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ABSTRACT

Auditory selective attention enables us to focus on one sound within a mixture of noises.

Unlike in vision, where we can easily shift attention by moving the eyes, auditory atten-

tion can only be achieved covertly via cognitive control. That is, we change our internal

attentional state in the brain in order to attend to or ignore a sound object. This control

is effortless and swift for healthy people, but can be challenging for people with neurolog-

ical conditions such as attention deficit/hyperactivity disorder or autism. This makes it

important to study the neural mechanisms that underlie auditory selective attention.

Neuroimaging technologies allow scientists to study brain activity without invasive pro-

cedures. Electroencephalography (EEG), a measure of electrical potential at the scalp, has

become a popular imaging modality for neuroscience studies due to its simple setup, low

cost, and high sampling rate, allowing us to capture rapid changes in electrical signals given

off by the brain. EEG can thus track brain dynamics with high temporal resolution, but it is

difficult to localize the location in the brain that is generating the measured activity. Another

neuroimaging modality, functional magnetic resonance imaging (fMRI), measures blood oxy-

genation levels, which change locally when metabolic activity in a particular brain region

increases. However, this change takes several seconds. fMRI signals provide millimeter-

level spatial resolution, but poor temporal resolution. Neither of these two modalities, nor

any other noninvasive neuroimaging methods currently available, can simultaneously achieve

both high temporal resolution and high spatial resolution.

Effectively combining the information from EEG and fMRI could allow one to determine

both when and where in the brain control of auditory attention happens. One technique

for fusing neuroimaging modalities is representational similarity analysis (RSA). First, the

information in brain signals is summarized via the difference among all pairs of experimental

conditions, reflecting the information carried by the underlying neural representation. The

resulting similarity matrix has the same dimension and scale regardless of whether it was
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derived from EEG or fMRI, and thus can be used to integrate information in these two

neuroimaging modalities.

Here I report results of an experiment that required different types of auditory selec-

tive attention (attention to space and attention to acoustic features). I collected EEG and

fMRI data from healthy young adults performing these tasks. From EEG, I discovered that

the event-related time course of both raw EEG voltages and alpha oscillations (8 – 14 Hz)

change reliably as subjects engage in auditory attention; these show that neural representa-

tions of attentional state change as a function of time. From fMRI, I identified several brain

regions in the frontal (including superior and inferior precentral sulcus and inferior frontal

sulcus), parietal (including intraparietal sulcus and superior parietal lobule), temporal (su-

perior temporal gyrus) and occipital (primary visual cortex) lobe that are actively engaged

during auditory attention. This allowed me to extract neural representations of attentional

control as a function of location in the brain. I then conducted an RSA to fuse EEG and

fMRI results and reveal the dynamics of information in different brain regions across the

course of each trial. Finally, as an attempt to translate these neuroscience findings into

real-life applications, I explored the feasibility of decoding attention from single-trial EEG

signals in order to develop an attention-based brain-computer interface (BCI) system.

This dissertation identified important neural signatures in EEG signals that are evoked or

induced by auditory selective attention, as well as a brain network that seems to be associated

with these signatures. It is among the very first studies to adopt RSA fusion techniques to

study information flow through the brain during attentional control, which could be an

important reference for future studies in this field. Finally, this work examined several

different ways to decode attention from single-trial EEG signals, achieved promising results

from these attempts, and suggested possible ways to improve for future BCI development.
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Chapter 1

Introduction

1.1 Overview of document

In our daily life, we are exposed to a mixture of all kinds of sounds — the conversation

you are in with a colleague, people chatting in the background, noise of a bus running by,

etc. This creates a seemingly overwhelming auditory scene, in which the signal we desire is

buried in abundant unwanted noises. However, most people find it effortless to focus on one

target sound and ignore the distractors, thanks to our auditory selective attention. Unlike

in vision, where we can easily shift attention by moving the eyes, auditory attention can

only be achieved covertly via cognitive control. That is, we change our internal attentional

state in the brain in order to attend to or ignore a sound object [1]. This control is natural

and swift for healthy people, but can be challenging for people with neurological conditions

such as attention deficit/hyperactivity disorder [2], [3] or autism spectrum disorder [4], [5].

This makes it important to study the neural mechanisms that underlie auditory selective

attention.

When we are in a busy acoustic scene, there are two major strategies that can help us

better focus. First, if we know the location of a target sound (e.g., cars running past us

from the left when we are riding a bike), we can tune our attention more to that location
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for a better perception of the sound. And we call this strategy attention to space, or spatial

attention. Alternatively, if we are unsure about the target’s location, but are certain about

the acoustic features of the target sound (e.g. a person with a known voice chit-chatting in

a noisy cafe), we can selectively attend to a sound object with that acoustic feature. And

we call this strategy attention to acoustic features, or more generally, non-spatial attention.

The neural mechanism behind spatial and non-spatial auditory attention has been studied

via different methods, and there is a broad agreement that there exists a dorsal pathway,

where the spatial information of sound (the “where” information) is primarily processed, and

a ventral pathway, where the non-spatial information of sound (the “what” information) is

encoded [6]. However, the exact role of brain areas along these pathways in spatial and

non-spatial auditory attentional control remains unclear. In this dissertation, I aim to 1)

use two noninvasive neuroimaging modalities, electroencephalography (EEG) and functional

magnetic resonance imaging (fMRI), to unveil the role of brain regions in spatial and non-

spatial auditory attention, and their dynamics over the course of the experiment, and 2)

decode attentional control from single-trial EEG data for the design of a brain-computer

interface (BCI) system.

In Chapter 2, I design a condition-rich experiment that requires spatial or non-spatial

auditory attention, and record EEG signals while the listeners participate in these tasks. I

decode attention from EEG signals and extract representational dissimilarity features from

the EEG time course and alpha oscillation power. Then I compare these features with ideal

conceptual models or behavioral performance. I identify time intervals in which particular

contrasts in attentional state, such as the difference between attention types or between

attention to different locations, have strong representation in the EEG time course or in its

alpha power. I also reveal that the listener’s behavioral performance in the attention task is

significantly and positively correlated with the P2 amplitude evoked by the target syllable.

In Chapter 3, I adopt the same experimental design as in Chapter 2, and record

fMRI data while the listeners participate in the task. I identify an extended attention
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network, in which individual brain regions show different specialization in spatial or non-

spatial attention. I also extract representational dissimilarity features from each voxel, and

compare these features with ideal conceptual models or behavioral performance. I discover

that the regions in the medial occipital lobe encode the spatial information of auditory

attention, and the right IFS is the sole region that encodes information of the gender /

pitch of the attended talker. The neural representation of the parietal regions are correlated

with the behavioral performance, demonstrating their important role in spatially demanding

tasks.

In Chapter 4, I correlate the time-wise EEG representations (derived from Chapter

2) with the voxel-wise fMRI representations (derived from Chapter 3) to search for cor-

responding information between these two imaging modalities. This analysis depicts the

dynamics of attentional control in each brain region during the experiment, i.e. a spatially

and temporally resolved information flow map during auditory attention.

In Chapter 5, I present four different studies in which I explored the feasibility of de-

coding attention from EEG signals for the design of an attention-based BCI system. In these

studies, I explore the BCI design with different features (e.g., the EEG time course or induced

oscillations), classifiers (e.g., support vector machine or convolutional neural network), stim-

uli (e.g., human-voiced syllables, sequence of tones or music) and form factors (e.g., full-sized

gel-based EEG system or EEG “headphones”). Together, these studies demonstrate means

to improve an auditory BCI design with better accuracy, efficiency and user-friendliness.

1.2 Background: Noninvasive neuroimaging

Noninvasive neuroimaging refers to the techniques that can acquire signals from the brain

for its structural or functional information, without breaking the skin. It offers a convenient

way for neuroscientists to study brain activities in healthy populations. To date, several

noninvasive neuroimaging modalities have been popularly used in neuroscience research,
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which sample signals of different properties to track brain activities. Electroencephalography

(EEG), for example, monitors neural activity through sampling the electrical potential at the

scalp. These signals originate from the influx and efflux of ions through the membrane of large

cortical pyramidal neurons in deep cortical layers [7]. When an action potential happens,

ions move in and out of neurons, which causes the electrical potential in the extracellular

space to change. If this change is coherent within a local population of neurons (tens to

hundreds of millions of neurons), it can be captured by an electrode placed at the scalp.

The movement of ions forms an electrical current, which also caused the magnetic field to

change around the neurons. This change in magnetic field can be captured by supra-sensitive

magnetometers, which constitutes the signals in magnetoencephalography (MEG).

Another approach to trace neural activity is through metabolic dynamics. Blood flow

delivers oxygen to different parts of the brain, and it is coupled with neuronal activation —

when an area of the brain is recruited, blood blow to that region also increases [8]. And

this oxygen level change induced by the blood flow is what functional magnetic resonance

imaging (fMRI) is tracing in its blood oxygen level dependent (BOLD) signal. fMRI data

can be acquired from a MRI scanner, which usually has a main magnet to polarize the

nuclear spin of molecules and a gradient system for signal localization. It scans one slice

of the brain at a time and provides millimeter-level spatial resolution. Another imaging

modality, functional near-infrared spectroscopy (fNIRS), also relies on the oxygen level in

cortical blood flow to monitor brain activities. It sends near-infrared light into the cortex

using transmitters placed at the scalp. Due to photon diffusion, part of this light will change

the direction of path and come back to the scalp along a U-shape trajectory. The intensity

of this return light, captured by detectors at the scalp, is modulated by the oxygenation

of blood: the oxygenated and deoxygenated hemoglobin absorb light at different levels for

different wavelengths. Therefore, by tracking the intensity change of the return light, we

can estimate the oxygen level change underneath the scalp, which is coupled with neuron

activation.
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A major distinction among these noninvasive imaging modalities (in addition to their

cost, mobility and availability) is the spatial and temporal resolution in their signals. Fig-

ure 1.1 shows where these modalities are in a temporal-spatial resolution map. The time

course of EEG and MEG carries phase-locked evoked responses and can be sampled at a

supra-kilohertz rate. There is also oscillation in EEG and MEG that contains information

about time-locked induced responses, whose temporal resolution is approximately 10−2 to

10−1 seconds. The spatial resolution of these two modalities, however, is considerably low

— usually in a few centimeters. The opposite is fMRI, which provides exquisite spatial res-

olution, but is fairly sluggish in tracing temporal dynamics. fNIRS lies between EEG and

fMRI in this spectrum. Therefore, with the current noninvasive neuroimaging techniques,

there is always a trade-off between knowing “when” and knowing “where” a neural activity

happens.

Figure 1.1: Temporal and spatial resolution of common noninvasive neuroimaging modali-
ties. Electroencephalography (EEG) and magnetoencephalography (MEG) have the finest
temporal resolution, but the poorest spatial resolution. Functional magnetic resonance imag-
ing (fMRI) has the opposite resolution characteristics. Functional near-infrared spectroscopy
(fNIRS) has medium resolution in both spatial and temporal domains. Red dots represent
the resolution of EEG and fMRI techniques adopted in this study. The green dots are the
ideal resolution we can possibly achieve through EEG-fMRI fusion, if we can find perfect
correspondence between information we learned from these two modalities.

5



Decoding Attentional Control from Noninvasive Measures in Humans

One possible workaround to break this resolution barrier is through multimodal neu-

roimaging, in which more than one imaging techniques are used. For example, we can learn

information with fine temporal resolution from EEG and information with fine spatial resolu-

tion from fMRI, and find some correspondence between these two through a fusion analysis.

In this way, the two modalities will compensate for each other’s weakness and reveal a full

picture of neural activity in terms of both when and where things happen. In this study, I

demonstrate how we can fuse EEG with fMRI through a representational similarity analysis

(to be discussed next), and apply this method to explore human auditory selective attention.

1.3 Background: Representational similarity analysis

Classical EEG and fMRI studies, such as analysis of event-related potentials (ERPs) and

general linear model (GLM) analysis, directly compare EEG or fMRI features between con-

ditions to make inferences about the neural processes underpinning a cognitive function.

Another important cognitive construct, the neural representation, however, is less studied

and understood [9]. Neural representation refers to the description of the information be-

ing encoded in a neural unit, which is typically a neuron or a brain area [10], or in some

other cases, the brain at a certain time point. Kriegeskorte et al. [11] proposed a frame-

work named representational similarity analysis (RSA) to study neural representations from

neuroimaging data. Under this framework, representation can be studied through the differ-

ences among all pairs of experimental conditions — we can extract some features from each

condition and calculate the difference between conditions using a distance metric. These

representational dissimilarities, summarized in a matrix called representational dissimilar-

ity matrix (RDM), can then be compared with conceptual models or with representations

derived from other imaging modalities, revealing different properties of a cognitive func-

tion (e.g., its control model, dynamics, behavioral correlate, etc.). The RSA approach has

been used in EEG studies to trace the dynamics of various cognitive functions, including
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audiovisual integration [12], visual object processing [13] and memory [14], and in fMRI

studies to investigate the semantic processing of words [15], language comprehension [16],

and computational models of reading [17].

One fascinating property of RSA is that it utilizes the RDMs to study what information is

being encoded, which is modality free — given the same condition-rich experimental design,

we can calculate RDMs from EEG, fMRI, the observed behavioral performance, or any

other data we collected from these conditions. As long as the differences between each pair

of conditions are quantifiable, we can derive RDMs that have the same dimension and scale

for all the modalities. This is immensely useful for multimodal neuroimaging fusion, because

signals like EEG and fMRI have different dynamics, scales, noise levels, etc. Thus, it is

difficult, if not impossible, to find a direct correspondence between the EEG signal at one time

point and the fMRI signal at one brain location. With RSA, however, we can collect EEG and

fMRI data with the same experimental design, calculate RDMs from EEG at each time point

and from fMRI at each voxel, and conduct a time-by-location correlation analysis to search for

when and where EEG and fMRI share common information. This technique has already been

applied to study the cognitive functions underlying visual object recognition. Cichy et al. [18]

designed an experiment in which they presented participants with images of objects. They

extracted neural representations at each time point from magnetoencephalography (MEG),

and at each voxel from functional magnetic resonance imaging (fMRI). Then, they searched

for time instances and voxels that shared similar patterns in their neural representation,

which depicted a spatiotemporally resolved information flow during visual object recognition.

One common character of these past works (using unimodal or multimodal imaging) is

the use of different stimuli across conditions — they focused more on brain’s response to

different categories of sensory inputs than on its internal cognitive state. This dissertation

is among the very few pioneering studies that adopted a RSA framework to investigate the

neural representation of attentional states. In later chapters, I will present how I conduct

the study, what I learn from it, and what are the potentials and challenges of this approach.

7



Decoding Attentional Control from Noninvasive Measures in Humans

1.4 Background: Brain-computer interface

Brain-computer interface (BCI) systems offer a non-verbal and covert way for humans to

communicate a control signal to a computer. They are designed to monitor the brain sig-

nals, extract features, and output a decision based on a pre-trained classification model.

During the past two decades, we have witnessed rapid growth in BCI research, thanks to

the development of advanced sensor technology, machine learning algorithms, and new ex-

perimental paradigms [19]. BCI, as an assistive technology, has proved its efficacy in various

applications such as communication [20], [21], movement control [22], [23] and rehabilita-

tion [24], [25].

Among the noninvasive neuroimaging modalities that are currently available, electroen-

cephalography (EEG) has become the most popular choice for BCI applications due to its

noninvasiveness, mobility, and low cost [26]. EEG monitors brain activity through sampling

the electrical potential along the scalp at a very high rate. The high temporal resolution

of EEG oscillations allows capturing certain neural signatures of a brain state or of mental

efforts, which can be used to decode users’ intention. Previous studies have demonstrated

great success in building EEG-based BCI systems using visual or auditory stimuli. Chen et

al. [27] designed a high-throughput visual BCI system using flickering objects. When the user

focuses on one of them, a neural signature known as the steady-state visual evoked potential

(SSVEP) appears in EEG signals. However, SSVEP requires a stable line of sight, which

may not be available due to permanent or situational impairment (e.g., while driving). As

an alternative solution, researchers applied a similar idea to designing auditory BCI systems,

where the users were presented with multiple streams of pure tones modulated at different

frequencies. The modulation frequency of the attended stream may result in a strong EEG

component known as the auditory steady-state response (ASSR) [28].

One major disadvantage of SSVEP or ASSR paradigms is the use of flickering objects or

modulated pure tones, which can cause fatigue in users. The sinusoidal carriers used in an

ASSR paradigm were perceived by users to be annoying [29]. Past studies have endeavored
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to use more naturalistic and pleasant stimuli to improve the user-friendliness of BCI systems.

For example, Huang et al. [30] used drip-drop sounds in their BCI design, creating a relaxing

auditory scene for the users. They decoded attention based on a neural marker called

P300, a large positive deflection in an event-related potential (ERP). It is a typical neural

signature observed in an oddball paradigm — the subjects are presented with a sequence

of identical “standard” stimuli, where, occasionally, the standard stimulus is replace by a

target “oddball” [31]. The P300 wave usually occurs around 300 - 500 ms after the oddball

onset. In their study, Huang et al. extracted P300 features from EEG signals and trained

a linear discriminant analysis (LDA) model to determine the user’s attentional state. They

achieved a 73.5% decoding accuracy for binary classification, and a 2.75 bit/min equivalent

information transfer rate (ITR, the amount of information transferred per unit time, which

is a standard method for measuring the performance of a BCI system). In another study,

Treder et al. [32] embedded oddballs in streams of real music and used the P300 feature for

attention decoding. They achieved a 91% decoding accuracy, an amazing result for a binary

classification problem. However, since their system averaged 40 seconds of data to generate

one output, its overall efficiency of information transfer is merely 0.8 bits/min.

In summary, attention-based auditory BCI is a concept with great potential. It does not

require visual attention for use, a cognitive resource that is heavily demanded in our daily

life and is not always available. However, it still has a few major obstacles before it can

become practical for everyday use. First, we need to improve its user-friendliness to make

it unobtrusive and pleasant to use. This concerns many aspects of a BCI design, such as

the stimuli we play, the form factor we use to record EEG signals, and the overhead time

to setup the system. Second, the throughput of most current auditory BCI designs is not

as high as that of a visual BCI. Previous visual BCIs built on SSVEP or P300 could easily

achieve an ITR of 20 - 30 bits/min [27], [33], which is at least 10 times greater than most

auditory BCI designs we have today. This is a combined effect of relatively lower decoding

accuracy and longer processing time in auditory BCIs compared to their visual counterparts.
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Lastly, an auditory BCI system should be designed to offer more practical value in daily life.

For example, visual BCIs have been developed to assist people with typing [33] or spatial

navigation [27]. These systems can be used naturally and intuitively by users, because they

are coherent with how these functions are usually executed in daily life — we look when we

type or navigate. However, it would be awkward if we intend to replace these functions with

an auditory BCI system. New ideas on what benefits an auditory BCI can offer are therefore

warranted.
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Chapter 2

Neural representation of auditory

attention in EEG1

2.1 Introduction

Auditory selective attention enables us to focus on one sound within a mixture of noises. Un-

like in vision, where we can easily shift attention by moving the eyes, auditory attention can

only be achieved covertly via cognitive control. That is, we change our internal attentional

state in the brain in order to attend to or ignore a sound object [1]. This control is effortless

and swift for healthy people, but can be challenging for people with neurological conditions

such as attention deficit/hyperactivity disorder [2], [3] or autism spectrum disorder [4], [5].

This makes it important to study the neural mechanisms that underlie auditory selective

attention.

Electroencephalography (EEG), for its simple setup, low cost, and high sampling rate

has become a popular tool to study the dynamics of cognitive functions in human brain. It

monitors neural activity through sampling the electrical potential at the scalp at a very high

rate. It carries rich information in the spectral and temporal domain, and can show fast

1This chapter is adapted with permission from a manuscript: Winko W. An, Alexander Pei, Abigail
Noyce, Barbara Shinn-Cunningham, “Neural representation of auditory attention in EEG”, in preparation
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dynamics of brain response to a stimulus. It has been used to capture modulation of neural

signatures, such as event-related potentials (ERPs) and induced oscillations, as evidence of

top-down attentional control [34], [35]. Choi et al. [36] created an auditory attention task

with three competing melodies and asked the listeners to identify the pitch contour of the

attended stream. They discovered that the magnitude of N1, which is an early component

(100 - 150 ms after stimulus onset) in an ERP waveform, is modulated by attentional control.

In another study, Giuliano et al. [37] demonstrated that the magnitude of the P1 component

(50 - 100 ms after stimulus onset) is also modulated by attention. Deng et al. [38] designed

an experiment using spatialized streams of syllables, and directed the participant’s attention

to different locations. They found that the alpha oscillation, which is an oscillatory induced

response whose frequency ranges from 8 to 14 Hz, is modulated by auditory spatial attention.

They observed an alpha power increase in the parieto-occipital region, ipsilateral to the side

to which the participant attended. And this parietal alpha wave was also proved to have a

causal relationship with suppression of the representation of contralateral auditory space [39].

Classical EEG studies, such as the aforementioned ERP analysis and time-frequency anal-

ysis, directly compare EEG features (e.g., ERP or band power) between conditions to make

inferences about the neural processes underpinning a cognitive function. Another important

cognitive construct, the neural representation, however, is less studied and understood [9].

Neural representation refers to the description of the information being encoded in a neural

unit, which is typically a neuron or a brain area [10], or in some other cases, the brain at

a certain time point. Kriegeskorte et al. [11] proposed a framework named representational

similarity analysis (RSA) to study neural representations from neuroimaging data. Under

this framework, representation can be studied through the differences among all pairs of

experimental conditions. These representational dissimilarity features can then be used to

compare with conceptual models or dissimilarity features derived from other modalities to

reveal different properties of a cognitive function (e.g., its control model, dynamics, behav-

ioral correlate, etc.). The RSA approach has been widely used to study the dynamics of
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cognitive function underlying visual object recognition. For example, Cichy et al. [18] de-

signed an experiment in which they presented participants with images of objects. They

extracted neural representations at each time point from magnetoencephalography (MEG),

and at each voxel from functional magnetic resonance imaging (fMRI). Then, they searched

for time instances and voxels that shared similar patterns in their neural representation,

which depicted a spatiotemporally resolved information flow during visual object recogni-

tion. Besides, RSA has also been applied to EEG studies to trace the dynamics of various

cognitive functions, including audiovisual integration [12], visual object processing [13] and

memory [14].

One common character of these past works is the use of different stimuli across conditions

— they focused more on brain’s response to different categories of sensory inputs than on its

internal cognitive state. In this study, we deploy the idea of RSA to investigate the neural

representation of attentional states. We designed an experiment in which input auditory

signals were identical, but varied whether listeners engaged spatial or non-spatial auditory

attention. We used features in EEG time course and its alpha oscillations for neural decoding

to understand the degree to which the listener’s internal attentional states differed across

conditions. We then compared these neural representations to several conceptual models or

behavioral performance to reveal the kind of information being encoded at each time point

during the experiment.

2.2 Materials and methods

All study procedures were approved by the Institution Review Board of Boston University.

2.2.1 Participants

Thirty adults (19 – 44 years old, 14 women) participated in this study. No participant

reported hearing loss or any history of neurological disorders. All participants gave written
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informed consent, and were paid for their time.

2.2.2 Stimuli and task

Participants used either spatial or non-spatial attention to listen for the identity of a target

syllable (/ba/, /da/, or /ga/) among three distractor syllables differing from the target in

both time and spatial position. Raw stimuli were recordings of these syllables spoken by four

native English speakers (two men, two women). The syllables were spatialized, via a generic

head-related transfer function [40], to five simulated locations in azimuth: 90◦ from the left

(L90), 30◦ from the left (L30), center, 30◦ from the right (R30), or 90◦ from the right (R90).

(Figure 2.1a).

Figure 2.1: Experimental task. (a) Spoken syllables were spatialized to center, 30◦ left (L30)
or right (R30), and 90◦ left (L90) or right (R90), always in the horizontal plane. This figure is
showing one possible scenario where sounds come from L90, R90 and center. (b) Illustration
of the events within a trial. A visual cue (VC) showed the type of attention required for this
trial, followed by an auditory cue (AC) specifying the desired value of attention (a specific
direction or talker). A 4-syllable mixture was played one second after the AC. The first and
the last syllables were always distractors (D1). Of the second and the third syllables, one
was the target (T), and the other one was the second distractor (D2). All syllables were
600ms long, and their onsets were 300ms apart. The participants were instructed to respond
when the fixation dot turned blue. Feedback was given at the end of each trial via a green
(correct) or red (incorrect) fixation dot.

At the beginning of each trial, a visual cue (VC) was presented for 1 s, which instructed
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the participant to prepare for one of three types of trials (Figure 2.1b). “Space” indicated

that participants should use spatial attention to report the syllable at a particular location.

“Talker” indicated that participants should report the syllable spoken by a particular talker.

“Relax” represented a no-attention control trial. The VC was immediately followed by an

auditory cue (AC) that conveyed the relevant feature of the target. The AC was always

an /a/ sound. In “Space” trials, it was spoken by a synthesized gender-neutral voice and

spatialized to either L90 or R90, specifying the target location. In “Talker” attention trials,

the AC was spatialized to the neutral center location and spoken by one of the four talkers,

specifying the target talker. In “Relax” trials, the AC was spatialized to center and spoken

by the synthesized neutral voice.

After a one-second silent preparatory period, a 4-syllable mixture was played. All syl-

lables were 600 ms long, and their onsets were separated by 300 ms. The first and last

syllables were always distractors (D1) spatialized to center and spoken by a gender-neutral

talker. Of the second and third syllables, one was the target and the other was the second

distractor (D2). Syllables /ba/, /da/, and /ga/ were randomly permuted among target, D1

and D2. Subjects were instructed to identify and report the identity of the target syllable

via keypress (“1” for /ba/, “2” for /da/, and “3” for /ga/). Feedback, a green signal for a

correct answer or a red signal for an incorrect answer, was given after each response.

In “Relax” trials, participants were were asked to ignore all syllables, and give a random

answer at the end. The inter-trial interval was 2 seconds with jitters (0 – 0.5 second).

2.2.3 Experiment Design and Procedures

The full experiment consisted of 21 conditions (Figure 2.2). These conditions are distin-

guished by (1) the kind of attention required, as indicated by the VC, and (2) by the

characteristics of the target and of D2. The stimuli used in “Space” and “Talker” conditions

were also used in “Relax” conditions, to control for stimulus-driven effects. Participants

completed 36 trials of each condition for a total of 756 trials. The order of trials was shuffled

15



Decoding Attentional Control from Noninvasive Measures in Humans

and evenly divided into 12 blocks with short breaks between for participant comfort.

Figure 2.2: The 21 experimental conditions in this study. These conditions differ by their
VC and the location or gender of talkers for T and D2. The “Relax” conditions used the
same stimuli as in “Space” and “Talker”, but required no attention.

After collecting informed consent, subjects started with practicing the attention tasks

on a laptop. They performed a 21-trial test run of the experiment (i.e., one trial for each

of the 21 conditions) repeatedly until their response accuracy reached 75%. This ensured

that they fully understood the instructions and could correctly deploy Spatial and Talker

attention as required during the actual experiment. After training, subjects were asked to

sit in a sound-treated booth in front of a LCD computer monitor. All experimental audio

was presented through a pair of insert earphones (ER1, Etymotic Research).
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2.2.4 EEG recording and preprocessing

EEG was continuously recorded from 64 electrodes arranged according to the international

10/20 system. Signals were digitized at 2048 Hz using the ActiveTwo system (BioSemi B.V.)

The data were first passed through a sinc windowed FIR band-pass filter (0.1 - 50 Hz) to

remove slow drifts and line noise. This also served as an anti-aliasing filter. The signals were

then downsampled to 256 Hz. An independent component analysis was conducted using

EEGLAB [41] to remove eye blinks and muscle artifacts. The continuous EEG signals were

then split into epochs. We isolated a preparatory attention period from -1000 – 1500 ms

relative to the onset of the auditory cue, and a peristimulus attention period from -300 –

500 ms relative to the onset of the target syllable.

2.2.5 Measuring representational dissimilarity

Auditory attention was decoded from EEG signals to allow us study the neural representation

of attentional states. Similar to previous studies [18], [42], [43], decoding was based on

analyzing signals in the time domain, i.e., from the EEG time course. Additionally, since

alpha band oscillations (8 – 14 Hz), especially those in parietal cortex, carry rich information

about attentional state, we also decoded auditory attention from the time course of alpha

power. Figure 2.3 summarizes the steps in extracting neural representations for attention

decoding. Two features — the EEG time course and the instantaneous power of alpha band

oscillations (8 – 14 Hz) — were studied independently. Oscillatory power was calculated from

a continuous wavelet transform (CWT), which was averaged within the alpha frequency range

to estimate band power [44]. For each subject, at each time instance t0, we concatenated

the feature of interest from 64 EEG channels to form a feature vector.

Representational dissimilarities were measured from these vectors via machine learning

classification. If two conditions are dissimilar (e.g. a spatial attention condition compared

with a no-attention condition), the classifier may be able to identify distinguishing informa-

tion from their EEG features, and thus yield an above-chance classification accuracy (i.e.,
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>50%). At each time instance, for each pair of conditions, we trained a linear support vector

machine (SVM) using leave-one-trial-out cross-validation. On each of 100 iterations, one trial

from each of the two conditions under consideration was selected to be left out; all others

were used to train the SVM. The resulting model was applied to the held-out trials, and its

classification accuracy was recorded. The average classification accuracy across iterations

served to estimate the difference between conditions. This process yields a representational

dissimilarity matrix (RDM) for each time point, where each entry reflects the dissimilarity

of the neural responses across a particular pair of conditions.

Specifically, each row and column of an RDM corresponds to a condition index, and each

element stores the dissimilarity value between two conditions: the classification accuracy

when discriminating between condition i and j is saved at (i , j) and (j , i) of the RDM.

With this approach, the major diagonal of an RDM, representing the difference between one

condition and itself, is filled with zeros and is excluded from any analysis. Two sets of RDMs

for each subject were generated from this attention decoding process, one for the EEG time

course and one for the alpha-band power. Because there is one RDM at each time instance,

each set is a function of time, summarizing how the differences in neural responses to each

pair of conditions evolves over the course of a trial. These time-varying RDMs can be used

to study how neural representation of attentional states changes in the course of a trial.

It needs to be stressed that this neural decoding analysis was conducted for each subject

independently. This is because, there is abundant inter-subject variability, such as differences

in their neural anatomy and electrode placement, that may hinder classification using data

from all subjects. For example, a neural signature observed at channel CPz in one subject

may appear at channel POz in another. As close as these two channels are physically, the

classifier may only recognize two different effects in two separate dimensions, and thus will

not enhance its learning. Training subject-specific classifiers can ensure that the topographic

pattern of the same neural signature is consistent within all the samples, so that the distin-

guishing features between classes can be easily captured. These subject-specific RDMs can
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be studied through correlation with some ideal conceptual model RDMs (to be discussed

in Section 2.2.6) to find patterns embedded in these EEG RDMs, or through correlation

with subject-specific behavioral RDMs (to be discussed in Section 2.2.7) to link EEG with

behavioral performances.

Figure 2.3: Schematic diagram for how a representational dissimilarity matrix (RDM) was
derived. Either the EEG time course or power of a specific frequency band (calculated from
a continuous wavelet transform, or CWT) was used as the feature to decode attention at a
particular time point. Dissimilarity between each pair of conditions was estimated through
100 iterations of training-and-test a support vector machine (SVM) with a random choice of
test samples in each iteration. The average classification accuracy was saved in an RDM at
its corresponding positions. The output of this attention decoding procedure is a series of
RDMs as a function of time for each feature of choice (the EEG time course or power of a
frequency band).

2.2.6 Comparison to conceptual models

The RDM feature summarizes how one experimental condition differs from another. In our

study, since the conditions could be categorized into certain condition groups (e.g., Space,

Talker, etc.), this RDM feature also contained information about how a specific aspect of

attention differed from another. For example, if we are interested in the difference between
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two attention types, or the difference between conditions within the same attention type,

we can refer to certain portions of an RDM for this information — the square cells along

the major diagonal of an RDM (Space-Space, Talker-Talker and Relax-Relax in Figure 2.4a)

represent how one condition differs from another within the same attention type, while

the cells off the diagonal (Space-Talker, Space-Relax and Talker-Relax) show the difference

between attention types. Moreover, there were also micro-structures within Space-Space and

Talker-Talker. Four conditions in Space were about left attention, and the other four were

about right attention. They formed micro-cells that showed differences within attention to

the same side (Left-Left and Right-Right), and cells for attention to different sides (Left-

Right, Figure 2.4a). Similarly, the six talker-attention conditions were separated between

attention to a female talker and attention to a male talker. Thus, the Talker-Talker cell

could be further divided into Female-Female and Male-Male for within-gender comparisons,

and Female-Male for between-gender comparisons.

We created several conceptual models that capture specific patterns of discrimination

among conditions. Each was an ideal RDM model consisting entirely of 0s and ±1s: positive

for conditions that are very different in the dimension of interest, negative for conditions that

are very similar, and zero for conditions that are irrelevant. We then compared each subject’s

EEG RDMs over time to the ideal model RDMs by computing the correlation between the

computed RDM at each time point and the ideal model. The conceptual models are shown

in Figure 2.4b. For example, the “Space vs. Relax” model has low dissimilarity within

Space and Relax conditions (the Space-Space cell in the top left and the Relax-Relax cell in

the bottom right portions of the RDM), and high dissimilarity between these conditions (the

Space-Relax cell in the bottom left and top right portions of the RDM). All cells of the model

that include a Talker condition are set to zero, effectively excluding them from the analysis,

since these conditions give no information about the difference in brain activity patterns

for Space and Relax conditions. Similar conceptual models were constructed for “Talker vs.

Relax”, “Space vs. Talker”, “Left vs. Right”, and “Female vs. Male” (Figure 2.4b).
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Figure 2.4: (a) A representational dissimilarity matrix (RDM) in this study can be divided
into several cells, and each cell represents different information. The top left portion of the
RDM, Space-Space (the red cell), shows the difference between conditions within the spatial
attention group. Similarly, the other two square cells along the major diagonal, Talker-
Talker and Relax-Relax, also show differences within their respective condition groups. The
cells off the diagonal (Space-Talker, Space-Relax and Talker-Relax), on the other hand, store
dissimilarity values between conditions groups. In addition, within Space-Space and Talker-
Talker, there are also micro-structures showing comparisons between attention to different
directions (left or right), or between attention to talker of different genders (female or male).
(b) Five conceptual model RDMs used to study patterns in EEG RDMs. In Space vs Relax,
Talker vs Relax and Space vs Talker, cells representing comparisons between attention types
are given values of +1s, and cells for comparisons within each attention type are given values
of −1s. These models can be used to study the representation of attention types. In Left vs
Right, the Left-Right cells are filled with +1s, and the Left-Left and Right-Right cells are
filled with −1s — this model RDM is built to study the representation of “where to attend”.
In Female vs Male, we assigned +1s to the Female-Male cells, and −1s to the Female-Female
and Male-Male cells – this model is built to study the representation of “what to attend”.

For each EEG feature and experimental interval (cue and stimulus period), we tested

the correlation between the conceptual model RDMs and the EEG RDMs derived from our

data. A high correlation at a time point indicates that the EEG RDM at that time is similar

to the model being tested, which implies that the brain may have elicited signals that can
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distinguish different attentional states. The time series of correlation coefficients from each

subject were used as the input for a cluster-based permutation test (CBPT) for statistical

inferences.

CBPT (for details, see [45]) is a non-parametric statistical test that aims at finding

significant effects that are continuous in feature space (e.g., in time, space, frequency, etc.). In

this study of correlation with conceptual models, we setup the CBPT to identify continuous

time intervals in which the average correlation across all subjects were significantly above

zero. Specifically, we first calculated the t-statistics at each time point by comparing all

subjects’ correlation coefficients at each time point with zero using a one-sample t-test.

We set the cluster formation alpha to 0.05, which led to a series of above-threshold t-values.

These t-values formed clusters that were continuous in time, and we used the sum of t-values

within each cluster as the cluster-level test statistics. We then derived a null distribution

through randomly permuting data labels. For a one-sample t-test, this permutation process

could be effectively achieved by negating the sign of data for a randomly selected subset of

all subjects. With the permutation dataset, we again conducted a one-sample t-test at each

time point, and calculated the sum of t-values for each found cluster. Only the maximum

cluster-level test statistics from each permutation was used to form the null distribution.

We repeated this permutation process for 10,000 time, which yielded a null distribution

with 10,000 cluster-level test statistics. Then, we compared the observed cluster-level test

statistics with the null distribution, and assigned a p-value to each cluster — this p-value

equaled the proportion of the null distribution that were greater than the observed test

statistics of the cluster. For example, if the cluster-level test statistics of one cluster was

300, and only 10 out of 10,000 permutations yielded a cluster-level test statistics over 300,

this cluster was assigned with a p-value of 0.001. Any cluster with a p-value less than 0.05

was deemed as significantly above zero in this study.

These correlation analyses identify time intervals in which certain information (e.g., type

of attention or direction of attention) can be decoded from EEG signals. However, it does
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not reveal what aspects of the signal are driving the decoding, such as which channel contains

information that distinguishes one condition from another, or which condition has greater

value in that channel during this period of time. To answer these questions, we compared

the event-related potential (ERP) or band powers between conditions of interest. For ERP,

we used bootstrapping to estimate condition means in each channel for comparison [46].

For band power, we calculated the average of conditions within time intervals in which we

observed a high correlation. For example, if the alpha power EEG RDM and the Space

vs Relax model RDM are strongly correlated during a period of time, we took the average

alpha power of all spatial attention conditions within this period, and compared it with the

average alpha power of all no-attention conditions within the same period. This computa-

tion complements the study of neural representation, which only discovers the existence of

differences, by identifying information about what and where these differences are, which

could help us better understand the mechanisms of attention.

2.2.7 Comparison to behavioral performance

Participants’ behavioral performance varies across task conditions. The RSA approach al-

lows us to ask whether brain activity during any time periods is particularly relevant to

the subject’s behavioral performance. We constructed behavioral RDMs that comprise the

absolute difference in behavioral performance between conditions. Only active attention

conditions (8 spatial and 6 talker conditions) were used in this analysis. In addition, we

excluded subjects with more than two perfect scores (i.e., 100% accuracy), a result suggest-

ing that the task was not challenging enough for a particular participant (thus hindering

the manifestation of behavioral correlates). 19 out of 30 participants survived this exclusion

criteria. Their average behavioral RDM is shown in Figure 2.11a. We looked for time in-

tervals in the stimulus period where each individual’s behavioral RDM correlates with their

own EEG RDMs better than chance, which is indicative of a strong correspondence between

EEG signals and the observed behavioral performance.
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As with the analysis of correlation with conceptual models, correlation with the behav-

ioral RDM does not indicate any individual channel’s contribution to behavior. Therefore,

we conducted a channel-wise behavioral correlation analysis — we calculated the average

scalp voltage or alpha power for each condition at each channel across the period where a

subject’s EEG RDM correlates significantly with their behavioral RDM. For each subject in-

dividually, these channel-wise averages were first z-scored across all conditions, and then were

correlated with that subject’s corresponding z-scored behavioral performance. This process

yielded a set of channel-wise correlation coefficients, which reveal how EEG measures at each

channel covaried with behavioral performance.

2.3 Results

In this work, we studied the neural representation of auditory selective attention in EEG

signals. We designed an experiment with multiple conditions that used similar stimuli, but

required the listeners to adopt different listening strategies and different cognitive states. We

recorded EEG from 30 subjects when they were performing the attention task and extracted

neural representation features from their EEG time course or alpha oscillation power. These

representation features are essentially the differences between each pair of conditions, which

were estimated via a machine learning classification approach — EEG features, either the

EEG time course or its alpha oscillation power, were used to train and test a linear SVM. The

average classification accuracy of each binary SVM, estimated by cross-validation, was used

as the dissimilarity value between the corresponding conditions. These pair-wise differences

were summarized in a representational dissimilarity matrix (RDM) — each row and column

of an RDM represent a condition index, and the value stored at element (i,j) and (j,i) of an

RDM represents the estimated difference between condition i and condition j. This process

yielded a set of RDMs as a function of time;each time point has one specific RDM.
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2.3.1 Representational dissimilarity matrices

2.3.1.1 Cue period

Figure 2.5a shows several examples of EEG RDMs yielded by decoding attention from the

EEG time course during the cue period. Each row and column in an RDM represent a

condition index, and these conditions are arranged in the same way as in Figure 2.2.6 (i.e.,

the first 8 conditions are Space, followed by 6 conditions of Talker and 7 conditions of Relax).

The RDMs did not show any particular pattern until approximately 150 ms after an AC was

played. Spatial attention then separated from talker and no-attention in feature space, as

indicated by the high decoding accuracies in the bottom left cell and the low accuracies in the

bottom right cell at and after this time point. Moreover, at 150 ms, subjects’ attentional state

in conditions with a left cue could be decoded from conditions with a right cue, indicated by

the micro-structure within the Space-Space cell in the top left corner. At 250 ms after AC

onset, differences between attended to a female versus a male talker emerged in the EEG

responses (indicated by the micro-structure within the center square). These differences

between conditions in EEG time course were transient — the RDM returned to its random

pattern for the rest of cue period (as an example, see the RDM for 1000 ms).

Information in the alpha band persists compared to that in the EEG time course. Dif-

ferences between active attention conditions and no-attention conditions could be decoded

from alpha power as early as when an AC was presented (Figure 2.5b). And such difference

lasted through the end of the cue period, suggesting that auditory attention modulated alpha

oscillations when subjects cognitively prepared themselves for the upcoming task.

2.3.1.2 Stimulus period

We also examined the RDMs during the stimulus period. The EEG time course RDMs

showed discernable patterns only after the target syllable was played (Figure 2.6a). Space and

talker attention conditions were distinguishable from no-attention conditions immediately
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Figure 2.5: Examples of representational dissimilarity matrix in the cue period, derived from
(a) EEG time course, and (b) alpha power. 0 ms denotes the onset of auditory cue. Color
map was scaled to the 0th and 100th percentile value within each RDM.

(0 ms). In contrast, the alpha power RDMs showed a persistent pattern throughout the

stimulus period (Figure 2.6b), even before the onset of the target syllable — spatial and

talker attention conditions were consistently different from no-attention conditions in alpha

power. In addition, we also observed dissimilarity between left and right attention during

this period.

2.3.2 Correlation with conceptual models

2.3.2.1 EEG time course during cue period

We identified two important intervals in the cue period where the EEG time course RDMs

correlate with ideal RDM models of attention type (i.e., Space vs Relax, Talker vs Relax

and Space vs Talker) better than chance. The first interval occured between the VC and

the AC (-750 to -300 ms, Figure 2.7a, top panel) — the average correlation for all three

models peaked at around 350 ms after the onset of VC (i.e., -650 ms on the time axis),

and had relatively small correlation (ρ <0.1) throughout this period. We examined ERP

difference waves at several electrodes in order to understand the brain activity contributing
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Figure 2.6: Examples of representational dissimilarity matrix in the stimulus period, derived
from (a) EEG time course, and (b) alpha power. 0 ms denotes the onset of target syllable.
Color map was scaled to the 0th and 100th percentile value within each RDM.

to these differences. The analysis of EEG time courses revealed that that there was a minor

increase in correlation that could be attributed to subtle differences in late ERP components

observed at certain EEG channels (e.g., N2 at C4 and P3 at POz, Figure 2.7a). The second

interval, however, exhibit a strong, salient peak in correlation for Space vs Relax and Space

vs Talker, indicating that difference in EEG time courses between attention types could

be well decoded from the EEG time course. Spatial attention in Space conditions evoked

stronger N1 and P2 responses at C4 compared to Talker and Relax conditions, as well as

a stronger P2 response at POz. We also observed greater N1 responses at C4 and POz

in Talker than in Relax. This difference between the neural responses for Talker and Relax

conditions contributed to a significant increase in discriminability of these conditions at these

times, and an increase in the correlation of the measured responses with the Talker vs Relax

ideal model at approximately 130 ms after the AC onset.

The EEG time course RDMs did not correlate significantly with Left vs Right and Female

vs Male conceptual models until after an AC was played (Figure 2.7b). Correlation with the

Left vs Right model has an early peak (153 ms). In contrast, the Female vs Male model
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correlated most strongly with the computed RDMs sat a later time point (270 ms). The

former peak is aligned with differences in N1 response at channels like C4, while the latter

aligns with P2 responses at channels around FCz (Figure 2.7b). Both correlation traces

returned to their baseline soon after the offset of the AC (500 ms).

Figure 2.7: Correlation between EEG time course RDMs and conceptual model RDMs in
the cue period. (a) Five conceptual model RDMs consisted of 0s and ±1s. Zeros (masked by
grey) were not used in calculating correlation. (b) and (c) Top row shows the correlation time
course of each conceptual model, averaged across all subjects. The bars above indicate time
intervals in which their corresponding correlation trace is significantly above zero. The second
and third rows show EEG time courses from selected channels, averaged within each condition
group and across all subjects. The shaded region associated with each trace indicates the
95% confidence interval of the respective mean, estimated with bootstrap resampling.

2.3.2.2 Alpha power during cue period

The correlation between the measured alpha power RDMs and the ideal model RDMs in the

cue period yielded values consistently above zero (Figure 2.8a). This is notably different from

the transient effects observed in the time course analysis described above. After an AC is
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given, all three attention types could be decoded from each other using alpha power features

alone. We compared whole-scalp alpha power differences from 900 ms to 1200 ms and found

that, compared to the no-attention condition, Space and Talker focused attention induced

slightly, but not significantly, stronger alpha power in central and parietal channels. We also

observed significantly higher alpha power in the right parietal region in spatial attention

than in talker attention during the same window. Direction of attention or of the AC could

also be decoded from alpha power during the cue period. The Left vs Right model correlates

with alpha power RDMs above chance in a few discrete windows after the offset of the AC

(Figure 2.8b). Between 500 ms and 645 ms, we observed strong alpha power in parietal

sensors ipsilateral to the direction of attention or of the AC. This pattern was retained in

later windows, but became weaker and less significant over time. No strong correlation was

found between the Female vs Male model and alpha power RDMs.

2.3.2.3 EEG time course during stimulus period

In the stimulus period, correlations between the measured EEG RDMs and ideal model

RDMs were significantly above zero after the onset of target (Figure 2.9a), indicating that

differences between attention types could be decoded from the EEG time course during this

time window. ERP analysis revealed some differences between attention types at channels

like C4 and POz. However, unlike in the cue period, where we could attribute the observed

high correlation to differences in specific ERP components (e.g., N1 or P2, etc.), it is difficult,

if not impossible, to do so in the stimulus period; specifically, ERPs of different syllables

overlapped with each other in time, as the the syllables were only separated by 300 ms, shorter

than the duration of a typical ERP. We also observed significant correlations between the

the measured RDMs and the ideal Left vs Right model roughly 150ms after target syllable

onset, and for the Female vs Male model at around 380 ms (Figure 2.9b).
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Figure 2.8: Correlation between EEG alpha power RDMs and conceptual model RDMs
(shown in Figure 2.7a) in the cue period. (a) and (b) Traces represent correlation time
courses, averaged across all subjects. The bars above indicate time intervals in which their
corresponding correlation trace is significantly above zero. The topographic maps show alpha
power differences between condition groups within certain time intervals, in the form of t
values. Asterisks indicate channels where the observed difference is significant.
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Figure 2.9: Correlation between EEG time course RDMs and conceptual models (shown in
Figure 2.7a) in the stimulus period. (a) and (b) Top row shows the correlation time course of
each conceptual model, averaged across all subjects. The bars above indicate time intervals
in which their corresponding correlation trace is significantly above zero. The second and
third rows show EEG time courses from selected channels, averaged within each condition
group and across all subjects. The shaded region associated with each trace indicates the
95% confidence interval of the respective mean, estimated with bootstrap resampling.

2.3.2.4 Alpha power during stimulus period

Alpha power in the stimulus period carries abundant information about the internal type

of top-down attention a listener engages. The correlation traces for all three attention type

models were above chance throughout the whole stimulus period (Figure 2.10a). Space and

Talker attention induced substantially stronger alpha power than Relax conditions in frontal

and parietal regions from 0 ms to 300 ms after the onset of the target syllable. For Space

vs Talker, we observed strong alpha power in left temporal and left parietal regions during

the same window. Direction of attention could be decoded from alpha power in the stimulus

period, evidenced by the high correlation between alpha power RDMs and the Left vs Right
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model (Figure 2.10b). The alpha power difference between left and right attention conditions

exhibit the same topographic pattern as in the cue period (Figure 2.8b) — there is stronger

alpha power in the parietal region ipsilateral to the direction of attention. This pattern grew

stronger and more significant over time, especially after the onset of the target syllable. In

addition, we also noticed stronger alpha power in frontotemporal regions contralateral to the

direction of attention, which was also hinted from, but not significant in, the results for the

cue period. No strong correlation was shown between the Female vs Male model and alpha

power RDMs during the stimulus period.

2.3.3 Similarity to behavioral performance

The average behavioral RDM shows a “checkerboard” pattern in the top-left Space-Space

cell and a stripy pattern in the Space-Talker cells (Figure 2.11a). This is because, in our

experimental design, conditions 1, 2, 5 and 6 present the target and late distractor syllables

on the same sides (both left or both right), while conditions 3, 4, 7 and 8 have target

and late distractor syllables on opposite sides. Since a distractor on the same side as the

target is more likely to interfere with perception of the target, conditions 1, 2, 5 and 6

are more difficult (Space Hard), while the other conditions in Space are relatively easier

(Space Easy). A paired t-test to compare the average behavioral performance in different

condition groups found that Space Easy (92.18%) and Talker (93.18%) have comparable

behavioral results (p=0.42), which are both significantly lower than that of Space Hard

(82.20%, p<0.001). These differences between condition groups could explain the patterns

observed in Figure 2.11a.

We identified one time interval in which EEG time course correlates significantly with

behavioral performance — around 230 ms after the target onset (Figure 2.11b). Channel-

wise correlation analysis revealed that, during this interval, the EEG time course in sevearal

centro-frontal channels (Cz, FCz, Fz, C2, FC2 and F2) correlates significantly and positively

with behavioral performance (Figure 2.11c).
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Figure 2.10: Correlation between EEG alpha power RDMs and conceptual models (shown
in Figure 2.7a) in the stimulus period. (a) and (b) Traces represent correlation time courses,
averaged across all subjects. The bars above indicate time intervals in which their corre-
sponding correlation trace is significantly above zero. The topographic maps show alpha
power differences between condition groups within certain time intervals, in the form of t
values. Asterisks indicate channels where the observed difference is significant.

33



Decoding Attentional Control from Noninvasive Measures in Humans

Figure 2.11: Correlation between EEG RDMs and the behavioral RDMs in the stimulus
period. (a) Average behavioral RDM across all subjects. (b) Correlation time courses,
derived from EEG time course. Correlation coefficients were averaged across all subjects, and
the shaded area shows 95% confidence interval of the mean, estimated with bootstrapping.
The bars above indicate time intervals in which their corresponding correlation trace is
significantly above zero. (c) Channel-wise correlation between the EEG time course, averaged
within the found significance interval in (b), and behavioral performance. Channels with a
significant correlation (p<0.05) are denoted with asterisks.

2.4 Discussion

In this work, we studied the neural representation of auditory selective attention in EEG

signals. We designed an experiment with multiple conditions that used similar stimuli, but

required the listeners to adopt different listening strategies and different cognitive states.

We recorded EEG from 30 subjects when they were performing the attention task and ex-

tracted neural representation features from their EEG time course or alpha oscillation power,

via a neural decoding approach. These neural representation features, or representational

dissimilarity matrices (RDMs), quantified the difference in brain signals between each pair

of experimental conditions, and were calculated from each time point during the experi-

ment. We examined the patterns in RDM features and how these patterns evolved over time

through correlating these EEG RDMs with specific conceptual model RDMs. In addition,

we also explored the link between EEG signals and the observed behavioral performance in

attention tasks by correlating EEG RDMs with individual behavioral RDMs. These analyses

identified time intervals during which brain signals are significantly modulated by the type

of attention a listener deploys, or have strong correspondence with a listener’s performance

34



Decoding Attentional Control from Noninvasive Measures in Humans

in the attention task.

2.4.1 Neural representation of brain states

The method of studying neural representations to understand brain dynamics, or representa-

tional similarity analysis (RSA, [11]), has been applied in multiple domains in neuroscience

research, including visual object recognition [18], [42], [47], visual object processing [13],

scene perception [48], audiovisual integration [12], and semantic categorization of sound [49].

In all of these studies, researchers presented various visual or auditory stimuli to subjects

and extracted RDM features from their EEG, MEG or fMRI signals to investigate how

stimuli of different categories were processed during the experiment, or how they were rep-

resented in different brain regions. In other words, these studies applied RSA to decode

certain properties of the stimulus. Our study, on the other hand, deployed RSA to track

the dynamics of brain states instead of input categories. The auditory stimuli we presented

to subjects were either identical or only slightly different between experimental conditions.

Instead, we varied the attentional states of subjects across different tasks, which may be

the major property that is being characterized by the RDM features in this study. To our

knowledge, only one prior work has attempted to explore the neural representation of brain

states. [43] conducted an RSA study to investigate the dynamics of the fronto-parietal at-

tention network during an audiovisual attention task. They extracted RDM features from

EEG time course, and compared them with RDMs calculated from fMRI signals to track the

spatiotemporal dynamics of attentional control. One challenge faced in this previous study

was the trade-off between a condition-rich experimental design and the sample size for each

condition: due to the fact that trials in attention studies are usually long due to multiple

presentations of stimuli, subject response and feedback to answers, very limited amounts of

data were collected in this prior work (20 trials per condition for 6 conditions, and 5 trials

per condition for the other 12 conditions), which inevitably hindered an accurate estimation

of dissimilarities. In our study, we designed an experiment comprising short trials that used
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fast repetitions of short syllables as stimuli. As a result, we managed to collect 36 trials

for each of the 21 conditions. With these data, we could afford estimating representational

dissimilarities with cross-validation (e.g., the classification approach adopted in this study),

which is highly recommended as noise in the dataset can make EEG signals more dissimilar

than they are in reality [50], [51]. Moreover, we decoded attention not only from EEG time

courses, but also from its oscillatory band powers. The induced alpha oscillation used for

attention decoding in this study is a robust neural signature of selective attention [38], [39],

[52] — when our brain shifts its cognitive state, the alpha oscillation power observed in EEG

is strongly modulated and shows distinctive topographic patterns, which underscores the

need to examine both time course and oscillation features in brain state studies.

2.4.2 Correlation with conceptual model RDMs

2.4.2.1 Cue period

The correlation between EEG RDMs and the ideal conceptual model RDMs reveals time

intervals during which the difference between attention types has strong representation in

EEG signals. When using EEG time course for decoding, we identified two intervals in the

cue period that are significantly correlated with the attention type RDMs (Figure 2.7a, top

panel). The first interval, from 250 ms to 700 ms after the VC onset (i.e., -750 to -300

ms as shown in the figure), happened after the participants received an instruction for the

type of attention (i.e., spatial, talker or no-attention) they need to use in the coming trial.

The ERP analysis for channels C4 and POz revealed that though there is no discernable

difference in early ERP responses among the three attention types, some minor differences

in late responses (e.g., around -500 ms at POz) may have contributed to the observed above-

chance correlation. The second interval (around 0 to 600 ms) contains a correlation peak

for the Space vs Relax and Space vs Talker models (Figure 2.7a, top panel), indicating that

the brain responses contrastingly to an AC in Space than one in Talker or Relax. This

difference may be largely caused by the fact that the AC in Space comes from either left or
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right, while the AC in Talker and Relax always comes from the center. Therefore, we should

expect a difference in neural processes during this window for different cue perception and/or

AC-evoked bottom-up attention. Correlation with the Left vs Right model consolidates this

view — its peak amplitude and latency is almost identical to the ones in Space vs Relax,

indicating that the information being encoded during this interval is mostly the perceived

location of the sound, or the bottom-up attention aroused by it. In addition, model Female

vs Male also strongly correlated with EEG RDMs during the same window, but with a

relatively later peak than the correlation with the Left vs Right model (Figure 2.7b, top

panel). It might suggest that the spatial information of sound is encoded by the brain earlier

than the encoding of its acoustic features (e.g., pitch, talker voice or gender, etc.).

The correlations between conceptual model RDMs and alpha power RDMs in the cue

period exhibit a different temporal pattern — the correlation with all three attention-type

models increases over time and stays high till the end of the cue period (Figure 2.8a). Dur-

ing this period, the listeners are expected to adjust their internal attentional state according

to the given VC and AC. The fact that all three correlation traces stayed consistently and

significantly above zero towards the end of the cue period may have indicated that the par-

ticipants successfully switched their attentional state during this preparatory period and

were getting ready for the coming task. Correlation with the Left vs Right model suggests

that the spatial information of sound is represented in alpha power only after 500 ms fol-

lowing the AC onset (Figure 2.8b), which is much later than that in the EEG time course

(Figure 2.7b, top panel). The acoustic information of sound, however, is not shown in alpha

power RDMs, as suggested by their lack of correlation with the Female vs Male model. The

CWT analysis revealed that Space induced significantly higher alpha power than Talker in

the parieto-occipital region (Figure 2.8a), and the difference between Left and Right yielded

a contrasting pattern in the same region (Figure 2.8b). These results match with what has

been reported in previous EEG studies [39], and show the significant role of alpha oscillation,

as a gating mechanism, in auditory spatial attention.
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2.4.2.2 Stimulus period

The correlation between EEG time course RDMs and the attention-type model RDMs in

the stimulus period revealed that information about attention-type is mostly encoded in

EEG time course after the target onset (Figure 2.9a, top panel). However, since ERPs

of different syllables are overlapping in this interval, it is difficult, if not impossible, to

disentangle the effects of different ERP components (e.g., N1 or P2). Therefore, we can

not confirm whether the observed post-target effects were caused by attention modulation

on the N1 or P2 magnitude. Correlation with the Left vs Right and the Female vs Male

model (Figure 2.9b, top panel) showed a similar pattern as in the cue period — the spatial

information of sound is represented in EEG earlier than its acoustic information. The gap

between these two correlation peaks in the stimulus period (around 220 ms) appears to be

greater than that in the cue period (around 100 ms). This might be caused by the existence

of competing sounds during this period, which increased cognitive load and slowed down the

neural processes for target identification.

The correlation between EEG alpha power RDMs and all conceptual model RDMs in

the stimulus period yielded results (Figure 2.8) that are akin to what we observed towards

the end of the cue period (Figure 2.7). The only difference is the significantly stronger

alpha power observed in frontal and parietal channels in Space and Talker than in Relax

(Figure 2.8a). It re-emphasizes the important role of alpha oscillation in auditory attention.

2.4.3 Comparison to behavioral RDMs

The RSA approach also offers a way to link behavioral performance with EEG signals via

the use of RDM features. In a condition-rich experiment, subjects’ performance may vary

substantially across different conditions. The relative difference between each pair of condi-

tions, or in other words, the information summarized by a behavioral RDM, can help reveal

time points in which EEG features covary with the observed behavioral performance. We

identified an interval in the stimulus period, around 230 ms after the target syllable onset,
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that shows significant correlation between the EEG time course RDM and the behavioral

RDM (Figure 2.11a). A subsequent channel-wise behavioral correlate analysis revealed that

EEG signals in several centro-frontal channels (Cz, FCz, Fz, C2, FC2 and F2) are positively

correlated with the observed performance (the topographic map in Figure 2.11b). The win-

dow around 230 ms after stimulus onset is generally accepted as when the second major

positive deflection in an ERP waveform, or the P2 wave, occurs. The functional role of P2

is less understood compared to other major components in an ERP [53]. A limited number

of previous studies have associated auditory P2 with various aspects of cognitive functions,

such as stimuli perception [54], language learning [55], and selective attention [56], [57]. In

these studies, an increase in P2 amplitude was observed after completion of musical training

or language learning, or when attention was focused on the frequency or timing of sound.

In other words, a stronger P2 is generally associated with a better perception of sound —

this improvement in perception could be acquired through training, or through top-down

attentional control. In our study, the listeners focused their attention on a particular loca-

tion or talker to complete the task. Their behavioral performance greatly depended on how

well they could shift their brain state to suppress the perception of distractors and enhance

the perception of the target. Therefore, a positive correlation between the centro-frontal

P2 amplitude and behavioral performance may have implicated a better perception of the

target syllable in trials when the listeners gave a correct answer.

2.4.4 Compare RSA to classical EEG analysis

RSA is a powerful tool to study neural correlates with a condition-rich experimental design.

It is different from classical EEG studies, such as ERP analysis or time-frequency analysis,

where we directly compare the signal or some measures calculated from the signal (e.g.,

frequency band power) between two conditions or condition groups. Instead, RSA operates

on the relationship among multiple conditions — it quantifies the dissimilarity between

each pair of conditions, and uses these dissimilarity features as an abstraction to study brain
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state. In contrast to a classical analysis, RSA omits the sign of difference when accumulating

evidence across samples — any difference is informative in an RSA and can be added to

another regardless of their sign. This is particularly powerful when there are individual

differences in the effect under test. For example, in an auditory salience study, one subject

may find certain sounds to be more salient than the others, while another subject may feel the

opposite. If the question being asked is which brain region encodes the perceived salience of

sound, data from these two subjects will boost the observed effect under an RSA framework,

but will neutralize each other in a classical analysis. Therefore, RSA can be more sensitive

in capturing certain effects than a classical analysis.

Another issue in EEG studies that RSA can possibly mitigate, which is also due to

individual differences of some kind, is the variability in where an effect happens across

subjects. People have differences in neuroanatomy, which may cause the signals observed

from the scalp to be different even if they come from two identical neural sources. In addition,

factors like head size, EEG cap size and cap montage may also introduce extra variability in

spatial alignment of effects between subjects. This could be a potential issue for a classical

EEG study — two subjects may end up having major effects in separate channels, even if

they were caused by the same neural process. When this happens, these two effects can

not be easily combined, unless the misalignment is small and a high-density EEG is used.

However, this is less problematic in RSA, if the timing of events is the only inference to

make. As demonstrated in this study, RSA uses all the data from space (i.e., data from

all EEG channels) to estimate dissimilarity between conditions at one time point. In this

way, any spatial information is confined within each subject, and we only compare temporal

dissimilarity measures across subjects. Therefore, as long as the effects of interest can be

captured by some electrodes, the misalignment issue is irrelevant to an RSA study.
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2.4.5 Limitations

In this study, we estimated the power of alpha oscillation in EEG signals using a continu-

ous wavelet transform (CWT). CWT calculates oscillatory power within a series of sliding

windows, whose length is dependent on the frequency of the oscillation at test — a longer

window for a low-frequency oscillation, and a shorter window for a high-frequency oscilla-

tion. As a result, the CWT output at one time point was calculated using information both

before and after that time, which essentially smeared the temporal resolution of results in

our analyses. Moreover, the “alpha” band (8 – 14 Hz) oscillation being analyzed in this

study spans several frequency bins in our CWT outputs, each of which had a slightly dif-

ferent window length. Since we averaged values across these bins to yield the estimated

alpha power measure, there is an ambiguity in the exact amount of information leakage from

past or future data points. Therefore, even though the results of decoding with EEG time

course shares the same temporal resolution as the preprocessed EEG data (i.e., 256 Hz), the

results of decoding with alpha power should be interpreted with caution — the “onset” of

an effect (e.g., the moment when correlation starts to increase) should not be taken as the

exact moment when certain cognitive function happens. Instead, it actually happens after

a delay defined by the window length of the exact wavelet that captures this event.

Another limitation of this study is the relatively small number of conditions in our exper-

imental design compared to previous RSA studies [18], [42]. A greater number of conditions

can effectively reduce the chance of having false discoveries. We tried to control the false

discovery rate by adopting a non-parametric statistical method (i.e., the cluster-based per-

mutation test), which does not make assumptions on noise distribution and makes statistical

inferences on a cluster level. We also recruited a relatively large number of participants (n

= 30) for this type of study, for a greater statistical power and a less biased estimation of

population means. However, a greater number of conditions and trials per condition are

always preferred in RSA studies. Our design was constrained by the use of an attention task

that requires subject response, which is not necessary for most previous RSA studies, since
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they focused on decoding stimulus rather than differences in the internal processing state

across different listenting conditions. Future studies should consider designing experiments

in a way that data from multiple trials and/or conditions could be acquired per subject

response. This will effectively reduce the time to acquire a dataset that is ideal in size (i.e.,

number of conditions and trials per condition) for an RSA study.

2.4.6 Future directions

In this study, we tested the representation of a set of conceptual models in EEG through

their correlation with EEG RDMs. These tests were conducted separately for each individual

model, so that we could examine one aspect of attentional control at a time. For example,

correlating EEG RDMs with the Space vs Relax model RDM only revealed time points in

which EEG signals show differences between spatial attention and no-attention. As simple

and straightforward as it is, this approach does not account for the fact that our brain is

essentially a multi-tasking machinery — the cognitive functions encoded by these conceptual

models may in fact happen simultaneously. One way to acknowledge the interaction between

these functions during the task and examine them in a more integrative manner is to conduct

a multi-model fitting analysis [9]. We can treat the conceptual models in Figure 2.4b as

competing models during the task, and fit the observed EEG RDMs as a linear combination

of the conceptual models at each time point. This process will yield a set of model coefficients

(or weights) as a function of time, which can implicate the dynamics of cognitive functions

encoded by these models, and offer a rigorous framework to compare their relative strength

at a certain time point.

2.5 Conclusions

This paper is among the very few pioneering studies that adopted a representational simi-

larity analysis framework to investigate the neural representation of attentional states. We
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designed a condition-rich experiment and recorded EEG signals while the listeners partic-

ipated in an auditory attention task. We extracted representational dissimilarity features

from the EEG time course and alpha oscillation power, and compared these features with

ideal conceptual models or behavioral performance. We identified time intervals in which

particular contrasts in attentional state, such as the difference between attention types or

between attention to different locations, have strong representation in the EEG time course

or in its alpha power. We also revealed that the listener’s behavioral performance in the

attention task is significantly and positively correlated with the P2 amplitude evoked by the

target syllable.
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Chapter 3

Neural activation and representation

of auditory attention in fMRI1

3.1 Introduction

In our daily life, we are exposed to a mixture of all kinds of sounds — the conversation

we are in with a colleague, people chatting in the background, noise of a bus running by,

etc. This creates a potentially overwhelming auditory scene, in which the signal we desire

is buried in abundant unwanted noises. However, most people find it effortless to focus on

one target sound and ignore the distractors, thanks to auditory selective attention. Unlike

in vision, where we can easily shift attention by moving the eyes, auditory attention can

only be achieved covertly via cognitive control. That is, we change our internal attentional

state in the brain in order to attend to or ignore a sound object [1]. This control is natural

and swift for healthy people, but can be challenging for people with neurological conditions

such as attention deficit/hyperactivity disorder [2], [3] or autism spectrum disorder [4], [5].

This makes it important to study the neural mechanisms that underlie auditory selective

1This chapter is adapted with permission from a manuscript: Winko W. An, Abigail Noyce, Alexander
Pei, Barbara Shinn-Cunningham, “Neural activation and representation of auditory attention in EEG”, in
preparation

44



Decoding Attentional Control from Noninvasive Measures in Humans

attention.

When we are in a busy acoustic scene, there are two major strategies that can help

us enhance a target sound and suppress distractors. First, if we know the location of a

target sound (e.g., cars passing us on the left when we are riding a bike), we can tune our

attention to that location for a better perception of the sound. This strategy is attention

to space, or spatial attention. Alternatively, if we are unsure about the target’s location,

but are certain about the acoustic features of the target sound (e.g. a person with a known

voice chit-chatting in a noisy cafe), we can selectively attend to a sound object with that

acoustic feature. This strategy is attention to acoustic features, or more generally, non-

spatial attention. The neural mechanism behind spatial and non-spatial auditory attention

has been studied via different methods, and there is a broad agreement that there exists a

dorsal pathway, where the spatial information of sound (the “where” information) is primarily

processed, and a ventral pathway, where the non-spatial information of sound (the “what”

information) is encoded [6]. However, the exact role of brain areas along these pathways in

spatial and non-spatial auditory attentional control remains unclear.

Functional magnetic resonance imaging (fMRI) has exquisite spatial resolution and has

become a popular tool for studying cognitive function. fMRI monitors the blood-oxygen-

level-dependent (BOLD) signal during an experiment, and uses it as a measure of brain

activities. It has been applied to study differences between spatial and non-spatial auditory

attention. Hill and Miller [58], for example, used fMRI to compare attending to a speech

stream by its location or by its pitch. They identified several brain regions that are biased to

attention to space, including inferior parietal sulcus (IPS), superior parietal lobule (SPL), and

dorsal precentral sulcus (DPreCS). The inferior frontal gyrus (IFG) and superior temporal

sulcus (STS), on the other hand, showed more activity during a pitch attention task. In

another study, Michalka et al. [59] identified a visual-attention network including superior

precentral sulcus (sPCS), inferior precentral sulcus (iPCS), and parietal and occipital cortex.

The study also found an auditory-attention network including transverse gyrus intersecting
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precentral sulcus (tgPCS), caudal inferior frontal sulcus (cIFS), and superior temporal cortex.

Interestingly, the study revealed that spatial and temporal attention, respectively, recruit

visual and auditory attention networks in the frontal lobe, independent of sensory modality.

The visual-attention network can be called during an auditory task that requires spatial

information, and vice versa. These studies show that spatial and non-spatial attention may

recruit different brain regions or attention networks, and such differences can be shown in

fMRI data.

Classical fMRI studies, such as the general linear model (GLM) analysis, directly compare

conditions to make inferences about the neural processes underpinning a cognitive function.

Another analysis approach is to infer the neural representation [9]. A neural representa-

tion is a description of the information encoded in a neural unit, such a brain area [10].

Representational similarity analysis (RSA) is a framework to study neural representations

from neuroimaging data [11]. Under this framework, representation can be studied through

the differences among all pairs of experimental conditions. These pair-wise dissimilarities,

summarized in a matrix called a representational dissimilarity matrix (RDM), can then be

compared with conceptual models or with dissimilarity features derived from other neu-

roimaging modalities to reveal different properties of a cognitive function (e.g., its control

model, dynamics, behavioral correlate, etc.). The RSA approach has been used to study the

dynamics of cognitive function underlying visual object recognition. For example, Cichy et

al. [18] designed an experiment in which they presented participants with images of objects.

They calculated RDMs at each time point from magnetoencephalography (MEG), and at

each voxel from fMRI. Then, they searched for time instances and voxels that shared similar

patterns in their RDMs, which depicted a spatiotemporally resolved information flow during

visual object recognition. RSA has also been applied in other fMRI studies to investigate the

semantic processing of words [15], language comprehension [16], and computational models

of reading [17].

One common character of these past works is the use of different stimuli across conditions
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— they focused more on brain’s response to different categories of sensory inputs than on its

internal cognitive state. In this study, we deploy RSA to investigate the neural representation

of attentional states. We matched the auditory stimuli across conditions but varied whether

listeners engaged spatial or non-spatial auditory attention. We collected fMRI data while

subjects performed this task and calculated RDMs at each voxel to understand how the

listener’s internal attentional states differed across conditions. We then compared the RDMs

to several conceptual models and to behavioral performance to reveal the kind of information

being encoded at each voxel and brain region.

3.2 Materials and methods

3.2.1 Participants

Nineteen adults (19 – 30 years old, 8 women) participated in this study. No participant

reported hearing loss or any history of neurological disorders. The Institutional Review

Board of Boston University approved this study. All participants gave written informed

consent, and were paid for taking part in the study. They also filled and signed a MRI safety

screening form before the experiment. All participants had previously participated in an

EEG study using this same task (see Chapter 2).

3.2.2 Stimuli and task

The syllables /ba/, /da/ and /ga/, spoken by native English talkers (2 female and 2 male

talkers), were used as the stimuli. The syllables were spatialized by a set of generic head-

related transfer functions [40]. The simulated locations of these syllables were 90◦ from the

left (L90), 30◦ from the left (L30), center, 30◦ from the right (R30), or 90◦ from the right

(R90), in the horizontal plane (Figure 3.1a).

At the beginning of each trial, a visual cue (VC) was shown on the screen for one second,

which could be one of three words: “Space”, “Talker”, or “Relax” (Figure 3.1b). “Space”
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(spatial attention) indicated that participants should attend to a particular location in the

upcoming trial; “Talker” (talker attention) instructed the participants to attend to a specific

talker by the acoustic features of his or her voice; “Relax” (no-attention) represented a control

trial where no attention would be required. An auditory cue (AC) — a spatialized /a/ sound

— was given after the VC to direct the participant’s attention. In “Space” attention trials,

the AC was spoken by a synthesized gender-neutral talker from either L90 or R90, specifying

the target location. In “Talker” attention trials, the AC was spoken by one talker from the

center, specifying the target talker. In no-attention “Relax” trials, the AC carried a neutral

value for both space (center) and talker gender (a synthesized gender-neutral talker). After

a 1000 ms silent period, a 4-syllable mixture was played. All syllables were 600 ms long, and

their onsets were separated by 300 ms. In “Space” and “Talker” attention trials, the first and

the last syllables were always distractors (D1) spoken by a gender-neutral talker from the

center. Of the second and third syllables, one was the target (T), with the other one being

the second distractor (D2). Syllables /ba/, /da/, and /ga/ were randomly permuted among

T, D1 and D2. The task was to ignore D1 and D2, identify the syllable of T, and answer

using the response button box (the first button for /ba/, the second for /da/, and the third

for /ga/). Visual feedback was given after each response to show whether the answer was

correct. In no-attention trials, the participants were asked to ignore all syllables, and give a

random answer at the end. The experiment was developed in MATLAB (2017a, Mathworks,

MA, USA) using the Psychtoolbox package (V3.0.14, [60], [61]).

We designed an experiment consisted of 21 conditions (Figure 3.2). These conditions

are distinguished by their attention type and characteristics of the stimuli — their location,

gender of talkers, and a feature orthogonal to the type of attention being tested (i.e., a talker

gender difference in spatial attention conditions, and a location difference in talker attention

conditions). The stimuli used in active attention conditions (Space or Talker) were re-used

in Relax conditions, but required no attention.
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Figure 3.1: Experimental task. (a) Spoken syllables were spatialized to center, 30◦ left (L30)
or right (R30), and 90◦ left (L90) or right (R90), always in the horizontal plane. This figure is
showing one possible scenario where sounds come from L90, R90 and center. (b) Illustration
of the events within a trial. A visual cue (VC) showed the type of attention required for this
trial, followed by an auditory cue (AC) specifying the target (a specific location or talker). A
4-syllable mixture was played one second after the AC. The first and the last syllables were
always distractors (D1). Of the second and the third syllables, one was the target (T), and
the other was the second distractor (D2). All syllables were 600ms long, and their onsets
were 300ms apart. The participants were instructed to respond when the fixation dot turned
blue. Feedback was given at the end of each trial via a green (correct) or red (incorrect)
fixation dot.

3.2.3 Data collection

All experiments were conducted at the Boston University Cognitive Neuroimaging Center.

fMRI data were collected with a 3T Siemens MAGNETOM Prisma scanner (64-channel

head coil), equipped with a PROPixx Lite Projector (VPixx Technologies, QC, Canada) for

presenting visual stimuli and Sensimetrics S14 insert earphones for playing sound stimuli.

Foam materials were applied between the head coil and earphones to reduce the perceived

loudness of scanner noise.

The participants completed the experiment in two visits that were scheduled on different

days within a week. In their first visit, the subjects started with practising the attention

tasks on a laptop in a preparation room. They were required to attempt a 21-trial test

run of the experiment (i.e., one trial for each of the 21 conditions) repeatedly until their
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Figure 3.2: The 21 experimental conditions in this study. These conditions differ by their
VC and the location or gender of T and D2. The “Relax” conditions used the same stimuli
as in “Space” and “Talker”, but required no attention. Adapted with permission from An
et al. [62].

response accuracy reached 75%. This is to ensure that they fully understood the instructions

and would correctly allocate attention during the actual experiment. Next, we acquired

structural scans using both a T1-weighted sequence (176 sagittal slices, FOV = 256 mm2,

TR = 2530 ms, TE = 1.69 ms, flip angle = 7◦), and a T2-weighted sequence (176 sagittal

slices, FOV = 256 mm2, TR = 3200 ms, TE = 425 ms, flip angle = 120◦). The T1 images

were used for preprocessing the functional data, which will be discussed in Section 3.2.4.

The T2 images were not used in this study. Following the structural scans, the participants

were asked to perform 5 runs of attention tasks. Each run consisted of 63 trials with equal
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presence of each condition (i.e., 3 trials from each of the 21 conditions), whose order of

appearance was randomly permuted, forming an event-related design. These functional

scans were acquired from the whole brain with a fast sampling rate using multiband pulse

sequences (TR = 650 ms with a multiband factor of 8, TE = 3.48 ms, FOV = 720 mm2, flip

angle = 52◦, resolution = 2.3 mm isotropic). To address the issue of reduced tissue contrast

due to multiband acquisition, a single-band reference images with full tissue contrast was

acquired at the beginning of each run of functional scans for realignment and registration

with structural scans (see Section 3.2.4). The inter-trial intervals in these runs were integer

seconds with the value randomly chosen from 5 to 10 with equal probability. In total, 1000

frames were collected from each functional run. An optional short break was given between

two runs. In their second visit, the participants completed another 7 runs of functional scans,

making the total number of trials 756 (i.e., 36 trials per condition).

3.2.4 Preprocessing

The fMRI data were preprocessed using SPM12 [63], following its recommended pipeline [64].

No slice timing correction was applied due to the low TR employed in this study [65].

The single-band reference image with full tissue contrast acquired at the beginning of each

functional run was used to realign the time series of images and register with the T1 structural

scan [65]. Segmentation was performed on T1 scans using the voxel-based morphometry

technique, and the segmented data of individual subjects were normalized to the MNI152

linear space for group-level analysis.

Figure 3.3 illustrates the analyses conducted in this study and the preprocessing required

for each of them. For representational similarity analysis (RSA, the blue blocks in Figure 3.3,

to be discussed in Section 3.2.6), no more preprocessing procedures were needed after nor-

malization. For the general linear model (GLM) analysis to be discussed in Section 3.2.5

(the red block in Figure 3.3), additional spatial smoothing was applied to increase the signal-

to-noise ratio. In this study, a Gaussian smoothing kernel with an isotropic 6-mm full width
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at half maximum was used to serve this purpose.

Figure 3.3: Schematic diagram for the analyses conducted in this study. Raw fMRI data
were first preprocessed with and without spatial smoothing. The smoothed data were used
for a general linear model (GLM; in the red block) analysis, in which three contrasts were
examined — Space > Relax, Talker > Relax, and Space > Talker — to explore the relative
strength of activation between different attention types. The unsmoothed data were used
for a representational similarity analysis (RSA; in the blue blocks). First, we conducted
another GLM analysis to derive the contrast between each of the 21 experimental conditions
and an explicitly modeled resting state. Then, we extracted multivariate features from these
condition-wise t-statistics, and calculated the dissimilarity between each pair of conditions
at each voxel. This information was summarized in a representational dissimilarity matrix
(RDM). Finally, we correlated these voxel-level RDMs with 1) some conceptual model RDMs
to discover patterns in these fMRI RDMs, and 2) behavioral RDMs to explore the relationship
between voxel-level activation and the observed behavioral performance in the attention
tasks.

3.2.5 General linear model

We conducted a GLM analysis to study voxel-level effects of auditory attention. A set of

regressors were created for GLM, including:

• Active attention, modeled as time-locked to the onset of auditory cues (duration = 3

seconds, spanning a period during which the auditory cue and stimulus were played),

labelled with their corresponding condition index (#1 – #21)

• Onset of subject response and visual feedback (an impulse function)

• An explicitly modelled resting state (2 seconds after the subject response, duration =

5 seconds)
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• A set of nuisance regressors for head movement

• Another nuisance regressor for the number of run

All non-nuisance regressors were convolved with a canonical hemodyamic response function

(a double gamma function, 6-second delay of response relative to onset) to model blood

oxygen level change following external events. The time and dispersion derivatives of the

convolution were also included as regressors to allow for variations in response across subjects

and voxels. A first-level autoregression model was used to account for serial correlations due

to aliased biorhythms and unmodelled neuronal activity. A high-pass filter (cutoff = 128

seconds) was applied to remove slow signal drifts.

To explore the difference between each pair of attention types, three contrasts were

examined: Space > Relax, Talker > Relax, and Space > Talker. For Space > Relax,

regressors for the eight spatial attention conditions were assigned with a weight of 1/8,

while regressors for the seven no-attention conditions were assigned with a weight of -1/7

(i.e., the regressor weights were normalized by the number of conditions in each attention

type). Talker > Relax and Space > Talker were setup in the same manner. In addition, we

examined two other contrasts, Left > Right and Talker Female > Talker Male, to explore

the voxel-wise activation difference between attention to different directions, or between

attention to different genders.

Group level statistics were carried out using the threshold-free cluster enhancement

method (TFCE; for details, see [66]), with the null hypothesis being that the conditions

under test caused the same level of activation, or, in other words, the contrast between these

two conditions was zero. For each pair of condition groups (e.g., Space versus Relax), we

first compared their GLM contrast (an output of the GLM analysis, showing the difference in

voxel-wise activation between condition groups) with zero using a one-sample t-test, which

generated a brain volume of t-values for each contrast. Then, we calculated the TFCE score

of each voxel based on this volumetric t-statistic image following the approach proposed in

Smith and Nichols [66] — basically, a voxel-wise TFCE score was calculated not only with
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the t-value of the voxel of interest, but also with the t-values of other voxels in the same clus-

ter. The general idea behind this TFCE approach is to enhance areas of signal that exhibit

some spatial contiguity without relying on a self-selected cluster-formation threshold [66].

To determine the significance threshold for a particular contrast, we used a permutation

approach to derive a null distribution of TFCE scores for that contrast. First, we randomly

permuted the data labels to create a permutation dataset. For a one-sample t-test, this

permutation process could be effectively achieved by negating the sign of data for a randomly

selected subset of all subjects. Next, using the method described above, we calculated the

TFCE scores of all voxels, of which only the maximum was used to form the null distribution.

We repeated this process for 10,000 time, yielding a distribution with 10,000 TFCE scores,

which were all derived from random permutation. Then, we used the 95th percentile of this

distribution as the significance threshold: all voxels with a TFCE score greater than this

threshold were deemed to have significantly different levels of activation between the two

condition groups at test.

3.2.6 Measuring representational dissimilarity

We extracted pairwise differences among all conditions from fMRI data for the RSA study.

First, we conducted a second GLM analysis with the same set of regressors as the one used

in Section 3.2.5. Different from the previous GLM analysis, here we used the preprocessed

data without spatial smoothing. The purpose of using unsmoothed data is to retain as much

voxel-wise independence as possible, where important features that can help distinguish

conditions may exist. Next, for each subject, we calculated the contrast between each of

the 21 conditions and the explicitly modelled resting state. We then extracted voxel-wise

multivariate features for each condition: we concatenated t values of the Condition X >

Rest contrast at a particular voxel and its surrounding neighbours (within a radius of 4

voxels) into a vector, and used this vector as the feature for condition X at that anchor

voxel. An illustration of this method is shown in Figure 3.4. The voxel-wise dissimilarities
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between each pair of conditions was estimated as the Euclidean distance between the feature

vectors of the respective conditions at each voxel. This process yielded a representational

dissimilarity matrix (RDM) for each voxel, where each entry reflected the dissimilarity of

the neural responses across a particular pair of conditions.

Figure 3.4: Schematic diagram for calculating representational dissimilarity. We estimated
the voxel-wise dissimilarity between each pair of conditions using the multivariate feature
vector that we extracted at each voxel via a searchlight approach. For a particular voxel
(i.e., the “anchor” voxel, with a red color in the figure) in the t-map for Condition X > Rest,
we concatenated the t-value at this voxel together with t-values at its neighbouring voxels
(the ones with an orange color in the figure) into a feature vector to represent condition X at
this anchor voxel.The same method could be applied to derive a feature vector for condition
Y at the same voxel. Then, we calculated the Euclidean distance between these two vectors
to estimate the dissimilarity between condition X and Y. This dissimilarity value was saved
at (X,Y) and (Y,X) of a representational dissimilarity matrix (RDM), which could be used
to summarize the difference between each pair of conditions at the anchor voxel. After an
RDM was filled, we calculated the z-score of each element in this RDM and transformed
these values with a logistic function, so that the dissimilarity values in an RDM were always
bounded by -1 and 1.
Note: For better visualization, the searchlight method in this figure is illustrated in a 2-D
plane with a radius of 2. In the actual study, this searchlight method was conducted in the
3-D space with a radius of 4.

Specifically, each row or column of an RDM corresponds to a condition index, and each

element stores the dissimilarity value between two conditions: the transformed distance

between condition X and Y is saved at (X , Y) and (Y , X) of the RDM. With this approach,

the major diagonal of an RDM, representing the difference between one condition and itself,
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is filled with zeros and is excluded from any analysis. To reduce the effect of outliers on

the estimation of dissimilarity (e.g., a huge distance measure in one dimension of the feature

vector due to the existence of noise), we first calculated the z-score of each element in an

RDM (i.e., we subtracted the mean of the RDM and divided by its standard deviation;

major diagonal excluded), and transformed the z-scores with a standard logistic function.

The dissimilarity values, therefore, are bounded by -1 and 1.

The ultimate output of this process was a set of fMRI RDMs as a function of space —

there was one RDM at each voxel. These RDM features captured how neural activities at

each voxel differ across attentional conditions, which describes the neural representation of

auditory selective attention in fMRI. We analyzed the patterns in these RDMs through their

correlation with conceptual models (see Section 3.2.7), and calculated the average RDMs

within several regions of interest (ROIs) to study the information encoded in these regions

(see Section 3.3.2).

3.2.7 Comparison to conceptual models

The RDM feature summarizes how one experimental condition differs from another. In our

study, since the conditions could be categorized into certain condition groups (e.g., Space,

Talker, etc.), this RDM feature also contained information about how a specific type of

attention differed from another. For example, if we are interested in the difference between

two attention types, or the difference between conditions within the same attention type,

we can refer to certain portions of an RDM for this information — the square blocks along

the major diagonal of an RDM (Space-Space, Talker-Talker and Relax-Relax in Figure 3.5a)

represent how one condition differs from another within the same attention type, while the

blocks off the diagonal (Space-Talker, Space-Relax and Talker-Relax) show the difference

between attention types. Moreover, there were also micro-structures within Space-Space and

Talker-Talker. Four conditions in Space were about left attention, and the other four were

about right attention. They formed micro-blocks that showed differences within attention to
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the same side (Left-Left and Right-Right), and blocks for attention to different sides (Left-

Right, Figure 3.5a). Similarly, the six Talker conditions were separated between attention to

a female talker and attention to a male talker. Thus, the Talker-Talker block could be further

divided into Female-Female and Male-Male for within-gender comparisons, and Female-Male

for between-gender comparisons.

Patterns in RDM features can be quantified via their correlation with specific conceptual

model RDMs. These models, consisted of 0s and ±1s, are built to capture discrimination

among conditions: positive for conditions that are very different on the dimension of interest,

negative for conditions that are very similar, and zero for conditions that are irrelevant.

Figure 3.5b and 3.5c show two such models: Left vs. Right and Female vs. Male. The

first, Left vs. Right, model was built to study the direction of attention — the elements

showing the difference between left and right attention (i.e., the Left-Right micro-blocks)

were assigned with a value of +1, while the elements showing the difference within left or

right attention conditions (i.e., the Left-Left and Right-Right micro-blocks) were assigned

with a value of −1. The rest of the matrix was filled with zeros, and was not used in any

correlation calculation. The second model, Female vs Male, was created in a similar manner

with an aim to study attention to different genders (i.e, +1 for Female-Male micro-blocks,

and −1 for Female-Female and Male-Male micro-blocks). For each subject, we correlated

these model RDMs with the fMRI RDM at each voxel. A high correlation between the RDMs

indicates that this brain location contains discriminant information about the difference in

attentional state (i.e., attention to different directions or genders).

Group level statistical analysis was conducted in the same way as in Section 3.2.5. Cor-

relation coefficients were first Fisher z-transformed, and were then used as the inputs for a

group-level TFCE with the null hypothesis being that the correlations under test are zero.

As in Section 3.2.5, the null distribution was derived from randomly permuting the data

labels for 10,000 times, and any observed effects with an TFCE score greater than the 95th

percentile threshold were deemed as significant.
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Figure 3.5: (a) A representational dissimilarity matrix (RDM) in this study can be divided
into several blocks, and each block represents different information. The top left portion
of the RDM, Space-Space (the red block), shows the difference between conditions within
the spatial attention group. Similarly, the other two square blocks along the major diago-
nal, Talker-Talker and Relax-Relax, also show differences within their respective condition
groups. The blocks off the diagonal (Space-Talker, Space-Relax and Talker-Relax), on the
other hand, store dissimilarity values between conditions groups. In addition, within Space-
Space and Talker-Talker, there are also micro-structures showing comparisons between at-
tention to different locations (left or right), or between attention to talker of different genders
(female or male). (b) & (c) Two conceptual model RDMs used to study patterns in fMRI
RDMs. In Left vs Right, the Left-Right blocks are filled with +1s, and the Left-Left and
Right-Right blocks are filled with −1s — this model RDM is built to study the representa-
tion of “where to attend”. In Female vs Male, we assigned +1s to the Female-Male blocks,
and −1s to the Female-Female and Male-Male blocks – this model is built to study the
representation of “what to attend”.

These correlation analyses identify voxels in which certain information (e.g., direction of

attention) can be decoded from fMRI signals. However, it does not reveal what is driving

the decoding, for example, whether one condition group has greater activation than another.

One way to possibly answer this question is to calculate the percent signal change (%SC)

between condition groups of interest within the voxels we identified as significantly correlated
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with the ideal model. To compare attention to different directions, we calculated the %SC

of all left-attention conditions (conditions 1 – 4) relative to all right-attention conditions

(conditions 5 – 8). To compare attention to different genders, we calculated the %SC of

all conditions for attention to a male talker (conditions 9 – 11) relative to all conditions

for attention to a female talker (conditions 12 – 14). These %SC measures were averaged

within ROIs, and then were compared with zero via a one-sample t-test (alpha = 0.05).

This computation complements the study of neural representation, which only discovers the

existence of differences, by identifying information about what these differences are, which

could help us better understand the mechanisms of attention.

3.2.8 Similarity to behavioral performance

Participants’ behavioral performance varies across task conditions. The RDM feature allows

us to ask whether brain activity in any brain regions is particularly relevant to the subject’s

behavioral performance. We constructed behavioral RDMs that comprise the absolute dif-

ference in behavioral performance between conditions. Only active attention conditions (8

spatial and 6 talker conditions) were used in this analysis. We correlated individual behav-

ioral RDMs with their respective fMRI RDMs at each voxel and transformed the correlation

coefficients using the Fisher z-transformation. The same TFCE method as the one used in

Section 3.2.7 was applied here to draw group-level statistical inferences.

3.3 Results

3.3.1 General linear model

We compared the level of activation between attentional conditions at each voxel with a

GLM analysis. The t-statistics of each contrast, originally in the MNI152 volume space,

were projected onto an inflated cortical surface model using Nilearn (v0.8.0, [67]) for better

visualization (Figure 3.6). To facilitate relating the observed effects to specific brain regions,
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we overlaid the contour of several selected regions of interest (ROIs) defined in Destrieux et

al. [68].

Figure 3.6: T statistics of three GLM contrasts: (a) Space > Relax, (b) Talker > Relax, (c)
Space > Talker. These results are masked by their statistical significance (p < 0.05), which
was determined by a threshold-free cluster enhancement (TFCE) method. We overlaid the
contours of several regions of interest (ROIs) onto each plot for easy mapping of the effects.
These ROIs were previously defined in Destrieux et al. [68]. We identified several ROIs that
were actively engaged in auditory selective attention: the superior and inferior pre-central
sulcus (sPreCS and iPreCS), inferior frontal sulcus (IFS), superior insula (SI); the lateral
aspect and the temporal plane of the superior temporal gyrus (laSTG and tpSTG); the
post-central sulcus (PostCS), superior parietal lobule (SPL), inferior parietal sulcus (IPS),
precuneus (PCUN), parietal-occipital sulcus (POS), calcarine sulcus (CAL); the medial cin-
gulate cortex (MCC), and the superior frontal gyrus (SFG). In addition, the default mode
network and the precentral sulcus were significantly more active in Relax, when no attention
was required, than in Space or Talker.
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3.3.1.1 Space > Relax

Auditory attention activates a wide attention network that encompasses regions in the

frontal, parietal, temporal and occipital lobe. We observed significantly stronger signal

in Space than Relax in superior and inferior precentral sulcus (iPreCS and sPreCS), inferior

frontal sulcus (IFS), superior insula (SI), postcentral sulcus (PostCS), intraparietal sulcus

(IPS), precuneus (PCUN), medial cingulate cortex (MCC) and superior frontal gyrus (SFG)

in both hemispheres (Figure 3.6a). In addition, the lateral aspect and the temporal plane

of the superior temporal gyrus (laSTG and tpSTG) and the superior parietal lobule (SPL)

showed significantly higher activation in Space than Relax only in the left hemisphere (Fig-

ure 3.6a). The default mode network (DMN) and the precentral sulcus, on the other hand,

were more engaged when no attention was required.

3.3.1.2 Talker > Relax

The Talker > Relax contrast generated a similar activation pattern as Space > Relax (Fig-

ure 3.6b). The iPreCS, sPreCS, IFS, SI, MCC and SFG in both hemispheres showed sig-

nificantly stronger signal in Talker than in Relax, while the DMN and the precentral sulcus

behaved the opposite. Different from Space > Relax, the laSTG and tpSTG in both hemi-

spheres were prominently more engaged in Talker than in Relax. Moreover, except for the

SPL and IPS on the left hemisphere, none of the ROIs in the parietal and occipital lobe

showed significant activity in Talker > Relax.

3.3.1.3 Space > Talker

We directly compared Space with Talker to investigate the specificity to attention types

of each ROI. We observed significantly stronger activities in Space than in Talker in the

parietal and occipital lobe (Figure 3.6c). The parieto-occipital sulcus (POS) and calcarine

sulcus (CAL) in both hemispheres were highly engaged in Space, in addition to the PCUN,

PostCS, SPL and IPS, which have been seen with strong activity in the Space > Relax
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contrast. The sPreCS, iPreCS, SI, MCC and SFG were also more active in Space than

in Talker, while IFS in both hemispheres did not differ significantly in activation between

attention types. The laSTG and tpSTG, on the other hand, showed the opposite pattern —

signals in these regions were notably stronger in Talker than in Space.

3.3.2 Representational dissimilarity matrices

We explored the neural representation of auditory attention by studying the difference be-

tween each pair of conditions. First, we contrasted each condition with an explicitly modeled

resting state. The dissimilarity between two conditions at each voxel was then estimated

by the Euclidean distance between the multivariate feature vectors of those conditions in a

searchlight centered on this voxel. These pair-wise differences were summarized in a rep-

resentational dissimilarity matrix (RDM) — each row and column of an RDM represent a

condition index, and the value stored at element (X,Y) and (Y,X) of an RDM represents

the estimated difference between condition X and condition Y. This process yielded a set of

RDMs as a function of brain location — each voxel has one specific RDM.

In Figure 3.7, we present several mean RDMs averaged within selected ROIs and their

corresponding multidimensional scaling (MDS) plots. These MDS plots visualize the 21 con-

ditions in a 2-D feature space and show the information encoded in each ROI. For example, if

the MDS plot for one ROI shows that the Relax conditions form a cluster and separate from

Space and Talker conditions, it means this ROI is encoding information about ”attention or

not”. For most regions depicted, Space and Talker could be well distinguished from Relax,

with the ventral posterior cingulate cortex (vPCC) being the only exception. Its MDS plot

shows a random pattern, indicating that no specific attention-related information is encoded

in this region. In sPreCS, IFS, and CAL, the dissimilarity values were high in the bottom

left (Space-Relax) and middle (Talker-Relax) portion of the RDMs, and low in the bottom

right portion (Relax-Relax), indicating that the activation pattern in these regions was de-

pendent on attentional state. More specifically, for sPreCS and CAL, the average difference
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between Space and Relax was greater than that between Talker and Relax (i.e., higher values

in Space-Relax than in Talker-Relax). This was not seen in IFS, where these two differences

were comparable, which might have shown some variability across these ROIs in terms of

their specificity to spatial or talker attention. In addition, special micro-structural patterns

that discriminates the direction of attention or the gender of the attended talker were only

observed in CAL and IFS. In CAL, left attention conditions were well separated from right

attention conditions, indicated by the high dissimilarity between these two condition groups,

and the low dissimilarity within each of them. In IFS, we observed a similar separation be-

tween attention to a female talker and attention to a male talker. These results suggest that

the information about “where to attend” or “what to attend” were highly encoded in these

two regions.

3.3.3 Correlation with conceptual models

The pattern of RDMs can be learned from their correlation with specific conceptual model

RDMs. These conceptual model RDMs consist of 0s and ±1s, and resemble an ideal case

where conditions of different groups (e.g., one condition for attending left and one condition

for attending right) can be perfectly decoded (thus assigned with a value of +1), and condi-

tions of the same group can not be differentiated at all (thus assigned with a value of −1).

If the RDM at one voxel correlates with a model RDM better than chance, it indicates there

is information at that brain location that can distinguish one condition group from another,

or, in other words, that brain region behaves differently in these two attentional states.

We first correlated the fMRI RDMs with the Left vs Right model (Figure 3.5b) to ex-

plore if direction of attention has strong representation in any brain regions. The correla-

tion coefficients were first Fisher z-transformed, and then tested with the TFCE method

to discover voxels with a correlation coefficient significantly above zero on the group level.

The t-statistics of this comparison were rendered onto a surface brain model using Nilearn

(v0.8.0, [67]) and shown in Figure 3.8a. We observed above-chance correlation in the CAL,
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Figure 3.7: Average representational dissimilarity matrices (RDMs) of several selected re-
gions of interest (ROIs) and their corresponding multidimensional scaling (MDS) plots. The
MDS plots visualize the 21 conditions in a 2-D feature space. High dissimilarity between
Space or Talker and Relax (i.e., the bottom left and bottom middle portion of the RDM) was
observed in all the selected ROIs, while the dissimilarity between conditions within Relax
(i.e., the bottom right portion of the RDM) was low in most regions. Differences between
Space and Talker conditions (i.e., the middle left portion of the RDM) were medium to high
in CAL and IFS. There were also micro-structures embedded in these RDMs, indicating that
attention to different directions and attention to talkers of different genders could also be de-
coded in some ROIs: in CAL, the dissimilarities between left and right attention conditions
were high, while the dissimilarities between conditions within left or right attention groups
were low (see the enlarged view of the top left portion of the RDM); a similar dissimilarity
pattern was observed in IFS for Talker vs Talker (see the enlarged view of the center portion
of the RDM).
Acronyms: sPreCS, superior pre-central sulcus; IFS, inferior frontal sulcus; CAL, calcarine
sulcus; vPCC, ventral posterior cingulate cortex.

POS and lingual gyrus (LING) in both hemispheres. None of the ROIs in the parietal lobe

showed strong representation of the direction of attention.

To investigate whether the activation level at these above-threshold voxels was modulated

by the direction of attention, we calculated the percent signal change (%SC) in left-attention

conditions relative to right-attention conditions. These %SC measures were averaged within

ROIs in each hemisphere, and are shown in Figure 3.8c. Significant %SC was observed

in left LING (p=0.0163, Cohen’s d=0.61), left CAL (p=0.0064, Cohen’s d=0.71), and left
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POS (p=0.0099, Cohen’s d=0.66) — all ROIs in the left hemisphere. Their counterparts

in the right hemisphere, however, showed no significant %SC in attention to left relative to

attention to right.

Figure 3.8: (a) Voxels in the parieto-occipital region showed significant correlation between
their voxel-wise fMRI RDMs and the conceptual Left vs Right model RDM. We compared
the Fisher-transformed correlation coefficients at each voxel with zero using a one-sample
t-test, and rendered the t-statistics of this comparison onto a cortical surface model. The
results were masked by their statistical significance derived from the threshold-free cluster
enhancement method. (b) Percent signal change (%SC) in left-attention conditions relative
to right-attention conditions. Regions in the left hemisphere showed significant %SC, while
regions in the right hemisphere did not. Error bars indicate the standard error of the mean.
∗, p<0.05
Acronyms: POS, parietal-occipital sulcus; CAL, calcarine sulcus; LING, lingual gyrus.

We also correlated the fMRI RDMs with a Female vs Male conceptual model (Figure 3.5c)

to explore if any brain regions have representation of the gender of the attended talker. With

the same TFCE statistical analysis, we observed above-chance correlation only in the right

IFS (Figure 3.9a). A similar %SC analysis as described above revealed no significant %SC

in the right IFS (p) when attention was focused on a female talker relative to when it was

on a male talker (Figure 3.9b).

3.3.4 Similarity to behavioral performance

The participants demonstrated varied behavioral performance across attentional conditions.

The average behavioral RDM, derived from taking the absolute difference in response accu-
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Figure 3.9: (a) Voxels in the right inferior frontal sulcus (IFS) showed significant correlation
between their voxel-wise fMRI RDMs and the conceptual Female vs Male model RDM. We
compared the Fisher-transformed correlation coefficients at each voxel with zero using a
one-sample t-test, and rendered the t-statistics of this comparison onto a cortical surface
model. The results were masked by their statistical significance derived from the threshold-
free cluster enhancement method. (b) Percent signal change (%SC) in attention to a female
talker relative to attention to a male talker. No significant %SC was observed in the right
IFS. The error bar indicates the standard error of the mean.

racy between each pair of conditions, is shown in Figure 3.10a. We noticed a checkerboard

pattern in the top left block (Space-Space), a striped pattern in the top right and bottom

left blocks (Space-Talker), and a block with negligible difference values in the bottom right

(Talker-Talker). This is because, in our design, condition 1, 2, 5 and 6 have their target (T)

and the second distractor (D2) on the same side, while condition 3, 4, 7 and 8 have T and

D2 on the opposite sides. As a result, there was more interference from the distractor, and

thus a relatively lower performance score, during trials in the former condition group than

the latter. The behavioral performances between the easy conditions in Space and Talker

are comparable.

We correlated subject-specific behavioral RDMs with their corresponding fMRI RDMs

and compared the result correlation coefficients with zero as we did in Section 3.3.3. We

observed above-chance correlations in the parietal lobe — SPL, IPS and PCUN in both hemi-

spheres (Figure 3.10b). The POS in the left hemisphere also showed significant correlation

with the behavioral RDM.
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Figure 3.10: (a) The mean behavioral representational dissimilarity matrix (RDM) averaged
across all subjects. Element (X,Y) in this RDM shows the absolute difference in behavioral
performance (i.e., accuracy of the attention task) between condition X and condition Y.
(b) Voxels in the parietal region showed significant correlation between their voxel-wise
fMRI RDMs and the subject-specific behavioral RDM. We compared the Fisher-transformed
correlation coefficients at each voxel with zero using a one-sample t-test, and rendered the
t-statistics of this comparison onto a cortical surface model. The results were masked by
their statistical significance derived from the threshold-free cluster enhancement method.
Acronyms: SPL, superior parietal lobule; IPS, intraparietal sulcus; PCUN, precuneus;
POS, parietal occipital sulcus.

3.4 Discussion

In this work, we studied the neural activation and representation of auditory selective atten-

tion in fMRI. We designed an experiment with multiple conditions that used similar stimuli,

but required the listeners to adopt different listening strategies and different cognitive states.

We recorded fMRI from 19 subjects when they were performing tasks that required spatial

or non-spatial auditory attention. We conducted a GLM analysis to compare the level of

activation between attention types, from which we identified a broad brain network that is

actively engaged when attention is deployed. ROIs in this network have their own charac-

teristics of specialization in spatial or talker attention: some are more active in one than the

other, and some are not. We also studied the neural representation of auditory attention:

at each voxel, we estimated the dissimilarity between each pair of conditions, and compared
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these dissimilarity features with conceptual models or behavioral performance to reveal the

cognitive control underlying auditory attention.

3.4.1 Neural representation of brain states

RSA studies neural representations, or how information is encoded in a neural unit, through

the study of representational dissimilarity features [9], [11]. It has been previously employed

in a variety of topics in neuroscience research, including visual object recognition [18], [42],

[47], visual object processing [13], scene perception [48], audiovisual integration [12], and

semantic categorization of sound [49]. In these studies, researchers presented various visual

or auditory stimuli to subjects and extracted RDM features from their EEG, MEG or fMRI

signals to investigate how stimuli of different categories were processed during the experi-

ment, or how they were represented in different brain regions. In other words, these studies

applied RSA to decode certain properties of the stimulus. Conversely, our study deployed

RSA to track brain states instead of input categories. The auditory stimuli we presented

to subjects were either identical or only slightly different between experimental conditions.

What did vary, however, was the attentional states of subjects across different tasks, which

may be the major property that is being characterized by the RDM features in this study.

To our knowledge, only one prior work has attempted to explore the neural representation

of brain states. Salmela et al. [43] conducted an RSA study to investigate the dynamics of

the fronto-parietal attention network during an audiovisual attention task. They extracted

RDM features from EEG time course, and compared them with RDMs calculated from fMRI

signals to track the spatiotemporal dynamics of attentional control. One challenge faced in

this previous study was the trade-off between a condition-rich experimental design and the

sample size for each condition: due to the fact that trials in attention studies are usually long

for the need of multiple presentations of stimuli, subject response and feedback to answers,

very limited amount of data were collected in this prior work (20 trials per condition for 6

conditions, and 5 trials per condition for the other 12 conditions), which inevitably hindered
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an accurate estimation of dissimilarities. In our study, we designed an experiment comprising

short trials that used fast repetitions of short syllables as stimuli. As a result, we managed

to collect 36 trials for each of the 21 conditions, which is theoretically sufficient for the

central limit theorem to hold, and therefore offers a good estimate of the between-condition

dissimilarity.

3.4.2 Neural activation in auditory attention

The GLM analysis revealed an extended brain network that is actively engaged by auditory

attention (Figure 3.6). The fronto-parietal attention networks triggered by Space and Talker

are greatly overlapping with each other (Figure 3.6a & b). They both comprise sPreCS,

iPreCS, IFS, SFG, MCC, IPS and SPL — a network that has been reported in past works on

auditory attention [69], [70]. This result matches with a previous finding in Alho et al. [69],

in which the authors discovered that attention to location and attention to pitch, in the

auditory domain, activate similar brain regions. This high similarity between Space > Relax

and Talker > Relax could further be explained by the identical stimuli being used across

Space and Talker conditions: they both created a busy auditory scene by using spatialized

syllables spoken by multiple talkers, which enhanced the neural activity in both space- and

talker-specialized regions, compared to passive listening.

Each ROI’s specialization in spatial or talker attention was revealed in the Space > Talker

contrast. We observed stronger activation in sPreCS, iPreCS, SI, SFG, MCC, the posterior

part of tpSTG and all ROIs in the parietal and occipital lobe (Figure 3.6c) in Space than in

Talker, while the anterior part of laSTG and tpSTG is more active in Talker than in Space.

This approximates the classic hierarchical processing model, in which the “dorsal” pathway,

comprised of posterior auditory cortex, inferior parietal lobule and premotor cortex, spe-

cializes in extracting the spatial components of an auditory stimulus, whereas the “ventral”

pathway, comprised of the anterior auditory cortex and the inferior frontal cortex, is special-

ized for non-spatial information of sound [6], [71]. A similar result was shown in Degerman
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et al. [72], where the authors compared attention to location and attention to pitch with

fMRI, and found stronger activation in the prefrontal (including the sPreCS and iPreCS in

this study) and inferior parietal cortical regions during attention to location. A recent study

by Michalka et al. [59] identified an interdigitated pattern in the prefrontal cortex, where

sPreCS and iPreCS are biased to visual tasks, and IFS is biased to auditory tasks. These

visual regions are functionally connected to areas in the visual cortex, and have stronger

activation in attention to spatial information than in attention to temporal information of

an object, even when this object is purely auditory. IFS, on the contrary, is functionally

connected to the auditory cortex. It is recruited during auditory attention tasks, but has no

preference between attention to space and attention to timing of events. The exact pattern

is observed in this study, with sPreCS and iPreCS being more active in Space than Talker,

and IFS being indifferent between the two. This result consolidates the view that there are

domain-specific regions in the prefrontal cortex, and these regions can be engaged to process

different information dimensions of a sensory input object [73].

3.4.3 Neural representation in auditory attention

The average RDMs shown in Figure 3.7 reveal the information being encoded in each ROI. In

all of these ROIs except vPCC, we observed strong encoding of “attention or no-attention”

— the Space-Relax and Talker-Relax blocks, in the bottom left and bottom middle portion

of the RDM, contain high dissimilarity values, while values in the Relax-Relax block in the

bottom right corner are generally low. This result is consistent with our GLM analysis, in

which these ROIs are more active in Space or Talker than in Relax. The vPCC is the only

exception in this figure that does not encode strong information about attentional state: its

RDM pattern is close to random and does not exhibit a distinction between attention and

no-attention conditions. In addition, we also observed some micro-structures in these RDMs

that encode different aspects of attention. The Space-Space block in left and right CAL shows

a clear contrast between attention to left and attention to right; the Talker-Talker block in
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left and right IFS shows a difference between attention to talkers of different genders. These

results demonstrate that the method we used in this study to calculate representational

dissimilarities can successfully decode auditory attention, and the RDM features we derived

can be used to describe the attentional state of the brain at each voxel.

3.4.4 Correlation with conceptual models

We correlated voxel-wise RDMs with two conceptual model RDMs in Figure 3.5b & 3.5c

(i.e., Left vs Right and Female vs Male) to search for voxels that encode information about

the attended location, or the gender of the attended talker. The correlation with the Left vs

Right model revealed a cluster of ROIs in the occipital lobe that show significant encoding

of the spatial information of attention (Figure 3.8a). Our visual system excels at encoding

spatial information, with over 20 cortical areas that show visuospatial maps [59], [74]–[76].

Moreover, it also offers cross-sensory flexibility; portions of the visual system can be recruited

for an auditory task when space is the primary information of interest [59]. Therefore, we

speculate that the observed high correlation with the Left vs Right model may indicate

these ROIs’ active role in mapping the target sound in space. Further investigation on the

dynamics of these ROIs is warranted.

We also correlated voxel-wise RDMs with the Female vs Male model to identify brain

regions that are encoding information about the gender / pitch of the target talker. The right

IFS is the only ROI that survived the significance test (Figure 3.9a). Previous studies have

found that IFS, as an ROI along the “ventral” pathway, specializes in processing non-spatial

information about the sound [6] — it has enhanced activity during tasks like attention

to pitch [58] or attention to the timing of events [59]. In this study, IFS may have been

recruited to process the acoustic features of the target talker’s voice (e.g., pitch, timbre,

etc.). However, a study of the percent signal change in this region revealed no significant

difference between attention to a female talker and attention to a male talker (Figure 3.9b).

This might happen due to the individual differences in how acoustic information is encoded

71



Decoding Attentional Control from Noninvasive Measures in Humans

in this ROI. For example, some participants may encode a female’s voice in a way that

will trigger greater response than a male’s voice (e.g., if they perceive a female’s voice as

more salient and distinct than a male’s voice), while the others may do the opposite. If this

happened, the variability across subjects in this gender-specific signal enhancement would

lead to an insignificant signal difference on the group level. Another possible cause of the

observed result is the voxel-by-voxel variability. Some voxels within this ROI may have

greater activation in one condition group than the other, while the other voxels may show

the opposite pattern; calculating the average activation within an ROI ignores this variability

and loses information. RSA, however, can resolve these problems, because any difference,

regardless of its sign, is treated as information in an RSA — the aforementioned differences

across subjects or across voxels will not cancel out each other under the RSA framework.

This makes RSA a powerful tool with great sensitivity to study cognitive functions. We

will compare RSA with conventional fMRI analysis in more detail in Section 3.4.6 for its

advantages and disadvantages.

3.4.5 Comparison to behavioral performance

We constructed a behavioral RDM for each subject and correlated it with their individual

fRMI RDMs at each voxel. This analysis revealed a few ROIs in the parietal region, including

SPL, IPS, PCUN and POS, whose RDMs correlated above-chance with the behavioral RDM

(Figure 3.10b). Previous studies demonstrated that auditory tasks recruit both visuotopic

(i.e., IPS) and non-visuotopic parietal regions, and these regions are more active in spatial

tasks than in non-spatial tasks [77]–[79]. Moreover, Michalka et al. [77] showed that some

sub-regions in IPS and SPL can be flexibly recruited under high auditory spatial demands.

In this study, the behavioral RDM is comprised of conditions for Space and Talker attention.

The most distinctive feature of this RDM is the difference between hard spatial attention

conditions and the other conditions — there is a checkerboard pattern in the Space-Space

block, and a striped pattern in the Space-Talker blocks. We speculate that the observed
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significant correlation between parietal RDMs and the behavioral RDM is mainly caused by

the performance difference between hard spatial conditions and the other conditions, and it

may show an important role of these parietal ROIs in spatially demanding tasks, in which

they are more actively recruited to distinguish a target from an adjacent distractor.

3.4.6 Compare RSA to conventional fMRI analysis

RSA is a powerful tool to study neural correlates with a condition-rich experimental design.

It is different from conventional fMRI studies, such as GLM analysis, where we directly

compare the signals between two conditions or condition groups and examine their contrast.

Instead, RSA operates on the relationship among multiple conditions — it quantifies the

dissimilarity between each pair of conditions, and uses these dissimilarity features as an

abstraction to study brain state. In contrast to a conventional analysis, RSA omits the sign

of difference when accumulating evidence across samples. This is particularly powerful when

there are individual differences in the effect under test. For example, in an auditory salience

study, one subject may find certain sounds more salient than the others, while another

subject may feel the opposite. If the question being asked is which brain region encodes the

perceived salience of sound, data from these two subjects will boost the observed effect under

an RSA framework, but will neutralize each other in a conventional analysis. In this study,

we also demonstrated another example in Figure 3.9, where there is no significant difference

in signal change on group level, but the RSA approach revealed significant effects in right

IFS. Thus, RSA could be more sensitive than conventional methods in certain cases.

The high sensitivity of RSA comes at a cost. For example, in this study, ignoring the

sign of difference introduces confusion to distinguishing an area in the attention network

from an area in the default mode network. For example, if Relax conditions are included

as part of a conceptual model (different from the two models we showed in Figure 3.5b,

where Relax conditions were not used), one RDM in the attention network would appear

similar to another one in the default mode network, due to the their similar “dissimilarity
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values” between Space or Talker and Relax, despite the fact that they behave in an opposite

manner. One direct consequence of this confusion is a possible misinterpretation of the

inferences drawn by a cluster-based statistical analysis. Cluster-based statistics, like the

TFCE method used in this study, give more power to effects that are continuous in space

and enhance the TFCE score of one voxel with contribution from all other voxels within the

same spatially connected cluster. Under this framework, if Relax is part of the conceptual

model, the statistical power of a voxel in the attention network would be wrongly enhanced

by a neighbouring voxel in the default mode network. Therefore, RSA should be used with

caution when there is a “null” condition or condition group (e.g., the Relax in this study)

in the experimental design to avoid possible misinterpretation of the results.

3.4.7 Limitations

One limitation of this study is the relatively small number of conditions in our experimental

design compared to previous RSA studies [18], [42]. A greater number of conditions can

effectively reduce the chance of having false discoveries. We tried to control the false discovery

rate by adopting a non-parametric statistical method (i.e., TFCE), which does not make

assumptions about noise distribution and makes statistical inferences on a cluster level. We

also recruited a relatively large number of participants (n = 19) for this type of study, for

a greater statistical power and a less biased estimation of population means. However, a

greater number of conditions and trials per condition are always preferred in RSA studies.

Our design was constrained by the use of an attention task that requires subject response,

which is not necessary for most previous RSA studies, since they focused on decoding stimuli

rather than internal processing states. Future studies should consider designing experiments

in a way that data about multiple trials and/or conditions could be acquired per subject

response. This will effectively reduce the time to acquire a dataset that is ideal in size (i.e.,

number of conditions and trials per condition) for an RSA study.
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3.5 Conclusions

This paper is among the very few pioneering studies that adopted a representational simi-

larity analysis framework to investigate the neural representation of attentional states. We

designed a condition-rich experiment and recorded fMRI data while listeners performed in

an auditory attention task. We identified an extended attention network, in which individual

brain regions show different specialization in spatial or non-spatial attention. We also ex-

tracted representational dissimilarity features from each voxel, and compared these features

with ideal conceptual models or behavioral performance. We identified the medial occipital

lobe as the region actively encoding the spatial information about auditory attention; the

right IFS is the sole region that encodes information about the gender / pitch of the attended

talker. The neural representation of the parietal regions are correlated with the behavioral

performance, demonstrating their important role in spatially demanding tasks.
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Chapter 4

Information flow in auditory selective

attention: a representational

similarity analysis for EEG-fMRI

fusion

4.1 Introduction

In Chapter 2 and Chapter 3, we studied the neural representation of auditory attention in

electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), respec-

tively. In EEG, we extracted a representation feature called a representational dissimilarity

matrix (RDM) from both the EEG time course and its alpha oscillation power at each time

point. In fMRI, we extracted the same type of RDM feature at each voxel. These RDM

features summarize the differences between each pair of experimental conditions, and thus

can unveil what information is encoded at each time point (as in EEG) or at each brain

location (as in fMRI). We studied the patterns in these EEG or fMRI RDMs through their

correlation with conceptual model RDMs, and identified time intervals and brain regions
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that encode information pertinent to spatial or non-spatial auditory attentional controls.

This study of neural representations can be extended to a multimodal data fusion anal-

ysis, since we already collected both EEG and fMRI data separately, but with the same

condition-rich experimental design. The RDMs of EEG and fMRI have the same dimen-

sion, scale and biological meaning (i.e., how information is encoded), and therefore can be

used to estimate the correspondence of information between these two imaging modalities.

One intuitive approach is to correlate the EEG RDM at each time point with the fMRI

RDM at each voxel. This process yields a 4-dimensional array of correlation coefficients,

of which each element represents the commonality between EEG and fMRI representations

at a certain time and at a certain brain location. This method, known as representational

similarity analysis (RSA), was proposed and formulated by Kriegeskorte et al. [11]. It is

immensely useful for multimodal neuroimaging fusion, because signals like EEG and fMRI

have different dynamics, scales, noise levels, etc. Thus, it is difficult, if not impossible, to

find a direct correspondence between these two modalities. With RSA, however, we can col-

lect EEG and fMRI data with the same experimental design, calculate dissimilarity features

from EEG at each time point and from fMRI at each voxel, and conduct a time-by-location

correlation analysis to search for when and where EEG and fMRI share common informa-

tion. This technique has already been applied to study the cognitive functions underlying

visual object recognition. Cichy et al. [18] designed an experiment in which they presented

participants with images of objects. They extracted neural representations at each time

point from magnetoencephalography (MEG), and at each voxel from functional magnetic

resonance imaging (fMRI). Then, they searched for time instances and voxels that shared

similar patterns in their neural representation, which depicted a spatiotemporally resolved

information flow during visual object recognition.

In this study, we aim to adopt the RSA framework to explore the dynamics of cognitive

control in specific brain regions. Previous works on spatial and non-spatial auditory attention

revealed that superior precentral sulcus (sPreCS), a region along the “dorsal” pathway [6],

77



Decoding Attentional Control from Noninvasive Measures in Humans

is actively recruited in spatial attention [59], while the inferior frontal sulcus (IFS), a region

along the “ventral” pathway [6], engages in attention to the non-spatial aspects (e.g., pitch,

timing of events, etc.) of sound [59]. In the parietal lobe, the intraparietal sulcus (IPS) has

been identified as critical in spatial mapping of sound, and is more active when the task is

more spatially demanding [70], [77]. The information dynamics of these regions (i.e., iPreCS,

IFS, IPS), together with regions in the auditory (superior temporal gyrus, STG) and visual

cortex (calcarine sulcus, CAL), will be studied via the RSA approach.

4.2 Materials and methods

4.2.1 Participants

Data from the 19 adults (19 – 30 years old, 8 women) who participated in our fMRI study

(Chapter 3) were used here. These subjects also belong to the cohort who participated in

our EEG study (Chapter 2). Therefore, both EEG and fMRI data are available from these

participants.

4.2.2 Stimulus and experiment

Details about the stimulus and the experimental design can be found in Section 2.2.2 and

Section 2.2.3. In brief, short (500 ms for each), human-voiced (two female, two male, and

one synthesized gender-neutral talker) syllables (/ba/, /da/, /ga/) were used as the stimuli.

These syllables were spatialized (90◦ or 30◦ to the left or right) using a set of generic head-

related transfer functions to create an acoustically and spatially demanding auditory scene.

The listeners were cued to pay attention to a particular direction or to a particular talker

when a 4-syllable mixture was played. Then, they were asked to identify what syllable came

from the target.

We designed an experiment with 21 conditions. These conditions differ by the required

type of attention (i.e., spatial, talker, or no), location of the target (left or right), gender
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of the target talker (female or male), and whether or not an extra difference in location or

gender of talker exists between the target and a masker. Details about the experimental

design is shown in Figure 2.1.

4.2.3 EEG preprocessing and analysis

We discussed how we extracted RDM features from EEG signals in Section 2.2. In brief,

EEG signals were first preprocessed with bandpass filtering, downsampling, and independent

component analysis (ICA). Then, we conducted time-frequency decomposition on the EEG

signals using a continuous wavelet transform (CWT), and estimated the alpha oscillation

power by averaging the magnitude squared of CWT coefficients from 8 to 14 Hz. Next,

for each subject and each time point in data, we trained a linear support vector machine

(SVM) for each pair of conditions using multivariate features comprised of EEG time course

or alpha power information across all electrodes. The average decoding accuracy, estimated

from leave-one-trial-out cross-validation, was used to denote the dissimilarity between each

pair of conditions. These pair-wise dissimilarity values were stored in a matrix called the

representational dissimilarity matrix (RDM), which is the neural representation feature we

extracted from the EEG signals. From this step, we yielded two sets of EEG RDMs — one

for EEG time course, and one for alpha power. Each can be expressed as a function of time,

meaning that there is one RDM at each time point. Since we only observed weak, transient

effects with EEG time course RDMs in Section 2.3.2, only alpha RDMs were used in this

study.

4.2.4 fMRI preprocessing and analysis

We discussed how we extracted RDM features from fMRI signals in Section 3.2.4. In brief,

we adopted the preprocessing pipeline recommended by SPM12 [64] — realignment, coregis-

tration, segmentation and normalization. After preprocessing, we first conducted a general

linear model (GLM) analysis to calculate the contrast between each condition and an ex-
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plicitly modeled resting state. Then, at each voxel in each contrast map, we extracted a

multivariate feature using a searchlight method, and used this feature to estimate the dis-

similarity between each pair of conditions. Same as in the EEG analysis, we used an RDM

to summarize the pair-wise differences. From this step, we yielded a set of fMRI RDMs with

one RDM at each voxel. In this study, since we are interested in the dynamics of a few se-

lected ROIs (sPreCS, IFS, IPS, laSTG and CAL), we averaged the voxel-level RDMs across

all voxels within each of these ROIs (as defined in Destrieux et al. [68]) to yield ROI-level

RDMs.

4.2.5 EEG-fMRI fusion

With the EEG alpha RDMs as a function of time, and the ROI-level fMRI RDMs of five

ROIs (sPreCS, IFS, IPS, laSTG and CAL), we conducted an EEG-fMRI fusion analysis. For

each ROI, we correlated its ROI-level RDM with the EEG RDMs at each time points 4.1.

This yielded a time series of correlation coefficients (fusion correlations), which reveals how

well EEG and fMRI correspond with each other at a specific time point and a specific

brain region. A link between these two modalities can be established if their correlation is

significantly above chance.

Statistical inferences were made with threshold-free cluster enhancement (TFCE), the

same method as the one discussed in Section 3.2.5. In brief, the statistical power at one

point can be enhanced by the other points in the same cluster. Thus, effects with more

continuity in the feature space (e.g., time, frequency, space, etc.) are more likely to be

significant. We randomly shuffled data label 10,000 times, and used the maximum TFCE

score of each permutation to form a null distribution. We set the 95th percentile of this null

distribution as the threshold to identify significant effects.

In this study, we applied TFCE to fusion correlations of a few selected ROIs to identify

time intervals during which an fMRI RDM correlates with EEG RDMs significantly above

chance. We also applied the same TFCE method to examine whether the correlation traces
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Figure 4.1: (a) EEG RDMs calculated from alpha power at several timepoints in the cue
period (b) Average RDMs of left sPreCS and left laSTG. These two RDMs were correlated
with EEG RDMs at each time point to yield the two time series of correlation coefficients
in (c). The blue and red shaded area represent standard error. The grey shaded area shows
the interval when the two traces are significantly different from each other (398 – 684 ms, p
< 0.05). Notice the divergence of the two traces after the onset of auditory cue.
Acronyms: sPreCS, superior precentral sulcus; laSTG, the lateral aspect of superior tem-
poral gyrus.

of selected pairs of regions are significantly different during some intervals. The correlation

coefficients were passed through Fisher’s z-transform before being examined by TFCE.

4.3 Results and discussion

In Figure 4.1c, we compare the fusion correlation results between left sPreCS and left laSTG.

These two regions have similar correlation in the cue period before an auditory cue is pre-

sented. The correlation for sPreCS increases at around 400 ms after the onset of auditory
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cue, and stays significantly greater than that for laSTG for approximately 300 ms (398 –

684 ms, p < 0.05). This result may reflect the roles that these two regions play in different

types of auditory attention. sPreCS has been reported to be actively engaged during covert

visual attention to location [80], [81], and it can be recruited to complete auditory spatial

attention tasks [59]. The GLM analysis results in Section 3.3.1 also show that sPreCS has

greater activation in Space than in Talker attention conditions. Thus, sPreCS might be

more specialized in spatial than in non-spatial attention, and the increase in its fusion cor-

relation after the onset of auditory cue may indicate that the information about “spatial vs.

non-spatial attention” is encoded in this region during this period of time. Unlike sPreCS,

laSTG has been reported to play a hybrid role in handling spatial and non-spatial informa-

tion; lesion studies have revealed its contribution to both spatial [82], [83] and temporal [84]

perception. Therefore, it may not encode much information specific to attention types (i.e,

spatial or non-spatial) in the cue period, which might lead to the observed relatively lower

fusion correlation than sPreCS during this window.

Figure 4.2 compares the fusion correlation results between left IFS and left CAL in the

cue period. From the GLM analysis results in Section 3.3.1, we learned that CAL does not

show significant difference in activation between active attention and no attention condi-

tions (Figure 3.6). However, it encodes strong information about the direction of attention

(Figure 3.8). Thus, we hypothesized that CAL is recruited when there is cognitive need for

spatial mapping of a sound object, but is not always active during the attention task. IFS,

on the other hand, is strongly engaged in both spatial and talker attention (Figure 3.6). It

may serve a more active role than CAL when spatial mapping of sound is not the primary

cognitive task.

In Figure 4.2, we observe that the fusion correlation for left IFS is significantly above zero

in a few short intervals before and right after the onset of auditory cue. It is also consistently

above zero from around 800 ms till the end of the cue period. CAL shows no significance

during this period. A direct comparison between these two traces clearly differentiates the
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role played by these two ROIs, in a way that matches our expectation.

Figure 4.2: Comparison of fusion correlation between Left IFS and Left CAL in the cue
period. Correlation is calculated using the full RDM. Top panel shows the correlation traces
of two ROIs (red: IFS; blue: CAL). Shaded area represents standard error. Bars on top show
intervals in which the corresponding correlation trace is significantly above zero (p<0.05).
Bottom row shows the difference between these two traces.
Acronyms: IFS, inferior frontal sulcus; CAL, calcarine sulcus.

In Figure 4.3, we compared the fusion correlation results between left sPreCS and left

IPS in the cue period. The fusion correlation traces for these two ROIs are mostly in line

with each other. One interesting observation is that the neural process in sPreCS seems to

happen earlier than that in IPS, indicated by the significance bars on the top. There is also

a peak in the fusion correlation for sPreCS at around 700 ms, which is ahead of the peak

for IPS at around 900 ms. These findings suggest a flow of information between these two

regions.

In Figure 4.4, we compared the fusion correlation results between right CAL and right

sPreCS in the cue period. Unlike in the previous two comparisons, here we used a portion

of the RDM, instead of the full RDM, for this analysis — only Space and Talker conditions

were counted for calculating the correlations. In this way, we can exclude the effects of Relax

conditions, and focus on the question: where and when does the brain encode information
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Figure 4.3: Comparison of fusion correlation between Left sPreCS and Left IPS in the cue
period. Correlation is calculated using the full RDM. Top panel shows the correlation traces
of two ROIs. Shaded area represents standard error. Bars on top shows intervals in which
the corresponding correlation trace is significantly above zero (p<0.05). Bottom row show
the difference between these two traces.
Acronyms: sPreCS, superior precentral sulcus; IPS, intraparietal sulcus.

about the difference between spatial and non-spatial attention. We observe that, even though

sPreCS shows significantly stronger activation in Space than in Talker (Figure 3.6c), its

encoding of the difference between Space and Talker does not happen a lot during the cue

period. Its fusion correlation is significantly above zero only for a very brief period of time

at around 520 ms. Different from sPreCS, the fusion correlation for CAL exhibits two

salient peaks at around 520 ms and 800 ms. Given that CAL encodes information about

the direction of attention, these two peaks may have indicated that CAL is recruited during

these two windows for mapping the auditory cue in space.

In Figure 4.5, we compared the fusion correlation results between left IFS and left sPreCS

in the stimulus period. Again, only Space and Talker attention are used for this analysis.

These two ROIs are claimed to have different specializations: IFS for non-spatial attention,

and sPreCS for spatial attention. The fusion results show that they both encode the dif-

ference between Space and Talker, and they seem to have different dynamics in terms of
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Figure 4.4: Comparison of fusion correlation between right CAL and right sPreCS in the cue
period. Correlation is calculated using the Space and Talker conditions only (i.e., excluding
the Relax conditions). Top panel shows the correlation traces of two ROIs. Shaded area
represents standard error. Bars on top shows intervals in which the corresponding correlation
trace is significantly above zero (p<0.05). Bottom row shows the difference between these
two traces.
Acronyms: sPreCS, superior precentral sulcus; CAL, calcarine sulcus.

when this information is being encoded. In IFS, this process happens exactly around when

the target is being played, while in sPreCS, this process seems to be on throughout the

stimulus period, and becomes more significant 150 ms after the target onset. This may have

suggested a difference in the neural mechanism behind spatial and non-spatial attention. In

spatial attention, the listeners focus on one side of the auditory scene through suppressing

the perception of the unattended side, and this suppression mechanism is reflected in alpha

oscillations [85]. The talker attention tasks in this study, however, require the listeners to

“let in” all the auditory input, and match the perceived sound with a template in their

working memory. These two different attention strategies may have caused the observed

difference in dynamics between IFS and sPreCS.

In Figure 4.6, we compared the fusion correlation results between left sPreCS and left

CAL in the stimulus period. Only the top left portion of the RDM (i.e., the Space-Space

cell of the RDM) was used to calculate correlation. Results show that the fusion correlation
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Figure 4.5: Comparison of fusion correlation between left IFS and left sPreCS in the stimulus
period. Correlation is calculated using the Space and Talker conditions only (i.e., excluding
the Relax conditions). Top panel shows the correlation traces of two ROIs. Shaded area
represents standard error. Bars on top shows intervals in which the corresponding correlation
trace is significantly above zero (p<0.05). Bottom row shows the difference between these
two traces.
Acronyms: sPreCS, superior precentral sulcus; IFS, inferior frontal sulcus.

for CAL is significantly above chance from around 100 ms to 200 ms after the target onset.

This confirms our previous claim that CAL is only recruited when spatial mapping of sound

is needed, which is consistent with findings in previous studies on auditory spatial attention

in congenitally blind humans [86], [87].

One limitation of this study is the relatively small number of conditions in our experimen-

tal design compared to previous RSA studies [18], [42]. A greater number of conditions can

effectively reduce the chance of having false discoveries, because randomness in correlation

decreases as the number of conditions increases. With a small number of conditions (for ex-

ample, n = 6), even RDMs filled with random numbers may yield a correlation greater than

0.5 with around 5% of chance (Figure 4.7). In our study, as we used smaller and smaller

portions of an RDM for fusion analysis, the variance (or noise) in the correlation results

dramatically increased. We even tried to use only the Talker-Talker portion (i.e., the cell in

the middle of an RDM, n = 6) to calculate correlation, but no effect survived the TFCE test
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Figure 4.6: Comparison of fusion correlation between left sPreCS and left CAL in the stim-
ulus period. Correlation is calculated using the top left portion of the RDM labelled with
pink (i.e., the Space-Space cell of the RDM). Top panel shows the correlation traces of two
ROIs. Shaded area represents standard error. Bars on top shows intervals in which the
corresponding correlation trace is significantly above zero (p<0.05). Bottom row shows the
difference between these two traces.
Acronyms: sPreCS, superior precentral sulcus; CAL, calcarine sulcus.

(which, is an effective tool for controlling false discovery rate, because it estimates the null

distribution using a permuted version of the original data, and thus takes the randomness in

correlation into account). We also recruited a relatively large number of participants (n =

19) for this type of study, for a greater statistical power and a less biased estimation of pop-

ulation means. However, a greater number of conditions and trials per condition are always

preferred in RSA studies. Our design was constrained by the use of an attention task that

requires subject response, which is not necessary for most previous RSA studies, since they

focused on decoding stimulus rather than differences in the internal processing state across

different listenting conditions. Future studies should consider designing experiments in a

way that data of multiple trials and/or conditions could be acquired per subject response.

This will effectively reduce the time to acquire a dataset that is ideal in size (i.e., number of

conditions and trials per condition) for an RSA study.
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Figure 4.7: Randomness in correlation decreases as the number of conditions increases.
(a) Simulation of correlation between random RDMs with different number of conditions.
10,000 pairs of RDMs filled with random numbers are generated for each condition number.
The distributions of the result correlations are shown in (b). Dashed lines denote the 95th
percentile of the respective distribution. (c) The 95th percentile of the distribution of random
correlations as a function of condition number.

4.4 Conclusion

This work is among the first few studies that deploy a representational similarity analysis

(RSA) for multimodal data fusion to study the dynamics of auditory attentional control.

We designed a condition-rich experiment, which required spatial or non-spatial auditory

attention from the listeners. We collected EEG and fMRI data separately with the same ex-

perimental design, and extracted neural representation features from both modalities. Then

we correlated these representation features to search for significant information correspon-

dence in time and space. The fusion analysis revealed that the calcarine sulcus is only
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active during the task when spatial mapping of sound is needed, suggesting its major role

in processing spatialized auditory targets. We observed a difference in dynamics between

the inferior frontal sulcus and the superior precentral sulcus during the stimulus period,

which might have reflected a difference in the suppression mechanism between spatial and

non-spatial attention.
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Chapter 5

Attention-based auditory

brain-computer interfaces

5.1 Overview of chapter

In Chapter 2, I studied the neural representation of auditory attention in EEG signals. I

estimated the dissimilarity between each pair of conditions at each time point via a machine

learning classification approach — multivariate feature vectors of each condition, derived

from EEG time course or its alpha oscillation power, were used to train and test a binary

linear support vector machine (SVM). The average classification accuracy of the SVM, esti-

mated from a leave-one-trial-out cross-validation, was used to quantify the difference between

each pair of conditions. Results in this study showed that the attentional state of the listener

could be well decoded from EEG signals, even with data from only one single time point.

This motivated me to think whether, with the help of more data and more sophisticated

algorithms, we can decode the attentional state of a listener from single-trial EEG data,

and achieve a classification accuracy that is sufficiently good for a practical brain-computer

interface (BCI).

In this chapter, I present four different studies in which I explored the feasibility of
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decoding attention from EEG signals for the design of an attention-based BCI system. For

the study in Section 5.2, I use the data collected in Chapter 2 and decode attentional efforts

with a linear SVM from the EEG time course and its alpha oscillation power, an approach

similar to the decoding analysis I discussed in Chapter 2. In Section 5.3, I use the same

dataset, but decode attention with a convolutional neural network, which can automatically

learn the feature to be used for classification [88]. Section 5.4 and Section 5.5 are two research

projects I designed and conducted as a Research Intern in the Audio and Acoustics Research

Group at Microsoft Research during the summers of 2019 and 2020. These works are included

in this dissertation with permission from the leader of the research group, Dr. Ivan Tashev.

In Section 5.4, I design an experiment with streams of auditory and tactile stimuli, and

instructed the participants to direct their auditory, tactile or multi-sensory attention to one

particular stream. Then, I extracted time-frequency features from their EEG signals, and

decoded their attentional state during this task. In Section 5.5, I design an experiment with

polyphonic music, ask the listeners to attend to one instrument, and decode attention from

their envelop following response in EEG signals. Together, these studies demonstrate means

to improve an auditory BCI design with better accuracy, efficiency and user-friendliness.
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5.2 Decoding auditory attention from single-trial EEG

for a high-efficiency brain-computer interface1

5.2.1 Abstract

Brain-computer interface (BCI) systems enable humans to communicate with a machine

in a non-verbal and covert way. Many past BCI designs used visual stimuli, due to the

robustness of neural signatures evoked by visual input. However, these BCI systems can

only be used when visual attention is available. This study proposes a new BCI design using

auditory stimuli, decoding spatial attention from electroencephalography (EEG). Results

show that this new approach can decode attention with a high accuracy (>75%) and has a

high information transfer rate (>10 bits/min) compared to other auditory BCI systems. It

also has the potential to allow decoding that does not depend on subject-specific training.

5.2.2 Introduction

Electroencephalography (EEG) offers a noninvasive and portable method for monitoring

brain activity, making it a popular technology for brain-computer interfaces (BCIs) [26].

Many successful BCI systems use visual stimuli as the sensory input, and decode a user’s

attention from neural signatures such as event-related potentials (ERPs). These visual

paradigms efficiently transmit information to a computer, as quantified by their informa-

tion transfer rate (ITR). For example, one recent study on visual ERP-based BCI reported

an average ITR as high as 20.26 bits/min [33].

Though visual BCI systems are efficient, they cannot be used in scenarios where visual

attention is already engaged by real world demands (e.g. walking or driving), or by users

with visual impairment. Some previous studies developed auditory BCI systems to tackle

1This section is adapted with permission from paper: Winko W. An, Alexander Pei, Abigail Noyce,
Barbara Shinn-Cunningham, “Decoding auditory attention from single-trial EEG for a high-efficiency brain-
computer interface”, in Proceedings of the 42nd Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), 2020
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these problems. For example, Kim et al. [28] used multiple streams of spatialized modulated

signal with a constant-frequency carrier as the stimuli, and decoded attention from auditory

steady-state response (ASSR). An et al. [89] used more user-friendly stimuli, synthesized

melodies, and developed a novel BCI paradigm. In another study to reduce user fatigue,

Huang et al. [30] proposed using drip drop sounds as the input. However, the efficiency of

these auditory systems is substantially lower than most visual-based BCIs. For example,

ITRs of the three aforementioned studies were all below 3 bits/min, making them less useful

in real applications.

The current study proposed an auditory BCI system with high efficiency. It used spa-

tialized human-voiced syllables as the stimuli, and decoded selective attention from EEG.

Inspired by previous studies on auditory attention [36], [38], [39], [90], both ERP and EEG

spectrogram were used as features to train and test a series of linear classifiers for attention

decoding.

5.2.3 Methods

5.2.3.1 Participants

Thirty adults (19 – 44 years old, 14 female) participated in this study. No participant

reported hearing loss or any history of neurological disorders. The Institutional Review

Board of Boston University approved this study. All participants gave written informed

consent, and were paid for taking part in the study.

5.2.3.2 Experiment

Before the experiment started, participants were asked to sit comfortably in a soundproof

booth in front of a computer monitor. The syllables /ba/, /da/ and /ga/, spoken by native

English talkers, were used as stimuli. The syllables were spatialized by a set of generic head-

related transfer functions (Media Lab, MIT), and played through a pair of insert earphones

(ER1, Etymotic Research). The intensity of sound was adjusted to a comfortable listening
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level for each individual to ensure syllable intelligibility. The simulated locations of these

syllables were 90◦ from the left (L90), center, or 90◦ from the right (R90, Figure 5.1a), in

the horizontal plane.

At the beginning of each trial, a visual cue (VC) was shown on the screen for one second,

which could be one of the two words: “Space” or “Relax” (Figure 2.1b). “Space” indicated

that participants should direct spatial attention in the upcoming trial, while “Relax” rep-

resented a control trial where no attention would be required. An auditory cue (AC) — a

spatialized /a/ sound — was given after the VC to direct the participant’s attention. In

“Space” attention trials, the AC specified the target location (either L90 or R90). In no-

attention “Relax” trials, the AC always came from the center (i.e. a neutral value). After

a 1000 ms silent period, a 4-syllable mixture was played. All syllables were 600 ms long,

and their onsets were separated by 300 ms. In “Space” attention trials, the first and the

last syllables were always distractors (D1) played from the center. Of the second and third

syllables, one was the target (T), which came from the AC location. The other syllable was

the second distractor (D2) that came from the opposite side. Syllables /ba/, /da/, and /ga/

were randomly permuted among T, D1 and D2. The task was to ignore D1 and D2, and to

identify T using the keyboard (“1” for /ba/, “2” for /da/, and “3” for /ga/). Visual feedback

was given after each response to show whether the answer was correct. In no-attention trials,

the participants were asked to ignore all syllables, and give a random answer at the end.

The inter-trial interval was set to be 2 seconds with jitter.

Each participant completed 756 trials in total. These trials differed in the locations

and talkers of the spoken syllables, and in the type of attention (spatial or non-spatial)

required. Data from only four conditions (72 trials in each condition) are presented in this

analysis: 1) selective spatial attention trials in which the four syllables occur in location order

Center-Left-Right-Center (Spa LR); 2) selective spatial attention trials with syllables in order

Center-Right-Left-Center (Spa RL); 3) a control no-attention condition with syllables in

order Center-Left-Right-Center (Ctr LR); 4) a control no-attention condition with syllables
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(a)

(b)

Figure 5.1: (a) Spoken syllables were spatialized to center and to 90◦ left (L90) or right
(R90), always in the horizontal plane. The syllable from the center was always a distractor
(D1). The target (T) might be at L90 or R90, with a second distractor (D2) at the opposite
side. (b) Illustration of the events within a trial. A visual cue (VC) was followed by an
auditory cue (AC). A 4-syllable mixture was played 1 second after the AC. The participants
should respond when the fixation dot turned blue. A green or red dot was presented at the
end of the trial, showing the correctness of the response.

in order Center-Right-Left-Center (CTR RL). From these four conditions, we attempted

two binary attention decoding problems: 1) Spa LR vs Ctr LR; and 2) Spa RL vs Ctr RL.

Note that for each of these comparisons, the stimuli presented were exactly matched; only

the instructions given to the participant differed. The following sections of this paper will

explore the differences in neural signatures for each pair, and how effectively attention can
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be decoded.

5.2.3.3 EEG processing

EEG was collected using a 64-channel Biosemi system throughout the experiment, sampled

at 2048 Hz. Raw EEG data first were bandpass filtered (0.1 - 50 Hz), and were then

downsampled to 256 Hz. An independent component analysis was conducted subsequently

using EEGLAB [41], [91]. Components that represented eye blinks, eye movements, and

muscle artifacts were removed from further analysis.

5.2.3.4 ERP and time-frequency analysis

The continuous EEG data were segmented into epochs to study differences in ERPs and

oscillation activity between conditions. In this study, ERP is defined as the condition-

wise average EEG waveform time-locked to the onset of the first syllable. The spectro-

temporal representation of EEG was studied using a continuous wavelet transform (CWT)

implemented using a custom MATLAB script. The wavelet bases (Morlet wavelet with ω0

= 6) were normalized to have unit total energy at all scales [44].

A group-level cluster-based permutation test [45], implemented with FieldTrip [92], was

used to examine the difference in ERP and in CWT between each spatial attention condition

(i.e. Spa LR and Spa RL) and its corresponding control condition (i.e. Ctr LR and Ctr RL,

respectively). Both cluster-forming and cluster-significance thresholds were set at 0.05.

5.2.3.5 Feature extraction and classification

Subject-specific linear discriminant analysis (LDA) models were used to decode attention

from single-trial EEG data for each of the two classification problems (i.e., Spa LR vs Ctr LR,

and Spa RL vs Ctr RL). Inspired by the results in Section 5.2.4.1 and 5.2.4.2, the feature

used for training and testing the model contained multi-channel EEG time-courses as well

as the magnitude of the CWT, averaged within each 100 ms interval between 1500 ms and
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2700 ms after the onset of the AC (i.e., from the onset of the first syllable to the offset of the

third syllable). The CWT magnitudes were also averaged within five frequency bands: delta

(2 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 14 Hz), beta (14 – 30 Hz) and gamma (30 – 40 Hz).

The decoding accuracy of each binary classification was derived from a leave-one-trial-out

cross-validation with 1000 repetitions.

5.2.4 Results

5.2.4.1 ERP analysis

The differences in ERPs between spatial attention and control conditions are shown in Figure

5.2. Significant differences were observed in frontal and parietal channels at multiple time

instances. The topographic pattern of the ERP difference was similar for the two contrasts,

with a slight difference in the lateralization of the positivity at 1900 ms and 2200 ms. Such

lateralization is likely affected by the spatialized location of the syllable being played at those

moments.

5.2.4.2 Time-frequency analysis

Event-related synchronization (ERS) and desynchronization (ERD), defined as the percent

change in value from one condition to a baseline (i.e., Ctr LR and Ctr RL in this study),

were used to evaluate the signal change in the time-frequency domain when attention was

engaged. Strong ERS was seen in the alpha band before the onset of the last distractor (2400

ms, Figure 5.3a). Higher values of alpha ERS were seen in the frontal and parieto-occipital

sensors (Figure 5.3b). In addition, the ERS in the beta band, and the ERDs in the delta,

theta and gamma band were also significant in at least one channel throughout the stimuli

period.
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(a)

(b)

Figure 5.2: Topographic maps of ERP differences between spatial attention and control
conditions. Time stamps are with respect to the onset of the auditory cue. Solid dots
represent channels with significant effects (p < 0.05). Unit: µV

5.2.4.3 Decoding accuracy

Attention can be decoded accurately from EEG in most participants. All results were above

50%, the absolute chance level for a binary classification (Figure 5.4). However, since studies

on brain signal classification are generally susceptible to a high false positive rate, Combrisson

and Jerbi [93] proposed a method to correct the chance level based on sample size, number

of classes, and the desired confidence interval. Even with the corrected chance level (56.94%,

95% confidence), only one classification fell below chance (Figure 5.4a). Table 5.1 shows the

average decoding accuracy, their equivalent ITR, and the best ITR among all participants.

Table 5.1: Decoding results & information transfer rate (ITR)

Conditions Average Average ITR Best ITR
accuracy (bits/min) (bits/min)

Spa LR vs Ctr LR 74.15% 9.44 23.53
Spa RL vs Ctr RL 75.83% 10.25 31.70
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(a)

(b)

Figure 5.3: (a) Average event-related synchronization (positive values) or desynchronization
(negative values) across all channels. The values are masked by their significance derived
from a non-parametric statistical test (p < 0.05). Black dashed lines represent the onset
of four syllables. (b) Topographic maps of the alpha power difference between Spa RL and
Ctr RL. Time stamps are with respect to the onset of the auditory cue. Solid dots represent
channels with significant effects for at least one frequency bin (p < 0.05).

5.2.4.4 Behavioral correlate

In order to explore the relationship between decoding and attentional effort, the decoding

accuracy for each participant was correlated with behavioral performance. In this study,

behavioral performance is defined as the percent correct of the syllable identification tasks

in spatial attention trials (see Section 5.2.3.2), which represents a proxy for the participant’s

mental engagement during the task. The results showed significant correlation between

behavior and decoding accuracy for both Spa LR vs Ctr LR (ρ = 0.433, p = 0.017) and

Spa RL vs Ctr RL (ρ = 0.567, p = 0.001, Figure 5.5).
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(a) (b)

Figure 5.4: Histogram of decoding accuracy. The red dashed lines at 56.94% represent the
corrected chance level.

5.2.5 Discussion

This study introduced a new auditory BCI system that can generate a binary output within

2 seconds. Human-voiced syllables were used as the stimuli, which are natural, user-friendly,

and unlikely to cause fatigue even with extensive usage. Users can voluntarily attend or

ignore these stimuli to control the value of the output (e.g., “yes” or “no”). The efficiency of

the proposed system is substantially greater than that reported in previous studies that used

modulated signals [28], [29], melodies [89], or drip drop sounds [30] as the stimuli. The best

ITRs across participants even outperformed some visual BCI systems [33], [94]. The high

ITR achieved in this study was due in part to the use of short trials — the classifications were

run with only 1.2 seconds of EEG data. Such a brief delay between attentional control and

a BCI output may even enable a conversation-level interaction with a computer. To achieve

even higher efficiency, in the future, we will explore the feasibility of decoding the direction

of spatial attention (left or right) from single-trial EEG. Together with the no-attention

condition, we can build a 3-way classifier, which may have better value in real applications.

The current decoding method uses high-dimensional features for classification. Inspired

by results in the ERP and the time-frequency analysis, these features contain information
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(a) (b)

Figure 5.5: Scatter plots showing each subject’s behavioral performance and decoding accu-
racy.

represented in either the time domain or spectro-temporal domain. However, these features

may not contribute equally to classification. Including irrelevant features may even decrease

the accuracy of the model. Similarly, some EEG channels may contribute more than the

others. Shrinking the number of channels while maintaining a high decoding score, if possible,

would be important to building unobtrusive BCI systems with few channels. In the future,

we will conduct a feature selection analysis by estimating feature weights, and reduce the

dimensionality of features used for classification.

It is nearly impossible for participants to sustain full attention throughout the whole

experiment. At least some of their incorrect responses during spatial attention tasks are likely

due to attention drifting. The strong correlation between decoding accuracy and behavioral

performance suggests that some of the wrong classifications might simply originate from

a lack of attentional effort during such trials. Therefore, the proposed BCI system has the

potential to achieve even higher efficiency if the user is always fully engaged, which is usually

the case during real-life applications.

Significant differences in ERP and CWT were shown in group-level statistics, suggesting

that some of the contrasting features are common across subjects. Although user-specific
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classifiers were our main focus, this suggests that a general decoder might be feasible that is

not trained on individual subjects. Such a decoder would largely reduce the amount of time

and data required to implement a system for a new user. A future study on the feasibility

of building a general classifier for all participants is warranted.

5.2.6 Conclusions

The current study proposed a new BCI system based on auditory attention. It not only

yielded high efficiency compared with previously reported auditory BCI systems, but also

presented pleasant, user-friendly stimuli that allow comfortable long-term use. The system

also has the potential to allow decoding that does not depend on subject-specific training.
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5.3 Decoding auditory attention from EEG using a

convolutional neural network1

5.3.1 Abstract

Brain-computer interface (BCI) systems allow users to communicate directly with a device

using their brain. BCI devices leveraging electroencephalography (EEG) signals as a means

of communication typically use manual feature engineering on the data to perform decoding.

This approach is time intensive, requires substantial domain kno wledge, and does not trans-

late well, even to similar tasks. To combat this issue, we designed a convolutional neural

network (CNN) model to perform decoding on EEG data collected from an auditory atten-

tion paradigm. Our CNN model not only bypasses the need for manual feature engineering,

but additionally improves decoding accuracy (∼77%) and efficiency (∼11 bits/min) com-

pared to a support vector machine (SVM) baseline. The results demonstrate the potential

for the use of CNN in auditory BCI designs.

5.3.2 Introduction

Electroencephalography (EEG), a noninvasive, mobile, and low cost neuroimaging technique,

has become a popular method for developing brain-computer interfaces (BCIs) [26]. Many

successful BCI systems have been built around visual attention: when users are asked to

focus on a particular visual object, their attentional state can be decoded from EEG sig-

natures such as evoked responses and oscillations. Due to the strength and robustness of

visual responses in EEG, these visual paradigms can achieve high decoding accuracy and

transmission efficiency. For example, Lin et al. reported an average information transfer

rate (ITR) of 20.26 bits/min in their BCI system built on visual event-related potentials

1This section is adapted with permission from paper: Winko W. An, Alexander Pei, Abigail Noyce,
Barbara Shinn-Cunningham, “Decoding auditory attention from EEG using a convolutional neural network”,
in Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 2021
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(ERPs, [33]).

Visual BCIs require the deployment of visual attention, which is not always feasible in

real-life scenarios like while walking or driving, or for users with visual impairment. An alter-

native solution using a different sensory modality is therefore desirable. Previous BCI studies

have attempted to decode auditory attention from EEG signals. Kim et al. [28] used two

streams of modulated signal with a constant-frequency carrier as the stimuli and decoded

users’ attention from their auditory steady-state response (ASSR). Kaongoen and Jo [95]

developed a hybrid auditory BCI paradigm combining ASSR and ERP. Considering that

these modulated signals are not particularly pleasant and can cause user fatigue, researchers

have also explored using more user-friendly stimuli, such as drip-drop sounds [30], sequences

of tones [89], and music [96], in their BCI design. However, the improved user-friendliness

was achieved at the cost of system efficiency — none of these studies yielded an ITR over 3

bit/min. We recently reached a balance between these two goals [62]. We directed users’ at-

tention to spatialized human-voiced syllables, trained a support vector machine (SVM) with

time-frequency measures of EEG, and achieved high decoding throughput (∼10 bits/min).

One possible way to improve the results in [62] is to adopt a deep learning approach,

such as a convolutional neural network (CNN). As opposed to conventional machine learn-

ing algorithms like SVM, CNNs do not depend on hand-crafted features for classification.

Instead, it automatically learns kernel functions through training, which can help extract

features that differentiate multiple classes. CNNs have been widely used in computer vision

and more recently in general EEG studies [97], but have not been popularly used in auditory

BCIs. In this study, we explored the efficacy of CNNs in decoding auditory attention by

comparing with a SVM baseline. We also examined the correlation between CNN decoding

and behavioral performance to find a possible cause of the observed individual differences in

decoding results.
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5.3.3 Methods

5.3.3.1 Participants

Thirty adults with normal hearing (19 – 44 years old, 14 female) were recruited for this study.

The Institutional Review Board of Boston University approved this study. Participants were

briefed and consented before partaking in this study, and were compensated for their time.

5.3.3.2 Experiment

Subjects sat in a soundproof booth while wearing a pair of insert earphones (ER1, Etymotic

Research). The sound stimuli consisted of syllables /ba/, /da/ and /ga/ spoken by native

English speakers with varying pitch. To spatialize the sound stimuli, the audio waveforms

were convolved with head-related transfer functions provided by the Media Lab, MIT [40].

The simulated locations were center, 30◦ from the left (L30) or right (R30), or 90◦ from the

left (L90) or right (R90, Figure 5.6a), in the horizontal plane.

The trial began with a one-second visual cue (VC). The VC “Space” indicated that the

subject should perform spatial attention, while the VC “Relax” required no attention from

the subject (a third condition, “Talker”, is not reported here.) After the VC ended, a 500 ms

auditory cue (AC) was played. For “Space” attention trials, the AC was a spatialized /a/

syllable, coming from either L90 or R90. In the “Relax” trials, the /a/ syllable came from the

midline. 1000 ms after the AC, a 4-syllable mixture consisting of permuted syllables /ba/,

/da/, and /ga/ was played. Each syllable was 600 ms in duration and had 300 ms delays

between each subsequent syllable onset. The first and last syllables were distractors (D1),

which came from the center. The second and third syllables were either another distractor

(D2) or the target syllable (T). The target came from the same location as the AC, while D2

came from a location different than the target. For the “Space” trials, subjects were required

to report the target using a key press (“1” for /ba/, “2” for /da/, and “3” for /ga/). During

“Relax” trials, subjects were asked to passively listen and report a random syllable. Visual
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feedback was provided indicating correct responses.

Figure 5.6: (a) (Adapted from [62] with the authors’ permission) Spoken syllables were
spatialized to center, 30◦ left (L30), or right (R30), and 90◦ left (L90), or right (R90), always
in the horizontal plane. This figure shows one possible scenario where sounds come from
L90, R90 and center. (b) Illustration of the events within a trial. A visual cue (VC) was
followed by an auditory cue (AC). A 4-syllable mixture was played 1 second after the AC.
Participants were asked to respond when the fixation dot turned blue. A green or red dot
at the end of the trial provided feedback.

In total, subjects completed 756 trials for the entire experiment, which lasted for approx-

imately 2 hours. Each trial had variations in location and pitch of the talkers, ordering of

the syllables, and attention type; only a subset of the overall data (i.e., trials that required

spatial or no attention) was used in this study. We collapsed all spatial attention trials into

one condition (288 trials), and all no-attention trials into another condition (252 trials) to

perform binary classification. In both conditions, the exact same stimuli were presented; the

only difference between the conditions was the instruction for the task.
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5.3.3.3 EEG processing

EEG was collected using a 64-channel Biosemi system sampled at 2048 Hz. Raw EEG data

were bandpass filtered (0.1 – 50 Hz), and were then downsampled to 256 Hz. As opposed to

the previous study, which used independent component analysis (ICA) for artifact removal,

we used artifact subspace removal (ASR) to remove artifacts because ASR is more feasible

during real-time BCI decoding [98].

5.3.3.4 Feature extraction for support vector machine

Based on prior knowledge about the neural signatures of spatial attention [38], we used

both time and frequency representations of the EEG data for decoding. The data for each

trial were cropped to contain only the time window from 1.5 to 2.7 seconds after the AC,

which we expected to contain the critical neural signatures of interest while the subject is

actively performing attention. Continuous wavelet transforms (CWT) were used to generate

a spectro-temporal representation of the time-series data. A Morlet wavelet with ω0 = 6

was used as the wavelet base. Normalization was done to have unit total energy at all

scales [44]. The CWT coefficients were then collapsed into five distinct frequency bands

that are known to contain signatures of cognitive processes: delta (2 – 4 Hz), theta (4

– 8 Hz), alpha (8 – 14 Hz), beta (14 – 30 Hz) and gamma (30 – 50 Hz). This process

yielded a multidimensional time-series for each channel consisting of the channel voltage

and the magnitude of the wavelet coefficients in each frequency band. To reduce the data

dimensionality and computational demands, data were binned into 100 ms windows. The

resulting time-series matrix across channels and features was flattened to produce a single

vector. A support vector machine (SVM) with a linear kernel was used to decode this data

vector for spatial attention conditions vs. no attention conditions. We performed 10-fold

cross-validation to generate training and test sets. The decoding accuracy was averaged

across the 10 folds. This process was repeated 20 times, for a total of 200 trained models.

Each subject was trained and tested independently from other subjects.
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5.3.3.5 Convolutional neural network

Instead of manual feature engineering, the preprocessed EEG time-series in the same 1.5

– 2.7 second time-window was input into a CNN. Our architecture consisted of only three

convolutional layers to avoid overfitting, given that our data set is relatively small. Average

pooling layers were interwoven between convolutional layers to further reduce the dimen-

sionality of the input. The resulting output of the convolutional layers was flattened and fed

through fully connected layers followed by rectified linear unit (ReLU) layers to get a single

prediction of the binary class. We additionally used dropout layers to assist with overfitting.

Details about the layers can be seen in Figure 5.7.

The training schemes for the CNN differed slightly from that used for the SVM to avoid

overfitting due to overtraining. 10-fold cross validation was performed with 20 samples from

each condition (40 samples in total) being held out as the validation set in each fold. The

CNN was then trained for 40 epochs, and the model with the lowest validation loss across

the 40 epochs was used as the final model to classify the testing set. The rationale is that if

a model is overtrained in late epochs, the overfitting would lead to an increase in validation

loss. By choosing the model with the lowest validation loss, we are technically stopping

the training process before the model becomes too complicated to generalize properly, and

thus avoiding overfitting. 20 iterations of random initialization were performed for this 10-

fold cross validation. The testing accuracy was averaged across these iterations to estimate

the classification performance of the model. We used a cross-entropy loss function, Adam

optimizer with a learning rate of 0.0001, a lambda weight decay of 0.01, and a batch size of

50.

108



Decoding Attentional Control from Noninvasive Measures in Humans

Figure 5.7: The CNN architecture used in this study.
Conv – convolutional layer; H – height of kernal; W – width of kernal; ReLU – rectified linear
unit; AvgP – average pooling layer; BN – batch normalization layer; FC – fully connected
layer; DO – dropout layer

5.3.4 Results and Discussion

5.3.4.1 Classification accuracy

The average classification accuracy of the SVM approach was 72.10% (Tab. 5.2), a slight

drop from the result (∼75%) in [62], where ICA was adopted for artifact removal. Because

ASR requires much less time to process than ICA and can be used in a real-time manner, it

seems reasonable to replace ICA with ASR in a BCI system design for real-life applications.

The CNN method proposed in this study significantly improved the classification per-

formance compared to the SVM approach (paired t-test, p<0.001, Figure 5.8). It achieved

a 77.01% decoding accuracy; moreover, each individual subject showed a performance gain

over SVM. Given that attention was decoded from only 1.2 seconds of data, the proposed

BCI system is highly efficient. The average equivalent ITR [99] is 11.11 bits/min, and the

best ITR among all participants is 32.03 bits/min, on par with some visual BCI paradigms.

In the future, we will attempt other advanced machine learning methods, such as convolu-

tional long short-term memory (ConvLSTM) and adaptive learning [100] to seek even better

classification performance.
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Figure 5.8: SVM and CNN classification results. Each gray line represents data from one sub-
ject. CNN yielded a significantly higher average classification accuracy than SVM. *p<0.001

Table 5.2: Classification accuracy & information transfer rate (ITR)

Classifier Average Average ITR Best ITR
accuracy (bits/min) (bits/min)

SVM 72.10% 7.30 25.00
CNN 77.01% 11.11 32.03

5.3.4.2 Performance gain with CNN

The gain in classification accuracy of CNN over SVM varied across participants. Figure 5.9

shows that this improvement is strongly and negatively correlated with the SVM classification

results (ρ=-0.541, p=0.002). The CNN method seems to have benefited subjects with a

lower decoding score more than those with a higher one, and thus reduced the variability in

decoding accuracy across subjects. One possible reason is that the SVM accuracy is low in

some subjects not only because there is less distinguishing information in their EEG signals,

but because such information is not reliably extracted from EEG using the CWT method.

The CNN approach does not rely on hand-crafted features, but rather learns through training

what features to use. It may help preserve information that is present, but does not get

represented in generic, hand engineered features. The CNN approach thus may be especially

beneficial to participants with a low SVM score.
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Figure 5.9: The gain in classification accuracy from using CNN over SVM is negatively
correlated with the SVM classification results. Each circle represents data point of one
subject.

5.3.4.3 Correlation with behavioral performance

The participants exhibit a wide range of behavioral performance in this study — some nearly

achieved a perfect score in the attention task, while some others answered correctly in less

than 70% of the trials. Interestingly, we observed a strong positive correlation between

the participants’ behavioral performance and their attention decoding accuracy using CNN

(ρ=0.583, p<0.001, Figure 5.10). This suggests that the variance in individual CNN clas-

sification results shown in Figure 5.8 can be partially explained by how well a participant

performed in the attention task. If the main reason for giving an incorrect response is that

a subject’s attentional focus drifted, the proposed BCI system has the potential to achieve

even better accuracy and efficiency if the user is always fully engaged and motivated, which

is more likely during real-life applications.

5.3.5 Conclusions

This study proposed a method to decode auditory attention from single-trial EEG for the

purpose of building a BCI system. We adopted a subspace-based artifact removal pipeline,
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Figure 5.10: The CNN classification accuracy is positively correlated with the subject’s
behavioral performance in the attention task.

which can process signals in a real-time manner. The CNN approach yielded high classifica-

tion accuracy and efficiency, outperforming a SVM baseline as well as previous studies. The

CNN decoding results are strongly correlated with the participants’ behavioral performance

in the attention task, suggesting a possible improvement in decoding, when used in real-life

applications, where users are highly motivated.
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5.4 Decoding auditory and tactile attention for use in

an EEG-based brain-computer interface1

5.4.1 Abstract

Brain-computer interface (BCI) systems offer a non-verbal and covert way for humans to

interact with a machine. They are designed to interpret a user’s brain state that can be

translated into action or for other communication purposes. This study investigates the

feasibility of developing a hands- and eyes-free BCI system based on auditory and tactile

attention. Users were presented with multiple simultaneous streams of auditory or tactile

stimuli, and were directed to detect a pattern in one particular stream. We applied a linear

classifier to decode the stream-tracking attention from the EEG signal. The results showed

that the proposed BCI system could capture attention from most study participants using

multisensory inputs, and showed potential in transfer learning across multiple sessions.

5.4.2 Introduction

Brain-computer interface (BCI) systems offer a non-verbal and covert way for humans to

communicate a control signal to a computer. Among the neuroimaging modalities that are

currently available, electroencephalography (EEG) has become the most popular choice for

BCI applications due to its noninvasiveness, mobility, and low cost [26]. EEG monitors brain

activity through sampling the electrical potential along the scalp at a very high rate. The

high temporal resolution of EEG oscillations allows capturing certain neural signatures of a

brain state or mental efforts, which can be used to decode users’ intention.

Many successful BCI systems rely on external stimulation, especially with visual stimuli.

1This section is adapted with permission from paper: Winko W. An, Hakim Si-Mohammed, Nicholas
Huang, Hannes Gamper, Adrian KC Lee, Christian Holz, David Johnston, Mihai Jalobeanu, Dimitra Em-
manouilidou, Edward Cutrell, Andrew Wilson, Ivan Tashev, “Decoding auditory and tactile attention for
use in an EEG-based brain-computer interface”, in Proceedings of the 8th International Winter Conference
on Brain-Computer Interface, 2020
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For example, visual P300 is a well-studied event-related potential (ERP) that is elicited as a

response to infrequent events, or “oddballs.” It usually happens around 300 ms after the onset

of the event, and could be captured by sensors in the parietal area [26]. Another popular

neural signature of visual stimuli is the steady-state visual evoked potential (SSVEP), which

is the response in the visual cortex to a constant-frequency flickering stimulus. These vision-

based paradigms have high efficiency for transmitting bits to a computer, which can be

quantified by their information transfer rate (ITR). Previous studies yielded an ITR of 20.26

bits/min using P300 [33], or 30.10 bits/min using SSVEP [27].

A major disadvantage of using visual stimuli for BCI is the level of visual attention re-

quired to complete the task in the presence of competing stimuli and the fact that it could

interfere with competing tasks (e.g., walking, driving) when vision is primarily involved. It

also requires correctable vision and voluntary gaze control, making it inaccessible to users

with severe visual impairment or locked-in-syndrome. In view of this, previous studies have

focused on developing an attention-based BCI system using auditory or tactile stimuli. They

used modulated signals with a constant carrier frequency as the input, usually in multiple

streams of spatial sound [101] or vibration on fingers [102]. Attention was decoded from audi-

tory steady-state response (ASSR) or steady-state somatosensory evoked potential (SSSEP),

where the EEG signal is locked to the modulation frequency of the attended stream. However,

these sinusoidal carriers with a constant frequency were perceived by users to be annoying

or fatiguing [29]. There were also no behavioral metrics to verify the attentional state of

the participants. Separately, another recent work on auditory selective attention revealed

that lateralized alpha-band (8–12 Hz) power could be a more effective neural signature than

ASSR for use in BCI [90]. This is in line with previous studies that have shown an important

role of parietal alpha activity in attention to auditory stimuli [38], [39], even while walking

[44].

The current study proposes a user-friendly, attention-based BCI paradigm using audi-

tory and tactile stimuli. A task was embedded in the stimuli, which demanded attentional
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focus from the participants. The auditory stimuli were spatialized melodies, which sound

more pleasant and are easier to attend to than monotones. The tactile stimuli were pulsed

vibrations applied to the user’s wrists, so that their hands were freed for other hypothetical

concurrent work. Both the melodies and the vibrations were amplitude-modulated, which

might induce steady-state responses. Since various neural signatures (e.g., ASSR, SSSEP,

lateralized alpha and gamma activity) could be expected from the EEG signal, the multisen-

sory attention was decoded by an individualized linear model with full spectral information

(from alpha to gamma band). The model’s ability in transfer learning was also evaluated

through recording a subset of participants across multiple sessions.

5.4.3 Method

5.4.3.1 Participants

Twelve adults (32.2 ± 7.4 years old, 3 female) volunteered to participate in this study. Eleven

participants were novel to BCI upon recruitment, among which seven had no experience

with EEG experiments. No participants reported known history of neurological disorder or

hearing loss.

5.4.3.2 Experiment

Before the experiment started, the participants were asked to sit comfortably in front of

a computer, read the instructions from the screen, and familiarized themselves with the

stimuli. The experiment consisted of 3 blocks using auditory stimuli, 3 blocks using tactile

stimuli, and 3 blocks using both auditory and tactile stimuli simultaneously (mixed). At the

beginning of each block, a text message (“audio”, “tactile” or “mixed”) was presented in the

center of the screen, indicating the sensory modality about to be stimulated. The order of

the blocks was randomized for each participant.

The experiment for audio blocks was adapted from a previous study on auditory selective

attention [36]. Two streams of modulated signals were used as stimuli, with one presented
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to the left ear, and the other to the right ear. The audio signals were delivered through a

pair of MaximalPower RHF 617-1N earpieces which transmit sound through acoustic tubes,

thus reducing possible electromagnetic interference with the EEG signal. Each stream had

multiple standard (S), high-pitched (H) and low-pitched notes (L). Each note contained six

harmonics of the fundamental frequency (f0), making it sound more natural than a single

sinusoid. The configurations of the two streams are summarized in Table 5.3. The left stream

was formed by 9 repetitions of 400-ms notes, among which the first five were always standard

(Figure 5.11a). The f0 of the last four notes determined whether the melodic pattern of the

stream was “rising” (· · ·-S-H-H-H-H), “falling” (· · ·-S-L-L-L-L) or “zig-zag” (· · ·-S-H-H-S-S).

Similarly, the right stream was formed by 12 repetitions of 300-ms notes, with the first five

always being standard. The melodic pattern of this stream could be “rising” (· · ·-S-H-H-H-

H-· · ·), “falling” (· · ·-S-L-L-L-L-· · ·), or “zig-zag” (· · ·-S-H-H-H-S-· · ·), depending on the f0

of the last seven notes. The two streams always started at the same time and were played

back simultaneously.

There were 24 trials in each audio block. At the beginning of each trial, a visual cue (VC)

was shown on the screen to direct the participant’s attention to the left stream, right stream

or neither of the two (Figure 5.11c). The cue was replaced by a white fixation dot after 1

second, and two streams of melodies started to play 0.5 second later. The participants were

asked to identify the melodic pattern of the attended stream and answer with the keyboard

after the fixation dot turned blue. Visual feedback at the end of each trial indicated whether

they identified the melodic pattern correctly (green dot) or incorrectly (red dot). The average

behavioral performance was shown at the end of each block. The inter-trial interval was set

to 2 seconds.

The design of the tactile experiment was analogous to that of the auditory one. The tactile

stimuli consisted of two streams of vibration which were applied separately to the left and

right wrist of the participant. The streams were rendered through two coin-type loudspeakers

(DAEX19CT-4, Dayton Audio) taped to the participant’s wrists (Figure 5.11d). Similar to
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(a) (b)

(c) (d)

Figure 5.11: Illustration of (a) four scenarios of left and right sound streams in an audio
block; (b) two scenarios of left and right vibration streams in a tactile block; (c) event
sequence in one trial; (d) photograph illustrating the experimental setup.

the audio blocks, modulated signals in the form of pulse trains were used for both streams.

Their configurations are shown in Table 5.4. The modulation and the carrier frequencies

were carefully selected through piloting, so that the participants could feel, but not hear the

vibration. Unlike in the audio blocks, where there were three types of notes (S, H and L),

there were only two types of vibration pulses in tactile blocks, standard (S) and oddball (O).

The reason behind this difference is that though most participants could perceive a change

in the tactile carrier frequency, they were unable to identify whether it was increasing or

decreasing relative to S. Hence, a single oddball condition was the only choice for the tactile

experiment. The design of the two spatially separated vibration streams was very similar to

that of the sound streams (Figure 5.11b). The first five pulses in the left stream were always

standard, and the last four could form a “switch” pattern (· · ·-S-O-O-O-O) or a “zig-zag”
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Table 5.3: Configurations of sound streams

Stream Length Modulation Fundamental frequency (Hz)
(ms) frequency (Hz) Low Standard High

Left 400 37 703 740 777
Right 300 44 396 440 484

pattern (· · ·-S-O-O-S-S). The first five pulses in the right stream were always standard, and

the last seven could form a “switch” (· · ·-S-O-O-O-O-· · ·) or a “zig-zag” (· · ·-S-O-O-O-S-· · ·)

pattern. There were 24 trials in each tactile block. In analogy to the audio condition, the

participants were asked to identify the vibration pattern in the attended stream and respond

with the keyboard.

Table 5.4: Configurations of vibration streams

Stream Length Modulation Carrier frequency (Hz)
(ms) frequency (Hz) Standard Oddball

Left 400 27 120 210
Right 300 17 120 210

In multisensory (“mixed”) blocks, the streams of sound and vibration that were used

in the audio and the tactile blocks were played concurrently. The melodic pattern and the

vibration pattern of the streams on the same side of the participant were matched. For

example, a “rising” or “falling” left sound stream was matched to a “switch” left vibration

stream; a “zig-zag” right sound stream was matched to a “zig-zag” right vibration stream.

Since the notes and pulses on the same side had the same length, when the two streams were

played simultaneously, the onset of the frequency change for the two sensory modalities on

the same side was synchronized. The task was the same as the one for the audio blocks,

where the participants were asked to identify the melodic pattern of the attended stream.

The user interface for all tasks was created in MATLAB. During the experiment, EEG

signals were collected using a wireless, gel-based 24-channel system (mBrainTrain Smarting),
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at a sampling of 500 Hz.

5.4.3.3 EEG processing

The EEG signals were processed using EEGLAB [41] functions and custom MATLAB scripts.

The signals were first band-pass filtered by a finite-impulse-response bandpass filter with

cut-off frequencies at 0.1 Hz and 50 Hz. After re-referencing to the common average, an

adaptive mixture independent component analysis (AMICA) [91] method was used to sepa-

rate noise and artifact components from the signals. An automatic EEG artifact detector,

ADJUST [103], was then used to select and remove components representing eye blinks and

movement. On average, 3.08± 1.67 components were removed from each participant.

The continuous EEG data were then segmented into epochs for further analysis. Each

epoch contained data within 500 ms before and 3600 ms after the stimulus onset of each trial.

The 216 epochs (9 blocks x 24 trials/block) were then divided into 9 conditions depending on

their sensory modality (audio/tactile/mixed) and attention type (attend left/attend right/no

attention). The EEG data were further cleaned by removing trials with extreme values, which

might represent random noise or strong motion artifacts. Trials with peak values beyond

three standard deviations from their conditional average were removed from the pool. On

average, 21.54± 1.62 trials per condition remained for each participant.

5.4.3.4 Feature extraction and classification

A participant-specific linear discriminant analysis (LDA) model was used to decode attention

type (left, right or no attention) from single-trial EEG data within each one of the three

sensory modalities (audio, tactile or mixed). Spectral information of each epoch, in the form

of the magnitude of its Fast Fourier Transform (FFT) coefficients (8 - 50 Hz), was used as

the feature to train and test the model. The FFT was calculated using a 3-second sliding

window with 90% overlap. Since an epoch (4.1 seconds) was longer than the FFT window

length, multiple samples were drawn from each trial, which served well for the purpose of
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data augmentation. Features of multiple channels were concatenated into a single vector.

Its dimensionality was then reduced by principal component analysis (PCA) retaining 99%

of the variance.

The accuracy of each 3-way classification was derived from a 10-fold cross-validation

(1000 repetition). To prevent information leakage, trials were divided into training and

testing sets before data augmentation. The classification of one trial was done by averaging

the sample-level posterior probabilities of all testing samples that belonged to that trial, and

choosing the one with the highest probability as the decoding output.

5.4.3.5 Feature weight estimation

In order to verify whether the decoding was based on neurologically relevant factors, a post-

hoc feature weight estimation was run using neighbourhood components analysis (NCA). It

estimated the weight of each feature dimension. The feature before PCA was used for this

analysis, and each estimated weight represented the importance of one frequency bin at one

particular channel.

5.4.3.6 Cross-session validation

In order to evaluate the transfer learning ability of the proposed BCI system, three partic-

ipants were invited back to repeat the exact experiment one week after their first attempt.

They were chosen based on their decoding score from Session 1 — one with the highest score

(participant 72, >70%), one around the average (participant 45, ∼60%), and one around the

chance level (participant 78, ∼40%). Classification was first done using the within-session

decoding method as described above, i.e., training and testing an LDA model using the data

only from Session 2. A subsequent cross-session decoding was conducted by training a model

with data from one session, and having it tested on another. The cross-session decoding re-

sult was compared to that of the within-session decoding to evaluate the model’s ability to

generalize.
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5.4.4 Results

5.4.4.1 Attention decoding

The absolute chance level of a 3-way decoding is 33.33%. However, studies on brain signal

classification, like the current one, are generally susceptible to a high chance of false positives

due to small sample size. To tackle this problem, Combrisson and Jerbi [93] suggested

calculating the chance level as a function of sample size, number of classes, and the desired

confidence interval based on a binomial cumulative distribution. Using this method, the

significant chance level in this study is corrected to 43.06% (p=0.05).

The decoding accuracy of most participants exceeded the corrected chance level, despite

the existence of substantial individual differences (Figure 5.12a). EEG of 4 participants were

not significantly classifiable in at least one sensory modality, while 3 participants’ decoding

was over 70% in at least two sensory modalities. The highest decoding accuracy for audio,

tactile and mixed conditions were 87.72%, 95.32% and 83.63%, respectively. Their equivalent

ITRs are shown in Table 5.5. Within the three types of sensory modalities, tactile conditions

had the highest average decoding accuracy (Table 5.5), which is significantly higher than that

of audio conditions (p=0.0348).

Table 5.5: Decoding accuracy and information transfer rate (ITR)

Modality Average Average ITR Best ITR
decoding (bits/min) (bits/min)

Audio 54.18% 1.90 13.69
Tactile 60.87% 3.37 18.27
Mixed 58.02% 2.69 11.57

5.4.4.2 Behavioral performance

Most participants could identify the melodic patterns with high accuracy for the audio

(92.53%±9.10%) and the mixed (93.92%±7.91%) conditions (Figure 5.13). Out of the 12
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(a) (b)

Figure 5.12: (a) The decoding accuracy of each participant in the order of high to low
average score. (b) The decoding accuracy grouped by sensory modality. Each line represents
a participant. The lines and labels are color-coded, where a warmer color denotes a higher
average decoding score.

participants, 6 completed the audio or the mixed task with a perfect score. The tactile

task appeared to be the most difficult, with a behavioral performance (65.28%±16.89%)

significantly lower than that of the other two sensory modalities (p<0.001). Only one par-

ticipant completed the tactile task with more than 90% correct. One interesting observation

is that the behavioral performance in tactile blocks seemed to divide the participants into

two subgroups — one with a performance score above 75% (n=5), and one below (n=7).

The behavioral results of these subgroups in other sensory modalities were not separable.

5.4.4.3 Behavioral correlate

Despite the fact that the highest decoding score and the worst behavioral performance both

happened in tactile blocks, there was no significant correlation between these factors across

subjects (Fig 5.14). Neither a linear nor a quadratic function could fit all the data in tactile

blocks with high confidence. However, a subgroup analysis revealed that the participants

with a high behavioral score in tactile task (>70%) had a linear behavioral correlate with

their decoding score in all sensory conditions. This relationship was not seen in the other

subgroup with low behavioral scores in tactile task.
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Figure 5.13: The behavioral results of all participants performing the pattern identification
task in each sensory modality. Each line represents a participant. The lines are color-coded
by the participant’s average decoding accuracy (same as in Figure 5.12).

5.4.4.4 Feature weight

The estimated feature weights of 4 participants with good decoding scores are shown in

Figure 5.15. Surprisingly, high weights are not associated with any of the modulation fre-

quencies as in an ASSR/SSSEP feature (dashed lines). Instead, they appear mostly in alpha

(8 – 12 Hz) and gamma bands (>30 Hz) in these participants (shaded regions). Topographic

maps of maximum feature weights in alpha band reveal dominant patterns in the parietal

and occipital channels, especially in decoding tactile attention (Figure 5.16). For gamma

band feature weights, the dominant patterns reside in the frontal and temporal channels.

(Figure 5.17).

5.4.4.5 Cross-session validation

Three participants were invited to repeat the experiment for cross-session validation. The

decoding scores of participant 45 and 78 from Session 2 were in line with their results from

Session 1 (Figure 5.18). The scores of participant 88 dropped from the first session, but

still remained high in all three modalities. Notably, the cross-session validation of all three
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Figure 5.14: Correlation between behavioral performance and attention decoding. Each
circle or triangle represents a participant whose behavioral performance in tactile blocks was
blow or above 70%, respectively. The circles and triangles are color-coded by the participant’s
average decoding accuracy (same as in Figure 5.12).

participants stays in the same range as their within-session decoding.

5.4.5 Discussion

5.4.5.1 Transmission efficiency

The efficiency of the proposed BCI system is on par with previous works. The average ITR

derived from audio blocks (1.90 bits/min) was comparable to previous studies on ASSR-based

BCIs [29], [104]. The average ITR in tactile blocks outperformed the results of previous BCI

designs with vibrotactile actuators attached to the user’s thumb (∼1.19 bits/min, calculated

from the reported accuracy) [102], or five fingers (1.2 bits/min) [105]. A recent study reported

a higher ITR (4.9 bits/min), but electrical stimulation on four fingers was needed [106].

Promisingly, the highest ITR achieved in the tactile condition was comparable to that of some

vision-based BCI systems previously reported [94]. There is great potential in improving the

decoding results with the current dataset. For example, the pattern identification task used

in this experiment is not dissimilar to detecting oddball events. One possible direction is to

combine a P300 feature into the current one to improve decoding accuracy.
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(a) (b)

(c) (d)

Figure 5.15: Estimated feature weights for participant (a) 72 (b) 76 (c) 33 (d) 45. Each trace
represents a channel. Y-axis has arbitrary unit. The dashed lines in each panel represent the
modulation frequencies of the stimuli used for that particular sensory modality. The shaded
regions denote the alpha and the gamma bands

5.4.5.2 Decoding based on spatial attention

This study used modulated signals as the stimuli. We expected that attention would enhance

the neural representation of the steady-state response of the modulation. Instead, the high

feature weights in parietal alpha and temporal gamma indicated that spatial attention was

the dominating factor of attention decoding in this study.

Steady-state responses played a less important role in this BCI design than in a typical

ASSR/SSSEP-based BCI system. One explanation for such difference is the use of discrete
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Figure 5.16: Topographic maps of maximum feature weights in alpha band for participant
(a) 72 (b) 76 (c) 45.

stimuli. The pulses might have been processed by the brain as individual events instead of

a continuous stream, so the brain never truly entered a steady state during the experiment.

Using continuous stimuli, such as natural speech, might help enhance the representation of

steady-state response in EEG.

5.4.5.3 Transfer learning

The cross-session validation results were comparable to their corresponding within-session

results. It indicates that the participants might have adopted a similar strategy to focus even

on different days. The modest drop in some participants might be due to a slightly different

EEG cap placement between sessions. This result demonstrates some transfer learning ability

in the proposed BCI system, showing potential in improving the model through multiple

training sessions [107].
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Figure 5.17: Topographic maps of maximum feature weights in gamma band for participant
(a) 72 (b) 33.

Figure 5.18: Decoding result of the cross-session validation analysis

5.4.6 Conclusions

The current study proposed a new BCI system based on auditory and tactile attention. It

yielded an efficiency comparable to or even higher than the existing BCI paradigms, without

engaging the user’s hands or eyes. The highest efficiency achieved in the tactile condition

was close to a visual-based BCI. The system also demonstrated certain transfer learning

ability.
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5.5 Decoding music attention from EEG headphones:

a user-friendly auditory brain-computer interface1

5.5.1 Abstract

People enjoy listening to music as part of their life. This makes music an excellent choice for

designing a user-friendly brain-computer interface (BCI) for long-term use. We propose a

novel BCI system using music stimuli that relies on brain signals collected via Smartfones, an

EEG recording device integrated into a pair of headphones. In a user study of the proposed

system, participants were asked to pay attention to one of three musical instruments playing

simultaneously from separate spatial directions. We used a stimulus reconstruction method

to decode attention from EEG signals. Results show that the proposed system can achieve

good decoding accuracy (>70%) while providing superior user-friendliness compared to a

traditional EEG setup.

5.5.2 Introduction

A brain-computer interface (BCI) offers a covert and non-verbal way to communicate with

a computer. BCIs have great potential in applications including assistive technology and

emotion monitoring [108]. Electroencephalography (EEG), due to its mobility, low cost, and

proven relevance to cognitive functions [38], [44], has become a popular choice for BCI design.

Previous studies have demonstrated great success in building EEG-based BCI systems using

visual or auditory stimuli. Chen et al. [27] designed a high-throughput visual BCI system

using flickering objects. When the user focuses on one of them, a neural signature known as

the steady-state visual evoked potential (SSVEP) appears in EEG signals. However, SSVEP

1This section is adapted with permission from paper: Winko W. An, Barbara Shinn-Cunningham, Hannes
Gamper, Dimitra Emmanouilidou, David Johnston, Mihai Jalobeanu, Edward Cutrell, Andrew Wilson,
Kuan-Jung Chiang, Ivan Tashev, “Decoding music attention from “EEG headphones”: a user-friendly au-
ditory brain-computer interface”, in Proceedings of the 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021
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requires a stable line of sight, which may not be available due to permanent or situational

impairment (e.g., while driving). As an alternative solution, researchers applied a similar idea

to designing auditory BCI systems, where the users were presented with multiple streams

of pure tones modulated at different frequencies. The modulation frequency of the attended

stream may result in a strong EEG component known as the auditory steady-state response

(ASSR) [28].

One major disadvantage of SSVEP or ASSR paradigms is the use of flickering objects

or modulated pure tones, which can cause fatigue in users. Recent studies endeavored to

use more naturalistic and pleasant stimuli to improve the user-friendliness of BCI systems.

Huang et al. [30] used drip-drop sounds in their BCI design, creating a relaxing auditory

scene for the users. An et al. [62] designed an attention task with human-voiced syllables,

and achieved a high accuracy in detecting whether the user is paying attention. In another

study, An et al. [89] built an auditory BCI system with a sequence of tones forming melodic

patterns.

Here we explore the feasibility of using music stimuli for BCI design. We decode a

user’s attention to a particular musical instrument while listening to polyphonic music.

This idea was previously attempted by Treder et al. [32], who embedded oddballs in music

streams and used the oddball-evoked response for attention decoding. Despite achieving

a high accuracy, their system averages 40 seconds of data to generate one output, which

may be slow for real-time applications. Here, we adopt a different decoding method called

auditory attention decoding (AAD) [109] and decode attention within a time window of just

8 seconds. The AAD method linearly combines multi-channel EEG signals to reconstruct a

stimulus envelope, which tracks the envelope of the attended stimulus more strongly than

the unattended one. This method has been successfully applied in decoding attention to

continuous speech for BCI purposes [110], [111]. To further improve the user-friendliness of

the design, we used Smartfones (mBrainTrain, Serbia) as the form factor, which is a compact

EEG recording device integrated into a pair of headphones. It is a saline-based system with
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three sensors on top of the head and four on each side around the ear, for a total of 11

sensors. It has less coverage than a traditional EEG cap, but is a good option for this study

for its all-in-one design.

5.5.3 Materials and Methods

5.5.3.1 Participants and Stimuli

Nine adults (34.0 ± 3.1 years old, 4 female) volunteered to participate in this study. No

participants reported a known history of neurological disorder or hearing loss. The study

was reviewed and approved by the Institutional Review Board of Microsoft Research. A

written consent was obtained upon participation.

The stimulus used in this study was a four-bar polyphonic piece composed of short

melodic excerpts adapted from three popular songs (see Figure 5.19a). Each excerpt was

assigned to a separate voice and instrument using MuseScore 3: vibraphone for “I’m yours”

by Jason Mraz, piano for “Wherever you will go” by The Calling, and harmonica for “Forever

young” by Alphaville. We hypothesized that using melodic excerpts from different songs for

the three voices and assigning a different instrument to each voice would help listeners to pay

attention to one voice at a time. The excerpts chosen followed the same chord progression

(C major - G major - A minor - F major), which would ensure an overall pleasant listening

experience.

Each excerpt consisted of four bars, for a total duration of 8 seconds. Besides the original

excerpts (Standards), we generated oddball excerpts (Oddballs) by altering the second or

the fourth bar of the Standards (Figure 5.19b). We created an oddball recognition task (see

Sec. 5.5.3.2) using these stimuli to motivate participants to listen attentively. The excerpts

were spatialized using a set of generic head-related transfer functions [40] to form three

streams, where the perceived positions of vibraphone, harmonica, and piano were left, center,

and right, respectively. The loudness of these streams was normalized using A-weighting,

after which the streams were combined into polyphonic mixtures.
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(a)

(b)

Figure 5.19: (a) Score sheet of the standard stimuli. (b) The 2nd or 4th bars of the standard
stimuli were modified to create oddball bars, colored in red and blue.

5.5.3.2 Experiment

At the start of the experiment, the participants were asked to sit comfortably in front of a

computer, read the instructions from the screen, and familiarize themselves with the stimuli.

The experiment consisted of 28 trials for attention to vibraphone, 28 trials for attention to

piano, and 14 trials for attention to harmonica. For this study, we only focused on generating

binary outputs, i.e., distinguishing attention to vibraphone from attention to piano. The data

from the attention to harmonica condition were only used for calculating the decoder (see

Sec. 5.5.3.3) and as a sanity check. All trials were divided into 5 blocks with 14 trials per

block, and their order was randomized for each participant. In the beginning of a trial, a

left, right or up arrow, was presented on the screen as a visual cue (VC) to direct attention

to the instrument on the left, right or center, respectively (see Figure 5.20). After a 1-second

delay we played two repetitions of the music mixtures through Smartfones. In the stream

to be attended, the first repetition was always a Standard, while the second repetition could

be either a Standard or an Oddball. The task for participants was to identify whether the

131



Decoding Attentional Control from Noninvasive Measures in Humans

two repetitions were the same or different in the attended stream, and answer with a mouse

click. Visual feedback (FB) was provided by a green dot displayed for a correct answer, or

a red dot for an incorrect answer.

Figure 5.20: A trial started with a visual cue (VC) directing attention to the instrument on
the left, right or center. It was followed by two music stimuli. Visual feedback (FB) was
provided after an answer (ANS) was received.

5.5.3.3 Auditory attention decoding

EEG signals, sampled at 500 Hz, were passed through a Hamming windowed sinc FIR

bandpass filter (2–8 Hz), and were split into epochs starting from the onset of each stimulus.

Attention was decoded using AAD [109]. The envelopes of the individual voices in the stimuli

(Figure 5.19) were extracted using the Hilbert Transform, and then lowpass filtered at 8 Hz

and downsampled to 64 Hz to derive the stimulus feature s(t) (Figure 5.21). The response

feature, r(t), was derived by downsampling the bandpass filtered EEG signals to 64 Hz.

The AAD algorithm sought to find a decoder g(τ, n) that could linearly map r(t) back to

s(t) [112] as:

ŝ(t) =
∑
n

∑
τ

r(t+ τ, n)g(τ, n), (5.1)

where ŝ(t) is the reconstructed stimulus feature, n denotes the EEG channel index, and

0 ≤ τ ≤ 600 ms specifies a range of time-lags relative to the instantaneous occurrence of the

stimulus feature, which is used to model the latency between a stimulus envelope and its

corresponding envelope-following response in EEG signals. The decoder g(τ, n) is essentially
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a spatial-temporal filter that linearly transforms the EEG signals at time-lags τ from 0 to

600 ms post-stimulus to predict the corresponding auditory input. We can estimate g(τ, n)

by minimizing the mean-square-error between the actual stimulus envelope s(t) and the

reconstructed envelope ŝ(t) plus a regularization term:

min
∑
t

[s(t)− ŝ(t)]2 + λ
∑
n

∑
τ

g(τ, n)2, (5.2)

where λ is the regularization parameter set to avoid over-fitting. The optimal λ can be de-

termined through cross-validation [113]. The decoder g can be computed using the following

equation:

g = (RTR + λI)−1RTs, (5.3)

where R is the matrix of response features r(t) delayed by all possible values in τ with zero

padding [112].

Auditory attention was decoded from each epoch. For each participant, we first pooled

all epochs of EEG signals except for the one to be decoded to form the response feature

r(t). The envelopes of corresponding target voices were concatenated to form the stimulus

feature s(t). With the decoder g calculated via (5.3), we reconstructed a stimulus envelope

ŝ(t) using (5.1). We then correlated ŝ(t) with the envelopes of each of the vibraphone, piano

and harmonica voices in that epoch to generate three correlation coefficients using Pearson’s

correlation: ρvibr, ρpian, ρharm, respectively. We hypothesize that the correlation between the

reconstruction and the envelope of the target instrument to be higher than the ones with

the unattended instrument. To verify this hypothesis, we examined the difference between

ρvibr and ρpian using a paired t-test. The Benjamini-Hochberg method was used to control

the false discovery rate (FDR) in multiple comparisons (alpha = 0.05).
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Figure 5.21: Illustration of the auditory attention decoding algorithm

5.5.3.4 Segment-based feature selection

The AAD method introduced in Sec. 5.5.3.3 uses an entire 8-second epoch to decode auditory

attention. However, participants may not sustain their attention throughout the whole

epoch, for example due to interference from a distracting stream, or due to the way they

scheduled their attention to perform the task. During periods of reduced attention to the

target instrument, the neural representation of the masking stimuli might interfere with

or mask the target stimulus. We hypothesize that excluding data from periods of reduced

attention may reduce noise and improve the overall decoding performance. We added a

segment-based feature selection step to exclude irrelevant time segments from decoding.
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After an epoch-specific decoder g was calculated, we applied it on multiple segments of EEG

signals instead of the whole epoch. These segments were 2 s in duration with an overlap of

80%, resulting in a total of 18 segments per epoch. The strength of attention during each

segment was estimated by comparing the strength of the correlation of the EEG with the

vibraphone and the piano envelopes. Specifically, we calculated the absolute value of the

segment-wise correlation difference (|SCD|, Figure 5.22a), defined as:

|SCDk| = |ρvibr,k − ρpian,k|, (5.4)

where k = {1, · · · , 18} is the segment index, and ρvibr,k or ρpian,k represent the correlation

between a segment-wise reconstruction with its corresponding segment-wise vibraphone en-

velope or piano envelope, respectively. If attention to either the vibraphone or piano is

strong during a particular segment, the neural response for that segment should resemble

the attended instrument voice more than the unattended one, i.e., |SCD| should be non-zero.

During segments with reduced attention, |SCD| should approach zero.

Segments with small |SCD| values were excluded from analysis. The threshold was deter-

mined by the distribution of all |SCD| values in the training data (see Figure 5.22c). Values

above the median of the distribution were retained (see Figure 5.22d). The correlations

ρvibr,k and ρpian,k of surviving segments in each epoch were averaged to calculate ρvibr and

ρpian after feature selection, respectively. A paired t-test was conducted to reveal any sta-

tistically significant change in these correlation measures with and without feature selection

(alpha = 0.05, FDR corrected).

5.5.3.5 Classification

We used ρvibr and ρpian as the features to decode attention to vibraphone and attention to

piano. We trained and tested a subject-specific linear support vector machine using leave-

one-out cross-validation with 1000 repetitions. Classification was run on data with and

without feature selection separately.
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Figure 5.22: Illustration of the process of segment-based feature selection. (a) The correlation
difference (SCD) was calculated for each segment in each epoch. (b) |SCD| sorted for each
epoch (for visualization only). (c) The median of the distribution of all |SCD| values was
used as the threshold. (d) The same figure as in (b), but with sub-threshold values masked
by grey.

5.5.4 Results and Discussion

5.5.4.1 Correlation with envelopes

The correlation between the reconstructed envelope and the attended stimulus envelope is

strongly modulated by attention, even without feature selection. When the participants

were paying attention to the vibraphone, their average ρvibr was significantly higher than

ρpian (p<0.001, Figure 5.23a). When attention was on the piano, ρpian was greater than

ρvibr. However, the difference was not found to be statistically significant (p=0.063). In

both conditions, ρharm was around 0 for all participants.

With the segment-based feature selection, the differences between ρvibr and ρpian were
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magnified. For the attention to vibraphone condition, feature selection significantly boosted

ρvibr (p<0.001, Figure 5.23b) and suppressed ρpian (p<0.001). Similarly, ρvibr was suppressed

by feature selection when attention was on piano (p=0.007), with ρpian statistically un-

changed (p=0.906). We conclude that the proposed feature selection method identified seg-

ments relevant for the classifier to determine which instrument the participant paid attention

to.

(a)

(b)

Figure 5.23: (a) Correlation between the reconstruction and the envelope of vibraphone
(ρvibr), piano (ρpian) or harmonica (ρharm) without feature selection. Each line represents a
subject. (b) Comparison of correlations with feature selection (w/ FS) and without (w/o
FS). **, p< 0.01; ***, p< 0.001; FDR corrected for multiple comparisons.
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5.5.4.2 Decoding accuracy

Experimental results indicate that the proposed method allows decoding of attention to

music. Without feature selection, the average decoding accuracy was 63.77%, which is above

the chance level (60.71%) with 95% confidence [93] (see Figure 5.24). We also observed great

individual variability in the results, a known observation in many auditory BCI studies [62],

[95].

The positive effect of feature selection on correlation measures (see Sec. 5.5.4.1) resulted

in a boost in decoding accuracy. With segment-based feature selection, the average decod-

ing accuracy improved to 71.23% (Figure 5.24), with a performance gain observed for all

participants. Notably, this gain was more remarkable for subjects with a low decoding score

before feature selection was implemented — the subjects with a decoding accuracy below

65% (Subject 4, 8, 2 and 1, see Figure 5.24) benefited an average of 11.0% from feature

selection, which led to much smaller individual variability in the results. The decoding per-

formance achieved in this study is comparable to previous works on auditory BCI using the

same linear decoding method [110], [111], despite the use of a user-friendly EEG recording

device with fewer sensors, less spatial coverage and lower signal-to-noise ratio compared to a

conventional EEG cap. In addition, since we decoded attention with short data (8 seconds),

the overall efficiency of the BCI system, evaluated by its information transfer rate (ITR) [99],

is higher than similar studies with longer decoding windows (1.01 bit/min compared to ≤0.50

bits/min) [109], [111] (see Table 5.6).1 One limitation of this study, however, is the small

number of participants recruited (nine), which will be improved in follow-up studies in the

future.

1Only results obtained from linear AAD were compared with results in this study. ITR was calculated
based on the number of classes, sample length and decoding accuracy reported in these studies.
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Figure 5.24: Decoding accuracy with feature selection (w/ FS) and without (w/o FS). The
average for w/ FS is 71.23%. The subjects are sorted by their decoding accuracy w/o FS in
ascending order.

Table 5.6: Comparison with previous studies using AAD

Study Sensors Sample Accu. ITR
(#, type) length (s) (%) (bits/min)

O’Sullivan 128, gel ∼60 89.0 0.50
et al. [109]

Ciccarelli 64, gel 10 66.0 0.45

et al. [111] 18, dry 10 59.0 0.14

here 11, 8 71.2 1.01
saline

5.5.5 Conclusions

This study investigated the feasibility of building a user-friendly BCI system by decoding

auditory attention. The proposed system relies on short musical stimuli with three voices.

Due to its harmonic nature, this stimulus type may be more pleasant to listen to than

previously proposed auditory stimuli like modulated pure tones or tone sequences and thus

better suited for long-term use in a BCI system. Furthermore, the proposed system uses a
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compact headphone-based form factor with fewer sensors and requires much less effort in

system setup than a traditional EEG system, which may be an appealing feature for novel

users.
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5.6 Summary of chapter

In this chapter, I showed four different studies that demonstrated means to improve various

aspects of an auditory BCI design. The study in Section 5.2 explored the feasibility of using

short, human-voiced syllables as stimuli, and decoding attention using data as short as 1.5

seconds. This method effectively boosted the throughput of the system, which is substan-

tially greater than most auditory BCI systems previously reported. In a follow-up study, an

even better result was achieved in Section 5.3, which adopted the same stimuli and experi-

mental design, but employed a CNN over SVM for classification. The use of CNN offloads

the burden of feature engineering, which is usually time-consuming and difficult. Moreover,

the features that a CNN automatically learns to distinguish different classes are oftentimes

more optimal than a hand-crafted one. In Section 5.4, I attempted the idea of designing

an attention task with a sequence of tones, aiming at improving the user-friendliness of the

BCI system. I furthered my exploration in this dimension in Section 5.5, where I played

polyphonic music to the participants, and decoded their attention to instruments from EEG

signals that were recorded from a headphone-like EEG recording device. The BCI system

proposed in this study is unobtrusive and easy to setup, and the users can actually enjoy the

stimuli while using the system. Collectively, these studies show that attention-based BCI is

a concept with great potential and practical values in real-life.
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Chapter 6

Summary and Conclusions

6.1 Summary of dissertation

In this dissertation, I aimed to achieve two major goals. First, I sought to decode auditory

attention from EEG and fMRI signals, and study the neural representation of attentional

control across space (i.e., brain regions) and time. I accomplished this goal by designing a

condition-rich experiment that requires spatial or non-spatial auditory attention from listen-

ers, and adopting a representational similarity analysis (RSA) framework to investigate the

neural representation of auditory attention in EEG and fMRI. Then, I used neural repre-

sentation features to fuse EEG and fMRI, which unveiled the information flow during the

attention task with fine spatial and temporal resolution. Second, I sought to decode au-

ditory attention from single-trial EEG signals for the design of an auditory brain-computer

interface (BCI) system. I proposed several methods to improve the communication efficiency

and user-friendliness of an auditory BCI design, and achieved promising results.

In Chapter 2, I designed a experiment with multiple conditions and recorded EEG

signals while the listeners participated in an auditory attention task. I extracted represen-

tational dissimilarity features from the EEG time course and alpha oscillation power, and

compared these features with ideal conceptual models or behavioral performance. I identi-
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fied time intervals in which particular contrasts in attentional state, such as the difference

between attention types or between attention to different locations, have strong represen-

tation in the EEG time course or in its alpha power. I also revealed that the listener’s

behavioral performance in the attention task is significantly and positively correlated with

the P2 amplitude evoked by the target syllable.

In Chapter 3, I used the same experimental design and subjects as in Chapter 2, and

recorded fMRI data while the listeners participated in the auditory attention task. I identified

an extended attention network, in which individual brain regions show different specialization

for spatial or non-spatial attention. I also extracted representational dissimilarity features

from each voxel, and compared these features with ideal conceptual models or behavioral

performance. I identified the medial occipital lobe as the region actively encoding the spatial

information of auditory attention; the right IFS is the sole region that encodes information

about the gender / pitch of the attended talker. The neural representations within the

parietal regions are correlated with behavioral performance, demonstrating their important

role in spatially demanding tasks.

In Chapter 4, I deployed a representational similarity analysis (RSA) for multimodal

data fusion to study the dynamics of auditory attentional control. I correlated the represen-

tation features acquired in Chapter 2 and Chapter 3 to search for significant information

correspondence in time and space. The fusion analysis revealed that the calcarine sulcus

is only active during the task when spatial mapping of sound is needed, suggesting a ma-

jor role in processing spatialized auditory targets. We observed a difference in dynamics

between the inferior frontal sulcus and the superior precentral sulcus during the stimulus

period, which might reflect a difference in the suppression mechanism between spatial and

non-spatial attention.

In Chapter 5, I shifted my focus to real-life applications and reported four different

studies demonstrating possible ways to improve various aspects of an auditory BCI design.

The study in Section 5.2 explored the feasibility of using short, human-voiced syllables as
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stimuli, and decoding attention using data as short as 1.5 seconds. This method effectively

boosted the throughput of the system, which is substantially greater than most auditory

BCI systems previously reported. In a follow-up study, an even better result was achieved in

Section 5.3, which adopted the same stimuli and experimental design, but employed a CNN

over SVM for classification. The use of CNN offloads the burden of feature engineering, which

is usually time-consuming and difficult. Moreover, the features that a CNN automatically

learns to distinguish different classes are often more optimal than a hand-crafted one. In

Section 5.4, I designed an attention task with a sequence of tones, aiming at improving

the user-friendliness of the BCI system. I furthered my exploration in this dimension in

Section 5.5, where I played polyphonic music to the participants, and decoded their attention

to instruments from EEG signals that were recorded from a headphone-like EEG recording

device. The BCI system proposed in this study is unobtrusive and easy to setup, and the

users can actually enjoy the stimuli while using the system. Collectively, these studies show

that attention-based BCI is a concept with great potential and practical values in real-life.

6.2 Significance and future directions

This dissertation presents one of the first few pioneering works to adopt RSA in the study

of attentional states. It also proposes new ways to improve the design of an attention-based

auditory BCI system. It enriches our understanding of how the nervous system functions to

form auditory attention, and sheds light on how we can leverage this knowledge to develop

real-life assistive applications.

6.2.1 Auditory selective attention

This dissertation demonstrates one possible way to study the neural representation of au-

ditory attention. Previous studies mainly focused on learning the outcome or impact of at-

tentional control (i.e., the “process”), through a direct comparison of neural signals between
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conditions [9]. The “representation” of this cognitive function, which is how information

is robustly encoded in a brain location or time, however, is less explored. “Process” and

“representation” are both important neural constructs that can unveil how cognitive control

arises in mind and brain, and they can be studied through either classical analyses (e.g.,

ERP analysis, time-frequency analysis, general linear model) or RSA, respectively. Here,

I conducted RSA alongside classical analyses. Through the comparison of their results, I

showed how these two approaches may converge or diverge in different scenarios, which could

be an important reference for future studies in this field.

One possible way to extend this study is to include information of more induced EEG

oscillations in addition to the alpha band power. Previous studies suggest that EEG signals

in the gamma (> 30 Hz) [114]–[116], beta (14 – 30 Hz) [117] and theta (4 – 8 Hz) [118], [119]

band are modulated by auditory selective attention in different manners. Including features

from all these bands into analysis would expand the search space for important information

encoding.

6.2.2 RSA and multimodal data fusion

In this dissertation, I explored if / how we can fuse EEG with fMRI through the use of neural

representation features. To date, only a handful of studies have attempted to use RSA for

multimodal data fusion [18], [43], and none of them investigated auditory attentional state.

Results here, for the first time, suggest that induced oscillations are as important as evoked

responses in studying the internal state with a multimodal data fusion approach. EEG

time courses and oscillations reflect brain activities of different sources (i.e., stimulus and

non-stimulus driven), and should both be considered for the study of neural representation.

Unsurprisingly, this study also demonstrates that the number of conditions in the exper-

imental design plays a crucial role in controlling noise and the false positive rate in RSA

discoveries. Randomness in correlation decreases as the dimension of an RDM increases,

which is why a greater number of conditions is always preferred in an RSA study. Examin-
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ing the statistical power of an effect with a non-parametric, cluster-based permutation test

could be an option to control the family-wise error rate, but it cannot help if the effect of

interest has similar or even less power than the noise.

6.2.3 Brain-computer interface

This dissertation demonstrates several ways to improve the throughput and user-friendliness

of an attention-based auditory BCI system. The results suggest that using short stimulus

for input and an artificial neural network for decoding is undoubtedly the combination that

future studies should consider, if communication efficiency is the major concern. A more

important question that this dissertation attempts to answer is what value an auditory

BCI can offer to its users. In my opinion, a BCI would be better accepted if it requires

short preparation time, little training and minimal extra hardware. One such example is

introduced in Section 5.5, where the EEG electrodes are integrated into a pair of headphones.

Users can simply put on the device and enjoy some music while using this BCI system. Such

design brings an intuitive application to this device — a mind-steered music controller, with

which the listener can choose to play next / last song, or adjust the volume without any

movement. Therefore, it is offering convenience to the user without requesting much extra

effort. Another idea is to embed a BCI system into a virtual reality (VR) or augmented

reality (AR) device. Similar to the previous example, the users need to wear a headset when

they are using the VR/AR system, which could be a convenient site for recording EEG

signals. Future studies should consider how we can integrate a BCI system with existing

wearable devices, and provide practical value to their users.
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