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Abstract

Understanding and modeling human behavior is fundamental to almost any computer vi-
sion and robotics applications that involve humans. In this thesis, we take a holistic approach to
human behavior modeling and tackle its three essential aspects — simulation, perception, and
generation. Throughout the thesis, we show how the three aspects are deeply connected and
how utilizing and improving one aspect can greatly benefit the other aspects.

As humans live in a physical world, we treat physics simulation as the foundation of our
approach. In the first part of the thesis, we start by developing a robust framework for repre-
senting human behavior in physics simulation. In particular, we model a human using a proxy
humanoid agent inside a physics simulator and treat human behavior as the result of an opti-
mal control policy for the humanoid. This framework allows us to formulate human behavior
modeling as policy learning, which can be solved with reinforcement learning (RL). Since it
is difficult and often suboptimal to manually design simulated agents such as humanoids, we
further propose a transform-and-control RL framework for efficient and automatic design of
agents that are more performant than those created by experts.

In the second part of the thesis, we study the perception of human behavior through the
lens of human pose estimation where we utilize the simulation-based framework developed in
the first part. Specifically, we learn a video-conditioned policy with RL using a reward function
based on how the policy-generated pose aligns with the ground truth. For both first-person and
third-person human pose estimation, our simulation-based approach significantly outperforms
kinematics-based methods in terms of pose accuracy and physical plausibility. The improve-
ment is especially evident in the challenging first-person setting where the front-facing camera
cannot see the person. Besides using simulation, we also propose to use human behavior gener-
ation models for global occlusion-aware human pose estimation with dynamic cameras. Con-
cretely, we use deep generative motion and trajectory models to hallucinate poses for occluded
frames and generate consistent global trajectories from estimated body poses.

In the third part of the thesis, we focus on the generation of human behavior, leveraging our
simulation-based framework and deep generative models. We first present a simulation-based
generation approach that can generate a single future motion of a person from a first-person
video. To address the uncertainty in future human behavior, we develop two deep generative
models that can generate diverse future human motions using determinantal point processes
(DPPs) and latent normalizing flows respectively. Finally, extending from the single-agent set-
ting, we further study multi-agent behavior generation where multiple humans interact with
each other in complex social scenes. We develop a stochastic agent-aware trajectory generation
framework that can forecast diverse and socially-aware human trajectories.
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Chapter 1

Introduction

From motion capture studios that reconstruct actors’ performance to self-driving vehicles that
yield to pedestrians, many computer vision and robotics applications require accurate and ef-
fective modeling of human behavior. There are three essential aspects of human behavior mod-
eling: (1) Perception, which is the process of understanding human behavior from visual in-
puts1; (2) Generation, which aims to generate human behavior from existing behavior data; (3)
Simulation, which intends to replicate human behavior inside a physics simulator. Most prior
research on human behavior modeling focuses mainly on one of the three aspects. For instance,
work on perception, such as human pose estimation [133, 145] or action recognition [283, 312],
usually does not pay attention to the generation and simulation of human behavior. Similarly,
work on humanoid control in physics simulation (e.g., [209, 236]) typically does not address
the perception of human behavior. In this thesis, as illustrated in Fig. 1.1, we aim to show that a
unified treatment of the three aspects allows us to explore the synergy between them and build
intelligent systems with strong abilities to simulate, perceive, and generate human behavior.

As humans live in a physical world, we base the foundation of our approach on the physics
simulation of human behavior. The physics simulation in our approach provides the proper
instrument for a decision-theoretic perspective of human behavior, where humans are modeled
as agents that interact with a physically-simulated environment and their behavior is the result
of an optimal control policy, which is learned from the rewards they receive. This decision-
theoretic perspectivemirrors the situation in the real world, where we as humans are constantly
making decisions according to some policy and refining the policy based on the future payoff.
Through this perspective, we can formulate humanbehaviormodeling as policy learning, which
can be solved using the tools of optimal control or reinforcement learning (RL).

However, it is quite challenging to control a humanoid agent in physics simulation, which
is largely due to the complexity of simulating the dynamics of real humans. To address this
problem, we first propose an approach called residual force control (RFC) that augments a
control policy with external residual forces to compensate for any dynamics mismatch between
the humanoid and real humans. Our approach significantly improves the robustness of control-
ling humanoids in physics simulation, therefore laying a solid foundation for any downstream

1This is the definition used throughout the thesis, which is different from another common meaning of percep-
tion, i.e., the process of an embodied agent such as a human using its senses to perceive the world.
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Simulation
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Pose Estimation

via Behavior Generation (Ch. 6)
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Human Motion Generation (Ch. 7)

Stochastic Human Motion Generation (Ch. 8, 9)

Multi-Agent Stochastic Trajectory Generation (Ch. 10)

Figure 1.1: Overview of this thesis. We tackle simulation, perception, and generation of human
behavior, where we take a unified approach and explore the synergy between the three aspects
indicated by the arrows. For example, how simulation can benefit the perception (Ch. 4 and 5)
and generation (Ch. 7) of human behavior, and how behavior generation can improve percep-
tion (Ch. 6).

applications such as simulation-based perception and generation of human behavior. We also
propose a second approach for enhancing the ability of simulated agents such as humanoids,
called Transform2Act. Unlike RFC which adds imaginary residual forces, Transform2Act is a
general approach for automatically and efficiently designing simulated agents that are more
performant than manually-created agents. Its main idea is to use RL to learn a policy that can
both design and control an agent.

Based on our simulation-based behavior modeling framework, the perception of human be-
haviors can also be framed as policy learning, where we learn a policy conditioned on visual
input to produce the desired behavior. A key advantage of this approach is that the human
behavior output by the system is always constrained to be physically-plausible. For 3D human
pose estimation, this means the estimated human pose is free from physical artifacts such as
jitter, foot sliding, and ground or object penetration, which are very important for applications
like virtual reality andmedical monitoring. In this thesis, we will demonstrate how simulation-
based human pose estimationmethods significantly outperform their kinematic counterparts in
terms of pose accuracy and physical plausibility for both first-person and third-person settings.
Besides leveraging simulation for perception, we also explore the synergy between generation
and perception. Specifically, we propose to use human behavior generation models for global
occlusion-aware human pose estimation with dynamic cameras. The use of deep generative
motion and trajectory models allows our method to hallucinate poses for occluded frames and
generate consistent global trajectories from estimated body poses.

Generation is the final important piece in human behavior modeling. To improve the physi-
cal plausibility of generated behavior, we first apply our simulated-based framework to generate
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the future motion of a person using egocentric videos. Yet, this approach can only forecast a
single future motion, which motivates us to tackle an important aspect of generation, i.e., the
uncertainty of future behavior. From a third-person point of view, a person’s future behavior
is highly uncertain. For instance, we do not know for certain whether a random pedestrian is
going to turn left or right at an intersection. Tomodel the uncertainty, we take a deep generative
approach to human behavior generation with a special focus on the diversity of the generated
behavior. Our deep generative models based on determinantal point processes [154] and la-
tent normalizing flows [253] can generate many diverse yet plausible behaviors instead of only
the perturbations of the most likely behavior, thus covering as many future scenarios as possi-
ble. This is crucial for safety-critical applications such as self-driving vehicles where forecasted
human behaviors need to be comprehensive for the safe planning and control of the vehicle.
Furthermore, extending from the single-agent setting so far, we also study multi-agent stochas-
tic trajectory generation where multiple agents (e.g., humans, vehicles, robots) interact with
each other in complex social scenes. By proposing a new agent-aware Transformer model, we
develop an effective multi-agent behavior generation framework that can forecast diverse and
socially-aware human trajectories.

1.1 Main Contributions and Organization

An outline of this thesis is shown in Fig. 1.1. The thesis is divided into three parts — simu-
lation, perception, and generation of human behavior. However, many chapters focus on the
combination of the three aspects (Ch. 2, 4, 5, 6, and 7), which reflects the unified approach of
the thesis.

1.1.1 Part I: Simulation of Human Behavior

Robust Simulation of Human Behavior with Residual Force Control. In Ch. 2, we propose
an approach called residual force control (RFC) for robustly controlling humanoids in physics
simulation, which lays the foundation of our simulation-based framework. Its main idea is to
augment a humanoid control policy by adding external residual forces into the action space.
During training, the RFC-based policy learns to apply proper residual forces to the humanoid
to compensate for the dynamics mismatch and better imitate the human behavior. Experiments
demonstrated that RFC significantly outperforms state-of-the-art humanoid control methods in
terms of motion quality and learning speed. Equipped with a strong motion imitation frame-
work, RFC, we propose a human motion generation model called dual-policy control which
integrates RFC with deep generative human motion models. Specifically, dual-policy control
first generates diverse humanmotions from deep generative models and then uses RFC to track
the generated motion by conditioning the control policy on it. Notably, dual-policy control en-
ables synthesizing never-ending diverse human behaviors that are also physically-plausible.

Efficient Automatic Design of Simulated Agents. In Ch. 3, we propose a new approach for
automatic and efficient design of simulated agents by incorporating the design procedure of an
agent into its decision-making process. In particular, we learn a transform-and-control policy
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that first designs an agent and then controls the designed agent. In an episode, we divide the
agent’s behavior into two consecutive stages: (1) transform stage, where the agent applies a
sequence of transform actions to modify its skeletal structure and joint attributes without inter-
acting with the environment; (2) execution stage, where the agent assumes the design resulting
from the transform stage and appliesmotor control actions to interact with the environment and
receives rewards. We optimize the transform-and-control policy via a policy gradient method
(PPO [279]), where the training batch for each iteration includes samples collected under vari-
ous designs. In contrast to zeroth-order optimizationmethods such as evolutionary search (ES),
we optimize our policy’s parameters via policy gradients which use first-order information of
the parameterized policy, which improves sample efficiency. Also, unlike ES-based methods
which treat optimization for different designs independently, in our actor-critic based policy
optimization, both the actor and critic are conditioned on the design, which allows experience
sharing and prediction generalization across different designs. We show that our approach out-
performs prior art significantly in terms of learning speed and the performance of the designed
agents.

1.1.2 Part II: Perception of Human Behavior

Simulation-Based First-Person Human Pose Estimation. In Ch. 4, we tackle the challenging
task of first-person human pose estimation, i.e., using a video from a head-mounted camera to
estimate the 3D human motion of the camera wearer. First-person pose estimation has many
potential applications such as virtual reality, medical monitoring, and sports training. It is a
highly under-constrained problem since the camera has no view of the human body, which
motivates us to use physics simulation to better constrain the feasible human motion space. To
this end, we leverage our simulation-based behavior modeling framework for first-person pose
estimation. Specifically, the camera wearer is modeled as a humanoid agent inside a physics
simulatorwhose state includes its joint angles, velocities, and the egocentric video. The goal is to
learn a control policy that maps the agent’s current state to control signals (joint torques) which
are used by the simulator to generate the agent’s next state. The egocentric state features enable
better generalization for the policy since it is invariant to the global position and heading of the
agent. We apply generative adversarial imitation learning [103] to learn the control policy with
synthesized data generated in a virtual environment. Our approach substantially outperforms
the kinematics-based baselines and significantly reduces physical artifacts in estimated pose.

Simulation-Based Third-Person Human Pose Estimation. In Ch. 5, we further tackle third-
person human pose estimation using our simulation-based framework. Most third-person pose
estimation methods [145, 148, 213, 228, 340] only consider human kinematics, which models
body motion without physical forces and focuses on the geometric relationships of 3D poses
and 2D images. In contrast, few human pose estimation approaches pay attention to human
dynamics, which models body motion as the result of physical forces. Kinematics-only meth-
ods often suffer from physical artifacts such as jitter, foot sliding, and ground penetration, while
dynamics-only approaches typically sacrifice accuracy to ensure physical plausibility. In this
work, our goal is to jointly model human kinematics and dynamics to ensure that the estimated
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pose is both accurate and physically-plausible. To achieve this goal, we extend our simulated-
based motion imitation framework by using a structured policy with kinematic reasoning in-
side. Specifically, the policy contains a kinematic refinement unit that iteratively refines an initial
pose estimate based on the matching of 2D keypoints. The refined pose is then used by a con-
trol generation unit in the policy to output control signals (joint torques) of the humanoid to
control its motion. This design couples the kinematic pose refinement unit with the dynamics-
based control generation unit, which are learned jointly with reinforcement learning to achieve
accurate and physically-plausible pose estimation. Experiments on large-scale motion datasets
demonstrate that our approach outperforms prior methods significantly in terms of pose accu-
racy and physical plausibility.

Global Occlusion-Aware Human Pose Estimation via Behavior Generation. In Ch. 6, we
present an approach for 3D global humanmesh recovery frommonocular videos recordedwith
dynamic cameras. Our approach is robust to severe and long-term occlusions and tracks hu-
man bodies evenwhen they go outside the camera’s field of view. To achieve this, our main idea
is to leverage human behavior generation models for perception. Specifically, we first propose
a deep generative motion infiller, which autoregressively infills the body motions of occluded
humans based on visible motions. Additionally, in contrast to prior work, our approach recon-
structs human meshes in consistent global coordinates even with dynamic cameras. Since the
joint reconstruction of human motions and camera poses is underconstrained, we propose a
global trajectory predictor that generates global human trajectories based on local body move-
ments. Using the predicted trajectories as anchors, we present a global optimization framework
that refines the predicted trajectories and optimizes the camera poses to match the video evi-
dence such as 2D keypoints. Experiments on challenging indoor and in-the-wild datasets with
dynamic cameras demonstrate that the proposed approach outperforms prior methods signifi-
cantly in terms of motion infilling and global human pose estimation.

1.1.3 Part III: Generation of Human Behavior

Deterministic Simulation-Based Egocentric HumanMotion Generation. In Ch. 7, we study
egocentric humanmotion generation, i.e., generating a person’s future motion from first-person
videos, which could enable many applications such as assistive living and sports training. It
is even more challenging and under-constrained than first-person pose estimation. A naive
application of traditional human pose generationmethods would often produce futuremotions
that converge to a static pose or diverge to non-humanlike motions. To address these problems,
we again leverage the simulation-based motion imitation framework to constrain the generated
motion. To better align with how humans control their joints, we use proportional-derivative
(PD) control as the action space of our humanoid agent, i.e., instead of directly producing joint
torques, the control policy now produces target joint angles for the agent to reach with PD
control. We also address an important challenge in humanoid control, that the agent may lose
balance and fall, by designing a falling detection mechanism using the value function in RL.We
validate our egocentric generationmodels trainedwithmotion capture data on both indoor and
in-the-wild data, which shows that our method can generate accurate and physically-plausible
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human behavior and generalize to unseen environments.

Stochastic Human Motion Generation with Determinantal Point Processes. In Ch. 8, we
tackle an important aspect of human behavior generation left unaddressed in Ch. 7, i.e., the un-
certainty of future behavior. In many applications, we need to generate diverse future human
behaviors instead of a single likely future behavior. For instance, forecasting diverse future be-
haviors of people is essential for autonomous driving becausemany autonomous vehicles (AVs)
rely heavily on these behavior forecasts to safely plan their actions. In other words, the diversity
of the forecasted trajectories directly impacts the safety of AVs, and more diversity allows AVs
to be better informed when making decisions. To improve diversity, recent motion generation
methods employ generative models such as GANs and VAEs to capture the multi-modal dis-
tribution of future trajectories. However, one aspect that is often overlooked is the sampling
method used at test time to produce diverse future behavior samples from a learned generative
model. The traditional random sampling approach could generate many similar samples and
only cover high-likelihood trajectories while missing other less likely yet possible trajectories,
which leads to low sample efficiency and diversity. The system would have to generate a large
number of samples to increase sample diversity, which is detrimental to real-time systems like
AVs. To address this issue, we propose a novel neural sampler thatmaps contextual information
(e.g., past motion, scene context) to the latent codes of a learned conditional VAEmodel, which
are decoded into diverse behavior samples. We optimize the neural sampler with a novel diver-
sity loss based on determinantal point processes (DPPs) [154] that strikes a balance between
sample diversity and likelihood. Experiments on 2D trajectory data and high-dimensional hu-
man motion data show that our approach significantly improves sample diversity.

Stochastic HumanMotionGenerationwith Diversifying Latent Flows. In Ch. 9, we address
the limitation of the neural sampling approach described above to further improve the diver-
sity of generated human behaviors. Although the previous approach with DPPs can greatly
boost the sample diversity of generative models, it is only able to produce a single set of diverse
behaviors, which is undesirable for applications that require more diverse samples from a gen-
erative human behavior model. For instance, AVs could use as many future behavior samples
as possible to ensure the safety of their planned actions. To tackle this aspect, we propose using
normalizing flowmodels [253] to dissect the latent space of generative models into multiple re-
gions. We design a diversity loss with an energy-based formulation to optimize the flowmodels
and look for amore diversified latent space partition. Our extensive experiments on humanmo-
tion generation demonstrate that the proposed approach achieved state-of-the-art performance
in terms of both sample diversity and accuracy.

Multi-Agent Stochastic TrajectoryGenerationwithTransformers. InCh. 10, we tacklemulti-
agent stochastic trajectory generation, extending the single-agent setting studied previously.
Generating accurate future trajectories of multiple agents is essential for autonomous systems,
but is challenging due to the complex agent interaction and the uncertainty in each agent’s fu-
ture behavior. Forecasting multi-agent trajectories requires modeling two key dimensions: (1)
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time dimension, where we model the influence of past agent states over future states; (2) so-
cial dimension, where we model how the state of each agent affects others. Most prior methods
model these two dimensions separately, e.g., first using a temporalmodel to summarize features
over time for each agent independently and then modeling the interaction of the summarized
features with a social model. This approach is suboptimal since independent feature encoding
over either the time or social dimension can result in a loss of information. Instead, we would
prefer amethod that allows an agent’s state at one time to directly affect another agent’s state at a
future time. To this end, we propose a newTransformer, calledAgentFormer, that jointlymodels
the time and social dimensions. The model leverages a sequence representation of multi-agent
trajectories by flattening trajectory features across time and agents. Since standard attention
operations disregard the agent identity of each element in the sequence, AgentFormer uses a
novel agent-aware attentionmechanism that preserves agent identities by attending to elements
of the same agent differently than elements of other agents. Based on AgentFormer, we propose
a stochastic multi-agent trajectory prediction model that can attend to features of any agent at
any previous timestep when inferring an agent’s future position. Our method substantially
improves the state of the art on well-established trajectory datasets.

1.2 Bibliographical Remarks

This thesis only contains works for which the author was a primary contributor. Ch.s 2, 4, 7,
8, and 9 are based on joint work with Kris Kitani [360–364]. Ch. 3 is based on joint work with
Yuda Song, Zhengyi Luo, Wen Sun, and Kris Kitani [365]. Ch. 5 is based on joint work with
Shih-En Wei, Tomas Simon, Kris Kitani, and Jason Saragih [366]. Ch. 6 is based on joint work
with Umar Iqbal, Pavlo Molchanov, Kris Kitani, and Jan Kautz [359]. Ch. 10 is based on joint
work with Xinshuo Weng, Yanglan Ou, and Kris Kitani [367].

1.3 Excluded Research

I excluded a significant portion of research undertaken during my Ph.D. to keep this thesis
succint. Below is the excluded research:

1. Human Behavior Simulation: Dynamics-regulated kinematic policy for human-scene in-
teraction [192].

2. Human Behavior Perception: Non-line-of-sight (NLOS) simulation-based human pose
estimation [122] and imaging [121]; Human pose estimation with chest-mounted cam-
eras [117]; Hand pose estimation with wrist-worn cameras [337].

3. Human Behavior Generation: Generative human activity and trajecotry forecasting [80];
Joint multi-agent tracking and forecasting [332].

4. Reinforcement Learning and Control: Online model-based meta RL for personalized
navigation [293].
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Chapter 2

Robust Simulation of Human Behavior
with Residual Force Control

2.1 Introduction

Understanding human behaviors and creating virtual humans that act like real people has been
a mesmerizing yet elusive goal in computer vision and graphics. One important step to achieve
this goal is human motion synthesis which has broad applications in animation, gaming and
virtual reality. With advances in deep learning, data-driven approaches [18, 105, 106, 226, 236]
have achieved remarkable progress in producing realistic motions learned from motion cap-
ture data. Among them are physics-based methods [18,226,236] empowered by reinforcement
learning (RL), where a humanoid agent in simulation is trained to imitate reference motions.
Physics-based methods have many advantages over their kinematics-based counterparts. For
instance, the motions generated with physics are typically free from jitter, foot skidding or ge-
ometry penetration as they respect physical constraints. Moreover, the humanoid agent inside
simulation can interact with the physical environment and adapt to various terrains and per-
turbations, generating diverse motion variations.

However, physics-based methods have their own challenges. In many cases, the humanoid
agent fails to imitate highly agile motions like ballet dance or long-term motions that involve
swift transitions between various locomotions. We attribute such difficulty to the dynamics mis-
match between the humanoid model and real humans. Humans are very difficult to model
because they are very complex creatures with hundreds of bones and muscles. Although prior
work has tried to improve the fidelity of the humanoid model [162, 336], it is nonetheless safe
to say that these models are not exact replicas of real humans and the dynamics mismatch still
exists. The problem is further complicated when motion capture data comprises a variety of in-
dividuals with diverse body types. Due to the dynamics mismatch, motions produced by real
humans may not be admissible by the humanoid model, which means no control policy of the
humanoid is able to generate those motions.

To overcome the dynamics mismatch, we propose an approach termed Residual Force Con-
trol (RFC)which can be seamlessly integrated into existing RL-based humanoid control frame-
works. Specifically, RFC augments a control policy by introducing external residual forces into
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Figure 2.1: Top: A ballet dancer performing highly agile moves like jeté, arabesque and pirou-
ette. Bottom: A humanoid agent controlled by a policy augmented with the proposed residual
forces (blue arrows) is able to dance like the performer. The motion is best viewed in our sup-
plementary video.

the action space. During RL training, the RFC-based policy learns to apply residual forces onto
the humanoid to compensate for the dynamics mismatch and achieve better motion imitation.
Intuitively, the residual forces can be interpreted as invisible forces that enhance the humanoid’s
abilities to go beyond the physical limits imposed by the humanoid model. RFC generates
a more expressive dynamics that admits a wider range of human motions since the residual
forces serve as a learnable time-varying correction to the dynamics of the humanoid model. To
validate our approach, we perform motion imitation experiments on a wide range of dynamic
human motions including ballet dance and acrobatics. The results demonstrate that RFC out-
performs state-of-the-art methods with faster convergence and better motion quality. Notably,
we are able to showcase humanoid control policies that are capable of highly agile ballet dance
moves like pirouette, arabesque and jeté (Fig. 2.1).

Another challenge facing physics-basedmethods is synthesizingmulti-modal long-termhu-
man motions. Previous work has elicited long-term human motions with hierarchical RL [207,
208, 239] or user interactive control [18, 226]. However, these approaches still need to define
high-level tasks of the agent or require human interaction. We argue that removing these re-
quirements could be critical for applications like automated motion generation and large-scale
character animation. Thus, we take a different approach to long-term human motion synthesis
by leveraging the temporal dependence of humanmotion. In particular, we propose a dual-policy
control framework where a kinematic policy learns to predict multi-modal future motions based
on the past motion and a latent variable used to model human intent, while an RFC-based con-
trol policy learns to imitate the output motions of the kinematic policy to produce physically-
plausible motions. Experiments on a large-scale human motion dataset, Human3.6M [118],
show that our approach with RFC and dual policy control can synthesize stable long-term hu-
man motions without any task guidance or user input.

The main contributions of this work are as follows: (1) We address the dynamics mismatch
in motion imitation by introducing the idea of RFC which can be readily integrated into RL-
based humanoid control frameworks. (2) We propose a dual-policy control framework to syn-
thesize multi-modal long-term human motions without the need for task guidance or user in-
put. (3) Extensive experiments show that our approach outperforms state-of-the-art methods
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in terms of learning speed and motion quality. It also enables imitating highly agile motions
like ballet dance that evade prior work. With RFC and dual-policy control, we present the first
humanoid control method that successfully learns from a large-scale human motion dataset
(Human3.6M) and generates diverse long-term motions.

2.2 Related Work

Kinematics-based models for human motion synthesis have been extensively studied by the
computer graphics community. Early approaches construct motion graphs from large motion
datasets and design controllers to navigate through the graph to generate novel motions [160,
270]. Alternatively, prior work has explored learning a low-dimensional embedding space to
synthesizemotions continuously [164,167,285]. Advances in deep learning have enabledmeth-
ods that use deep neural networks to design generativemodels of humanmotions [105,106,297].
While the graphics community focuses on user control, computer vision researchers have been
increasingly interested in predicting future human motions. A vast body of work has used re-
current neural networks to predict a deterministic future motion from the past motion [3,66,77,
125,177,201,233,319]. To address the uncertainty of future, stochastic approaches develop deep
generativemodels to predictmulti-modal futuremotions [14,155,351,361,363]. Themajor draw-
back of kinematics-based approaches is that they are prone to generating physically-invalidmo-
tions with artifacts like jitter, foot skidding and geometry (e.g., body, ground) penetration.

Physics-based methods for motion synthesis address the limitation of kinematics-based mod-
els by enforcing physical constraints. Earlywork has adoptedmodel-basedmethods for tracking
reference motions [165, 184, 185, 217, 356]. Recently, deep RL has achieved great success in im-
itating human motions with manually-designed rewards [182, 183, 236]. GAIL [103] based ap-
proaches have been proposed to eliminate the need for reward engineering [209,330]. RL-based
humanoid control has also been applied to estimating physically-plausible human poses from
videos [122,360,362]. To synthesize long-term humanmotions, prior work has resorted to hier-
archical RLwith predefined high-level task objectives [207,208,239]. Alternatively, recentworks
use deepRL to learn controllable polices to generate long-termmotionswith user input [18,226].
Different from previous work, our dual-policy control framework exploits the temporal depen-
dence of humanmotion and synthesizes multi-modal long-termmotions by forecasting diverse
futures, which can be used to replace manual task guidance or user input. Furthermore, our
proposed residual force control addresses the dynamics mismatch in humanoid control and
enables imitating agile motions like ballet dance that evade prior work.

Inferring external forces fromhumanmotion has been an active research area in biomechanics.
Researchers have developedmodels that regress ground reaction forces fromhumanmotion us-
ing supervised learning [37,129,222]. These approaches require expensive force data collected
in laboratory settings to train themodels. On the other hand, machine learning researchers have
proposed differentiable physics engines that enable learning forces to control simple simulated
systems [47,48]. Trajectory optimization based approaches [214,215] have also been used to op-
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timize external contact forces to synthesize human motions. A recent work [59] predicts forces
acting on rigid objects in simulation to match image evidence with contact point supervision.
Unlike prior work, we use deep RL to learn residual forces that complement contact forces to
improve motion imitation without the supervision of forces or contact points.

2.3 Preliminaries

The task of humanoid control-based motion imitation can be formulated as a Markov decision
process (MDP), which is defined by a tupleM = (S,A, T , R, γ) of states, actions, transition dy-
namics, a reward function, and a discount factor. A humanoid agent interacts with a physically-
simulated environment according to a policy π(a|s), which models the conditional distribution
of choosing an action a ∈ A given the current state s ∈ S. Starting from some initial state s0,
the agent iteratively samples an action at from the policy π and the simulation environment
with transition dynamics T (st+1|st,at) generates the next state st+1 and gives the agent a re-
ward rt. The reward is assigned based on how the agent’s motion aligns with a given reference
motion. The agent’s goal is to learn an optimal policy π∗ that maximizes its expected return
J(π) = Eπ

[∑
t γ

trt
]. To solve for the optimal policy, one can apply one’s favorite reinforcement

learning algorithm (e.g., PPO [279]). In the following, we will give a more detailed descrip-
tion of the states, actions, policy and rewards to show howmotion imitation fits in the standard
reinforcement learning (RL) framework.

States. The state s is formed by the humanoid state x = (q, q̇) which includes all degrees of
freedom (DoFs) q of the humanoid and their corresponding velocities q̇. Specifically, the DoFs
q = (qr, qnr) include 6 root DoFs qr (global position and orientation) as well as the angles of
other joints qnr. We transform qr to the root’s local coordinate to remove dependency on global
states.

Actions. As noticed in previous work [241, 362], using proportional derivative (PD) con-
trollers at each joint yields more robust policies than directly outputting joint torques. Thus,
the action a consists of the target angles u of the PD controllers mounted at non-root joint DoFs
qnr (root DoFs qr are not actuated). The joint torques τ can then be computed as

τ = kp ◦ (u− qnr)− kd ◦ q̇nr, (2.1)

where kp and kd are manually-specified gains and ◦ denotes element-wise multiplication.

Policy. As the actiona is continuous, weuse a parametrizedGaussian policyπθ(a|s) = N (µθ,Σ)

where the mean µθ is output by a neural network with parameters θ and Σ is a fixed diagonal
covariance matrix. At test time, instead of sampling we use the mean action to achieve best
performance.
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Rewards. Given a reference motion x̂0:T = (x̂0, . . . , x̂T−1), we need to design a reward func-
tion to incentivize the humanoid agent to imitate x̂0:T . To this end, the reward rt = rimt is
defined by an imitation reward rimt that encourages the state xt of the humanoid agent to match
the reference state x̂t.

During RL training, the agent’s initial state is intialized to a random frame from the reference
motion x̂0:T . The episode ends when the agent falls to the ground or the episode horizon H is
reached.

2.4 Residual Force Control (RFC)

As demonstrated in prior work [236, 362], we can apply the motion imitation framework de-
scribed in Sec. 2.3 to successfully learn control policies that imitate human locomotions (e.g.,
walking, running, crouching) or acrobatics (e.g, backflips, cartwheels, jump kicks). However,
the motion imitation framework has its limit on the range of motions that the agent is able to
imitate. In our experiments, we often find the framework unable to learnmore complexmotions
that require sophisticated foot interaction with the ground (e.g., ballet dance) or long-termmo-
tions that involve swift transitions between differentmodes of locomotion. We posit that the dif-
ficulty in learning such highly agile motions can be attributed to the dynamics mismatch between
the humanoid model and real humans, i.e., the humanoid transition dynamics T (st+1|st,at)
is different from the real human dynamics. Thus, due to the dynamics mismatch, a reference
motion x̂0:T generated by a real human may not be admissible by the transition dynamics T ,
which means no policy under T can generate x̂0:T .

To overcome the dynamicsmismatch, our goal is to come upwith a new transition dynamics
T ′ that admits a wider range of motions. The new transition dynamics T ′ should ideally satisfy
two properties: (1) T ′ needs to be expressive and overcome the limitations of the current dy-
namics T ; (2) T ′ needs to be physically-valid and respect physical constraints (e.g., contacts),
which implies that kinematics-based approaches such as directly manipulating the resulting
state st+1 by adding some residual δs are not viable as they may violate physical constraints.

Based on the above considerations, we propose residual force control (RFC), that considers a
more general form of dynamics T̃ (st+1|st,at, ãt) where we introduce a corrective control ac-
tion ãt (i.e., external residual forces acting on the humanoid) alongside the original humanoid
control action at. We also introduce a corresponding RFC-based composite policy π̃θ(at, ãt|st)
which can be decomposed into two policies: (1) the original policy π̃θ1(at|st) with parameters
θ1 for humanoid control and (2) a residual force policy π̃θ2(ãt|st) with parameters θ2 for cor-
rective control. The RFC-based dynamics and policy are more general as the original policy
π̃θ1(at|st) ≡ π̃θ(at,0|st) corresponds to a policy π̃θ that always outputs zero residual forces.
Similarly, the original dynamics T (st+1|st,at) ≡ T̃ (st+1|st,at,0) corresponds to the dynam-
ics T̃ with zero residual forces. During RL training, the RFC-based policy π̃θ(at, ãt|st) learns
to apply proper residual forces ãt to the humanoid to compensate for the dynamics mismatch
and better imitate the referencemotion. Since ãt is sampled from π̃θ2(ãt|st), the dynamics of the
original policy π̃θ1(at|st) is parametrized by θ2 as T ′θ2(st+1|st,at) ≡ T̃ (st+1|st,at, ãt). From this
perspective, ãt are learnable time-varying dynamics correction forces governed by π̃θ2 . Thus,
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by optimizing the composite policy π̃θ(at, ãt|st), we are in fact jointly optimizing the original
humanoid control action at and the dynamics correction (residual forces) ãt. In the following,
we propose two types of RFC, each with its own advantages.

2.4.1 RFC-Explicit

One way to implement RFC is to explicitly model the corrective action ãt as a set of residual
force vectors {ξ1, . . . , ξM} and their respective contact points {e1, . . . , eM}. As the humanoid
model is formed by a set of rigid bodies, the residual forces are applied to M bodies of the
humanoid, where ξj and ej are represented in the local body frame. To reduce the size of
the corrective action space, one can apply residual forces to a limited number of bodies such
as the hip or feet. In RFC-Explicit, the corrective action of the policy π̃θ(a, ã|s) is defined as
ã = (ξ1, . . . , ξM , e1, . . . , eM ) and the humanoid control action is a = u as before (Sec. 2.3). We
can describe the humanoid motion using the equation of motion for multibody systems [287]
augmented with the proposed residual forces:

B(q)q̈ +C(q, q̇)q̇ + g(q) =

[
0

τ

]
+
∑
i

JTvihi︸ ︷︷ ︸
Contact Forces

+
M∑
j=1

JTejξj︸ ︷︷ ︸
Residual Forces

, (2.2)

where we have made the residual forces term explicit. Eq. (2.2) is an ordinary differential equa-
tion (ODE), and by solving it with an ODE solver we obtain the aforementioned RFC-based
dynamics T̃ (st+1|st,at, ãt). On the left hand side q̈,B,C, g are the joint accelerations, the in-
ertial matrix, the matrix of Coriolis and centrifugal terms, and the gravity vector, respectively.
On the right hand side, the first term contains the torques τ computed from a (Sec. 2.3) applied
to the non-root joint DoFs qnr and 0 corresponds to the 6 non-actuated root DoFs qr. The sec-
ond term involves existing contact forces hi on the humanoid (usually exerted by the ground
plane) and the contact points vi of hi, which are determined by the simulation environment.
Here, Jvi = dvi/dq is the Jacobian matrix that describes how the contact point vi changes with
the joint DoFs q. By multiplying JTvi , the contact force hi is transformed from the world space
to the joint space, which can be understood using the principle of virtual work, i.e., the virtual
work in the joint space equals that in the world space or (JTvihi)

Tdq = hTi dvi. Unlike the con-
tact forces hi which are determined by the environment, the policy can control the corrective
action ãwhich includes the residual forces ξj and their contact points ej in the proposed third
term. The Jacobian matrix Jej = dej/dq is similarly defined as Jvi . During RL training, the
policy will learn to adjust ξj and ej to better imitate the referencemotion. Most popular physics
engines (e.g., MuJoCo [308], Bullet [42]) use a similar equation of motion to Eq. (2.2) (without
residual forces), which makes our approach easy to integrate.

As the residual forces are designed to be a correction mechanism to the original humanoid
dynamics T , we need to regularize the residual forces so that the policy only invokes the residual
forces when necessary. Consequently, the regularization keeps the new dynamics T ′ close to
the original dynamics T . Formally, we change the RL reward function by adding a regularizing
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reward rregt :

rt = rimt + wregr
reg
t , r

reg
t = exp

− M∑
j=1

(
kf
∥∥ξj∥∥2 + kcp ‖ej‖2

) , (2.3)

where wreg, kf and kcp are weighting factors. The regularization constrains the residual force
ξj to be as small as possible and pushes the contact point ej to be close to the local body origin.

2.4.2 RFC-Implicit

One drawback of RFC-explicit is that one must specify the number of residual forces and the
contact points. To address this issue, we also propose an implicit version of RFC where we
directly model the total joint torques η =

∑
JTejξj of the residual forces. In this way, we do not

need to specify the number of residual forces or the contact points. We can decompose η into
two parts (ηr,ηnr) that correspond to the root and non-root DoFs respectively. We can merge
η with the first term on the right of Eq. (2.2) as they are both controlled by the policy, which
yields the new equation of motion:

B(q)q̈ +C(q, q̇)q̇ + g(q) =

[
ηr

τ ���+ ηnr

]
+
∑
i

JTvihi , (2.4)

where we further remove ηnr (crossed out) because the torques applied at non-root DoFs are
already modeled by the policy π̃θ(a, ã|s) through τ which can absorb ηnr. In RFC-Implicit, the
corrective action of the policy is defined as ã = ηr. To regularize ηr, we use a similar reward to
Eq. (2.3):

rt = rimt + wregr
reg
t , r

reg
t = exp

(
−kr ‖ηr‖

2
)
, (2.5)

where kr is a weighting factor. While RFC-Explicit provides more interpretable results by ex-
posing the residual forces and their contact points, RFC-Implicit is computationally more effi-
cient as it only increases the action dimensions by 6 which is far less than that of RFC-Explicit
and it does not require Jacobian computation. Furthermore, RFC-Implicit does not make any
underlying assumptions about the number of residual forces or their contact points.

2.4.3 Discussion

As shown in Eq. (2.4), RFC-explicit can generate torques ηr and ηnr for both the root and non-
root DoFs. So another variant of RFC-explicit is to remove the original torque action τ , which
can be absorbed into ηnr. However, this approach is less desirable than the original RFC-Explicit
and RFC-Implicit. This is because it would need many residual forces acting on different body
parts to actuate every joint DoFs, leading to larger action space and less computational effi-
ciency. In particular, each residual force adds 9 DoFs (force, torque, and contact point), which
are much more than the 3 DoFs typically required for each joint. Additionally, it is also harder
to regularize the residual forces since it is now also responsible for the normal joint actuation
of the humanoid instead of just compensating for the dynamics mismatch.
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2.5 Dual-Policy Control for Extended Motion Generation

So far our focus has been on imitating a given reference motion, which in practice is typically
a short and segmented motion capture sequence (e.g., within 10 seconds). In some applica-
tions (e.g., behavior simulation, large-scale animation), we want the humanoid agent to au-
tonomously exhibit long-term behaviors that consist of a sequence of diverse agile motions.
Instead of guiding the humanoid using manually-designed tasks or direct user input, our goal
is to let the humanoid learn long-term behaviors directly from data. To achieve this, we need
to develop an approach that (i) infers future motions from the past and (ii) captures the multi-
modal distribution of the future.

Algorithm 1 Learning RFC-based policy π̃θ in dual-policy control
1: Input: motion data X , pretrained kinematic policy κψ
2: θ ← random weights
3: while not converged do
4: D ← ∅ . initialize sample memory
5: while D is not full do
6: x̂0:p ← random motion from X
7: xp−1 ← x̂p−1 . initialize humanoid state
8: for t← p, . . . , p+ nf − 1 do
9: if (t− p) mod f = 0 then . if reaching end of reference motion segment

10: z ∼ p(z)

11: x̂t:t+f ← κψ(x̂t:t+f |x̂t−p:t, z) . generate next reference motion segment
12: end if
13: st ← (xt−1, x̂t−1, z); at, ãt ← π̃θ(at, ãt|st)
14: xt ← next state from simulation with at and ãt
15: rt ← reward from Eq. (2.3) or (2.5)
16: st+1 ← (xt, x̂t, z)

17: store (st,at, ãt, rt, st+1) into memory D
18: end for
19: end while
20: θ ← PPO [279] update using trajectory samples in D . update control policy π̃θ
21: end while

As multi-modal behaviors are usually difficult to model in the control space due to non-
differentiable dynamics, we first model human behaviors in the kinematic space. We propose
a dual-policy control framework that consists of a kinematic policy κψ and an RFC-based con-
trol policy π̃θ. The ψ-parametrized kinematic policy κψ(xt:t+f |xt−p:t, z) models the conditional
distribution over a f -step future motion xt:t+f , given a p-step past motion xt−p:t and a latent
variable z used to model human intent. We learn the kinematic policy κψ with a conditional
variational autoencoder (CVAE [141]), where we optimize the evidence lower bound (ELBO):

L = Eqφ(z|xt−p:t,xt:t+f ) [log κψ(xt:t+f |xt−p:t, z)]−KL (qφ(z|xt−p:t,xt:t+f )‖p(z)) , (2.6)
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where qφ(z|xt−p:t,xt:t+f ) is a φ-parametrized approximate posterior (encoder) distribution and
p(z) is a Gaussian prior. The kinematic policy κψ and encoder qφ are instantiated as Gaussian
distributions whose parameters are generated by two recurrent neural networks (RNNs) re-
spectively.

Once the kinematic policy κψ is learned, we can generate multi-modal future motions x̂t:t+f
from the pastmotionxt−p:t by sampling z ∼ p(z) anddecoding zwithκψ. To produce physically-
plausible motions, we use an RFC-based control policy π̃θ(a, ã|x, x̂, z) to imitate the output
motion x̂t:t+f of κψ by treating x̂t:t+f as the reference motion in the motion imitation frame-
work (Sec. 2.3 and 2.4). The state s of the policy now includes the state x of the humanoid,
the reference state x̂ from κψ, and the latent code z. To fully leverage the reference state x̂, we
use the non-root joint angles q̂nr inside x̂ to serve as bases for the target joint angles u of the
PD controllers. For this purpose, we change the humanoid control action at from u to residual
angles δu, and u can be computed as u = q̂nr + δu. This additive action will improve policy
learning because q̂nr provides a good guess for u.

The learning procedure for the control policy π̃θ is outlined in Alg. 1. In each RL episode,
we autoregressively apply the kinematic policy n times to generate reference motions x̂p:p+nf of
nf steps, and the agent with policy π̃θ is rewarded for imitating x̂p:p+nf . The reason for autore-
gressively generating n segments of future motions is to let the policy π̃θ learn stable transitions
through adjacent motion segments (e.g., x̂p:p+f and x̂p+f :p+2f). At test time, we use the kine-
matic policy κψ and control policy π̃θ jointly to synthesize infinite-horizon human motions by
continuously forecasting futureswithκψ andphysically tracking the forecastedmotionswith π̃θ.

2.6 Experiments

Our experiments consist of two parts: (1)Motion imitation, wherewe examinewhether the pro-
posed RFC can help overcome the dynamics mismatch and enable the humanoid to learn more
agile behaviors from reference motions; (2) Extended motion synthesis, where we evaluate the
effectiveness of the proposed dual-policy control along with RFC in synthesizing long-term hu-
man motions.

2.6.1 Motion Imitation

Reference Motions. We use the CMU motion capture (MoCap) database (link) to provide
reference motions for imitation. Specifically, we deliberately select eight clips of highly agile
motions to increase the difficulty. We use clips of ballet dance with signature moves like pirou-
ette, arabesque and jeté, which have sophisticated foot-ground interaction. We also include
clips of acrobatics such as handsprings, backflips, cartwheels, jump kicks and side flips, which
involve dynamic body rotations.

Implementation Details. We use MuJoCo [308] as the physics engine. We construct the hu-
manoid model from the skeleton of subject 8 in the CMU Mocap database while the reference
motions we use are from various subjects. The humanoid model has 38 DoFs and 20 rigid bod-
ies with properly assigned geometries. Following prior work [236], we add the motion phase
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Ballet1 Ballet2 Ballet3 Handspring

Back�ip Cartwheel Jumpkick Side�ip

Y-axis: Return X-axis: Epoch RFC-Explicit (Ours) RFC-Implicit (Ours) DeepMimic

Figure 2.2: Learning curves of our RFC models and DeepMimic for imitating various agile mo-
tions.

to the state of the humanoid agent. We also use the stable PD controller [303] to compute joint
torques. The simulation runs at 450Hz and the policy operates at 30Hz. We use PPO [279] to
train the policy for 2000 epochs, each with 50,000 policy steps. Each policy takes about 1 day to
train on a 20-core machine with an NVIDIA RTX 2080 Ti.

Comparisons. We compare the two variants – RFC-Explicit and RFC-Implicit – of our ap-
proach against the state-of-the-art method for motion imitation, DeepMimic [236]. For fair
comparison, the only differences between our RFCmodels and the DeepMimic baseline are the
residual forces and the regularizing reward. Fig. 2.2 shows the learning curves of our models
andDeepMimic, wherewe plot the average return per episode against the training epochs for all
eight reference motions. We train three models with different initial seeds for each method and
each reference motion. The return is computed using only the motion imitation reward and
excludes the regularizing reward. We can see that both variants of RFC converge faster than
DeepMimic consistently. Moreover, our RFC models always converge to better motion poli-
cies as indicated by the higher final returns. One can also observe that RFC-Explicit and RFC-
Implicit perform similarly, suggesting that they are equally capable of imitating agile motions.
Since the motion quality of learned policies is best seen in videos, we encourage the reader to
refer to the supplementary video1 for qualitative comparisons. One will observe that RFC can
successfully imitate the sophisticated ballet dance skills while DeepMimic fails to reproduce
them. We believe the failure of DeepMimic is due to the dynamics mismatch between the hu-
manoid model and real humans, which results in the humanoid unable to generate the external
forces needed to produce the motions. On the other hand, RFC overcomes the dynamics mis-
match by augmenting the original humanoid dynamics with learnable residual forces, which
enables a more flexible new dynamics that admits a wider range of agile motions. We note that

1Video: https://youtu.be/XuzH1u78o1Y.
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Method Phsyics-
based

Human3.6M (Mix) Human3.6M (Cross) EgoMocap
MAE ↓ FAE ↓ MAE ↓ FAE ↓ MAE ↓ FAE ↓

RFC-Explicit (Ours) 3 2.498 2.893 2.379 2.802 0.557 0.710
RFC-Implicit (Ours) 3 2.498 2.905 2.377 2.802 0.556 0.701

EgoPose [362] 3 2.784 3.732 2.804 3.893 0.922 1.164
ERD [66] 7 2.770 3.223 3.066 3.578 0.682 1.092
acLSTM [177] 7 2.909 3.315 3.386 3.860 0.715 1.130

Table 2.1: Quantitative results for human motions synthesis.

the comparisons presented here are only for simulation domains (e.g., animation and motion
synthesis) since external residual forces are not directly applicable to real robots. However,
we do believe that RFC could be extended to a warm-up technique to accelerate the learning
of complex policies for real robots, and the residual forces needed to overcome the dynamics
mismatch could be used to guide agent design.

2.6.2 Extended Motion Synthesis

Datasets. Our experiments are performedwith twomotion capture datasets: Human3.6M[118]
and EgoMocap [362]. Human3.6M is a large-scale dataset with 11 subjects (7 labeled) and 3.6
million total video frames. Each subject performs 15 actions in 30 takes where each take lasts
from 1 to 5 minutes. We consider two evaluation protocols: (1) Mix, where we train and test on
all 7 labeled subjects but using different takes; (2) Cross, where we train on 5 subjects (S1, S5,
S6, S7, S8) and test on 2 subjects (S9 and S11). We train a model for each action for all meth-
ods. The other dataset, EgoMocap, is a relatively small dataset including 5 subjects and around
1 hour of motions. We train the models using the default train/test split in the mixed subject
setting. Both datasets are resampled to 30Hz to conform to the policy.

Implementation Details. The simulation setup is the same as the motion imitation task. We
build two humanoids, one with 52 DoFs and 18 rigid bodies for Human3.6M and the other one
with 59 DoFs and 20 rigid bodies for EgoMocap. For both datasets, the kinematic policy κψ
observes motions of p = 30 steps (1s) to forecast motions of f = 60 steps (2s). When training
the control policy π̃θ, we generate n = 5 segments of future motions with κψ.

Baselines andMetrics. We compare our approach against two well-known kinematics-based
motion synthesis methods, ERD [66] and acLSTM [177], as well as a physics-based motion
synthesis method that does not require task guidance or user input, EgoPose [362]. We use
two metrics, mean angle error (MAE) and final angle error (FAE). MAE computes the average
Euclidean distance between predicted poses and ground truth poses in angle space, while FAE
computes the distance for the final frame. Bothmetrics are computedwith a forecasting horizon
of 2s. For stochastic methods, we generate 10 future motion samples to compute the mean of
the metrics.
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Component Metric
AddAct ResForce MAE ↓ FAE ↓

3 3 2.498 2.893
3 7 2.610 3.150
7 3 3.099 3.634

Table 2.2: Ablation Study.

Results. In Table 2.1, we show quantitative results
of all models for motion forecasting over the 2s hori-
zon, which evaluates the methods’ ability to infer fu-
ture motions from the past. For all datasets and eval-
uation protocols, our RFC models with dual-policy
control outperform the baselines consistently in both
metrics. We hypothesize that the performance gain
over the other physics-based method, EgoPose, can
be attributed to the use of kinematic policy and the residual forces. To verify this hypothesis,
we conduct an ablation study in theHuman3.6M (Mix) setting. We trainmodel variants of RFC-
Implicit by removing the residual forces (ResForce) or the additive action (AddAct) that uses
the kinematic policy’s output. Table 2.2 demonstrates that, in either case, the performance de-
creases for both metrics, which supports our previous hypothesis. Unlike prior physics-based
methods, our approach also enables synthesizing sitting motions even when the chair is not
modeled in the physics environment, because the learned residual forces can provide the con-
tact forces need to support the humanoid. Furthermore, our model allows infinite-horizon sta-
ble motion synthesis by autoregressively applying dual policy control. Asmotions are best seen
in videos, please refer to the supplementary video for qualitative results.

2.7 Conclusion

In this work, we proposed residual force control (RFC), a novel and simple method to address
the dynamics mismatch between the humanoid model and real humans. RFC uses external
residual forces to provide a learnable time-varying correction to the dynamics of the humanoid
model, which results in a more flexible new dynamics that admits a wider range of agile mo-
tions. Experiments showed that RFC outperforms state-of-the-art motion imitation methods in
terms of convergence speed and motion quality. RFC also enabled the humanoid to learn so-
phisticated skills like ballet dance which have eluded prior work. Furthermore, we proposed
a dual-policy control framework to synthesize multi-modal infinite-horizon human motions
without any task guidance or user input, which opened up new avenues for automated motion
generation and large-scale character animation. We hope our exploration of the two aspects
of human motion, dynamics and kinematics, can encourage more work to view the two from
a unified perspective. One limitation of the RFC framework is that it can only be applied to
simulation domains (e.g., animation, motion synthesis, pose estimation) in its current form, as
real robots cannot generate external residual forces. However, we do believe that RFC could be
applied as a warm-up technique to accelerate the learning of complex policies for real robots.
Further, the residual forces needed to overcome the dynamics mismatch could also be used to
inform and optimize agent design. These are all interesting avenues for future work.
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Chapter 3

Efficient Automatic Design of
Simulated Agents

3.1 Introduction

Automatic and efficient design of robotic agents in simulation holds great promise in comple-
menting and guiding the traditional physical robot design process [89, 90], which can be labo-
rious and time-consuming. In this paper, we consider a setting where we optimize both the
skeletal structure and joint attributes (e.g., bone length, size, and motor strength) of an agent
to maximize its performance on a given task. This is a very challenging problem for two main
reasons. First, the design space, i.e., all possible skeletal structures and their joint attributes,
is prohibitively vast and combinatorial, which also makes applying gradient-based continuous
optimizationmethods difficult. Second, the problem is inherently bi-level: (1)we need to search
an immensely large design space and (2) the evaluation of each candidate design entails solving
a computationally expensive inner optimization to find its optimal controller. Prior work typi-
cally uses evolutionary search (ES) algorithms for combinatorial design optimization [289,328].
During each iteration, ES-based methods maintain a large population of agents with various
designs where each agent learns to perform the task independently. When the learning ends,
agents with theworst performances are eliminatedwhile surviving agents produce child agents
with randommutation tomaintain the size of the population. ES-basedmethods have low sam-
ple efficiency since agents in the population do not share their experiences and many samples
are wasted on eliminated agents. Furthermore, zeroth-order optimization methods such as ES
are known to be sample-inefficient when the optimization search space (i.e., design space) is
high-dimensional [318].

In light of the above challenges, we take a new approach to agent design optimization by
incorporating the design procedure of an agent into its decision-making process. Specifically,
we learn a transform-and-control policy, called Transform2Act, that first designs an agent and
then controls the designed agent. In an episode, we divide the agent’s behavior into two con-
secutive stages, a transform stage and an execution stage, on which the policy is conditioned.
In the transform stage, the agent applies a sequence of transform actions to modify its skeletal
structure and joint attributes without interacting with the environment. In the execution stage,
the agent assumes the design resulting from the transform stage and applies motor control ac-
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Transform Control

Figure 3.1: Transform2Act learns a transform-and-control policy that first applies transform
actions to design an agent and then controls the designed agent to interactwith the environment.
The giraffe-like agent obtained by Transform2Act can run extremely fast (see video).

tions to interact with the environment and receives rewards. Since the policy needs to be used
across designs with a variable number of joints, we adopt graph neural networks (GNNs) as
the policy’s main network architecture. Each graph node in the GNNs represents a joint and
uses message passing with its neighbors to output joint-specific actions. While GNNs can im-
prove the generalizability of learned control policies across different skeletons through weight
sharing, they can also limit the specialization of each joint’s design since similar joints tend to
output similar transform actions due to the weight sharing in GNNs. To tackle this problem,
we propose to attach a joint-specialized multilayer perceptron (JSMLP) on top of the GNNs in
the policy. The JSMLP uses different sets of weights for each joint, which allows more flexible
transform actions to enable asymmetric designs with more specialized joint functions.

The proposed Transform2Act policy jointly optimizes its transform and control actions via
policy gradient methods, where the training batch for each iteration includes samples collected
under various designs. Unlike zeroth-order optimization methods (e.g., ES) that do not use a
policy to change designs but insteadmutate designs randomly, our approach stores information
about the goodness of a design into our transformpolicy and uses it to select designs to be tested
in the execution stage. The use of GNNs further allows the information stored in the policy to be
shared across joints, enabling better experience sharing and prediction generalization for both
design and control. Furthermore, in contrast to ES-based methods that do not share training
samples across designs in a generation, our approach uses all the samples from all designs to
train our policy, which improves sample efficiency.

Themain contributions of this paper are: (1)We propose a transform-and-control paradigm
that formulates design optimization as learning a conditional policy, which can be solved using
the rich tools of RL. (2) Our GNN-based conditional policy enables joint optimization of design
and control as well as experience sharing across all designs, which improves sample efficiency
substantially. (3) We further enhance the GNNs by proposing a joint-specialized MLP to bal-
ance the generalization and specialization abilities of our policy. (4) Experiments show that
our approach outperforms previous methods significantly in terms of convergence speed and
final performance, and is also able to discover familiar designs similar to giraffes, squids, and
spiders.

3.2 Related Work

ContinuousDesignOptimization. Considerable research has examined optimizing an agent’s
continuous design parameters without changing its skeletal structure. For instance, [16] intro-
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duce a simulated annealing-based optimization framework for designing piecewise cylindri-
cal robots. Alternatively, trajectory optimization and the implicit function theorem have been
used to adapt the design of legged robots [51, 89, 90]. Recently, deep RL has become a pop-
ular approach for design optimization. [31] model robot hardware as part of the policy using
computational graphs. [190] learn a design-conditioned value function and optimize design via
CMA-ES. [88] uses a population-based policy gradient method for design optimization. [275]
employs RL and evolutionary strategies to maintain a distribution over design parameters. An-
other line of work [62, 128, 358] uses RL to find the robot parameters that best fit an incoming
domain. Unlike the above works, our approach can optimize the skeletal structure of an agent
in addition to its continuous design parameters.

Combinatorial Design Optimization. Towards jointly optimizing the skeletal structure and
design parameters, the seminal work by [289] uses evolutionary search (ES) to optimize the
design and control of 3D blocks. Extending this method, [33, 34] adopt oscillating 3D voxels
as building blocks to reduce the search space. [52] use human-in-the-loop tree search to opti-
mize the design of modular robots. [328] propose an evolutionary graph search method that
uses GNNs to enable weight sharing between an agent and its offspring. Recently, [98] employ
an information-theoretic objective to evolve task-agnostic agent designs. Due to the combina-
torial nature of skeletal structure optimization, most prior works use ES-based optimization
frameworks which can be sample-inefficient since agents with various designs in the popula-
tion learn independently. In contrast, we learn a transform-and-control policy using samples
collected from all designs, which improves sample efficiency significantly.

GNN-based Control. Graph neural networks (GNNs) [22,143,274] are a class of models that
use message passing to aggregate and extract features from a graph. GNN-based control poli-
cies have been shown to greatly improve the generalizability of learned controllers across agents
with different skeletons [113,327,328]. Along this line, [227] use a GNN-based policy to control
self-assembling modular robots to perform tasks. Recently, [157] show that GNNs can hinder
learning in incompatible multitask RL and propose to use attentionmechanisms instead. In this
paper, we also study the lack of per-joint specialization caused by GNNs due to weight sharing,
and we propose a remedy, joint-specialized MLP, to improve the specialization of GNN-based
policies.

3.3 Background

Reinforcement Learning. Given an agent interactingwith an episodic environment, reinforce-
ment learning (RL) formulates the problem as a Markov Decision Process (MDP) defined by a
tupleM = (S,A, T , R, γ) of state space, action space, transition dynamics, a reward function,
and a discount factor. The agent’s behavior is controlled by a policy π(at|st), which models the
probability of choosing an action at ∈ A given the current state st ∈ S . Starting from some
initial state s0, the agent iteratively samples an action at from the policy π and the environment
generates the next state st+1 based on the transition dynamics T (st+1|st, at) and also assigns
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a reward rt to the agent. The goal of RL is to learn an optimal policy π∗ that maximizes the
expected total discounted reward received by the agent: J(π) = Eπ

[∑H
t=0 γ

trt

]
, whereH is the

variable time horizon. In this paper, we use a standard policy gradient method, PPO [279], to
optimize our policy with both transform and control actions. PPO is particularly suitable for
our approach since it has a KL regularization between current and old policies, which can pre-
vent large changes to the transform actions and the resulting design in each optimization step,
thus avoiding catastrophic failure.

Design Optimization. An agent’s design D ∈ D plays an important role in its functionality.
In our setting, the design D includes both the agent’s skeletal structure and joint-specific at-
tributes (e.g., bone length, size, and motor strength). To account for changes in design, we now
consider a more general transition dynamics T (st+1|st, at, D) conditioned on designD. The to-
tal expected reward is also now a function of design D: J(π,D) = Eπ,D

[∑H
t=0 γ

trt

]
. One main

difficulty of design optimization arises from its bi-level nature, i.e., we need to search over a
large design space and solve for the optimal policy under each candidate design for evaluation.
Formally, the bi-level optimization is defined as:

D∗ = arg max
D

J(πD, D) (3.1)

subject to πD = arg max
π

J(π,D) (3.2)

The inner optimization described by Equation (3.2) typically requires RL, which is computa-
tionally expensive and may take up to several days depending on the task. Additionally, the
design space D is extremely large and combinatorial due to a vast number of possible skeletal
structures. To tackle these problems, in Sec. 3.4 we will introduce a new transform-and-control
paradigm that formulates design optimization as learning a conditional policy to both design
and control the agent. It uses first-order policy optimization via policy gradient methods and
enables experience sharing across designs, which improves sample efficiency significantly.

Graph Neural Networks. Since our goal is to learn a policy to dynamically change an agent’s
design, we need a network architecture that can deal with variable input sizes across different
skeletal structures. As skeletons can naturally be represented as graphs, graph neural networks
(GNNs) [22,143,274] are ideal for our use case.

We denote a graph asG = (V,E,A) where u ∈ V and e ∈ E are nodes and edge respectively,
and each node u also includes an input feature xu ∈ A. A GNN uses multiple GNN layers to
extract and aggregate features from the graph G through message passing. For the i-th of N
GNN layers, the message passing process can be written as:

mi
u = M(hi−1u ) , (3.3)
ciu = C(

{
mi
v | ∀v ∈ N (u)

}
), (3.4)

htu = U(hi−1u , ciu), (3.5)

where a message sending module M first computes a message mi
u for each node u from the

hidden features hi−1u (h0u = xu) of the previous layer. Each node’s message is then sent to
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neighboring nodes N (u), and an aggregation module C summarizes the messages received by
every node and outputs a combined message ciu. Finally, a state update module U updates the
hidden state hiu of each node using ciu and previous hidden states hi−1u . After N GNN layers,
an output module P is often used to regress the final hidden features hNu to desired outputs
yu = P (hNu ). Different designs of modulesM,C,U, P lead to many variants of GNNs [338]. We
use the following equation to summarize GNNs’ operations:

yu = GNN(u,A;V,E) (3.6)

where GNN(u, ·) is used to denote the output for node u.

3.4 Transform2Act: a Transform-and-Control Policy

To tackle the challenges in design optimization, our key approach is to incorporate the design
procedure of an agent into its decision-making process. In each episode, the agent’s behavior is
separated into two consecutive stages: (1) Transform Stage, where the agent applies transform
actions to modify its design, including skeletal structure and joint attributes, without interacting
with the environment; (2) Execution Stage, where the agent assumes the new transformed
design and applies motor control actions to interact with the environment. In both stages, the
agent is governed by a conditional policy, called Transform2Act, that selects transform or control
actions depending onwhich stage the agent is in. In the transform stage, no environment reward
is assigned to the agent, but the agent will see future rewards accrued in the execution stage
under the transformed design, which provide learning signals for the transform actions. By
training the policy with PPO [279], the transform and control actions are optimized jointly to
improve the agent’s performance for the given task. An overview of our method is provided in
Figure 3.2. We also outline our approach in Algorithm 2. In the following, we first introduce
the preliminaries before describing the details of the proposed Transform2Act policy and the
two stages.

Design Representation. To represent various skeletal structures, we denote an agent design
as a graph Dt = (Vt, Et, At) where each node u ∈ Vt represents a joint u in the skeleton and
each edge e ∈ Et represents a bone connecting two joints, and zu,t ∈ At is a vector representing
the attributes of joint u including bone length, size, motor strength, etc. Here, the design Dt is
indexed by t since it can be changed by transform actions during the transform stage.

MDP with Design. To accommodate the transform actions and changes in agent design Dt,
we redefine the agent’s MDP by modifying the state and action space as well as the transition
dynamics. Specifically, the new state st = (set , Dt,Φt) includes the agent’s state set in the en-
vironment and the agent design Dt = (Vt, Et, At), as well as a stage flag Φt. The new action
at ∈ {adt , aet} consists of both the transform action adt and the motor control action aet . The new
transition dynamics T (set+1, Dt+1,Φt+1|set , Dt,Φt, at) reflects the changes in the state and action.
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Figure 3.2: Transform2Act divides an episode into three stages: (1) Skeleton transform stage,
where sub-policy πsθ changes the agent’s skeleton by adding or removing joints; (2) Attribute
transform stage, where sub-policy πzθ changes joint attributes (e.g., length, size); (3) Execution
stage, sub-policy πeθ selects control actions for the newly-designed agent to interact with the
environment.

Transform2Act Policy. The policy πθ with parameters θ is a conditional policy that selects the
type of actions based on which stage the agent is in:

πθ(at|set , Dt,Φt) =

{
πdθ (adt |Dt,Φt), if Φt = Transform

πeθ(a
e
t |set , Dt,Φt), if Φt = Execution

(3.7)

where two sub-policies πdθ and πeθ are used in the transform and execution stages respectively.
As the agent in the transform stage does not interact with the environment, the transform sub-
policy πdθ (adt |Dt,Φt) is not conditioned on the environment state set and only outputs transform
actions adt . The execution sub-policy πeθ(aet |set , Dt,Φt) is conditioned on both set and the designDt

to output control actions aet . Dt is needed since the transformed design will affect the dynamics
of the environment in the execution stage. As a notation convention, policies with different
superscripts (e.g., πdθ and πeθ) do not share the same set of parameters.

3.4.1 Transform Stage

In the transform stage, starting from an initial design D0, the agent follows the transform sub-
policy πdθ (adt |Dt,Φt) which outputs transform actions to modify the design. Since the design
Dt = (Vt, Et, At) includes both the skeletal graph (Vt, Et) and joint attributes At, the transform
action adt ∈ {ast, azt} consists of two types: (1) Skeleton Transform Action ast, which is discrete
and changes the skeletal graph (Vt, Et) by adding or deleting joints; (2) Attribute Transform
Action azt , which modifies the attributes of each joint and can be either continuous or discrete.
Based on the two types of transform actions, we further divide the transform stage into two
sub-stages – Skeleton Transform Stage and Attribute Transform Stage – where ast and azt are
taken by the agent respectively. We can then write the transform sub-policy as conditioned on
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the agent’s stage:

πdθ (adt |Dt,Φt) =

{
πsθ(a

s
t|Dt,Φt), if Φt = Skeleton Transform

πzθ(a
z
t |Dt,Φt), if Φt = Attribute Transform

(3.8)

where the agent follows sub-policies πsθ forNs timesteps in the skeleton transform stage and then
follows πzθ for Nz timesteps in the attribute transform stage. It may be tempting to merge the
two stages and apply skeleton and attribute transform actions together. However, we separate
the two stages since the skeleton action can increase the number of joints in the graph, while
attribute transform actions can only output attribute changes for existing joints.

Skeleton Transform. The skeleton transform sub-policy πsθ(ast|Dt,Φt) adopts a GNN-based
network, where the action ast = {asu,t|u ∈ Vt} is factored across joints and each joint u outputs its
categorical action distribution πsθ(asu,t|Dt,Φt). The policy distribution is the product of all joints’
action distributions:

πsθ(a
s
u,t|Dt,Φt) = C(asu,t; lu,t), lu,t = GNNs(u,At;Vt, Et), ∀u ∈ Vt, (3.9)

πsθ(a
s
t|Dt,Φt) =

∏
u∈Vt

πsθ(a
s
u,t|Dt,Φt) , (3.10)

where the GNNuses the joint attributesAt as input node features to output the logits lu,t of each
joint’s categorical action distribution C. The skeleton transform action asu,t has three choices:
• AddJoint: joint u will add a child joint v to the skeletal graph, which inherits its attribute
zu,t.

• DelJoint: joint u will remove itself from the skeletal graph. The action is only performed
when the joint u has no child joints, which is to prevent aggressive design changes.

• NoChange: no changes will be made to joint u.
After the agent applies the skeleton transform action asu,t at each joint u, we obtain the design
Dt+1 = (Vt+1, Et+1, At+1) for the next timestep with a new skeletal structure.

The GNN-based skeleton transform policy enables rapid growing of skeleton structures
since every joint can add a child joint at each timestep. Additionally, it also encourages sym-
metric structures due to weight sharing in GNNs where mirroring joints can choose the same
action.

Attribute Transform. The attribute transform sub-policy πzθ(azt |Dt,Φt) adopts the sameGNN-
based network as the skeleton transform sub-policy πsθ. The main difference is that the output
action distribution can be either continuous or discrete. In this paper, we only consider contin-
uous attributes including bone length, size, and motor strength, but our method by design can
generalize to discrete attributes such as geometry types. The policy distribution is defined as:

πzθ(a
z
u,t|Dt,Φt) = N (azu,t;µ

z
u,t,Σ

z), µzu,t = GNNz(u,At;Vt, Et), ∀u ∈ Vt, (3.11)
πzθ(a

z
t |Dt,Φt) =

∏
u∈Vt

πzθ(a
z
u,t|Dt,Φt) , (3.12)
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Algorithm 2 Agent Design Optimization with Transform2Act Policy
1: initialize Transform2Act policy πθ
2: while not reaching max iterations do
3: memoryM← ∅
4: whileM not reaching batch size do
5: D0 ← initial agent design
6: // Skeleton Transform Stage
7: for t = 0, 1, . . . , Ns − 1 do
8: sample skeleton transform action ast ∼ πsθ; Φt ← Skeleton Transform

9: Dt+1 ← apply ast to modify skeleton (Vt, Et) in Dt

10: rt ← 0; store (rt, a
s
t, Dt,Φt) intoM

11: end for
12: // Attribute Transform Stage
13: for t = Ns, . . . , Ns +Nz − 1 do
14: sample attribute transform action azt ∼ πzθ; Φt ← Attribute Transform

15: Dt+1 ← apply azt to modify attributes At in Dt

16: rt ← 0; store (rt, a
z
t , Dt,Φt) intoM

17: end for
18: // Execution Stage
19: seNs+Nz

← initial environment state
20: for t = Ns +Nz, . . . ,H do
21: sample motor control action aet ∼ πeθ; Φt ← Execution

22: set+1 ← environment dynamics T e(set+1|set , aet); Dt+1 ← Dt

23: rt ← environment reward; store (rt, a
s
t, s

e
t , Dt,Φt) intoM

24: end for
25: end while
26: update πθ with PPO using samples inM
27: end while
28: return πθ

where the GNN outputs themean µzu,t of joint u’s Gaussian action distribution and Σz is a learn-
able diagonal covariance matrix independent of Dt,Φt and shared by all joints. Each joint’s ac-
tion azu,t is used to modify its attribute feature: zu,t+1 = zu,t + azu,t, and the new design becomes
Dt+1 = (Vt, Et, At+1) where the skeleton (Vt, Et) remains unchanged.

Reward. During the transform stage, the agent does not interact with the environment, be-
cause changing the agent’s design such as adding or removing joints while interacting with the
environment does not obey the laws of physics and may be exploited by the agent. Since there
is no interaction, we do not assign any environment rewards to the agent. While it is possible
to add rewards based on the current design to guide the transform actions, in this paper, we
do not use any design-related rewards for fair comparison with the baselines. Thus, no reward
is assigned to the agent in the transform stage, and the transform sub-policies are only trained
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using future rewards from the execution stage.

Inference. At test time, the most likely action will be chosen by both the skeleton and attribute
transform policies. The design Dt after the transform stage is the final design output.

3.4.2 Execution Stage

After the agent performs Ns skeleton transform and Nz attribute transform actions, it enters
the execution stage where the agent assumes the transformed design and interacts with the
environment. A GNN-based execution policy πeθ(aet |set , Dt,Φt) is used in this stage to output
motor control actions aet for each joint. Since the agent now interacts with the environment, the
policy πeθ is conditioned on the environment state set aswell as the transformed designDt, which
affects the dynamics of the environment. Without loss of generality, we assume the control
actions are continuous. The execution policy distribution is defined as:

πeθ(a
e
u,t|set , Dt,Φt) = N (aeu,t;µ

e
u,t,Σ

e), µeu,t = GNNe(u, s
e
t , At;Vt, Et), ∀u ∈ Vt, (3.13)

πeθ(a
e
t |set , Dt,Φt) =

∏
u∈Vt

πeθ(a
e
u,t|set , Dt,Φt) , (3.14)

where the environment state set = {seu,t|u ∈ Vt} includes the state of each node u (e.g., joint
angle and velocity). The GNN uses the environment state set and joint attributes At as input
node features to output the mean µeu,t of each joint’s Gaussian action distribution. Σe is a state-
independent learnable diagonal covariance matrix shared by all joints. The agent applies the
motor control actions aet to all joints and the environment transitions the agent to the next en-
vironment state set+1 according to the environment’s transition dynamics T e(set+1|set , aet). The
design Dt remains unchanged throughout the execution stage.

3.4.3 Value Estimation

As we use an actor-critic method (PPO) for policy optimization, we need to approximate the
value function V , i.e., the expected total discounted rewards starting from state st = (set , Dt,Φt):

V(set , Dt,Φt) , Eπθ

[
H∑
t=0

γtrt

]
. (3.15)

We learn a GNN-based value network V̂φ with parameters φ to approximate the true value
function:

V̂φ(set , Dt,Φt) = GNNv(root, set , At;Vt, Et) (3.16)

where the GNN takes the environment state set , joint attributes At and stage flag Φt (one-hot
vector) as input node features to output a scalar at each joint. We use the output of the root
joint as the predicted value. The value network V̂φ is used in all stages. In the transform stage,
the environment state set is unavailable so we set it to 0.

29



3.4.4 Improve Specialization with Joint-Specialized MLP

As demonstrated in prior work [113, 327], GNN-based control policies enjoy superb generaliz-
ability across different designs. The generalizability can be attributed to GNNs’ weight shar-
ing across joints, which allows new joints to share the knowledge learned by existing joints.
However, weight sharing also means that joints in similar states will choose similar actions,
which can seriously limit the transform policies and the per-joint specialization of the resulting
design. Specifically, as both skeleton and attribute transform policies are GNN-based, due to
weight sharing, joints in similar positions in the graph will choose similar or the same trans-
form actions. While this does encourage the emergence of symmetric structures, it also limits
the possibility of asymmetric designs such as different lengths, sizes, or strengths of the front
and back legs.

To improve the per-joint specialization of GNN-based policies, we propose to add a joint-
specialized multi-layer perceptron (JSMLP) after the GNNs. Concretely, the JSMLP uses differ-
entMLPweights for each joint, which allows the policy to outputmore specialized joint actions.
To achieve this, we design a joint indexing scheme that is consistent across all designs andmain-
tain a joint-indexed weight memory. The joint indexing is used to identify joint correspondence
across designswhere two joints with the same index are deemed the same. This allows the same
joint in different designs to use the sameMLPweights. However, we cannot simply index joints
using a breadth-first search (BFS) for each design since some joints may appear or disappear
across designs, and completely different joints can be assigned the same index in BFS. Instead,
we index a joint based on the path from the root to the joint. As we will show in the ablation
studies, JSMLPs can improve the performance of both transform and control policies.

3.5 Experiments

We design our experiments to answer the following questions: (1) Does our method, Trans-
form2Act, outperform previousmethods in terms of convergence speed and final performance?
(2) Does Transform2Act create agents that look plausible? (3) How do critical components –
GNNs and JSMLPs – affect the performance of Transform2Act? (4) Can Transform2Act design
humanoids with better motion imitation ability?

Environments. We evaluate Transform2Act on four distinct environments using the MuJoCo
simulator [308]: (1) 2D Locomotion, where a 2D agent living in an xz-plane is tasked with
moving forward as fast as possible, and the reward is its forward speed. (2) 3D Locomotion,
where a 3D agent’s goal is tomove as fast as possible along x-axis and is rewarded by its forward
speed along x-axis. (3) Swimmer, where a 2D agent living in water with 0.1 viscosity and
confined in an xy-plane is rewarded by its moving speed along x-axis. (4)Gap Crosser, where
a 2D agent living in an xz-plane needs to cross periodic gaps and is rewarded by its forward
speed.

Baselines. We compare Transform2Act with the following baselines that also optimize both
the skeletal structure and joint attributes of an agent: (1)NeuralGraphEvolution (NGE) [328],

30



R
ew

ar
d

2D Locomotion

Simulation Step (Million)

R
ew

ar
d

3D Locomotion

Simulation Step (Million)

R
ew

ar
d

Swimmer

Simulation Step (Million)

R
ew

ar
d

Gap Crosser

Simulation Step (Million)

Initial Design

Transform2Act
(Ours)

NGE

ESS

RGS

Initial Design

Transform2Act
(Ours)

NGE

ESS

RGS

Initial Design

Transform2Act
(Ours)

NGE

ESS

RGS

Initial Design

Transform2Act
(Ours)

NGE

ESS

RGS

Figure 3.3: Baseline comparison. For each environment, we plot the mean and standard devi-
ation of total rewards against the number of simulation steps for all methods, and show their
final designs.

which is an ES-basedmethod that uses GNNs to enableweight sharing between an agent and its
offspring. (2) Evolutionary Structure Search (ESS) [289], which is a classic ES-based method
that has been used in recent works [33, 34]. (3) Random Graph Search (RGS), which is a
baseline employed in [328] that trains a population of agents with randomly generated skeletal
structures and joint attributes.

3.5.1 Comparison with Baselines

In Figure 3.3 we show the learning curves of each method and their final agent designs for
all four environments. For each method, the learning curve plots use six seeds per environ-
ment and plot the agent’s total rewards against the total number of simulation steps used by the
method. For ES-based baselineswith a population of agents, we plot the performance of the best
agent at each iteration. We can clearly see that ourmethod, Transform2Act, consistently and sig-
nificantly outperforms the baselines in terms of convergence speed and final performance.

Next, let us compare the final designs generated by each method in Figure 3.3. For better
comparison, we encourage the reader to see these designs in video on the projectwebsite. For 2D
locomotion, Transform2Act is able to discover a giraffe-like agent that can run extremely fast and
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Figure 3.4: Ablation studies. The plots indicate that GNNs and JSMLPs both contribute to the
performance and stability of our approach greatly.
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Figure 3.5: Effect of JSMLPs. Designswithout JSMLPs are overly symmetric with little per-joint
specialization, which leads to worse performance.

remain stable. The design is suitable for optimizing the given reward function since it has a long
neck to increase its forward momentum and balance itself when jumping forward. For 3D Lo-
comotion, Transform2Act creates a spider-like agent with long legs. The design is roughly sym-
metric due to the GNN-based transform policy, but it also contains joint-specific features thanks
to the JSMLPs which help the agent attain better performance. For Swimmer, Transform2Act
produces a squid-like agent with long bodies and numerous tentacles. As shown in the video,
the movement of these tentacles propels the agent forward swiftly in the water. Finally, for Gap
Crosser, Transform2Act designs a Hopper-like agent that can jump across gaps. Overall, we can
see that Transform2Act is able to find plausible designs similar to giraffes, squids, and spiders,
while the baselines fail to discover such designs and have much lower performance in all four
environments.

3.5.2 Ablation Studies

We aim to investigate the importance of two critical components in our approach – GNNs and
JSMLPs. We design three variants of our approach: (1)Ours w/o GNNs, where we remove all
the GNNs from our Transform2Act policy and uses JSMLP only; (2)Ours w/o Control JSMLP,
where we remove the JSMLP from our execution sub-policy πeθ; (3) Ours w/o All JSMLPs,
where we remove all the JSMLPs from the execution sub-policy πeθ and transform sub-policies
πsθ and πzθ. The learning curves of all variants are shown in Figure 3.4. It is evident that GNNs
are a crucial part of our approach as indicated by the large decrease in performance of the
corresponding variant. Additionally, JSMLPs are very instrumental for both design and control
in our method, which not only increase the agent’s performance but also make the learning
more stable. For Swimmer, the variant without JSMLPs has a very large performance variance.
To further study the effect of JSMLPs, we also show the design with andwithout JSMLPs for 3D
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Locomotion and Swimmer in Figure 3.5. We can observe that the designs without JSMLPs are
overly symmetric and uniformwhile the designswith JSMLPs contain joint-specialized features
that help the agent achieve better performance.

3.5.3 Discussion

In this section, wewill discuss the key reasons why ourmethod outperforms the strongest base-
line, NGE [328]:

1. NGE does not allow experience sharing among species in a generation. As shown in Al-
gorithm 1 of NGE, each species inside a generation j has its own set of weights θji and is
trained independently without sharing experiences among different species. The experi-
ence sharing in NGE is only enabled through weighting sharing between a species and its
parent species from the previous generation. This means that if there are N species in a
generation, in every epoch, each species is only trained with M/N number of experience
samples where M is the sample budget for each epoch. At the end of the training, each
species has only used EM/N samples for training where E is the number of epochs. In
contrast, in our method, every design shares the same control policy, so the policy can use
all EM samples. Therefore, our method allows better experience sharing across different
designs, which improves sample efficiency.

2. Our method uses a transform policy to change designs instead of randommutation. Our
transform policy takes the current design as input to output the transform actions (design
changes). Through training, the policy learns to store information about which design to
prefer andwhich design to avoid. This information is also shared among different joints via
the use of GNNs, where joints in similar states choose similar transform actions (which is
also balanced by JSMLPs for joint specialization). Additionally, the policy also allows every
joint to simultaneously change its design (e.g., add a child joint, change joint attributes).
For example, in 3D Locomotion, the agent can simultaneously grow its four feet in a single
timestep, while ES-based methods such as NGEwill take four different mutations to obtain
four feet. Therefore, our method with the transform policy allows better generalization
and experience sharing among joints, compared to ES-basedmethods that perform random
mutation.

3. Our method allows more exploration. Our transform-and-control policy tries out a new
design every episode, which means our policy can tryM/Havg designs every epoch, where
M is the total number of sample timesteps and Havg is the average episode length. There
is also more exploration for our approach at the start of the training when Havg is small.
On the other hand, ES-based methods such as NGE only try N (num of species) different
designs every epoch. If NGE uses too many species (large N), each species will have few
samples to train as mentioned in point 1. Therefore,N is typically set to be�M/Havg. For
example, N is set from 16 to 100 in NGE, while M/Havg in our method can be more than
2000.
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Sequences Ssucc ↑ Empjpe ↓ Empjpe-g ↓ Eacc ↓

Belly Dance-1 0% → 100% 183.3 → 36.9 347.1 → 55.0 7.6 → 7.6

Parkour-1 0% → 100% 175.6 → 87.1 324.2 → 146.4 24.8 → 15.0
Karate-1 100% → 100% 35.9 → 30.1 45.8 → 39.9 7.1 → 7.1

Crawl-1 100% → 100% 66.4 → 40.6 307.6 → 67.2 3.8 → 4.3

Cartwheel-1 0% → 100% 160.9 → 37.4 284.8 → 66.2 8.1 → 4.9
Dance-200 57.0% → 72.0% 84.1 → 58.0 146.7 → 98.7 13.3 → 13.3

Tennis-60 96.7% → 100% 27.8 → 21.8 40.5 → 30.7 4.2 → 4.1
Crawl-37 94.6% → 94.6% 62.0 → 40.6 163.6 → 87.9 5.6 → 9.1

Cartwheel-4 25% → 75% 219.6 → 89.4 393.6 → 166.1 19.4 → 12.5
Kick-302 98.3% → 98.3% 45.5 → 38.8 75.4 → 62.4 7.5 → 9.1

Table 3.1: Performance improvement of the humanoid after finetuning for different sequences.
Here, the suffix indicates the number of motion sequences used for imitation.

All the factors above contribute to the sample efficiency of our approach, allowing it to discover
interesting and performant designs within a reasonable computing budget.

3.5.4 Finetuning Humanoid Design

To further evaluate our approach, Transform2Act, we use it for the task of finetuning the de-
sign of a humanoid to improve its motion imitation ability. The design search space of the
humanoid include the geometries, density, motor gears, and friction coefficients of each joint.
The humanoid is tasked to imitate challenging motion sequences in a large motion database,
AMASS [198], such as belly dance, parkour, karate, cartwheeling, etc. Such sequences are
highly dynamic and often require the human performer to have a special physique to prop-
erly carry out these motions. For instance, an expert dancer needs to be well-balanced while
a crawler may have more prominent elbows. As a result, a “vanilla” humanoid may fail at
imitating such sequences, and finetuning the humanoid’s design can improve its motion imita-
tion ability. To achieve this, we use a motion imitation reward in the execution stage of Trans-
form2Act, which is based on how the motion performed by the humanoid aligns with the GT.
We consider two training settings: single-sequence finetuning and multiple-sequence finetun-
ing, where the former finetunes the humanoid design to best perform one sequence while the
latter finetunes the design for a category of motion sequences.

Metrics. We use the following metrics to assess the motion imitation performance of the de-
signed humanoid: (1) Mean per joint position error Empjpe (mm), which is a popular metric for
3D human pose estimation and is computed after setting the root translation to zero; (2) Global
mean per joint position error Empjpe-g (mm), which computes the joint position error in global
space without zeroing out the root translation, thus better reflecting the overall motion tracking
quality; (3) Acceleration error Eacc (mm/frame2), which measures the difference between the
estimated joint position acceleration and the GT; (4) Success rate Ssucc, whichmeasures whether
the humanoid has fallen or deviates too far away from the referencemotion during the sequence.
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AMASS Test Set
Training Sequences Ssucc ↑ Empjpe ↓ Empjpe-g ↓ Eacc ↓

Dance-200 92.8% 40.4 70.4 12.1
Tennis-60 89.9% 33.9 55.7 11.9
Crawl-37 86.3% 36.7 54.4 13.0
Cartwheel-4 89.9% 36.8 64.9 11.8
Kick-203 90.6% 52.9 92.9 14.6
RFC 91.4% 35.3 60.1 10.5

Table 3.2: Performance of the humanoid finetuned with different training sequences on the
AMASS test split.

Single-Sequence Finetuning. The top half of Table 3.1 shows the results of finding the hu-
manoid design that performs a single sequence the best. We can see that for each individual
sequence, optimizing the design parameters can significantly improve themotion imitation per-
formance, and often enables the humanoid to successfully imitate a sequence without falling.
This demonstrates our approach’s ability to finetune the humanoid design for a single sequence.

Category-Level Finetuning. The bottom half of Table 3.1 shows the category-level motion im-
itation results. Similar to the single-sequence case, our approach is able to find a suitable hu-
manoid design for awhole category ofmotion sequences, demonstrating its ability to generalize
to a suite of diverse motions that share similar traits.

Test Set Transfer. To further evaluate the generalization of the finetuned design and test its
ability to perform general motions, we directly use the humanoid design obtained by category-
level finetuning for the test set of AMASS, where the design is kept fixed and only the humanoid
control policy is trained. As shown in Table 3.2, the humanoid designs finetuned with differ-
ent training sequences all maintain a similar level of motion imitation ability as a “vanilla hu-
manoid” using an RFC-based control policy. This shows that, unlike RFC, our approach can
design humanoids with better motion imitation ability without sacrificing physical plausibility.

Discussion. Although our approach can find a humanoid designwith better motion imitation
ability, the found design does not necessarily correspond to the actual physique of the actorwho
performed the training motion. The main reasons are twofold. First, there are redundant de-
grees of freedom (DoFs) and local minima in the design optimization problem since both the
humanoid design and the control policy can change during optimization, and the reward func-
tion onlymeasures themotion imitation performance. So two different designs can have similar
motion imitation performance as long as their control policies can accommodate the designs.
Second, the underlying simulation model of the humanoid is oversimplified and cannot sim-
ulate many aspects of human dynamics. For example, the physics simulator cannot simulate
muscles, tendons, and soft tissues. Therefore, many agile human motions cannot be modeled
using these aspects, and the design optimization may change other aspects of the humanoid
such as body proportions and motor strengths to force the humanoid to imitate the motion.
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In order to produce more biologically-plausible humanoid designs, one possible way is to
developmore expressive and biologically-sound simulationmodels of the humanoid. However,
these models are often computationally-expensive, which may not be compatible with RL and
design optimization. Another direction is to add constraints to the design search space using
visual data. For example, we can recover the 3D shape of the human actor using human mesh
recoverymethods (e.g., [120]), andwe can then constrain the humanoid design to have roughly
the same shape as the actor. The added constraints alleviate the problem of redundant DoFs
mentioned previously. Finally, we can also leverage biomechanical models to other aspects of
human dynamics besides pose. For example, we can use the 3CCmodel [339] to model muscle
fatigue which could further constrain the humanoid design to be biologically-plausible.

3.6 Conclusion

In this paper, we proposed a new transform-and-control paradigm that formulates design op-
timization as conditional policy learning with policy gradients. Compared to prior ES-based
methods that randomly mutate designs, our approach is more sample-efficient as it leverages
a parameterized policy to select designs based on past experience and also allows experience
sharing across different designs. Experiments show that our approach outperforms prior meth-
ods in both convergence speed and final performance by an order of magnitude. Our approach
can also automatically discover plausible designs similar to giraffes, squids, and spiders. We
further showed that our approach can be used to finetune a humanoid design to improve its
motion imitation ability. For future work, we are interested in leveraging RL exploration meth-
ods to further improve the sample efficiency of our approach.
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Part II

Perception of Human Behavior
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Chapter 4

Simulation-Based First-Person Human
Pose Estimation

4.1 Introduction

Our task is to use a single head-mounted wearable camera to estimate the 3D body pose se-
quence of the camera wearer, such that the estimated motion sequence obeys basic rules of
physics (e.g., joint limits are observed, feet contact the ground, motion conserves momentum).
Employing a singlewearable camera to estimate the pose of the camerawearer is useful formany
applications. In medical monitoring, the inferred pose sequence can help doctors diagnose pa-
tients’ conditions during motor rehabilitation or general activity monitoring. For athletes, ego-
centric pose estimation provides motion feedbackwithout instrumenting the environment with
cameras, which may be impractical for sports like marathon running or cross-country skiing.
In virtual reality games, the headset wearer’s poses can be reproduced in the virtual environ-
ment to create a better multi-player gaming experience without additional sensors. In many
applications, accurate and physically-valid pose sequences are desired.

However, estimating physically-valid 3D body poses from egocentric videos is challenging.
First, egocentric cameras typically face forward and have almost no view of the camera wearer’s
body. The task of estimating 3D pose is under-constrained as the video only encodes informa-
tion about the position and orientation of the camera’s viewpoint. Second, with a single wear-
able camera, we have no access to the forces being applied to the body, such as joint torques
or ground contact forces. Without observations of these forces, it is very difficult to learn the
relationship between camera-based motion features and body pose using physics simulation in
a data-driven way. Most traditional approaches to human pose estimation in computer vision
side-step the issue of physics completely by focusing primarily on the kinematics of humanmo-
tion. Unfortunately, this can sometimes result in awkward pose estimates that allow the body
to float in the air or joints to flex beyond what is physically possible, which makes it difficult
to use for motion analysis applications. New technical approaches are needed to tackle these
challenges of generating physically-valid 3D body poses from egocentric video.

In light of these challenges, we take a radical departure from the kinematics-based repre-
sentation traditionally used in computer vision towards a control-based representation of hu-
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Figure 4.1: Our 3D ego-pose estimation results using egocentric videos.

manoid motion commonly used in robotics. In the traditional kinematics-based representation
used for pose estimation from videos, a human pose sequence is typically modeled as a se-
quence of poses {p1, . . . , pT }. It is common to use a temporal sequence model (e.g., hidden
Markov model, linear chain CRF, recurrent neural network) where the estimate of each pose pt
is conditioned on image evidence It and a prior pose pt−1 (or some sufficient statistics of the
past, e.g., hidden layer in the case of RNN). While it is often sufficient to reason only about
the kinematics of the pose sequence for pose estimation, when one would like to evaluate the
physical validity of the sequence, it becomes necessary to understand the control input that has
generated each pose transition. In other words, we must make explicit the torque (control in-
put) that is applied to every joint to move a person from pose pt to pt+1. Under a control-based
method, a human pose sequence needs to be described by a sequence of states and actions (con-
trol inputs) {s1, a1, s2, a2, . . . , sT }where state st contains both the pose pt and velocity vt of the
human. A control-based model explicitly takes into account the control input sequence and
learns a control policy π(a|s), that maps states to actions for optimal control. Making explicit
the control input is essential for generating a state sequence based on the laws of physics.

The use of a control-based method requires access to interaction with real-world physics or
in our scenario, a physics simulator. The use of a physics simulator for learning a control policy
provides two major advantages. First, the physical properties of the virtual humanoid, such as
joint actuation limits and range limits, used in the simulator serve as a gating mechanism to
constrain the learning process to generate actions that are humanly possible. Second, the phys-
ical constraints of the simulation environment ensure that only physically-valid pose sequences
are estimated such that the feet will not penetrate the ground or slip during contact. Within
the confines of the physic simulator, the goal of control policy learning is to learn a virtual hu-
manoid policy that maps the current state (pose and velocity, optionally egocentric video) to an
action (joint torques). Formally, we frame first-person pose estimation as a sequential decision
process using a Markov decision process (MDP). The state of the MDP is the state of our hu-
manoid model defined in terms of joint positions, joint velocities and the observed first-person
POV video. The action is the joint torques exerted by joint actuators. The transition probability
is the humanoid dynamics provided by the physics simulation environment. In our imitation
learning framework, the reward function is based on the similarity between the generated pose
and its corresponding training pose. Based on this MDP, we perform imitation learning (IL)
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to obtain a humanoid control policy that is conditioned on the egocentric video. Once an opti-
mal policy is learned, it can be used to generate a physically-grounded pose sequence given an
egocentric video sequence.

The use of imitation learning to estimate pose from egocentric video requires a set of demon-
strated ‘expert behaviors’ which in our scenario would be a set of egocentric videos labeled
with 3D joint positions and joint torques. However, it is not easy to obtain such data without
instrumenting the body with other sensors such as an exoskeleton [116]. Instead, we propose
a two-step imitation learning process to learn a video-conditioned humanoid control policy for
ego-pose estimation. In the first step, following Merel et al. [209], we learn a set of humanoid
control policies imitating different human behaviors in motion capture data to generate virtual
humanoid pose sequences, from which we can render first-person POV videos. In the second
step, imitation learning is again used to learn a video-conditioned policy which maps video
features to optimal joint torques, to yield a physically valid 3D pose sequence. In this way, we
are able to learn a video-conditioned control policy without the need for direct measurements
of joint torques from the camera wearer.

We note that the two-stage imitation learning process described thus far relies only on sim-
ulations in a virtual environment and overlooks the problem of the domain gap between the
virtual and real data. Thus, we further propose to fine-tune the video-conditioned policy at
test time using real data to perform domain adaptation. We use regression to estimate the best
initial state that maximizes the policy’s expected return and fine-tune the policy with policy
gradient methods. We evaluate our approach on both virtual world data and real-world data
and show that our pose estimation technique can generalize well to real first-person POV video
data despite being trained on virtual data.

In this work, we aim to show that a decision-theoretic approach to human motion estima-
tion offers a powerful representation that can naturallymap the visual input of the human visual
system (i.e., egocentric video) to body dynamics while taking into account the role of physics.
Towards this aim, we focus on estimating the pose of human locomotion using a head-mounted
camera. To the best of our knowledge, this is the first work to utilize physically grounded imi-
tation learning to generate ego-pose estimates using a wearable camera.

4.2 Related work

Third-person pose estimation. Pose estimation from third-person images or videos has been
studied for decades [188, 273]. Existing work leverages the fact that full human body can be
seen by the third-person camera. In contrast, we consider the case where the person is en-
tirely out of sight. Thus, existing pose estimation methods are not immediately applicable to
our problem setting. Some of these methods use regression to map from images to pose pa-
rameters [1, 281, 290, 311], including the recent work DeepPose [311] that uses convolutional
neural networks. It is tempting to directly apply regression-based methods to egocentric pose
estimation. However, such approaches are inadequate since the egocentric images only contain
information about the position and orientation of the camera. Even if the method can perfectly
reconstruct the motion of the camera, the underlying human poses are still under-constrained.
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Without prior information as regularization, unnatural human poses will emerge. This moti-
vates us to physically model and simulate the human, and use the human dynamics as a natural
regularization.

Egocentric pose estimation. A limited amount of research has looked into the problem of
inferring human poses from egocentric images or videos. Most of existing methods still assume
the estimated human body or part of the body is visible [8, 168, 169, 252, 261]. The “inside-
out” mocap approach of [286] gets rid of the visibility assumption and infer the 3D locations
of 16 or more body-mounted cameras via structure from motion. Recently, [126] show that it is
possible to estimate human pose using a singlewearable camera. They construct amotion graph
from the training data and recover the pose sequence by solving for the optimal pose path. In
contrast, we explicitly model and simulate human dynamics, and learns a video-conditioned
control policy.

Adversarial imitation learning. Our problem suits a specific setting of imitation learning in
which the learner only has access to samples of expert trajectories and is not allowed to query the
expert during training. Behavior cloning [244], which treats the problem as supervised learning
and directly learns the mapping from state to action for each timestep, suffers from compound-
ing error caused by covariate shift [264,265]. Another approach, inverse reinforcement learning
(IRL) [220, 268], learns a cost function by prioritizing expert trajectories over others and thus
avoids the compounding error problem common in methods that fit single-timestep decisions.
However, IRL algorithms are very expensive to run because they need to solve a reinforcement
learning problem in the inner loop. Generative adversarial imitation learning (GAIL; [103])
extends the GAN framework to solve this problem. A policy acts as a generator to produce
sample trajectories and a discriminator is used to distinguish between expert trajectories and
generated ones. It uses reinforcement learning algorithms to optimize the policy and the policy
is rewarded for fooling the discriminator. The key benefit of GAIL is that no explicit hand-
designed metric is needed for measuring the similarity between imitation and demonstration
data.

Learning human behaviors. There have been two types of approaches for modeling human
movements: one is purely kinematic, and the other is physical control-based. For the former,
a good amount of research models the kinematic trajectories of humans from motion capture
data in the absence of physics [105, 302, 306]. The latter has long been studied in the graphics
community and is more relevant to our scenario. Many of these methods are model-based and
require significant domain expertise. With rapid development in deep reinforcement learning
(Deep RL), exciting recent work has used Deep RL for the locomotion of 2D creatures [237]
and 3D humanoid [238]. More recently, adversarial imitation learning from motion capture
data [209] has shown beautiful results. They use context variables to learn a single policy for
different behaviors such as walking and running. As a follow-up work, [330] propose to learn
the context variables by a variational autoencoder (VAE).
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Figure 4.2: Overview of our proposed pose estimation pipeline.

Figure 4.3: Left: The humanoid model. Green arrows illustrate 3D vectors from the root to the
feet, head and hands provided to the policy and discriminator. Right: Selected key frames of
running and walking clips in motion capture data animated using the humanoid model.

4.3 Approach

Towards our goal of estimating a physically valid 3D body pose sequence of a person using
video acquired with a head-mounted camera, we propose a two-step imitation learning tech-
nique that leveragesmotion capture data, a humanoidmodel and a physics simulator. As shown
in Figure 4.2, in our first phase, our proposed method starts with learning an initial set of C ex-
pert policies {π̂c}Cc=1, each of which represents a specific type of human behavior, e.g., walking
or running. In the second phase, virtual demonstrations of the humanoid are generated from
each of the C policies, including state and action sequences of the humanoid, along with vir-
tual egocentric video sequences captured by the humanoid’s head-mounted camera. With this
virtual expert demonstration data, we again use imitation learning to learn a video-conditioned
policy that can map egocentric video features directly to joint torques which generate the pose
sequence.
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HumanoidModel. Bydesign, our underlying control policy assumes a pre-defined humanoid
modelwhich can be actuated in a virtual environment (see Figure 4.3). The humanoidmodelwe
use consists of 31 rigid bodies, 56 hinge joints and 63 degrees of freedom (DoFs). All the hinge
joints can be actuated and have torque limits and range limits. The joints also have physical
properties such as stiffness and damping. It is important to note here that the careful design
of the humanoid is critical for solving the under-constrained problem of pose estimation from
egocentric videos because the model must be similar enough to the human body for the physics
simulation to match real human motion.

Humanoid Control Policy. It is common to use a Markov decision process (MDP) to model
the effect of control on the dynamics of a system. In our scenario, given the humanoid model,
we can formulate human(oid) motion as the output of an MDP, where any given 3D body pose
sequence is assumed to be generated by an optimal policy derived from the MDP. The MDP is
defined by a tupleM = 〈S,A, P,R, γ〉, where S is the state space, A is the action (or control)
space, T is the state transition dynamics, γ is the discount factor and R is the reward or cost
function typically defined over the state and action space. In our formulation, the state s repre-
sents the state of the humanoid and optionally the egocentric video (second step of our learning
task). The state z of the humanoid consists of the pose p and velocity v. The pose p contains the
position and orientation of the root, as well as the 56 joint angles. The velocity v consists of the
linear and angular velocities of the root as well as the joint velocities. The action is composed
of the joint torques of all actuated hinge joints. The dynamics of the humanoid is denoted by
P (st+1|st, at) (i.e., how the control or action a affects the pose transition) which is determined
by the simulation environment (we use the MuJoCo simulator [308]).

The solution of a given MDP is an optimal policy π that maximizes the expected return. We
use π(a|s) to denote the policy, which outputs the probability of choosing action a ∈ A when
the agent is in state s ∈ S. We use a multivariate normal distribution to model the policy π
where the mean and log standard deviation are parameterized by neural networks. In our final
task, we want to learn a video-conditioned policy that maps humanoid state z and egocentric
video V1:T to joint torques, to estimate a physically valid 3D pose sequence. In what follows, we
describe a two-step imitation learning method for learning this video-conditioned policy.

4.3.1 Stage 1: Imitation Learning for Data Generation

Instead of directly generating virtual egocentric POV videos usingmotion capture data, we pro-
pose to first learn a set of expert control policies imitating the human behaviors from themotion
capture data and then use the expert policy for egocentric video generation. This provides two
advantages. First, motion capture data is often noisy and our humanoid model cannot perfectly
match the real human motion sequence. In contrast, an expert policy successfully learned from
motion capture data can generate pose sequences that are noise-free and realizable by our hu-
manoid model. Second, the imitation learning procedure solves the inverse dynamics problem
(i.e., the control policy π(a|s) is learned from observed state transition dynamics p(s′|s)) and
the policy provides the joint torques for generating novel pose sequences and egocentric videos,
which we show later is needed for learning the video-conditioned policy.
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Our method first learns a set of expert policies {π̂c}Cc=1 frommotion capture data using gen-
erative adversarial imitation learning (GAIL) following Merel et al. [209]. Each of the expert
policies represents a specific type of human behavior. In this stage, the state s of theMDP is just
the state of the humanoid z as no video input is involved. Similar to GAN, the loss function of
GAIL takes the form:

`(θ, φ) = Ez∼πθ [log (1−Dφ(z))] + Eẑ∼π̂[log (Dφ (ẑ))] , (4.1)

where πθ is the policy we want to learn and π̂ is the expert policy implicitly represented by ex-
pert demonstrations {ẑi}Ni=1. At each iteration, the policy acts as a generator to collect samples
{zi}Mi=1 and rewards {ri}Mi=1. Using these samples and rewards, policy gradient methods (e.g.,
TRPO [278], PPO [279]) are employed to update the policy and thus decrease the loss ` w.r.t
θ. Once the generator update is done, we also need to update the discriminator to distinguish
between generated samples and expert demonstrations. As argued by Merel et al. [209], us-
ing the full state z of the humanoid performs poorly because our simplified humanoid model
cannot perfectly match the real human. Thus, we only use a partial state representation of the
humanoid as state input z to both the policy and discriminator. Our partial state includes the
root’s linear and rotational velocities axis-aligned to the root orientation frame, upward direc-
tion of the root, as well as 3D displacement vectors from the root to each foot, each hand, and
head, also in the root coordinate frame (see Figure 4.3 (Left)). We also added the orientation
of the head in the root coordinate to the partial state for GAIL to learn natural head motions.
After we train expert policies {π̂c}Cc=1 using GAIL, we can generate a large amount of expert
trajectories {τ̂i}Ni=1 from different human behaviors, where each expert trajectory τ̂i contains a
state sequence ẑi

1:T̂i
, an action sequence âi

1:T̂i
and a virtual egocentric video sequence V̂ i

1:T̂i
.

4.3.2 Stage 2: Imitation Learning for Ego-Pose Estimation

Using the expert trajectories {τ̂i}Ni=1 generated in the first stage, we can now learn a video-
conditioned policy πθ (a|z, V1:T )with our video-conditionedGAIL (VGAIL) algorithm outlined
in Algorithm 3. As we only care about the motion of the camera, we extract optical flow from
egocentric videos and overload the notation to use optical flow as the video motion features
V1:T . In this stage, the state s of the MDP is the combination of the state z of the humanoid and
the egocentric optical flow V1:T . The VGAIL loss becomes

`(θ, φ) = Ez∼πθ
[
log
(

1−Dφ(z, V̂1:T )
)]

+ Eẑ∼π̂
[
log
(
Dφ

(
ẑ, V̂1:T

))]
. (4.2)

We use V̂1:T in the above equation since the policy is trained on egocentric videos in expert
demonstrations. In GAIL, expert demonstrations are a set of expert states {ẑi} of the humanoid
and their temporal correlation is dismissed. In VGAIL, expert demonstrations become a set of
expert trajectories {τ̂i}with sampled expert trajectory τ̂k containing a state sequence ŝk1:T̂k (poses
p̂k
1:T̂k

and velocities v̂k
1:T̂k

), an action sequence âk
1:T̂k

and a video sequence V̂ k
1:T̂k

. This provides
two benefits. First, as we want our policy-generated pose sequence pk1:Tk to match with the
expert pose sequence, we use the expert pose sequence p̂k

1:T̂k
to augment the reward with an
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Algorithm 3 Video-conditioned generative adversarial imitation learning
Input: Set of expert demonstrations {τ̂i}Ni=1

Output: Learned policy πθ (a|z, V1:T )

Randomly Initialize policy πθ and discriminator Dφ

repeat
// Perform generator updates
for k in 1 . . . N do

Sample an expert trajectory τ̂k from {τ̂i}Ni=1

Conditioned on V̂ k
1:T̂k

, execute policy πθ to collect learner’s trajectory τk
Compute rewards rkt = − log

(
1−Dφ(zkt , V̂

k
1:T̂k

)
)
− α||pkt − p̂kt ||2 + β

end for
Update θ by policy gradient methods (e.g. TRPO, PPO) using rewards {rkt }
// Perform discriminator updates
for j in 1 . . . J do

`(φ) = 1
N

∑N
k=1

[
1
Tk

∑Tk
t=1 log

(
1−Dφ(zkt , V̂

k
1:T̂k

)
)

+ 1
T̂k

∑T̂k
t=1 log

(
Dφ(ẑkt , V̂

k
1:T̂k

)
)]

Update φ by a gradient method w.r.t. `(φ)

end for
until Max iteration reached

additional pose alignment term −||pkt − p̂kt ||2, which uses L2-norm to penalize pose difference.
Second, we can use the action sequence âk

1:T̂k
to pre-train the policy with behavior cloning [244],

which accelerates the training significantly. The reward for VGAIL is

rkt = − log
(

1−Dφ(zkt , V̂
k
1:Tk

)
)
− α||pkt − p̂kt ||2 + β , (4.3)

whereα is a weighting coefficient and β is a ‘living’ bonus to encourage longer episode (the sim-
ulation episode will end if the humanoid falls down). α and β are set to 3.0 and 5.0 respectively
in our implementation.

Again, we use the partial state of the humanoid discussed in Sec. 4.3.1 as humanoid state
z to both the policy and discriminator. As shown in Figure 4.4(Bottom), for both the policy
and discriminator networks, we use a CNN to extract visual motion features and pass them
to a bidirectional LSTM to process temporal information, and a multilayer perceptron (MLP)
following the LSTM outputs the action distribution (policy) or the classification probability
(discriminator). Once the video-conditioned policy πθ (a|z, V1:T ) is learned, given an egocentric
video with its optical flow V1:T and the initial state of the humanoid, we execute the policy πθ
inside the physics simulator and always choose mean actions to generate the corresponding
pose sequence of the video.

4.3.3 Initial State Estimation and Domain Adaptation

The straightforward use of the video-conditioned policy on real egocentric video data will lead
to failure for two reasons. First, without a mechanism for reliably estimating the initial state
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z1 of the humanoid, the actions generated by the policy cause the humanoid to fall down in
the physics simulator because it cannot reconcile extreme offset between the phase of the body
motion and the video motion. Second, the visual features learned from the optical flow in the
virtual world (checkered floor and skybox) are usually very different from the environment in
real egocentric videos, and therefore the policy is not able to accurately interpret the optical
flow. We propose two important techniques to enable pose estimation with real-world video
data.

Initial state estimation. Wepropose to learn a set of state estimators {fc}Cc=1 where fcmaps an
optical flow V1:T to its corresponding state sequence z1:T and is learned using expert trajectories
generated by expert policy π̂c. The state at time t can be extracted by fc(V1:T )t. fc is implemented
as the state estimation network in Figure 4.4(Bottom). Visual motion features from the optical
flow are extracted by a CNN and passed to a bidirectional LSTM before going into a multilayer
perceptron (MLP) which makes the state predictions. We use the mean square error as loss
which takes the form lc(ψ) = 1

T

∑T
t=1 ||fc(V1:T )t − zt||2, where ψ is the parameters of fc. We

can get an optimal fc by a SGD-based method. The state estimators are used for initial state
estimation in the policy fine-tuning step described below.

Policy fine-tuning. Our imitation learning framework allows us to fine-tune the policy on
test data (of course without requiring any ground truth pose data). This fine-tuning step is
essentially a reinforcement learning step that adapts the policy network to the video input V1:T
while maximizing the reward for matching the training data distribution. In order to utilize
a policy gradient method to improve and adapt the policy, we need a reward function and an
initial state estimate. We define a reward function that will help to ensure that the fine-tuned
policy generates pose sequences that are similar to the training data. Given the test video’s
optical flow V1:T , the fine-tuning reward is defined as

rt = − log (1−Dφ(zt, V1:T )) + ξ , (4.4)

where ξ is a ‘living’ bonus (set to 0.5 in our implementation). The initial state estimate can
be obtained using the state estimators described above by solving the following optimization
problem:

c∗, b∗ = arg max
c=1...C, b=1...10

Ez1=fc(V1:T )b, at∼πθ

[
T∑
t=1

γtrt

]
, (4.5)

where c∗ is the index of the optimal estimator and b∗ is the optimal start frame offset. This
step enables our method to find the best initial state estimator fc∗ and the best start frame b∗
by maximizing the expected return, where the expected return can be estimated by sampling
trajectories from the video-conditioned policy. We then perform fine-tuning by sampling tra-
jectories of the policy starting from the initial state fc∗(V1:T )b∗ and computing rewards using
Equation 4.4. We employ policy gradient methods (e.g., PPO [279]) to update the policy using
the sampled trajectories and rewards.
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Figure 4.4: Top: Humanoid falling down due to the error in initial state estimate. Mid: After
fine-tuning for 20 iterations, the policy can generate correct walking estimates. Bottom: Net-
work architecture for the policy, discriminator, and state estimator. All three networks employ
the same architecture for processing the optical flow: a CNNwith three convolutional layers of
kernel size 4 and stride 4 is used and the size of its hidden channels are (32, 32, 8), and a bidi-
rectional LSTM is used to distill temporal information from the CNN features. For the policy
and discriminator, we concatenate the LSTM output with the humanoid state z and pass it to
an MLP with hidden size (300, 300, 200, 100), which outputs the action distribution (policy) or
classification probability (discriminator). For the state estimation network, the LSTM output is
passed to an MLP with hidden size (300, 300, 200) which outputs the state estimate.

4.4 Experimental Setup

To evaluate our proposed method’s ability to estimate both accurate and physically valid pose
sequences from an egocentric video, we tested our method on two datasets. The first one is a
synthetic dataset using the same expert policies we learned in Sec. 4.3.1. The synthetic dataset
will allow us to evaluate the accuracy of the 3D pose estimates and control actions since we have
access to the ground truth through the simulator. The second dataset is composed of real-world
first-person videos of different people walking and running. Our aim is to show the robustness
of our technique through domain adaptation and initial pose estimation for real-world videos.
Evaluations, however, are based on noisy ground truth estimates using a 2D projection of joint
positions using a second static camera.

Baselines. We compare our methods against two baselines:

• Pose regression: direct regression from video motion features to poses. Similar to the initial
state estimation in Sec. 4.3.3, pose regression learns a mapping from egocentric optical flow
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V1:T to its corresponding pose sequence p1:T . The regression network is the same as the state
estimation network in Figure 4.4(Bottom), except the final outputs are poses instead of states.

• Path pose: an adaptation of the method proposed by Jiang and Grauman [126]. This method
maps a sequence of planar homographies to poses along with temporal conditional random
field (CRF) smoothing to estimate the pose sequence. We do not use static scene cues as the
original work since our training data is synthetic.
Both of these baselines do not impose any physical constraints on their solutions but rather

attempt to directly estimate body poses.

Evaluation Metrics. To evaluate the accuracy and physical soundness of all methods, we use
both pose-based and physics-based metrics:

• Pose error: Pose-based metric that measures the euclidean distance between the generated
pose sequence p1:T and the true pose sequence p̂1:T . It can be calculated as 1

T

∑T
t=1 ||pt− p̂t||2.

• 2D projection error: Pose-based metric used for real-world datasets where the ground-truth
3Dpose sequence of the person is unknown. Weproject the 3D joint locations of our estimated
pose into a 2D image plane using a side-view virtual camera. The 2D projection error can be
calculated as 1

TJ

∑T
t=1

∑J
j=1 ||q

j
t− q̂

j
t ||2 where qjt is the j-th joint’s 2D position of our estimated

pose and q̂jt is the ground-truth. We use OpenPose [26] to extract the ground-truth 2D joint
positions from the side-view video. To comply with OpenPose, we only evaluate 12 joints
(hips, knees, ankles, shoulders, elbows, and wrists). For the 2D poses from our method and
OpenPose, we align their positions of the center of the hips and scale the 2D coordinates to
make the distance between the shoulder and hip equals 0.5.

• Velocity error: Physics-basedmetric thatmeasures the euclidean distance between generated
velocity sequence v1:T and true velocity sequence v̂1:T . It can be calculated as 1

T

∑T
t=1 ||vt −

v̂t||2. vt can be approximated by (pt+1 − pt)/h using finite difference method where h is the
time step and v̂t is computed in the same fashion.

• Smoothness: Physics-basedmetric that uses averagemagnitude of joint accelerations tomea-
sure the smoothness of the generated pose sequence. It can be calculated as 1

TG

∑T
t=1 ||at||1

where G is the number of actuated DoFs and at can be approximated by (vt+1 − vt)/h.

4.4.1 Implementation Details

Motion capture data and simulation. We use CMU graphics lab motion capture database to
learn expert policies as described in Sec. 4.3.1. The humanoid is similarly constructed as the
CMU humanoid model in DeepMind control suite [305] with tweaks on joint stiffness, damp-
ing and torque limits. Please refer to the code for further details. We learn 4 expert policies
from 4 clips (0801, 0804, 0807, 0901) of the motion capture data corresponding to three styles
of walking (slow, normal, fast) and one style of running. The physics simulation environment
has a simulation timestep of 6.67ms and a control timestep of 33.3ms (control changes after 5
simulation steps).
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Imitation learning parameters. The video-conditioned policy is pre-trained using behavior
cloning for 100 iterations. In VGAIL, at every iteration, the policy generates sample trajectories
with a total batch size of 50k timesteps. We perform online z-filtering of state inputs for nor-
malization. The standard deviation for each action dimension is initialized to 0.1. The reward is
clipped with a max value of 10 and advantages are normalized. For policy optimization, we use
proximal policy optimization (PPO [279]) with a 0.2 clipping threshold. The discount factor
γ is 1. The learning rate for the policy and discriminator is 5e-5 and 1e-5 respectively with the
discriminator updated 5 times in the inner loop. We terminate the training after 6000 iterations
to prevent over-fitting. When fine-tuning the policy, we reduce the batch size to 5k and it takes
about 2s per iteration on a GTX 1080Ti.

Smoothness Velocity error Pose error
Ours 11.9876 6.5143 0.9779

Pose regression 36.1628 9.0611 0.8310
Path pose [126] 198.6509 45.0189 1.7643

Smoothness Velocity error Pose error
Ours 11.9876 6.5143 0.9779

Ours-IE 12.2472 7.5337 1.2219
Ours-GTI 12.2968 6.0761 0.6688

Smoothness 2D projection error
Ours 11.54 0.1325

Pose regression 44.11 0.1621
Path pose [126] 214.21 0.1738

Table 4.1: Top: Results for pose-based and physics-based metrics on the virtual test dataset.
Mid: Ablation Study. (Ours-GTI) our method with ground-truth initial states. (Ours-IE) Our
method with estimated initial states before fine-tuning. Bottom: Results for physics-based and
pose-based metrics on real-world data.

4.5 Virtual World Validation

Wefirst evaluate ourmethodon a test dataset generatedusing expert policies learned in Sec. 4.3.1.
The dataset consists of 20 trajectories, each of which is 100 timesteps long. The policy is fine-
tuned for 20 iterations for each sequence.

Table 4.1(Top) shows a comparison of ourmethod against the twobaselines (pose regression
and path pose). We observe that our method outperforms the baselines in terms of physics-
based metrics (acceleration and velocity error), and the pose estimation is reasonably accurate.

Ablation Study. As shown in Table 4.1(Mid), the accuracy of the initial state plays an im-
portant role in our method. As expected, our method with ground-truth initial states is much
more accurate than with estimated initial states. This is because sometimes the humanoid falls
down due to the error in the initial state estimate as shown in Figure 4.4(Top). Our fine-tuning
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Figure 4.5: Qualitative results on real world dataset. (a)(d) Our method (yellow box); (b)(e)
Pose regression; (c)(f) Path pose [126]. Yellow and orange bones correspond to the left arm
and leg respectively.

approach can adapt the policy to recover from the error in the initial state and generate a more
accurate pose sequence (see Figure 4.4(Mid)).

4.6 Real World Validation

To understand the true utility of our approach, we must evaluate its performance on real-world
first-person videos. In this experiment, we apply our virtually trained video-conditioned policy
on real video data and show that our approach is able to estimate both accurate and physically-
valid pose sequences. Since we do not have access to the true 3D poses of the person recording
the egocentric video, we use a secondary static camera (third-person POV) tomeasure the error
of our pose estimation based on 2D projections of joint positions.

We evaluate our proposed method on 12 video sequences composed of 3 different people
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performing the walking activity and running activity, in both outdoor and indoor scenes. Each
egocentric video is 3-7 seconds long and obtained by a head-mounted GoPro camera. For each
sequence, the policy is fine-tuned for 50 iterations. As indicated in Table 4.1(Bottom), our
method estimates much smoother (3.8x, 18.5x) pose sequences and is also more accurate in
terms of 2D projection error (18%, 24%). Figure 4.5 shows a qualitative comparison of our ap-
proach against the two baselines.

4.7 Conclusion

Weproposed aphysically-grounded ego-pose estimationmethod that learns a video-conditioned
control policy to generate the pose estimates in physics simulation. We evaluated our method
on both simulation data and real-world data and show that our approach significantly outper-
forms baselinemethods in terms of physics-basedmetrics and is also accurate. Our experiments
also demonstrated the effectiveness of our proposed fine-tuning approach for domain adapta-
tion from synthetic to real data. We believe our work is one of the first to open new research
directions that consider the role of physics in understanding humanmotion in computer vision.
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Chapter 5

Simulation-Based Third-Person Human
Pose Estimation

5.1 Introduction

We aim to show that accurate 3D human pose estimation from monocular video requires mod-
eling both kinematics and dynamics. Human dynamics, i.e., body motion modeling with phys-
ical forces, has gained relatively little attention in 3D human pose estimation compared to its
counterpart, kinematics, which models motion without physical forces. There are two main
reasons for the disparity between these two equally important approaches. First, kinematics
is a more direct approach that focuses on the geometric relationships of 3D poses and 2D im-
ages; it sidesteps the challenging problem of modeling the physical forces underlying human
motion, which requires significant domain knowledge about physics and control. Second, com-
pared to kinematic measurements such as 3D joint positions, physical forces present unique
challenges in their measurement and annotation, which renders standard supervised learning
paradigms unsuitable. Thus, almost all state-of-the-art methods [145, 148, 213, 228, 340] for 3D
human pose estimation from monocular video are based only on kinematics. Although these
kinematic methods can estimate human motion with high pose accuracy, they often fail to pro-
duce physically-plausible motion. Without modeling the physics of human dynamics, kine-
matic methods have no notion of force, mass or contact; they also do not have the ability to
impose physical constraints such as joint torque limits or friction. As a result, kinematic meth-
ods often generate physically-implausible motions with pronounced artifacts: body parts (e.g.,
feet) penetrate the ground; the estimated poses are jittery and vibrate excessively; the feet slide
back and forth when they should be in static contact with the ground. All these physical ar-
tifacts significantly limit the application of kinematic pose estimation methods. For instance,
jittery motions can be misleading for medical monitoring and sports training; physical artifacts
also prevent applications in computer animation and virtual/augmented reality since people
are exceptionally good at discerning even the slightest clue of physical inaccuracy [107,249].

To improve the physical plausibility of estimatedhumanmotion fromvideo, recentwork [178,
251,284] has started to adopt the use of dynamics in their formulation. These methods first es-
timate kinematic motion and then use physics-based trajectory optimization to optimize the
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Figure 5.1: Our SimPoE framework learns a kinematics-aware video-conditioned policy that
controls a character in a physics simulator (Top) and estimates accurate and physically-
plausible human motion (Bottom).

forces to induce the kinematic motion. Although they can generate physically-grounded mo-
tion, there are several drawbacks of trajectory optimization-based approaches. First, trajectory
optimization entails solving a highly-complex optimization problem at test time. This can be
computationally intensive and requires the batch processing of a temporal window or even the
entire motion sequence, causing high latency in pose predictions and making it unsuitable for
interactive real-time applications. Second, trajectory optimization requires simple and differ-
entiable physics models to make optimization tractable, which can lead to high approximation
errors compared to advanced and non-differentiable physics simulators (e.g., MuJoCo [308],
Bullet [42]). Finally andmost importantly, the application of physics in trajectory optimization-
basedmethods is implemented as a post-processing step that projects a given kinematic motion
to a physically-plausible one. Since it is optimization-based, there is no learning mechanism in
place that tries to match the optimized motion to the ground truth. As such, the resulting mo-
tion from trajectory optimization can be physically-plausible but still far from the ground-truth,
especially when the input kinematic motion is inaccurate.

To address these limitations, we present a new approach, SimPoE (Simulated Character Con-
trol for Human Pose Estimation), that tightly integrates image-based kinematic inference and
physics-based dynamics modeling into a joint learning framework. Unlike trajectory optimiza-
tion, SimPoE is a causal temporal model with an integrated physics simulator. Specifically, Sim-
PoE learns a policy that takes the current pose and the next image frame as input, and pro-
duces controls for a proxy character inside the simulator that outputs the pose estimate for the
next frame. To perform kinematic inference, the policy contains a learnable kinematic pose re-
finement unit that uses image evidence (2D keypoints) to iteratively refine a kinematic pose
estimate. Concretely, the refinement unit takes as input the gradient of keypoint reprojection
loss, which encodes rich information about the geometry of pose and keypoints, and outputs
the kinematic pose update. Based on this refined kinematic pose, the policy then computes a
character control action, e.g., target joint angles for the character’s proportional-derivative (PD)
controllers, to advance the character state and obtain the next-frame pose estimate. This policy
design couples the kinematic pose refinement unit with the dynamics-based control genera-
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tion unit, which are learned jointly with reinforcement learning (RL) to ensure both accurate
and physically-plausible pose estimation. At each time step, a reward is assigned based on the
similarity between the estimated motion and the ground truth. To further improve pose esti-
mation accuracy, SimPoE also includes a new control mechanism called meta-PD control. PD
controllers are widely used in prior work [236, 241, 362] to convert the action produced by the
policy into the joint torques that control the character. However, the PD controller parameters
typically have fixed values that require manual tuning, which can produce sub-optimal results.
Instead, in meta-PD control, SimPoE’s policy is also trained to dynamically adjust the PD con-
troller parameters across simulation steps based on the state of the character to achieve a finer
level of control over the character’s motion.

We validate our approach, SimPoE, on two large-scale datasets, Human3.6M [118] and an
in-house human motion dataset that also contains detailed finger motion. We compare SimPoE
against state-of-the-art monocular 3D human pose estimation methods including both kine-
matic and physics-based approaches. On both datasets, SimPoE outperforms previous art in
both pose-based and physics-based metrics, with significant pose accuracy improvement over
prior physics-based methods. We further conduct extensive ablation studies to investigate the
contribution of our proposed components including the kinematic refinement unit, meta-PD
control, as well as other design choices.

The main contributions of this paper are as follows: (1) We present a joint learning frame-
work that tightly integrates image-based kinematic inference and physics-based dynamicsmod-
eling to achieve accurate and physically-plausible 3D human pose estimation from monocu-
lar video. (2) Our approach is causal, runs in real-time without batch trajectory optimization,
and addresses several drawbacks of prior physics-based methods. (3) Our proposed meta-PD
control mechanism eliminates manual dynamics parameter tuning and enables finer character
control to improve pose accuracy. (4) Our approach outperforms previous art in both pose ac-
curacy and physical plausibility. (5) We perform extensive ablations to validate the proposed
components to establish good practices for RL-based human pose estimation.

5.2 Related Work

Kinematic 3DHumanPose Estimation. Numerous priorworks estimate 3Dhuman joint loca-
tions frommonocular video using either two-stage [45,232,247] or end-to-end [205,206] frame-
works. On the other hand, parametric human body models [7, 189, 228] are widely used as
the human pose representation since they additionally provide skeletal joint angles and a 3D
body mesh. Optimization-based methods have been used to fit the SMPL body model [189] to
2D keypoints extracted from an image [20, 159]. Alternatively, regression-based approaches
use deep neural networks to directly regress the parameters of the SMPL model from an im-
age [81,133,223,231,314,320], usingweak supervision from 2D keypoints [133,314,320] or body
part segmentation [223, 231]. Song et al. [292] propose neural gradient descent to fit the SMPL
model using 2D keypoints. Regression-based [133] and optimization-based [20] methods have
also been combined to produce pseudo ground truth from weakly-labeled images [148] to fa-
cilitate learning. Recent work [10,115,135,145,191,301] starts to exploit the temporal structure
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of human motion to estimate smooth motion. Kanazawa et al. [135] model human kinematics
by predicting past and future poses. Transformers [316] have also been used to improve the
temporal modeling of human motion [301]. All the aforementioned methods disregard human
dynamics, i.e., the physical forces that generate humanmotion. As a result, these methods often
produce physically-implausible motions with pronounced physical artifacts such as jitter, foot
sliding, and ground penetration.

Physics-Based Human Pose Estimation. A number of works have addressed human dynam-
ics for 3D human pose estimation. Most prior works [21, 251, 284, 322, 331, 362, 372] use trajec-
tory optimization to optimize the physical forces to induce the human motion in a video. As
discussed in Sec. 5.1, trajectory optimization is a batch procedure which has high latency and
is typically computationally expensive, making it unsuitable for real-time applications. Fur-
thermore, these methods cannot utilize advanced physics simulators with non-differentiable
dynamics. Most importantly, there is no learning mechanism in trajectory optimization-based
methods that tries to match the optimizedmotion to the ground truth. Our approach addresses
these drawbacks with a framework that integrates kinematic inference with RL-based charac-
ter control, which runs in real-time, is compatible with advanced physics simulators, and has
learning mechanisms that aim to match the output motion to the ground truth. Although prior
work [122,360,362] has usedRL to produce simple human locomotions fromvideos, thesemeth-
ods only learn policies that coarsely mimic limited types of motion instead of precisely tracking
the motion presented in the video. In contrast, our approach can achieve accurate pose estima-
tion by integrating images-based kinematic inference and RL-based character control with the
proposed policy design and meta-PD control.

Reinforcement Learning for Character Control. Deep RL has become the preferred approach
for learning character control policieswithmanually-designed rewards [182,183,236,240]. GAIL
[103] based methods are proposed to learn character control without reward engineering [209,
330]. To produce long-term behaviors, prior work has used hierarchical RL to control char-
acters to achieve high-level tasks [207, 208, 210, 239]. Recent work also uses deep RL to learn
user-controllable policies frommotion capture data for character animation [18,226,335]. Prior
work in this domain learns control policies that reproduce training motions, but the policies
do not transfer to unseen test motions, nor do they estimate motion from video as our method
does.

5.3 Approach

The overview of our SimPoE (Simulated Character Control for Human Pose Estimation) framework
is illustrated in Fig. 5.2. The input to SimPoE is a video I1:T = (I1, . . . , IT ) of a person with T
frames. For each frame It, we first use an off-the-shelf kinematic pose estimator to estimate an
initial kinematic pose q̃t, which consists of the joint angles and root translation of the person;
we also extract 2D keypoints qxt and their confidence ct from It using a given pose detector (e.g.,
OpenPose [26])). As the estimated kinematic motion q̃1:T = (q̃1, . . . , q̃T ) is obtained without
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Figure 5.2: Overview of our SimPoE framework. (a) SimPoE is a physics-based causal tem-
poral model. (b) At each frame (30Hz), the policy network Fθ use the current pose qt, ve-
locities q̇t, and the next frame’s estimated kinematic pose q̃t+1 and keypoints (qxt+1, ct+1) to
generate an action at, which controls the character in the physics simulator (450Hz) via PD
controllers to produce the next pose qt+1. (c) The policy network Fθ outputs the mean action
at , (ut,ηt,λ

p
t ,λ

d
t ). The kinematic refinement unit iteratively refines a kinematic pose estimate

by learning pose updates. The refined pose q̃(n)t+1 is used by the control generation unit to pro-
duce the mean action at.

modeling human dynamics, it often contains physically-implausible poses with artifacts like
jitter, foot sliding, and ground penetration. This motivates the main stage of our method, simu-
lated character control, where wemodel human dynamics with a proxy character inside a physics
simulator. The character’s initial pose q1 is set to q̃1. At each time step t shown in Fig. 5.2 (b),
SimPoE learns a policy that takes as input the current character pose qt, velocities q̇t, as well
as the next frame’s kinematic pose q̃t+1 and keypoints (qxt+1, ct+1) to produce an action that
controls the character in the simulator to output the next pose qt+1. By repeating this causal
process, we obtain the physically-grounded estimated motion q1:T = (q1, . . . , qT ) of SimPoE.

5.3.1 Automated Character Creation

The characterwe use as a proxy to simulate humanmotion is created from skinned humanmesh
models, e.g., the SMPL model [189], which can be recovered via SMPL-based pose estimation
methods such as VIBE [145]. These skinned mesh models provide a skeleton of B bones, a
mesh of V vertices, and a skinning weight matrixW ∈ RV×B where each elementWij specifies
the influence of the j-th bone’s transformation on the i-th vertex’s position. We can obtain a
rigid vertex-to-bone associationA ∈ RV by assigning each vertex i to the bone with the largest
skinning weight for it: Ai = arg maxjWij . With the vertex-to-bone association A, we can then
create the geometry of each bone by computing the 3D convex hull of all the vertices assigned
to the bone. Assuming constant density, the mass of each bone is determined by the volume
of its geometry. Our character creation process is fully automatic, is compatible with popular
body mesh models (e.g., SMPL), and ensures proper body geometry and mass assignment.
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5.3.2 Simulated Character Control

The task of controlling a character agent in physics simulation to generate desired human mo-
tions can be formulated as a Markov decision process (MDP), which is defined by a tuple
M = (S,A, T , R, γ) of states, actions, transition dynamics, a reward function, and a discount
factor. The character agent interacts with the physics simulator according to a policy π(at|st),
which models the conditional distribution of choosing an action at ∈ A given the current state
st ∈ S of the agent. Starting from some initial state s1, the character agent iteratively sam-
ples an action at from the policy π and the simulation environment with transition dynamics
T (st+1|st,at) generates the next state st+1 and gives the agent a reward rt. The reward is as-
signed based on how well the character’s motion aligns with the ground-truth human motion.
The goal of our character control learning process is to learn an optimal policy π∗ thatmaximizes
the expected return J(π) = Eπ

[∑
t γ

trt
]which translates to imitating the ground-truth motion

as closely as possible. We apply a standard reinforcement learning algorithm (PPO [279]) to
solve for the optimal policy. In the following, we provide a detailed description of the states,
actions and rewards of our control learning process. We then use a dedicated Sec. 5.3.3 to elab-
orate on our policy design.

States. The character state st , (qt, q̇t, q̃t+1, qxt+1, ct+1) consists of the character’s current pose
qt, joint velocities (time derivative of the pose) q̇t, as well as the estimated kinematic pose q̃t+1,
2D keypoints qxt+1 and keypoint confidence ct+1 of the next frame. The state includes informa-
tion of both the current frame (qt, q̇t) and next frame (q̃t+1, qxt+1,ct+1), so that the agent learns
to take the right action at to transition from the current pose qt to a desired next pose qt+1, i.e.,
pose close to the ground truth.

Actions. The policy π(at|st) runs at 30Hz, the input video’s frame rate, while our physics sim-
ulator runs at 450Hz to ensure stable simulation. This means one policy step corresponds to 15
simulation steps. One common design of the policy’s action at is to directly output the torques
τ t to be applied at each joint (except the root), which are used repeatedly by the simulator dur-
ing the 15 simulation steps. However, finer control can be achieved by adjusting the torques
at each step based on the state of the character. Thus, we follow prior work [241, 362] and use
proportional-derivative (PD) controllers at each non-root joint to produce torques. With this
design, the action at includes the target joint angles ut of the PD controllers. At the j-th of the
15 simulation (PD controller) steps, the joint torques τ t are computed as

τ t = kp ◦ (ut − qnrt )− kd ◦ q̇nrt , (5.1)

where kp and kd are the parameters of the PD controllers, qnrt and q̇nrt denote the joint angles
and velocities of non-root joints at the start of the simulation step, and ◦ denotes element-wise
multiplication. The PD controllers act like damped springs that drive joints to target angles ut,
where kp and kd are the stiffness and damping of the springs. In Sec. 5.3.4, we will introduce
a new control mechanism, meta-PD control, that allows kp and kd to be dynamically adjusted
by the policy to achieve an even finer level of character control. With Meta-PD control, the
action at includes elements λpt and λdt for adjusting kp and kd respectively. As observed in prior
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work [364], allowing the policy to apply external residual forces to the root greatly improves
the robustness of character control. Thus, we also add the residual forces and torques ηt of the
root into the action at. Overall, the action is defined as at , (ut,ηt,λ

p
t ,λ

d
t ).

Rewards. In order to learn the policy, we need to define a reward function that encourages
the motion q1:T generated by the policy to match the ground-truth motion q̂1:T . Note that we
use ·̂ to denote ground-truth quantities. The reward rt at each time step is defined as the
multiplication of four sub-rewards:

rt = r
p
t · rvt · r

j
t · rkt . (5.2)

The pose reward r
p
t measures the difference between the local joint orientations ojt and the

ground truth ôjt :

r
p
t = exp

−αp
 J∑
j=1

‖ojt 	 ô
j
t‖2
 , (5.3)

where J is the total number of joints,	 denotes the relative rotation between two rotations, and
‖ · ‖ computes the rotation angle. The velocity reward rvt measures the mismatch between joint
velocities q̇t and the ground truth ̂̇qt:

rvt = exp
[
−αv‖q̇t − ̂̇qt‖2] . (5.4)

The joint position reward rjt encourages the 3D world joint positions Xj
t to match the ground

truth X̂j

t :

r
j
t = exp

−αj
 J∑
j=1

‖Xj
t − X̂

j

t‖2
 . (5.5)

Finally, the keypoint reward rkt pushes the 2D image projection xjt of the joints to match the
ground truth x̂jt :

rkt = exp

−αk
 J∑
j=1

‖xjt − x̂
j
t‖2
 . (5.6)

Note that the orientations ojt , 3D joint positionsXj
t and 2D image projectionsxjt are functions of

the pose qt. The joint velocities q̇t are computed via finite difference. There are also weighting
factors αp, αv, αj, αk inside each reward. These sub-rewards complement each other by match-
ing different features of the generated motion to the ground-truth: joint angles, velocities, as
well as 3D and 2D joint positions. Our reward design is multiplicative, which eases policy
learning as noticed by prior work [335]. The multiplication of the sub-rewards ensures that
none of them can be overlooked in order to achieve a high reward.

5.3.3 Kinematics-Aware Policy

As the action at is continuous, we adopt a parametrized Gaussian policy πθ(at|st) = N (at,Σ)

where the mean at , (ut,ηt,λ
p
t ,λ

d
t ) is output by a neural network Fθ with parameters θ, and
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Σ is a fixed diagonal covariance matrix whose elements are treated as hyperparameters. The
noise inside the Gaussian policy governed by Σ allows the agent to explore different actions
around the mean action at and use these explorations to improve the policy during training.
At test time, the noise is removed and the character agent always takes the mean action at to
improve performance.

Now let us focus on the design of the policy network Fθ that maps the state st to the mean
action at. Based on the design of st, the mapping can be written as

at = Fθ
(
qt, q̇t, q̃t+1, qxt+1, ct+1

)
. (5.7)

Recall that q̃t+1 is the kinematic pose, qxt+1 and ct+1 are the detected 2D keypoints and their
confidence, and that they are all information about the next frame. The overall architecture of
our policy network Fθ is illustrated in Fig. 5.2 (c). The components (ut,ηt,λ

p
t ,λ

d
t ) of the mean

action at are computed as follows:

q̃
(n)
t+1 = Rθ

(
q̃t+1, qxt+1, ct+1

)
, (5.8)

(δut,ηt,λ
p
t ,λ

d
t ) = Gθ

(
q̃
(n)
t+1, qt, q̇t

)
, (5.9)

ut = q̃
(n)
t+1 + δut . (5.10)

In Eq. (5.8), Rθ is a kinematic refinement unit that iteratively refines the kinematic pose q̃t+1

using the 2D keypoints qxt+1 and confidence ct+1, and q̃(n)t+1 is the refined pose after n iterations
of refinement. Eq. (5.9) and (5.10) describe a control generation unit Gθ that maps the refined
pose q̃(n)t+1, current pose qt and velocities q̇t to the components of themean actionat. Specifically,
the control generation unit Gθ includes a hand-crafted feature extraction layer, a normalization
layer (based on running estimates of mean and variance) and another MLP Vθ, as illustrated
in Fig. 5.2 (c). As described in Eq. (5.10), an important design of Gθ is a residual connection
that produces the mean PD controller target angles ut using the refined kinematic pose q̃(n)t+1,
where we ignore the root angles and positions in q̃(n)t+1 for ease of notation. This design builds
in proper inductive bias since q̃(n)t+1 provides a good guess for the desired next pose qt+1 and
thus a good base value for ut. It is important to note that the PD controller target angles ut do
not translate to the same next pose qt+1 of the character, i.e., qt+1 6= ut. The reason is that the
character is subject to gravity and contact forces, and under these external forces the joint angles
qt+1 will not be ut when the PD controllers reach their equilibrium. As an analogy, since PD
controllers act like springs, a spring will reach a different equilibrium position when you apply
external forces to it. Despite this, the next pose qt+1 generally will not be far away from ut and
learning the residual δut to q̃(n)t+1 is easier than learning from scratch as we will demonstrate in
the experiments. This design also synergizes the kinematics of the character with its dynamics
as the kinematic pose q̃(n)t+1 is now tightly coupledwith the input of the character’s PD controllers
that control the character in the physics simulator.
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Kinematic Refinement Unit. The kinematic refinement unit Rθ is formed by an MLP Uθ that
maps a feature vector z (specific form will be described later) to a pose update:

δq̃
(i)
t+1 = Uθ (z) , (5.11)

q̃
(i+1)
t+1 = q̃

(i)
t+1 + δq̃

(i)
t+1 , (5.12)

where idenotes the i-th refinement iteration and q̃(0)t+1 = q̃t+1. To fully leverage the 2D keypoints
and kinematic pose at hand, we design the feature z to be the gradient of the keypoint reprojec-
tion loss with respect to current 3D joint positions, inspired by recent work [292] on kinematic
body fitting. The purpose of using the gradient is not to minimize the reprojection loss, but to
use it as an informative kinematic feature to learn a pose update that eventually results in stable
and accurate control of the character; there is no explicit minimization of the reprojection loss
in our formulation. Specifically, we first obtain the 3D joint positions X̃t+1 = FK(q̃

(i)
t+1) through

forward kinematics and then compute the reprojection loss as

L(X̃t+1) =
J∑
j=1

∥∥∥Π
(
X̃

j

t+1

)
− qxjt+1

∥∥∥2 · cjt+1 , (5.13)

where X̃j

t+1 denotes the j-th joint position in X̃t+1, Π(·) denotes the perspective camera pro-
jection, and (qxjt+1, c

j
t+1) are the j-th detected keypoint and its confidence. The gradient feature

z , ∂L/∂X̃t+1 is informative about the kinematic pose q̃(i)t+1 as it tells us how each joint should
move tomatch the 2D keypoints qxjt+1. It also accounts for keypoint uncertainty byweighting the
losswith the keypoint confidence cjt+1. Note that z is converted to the character’s root coordinate
to be invariant of the character’s orientation. The refinement unit integrates kinematics and dy-
namics as it utilizes a kinematics-based feature z to learn the update of a kinematic pose, which
is used to produce dynamics-based control of the character. The joint learning of the kinematic
refinement unitRθ and the control generation unit Gθ ensures accurate and physically-plausible
pose estimation.

Feature Extraction Layer. After refinement, the control generation unit Gθ needs to extract
informative features from its input to output an action that advances the character from the
current pose qt to the next pose qt+1. To this end, the feature extraction layer uses information
from both the current frame and next frame. Specifically, the extracted feature includes qt,
q̇t, the current 3D joint positions Xt, the pose difference vector between qt and the refined
kinematic pose q̃(n)t+1, and the difference vector between Xt and the next-frame joint position
X̃t+1 computed from q̃

(n)
t+1. All features are converted to the character’s root coordinate to be

orientation-invariant and encourage robustness against variations in absolute pose encountered
at test time.

5.3.4 Meta-PD control

PD controllers are essential in our approach as they relate the kinematics and dynamics of the
character by converting target joint angles in pose space to joint torques. However, an undesir-
able aspect of PD controllers is the need to specify the parameters kp and kd for computing the
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joint torques τ t as described in Eq. (5.1). It is undesirable because (i) manual parameter tun-
ing requires significant domain knowledge and (ii) even carefully designed parameters can be
suboptimal. The difficulty, here, lies in balancing the ratio between kp and kd. Large ratios can
lead to unstable and jittery motion while small values can result in motion that is too smooth
and lags behind ground truth.

Motivated by this problem, we propose meta-PD control, a method that allows the policy
to dynamically adjust kp and kd based on the state of the character. Specifically, given some
initial values k′p and k′d, the policy outputs λp and λd as additional elements of the action at
that act to scale k′p and k′d. Moreover, we take this idea one step further and let the policy
output two sequences of scales λpt = (λ

p
t1, . . . , λ

p
tm) and λdt = (λdt1, . . . , λ

d
tm) where m = 15

corresponds to the number of PD controller (simulation) steps during a policy step. The PD
controller parameters kp and kd at the j-th step of the 15 PD controller steps are then computed
as follows:

kp = λ
p
tjk
′
p, kd = λdtjk

′
d . (5.14)

Instead of using fixed kp and kd, meta-PD control allows the policy to plan the scaling of kp and
kd through the 15 PD controller steps to have more granular control over the torques produced
by the PD controllers, which in turn enables a finer level of character control. With meta-PD
control, the action at is now defined as at , (ut,ηt,λ

p
t ,λ

d
t ).

Since both the PD gains and target joint angles are output by the policy, it may seem that
meta-PD control is similar to directly outputting joint torques at a finer time scale. However,
the two approaches are still fundamentally different, because there are inherent constraints on
the PD gains (e.g., cannot be negative) and the target joint angles (cannot be too far away from
the current joint angles), which constrains the joint torques in a physically-plausible way.

5.4 Experiments

Datasets. Weperformexperiments on two large-scale humanmotiondatasets. The first dataset
is Human3.6M [118], which includes 7 annotated subjects captured at 50Hz and a total of 1.5
million training images. Following prior work [145, 148, 213], we train our model on 5 subjects
(S1, S5, S6, S7, S8) and test on the other 2 subjects (S9, S11). We subsample the dataset to 25Hz
for both training and testing. The second dataset we use is an in-house human motion dataset
that also contains detailed finger motion. It consists of 3 subjects captured at 30Hz performing
various actions from free body motions to natural conversations. There are around 335k train-
ing frames and 87k test frames. Our in-house dataset has complex skeletons with twice more
joints than the SMPLmodel, including fingers. The body shape variation among subjects is also
greater than that of SMPL, which further evaluates the robustness of our approach.

Metrics. We use both pose-based and physics-based metrics for evaluation. To assess pose ac-
curacy, we report mean per joint position error (MPJPE) and Procrustes-aligned mean per joint
position error (PA-MPJPE). We also use three physics-based metrics that measure jitter, foot
sliding, and ground penetration, respectively. For jitter, we compute the difference in acceler-
ation (Accel) between the predicted 3D joint and the ground-truth. For foot sliding (FS), we
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find body mesh vertices that contact the ground in two adjacent frames and compute their av-
erage displacement within the frames. For ground penetration (GP), we compute the average
distance to the ground for mesh vertices below the ground. The units for these metrics are mil-
limeters (mm) except for Accel (mm/frame2). MPJPE, PA-MPJPE and Accel are computed in
the root-centered coordinate.

5.4.1 Implementation Details.

Character Models. We use MuJoCo [308] as the physics simulator. For the character creation
process in Sec. 5.3.1, we use VIBE [145] to recover an SMPL model for each subject in Hu-
man3.6M. Each MuJoCo character created from the SMPL model has 25 bones and 76 degrees
of freedom (DoFs). For our in-house motion dataset, we use non-rigid ICP [6] and linear blend
skinning [137] to reconstruct a skinned human mesh model for each subject. Each of these
models has fingers and includes 63 bones and 114 DoFs.

Initialization. For Human3.6M, we use VIBE to provide the initial kinematic motion q̃1:T . For
our in-house motion dataset, since our skinned human models have more complex skeletons
and meshes than the SMPL model, we develop our own kinematic pose estimator. To recover
the global root position of the person, we assume the camera intrinsic parameters are calibrated
and optimize the root position by minimizing the reprojection loss of 2D keypoints, similar to
the kinematic initialization in [284].

OtherDetails. The kinematic refinement unit in the policy network refines the kinematic pose
n = 5 times. To facilitate learning, we first pretrain the refinement unit with supervised learn-
ing using an MSE loss on the refined kinematic pose. The normalization layer in the policy
computes the running average of the mean and variance of the input feature during training,
and uses it to produce a normalized feature. Our learned policy runs at 38 FPS on a standard
PC with an Intel Core i9 Processor.

5.4.2 Comparison to state-of-the-art methods

We compare SimPoE against state-of-the-artmonocular 3D human pose estimationmethods, in-
cluding both kinematics-based (VIBE [145], NeurGD[292]) andphysics-based (PhysCap [284],
EgoPose [362]) approaches. The results of VIBE and EgoPose are obtained using their pub-
licly released code and models. As PhysCap and NeurGD have not released their code, we
directly use the reported results on Human3.6M from the PhysCap paper and implement our
own version of NeurGD. Table 5.1 summarizes the quantitative results on Human3.6M and the
in-house motion dataset. On Human3.6M, we can observe that our method, SimPoE, outper-
forms previous methods in pose accuracy as indicated by the smaller MPJPE and PA-MPJPE.
In particular, SimPoE shows large pose accuracy improvements over state-of-the-art physics-
based approaches (EgoPose [362] and PhysCap [284]), reducing theMPJPE almost by half. For
physics-based metrics (Accel, FS and GP), SimPoE also outperforms prior methods by large
margins. It means that SimPoE significantly reduces the physical artifacts – jitter (Accel), foot
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Figure 5.3: Visualization of estimated poses in the camera view and an alternative view. Sim-
PoE estimates more accurate poses and foot contact. Pose mismatch and ground penetration
are highlighted with boxes. Please see the supplementary video for more comparisons.

sliding (FS), and ground penetration (GP), which particularly deteriorate the results of kine-
maticmethods (VIBE [145] andNeurGD [292]). On the in-housemotion dataset, SimPoE again
outperforms previous methods in terms of both pose-based and physics-based metrics. In the
table, KinPose denotes our own kinematic pose estimator used by SimPoE. We note that the
large acceleration error (Accel) of EgoPose is due to the frequent falling of the character, which
is a common problem in physics-based methods since the character can lose balance when per-
forming agile motions. The learned policy of SimPoE is robust enough to stably control the
character without falling, which prevents irregular accelerations.

We also provide qualitative comparisons in Fig. 5.3, where we show the estimated poses in
the camera view and the same poses rendered from an alternative view. The alternative view
shows that SimPoE can estimate foot contact with the ground more accurately and without
penetration. As the quality and physical plausibility of the estimated motions are best seen in
videos, please refer to the supplementary video for additional qualitative results and compar-
isons.

5.4.3 Ablation Studies

To further validate our proposed approach, we conduct extensive ablation studies to investigate
the contribution of each proposed component to the performance. Table 5.2 summarizes the
results where we train different variants of SimPoE by removing a single component each time.
First, we can observe that both meta-PD control and the kinematic refinement unit contribute
to better pose accuracy as indicated by the corresponding ablations (w/o Meta-PD and w/o
Refine). Second, the ablation (w/o ResAngle) shows that it is important to have the residual
connection in the policy network for producing the mean PD controller target angles ut. Next,
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Human3.6M
Method Physics MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

VIBE [145] 7 61.3 43.1 15.2 15.1 12.6
NeurGD* [292] 7 57.3 42.2 14.2 16.7 24.4
PhysCap [284] 3 113.0 68.9 - - -
EgoPose [362] 3 130.3 79.2 31.3 5.9 3.5
SimPoE (Ours) 3 56.7 41.6 6.7 3.4 1.6

In-House Motion Dataset
Method Physics MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

KinPose 7 49.7 40.4 12.8 6.4 3.9
NeurGD* [292] 7 36.7 30.9 16.2 7.7 3.6
EgoPose [362] 3 202.2 131.4 32.6 2.2 0.5
SimPoE (Ours) 3 26.6 21.2 8.4 0.5 0.1

Table 5.1: Results of pose-based (MPJPE, PA-MPJPE) and physics-based (Accel, FS, GP)metrics
on Human3.6M and our in-house motion dataset. Symbol “-” means results are not available
and “*” means self-implementation (better results than the original paper).
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Figure 5.4: Effect of refinement unit.

the residual forces ηt we use in action at are also indispensable as demonstrated by the drop in
performance of the variant (w/o ResForce). Without the residual forces, the policy is not robust
and the character often falls down as indicated by the large acceleration error (Accel). Finally,
it is evident from the ablation (w/o FeatLayer) that our feature extraction layer in the policy is
also instrumental, because it extracts informative features of both the current frame and next
frame to learn control that advances the character to the next pose. We also perform ablations
to investigate how the number of refinement iterations in the policy affects pose accuracy. As
shown in Fig. 5.4, the performance gain saturates around 5 refinement iterations.

5.5 Discussion and Future Work

In this work, we demonstrate that modeling both kinematics and dynamics improves the ac-
curacy and physical plausibility of 3D human pose estimation from monocular video. Our ap-
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Method
Human3.6M In-House Motion Dataset

MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓ MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

w/o Meta-PD 59.9 44.7 5.9 2.2 1.4 39.8 31.7 7.1 0.4 0.1
w/o Refine 61.2 43.5 8.0 3.4 2.0 47.9 38.9 9.6 0.6 0.1
w/o ResAngle 68.7 51.0 6.4 4.1 2.1 193.4 147.6 6.5 0.9 0.3
w/o ResForce 115.2 65.1 23.5 6.1 3.2 48.4 31.3 12.5 0.9 0.3
w/o FeatLayer 81.4 47.6 9.3 5.0 1.8 36.9 27.5 9.5 0.6 0.1
SimPoE (Ours) 56.7 41.6 6.7 3.4 1.6 26.6 21.2 8.4 0.5 0.1

Table 5.2: Ablation studies on Human3.6M.

proach, SimPoE, unifies kinematics and dynamics by integrating image-based kinematic infer-
ence and physics-based character control into a joint reinforcement learning framework. It runs
in real-time, is compatible with advanced physics simulators, and addresses several drawbacks
of prior physics-based approaches.

However, due to its physics-based formulation, SimPoE depends on 3D scene modeling to
enforce contact constraints during motion estimation. This hinders direct evaluation on in-the-
wild datasets, such as 3DPW [321], which includes motions such as climbing stairs or even
trees. Future work may include integration of video-based 3D scene reconstruction to address
this limitation.
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Chapter 6

Global Occlusion-Aware Human Pose
Estimation via Behavior Generation

6.1 Introduction

Recovering fine-grained 3D human meshes frommonocular videos is essential for understand-
ing human behaviors and interactions, which can be the cornerstone for numerous applications
including virtual or augmented reality, assistive living, autonomous driving, etc. Many of these
applications use dynamic cameras to capture human behaviors yet also require estimating hu-
man motions in global coordinates consistent with their surroundings. For instance, assistive
robots and autonomous vehicles need a holistic understanding of human behaviors and inter-
actions in the world to safely plan their actions even when they are moving. Therefore, our goal
in this paper is to tackle the important task of recovering global humanmeshes frommonocular
videos captured by dynamic cameras.

However, this task is highly challenging for twomain reasons. First, dynamic cameras make
it difficult to estimate human motions in consistent global coordinates. Existing human mesh re-
covery methods estimate human meshes in the camera coordinates [212, 383] or even in the
root-relative coordinates [145, 213]. Hence, they can only recover global human meshes from
dynamic cameras by using SLAM to estimate camera poses [186]. However, SLAM can often
fail for in-the-wild videos due to moving and dynamic objects. It also has the problem of scale
ambiguity, which often leads to camera poses that are inconsistent with the human motions.
Second, videos captured by dynamic cameras often contain severe and long-term occlusions of
humans, which can be caused by missed detection, complete obstruction by objects and other
people, or the person going outside the camera’s field of view (FoV). These occlusions pose
serious challenges to standard human mesh recovery methods, which rely on detections or vis-
ible parts to estimate human meshes. Only a few works have attempted to tackle the occlusion
problem in human mesh recovery [64, 127]. However, these methods can only address par-
tial occlusions of a person and fail to handle severe occlusions when the person is completely
invisible for an extended period of time.

To tackle the above challenges, we propose Global Occlusion-Aware HumanMesh Recovery
(GLAMR),which can handle severe occlusions and estimate humanmeshes in consistent global
coordinates – even for videos recorded with dynamic cameras. We start by using off-the-shelf
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Figure 6.1: GLAMR (Left) recovers human meshes in consistent global coordinates and infills
missing poses (transparent) due to various occlusions (obstruction, missed detection, outside
field of view), while standard human mesh recovery methods (Right) fail to do so.

methods (e.g., KAMA[120] or SPEC [147]) to estimate the shape andpose sequences (motions)
of visible people in the camera coordinates. These methods also rely on multi-object tracking
and re-identification, which provide occlusion information, and the motion of occluded frames
is not estimated. To tackle potentially severe occlusions, we propose a deep generative motion
infiller that autoregressively infills the local body motions of occluded people based on visible
motions. The motion infiller leverages human dynamics learned from a large motion database,
AMASS [198]. Next, to obtain global motions, we propose a global trajectory predictor that
can generate global human trajectories based on local body motions. It is motivated by the
observation that the global root trajectory of a person is highly correlated with the local body
movements. Finally, using the predicted trajectories as anchors to constrain the solution space,
we further propose a global optimization framework that jointly optimizes the global motions
and camera poses to match the video evidence such as 2D keypoints.

The contributions of this paper are as follows: (1) We propose the first approach to ad-
dress long-term occlusions and estimate global 3D human pose and shape from videos cap-
tured by dynamic cameras; (2) We propose a novel generative Transformer-based motion in-
filler that autoregressively infills long-term missing motions, which considerably outperforms
state-of-the-art motion infilling methods; (3) We propose a method to generate global human
trajectories from local body motions and use the generated trajectories as anchors to constrain
global motion and camera optimization; (4) Extensive experiments on challenging indoor and
in-the-wild datasets demonstrate that our approach outperforms prior state-of-the-art methods
significantly in tackling occlusions and estimating global human meshes.

6.2 Related Work

Camera-Relative Pose Estimation. 3D human mesh recovery from RGB images or videos is
an ill-posed problem due to the depth ambiguity. Most existing methods simplify the prob-

67



lem by estimating human poses relative to the pelvis (root) of the human body [2, 20, 38–
40, 61, 82, 130, 134, 135, 145, 149, 150, 156, 159, 179, 191, 213, 218, 228, 229, 231, 250, 263, 292, 300,
301, 341, 348, 368, 373, 378, 388]. These methods assume an orthographic camera projection
model and neglect the absolute 3D translation of the person w.r.t. the camera. To address
the lack of translation, recent methods start to estimate human meshes in the camera coordi-
nates [120, 127, 172, 186, 234, 248, 284, 343, 369, 371, 375]. Several approaches recover the abso-
lute translation of the person using an optimization framework [203, 204, 206, 262, 370]. A few
methods exploit various scene constraints during the optimization process to improve depth
prediction [333, 369]. Alternatively, recent approaches use physics-based constraints to ensure
the physical plausibility of the estimated poses [46, 122, 284, 343, 366]. Iqbal et al. [119] ex-
ploit a limb-length constraint to recover the absolute translation of the person using a 2.5D
representation. Some approaches approximate the depth of the person using the bounding box
size [127, 212, 375]. HybrIK [172] and KAMA [120] employ inverse kinematics to estimate hu-
man meshes with absolute translations in the camera coordinates. Several methods directly
predict the absolute depth of each person using a heatmap representation [63, 383]. Recently,
SPEC [147] learns to predict the camera parameters from the image, which are used for abso-
lute pose regression in the camera coordinates. THUNDR [371] also adopts a similar strategy
but uses known camera parameters. While these methods show impressive results, they cannot
estimate global human motions from videos captured by dynamic cameras. In contrast, our
approach can recover human meshes in consistent global coordinates for dynamic cameras and
handle severe and long-term occlusions.

Global Pose Estimation. Most existing methods that estimate 3D poses in world coordinates
rely on calibrated, synchronized, and static multi-view capture setups [17, 55, 57, 109, 131, 245,
248, 379, 380, 384]. Huang et al. [109] use uncalibrated cameras but still assume time synchro-
nization and static camera setups. Hasler et al. [93] handle unsynchronized moving cameras
but assume multi-view input and rely on audio stream for synchronization. More recently,
Dong et al. [56] propose to recover 3D poses from unaligned internet videos of different ac-
tors performing the same activity from unknown cameras. However, they assume that multiple
viewpoints of the same pose are available in the videos. Different from these methods, our
approach estimates human meshes in global coordinates from monocular videos recorded with
dynamic cameras. Several methods rely on additional IMU sensors or pre-scanned environ-
ments to recover global human motions [87, 321], which is unpractical for large-scale adop-
tion. Recently, another line of work starts to focus on estimating accurate human-scene interac-
tion [95, 110, 192, 355]. Liu et al. [186] first obtain the camera poses and dense reconstruction
of the scene from dynamic cameras using a SLAM algorithm, COLMAP [276]. The camera
poses are used for camera-to-world transformation, while the reconstructed scene is used to en-
courage human-scene contacts. However, SLAM can often fail for the in-the-wild videos and is
prone to error propagation. In contrast, our approach does not require SLAM but instead uses
global trajectory prediction to constrain the joint reconstruction of human motions and camera
poses. Additionally, our approach can also handle severe and long-term occlusions common in
dynamic camera setups.
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Figure 6.2: Overview of GLAMR. In Stage I, we preprocess the video with multi-object track-
ing, re-identification and human mesh recovery to extract each person’s occluded motion Q̃i

in the camera coordinates. In Stage II, we propose a generative motion infiller to infill the oc-
cluded body motion Θ̃

i to produce occlusion-free body motion Θ̂
i. In Stage III, we propose a

global trajectory predictor that uses the infilled bodymotion Θ̂
i to generate the global trajectory

(T̂
i
, R̂

i
) of each person and obtain their global motion Q̂i. In Stage IV, we jointly optimize the

global trajectories of all people and the camera parameters to produce global motions qQ
i con-

sistent with the video.

Occlusion-Aware Pose Estimation. Most existing human pose estimation methods assume
the person is fully visible in the images and are not robust to strong occlusions. Only a few
methods address the occlusion problem in pose estimation [64, 146, 250, 259, 378]. While these
methods show impressive results under partial occlusions, they do not address severe and long-
term occlusions when people are completely obstructed or outside the camera’s FoV for a long
time. In contrast, our approach leverages deep generative humanmotionmodels to tackle severe
and long-term occlusions.

Human Motion Modeling. Extensive research has studied 3D human dynamics for various
tasks including motion prediction and synthesis [3, 14, 25, 66, 77, 94, 125, 177, 201, 233, 242, 319,
351,361,363,364]. Recent human pose estimation methods start to leverage learned human dy-
namics models to improve the accuracy of estimated motions [145, 250, 377]. Several motion
infilling approaches are also proposed to generate complete motions from partially observed
motions [92, 101, 136, 138]. Additionally, recent work on motion capture shows that global
human translations can be predicted from 3D local joint positions [277]. In contrast to prior
work, our trajectory predictor does not require GT root orientations but can predict both global
root translations and orientations. Furthermore, we also propose a novel generative autoregres-
sive motion infiller that can use noisy poses as input instead of high-quality GT poses, and we
demonstrate its effectiveness in tackling long-term occlusions in human pose estimation.

6.3 Method

The input to our framework is a video I = (I1, . . . , IT ) with T frames, which is captured
by a dynamic camera, i.e., the camera poses can change every frame. Our goal is to estimate
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the global motion (pose sequence) {Qi}Ni=1 of the N people in the video in a consistent global
coordinate system. The global motion Qi = (T i,Ri,Θi,Bi) for person i consists of the root
translations T i = (τ isi , . . . , τ

i
ei), root rotations Ri = (γisi , . . . ,γ

i
ei), as well as the body motion

Θi = (θisi , . . . ,θ
i
ei) and shapes Bi = (βisi , . . . ,β

i
ei), where the motion spans from the the first

frame si to the last frame ei, when the person i is relevant in the video. In particular, each
body pose θit ∈ R23×3 and shape βit ∈ R10 corresponds to the pose parameters (excluding root
rotation) and shape parameters of the SMPL model [189]. Using the root translation τ ∈ R3

and (axis-angle) rotation γ ∈ R3, SMPL represents a human body mesh with a linear function
S(τ ,γ,θ,β) that maps a global pose q = (τ ,γ,θ,β) to an articulated triangle mesh Φ ∈ RK×3

with K = 6980 vertices. We can therefore recover the global mesh sequence for each person
from their global motionQi via SMPL.

As outlined in Fig. 6.2, our framework consists of four stages. In Stage I, we first use multi-
object tracking (MOT) and re-identification algorithms to obtain the bounding box sequence of
eachperson,which is input to a humanmesh recoverymethod (e.g., KAMA[120] or SPEC [147])
to extract the motion Q̃i of each person (including translation) in the camera coordinates. The
motion Q̃i may be incomplete due to various occlusions (e.g., obstruction, missed detection,
going outside FoV), where bounding boxes from MOT are missing for some frames. In Stage
II (Sec. 6.3.1), we propose a generative motion infiller to tackle the occlusions in the estimated
body motion Θ̃

i and produce occlusion-free body motion Θ̂
i. In Stage III (Sec. 6.3.2), we pro-

pose a global trajectory predictor that uses the infilled body motion Θ̂
i to generate the global

trajectory (root translations and rotations) of each person and obtain their global motion Q̂i.
In Stage IV (Sec. 6.3.3), we jointly optimize the global trajectories of all people and the camera
parameters to produce global motions qQ

i consistent with the video evidence.

6.3.1 Generative Motion Infiller

The task of the generative motion infillerM is to infill the occluded body motion Θ̃
i of each

person to produce occlusion-free body motion Θ̂
i. Here, we do not use the motion infillerM

to infill other components in the estimated motion Q̂i, i.e., root trajectory (T̃ i, R̃i) and shapes
B̃
i. This is because it is difficult to infill the root trajectory (T̃

i
, R̃

i
) using learned human dy-

namics, since it resides in the camera coordinates rather than a consistent coordinate system
due to the dynamic camera. In Sec. 6.3.2, we will use the proposed global trajectory predic-
tor to generate occlusion-free global trajectory (T̂

i
, R̂

i
) from the infilled body motion Θ̂

i. The
trajectory (T̃

i
, R̃

i
) from the pose estimator is not discarded and will be used in the global opti-

mization (Sec. 6.3.3). We use linear interpolation to produce occlusion-free shapes B̂i, which
can be time-varying to be compatible with per-frame pose estimators such as KAMA.

Given a general occluded human bodymotion Θ̃ = (θ̃1, . . . , θ̃h) of h frames and its visibility
maskV = (V1, . . . , Vh) as input, themotion infillerM outputs a complete occlusion-freemotion
Θ̂ = (θ̂1, . . . , θ̂h). The visibility mask V encodes the visibility of the occluded motion Θ̃, where
Vt = 1 if the body pose θ̃t is visible in frame t and Vt = 0 otherwise. Since the human pose
for occluded frames can be highly uncertain and stochastic, we formulate the motion infillerM
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Figure 6.3: Left: We autoregressively infill the motion using a sliding window, where the first
hc frames are already infilled to serve as context and the last hl frames are look-ahead to guide
the ending motion. Frames between the context and look-ahead are infilled. Right: The CVAE-
based motion infiller adopts a Transformer-based seq2seq architecture, where we encode only
the visible frames of occluded body motion Θ̃ into a context sequence, which is used jointly
with latent code z by a decoder network to generate occlusion-free motion Θ̂.

using the conditional variational autoencoder (CVAE) [141]:
Θ̂ =M(Θ̃,V , z) , (6.1)

where the motion infillerM corresponds to the CVAE decoder and z is a Gaussian latent code.
We can obtain different occlusion-free motions Θ̂ by varying z.

AutoregressiveMotion Infilling. To ensure that themotion infillerM can handlemuch longer
test motions than the training motions, we propose an autoregressive motion infilling process
at test time as illustrated in Fig. 6.3 (Left). The key idea is to use a sliding window of h frames,
where we assume the first hc frames of motion are already occlusion-free or infilled and serve
as context, and we also use the last hl frames as look-ahead. The look-ahead is essential to the
motion infiller since it may contain visible poses that can guide the ending motion and avoid
generating discontinuousmotions. Excluding the context and look-ahead frames, only the mid-
dle ho = h − hc − hl frames of motion are infilled. We iteratively infill the motion using the
sliding window and advance the window by ho frames every step.

Motion Infiller Network. The overall network design of the CVAE-based motion infiller is
outlined in Fig. 6.3 (Right). In particular, we employ a Transformer-based seq2seq architecture,
which consists of three parts: (1) a context network that uses a Transformer encoder to encode
the visible poses from the occluded motion Θ̃ into a context sequence, which serves as the con-
dition for other networks; (2) a decoder network that uses the latent code z and context sequence
to generate occlusion-free motion Θ̂ via a Transformer decoder and a multilayer perceptron
(MLP); (3) prior and posterior networks that generate the prior and posterior distributions for
the latent code z. In the networks, we adopt a time-based encoding that replaces the position
in the original positional encoding [316] with the time index. Unlike prior CNN-based meth-
ods [101,136], our Transformer-based motion infiller does not require padding missing frames,
but instead restricts its attention to visible frames to achieve effective temporal modeling.

71



Training. We train the motion infillerM using a large motion capture dataset, AMASS [198].
To synthesize occluded motions Θ̃, for any GT training motion Θ̃

′ of h frames, we randomly
occlude Hocc consecutive frames of motion where Hocc is uniformly sampled from [Hlb, Hub].
Note that we do not occlude the first hc frames which are reserved as context. We use the
standard CVAE objective to train the motion infillerM:

LM =
h∑
t=1

‖θ̃t − θ̃
′
t‖22 + LzKL , (6.2)

whereLzKL is the KL divergence between the prior and posterior distributions of the CVAE latent
code z.

6.3.2 Global Trajectory Predictor

After we obtain occlusion-free body motion Θ̂
i for each person using the motion infiller, a key

problem still remains: the estimated trajectory (T̃
i
, R̃

i
) of the person is still occluded and not

in a consistent global coordinate system. To tackle this problem, we propose to learn a global
trajectory predictor T that generates a person’s occlusion-free global trajectory (T̂

i
, R̂

i
) from

the local body motion Θ̂
i.

Given a general occlusion-free body motion Θ = (θ1, . . . ,θm) as input, the trajectory pre-
dictor T outputs its corresponding global trajectory (T ,R) including the root translations T =

(τ 1, . . . , τm) and rotationsR = (γ1, . . . ,γm). To address any potential ambiguity in the global
trajectory, we also formulate the global trajectory predictor using the CVAE:

Ψ = T (Θ,v) , (6.3)
(T ,R) = EgoToGlobal(Ψ) , (6.4)

where the global trajectory predictor T corresponds to the CVAE decoder and v is the latent
code for the CVAE. In Eq. (6.3), the immediate output of the global trajectory predictor T is an
egocentric trajectory Ψ = (ψ1, . . . ,ψm), which by design can be converted to a global trajectory
(T ,R) using a conversion function EgoToGlobal.

Egocentric Trajectory Representation. The egocentric trajectory Ψ is just an alternative rep-
resentation of the global trajectory (T ,R). It converts the global trajectory into relative local
differences and represents rotations and translations in the heading coordinates (y-axis aligned
with the heading, i.e., the person’s facing direction). In this way, the egocentric trajectory rep-
resentation is invariant of the absolute xy translation and heading. It is more suitable for the
prediction of long trajectories, since the network only needs to output the local trajectory change
of every frame instead of the potentially large global trajectory offset.

The conversion from the global trajectory to the egocentric trajectory is given by another
function: Ψ = GlobalToEgo(T ,R), which is the inverse of the function EgoToGlobal. In partic-
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ular, the egocentric trajectory ψt = (δxt, δyt, zt, δφt,ηt) at time t is computed as:

(δxt, δyt) = ToHeading(τ xyt − τ
xy
t−1) , (6.5)

zt = τ zt , δφt = γφt − γ
φ
t−1 , (6.6)

ηt = ToHeading(γt) , (6.7)

where τ xyt is the xy component of the translation τ t, τ zt is the z component (height) of τ t, γφt
is the heading angle of the rotation γt, ToHeading is a function that converts translations or
rotations to the heading coordinates defined by the heading γφt , and ηt is the local rotation. As
an exception, (δx0, δy0) and δφ0 are used to store the initial xy translation τ xy0 and heading τφ0 .
These initial values are set to the GT during training and arbitrary values during inference (as
the trajectory can start from any position and heading). The inverse process of Eq. (6.5)-(6.7)
defines the inverse conversion EgoToGlobal used in Eq. (6.4), which accumulates the egocentric
trajectory to obtain the global trajectory. To correct potential drifts in the trajectory, in Sec. 6.3.3,
we will optimize the global trajectory of each person to match the video evidence, which also
solves the trajectory’s starting point (δx0, δy0, δφ0).

Network andTraining. The trajectory predictor adopts a similar network design as themotion
infiller with onemain difference: we use LSTMs for temporal modeling instead of Transformers
since the output of each frame is the local trajectory change in our egocentric trajectory repre-
sentation, which mainly depends on the body motion of nearby frames and does not require
long-range temporal modeling. We will show in Sec. 6.4.2 that the egocentric trajectory and
use of LSTMs instead of Transformers are crucial for accurate trajectory prediction. We use the
standard CVAE objective to train the trajectory predictor T :

LT =
m∑
t=1

(
‖τ t − τ ′t‖22 + ‖γt 	 γ ′t‖2a

)
+ LvKL , (6.8)

where τ ′t and γ ′t denote the GT translation and rotation, 	 computes the relative rotation, ‖ ·
‖a computes the rotation angle, and LvKL is the KL divergence between the prior and posterior
distributions of the CVAE latent code v. We again use AMASS [198] to train the trajectory
predictor T .

6.3.3 Global Optimization

After using the generative motion infiller and global trajectory predictor, we have obtained an
occlusion-free global motion Q̂i

= (T̂
i
, R̂

i
, Θ̂

i
, B̂

i
) for each person in the video. However, the

global trajectory predictor generates trajectories for each person independently, which may not
be consistent with the video evidence. To tackle this problem, we propose a global optimiza-
tion process that jointly optimizes the global trajectories of all people and the extrinsic camera
parameters to match the video evidence such as 2D keypoints. The final output of the global
optimization and our framework is qQ

i
= (qT

i
, qR

i
, qΘ

i
, qB

i
) where ( qΘ

i
, qB

i
) = (Θ̂

i
, B̂

i
), i.e., we

directly use the occlusion-free body motion and shapes from the previous stages.
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OptimizationVariables. The first set of variables we optimize is the egocentric representation
{ qΨ

i
}Ni=1 of the global trajectories {(qT

i
, qR

i
)}Ni=1. We adopt the egocentric representation since it

allows corrections of the translation and heading at one frame to propagate to all future frames.
Therefore, it enables optimizing the trajectories of occluded frames since theywill impact future
visible frames. We will empirically demonstrate its effectiveness in Sec. 6.4.2.

The second set of optimization variables is the extrinsic camera parametersC = (C1, . . . ,CT )

where Ct ∈ R4×4 is the camera extrinsic matrix at frame t of the video.

Energy Function. The energy function we aim to minimize is defined as

E({ qΨ
i
}Ni=1,C) = λ2DE2D + λtrajEtraj

+ λregEreg + λcamEcam + λpenEpen ,
(6.9)

where we use five energy terms with their corresponding coefficients λ2D, λtraj, λreg, λcam, λpen.
The first term E2D measures the error between the 2D projection qxit of the optimized 3D

keypoints |X
i

t ∈ RJ×3 and the estimated 2D keypoints x̃it from a keypoint detector:

E2D =
1

NTJ

N∑
i=1

T∑
t=1

V i
t ‖qx

i
t − x̃

i
t‖2F , (6.10)

qxit = Π
(

|X
i

t,Ct,K
)
, |X

i

t = J (qτ it, qγit,
qθ
i

t,
qβ
i

t) (6.11)

where V i
t is person i’s visibility at frame t, Π is the camera projection with extrinsics Ct and

approximated intrinsics K, and |X
i

t is computed using the SMPL joint function J from the
optimized global pose qqit = (qτ it, qγit,

qθ
i

t,
qβ
i

t) ∈ qQ
i.

The second term Etraj measures the difference between the optimized global trajectory
(qT

i
, qR

i
) viewed in the camera coordinates and the trajectory (T̃

i
, R̃

i
) output by the pose es-

timator (e.g., KAMA [120]) in Stage I:

Etraj =
1

NT

N∑
i=1

T∑
t=1

V i
t

(
‖Γ(qγit,Ct)	 γ̃it‖2a

+ wt‖Γ(qτ it,Ct)− τ̃ it‖22
)
,

(6.12)

where the function Γ(·,Ct) transforms the global rotation qγit or translation qτ it to the camera
coordinates defined by Ct, and wt is a weighting factor for the translation term.

The third term Ereg regularizes the egocentric trajectory qΨ
i to stay close to the output Ψ̂

i of
the trajectory predictor:

Ereg =
1

NT

N∑
i=1

T∑
t=1

∥∥∥wψ ◦
(

qψ
i

t − ψ̂
i

t

)∥∥∥2
2
, (6.13)

where ◦ denotes the element-wise product andwψ is a weighting vector for each element inside
the egocentric trajectory. As an exception, we do not regularize each person’s initial xy position
and heading (δqxi0, δqyi0, δ

qφi0) ⊂ qψ
i

0 as they need to be inferred from the video.
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The fourth term Ecam measures the smoothness of the camera parameters C and the up-
rightness of the camera:

Ecam =
1

T

T∑
t=1

〈Cy
t ,Y 〉

+
1

T − 1

T−1∑
t=1

∥∥Cγ
t+1 	C

γ
t

∥∥2
a

+
∥∥Cτ

t+1 −Cτ
t

∥∥2
2
,

(6.14)

where 〈·, ·〉 denotes the inner product,Cy
t is the +y vector of the cameraCt, and Y is the global

up direction. Cγ
t and Cτ

t denote the rotation and translation of the camera Ct.
The final term Epen is an signed distance field (SDF)-based inter-person penetration loss

adopted from [127].

6.4 Experiments

Datasets. We employ the following datasets in our experiments: (1) AMASS [198], which is
a large humanmotion database with 11000+ humanmotions. We use AMASS to train and eval-
uate themotion infiller and trajectory predictor. (2) 3DPW [321], which is an in-the-wild human
motion dataset that uses videos and wearable IMU sensors to obtain GT poses, even when the
person is occluded. We evaluate our approach using the test split of 3DPW. (3) Dynamic Hu-
man3.6M is a new benchmark for human pose estimation with dynamic cameras that we create
from the Human3.6M dataset [118]. We simulate dynamic cameras and occlusions by cropping
each frame with a small view window that oscillates around the person (see Fig. 6.5).

Evaluation Metrics. We use the following metrics for evaluation: (1) G-MPJPE and G-PVE,
which extend themean per joint position error (MPJPE) and per-vertex error (PVE) by comput-
ing the errors in the global coordinates. As errors in estimated global trajectories accumulate
over time in our dynamic camera setting, we follow standard evaluations for open-loop recon-
struction (e.g., SLAM [298] and inertial odometry [100]) to compute errors using a sliding
window (10 seconds) and align the root translation and rotation with the GT at the start of the
window. (2) PA-MPJPE, which is the Procrustes-aligned MPJPE for evaluating estimated body
poses. For invisible poses, since there can be many plausible poses beside the GT, we follow
prior work [5,363] to compute the best PA-MPJPE out of multiple samples for our probabilistic
approach. (3)Accel, which computes themean acceleration error of each joint and is commonly
used to measure the jitter in estimated motions [145,366]. (4) FID, which is an extension of the
original Frechet Inception Distance that calculates the distribution distance between estimated
motions and the GT. FID is a standard metric in motion generation literature to evaluate the
quality of generated motions [112, 171, 174, 315]. Following prior work [174], we compute FID
using the well-designed kinetic motion feature extractor in the fairmotion library [78].

75



Input
Video

GLAMR
(Ours)

KAMA
+

Linear
Interp

t=10 t=15 t=20 t=65 t=70 t=75. . . Left Hip

Right Hip

Jo
in

t A
ng

le

Frame

Jo
in

g 
A

ng
le

Figure 6.4: Qualitative comparison of GLAMR with a strong baseline on 3DPW. The infilled
motion (transparent) by GLAMR is more natural especially for the legs, while the baseline has
very slow leg motions due to interpolation in a large window (frame 10 to 75). On the right,
we plot how the x-axis joint angles of left and right hips of the person (green) change over time
for GLAMR and the baseline.
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Figure 6.5: Qualitative comparison of GLAMR on Dynamic Human3.6M. GLAMR can generate
natural hand motions for invisible frames instead of just doing linear interpolation.

6.4.1 Evaluation of GLAMR

Baselines. Since no priormethods can estimate globalmotions fromdynamic cameras and ad-
dress long-term occlusions, we design various baselines by combining state-of-the-art human
mesh recovery methods (KAMA [120] or SPEC [147]), motion infilling methods, and SLAM-
based camera estimation (OpenSfM [224]). In particular, we use the estimated camera param-
eters to convert estimated motions from the camera coordinates to the global coordinates. For
motion infilling, we use (1) linear interpolation, (2) last pose, i.e., replicating the last visible
pose, and (3) a state-of-the-art CNN-based motion infilling method, ConvAE [136].

The results onDynamicHuman3.6M and 3DPWare summarized in Table 6.1 and 6.2 respec-
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Method (All)
G-MPJPE

(All)
G-PVE

(Invisible)
FID

(Invisible)
PA-MPJPE

(Visible)
PA-MPJPE

(All)
Accel

KAMA [136] + Linear Interpolation 1735.2 1744.1 30.2 74.8 47.4 8.0
KAMA [136] + Last Pose 1318.1 1330.3 36.7 88.8 47.4 12.3
KAMA [136] + ConvAE [136] 1737.8 1748.9 28.9 77.4 56.9 7.5
SPEC [147] + Linear Interpolation 2113.3 2119.5 29.7 78.7 55.7 14.2
SPEC [147] + Last Pose 1782.5 1790.9 36.2 92.6 55.7 18.8
SPEC [147] + ConvAE [136] 2113.3 2119.0 28.5 80.1 59.9 11.9
Ours (GLAMR w/ SPEC) 899.1 913.7 8.2 72.8 55.0 6.6
Ours (GLAMR w/ KAMA) 806.2 824.1 11.4 67.7 47.6 6.0

Table 6.1: Baseline comparison on Dynamic Human3.6M.We report results for visible, invisible
(occluded), and all frames.

Method (Invisible)
FID

(Invisible)
PA-MPJPE

(Visible)
PA-MPJPE

(All)
Accel

KAMA [136] + Linear Interpolation 30.7 87.5 50.8 24.2
KAMA [136] + Last Pose 40.3 96.3 50.8 25.4
KAMA [136] + ConvAE [136] 32.0 84.5 56.4 19.6
SPEC [147] + Linear Interpolation 33.6 85.6 53.3 33.1
SPEC [147] + Last Pose 39.5 92.4 53.3 34.2
SPEC [147] + ConvAE [136] 35.4 86.9 59.3 24.0
Ours (GLAMR w/ SPEC) 24.8 79.1 54.9 9.5
Ours (GLAMR w/ KAMA) 22.6 73.6 51.1 8.9

Table 6.2: Baseline comparison on 3DPW. G-MPJPE and G-PVE are not reported since 3DPW
does not provide accurate GT global human trajectories. See also the caption of Table 6.1.

tively. We only report G-MPJPE and G-PVE on Dynamic Human3.6M since they require accu-
rate GT trajectories, which 3DPW does not provide. It is evident that our approach, GLAMR,
outperforms the baselines in almost all metrics. In particular, GLAMR achieves significantly
lower G-MPJPE and G-PVE, which demonstrates its strong ability to reconstruct global human
motions. Furthermore, GLAMR attains considerably lower FID and PA-MPJPE (with ten sam-
ples) for occluded (invisible) poses. The lower FID means GLAMR can infill more humanlike
motions, and the lower PA-MPJPE also shows GLAMR’s probabilistic motion samples can cover
the GT better. Finally, while GLAMR achieves almost the same PA-MPJPE for visible poses as
the best method, it yields much smoother motions (smaller acceleration error). This is because
our motion infiller leverages human dynamics learned from a large motion dataset to produce
motions.

Qualitative Results. Fig. 6.4 and 6.5 show qualitative comparisons of GLAMR against the
strong baseline, KAMA + Linear Interpolation. Additionally, we provide abundant qualitative
results on the project page.
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Method (Sampled)
PA-MPJPE

(Reconstructed)
PA-MPJPE

(Sampled)
FID

Linear Interpolation 83.5 83.5 35.3
Last Pose 104.4 104.4 41.6
ConvAE [136] 72.8 72.8 31.4
Ours 61.4 36.1 16.7

Table 6.3: Benchmarking motion infiller on AMASS.

Method G-MPJPE G-PVE Accel
Transformer 660.1 678.6 121.9
Ours w/o Ego Trajectory 763.0 780.6 8.7
Ours 466.9 472.5 5.8

Table 6.4: Benchmarking trajectory predictor on AMASS.

6.4.2 Evaluation of Key Components

Benchmarking Motion Infiller. We evaluate the proposed generative motion infiller on the
test split of the AMASS dataset [198]. We compare against three motion infilling baselines: lin-
ear interpolation, replicating the last pose, andConvAE [136]. As shown in Table 6.3, our gener-
ative motion infiller achieves significantly better PA-MPJPE for both the sampledmotions (with
five samples) and reconstructedmotion for the infilled frames. Our approach also achieves con-
siderably better FID, reducing the FID of ConvAE [136] by half, which indicates that the infilled
motions by our approach are much closer to real human motions.

Benchmarking Trajectory Predictor. We also evaluate our global trajectory predictor against
two variants on the AMASS test set: (1) “Transformer”, which replaces the LSTMs in the tra-
jectory predictor with Transformers; (2) “Ours w/o Ego Trajectory”, which does not use the
egocentric trajectory but instead directly outputs the 6-DoF global trajectory. As shown in Ta-
ble 6.4, both variants lead to worse global trajectory prediction (higher best-of-five G-MPJPE
and G-PVE). We believe the reasons are: (1) the positional encoding in Transformers may not
generalize well to longer motions compared to the LSTMs in our approach; (2) directly predict-
ing the 6-DoF global trajectory offsets instead of egocentric trajectories from local body motions
is also hard to generalize since the global offsets can be large.

Ablations for Global Optimization. We further perform ablation studies on the effect of key
components in our global optimization. Specifically, we design two variants: (1) “Ours w/o
Trajectory Predictor”, which does not use our trajectory predictor to generate the global hu-
man trajectories and uses camera parameters from OpenSfM [224] to obtain global trajectories
instead; (2) “Ours w/o Opt Ego Trajectory”, which does not employ the egocentric trajectory
representation and directly optimizes the 6-DoF root trajectory instead. As shown in Table 6.5,
both variants lead to significantly worse global trajectory reconstruction with large increases in
G-MPJPE, G-PVE, and Accel. This demonstrates that both the global trajectory predictor and
egocentric trajectory representation are vital in our approach.
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Method G-MPJPE G-PVE Accel
Ours w/o Trajectory Predictor 1750.8 1761.4 12.6
Ours w/o Opt Ego Trajectory 877.3 895.0 15.5
Ours (GLAMR) 806.2 824.1 6.0

Table 6.5: Global optimization ablations on Dynamic Human3.6M.

6.5 Discussion and Futurework

In this paper, weproposed an approach for 3Dhumanmesh recovery in consistent global coordi-
nates from videos captured by dynamic cameras. We first proposed a novel Transformer-based
generative motion infiller to address severe occlusions that often come with dynamic cameras.
To resolve ambiguity in the joint reconstruction of global human motions and camera poses,
we proposed a new solution by predicting global human trajectories from local body motions.
Finally, we proposed a global optimization framework to refine the predicted trajectories, which
serve as anchors for camera optimization. Our method achieves SOTA results on challenging
datasets and marks a significant step towards global human mesh recovery in the wild.

As the first paper on this new problem, our method has a few limitations that are important
for future research to address. First, our approach has five stages that are sequentially depen-
dent. Therefore, errors in early stages can propagate to late stages, whichmay lead to inaccurate
global pose estimation. Future work could integrate these stages together to form an end-to-end
learnable framework. Second, likemanyworks in humanmesh recovery, our approach can only
recover the SMPL parameters which omit the fine details of human meshes such as clothing.
Integrating neural articulated shapes such as [49] into our approach could potentially address
this problem. Next, our approach is not real-time due to the batch processing and global op-
timization. Future work could explore a causal version of our approach where only a small
window around the incoming frame is optimized, which could substantially improve compu-
tational efficiency. Additionally, the generative motion infiller and global trajectory predictor
in our approach operate for each person independently. Therefore, the generated motions and
trajectories may not capture potentially complex and nuanced interactions between occluded
people such as hugging or dancing. Future work could address this limitation by employing
new generative models that produce interaction-aware motions of multiple people.

An important problem for future work is how to model more context in the motion infiller,
e.g., interactions between multiple people, objects, and the scene. Although the motion infiller
is learned using a large motion database, the training motions are often short, contain a single
person, and lack human-object interaction. To learn a more context-dependent motion prior,
we need large 3D humanmotion datasets containing long-term human behaviors, multi-person
interactions, and human-object interactions. Such 3D datasets are often difficult to collect. One
way to address this is to use our simulated-based behavior modeling framework for physically-
plausible motion capture from videos and IMU sensors. Another problem for future work is
that the motion infiller cannot model idiosyncratic behaviors since the motion prior is the same
for every person in the scene. One potentialway to address this problem is to learn a hierarchical
latent variable model, where a new high-level latent code is introduced to control the behavior
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style of each individual. Once the model is learned, we can sample the high-level latent code to
allow each person to have its own behavior style. Again, data is important here since we need
long-term behavior data from diverse individuals to successfully learn the model.

Due to the already complicated pipeline, we did not use physics simulation in GLAMR and
left it for future work. Unsurprisingly, the lack of physics leads to noticeable physical artifacts
such as foot sliding, jitter, and ground penetration in the pose estimation results as shown here.
Although not trivial, it is possible to integrate our simulation-based behavior modeling frame-
work into GLAMR. Specifically, we need to first learn a universal humanoid control (UHC)
policy [192] from a large motion database such as AMASS [198]. The UHC policy learns to im-
itate an input kinematic motion sequence and output a physically-plausible version of the input
via physics simulation. Once the UHC policy is learned, we can use it to process the output
human motions of GLAMR into physically-plausible motions. One caveat is that, for dynamic
motions such as dancing, the UHC policy may not be able to perfectly imitate the global tra-
jectory of each person from GLAMR and its resulting trajectory can gradually drift away. To
tackle this problem, we can have another trajectory optimization stage where the UHC policy is
further finetuned to try to match the global trajectory output by GLAMR.
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Part III

Generation of Human Behavior
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Chapter 7

Deterministic Simulation-Based
Egocentric Human Motion Generation

7.1 Introduction

With a single wearable camera, our goal is to estimate and forecast a person’s pose sequence
for a variety of complex motions. Estimating and forecasting complex human motions with
egocentric cameras can be the cornerstone of many useful applications. In medical monitor-
ing, the inferred motions can help physicians remotely diagnose patients’ condition in motor
rehabilitation. In virtual or augmented reality, anticipating motions can help allocate limited
computational resources to provide better responsiveness. For athletes, the forecasted motions
can be integrated into a coaching system to offer live feedback and reinforce good movements.
In all these applications, humanmotions are very complex, as periodical motions (e.g., walking,
running) are often mixed with non-periodical motions (e.g., turning, bending, crouching). It is
challenging to estimate and forecast such complex human motions from egocentric videos due
to the multi-modal nature of the data.

It has been shown that if the task of pose estimation can be limited to a single mode of action
such as running or walking, it is possible to estimate a physically-valid pose sequence. Recent
work by Yuan and Kitani [360] has formulated egocentric pose estimation as a Markov decision
process (MDP): a humanoid agent driven by a control policy with visual input to generate a
pose sequence inside a physics simulator. They use generative adversarial imitation learning
(GAIL [103]) to solve for the optimal control policy. By design, this approach guarantees that
the estimated pose sequence is physically-valid. However, their method focuses on a single ac-
tion modality (i.e., simple periodical motions including walking and running). The approach
also requires careful segmentation of the demonstrated motions, due to the instability of adver-
sarial training when the data is multi-modal. To address these issues, we propose an ego-pose
estimation approach that can learn a motion policy directly from unsegmented multi-modal
motion demonstrations.

Unlike the history of work on egocentric pose estimation, there has been no prior work ad-
dressing the task of egocentric pose forecasting. Existing works on 3D pose forecasting not
based on egocentric sensing take a pose sequence as input and uses recurrent models to output
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Figure 7.1: Proposed method estimates camera wearer’s 3D poses (solid) and forecasts future
poses (translucent) in real-time..

a future pose sequence by design [23, 66, 125, 177]. Even with the use of a 3D pose sequence
as a direct input, these methods tend to produce unrealistic motions due to error accumulation
(covariate shift [246]) caused by feeding predicted pose back to the network without corrective
interaction with the learning environment. More importantly, these approaches often generate
physically-invalid pose sequences as they are trained only to mimic motion kinematics, disre-
garding causal forces like the laws of physics or actuation constraints. In this work, we propose
a method that directly takes noisy observations of past egocentric video as input to forecast
stable and physically-valid future human motions.

We formulate both egocentric pose estimation and forecasting as a MDP. The humanoid
control policy takes as input the current state of the humanoid for both inference tasks. Addi-
tionally, the visual context from the entire video is used as input for the pose estimation task. In
the case of the forecasting task, only the visual input observed up to the current time step is used.
For the action space of the policy, we use target joint positions of proportional-derivative (PD)
controllers [303] instead of direct joint torques. The PD controllers act like damped springs
and compute the torques to be applied at each joint. This type of action design is more capable
of actuating the humanoid to perform highly dynamic motions [236]. As deep reinforcement
learning (DeepRL) based approaches for motion imitation [236, 240] have proven to be more
robust than GAIL based methods [209, 330, 360], we utilize DeepRL to encourage the motions
generated by the control policy tomatch the ground-truth. However, reward functions designed
for motion imitation methods are not suited for our task because they are tailored to learning
locomotions from short segmented motion clips, while our goal is to learn to estimate and fore-
cast complex human motions from unsegmented multi-modal motion data. Thus, we propose
a new reward function that is specifically designed for this type of data. For forecasting, we
further employ a decaying reward function to focus on forecasting for frames in the near future.
Since we only take past video frames as input and the video context is fixed during forecasting,
we use a recurrent control policy to better encode the phase of the human motion.

A unique problem encountered by the control-based approach taken in this work is that
the humanoid being actuated in the physics simulator can fall down. Specifically, extreme do-
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main shifts in the visual input at test time can cause irregular control actions. As a result, this
irregularity in control actions causes the humanoid to lose balance and fall in the physics envi-
ronment, preventing themethod fromproviding any pose estimates. The control-basedmethod
proposed in [360] prevented falling by fine-tuning the policy at test time as a batch process. As
a result, this prohibits its use in streaming or real-time applications. Without fine-tuning, their
approach requires that we reset the humanoid state to some reasonable starting state to keep
producing meaningful pose estimates. However, it is not clear when to re-estimate the state.
To address this issue of the humanoid falling in the physics simulator at test time, we propose
a fail-safe mechanism based on a value function estimate used in the policy gradient method.
Themechanism can anticipate fallingmuch earlier and stabilize the humanoid before producing
bad pose estimates.

We validate our approach for egocentric pose estimation and forecasting on a large motion
capture (MoCap) dataset and an in-the-wild dataset consisting of various humanmotions (jog-
ging, bending, crouching, turning, hopping, leaning, motion transitions, etc.). Experiments
on pose estimation show that our method can learn directly from unsegmented data and out-
performs state-of-the-art methods in terms of both quantitative metrics and visual quality of
the motions. Experiments on pose forecasting show that our approach can generate intuitive
future motions and is also more accurate compared to other baselines. Our in-the-wild exper-
iments show that our method transfers well to real-world scenarios without the need for any
fine-tuning. Our time analysis show that our approach can run at 30 FPS, making it suitable for
many real-time applications.

In summary, our contributions are as follows: (1) We propose a DeepRL-based method for
egocentric pose estimation that can learn from unsegmentedMoCap data and estimate accurate
and physically-valid pose sequences for complex human motions. (2) We are the first to tackle
the problem of egocentric pose forecasting and show that ourmethod can generate accurate and
stable future motions. (3) We propose a fail-safe mechanism that can detect instability of the
humanoid control policy, which prevents generating bad pose estimates. (4) Ourmodel trained
with MoCap data transfers well to real-world environments without any fine-tuning. (5) Our
time analysis show that our pose estimation and forecasting algorithms can run in real-time.

7.2 Related Work

3D Human Pose Estimation. Third-person pose estimation has long been studied by the vi-
sion community [188, 273]. Existing work leverages the fact that the human body is visible
from the camera. Traditional methods tackle the depth ambiguity with strong priors such as
shape models [20, 385]. Deep learning based approaches [206, 230, 314, 386] have also suc-
ceeded in directly regressing images to 3D joint locations with the help of large-scale MoCap
datasets [118]. To achieve better performance for in-the-wild images, weakly-supervised meth-
ods [133, 260, 387] have been proposed to learn from images without annotations. Although
many of the state-of-art approaches predict pose for each frame independently, several works
have utilized video sequences to improve temporal consistency [44,135,307,347].

A limited amount of research has looked into egocentric pose estimation. Most existing
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methods only estimate the pose of visible body parts [8,168,169,252,261]. Other approaches uti-
lize 16 or more body-mounted cameras to infer joint locations via structure from motion [286].
Specially designed head-mounted rigs have been used for markerless motion capture [256,310,
346], where [310] utilizes photorealistic synthetic data. Conditional random field based meth-
ods [126] have also been proposed to estimate a person’s full-body posewith awearable camera.
Theworkmost related to ours is [360] which formulates egocentric pose estimation as aMarkov
decision process to enforce physics constraints and solves it by adversarial imitation learning.
It shows good results on simple periodical human motions but fails to estimate complex non-
periodical motions. Furthermore, they need fine-tuning at test time to prevent the humanoid
from falling. In contrast, we propose an approach that can learn from unsegmented MoCap
data and estimate various complex human motions in real-time without fine-tuning.

HumanMotion Forecasting. Plenty of work has investigated third-person [4,13,144,195,258,
342,350] and first-person [294] trajectory forecasting, but this line of work only forecasts a per-
son’s future positions instead of poses. There are also works focusing on predicting future mo-
tions in image space [50, 65, 70, 175, 323, 324, 349]. Other methods use past 3D human pose
sequence as input to predict future human motions [23, 66, 125, 177]. Recently, [29, 135] fore-
cast a person’s future 3D poses from third-person static images, which require the person to
be visible. Different from previous work, we propose to forecast future human motions from
egocentric videos where the person can hardly be seen.

Humanoid Control from Imitation. The idea of using reference motions has existed for a
long time in computer animation. Early work has applied this idea to bipedal locomotions
with planar characters [282, 291]. Model-based methods [165, 217, 356] generate locomotions
with 3D humanoid characters by tracking reference motions. Sampling-based control meth-
ods [182,184,185] have also shown great success in generating highly dynamic humanoid mo-
tions. DeepRL based approaches have utilized reference motions to shape the reward func-
tion [238, 241]. Approaches based on GAIL [103] have also been proposed to eliminate the
need for manual reward engineering [209, 330, 360]. The work most relevant to ours is Deep-
Mimic [236] and its video variant [240]. DeepMimic has shown beautiful results on human lo-
comotion skills with manually designed reward and is able to combine learned skills to achieve
different tasks. However, it is only able to learn skills from segmented motion clips and relies
on the phase of motion as input to the policy. In contrast, our approach can learn from unseg-
mented MoCap data and use the visual context as a natural alternative to the phase variable.

7.3 Approach

We choose to model human motion as the result of the optimal control of a dynamical system
governed by a cost (reward) function, as control theory provides mathematical machinery nec-
essary to explain human motion under the laws of physics. In particular, we use the formalism
of the Markov Decision process (MDP). The MDP is defined by a tupleM = (S,A, P,R, γ) of
states, actions, transition dynamics, a reward function, and a discount factor.
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Figure 7.2: Overview for ego-pose estimation and forecasting. The policy takes in the humanoid
state zt (estimation) or recurrent state feature νt (forecasting) and the visual context φt to output
the action at, which generates the next humanoid state zt+1 through physics simulation. Left:
For ego-pose estimation, the visual context φt is computed from the entire video V1:T using a
Bi-LSTM to encode CNN features. Right: For ego-pose forecasting, φt is computed from past
frames V−f :0 using a forward LSTM and is kept fixed for all t.

State. The state st consists of both the state of the humanoid zt and the visual context φt. The
humanoid state zt consists of the pose pt (position and orientation of the root, and joint angles)
and velocity vt (linear and angular velocities of the root, and joint velocities). All features are
computed in the humanoid’s local heading coordinate frame which is aligned with the root
link’s facing direction. The visual context φt varies depending on the task (pose estimation or
forecasting) which we will address in Sec. 7.3.1 and 7.3.2.

Action. The action at specifies the target joint angles for the Proportional-Derivative (PD)
controller at each degree of freedom (DoF) of the humanoid joints except for the root. For joint
DoF i, the torque to be applied is computed as

τ i = kip(a
i
t − pit)− kidvit , (7.1)

where kp and kd are manually-specified gains. Our policy is queried at 30Hz while the simula-
tion is running at 450Hz, which gives the PD-controllers 15 iterations to try to reach the target
positions. Compared to directly using joint torques as the action, this type of action design
increases the humanoid’s capability of performing highly dynamic motions [236].

Policy. The policy πθ(at|st) is represented by a Gaussian distribution with a fixed diagonal
covariance matrix Σ. We use a neural network with parameter θ to map state st to the mean µt
of the distribution. We use a multilayer perceptron (MLP) with two hidden layers (300, 200)

and ReLU activation to model the network. Note that at test time we always choose the mean
action from the policy to prevent performance drop from the exploration noise.

86



Solving theMDP. At each time step, the humanoid agent in state st takes an action at sampled
from a policy π(at|st), and the environment generates the next state st+1 through physics sim-
ulation and gives the agent a reward rt based on how well the humanoid motion aligns with
the ground-truth. This process repeats until some termination condition is triggered such as
when the time horizon is reached or the humanoid falls. To solve this MDP, we apply policy
gradient methods (e.g., PPO [279]) to obtain the optimal policy π? that maximizes the expected
discounted return E

[∑T
t=1 γ

t−1rt

]
. At test time, starting from some initial state s1, we rollout

the policy π? to generate state sequence s1:T , from which we extract the output pose sequence
p1:T .

7.3.1 Ego-pose Estimation

The goal of egocentric pose estimation is to use video frames V1:T from a wearable camera to
estimate the person’s pose sequence p1:T . To learn the humanoid control policy π(at|zt, φt) for
this task, we need to define the procedure for computing the visual context φt and the reward
function rt. As shown in Fig. 7.2 (Left), the visual context φt is computed from the video V1:T .
Specifically, we calculate the optical flow for each frame and pass it through a CNN to extract
visual features ψ1:T . Then we feed ψ1:T to a bi-directional LSTM to generate the visual context
φ1:T , fromwhichwe obtain per frame context φt. For the starting state z1, we set it to the ground-
truth ẑ1 during training. To encourage the pose sequence p1:T output by the policy to match the
ground-truth p̂1:T , we define our reward function as

rt = wqrq + were + wprp + wvrv , (7.2)

where wq, we, wp, wv are weighting factors.
The pose reward rq measures the difference between pose pt and the ground-truth p̂t for

non-root joints. We use qjt and q̂jt to denote the local orientation quaternion of joint j computed
from pt and p̂t respectively. We use q1 	 q2 to denote the relative quaternion from q2 to q1, and
‖q‖ to compute the rotation angle of q.

rq = exp

−2

∑
j

‖qjt 	 q̂
j
t ‖2
 . (7.3)

The end-effector reward re evaluates the difference between local end-effector vector et and the
ground-truth êt. For each end-effector e (feet, hands, head), et is computed as the vector from
the root to the end-effector.

re = exp

[
−20

(∑
e

‖et − êt‖2
)]

. (7.4)

The root pose reward rp encourages the humanoid’s root joint to have the same height ht and
orientation quaternion qrt as the ground-truth ĥt and q̂rt .

rp = exp
[
−300

(
(ht − ĥt)2 + ‖qrt 	 q̂rt ‖2

)]
. (7.5)
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The root velocity reward rv penalizes the deviation of the root’s linear velocity lt and angular
velocity ωt from the ground-truth l̂t and ω̂t. The ground-truth velocities can be computed by
the finite difference method.

rv = exp
[
−‖lt − l̂t‖2 − 0.1‖ωrt − ω̂rt ‖2

]
. (7.6)

Note that all features are computed inside the local heading coordinate frame instead of the
world coordinate frame, which is crucial to learn from unsegmented MoCap data for the fol-
lowing reason: when imitating an unsegmentedmotion demonstration, the humanoidwill drift
from the ground-truth motions in terms of global position and orientation because the errors
made by the policy accumulate; if the features are computed in the world coordinate, their
distance to the ground-truth quickly becomes large and the reward drops to zero and stops
providing useful learning signals. Using local features ensures that the reward is well-shaped
even with large drift. To learn global motions such as turning with local features, we use the
reward rv to encourage the humanoid’s root to have the same linear and angular velocities as
the ground-truth.

Initial State Estimation. As we have no access to the ground-truth humanoid starting state
z1 at test time, we need to learn a regressor F that maps video frames V1:T to their correspond-
ing state sequence z1:T . F uses the same network architecture as ego-pose estimation (Fig. 7.2
(Left)) for computing the visual context φ1:T . We then pass φ1:T through an MLP with two
hidden layers (300, 200) to output the states. We use the mean squared error (MSE) as the loss
function: L(ζ) = 1

T

∑T
t=1 ‖F(V1:T )t − zt‖2, where ζ is the parameters of F . The optimal F? can

be obtained by an SGD-based method.

7.3.2 Ego-pose Forecasting

For egocentric pose forecasting, we aim to use past video frames V−f :0 from a wearable camera
to forecast the future pose sequence p1:T of the camera wearer. We start by defining the visual
context φt used in the control policy π. As shown in Fig. 7.2 (Right), the visual context φt for
this task is computed from past frames V−f :0 and is kept fixed for all time t during a policy
rollout. We compute the optical flow for each frame and use a CNN to extract visual features
ψ−f :0. We then use a forward LSTM to summarize ψ−f :0 into the visual context φt. For the
humanoid starting state z1, we set it to the ground-truth ẑ1, which at test time is provided by
ego-pose estimation on V−f :0. Now we define the reward function for the forecasting task. Due
to the stochasticity of human motions, the same past frames can correspond to multiple future
pose sequences. As the time step t progresses, the correlation between pose pt and past frames
V−f :0 diminishes. This motivates us to use a reward function that focuses on frames closer to
the starting frame:

r̃t = βrt , (7.7)
where β = (T − t)/T is a linear decay factor and rt is defined in Eq. 7.2. Unlike ego-pose
estimation, we do not have new video frame coming as input for each time step t, which can lead
to ambiguity about the motion phase, such as whether the human is standing up or crouching
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Figure 7.3: Top: The humanoid at unstable state falls to the ground and the value of the state
drops drastically during falling. Bottom: At frame 25, the instability is detected by our fail-safe
mechanism, which triggers the state reset and allows our method to keep producing good pose
estimates.

down. To better encode the phase of human motions, we use a recurrent policy π(at|νt, φt)
where νt ∈ R128 is the output of a forward LSTM encoding the state forecasts z1:t so far.

7.3.3 Fail-safe Mechanism

When running ego-pose estimation at test time, even though the control policy π is often ro-
bust enough to recover from errors, the humanoid can still fall due to irregular actions caused
by extreme domain shifts in the visual input. When the humanoid falls, we need to reset the
humanoid state to the output of the state regressor F to keep producing meaningful pose esti-
mates. However, it is not clear when to do the reset. A naive solution is to reset the state when
the humanoid falls to the ground, which will generate a sequence of bad pose estimates during
falling (Fig. 7.3 (Top)). We propose a fail-safe mechanism that can detect the instability of cur-
rent state before the humanoid starts to fall, which enables us to reset the state before producing
bad estimates (Fig. 7.3 (Bottom)). Most policy gradient methods have an actor-critic structure,
where they train the policy π alongside a value function V which estimates the expected dis-
counted return of a state s:

V(s) = Es1=s, at∼π

[
T∑
t=1

γt−1rt

]
. (7.8)

Assuming that 1/(1−γ)� T , and for a well-trained policy, rt varies little across time steps, the
value function can be approximated as

V(s) ≈
∞∑
t=1

γt−1r̄s =
1

1− γ
r̄s , (7.9)
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where r̄s is the average reward received by the policy starting from state s. During our ex-
periments, we find that for state s that is stable (not falling), its value V(s) is always close to
1/(1− γ)r̄ with little variance, where r̄ is the average reward inside a training batch. But when
the humanoid begins falling, the value starts dropping significantly (Fig. 7.3). This discovery
leads us to the following fail-safe mechanism: when executing the humanoid policy π, we keep
a running estimate of the average state value V̄ and reset the state when we find the value of
current state is below κV̄ , where κ is a coefficient determining how sensitive this mechanism is
to instability. We set κ to 0.6 in our experiments.

7.4 Experimental Setup

7.4.1 Datasets

Themain dataset we use to test ourmethod is a largeMoCap dataset with synchronized egocen-
tric videos. It includes five subjects and is about an hour long. Each subject is asked to wear a
head-mounted GoPro camera and perform various complex humanmotions for multiple takes.
The motions consist of walking, jogging, hopping, leaning, turning, bending, rotating, crouch-
ing and transitions between these motions. Each take is about one minute long, and we do not
segment or label the motions. To further showcase our method’s utility, we also collected an
in-the-wild dataset where two new subjects are asked to perform similar actions to the MoCap
data. It has 24 videos each lasting about 20s. Both indoor and outdoor videos are recorded
in different places. Because it is hard to obtain ground-truth 3D poses in real-world environ-
ment, we use a third-person camera to capture the side-view of the subject, which is used for
evaluation based on 2D keypoints.

7.4.2 Baselines

For ego-pose estimation, we compare our method against three baselines:

• VGAIL [360]: a control-based method that uses joint torques as action space, and learns the
control policy with video-conditioned GAIL.

• PathPose: an adaptation of a CRF-based method [126]. We do not use static scene cues as
the training data is from MoCap.

• PoseReg: a method that uses our state estimator F to output the kinematic pose sequence
directly. We integrate the linear and angular velocities of the root joint to generate global
positions and orientations.

For ego-pose forecasting, no previous work has tried to forecast future human poses from
egocentric videos, so we compare our approach to methods that forecast future motions using
past poses, which at test time is provided by our ego-pose estimation algorithm:

• ERD [66]: a method that employs an encoder-decoder structure with recurrent layers in the
middle, and predicts the next pose using current ground-truth pose as input. It uses noisy
input at training to alleviate drift.
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• acLSTM [177]: a method similar to ERD with a different training scheme for more stable
long-term prediction: it schedules fixed-length fragments of predicted poses as input to the
network.

7.4.3 Metrics

To evaluate both the accuracy and physical correctness of our approach, we use the following
metrics:

• Pose Error (Epose): a pose-based metric that measures the Euclidean distance between the
generated pose sequence p1:T and the ground-truth pose sequence p̂1:T . It is calculated as
1
T

∑T
t=1 ||pt − p̂t||2.

• 2D Keypoint Error (Ekey): a pose-based metric used for our in-the-wild dataset. It can be
calculated as 1

TJ

∑T
t=1

∑J
j=1 ||x

j
t − x̂

j
t ||2, where xjt is the j-th 2D keypoint of our generated

pose and x̂jt is the ground truth extracted with OpenPose [26]. We obtain 2D keypoints for
our generated pose by projecting the 3D joints to an image plane with a side-view camera.
For both generated and ground-truth keypoints, we set the hip keypoint as the origin and
scale the coordinate to make the height between shoulder and hip equal 0.5.

• Velocity Error (Evel): a physics-based metric that measures the Euclidean distance between
the generated velocity sequence v1:T and the ground-truth v̂1:T . It is calculated as 1

T

∑T
t=1 ||vt−

v̂t||2. vt and v̂t can be computed by the finite difference method.
• AverageAcceleration (Aaccl): a physics-basedmetric that uses the averagemagnitude of joint

accelerations to measure the smoothness of the generated pose sequence. It is calculated as
1
TG

∑T
t=1 ||v̇t||1 where v̇t denotes joint accelerations and G is the number of actuated DoFs.

• Number of Resets (Nreset): a metric for control-based methods (Ours and VGAIL) to mea-
sure how frequently the humanoid becomes unstable.

7.4.4 Implementation Details

Simulation and Humanoid. We use MuJoCo [308] as the physics simulator. The humanoid
model is constructed from the BVH file of a single subject and is shared among other subjects.
The humanoid consists of 58 DoFs and 21 rigid bodies with proper geometries assigned. Most
non-root joints have three DoFs except for knees and ankles with only one DoF. We do not
add any stiffness or damping to the joints, but we add 0.01 armature inertia to stabilize the
simulation. We use stable PD controllers [303] to compute joint torques. The gains kp ranges
from 50 to 500 where joints such as legs and spine have larger gains while arms and head have
smaller gains. Preliminary experiments showed that the method is robust to a wide range of
gains values. kd is set to 0.1kp. We set the torque limits based on the gains.

Networks and Training. For the video context networks, we use PWC-Net [299] to compute
optical flow and ResNet-18 [97] pretrained on ImageNet to generate the visual features ψt ∈
R128. To accelerate training, we precompute ψt for the policy using the ResNet pretrained for
initial state estimation. We use a BiLSTM (estimation) or LSTM (forecasting) to produce the
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Figure 7.4: Single-subject ego-pose estimation results.

visual context φt ∈ R128. For the policy, we use online z-filtering to normalize humanoid state
zt, and the diagonal elements of the covariance matrix Σ are set to 0.1. When training for pose
estimation, for each episode we randomly sample a data fragment of 200 frames (6.33s) and
pad 10 frames of visual features ψt on both sides to alleviate border effects when computing
φt. When training for pose forecasting, we sample 120 frames and use the first 30 frames as
context to forecast 90 future frames. We terminate the episode if the humanoid falls or the time
horizon is reached. For the reward weights (wq, we, wp, wv), we set them to (0.5, 0.3, 0.1, 0.1) for
estimation and (0.3, 0.5, 0.1, 0.1) for forecasting. We use PPO [279] with a clipping epsilon of
0.2 for policy optimization. The discount factor γ is 0.95. We collect trajectories of 50k timesteps
at each iteration. We use Adam [140] to optimize the policy and value function with learning
rate 5e-5 and 3e-4 respectively. The policy typically converges after 3k iterations, which takes
about 2 days on a GTX 1080Ti.

7.5 Results

To comprehensively evaluate performance, we test our method against other baselines in three
different experiment settings: (1) single subject in MoCap; (2) cross subjects in MoCap; and
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Figure 7.5: Single-subject ego-pose forecasting results.

Figure 7.6: In-the-wild ego-pose estimation results.

(3) cross subjects in the wild. We further conduct an extensive ablation study to show the
importance of each technical contributon of our approach. Finally, we show time analysis to
validate that our approach can run in real-time.

Subject-Specific Evaluation. In this setting, we train an estimation model and a forecasting
model for each subject. We use a 80-20 train-test data split. For forecasting, we test every 1s
window to forecast poses in the next 3s. The quantitative results are shown in Table 7.1. For
ego-pose estimation, we can see our approach outperforms other baselines in terms of both
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Figure 7.7: In-the-wild ego-pose forecasting results.

Ego-pose Estimation

Single Subject Cross Subjects In the Wild
Method Epose Nreset Evel Aaccl Epose Nreset Evel Aaccl Ekey Aaccl

Ours 0.640 1.4 4.469 5.002 1.183 4 5.645 5.260 0.099 5.795
VGAIL [360] 0.978 94 6.561 9.631 1.316 418 7.198 8.837 0.175 9.278
PathPose [126] 1.035 – 19.135 63.526 1.637 – 32.454 117.499 0.147 125.406
PoseReg 0.833 – 5.450 7.733 1.308 – 6.334 8.281 0.109 7.611

Ego-pose Forecasting

Single Subject Cross Subjects In the Wild
Method Epose Epose(3s) Evel Aaccl Epose Epose(3s) Evel Aaccl Ekey Aaccl

Ours 0.833 1.078 5.456 4.759 1.179 1.339 6.045 4.210 0.114 4.515
ERD [66] 0.949 1.266 6.242 5.916 1.374 1.619 7.238 6.419 0.137 7.021
acLSTM [177] 0.861 1.232 6.010 5.855 1.314 1.511 7.454 7.123 0.134 8.177

Table 7.1: Quantitative results for egocentric pose estimation and forecasting. For forecasting, by
default the metrics are computed inside the first 1s window, except that Epose(3s) are computed
in the first 3s window.

pose-based metric (pose error) and physics-based metrics (velocity error, acceleration, num-
ber of resets). We find that VGAIL [360] is often unable to learn a stable control policy from
the training data due to frequent falling, which results in the high number of resets and large
acceleration. For ego-pose forecasting, our method is more accurate than other methods for
both short horizons and long horizons. We also present qualitative results in Fig. 7.4 and 7.5.
Our method produces pose estimates and forecasts closer to the ground-truth than any other
baseline.
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Method Nreset Epose Evel Aaccl

(a) Ours 4 1.183 5.645 5.260
(b) Partial reward rq + re 55 1.211 5.730 5.515
(c) Partial reward rq 14 1.236 6.468 8.167
(d) DeepMimic reward [236] 52 1.515 7.413 17.504
(e) No fail-safe 4 1.206 5.693 5.397

Table 7.2: Ablation study for ego-pose estimation.

Cross-Subject Evaluation. To further test the robustness of our method, we perform cross-
subject experiments where we train our models on four subjects and test on the remaining sub-
ject. This is a challenging setting since people have very unique style and speed for the same
action. As shown in Table 7.1, our method again outperforms other baselines in all metrics and
is surprisingly stable with only a small number of resets. For forecasting, we also show in Ta-
ble 7.3 how pose error changes across different forecasting horizons. We can see our forecasting
method is accurate for short horizons (< 1s) and even achieves comparable results as our pose
estimation method (Table 7.1).

In-the-Wild Cross-Subject. To showcase our approach’s utility in real-world scenarios, we
further test our method on the in-the-wild dataset described in Sec. 7.4.1. Due to the lack of
3D ground truth, we make use of accompanying third-person videos and compute 2D keypoint
error as the pose metric. As shown in Table 7.1, our approach is more accurate and smooth
than other baselines for real-world scenes. We also present qualitative results in Fig. 7.6 and 7.7.
For ego-pose estimation (Fig. 7.6), our approach produces very accurate poses and the phase of
the estimated motion is synchronized with the ground-truth motion. For ego-pose forecasting
(Fig. 7.7), our method generates very intuitive future motions, as a person jogging will keep
jogging forward and a person crouching will stand up and start to walk.

Ablative Analysis. The goal of our ablation study is to evaluate the importance of our reward
design and fail-safe mechanism. We conduct the study in the cross-subject setting for the task
of ego-pose estimation. We can see from Table 7.2 that using other reward functions will reduce
performance in all metrics. We note that the large acceleration in (b) and (c) is due to jittery
motions generated from unstable control policies. Furthermore, by comparing (e) to (a) we can
see that our fail-safe mechanism can improve performance even though the humanoid seldom
becomes unstable (only 4 times).

Time analysis. We perform time analysis on a mainstream CPU with a GTX 1080Ti using
PyTorch implementation of ResNet-18 and PWCNet1. The breakdown of the processing time is:
optical flow 5ms, CNN 20ms, LSTM +MLP 0.2ms, simulation 3ms. The total time per step is∼
30mswhich translates to 30 FPS. To enable real-time pose estimation which uses a bi-directional
LSTM, we use a 10-frame look-ahead video buffer and only encode these 10 future frames with
our backward LSTM, which corresponds to a fixed latency of 1/3s. For pose forecasting, we use

1https://github.com/NVlabs/PWC-Net
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Method 1/3s 2/3s 1s 2s 3s
Ours 1.140 1.154 1.179 1.268 1.339
ERD [66] 1.239 1.309 1.374 1.521 1.619
acLSTM [177] 1.299 1.297 1.314 1.425 1.511

Table 7.3: Cross-subject Epose for different forecasting horizons.

multi-threading and run the simulation on a separate thread. Forecasting is performed every
0.3s to predict motion 3s (90 steps) into the future. To achieve this, we use a batch size of 5 for
the optical flow and CNN (cost is 14ms and 70ms with batch size 1).

7.6 Conclusion

We have proposed the first approach to use egocentric videos to both estimate and forecast 3D
human poses. Through the use of a PD control based policy and a reward function tailored
to unsegmented human motion data, we showed that our method can estimate and forecast
accurate poses for various complex human motions. Experiments and time analysis showed
that our approach is robust enough to transfer directly to real-world scenarios and can run in
real-time.
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Chapter 8

Stochastic Human Motion Generation
with Determinantal Point Processes

8.1 Introduction

Forecasting future trajectories of vehicles andhumanhasmanyuseful applications in autonomous
driving, virtual reality and assistive living. What makes trajectory forecasting challenging is
that the future is uncertain and multi-modal – vehicles can choose different routes and people
can perform different future actions. In many safety-critical applications, it is important to con-
sider a diverse set of possible future trajectories, even those that are less likely, so that necessary
preemptive actions can be taken. For example, an autonomous vehicle should understand that
a neighboring car can merge into its lane even though the car is most likely to keep driving
straight. To address this requirement, we need to take a generative approach to trajectory fore-
casting that can fully characterize the multi-modal distribution of future trajectories. To capture
all modes of a data distribution, variational autoencoders (VAEs) are well-suited generative
models. However, random samples from a learned VAE model with Gaussian latent codes are
not guaranteed to be diverse for two reasons. First, the sampling procedure is stochastic and the
VAE samples can fail to cover someminor modes even with a large number of samples. Second,
since VAE sampling is based on the implicit likelihood function encoded in the training data, if
most of the training data is centered around a specific mode while other modes have less data
(Fig. 8.1 (a)), the VAE samples will reflect this bias and concentrate around the major mode
(Fig. 8.1 (b)). To tackle this problem, we propose to learn a diversity sampling function (DSF)
that can reliably generate a diverse set of trajectory samples (Fig. 8.1 (c)).

The proposed DSF is a deterministic parameterized function that maps forecasting context
features (e.g., past trajectories) to a set of latent codes. The latent codes are decoded by the VAE
docoder into a set of future trajectory samples, denoted as the DSF samples. In order to optimize
the DSF, we formulate a diversity loss based on a determinantal point process (DPP) [197]
to evaluate the diversity of the DSF samples. The DPP defines the probability of choosing a
random subset from the set of trajectory samples. It models the negative correlations between
samples: the inclusion of a sample reduces the probability of including a similar sample. This
makes the DPP an ideal tool for modeling the diversity within a set. In particular, we use the
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Figure 8.1: A toy trajectory forecasting example. (a) The three modes (pink, blue, purple) of
the future trajectory distribution are shown in both the trajectory space and the latent space of
a learned VAEmodel. The data distribution is imbalanced, where the blue mode has most data
and covers most of the latent space. (b) Random samples from the VAE only cover the major
(blue) mode. (c) Our proposed DSF generates a diverse set of future trajectories covering all
three modes.

expected cardinality of theDPP as the diversitymeasure, which is defined as the expected size of
a random subset drawn from the set of trajectory samples according to theDPP. Intuitively, since
the DPP inhibits selection of similar samples, if the set of trajectory samples is more diverse, the
random subset is more likely to select more samples from the set. The expected cardinality
of the DPP is easy to compute and differentiable, which allows us to use it as the objective to
optimize the DSF to enable diverse trajectory sampling.

Our contributions are as follows: (1) We propose a new forecasting approach that learns
a diversity sampling function to produce a diverse set of future trajectories; (2) We propose a
novel application of DPPs to optimize a set of items (trajectories) in continuous space with a
DPP-based diversity measure; (3) Experiments on synthetic data and human motion validate
that ourmethod can reliably generate amore diverse set of future trajectories compared to state-
of-the-art generative models.

8.2 Related Work

Trajectory Forecasting has recently received significant attention from the vision community.
A large portion of previous work focuses on forecasting 2D future trajectories for pedestri-
ans [13,144,195,342] or vehicles [124]. Some approaches use deterministic trajectory modeling
and only forecast one future trajectory [4,258,350]. As there are often multiple plausible future
trajectories, several approaches have tried to forecast distributions over trajectories [69,84,161].
Recently, [254, 255] propose a generative model that can accurately forecast multi-modal tra-
jectories for vehicles. [294] also use egocentric videos to predict the future trajectories of the
camera wearer. Some work has investigated forecasting higher dimensional trajectories such as
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the 3D full-body pose sequence of humanmotions. Most existingwork takes a deterministic ap-
proach and forecasts only one possible future motion from past 3D poses [23,66,125,177], static
images [29,135] or egocentric videos [362]. Differently, some probabilistic approaches [91,351]
use conditional variational autoencoders (cVAEs) to generate multiple future motions. In con-
strast to previous work, our approach can generate a diverse set of future motions with a limited
number of samples.

Diverse Solutions have been sought after in a number of problems in computer vision and
machine learning. A branch of these methods aiming for diversity stems from the M-Best
MAP problem [221, 280], including diverse M-Best solutions [15] and multiple choice learn-
ing [86, 163]. Alternatively, previous work has used submodular function maximization to se-
lect a diverse subset of garments from fashion images [108]. Determinantal point processes
(DPPs) [154, 197] are efficient probabilistic models that can measure both the diversity and
quality of items in a subset, which makes it a natural choice for the diverse subset selection
problem. DPPs have been applied for document and video summarization [75, 153], recom-
mendation systems [73], object detection [11], and grasp clustering [111]. [60] have also used
DPPs to mitigate mode collapse in generative adversarial networks (GANs). The work most
related ours is [73], which also uses the cardinality of DPPs as a proxy for user engagement.
However, there are two important differences between our approach and theirs. First, the con-
text is different as they use the cardinality for a subset selection problem while we apply the
cardinality as an objective of a continuous optimization problem in the setting of generative
models. Second, their main motivation behind using the cardinality is that it aligns better with
the user engagement semantics, while our motivation is that using cardinality as a diversity
loss for deep neural networks is more stable due to its tolerance of similar trajectories, which
are often produced by deep neural networks during stochastic gradient descent.

8.3 Background

8.3.1 Variational Autoencoders

The aim of multi-modal trajectory forecasting is to learn a generative model over future trajecto-
ries. Variational autoencoders (VAEs) are a popular choice of generative models for trajectory
forecasting [161,323] because it can effectively capture all possible future trajectories by explic-
itly mapping each data point to a latent code. VAEs model the joint distribution pθ(x, z) =

p(z)pθ(x|z) of each data sample x (e.g., a future trajectory) and its corresponding latent code
z, where p(z) denotes some prior distribution (e.g., Gaussians) and pθ(x|z) denotes the con-
ditional likelihood model. To calculate the marginal likelihood pθ(x) = pθ(x, z)/pθ(z|x), one
needs to compute the posterior distribution pθ(z|x) which is typically intractable. To tackle this,
VAEs use variational inference [132] which introduces an approximate posterior qφ(z|x) and
decomposes the marginal log-likelihood as

log pθ(x) = KL (qφ(z|x)‖pθ(z|x)) + L(x; θ, φ) , (8.1)
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where L(x; θ, φ) is the evidence lower bound (ELBO) defined as

L(x; θ, φ) = Eqφ(z|x) [log pθ(x|z)]−KL (qφ(z|x)‖p(z)) . (8.2)

During training, VAEs jointly optimize the recognition model (encoder) qφ(z|x) and the likeli-
hood model (decoder) pθ(x|z) to maximize the ELBO. In the context of multi-modal trajectory
forecasting, one can generate future trajectories from p(x) by drawing a latent code z from the
prior p(z) and decoding z with the decoder pθ(x|z) to produce a corresponding future trajec-
tory x.

8.3.2 Determinantal Point Processes

Our core technical innovation is a method to learn a diversity sampling function (DSF) that can
generate a diverse set of future trajectories. To achieve this, we must equip ourselves with a
tool to evaluate the diversity of a set of trajectories. To this end, we make use of determinantal
point processes (DPPs) to model the diversity within a set. DPPs promote diversity within a
set because the inclusion of one item makes the inclusion of a similar item less likely if the set
is sampled according to a DPP.

Formally, given a set of items (e.g., data points) Y = {x1, . . . ,xN}, a point process P on
the ground set Y is a probability measure on 2Y , i.e., the set of all subsets of Y . P is called a
determinantal point process if a random subset Y drawn according to P has

PL(Y = Y ) =
det (LY )∑
Y⊆Y det (LY )

=
det (LY )

det(L + I)
, (8.3)

where Y ⊆ Y , I is the identity matrix, L ∈ RN×N is the DPP kernel, a symmetric positive
semidefinite matrix, and LY ∈ R|Y |×|Y | is a submatrix of L indexed by elements of Y .

The DPP kernel L is typically constructed by a similarity matrix S, where Sij defines the
similarity between two items xi and xj . If we use the inner product as the similarity measure,
L can be written in the form of a Gram matrix L = S = XTX where X is the stacked feature
matrix of Y . As a property of the Gram matrix, det (LY ) equals the squared volume spanned
by vectors xi ∈ Y . With this geometric interpretation in mind, one can observe that diverse sets
are more probable because their features are more orthogonal, thus spanning a larger volume.

In addition to set diversity encoded in the similarity matrix S, it is also convenient to intro-
duce a quality vector r = [r1, . . . , rN ] to weigh each item according to some unary metric. For
example, the quality weight might be derived from the likelihood of an item. To capture both
diversity and quality of a subset, the DPP kernel L is often decomposed in the more general
form:

L = Diag(r) · S ·Diag(r) . (8.4)
With this decomposition, we can see that both the quality vector r and similarity matrix S con-
tribute to the DPP probability of a subset Y :

PL(Y = Y ) ∝ det (LY ) =

∏
xi∈Y

r2i

 det (SY ) . (8.5)
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Due to its ability to capture the global diversity and quality of a set of items, we choose DPPs
as the probabilistic approach to evaluate and optimize the diversity of the future trajectories
drawn by our proposed diversity sampling function.

8.4 Approach

Safety-critical applications often require that the system can maintain a diverse set of outcomes
covering all modes of a predictive distribution and not just the most likely one. To address this
requirement, we propose to learn a diversity sampling function (DSF) to draw deterministic
trajectory samples by generating a set of latent codes in the latent space of a conditional vari-
ational autoencoder (cVAE) and decoding them into trajectories using the cVAE decoder. The
DSF trajectory samples are evaluated with a DPP-based diversity loss, which in turn optimizes
the parameters of the DSF for more diverse trajectory samples.

Formally, the future trajectory x ∈ RT×D is a random variable denoting a D dimensional
feature over a future time horizon T (e.g., a vehicle trajectory or a sequence of humanoid poses).
The context ψ = {h, f} provides the information to infer the future trajectory x, and it contains
the past trajectory h ∈ RH×D of lastH time steps and optionally other side information f , such
as an obstacle map. In the following, we first describe howwe learn the future trajectory model
pθ(x|ψ) with a cVAE. Then, we introduce the DSF and the DPP-based diversity loss used to
optimize the DSF.

8.4.1 Learning a cVAE for Future Trajectories

In order to generate a diverse set of future trajectory samples, we need to learn a generative
trajectory forecasting model pθ(x|ψ) that can cover all modes of the data distribution. Here we
use cVAEs (other proper generative models can also be used), which explicitly map data x with
the encoder qφ(z|x,ψ) to its corresponding latent code z and reconstruct the data from the latent
code using the decoder pθ(x|z,ψ). By maintaining this one-on-one mapping between the data
and the latent code, cVAEs attempt to capture all modes of the data. As discussed in Sec. 8.3.1,
cVAEs jointly optimize the encoder and decoder to maximize the variational lower bound:

L(x,ψ; θ, φ) = Eqφ(z|x,ψ) [log pθ(x|z,ψ)]−KL (qφ(z|x,ψ)‖p(z)) . (8.6)
WeusemultivariateGaussians for the prior, encoder anddecoder: p(z) = N (z; 0, I), qφ(z|x,ψ) =

N (z;µ,σ2I), and pθ(x|z,ψ) = N (x; x̃, αI). Both the encoder and decoder are implemented as
neural networks. The encoder network fφ outputs the parameters of the posterior distribu-
tion: (µ,σ) = fφ(x,ψ). The decoder network gθ outputs the reconstructed future trajectory x̃:
x̃ = gθ(z,ψ). Based on the Gaussian parameterization of the cVAE, the objective in Eq. 8.6 can
be rewritten as

Lcvae(x,ψ; θ, φ) = − 1

V

V∑
v=1

‖x̃v − x‖2 + β · 1

Dz

Dz∑
j=1

(
1 + 2 log σj − µ2j − σ2j

)
, (8.7)

where we take V samples from the posterior qφ(z|x,ψ),Dz is the number of latent dimensions,
and β = 1/α is a weighting factor. Once the cVAE model is trained, sampling from the learned
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future trajectory model pθ(x|ψ) is efficient: we can sample a latent code z according to the prior
p(z) and use the decoder pθ(x|z,ψ) to decode it into a future trajectory x.

Algorithm 4 Training the diversity sampling function (DSF) Sγ(ψ)

1: Input: Training data {x(i),ψ(i)}Mi=1, cVAE decoder network gθ(z,ψ)

2: Output: DSF Sγ(ψ)

3: Initialize γ randomly
4: while not converged do
5: for each ψ(i) do
6: Generate latent codes Z = {z1, . . . , zN}with the DSF Sγ(ψ)

7: Generate the trajectory ground set Y = {x1, . . . ,xN}with the decoder gθ(z,ψ)

8: Compute the similarity matrix S and quality vector r with Eq. 8.8 and 8.9
9: Compute the DPP kernel L(γ) = Diag(r) · S ·Diag(r)

10: Calculate the diversity loss Ldiverse
11: Update γ with the gradient ∇Ldiverse
12: end for
13: end while

8.4.2 Diversity Sampling Function (DSF)

As mentioned before, randomly sampling from the learned cVAE model according to the im-
plicit likelihood function pθ(x|ψ), i.e., sampling latent codes from the prior p(z), does not guar-
antee that the trajectory samples are diverse: majormodes (those havingmore data)with higher
likelihoodwill producemost of the samples while minor modes with lower likelihoodwill have
almost no sample. This prompts us to devise a new sampling strategy that can reliably generate
a diverse set of samples covering both major and minor modes. We propose to learn a diversity
sampling function (DSF) Sγ(ψ) that maps context ψ to a set of latent codes Z = {z1, . . . , zN}.
The DSF is implemented as a γ-parameterized neural network which takes ψ as input and out-
puts a vector of length N · Dz . The latent codes Z are decoded into a diverse set of future
trajectories Y = {x1, . . . ,xN}, which are denoted as the DSF trajectory samples. We note that
N is the sampling budget. To solve for the parameters of the DSF, we propose a diversity loss
based on a DPP defined over Y . In this section, we first describe how the DPP kernel L is de-
fined, which involves the construction of the similarity matrix S and quality vector r. We then
discuss how we use the DPP kernel L to formulate a diversity loss to optimize the parameters
of the DSF.

Recall that the DPP kernel is defined as L = Diag(r) ·S ·Diag(r), where r defines the quality
of each trajectory and S measures the similarity between two trajectories. The DPP kernel L(γ)

is a function of γ as it is defined over the ground set Y output by the DSF Sγ(ψ).

Similarity. We measure the similarity Sij between two trajectories xi and xj as

Sij = exp
(
−k · d2x(xi,xj)

)
, (8.8)
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where dx is the Euclidean distance and k is a scaling factor. This similarity design ensures that
0 ≤ Sij ≤ 1 and Sii = 1. It also makes S positive definite since the Gaussian kernel we use is a
positive definite kernel.

Quality. It may be tempting to use p(x|ψ) to define the quality of each trajectory sample. How-
ever, this likelihood-based measure will clearly favor major modes that have higher probabili-
ties, making it less likely to generate samples from minor modes. This motivates us to design
a quality metric that treats all modes equally. To this end, unlike the similarity metric which is
defined in the trajectory space, the quality of each sample is measured in the latent space and
is defined as

ri =

{
ω, if ‖zi‖ ≤ R
ω exp

(
−zTi zi +R2

)
, otherwise

(8.9)

Geometrically, let R be the radius of a sphere Φ containing most samples from the Gaussian
prior p(z). We treat samples inside Φ equally and only penalize samples outside Φ. In this
way, samples frommajor modes are not preferred over those fromminor modes as long as they
are inside Φ, while samples far away from the data manifold are heavily penalized as they are
outside Φ. The radius R is determined by where ρ percent of the Gaussian samples lie within,
and we set ρ = 90. To compute R, we use the percentage point function of the chi-squared
distribution which models the distribution over the sum of squares of independent standard
normal variables. The base quality ω is a hyperparameter which we set to 1 during training
in our experiments. At test time, we can use a larger ω to encourage the DPP to select more
items from the ground set Y . The hyperparameter ρ (or R) allows for the trade-off between
diversity and quality. WhenR is small, the quality metric is reduced to a pure likelihood-based
metric (proportional to the latent likelihood), which will prefer samples with high likelihood
and result in a less diverse sample set. WhenR is large, most sampleswill have the same quality,
and the resulting sampleswill be highly diverse but less likely. In practice, the choice ofR should
be application dependent, as one could imagine autonomous vehicles would need to consider
more diverse scenarios including those less likely ones to ensure robustness. We note that after
the diverse samples are obtained, it is possible to reassign the quality score for each sample
based on its likelihood to allow users to prioritize more likely samples.

Diversity Loss. To optimize the DSF Sγ(ψ), we need to define a diversity loss that measures
the diversity of the trajectory ground set Y generated by Sγ(ψ). An obvious choice for the
diversity loss would be the negative log likelihood − logPL(γ)(Y = Y) = − log det(L(γ)) +

log det(L(γ) + I). However, there is a problem with directly using the DPP log likelihood. The
log likelihood heavily penalizes repeated items: if two trajectories insideY are very similar, their
corresponding rows in L will be almost identical, making det(L(γ)) = λ1λ2 . . . λN ≈ 0 (λn is
the n-th eigenvalue). In practice, if the number of modes in the trajectory distribution p(x|ψ)

is smaller than |Y|, Y will always have similar trajectories, thus making det(L(γ)) always close
to zero. In such cases, optimizing the negative log likelihood causes numerical issues, which is
observed in our early experiments.
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Instead, the expected cardinality of the DPP is a better measure for the diversity of Y , which
is defined as EY ∼PL(γ)

[|Y |]. Intuitively, since the DPP discourages selection of similar items, if
Y is more diverse, a random subset Y drawn according to the DPP is more likely to select more
items from Y , thus having larger cardinality. The expected cardinality can be computed as (Eq.
15 and 34 in [154]):

E[|Y |] =
N∑
n=1

λn
λn + 1

= tr (I− (L(γ) + I)−1
)
. (8.10)

The main advantage of the expected cardinality is that it is well defined even when the ground
set Y has duplicated items, since it does not require all eigenvalues of L to be non-zero as the
log likelihood does. Thus, our diversity loss is defined as

Ldiverse(γ) = −tr (I− (L(γ) + I)−1
)
. (8.11)

The training procedure for Sγ(ψ) is outlined in Alg. 4.

Algorithm 5 Inference with the DSF Sγ(ψ)

1: Input: Context ψ, DSF Sγ(ψ), cVAE decoder network gθ(z,ψ)

2: Output: Forecasted trajectory set Yf
3: Generate latent codes Z = {z1, . . . , zN}with the DSF Sγ(ψ)

4: Generate the trajectory ground set Y = {x1, . . . ,xN}with the decoder gθ(z,ψ)

5: Compute the DPP kernel L = Diag(r) · S ·Diag(r)

6: Yf ← ∅, U ← Y
7: while U is not empty do
8: x∗ ← arg maxx∈U log det

(
LYf∪{x}

)
9: if log det

(
LYf∪{x∗}

)
− log det

(
LYf

)
< 0 then

10: break
11: end if
12: Yf ← Yf ∪ {x∗}
13: U ← U \ {x∗}
14: end while

Inference. At test time, given current context ψ,we use the learned DSF Sγ(ψ) to generate
the future trajectory ground set Y . In some cases, Y may still contain some trajectories that are
similar to others. In order to obtain a diverse set of trajectories without repetition, we aim to
performMAP inference for the DPP to find the most diverse subset Y ∗ = arg maxY ∈Y PL(γ)(Y ).
A useful property of DPPs is that the log-probability function is submodular [72]. Even though
submodular maximization is NP-hard, we use a greedy algorithm [219] which is a popular
optimization procedure that works well in practice. As outlined in Alg. 5, the output set Yf is
initialized as ∅, and at each iteration, the trajectory which maximizes the log probability

x∗ = arg max
x∈Y\Yf

log det
(
LYf∪{x}

)
(8.12)

is added to Yf , until the marginal gain becomes negative or Yf = Y .
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8.5 Experiments

The primary focus of our experiments is to answer the following questions: (1) Are trajectory
samples generated with our diversity sampling function more diverse than samples from the
cVAEandother baselines? (2)Howdoes ourmethodperformonboth balanced and imbalanced
data? (3) Is our method general enough to perform well on both low-dimensional and high-
dimensional tasks?

Context Future

Figure 8.2: In real data, contexts (past tra-
jectories) are seldom the samedue to noise.

Metrics. A problem with trajectory forecasting
evaluation is that in real data each context ψ(i)

usually only has one future trajectory x(i), which
means we only have one sample from a multi-
modal distribution. Let us consider a scenario
of three data examples {x(i),ψ(i)}3i=1 as shown in
Fig. 8.2 (red, purple, blue). The contexts (past tra-
jectories) of the three examples are instances of the
same trajectory but they are slightly different due
to noise. As these three contexts have the same se-
mantic meaning, they should share the future tra-
jectories, e.g., the purple and blue future trajecto-
ries are also valid for the red context. If we evalu-
ate each example (x(i),ψ(i)) only with its own fu-
ture trajectory x(i), a method can achieve high scores by only forecasting the mode correspond-
ing to x(i) and dropping other modes. This is undesirable because we want a good method to
capture all modes of the future trajectory distribution, not just a singlemode. To allow formulti-
modal evaluation, we propose collecting multiple future trajectories for each example by clus-
tering examples with similar contexts. Specifically, we augment each data example (x(i),ψ(i))

with a future trajectory set X (i) = {x(j)|‖ψ(j) − ψ(i)‖ ≤ ε, j = 1, . . . ,M} and metrics are cal-
culated based on X (i) instead of x(i), i.e.,we compute metrics for each x ∈ X (i) and average the
results.

We use the following metrics for evaluation: (1) Average Displacement Error (ADE): av-
erage mean square error (MSE) over all time steps between the ground truth future trajectory
x and the closest sample x̃ in the forecasted set of trajectories Yf . (2) Final Displacement Error
(FDE): MSE between the final ground truth position xT and the closest sample’s final posi-
tion x̃T . (3) Average Self Distance (ASD): average L2 distance over all time steps between a
forecasted sample x̃i and its closest neighbor x̃j in Yf . (4) Final Self Distance (FSD): L2 dis-
tance between the final position of a sample x̃Ti and its closest neighbor’s final position x̃Tj . The
ADE and FDE are common metrics used in prior work on trajectory forecasting [4,84,161,254].
However, these two metrics do not penalize repeated samples. To address this, we introduce
two newmetricsASDand FSD to evaluate the similarity between samples in the set of forecasted
trajectories. Larger ASD and FSDmeans the forecasted trajectories are more non-repetitive and
diverse.
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DSF (Ours) cVAE MCL R2P2 cGAN

Balanced
Data

Imbalanced
Data

Figure 8.3: Qualitative results on synthetic data for both balanced and imbalanced data distri-
bution when N = 10. Blue represents the past trajectory and red represents forecasted future
trajectories.

Balanced Data Imbalanced Data
Method ADE ↓ FDE ↓ ASD ↑ FSD ↑ ADE ↓ FDE ↓ ASD ↑ FSD ↑

DSF (Ours) 0.182 0.344 0.147 0.340 0.198 0.371 0.207 0.470
cVAE 0.262 0.518 0.022 0.050 0.332 0.662 0.021 0.050
MCL 0.276 0.548 0.012 0.030 0.457 0.938 0.005 0.010
R2P2 0.211 0.361 0.047 0.080 0.393 0.776 0.019 0.030
cGAN 0.808 1.619 0.018 0.010 1.784 3.744 0.006 0.001

Table 8.1: Quantitative results on synthetic data (numbers scaled by 10) when N = 10.

Baselines. We compare ourDiversity Sampler Function (DSF)with the following baselines:
(1) cVAE: a method that follows the original sampling scheme of cVAE by sampling latent
codes from a Gaussian prior p(z). (2) MCL: an approach that uses multiple choice learning
[163] to optimize the sampler Sγ(ψ) with the following loss: Lmcl = minx̃∈Y ‖x̃ − x‖2, where
x is the ground truth future trajectory. (3) R2P2: a method proposed in [254] that uses a
reparametrized pushforward policy to improve modeling of multi-modal distributions for ve-
hicle trajectories. (4) cGAN: generative adversarial networks [76] conditioned on the forecast-
ing context. We implement all baselines using similar networks and perform hyperparameter
search for eachmethod for fair comparisons. For methods whose samples are stochastic, we use
10 random seeds and report the average results for all metrics.

8.5.1 Synthetic 2D Trajectory Data

We first use synthetic data to evaluate our method’s performance for low-dimensional tasks.
We design a virtual 2D traffic scene where a vehicle comes to a crossroad and can choose three
different future routes: forward, left, and right. We consider two types of synthetic data: (1)
Balanced data, which means the probabilities of the vehicle choosing one of the three routes
are the same; (2) Imbalanced data, where the probabilities of the vehicle going forward, left

106



DSF (Ours) cVAE

MCL cGAN

Start
Pose

Figure 8.4: Qualitative results for human motion forecasting when N = 10. The left shows the
starting pose, and the right shows for each method the final pose of all 10 forecasted motion
samples.

and right are 0.8, 0.1, 0.1, respectively. We synthesize trajectory data by simulating the vehicle’s
behavior and addingGaussian noise to vehicle velocities. Each data example (x(i),ψ(i)) contains
future trajectories of 3 steps and past trajectories of 2 steps. We also add an obstacle map around
the current position to the context ψ(i). In total, we have around 1100 training examples and
1000 test examples.

Table 8.1 summarizes the quantitative results for both balanced and imbalanced data when
the sampling budget N is 10. We can see that our method DSF outperforms the baselines in all
metrics in both test settings. As shown in Fig. 8.3, ourmethodgeneratesmore diverse trajectories
and is less affected by the imbalanced data distribution. The trajectory samples of our method
are also less repetitive, a feature afforded by our DPP formulation. Fig. 8.5 shows how ADE
changes as a function of the sampling budget N .

8.5.2 Diverse Human Motion Forecasting

Method ADE ↓ FDE ↓ ASD ↑ FSD ↑

DSF (Ours) 0.259 0.421 0.115 0.282
cVAE 0.332 0.642 0.034 0.098
MCL 0.344 0.674 0.036 0.122
cGAN 0.652 1.296 0.001 0.003

Table 8.2: Quantitative results for human mo-
tion forecasting when N = 10.

To further evaluate our method’s perfor-
mance formore complex andhigh-dimensional
tasks, we apply our method to forecast fu-
ture human motions (pose sequences). We
use motion capture to obtain 10 motion se-
quences including different types of motions
such as walking, turning, jogging, bending,
and crouching. Each sequence is about 1
minute long and each pose consists of 59 joint
angles. We use past 3 poses (0.1s) to forecast next 30 poses (1s). There are around 9400 training
examples and 2000 test examples where we use different sequences for training and testing.

We present quantitative results in Table 8.2 and we can see that our approach outperforms
other methods in all metrics. As the dynamics model used in R2P2 [254] does not generalize
well for high-dimensional human motion, we find the model fails to converge and we do not
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Figure 8.5: ADE vs. N for synthetic data and human motion forecasting. cGAN is not shown in
this plot as it is much worse than other methods due to mode collapse.

N = 10 N = 50

Method ADE ↓ FDE ↓ ASD ↑ FSD ↑ ADE ↓ FDE ↓ ASD ↑ FSD ↑

DSF (Ours) 0.340 0.521 0.381 0.621 0.236 0.306 0.313 0.415
DSF-NLL 0.335 0.514 0.343 0.496 X X X X
DSF-COS 2.588 1.584 5.093 5.718 0.978 0.891 2.007 1.968
cVAE 0.363 0.549 0.235 0.360 0.276 0.369 0.160 0.220
cVAE-LDPP 0.373 0.554 0.280 0.426 0.277 0.365 0.176 0.240

Table 8.3: Quantitative results on Human3.6M [118] for N = 10 and N = 50. X means the
method is unable to learn a model due to numerical instability.

compare with it in this experiment. Fig. 8.5 shows that our method achieves large improve-
ment when the sampling budget is big (N = 50). We also present qualitative results in Fig. 8.4,
where we show the starting pose and the final pose of all 10 forecasted motion samples for each
method. We can clearly see that ourmethod generatesmore diverse future humanmotions than
the baselines. Please refer to our video for additional qualitative results.

8.5.3 Additional Experiments with Diversity-Based Baselines

In this section, we perform additional experiments on a large humanmotion dataset (3.6million
frames), Human3.6M [118], to evaluate the generalization ability of our approach. We predict
future motion of 2 seconds based on observed motion of 0.5 seconds. We also use a new se-
lection of baselines including several variants of our method (DSF) and the cVAE to validate
several design choices of our method, including the choice of the expected cardinality over the
negative log likelihood (NLL) of the DPP as the diversity loss. Specifically, we use the follow-
ing new baselines: (1) DSF-NLL: a variant of DSF that uses NLL as the diversity loss instead
of the expected cardinality. (2) DSF-COS: a DSF variant that uses cosine similarity to build
the similarity matrix S for the DPP kernel L. (3)DSF-NLL: a variant of the cVAE that samples
100 latent codes and performs DPPMAP inference on the latent codes to obtain a diverse set of
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latent codes, which are then decoded into trajectory samples.
We present quantitative results in Table 8.3 when the number of samples N is 10 and 50.

The baseline DSF-COS is able to achieve very high diversity (ASD and FSD) but its samples are
overly diverse and have poor quality which is indicated by the large ADE and FDE. Compared
with DSF-NLL, ourmethod achieves better diversity (ASD and FSD) and similar ADE and FDE
when the number of samples is small (N = 10). For a larger number of samples (N = 50), NLL
becomes unstable even with a large ε (1e-3) added to the diagonal. This behavior of NLL, i.e.,
stable for small N but unstable for large N , matches our intuition that NLL becomes unstable
when samples become similar (as discussed in Sec. 8.4.2), becausewhen there aremore samples,
it is easier to have similar samples during the SGD updates of the DSF network. The baseline
cVAE-LDPP also performs worse than DSF in all metrics even though it is able to outperfom
the cVAE. We believe the reason is that diversity in sample space may not be well reflected in
the latent space due to the non-linear mapping from latent codes to samples induced by deep
neural networks.

8.6 Conclusion

We proposed a novel forecasting approach using a DSF to optimize over the sample space of a
generative model. Our method learns the DSF with a DPP-based diversity measure to generate
a diverse set of trajectories. The diversity measure is a novel application of DPPs to optimize a
set of items in continuous space. Experiments have shown that our approach can generate more
diverse vehicle trajectories and humanmotions compared to state-of-the-art baseline forecasting
approaches.
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Chapter 9

Stochastic Human Motion Generation
with Diversifying Latent Flows

9.1 Introduction

Human motion prediction, i.e., predicting the future 3D poses of a person based on past poses,
is an important problem in computer vision and has many useful applications in autonomous
driving [225], human robot interaction [151] and healthcare [313]. It is a challenging problem
because the futuremotion of a person is potentially diverse andmulti-modal due to the complex
nature of human behavior. For many safety-critical applications, it is important to predict a
diverse set of human motions instead of just the most likely one. For examples, an autonomous
vehicle should be aware that a nearby pedestrian can suddenly cross the road even though the
pedestrian will most likely remain in place. This diversity requirement calls for a generative
approach that can fully characterize the multi-modal distribution of future human motion.

Deep generative models, e.g., variational autoencoders (VAEs) [141], are effective tools to
model multi-modal data distributions. Most existing work [5, 14, 155, 180, 267, 324, 351] using
deep generative models for humanmotion prediction is focused on the design of the generative
model to allow it to effectively learn the data distribution. After the generativemodel is learned,
little attention has been paid to the samplingmethod used to producemotion samples (predicted
future motions) from the pretrained generative model (weights kept fixed). Most of prior work
predicts a set of motions by randomly sampling a set of latent codes from the latent prior and
decoding them with the generator into motion samples. We argue that such a sampling strat-
egy is not guaranteed to produce a diverse set of samples for two reasons: (1) The samples are
independently drawn, which makes it difficult to enforce diversity; (2) The samples are drawn
based on likelihood only, whichmeansmany samplesmay concentrate around themajormodes
(which have more observed data) of the data distribution and fail to cover the minor modes (as
shown in Fig. 9.1 (Bottom)). The poor sample efficiency of random sampling means that one
needs to draw a large number of samples in order to cover all the modes which is computation-
ally expensive and can lead to high latency, making it unsuitable for real-time applications such
as autonomous driving and virtual reality. This prompts us to address an overlooked aspect of
diverse human motion prediction — the sampling strategy.
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Latent Space Start Pose End Pose of 10 Motion Samples

DLow
(Ours)

CVAE

Figure 9.1: In the latent space of a conditional variational autoencoder (CVAE), samples (stars)
fromourmethodDLoware able to covermoremodes (colored ellipses) than theCVAE samples.
In the motion space, DLow generates a diverse set of future human motions while the CVAE
only produces perturbations of the motion of the major mode.

We propose a novel sampling method, Diversifying Latent Flows (DLow), to obtain a di-
verse set of samples from a pretrained deep generative model. For this work, we use a condi-
tional variational autoencoder (CVAE) as our pretrained generative model but other generative
models can also be usedwith our approach. DLow is inspired by the two previouslymentioned
problemswith random (independent) sampling. To tackle problem (1)where sample indepen-
dence limits model diversity, we introduce a new random variable and a set of learnable deter-
ministic mapping functions to correlate the motion samples. We first transform the random
variable with the mappings functions to generate a set of correlated latent codes which are then
decoded into motion samples using the generator. As all motion samples are generated from a
common random factor, this formulation allows us to model the joint sample distribution and
offers us the opportunity to impose diversity on the samples by optimizing the parameters of the
mapping functions. To address problem (2) where likelihood-based sampling limits diversity,
we introduce a diversity-promoting prior (loss function) on the samples during the training
of DLow. The prior follows an energy-based formulation using an energy function based on
pairwise sample distance. We optimize the mapping functions during training to minimize the
cross entropy between the joint sample distribution and diversity-promoting prior to increase
sample diversity. To strike a balance between diversity and likelihood, we add a KL term to
the optimization to enhance the likelihood of each sample. The relative weights between the
prior term and the KL term represent the trade-off between the diversity and likelihood of the
generated motion samples. Furthermore, our approach is highly flexible in that by designing
different forms of the diversity-promoting prior we can impose a variety of structures on the
samples besides diversity. For example, we can design the prior to ask the motion samples to
cover the ground truth better to achieve higher sample accuracy. Additionally, other designs of
the prior can enable new applications, such as controllable motion prediction, where we gen-
erate diverse motion samples that share some common features (e.g., similar leg motion but
diverse upper-body motion).

The contributions of this work are the following: (1) We propose a novel perspective for
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addressing sample diversity in deep generative models — designing sampling methods for a
pretrained generative model. (2) We propose a principled sampling method, DLow, which for-
mulates diversity sampling as a constrained optimization problem over a set of learnable map-
ping functions using adiversity-promoting prior on the samples andKL constraints on the latent
codes, which allows us to balance between sample diversity and likelihood. (3) Our approach
allows for flexible design of the diversity-promoting prior to obtain more accurate samples or
enable new applications such as controllable motion prediction. (4) We demonstrate through
human motion prediction experiments that our approach outperforms state-of-the-art baseline
methods in terms of sample diversity and accuracy.

9.2 Related Work

Human Motion Prediction. Most previous work takes a deterministic approach to modeling
human motion and regress a single future motion from past 3D poses [3, 23, 35, 66, 71, 77, 125,
177, 200, 201, 233, 325] or video frames [29, 362, 374]. While these approaches are able to pre-
dict the most likely future motion, they fail to model the multi-modal nature of human motion,
which is essential for safety-critical applications. More related to our work, stochastic human
motion prediction methods start to gain popularity with the development of deep generative
models. These methods [5, 14, 155, 180, 267, 324, 351, 364] often build upon popular generative
models such as conditional generative adversarial networks (CGANs; [76]) or conditional vari-
ational autoencoders (CVAEs; [141]). The aforementionedmethods differ in the design of their
generative models, but at test time they follow the same sampling strategy — randomly and
independently sampling trajectories from the pretrained generative model without considering
the correlation between samples. In this work, we propose a principled sampling method that
can produce a diverse set of samples, thus improving sample efficiency compared to the random
sampling typically used in prior work.

Diverse Inference. Producing a diverse set of solutions has been investigated in numerous
problems in computer vision and machine learning. A branch of these diversity-driven meth-
ods stems from the M-Best MAP problem [221, 280], including diverse M-Best solutions [15]
and multiple choice learning [86, 163]. Alternatively, submodular function maximization has
been applied to select a diverse subset of garments from fashion images [108]. Another type
of methods [11, 73, 75, 111, 153, 332, 361] seeks diversity using determinantal point processes
(DPPs; [154, 197]) which are efficient probabilistic models that can measure the global diver-
sity and quality within a set. Similarly, Fisher information [257] has been used for diverse fea-
ture [79] and data [295] selection. Diversity has also been a key aspect in generative modeling.
A vast body of work has tried to alleviate the mode collapse problem in GANs [9, 30, 32, 60, 83,
181, 296, 352] and the posterior collapse problem in VAEs [19, 96, 139, 187, 309, 381]. Normaliz-
ing flows [253] have also been used to promote diversity in trajectory forecasting [80,254]. This
line of work aims to improve the diversity of the data distribution learned by deep generative
models. We address diversity from a different angle by improving the strategy for producing
samples from a pretrained deep generative model.
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9.3 Diversifying Latent Flows (DLow)

For many existing methods on generative vision tasks such as multi-modal human motion pre-
diction, the primary focus is to learn a good generative model that can capture the multi-modal
distribution of the data. In contrast, once the generative model is learned, little attention has
been paid to devising sampling strategies for producing diverse samples from the pretrained
generative model.

In this section, we will introduce our method, Diversifying Latent Flows (DLow), as a prin-
cipled way for drawing a diverse and likely set of samples from a pretrained generative model
(weights kept fixed). To provide the proper context, wewill first startwith a brief reviewof deep
generative models and how traditional methods produce samples from a pretrained generative
model.

Background: Deep Generative Models. Let x ∈ X denote data (e.g., human motion) drawn
from a data distribution p(x|c) where c is some conditional information (e.g., past motion).
One can reparameterize the data distribution by introducing a latent variable z ∈ Z such that
p(x|c) =

∫
z p(x|z, c)p(z)dz, where p(z) is a Gaussian prior distribution. Deep generativemodels

learn p(x|c) by modeling the conditional distribution p(x|z, c), and the generative process can
be described as sampling z andmapping them to data samples x using a deterministic generator
function Gθ : Z → X as

z ∼ p(z) , (9.1)
x = Gθ(z, c) , (9.2)

where the generatorGθ is instantiated as a deep neural network parametrized by θ. This gener-
ative process produces samples from the implicit sample distribution pθ(x|c) of the generative
model, and the goal of generativemodeling is to learn a generatorGθ such that pθ(x|c) ≈ p(x|c).
There are various approaches for learning the generator functionGθ, which yield different types
of deep generative models such as variational autoencoders (VAEs; [141]), normalizing flows
(NFs; [253]), and generative adversarial networks (GANs; [76]). Note that even though the
discussion in this work is focused on conditional generative models, our method can be readily
applied to the unconditional case.

Random Sampling. Once the generator function Gθ is learned, traditional approaches pro-
duce samples from the learned data distribution pθ(x|c) by first randomly sampling a set of
latent codes Z = {z1, . . . , zK} from the latent prior p(z) (Eq. (9.1)) and decode Z with the
generator Gθ into a set of data samples X = {x1, . . . ,xK} (Eq. (9.2)). We argue that such
a sampling strategy may result in a less diverse sample set for two reasons: (1) Independent
sampling cannot model the repulsion between samples within a diverse set; (2) The sampling
is only based on the data likelihood and many samples can concentrate around a small number
of modes that have more training data. As a result, random sampling can lead to low sample
efficiency because many samples are similar to one another and fail to cover other modes in the
data distribution.
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Figure 9.2: Overview of our DLow framework applied to diverse human motion prediction.
The network Qγ takes past motion c as input and outputs the parameters of the mapping func-
tions Tψ1 , . . . , TψK . Each mapping Tψk transforms the random variable ε to a different latent
code zk and also warps the density p(ε) to the latent code density rψ(zk|c). Each latent code zk
is decoded by the CVAE decoder into a motion sample xk.

DLow Sampling. To address the above issues with the random sampling approach, we pro-
pose an alternative sampling method, Diversifying Latent Flows (DLow), that can generate a
diverse and likely set of samples from a pretrained deep generative model. Again, we stress
that the weights of the generative model are kept fixed for DLow. We later apply DLow to the
task of human motion prediction in Sec. 9.4 to demonstrate DLow’s ability to improve sample
diversity.

Instead of sampling each latent code zk ∈ Z independently according to p(z), we introduce a
random variable ε and conditionally generate the latent codes Z and data samplesX as follows:

ε ∼ p(ε) , (9.3)
zk = Tψk(ε) , 1 ≤ k ≤ K , (9.4)
xk = Gθ(zk, c) , 1 ≤ k ≤ K , (9.5)

where p(ε) is a Gaussian distribution, Tψ1 , . . . , TψK are latent mapping functions with parame-
ters ψ = {ψ1, . . . , ψK}, and each Tψk maps ε to a different latent code zk. The above generative
process defines a joint distribution rψ(X,Z|c) = pθ(X|Z, c)rψ(Z|c) over the samples X and la-
tent codes Z, where pθ(X|Z, c) is the conditional distribution induced by the generatorGθ(z, c).
Notice that in our setup, rψ(X,Z|c)depends only onψ as the generator parameters θ are learned
in advance and are kept fixed. The data samples X can be viewed as a sample from the joint
sample distribution rψ(X|c) =

∫
rψ(X,Z|c)dZ and the latent codes Z can be regarded as a sam-

ple from the joint latent distribution rψ(Z|c) induced by warping p(ε) through Tψ1 , . . . , TψK . If
we further marginalize out all variables except for xk from rψ(X|c), we obtain the marginal
sample distribution rψ(xk|c) from which each sample xk is drawn. Similarly, each latent code
zk ∈ Z can be viewed as a latent sample from the marginal latent distribution rψ(zk|c).

The above distribution reparametrizations are illustrated in Fig. 9.2. We can see that all
latent codes Z and data samples X are correlated as they are uniquely determined by ε, and
by sampling ε one can easily produce Z and X from the joint latent distribution rψ(Z|c) and
joint sample distribution rψ(X|c). Because rψ(Z|c) and rψ(X|c) are controlled by the latent
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mapping functions Tψ1 , . . . , TψK , we can impose structural constraints on rψ(Z|c) and rψ(X|c)

by optimizing the parameters ψ of the latent mapping functions.
To encourage the diversity of samples X , we introduce a diversity-promoting prior p(X)

(specific form defined later) and formulate a constrained optimization problem:
min
ψ

− EX∼rψ(X|c)[log p(X)] , (9.6)

s.t. KL(rψ(zk|c)‖p(zk)) = 0 , 1 ≤ k ≤ K , (9.7)
whereweminimize the cross entropy between the sample distribution rψ(X|c) and the diversity-
promoting prior p(X). However, the objective in Eq. (9.6) alone can result in very low-likelihood
samples xk corresponding to latent codes zk that are far away from the Gaussian prior p(zk).
To ensure that each sample xk also has high likelihood under the generative model pθ(x|c),
we add constraints in Eq. (9.7) on the KL divergence between rψ(zk|c) and the Gaussian prior
p(zk) (same as p(z)) to make rψ(zk|c) = p(zk) and thus rψ(xk|c) = pθ(xk|c) where rψ(xk|c) =∫
pθ(xk|zk, c)rψ(zk|c)dzk and pθ(xk|c) =

∫
pθ(xk|zk, c)p(zk)dzk. To optimize this constrained

objective, we soften the constraints with the Lagrangian function:

min
ψ
−EX∼rψ(X|c)[log p(X)] + β

K∑
k=1

KL(rψ(zk|c)‖p(zk)) , (9.8)

where we use the same Lagrangianmultiplier β for all constraints. Despite having similar form,
the above objective is very different from the objective function of β-VAE [102] inmanyways: (1)
our goal is to learn a diverse sampling distribution rψ(X|c) for a pretrained generative model
rather than learning the generative model itself; (2) The first part in our objective is a diversify-
ing term instead of a reconstruction term; (3) Our objective function applies to most deep gen-
erative models, not just VAEs. In this objective, the softening of the hard KL constraints allows
for the trade-off between the diversity and likelihood of the samplesX . For small β, rψ(zk|c) is
allowed to deviate from p(zk) so that rψ(z1|c), . . . , rψ(zK |c) can potentially attend to different
regions in the latent space as shown in Fig. 9.2 (latent space) to further improve sample diver-
sity. For large β, the objective will focus on minimizing the KL term so that rψ(zk|c) ≈ p(zk)

and rψ(xk|c) ≈ pθ(xk|c), and thus the sample xk will have high likelihood under pθ(xk|c).
The overall DLow objective is defined as:

LDLow = Lprior + βLKL , (9.9)
where Lprior and LKL are the first and second term in Eq. (9.8) respectively. In the following, we
will discuss in detail howwedesign the latentmapping functions Tψ1 , . . . , TψK and the diversity-
promoting prior p(X).

Latent Mapping Functions. Each latent mapping Tψk transforms the Gaussian distribution
p(ε) to the marginal latent distribution rψ(zk|c) for latent code zk where Tψk is also conditioned
on c. As rψ(zk|c) should stay close to the Gaussian latent prior p(zk), it would be ideal if the
mapping Tψk makes rψ(zk|c) also a Gaussian. Thus, we design Tψk to be an invertible affine
transformation:

Tψk(ε) = Ak(c)ε+ bk(c) , (9.10)
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where the mapping parameters ψk = {Ak(c),bk(c)}, Ak ∈ Rnz×nz is a nonsingular matrix,
bk ∈ Rnz is a vector, and nz is the number of dimensions for zk and ε. As shown in Fig. 9.2 and
Fig. 9.3 (Right), we use aK-head network Qγ(c) to output ψ1, . . . , ψK , and the parameters γ of
the network Qγ(c) are the parameters to be optimized with the DLow objective in Eq. (9.9).

Under the invertible affine transformation Tψk , rψ(zk|c) becomes a Gaussian distribution
N (bk,AkA

T
k ). This allows us to compute the KL divergence terms in LKL analytically:

KL(rψ(zk|c)‖p(zk)) =
1

2

(
tr
(
AkA

T
k

)
+ bTk bk − nz − log det

(
AkA

T
k

))
. (9.11)

The KL divergence is minimized when rψ(zk|c) = p(zk) which implies that AkA
T
k = I and

bk = 0. Geometrically, this means that Ak is in the orthogonal group O(nz), which includes
all rotations and reflections in an nz-dimensional space. This means any mapping Tψk that is a
rotation or reflection operation will minimize the KL divergence. As mentioned before, there
is a trade-off between diversity and likelihood in Eq. (9.9). To improve sample diversity (min-
imize Lprior) without compromising likelihood (KL divergence), we can optimize Tψ1 , . . . , TψK
to be different rotations or reflections to map ε to different feasible points z1, . . . , zk in the latent
space. This geometric understanding sheds light on the mapping space admitted by the hard
KL constraints. In practice, we use soft KL constraints in the DLow objective to further enlarge
the feasible mapping space which allows us to achieve lower Lprior and better sample diversity.

Diversity-Promoting Prior. In the DLow objective, a diversity-promoting prior p(X) on the
joint sample distribution is used to guide the optimization of the latent mapping functions
Tψ1 , . . . , TψK . With an energy-based formulation, the prior p(X) can be defined using an en-
ergy function E(X):

p(X) = exp(−E(X))/S , (9.12)
where S is a normalizing constant. Dropping the constant S, the first term in Eq. (9.8) can be
rewritten as

Lprior = EX∼rψ(X|c)[E(X)] . (9.13)
To promote sample diversity of X , we design an energy function E := Ed based on a pairwise
distance metric D:

Ed(X) =
1

K(K − 1)

K∑
i=1

K∑
j 6=i

exp

(
−D

2(xi,xj)

σd

)
, (9.14)

where we use the Euclidean distance for D and an RBF kernel with scale σd. Minimizing Lprior
moves the samples towards a lower-energy (diverse) configuration. Lprior can be evaluated
efficiently with the reparametrization trick [141].

Up to this point, we have described the proposed sampling method, DLow, for generating
a diverse set of samples from a pretrained generative model pθ(x|c). By introducing a common
random variable ε, DLow allows us to generate correlated samples X . Moreover, by introduc-
ing learnable mapping functions Tψk , we can model the joint sample distribution rψ(X|c) and
impose structural constraints, such as diversity, on the sample set X which cannot be modeled
by random sampling from the generative model.
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Figure 9.3: Network architectures for the CVAE andDLow. We use GRUs [41] to extract motion
features. xt and ct denotes the t-th pose in x and c respectively.

9.4 Diverse Human Motion Generation

Equipped with a method to generate diverse samples from a pretrained deep generative model,
we now turn our attention to the task of diverse humanmotion prediction. Suppose the pose of
a person is a V -dimensional vector consisting of 3D joint positions, we use c ∈ RH×V to denote
the past motion of H time steps and x ∈ RT×V to denote the future motion over a future time
horizon of T . Given a past motion c, the goal of diverse humanmotion prediction is to generate
a diverse set of future motions X = {x1, . . . ,xK}.

To capture the multi-modal distribution of the future trajectory x, we take a generative ap-
proach and use a conditional variational autoencoder (CVAE) to learn the future trajectory dis-
tribution pθ(x|c). Here we use the CVAE for its stability over other popular approaches such
as CGANs, but other suitable deep generative models could also be used. The CVAE uses a
varitional lower bound [132] as a surrogate for the intractable true data log-likelihood:

L(x; θ, φ) = Eqφ(z|x,c) [log pθ(x|z, c)]−KL (qφ(z|x, c)‖p(z)) , (9.15)

where qφ(z|x, c) is an φ-parametrized approximate posterior distribution. We use multivari-
ate Gaussians for the prior, posterior (encoder distribution) and likelihood (decoder distribu-
tion): p(z) = N (0, I), qφ(z|x, c) = N (µ,Diag(σ2)), and pθ(x|z, c) = N (x̃, αI) where α is a
hyperparameter. Both the encoder and decoder are implemented as recurrent neural networks
(RNNs). As shown in Fig. 9.3, the encoder network Fφ outputs the parameters of the posterior
distribution: (µ,σ) = Fφ(x, c); the decoder network Gθ outputs the reconstructed future tra-
jectory x̃ = Gθ(z, c). The CVAE is learned via jointly optimizing the encoder and decoder with
Eq. (9.15).

9.4.1 Diversity Sampling with DLow

Once the CVAE is learned, we follow the DLow framework proposed in Sec. 9.3 to optimize the
networkQγ (Fig. 9.3 (Right)) and learn the latentmapping functions Tψ1 , . . . , TψK . Before doing
this, to fully leverage the DLow framework, we will look at one of DLow’s key feature, i.e., the
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design of the diversity-promoting prior p(X) in Lprior can be flexibly changed by modifying the
underlying energy function E(X). This allows us to impose various structural constraints be-
sides diversity on the sample setX . Below, we will provide two examples of such prior designs
that (1) improve sample accuracy or (2) enable new applications such as controllable motion
prediction.

Reconstruction Energy. To ensure that the sample setX is both diverse and accurate, i.e., the
ground truth future motion x̂ is close to one of the samples in X , we can modify the prior’s
energy function E in Eq. (9.12) by adding a reconstruction term Er:

E(X) = Ed(X) + λrEr(X) , (9.16)
Er(X) = min

k
D2(xk, x̂) , (9.17)

where λr is a weighting factor and we use Euclidean distance as the distance metric D. As
DLow produces a correlated set of samplesX instead of independent samples, the networkQγ
can learn to distribute samples in a way that are both diverse and accurate, covering the ground
truth better. We use this prior design for our main experiments.

Controllable Motion Prediction. Another possible design of the diversity-promoting prior
p(X) is one that promotes diversity in a certain subspace of the sample space. In the context of
human motion prediction, we may want certain body parts to move similarly but other parts to
move differently. For example, we may want leg motion to be similar but upper-body motion to
be diverse acrossmotion samples. We call this task controllablemotion prediction, i.e., finding a
set of diverse samples that share some common features, which can allow users or down-stream
systems to explore variations of a certain type of samples.

Formally, we divide the human joints into two sets, Js and Jd, and ask samples inX to have
similar motions for joints Js but diverse motions for joints Jd. We can slice a motion sample xk
into two parts: xk =

(
xsk,x

d
k

) where xsk and xdk correspond to Js and Jd respectively. Similarly,
we can slice the sample set X into two sets: Xs = {xs1, . . . ,xsK} and Xd = {xd1, . . . ,xdK}. We
then define a new energy function E for the prior p(X):

E(X) = Ed(Xd) + λsEs(Xs) + λrEr(X) , (9.18)

Es(Xs) =
1

K(K − 1)

K∑
i=1

K∑
j 6=i
D2(xsi ,x

s
j) , (9.19)

where we add another energy termEsweighted by λs to minimize themotion distance between
samples for joints Js, and we only compute the diversity-promoting term Ed using motions of
joints Jd. After optimizingQγ using theDLowobjectivewith the new energyE, we can produce
diverse samples X that have similar motions for joints Js.

Furthermore, we may also want to use a reference motion sample xref to provide the desired
features. To achieve this, we can treat xref as the first sample x1 in X . We first find its corre-
sponding latent code z1 := zref using the CVAE encoder: zref = Fµφ (xref, c). We can then find
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the common variable εref for generating X using the inverse mapping T −1ψ1
:

εref = T −1ψ1
(zref) = A−11 (zref − b1) . (9.20)

With εref known, we can generateX that includes xref. In practice, we force Tψ1 to be an identity
mapping to enforce rψ(z1|c) = p(z1) so that rψ(z1|c) covers the posterior distribution of zref.
Otherwise, if zref lies outside of the high density region of rψ(z1|c), it may lead to low-likelihood
εref after the inverse mapping.

9.5 Experiments

Datasets. We perform evaluation on two public motion capture datasets: Human3.6M [118]
and HumanEva-I [288]. Human3.6M is a large-scale dataset with 11 subjects (7 with ground
truth) and 3.6 million video frames in total. Each subject performs 15 actions and the human
motion is recorded at 50 Hz. Following previous work [194, 202, 232, 353], we adopt a 17-joint
skeleton and train on five subjects (S1, S5, S6, S7, S8) and test on two subjects (S9 and S11).
HumanEva-I is a relatively small dataset, containing only three subjects recorded at 60 Hz. We
adopt a 15-joint skeleton [232] anduse the same train/test split provided in the dataset. By using
both a large datasetwithmore variation inmotion and a small datasetwith less variation, we can
better evaluate the generalization of our method to different types of data. For Human3.6M, we
predict future motion for 2 seconds based on observedmotion of 0.5 seconds. For HumanEva-I,
we forecast future motion for 1 second given observed motion of 0.25 seconds.

Baselines. To fully evaluate our method, we consider three types of baselines: (1) Determin-
istic motion prediction methods, including ERD [66] and acLSTM [177]; (2) Stochastic motion
predictionmethods, including CVAE basedmethods, Pose-Knows [324] andMT-VAE [351], as
well as a CGAN basedmethod,HP-GAN [14]; (3) Diversity-promotingmethods for generative
models, including Best-of-Many [19], GMVAE [54], DeLiGAN [85], and DSF [361].

Metrics. Weuse the followingmetrics tomeasure both sample diversity and accuracy. (1)Aver-
age Pairwise Distance (APD): averageL2 distance between all pairs of motion samples tomea-
sure diversity within samples, which is computed as 1

K(K−1)
∑K

i=1

∑K
j 6=i ‖xi−xj‖. (2)Average

Displacement Error (ADE): average L2 distance over all time steps between the ground truth
motion x̂ and the closest sample, which is computed as 1

T minx∈X ‖x̂− x‖. (3) Final Displace-
ment Error (FDE): L2 distance between the final ground truth pose xT and the closest sample’s
final pose, which is computed as minx∈X ‖x̂T − xT ‖. (4) Multi-Modal ADE (MMADE): the
multi-modal version ofADE that obtainsmulti-modal ground truth futuremotions by grouping
similar past motions. (5)Multi-Modal FDE (MMFDE): the multi-modal version of FDE.

In these metrics, APD has been used to measure sample diversity [5]. ADE and FDE are
common metrics for evaluating sample accuracy in trajectory forecasting literature [4, 84, 161].
MMADE and MMFDE [361] are metrics used to measure a method’s ability to produce multi-
modal predictions.
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Implementation Details. We use a batch size of 64 and set the latent dimensions nz to 128 in
all experiments. For the CVAE, we sample 5000 training examples every epoch and train the
networks for 500 epochs using Adam [140] and a learning rate of 1e-3. The DLow objective in
Eq. (9.9) can be rewritten as: L(ψ) = βLKL + λdEd + λrEr. We set (β, λd, λr) to (1, 25, 2) for
Human3.6M and (1, 50, 2) for HumanEva-I. For themappings Tψk , we specifyAk to be diagonal
to reduce the output size of Qγ . This design is mainly for computational efficiency, as we do
find that using a full parametrization of Ak improves performance. The RBF kernel scale σd is
set to 100 for Human3.6M and 20 for HumanEva-I. For both datasets, we sample 5000 training
examples every epoch and train Qγ for 500 epochs using Adam with a learning rate of 1e-4.

Human3.6M [118] HumanEva-I [288]
Method APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

DLow (Ours) 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339
ERD [66] 0 0.722 0.969 0.776 0.995 0 0.382 0.461 0.521 0.595
acLSTM [177] 0 0.789 1.126 0.849 1.139 0 0.429 0.541 0.530 0.608
Pose-Knows [324] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375
MT-VAE [351] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577
HP-GAN [14] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769
Best-of-Many [19] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351
GMVAE [54] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410
DeLiGAN [85] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371
DSF [361] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340

Table 9.1: Quantitative results on Human3.6M and HumanEva-I.

Energy Human3.6M [118] HumanEva-I [288]
Ed Er APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

3 3 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339
3 7 13.091 0.546 0.663 0.599 0.669 4.927 0.263 0.281 0.368 0.347
7 3 6.844 0.432 0.525 0.500 0.539 2.355 0.252 0.277 0.376 0.366
7 7 6.383 0.520 0.629 0.577 0.638 2.247 0.281 0.317 0.395 0.393

Table 9.2: Ablation study on Human3.6M and HumanEva-I.

9.5.1 Quantitative Results

We summarize the quantitative results on Human3.6M and HumanEva-I in Table 9.1. The met-
rics are computed with the sample set size K = 50. For both datasets, we can see that our
method, DLow, outperforms all baselines in terms of both sample diversity (APD) and accuracy
(ADE, FDE) as well as covering multi-modal ground truth (MMADE, MMFDE). Determinstic
methods like ERD [66] and acLSTM [177] do not perform well because they only predict one
future trajectorywhich can lead tomode averaging. Methods likeMT-VAE [351] produce trajec-
tories samples that lack diversity so they fail to cover the multi-modal ground-truth (indicated
by highMMADE andMMFDE) despite having decently lowADE and FDE.Wewould also like
to point out the closest competitor DSF [361] can only generate one deterministic set of samples,
while our method can produce multiple diverse sets by sampling ε.
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Figure 9.4: Qualitative Results on Human3.6M and HumanEva-I.

Ablation Study. We further perform an ablation study (Table 9.2) to analyze the effects of the
two energy terms Ed and Er in Eq. (9.16). First, without the reconstruction term Er, the DLow
variant is able to achieve higher diversity (APD) at the cost of sample accuracy (ADE, FDE,
MMADE, MMFDE). This is expected because the network only optimizes the diversity term
Ed and focuses solely on diversity. Second, for the variant without Ed, both sample diversity
and accuracy decrease. It is intuitive to see why the diversity (APD) decreases. To see why the
sample accuracy (ADE, FDE, MMADE, MMFDE) also decreases, we should consider the fact
that a more diverse set of samples have a better chance at covering the ground truth. Finally,
when we remove both Ed and Er (i.e., only optimize LKL), the results are the worst, which is
expected.

9.5.2 Qualitative Results

To visually evaluate the diversity and accuracy of each method, we present a qualitative com-
parison in Fig. 9.4 where we render the start pose, the end pose of the ground truth future
motion, and the end pose of 10 motion samples. Note that we do not model the global transla-
tion of the person, which is why some sitting motions appear to be floating. For Human3.6M,
we can see that our method DLow can predict a wide array of future motions, including stand-
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Figure 9.5: Varying β in DLow allows us to balance between diversity and likelihood.

Start Pose End Pose of 6 Samples Start Pose End Pose of 6 Samples

Figure 9.6: Effect of varying ε on motion samples.

ing, sitting, bending, crouching, and turning, which cover the ground truth bending motion.
In contrast, the baseline methods mostly produce perturbations of a single motion — standing.
For HumanEva-I, we can see that DLow produces interesting variations of the fighting motion,
while the baselines produce almost identical future motions.

Diversity vs. Likelihood. As discussed in the approach section, the β in Eq. (9.8) represents
the trade-off between sample diversity and likelihood. To verify this, we trained three DLow
models with different β (1, 10, 100) and visualize the motion samples generated by each model
in Fig. 9.5. We can see that a larger β leads to less diverse samples which correspond to the
major mode of the generator distribution, while a smaller β can produce more diverse motion
samples covering other plausible yet less likely future motions.

Effect of varying ε. A key difference between our method and DSF [361] is that we can gener-
ate multiple diverse sets of samples while DSF can only produce a fixed diverse set. To demon-
strate this, we show in Fig. 9.6 how the motion samples of DLow change with different ε. By
comparing the four sets of motion samples, one can conclude that changing ε varies each set of
samples but preserves the main structure of each motion.

Controllable Motion Prediction. As highlighted before, the flexible design of the diversity-
promoting prior enables a new application, controllable motion prediction, where we predict
diversemotions that share some common features. We showcase this application by conducting
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Figure 9.7: Controllable Motion Prediction. DLow enables samples to have more similar leg
motion to the reference.

an experiment using the energy function defined in Eq. (9.18). The network is trained so that
the leg motion of the motion samples is similar while the upper-body motion is diverse. The
results are shown in Fig. 9.7. We can see that given a referencemotion, our method can generate
diverse upper-body motion and preserve similar leg motion, while random samples from the
CVAE cannot enforce similar leg motion.

9.6 Conclusion

We have proposed a novel sampling strategy, DLow, for deep generative models to obtain a di-
verse set of future humanmotions. We introduced learnable latentmapping functionswhich al-
lowedus to generate a set of correlated samples, whose diversity can be optimized by adiversity-
promoting prior. Experiments demonstrated superior performance in generating diverse mo-
tion samples. Moreover, we showed that the flexible design of the diversity-promoting prior
further enables new applications, such as controllable human motion prediction. We hope that
our exploration of deep generative models through the lens of diversity will encourage more
work towards understanding the complex nature of modeling and predicting future human
behavior.
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Chapter 10

Multi-Agent Stochastic Trajectory
Generation with Transformers

10.1 Introduction

The safe planning of autonomous systems such as self-driving vehicles requires forecasting ac-
curate future trajectories of surrounding agents (e.g., pedestrians, vehicles). However, multi-
agent trajectory forecasting is challenging since the social interaction between agents, i.e., behav-
ioral influence of an agent on others, is a complex process. The problem is further complicated
by the uncertainty of each agent’s future behavior, i.e., each agent has its latent intent unob-
served by the system (e.g., turning left or right) that governs its future trajectory and in turn
affects other agents. Therefore, a good multi-agent trajectory forecasting method should effec-
tively model (1) the complex social interaction between agents and (2) the latent intent of each
agent’s future behavior and its social influence on other agents.

Multi-agent social interactionmodeling involves twokeydimensions as illustrated in Fig. 10.1
(Top): (1) time dimension, where we model how past agent states (positions and velocities)
influence future agent states; (2) social dimension, where we model how each agent’s state
affects the state of other agents. Most prior multi-agent trajectory forecasting methods model
these two dimensions separately (see Fig. 10.1 (Middle)). Approaches like [4, 84, 152] first use
temporal models (e.g., LSTMs [104] or Transformers [316]) to summarize trajectory features
over time for each agent independently and then input the summarized temporal features to
social models (e.g., graph neural networks [143]) to capture social interaction between agents.
Alternatively, methods like [114,271] first use social models to produce social features for each
agent at each independent timestep and then apply temporal models over the social features. In
this work, we argue that modeling the time and social dimensions separately can be suboptimal
since the independent feature encoding over either the time or social dimension is not informed
by features across the other dimension, and the encoded features may not contain the necessary
information for modeling the other dimension.

To tackle this problem, we propose a new Transformer model, termed AgentFormer, that
simultaneously learns representations from both the time and social dimensions. AgentFormer
allows an agent’s state at one time to affect another agent’s state at a future time directly in-
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Figure 10.1: Different from standard approaches that model multi-agent trajectories in the time
and social dimensions separately, our AgentFormer allows for joint modeling of the time and
social dimensions while preserving time and agent information.

stead of through intermediate features encoded over one dimension. As Transformers require
sequences as input, we leverage a sequence representation of multi-agent trajectories by flat-
tening trajectory features across time and agents (see Fig. 10.1 (Bottom)). However, directly
applying standard Transformers to these multi-agent sequences will result in a loss of time and
agent information since standard attention operations discard the timestep and agent identity
associatedwith each element in the sequence. We solve the loss of time information using a time
encoder that appends a timestamp feature to each element. However, the loss of agent identity
is a more complicated problem: unlike time, there is no innate ordering between agents, and as-
signing an agent index-based encodingwill break the required permutation invariance of agents
and create artificial dependencies on agent indices in the model. Instead, we propose a novel
agent-aware attention mechanism to preserve agent information. Specifically, agent-aware at-
tention generates two sets of keys and queries via different linear transformations; one set of
keys and queries is used to compute inter-agent attention (agent to agent) while the other set is
designated for intra-agent attention (agent to itself). This design allows agent-aware attention
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to attend to elements of the same agent differently than elements of other agents, thus keeping
the notion of agent identity. Agent-aware attention can be implemented efficiently via masked
operations. Furthermore, AgentFormer can also encode rule-based connectivity between agents
(e.g., based on distance) by masking out the attention weights between unconnected agents.

Based on AgentFormer, which allows us to model social interaction effectively, we propose
a multi-agent trajectory prediction framework that also models the social influence of each
agent’s future trajectory on other agents. The probabilistic formulation of the model follows
the conditional variational autoencoder (CVAE [141]) where we model the generative future
trajectory distribution conditioned on context (e.g., past trajectories, semantic maps). We in-
troduce a latent code for each agent to represent its latent intent. To model the social influence
of each agent’s future behavior (governed by latent intent) on other agents, the latent codes
of all agents are jointly inferred from the future trajectories of all agents during training, and
they are also jointly used by a trajectory decoder to output socially-aware multi-agent future
trajectories. Thanks to AgentFormer, the trajectory decoder can attend to features of any agent
at any previous timestep when inferring an agent’s future position. To improve the diversity of
sampled trajectories and avoid similar samples caused by random sampling, we further adopt a
multi-agent trajectory sampler that can generate diverse and plausible multi-agent trajectories
by mapping context to various configurations of all agents’ latent codes.

We evaluate ourmethod onwell-established pedestrian datasets, ETH [235] andUCY [166],
and an autonomous driving dataset, nuScenes [24]. On ETH/UCY and nuScenes, we outper-
form state-of-the-art multi-agent prediction methods with substantial performance improve-
ment. We further conduct extensive ablation studies to show the superiority of AgentFormer
over various combinations of social and temporal models. We also demonstrate the efficacy of
agent-aware attention against agent encoding.

To summarize, the main contributions of this paper are: (1) We propose a new Transformer
that simultaneously models the time and social dimensions of multi-agent trajectories with a
sequence representation. (2) We propose a novel agent-aware attention mechanism that pre-
serves the agent identity of each element in the multi-agent trajectory sequence. (3)We present
amulti-agent forecasting framework thatmodels the latent intent of all agents jointly to produce
socially-plausible future trajectories. (4) Our approach substantially improves the state of the
art on well-established pedestrian and autonomous driving datasets.

10.2 Related Work

Sequence Modeling. Sequences are an important representation of data such as video, au-
dio, price, etc. Historically, RNNs (e.g., LSTMs [104], GRUs [41]) have achieved remarkable
success in sequence modeling, with applications to speech recognition [211, 344], image cap-
tioning [345], machine translation [193], human pose estimation [145, 360], etc. In particular,
RNNs have been the preferred temporal models for trajectory and motion forecasting. Many
RNN-basedmethodsmodel the trajectory pattern of pedestrians to predict their 2D future loca-
tions [4,123,376]. Priorwork has also used RNNs tomodel the temporal dynamics of 3D human
pose [66, 362, 364]. With the invention of Transformers and positional encoding [316], many
works start to adopt Transformers for sequence modeling due to their strong ability to capture
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long-range dependencies. Transformers have first dominated the natural language processing
(NLP) domain across various tasks [53,158,354]. Beyond NLP, numerous visual Transformers
have beenproposed to tackle vision tasks, such as image classification [58], object detection [27],
and instance segmentation [329]. Recently, Transformers have also been used for trajectory fore-
casting. Transformer-TF [74] applies the standard Transformer to predict the future trajectories
of each agent independently. STAR [357] uses separate temporal and spatial Transformers to
forecastmulti-agent trajectories. Interaction Transformer [173] combines RNNs and Transform-
ers for multi-agent trajectory modeling. Different from prior work, Our AgentFormer leverages
a sequence representation of multi-agent trajectories and a novel agent-aware attention mecha-
nism to preserve time and agent information in the sequence.

Trajectory Prediction. Early work on trajectory prediction adopts a deterministic approach
using models such as social forces [99], Gaussian process (GP) [326], and RNNs [4, 216, 317].
A thorough review of these deterministic methods is provided in [266]. As the future trajectory
of an agent is uncertain and often multi-modal, recent trajectory prediction methods start to
model the trajectory distribution with deep generative models [76,141,253] such as conditional
variational autoencoders (CVAEs) [123,161,271,304,332,361], generative adversarial networks
(GANs) [84, 152, 269, 382], and normalizing flows (NFs) [80, 254, 255]. Most of these methods
follow a seq2seq structure [12, 36] and predict future trajectories using intermediate features
of past trajectories. In contrast, our AgentFormer-based trajectory prediction framework can
directly attend to features of any agent at any previous timestepwhen inferring an agent’s future
position. Moreover, our approach models the future trajectories of all agents jointly to predict
socially-aware trajectories.

Social InteractionModeling. Methods for social interactionmodeling can be categorized based
on how they model the time and social dimensions. While RNNs [41, 104] and Transform-
ers [316] are the prefered temporal models [4, 114, 357], graph neural networks (GNNs) [143,
176] are often employed as the social models for interaction modeling [142,152,170]. One pop-
ular type of methods [4, 84, 152] first uses temporal models to summarize trajectory features
over time for each agent independently and then feeds the temporal features to social models
to obtain socially-aware agent features. Alternatively, approaches like [114, 271] first use social
models to produce social features of each agent at each independent timestep and then apply
temporal models to summarize the social features over time for each agent. One common char-
acteristic of these prior works is that they model the time and social dimensions on separate
levels. This can be suboptimal since it prevents an agent’s feature at one time from directly
interacting with another agent’s feature at a different time, thus limiting the model’s ability to
capture long-range dependencies. Instead, our methodmodels both the time and social dimen-
sions simultaneously, allowing direct feature interaction across time and agents.

10.3 Approach

We formulate multi-agent trajectory prediction as modeling the generative future trajectory dis-
tribution of N (variable) agents conditioned on their past trajectories. For observed timesteps
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t ≤ 0, we represent the joint state of all N agents at time t as Xt = (xt1,x
t
2, . . . ,x

t
N ), where

xtn ∈ Rds is the state of agent n at time t, which includes the position, velocity and (optional)
heading angle of the agent. We denote the history of all agents as X =

(
X−H ,X−H+1, . . . ,X0

)
which includes the joint agent state at allH+1 observed timesteps. Similarly, the joint state of all
N agents at future time t (t > 0) is denoted as Yt = (yt1,y

t
2, . . . ,y

t
N ), where ytn ∈ Rdp is the fu-

ture position of agent n at time t. We denote the future trajectories of allN agents over T future
timesteps as Y =

(
Y1,Y2, . . . ,YT

). Depending on the data, optional contextual information I

may also be given, such as a semantic map around the agents (annotations of sidewalks, road
boundaries, etc.). Our goal is to learn a generative model pθ(Y|X, I) where θ are the model
parameters.

In the following, we first introduce the proposed agent-aware Transformer, AgentFormer, for
joint modeling of socio-temporal relations. We then present a stochastic multi-agent trajectory
prediction framework that jointly models the latent intent of all agents.

10.3.1 AgentFormer: Agent-Aware Transformers

Our agent-aware Transformer, AgentFormer, is a model that learns representations frommulti-
agent trajectories over both time and social dimensions simultaneously, in contrast to standard
approaches that model the two dimensions in separate stages. AgentFormer has two types of
modules – encoders and decoders, which follow the encoder and decoder design of the original
Transformer [316] but with two major differences: (1) it replaces positional encoding with a
time encoder; (2) it uses a novel agent-aware attention mechanism instead of the scaled dot-
product attention. As we will discuss below, these two modifications are motivated by a se-
quence representation of multi-agent trajectories that is suitable for Transformers.

Multi-Agent Trajectories as a Sequence. The past multi-agent trajectories X can be denoted
as a sequence X =

(
x−H1 , . . . ,x−HN ,x−H+1

1 , . . . ,x−H+1
N , . . . ,x0

1, . . . ,x
0
N

)
of length Lp = N ×

(H + 1). Similarly, the future multi-agent trajectories can also be represented as a sequence
Y =

(
y1
1, . . . ,y

1
N ,y

2
1, . . . ,y

2
N , . . . ,y

T
1 , . . . ,y

T
N

) of length Lf = N × T . We adopt this sequence
representation to be compatible with Transformers. At first glance, it may seem that we can di-
rectly apply standard Transformers to these sequences to model temporal and social relations.
However, there are two problemswith this approach: (1) loss of time information, as Transform-
ers have no notion of time when computing attention for each element (e.g., xtn) w.r.t. other
elements in the sequence; for instance, xtn does not know xtm is a feature of the same timestep
while xt+1

n is a feature of the next timestep; (2) loss of agent information, since Transformers
do not consider agent identities when applying attention to each element, and elements of the
same agent are not distinguished from elements of other agents; for example, when computing
attention for xtn, both xt+1

n and xt+1
m are treated the same, disregarding the fact that xt+1

n is from
the same agent while xt+1

m is from a different agent. Below, we present the solutions to these
two problems – (1) time encoder and (2) agent-aware attention.

Time Encoder. To inform AgentFormer about the timestep associated with each element in
the trajectory sequence, we employ a time encoder similar to the positional encoding in the
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Number of Agents N = 3 (for illustration)
Agent 1 Agent 2 Agent 3

Attention Weight MatrixMask

Figure 10.2: Illustration of agent-aware attention. The mask M allows the attention weights in
A to be computed differently based on whether the i-th query and j-th key belong to the same
agent.

original Transformer. Instead of encoding the position of each element based on its index in
the sequence, we compute a timestamp feature based on the timestep t of the element. The
timestamp uses the same sinusoidal design as the positional encoding. Let us take the past
trajectory sequence X as an example. For each element xtn, the timestamp feature τ tn ∈ Rdτ is
defined as

τ tn(k) =

{
sin((t+H)/10000k/dτ ), k is even
cos((t+H)/10000(k−1)/dτ ), k is odd

where τ tn(k)denotes the k-th feature of τ tn and dτ is the feature dimension of the timestamp. The
time encoder outputs a timestamped sequence X̄ and each element x̄tn ∈ Rdτ in X̄ is computed
as x̄tn = W2(W1x

t
n ⊕ τ tn) where W1 ∈ Rdτ×ds and W2 ∈ Rdτ×2dτ are weight matrices and ⊕

denotes concatenation.

Agent-Aware Attention. To preserve agent information in the trajectory sequence, it may be
tempting to employ a similar strategy to the time encoder, such as an agent encoder that assigns
an agent index-based encoding to each element in the sequence. However, using such agent
encoding is not effective as we will show in the experiments. The reason is that, different from
time which is naturally ordered, there is no innate ordering between agents, and assigning en-
codings based on agent indices will break the required permutation invariance of agents and
create artificial dependencies on agent indices in the model.

We tackle the loss of agent information from a different angle by proposing a novel agent-
aware attention mechanism. The agent-aware attention takes as input keys K, queries Q and
values V, each of which uses the sequence representation of multi-agent trajectories. As an
example, let the keys K and values V be the past trajectory sequence X ∈ RLp×ds , and let
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the queries Q be the future trajectory sequence Y ∈ RLf×dp . Recall that X is of length Lp =

N × (H + 1) as X contains the trajectory features of N agents of H + 1 past timesteps; Y is of
length Lf = N × T containing trajectory features of T future timesteps. The output of agent-
aware attention is computed as

AgentAwareAttention(Q,K,V) = softmax
(

A√
dk

)
V (10.1)

A = M� (QselfK
T
self ) + (1−M)� (QotherK

T
other) (10.2)

Qself = QWQ
self , Kself = KWK

self (10.3)
Qother = QWQ

other, Kother = KWK
other (10.4)

where � denotes element-wise product and we use two sets of projections {WQ
self ,W

K
self} and

{WQ
other,W

K
other} to generate projected keys Kself ,Kother ∈ RLp×dk and queries Qself ,Qother ∈

RLf×dk with key (query) dimension dk. Each element Aij in the attention weight matrix A

represents the attention weight between the i-th query qi and j-th key kj . As illustrated in
Fig. 10.2, when computing the attention weight matrix A ∈ RLf×Lp , we also use a mask M ∈
RLf×Lp which is defined as

Mij = 1(imod N = j mod N) (10.5)
whereMij denotes each element inside the mask M and 1(·) denotes the indicator function. As
·modN computes the agent index of a query/key,Mij equals to one if the i-th query qi and j-th
key kj belongs to the same agent, andMij equals to zero otherwise, as shown in Fig. 10.2. Using
the mask M, Eq. (10.2) computes each element Aij of the attention weight matrix A differently
based on the agreement of agent identity: If qi and kj have the same agent identity, Aij is
computed using the projected queries Qself and keys Kself designated for intra-agent attention
(agent to itself); If qi and kj have different agent identities, Aij is computed using the projected
queries Qother and keys Kother designated for inter-agent attention (agent to other agents). In
thisway, the agent-aware attention learns to attend to elements of the same agent in the sequence
differently than elements of other agents, thus preserving the notion of agent identity. Note that
AgentFormer only uses agent-aware attention to replace the scaled dot-product attention in the
original Transformer and still allows multi-head attention to learn distributed representations.

Encoding Agent Connectivity. AgentFormer can also encode rule-based agent connectivity
information bymasking out the attentionweights between unconnected agents. Specifically, we
define that two agents n and m are connected if their distance Dnm at the current time (t = 0)
is smaller than a threshold η. If agents n and m are not connected, we set the attention weight
Aij = −∞ between any query qi of agent n and any key kj of agentm.

10.3.2 Multi-Agent Prediction with AgentFormer

Having introduced AgentFormer for modeling temporal and social relations, we are now ready
to apply it in our multi-agent trajectory prediction framework based on CVAEs. As discussed
at the start of Sec. 10.3, the goal of multi-agent trajectory prediction is to model the future tra-
jectory distribution pθ(Y|X, I) conditioned on past trajectories X and contextual information I.
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Figure 10.3: Overview of our AgentFormer-based multi-agent trajectory prediction framework.

To account for stochasticity and multi-modality in each agent’s future behavior, we introduce
latent variables Z = {z1, . . . , zN}where zn ∈ Rdz represents the latent intent of agent n. We can
then rewrite the future trajectory distribution as

pθ(Y|X, I) =

∫
pθ(Y|Z,X, I)pθ(Z|X, I)dZ , (10.6)

where pθ(Z|X, I) =
∏N
n=1 pθ(zn|X, I) is a conditional Gaussian prior factorized over agents and

pθ(Y|Z,X, I) is a conditional likelihood model. To tackle the intractable integral in Eq. (10.6),
we use the negative evidence lower bound (ELBO) Lelbo in the CVAE as our loss function:

Lelbo =− Eqφ(Z|Y,X,I)[log pθ(Y|Z,X, I)]

+ KL(qφ(Z|Y,X, I)‖pθ(Z|X, I)) ,
(10.7)

where qφ(Z|Y,X, I) =
∏N
n=1 qφ(zn|Y,X, I) is an approximate posterior distribution factorized

over agents and parametrized by φ. In our probabilistic formulation, the latent codes Z of all
agents in the posterior qφ(Z|Y,X, I) are jointly inferred from the future trajectories Y of all
agents; similarly, the future trajectories Y in the conditional likelihood pθ(Y|Z,X, I) are mod-
eled using the latent codes Z of all agents. This design allows each agent’s latent intent repre-
sented by zn to affect not just its own future trajectory but also the future trajectories of other
agents, which enables us to generate socially-aware multi-agent trajectories. Having described
the probabilistic formulation, we now introduce the detailed model architecture as outlined in
Fig. 10.3.

Encoding Context (Semantic Map). As aforementioned, our model can optionally take as
input contextual information I if provided by the data. Here, we assume I ∈ RH0×W0×C is
a semantic map around the agents at the current timestep (t = 0) with annotated semantic
information (e.g., sidewalks, crosswalks, and road boundaries). For each agent n, we rotate
I to align with the agent’s heading angle and crop an image patch In ∈ RH×W×C around the
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agent. We use a hand-designed convolutional neural network (CNN) to extract visual features
vn from In, which will later be used by other modules in the model.

CVAE Past Encoder. The past encoder starts with the multi-agent past trajectory sequence
X. If the semantic map I is provided, the past encoder concatenates each element xtn ∈ X

with the corresponding visual feature vn of agent n. The new sequence is then fed into the
time encoder to obtain a timestamped sequence, which is then input to the AgentFormer en-
coder as keys, queries, and values. The output of the encoder is a past feature sequence C =(
c−H1 , . . . c−HN , c−H+1

1 , . . . c−H+1
N , . . . , c01, . . . , c

0
N

)
that summarizes the past agent trajectories X

and context I.

CVAE Prior. The prior module first performs an agent-wise pooling that computes a mean
agent feature Cn from the past features across timesteps: Cn = mean(c−Hn , . . . , c0n). We then
use a multilayer perceptron (MLP) to map Cn to the Gaussian parameters (µpn,σ

p
n) of the prior

distribution pθ(zn|X, I) = N (µpn,Diag(σpn)2).

CVAE Future Encoder. Given themulti-agent future trajectory sequenceY, similar to the past
encoder, the future encoder appends visual features from the semantic map I toY and feeds the
resulting sequence to the time encoder to produce a timestamped sequence. The timestamped
sequence is then input as queries to the AgentFormer decoder along with the past feature se-
quence C which serves as both keys and values. We use the AgentFormer decoder here because
it allows the feature extraction of Y to condition on X through C, thus effectively modeling the
X-conditioning in the posterior qφ(Z|Y,X, I). We then perform an agent-wise mean pooling
across timesteps on the output sequence of the AgentFormer decoder to extract a feature for
each agent. Each agent feature is then input to an MLP to obtain the Gaussian parameters
(µqn,σ

q
n) of the approximate posterior distribution qφ(zn|Y,X, I) = N (µqn,Diag(σqn)2).

CVAEFutureDecoder. Unlike the original Transformer decoder, our future trajectory decoder
is autoregressive, which means it outputs trajectories one step at a time and feeds the currently
generated trajectories back into the model to produce the trajectories of the next timestep. This
design mitigates compounding errors during test time at the expense of training speed. Start-
ing from an initial sequence (ŷ0

1, . . . , ŷ
0
N ) where ŷ0

n = x̃0
n (x̃0

n is the position feature inside x0
n),

the future decoder module maps an input sequence (ŷ0
1, . . . , ŷ

0
N , . . . , ŷ

t′
1 , . . . , ŷ

t′
N ) to an output

sequence (ŷ1
1, . . . , ŷ

1
N , . . . , ŷ

t′+1
1 , . . . , ŷt

′+1
N ). By concatenating the last N elements of the out-

put, it grows the input sequence into (ŷ0
1, . . . , ŷ

0
N , . . . , ŷ

t′+1
1 , . . . , ŷt

′+1
N ). By autoregressively ap-

plying the decoder T times, we obtain the output sequence Ŷ = (ŷ1
1, . . . , ŷ

1
N , . . . , ŷ

T
1 , . . . , ŷ

T
N ).

Inside the future decoder module (Fig. 10.3 (Right)), we first form a feature sequence F =

(f01 , . . . , f
0
N , . . . , f

t′
1 , . . . , f

t′
N ) where f tn = ŷtn ⊕ zn, thus concatenating the currently generated tra-

jectories with the corresponding latent codes. The latent codes are sampled from the approxi-
mate posterior during training but from the trajectory sampler (as discussed below) at test time.
The feature sequence F is then concatenated with the semantic map features and timestamped
before being input as queries to the AgentFormer decoder alongside the past feature sequence
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C which serves as keys and values. The AgentFormer decoder enables the future trajectories
to directly attend to features of any agent at any previous timestep (e.g., c−H3 or ŷ1

2), allow-
ing the model to effectively infer future trajectories based on the whole agent history. We use
proper masking inside the AgentFormer decoder to enforce causality of the decoder output se-
quence. Each element of the output sequence is then passed through an MLP to generate the
decoded future agent position ŷtn. As we use a Gaussian to model the conditional likelihood
pθ(Y|Z,X, I) = N (Ŷ, I/β), where I is the identity matrix and β is a weighting factor, the first
term in Eq. (10.7) equals the mean squred error (MSE): Lmse = β

2 ‖Y − Ŷ‖2.

Trajectory Sampler. Weadapt a diversity sampling technique, DLow [363], to ourmulti-agent
trajectory prediction setting and employ a trajectory sampler to produce diverse and plausible
trajectories once our CVAE model is trained. The trajectory sampler generates K sets of latent
codes {Z(1), . . . ,Z(K)} where each set Z(k) = {z(k)1 , . . . , z

(k)
N } contains the latent codes of all

agents and can be decoded by the CVAE decoder into a multi-agent future trajectory sample
Ŷ(k). Each latent code z

(k)
n ∈ Z(k) is generated by a linear transformation of a Gaussian noise

εn ∈ Rdz :
z(k)n = A(k)

n εn + b(k)
n , εn ∼ N (0, I), (10.8)

where A
(k)
n ∈ Rdz×dz is a non-singular matrix and b

(k)
n ∈ Rdz is a vector. Eq. (10.8) induces

a Gaussian sampling distribution rθ(z(k)n |X, I) over z
(k)
n . The distribution is conditioned on X

and I because its inner parameters {A(k)
n ,b

(k)
n } are generated by the trajectory sampler mod-

ule (Fig. 10.3) through agent-wise pooling of the past feature sequence C and an MLP. The
trajectory sampler loss is defined as

Lsamp = min
k
‖Ŷ(k) −Y‖2

+
N∑
n=1

KL(rθ(z
(k)
n |X, I)‖pθ(zn|X, I))

+
1

K(K − 1)

K∑
k1=1

K∑
k1 6=k2

exp

(
−‖Ŷ

(k1) − Ŷ(k2)‖2

σd

)
,

(10.9)

where σd is a scaling factor. The first term encourages the future trajectory samples Ŷ(k) to
cover the ground truth Y. The second KL term encourages each latent code z

(k)
n to follow the

prior and be plausible; the KL can be computed analytically as both distributions inside are
Gaussians. The third term encourages diversity among the future trajectory samples Ŷ(k) by
penalizing small pairwise distance. When training the trajectory sampler with Eq. (10.9), we
freeze the weights of the CVAE modules. At test time, we sample latent codes {Z(1), . . . ,Z(K)}
using the trajectory sampler instead of sampling from the CVAE prior and decode the latent
codes into trajectory samples {Ŷ(1), . . . , Ŷ(K)}.

10.4 Experiments

Datasets. Weevaluate ourmethodonwell-establishedpublic datasets: the ETH[235], UCY [166],
and nuScenes [24] datasets. The ETH/UCY datasets are the major benchmark for pedestrian
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trajectory prediction. There are five datasets in ETH/UCY, each of which contains pedestrian
trajectories captured at 2.5Hz inmulti-agent social scenarios with rich interaction. nuScenes is a
recent large-scale autonomous driving dataset, which consists of 1000 driving scenes with each
scene annotated at 2Hz. nuScenes also provides HD semantic maps with 11 semantic classes.

Metrics. We report the minimum average displacement error ADEK and final displacement
error FDEK of K trajectory samples of each agent compared to the ground truth: ADEK =
1
T minKk=1

∑T
t=1 ‖ŷ

t,(k)
n −ytn‖2, FDEK = minKk=1 ‖ŷ

T,(k)
n −yTn ‖2, where ŷ

t,(k)
n denotes the future

position of agent n at time t in the k-th sample and yTn is the corresponding ground truth. ADEK
and FDEK are the standard metrics for trajectory prediction [28,84, 243, 269, 271].

Evaluation Protocol. For the ETH/UCY datasets, we adopt a leave-one-out strategy for eval-
uation, following prior work [84, 199, 269, 271, 357]. We forecast 2D future trajectories of 12
timesteps (4.8s) based on observed trajectories of 8 timesteps (3.2s). Similar to most prior
works, we do not use any semantic/visual information for ETH/UCY for fair comparisons.
All metrics are computed with K = 20 samples. For the nuScenes dataset, following prior
work [28, 43, 196, 243], we use the vehicle-only train-val-test split provided by the nuScenes
prediction challenge and predict 2D future trajectories of 12 timesteps (6s) based on observed
trajectories of 4 timesteps (2s). We report results with metrics computed usingK = 1, 5 and 10

samples.

ImplementationDetails. For all datasets, we represent trajectories in a scene-centered coordi-
nate where the origin is the mean position of all agents at t = 0. The future decoder in Fig. 10.3
outputs the offset to the agent’s current position x̃0

n, so x̃0
n is added to obtain ŷtn for each ele-

ment in the output sequence. Following prior work [271, 357], random rotation of the scene is
adopted for data augment. Our multi-agent prediction model (Fig. 10.3) uses two stacks (de-
fined in [316]) of identical layers in each AgentFormer encoder/decoder with 0.1 dropout rate.
The dimensions dk, dv, dτ of keys, queries, and timestamps in AgentFormer are all set to 256,
and the hidden dimension of feedforward layers is 512. The number of heads for multi-head
agent-aware attention is 8. All MLPs in the model have hidden dimensions (512, 256). For the
CVAE, the latent code dimension dz is 32, the coefficient β of the MSE loss equals 1, and we clip
the maximum value of the KL term in Lelbo (Eq. (10.7)) down to 2. We also use the variety loss
in SGAN [84] in addition to Lelbo. The agent connectivity threshold η is set to 100. We train the
CVAE model using the Adam optimizer [140] for 100 epochs on ETH/UCY and nuScenes. We
use an initial learning rate of 10−4 and halve the learning rate every 10 epochs.

10.4.1 Results

Baseline Comparisons. On the ETH/UCY datasets, we compare our approach with current
state-of-the-art methods – Trajectron++ [271], PECNet [199], STAR [357], and Transformer-
TF [74] – as well as common baselines – SGAN [84] and Sophie [269]. The performance of all
methods is summarized in Table 10.1, where we use officially-reported results for the baselines.
We can observe that our AgentFormer achieves very competitive performance and attains the
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Method
ADE20/FDE20 ↓ (m), K = 20 Samples

ETH Hotel Univ Zara1 Zara2 Average
SGAN [84] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
SoPhie [269] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
Transformer-TF [74] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55
STAR [357] 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
PECNet [199] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
Trajectron++ [271] 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41
Ours (AgentFormer) 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

Table 10.1: Baseline comparisons on the ETH/UCY datasets.

Method
K = 5 Samples K = 10 Samples
ADE5 ↓ FDE5 ↓ ADE10 ↓ FDE10 ↓

MTP [43] 2.93 - 2.93 -
MultiPath [28] 2.32 - 1.96 -
CoverNet [243] 1.96 - 1.48 -
DSF-AF [196] 2.06 4.67 1.66 3.71
DLow-AF [363] 2.11 4.70 1.78 3.58
Trajectron++ [271] 1.88 - 1.51 -
Ours (AgentFormer) 1.86 3.89 1.45 2.86

Table 10.2: Baseline comparisons on the nuScenes dataset.

best FDE. Particularly, our approach significantly outperforms prior Transformer-based meth-
ods, Transformer-TF [74] and STAR [357]. As FDE measures the final displacement error of
predicted trajectories, it places more emphasis on a method’s ability to predict distant futures
than ADE. We believe the strong performance of our method in FDE can be attributed to the
design of AgentFormer, which can model long-range trajectory dependencies effectively by di-
rectly attending to features of any agent at any previous timestep when inferring an agent’s
future position.

Compared to ETH/UCY, the trajectories in nuScenes are much longer as we evaluate with a
longer timehorizon (6s) andvehicles aremuch faster thanpedestrians. Thus, nuScenes presents
a different challenge for multi-agent prediction methods. On the nuScenes dataset, we eval-
uate our approach against state-of-the-art vehicle prediction methods – Trajectron++ [271],
MTP [43], MultiPath [28], CoverNet [243], DSF-AF [196], and DLow-AF [363]. We report the
performance of all methods in Table 10.2, where the results of Trajectron++ are taken from the
nuScenes prediction challenge leaderboard, the performance of DLow-AF is from [196], andwe
also use the officially-reported results for the other baselines. The FDE of some baselines is not
available since the number has not been reported. We can see that our approach, AgentFormer,
outperforms the baselines, especially the strongmodel Trajectron++ [271], consistently in ADE
and FDE for both 5 and 10 sample settings.

Ablation Studies. We further perform extensive ablation studies on ETH/UCY and nuScenes
to investigate the contribution of key technical components in our method. The first ablation
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Model ADE20/FDE20 ↓ (m),K = 20 Samples
Social Temporal ETH Hotel Univ Zara1 Zara2 Average
GCN LSTM 0.57/0.90 0.20/0.34 0.29/0.52 0.24/0.44 0.23/0.42 0.31/0.52
GCN TF 0.56/0.93 0.15/0.28 0.28/0.51 0.24/0.45 0.19/0.35 0.28/0.50
TF LSTM 0.55/0.91 0.18/0.31 0.28/0.50 0.24/0.44 0.21/0.39 0.29/0.51
TF TF 0.50/0.82 0.15/0.27 0.28/0.52 0.22/0.42 0.16/0.31 0.26/0.47

Joint Socio-Temporal ETH Hotel Univ Zara1 Zara2 Average
Ours w/o joint latent 0.49/0.77 0.15/0.25 0.29/0.52 0.22/0.41 0.18/0.33 0.27/0.46
Ours w/o AA attention 0.49/0.80 0.15/0.25 0.31/0.54 0.23/0.41 0.19/0.34 0.27/0.47
Ours w/ agent encoding 0.48/0.78 0.14/0.23 0.32/0.55 0.22/0.40 0.19/0.34 0.27/0.46
Ours (AgentFormer) 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

Table 10.3: Ablation studies on the ETH/UCY datasets. “TF” means Transformer and “AA
Attention” denotes agent-aware attention.

Model K = 5 Samples K = 10 Samples
Social Temporal ADE5 ↓ FDE5 ↓ ADE10 ↓ FDE10 ↓

GCN LSTM 2.17 4.42 1.57 3.09
GCN TF 2.03 4.36 1.52 2.95
TF LSTM 2.12 4.48 1.69 3.31
TF TF 1.99 4.12 1.54 3.07
Joint Socio-Temporal ADE5 ↓ FDE5 ↓ ADE10 ↓ FDE10 ↓

Ours w/o semantic map 1.97 4.21 1.58 3.14
Ours w/o joint latent 1.95 3.98 1.50 2.92
Ours w/o AA attention 2.02 4.29 1.55 2.91
Ours w/ agent encoding 2.01 4.28 1.63 3.11
Ours (AgentFormer) 1.86 3.89 1.45 2.86

Table 10.4: Ablation studies on the nuScenes dataset. “TF” means Transformer and “AA At-
tention” denotes agent-aware attention.

study explores variants of our method that use separate social and temporal models to replace
our joint socio-temporal model, AgentFormer, in our multi-agent prediction framework. We
choose GCN [143] or Transformer (TF) as the social model, and LSTM or Transformer as the
temporal model. In total, there are 4 (2 × 2) combinations of social and temporal models. The
ablation results are summarized in the first group of Table 10.3 and 10.4. It is evident that all
combinations of separate social and temporal models lead to inferior performance compared to
our method which models the social and temporal dimensions jointly.

The second ablation study investigates the role of (1) joint latent intent modeling, (2) agent-
aware attention, and (3) semantic maps, and we denote the corresponding variants as “w/o
joint latent”, “w/o AA attention”, and “w/o semantic map”. We further test a variant “w/
agent encoding” where we replace agent-aware attention with agent encoding. The results are
reported in the second group of Table 10.3 and 10.4. We can see that all variants lead to consid-
erably worse performance compared to our full method. In particular, the variants “w/o AA

136



0.0 0.2 0.0 0.2 Target (Being Predicted)Attention to Past Attention to Future
Past Trajectory Predicted Future Trajectory GT Future Trajectory

(a) Sample 1 (b) Sample 1 (Attention)

(c) Sample 2 (d) Sample 3

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

A1

A2
A3

A4

A5

A1

A2

A3

A4

A5

Figure 10.4: (a,c,d) Three samples of forecasted multi-agent futures (green) via our method,
which exhibit social behaviors like following (A3&A4) and collision avoidance (A1&A2 in (a),
A2 &A3 in (c)). (b)Attention visualization for sample 1. When predicting the target (red), the
model pays more attention (darker color) to key timesteps (turning point) of adjacent agents
and spreads out attention to the target’s past timesteps to reason about dynamics.

attention” and “w/ agent encoding” result in pronounced performance drop, which indicates
that agent-aware attention is essential in our method and alternatives like agent encoding are
not effective.

Trajectory Visualization. Fig. 10.4 (a,c,d) shows three samples of forecasted multi-agent fu-
tures of the same scene via our method. We can see that the samples correspond to different
modes of socially-aware and non-colliding trajectories, and exhibit behaviors like following (A3
& A4) and collision avoidance (A1 & A2 in (a), A2 & A3 in (c)). Fig. 10.4 (b) visualizes the at-
tention of sample 1 and shows that, when predicting the target (red), the model pays more
attention to key timesteps (turning point) of adjacent agents and also spreads out attention to
the target’s past timesteps to reason about the dynamics and curvature of its trajectory.

10.5 Conclusion

In this paper, we proposed a new Transformer, AgentFormer, that can simultaneously model
the time and social dimensions of multi-agent trajectories using a sequence representation. To
preserve agent identities in the sequence, we proposed a novel agent-aware attention mech-
anism that can attend to features of the same agent differently than features of other agents.
Based on AgentFormer, we presented a stochastic multi-agent trajectory prediction framework
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that jointly models the latent intent of all agents to produce diverse and socially-aware multi-
agent future trajectories. Experiments demonstrated that our method substantially improved
state-of-the-art performance on challenging pedestrian and autonomous driving datasets.
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Conclusion and Future Work
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Chapter 11

Conclusion and Future Work

In this chapter, we first conclude the contributions and discuss open problems and future re-
search directions in each of the three aspects— simulation, perception, and generation— of hu-
man behavior modeling. We will then discuss the main lessons learned from our work towards
unifying the three aspects and share our vision on what is next for human behavior modeling.

11.1 Simulation of Human Behavior

In this thesis, we made two main contributions to simulation of human behavior: (1) we pro-
posed a robust approach, called residual force control (RFC), for simulating human behavior
in physics simulation, which is crucial for downstream perception and generation tasks; (2) we
proposed a new approach for automatic and efficient design of simulated agents, which can
create more performant simulated agents (e.g., humanoids) than those designed by experts.
However, there is still much work to be done in simulation of human behavior. Below we dis-
cuss two important open problems and future research directions.

11.1.1 Efficient Learning of Robust Humanoid Control Policy

Weachieved robust humanoid control in this thesismainly through theRFCapproachdiscussed
in Ch. 2. However, the external residual forces employed in RFC can also comprise the physi-
cal accuracy of the simulated human behavior, since the humanoid can perform super-human
actions with the help of large residual forces. This is fine as a temporary solution to unblock
application of simulation to downstream perception and generation tasks, but ideally we want
to learn a humanoid control policy that is robust even without RFC.

A main hurdle in learning a robust policy is the sample-inefficient RL algorithms, which
may not be able to find the optimal control policy under a standard computing budget. While
we can hope that RL research will eventually come up with more efficient algorithms, another
direction we can look into is to use differentiable physics simulator, which provides us with an-
alytic gradients of the physics simulator. This opens up many opportunties for sample-efficient
learning of humanoid control policies. For example, if the referencemotion data is given, we can
use supervised learning to learn a imitative control policy. Instead, if only some objective func-
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tion is given, gradient-based trajectory optimization can also be used to efficiently synthesize
simulated humanoid behavior or learn a control policy. Recently, many differentiable simula-
tors start to emerge such as Brax [67] and Nimble [334]. It would be interesting to implement
the simulation-based behavior modeling framework in these differentiable simulators and train
the policy with supervised learning. A caveat is that it is still not clear how reliable or stable
the gradients of these simulators will be, especially when the simulated environment is highly
dynamic and discontinuous in nature. Along this line, another way to use supervised learning
is to learn a neural simulator to mimic the physics simulation, which is similar to model-based
RL. Recent work on control-based character animation already showed that this is a viable ap-
proach [68], but it remains unclear how the neural simulator generalizes to more complicated
environments with terrains and objects.

11.1.2 Better Modeling of Humans and Environments in Simulation

Another possible cause for the difficulty in robust humanoid control could be the over-simplified
modeling of humans in the physics simulator, which causes the dynamicsmismatch between the
humanoid and real humans as discussed in Ch. 2. Although in Ch. 3, we proposed a method,
Transform2Act, for automatic design of simulated agents, it only works within the confines
of the design space provided by the physics simulator. For instance, it can adjust the motor
strength of each joint or the shape and size of the feet, but it cannot make the feet soft if the
physics simulator does not support soft-tissue simulation. Although there are works that use
more advanced models to simulate humans, they are still far from physically-accurate and are
often too computationally-inefficient to be used by RL. Therefore, an important open problem
is how to model humans better and more efficiently in physics simulation.

Another underexplored aspect is the modeling of the environment in physics simulation,
which is especially important for simulation-based perception and generation tasks. Our recent
work [192] tried to address this aspect by reconstructing human-object interaction in physics
simulation. However, our method can only handle a few types of objects with primitive ge-
ometries. To accurately model human behavior in simulation, we need to simulate all types
of objects in environments and their interaction with humans. For example, to simulate a hu-
man sitting on a sofa, we need to simulate the deformable materials of the sofa to be consistent
with the real world. With potentially hundreds of objects in the environment, simulating them
efficiently is also of crucial importance to enable learning algorithms.

11.2 Perception of Human Behavior

In this thesis, we made the following contributions to perception of human behavior: (1) we
tackled the highly under-constrained problem of first-person human pose estimation via the
use of our simulation-based framework; (2) we improved the physical plausibility and pose
accuracy of third-person human pose estimation using our simulation-based framework; (3)
we leveraged behavior generation to tackle a new perception task, i.e., global occlusion-aware
human pose estimation with dynamic cameras. Yet, there are still many remaining problems
and challenges to be addressed by future research. Belowwe discuss two of the open problems.
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11.2.1 Modeling Humans as Embodied Agents Interacting with Environments

Human pose estimation has come a long way, progressing from 2D and 3D pose estimation to
temporal and scene-aware pose estimation. However, much of the research still takes a third-
person approach to human behaviormodeling, where human behaviors are observed through a
third-person camera and the focus is onmodeling the geometric relationships of 2D and 3D key-
points or joint angles of the human. A drawback of this approach is that it lacks a fundamental
understanding of how human behaviors are generated in the 3D environment, and it is sensitive
to camera angles and occlusions. Instead, an embodied agent approach, i.e., modeling the hu-
man as an embodied agent interacting with the environment, could be better for generalization.
For example, if a person sees a chair and adjusts their pose to sit down, the behavior is governed
by the person’s egocentric perception of the chair and the 3D spatial relationships between the
person and the chair, and the behavior is invariant to any third-person cameras observing the
behavior. In Ch. 4 and 7 as well as our recent work [192], we have taken this embodied agent
approach to tackle first-person human pose estimation and showed that it can improve general-
ization. However, there are still many open problems such as how to effectively incorporate 3D
environment information into the state of the agent and how to simulate accurate human-object
interaction in a physics simulator.

11.2.2 Data Collection of 3D Human Behavior and Environment

Data collection poses a major challenge to research on perception of human behavior. For first-
person human pose estimation (Ch. 4 and 7), we had to use motion capture studios to collect
paired data of first-person videos and 3D human poses. There are several drawbacks of using
motion capture studios. First, the space is typically limited, which constrains the types of human
behavior that can be captured. Second, the visual data collected in motion capture studios typ-
ically lacks diversity in appearance, which creates domain gaps between motion capture data
and real-world data. Third, it is difficult to reproduce real-world environments in the studio,
such as large furniture, stairs, and outdoor scenes.

To capture more flexible human poses, recent work started to use additional sensors such as
IMUs [87] or RGB-D cameras [95] to estimate human pose in the wild. These approaches also
use SLAM to capture the environment to provide scene context for the pose data. A promising
future direction along this line is to combine our simulation-based behavior modeling frame-
work with these approaches to further improve the physical plausibility and fidelity of human
and scene reconstruction.

While 3D human behavior data may be limited, we have abundant 2D human behavior data
such as internet videos. It would be very useful to develop a weakly-supervised approach that
leverages 2D human behavior data and physics simulation to reconstruct high-quality 3D hu-
man behavior. For example, we can learn to control the humanoid in physics simulation via
RL to match the 2D keypoints from internet videos. An important challenge in this aspect is
how to also estimate the ground plane or terrain in order to simulate human behavior for such
in-the-wild videos.

Another important aspect is to capture multi-person interaction, which is often quite chal-
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lenging due to occlusions and dynamic motions. Kinematic 3D pose fitting methods such as
SPIN [61] can produce interpenetrating human poses due to the lack of physical constraints
and fundamental understanding of how humans interact with each other. As discussed in
Sec. 11.2.1, modeling multiple people as embodied agents in physics simulation could help ad-
dress this problem and largely improve the realism of multi-person interaction.

11.3 Generation of Human Behavior

In this thesis, we made the following contributions to simulation of human behavior: (1) we
proposed a simulation-based human behavior generation approach that can forecast the future
human motion from a first-person video; (2) we tackled stochastic human behavior generation
and improved the sample diversity of deep generative models with determinantal point pro-
cesses (DPPs) and latent normalizing flows; (3) extending from the single-agent setting, we
further studied stochastic multi-agent trajectory generation and proposed a new agent-aware
Transformer model that achieved state-of-the-art performance. Similar to simulation and per-
ception, there are many remaining open problems and challenges in generation of human be-
havior. Below we discuss two important problems.

11.3.1 Generating Out-of-Distribution Human Behavior

The current paradigm for generating human behavior is mainly based on deep generative mod-
els, which learn to mimic the training data distribution via supervised learning. However,
this also limits the generalization of the learned behavior generation model, since they are de-
signed to only generate in-distribution human behavior and cannot generate out-of-distribution
(OOD) behavior. For example, if we try to learn a generationmodel of a person sitting in a chair
and the training data only contains the person starting in front of the chair, the learned model
will have a hard time generating the sitting behavior if the person starts behind the chair. To
successfully generate all types of sitting motion, the training data has to largely cover the ap-
proaching angles of the person to prevent extrapolation. Yet, real-world data does not often
have sufficient coverage of all possible scenarios.

A possible solution to this problem is to use physics simulation and RL, which allows us to
learn control policies for all kinds of basic human locomotions. These locomotion policies form
the building blocks for physically-plausbile human behaviors, and they are robust to perturba-
tions due to RL. To generate OOD behavior, such as the sitting example discussed previously,
we can just define a reward function based on goal states (e.g., sitting in the chair) and learn
to compose the locomotion policies to maximize rewards. The use of physics simulation al-
lows physically-plausible OOD behaviors to emerge instead of any random behavior that can
maximize rewards.

11.3.2 Evaluation of Generated Human Behavior

Another key problem is the effective evaluation of the generated human behaviors. Generation
tasks such as human trajectory forecasting can often be formulated as learning a conditional dis-

143



tribution. However, for each condition (e.g., past human trajectory), there is often only one GT
(e.g., future human trajectory) in the dataset, so it is difficult to approximate the GT conditional
distribution. Many SOTA methods on trajectory forecasting are only evaluated by comparing
the best-of-N sample with the GT, which does not penalize implausible samples and can be
overoptimistic. In Ch. 8, we proposed newmetrics to alleviate the problem but the problem still
exists.

One potentially betterway to evaluate generated human behaviors is to define a downstream
task. We can then use the generated human behaviors to train the downstream task and score
the behaviors by how much performance improvement is gained. There are two generic tasks
that are suitable for most human behavior data. The first task is action recognition, which is for
behavior data that comes with semantic labels such as actions. In this case, we can require the
behavior generation model to additionally generate the semantic labels, which together with
the generated behaviors can be used to train an action recognition model. The second task
is behavior forecasting, which can be used for almost any human behavior data even without
semantic labels. We can define different behavior forecasting settingswith different observation
and forecasting horizons, and train behavior forecasting models under these settings. We can
use the average performance of different settings to evaluate the quality of generated behaviors.

11.4 Lessons Learned and Outlook

Over the course of the extensive research in human behavior modeling, we have learned many
lessons that have helped us tremendously. Below are the most important ones:

1. Physics simulation does not need to be perfect in order to be useful. Computer vision
researchers sometimes dismiss the use of physics simulation due to its inaccuracies and
oversimplified modeling. However, what we found in this thesis is that imperfect physics
simulation, when coupled with data-driven methods, can still be very useful for percep-
tion and generation tasks such as human pose estimation and human motion generation.
The main reason is that the data-driven part of the model (such as the control policy in
SimPoE [366]) can absorb the errors in the simulation model and produce the desired
behavior. That said, it is still important to have a moderately accurate simulation model
so that the errors will not be too difficult for the data-driven part to correct.

2. Generalization ability of simulation-basedmodel at test time. Inmost of the time, using
physics simulation can improve the model’s generalization at test time. This is because
simulation ensures that at test time the laws of physics are still observed. For example, when
a human behavior generation model extrapolates, simulation ensures that the generated
behaviors still maintain proper contact with the ground while purely-kinematic methods
may have lots of foot sliding. Sometimes, simulation can also lead to worse generalization
at test time, which is because the model (such as the control policy in SimPoE) cannot
generalize to unseen state space of the simulation. For example, if the control policy has
never learned to do backflips in simulation, it will have a hard time imitating the backflips
in a test video. To improve generalization in this aspect, the training data needs to have

144



sufficient coverage of the simulation state space of humanoid dynamics. This does not
mean that the training data has to cover every human behavior, but it at least needs to
have similar dynamic motions in order for the policy to learn backflips.

3. Learning a neural physics simulator is still difficult. At various stages of the thesis re-
search, we have tried to learn a neural physics simulator, since it could provide us with
analytic gradients to help learning. We found that the learned neural simulator, even
for humanoid locomotion, has several problems that prevent it from being useful. First,
the learned neural simulator does not generalize well outside the training data and is of-
ten unstable. This is not surprising since the neural network can overfit to the training
data without learning the basic laws of physics. Using physics-inspired network design
(such as [272] for fluid simulation) could potentially alleviate this problem. Second, the
learned neural simulator does not capture the nuanced aspects of physics simulation such
as proper contact and friction. This directly makes the simulator less useful since it can-
not eliminate physical artifacts such as foot sliding or ground penetration. While it is
possible to keep improving approaches for learning a neural simulator, a more promising
direction is to develop differentiable physics simulators that are not learned directly from
data. These differentiable simulators are typically based on laws of physics and dynamics
equations, which allow them to almost always generalize to different parts of state space.

4. The devils are in the details. Our simulation-based humanoid control framework may
seem quite straightforward to implement, but we have had many struggles in making it
work and every time the problem was hidden in the details. Here are three useful tips.
First, state normalization matters. It is extremely important to normalize the states in RL
since they can be quite different in a training batch. Traditional normalization techniques
such as batch normalization are not very suitable for RL since its normalization process
is different for training and sampling. A less-known technique, called running normal-
ization (i.e., using running estimates of mean and standard deviation) is better since it
gradually updates the normalization factors while avoiding different normalization for
training and sampling. Switching to running normalization almost always significantly
improves performance. Second, predicting residuals is better. When the policy needs to pre-
dict certain actions such as the target PD controller angles, it is wise to make use of some
good baselines, such as the input kinematic pose, and only predict the residual to it. This
makes policy learning much easier since it already has a good guess and only needs to
refine it. Finally, use egocentric coordinates. By representing every feature in the state space
in the egocentric coordinate of the humanoid, the policy is invariant to its global position
and orientation, which allows experience collected under different positions and orienta-
tions to be consolidated and distilled into the policy. Moreover, it also prevents the policy
from overfitting to specific positions or orientations.

Looking forward, we believe that the three aspects of human behavior modeling — simula-
tion, perception, and generation will become increasingly integrated. As behavior modeling is
moving in the direction of human-scene and human-object interaction, simulation of human
behavior will become more and more important for perception and generation since it is key
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to producing physical-plausible interactions and diverse variations. The perception and gener-
ation aspects will also synergize with each other, where perception can provide the necessary
context for generation while generation can fill in the blind spots of perception systems. Even-
tually, we believe that a unified system for simulation, perception, and generation of human
behavior will emerge when machine learning, robotics, and computer vision come to fruition
with more efficient learning algorithms, advanced differentiable physics simulators, and better
perception networks for sensing human behaviors and environments.
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