compatible low resistance printable gold nanoparticle conduc-
tors for flexible electronics.” Journal of the electrochemical society 150.7,
G412–G417 (cit. on p. 1).

Hutter, J., M. Iannuzzi, F. Schiffmann, and J. VandeVondele (2014). “cp2k:
atomistic simulations of condensed matter systems.” Wiley Interdisci-
plinary Reviews: Computational Molecular Science 4.1, pp. 15–25 (cit. on
p. 23).

Isenberg, N. M. et al. (2021). “A generalized cutting-set approach for
nonlinear robust optimization in process systems engineering.” AIChE
Journal 67.5, e17175 (cit. on p. 5).

Janthon, P. et al. (2014). “Bulk Properties of Transition Metals: A Challenge
for the Design of Universal Density Functionals.” Journal of Chemical
Theory and Computation 10.9. PMID: 26588528, pp. 3832–3839 (cit. on
p. 23).

Jenkins, P. R., B. J. Lunday, and M. J. Robbins (2020). “Robust, multi-
objective optimization for the military medical evacuation location-
allocation problem.” Omega 97, p. 102088 (cit. on p. 94).

Kammammettu, S. and Z. Li (2019). “Two-Stage Robust Optimization of
Water Treatment Network Design and Operations Under Uncertainty.”
Industrial & Engineering Chemistry Research (cit. on pp. 4, 41).

Karim, A. M. et al. (2009). “Correlating particle size and shape of supported
Ru/γ-Al2O3 catalysts with NH3 decomposition activity.” Journal of the
American Chemical Society 131.34, pp. 12230–12239 (cit. on p. 1).

Kelley Jr, J. E. (1960). “The cutting-plane method for solving convex pro-
grams.” Journal of the society for Industrial and Applied Mathematics 8.4,
pp. 703–712 (cit. on pp. 38, 54).

Kelley, M. T., R. Baldick, and M. Baldea (2020). “Demand response schedul-
ing under uncertainty: chance-constrained framework and application
to an air separation unit.” AIChE Journal 66.9, e16273 (cit. on p. 4).

Kılınç-Karzan, F. (2016). “On minimal valid inequalities for mixed integer
conic programs.” Mathematics of Operations Research 41.2, pp. 477–510

(cit. on p. 13).
Kılınç-Karzan, F. and S. Yıldız (2015). “Two-term disjunctions on the

second-order cone.” Mathematical Programming 154.1, pp. 463–491 (cit. on
p. 13).

Kim, D., J. Resasco, Y. Yu, A. M. Asiri, and P. Yang (2014). “Synergistic
geometric and electronic effects for electrochemical reduction of carbon
dioxide using gold–copper bimetallic nanoparticles.” Nature communica-
tions 5, p. 4948 (cit. on p. 23).

Koga, K., T. Ikeshoji, and K.-i. Sugawara (2004). “Size-and temperature-
dependent structural transitions in gold nanoparticles.” Physical review
letters 92.11, p. 115507 (cit. on p. 33).

128

bibliography

Kwon, S. K. et al. (2005). “Surface energy and stress release by layer
relaxation.” Phys. Rev. B 72 (23), p. 235423 (cit. on pp. 23, 27).

Lappas, N. H. and C. E. Gounaris (2016). “Multi-stage adjustable robust
optimization for process scheduling under uncertainty.” AIChE Journal
62.5, pp. 1646–1667 (cit. on p. 38).

Lappas, N. H. and C. E. Gounaris (2018). “Theoretical and computational
comparison of continuous-time process scheduling models for adjustable
robust optimization.” AIChE Journal 64.8, pp. 3055–3070 (cit. on p. 38).

Lappas, N. H., L. A. Ricardez-Sandoval, R. Fukasawa, and C. E. Gounaris
(2019). “Adjustable Robust Optimization for multi-tasking scheduling
with reprocessing due to imperfect tasks.” Optimization and Engineering
20.4, pp. 1117–1159 (cit. on p. 38).

Leyffer, S., M. Menickelly, T. Munson, C. Vanaret, and S. M. Wild (2020).
“A survey of nonlinear robust optimization.” INFOR: Information Systems
and Operational Research 58.2, pp. 342–373 (cit. on pp. 105, 107).

Li, C. and I. E. Grossmann (2018). “An improved L-shaped method for
two-stage convex 0–1 mixed integer nonlinear stochastic programs.”
Computers & Chemical Engineering 112, pp. 165 –179 (cit. on p. 4).

Li, J., X. Li, H.-J. Zhai, and L.-S. Wang (2003). “Au20: a tetrahedral cluster.”
Science 299.5608, pp. 864–867 (cit. on pp. 23, 27).

Löfberg, J. (2004). “YALMIP : A Toolbox for Modeling and Optimization
in MATLAB.” In: In Proceedings of the CACSD Conference. Taipei, Taiwan
(cit. on p. 95).

Löfberg, J. (2012). “Automatic robust convex programming.” Optimization
Methods and Software 27.1, pp. 115–129 (cit. on p. 95).

Lu, Y. and W. Chen (2015). “Application of Mass Spectrometry in the Syn-
thesis and Characterization of Metal Nanoclusters.” Analytical Chemistry
87.21, pp. 10659–10667 (cit. on p. 1).

Matthews, L. R., C. E. Gounaris, and I. G. Kevrekidis (2019). “Designing
networks with resiliency to edge failures using two-stage robust opti-
mization.” European Journal of Operational Research 279.3, pp. 704–720

(cit. on p. 38).
Matthews, L. R., Y. A. Guzman, O. Onel, A. M. Niziolek, and C. A. Floudas

(2018). “Natural Gas to Liquid Transportation Fuels under Uncertainty
Using Robust Optimization.” Industrial & Engineering Chemistry Research
57.32, pp. 11112–11129 (cit. on p. 4).

Methfessel, M., D. Hennig, and M. Scheffler (1992a). “Trends of the surface
relaxations, surface energies, and work functions of the 4d transition
metals.” Phys. Rev. B 46 (8), pp. 4816–4829 (cit. on pp. 23, 25).

Methfessel, M., D Hennig, and M. Scheffler (1992b). “Calculated surface
energies of the 4d transition metals: A study of bond-cutting models.”
Applied Physics A 55.5, pp. 442–448 (cit. on p. 8).

129

bibliography

Michaelian, K, N Rendón, and I. Garzón (1999). “Structure and energetics
of Ni, Ag, and Au nanoclusters.” Physical Review B 60.3, p. 2000 (cit. on
p. 1).

Miller, D. C. et al. (2018). “Next generation multi-scale process systems
engineering framework.” In: Computer Aided Chemical Engineering. Vol. 44.
Elsevier, pp. 2209–2214 (cit. on p. 57).

Misener, R. and C. Floudas (2014). “ANTIGONE: Algorithms for coNTinu-
ous / Integer Global Optimization of Nonlinear Equations.” Journal of
Global Optimization 59.2, pp. 503–526 (cit. on p. 57).

Mores, P., N. Rodríguez, N. Scenna, and S. Mussati (2012). “CO2 capture in
power plants: Minimization of the investment and operating cost of the
post-combustion process using MEA aqueous solution.” International
Journal of Greenhouse Gas Control 10, pp. 148–163 (cit. on pp. 58, 67, 69).

Morgan, J. C., D. Bhattacharyya, C. Tong, and D. C. Miller (2015). “Un-
certainty quantification of property models: Methodology and its ap-
plication to CO2-loaded aqueous MEA solutions.” AIChE Journal 61.6,
pp. 1822–1839 (cit. on p. 68).

Morgan, J. C. et al. (2017). “Thermodynamic modeling and uncertainty
quantification of CO2-loaded aqueous MEA solutions.” Chemical Engi-
neering Science 168, pp. 309–324 (cit. on p. 68).

Mottet, C, J. Goniakowski, F Baletto, R Ferrando, and G Treglia (2004).
“Modeling free and supported metallic nanoclusters: structure and dy-
namics.” Phase Transitions 77.1-2, pp. 101–113 (cit. on p. 36).

Mutapcic, A. and S. Boyd (2009). “Cutting-set methods for robust convex
optimization with pessimizing oracles.” Optimization Methods & Software
24.3, pp. 381–406 (cit. on pp. 5, 38, 43, 46, 54).

Nicholson, B., J. D. Siirola, J.-P. Watson, V. M. Zavala, and L. T. Biegler
(2018a). “pyomo. dae: A modeling and automatic discretization frame-
work for optimization with differential and algebraic equations.” Mathe-
matical Programming Computation 10.2, pp. 187–223 (cit. on p. 98).

Nicholson, B., J. D. Siirola, J.-P. Watson, V. M. Zavala, and L. T. Biegler
(2018b). “Pyomo.DAE: a modeling and automatic discretization frame-
work for optimization with differential and algebraic equations.” Mathe-
matical Programming Computation 10.2, pp. 187–223 (cit. on p. 57).

Perdew, J. P., K. Burke, and M. Ernzerhof (1996). “Generalized Gradient
Approximation Made Simple.” Phys. Rev. Lett. 77 (18), pp. 3865–3868

(cit. on p. 23).
Pistikopoulos, E. N. and M. G. Ierapetritou (1995). “Novel approach for

optimal process design under uncertainty.” Computers & Chemical Engi-
neering 19.10, pp. 1089–1110 (cit. on p. 4).

Pyykkö, P. (2004). “Theoretical chemistry of gold.” Angewandte Chemie
International Edition 43.34, pp. 4412–4456 (cit. on p. 27).

130

bibliography

Pyykkö, P. (2007). “Structural properties: Magic nanoclusters of gold.”
Nature nanotechnology 2.5, p. 273 (cit. on p. 23).

Rahal, S., Z. Li, and D. J. Papageorgiou (2019). “Proactive and Reac-
tive Scheduling of the Steelmaking and Continuous Casting Process
through Adaptive Robust Optimization.” Computers & Chemical Engineer-
ing, p. 106658 (cit. on p. 41).

Roberts, C., R. L. Johnston, and N. T. Wilson (2000). “A genetic algorithm
for the structural optimization of Morse clusters.” Theoretical Chemistry
Accounts 104.2, pp. 123–130 (cit. on p. 1).

Rogan, J., A. Varas, J. A. Valdivia, and M. Kiwi (2013). “A strategy to
find minimal energy nanocluster structures.” Journal of computational
chemistry 34.29, pp. 2548–2556 (cit. on p. 1).

Rooney, W. C. and L. T. Biegler (2001). “Design for model parameter
uncertainty using nonlinear confidence regions.” AIChE Journal 47.8,
pp. 1794–1804 (cit. on pp. 58, 59).

Rooney, W. C. and L. T. Biegler (2003). “Optimal process design with
model parameter uncertainty and process variability.” AIChE Journal
49.2, pp. 438–449 (cit. on p. 63).

Sanchez, A et al. (1999). “When gold is not noble: nanoscale gold catalysts.”
The Journal of Physical Chemistry A 103.48, pp. 9573–9578 (cit. on p. 7).

Sebetci, A. and Z. B. Güvenç (2005). “Global minima of Al N , Au N
and Pt N , N ≤ 80, clusters described by the Voter–Chen version of
embedded-atom potentials.” Modelling and Simulation in Materials Science
and Engineering 13.5, p. 683 (cit. on p. 26).

Seider, W. D., J. D. Seader, and D. R. Lewin (2009). Product & process design
principles: synthesis, analysis and evaluation. John Wiley & Sons (cit. on
p. 67).

Shandiz, M. A. (2008). “Effective coordination number model for the size
dependency of physical properties of nanocrystals.” Journal of Physics:
Condensed Matter 20.32, p. 325237 (cit. on p. 34).

Shi, H. and F. You (2016). “A computational framework and solution algo-
rithms for two-stage adaptive robust scheduling of batch manufacturing
processes under uncertainty.” AIChE Journal 62.3, pp. 687–703 (cit. on
p. 38).

Snyder, L. V. and M. S. Daskin (2006). “Stochastic p-robust location prob-
lems.” Iie Transactions 38.11, pp. 971–985 (cit. on pp. 49, 103).

Subramanyam, A., F. Mufalli, J. M. Pinto, J. Lainez-Aguirre, and C. E.
Gounaris. “Robust multi-period vehicle routing under customer order
uncertainty.” Optimization Research (cit. on p. 38).

Sutton, A. P. (1993). Electronic structure of materials. Clarendon Press (cit. on
p. 8).

131

bibliography

Swaney, R. E. and I. E. Grossmann (1985). “An index for operational
flexibility in chemical process design. Part I: Formulation and theory.”
AIChE Journal 31.4, pp. 621–630 (cit. on p. 4).

Tawarmalani, M. and N. V. Sahinidis (2005). “A polyhedral branch-and-cut
approach to global optimization.” Mathematical Programming 103 (2),
pp. 225–249 (cit. on pp. 57, 107).

Taylor, M. G., N. Austin, C. E. Gounaris, and G. Mpourmpakis (2015).
“Catalyst design based on morphology-and environment-dependent
adsorption on metal nanoparticles.” ACS Catalysis 5.11, pp. 6296–6301

(cit. on p. 1).
Tejeda-Iglesias, M., N. H. Lappas, C. E. Gounaris, and L. Ricardez-Sandoval

(2019). “Explicit model predictive controller under uncertainty: An ad-
justable robust optimization approach.” Journal of Process Control 84,
pp. 115–132 (cit. on p. 38).

Tománek, D., S. Mukherjee, and K. H. Bennemann (1983). “Simple theory
for the electronic and atomic structure of small clusters.” Phys. Rev. B 28

(2), pp. 665–673 (cit. on pp. 8, 22, 34, 36).
Towler, G. and R. Sinnott (2012). Chemical engineering design: principles,

practice and economics of plant and process design. Elsevier (cit. on p. 67).
Underwood, A. V. (1970). Simple formula to calculate mean temperature differ-

ence (cit. on p. 63).
VandeVondele, J. and J. Hutter (2007). “Gaussian basis sets for accurate

calculations on molecular systems in gas and condensed phases.” The
Journal of Chemical Physics 127.11, p. 114105 (cit. on p. 23).

Vanithakumari, S. and K. Nanda (2008). “A universal relation for the
cohesive energy of nanoparticles.” Physics Letters A 372.46, pp. 6930–
6934 (cit. on p. 8).

Varvarezos, D. K., L. T. Biegler, and I. E. Grossmann (1994). “Multiperiod
design optimization with SQP decomposition.” Computers & Chemical
Engineering 18.7, pp. 579–595 (cit. on p. 63).

Vayanos, P., A. Georghiou, and H. Yu (2020). “Robust optimiza-
tion with decision-dependent information discovery.” arXiv preprint
arXiv:2004.08490 (cit. on p. 95).

Vayanos, P., Q. Jin, and G. Elissaios (2020). “ROC++: Robust Optimization
in C++.” arXiv preprint arXiv:2006.08741 (cit. on p. 95).

Vaz, A. I. F., E. M. Fernandes, and M. P. S. Gomes (2004). “SIPAMPL: Semi-
infinite programming with AMPL.” ACM Transactions on Mathematical
Software (TOMS) 30.1, pp. 47–61 (cit. on p. 96).

Vila, F. D., S. T. Hayashi, J. M. Moore, and J. J. Rehr (2016). “Molecular dy-
namics simulations of supported pt nanoparticles with a hybrid sutton–
chen potential.” The Journal of Physical Chemistry C 120.27, pp. 14883–
14891 (cit. on p. 2).

132

bibliography

Wächter, A. and L. T. Biegler (2006). “On the Implementation of a Primal-
Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlin-
ear Programming.” Mathematical Programming 106.1, pp. 25–57 (cit. on
pp. 57, 107).

Wales, D. J. and J. P. Doye (1997). “Global optimization by basin-hopping
and the lowest energy structures of Lennard-Jones clusters containing up
to 110 atoms.” The Journal of Physical Chemistry A 101.28, pp. 5111–5116

(cit. on p. 1).
Wang, J., G. Wang, and J. Zhao (2003). “Structures and electronic properties

of Cu20, Ag20, and Au20 clusters with density functional method.”
Chemical physics letters 380.5-6, pp. 716–720 (cit. on p. 2).

Wang, Y., L. T. Biegler, M. Patel, and J. Wassick (2020). “Robust opti-
mization of solid-liquid batch reactors under parameter uncertainty.”
Chemical Engineering Science 212, p. 115170 (cit. on p. 4).

Watson, J.-P., D. L. Woodruff, and W. E. Hart (2012). “PySP: modeling
and solving stochastic programs in Python.” Mathematical Programming
Computation 4.2, pp. 109–149 (cit. on p. 98).

Wei, C., C. Cheng, and C.-M. Chang (2006). “Transition between icosa-
hedral and cuboctahedral nanoclusters of lead.” The Journal of Physical
Chemistry B 110.48, pp. 24642–24645 (cit. on p. 33).

Weiland, R., M Rawal, and R. Rice (1982). “Stripping of carbon dioxide
from monoethanolamine solutions in a packed column.” AIChE Journal
28.6, pp. 963–973 (cit. on p. 67).

Wendt, M., P. Li, and G. Wozny (2002). “Nonlinear chance-constrained pro-
cess optimization under uncertainty.” Industrial & Engineering Chemistry
Research 41.15, pp. 3621–3629 (cit. on p. 4).

Wiebe, J., I. Cecílio, and R. Misener (2019). “Robust optimization for the
pooling problem.” Industrial & Engineering Chemistry Research (cit. on
p. 4).

Wiebe, J. and R. Misener (2021). “ROmodel: Modeling robust optimization
problems in Pyomo.” arXiv preprint arXiv:2105.08598 (cit. on p. 96).

Wille, L. T. and J. Vennik (1985). “Computational complexity of the ground-
state determination of atomic clusters.” Journal of Physics A: Mathematical
and General 18.8, p. L419 (cit. on p. 2).

Xiao, L. and L. Wang (2004). “From planar to three-dimensional structural
transition in gold clusters and the spin–orbit coupling effect.” Chemical
physics letters 392.4, pp. 452–455 (cit. on p. 27).

Xing, X. et al. (2016). “Insights into the geometries, electronic and magnetic
properties of neutral and charged palladium clusters.” Scientific reports
6, p. 19656 (cit. on p. 26).

Xing, X., B. Yoon, U. Landman, and J. H. Parks (2006). “Structural evolution
of Au nanoclusters: From planar to cage to tubular motifs.” Physical
Review B 74.16, p. 165423 (cit. on p. 27).

133

bibliography

Xiong, P., P. Jirutitijaroen, and C. Singh (2016). “A distributionally robust
optimization model for unit commitment considering uncertain wind
power generation.” IEEE Transactions on Power Systems 32.1, pp. 39–49

(cit. on p. 94).
Yan, Z., M. G. Taylor, A. Mascareno, and G. Mpourmpakis (2018). “Size-,

Shape-, and Composition-Dependent Model for Metal Nanoparticle
Stability Prediction.” Nano letters 18.4, pp. 2696–2704 (cit. on pp. 9, 23).

Yin, X. et al. (2021). “Designing Stable Bimetallic Nanoclusters via an
Iterative Two-Step Optimization Approach.” Molecular Systems Design &
Engineering (cit. on pp. 3, 120).

Yoo, E. et al. (2009). “Enhanced electrocatalytic activity of Pt subnanoclus-
ters on graphene nanosheet surface.” Nano letters 9.6, pp. 2255–2259

(cit. on p. 23).
Yuan, Y., Z. Li, and B. Huang (2018). “Nonlinear robust optimization for

process design.” AIChE Journal 64.2, pp. 481–494 (cit. on pp. 4, 58, 63).
Zhang, H., D. Tian, and J. Zhao (2008). “Structural evolution of medium-

sized Pd n (n= 15–25) clusters from density functional theory.” The
Journal of chemical physics 129.11, p. 114302 (cit. on p. 26).

Zhang, Q., I. E. Grossmann, and R. M. Lima (2016). “On the relation
between flexibility analysis and robust optimization for linear systems.”
AIChE Journal 62.9, pp. 3109–3123 (cit. on p. 38).

Zhang, Q., M. F. Morari, I. E. Grossmann, A. Sundaramoorthy, and J. M.
Pinto (2016). “An adjustable robust optimization approach to schedul-
ing of continuous industrial processes providing interruptible load.”
Computers & Chemical Engineering 86, pp. 106–119 (cit. on p. 38).

Zhang, X., M. Kamgarpour, A. Georghiou, P. Goulart, and J. Lygeros (2017).
“Robust optimal control with adjustable uncertainty sets.” Automatica
75, pp. 249–259 (cit. on p. 38).

Zhang, Y. (2007). “General robust-optimization formulation for nonlinear
programming.” Journal of Optimization Theory and Applications 132.1,
pp. 111–124 (cit. on p. 4).

Zhang, Y. et al. (2009). “Rate-based process modeling study of CO2 capture
with aqueous monoethanolamine solution.” Industrial & engineering
chemistry research 48.20, pp. 9233–9246 (cit. on p. 67).

Zhao, L., C. Ning, and F. You (2019). “Operational optimization of indus-
trial steam systems under uncertainty using data-Driven adaptive robust
optimization.” AIChE Journal 65.7, e16500 (cit. on p. 38).

Zhao, M. et al. (2007). “Atomistic origin, temperature dependence, and
responsibilities of surface energetics: An extended broken-bond rule.”
Physical Review B 75.8, p. 085427 (cit. on p. 8).

134

	Dedication
	Acknowledgments
	Abstract
	Publications
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Nanocluster Structure Elucidation
	1.2 Thesis Aims for Optimal Nanocluster Design
	1.3 Robust Optimization for Nonlinear Problems
	1.4 Thesis Aims for Nonlinear Robust Optimization

	2 Optimal Design of Transition Metal Nanoclusters
	2.1 Introduction
	2.2 Nanocluster Geometry Optimization
	2.3 Mathematical Optimization-based Design
	2.3.1 Optimization Model
	2.3.2 Concave Objective Function
	2.3.3 Symmetry Breaking
	2.3.4 Improving Numerical Tractability

	2.4 Optimal Designs
	2.5 Conclusions
	2.6 Notation
	2.7 Appendix

	3 Metal-Specific Nanocluster Cohesive Energy
	3.1 Introduction
	3.2 Metal-specific Nanocluster Geometry Optimization
	3.3 Metal-specific Optimal Designs
	3.4 Conclusions
	3.5 Notation
	3.6 Appendix

	4 Modeling Nanocluster Geometry Relaxations
	4.1 Introduction
	4.2 Cohesive Energy and Relaxed Structures
	4.3 MILP Modeling for Relaxed Nanoclusters
	4.4 Conclusions
	4.5 Notation

	5 The Generalized Robust Cutting-Set Algorithm
	5.1 Introduction
	5.2 The Robust Counterpart to a Process Design Formulation
	5.2.1 The Generalized Robust Cutting-Set Algorithm
	5.2.2 Decision Rules

	5.3 Implementation Details
	5.3.1 Solving Master Problems
	5.3.2 Separation Approach
	5.3.3 Decision Rules Polishing

	5.4 Evaluation of Robust Solution Quality
	5.5 Conclusions
	5.6 Appendix
	5.6.1 Convergence Proof

	5.7 Notation

	6 Nonlinear Robust Optimization Case Studies
	6.1 Introduction
	6.2 Case Study I: Reactor-Separator
	6.2.1 Case Study I Results

	6.3 Case Study II: Reactor-Heater
	6.3.1 Case Study II Results

	6.4 Case Study III: MEA-solvent CO2 Separation Flowsheet
	6.4.1 Case Study III Results

	6.5 Discussion on Choosing Form of Recourse Policy
	6.6 Conclusions
	6.7 Appendix
	6.7.1 Reactor Separator Model
	6.7.2 Reactor Heater Model
	6.7.3 CO2 Capture Flowsheet Model

	7 PyROS: The Pyomo Robust Optimization Solver
	7.1 Introduction
	7.2 PyROS Methodology
	7.2.1 Polynomial Coefficient Matching
	7.2.2 PyROS Separation Procedure

	7.3 PyROS Solver Interface
	7.3.1 Uncertainty Sets
	7.3.2 PyROS Options
	7.3.3 Calling PyROS

	7.4 Tractability and Performance
	7.5 Conclusions
	7.6 Appendix
	7.6.1 Construction of Benchmark Problems
	7.6.2 PyROS Termination Conditions
	7.6.3 Pyomo Subsolver Statuses in PyROS

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Directions

	 Bibliography

