

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

ALGORITHMS, COMBINATORICS, AND OPTIMIZATION

Titled

“Learning and Earning under Noise and Uncertainty”

Presented by

Su Jia

Accepted by

R. Ravi 5/12/2022
___ _________________
Chair: Prof. R. Ravi Date

Approved by the Dean

Isabelle Bajeux 5/12/2022
___ _________________
Dean Isabelle Bajeux Date

Learning and Earning Under Noise and Uncertainty

Su Jia

Tepper School of Business

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

Algorithms, Combinatorics and Optimization

Thesis Committee:
R. Ravi (Chair)
Andrew A. Li

Alan Scheller-Wolf

Sridhar Tayur

1

2

Contents

I Introduction 10

I.1 Optimal Decision Tree Problem Under Noisy Outcomes 10

I.2 Markdown Pricing Under Unknown Demand . 11

I.3 Short-Lived High-Volume Bandits: Algorithms and Field Experiment 12

II Optimal Decision Tree and Submodular Ranking with Noisy Outcomes 14

II.1 Introduction . 14

II.2 Contributions . 16

II.3 Related Work . 17

II.4 Preliminaries . 19

II.4.1 Optimal Decision Tree with Noise . 19

II.4.2 Adaptive Submodular Ranking (Noiseless Case) 20

II.4.3 Adaptive Submodular Ranking with Noise . 22

II.4.4 Expanded Scenario Set . 23

II.5 Nonadaptive Algorithm . 25

II.5.1 Non-adaptive Algorithm for SFRN . 25

II.5.2 Analysis of Algorithm . 26

II.6 Adaptive Algorithms . 29

II.6.1 An O(c log |Ω|+ log m
ε
)-Approximation Algorithm 30

II.6.2 An O(r+ log m
ε
)-Approximation Algorithm 33

II.6.3 Application of Algorithm 2 and Algorithm 3 to ODTN. 38

II.7 ODTN with Many Unknowns . 39

II.7.1 Stochastic Set Cover Problem . 39

3

II.7.2 Membership Oracle . 42

II.7.3 The Main Algorithm . 44

II.8 Extension to Non-identifiable ODT Instances . 46

II.9 Experiments . 48

IIIMarkdown Pricing Under Unknown Demand 51

III.1 Introduction . 51

III.1.1 Our Contributions. 52

III.1.2 Previous Work . 54

III.2 Model . 57

III.2.1 Assumptions on the Reward Function . 59

III.2.2 Our Policies . 60

III.2.3 Our Results . 61

III.3 Proof of Upper Bounds . 64

III.3.1 Infinite Inventory: Proof of Theorem 11 . 64

III.3.2 Finite Inventory: Proof of Theorem 12 . 69

III.4 Proof of Lower Bound (Theorem 13) . 77

III.4.1 Preliminaries . 77

III.4.2 Wald-Wolfowitz Theorem and the Proof of Our Lower Bound 79

III.4.3 Proof of Lemma 26 . 82

III.4.4 Proof of Lemma 25 . 84

III.5 Dynamic Pricing with Markup Penalty . 86

III.5.1 Dynamic Pricing with Few Markups . 87

III.5.2 Dynamic Pricing with Markup Penalty . 89

III.5.3 Unknown MPI . 93

4

III.6 Experiments . 94

III.6.1 Robustness Under Model Misspecification . 94

III.6.2 Impact of the Lipschitz Constant . 96

III.7 Conclusion . 96

IVMarkdown Pricing Under Unknown Parametric Demand Models 98

IV.1 Introduction . 98

IV.1.1 Our Contributions. 100

IV.1.2 Previous Work . 101

IV.2 Model and Assumptions . 103

IV.2.1 Basic Assumptions . 104

IV.2.2 Measuring the Complexity of a Family . 105

IV.2.3 Identifiability . 106

IV.2.4 Robust Parametrization . 106

IV.2.5 Markdown Dimension . 108

IV.2.6 Sensitivity . 109

IV.3 Policies and Results . 110

IV.3.1 Zero-Dimensional Family . 110

IV.3.2 Finite-Dimensional Family . 112

IV.3.3 Infinite Dimensional Family . 114

IV.4 Upper Bounds . 116

IV.4.1 Zero-Dimensional Family . 116

IV.4.2 Finite-Dimensional Family . 118

IV.4.3 Infinite- Dimensional Family . 123

IV.5 Lower Bounds . 128

5

IV.5.1 Preliminaries . 128

IV.5.2 Zero-Dimensional Family . 130

IV.5.3 Finite-Dimensional Family . 132

IV.5.4 Infinite-Dimensional Family . 136

V Short-Lived High-Volume Bandits: Algorithms and Field Experiment 138

V.1 Introduction . 138

V.1.1 Our Contributions . 140

V.1.2 Related Literature . 141

V.1.3 Organization . 142

V.2 Model and Lower Bound . 142

V.2.1 Formulation . 142

V.2.2 Lower Bounds: High Level Ideas . 143

V.2.3 The First Lower Bound. 144

V.2.4 The Second Lower Bound . 146

V.3 Our Policy and Upper Bound . 150

V.3.1 The Sieve Policy . 150

V.3.2 Analysis of the Sieve Policy . 150

V.4 Field Experiment Setup . 153

V.4.1 Overview of Glance’s System . 154

V.4.2 Treatment Group Policy . 154

V.4.3 Counterfactual Simulation . 156

V.4.4 Integrating Offline and Online Learning . 158

V.5 Field Experiment Results . 159

V.5.1 Metrics . 160

6

V.5.2 Analysis For All Users . 161

V.5.3 Analysis For Engaged Users . 164

7

List of Tables

1 Cost of Different Algorithms for α= 0 (Uniform Distribution). 49

2 Cost of Different Algorithms for α= 0.5. 49

3 Cost of Different Algorithms for α= 1. 49

4 Maximum and Average Number of Stars per Hypothesis and per Test in Different

Datasets. 50

5 Algorithms on WISER-ORG dataset with Neighborhood and Clique Stopping for

Uniform Distribution. 50

6 Comparison of our work with prior related work along important model dimensions:

whether or not (1) the metric used is regret; (2) the given family of demand/revenue

curve is parametric; (3) the markdown constraint is considered, (4) infinite inventory

is assumed and (5) a prior over the demand family, over which the Bayesian regret

is considered, is given. 55

7 Distribution independent regret bounds for markdown pricing and related bandit

problems. Our results (in red) are presented in Theorem 11 and 13. The lower bound

for Lipschitz bandits is from Kleinberg (2005). Note that all but the last row hold

for both known or unknown T . 63

8 Upper and lower Regret bounds in three different regimes based on c, the markup

penalty index (MPI). 93

9 Regret bounds for markdown and unconstrainted pricing under unknown demand

for s= 2. 114

10 Our Results . 141

11 Types of Data In the Analysis . 160

12 Overall Statistics for All Users . 161

13 Significance Testing . 161

14 Difference-In-Differences Regression . 165

15 Overall Statistics For Engaged Users . 166

8

16 Significance Testing For Engaged Users . 166

17 Difference-In-Differences Regression for Engaged Users 167

9

Acknowledgments.

The first and most important acknowledgment belongs to my advisors R. Ravi and Andrew

Li. Despite the considerable demands on their time, they still managed to spend considerable

amount of time on me. I also want to thank all professors in our Operations Research department

and my fellow students in the OR group and ACO program for their friendship. I particularly

want to thank everyone who coauthored with me during my PhD career in CMU: Ian Anderson,

Paul Duff, Kyra Gan, Jeremy Karp, Andrew Li, Viswanath Nagarajan, Fatemeh Navidi, Nishant

Oli, R Ravi and Sridar Tayur. I also want to thank Alan Scheller-Wolf for his service on my thesis

committee. I would also like to deeply thank Joseph Mitchell and Jie Gao in Stony Brook University

for serving as the very first mentors in my early research career, and providing me with solid

research training in algorithms so that I could get on track quickly in CMU. Finally, I conclude by

thanking my family, especially my parents, for their support and understanding.

10

Chapter I Introduction

Sequential decision-making under uncertainty is central to a range of operations and marketing

problems. In the face of an unknown environment, decision-maker needs to strike a balance between

learning the known environment (“learning”) and selecting nearly optimal decisions (“earning”).

For instance, consider pricing a new product. If the retailer had full information about the demand

at every price level, then she could determine the revenue-maximizing price for the good. However,

such information about the demand curve is typically not available in practice, so the seller needs

to experiment with different prices to gain information about the demand curve, and then exploit

this information to offer a near-optimal selling price.

The trade-off between learning and optimization can be modelled as the Multi-Armed Ban-

dits (MAB) problem, or more generally, online learning, which has attracted significant attention

from a range of communities in recent years, including machine learning, operations research and

marketing. While most of the fundamental problems in this area have been theoretically well-

understood, these algorithms have been rarely deployed in practice. In contrast, while marketing

research on sequential decision making has been focused on the practical side, their results are

usually empirical and lacking of rigorous analysis.

This thesis serves as a preliminary step towards filling this gap. We will consider practical

sequential decision-making problems arising from some of the most fundamental areas in marketing,

including survey design, pricing and content recommendation, and provide theoretical insights via

provable performance guarantees.

I.1. Optimal Decision Tree Problem Under Noisy Outcomes

From Spotify to Netflix and Amazon, we are surrounded by extreme personalization every day.

Consumers have come to expect that same level of personalization from companies of all sizes.

Investing in personalization efforts to build relationships and create better experiences can pay off

with serious rewards for brands. And in a world where the vast majority of companies are focused

on improving personalization, companies that do not prioritize creating a tailored experience run

the risk of getting left behind.

One approach to personalized service for new users is by classifying users into typical user-

types and then identifying the user-type based on their responses to survey questions. The problem

of designing efficient surveys is accurately modelled by the Optimal Decision Tree (ODT) Problem,

11

where decision maker needs to perform a sequence of tests to identify an unknown hypothesis drawn

from a known distribution. The basic version of the ODT problem has been widely studied for

decades and an asymptotically best-possible approximation algorithm has been devised. However

in practice, the test outcomes are usually noisy, caused, for example, by the user heterogeneity

within each group, rendering these algorithms inapplicable to real world problems.

This motivates us to study a generalization of the ODT problem where the outcomes are

contaminated by persistent noise, that is, the outcomes of certain tests may be flipped, but remains

the same each time the test is performed. More generally, we introduce a problem, Submodular

Function Ranking with Noise, that generalizes the above problem. Despite the extensive literature

on the ODT problem and a closely related machine learning field called active learning, little is

known about the noisy version. There are two main reasons. First, the persistence of noise disables

most of the statistical learning tools such as concentration bounds. Secondly, the structure of the

optimal solution becomes significantly more complicated under noisy outcomes, posing substantial

challenge for theoretical analysis, especially in terms of approximation ratio.

In Chapter II, we design new approximation algorithms for both the non-adaptive setting,

where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence

depends on the outcomes of prior tests. Our new approximation algorithms provide guarantees

that are nearly best-possible and work for the general case of a large number of noisy outcomes

per test or per hypothesis where the performance degrades smoothly with this number. Moreover,

numerical evaluations show that despite our theoretical logarithmic approximation guarantees, our

methods give solutions with cost very close to the information theoretic minimum, demonstrating

the effectiveness of our methods.

This chapter is based on Jia et al. (2019), a joint work with Fatemeh Navidi, Viswanath

Nagarajan and R. Ravi. Further, our joint work (Gan et al. (2021)) with Kyra Gan, Andrew Li and

Sridhar Tayur extended the results to the error-budgeted version based upon the techniques devel-

oped in this chapter, and received the 2021 Pierskalla Best Paper Award in Healthcare Applications

for its novel application in cancer research.

I.2. Markdown Pricing Under Unknown Demand

Dynamic pricing under unknown demand has been theoretically well-understood, usually under the

framework of multi-armed bandits. But in practice, these bandit-based policies are rarely deployed

by real-world retailers, largely because oscillating prices may cause customer dissatisfaction. For

12

example, Luca and Reshef (2021) discovered that a “1% price increase (in menu prices) leads to a

3% to 5% decrease in online ratings on average”.

This motivates us to consider dynamic pricing in Chapter III and IV under the monotonicity

constraint, that is, the prices must be non-increasing. While both markdown pricing under known

demand and unconstrained pricing under unknown demand have been well-understood, little is

known for markdown pricing under unknown demand. In particular, the following basic questions

remains open prior to this work.

What is the optimal regret bound for markdown pricing? In particular, how does this bound

compare with the known bounds for unconstrained pricing?

For instance, under the Lipschitz assumption, Kleinberg (2005) showed an asymptoticly best pos-

sible Θ(T 2/3) regret bound for unconstrained pricing in T rounds. Can we show that the optimal

regret bound for markdown pricing is asymptoticly higher than T
2
3 ?

We provide a complete settlement of this fundamental question in Chapter III and IV.

More precisely, we present optimal regret bounds for markdown pricing, under various assumptions,

from the most agnostic setting where only the minimal assumptions are imposed for deriving

meaningful guarantees, to the most fine-grained setting where the demand curve is assumed to

come from certain class of well-behaved functions. Furthermore, in almost every regime, our tight

bound is asymptoticly higher than the known bounds under the same assumptions, highlighting

the extra complexity introduced by the monotonicity constraint.

Finally, we also investigate various extensions of this problem, including the scenario where

the monotonicity constraint can be relaxed at a certain cost. This work also opens up a wealth of

other related new directions for future study. These two chapters are both joint with Andrew Li

and R. Ravi.

I.3. Short-Lived High-Volume Bandits: Algorithms and Field Experiment

In the final chapter, we consider problem of recommending short-lived contents to users. There has

been a long history where online platforms leverage the scale of data, especially related to user

attention, to make better decisions for newly-arriving products or content. By and large, recom-

mendation tasks can be classified into four categories based on the lifetime and volume of contents

generated. For persistent (long-lived) content, the problem is arguably straightforward: spend a

negligible amount of time collecting sufficient data in the form of user feedback, and then apply

13

suitable offline predictive model, which might range in sophistication from a basic collaborative

filtering algorithms to, nowadays, deep neural networks (DNNs). For example, recently YouTube

deployed a recommender system comprised of two deep neural networks: one for candidate gener-

ation and one for ranking.

Orthogonal to content lifetime, when there is a low volume of content relative to the number

of users, the problem is similarly well-understood: dedicated exploration methods (e.g. A/B test-

ing) are sufficient for finding the right segments of users for which the content is most appealing.

LinkedIn runs over 400 concurrent experiments per day to compare different designs of their web-

site, with the goal of, for example, encouraging the users to better establish their personal profile,

or increasing the subscriptions to LinkedIn Premium.

Naturally then, the most challenging settings are where the content to be recommended is

short-lived and high-volume. Such settings arise, for example, in content aggregation platforms (e.g.

Apple News) and platforms with content that is entirely user-generated (e.g. TikTok). In these

settings, both of the previous approaches are prone to failure: offline predictive algorithms do not

receive enough data on individual content to achieve meaningful accuracy due to the short lifetime,

and dedicated exploration methods are ill-suited to high volume.

The question then is, how should an online platform decide what content to display to each

user? In addition to the well-known “learn-and-earn” trade-off in MAB, the online platform needs

to resolve an additional concern: the balance between the exploration of newly arriving and older

contents. We propose a simple bandit-based approach for recommending short-lived content, which

we show to have nearly-optimal performance guarantee.

Further, we implemented this policy in a live field experiment with Glance, a leading

lockscreen content platform in India, which faces exactly this challenge. Over the course of two

weeks, our policy achieved a 12% improvement in conversions rates, relative to the neural network

based control policy. This chapter is based on our joint work with Nishant Oli, Andrew Li, R. Ravi,

Paul Duff and Ian Anderson.

14

Chapter II Optimal Decision Tree and Submodular

Ranking with Noisy Outcomes

A fundamental task in active learning involves performing a sequence of tests to identify an

unknown hypothesis that is drawn from a known distribution. This problem, known as optimal

decision tree induction, has been widely studied for decades and the asymptotically best-possible

approximation algorithm has been devised for it. We study a generalization where certain test

outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating a

test gives the same noisy output. More generally, we introduce a problem, Submodular Function

Ranking with Noise, that generalizes the above problem. We design new approximation algorithms

for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive

setting where the test sequence depends on the outcomes of prior tests. Previous work in the area

assumed at most a logarithmic number of noisy outcomes per hypothesis and provided approxi-

mation ratios that depended on parameters such as the minimum probability of a hypothesis. Our

new approximation algorithms provide guarantees that are nearly best-possible and work for the

general case of a large number of noisy outcomes per test or per hypothesis where the performance

degrades smoothly with this number. In fact, our results hold in a significantly more general setting,

where the goal is to cover stochastic submodular functions.

We numerically evaluate the performance of our algorithms on two natural applications with

noise: toxic chemical identification and active learning of linear classifiers. Despite our theoretical

logarithmic approximation guarantees, our methods give solutions with cost very close to the

information theoretic minimum, demonstrating the effectiveness of our methods.

II.1. Introduction

The classic Optimal Decision Tree (ODT) problem involves identifying an initially unknown hypoth-

esis h that is drawn from a known probability distribution over a set of hypotheses. We can perform

tests in order to distinguish between these hypotheses. Each test produces a binary outcome (pos-

itive or negative) and the precise outcome of each test-hypothesis pair is known beforehand, and

thus an instance of ODT can be viewed as a ±1-valued matrix M with the tests as rows and

hypotheses as columns. The goal is to identify the true hypothesis h using the fewest tests.

As a motivating application, consider the following task in medical diagnosis detailed in

Loveland (1985). A doctor needs to diagnose a patient’s disease by performing tests. Given an

15

a priori probability distribution over possible diseases, what sequence of tests should the doctor

perform to identify the disease as quickly as possible? Another application is in active learning (e.g.

Dasgupta (2005)). Given a set of data points, one wants to learn a classifier that labels the points

correctly as positive and negative. There is a set ofm possible classifiers which is assumed to contain

the true classifier. In the Bayesian setting, which we consider, the true classifier is drawn from

some known probability distribution. The goal is to identify the true classifier by querying labels

at the minimum number of points in expectation (over the prior distribution). Other applications

include entity identification in databases (Chakaravarthy et al. (2011)) and experimental design to

choose the most accurate theory among competing candidates (Golovin et al. (2010)).

Despite the considerable literature on the classic ODT problem, an important issue that is

not considered is that of unknown or noisy outcomes. In fact, our research was motivated by a

data-set involving toxic chemical identification where the outcomes of many hypothesis-test pairs

are stated as unknown (see Section III.6 for details). While prior work incorporating noise in ODT,

for example Golovin et al. (2010), was restricted to settings with very few noisy outcomes, in

this paper, we design approximation algorithms for the noisy optimal decision tree problem in full

generality.

Specifically, we generalize the ODT problem to allow unknown/noisy entries (denoted by

“∗”) in the test-hypothesis matrix M , to obtain the Optimal Decision Tree with Noise (ODTN)

problem, in which the outcome of each noisy entry in the test-hypothesis matrix M is a random ±1

value, independent of other noisy entries. More precisely, if the entry Mt,h = ∗ (for hypothesis h and

test t) and the realized hypothesis is h, then the outcome of t will be a random ±1 value. We will

assume for simplicity that each noisy outcome is ±1 with uniform probability, though our results

extend directly to the case where each noisy outcome has a different probability. We consider the

standard persistent noise model, where repeating the same test always produces the same outcome.

Note that this model is more general than the non-persistent noise (where repeating a noisy test

leads to “fresh” independent ±1 outcomes), since one may create copies of tests and hypotheses

to reduce to the persistent noise model.

We consider both non-adaptive policies, where the test sequence is fixed upfront, and adaptive

policies, where the test sequence is built incrementally and depends on observed test outcomes.

Evidently, adaptive policies perform at least as well as non-adaptive ones. Indeed, there exists

instances where the relative gap between the best adaptive and non-adaptive policies is very large

16

(see for example, Dasgupta (2005)). However, non-adaptive policies are very simple to implement,

requiring minimal incremental computation, and may be preferred in time-sensitive applications.

In fact, our results hold in a significantly more general setting, where the goal is to cover

stochastic submodular functions. In the absence of noisy outcomes, the non-adaptive and adaptive

versions of this problem were studied by by Azar and Gamzu (2011) and Navidi et al. (2020).

Other than the ODT problem, this submodular setting captures a number of applications such

as multiple-intent search ranking, decision region determination and correlated knapsack cover:

see Navidi et al. (2020) for details. Our work is the first to handle noisy outcomes in all these

applications.

II.2. Contributions

We derive most of our results for the ODTN problem as corollaries of a more general problem,

Submodular Function Ranking with Noisy Outcomes, which is a natural extension of the Submod-

ular Function Ranking problem, introduced by Azar and Gamzu (2011). We first state our results

before formally defining this problem in Section II.4.3.

First, we obtain an O(log 1
ε
)-approximation algorithm (see Theorem 3) for Non-Adaptive

Submodular Function Ranking with noisy outcomes (SFRN) where ε is a separability parameter

of the underlying submodular functions. As a special case, for the ODTN (both adaptive and non-

adaptive) problem, we consider submodular functions with separability ε= 1
m
, so the above result

immediately implies an O(logm)-approximation for non-adaptive ODTN. This bound is the best

possible (up to constant factors) even in the noiseless case, assuming P ̸=NP .

As our second contribution, we obtain an O(min{c log |Ω|, r}+ log m
ε
)-approximation (Theo-

rem 7) algorithm for Adaptive Submodular Ranking with noisy outcomes (ASRN), which implies

an O(min{c, r}+logm) bound for ODTN by setting ε= 1
m
, where Ω is the set of random outcomes

we may observe when selecting elements. The term min{c log |Ω|, r} corresponds to the “noise spar-

sity” of the instance (see Section II.4 for formal definitions). For the ODTN problem, c (resp. r) is

the maximum number of noisy outcomes in each column (resp. row) of the test-hypothesis matrix

M . In the noiseless case, c = r = 0 and our result matches the best approximation ratio for the

ODT and the Adaptive Submodular Ranking problem (Navidi et al. (2020)). In the noisy case,

our performance guarantee degrades smoothly with the noise sparsity. For example, we obtain a

logarithmic approximation ratio (which is the best possible) as long as the number of noisy out-

comes in each row or column is at most logarithmic. For ODTN, Golovin et al. (2010) obtained

17

an O(log2 1
pmin

)-approximation algorithm which is polynomial-time only when c=O(logm); here

pmin ≤ 1
m

is the minimum probability of any hypothesis. Our result improves this result in that (i)

the running time is polynomial irrespective of the number of noisy outcomes and (ii) the approxi-

mation ratio is better by at least one logarithmic factor.

While the above algorithm admits a nice approximation ratio when there are few noisy entries

in each row or column of M , as our third contribution, we consider the other extreme, when each

test has only a few deterministic entries (or equivalently, a large number of noisy outcomes). Here,

we focus on the special case of ODTN. At first sight, higher noise seems to only render the problem

more challenging, but somewhat surprisingly, we obtain a much better approximation ratio in this

regime. Specifically, if the number of noisy outcomes in each test is at least m−O(
√
m), we obtain

an approximation algorithm whose cost is O(logm) times the optimum and returns the target

hypothesis with high probability. We establish this result by relating the cost to a Stochastic Set

Cover instance, whose cost lower-bounds that of the ODTN instance.

Finally, we tested our algorithms on synthetic as well as a real dataset (arising in toxic

chemical identification). We compared the empirical performance guarantee of our algorithms to an

information-theoretic lower bound. The cost of the solution returned by our non-adaptive algorithm

is typically within 50% of this lower bound, and typically within 20% for the adaptive algorithm,

demonstrating the effective practical performance of our algorithms.

As a final remark, although in this work we will consider uniform distribution for noisy out-

comes, our results extend directly to the case where each noisy outcome has a different probability

of being ±1. Suppose that the probability of every noisy outcome is between δ and 1− δ. Then our

results on ASRN continue to hold, irrespective of δ, and the result for the many-unknowns version

holds with a slightly worse O(1
δ
logm) approximation ratio.

II.3. Related Work

The optimal decision tree problem (without noise) has been extensively studied for several decades:

see Garey and Graham (1974), Hyafil and Rivest (1976/77), Loveland (1985), Arkin et al. (1998),

Kosaraju et al. (1999), Adler and Heeringa (2008), Chakaravarthy et al. (2009), Gupta et al. (2017).

The state-of-the-art result Gupta et al. (2017) is an O(logm)-approximation, for instances with

arbitrary probability distribution and costs. Chakaravarthy et al. (2011) also showed that ODT

cannot be approximated to a factor better than Ω(logm), unless P=NP.

18

The application of ODT to Bayesian active learning was formalized in Dasgupta (2005). There

are also several results on the statistical complexity of active learning. e.g. Balcan et al. (2006),

Hanneke (2007), Nowak (2009), where the focus is on proving bounds for structured hypothesis

classes. In contrast, we consider arbitrary hypothesis classes and obtain computationally efficient

policies with provable approximation bounds relative to the optimal (instance specific) policy. This

approach is similar to that in Dasgupta (2005), Guillory and Bilmes (2009), Golovin and Krause

(2011), Golovin et al. (2010), Cicalese et al. (2014), Javdani et al. (2014).

The noisy ODT problem was studied previously in Golovin et al. (2010). Using a connection

to adaptive submodularity, Golovin and Krause (2011) obtained an O(log2 1
pmin

)-approximation

algorithm for noisy ODT in the presence of very few noisy outcomes, where pmin ≤ 1
m

is the

minimum probability of any hypothesis.∗ In particular, the running time of the algorithm in Golovin

et al. (2010) is exponential in the number of noisy outcomes per hypothesis, which is polynomial

only if this number is at most logarithmic in the number of hypotheses/tests. As noted earlier, our

result improves both the running time (it is now polynomial for any number of noisy outcomes)

and the approximation ratio. We note that an O(logm) approximation ratio (still only for very

sparse noise) follows from work on the “equivalence class determination” problem by Cicalese et al.

(2014). For this setting, our result is also an O(logm) approximation, but our algorithm is simpler.

More importantly, ours is the first result that can handle any number of noisy outcomes.

Other variants of noisy ODT have also been considered, e.g. Naghshvar et al. (2012), Bellala

et al. (2011), Chen et al. (2017), where the goal is to identify the correct hypothesis with at

least some target probability. The theoretical results in Chen et al. (2017) provide “bicriteria”

approximation bounds where the algorithm has a larger error probability than the optimal policy.

Our setting is different because we enforce zero probability of error.

Many algorithms for ODT (including ours) rely on some underlying submodularity properties.

We briefly survey some background results. In the basic Submodular Cover problem, we are given

a set of elements and a submodular function f . The goal is to use the minimal number of elements

to make the value of f reach certain threshold. Wolsey (1982) first considered this problem and

proved that the natural greedy algorithm is a (1 + ln 1
ε
)-approximation algorithm, where ε is the

minimal positive marginal increment of the function. As a natural generalization, in the Submodular

∗The paper Golovin et al. (2010) states the approximation ratio as O(log 1
pmin

) because it relied on an erroneous
claim in Golovin and Krause (2011). The correct approximation ratio, based on Nan and Saligrama (2017), Golovin
and Krause (2017), is O(log2 1

pmin
).

19

Function Ranking problem we are given multiple submodular functions, and need to sequentially

select elements so as to minimize the total cover time of those functions. Azar and Gamzu (2011)

obtained an O(log 1
ϵ
)-approximation algorithm for this problem, and Im et al. (2016) extended this

result to also handle costs. More recently, Navidi et al. (2020) studied an adaptive version of the

submodular ranking problem.

Finally, we note that there is also work on minimizing the worst-case (instead of average

case) cost in ODT and active learning; see e.g., Moshkov (2010), Saettler et al. (2017), Guillory

and Bilmes (2010, 2011). These results are incomparable to ours because we are interested in the

average case, i.e. minimizing expected cost.

II.4. Preliminaries

II.4.1. Optimal Decision Tree with Noise In the Optimal Decision Tree with Noise

(ODTN) problem, we are given a set of m possible hypotheses with a prior probability distribution

{πi}mi=1, from which an unknown hypothesis ī is drawn. There is also a set T of n binary tests, each

test T ∈ T associated with a 3-way partition T+, T−, T ∗ of [m], where the outcome of test T is

• positive if ī∈ T+,

• negative if ī∈ T−, and

• positive or negative with probability 1
2
each if ī∈ T ∗ (noisy outcomes).

We assume that conditioned on ī, each noisy outcome is independent. The outcomes for all test-

hypothesis pairs can be summarized in a {1,−1,∗}-valued n×m matrix M .

While we know the 3-way partition T+, T−, T ∗ for each test T ∈ T upfront, we are not aware

of the actual outcomes for the noisy test-hypothesis pairs. It is assumed that the realized hypothesis

ī can be uniquely identified by performing all tests, regardless of the outcomes of ⋆-tests. This

means that for every pair i, j ∈ [m] of hypotheses, there is some test T ∈ T with i∈ T+ and j ∈ T−

or vice-versa. The goal is to perform a sequence of tests to identify hypothesis ī using the minimum

expected number of tests, which will be formally defined soon. Note that the expectation is taken

over both the prior distribution of ī and the random outcomes of noisy tests for ī.

Types of Policies. A non-adaptive policy is specified by a permutation of tests denoting the order

in which they will be tried until identification of the underlying hypothesis. The policy performs

tests in this sequence and eliminates incompatible hypotheses until there is a unique compatible

20

hypothesis (which is ī). Note that the number of tests performed under such a policy is still random

as it depends on ī and the outcomes of noisy tests.

An adaptive policy chooses tests incrementally, depending on prior test outcomes. The state

of a policy is a tuple (E,d) where E ⊆ T is a subset of tests and d ∈ {±1}E denotes the observed

outcomes of the tests in E. An adaptive policy is specified by a mapping Φ : 2T ×{±1}→ T from

states to tests, where Φ(E,d) is the next test to perform at state (E,d). Define the (random) cost

Cost(Φ) of a policy Φ to be the number of tests performed until ī is uniquely identified, i.e., all

other hypotheses have been eliminated. The goal is to find policy Φ with minimum E[Cost(Φ)].

Again, the expectation is over the prior distribution of ī as well as the outcomes of noisy tests.

Equivalently, we can view a policy as a decision tree with nodes corresponding to states,

labels at nodes representing the test performed at that state and branches corresponding to the

±1 outcome at the current test. In particular, a non-adaptive policy is simply a decision tree where

all nodes on each level are labelled with the same test.

As the number of states can be exponential, we cannot hope to specify arbitrary adaptive

policies. Instead, we want implicit policies Φ, where given any state (E,d), the test Φ(E,d) can be

computed efficiently. This would imply that the total time taken on any decision path is polynomial.

We note that an optimal policy Φ∗ can be very complex and the map Φ∗(E,d) may not be efficiently

computable. We will still compare the performance of our (efficient) policy to Φ∗.

Noise Model. In this paper, we consider the persistent noise model. That is, repeating a test T

with ī∈ T ∗ always produces the same outcome. An alternative model is non-persistent noise, where

each run of test T with ī ∈ T ∗ produces an independent random outcome. The persistent noise

model is more appropriate to handle missing data. It also contains the non-persistent noise model

as a special case (by introducing multiple tests with identical partitions). The persistent-noise

model is also more challenging from an algorithmic point of view.

In fact, our results hold in a substantially more general setting (than ODT), that of covering

arbitrary submodular functions. In Section II.4.2 we first describe this setting in the noiseless case,

which is well-understood (prior to our work). Then, in Section II.4.3 we describe the setting with

noisy outcomes, which is the focus of our paper.

II.4.2. Adaptive Submodular Ranking (Noiseless Case) We now review the (non-

adaptive and adaptive) Submodular Ranking problems introduced by Azar and Gamzu (2011) and

Navidi et al. (2020) respectively.

21

Submodular Function Ranking. An instance of Submodular Function Ranking (SFR) consists

of a ground set of elements [n] := {1, ..., n} and a collection of monotone submodular functions

{f1, ..., fm}, fi : 2[n]→ [0,1], with fi(∅) = 0 and fi([n]) = 1 for all i ∈ [m]. Each i ∈ [m] is called a

scenario. An unknown target scenario ī is drawn from a known distribution {πi} over [m].

A solution to SFR is a permutation σ = (σ(1), ..., σ(n)) of elements. Given any such permu-

tation, the cover time of scenario i is C(i, σ) :=min{t |fi(σt) = 1} where σt = (σ(1), ..., σ(t)) is the

t-prefix of permutation σ. In words, the cover time is the earliest time when the value of fi reaches

the unit threshold. The goal is to find a permutation σ of [n] with minimal expected cover time

Eī[C (̄i, σ)] =
∑

i∈[m] πi ·C(i, σ).

The separability parameter ε > 0 is defined as minimum positive marginal increment of any

function, i.e. ε :=min{fi(S ∪{e})− fi(S)> 0| ∀S ⊆ [n], i∈ [m], e∈ [n]}. We will use the following.

Theorem 1 (Azar and Gamzu (2011)). There is an O(log 1
ϵ
)-approximation algorithm for

SFR.

Adaptive Submodular Ranking. In the Adaptive Submodular Ranking (ASR) problem, in

addition to the above input to SFR, for each scenario i ∈ [m] we are given a response function

ri : [n]→ Ω where Ω is a finite set of outcomes (or response, which we use interchangeably). A

solution to ASR is an adaptive sequence of elements: the sequence is adaptive because it can depend

on the outcomes from previous elements. When the policy selects an element e∈ [n], it receives an

outcome o= rī(e)∈Ω, thereby any scenario i with ri(e) ̸= ō can be ruled out.

The state of an adaptive policy is a tuple (E,d) where E ⊆ [n] is the subset of previously

selected elements and d ∈ ΩE denotes the observed responses on E. An adaptive policy is then

specified by a mapping Φ : 2[n]×Ω→ [n] from states to elements, where Φ(E,d) is the next element

to select at state (E,d). Note that any adaptive policy Φ induces, for each scenario i, a unique

sequence σi of elements that will be selected if the target scenario ī = i. The cover time of i is

defined as C(i,Φ) :=min{t |fi(σti) = 1}. The goal is to find a policy Φ with minimal expected cover

time
∑

i∈[m] πi ·C(i,Φ). We will use the following result in Section II.6.

Theorem 2 (Navidi et al. (2020)). There is an O(log m
ϵ
)-approximation algorithm for ASR.

As discussed in Navidi et al. (2020), the optimal decision tree problem (without noise) is a special

case of ASR. We show later that even the noisy version ODTN can be reduced to a noisy variant

of ASR (which we define next).

22

II.4.3. Adaptive Submodular Ranking with Noise In this paper, we introduce a new

variant of ASR by incorporating noisy outcomes, which generalizes the ODTN problem.

ASR with Noise. An instance of the Adaptive Submodular Ranking with Noise (ASRN) Problem

consists of a ground set of elements [n], a finite set Ω of outcomes, and a collection of monotone

submodular functions {f1, ..., fm}, where each fi : 2
[n]×Ω→ [0,1] satisfies fi(∅) = 0 and fi([n]×Ω)=

1. Note that the ground set of each function fi is [n]×Ω, i.e., all element-outcome pairs. As before,

each i∈ [m] is called a scenario and an unknown target scenario ī is drawn from a given distribution

{πi}mi=1. For each scenario i ∈ [m], we are given a response function ri : [n]→ Ω ∪ {∗}. When an

element e is selected, its outcome is:

• ri(e) if ri(e)∈Ω, and

• a uniformly random response from Ω if ri(e) = ∗ (noisy outcome).

The responses can be summarized in an n×m matrix M with entries from Ω∪{∗}. Conditioned on

ī, we assume that all noisy outcomes are independent. Our results extend to arbitrary distributions

for noisy outcomes, but we will work with the uniform case for simplicity.

As in the noiseless case, the state of a policy is the tuple (E,d) where E ⊆ [n] denotes the

previously selected elements and d ∈ ΩE denotes their observed responses. A non-adaptive policy

is simply given by a permutation of all elements and involves selecting elements in this (static)

sequence. An adaptive policy is a mapping Φ : 2[n]×Ω→ [n], where Φ(E,d) is the next element to

select at state (E,d). Scenario i is said to be covered in state (E,d) if fi({(e, de) : e∈E}) = 1, i.e.,

function fi is covered by the element-response pairs observed so far. The goal is to cover the target

scenario ī using the minimum expected number of elements.

Unlike the noiseless case, in ASRN, each scenario i may trace multiple paths in the decision

tree corresponding to policy Φ. However, if we condition on the responses ω ∈Ωn from all elements,

each scenario i traces a unique path, corresponding to a sequence σi,ω of element-response pairs.

The cover time of scenario i under ω is defined as C(i,Φ|ω) := min{t|fi(σti,ω) = 1} where σti,ω

consists of the first t element-response pairs in σi,ω. The expected cover time of scenario i is

ECT(i,Φ) :=
∑

ω∈Ωn Pr(ω|i) ·C(i,Φ|ω), where Pr(ω|i) is the probability of observing responses ω

conditioned on ī= i. Finally, the expected cost of policy Φ is
∑

i∈[m] πi ·ECT(i,Φ).

For each scenario i, we assume that the function fi can always be covered irrespective of the

noisy outcomes (when ī = i). In other words, for any i ∈ [m] and ω ∈ Ωn that is consistent with

23

scenario i (i.e., ωe = ri(e) for each e with ri(e) ̸= ∗), we must have fi({(e,ωe) : e∈ [n]}) = 1. In the

absence of this assumption, the optimal value (as defined above) will be unbounded.

Connection to ODTN. The ODTN problem can be cast as a special case of the ASRN problem,

where the n tests T in ODTN corresponds to the elements [n] in ASRN, and the m hypotheses

in ODTN correspond to the scenarios in ASRN, with the same prior distribution. The outcomes

Ω = {±1}. Define the response function for each test T ∈ T as follows. Let (T+, T−, T ∗) be the

3-way partition of [m] for test T . For any hypothesis (scenario) i ∈ [m], define ri(T) = o if i ∈ T o

for each o∈Ω∪{∗}. For any i∈ [m], define the submodular function

fi(S) =
1

m− 1
·
∣∣ ⋃
T :(T,+1)∈S

T−
⋃ ⋃

T :(T,−1)∈S

T+
∣∣, ∀S ⊆T ×{+1,−1}.

Note that the element-outcome pairs here are U = T ×{+1,−1}. It is easy to see that each function

fi : 2
U → [0,1] is monotone and submodular. Also, these functions fi happen to be uniform for

all i. Moreover, the separability parameter ε = 1
m−1

. Crucially, fi(S) corresponds to the fraction

of hypotheses (other than i) that are incompatible with at least one outcome in S: for example,

if S has a positive outcome (T,+1) then hypotheses T− are incompatible (similarly for negative

outcomes). So fi has value one exactly when i is identified as the only compatible hypothesis.

By the assumption that the target hypothesis can be uniquely identified, the function fi can be

covered (i.e. reaches value one) irrespective of the noisy outcomes.

II.4.4. Expanded Scenario Set In our analysis for both the non-adaptive and adaptive

ASRN problem, we will consider an equivalent noiseless ASR instance. Let I be a given ASRN

instance with scenarios [m]. The ASR instance J considers an expanded set of scenarios. For any

scenario i∈ [m], define

Ω(i) := {ω ∈Ωn : ωe = ri(e) for all e∈ [n] with ri(e) ̸= ∗},

denoting all outcome vectors that are consistent with scenario i. For any ω ∈ Ω(i), the expanded

scenario (i,ω) corresponds to the original scenario i ∈ [m] when the outcome of each element e is

ωe. Note that an expanded scenario also fixes all noisy outcomes. We write Hi := {(i,ω) : ω ∈Ω(i)}

and H =∪mi=1Hi for the set of all expanded scenarios.

To define the prior distribution in the ASR instance, let ci = |{e ∈ [n] : ri(e) = ∗}| be the

number of noisy outcomes for i∈ [m]. Since the outcome of any ⋆-element for i is uniformly drawn

24

from Ω, each of the |Ω|ci possible expanded scenarios for i occurs with the same probability πi,ω =

πi/|Ω|ci .

To complete the reduction, for each (i,ω)∈H, we define the response function

ri,ω : [n]→Ω, ri,ω(e) = ωe, ∀e∈ [n],

and the submodular coverage function

fi,ω : 2
[n]→ [0,1], fi,ω(S) = fi

(
{(e,ωe

)
: e∈ S}), ∀S ⊆ [n].

By this definition, since fi is monotone and submodular on [n]×Ω, the function fi,ω is also monotone

and submodular on [n]. We will also work with the ASR (noiseless) instance on the expanded

scenarios with response functions ri,ω and submodular functions fi,ω.

Proposition 1. The ASRN instance I is equivalent to the ASR instance J .

Proof. Recall that an adaptive algorithm for ASRN or ASR can be viewed as a decision tree.

We will show that any feasible decision tree for the ASR instance J is also feasible for the ASRN

instance I with the same objective, and vice versa.

In one direction, consider a feasible decision tree T for the ASR instance J . For any expanded

scenario (i,ω) ∈H, let Pi,ω be the unique path traced in T, and Si,ω the elements selected along

Pi,ω. Note that by definition of a feasible decision tree, at the last node (“leaf”) of path Pi,ω, it

holds fi,ω(Si,ω) = 1 which, in the notation of the original ASRN instance, translates to fi({(e,ωe) :

e∈ Si,ω}) = 1.

In the other direction, let T′ be any decision tree for ASRN instance I. Suppose the target

scenario is i ∈ [m] and element-outcomes are given by ω ∈ Ωn on the ⋆-elements for i, which is

unknown to the algorithm. Then a unique path P ′
i,ω is traced in T′. Let S′

i,ω denote the elements

on this path. Since i is covered at the end of P ′
i,ω we have fi({(e,ωe) : e∈ S′

i,ω}) = 1. Now consider

T′ as a decision tree for ASR instance J . Under scenario i,ω, it is clear that path P ′
i,ω is traced

and so elements S′
i,ω are selected. It follows that fi,ω(S

′
i,ω) = fi({(e,ωe) : e∈ S′

i,ω}) = 1 which means

that scenario (i,ω) is covered at the end of P ′
i,ω. Therefore T′ is a also feasible decision tree for J .

Taking expectations, the cost for J is at most that for instance I. □

Crucially, the number of expanded scenarios |H| is exponentially large as |H| ≤
∑

i∈[m] |Ω|ci .

So we cannot merely apply existing algorithms for the noiseless ASR problems. In §II.5 and §II.6

we will show different ways for managing the expanded scenarios and obtaining polynomial time

algorithms.

25

II.5. Nonadaptive Algorithm

This main result in this section is an O(log 1
ε
)-approximation for Non-Adaptive Submodular Func-

tion Ranking (SFRN) where ε > 0 is the separability parameter of the submodular functions. By

Proposition 1, the SFRN problem is equivalent to the SFR problem on the expanded scenarios.

However, as noted above, we cannot use Theorem 1 directly as the SFR instance has an exponential

number of scenarios. Nevertheless, we can obtain the following result.

Theorem 3. There is a poly(1
ε
, n,m) time O(log 1

ε
)-approximation for the SFRN problem.

Observe that for ODTN, ε= 1
m−1

, thus we obtain the following result for ODTN.

Corollary 1. There is an O(logm)-approximation for non-adaptive ODTN.

At a high level, our algorithm builds upon the algorithm of Azar and Gamzu (2011)’s greedy-

style algorithm for SFR. In their algorithm, at any iteration, having already chosen elements E,

assigns to each e∈ [n] \E a score that measures the coverage gain when it is selected, defined as

GE(e) :=
∑

(i,ω)∈H:fi,ω(E)<1

πi,ω
fi,ω({e}∪E)− fi,ω(E)

1− fi,ω(E)
=
∑

(i,ω)∈H

πi,ω ·∆E(i,ω;e), (1)

∆E(i,ω, e) =

{
fi,ω({e}∪E)−fi,ω(E)

1−fi,ω(E)
, if fi,ω(E)< 1;

0, otherwise.
(2)

The algorithm then selects the element with the maximum score.

II.5.1. Non-adaptive Algorithm for SFRN We now describe how to convert the above

algorithm into a non-adaptive SFRN problem, formally described in Algorithm II.5.2. The algo-

rithm involves two phases. In the first phase, we run the SFR algorithm using sampling to get

estimates GE(e) of the scores. If at some step, the maximum sampled score is “too low” then

we go to the second phase where we perform all remaining elements in an arbitrary order. The

number of samples used to obtain each estimate is polynomial in m,n, ε−1, so the overall runtime

is polynomial.

Pre-processing. We first show that by losing an O(1)-factor in approximation ratio, we may

assume that πi ≥ n−2 for all i ∈ [m]. Let A = {i ∈ [m] : πi ≤ n−2}, then
∑

i πi ≤ n−2 · n ≤ n−1.

Replace all scenarios in A with a single dummy scenario “0” with π0 =
∑

i∈A πi, and define f0 to

be any fi where i ∈A. By our assumption that each fi must be covered irrespective of the noisy

outcomes, it holds that fi,ω([n]) = 1 for each ω ∈ Ω(i), and hence the cover time is at most n.

Thus, for any permutation σ, the expected cover time of the old and new instance differ by at

most O(n−1 ·n) =O(1). Therefore, the cover time of any sequence of elements differs by only O(1)

26

Algorithm 1 Non-adaptive SFRN algorithm.

1: Initialize E←∅ and sequence σ= ∅.

2: while E ̸= [n] do ▷ Phase 1 begins

3: For each e ∈ [n], compute an estimate GE(e) of the score GE(e) by sampling from H

independently N =m3n4ε−1 times.

4: Let e∗ denote the element e∈ [n] \E that maximizes GE(e).

5: if GE(e)≥ 1
4
m−2n−4ε then

6: Update E←E ∪{e∗} and append e∗ to sequence σ.

7: else

8: Exit the while loop. ▷ Phase 1 ends

9: Append the elements in [n] \E to sequence σ in arbitrary order. ▷ Phase 2

10: Output non-adaptive sequence σ.

in this new instance (where we removed the scenarios with tiny prior densities) and the original

instances.

Since this summation involves exponentially many terms, we do not know how to compute

the exact value of (1) in polynomial time. However, using the fact that GE(e) is the expectation

of ∆E(i,ω;e) over the expanded scenarios (i,ω) ∈H, we will show how to obtain a randomized

constant-approximate maximizer by sampling from H. Moreover, we use the following extension

of Theorem 1, which follows directly from the analysis in Im et al. (2016).

Theorem 4 (Azar and Gamzu (2011), Im et al. (2016)). Consider the SFR algorithm

that selects at each step, an element e with GE(e) ≥ Ω(1) ·maxe′∈U GE(e
′). This is an O(log 1

ϵ
)-

approximation algorithm.

Consequently, if we always find an approximate maximizer for GE(e) by sampling then The-

orem 3 would follow from Theorem 4. However, this sampling approach is not sufficient because it

can fail when the value GE(e) is very small. In order to deal with this, a key observation is that

when the score GE(e) is small for all elements e, then it must be that (with high probability) the

already-selected elements E have covered ī, so any future elements would not affect the expected

cover time. We describe how to overcome this challenge in the next subsection.

II.5.2. Analysis of Algorithm We now present the formal proof of Theorem 3. To analyze

the our randomized algorithm, we need the following sampling lemma, which follows from the

standard Chernoff bound.

27

Lemma 1. Let X be a [0,1]-bounded random variable with EX ≥m−2n−4ε. Let X̄ denote the

average of m3n4ε−1 many independent samples of X. Then Pr
[
X̄ /∈ [1

2
EX,2EX]

]
≤ e−Ω(m).

Proof. Let X1, ...,XN be i.i.d. samples of random variable where N =m3n4ε−1 is the number

of samples. Letting Y =
∑

i∈[N]Xi, the usual Chernoff bound implies for any δ ∈ (0,1),

Pr
(
Y /∈ [(1− δ)EY, (1+ δ)EY]

)
≤ exp(−δ2

2
·EY).

The lemma follows by setting δ= 1
2
and using the assumption EY =N ·EX1 =Ω(m). □

The next lemma shows that sampling does find an approximate maximizer unless the score

is very small, and also bounds the failure probability.

Lemma 2. Consider any step in the algorithm with S =maxe∈[n]GE(e) and S̄ =maxe∈[n]GE(e)

with GE(e
∗) = S̄. Call this step a failure if (i) S̄ < 1

4
m−2n−4ε and S ≥ 1

2
m−2n−4ε, or (ii) S̄ ≥

1
4
m−2n−4ε and GE(e

∗)< S
4
. Then the probability of failure is at most e−Ω(m).

Proof. We will consider the two types of failures separately. For the first type, suppose S ≥
1
2
m−2n−4ε. Using Lemma 1 on the element e∈ [n] with GE(e) = S, we obtain

Pr[S̄ <
1

4
m−2n−4ε]≤Pr[GE(e)<

1

4
m−2n−4ε]≤ e−Ω(m).

So the probability of the first type of failure is at most e−Ω(m).

For the second type of failure, we consider two further cases:

• S < 1
8
m−2n−4ε. For any e∈ [n] we have GE(e)≤ S < 1

8
m−2n−4ε. Note that GE(e) is the average

of N independent samples each with mean GE(e). We now upper bound the probability of the

event Be that GE(e)≥ 1
4
m−2n−4ε. We first artificially increase each sample mean to 1

8
m−2n−4ε:

note that this only increases the probability of event Be. Now, using Lemma 1 we obtain

Pr[Be]≤ e−Ω(m). By a union bound, it follows that Pr[S̄ ≥ 1
4
m−2n−4ε]≤

∑
e∈[n]Pr[Be]≤ e−Ω(m).

• S ≥ 1
8
m−2n−4ε. Consider now any e∈U with GE(e)<S/4. By Lemma 1 (artificially increasing

GE(e) to S/4 if needed), it follows that Pr[GE(e)>S/2]≤ e−Ω(m). Now consider the element

e′ with GE(e
′) = S. Again, by Lemma 1, it follows that Pr[GE(e

′)≤ S/2]≤ e−Ω(m). This means

that element e∗ has GE(e
∗)≥GE(e

′)>S/2 and GE(e
∗)≥ S/4 with probability 1− e−Ω(m). In

other words, assuming S ≥ 1
8
m−2n−4ε, the probability that GE(e

∗)<S/4 is at most e−Ω(m).

Adding the probabilities over all possibilities for failures, the lemma follows. □

Based on Lemma 2, in the remaining analysis we condition on the event that our algorithm

never encounters failures, which occurs with probability 1−e−Ω(m). To conclude the proof, we need

28

the following key lemma which essentially states that if the score of the greediest element is low,

then the elements selected so far suffices to cover all scenarios with high probability, and hence the

ordering of the remaining elements does not matter much.

Lemma 3. Assume that there are no failures. Consider the end of phase 1 in our algorithm,

i.e. the first step with GE(e
∗)< 1

4
m−2n−4ε. Then, the probability that the realized scenario is not

covered is at most m−2.

Proof. Let E denote the elements chosen so far and p the probability that E does not cover

the realized scenario-copy of H. That is,

p= Pr
(i,ω)∈H

(fi,ω(E)< 1) =
m∑
i=1

πi · Pr
ω∈Ω(i)

(fi,ω(E)< 1).

It follows that there is some i with Prω∈Ω(i)(fi,ω(E)< 1)≥ p. By definition of separability, if

fi,ω(E)< 1 then fi,ω(E)≤ 1− ε. Thus,∑
ω∈Ω(i)

πi,ωfi,ω(E)≤
∑

ω:fi,ω(E)=1

πi,ω · 1+
∑

ω:fi,ω(E)<1

πi,ω · fi,ω(E)≤ (1− εp)πi.

On the other hand, taking all the elements we have fi,ω([n]) = 1 for all ω ∈Ω(i). Thus,∑
ω∈Ω(i)

πi,ωfi,ω([n]) =
∑
ω∈Ω(i)

πi,ω = πi.

Taking the difference of the above two inequalities, we have∑
ω∈Ω(i)

πi,ω · (fi,ω([n])− fi,ω(E))≥ πi · εp.

Consider function g(S) :=
∑

ω∈Ω(i) πi,ω ·(fi,ω(S ∪E)− fi,ω(E)) for S ⊆ [n], which is also submodular.

From the above, we have g([n])≥ πi · εp. Using submodularity of g,

max
e∈[n]

g({e})≥ εpπi
n

=⇒ ∃ẽ∈ [n] :
∑
ω∈Ω(i)

πi,ω · (fi,ω(E ∪{ẽ})− fi,ω(E))≥ εpπi
n

.

It follows that GE(ẽ)≥ εpπi
n
≥ n−3εp, where we used that mini πi ≥ n−2. Now, suppose for a con-

tradiction that p≥m−2. Since there is no failure and GE(ẽ)≥ n−3m−2ε≥ 1
4
n−4m−2ε, by case (ii)

of Lemma 2 , we deduce that GE(e
∗)≥ 1

4
m−2n−4, which is contradiction. □

The above is essentially a consequence of the submodularity of the target functions. Suppose

for contradiction that there is a scenario i that, with at least m−2 probability over the random

outcomes, remains uncovered by the currently selected elements. Recall that by our feasibility

29

assumption, if all elements were selected, then fi is covered with probability 1. Thus, by submodu-

larity, there exists an individual element ẽ whose inclusion brings more coverage than the average

coverage over all elements in [n], and hence ẽ has a “high” score.

Proof of Theorem 3. Assume that there are no failures. We proceed by bounding the expected

costs (number of elements) from phase 1 and 2 separately. By Lemma 2, the element chosen in

each step of phase 1 is a 4-approximate maximizer (see case (ii) failure) of the score used in the

SFR algorithm. Thus, by Theorem 4, the expected cost in phase 1 is O(logm) times the optimum.

On the other side, by Lemma 3 the probability of performing phase 2 is at most e−Ω(m). As there

are at most n elements in phase 2, the expected cost is only O(1). Therefore, Algorithm II.5.2 is

an O(logm)-approximation algorithm for SFRN. □

II.6. Adaptive Algorithms

In this section we present the O
(
log m

ε
+min{c log |Ω|, r}

)
-approximation for ASRN where we recall

that c, r are the maximum number of noisy entries (“stars”) per column and per row in the outcome

matrix M , and ε is the separability parameter of the submodular functions. We propose two

algorithms, achieving O
(
r+ log m

ε

)
and O

(
c log |Ω|+ log m

ε

)
approximations respectively, which

combined imply our main result.

In both algorithms, we maintain the posterior probability of each scenario based on the

previous element responses, and use these probabilities to calculate a score for each element, which

comprises (i) a term that prioritizes splitting the candidate scenarios in a balanced manner and (ii)

terms corresponding to the expected number of scenarios eliminated. Different than the noiseless

setting, in ASRN (and ODTN), each scenario may trace multiple paths in the decision tree due to

outcome randomness. In fact, each scenario may trace an exponential number of paths in the tree,

so a naive generalization of the analysis in Navidi et al. (2020) incurs an extra exponential factor

in the approximation ratio.

We circumvent this challenge by reducing to an ASR instance J (as defined in Proposition 1)

using the expanded scenarios. In this way, the noise is removed, since we recall that the outcome

of each element is deterministic conditional on any expanded scenario (i,ω). Our first result, an

O(c log |Ω|+ log m
ε
)-approximation, then follows from Navidi et al. (2020).

However, as J involves exponentially many scenarios, a naive implementation of the algo-

rithm in Navidi et al. (2020) leads to exponential running time. To improve the computational

efficiency, in Section II.6.1 we exploit the special structure of J and devise a polynomial time

algorithm. Then, in Section II.6.2, we propose a slightly different algorithm than that of Navidi

et al. (2020), and show an O(r+ log m
ε
) approximation ratio.

30

II.6.1. An O(c log |Ω|+ log m
ε
)-Approximation Algorithm Our first adaptive algorithm is

based on the O(log m
ε
)-approximation algorithm for ASR from Navidi et al. (2020), formally stated

as Algorithm 2. Applying this result on the instance J and recalling |H| ≤ |Ω|c ·m, we immediately

obtain the desired guarantee. Their algorithm, rephrased in our notations, maintains the setH ′ ⊆H

of all expanded scenarios that are consistent with all the observed outcomes, and iteratively selects

the element with maximum score, as defined in (3)‡.

As the heart of the algorithm, this score strikes a balance between covering the submodu-

lar functions of the consistent scenarios and shrinking H ′ hence reducing the uncertainty in the

target scenario. The second term in Scorec, similar to the score in our non-adaptive algorithm

(Algorithm II.5.2), involves the sum of the incremental coverage (for selecting e) over all uncov-

ered expanded scenarios, weighted by their current coverage, with higher weights on the expanded

scenarios closer to being covered.

To interpret the first term in Scorec, let us for simplicity assume Ω= {±1} and πi,ω is uniform

over H. Upon selecting an element, H ′ is split into two subsets, among which Le(H
′) is the lighter

(in cardinality), or equivalently – since we just assumed πi,ω to be uniform – in the total prior

probabilities. Thus, this term is simply the number of expanded scenarios eliminated in the worst

case (over the outcomes in Ω). This is reminiscent of the greedy algorithm for the ODT problem

(e.g. Kosaraju et al. (1999)) which iteratively selects a test that maximizes the number of scenarios

ruled out, in the worst case over all test outcomes. Evidently, the higher this term, the more

progress is made towards identifying the target (expanded) scenario.

As noted earlier, a key issue is the exponential size of the expanded scenario set H. The naive

implementation, which computes the summation in Scorec by evaluating each term in H ′, requires

exponential time. Nonetheless, as the main focus of this subsection, we explain how to utilize the

structure of the ASRN instance J to reformulate each of the two terms in Scorec in a manageable

form, hence enabling a polynomial time implementation.

Computing the First Term in Scorec. Recall that Hi is the set of all expanded scenarios

for i. Since each (i,ω) ∈ Hi is has an equal share πi,ω = |Ω|−ciπi of prior probability mass the

(original) scenario i ∈ [m], computing the first term in Scorec reduces to maintaining the number

ni = |Hi∩H ′| of consistent copies of i. We observe that ni can be easily updated in each iteration.

In fact, suppose outcome o ∈ Ω is observed upon selecting element e. We consider how H ′ ∩Hi

changes after selecting in the following three cases.

‡We use the subscript c to distinguish from the score function Scorer considered in Section II.6.2, but for ease of
notation, we will suppress the subscript in this subsection.

31

Algorithm 2 Algorithm for ASR instance J , based on Navidi et al. (2020).

1: Initialize E←∅,H ′←H.

2: while H ′ ̸= ∅ do

3: For any element e∈ [n], let Be(H
′) be the largest cardinality set among

{(i,ω)∈H ′ : ri,ω(e) = o} ∀o∈Ω

4: Define Le(H
′) =H ′ \Be(H

′)

5: Select the element e∈ [n] \E maximizing

Scorec(e,E,H ′) = π
(
Le(H

′)
)
+

∑
(i,ω)∈H′,fi,ω(E)<1

πi,ω ·
fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)
(3)

6: Observe response o and update H ′ as H ′←{(i,ω)∈H ′ : ωe = o and fi,ω(E ∪ e)< 1}

7: E←E ∪{e}

1. if ri(e) /∈ {⋆, o}, then none of i’s expanded scenarios would remain in H ′, so ni becomes 0,

2. if ri(e) = o, then all of i’s expanded scenarios would remain in H ′, so ni remains the same,

3. if ri(e) = ⋆, then only those (i,ω) with ω(e) = o will remain, and so ni shrinks by an |Ω| factor.

As ni’s can be easily updated, we are also able to compute the first term in Scorec efficiently.

Indeed, for any element e (that is not yet selected), we can implicitly describe the set Le(H
′) as

follows. Note that for any outcome o∈Ω,

|{(i,ω)∈H ′ : ri,ω(e) = o}|=
∑

i∈[m]:ri(e)=o

ni +
1

|Ω|
∑

i∈[m]:ri(e)=⋆

ni,

so the largest cardinality set Be(H
′) can then be easily determined using ni’s. In fact, let b be the

outcome corresponding to Be(H
′). Then,

π (Le (H
′)) =

∑
i∈[m]:ri(e)/∈{b,⋆}

πi
|Ω|ci

·ni +
|Ω| − 1

|Ω|
∑

i∈[m]:ri(e)=⋆

πi
|Ω|ci

·ni.

Computing the Second Term in Scorec. The second term in Scorec involves summing over

exponentially many terms, so a naive implementation is inefficient. Instead, we will rewrite this

summation as an expectation that can be calculated in polynomial time.

We introduce some notations before formally stating this equivalence. Suppose the algorithm

selected a subset E of elements, and observed outcomes {νe}e∈E. We overload notation slightly and

use f(νE) := f
(
{(e, νe) : e ∈ E}

)
for any function f defined on 2[m]×Ω. For each scenario i ∈ [m],

32

let pi = ni · πi
|Ω|ci be the total probability mass of the surviving expanded scenarios for i.† Finally,

for any element e and scenario i, let Ei,νe be the expectation over the outcome νe of element e

conditional on i being the realized scenario. We can then rewrite the second term in Scorec as

follows.

Lemma 4. For each i∈ [m], and e /∈E,

∑
(i,ω)∈H′

πi,ω ·
fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)
=
∑
i∈[m]

pi ·
Ei,νe [fi(νE ∪{νe})− fi(νE)]

1− fi(νE)
(4)

Proof. By decomposing the summation in the left hand side of (3) as H ′ = ∪iH ′ ∩Hi, and

noticing that fi,ω(E) = fi(νE), the problem reduces to showing that for each i∈ [m],

∑
(i,ω)∈H′∩Hi

πi,ω ·
(
fi,ω(e∪E)− fi,ω(E)

)
= pi ·Ei,νe [fi(νE ∪{νe})− fi(νE)].

Recall that pi = ni · πi
|Ω|ci and π(i,ω) =

πi
|Ω|ci , the above simplifies to

1

ni

∑
(i,ω)∈H′∩Hi

(
fi,ω(e∪E)− fi,ω(E)

)
=Ei,νe [fi(νE ∪{νe})− fi(νE)].

Note that ni = |H ′ ∩Hi|, so the above is equivalent to

1

ni

∑
(i,ω)∈H′∩Hi

fi,ω(e∪E) =Ei,νe [fi
(
νE ∪{νe}

)
]. (5)

It is straightforward to verify that the above by considering the following are two cases.

• If ri(e) = νe ∈Ω \ {∗}, then the outcome νe is deterministic conditional on scenario i, and so

is fi
(
νE ∪ {νe}

)
, the value of fi after selecting e. On the left hand side, for every ω ∈Hi, by

definition of Hi it holds νe = ωe, and hence fi,ω(e ∪ E) = fi(νE ∪ {νe} for every (i,ω) ∈ Hi.

Therefore all terms in the summation are equal to fi(νE ∪{νe} and hence (5) holds.

• If ri(e) = ∗, then each outcome o∈Ω occurs with equal probabilities, thus we may rewrite the

right hand side as

Ei,νe [fi
(
νE ∪{νe}

)
] =
∑
o∈Ω

Pi[νe = o] · fi
(
νE ∪{νe}

)
=

1

|Ω|
∑
o∈Ω

fi
(
νE ∪{(e, o)}

)
.

†One may easily verify via the Bayesian rule that pi/p([m]) is indeed the posterior probability of scenario i∈ [m],
given the previously observed outcomes.

33

To analyze the other side, note that by definition of Hi and H ′, there are equally many

expanded scenarios (i,ω) in H ′∩Hi with ωe = o for each outcome o∈Ω. Thus, we can rewrite

the left hand side as

1

ni

∑
(i,ω)∈H′∩Hi

fi,ω(e∪E) =
1

ni

∑
o∈Ω

∑
(i,ω)∈H′∩Hi,

ωe=o

fi,ω(e∪E)

=
1

ni

∑
o∈Ω

ni
|Ω|

fi,ω(e∪E)

=
1

|Ω|
∑
o∈Ω

fi
(
νE ∪{(e, o)}

)
,

which matches the right hand side of (5) and completes the proof. □

The above lemma suggests the following efficient implementation of Algorithm 2. For each i,

compute and maintain pi using ni. To find the expectation in the numerator, note that if ri(e) ̸= ⋆,

then νe is deterministic and hence it is straightforward to find this expectation. In the other case, if

ri(e) = ⋆, recalling that the outcome is uniform over Ω, we may simply evaluate fi(νE ∪{(e, o)})−

fi(νE) for each o ∈Ω and take the average, since the noisy outcome is uniformly distributed over

Ω.

Now we are ready to formally state and prove the main result of this subsection.

Theorem 5. Algorithm 2 is an O(c log |Ω|+ logm+ log 1
ε
)-approximation algorithm for ASRN

where c is the maximum number of noisy outcomes in each column of the response matrix M .

Proof. Consider the ASR instance J and Algorithm 2. As discussed above, this algorithm can

be implemented in polynomial time. By Theorem 2, this algorithm has an O
(
log(|Ω|cm)+log m

ε

)
=

O(c log |Ω|+ log m
ε
) approximation ratio since |H| ≤ |Ω|c ·m. □

II.6.2. An O(r+ log m
ε
)-Approximation Algorithm In this section, we consider a slightly

different score function, Scorer, and obtain an O(r + log m
ε
)-approximation. Unlike the previous

section where the approximation factor follows as an immediately corollary from Theorem 2, to

prove this result, we need to also modify the analysis.

The only difference from Algorithm 2 is in the first term of the score function. Recall that in

Scorec, upon selecting an element, the surviving expanded scenarios is partitioned into |Ω| subsets,

among which Le(H
′) is defined to be the lightest cardinality. Its counterpart in Scorer, however,

is defined more indirectly, by first considering the original scenarios. The element e partitions the

original scenarios with deterministic outcomes into |Ω| subsets, with the largest (in cardinality)

34

Algorithm 3 Modified algorithm for ASR instance J .
1: Initialize E←∅,H ′←H

2: while H ′ ̸= ∅ do

3: S←{i∈ [m] : Hi ∩H ′ ̸= ∅} ▷ Consistent original scenarios

4: For e∈ [n], let Ue(S) = {i∈ S : ri(e) = ∗} and Ce(S) be the largest cardinality set among

{i∈ S : ri(e) = o}, ∀o∈Ω,

and let oe(S)∈Ω be the outcome corresponding to Ce(S).

5: For each e∈ [n], let

Re(H
′) = {(i,ω)∈H ′ : i∈Ce(S)}

⋃
{(j, oe(S))∈H ′ : j ∈Ue(S)},

be those expanded-scenarios that have outcome oe(S) for element e, and Re(H
′) :=H ′ \Re(H

′).

6: Select element e∈ [n] \E that maximizes

Scorer(e,E,H ′) = π
(
Re(H

′)
)
+

∑
(i,ω)∈H′,fi,ω(E)<1

πi,ω ·
fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)
(6)

7: Observe outcome o

8: H ′←{(i,ω)∈H ′ : ri,ω(e) = o and fi,ω(E ∪ e)< 1} ▷ Update the (expanded) scenarios

9: E←E ∪{e}

being Ce(S)⊆ [m]. The set Re(H
′)⊆H ′ is then defined to be the consistent expanded scenarios

that have a different outcome than Ce(S).

Computational Complexity. By definition, S can be directly computed using the ni’s, which

can be updated in polynomial time as explained in Section II.6.1. Similar to Algorithm 2, the

second term here also involves summing over exponentially many terms, but by following the same

recipe as in Section II.6.1, one may also implement it in polynomial time.

The main result of this section, stated below, is proved by adapting the proof technique from

Navidi et al. (2020).

Theorem 6. Algorithm 3 is a polynomial-time O(r+log m
ε
)-approximation algorithm for ASRN,

where r is the maximum number of noisy outcomes in any row of the response matrix M .

Proof. The proof is similar to the analysis in Navidi et al. (2020). With some foresight, set

α := 15(r+logm). Write Algorithm 3 as ALG and let OPT be the optimal adaptive policy. It will

be convenient to view ALG and OPT as decision trees where each node represents the “state” of the

35

policy. Nodes in the decision tree are labelled by elements (that are selected at the corresponding

state) and branches out of each node are labelled by the outcome observed at that point. At any

state, we use E to denote the previously selected elements and H ′ ⊆M to denote the expanded-

scenarios that are (i) compatible with the outcomes observed so far and (ii) uncovered. Suppose

at some iteration, elements E are selected and outcomes νE are observed, then a scenario i is said

to be covered if fi(E ∪ νE) = 1, and uncovered otherwise.

For ease of presentation, we use the phrase “at time t” to mean “after selecting t elements”.

Note that the cost incurred until time t is exactly t. The key step is to show

ak ≤ 0.2ak−1 +3yk, for all k≥ 1, (7)

where

• Ak ⊆M is the set of uncovered expanded scenarios in ALG at time α · 2k and ak = p(Ak) is

their total probability,

• Yk is the set of uncovered scenarios in OPT at time 2k−1, and yk = p(Yk) is the total probability

of these scenarios.

As shown in Section 2 of Navidi et al. (2020), (7) implies that Algorithm 3 is an O(α)-

approximation and hence Theorem 6 follows. To prove (7), we consider the total score collected by

ALG between iterations α2k−1 and α2k, formally given by

Z :=

α2k∑
t>α2k−1

∑
(E,H′)∈V (t)

max
e∈[n]\E

 ∑
(i,ω)∈Re(H′)

πi,ω +
∑

(i,ω)∈H′

πi,ω ·
fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)

 (8)

where V (t) denotes the set of states (E,H ′) that occur at time t in the decision tree ALG. We

note that all the expanded-scenarios seen in states of V (t) are contained in Ak−1.

Consider any state (E,H ′) at time t in the algorithm. Recall that H ′ are the expanded-

scenarios and let S ⊆ [m] denote the original scenarios in H ′. Let TH′(k) denote the subtree of OPT

that corresponds to paths traced by expanded-scenarios in H ′ up to time 2k−1. Note that each

node (labeled by any element e∈ [n]) in TH(k) has at most |Ω| outgoing branches and one of them

corresponds to the outcome oe(S) defined in Algorithm 3. We define Stemk(H
′) to be the path in

TH′(k) that at each node (labeled e) follows the oe(S) branch. We also use Stemk(H
′)⊆ [n]×Ω to

denote the observed element-outcome pairs on this path.

Definition 1. Each state (E,H ′) is exactly one of the following types:

• bad if the probability of uncovered scenarios in H ′ at the end of Stemk(H
′) is at least Pr(H′)

3
.

• okay if it is not bad and Pr(∪e∈Stemk(H
′)Re(H

′)) is at least Pr(H′)
3

.

36

• good if it is neither bad nor okay and the probability of scenarios in H ′ that get covered by

Stemk(H
′) is at least Pr(H′)

3
.

Crucially, this categorization of states is well defined. Indeed, each expanded-scenario in H ′ is (i)

uncovered at the end of Stemk(H
′), or (ii) in Re(H

′) for some e ∈ Stemk(H
′), or (iii) covered by

some prefix of Stemk(H
′), i.e. the function value reaches 1 on Stemk(H

′). So the total probability

of the scenarios in one of these 3 categories must be at least Pr(H)

3
.

In the next two lemmas, we will show a lower bound (Lemma 5) and an upper bound

(Lemma 6) for Z in terms of ak and yk, which together imply (7) and complete the proof.

Lemma 5. For any k≥ 1, it holds Z ≥ α · (ak− 3yk)/3.

Proof. The proof of this lower bound is identical to that of Lemma 3 in Navidi et al. (2020)

for noiseless-ASR. The only difference is that we use the scenario-subset Re(H
′)⊆H ′ instead of

subset “Le(H)⊆H” in the analysis of Navidi et al. (2020). □

Lemma 6. For any k≥ 1, Z ≤ ak−1 · (1+ ln 1
ϵ
+ r+ logm).

Proof. This proof is analogous to that of Lemma 4 in Navidi et al. (2020) but requires new

ideas, as detailed below. Our proof splits into two steps. We first rewrite Z by interchanging its

double summation: the outer layer is now over the Ak−1 (instead of times between α2k−1 to α2k

as in the original definition of Z). Then for each fixed (i,ω)∈Ak−1, we will upper bound the inner

summation using the assumption that there are at most r original scenarios with ri(e) = ⋆ for each

element e.

Step 1: Rewriting Z. For any uncovered (i,ω) ∈Ak−1 in the decision tree ALG at time α2k−1,

let Pi,ω be the path traced by (i,ω) in ALG, starting from time α2k−1 and ending at time α2k or

when (i,ω) is covered.

Recall that in the definition of Z, for each time t between α2k−1 and α2k, we sum over all

states (E,H ′) at time t. Since t ≥ α2k−1, and the subset of uncovered scenarios only shrinks at

t increases, for any (E,H ′) ∈ V (t) we have H ′ ⊆ Ak−1. So, only the expanded scenarios in Ak−1

contribute to Z. Thus we may rewrite (8) as

Z =
∑

(i,ω)∈Ak−1

πi,ω ·
∑

(e;E,H′)∈Pi,ω

(
fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)
+1[(i,ω)∈Re(H

′)]

)

≤
∑

(i,ω)∈Ak−1

πi,ω ·

 ∑
(e;E,H′)∈Pi,ω

fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)
+

∑
(e;E,H′)∈Pi,ω

1[(i,ω)∈Re(H
′)]

 . (9)

Step 2: Bounding the Inner Summation. The rest of our proof involves upper bounding each

of the two terms in the summation over e ∈ Pi,ω for any fixed (i,ω) ∈ Ak−1. To bound the first

term, we need the following standard result on submodular functions.

37

Lemma 7 (Azar and Gamzu (2011)). Let f : 2U → [0,1] be any monotone function with

f(∅) = 0 and ε=min{f(S ∪ {e})− f(S) : e ∈ U,S ⊆ U,f(S ∪ {e})− f(S)> 0} be the separability

parameter. Then for any nested sequence of subsets ∅= S0 ⊆ S1 ⊆ · · ·Sk ⊆U , it holds

k∑
t=1

f(St)− f(St−1)

1− f(St−1)
≤ 1+ ln

1

ε
.

It follows immediately that∑
(e;E,H′)∈Pi,ω

fi,ω(e∪E)− fi,ω(E)

1− fi,ω(E)
≤ 1+ ln

1

ε
. (10)

Next we consider the second term
∑

(e;E,H′)∈Pi,ω

1[(i,ω) ∈ Re(H
′)]. Recall that S ⊆ [m] is the

subset of original scenarios with at least one expanded scenario in H ′. Consider the partition of

scenarios S into |Ω|+ 1 parts based on the response entries (from Ω ∪ {∗}) for element e. From

Algorithm 3, recall that Ue(S) denotes the part with response ∗ and Ce(S) denotes the largest

cardinality part among the non-∗ responses. Also, oe(S)∈Ω is the outcome corresponding to part

Ce(S). Moreover, Re(H
′)⊆H ′ consists of all expanded-scenarios that do not have outcome oe(S)

on element e. Suppose that (i,ω) ∈ Re(H
′). Then, it must be that the observed outcome on e is

not oe(S). Let S′ ⊆ S denote the subset of original scenarios that are also compatible with the

observed outcome on e. We now claim that |S′| ≤ |S|+r
2

. To see this, let De(S)⊆ S denote the part

having the second largest cardinality among the non-∗ responses for e. As the observed outcome is

not oe(S) (which corresponds to the largest part), we have

|S′| ≤ |Ue(S)|+ |De(S)| ≤ |Ue(S)|+
(
|S| − |Ue(S)|

2

)
=
|S|+ |Ue(S)|

2
≤ |S|+ r

2
.

The first inequality above uses the fact that S′ consists of Ue(S) (scenarios with ∗ response)

and some part (other than Ce(S)) with a non-∗ response. The second inequality uses |De(S)| ≤
|De(S)|+|Ce(S)|

2
≤ |S|−|Ue(S)|

2
. The last inequality uses the upper-bound r on the number of ∗ responses

per element. It follows that each time (i,ω)∈Re(H
′), the number of compatible (original) scenarios

on path Pi,ω changes as |S′| ≤ |S|+r
2

. Hence, after log2m such events, the number of compatible

scenarios on path Pi,ω is at most r. Finally, we use the fact that the number of compatible scenarios

reduces by at least one whenever (i,ω)∈Re(H
′), to obtain∑

(e;E,H′)∈Pi,ω

1[(i,ω)∈Re(H
′)]≤ r+ log2m. (11)

Combining (9), (10) and (11), we obtain the lemma. □

Combining the above result with Theorem 5 and selecting the one with lower approximation

ratio between Algorithm 2 and Algorithm 3, we immediately obtain the following.

38

Theorem 7. There is an adaptive O
(
min{c log |Ω|, r}+log m

ε
)-approximation algorithm for the

ASRN problem.

II.6.3. Application of Algorithm 2 and Algorithm 3 to ODTN. When applied to the

ODTN problem, Theorem 7 implies an O
(
min{c, r}+ log m

ε
)-approximation algorithm, which is

also used in our computational results.

For concreteness, we provide a closed-form formula for Scorec and Scorer in the ODTN

problem using Lemma 4, which were used in our experiments for ODTN. In §II.4.3, we formulated

ODTN as an ASRN instance. Recall that the outcomes Ω= {+1,−1}, and the submodular function

f (associated with each hypothesis i) measures the proportion of hypotheses eliminated after

observing the outcomes of a subset of tests.

As in §II.6, at any point in Algorithm 2 or 3, after selecting set E of tests, let νE :E→±1
denote their outcomes. For each hypothesis i∈ [m], let ni denote the number of surviving expanded-

scenarios of i. Also, for each hypothesis i, let pi denote the total probability mass of the surviving

expanded-scenarios of i. For any S ⊆ [m], we use the shorthand p(S) =
∑

i∈S pi. Finally, let A⊆ [m]

denote the compatible hypotheses based on the observed outcomes νE (these are all the hypotheses

i with ni > 0). Then, f(νE) =
m−|A|
m−1

. Moreover, for any new test/element T ,

f(νE ∪{νT}) =

{
m−|A|+|A∩T−|

m−1
if νT =+1

m−|A|+|A∩T+|
m−1

if νT =−1
.

Recall that T+, T− and T ∗ denote the hypotheses with +1, −1 and ∗ outcomes for test T . So,

f(νE ∪{νT})− f(νE)

1− f(νE)
=

{
|A∩T−|
|A|−1

if νT =+1
|A∩T+|
|A|−1

if νT =−1
.

It is then straightforward to verify the following.

Proposition 2. Consider implementing Algorithm 2 on an ODTN instance. Suppose after

selecting tests E, the expanded-scenarios H ′ (and original scenarios A) are compatible with the

parameters described above. For any test T , if bT ∈ {+1,−1} is the outcome corresponding to

BT (H
′) then the second term in Scorec(T ;E,H ′) and Scorer(T ;E,H ′) is:(
|A∩T−|
|A| − 1

+
|A∩T+|
|A| − 1

)
· p (A∩T

∗)

2
+
|A∩T−|
|A| − 1

· p
(
A∩T+

)
+
|A∩T+|
|A| − 1

· p
(
A∩T−) .

The above expression has a natural interpretation for ODTN: conditioned on the outcomes νE so

far, it is the expected number of newly eliminated hypotheses due to test T (normalized by |A|−1).

The first term of the score π (LT (H
′)) or π (RT (H

′)) is calculated as for the general ASRN

problem. Finally, observe that for the submodular functions used for ODTN, the separation param-

eter is ε= 1
m−1

. So, by Theorem 7 we immediately obtain a polynomial time O(min(r, c)+ logm)-

approximation for ODTN.

39

II.7. ODTN with Many Unknowns

Our adaptive algorithm in Section II.6 has a performance guarantee that grows with the noise

sparsitymin(r, c log |Ω|). In this section, we consider the special case of ODTN (which is our primary

application) and focus on instances with a large number of noisy outcomes. We show that an

O(logm)-approximation algorithm can be achieved even in this regime.

An ODTN instance is called α-sparse (0≤ α≤ 1) if there max{|T+|, |T−|} ≤mα for all tests

T ∈ T . In particular, when α < 1, this means the vast majority of entries are noisy in every test.

Our main result is the following.

Theorem 8. There is a polynomial time adaptive algorithm whose cost is O(logm) times the

optimum for ODTN on any α-sparse instance with α ≤ 1
2
, and returns the true hypothesis with

probability 1−m−1.

Moreover, by repeating the algorithm for c≥ 1 times, the error probability will decrease to m−c.

II.7.1. Stochastic Set Cover Problem Stochastic Set Cover. The design and analysis of our

algorithm are both closely related to that of the Stochastic Set Cover (SSC) problem (Liu et al.

(2008), Im et al. (2016)). An instance of SSC consists of a ground set [m] of items and a collection

of random subsets S1, · · · , Sn of [m], where the distribution of each Si is known to the algorithm.

The instantiation of each set is only known after it is selected. The goal is to find an adaptive

policy that minimizes the expected number of sets to cover all elements in the ground set.

The following natural adaptive greedy algorithm is known to be an O(logm)-approximation

(Liu et al. (2008), Im et al. (2016)). Suppose at some iteration, A ⊆ [m] is the set of uncovered

elements. A random set S is said to be β-greedy if its expected coverage of the uncovered elements

is at least 1/β the maximum, i.e.

E
[
|S ∩A|

]
≥ 1

β
max
j∈[n]

E
[
|Sj ∩A|

]
.

An SSC algorithm is (β,ρ)-greedy if for every t≥ 1, the algorithm picks a β-greedy set in no less

than t/ρ iterations among the first t. By slightly modifying the analysis in Im et al. (2016), one

may obtain the following guarantee which will serve as the cornerstone of our analysis.

Theorem 9 (Im et al. (2016)). For any stochastic set cover instance, a (β,ρ)-greedy policy

costs at most O(βρ logm) times the optimum.

Relating ODTN Optimum and SSC: A Lower Bound. We now derive a lower bound on

the ODTN optimum, in terms of the optima of SSC instances constructed as follows. For any

40

hypothesis i∈ [m], let SSC(i) denote the stochastic set cover instance with ground set [m]\{i} and

n random sets, given by

ST (i) =

T+ with prob. 1 if i∈ T−

T− with prob. 1 if i∈ T+

T− or T+ with prob. 1
2
each if i∈ T ∗

, ∀T ∈ [n].

To see the connection between SSC and ODTN, observe that when i is the target hypothesis in the

ODTN instance, any feasible algorithm must identify i by eliminating all other hypotheses which,

in the language of SSC, translates to covering all items in [m]\{i}. This leads to the following key

lower bound that our algorithm exploits.

Lemma 8. OPT≥
∑

i∈[m] πi ·OPTSSC(i).

Proof. Consider any feasible decision tree T for the ODTN instance and any hypothesis i∈ [m].

If we condition on ī= i then T corresponds to a feasible adaptive policy for SSC(i). This is because:

• for any expanded hypothesis (ω, i) ∈ Ω(i), the tests performed in T must rule out all the

hypotheses [m]\i, and

• the hypotheses ruled-out by any test T (conditioned on ī= i) is a random subset that has the

same distribution as ST (i).

Formally, let Pi,ω denote the path traced in T under test outcomes ω, and |Pi,ω| the number of

tests performed along this path. Recall that ui is the number of unknown tests for i, and that

the probability of observing outcomes ω when ī = i is 2−ui , so this policy for SSC(i) has cost∑
(i,ω)∈Ω(i) 2

−ui · |Pi,ω|. Thus, OPTSSC(i) ≤
∑

(i,ω)∈Ω(i) 2
−ui · |Pi,ω|. Taking expectations over i ∈ [m]

the lemma follows. □

We now explain why “good” progress made in SSC(i) also leads to “good” progress in ODTN.

Consider a hypothesis i and a test T with i ∈ T ∗, and let A be the set of consistent hypotheses.

When test T is selected, the expected coverage of the corresponding (random) set ST (i) in SSC(i)

is 1
2
(|T+ ∩A|+ |T− ∩A|). The following result shows that if T maximizes 1

2
(|T+ ∩A|+ |T− ∩A|),

then it is 2-greedy for SSC(i).

Lemma 9. Let T be a test that maximizes 1
2
(|T+ ∩A|+ |T− ∩A|). Then for any i∈ T ∗,

1

2

(
|T+ ∩A|+ |T− ∩A|

)
=E [|ST (i)∩ (A\i)|] ≥

1

2
· max
T ′∈[n]

E [|ST ′(i)∩ (A\i)|] .

Proof. For simplicity write (T ′)+ as T ′
+ (similarly define T ′

−, T
′
∗). Note that E[|ST (i)∩ (A\i)|] =

1
2
(|T+ ∩A|+ |T− ∩A|) because i∈ T ∗. We consider two cases for test T ′ ∈ T .

41

• If MT ′,i = ∗, then

E[|ST ′(i)∩ (A\i)|] = 1

2

(
|T ′

+ ∩A|+ |T ′
− ∩A|

)
≤ 1

2

(
|T+ ∩A|+ |T− ∩A|

)
,

by the “greedy choice” of T in step 7.

• If i∈ T ′
+ ∪T ′

− then

E[|ST ′(i)∩ (A\i)|]≤max{|T ′
+ ∩A|, |T ′

− ∩A|} ≤ |T ′
+ ∩A|+ |T ′

− ∩A|,

which is at most |T+ ∩A|+ |T− ∩A| by the choice of T .

In either case the claim holds, and the lemma follows. □

Hence, by our sparsity assumption, since the vast majority of hypotheses are in T ∗, such a

test T is 2-greedy for most SSC instances. This motivates the following greedy algorithm. When

A is the set of consistent hypotheses, pick test T that maximizes 1
2
|T+ ∩A|+ 1

2
|T− ∩A|. Suppose

the following ideal condition holds. At each iteration t (when t tests have been selected), for

every hypothesis i, the algorithm has selected at least t/ρ tests that are ⋆-tests for i. Then, the

sequence of tests selected is (2, ρ)-greedy for every i, hence making nearly-optimal progress in every

instance SSC(i). Therefore by Theorem 9, the expected cost of this algorithm under i is O(ρ logm) ·

OPTSSC(i). Taking expectation over the target hypothesis i and combining with Lemma 8, it then

follows that this algorithm is an O(ρ logm)-approximation to ODTN.

However, in general, the ideal condition assumed above may not hold. In other words, up

until some point, the sequence of tests selected is no longer (2, ρ)-greedy for some hypothesis i. To

handle this issue, we modify the above greedy algorithm at all power-of-two iterations as follows (see

Section II.7.3). At each t= 2k where k= 1,2, ... logm, we consider the set Z of O(mα) hypotheses

with the fewest ⋆-tests selected thus far. Then, we invoke a membership oracle Member(Z), to

check whether the target hypothesis ī ∈Z (see Section II.7.2). If so, then the algorithm halts and

returns ī. Otherwise, it continues with the greedy algorithm until the next power-of-two iteration.

We will show that the membership oracle only incurs cost O(mα), which can be bounded using the

following lower bound.

Lemma 10. The optimal value OPT≥Ω(m1−α) for any α-sparse instance.

Proof. By definition of α-sparse instances, the maximum number of candidate hypotheses that

can be eliminated after performing a single test is mα. As we need to eliminate m− 1 hypotheses

irrespective of the realized hypothesis ī, we need to perform at least m−1
mα =Ω(m1−α) tests under

every ī, and the proof follows. □

42

In particular, when α < 1
2
the above implies that the cost O(mα) for each call of the mem-

bership oracle is lower than OPT, and hence the total cost incurred at power-of-two steps is

O(logm ·OPT).

II.7.2. Membership Oracle The membership oracle Member(Z) takes a (small) subset Z ⊆

[m] as input, and decides whether the target hypothesis ī∈Z. At a high level, Member(Z) works as

follows. Whenever |Z| ≥ 2, we pick an arbitrary pair (j, k) of hypotheses in Z and let them “duel”

(i.e. choose a test T with MT,j =−MT,k) until there is only a unique survivor i.

Let i ∈ [m] be an arbitrary hypothesis. We show that if ī ̸= i then with high probability we

can rule out i using very few tests. In fact, we first select an arbitrary set W of 4 logm deterministic

tests for i, and let Y be the set of consistent hypotheses after performing these tests. Without loss

of generality, we assume i∈ T+ for all T ∈W . There are three cases:

• Trivial Case: if ī∈ T− for some T ∈W , then we rule out i when any test T is performed.

• Good Case: if ī ∈ T ∗ for more than half of the tests T in W , then by Chernoff’s inequality,

with high probability we observe at least one “-”, hence ruling out i.

• Bad Case: if ī ∈ T+ for less than half of the tests T in W , then concentration bounds can

not ensure a high enough probability for ruling out i. In this case, we let each hypothesis in

Y duel with i until either i loses a duel or wins all the duels. This takes |Z| − 1 iterations.

We formalize the above ideas in the Algorithm 4, and prove bound the cost of Member(Z) as

follows.

Note that Steps 3, 9 and 18 are well-defined because the ODTN instance is assumed to be

identifiable. If there is no new test in Step 3 with T+ ∩Z ′ ̸= ∅ and T− ∩Z ′ ̸= ∅, then we must have

|Z ′|= 1. If there is no new test in Step 9 with z ̸∈ T ∗ then we must have identified z uniquely, i.e.

Y = ∅. Finally, in step 18, we use the fact that there are tests that deterministically separate every

pair of hypotheses.

Lemma 11. If ī ∈Z, then Member(Z) declares ī= i with probability one; otherwise, it declares

ī /∈Z with probability at least 1−m−2. Moreover, the expected cost of Member(Z) is O(|Z|+logm).

Proof. If ī∈Z then it is clear that i= ī in step 6 and Member(Z) declares ī= i. Now consider

the case ī ̸∈ Z. Recall that i ∈ Z denotes the unique hypothesis that is still compatible in step 6,

and that Y denotes the set of compatible hypotheses among [m] \ {i}, so it always contains ī.

Hence, Y ̸= ∅ in step 14, which implies that k = 4 logm. Also recall the definition of set S and J

from (12).

43

Algorithm 4 Member(Z) oracle that checks if ī∈Z.

1: Initialize: Z ′←Z.

2: while |Z ′| ≥ 2 do % While-loop 1: Finding a suspect – reducing |Z ′| to 1

3: Choose any new test T ∈ T with T+∩Z ′ ̸= ∅ and T−∩Z ′ ̸= ∅, observe outcome ωT ∈ {±1}.

4: Let R be the set of hypotheses ruled out, i.e. R= {j ∈ [m] :MT,j =−ωT}.

5: Let Z ′←Z ′\R.

6: Let z be the unique hypothesis when the while-loop ends. ▷ Identified a “suspect”.

7: Initialize k← 0 and Y =H.

8: while Y ̸= ∅ and k≤ 4 logm do ▷ While-loop 2: choose deterministic tests for z.

9: Choose any new test T with MT,i ̸= ∗ and observe outcome ωT ∈ {±1}.

10: if ωT =−MT,i then ▷ i ruled out.

11: Declare “̄i ̸∈Z” and stop.

12: else

13: Let R be the set of hypotheses ruled out, Y ← Y \R and k← k+1.

14: if Y = ∅ then

15: Declare “̄i= i” and terminate.

16: else

17: Let W ⊆T denote the tests performed in step 9 and ▷ Now consider the“bad” case.

J = {j ∈ Y :MT,j =MT,i for at least 2 logm tests T ∈W}

= {j ∈ Y :MT,j = ∗ for at most 2 logm tests T ∈W}.
(12)

18: For each j ∈ J , choose a test T = T (j)∈ T with MT,j,MT,i ̸= ∗ and MT,j =−MT,i

19: let W ′ ⊆T denote the set of these tests.

20: if no tests in W ∪W ′ rule out i then ▷ Let i duel with hypotheses in J .

21: Declare “̄i= i”.

22: else

23: Declare “̄i /∈Z”.

• Case 1. If ī ∈ J then we will identify correctly that ī ̸= i in step 20 as one of the tests in W ′

(step 18) separates ī and i deterministically. So in this case we will always declare ī /∈Z.

• Case 2. If ī ̸∈ J , then by definition of J , we have ī ∈ T ∗ for at least 2 logm tests T ∈W . As i

has a deterministic outcome for each test in W , the probability that all outcomes in W are

44

consistent with i is at most m−2. So with probability at least 1−m−2, some test in W must

have an outcome (under ī) inconsistent with i, and based on step 20, we would declare ī /∈Z.

In order to bound the cost, note that the number of tests performed are at most: |Z| in step 3,

4 logm in step 9 and |J | ≤ |Z| in step 18, and the proof follows. □

II.7.3. The Main Algorithm The overall algorithm is given in Algorithm 5. The algorithm

maintains a subset of consistent hypotheses, and iteratively computes the greediest test, as formally

specified in Step 7. At each t= 2k where k= 1,2, ... logm, we invoke the membership oracle.

Algorithm 5 Main algorithm for large number of noisy outcomes

1: Initialization: consistent hypotheses A← [m], weights wi← 0 for i∈ [m], iteration index t← 0

2: while |A|> 1 do

3: if t is a power of 2 then

4: Let Z ⊆A be the subset of 2mα hypotheses with lowest wi

5: Invoke Member(Z)

6: If a hypothesis is identified in Z, then Break

7: Select a test T ∈ T maximizing 1
2
(|T+ ∩A|+ |T− ∩A|) and observe outcome oT

8: Set R←{i∈ [m] :MT,i =−oT} and A←A\R ▷ Remove incompatible hypotheses

9: Set wi←wi+1 for each for each i∈ T ∗ ▷ Update the weights of the hypotheses in T ∗

10: t← t+1.

Truncated Decision Tree. Let T denote the decision tree corresponding to our algorithm. We

only consider tests that correspond to step 7. Recall that H is the set of expanded hypotheses and

that any expanded hypothesis traces a unique path in T. For any (i,ω) ∈H, let Pi,ω denote this

path traced; so |Pi,ω| is the number of tests performed in Step 7 under (i,ω). We will work with a

truncated decision tree T, defined below.

Fix any expanded hypothesis (i,ω) ∈H. For any t≥ 1, let θi,ω(t) denote the fraction of the

first t tests in Pi,ω that are ⋆-tests for hypothesis i. Recall that Pi,ω only contains tests from Step 7.

Let ρ= 4 and define

ti,ω =max

{
t∈ {20,21, · · · ,2logm} : θi,ω(t

′)≥ 1

ρ
for all t′ ≤ t

}
. (13)

If ti,ω > |Pi,ω| then we simply set ti,ω = |Pi,ω|.

Now we define the truncated decision tree T. By abuse of notation, we will use θi(t) and ti as

random variables, with randomness over ω. Observe that for any (i,ω), at the next power-of-two

45

step† 2⌈log ti⌉, which we call the truncation time, the membership oracle will be invoked. Moreover,

2⌈log ti⌉ ≤ 2ti, . This motivates us to define T is the subtree of T consisting of the first 2⌈log ti,ω⌉ tests

along path Pi,ω, for each (i,ω) ∈H. Under this definition, the cost of Algorithm 5 clearly equals

the sum of the cost the truncated tree and cost for invoking membership oracles.

Our proof proceeds by bounding the cost of Algorithm 5 at power-of-two steps and other

steps. In other words, we will decompose the cost into the cost incurred by invoking the member-

ship oracle and selecting the greedy tests. We start with the easier task of bounding the cost for

the membership oracle. The oracle Member is always invoked on |Z|=O(mα) hypotheses. Using

Lemma 11, the expected total number of tests due to Step 4 is O(mα logm). By Lemma 10, when

α≤ 1
2
, this cost is O(logm ·OPT).

The remaining part of this subsection focuses on bounding the cost of the truncated tree as

O(logm) ·OPT. With this inequality, we obtain an expected cost of

O(logm) · (mα+OPT)≤(as α< 1
2)

O(logm) · (m1−α+OPT)≤(
Lemma 10

) O(logm) ·OPT,

and Theorem 8 follows. At a high level, for a fixed hypothesis i ∈ [m], we will bound the cost of

the truncated tree as follows:

i has low fraction of ⋆-tests at ti

=⇒
Lemma 12

i is among the top O(mα) hypotheses at ti

=⇒
Lemma 11

i is identified w.h.p. by Member(Z) at 2⌈log ti⌉ ≤ 2ti, hence the truncated path is (2,2)-greedy

=⇒
Theorem 9

the expected cost conditional on i is O(logm) ·SSC(i)

and finally by summing over i∈ [m], it follows from Lemma 8 that the cost of the truncated tree is

O(logm)·OPT. We formalize each step below.

Consider the first step, formally we show that if θi(t)<
1
4
, then there are O(mα) hypotheses

with fewer ⋆-tests than i. Suppose i is the target hypothesis and θi(t) drops below
1
4
at t, that is,

only less than a quarter of the tests selected are 2-greedy for SSC(i). Recall that if i ∈ T ∗ where

T maximizes 1
2
(|A∩T+|+ |A∩T−|), then ST (i) is 2-greedy set for SSC(i), so we deduce that less

than a t
4
tests selected are ⋆-tests for i, or, at least 3t

4
tests selected thus far are deterministic for i.

We next utilize the sparsity assumption to show that there can be at most O(mα) such hypotheses.

Lemma 12. Consider any W ⊆T and I ⊆ [m]. For i∈ I, let D(i) = |{T ∈W :MT,i ̸= ∗}| denote
the number of tests in W for which i has deterministic (i.e. ±1) outcomes. For each κ≥ 1, define

I ′ = {i∈ I :D(i)> |W |/κ}. Then, |I ′| ≤ κmα.

†Unless stated otherwise, we denote log := log2.

46

Proof. By definition of I ′ and α-sparsity, it holds that

|I ′| · |W |
κ

<
∑
i∈I

D(i) =
∑
T∈W

|{i∈ I :MT,i ̸= ∗}| ≤ |W | ·mα,

where the last step follows since |T ∗| ≤ mα for each test T . The proof follows immediately by

rearranging. □

We now complete the analysis using the relation to SSC. Fix any hypothesis i ∈ [m] and

consider decision tree Ti obtained by conditioning T on ī = i. Lemma 9 and the definition of

truncation together imply that Ti is (2,4)-greedy for SSC(i), so by Theorem 9, the expected cost

of Ti is O(logm) · OPTSSC(i). Now, taking expectations over i ∈ [m], the expected cost of T is

O(logm)
∑m

i=1 πi ·OPTSSC(i). Recall from Lemma 8 that

OPT≥
∑
i∈[m]

πi ·OPTSSC(i),

and therefore the cost of T is O(logm) ·OPT.

Correctness. We finally show that our algorithm identifies the target hypothesis ī with high

probability. By definition of ti, where the path is truncated, ī has less than 1
4
fraction of ⋆-tests.

Thus, at iteration 2⌈log t̄i⌉, i.e. the first time the membership oracle is invoked after ti, ī has less

than 1
2
fraction of ⋆-tests. Hence, by Lemma 12, ī is among the O(mα) hypotheses with fewest

⋆-tests. Finally it follows from Lemma 11 that ī is identified correctly with probability at least

1− 1
m
.

II.8. Extension to Non-identifiable ODT Instances

Previous work on ODT problem usually imposes the following identifiability assumption (e.g.

Kosaraju et al. (1999)): for every pair hypotheses, there is a test that distinguishes them deter-

ministically. However in many real world applications, such assumption does not hold. Thus far,

we have also made this identifiability assumption for ODTN (see §II.4.1). In this section, we show

how our results can be extended also to non-identifiable ODTN instances.

To this end, we introduce a slightly different stopping criterion for non-identifiable instances.

(Note that is is no longer possible to stop with a unique compatible hypothesis.) Define a similarity

graph G on m nodes, each corresponding to a hypothesis, with an edge (i, j) if there is no test

separating i and j deterministically. Our algorithms’ performance guarantees will now also depend

on the maximum degree d ofG; note that d= 0 in the perfectly identifiable case. For each hypothesis

i ∈ [m], let Di ⊆ [m] denote the set containing i and all its neighbors in G. We now define two

stopping criteria as follows:

47

• The neighborhood stopping criterion involves stopping when the set K of compatible hypothe-

ses is contained in some Di, where i might or might not be the true hypothesis x̄.

• The clique stopping criterion involves stopping when K is contained in some clique of G.

Note that clique stopping is clearly a stronger notion of identification than neighborhood stopping.

That is, if the clique-stopping criterion is satisfied then so is the neighborhood-stopping criterion.

We now obtain an adaptive algorithm with approximation ratio O(d+min(h, r)+logm) for clique-

stopping as well as neighborhood-stopping.

Consider the following two-phase algorithm. In the first phase, we will identify some subset

N ⊆ [m] containing the realized hypothesis ī with |N | ≤ d+ 1. Given an ODTN instance with m

hypotheses and tests T (as in §II.4.1), we construct the following ASRN instance with hypotheses as

scenarios and tests as elements (this is similar to the construction in §II.4.3). The responses are the

same as in ODTN: so the outcomes Ω= {+1,−1}. Let U = T ×{+1,−1} be the element-outcome

pairs. For each hypothesis i∈ [m], we define a submodular function:

f̃i(S) =min

 1

m− d− 1
·
∣∣ ⋃
T :(T,+1)∈S

T−
⋃ ⋃

T :(T,−1)∈S

T+
∣∣ , 1
 , ∀S ⊆U.

It is easy to see that each function f̃i : 2
U → [0,1] is monotone and submodular, and the separability

parameter ε= 1
m−d−1

. Moreover, f̃i(S) = 1 if and only if at least m−d−1 hypotheses are incompat-

ible with at least one outcome in S. Equivalently, f̃i(S) = 1 iff there are at most d+1 hypotheses

compatible with S. By definition of graph G and max-degree d, it follows that function f̃i can be

covered (i.e. reaches value one) irrespective of the noisy outcomes. Therefore, by Theorem 7 we

obtain an O(min(r, c)+ logm)-approximation algorithm for this ASRN instance. Finally, note that

any feasible policy for ODTN with clique/neighborhood stopping is also feasible for this ASRN

instance. So, the expected cost in the first phase is O(min(r, c)+ logm) ·OPT .

Then, in the second phase, we run a simple splitting algorithm that iteratively selects any

test T that splits the current set K of consistent hypotheses (i.e., T+∩K ̸= ∅ and T−∩K ̸= ∅). The

second phase continues until K is contained in (i) some clique (for clique-stopping) or (ii) some

subset Di (for neighborhood-stopping). Since the number of consistent hypotheses |K| ≤ d+1 at

the start of the second phase, there are at most d tests in this phase. So, the expected cost is at

most d≤ d ·OPT . Combining both phases, we obtain the following.

Theorem 10. There is an adaptive O(d+min(c, r)+logm)-approximation algorithm for ODTN

with the clique-stopping or neighborhood-stopping criterion.

48

II.9. Experiments

We implemented our algorithms on real-world and synthetic data sets. We compared our algo-

rithms’ cost (expected number of tests) with an information theoretic lower bound on the optimal

cost and show that the difference is negligible. Thus, despite our logarithmic approximation ratios,

the practical performance is much better.

Chemicals with Unknown Test Outcomes. We considered a data set called WISER‡, which

includes 414 chemicals (hypothesis) and 78 binary tests. Every chemical has either positive, negative

or unknown result on each test. The original instance (called WISER-ORG) is not identifiable:

so our result does not apply directly. Our result can also be extended to such “non-identifiable”

ODTN instances (this requires a more relaxed stopping criterion defined on the “similarity graph”).

In addition, we also generated a modified dataset by removing chemicals that are not identifiable

from each other, to obtain a perfectly identifiable dataset (called WISER-ID). In generating the

WISER-ID instance, we used a greedy rule that iteratively drops the highest-degree hypothesis in

the similarity graph until all remaining hypotheses are uniquely identifiable. WISER-ID has 255

chemicals.

Random Binary Classifiers with Margin Error. We construct a dataset containing 100 two-

dimensional points, by picking each of their attributes uniformly in [−1000,1000]. We also choose

2000 random triples (a, b, c) to form linear classifiers ax+by√
a2+b2

+ c ≤ 0, where a, b ∼ N(0,1) and

c ∼ U(−1000,1000). The point labels are binary and we introduce noisy outcomes based on the

distance of each point to a classifier. Specifically, for each threshold d ∈ {0,5,10,20,30} we define

dataset CL-d that has a noisy outcome for any classifier-point pair where the distance of the point

to the boundary of the classifier is smaller than d. In order to ensure that the instances are perfectly

identifiable, we remove “equivalent” classifiers and we are left with 234 classifiers.

Distributions. For the distribution over the hypotheses, we considered permutations of power law

distribution (Pr[X = x;α] = βx−α) for α= 0,0.5 and 1. Note that, α= 0 corresponds to uniform

distribution. To be able to compare the results across different classifiers’ datasets meaningfully,

we considered the same permutation in each distribution.

Algorithms. We implement the following algorithms: the adaptive O(r + logm + log 1
ε
)-

approximation (which we denote ODTNr), the adaptive O(c log |Ω|+logm+log 1
ε
)-approximation

(ODTNc), the non-adaptive O(logm)-approximation (Non-Adap) and a slightly adaptive version

‡https://wiser.nlm.nih.gov

49

of Non-Adap (Low-Adap). Algorithm Low-Adap considers the same sequence of tests as Non-

Adap while (adaptively) skipping non-informative tests based on observed outcomes. For the non-

identifiable instance (WISER-ORG) we used the O(d+min(c, r) + logm+ log 1
ε
)-approximation

algorithms with both neighborhood and clique stopping criteria. The implementations of the adap-

tive and non-adaptive algorithms are available online.§

Algorithm
Data

WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 7.994 7.870 7.870 7.870 7.870 7.870

ODTNr 8.357 7.910 7.927 7.915 7.962 8.000

ODTNh 9.707 7.910 7.979 8.211 8.671 8.729

Non-Adap 11.568 9.731 9.831 9.941 9.996 10.204

Low-Adap 9.152 8.619 8.517 8.777 8.692 8.803

Table 1 Cost of Different Algorithms for α= 0 (Uniform Distribution).

Algorithm
Data

WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 7.702 7.582 7.582 7.582 7.582 7.582

ODTNr 8.177 7.757 7.780 7.789 7.831 7.900

ODTNh 9.306 7.757 7.829 8.076 8.497 8.452

Non-Adap 11.998 9.504 9.500 9.694 9.826 9.934

Low-Adap 8.096 7.837 7.565 7.674 8.072 8.310

Table 2 Cost of Different Algorithms for α= 0.5.

Algorithm
Data

WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 6.218 6.136 6.136 6.136 6.136 6.136

ODTNr 7.367 6.998 7.121 7.150 7.299 7.357

ODTNh 8.566 6.998 7.134 7.313 7.637 7.915

Non-Adap 11.976 9.598 9.672 9.824 10.159 10.277

Low-Adap 9.072 8.453 8.344 8.609 8.683 8.541

Table 3 Cost of Different Algorithms for α= 1.

Results. Tables 1, Tables 2 and Tables 3 show the expected costs of different algorithms on all

uniquely identifiable data sets when the parameter α in the distribution over hypothesis is 0,0.5

and 1 correspondingly. These tables also report values of an information theoretic lower bound

(the entropy) on the optimal cost (Low-BND). As the approximation ratio of our algorithms

§https://github.com/FatemehNavidi/ODTN ; https://github.com/sjia1/ODT-with-noisy-outcomes

50

Parameters
Data

WISER-ORG WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

r 388 245 0 5 7 12 13

Avg-r 50.46 30.690 0 1.12 2.21 4.43 6.54

h 61 45 0 3 6 8 8

Avg-h 9.51 9.39 0 0.48 0.94 1.89 2.79

Table 4 Maximum and Average Number of Stars per Hypothesis and per Test in Different Datasets.

Algorithm Neighborhood Stopping Clique Stopping

ODTNr 11.163 11.817

ODTNh 11.908 12.506

Non-Adap 16.995 21.281

Low-Adap 16.983 20.559

Table 5 Algorithms on WISER-ORG dataset with Neighborhood and Clique Stopping for Uniform Distribution.

are dependent on maximum number c of unknowns per hypothesis and maximum number r of

unknowns per test, we also have included these parameters as well as their average values in Table 4.

Table 5 summarizes the results on WISER-ORG with clique and neighborhood stopping criteria.

We can see that ODTNr consistently outperforms the other algorithms and is very close to the

information-theoretic lower bound.

51

Chapter III Markdown Pricing Under Unknown

Demand
We consider the Unimodal Multi-Armed Bandit problem where the goal is to find the optimal price

under an unknown unimodal reward function, with an additionalmarkdown constraint that requires

that the price exploration is non-increasing. This markdown optimization problem faithfully models

a single-product revenue management problem where the objective is to adaptively reduce the price

over a finite sales horizon to maximize expected revenues.

We measure the performance of an adaptive exploration-exploitation policy in terms of the

regret: the revenue loss relative to the maximum revenue that could have been attained when the

demand (or revenue) curve is known in advance. For the case of L-Lipschitz-bounded unimodal

revenue functions with infinite inventory, we presented in the last chapter a natural policy with

regret O(T 3/4(L logT)1/4), as well as almost-matching lower bound of Ω(L1/4T 3/4) on the regret

of any policy. Further, under mild assumptions, we show that the above tight bounds also hold

when the inventory is finite but is at least Ω(T). Our tight regret bound highlight the additional

complexity of the markdown constraint, and are asymptotically higher than the corresponding

bounds without this markdown requirement of Θ̃(T 1/2) for unimodal bandits and Θ̃(L1/3T 2/3) for L-

Lipschitz bandits. We finally consider a generalization called Dynamic Pricing with Markup Penalty

where the seller is allowed to increase the price by paying a markup penalty of magnitude O(T c)

per markup where c ∈ [0,1] is a given constant. We extend our results to a tight Õ(Tmed{ 2
3 ,

3
4 ,c})

regret bound for this variant¶.

III.1. Introduction

Consider the problem of dynamic pricing under unknown demand. This problem is by now well-

studied, and indeed “optimal” solutions exist under numerous variations on (a) the set of demand

functions allowed, on (b) how inventory is treated, and on (c) the frequency at which prices are

allowed to change, just to name a few. By and large, these problems are modeled as variants of

the classic multi-armed bandit problem, and optimality (with respect to a performance measure

called regret) is achieved by striking a carefully-tuned balance between selecting prices to learn the

unknown demand function (exploration), and prices to maximize revenue given what has previously

been learned (exploitation).

Now a seemingly innocuous assumption made across all of this work, which appears to be

critical in achieving meaningful results (i.e. sub-linear regret), is that the price is allowed to be both

¶med{a, b, c} denotes the median of the numbers a, b, c.

52

decreased (marked down) and increased (marked up). In reality, markdowns are quite common,

but this treatment of markups as being equally common and harmless in fact stands in contrast

to the practice of pricing, where it is well-understood that markups negatively impact customers’

perception of a product’s value. As observed by Bitran and Mondschein (1997),

“Customers will hardly be willing to buy a product whose price oscillates, from their point of

view, randomly over the season...Most retail stores do not increase the price of a seasonal or

perishable product despite the fact that the product is being sold successfully.”

For this reason, markdown pricing (i.e. where markups are not allowed) has long been ubiquitous

in retail (Petro (2017)), and remains among the standard set of capabilities that retailers are still

seeking to hone – a recent survey (Google (2021)) suggests that up to $39 billion in value is being

left on the table due to sub-optimal markdown pricing, and this number is just for one of many

sectors of retail (“specialty” retail).

In short, despite the rich literature on dynamic pricing under unknown demand in recent

years, a basic question remains open with respect to the salient challenge of markdown pricing:

Is it feasible to achieve any meaningful performance for markdown pricing under

unknown demand, and if so, what is the “separation” from ordinary dynamic pricing?

Put another way, does a markdown constraint render dynamic pricing less “effective”, and if so,

by how much? This work presents the first definitive answer to this basic question by providing an

optimal policy for markdown pricing, which allows for a precise characterization of the separation

between the regret bounds of markdown pricing and ordinary pricing.

III.1.1. Our Contributions. We study a canonical pricing problem with an additional mark-

down constraint. Specifically, at each of T discrete time periods, a price x is chosen and a random

demand is observed whose mean is given by an unknown demand function D(x). The markdown

constraint precisely means that if price x is selected at time period t, then the price at time period

t+1 can be at most x. We place only minimal assumptions on the demand function: that the corre-

sponding revenue function R(x) = xD(x) be unimodal and Lipschitz (we will see later on that both

are necessary), and inventory is assumed to be infinite (though we will later relax this assumption).

The goal is to design a policy which minimizes regret (defined as the difference between the policy’s

expected total revenue and the maximum total revenue that can be accrued).

Without the markdown constraint, this problem has previously been solved, and it has been

shown that there exists a policy which achieves O(T 2/3) regret (Kleinberg (2005)). This policy

selects a certain discrete subset of the prices and treats each price in this discretization as an

“arm” in a classic multi-armed bandit problem. So in particular, many (approximately half) of

53

the policy’s price changes are markups, and thus the introduction of the markdown constraint

seems likely to (a) necessitate a different algorithmic approach, and (b) induce a “separation” in

achievable performance as alluded to above.

Against this backdrop, we make the following contributions:

1. A Markdown Policy and Performance Guarantee: We introduce a policy which satisfies

the markdown constraint, and show (via Theorem 11) that it achieves Õ(T 3/4) regret.‖ This

immediately answers the first part of our basic question affirmatively: we are able to achieve

meaningful performance in the form of a sub-linear (in T) regret bound. Moreover, with small

but non-trivial modifications to our policy and proof technique, we show that:

(a) We can relax the assumption of infinite inventory and still achieve the same Õ(T 3/4) regret

in the regime where the inventory scales as Ω(T); see Theorem 12.

(b) Stronger regret guarantees can be obtained if more stringent restrictions are placed on the

revenue function. For example, Õ(T 5/7) regret can be achieved under twice-differentiability

of the revenue function; see Theorem 14.

2. Optimality via a Minimax Lower Bound: We prove that our policy is in fact order-

optimal by showing (via Theorem 13) that the regret of any policy is at least Ω(T 3/4). This

answers the second part of our question: the separation between markdown and ordinary

pricing is precisely that markdown pricing must incur at least Ω(T 3/4) regret, whereas ordinary

pricing can achieve Õ(T 2/3) regret.

Our proof uses a novel generalization of the classic Wald-Wolfowitz Theorem for hypothesis

testing, which may be of independent interest for proving lower bounds for a broader class of

online learning problems.

3. Model Extension with Penalized Markups: A natural generalization of our model would

be one in which markups are allowed, but penalized. While a complete treatment of dynamic

pricing with penalized markups would be substantial (indeed, we will see that even the choice

of how to model these penalties is not obvious), we initiate this future direction of research by

considering one version in which each markup incurs a fixed, known, additive cost that scales

as Θ(T c), for some c∈ [0,1]. We provide a complete solution for this model, showing that:

(a) A simple variant of the Successive Elimination Policy, a classical policy for MAB, achieves

Õ(Tmed{ 2
3 ,c,

3
4}) regret when applied on a suitable discretization of the price space; see

Theorem 17.

‖We use Õ to hide logarithmic terms in T .

54

(b) This bound is optimal up to logarithmic factors; see Theorem 18.

These results completely characterize the manner in which our penalized markup model inter-

polates between ordinary pricing and markdown pricing. When the markup penalty is suffi-

ciently low (c≤ 2/3), there is effectively no penalty for markups, since the achievable regret

matches that for ordinary pricing. This is already quite surprising – for example, one corol-

lary to this is that any sort of one-time or constant-sized penalty is an insignificant detractor

to marking up (using carefully-constructed policies). When the penalty is sufficiently high

(c ≥ 3/4), this effectively imposes the hard markdown constraint, as it is optimal to never

markup, and the resulting regret matches that for markdown pricing. Finally, the optimal

regret interpolates smoothly between these two regimes for c∈ [2
3
, 3
4
].

4. Experimental Evaluation: We test our policy on two of the most commonly-used families

of demand functions, comparing against natural benchmarks designed specifically for these

families. These experiments establish:

(a) Fast convergence rate of regret: compared to an explore-then-commit (ETC) type policy

which knows the specific functional form of the demand function, the regret of our policy

vanishes at a considerable speed.

(b) Robustness to model misspecification: our policy has vanishing regret on various families

of demand functions, whereas an ETC-type policy may incur non-vanishing regret when

it assumes an incorrect demand model.

The remainder of this paper is organized as follows: we conclude this section with a summary

of the related literature. We then formally describe our model, assumptions, policies, and core

results in Section III.2. The proofs of our upper and lower regret bounds are given in Sections

III.3 and III.4, respectively. Section III.5 introduces our model and results for penalized markups.

Experiments are described in Section III.6.

III.1.2. Previous Work The present work falls into two primary streams of work: dynamic

pricing and multi-armed bandits. As mentioned above, the distinguishing feature of our work is

the combination of a markdown constraint with a bandit-style (i.e. minimizing regret) analysis.

Other important dimensions along which to contrast this work with the extant literature include:

whether the underlying demand function is assumed to come from a parametric family (this work

is non-parametric), whether infinite inventory is assumed (this work allows for a particular regime

of finite inventory), and whether it is assumed that a prior distribution for the demand functions

is given (this work does not). Table 6 summarizes the most related works along these dimensions.

55

Regret Parametric Markdown ∞-Inv. Bayesian

Smith and Achabal (1998) N/A N/A
Kleinberg and Leighton (2003) No No
Besbes and Zeevi (2009) Both No
Yin et al. (2009) N/A N/A
Broder and Rusmevichientong (2012) Yes No
Harrison et al. (2012) No Yes
Combes and Proutiere (2014) No No
Wang et al. (2014) Both No
Cheung et al. (2017) No No
Ferreira et al. (2018) Yes Yes
This work No No

Table 6 Comparison of our work with prior related work along important model dimensions: whether or not (1)

the metric used is regret; (2) the given family of demand/revenue curve is parametric; (3) the markdown

constraint is considered, (4) infinite inventory is assumed and (5) a prior over the demand family, over which the

Bayesian regret is considered, is given.

Dynamic Pricing: Gallego and Van Ryzin (1994) characterized the optimal pricing policy when

the demand function is known. Kleinberg and Leighton (2003) studied a revenue maximization

problem for a seller with an unlimited supply of identical goods, and obtained tight regret bounds

under different valuation models of buyers, including identical, random, worst-case. Besbes and

Zeevi (2009) studied the dynamic pricing problem under finite inventory in a finite selling period.

Their benchmark regret function is the optimal pricing algorithm which is non-adaptive and whose

expected sales is at most the inventory level. They presented an algorithm which achieves nearly

optimal regret bounds. Subsequently, Wang et al. (2014) improved their results by showing match-

ing lower bound. Later, Babaioff et al. (2015) and Badanidiyuru et al. (2013) considered a more

practical scenario where the inventory is finite. Other works that formulate dynamic pricing as

MAB include Bastani et al. (2019), Hu et al. (2016), Chen and Farias (2018), Lei et al. (2014),

Keskin and Zeevi (2014), den Boer and Zwart (2013), Liu and Cooper (2015), Farias and Van Roy

(2010), Lobel (2020), Qiang and Bayati (2016), Papanastasiou and Savva (2017), den Boer and

Zwart (2015).

In practice, costs of implementing frequent price-changes in a traditional retail setting can

amount to a considerable portion of the seller’s net margins. Thus motivated, Celik et al. (2009)

considered the pricing problem with costly price adjustments. Later, for the setting where the

demand is unknown, Broder (2011) formulated the demand learning problem with limited price

changes and presented an Õ(
√
T) regret policy for parametric models using O(logT) price changes.

Later, Perakis and Singhvi (2019) showed under stronger assumptions that the same regret may

56

be achieved using O(log logT) price-changes. Cheung et al. (2017) considered given discrete family

of demand functions and presented a regret bound that decreases in the number of allowed price-

changes. Chen et al. (2020) considered the joint pricing and inventory management problem under

limited price changes.

Orthogonal to the number of price changes, previous literature has also considered the direc-

tion of price changes. In practice, buyers usually have a reference price in mind, at which a higher

(lower) price is considered a loss (gain), and customers are more sensitive to losses than to gains.

Dynamic pricing with reference-price effects has been studied extensively in recent years, for exam-

ple Nasiry and Popescu (2011), Heidhues and Kőszegi (2014), Wu et al. (2015), Hu et al. (2016),

Wang (2016), Recently, den Boer and Keskin (2020) considered the setting where the demand

function is unknown.

As an important variant of the dynamic pricing problem, the Markdown Pricing problem has

been extensively studied. The book chapter by Ramakrishnan (2012) and surveys by Elmaghraby

and Keskinocak (2003) and den Boer and Zwart (2015) provide a thorough overview. Most previous

work on markdown pricing assume a known demand function and focused on either empirical results

(e.g. Smith and Achabal (1998), Heching et al. (2002)) or strategic customer behavior (e.g. Yin

et al. (2009), Boyacı and Özer (2010), Aviv and Vulcano (2012)). However, little is known about

the setting where the demand function is unknown. Birge et al. (2019) considered the markdown

pricing with unknown demand and proposed a model that aims at the strategic consumer behavior

in markdown pricing, and showed forward-looking customers can improve the performance of a

learning policy. In contrast, in this work, we tackle the problem from a different perspective, by

simply viewing it as a dynamic pricing problem with an additional monotonicity constraint.

Multi-armed Bandits (MAB): There exist several MAB variants that are similar to our

problem, but without the markdown constraint. In the Discrete Multi-armed Bandit problem, the

player is offered a finite set of arms, with each arm providing a random revenue from an unknown

probability distribution specific to that arm. The objective of the player is to maximize the total

revenue earned by pulling a sequence of arms (e.g. Lai and Robbins (1985)). Our pricing problem

generalizes this framework by using an infinite action space [0,1] with each price p corresponding

to an action whose revenue is drawn from an unknown distribution with mean R(p).

In the Lipschitz Bandit problem (e.g. Agrawal (1995)), it is assumed that each x ∈ [0,1]

corresponds to an arm with mean reward µ(x), and µ satisfies the Lipschitz condition, i.e. |µ(x)−

µ(y)| ≤L|x−y| for some constant L> 0. Kleinberg (2005) proved a tight Θ̃(L1/3T 2/3) regret bound

57

for one-dimensional Lipschitz Bandits. The lower bound was proved by considering a family of

“bump curves”: each curve is 1
2
at all arms except in a small neighborhood of the “peak”, where the

mean reward is elevated by a constant. Since these bump curves are unimodal, this lower bound

carries over to the family we study.

Another closely-related variant of MAB is the Unimodal Bandits problem (Cope (2009), Yu

and Mannor (2011), Combes and Proutiere (2014)). In addition to the Lipschitzness assumption,

the reward function µ : [0,1]→ [0,1] is assumed to be unimodal. It is also assumed that there is a

constant L′ > 0 s.t. |µ(x)−µ(y)| ≥L′|x− y| for all x, y ∈ [0,1]. Yu and Mannor (2011) proposed a

binary-search type algorithm with regret Õ(
√
T).

Somewhat surprisingly, a seemingly irrelevant line of work – decision making under individual

fairness constraint – turns out to be closely related to the markdown pricing problem. Due to the

fairness constraint, the learner has to be cautious in the exploration phase to avoid violating the

fairness constraint in the future. For instance, “it is typical for legal stances on new issues to be more

conservative initially and then potentially become more liberal over time as the impact and nuances

of these issues become clear” (Gupta and Kamble (2019)). The Cautious Fair Exploration policy

is, in spirit, similar to our Uniform Elimination policy (Algorithm 11) for the infinite inventory

scenario. Motivated by the fairness constraint, follow-up work (Salem et al. (2021)) considered a

more general online convex optimization problem where the actions sequence is required to be

monotone. However, their work focuses on gradient descent based algorithms for smooth concave

reward functions, while our work makes much weaker assumptions on the reward functions.

Finally we note that very recently, independent of our work, Chen (2021) considered a special

case where the inventory is infinite under the name Monotone Bandits, and obtained the same

results using a different lower bound technique. Their lower bound is established through careful

manipulation of basic information theoretical tools, while ours relies on a novel and powerful tool

– the Wald-Wolfowitz Theorem, which we also show to be useful beyond the markdown pricing

problem. Further, our work extends the idea for infinite inventory to a variety of more practical

settings such as finite inventory, smooth reward functions, and dynamic pricing with markup

penalties.

III.2. Model

We begin by formally stating our model. Given inventory I > 0 and a discrete time horizon of

T rounds, in each round t, the policy (representing the “seller”), selects a price xt ∈ [0,1] (the

particular interval [0,1] is without loss of generality, by scaling). This round’s demand dt is then

58

independently drawn from a fixed distribution with unknown mean D(xt), and the policy receives

reward xt for each unit sold (up to the smaller of the demand and remaining inventory):

min{dt, I − (d1 + · · ·dt−1)}xt.

For simplicity, we will assume that the random demand dt is almost surely bounded, specifically in

[0,1] (again, w.l.o.g.), though our results can be easily extended to sub-Gaussian distributions. The

only constraint the policy must satisfy is the markdown constraint: x1 ≥ · · · ≥ xT almost surely.

The function D(x) which maps each price x to the mean demand at that price is known

as the demand function. A demand function D(x) is naturally associated with a revenue function

R(x) = xD(x). For most of this paper, we will deal directly with revenue functions, which we term

more generally as reward functions.∗∗ For any policy A,†† reward function R(·), and inventory I,

we use r(A,R, I) to denote the expected total reward of A under R with initial inventory I.

Rather than evaluating policies directly in terms of r(A,R, I), it is more informative (and

ubiquitous in the literature on multi-armed bandits) to measure performance using the notion of

regret with respect to a certain idealized benchmark. Here, we will define regret with respect to

the best possible fixed price policy. Specifically, a Fixed Price Policy (FPP) selects the same price

at each round, i.e. x1 = · · ·= xT = p for some p. Let FPP (p) denote the FPP at price p. We use

OPTR to denote the maximum achievable expected reward among all FPPs, i.e.

OPTR := max
p∈[0,1]

r(FPP (p),R, I).

So for example, when I =∞, we have that OPTR = r∗T , where r∗ =maxx∈[0,1]R(x). The regret of

a policy is then defined with respect to this quantity, and we seek to bound the worst-case value

over a given family of reward functions.

Definition 2 (Regret). Let F be a family of reward functions, each a mapping from [0,1] to

[0,1]. For any policy A and R ∈F , define the regret of policy A under R to be

Reg(A,R, I) :=OPTR− r(A,R, I).

The worst-case regret of policy A for family F is Reg(A,F , I) := supR∈F Reg(A,R, I).

∗∗The corresponding demand function can naturally be backed out from a reward function: D(x) = R(x)/x for
x> 0.

††For the sake of completeness, a policy is, formally, a time-indexed sequence of functions A = {At : ([0,1] ×
[0,1])t−1 → [0,1], t = 1, . . . , T}, where each function At maps the prices selected and demands observed over the
previous t− 1 rounds to a price for round t.

59

To summarize, the problem we seek to solve is: given a family F of reward functions from [0,1]

to [0,1] and initial inventory I, design a policy A that satisfies the markdown constraint and that

minimizes Reg(A,F , I). We will be particularly concerned with how a policy’s regret scales with

the time horizon T – at the very least, we aim for sub-linear (i.e. o(T)) regret.

It is worth pausing here to note that our definition of regret has different implications when

I is either infinite or finite. When I is infinite, the best offline policy (meaning one that knows the

reward function R) is precisely a fixed price policy, so regret here is really measured against the

best offline policy (this is the “typical” definition of regret). However, when I is finite, the best

offline policy need not be a fixed price policy, and moreover even calculating the best offline policy

for a given reward function can be non-trivial – in general, the policy can at best be characterized

as the solution to a dynamic program (see Talluri and Van Ryzin (2004)). Thus, we measure regret

only against fixed price policies. One reason this is fairly innocuous is that for the inventory regime

we consider, I = Ω(T), the best fixed price policy is asymptotically optimal (as T grows) in a

manner that can be made formal.

III.2.1. Assumptions on the Reward Function We have so far made just one assumption:

that the random demands are bounded (and even this can be relaxed to sub-Gaussianity). We will,

in addition, require two assumptions on the underlying reward function:

1. Lipschitz: The reward function is L-Lipschitz, i.e. |R(x)−R(x′)| ≤L|x−x′| for all x,x′ ∈ [0,1].

This assumption is standard for the version of our problem without markdown constraint (e.g.

Kleinberg (2005)). Note, as an aside, that we are implicitly assuming here that L, or at least

an upper bound on L across the entire family of reward functions, is known.

2. Unimodal: The reward function is unimodal, i.e. there exists x∗ ∈ [0,1] s.t. R is non-increasing

on [x∗,1] and non-decreasing on [0, x∗]. This assumption has also previously appeared for the

non-markdown version of our problem (e.g. Yu and Mannor (2011)).

In addition to having appeared previously in the literature, both of these assumptions are in

fact necessary for achieving sub-linear regret. Specifically, the Lipschitz assumption is necessary in

the sense that there exists a family F of unimodal reward functions, whose Lipschitz constants are

arbitrarily large, such that for any policy A, its regret is Ω(T) under some R ∈F .‡‡ The unimodal

assumption is similarly necessary: there exists a family of L-Lipschitz reward functions such that

any policy has regret Ω(T) under some function in the family.§§

‡‡One example family is F = {Rc(x) = (−(x− 1)(x− 1+2c)/c2)+ : c∈ (0,1/2)}.
§§Such a family can be constructed with just two reward functions: one with a single mode, and one with two

modes.

60

Finally, these two assumptions hold for the reward functions corresponding to some of the

most commonly-used parametric families of demand functions:

1. Linear Demand: {Da,b(x) = a− bx : 1≥ a≥ b≥ 0}
2. Exponential Demand: {Da,b(x) = ea−bx : a∈R, b∈R+}

These examples serve to illustrate that our assumptions are mild enough to allow for realistic

models of demand, though we emphasize that our policies and results will not require that the

reward functions be parameterizable.

III.2.2. Our Policies We can now state our policies, beginning with the setting of infinite

inventory (which captures the crux of the challenge), and then finite inventory.

Infinite Inventory. Our policy under infinite inventory operates under a simple idea: begin at

the highest price, and decrease the price at a constant rate, stopping when the mode (or “peak”)

of the reward function is detected, i.e. when the mean reward at the current price is significantly

lower than some previous price. Intuitively, this idea should perform well as long as the rate of

price decrease is neither too slow (or else the policy will spend too much time at sub-optimal prices

before reaching the peak) nor too fast (or else the policy will not gather sufficient information to

correctly identify when the peak is reached).

Algorithm 6 Uniform Elimination Policy (UEs,δ).

1: Input: s, δ,T > 0. ▷ Step size and width of target confidence intervals.

2: Initialize: x← 1, LCBmax← 0, k←⌈3δ−2 logT ⌉.

3: while x> 0 do ▷ Exploration phase starts

4: Select price x for the next k rounds and observe demands X1, ...Xk.

5: µ̄← x
k

∑k

i=1Xi ▷ Compute mean rewards

6: [LCB,UCB]← [µ̄− δ, µ̄+ δ]. ▷ Compute confidence interval for reward at current price

7: if LCB> LCBmax then ▷ Update best LCB so far

8: LCBmax← LCB.

9: if UCB< LCBmax then ▷ Exploration phase ends

10: xh← x. Break. ▷ Define halting price

11: else x← x− s. ▷ Reduce the price by s

12: Select price xh in all future rounds. ▷ Exploitation phase

Our actual policy, dubbed the Uniform Elimination Policy (UEs,δ), implements a discretized

version of this idea. As described in Algorithm 11, the policy is parameterized by two values: a step

61

size s and a confidence interval width δ. Each price decrease is exactly of size s, and rather than

decreasing each round, our policy remains at a price x long enough that R(x) can be estimated up

to an additive error of at most δ with high confidence (via Hoeffding/Chernoff bound). The policy

“halts” when the confidence interval at the current price lies completely below that of a previous

price, indicating that we have likely “overshot” the optimal price.

As we will see in the next subsection, this policy is order-optimal (up to logarithmic factors)

for certain values of s and δ. It is important to note that these “correct” choices of s and δ depend

on L and T , meaning our policy itself requires knowledge of L and T . The knowledge of L is

standard (see e.g. Kleinberg (2005)), and further, in practice, one may simply choose the maximum

L of fitted demand functions from past sales data as an upper bound for the Lipschitz constant

of the unknown demand model. Knowledge of T is more delicate. In the literature on MAB, one

of the primary challenges (and successes) has been in designing so-called anytime policies, which

achieve order-optimal regret without knowledge of T . One could ask if this is possible here – this

is in fact impossible when the markdown constraint is present (see Proposition 4).

Finite Inventory. Now assume that inventory is finite, and let ρ := I/T be the inventory-to-time

ratio. A simple observation allows us to modify the previous Uniform Elimination Policy for finite

inventory. Fix a reward function R (and corresponding demand function D), and let p∗ be the

location of its peak: p∗ ∈ argmaxxR(x). Let pd be the depletion price, meaning the value satisfying

D(pd) = ρ (we assume its existence just for convenience of discussion). This is the price at which, if

the demands were not random, our inventory I would be perfectly depleted after exactly T rounds.

The simple observation is that max{p∗, pd} is approximately the best fixed price (we show

this formally in Section III.3.2). Intuitively, if pd < p∗, then there is effectively enough inventory

to ignore the inventory constraint. If pd > p∗, offering a price lower than pd is sub-optimal because

the same number of units would get sold (i.e. all of them) at a lower price, and offering a price

higher than pd is sub-optimal because R(x) is decreasing for x≥ p∗.

OurDepletion-Aware Uniform Elimination Policy (DUEs,δ), described in Algorithm 7, adapts

the Uniform Elimination Policy based on this observation. In particular, the Uniform Elimination

Policy already seeks to decrease the price as quickly as possible until p∗ is reached. An extra

condition which tracks the rate at which inventory is depleted ensures that price decreases are

halted if xd is reached.

III.2.3. Our Results The core results of this paper are a set of matching upper and lower

regret bounds for markdown pricing, whose ideas also lay the cornerstone for our extensions.

Throughout, we use F̂L to denote the family of L-Lipschitz, unimodal functions from [0,1] to [0,1].

62

Algorithm 7 Depletion-Aware Uniform Elimination Policy (DUEs,δ).

1: Input: s, δ,T > 0. ▷ Step size and width of target confidence intervals

2: Initialize: x← 1,LCBmax← 0

3: while x> 0 do ▷ Exploration Phase

4: Select price x in the next k = ⌈3δ−2 logT ⌉ rounds (stop when inventory is depleted), and

observe demands X1, ...,Xk.

5: Set d̄← 1
k

∑k

i=1Xi ▷ Estimate D(x)

6: Set [LCB,UCB]← [xd̄− δ,xd̄+ δ] ▷ Compute confidence interval

7: if LCB≥ LCBmax then ▷ Keep track of the highest LCB

8: LCBmax← LCB.

9: if UCB< LCBmax or (d̄+ δ)T ≥ I then ▷ Termination condition

10: xh← x. Break. ▷ Exploration halts

11: else

12: x← x− s. ▷ Reduce the price by s

13: Use price xh for all future rounds ▷ Exploitation phase

Our first result is an upper bound on the regret of our Uniform Elimination policy for the infinite

inventory setting:

Theorem 11 (Upper Bound, Infinite Inventory). For any given L> 0 and T ∈N, the Uni-

form Elimination policy UEs,δ satisfies

Reg(UEs,δ, F̂L, I =∞) =O(T 3/4(L logT)1/4),

for δ= T−1/4(L logT)1/4 and s= δ/L.

The most immediate conclusion from Theorem 11 is that it establishes concretely that sub-linear

regret is achievable for markdown pricing.

In practice, the initial inventory I is usually finite. Recall that ρ := I/T is the inventory-time

ratio. Since the range of demand functions are normalized to [0,1], the seller can sell at most T

units in T rounds, so the problem reduces to the I =∞ case if ρ ≥ 1. On the other extreme, if

I = o(T), suppose the mean demand at p= pmax = 1 is non-zero, then for any p ∈ [0,1] the FPP

is likely to sell out all units, so the optimal seller should select p = 1 in all rounds. Thus, the

interesting scenario is ρ=Ω(1).

63

Theorem 12 (Upper Bound, Finite Inventory). Given any L,T, I > 0 where ρ = I/T =

Ω(1) (but not necessarily greater than 1), the Depletion-Aware Uniform-Elimination Policy DUEs,δ

with for δ= T−1/4(L logT)1/4 and s= δ/L satisfies

Reg(DUEs,δ, F̂L, I) =O
(
T 3/4(L logT)1/4

)
.

To show a lower bound, we need to specify a family of problem instances on which any markdown

policy suffers this amount of regret. An Ω(L1/3T 2/3) lower bound for markdown pricing with I =∞

is implied by the lower bound for Lipschitz bandits (Kleinberg (2005)), since the “bump curves”

they used are unimodal and Lipschitz. Despite its low-adaptivity, the DUE policy surprisingly

achieves the best possible regret among all deterministic policies, including adaptive ones:

Theorem 13 (Lower Bound). Suppose the demand distribution at every price is Bernoulli.

Then for any L> 0, there is a familyM⊂F̂L of reward functions such that any markdown policy

A (that knows L,T) suffers regret

Reg(A,M, I =∞) =Ω(L1/4T 3/4).

Generalized Wald-Wolfowitz Theorem (GWW). The existing lower bound techniques for

MAB fail to address the extra complexity caused by the markdown constraint. We develop a

novel technique to address this challenge and obtain Theorem 13. We generalize the classic Wald-

Wolfowitz Theorem (WW) for sequential hypothesis testing from testing between point estimates

to testing between appropriately defined intervals. The basic idea is to construct a family of reward

functions each having a unique optimal price, then use GWW to prove that any low-regret policy

has to spend in expectation at least certain number of rounds to distinguish between each pair

of reward functions, whose maxima occur nearby. As a result, if the optimal price is small, a high

regret is incurred since the policy must “waste” too much time in suboptimal prices.

Upper Bound Lower Bound

Unimodal Bandits O
(√

T) Unknown
Lipschitz Bandits O(T 2/3(L logT)1/3) Ω(T 2/3L1/3)
Markdown Pricing O(T 3/4(L logT)1/4) Ω(T 3/4L1/4)

Table 7 Distribution independent regret bounds for markdown pricing and related bandit problems. Our results

(in red) are presented in Theorem 11 and 13. The lower bound for Lipschitz bandits is from Kleinberg (2005).

Note that all but the last row hold for both known or unknown T .

64

Table 7 summarizes the relevant previous results, along with our new results.¶¶ The key obser-

vation is, with the markdown constraint, the regret bounds increase significantly, which matches

our intuition. For unimodal bandits, one can apply a natural binary search type algorithm (see Yu

and Mannor (2011)) to localize a mode with arbitrary precision. However, such a policy cannot be

extended to our setting due to the markdown constraint.

III.3. Proof of Upper Bounds

III.3.1. Infinite Inventory: Proof of Theorem 11 Theorem 11 is immediately implied by

the following lemma when δ =
√
2T−1/4(L logT)1/4 and s= δ/2L, which minimize the term inside

big-O in (14). (In fact, let g(s, δ) = (δ + sL)T + s−1δ−2 logT. Then, ∂g
∂δ

= T − 2δ−3s−1 logT and

∂g
∂s

=LT −s−2δ−2 logT . Hence, ∇g= 0 ⇐⇒ sδ3 = 2 logT
T

and s2δ2 = logT
LT

. One can then easily verify

that our choices of s, δ satisfies the above condition and is indeed a global minimum of g.)

Lemma 13. For any s, δ > 0, it holds that

Reg(UEs,δ, F̂L, I =∞) =O
(
(δ+ sL)T + s−1δ−2 logT

)
. (14)

We state a standard result, the proof of which can be found in e.g. Vershynin (2018).

Lemma 14 (Concentration Bounds). Let Z1, ...,Zm be independent random variables sup-

ported on [0,1], and Z̄ = 1
m

∑m

i=1Zi, then for any δ > 0, it holds that

P(|Z̄ −E(Z̄)|> δ)≤ exp(−2mδ2) (Hoeffding’s inequality) and

P
(
|Z̄ −E(Z̄)|> δ ·E(Z̄)]

)
≤ exp

(
−
E
(
Z̄
)

2
δ2

)
(Chernoff’s inequality).

We use the following lemma that follows from standard tail bounds.

Lemma 15. Define C to be the event that R(x)∈ [µ̄− δ, µ̄+ δ] for any of the prices x selected by

the policy UEs,δ with s≥ 1/T . Then the probability of its complement P[C] =O(T−1).

Proof Fix any sample price xi. Recall that m := ⌈3δ−2 logT ⌉ and let Z1, ...,Zm be the rewards

for each customer when the price is xi, then E(Z̄) =R(xi). Recall that the empirical mean demand

is d̄i :=
1
m

∑m

i=1Zi, so by Lemma 14,

P(|R(xi)− d̄i| ≥ δ)≤ exp(−2 · 3δ−2 logT · δ2) = T−6.

The proof completes by applying the union bound over all O(s−1) =O(T) prices. □

¶¶All asymptotic bounds with L are w.r.t. both L and T . For example, our upper bound for markdown pricing policy
A shows that there are constants C,T0,L0 > 0 s.t. for any L≥L0, T ≥ T0, we have Reg(A, F̂)≤CT 3/4(L logT)1/4.

65

Furthermore, when the policy halts at xh, the confidence interval for the reward at the price

just before the halting price overlapped with that of the best confidence interval found so far

centered around the reward at p∗. Hence, the reward at the halting price is at most twice the length

of a confidence interval, i.e. 4δ. This gives the following lemma.

Lemma 16. If xh denotes the halting price of UEs,δ on an L-Lipschitz unimodal reward function

R ∈ F̂L, then conditional on event C, R(xh)≥R(p∗)− 4δ− 2sL.

Proof. We first show that xh ≤ p∗ i.e. the policy does not stop before reaching p∗. Let ℓ=max{i :

xi ≥ p∗} be the index of the lowest sample price above p∗. Recall that h is the price-index where

the halting condition in algorithm 11 is satisfied. We observe that conditional on C, the exploration

phase does not terminate before reaching p∗, i.e. h≥ l+ 1. In fact, for any i, j with xj > xi ≥ p∗,

by Lemma 30 it holds that UCB(xi)≥R(xi)≥R(xj)≥ LCB(xj), so the halting condition is not

satisfied at price i. Therefore, h≥ ℓ+1. Since the policy only samples prices that are s apart, and

halts only after it has overshot the interval containing p∗, we may suffer a loss in reward at the

halting price of about sL where L is the Lipschitz constant translating price decrements to reward

decrements.

With this observation, we only need to consider two cases of xh:

• Suppose h= ℓ+1. Since p∗ ∈ [xℓ+1, xℓ], by Lipschitzness of R we have R(xℓ+1)≥ r∗−Ls. Thus

the regret in the exploitation phase is at most LsT .

• Otherwise suppose h≥ ℓ+2. Then R(xh) is almost optimal by the following lemma:

O
p∗xk

R(x)

x

LCBmax

xh−1xh xj

µ
∗

µj

µh−1

Figure 1 Illustration of the proof of Lemma 16.

66

Let µ̄i be the empirical mean reward at xi (as defined in Step 6 of Algorithm 11), and

[LCBi,UCBi] = [µ̄i − δ, µ̄i + δ]. We first claim that by assuming R(xi) ∈ [LCBi,UCBi] for all i,

we only lose an additive O(1) on regret. In fact, define Bi as the (“bad”) event that R(xi) /∈

[LCBi,UCBi], and B =∪⌈1/s⌉
i=1 Bi. By Lemma 30, P(Bi) =O(T−2) for each i. By the union bound,

since s≥ 2/T , P(B)≤ T−2 · ⌈1/s⌉=O(T−1). Conditional on B, the regret is O(T), thus the regret

contributed by B is O(T ·T−1) =O(1).

Suppose LCBmax be attained at xj (See Fig 7). Then the halting condition at xh translates

to UCBh <LCBj ≤UCBh−1. It follows that |µ̄h−1− µ̄j| ≤ 2δ, hence

R(xh−1)≥ µ̄h−1− δ≥ (µ̄j − 2δ)− δ=LCBmax− 2δ. (15)

Next we lower bound LCBmax. Let xk be the first explored price lower than p∗, then

LCBmax ≥LCBk ≥R(xk)− 2δ≥ (r∗−Ls)− 2δ. (16)

where the last inequality follows since |xk − p∗| ≤ s. Finally combining the fact that R(xh) ≥

R(xh−1)− sL with the above,

R(xh)≥R(xh−1)− sL

≥LCBmax− 2δ− sL

≥ (R(p∗)− sL− 2δ)− 2δ− sL

=R(p∗)− 4δ− 2sL. □

Proof of Lemma 13. Let R be the true reward function with an optimal price p∗. Define sample

prices xi = 1− si for i≤ s−1. It follows that the regret in the exploitation phase is O
(
(δ+ sL)T

)
.

On the other hand, in each case, there are O(δ−2 logT) explorations per price for up to s−1 different

prices, giving a total of O(s−1δ−2 logT) rounds for exploration. Lemma 13 is proved by combining

the regret in the exploitation and exploration phases. □

Discrete Prices. It is straightforward to extend this analysis to a discrete price setting and derive

an upper bound in terms of the maximum gap ∆max between neighboring prices. First, we note

that it is without loss of generality to assume that the minimal gap ∆min between any two prices

is at least T−2. In fact, whenever there is a pair of prices at distance less than T−2, we remove one

of them arbitrarily. Repeating, we will obtain a subset of prices with ∆min ≥ T−2, and moreover,

by doing this, we only lose an O(T−1 · T) = O(1) term in regret. Now, there are O(T 2) discrete

prices, so we may apply Hoeffding’s bound and union bound to show that with high probability,

67

the confidence interval at each discrete price x contains R(x). We will condition on this event

hereafter.

We slightly modify the UE policy as follows: in Step 12 the discrete UE policy selects the

next price to be the maximum discrete price below x− s. Thereby, the regret accumulated before

reaching p∗ is ∼ s−1δ−2 logT . On the other side, one may easily show that the exploitation price

xhalt satisfies R(xhalt) ≥ R(p∗) − O (δ+(s+∆max)L), and hence the regret after reaching p∗ is

∼
(
δ+(s+∆max)L

)
T . Therefore, the overall regret is ∼ s−1δ−2 logT +

(
δ+(s+∆max)L

)
T .

Smooth Reward Functions. In the above proof, we used the fact that if the exploitation price is

ε distance away from the optimal price, then an O(ε) regret is incurred per round. If we assume the

second derivative of each reward function exists and is bounded by a constant C, then by Taylor

expansion,

|R(x)−R(p∗)|= |R′(p∗)(x− p∗)+
1

2
R′′(p∗) · (x− p∗)2 + o(|x− p∗|2)|

≤ 0+
C

2
|x− p∗|2 + o(|x− p∗|2) =

(
C

2
+ o(1)

)
· |x− p∗|2, as |x− p∗| → 0.

In other words, an ε-error in the estimation of optimal price only incurs regret O(ε2) per round. This

suggests that the Õ(T 3/4) upper bound may be improved under suitable smoothness assumptions.

Definition 3 (Smooth Reward Functions). Given L,C > 0, define F̂L,C to be the family

of all unimodal L-Lipschitz twice-differentiable reward functions from [0,1] to [0,1], whose second-

derivatives are bounded by a common constant C in absolute value.

It turns out that an improvement can be achieved by simply choosing a different combination

of s, δ in the UE policy. In fact, the proof is almost identical to the analysis above except that the

term s in Lemma 16 can now be strengthened to O(s2), as formally stated below.

Lemma 17. If xh denotes the halting price of UEs,δ on a reward function R ∈ F̂L,C, then condi-

tional on event C, R(xh)≥R(p∗)− (2C +L)s2− 12δ.

Proof. As in the proof of Lemma 16, let xh be the halting price, xj be the price with highest

LCB, and xℓ be the lowest price above p∗. The crux is bounding |R(xh)−R(xh−1)|: we are able to

improve the dependence on s from s to s2, as stated below.

Claim 1. |R(xh)−R(xh−1)| ≤ (C +L)s2 +4δ.

We complete the proof assuming this lemma. Since R′(p∗) = 0, by Taylor expansion

|R(p∗)−R(xℓ)|=
∣∣∣∣R′(p∗) · (p∗−xℓ)+

1

2
R′′(p∗) · (p∗−xℓ)

2 + o(|p∗−xℓ|2)
∣∣∣∣=(C

2
+ o(1)

)
· s2, as s→ 0.

68

In particular, for large T , the o(1) term above becomes less than C
2
, and

|R(p∗)−R(xℓ)| ≤Cs2. (17)

Recall that di is the empirical mean demand in the UE policy at xi for each i. By definition of j,

we have d̄j ≥ d̄ℓ, so conditional on event C,

R(xj)≥ x̄j · dj − 2δ≥ x̄ℓ · dℓ− 2δ≥R(xℓ)− 4δ. (18)

Moreover, since the confidence interval at xh−1 and xj are intersecting,

|R(xj)−R(xh−1)| ≤ 4δ. (19)

Combining (17),(18),(19), we obtain

R(xh−1)≥R(p∗)− 8δ−Cs2.

The proof completes by combining with Claim 1. □

Proof of Claim 1. By the Intermediate Value Theorem, there exists ξ ∈ [xh−1, xh−2] s.t.

sR′(ξ) =R(xh−1)−R(xh−2).

Conditional on event C, since the confidence intervals at xh−1 and xh−2 are intersecting, we have

|R(xh−1)−R(xh−2)| ≤ 4δ, hence sR′(ξ)≤ 4δ, i.e.

R′(ξ)≤ 4δ

s
.

Thus by L-Lipschitzness,

R′(xh−1)≤R′(ξ)+ sL≤ 4δ

s
+ sL.

Moreover, since we have conditioned on event C, it holds that xh−1 ≤ p∗, hence R′(xh−1) ≥ 0 by

unimodality of R. By Taylor’s Theorem, there exists η ∈ [xh, xh−1] s.t.

|R(xh)−R(xh−1)|= |R′(xh−1)s+R′′(η)s2|,

≤ |R′(xh−1)|s+Cs2,

≤ (
4δ

s
+ sL) · s+Cs2

= (C +L)s2 +4δ. □

Thus, the regret in the exploitation phase becomes O(s2 + δ)T , so the total regret is now

O
(
s−1δ−2 logT +(s2+δ)T

)
. Choosing s∼ T−1/7 and δ∼ T−2/7, we obtain an Õ(T 5/7) regret bound.

Theorem 14 (Upper Bound for Smooth Reward Functions). For any L,C > 0, with s=

(L+C)−3/7T−1/7 log1/7 T and δ= (L+C)1/7T−2/7 log1/7 T , we have

Reg(UEs,δ, F̂L,C , I =∞) =O
(
(C +L)1/7T 5/7 log2/7 T

)
.

69

III.3.2. Finite Inventory: Proof of Theorem 12 The first hurdle for showing Theorem 12

is that the optimal fixed price no longer enjoys a clean expression. Recall that when I =∞, for any

reward function R, the optimal FPP simply selects any p∗ ∈ argmaxx∈[0,1]R(x). However, this is no

longer true when I <∞. In fact, the optimal fixed price pOPT has two equivalent characterizations.

Characterization of the Optimal FPP. It would be more convenient in this section to work

with the demand functions (rather than the reward functions). By abuse of notation, write r(A,D)

the expected reward of a policy A under a demand function D. Similarly define r(p,D) as the

expected reward of FPP(p).

Consider the FPP at some price p ∈ [0,1]. Let {Xt}t∈[T] be i.i.d. samples at price p from

demand function D, which by definition satisfy D(p) =E[Xt] for all t∈ [T].

• Characterization 1: Define the (random) depletion time τp to be the round when inventory is

depleted, i.e. τp =min{t :
∑t

j=1Xj ≥ I}. Then by Wald’s identity (see e.g. Mitzenmacher and

Upfal (2017)), the reward of FPP(p) is

r(p,D) =E[
τp∑
t=1

p ·Xt] = p ·E[τp] ·E[Xt] =E[τp] ·R(p),

where R(p) =D(p) · p is the reward function for D. Thus, pOPT = argmaxp∈[0,1]{E[τp] ·R(p)}.

• Characterization 2: Define the (random) sales to be Np =min{I,
∑T

t=1Xt}. Then, r(p,D) =

E[Np] · p, and hence pOPT = argmaxp∈[0,1]{E[Np] · p}.

Even though neither characterization leads to a simple precise expression for pOPT , fortu-

nately, we can still find a simple surrogate optimal price whose reward well approximates that

of the optimal policy. To this aim, we first introduce the depletion price, the price at which the

inventory is perfectly depleted at the end of the time horizon, if the demands were deterministic.

Definition 4 (Depletion Price). The depletion price pd of a strictly decreasing demand

function D is the unique price p such that D(p) =med{D(0),D(1), ρ} ∈ (0,1).

Definition 5 (Surrogate Optimal Price). The surrogate optimal price (SOP) for a

demand function D is

pSOP =max{pd, p∗}=

{
p∗, if p∗ ≥ pd,

pd, if p∗ < pd.

We will first analyze the regret of DUE against the following surrogate regret, and then translate

the bound back to the “real” regret using Lemma 3.

Definition 6 (Surrogate Regret). For any policy A and any demand function D with SOP

pSOP, define the surrogate regret as SR(A,D) = r(pSOP,D)−r(A,D). Let D be any family of demand

functions, define SR(A,D) :=maxD∈D SR(A,D).

70

Lemma 18 (SOP is almost optimal). Let pd be the depletion price of an L-Lipschitz demand

function D : [0,1]→ [0,1]. Then for any ∆∈ (0, 1
2
),

r(pOPT,D)− r(pSOP,D)≤

{
(∆+ e−Ω(∆2I)) ·T, if p∗ ≥ pd

(∆+ e−Ω(∆2I)) · I, if p∗ < pd.

Proof. We first illustrate the idea for establishing Lemma 18. Our goal is showing that pSOP is

nearly optimal. In the first case, p∗ ≥ pd, we have pSOP = p∗. Since the policy FPP(p∗) is unlikely

to deplete the inventory, the problem almost reduces to the infinite inventory version. So by Lips-

chitzness, pOPT ≈ p∗ = pSOP and hence pSOP is nearly optimal.

Now suppose p∗ < pd, in which case pSOP = pd. Our goal is showing pd is almost optimal.

Note that we do not know whether pOPT is greater or less than pd, so we need to argue that pd is

both nearly-optimal among prices p lower and higher than pd, as discussed below.

• Consider p≤ pd. Since FPP(p) is likely to sell out all inventory, we have r(p)∼ pI. Applying

this observation on pd, we have r(p,D)∼ pI ≤ pdI for p≤ pd.

• Consider p≥ pd. Since the inventory is unlikely to be depleted by FPP(p), we have r(p,D)∼

pD(p)T =R(p)T . By unimodality, R is non-increasing on [pd,1], so R(pd)≥R(p) and hence

r(pd,D)∼R(pd)T >R(p)T ∼ r(p,D). Thus pd is almost optimal in [pd,1].

We now convert the above idea into a formal proof.

Part I. Suppose p∗ ≥ pd. To lower bound the reward of FPP(p∗), we only need to lower bound its

expected stopping time E[τp∗]. To this aim, write τ = τp∗ and consider m := (1−∆)T i.i.d. demand

samples Z1, ...,Zm at price p∗. Consider Z :=
∑m

i=1Zi. Since pd ≤ p∗, we have EZ1 =D(p∗)≤D(pd),

so

EZ =m ·EZ1 ≤ (1−∆)T ·D(pd) = (1−∆)I,

and hence I ≥ (1−∆)−1EZ ≥ (1+∆)EZ. Hence,

P[τ < (1−∆)T] = P[Z > I] ≤ P[Z > (1+∆)EZ]≤ e−
∆2

2 EZ ≤ e−Ω(∆2T),

where the last inequality follows from Chernoff bound (Lemma 14), and that EZ ≥ (1 −∆)T ·

D(pd)≥Ω(T) for ∆≤ 1
2
. Thus,

r(p∗,D) =R(p∗) ·E[τ]

≥R(p∗) ·E[τ |τ ≥ (1−∆)T] ·P[τ ≥ (1−∆)T]

≥R(p∗) · (1−∆)T · (1− e−Ω(∆2T)).

71

Therefore, for any p∈ [0,1],

r(p,D)− r(p∗,D)≤R(p)T −R(p∗) · (1−∆)T · (1− e−Ω(∆2T))

≤R(p)T −R(p∗) · (1−∆− e−Ω(∆2T))T

= (R(p)−R(p∗)
)
T +R(p∗) ·

(
∆+ e−Ω(∆2T)

)
T

≤
(
∆+ e−Ω(∆2T)

)
T,

the last inequality follows since R(p)≤R(p∗)≤ 1 by definition of p∗.

Part II. Now suppose p∗ ≤ pd. Recall that for any p ∈ [0,1], Np, τp are the sales and depletion

time, and the reward of an FPP can be written as r(p,D) =ENp ·p=E[τp] ·R(p). We lower bound

r(pd,D) by analyzing both Npd and τpd .

Claim 2. For any ∆> 0, P[Npd < (1−∆)I]≤ e−Ω(∆2I), and P[τpd < (1−∆)T]≤ e−Ω(∆2I).

We defer the proofs of the claim to the end. Then for any p≤ pd,

r(p,R)− r(pSOP ,R) = r(p,R)− r(pd,R)

≤ pI − pd ·E[Npd]

≤ pI − pd ·E[Npd |Npd ≥ (1−∆)I] ·P[Npd ≥ (1−∆)I]

≤ pI − pd · (1− e−Ω(∆2I)) · (1−∆)I By Claim 2

≤ pI − pd · I · (1−∆− e−Ω(∆2T))

= (p− pd)I + pd · (∆+ e−Ω(∆2I))I

≤ (∆+ e−Ω(∆2I))I. Since pd ≤ 1

On the other hand, for any p > pd,

r(p,R)− r(pSOP ,R) = r(p,R)− r(pd,R)

≤R(p) ·T −R(pd) ·E[τpd]

≤R(p) ·T −R(pd) ·E[τpd |τ ≥ (1−∆)T] ·P[τ ≥ (1−∆)T]

≤R(p) ·T −R(pd) · (1−∆)T · (1− e−Ω(∆2I)) By Claim 2

≤ (R(p)−R(pd))T +(∆+ e−Ω(∆2I))T.

Note that p≥ pd ≥ p∗ and R is unimodal with maximum attained at p∗, so R(p)≤R(pd). Therefore,

r(p,R)− r(pSOP ,R)≤ (∆+ e−Ω(∆2I))T. □

72

Proof of Claim 2. We first bound P[Npd < (1−∆)I]. Let X1, ...,XT be i.i.d. drawn demands at

pd and write X =
∑T

t=1Xt. Note that X < (1−∆)I if and only if Npd < (1−∆)I. Since EX = I

and, by Hoeffding inequality (Lemma 14),

P[Npd < (1−∆)I] = P[X < (1−∆)I] = P[X < (1−∆)EX]≤ e−
1
2∆

2I .

Next we bound P[τpd < (1−∆)T]. Let Z1, ...,Zm be i.i.d. drawn demands at price pd where m=

(1−∆)T . Then,

P[τpd < (1−∆)T] = P[Z ≥ I]

= P[Z ≥ 1

1−∆
EZ] Since EZ = (1−∆)I

≤ P[Z ≥ (1+∆)EZ]

≤ e−
∆2

2 EZ By Chernoff bound (Lemma 14)

≤ e−Ω(∆2I). □

Since we assumed I =Ω(T), the regret of pSOP in Lemma 18 can be simplified to O(∆T +

e−Ω(∆2T)T), which becomes O(
√
T log1/2 T) if we select ∆ = T−1/2 log1/2 T , and we obtain the fol-

lowing.

Proposition 3. Let A be any markdown policy, then for any L-Lipschitz demand function D,

Reg(A,D)≤ SR(A,D)+O(
√
T log1/2 T).

As in Section III.3, we denote xj = 1− js the j-th sample price for j = 1, ..., s−1, and d̄j the mean

demand at xj as defined in Step 5 of Algorithm 7.

We first state and prove some useful lemmas. Recall that xj = 1− js and d̄j is the empirical

mean demand at xj over O(δ−2 logT) samples as described in policy DUEs,δ. The following can be

obtained immediately by combining the Hoeffding bound (Lemma 14) and union bound.

Lemma 19. Let C be the event that |d̄j−D(p)| ≤ δ for all sample prices xj. Then P[C̄]≤O(T−2).

By definition of Algorithm 7, the exploration phase of the DUE policy must terminate due to one

of the following three events:

• E0: Inventory runs out.

• E1: UCB(x)<LCBmax where x is the current sample price.

• E2: (d̄+ δ) ·T ≥ I where d̄ is the empirical mean of the current sample price.

73

Recall that the halting price xh is the price where the policy finds sufficient evidence that the price

has dropped below either pd or p
∗, hence stops exploration. We next show that the halting price is

unlikely to be too much lower than pd.

Lemma 20. If event C occurs, then xh ≥ pd− s.

Proof. Suppose C occurs. Consider k=min{j : xj < pd}, so that xk is the highest sample price

less than pd. By definition of C, the empirical mean demand d̄k at xk satisfies d̄k + δ ≥D(xk). By

monotonicity of the demand function, we have D(xk) ·T ≥D(pd) ·T = I, thus the halting condition

would be satisfied at xk, if not earlier. Therefore, xh ≥ xk ≥ pd− s. □

We next show that E0 is unlikely to occur during the exploration phase.

Lemma 21. Suppose δ−2s−1 =O(T 0.99), then P[E0|C]≤ T−2.

Proof. For any sample price x, let Z1(x), ...,Zm(x) be i.i.d. samples from the demand distri-

bution at price x where m = ⌈3δ−2 logT ⌉. By the above lemma, conditional on C, we have xh ≥
xk ≥ pd − s. Thus, if E0 occurs during the exploration phase, then

∑k

i=1

∑m

j=1Zj(xi) > I, hence

the problem reduces to showing P[
∑k

i=1

∑m

j=1Zj(xi) > I|C] ≤ T−2. We bound this probability as

follows.

P[
k∑
i=1

m∑
j=1

Zj(xi)> I|C]≤
P[
∑k

i=1

∑m

j=1Zj(xi)> I]

P[C]

=
P[
∑k

i=1

∑m

j=1Zj(xi)> I]

1−P[C]

≤ 2P[
k∑
i=1

m∑
j=1

Zj(xi)> I],

where the last inequality follows since (1− ε)−1 ≤ 2 for any ε ∈ (0, 1
2
). We complete the proof by

bounding P[
∑k

i=1

∑m

j=1Zj(xi)> I]. Note that for any x≥ pd, we have E[Zj(x)] =D(x) for j ∈ [m].

Thus,

E[
k∑
i=1

m∑
j=1

Zj(xi)] =
k∑
i=1

D(xi)m

≤ km · (D(pd)+ sL)

≤ 3s−1δ−2 logT · (I
T
+ sL)

≤O
(
(T 0.99 +L) · logT ·T−1

)
· I = o(I) Since δ−2s−1 =O(T 0.99)

Applying Hoeffding bound (Lemma 14), we immediately obtain that P[
∑k

i=1

∑m

j=1Zj(xi) > I] ≤
T−3, and the proof follows. □

74

The proof of Lemma 3 can be split into two parts, stated in Lemmas 22 and 24. Following

the ideas of Lemma 13, we may bound the regret when p∗ ≥ pd.

Lemma 22. Suppose p∗ ≥ pd. Then for any δ, s∈ (0,1) such that δ−2s−1 =O(T 0.99),

SR(DUEs,δ,D) =O
(
s−1δ−2 logT +(sL+ δ)T

)
.

Proof. We condition on events C and Ē0. The proof is similar to Proposition 13. Recall R∗ =

maxx∈[0,1]R(x) and xk is the maximum sample price not exceeding pd. There are two cases.

• If E1 occurs at some sample price xh > xk, then by the same argument in Proposition 13,

R(xh)≥R∗−O(sL+ δ).

• Otherwise, E1 does not occur at any sample price xj > xk, then E2 occurs and xh = xk. In

both cases, UCB(xh−1)≥LCBmax, and by mimicking the proof of Proposition 13, we deduce

that R(xk)≥R∗−O(sL+ δ).

Thus in either case, the regret in the exploitation phase is O
(
(δ + sL)T

)
. Since there are

O(s−1) sampling prices and we selected each for O(δ−2 logT) times, the regret in the exploration

phase is O(δ−2s−1 logT), thus the regret conditional on C and Ē0 is O(δ−2s−1 logT + (sL+ δ)T).

Finally,

SR(DUEs,δ,D)≤ P[C ∧ Ē0] ·O(δ−2s−1 logT +(sL+ δ)T)+P[E0] ·T +P[C̄] ·T

≤O(δ−2s−1 logT +(sL+ δ)T). □

When p∗ ≤ pd the analysis becomes more involved. In Lemma 20 we showed that the DUE policy

is unlikely to halt “too late”, i.e. xh is not too much lower than pd. To show Lemma 24, we next

rule out the other unfavorable event, that the policy halts “too early”.

Lemma 23. Suppose p∗ ≤ pd and condition on event C, it holds D(xh)≥D(pd)− 2δ.

Proof. We start with the trivial case xh < pd: in this case, by monotonicity of demand functions,

D(xh) ≥ D(pd) and the claim holds. Now suppose xh ≥ pd. By unimodalty, R is non-increasing

on [p∗,1], thus event E1 won’t occur at any sample price xj ≥ p∗. In other words, the exploration

phase must have terminated due to E2, so (d̄(xh) + δ) · T ≥ I. Since we have conditioned on C, it

follows that |d̄(xh)−D(xh)| ≤ δ. Therefore, D(xh)≥ d̄(xh)−δ≥ I
T
−2δ=D(pd)−2δ, and the proof

follows. □

Before presenting the formal proof Lemma 24, we first expose the technical challenge. To

upper bound the surrogate regret, it suffices to lower bound the expected reward of DUEs,δ, which

reduces to lower-bounding EN where N is the sales of the policy. However, since DUE is no longer

75

an FPP, we can not imitate the proof of Lemma 18. Fortunately, the exploitation phase can be

viewed as an FPP at the halting price xh. This, however, does not lead to a straightforward analysis,

since the number of rounds and inventory level in the exploitation phase are random, determined

by the realizations in the exploration phase.

To circumvent this issue, we perform a conservative analysis on the exploitation phase reward.

Since the number of samples at each round is 3δ−2 logT and there are at most s−1 sample prices, it

would take at most 3s−1δ−2 logT rounds to enter the exploitation phase. In this case, the exploration

phase has T ′ := T − 3s−1δ−2 logT rounds, ending with inventory at least I ′ := I − 3s−1δ−2 logT .

Thus, it suffices to focus on lower bounding the reward of the FPP at xh that starts with I ′

inventory and lasts for T ′ rounds. We formalize this idea below.

Lemma 24. When p∗ ≤ pd, then for any s, δ, ε > 0 with ε≥ 3(1− ρ)s−1δ−2I−1 logT + sLρ−1,

SR(DUEs,δ,D) =O(δT + sI + e−Ω(ε2T)I + εI + s−1δ−2 logT).

Proof. Let Z1, ...ZT ′ be i.i.d. samples drawn from the demand distribution at price xh and

Z =
∑T ′

t=1Zt. We will focus on lower bounding the expectation of N ′ :=min{Z, I ′}, i.e. the sales in

with T ′ rounds and initial inventory I ′. Since

EN ′ ≥ P[N ′ > (1− ε)EZ] ·E[N ′|N ′ > (1− ε)EZ], (20)

and our goal becomes lower bounding P[N ′ > (1− ε)EZ], or, upper bounding P[N ′ ≤ (1− ε)EZ].

The hurdle for bounding the above is that N ′ =min{Z, I ′} is a truncated sum of Zt’s instead

of an i.i.d. sum. Fortunately, we observe that if I ′ < (1− ε)EZ, then the event {N ′ ≤ (1− ε)EZ} is

equivalent to {Z ≤ (1− ε)EZ}, thereby we may proceed with concentration bounds on Z. We now

derive a sufficient condition for having I ′ < (1− ε)EZ. Recall that ρ= I/T < 1.

Claim 3. Let α= 3I−1s−1δ−2 logT , i.e. the maximum possible proportion of inventory consumed

in the first I ′ = 3s−1δ−2 logT rounds. Then for any ε satisfying ε≥ (1− ρ)α+ sLρ−1, it holds that

(1− ε)EZ ≤ I ′.

Proof.

(1− ε)EZ ≤ I ′ ⇐⇒ (1− ε) ·T ′ ·D(xh)≤ I ′

⇐⇒ 1− ε≤ I ′

T ′D(xh)

⇐= 1− ε≤ I ′

T ′(D(pd)+ sL)
By Lemma 20

76

⇐⇒ 1− ε=
I ′T

T ′(I + sLT)
Multiply numerator and denominator by T

⇐⇒ 1− ε=
(1−α) · I ·T

(1− ρα) ·T · (I + sLT)

⇐⇒ 1− ε=
1−α

1− ρα
· 1

1+ sLρ−1

⇐= 1− ε≤ (1−α) · (1+ ρα) · (1− sLρ−1) Since (1− z)−1 ≥ 1+ z,∀z < 1

⇐= 1− ε≤ (1− (1− ρ)α) · (1− sLρ−1)

⇐= ε≥ (1− ρ)α+ sLρ−1. □

Thus, for any ε≥ (1− ρ)α+ sLρ−1 it holds that

P[N ′ ≤ (1− ε)EZ] = P[Z ≤ (1− ε)EZ]≤ e−
ε2

2 EZ ≤ e−Ω(ε2T). (21)

By Lemma 23 and the definition of Z, we have

EZ =D(xh) ·T ′ ≥ (D(pd)− 2δ) · (1−αρ)T

≥ (D(pd)− 2δ−αρ) ·T

= I − (2δ+αρ)T, (22)

where the last step follows since D(pd) ·T = I. Combining (20), (21) and (22), we are able to lower

bound the reward of the DUE policy as

r(DUEs,δ,D)≥ xh ·E[N ′]

≥ (pd− s) ·P[N ′ > (1− ε)EZ] ·E[N ′|N ′ > (1− ε)EZ]

≥ (pd− s) · (1− e−Ω(ε2T)) · (1− ε) ·EZ

≥ (pd− s) · (1− e−Ω(ε2T)) · (1− ε) · (I − (2δ+αρ)T)

≥ (pdI − sI − 2δT −αI) · (1− e−Ω(ε2T)− ε)

≥ pdI − sI − 2δT −αI − e−Ω(ε2T)I − εI.

Hence, recalling that αI = 3s−1δ−2 logT , we have

r(pSOP ,D)− r(A,D) = r(pd,D)− r(A,D)

≤ pdI − (pdI − 2δT − sI − e−Ω(ε2T)I − εI −αI)

≤ 2δT + sI + e−Ω(ε2T)I + εI +3s−1δ−2 logT. □

Theorem 12 immediately follows by combining the Lemma 22, Lemma 24 and Corollary 3,

with δ= T−1/4(L logT)1/4, s= δ/L and ε= 3(1− ρ)s−1δ−2I−1 logT + sLρ−1.

77

Figure 2 Viewing a policy as a decision tree. Entrance nodes of [0.89,0.91] are drawn in green.

III.4. Proof of Lower Bound (Theorem 13)

We now turn to proving our lower bound, which establishes minimax optimality of the policy

described in the previous section in the setting of infinite inventory. Without loss of generality (by

re-scaling) we assume ρ= I
T
= 1, and thus abbreviate Reg(A,M, I) as Reg(A,M) for simplicity.

III.4.1. Preliminaries Our proof considers Bernoulli reward distribution at each price and

employs the following alternate view of a policy as binary decision trees (see Fig 2), which we will

make precise in this section.

Definition 7 (Prefix). Let {0,1}∗ =
⋃∞
n=1{0,1}n∪{null} be the set of all finite-length binary

vectors, where null denotes the empty binary vector. For any v ∈ {0,1}∗ and k ∈Z, the k-prefix of

v is defined as vk = (v1, ..., vk).

We will consider probability spaces on sets containing the prefixes of every element.

Definition 8 (Downward Closed Set). For any v,w ∈ {0,1}∗, we define w ≺ v if there

exists k ∈Z such that vk =w. A set Ω∈ {0,1}∗ is downward closed, if for any v ∈Ω and w≺ v, we

have w ∈Ω.

A decision tree is specified by a downward closed set equipped with a real-valued function.

Definition 9 (Decision Tree). A binary decision tree is a tuple (Ω, x) where Ω⊆ {0,1}∗ is

downward closed and x : Ω→R is a mapping. Moreover, each v ∈Ω is called a node.

Intuitively, for each node v= (v1, ..., vk), the value x(v) is just the price that the policy selects

upon observing demands v1, ..., vk at prices x(v1), ..., x(vk). Recalling that we have normalized the

price space to be [0,1], so we will subsequently consider only decision trees (Ω, x) with 0≤ x(v)≤ 1

for all v ∈Ω. For notational convenience, we suppress the notation x(v) simply as xv.

We next introduce an equivalent definition of a markdown policy, using the language of

decision trees.

78

Definition 10 (Markdown Policy, Equivalent Definition). A markdown policy is a

decision tree (Ω, x) such that x(v1)≥ x(v2)≥ ...≥ x(vk) for any v= (v1, ..., vk)∈Ω.

One may verify that this definition of markdown policy is indeed equivalent with the one

given in Section III.2. We next introduce some standard terminologies for decision trees, in case

the reader is not familiar with graph theory.

Definition 11 (Decision Tree Basics). Let A= (Ω, x) be a decision tree and v,w ∈Ω.

i). We say v is a leaf if there does not exist w ∈Ω with v≺w.

ii). The depth d(v) of v is defined to be the length of binary vector v. Denote L(Ω)⊆Ω the subset

of all leaves. Each node in Ω\L(Ω) is called an internal node.

iii). We say w is an ancestor of v if w ≺ v. If in addition, d(v) = d(w) + 1, then we say w is the

parent of v and denote w= par(v), and say v is a child of w.

iv). A decision tree is binary if every internal has exactly two children.

Given a binary decision tree, every reward function induces a natural probability measure

over the leaves. In fact, consider a random walk from the root to a random leaf, where at each

internal node v, the walk moves to one of the two children with probability R(xv) and 1−R(xv)

respectively. We formally define this probability measure below.

Definition 12 (Probability Measure on Leaves). Let (Ω, x) be a decision tree and R :

[0,1]→ [0,1]. Write L=L(Ω). For each ℓ= (ℓ1, ..., ℓd)∈L, define

pR(ℓ) =
d∏
j=1

R
(
x(ℓj)

)ℓj · (1−R
(
x(ℓj)

))1−ℓj
The probability measure PR on (Ω,2L) is then given by PR(S) =

∑
ℓ∈S pR(S) for each S ⊆ L. We

also define ER to be the expectation under the probability measure PR.

The following lemma argues for the proof of our lower bound, we may restrict our attention

to policies in which the prices never change in the second half of [T].

Lemma 25. Given any markdown policy A = ({0,1}T , x′), there is another markdown policy

B= ({0,1}T , x) such that

i. for any ℓ∈L({0,1}T), we have x(ℓt) = ...= x(ℓT) for any t= ⌈T
2
⌉, ..., T , and

ii. for all R ∈ F̂L, Reg(B,R)≤ 2 ·Reg(A,R).

We defer the proof to the end of this section. In our analysis of lower bound, we will examine

the number of rounds that the policy selects a price in an interval. To this aim, we formalize next

what it means to “enter” an interval.

79

Definition 13 (Entrance). Given an interval [a, b] and a decision tree (Ω, x), we say v ∈Ω is

an [a, b]-entrance (or simply, entrance), if xv ≤ b and xpar(v) > b. If ℓ∈L(Ω) has no ancestor which

is also an entrance, then define ℓ⌈T/2⌉ to be an entrance.

One can easily verify that due to the markdown constraint, there exists exactly one [a, b]-

entrance on the path from the root to every leaf.

III.4.2. Wald-Wolfowitz Theorem and the Proof of Our Lower Bound Our proof

relies on sample complexity lower bound for distinguishing between two distributions, formally

defined as follows.

Definition 14 (Adaptive Classifier). Consider R,B : [0,1]→ [0,1]. Let (Ω, x) be a decision

tree and f :L(Ω)→{R,B}. Then, (Ω, x, f) is called an adaptive classifier for R and B. Moreover,

given constants α,β ∈ [0,1], an adaptive-classifier (Ω, x, f) is called (α,β)-confident if

PR
(
f−1(R)

)
≥ α, (Detection probability is high)

and PB
(
f−1(R)

)
≤ β. (False-Alarm probability is low)

Our lower bound results all rely upon a Theorem due to Wald and Wolfowitz (1948) for

adaptive sequential hypothesis testing, which states that the expected number of samples collected

in order to adaptively distinguish between a pair of distributions R,B must be lower bounded by

a function of α,β and the KL-divergence.

Theorem 15 (Wald-Wolfowitz Theorem). Consider R,B : [0,1] → [0,1] and an (α,β)-

confident adaptive classifier (Ω, x, f). Denote ∆(R,B) = maxv∈ΩKL
(
R(xv),B(xv)

)
. Let D(ℓ) be

the depth of leaf ℓ∈L(Ω). Then,

ER[D]≥
α log α

β
+(1−α) log 1−α

1−β

∆(R,B)
, and EB[D]≥

β log β
α
+(1−β) log 1−β

1−α

∆(B,R)
. (23)

Our proof for Theorem 13 considers the following family of reward curves (see Fig 3). Each

curve has slope L and −1 on the left and right of its unique optimal price p, and truncated from

below to ensure non-negativity∗∗∗. Formally, for p,x∈ [0,1], consider

Rp(x) =

1−x, if x≥ p,

1− (L+1)p+Lx, if (L+1)p−1

L
≤ x≤ p,

0, otherwise,

andM= {Rp : p∈ [18 ,
7
8
]}.

∗∗∗We assumed that L≥ 1.

80

O

R(x)

x

p

1− p

Figure 3 Instances for showing the lower bound.

At a high level, we show that any reasonable policy must be able to distinguish between

R=Rp with p= 1
8
and B =Rb for any b > 1

2
. As a result, the price must stay close to b for many

rounds, leading to high regret if R is the true reward function.

The technical crux of the proof lies in formalizing the notion of “distinguish between”. To

this aim, we introduce an induced classifier, based on whether it predominantly uses prices in the

range [a, b] or below a. Finally, we conclude the proof by showing the expected depth of the induced

classifier-tree is Ω(T
1
2). We next formally define induced classifier and the leaf coloring.

Definition 15 ((v, a, b)-Classifier). Let (Ω, x) be a decision tree and [a, b] be some interval,

and consider an [a, b]-entrance v. The (v, a, b)-classifier is specified by a tuple (Ω̃, x̃, f̃), where

Ω̃ = {w ∈Ω :wd(v) = vd(v), d(w)≤ d(v)+
⌈T
4

⌉
, and x(w)≥ a},

x̃= x|Ω̃, and the leaf-coloring f̃ is given by

f̃ :L(Ω̃)→{R,B}

ℓ 7→

{
R, if d(ℓ)− d(v)< ⌈T

4
⌉,

B, if d(ℓ)− d(v) = ⌈T
4
⌉.

In words, given a decision tree and an [a, b]-entrance v, the (v, a, b)-classifier is obtained by

the following procedure:

1. (Truncation) Remove all nodes that are at least T
4
levels below v. If a descendent u of v has

node-price xu ≤ a, then remove all descendants of u, hence u becomes a leaf. The subtree

rooted at the entrance v after carrying out these descendant removals and the truncation in

the previous step is denoted Tv.

2. (Coloring) For every leaf ℓ∈Tv, if xℓ ≤ a, set f(ℓ) =R, else f(ℓ) =B.

81

We next formalize the notion of a tree differentiating between reward functions R or B using

the induced probability measure on the leaves of the tree.

Definition 16 (Confidence of (v, a, b)-Tree). A (v, a, b)-classifier (Ω̃, x̃, f̃) is said to be con-

fident if (Ω̃, x̃, f̃) is (2
3
, 1
3
)-confident††† for distinguishing between R 1

8
and Rb. Moreover, an entrance

v is said to be confident, if the (v, a, b)-classifier is confident.

We next introduce a key quantity. Let A= (Ω, x) be a decision tree and 0≤ a≤ b≤ 1. The

random variable N =N(A;a, b) is defined as

N :L(Ω)→R

ℓ 7→
d(ℓ)∑
i=1

1
[
x(ℓi)∈ [a, b]

]
Intuitively, N(A;a, b) is simply the number of times that policy A selects a price in [a, b]. We next

present the key lemma concerning N(A;a, b) for any low-regret policy A.

Lemma 26 (Key Lemma). Let A be a markdown policy with Reg(A,M)≤ 1
48
L1/4T 3/4 for all

T > 212L. If [a, b]⊂ [3
4
, 7
8
] where b= a+L−3/4T−1/4 and p= 1

8
, then

ERp [N(A;a, b)] = Ω(L−1/2T 1/2).

We will also use the following folklore regret-decomposition lemma (see e.g. Lemma 4.5

of Lattimore and Szepesvári (2020)).

Lemma 27 (Decomposition of Regret). Consider a Multi-armed Bandit instance I where

each arm i ∈ [K] has mean reward µi ∈ [0,1]. Let µ∗ =maxi∈[K] µi and Ni be the number of times

arm i is selected by a bandit policy A. Then,

Reg(A, I) =
∑
i∈[K]

(µ∗−µi) ·ENi.

As remarked in Lattimore and Szepesvári (2020), this lemma can be easily generalized to continuous

action space.

We are now ready to formally prove the lower bound.

Proof of Theorem 13. If Reg(A,M)≥ 1
48
L1/4T 3/4, the theorem holds trivially. Therefore, sup-

pose Reg(A,M) < 1
48
L1/4T 3/4. Consider the case when the optimal price p = 1

8
. Partition [3

4
, 7
8
]

uniformly into subintervals of length ⌈T−1/4⌉. Formally, consider intervals (xj, xj+1] where xj =

†††Here the choice of 2
3
and 1

3
is not critical for our proof, and can be replaced with other constants.

82

7
8
−L−3/4T−1/4j for each 1≤ j ≤m := ⌊ 1

8
L3/4T 1/4⌋. By Lemma 26, since [xj, xj−1]⊂ [3

4
, 7
8
] for each

j ∈ [m], we have

ERp

[
N

(
A,

3

4
,
7

8

)]
=ERp

[
m∑
j=1

N (A;xj, xj−1)

]
=m ·Ω

(
L−1/2T 1/2

)
=Ω

(
L1/4T 3/4

)
.

By our choice of p= 1
8
, the regret per round is Ω(1) when the explored price remains in [3

4
, 7
8
], thus

Reg(A,M)≥Reg(A,Rp)≥Ω

(
ERp

[
N

(
A;

3

4
,
7

8

)])
=Ω(L1/4T 3/4),

and the proof completes. □

III.4.3. Proof of Lemma 26 We split the proof of this lemma into two claims. First note

that, in general, it is not true that all entrances in a low-regret decision tree are confident. In fact,

having a small fraction of non-confident entrances may not affect the regret by too much. However,

we can show that the majority of entrances should be confident.

Claim 4. Let Vc be the set of confident entrances in A and vent be the random entrance node,

then Pχ(vent ∈ Vc)≥ 1
2
for any χ∈ {R,B}.

Proof. Recall that vent is the (random) entrance node for a fixed interval [a, b]. We crucially

observe that the two reward functions R,B are exactly identical for prices greater than b, so for

any set of entrance nodes U , it holds PR[vent ∈ U] = PB[vent ∈ U]. For a contradiction, we assume

PR[vent ∈ V̄c] = PB[vent ∈ V̄c]≥ 1
2
.

Let V be the set of all entrance nodes and

VR :=
{
u∈ V : PB[fu(ℓ) =R]>

1

3

}
and VB :=

{
u∈ V : PR[fu(ℓ) =B]>

1

3

}
.

By definition of Vc, if u ∈ V \Vc then either PR[fu(ℓ) = B] ≤ 1
3
or PB[fu(ℓ) = R] ≤ 1

3
, so V̄c =

VR ∪ VB. Since PB[vent ∈ V̄c]≥ 1
2
, we have either PR[vent ∈ VR]>

1
4
or PR[vent ∈ VB]>

1
4
. We derive

contradictions for each case separately.

• Suppose PR[vent ∈ VB]>
1
4
and consider an entrance vent ∈ VB. Recall that a leaf is blue if it

is T
4
levels below vent and its price is still inside [a, b], in other words, the policy has been

selecting prices in [a, b] for T
4
rounds. Thus,

ER[N(a, b)]≥ PR[vent ∈ VB] ·PR[f(ℓ) =B] · T
4
≥ 1

4
· 1
3
· T
4
=

T

48
.

By Lemma 27, writing ∆(x) = r∗−R(x) for any price x,

Reg(A,R)≥ER[N(a, b)] · min
x∈[a,b]

∆(x)>
T

48
· 1
2
=

T

96
.

For T > 212L, it holds 1
96
T > 1

48
L1/4T 3/4, a contradiction!

83

• Suppose PB[vent ∈ VR]> 1
4
and consider an entrance vent ∈ VR. Recall that by Lemma 25, we

w.l.o.g. assumed the depth of vent is at most T
2
(in the decision tree corresponding to policy

A), and that a leaf is colored red if its price drops below a within T
4
rounds after reaching

vent, we deduce that the depth of any red leaf is at most 3T
4
. Thus, there are at least T

4
levels

below each red leaf, or alternatively, T
4
rounds after the price drops below a. It follows that

EB[N(0, a)]≥ PB[vent ∈ VR] ·PB[f(ℓ) =R] · T
4
>

1

4
· 1
3
· T
4
=

T

48
.

By Lemma 27, the regret can be lower bounded as

Reg(A,B)≥EB[N(0, a)] · min
x∈[0,a]

{∆(x)} ≥ T

48
·L1/4T−1/4 =

1

48
L1/4T 3/4,

a contradiction! □

The second claim asserts that if v is a confident [a, b] entrance, then the expected depth D

of the (v, a, b)-classifier is large. This result enables us to lower bound the number of rounds that

the policy selects prices in [a, b], which can later be translated into a lower bound of the regret

incurred in this interval.

Claim 5. Let v be a confident [a, b]-entrance and Tv := (Ω′, x′, f ′) be the (v, a, b)-classifier. Define

D :L(Ω′)→R

ℓ 7→ d(ℓ)− d(v),

where recall that d(·) denotes the depth of a node in A (instead of the (v, a, b)-classifier). Then,

ER[D] = Ω(L−1/2T 1/2) and EB[D] = Ω(L−1/2T 1/2).

Proof. Since xu ∈ [a, b] for any node u of T=Tv,

|R(xu)−B(xu)| ≤ 2L ·L−3/4T−1/4 = 2L1/4T−1/4.

Thus, ∆(R,B) = maxu∈Tv{KL(R(xu),B(xu))} ≤ 2(2L1/4T−1/4)2 = 8L1/2T−1/2. With α= 2/3, β =

1/3, Theorem 15 implies

ER[D|vent ∈ Vc] =
1
3
log 2

∆(R,B)
=Ω(L−1/2T 1/2). □

Lemma 26 then follows immediately from the above two claims. In fact,

ER[N(A;a, b)]≥ER[N(A;a, b)|v ∈ Vc] ·PR[v ∈ Vc]

≥ER[D|v ∈ Vc] ·PR[v ∈ Vc]

≥Ω
(
L−1/2T 1/2

)
· 1
2
=Ω(L−1/2T 1/2),

and Lemma 26 follows.

84

III.4.4. Proof of Lemma 25 Let X(t) be the price policy A selects at t and recall that

R is the true reward function. W.l.o.g. assume T is even number. Define policy B to be exactly

identical to A in rounds 1,2, ..., T
2
, and selects the price X(T

2
) in all rounds after T

2
. We will show

that Reg(B,R)≤ 2Reg(A,R).

We first explain the intuition behind the proof. Viewing these two policies as two decision

trees, we couple each path in A with the corresponding path in B, and compare the ex post regret

on these two paths. Suppose X(T
2
) = x≤ p∗. By unimodality, for any p≤ x, we have R(p)≤R(x),

so further decreasing the price leads to lower reward rates. Thus the regret of B after T
2
in this

case is lower than that of A. Next consider X(T
2
) = x≥ p∗. In this case, A has been selecting prices

in [x,1] before T
2
due to the markdown constraint. By unimodality, for any price p ≥ x we have

R(p)≤R(x), so the regret of B incurred after time T
2
(wherein the policy always selects x) is no

greater than the regret of A incurred before T
2
. Thus in both cases we may bound the regret of B

by that of A.

We now formalize the above idea. For any s, t with 0≤ s < t≤ T and price p, define N t
s(p,A)

(resp. N t
s(p,B)) to be the number of rounds that policy A (resp. B) selects p in rounds [s, t]. For

any price p denote ∆(p) = r∗ − R(p). Then, by (the continuous version) of Lemma 27, we may

decomposition the regret as

Reg(B,R) =

∫ 1

0

E[NT
T/2(x)] ·∆(x) dx=

∫ p∗

0

E[NT
T/2(x)] ·∆(x) dx+

∫ 1

p∗
E[NT

T/2(x)] ·∆(x) dx. (24)

Part I. Consider the first term in (24). For each fixed x≤ p∗. Conditional on X(T
2
) = x, we have

NT
T/2(x,A) = T

2
and that A will only select prices in [0, x] after time T

2
, thus∫ x

0

E[NT
T/2(p,A)|X(

T

2
) = x] dp=

T

2
=E[NT

T/2(x,B)|X(
T

2
) = x].

By unimodality, ∆(x)≤∆(p) for each p≤ x, so

E[NT
T/2(x,B)|X(

T

2
) = x] ·∆(x)≤

∫ x

0

E[NT
T/2(p,A)|X(

T

2
) = x] ·∆(p) dp. (25)

Further, conditional on X(T
2
) = x, policy B never selects any price p≥ x after time T

2
, so

E[NT
T/2(p)|X(

T

2
) = x] = 0,

and ∫ x

0

E[NT
T/2(p,B)|X(

T

2
) = x] dp=

∫ p∗

0

E[NT
T/2(p,A)|X(

T

2
) = x] dp.

85

Combining with (25), we deduce that for any x≤ p∗,

E[NT
T/2(x,B)|X(

T

2
) = x] ·∆(x)≤

∫ p∗

0

E[NT
T/2(p,A)|X(

T

2
) = x] ·∆(p) dp.

Let f(x) be the density function of X(T
2
). By integrating over x on [0, p∗],∫ p∗

0

f(x) ·E[NT
T/2(x,B)|X(

T

2
) = x] ·∆(x) dx≤

∫ p∗

0

f(x)
(∫ p∗

0

E[NT
T/2(p,A)|X(

T

2
) = x] ·∆(p) dp

)
dx.

(26)

We simplify each side of the above as follows. Note that NT
T/2(x) = 1(X(T

2
) = x) · T

2
, so

LHS of (26) =

∫ p∗

0

E[NT
T/2(x,B)] ·∆(x) dx.

On the other hand by exchanging the order of integration,

RHS of (26) =

∫ p∗

0

∆(p)
(∫ p∗

0

f(x) ·E[NT
T/2(p,A)|X(

T

2
) = x] dx

)
dp

≤
∫ p∗

0

∆(p)
(∫ 1

0

f(x) ·E[NT
T/2(p,A)|X(

T

2
) = x] dx

)
dp

=

∫ p∗

0

∆(p) ·E[NT
T/2(p)] dp≤Reg(A,R),

where the last inequality follows from Lemma 27. Substituting these two simplifications into (26),

we have ∫ p∗

0

E[NT
T/2(x,B)] ·∆(x) dx≤Reg(A,R). (27)

Part II. We next consider the second term in (24). Suppose X(T
2
) = x≥ p∗, then B selects prices

in [x,1] before round T
2
, and will select x in all rounds in after T

2
. Thus,∫ 1

x

E[NT/2
0 (p,A)|X(

T

2
) = x] dp=

T

2
=E[NT

T/2(x,B)|X(
T

2
) = x].

Since x≥ p∗, by unimodalty we have ∆(p)≥∆(x) for any p≥ x. Moreover, due to the markdown

constraint A never selected prices in [0, x] before T
2
, so∫ 1

p∗
E[NT/2

0 (p,A)|X(
T

2
) = x]·∆(p) dp=

∫ 1

x

E[NT/2
0 (p,A)|X(

T

2
) = x]·∆(p) dp≥E[NT

T/2(x,B)|X(
T

2
) = x]·∆(x).

Integrating over prices x in [p∗,1], we obtain∫ 1

p∗
f(x)

(∫ 1

p∗
E[NT/2

0 (p,A)|X(
T

2
) = x] ·∆(p) dp

)
dx≥

∫ 1

p∗
f(x) ·E[NT

T/2(x,B)|X(
T

2
) = x] ·∆(x) dx.

(28)

86

We now analyze each side of the above inequality respectively. By the same argument as in Part

I, we may simplify the RHS as

RHS of (28) =

∫ 1

p∗
E[NT

T/2(x,B)] ·∆(x) dx.

On the other hand,

LHS of (28) =

∫ 1

p∗
∆(p)

(∫ 1

p∗
E[NT/2

0 (p,A)|X(
T

2
) = x] · f(x) dx

)
dp

≤
∫ 1

p∗
∆(p)

(∫ 1

0

E[NT/2
0 (p,A)|X(

T

2
) = x] · f(x) dx

)
dp

=

∫ 1

p∗
∆(p) ·E[NT/2

0 (p,A)] dp≤Reg(A,R).

Substituting into (28), we obtain∫ 1

p∗
E[NT

T/2(x)] ·∆(x) dx≤Reg(A,R). (29)

The proof of Lemma 25 then follows immediately by combining (27), (29) and substituting into

(24). □

III.5. Dynamic Pricing with Markup Penalty

The markdown pricing problem can be viewed as dynamic pricing problem where each mark-up

incurs an infinite penalty, and we have just shown a tight Õ(T 3/4) regret bound (Kleinberg (2005)).

On the other hand, if prices can oscillate for free, the problem becomes ordinary Lipschitz bandits

when I =∞, which is known to admit an Õ(T 2/3) regret. Hence we arrive at a natural question:

If the penalty for each mark-up is finite, can we improve upon the Õ(T 3/4) bound for

markdown pricing?

More precisely, given finite markup penalty, can we interpolate its regret bound between Õ(T 3/4),

the bound in the presence of penalty, and Õ(T 2/3), the bound for zero markup cost?

We provide an affirmative answer to this question. We organize this section as follows. We

first show that the regret bound can be improved to Õ(T 2/3), if O(logT) number of markups

is allowed. Then we proceed to introduce the problem of dynamic pricing with markup penalty

(DPMP), and derive immediately a tight regret bound for DPMP using the results established so

far.

87

Algorithm 8 Geometric Successive Elimination Policy GSEs,ε.

1: Input: s, ε > 0.

2: Initialize: A←{i · s|0≤ i≤ s−1}, ℓ← 2 log ε−1. ▷ Discretize price space into arms.

3: for j = 0,1, ..., ℓ do ▷ Exploration phase consists of ℓ cycles.

4: for each a∈A in decreasing order do

5: Select a for 2j times in a row and observe rewards X2j (a), ...,X2j+1−1(a).

6: µ̄(a)← (2j+1− 1)−1
∑2j+1−1

τ=1 Xτ (a). ▷ Empirical mean.

7: [LCB(a),UCB(a)]← [µ̄(a)−
√

logT
2j+1−1

, µ̄(a)+
√

logT
2j+1−1

]. ▷ Confidence interval.

8: Eliminate a from A if there exists a′ ∈A s.t. UCB(a)<LCB(a′). ▷ Elimination.

9: Select any a∈A henceforth. ▷ Exploitation phase.

III.5.1. Dynamic Pricing with Few Markups Recall that for non-markdown pricing (i.e.

Lipschitz bandits), a tight Õ(T 2/3) regret bound can be achieved by applying the Successive Elim-

ination (SE) policy on a suitably discretized price space. However, such a policy may mark up for

Ω(T 2/3) times. As the cornerstone of this section, we first present a simple adaptation of the SE

policy that achieves the same regret, Õ(T 2/3), but only marks up O(logT) times.

As in the SE policy, our Geometric Successive Elimination (GSE) policy (see Algorithm 8)

discretizes the price space into arms and splits the time horizon into cycles. Different than the

classical version where each cycle has the same length, in GSE the cycle lengths are given by a

geometric sequence. In the j-th cycle, GSE sequentially selects each alive arm (i.e. not eliminated)

for 2j times consecutively, and at the end of each cycle eliminates the arms whose confidence

intervals are dominated by some other arm. Specifically, the number of cycles that suffices to

achieve the desired regret bound is only O(logT), in other words, GSE only marks up for O(logT)

times. We formally state this result below.

Theorem 16 (Pricing Policy with Few Markups). Denote GSEs,ε the Geometric Succes-

sive Elimination Policy with parameters s, ε > 0. Then for s=L−2/3T−1/3 and ε=L1/3T−1/3,

Reg(GSEs,ε,FL) =O(L1/3T 2/3
√
logT).

We first describe the proof at a high level. The regret can be decomposed into the discretization

error εT and the regret on the discretized instance. To bound the latter, we show that for any arm,

the more suboptimal, the faster it gets eliminated (Lemma 28). Therefore, any alive arm at the

end of the exploration phase is nearly optimal.

88

To formalized the above idea we need the following lemma. Throughout this section we denote

∆i = rmax−R(ai) and N ′
i ,N

′′
i to be the number of rounds that arm ai is selected in the exploration

and exploitation phase respectively.

Lemma 28. Suppose R ∈ FL is the true reward function. For each i≤ s−1, Let E be the event

that N ′
i ≤min{T,16∆−2

i logT} for all 0≤ i≤ s−1, then P[E]≥ 1−T−3.

Proof. Suppose i∗ ∈ argmax0≤k≤s−1 R(k). For any m≥ 1, let µ̄m(i) be the mean reward of arm

ai when it is selected for m times. By Hoeffding inequality (Lemma 14), w.p. 1−T−2,

LCB(ai∗) = µ̄m(i
∗)−

√
logT

m
≥R(i∗)− 2

√
logT

m
,

and

UCB(ai) = µ̄m(i)+

√
logT

m
≤R(i)+ 2

√
logT

m
.

If ai is not eliminated, then UCB(ai)≥LCB(ai∗), thus

R(ai∗)− 2

√
logT

m
≤R(a)+ 2

√
logT

m
,

i.e. m≤ 16∆−2
i logT , and the proof completes. □

Proof of Theorem 16. We first apply Lemma 27 to decompose the regret as follows. Let ai = i ·s
be the i-th arm. Denote rmax =max0≤k≤s−1 R(ak) and r∗ =maxx∈[0,1]R(x) the optimal reward rate

in the discretized and continuous instance respectively. Then,

Reg(GSEs,ε,R) = r∗T − r(A,R)

=
(
r∗T − rmaxT

)
+
(
rmaxT − r(A,R)

)
≤LsT +

∑
0≤i≤s−1

E(N ′
i +N ′′

i) ·∆i By Lemma 27

=LsT +
∑
i:∆i≥ε

EN ′
i ·∆i+

∑
i:∆i<ε

EN ′
i ·∆i+

∑
0≤i≤s−1

EN ′′
i ·∆i

≤LsT +
∑
i:∆i≥ε

EN ′
i ·∆i+ εT +

∑
0≤i≤s−1

EN ′′
i ·∆i. (30)

We need the following lemma to bound the second and last term. By Lemma 28, the second term

in (30) can be bounded as∑
i:∆i≥ε

EN ′
i ·∆i =

∑
i:∆i≥ε

∆i ·
(
P(E) ·E[N ′

i |E] +P(E) ·E[N ′
i |E]
)

≤
∑
i:∆i≥ε

∆i ·
(
P(E) · 16∆−2

i logT +P(E) ·T
)

≤
∑
i:∆i≥ε

∆i ·
(
16∆−2

i logT +T−2
)

≤ 16s−1ε−1 logT + o(1). Since there are s−1 arms (31)

89

We next bound the last term in (30). Observe that each arm alive at the end of the exploration

phase has been selected for at least 2ℓ = 22 log ε
−1

= ε−2 times. On the other hand, Lemma 28 says

conditional on E , each arm can be selected for at most 16∆−2
i logT times. Thus, conditional on E ,

for each arm i selected for exploitation, it holds ε−2 ≤ 16∆−2
i logT, i.e. ∆i ≤ 4

√
logTε. Therefore,∑

0≤i≤s−1

EN ′′
i ·∆i =

∑
0≤i≤s−1

(
E[N ′′

i |E] ·P[E] +E[N ′′
i |E] ·P[E]

)
·∆i

≤
∑

0≤i≤s−1

E[N ′′
i |E] ·∆i+T−3 ·

∑
0≤i≤s−1

T

≤ 4
√

logTε ·T + o(1). (32)

Substituting (31),(32) into (30), we have

(30)≤ 16ε−1s−1 logT +4
√
logTε ·T +(sL+ ε)T + o(1).

The proof follows by selecting ε=L1/3T−1/3 and s=L−2/3T−1/3
√
logT . □

We conclude this subsection with a couple of observations. First, in this result we no longer

require the reward functions to be unimodal. Further, when T is unknown, we may apply the

doubling trick (folklore, see e.g. Slivkins (2019)) to achieve the same bound. Finally, compared to

the O
(
T 2/3(L logT)1/3

)
bound for Lipschitz Bandits, this bound is only weaker by O(log1/6 T).

III.5.2. Dynamic Pricing with Markup Penalty In practice, an increase in price usually

results in a decrease in demand (Homburg et al. (2005), Malc et al. (2016), Rotemberg (2002)). In

this section, we model this effect by a introducing new concept, the Markup Penalty Index (MPI).

As opposed to imposing a penalty on each markup, previous work has considered how promotions

may boost the demand (Ramakrishnan (2012)). Building upon our lower bound techniques in the

pure markdown setting, we show a tight regret bound in terms of the MPI for unimodal Lipschitz

families.

Random Utility Model. We introduce a stylized model that captures the penalty incurred by

mark-ups. Each buyer has two states: active and inactive. At each round, each active buyer’s

valuation v is i.i.d. drawn from some fixed unknown distribution D, and she decides to buy if the

utility u(p, v) := v − p > 0 where p is the current price. Thus, the demand rate (i.e. fraction of

buyers who buy) at price p is P[u> 0] = Pv∼D[v > p]. To model the negative effect of markups, we

assume that each time the seller marks up, a constant γ fraction of active buyers become inactive

and set their valuations to 0 permanently. Thus, after k mark-ups, the proportion of active buyers

drops to (1− γ)k hence the demand rate becomes (1− γ)kP[v > p]. Since (1− γ)k = 1− kγ+ o(γ),

90

compared to having no markup, the seller “loses”
(
1− (1−γ)k

)
= kγ+ o(γ) fraction of demand at

price p. This amounts to charging a fixed penalty, additive cost penalty for each markup.

Extreme Cases. If γ =O(T−1/3), then each markup incurs at most γT =O(T 2/3) loss over the

entire time horizon. In this case, by Theorem 16, an Õ(T 2/3) + γT logT = Õ(T 2/3) regret can be

achieved. If γ =Ω(1), then each markup incurs a Ω(T) loss, hence the markup penalty effectively

becomes a hard constraint, and the problem reduces to the “pure” markdown problem discussed

in the previous sections. Thus, the interesting case is when the order of γT is between T 2/3 and T .

Definition 17 (MPI). The Markup Penalty Index (MPI) is a number in [0,1] defined as c=

1+ logT γ, i.e. the unique c satisfying γT = T c.

As in the previous sections, we compare the performance of a policy against the optimal

FPP. Since the optimal FPP always selects r∗ =maxp∈[0,1]R(p) where R is the underlying reward

function, it pays no markup cost. Thus, the regret of a policy can be decomposed into the markup

penalty and the cost of selecting suboptimal prices. Our goal is to find a policy that minimizes the

regret, formalized below.

Definition 18 (Regret with Markup Penalties). Suppose the MPI is c ∈ [0,1]. For any

policy A, let r(A,R) be its expected total reward and ν(A) be its total number of markups, i.e.

ν =
∑T

t=1 1[A(t)<A(t+1)] where A(t) is the (random) price A selects at t. Define the regret to be

Regc(A,R) = r∗T − r(A,R)+ER[ν(A)] ·T c.

The regret on a family F of reward functions is simply Regc(A,F) =maxR∈F Regc(A,R).

Note that the unimodality assumption is not needed here, so Theorem 16 immediately implies

the following upper bound on FL.

Corollary 2 (Upper Bound for Lipschitz Reward Functions). Let GSEs,ε be the Geo-

metric Successive Elimination Policy with parameters s, ε > 0. Then for s = L−2/3T−1/3 and ε =

L1/3T−1/3, we have Regc(GSEs,ε,FL) =O(L1/3T 2/3
√
logT +T c logT).

However, when c is large, the above regret bound becomes poor. Observe that if, in addi-

tion, all reward functions are unimodal (i.e. replace FL with F̂L), the Uniform-Elimination policy

(Algorithm 11) achieves regret Õ(T 3/4). Thus if c is known, by choosing the better policy between

GSE and UE we achieve the following regret for F̂L.

Theorem 17. Let A be the policy that chooses GSEs,ε with s=L−2/3T−1/3, ε=L1/3T−1/3 when

c≤ 3/4 and chooses UEs,δ with δ=
√
2T−1/4(L logT)1/4, s= δ/2L otherwise. Then,

Regc(A, F̂L) = Õ(Tmed{
2
3 ,c,

3
4}) =

O(T 2/3(L logT)1/3), if c≤ 2/3,

O(T c logT), if 2/3< c≤ 3/4,

O(T 3/4(L logT)1/4), else.

91

Surprisingly, this bound for F̂L turns out to be almost optimal as stated in the following theorem.

Theorem 18 (Lower Bounds for General MPI). For any policy A that knows the time

horizon T and the true MPI c,

Regc(A, F̂L) =

Ω(T 2/3), if c < 2/3

Ω(T c), if c∈ [2/3,3/4]
Ω(T 3/4), if c > 3/4.

Our results show that the markup penalty index (MPI) plays a critical role in the achievable

regret, and that three regimes emerge (Table 8). First, when the MPI is low (c < 2/3), the penalty

for marking up is dominated by the cost incurred for searching for the optimal price. The regret

(both upper and lower) is thus Θ̃(T 2/3) no matter how small the MPI is. Second, when the MPI is

moderate (c∈ [2/3,3/4]), the markup penalty now dominates the search cost. In this regime, careful

restriction of the use of markups allows the regret to be limited to Θ̃(T c). Third and finally, when

the MPI is high (c > 3/4), the story remains the same, and unfortunately the regret is even linear

if c = 1 (corresponding to the pure markdown setting). However, if in addition to the Lipschitz

assumption, we assume that (a) the reward function is unimodal and that (b) the time horizon

is known, then a separate policy which never marks up is able to achieve regret Θ̃(T 3/4). These

two assumptions together form a necessary and sufficient set of conditions for achieving sub-linear

regret in the pure markdown setting.

All results until now have assumed that the time horizon T is known in advance. This

assumption is, in a sense, necessary. In fact, we show that if T is unknown, no policy achieves o(T c)

regret.

To this end, we first formalize what it means to “not know T”. So far in this work, when

we say a policy A “has regret O(Tα)”, we mean that there exists a family of decision trees

{AT : T = 1,2, ..} and constants C,T0, where AT has depth T , and‡‡‡ Regc(AT ,F , T)≤CTα for all

T ≥ T0.

When T is unknown, however, we can no longer treat T as an input parameter. Instead, we

view a policy A as an infinite-level decision tree. In this case, “A has O(Tα)” regret means there

exists constants C,T0 s.t. Regc(A,F , T)≤CTα for all T ≥ T0. The next result says if T is unknown,

then any policy can not improve the regret O(T c) by a polynomial factor (in T).

Proposition 4 (Lower Bound for Unknown T). Let c be the MPI. Then there is a family

F of two reward functions such that for any infinite-level decision tree A, and any constants ε,T0 >

0, there exists T > T0 with Regc(A,F , T)>T (1−ε)c.

‡‡‡We use Regc(A,F , T) to denote the regret of a policy A in T rounds.

92

Proof. Consider a family F = {R,B} of reward functions where R(x) = 1−x and B(x) = x for

x∈ [0,1]. Note that the optimal prices are p∗R = 0 and p∗B = 1. For the sake of contradiction, suppose

there exists some ε ∈ (0,1) and T0 > 0 and an infinite-level decision tree A s.t. Regc(A,F , S) ≤
T (1−ε)c for any time horizon S > T0.

We outline our proof at a high level. Consider the event ET that A(T)< 1
2
, where we recall

that A(T) is the price at T . Denote δ(T) := PB[ET]. We first show that {δ(T)}T∈Z,T≥T0 is a nonzero,

vanishing sequence. Then we show that however small δ(T) is, we may always construct a time

horizon S = S(T), where the one-time markup penalty Sc is high enough so that the expected

markup penalty (which is at least the product of δ(T) and Sc) dominates the target regret, T (1−ε)c,

implying a contradiction.

We now formalize the above intuition. We first show that δ(T) has to be vanishing to achieve

O(T (1−ε)c) regret.

Claim 6. For any T ≥ T0, it holds δ(T)> 0. Moreover, δ(T)→ 0 as T →∞.

Assuming this claim, then by definition of limit, there exists a finite T̂ such that δ(T)≤ 2−
cε
2 , i.e.

δ(T)−
2
cε ≥ 2, for all T > T̂ . For any T > T̂ , consider time horizon S(T) = δ(T)−

2
cεT . Suppose B is

the true reward function and condition on ET . If A does not mark up after T , then an Ω(1)-regret

is incurred in each of the (S(T)− T) future rounds. If A does mark up, then a δ(T) · (S(T)− T)c

penalty is incurred. Thus, denoting by q the probability that A ever marks up after T (conditional

on ET), the regret is lower bounded by

Regc
(
A,B,S (T)

)
≥ δ(T) ·

(
(1− q) · 1

2
· (S(T)−T)+ q · (S(T)−T)c

)
≥ 1

2
δ(T) · (S(T)−T)

c

≥ 1

2
δ(T) · (δ(T)− 2

cε − 1)c ·T c

>
1

2

(
δ(T)−

2
cεT
)(1− ε

2)c

since δ(T)−
2
cε ≥ 2.

≥Ω
(
S(T)(1−

ε
2)c
)
, as T →∞,

a contradiction. □

Proof of Claim 6. We first consider the first part. Since p∗R = 0 and A admits sublinear regret for

any time horizon T > T0, we deduce that there is at least one node on level T with price less than

1
2
. Since every path has nonzero probability under both reward functions, it follows that δ(T)> 0

for any T ≥ T̂ .

The other part is more involved, so we start with intuition. Suppose B is the true reward

function and δ(T) does not vanish. Then for some longer time horizon, say S := T 2, w.p. δ(T) the

93

policy overshoots the optimal price p∗B = 1, incurring either high regret or markup penalty, yielding

a contradiction.

We now make the ideas formal. For a contradiction, suppose there exists a constantK > 0 and

a sequence {Tj}j∈Z+ with Tj→∞, s.t. δ(Tj)>K for all j. Consider time horizon Sj := T 2
j . Suppose

the true reward function is B and condition on ETj . Our argument is similar to Proposition 4. If

A does not mark up after Tj, then an Ω(1) regret is incurred in each of the future Sj −Tj rounds.

Otherwise, if A does mark up, a markup penalty Scj is incurred. Thus, denoting p the probability

that A ever marks up after T (conditional on ET), we have

Regc(A,B,Sj)≥ δ(Tj) ·
(
(1− p) · 1

2
· (Sj −Tj)+ p · (Sj −Tj)

c
)

>
1

2
K · (Sj −Tj)

c =Ω(Scj), as j→∞,

a contradiction to the fact that A has O(T (1−ε)c) regret. □

We conclude this section by summarizing our results from a different lens: our results show

that the MPI plays a critical role in the achievable regret, and that three regimes emerge (Table 8).

Low MPI Med. MPI High MPI
(c < 2/3) (2/3≤ c≤ 3/4) (c > 3/4)

Lipschitz Θ̃(T 2/3) Θ̃(T c) Θ̃(T c)

Lipschitz, unimodal, known T Θ̃(T 2/3) Θ̃(T c) Θ̃(T 3/4)

Table 8 Upper and lower Regret bounds in three different regimes based on c, the markup penalty index (MPI).

III.5.3. Unknown MPI Recall that our tight regret bound for DPMP selects between the

UE policy (Algorithm 11) and the GSE policy (Algorithm 8), depending on how c, the MPI,

compares with 3
4
. In particular, we assumed that the MPI is known to the policy. We show that

this assumption is indeed necessary for achieving o(T 3/4) bound. In other words, if c is unknown,

then DPMP is as hard to manage as the pure markdown problem.

Recall thatM is the set of “mountain curves” defined in Section III.4. In the face of markup

penalty, we represent an instance as a tuple (M, c) where M is known but c is unknown to the

policy.

Proposition 5 (Lower Bound for Unknown MPI). Let I be the family of only two

instances: (M, c= 0) and (M, c= 1). For any policy A oblivious of the MPI c, it holds Regc(A,I)≥
1
96
L1/4T 3/4.

94

Proof. Suppose A satisfies Regc(A,I) ≤ 1
96
L1/4T 3/4, in particular, Regc(A,M, c = 1) =

1
96
L1/4T 3/4. For any R ∈M, let q(R) be the probability that A ever marks up under R, i.e.

q(R) = PR[
T∑
t=2

1
(
A(t)>A(t− 1)

)
≥ 1],

where we recall that A(t) is the price A selects in round t. Observe that q(R)≤ 1
96
L1/4T−1/4 for

any R. In fact, if q(R)> 1
96
L1/4T−1/4, when the MPI is c= 1, the total markup penalty would be

1
96
L1/4T−1/4 ·T 1 = 1

96
L1/4T 3/4, hence Regc=1(A,R)≥ 1

96
L1/4T 3/4, a contradiction.

To apply the Ω(T 3/4) lower bound for the pure markdown problem, we next transform A into

a pure markdown policy A′. Loosely, policy A′ behaves exactly the same as A until the first time

that A marks up, whereupon A′ will stay at the same price forever since. We formalize this idea

below. A node v is called a markup node if xv >xpar(v) where we recall that xv is the price at node

v and par(v) is the parent node of v. For each markup node v, relabel its all descendants (including

itself) with price xpar(v). Since the reward along each path is at most T , and q(R)≤ 1
96
L1/4T−1/4,

we have

|Regc(A,R)−Regc(A′,R)| ≤ q(R) ·T ≤ 1

96
L1/4T 3/4.

Therefore,

Reg(A,R)≥Reg(A′,R)− 1

96
L1/4T 3/4

≥ 1

48
L1/4T 3/4− 1

96
L1/4T 3/4 By Theorem 13

=
1

96
L1/4T 3/4. □

III.6. Experiments

In this section, we compare the empirical performance of the UE policy described in Section III.2.2

with several alternative policies in the case of infinite inventory. Our results demonstrate that the

UE policy is reasonably fast in convergence and robust to model misspecification that affect other

parametric policies adversely.

III.6.1. Robustness Under Model Misspecification We first compare the performance

of our policy Uniform Elimination (UE) with two Explore-Then-Commit (ETC) type policies. A

generic ETC policy assumes certain parametric form of the underlying demand function (which is

possibly incorrect) and consists of an exploration phase and an exploitation phase. In the explo-

ration phase, the policy randomly selects two sample prices p1, p2 near the maximum price, each for

95

sufficiently many times. At the end of the exploration phase, the policy estimates the true param-

eters from the observations, and commits to the optimal price of the estimated demand function

throughout the exploitation phase. We provide more details below.

ETC-Policies. An ETC policy is specified by two parameters: h ∈ [0,1] and k ∈N. It first uni-

formly draws two sample prices p1, p2 from [1−h,1] and [1− 3h,1− 2h], and then selects each for

k times. At the end of the exploration phase, the policy computes a demand function from the

assumed demand family that best fits the empirical mean demands d̄i at each pi. Formally,

• ETCLin fits a linear demand function D̂(x) = â− b̂x given by

b̂=− d̄1− d̄2
p1− p2

, â= b̂ · p1 + d̄1.

• ETCExp fits an exponential demand function D̂(x) = exp(â− b̂x) given by

b̂=− log d̄1− log d̄2
p1− p2

, â= b̂ · p1 + log d̄1.

Finally, note that the optimal price is a
2b

for D(x) = a− bx, and 1/b for D(x) = ea−bx, so in the

exploitation phase the ETC policy selects the optimal price of D̂, given by p̂lin =Clip[0,1](
â

2b̂
) and

p̂exp =Clip[0,1](1/b̂) for each case§§§.

One of the merits of the UE policy is robustness: different than ETC policies, it does not

assume a certain functional form on the underlying demand function. We compare the regret of the

above three policies on linear demand functions D(x) = {a−bx} and exponential demand functions

D(x) = {ec−dx} over 1000 independently randomly generated demand functions. In each epoch, we

randomly generate demand functions by drawing

a∼U(0,1), b∼U(0, a), c∼U(0,3), d∼U(0,10).

Note that b is capped at a since otherwise the value of the linear function may be negative.

Furthermore, we scale each demand function so that the maximum reward rate is 1.

For UE, we set the parameters to be order-optimal, s= δ= 1
4
T 1/4, as proved in Theorem 11.

For simplicity, we ignore the the Lipschitz constant L in selecting the policy’s parameters. For both

ETC policies, we set h= 0.1 and for fairness of comparison, we set k to be the same as in UE, i.e.

k= δ−2 logT . Our results in Fig 4 demonstrate the following properties of the UE policy:

1. Fast convergence rate of regret: the regret of UE vanishes at an appreciable speed for both

linear and exponential demand functions.

2. Robustness to model misspecification: UE has vanishing regret on both demand functions. In

comparison, the regret of each ETC policy converges to 0 at a speed much faster than UE,

but does not converge under the incorrect model assumption.

§§§For any a, b, x, Clip[a,b](x) is defined to be the median of a, b and x.

96

Figure 4 Comparison between UE and ETC type policies on exponential and linear demand functions.

III.6.2. Impact of the Lipschitz Constant Intuitively, as the Lipschitz constant L

increases, reward function may change faster around the optimum, rendering the problem trickier.

In our theoretical analysis, the Õ(L1/4T 3/4) regret bound, further confirms this intuition. In this

section we numerically investigate the influence of L.

Experiment Setup. We compare the performance of UE policy on several randomly generated

families of exponential demand functions, each with a different range for Lipschitz constants.

We now describe how each curve in Figure 5 is obtained. Since we always scale the demand

function so that the maximum reward rate is normalized to 1, the only parameter that matters in

the demand function D(x;a, b) = ea−bx is b. For a fixed parameter range [0, bmax], we first compute

the (minimal) Lipschitz constant L=L(bmax) for the family F = {D(x; 0, b)|b∈ [0, bmax]}. Note that

L(bmax) increases as bmax increases. Then, we compute the average regret of our UE policy with

the (order-) optimal hyper-parameters s= L1/4T 3/4 and δ = L−3/4T 3/4 over 103 randomly drawn

demand models D(x; b) where b∼U(0, bmax). To generate a curve in Figure 5, we fix a T value and

then compute the regret for integers bmax = 1,2, ...6, and connect these 6 dots into a curve.

Finally, we let T vary from 105 to 109 and obtain 5 curves. We observed that for each T , the

average regret is increasing in L. This matches our intuition since as bmax increases, the reward

function becomes steeper around the peak, hence it is trickier to decide when to halt.

III.7. Conclusion

In this paper we showed tight regret bounds for markdown pricing under unknown demand model.

Our regret bounds reveal that the markdown constraint adds significantly more complexity to

dynamic pricing problems, since the corresponding regret bounds are asymptotically higher than

without this constraint. Moreover, we introduced a new problem, dynamic pricing with markup

penalty, that incorporates the negative effect of markups, and provided tight regret bounds. Finally,

97

Figure 5 How the regret changes for different Lipschitz constants.

we showed through numerical experiments that our policy is robust to model misspecification and

its regret vanishes rapidly.

Future Directions. This work opens up some directions in dynamic pricing for future research:

1. First, this work made minimal assumptions (Lipschitz and unimodal). In practice, however,

demand functions usually take some simple functional forms. We showed how to improve these

bounds when the reward function is twice-differentiable. An open problem in this direction is

whether we can improve the regret bounds for specific families such as linear, exponential or

logit demand functions. We provide some answers in the next chapter.

2. Second, our analysis compares against the best fixed price policy (FPP). For the infinite

inventory version, the best FPP is optimal among all policies, but this is no longer true for

the finite inventory version. An open question in this direction is, whether possible to analyze

the regret against the best policy that knows the true demand function?

3. In this work we introduced a simple model that captures markup penalty and provided tight

regret bounds. However, our stylized model fails to incorporate many practical aspects such

as the heterogeneity in customer behaviors, and the impact of markup magnitude. We hope

this work can open up a new direction in modelling the effect of markup.

98

Chapter IV Markdown Pricing Under Unknown

Parametric Demand Models
In the previous chapter, we considered the markdown pricing problem where the underlying demand

function is unknown, and showed a tight T 3/4 regret bound over T rounds under minimal assump-

tions of unimodality and Lipschitzness in the revenue function. This bound shows that the demand

learning in markdown pricing is harder than regular pricing under unknown demand which suffers

regret only of the order of T 2/3 under the same assumptions. However, in practice the demand

functions are usually assumed to have certain functional forms, which may potentially render the

demand- learning easier and lead to lower regret bounds. We investigate two fundamental questions

in this chapter, assuming the underlying demand curve comes from a given parametric family:

(1) Can we improve the T 3/4 regret bound for markdown pricing under extra assumptions on the

functional forms of the demand functions? We partially answered this question by showing a T 5/7

regret bound (Theorem 14) in the previous chapter, but is improvement possible with stronger

assumptions?

(2) Is markdown pricing still harder than unconstrained pricing, under these additional assump-

tions? To answer these, we introduce a concept called markdown dimension that measures the

complexity of the given family that contains the unknown true demand function. and present tight

regret bounds under this framework, thereby completely settling the aforementioned questions.

IV.1. Introduction

Dynamic pricing under unknown demand has been extensively studied. Such problem arise natu-

rally for new products, or for old products in new markets. Such problems are usually formulated

as a Multi-Armed Bandit problem. While bandit problems have been well-understood theoretically,

in practice however, we rarely see retailers deploy such policies. This is a largely because some

practical constraints are often overlooked by those policies. For example, the prices may oscillate,

which is highly undesirable. Quoting Bitran and Mondschein (1997) again,

“Customers will hardly be willing to buy a product whose price oscillates...Most retail stores do

not increase the price of a seasonal or perishable product despite the fact that the product is being

sold successfully”.

Dholakia (2021) has also pointed out in Harvard Business Review that

“Communicating a price increase to customers is never a pleasant task. It has the potential to

stir customer service complaints, social media outrage, or simply lose customers altogether.”

99

More precisely, price increases may potentially create a manipulative image of the retailer and

impact their ratings negatively. Luca and Reshef (2021) examined the relationship between price

changes and the daily menu prices of some restaurants, and discovered that

“On average, a 1% price-increase leads to 3-5% decrease in online ratings.”

Therefore, retailers may sometimes implicitly face a natural monotonicity constraint, that the prices

can not go up. As defined in the the last chapter, a pricing policy that satisfies such a constraint

is usually referred to as markdown pricing policy.

Markdown pricing is ubiquitous in retailing (Ramakrishnan (2012)). In practice, a retailer

may use price markdowns to boost demands and hence increase revenues. For example, for fashion

clothing, a retailer may start with a high retail price in the regular selling season, and then offer

discounts in the clearance season, possibly over multiple rounds, to sell the remaining inventory.

A successful markdown pricing strategy can have a considerable impact on the gross margins. A

recent survey (Google (2021)) suggests that up to $39 billion in value is being left on the table

due to sub-optimal markdown pricing, and this number is just for one of many sectors of retail

(“specialty” retail).

Thus motivated, in this work we consider the markdown pricing problem with unknown

demand, under various assumptions. While unconstrained dynamic pricing under unknown demand

has been extensively studied, little is known about markdown pricing under unknown demand.

Recently, Jia et al. (2021) first considered this problem, under the most general case with only min-

imal assumptions for achieving meaningful performance guarantees. More precisely, they showed

that unimodality and Lipschitzness in the revenue function (defined to be the price times mean

demand) are necessary for attaining sublinear regret, and presented a tight T 3/4 regret bound under

those assumptions. Noticeably, this bound is asymptotically higher than T 2/3, the known regret

bound for unconstrained pricing, highlighting the extra complexity caused by the monotonicity

constraint.

Nonetheless, in practice, demand functions are usually assumed to have certain parametric

forms, such as linear, exponential or logit function. This motivates our first question:

Q1) Can we strengthen the T 3/4 regret bound for markdown pricing in this setting?

To see why such improvement is possible, we observe that the proof of the T 3/4 lower bound

in the previous chapter considers pairs of “roof-shaped” revenue functions that are completely

identical when the price is higher than some p, and diverging for prices lower than p. Thus, any

reasonable policy has to carefully reduce the price, halting only when there is sufficient evidence

for overshooting the optimal price.

100

However, this is not true in the parametric case. Take linear demand functions as an example.

A policy may simply learn the slope and intercept of the underlying demand function at high

prices, and then select the optimal price of the estimated demand function in all future rounds.

This enables us to design a more powerful class of learn-then-earn type of policies. Now that we

surmise that the T 3/4 regret can be improved under certain parametric assumption, we naturally

arrive at our second question:

Q2) Is markdown pricing still harder than unconstrained pricing under these assumptions?

Or more precisely, can we still show a separation between markdown and unconstrained pricing,

under various parametric assumptions?

While one may answer these two questions for particular families such as linear family, the

following is the real challenge.

Q3) Can we find a general framework to unify the regret bounds for different categories of

families, rather than specific results for specific families?

In this work, we propose such a framework, by introducing a complexity index called markdown

dimension, that captures the hardness of performing markdown pricing on a given family that

contains the unknown true demand function. Under this framework, we provide efficient markdown

policies for each dimension, which we also show to be best possible, thereby completely settling the

problem of markdown pricing under unknown demand.

IV.1.1. Our Contributions. In this work, we make the following contributions.

1. New Complexity Measure of Demand Families: We introduce a new concept called

markdown dimension denoted by d, that captures the complexity of performing markdown

pricing on a family, answering the third research question. Within this framework, we provide

a complete settlement of the problem, as specified below.

2. Markdown Policies with Theoretical Guarantees: For each finite d ≥ 0, we present a

efficient markdown pricing policy. Our policies proceed in phases, wherein the seller learns

the demand by selecting prices at suitable spacing to estimate the true parameter and then

makes conservative decisions. We show that for d = 0 and d ≥ 1, our policies achieve regret

O(log2 T) and Õ(T
d

d+1) respectively, settling our first research question.

3. Tight Minimax Lower Bound: We complement our upper bounds with a matching lower

bound for each markdown dimension. More precisely, we show that Ω(log2 T) regret is tight for

dimension d= 0, which separates it from the O(logT) regret bound without this monotonicity

constraint. For finite d≥ 1, we show a Ω(T d/(d+1)) lower bound, which not only matches our

upper bound (up to logarithmic factors) but is also asymptoticly higher than the tight Θ̃(T 1/2)

101

bound (see Broder and Rusmevichientong (2012)) without the markdown constraint, settling

our second question.

4. Impact of Smoothness: We go further in refining our bounds and investigate the impact of

smoothness of the revenue function around the optimal price, and extend our upper bounds for

a generalization of smoothness that we call the sensitivity parameter s≥ 2. For both finite and

infinite d, we obtained decreasing upper bounds as s increases from 2. Moreover for d=∞, our

tight T
2s+1
3s+1 regret bound is asymptoticly higher than that for unconstrained pricing, whose

optimal regret is known to be T
s+1
2s+1 (Auer et al. (2007)).

The remainder of this paper is organized as follows: we conclude this section with a summary

of the related literature. We then formally describe our model and assumptions in Section IV.2,

and then state our policies and main results in Section IV.3.

IV.1.2. Previous Work The present work falls into two primary streams of work: dynamic

pricing and multi-armed bandits. As mentioned above, the distinguishing feature of our work is

the combination of a markdown constraint with a bandit-style (i.e. regret minimization) analysis.

Other important dimensions along which to contrast this work with the extant literature include:

whether the underlying demand function is assumed to come from a parametric family (this work

is non-parametric), whether infinite inventory is assumed (this work allows for a particular regime

of finite inventory), and whether it is assumed that a prior distribution for the demand functions

is given (this work does not).

Dynamic Pricing: Gallego and Van Ryzin (1994) characterized the optimal pricing policy when

the demand function is known. Kleinberg and Leighton (2003) studied a revenue maximization

problem for a seller with an unlimited supply of identical goods, and obtained tight regret bounds

under different models of buyers. Besbes and Zeevi (2009) studied the dynamic pricing problem

under finite inventory in a finite selling period. Their benchmark regret function is the optimal

pricing algorithm which is non-adaptive and whose expected sales is at most the inventory level.

They presented an algorithm which achieves nearly optimal regret bounds. Subsequently, Wang

et al. (2014) improved their results by showing a matching lower bound. Later, Babaioff et al.

(2015) and Badanidiyuru et al. (2013) considered a more practical scenario where the inventory

is finite. Other works that formulate dynamic pricing as MAB include Bastani et al. (2019), Hu

et al. (2016), Chen and Farias (2018), Lei et al. (2014), Keskin and Zeevi (2014), den Boer and

Zwart (2013), Liu and Cooper (2015), Farias and Van Roy (2010), Lobel (2020), Qiang and Bayati

(2016), Papanastasiou and Savva (2017) and den Boer and Zwart (2015).

102

In practice, costs of implementing frequent price changes in a traditional retail setting can

amount to a considerable portion of the seller’s net margins. Thus motivated, Broder (2011) first

formulated the demand learning problem with limited price changes and presented an O(
√
T)

regret policy for parametric models using O(logT) price changes. Later, Perakis and Singhvi (2019)

showed under stronger assumptions that the same regret may be achieved using O(log logT) price-

changes. Cheung et al. (2017) considered a given discrete demand functions and presented a regret

bound that decreases in the number of allowed price-changes. Chen et al. (2020) considered the

joint pricing and inventory management problem under limited price changes.

Orthogonal to the number of price changes, previous literature has also considered the direc-

tion of price changes. In practice, buyers usually have a reference price in mind, at which a higher

(lower) price is considered a loss (gain), and customers are more sensitive to losses than to gains.

Dynamic pricing with reference-price effects has been studied extensively in recent years, for exam-

ple Nasiry and Popescu (2011), Heidhues and Kőszegi (2014), Wu et al. (2015), Hu et al. (2016)

and Wang (2016). Recently, den Boer and Keskin (2020) considered the setting where the demand

function is unknown.

As an important variant of the dynamic pricing problem, the Markdown Pricing problem has

been extensively studied. The book chapter by Ramakrishnan (2012) and surveys by Elmaghraby

and Keskinocak (2003) and den Boer and Zwart (2015) provide a through overview. Most previous

work on markdown pricing assume a known demand function and focused on either empirical

results (e.g. Smith and Achabal (1998), Heching et al. (2002)) or strategic customer behaviors (e.g.

Yin et al. (2009), Boyacı and Özer (2010), Aviv and Vulcano (2012)). In our previous chapter, we

introduced the markdown pricing under unknown demand function, and showed a Θ̃(T 3/4) regret

bound assuming the unknown revenue functions are Lipschitz and Unimodal.

Multi-armed Bandits (MAB): There exist several MAB variants that are similar to our

problem, but without the markdown constraint. In the Discrete Multi-armed Bandit problem, the

player is offered a finite set of arms, with each arm providing a random revenue from an unknown

probability distribution specific to that arm. The objective of the player is to maximize the total

revenue earned by pulling a sequence of arms (e.g. Lai and Robbins (1985)). Our pricing problem

generalizes this framework by using an infinite action space [0,1] with each price p corresponding

to an action whose revenue is drawn from an unknown distribution with mean R(p).

In the Lipschitz Bandit problem (e.g. Agrawal (1995)), it is assumed that each x ∈ [0,1]

corresponds to an arm with mean reward µ(x), and µ satisfies the Lipschitz condition, i.e. |µ(x)−

103

µ(y)| ≤L|x−y| for some constant L> 0. Kleinberg (2005) proved a tight Θ̃(T 2/3) regret bound for

one-dimensional Lipschitz Bandits. The lower bound was proved by considering a family of “bump

curves”: each curve is 1
2
at all arms except in a small neighborhood of the “peak”, where the mean

reward is slightly higher elevated. Since these bump curves are unimodal, this lower bound carries

over to the family we study.

Another closely-related variant of MAB is the Unimodal Bandits problem (Cope (2009), Yu

and Mannor (2011), Combes and Proutiere (2014)). In addition to the Lipschitzness assumption,

the reward function µ : [0,1]→ [0,1] is assumed to be unimodal. It is also assumed that there is a

constant L′ > 0 s.t. |µ(x)−µ(y)| ≥L′|x− y| for all x, y ∈ [0,1]. Yu and Mannor (2011) proposed a

binary-search type algorithm with regret Õ(
√
T).

Recently there is an emerging line of work on online learning with monotonicity constraint.

Jia et al. (2021) considered the markdown pricing problem under unknown demand function and

proved a tight T 3/4 regret bound under the minimal assumptions – Lipschitzness and unimodality

on the revenue functions. Chen (2021) independently considered a special case where the inventory

is infinite under the name Monotone Bandits, and obtained a subset of the results using different

lower bound techniques. Gupta and Kamble (2019) and Salem et al. (2021) considered a more

general online convex optimization problem where the actions sequence is required to be monotone.

IV.2. Model and Assumptions

We begin by formally stating our model. In this work we assume an unlimited supply of a single

product. Given a discrete time horizon of T rounds, in each round t, the policy (representing the

“seller”) selects a price pt (the particular interval [0,1] is without loss of generality, by scaling).

The demand Dt in this round is then independently drawn from a fixed distribution with unknown

mean D(pt), and the policy receives revenue (or reward, which we will use interchangeably) pt for

each unit sold, and hence a total of pt ·Dt revenue in this round. The only constraint the policy

must satisfy is the markdown constraint: p1 ≥ · · · ≥ pT almost surely.

The function D(p) which maps each price p to the mean demand at that price is known as

the demand function. For any policy π,¶¶¶ demand function D(·), we use r(π,D) to denote the

expected total reward of π under D.

Rather than evaluating policies directly in terms of r(π,D), it is more informative (and ubiq-

uitous in the literature on multi-armed bandits) to measure performance using the notion of regret

¶¶¶For the sake of completeness, a policy is, formally, a time-indexed sequence of functions π = {πt : ([0,1] ×
[0,1])t−1 → [0,1], t = 1, . . . , T}, where each function πt maps the prices selected and demands observed over the
previous t− 1 rounds to a price for round t.

104

with respect to a certain idealized benchmark. Specifically, since we assumed unlimited supply,

when the true reward function is known, the seller simply always selects a revenue-maximizing

price p∗D = argmaxp∈[0,1] p ·D(p) at each round, and we denote this maximal reward rate to be

r∗D =maxp∈[0,1] p ·D(p). The regret of a policy is then defined with respect to this quantity, and we

seek to bound the worst-case value over a given family of demand functions.

Definition 19 (Regret). For any policy π and demand function D, define the regret of policy

π under D to be Reg(π,D) := r∗D · T − r(π,D). For any given family F of demand functions, the

worst-case regret (or simply regret) of policy π for family F is Reg(π,F) := supD∈F Reg(π,D).

IV.2.1. Basic Assumptions Now we state the common assumptions that all of our results

rely on. A demand function D(·) is naturally associated with a revenue function R(p) = p ·D(p),

which we term more generally as the reward function. Sometimes it will be convenient to work

directly with the revenue functions. In such cases, by abuse of notations, we may write r(π,R) as

the regret of under reward function is R and r(π,F) the worst case regret under a family F of

revenue functions.

Definition 20 (Optimal Price Mapping). Let F be a set of functions defined on some set

S ⊆ R. For any function R : S→ R, let M(R) be the subset of global maxima on S. The optimal

price mapping of F is defined to be

p∗ :F → S

R→ infM(R).

By elementary topology, if the domain S is compact, then M(R) is also compact, so the

infimum of M(R) can be attained, and hence p∗(R) is also a global maximum of R. We first

introduce a standard assumption (see e.g. Broder and Rusmevichientong (2012)), which assumes

the derivative of R vanishes at p∗(R).

Assumption 1 (Vanishing Derivative). We assume that every reward function R is differ-

entiable on its domain, and moreover, R′(p∗(R)) = 0.

In particular, this assumption holds if the reward function attains global its optimum in the

interior of the domain. Under Assumption 1, the reward function changes gently around the optimal

price, which intuitively leads to improved regret bounds. In fact, applying Taylor expansion on R

around p∗, for sufficiently small ε it holds that

R(p∗ + ε) =R(p∗)+R′(p∗) · ε+ 1

2
R′′(p∗) · ε2 + o(ε2),

105

i.e.

|R (p∗)−R (p∗ + ε) |= 1

2
R′′(p∗) · ε2 + o(ε2).

Thus, if a policy overshoots the optimal price by ε, then only an O(ε2) loss is incurred in each

round. We next introduce a distributional assumption.

Definition 21 (Subgaussian Random Variable). The subgaussian norm of a random vari-

able X is

∥X∥ψ2
:= inf{c > 0 :E[eX

2/c2]≤ 2},

and X is said to be subgaussian if ∥X∥ψ2
<∞.

Assumption 2 (Subgaussian noise). There exists a constant Csg > 0 such that under any

true demand function and any price p, the random demand X at price p satisfies ∥X∥ψ2
≤Csg.

For example, this assumption is satisfied when the demand distributions are all Bernoulli, or

when they are normal distributions with bounded variances.

Most of our upper bounds rely on the following standard concentration bound for subgaussian

random variables (see e.g. Vershynin (2018)).

Theorem 19 (Hoeffding’s inequality). Suppose X1, ..,Xn are independent subgaussian ran-

dom variables, then for any δ > 0,

P

[
n∑
i=1

(Xi−EXi)≥ δ

]
≤ exp

(
− δ2

2
∑n

i=1 ∥Xi∥2ψ2

)
.

IV.2.2. Measuring the Complexity of a Family Our goal in the rest of this section is

to develop a novel concept, markdown dimension, that characterizes the complexity of a family of

reward functions. In this subsection, we explain the high level ideas behind our definition.

Intuitively, the exploration-exploitation trade-off for markdown pricing becomes harder to

manage as the given family becomes more complex. Consider, for example, linear demand functions.

If each function takes the form D(p; c) = 1− cp where only c∈ (0,1) is unknown and p∈ [0,1], then

the seller simply needs to estimate the (negative) slope c by sampling sufficiently many times at

p= 1.

In contrast, if each function takes the form D(p;a, b) = a− bp where both parameters a, b are

unknown, then sampling at one price would not suffice. Rather, one needs to select (at least) two

distinct prices to estimate a, b, thereby facing the following dilemma. Suppose the two prices p < p′

selected are far apart. Then, p may be far away from the unknown optimal price p∗ since p∗ may

106

be close to p′, resulting in a high regret. Otherwise, when those prices are close by, the demand

learning requires a high volume of samples, which potentially also leads to a high regret.

Thus we reach a natural question: can we introduce a complexity index to measure the

difficulty of performing markdown pricing on a given family, and then provide tight regret bounds

in terms of this complexity index? A suitable choice of such complexity has been unexpectedly

elusive. The first idea may be using the number of parameters to define the complexity. However,

this is not well-defined, since there may be multiple ways to parametrize the same family, with

possibly different numbers of parameters.

In this work, we propose such a complexity index, called markdown dimension, and provide

nearly-optimal regret bounds in terms of the markdown dimension of the given family of demand

functions. The formal definition relies on other two concepts, the identifiability of a family, and the

robustness of a parametrization, which we introduce in the next two subsections.

IV.2.3. Identifiability Our notion of identifiability generalizes a key property of single-

variable polynomials, that every degree-d polynomial can be uniquely determined by its values at

any (d+1) points. To present the formal definition, we first introduce a mapping which, for a fixed

subset of prices, assigns each demand function a profile based on its values at those prices.

Definition 22 (Profile Mapping). Consider a set F of real-valued functions defined on A⊆
R. For any fixed p= (p0, p1, ..., pd)∈Ad+1, the profile-mapping with respect to p is defined as

Φp :F →Rd,

D 7→ (D(p0),D(p1), ...,D(pd)) .

We may subsequently call Φp(D) the profile of function D with respect to p. Our notion of identifi-

ability simply requires that every function in F be assigned a unique profile at any (d+1) distinct

points (“prices”).

Definition 23 (Identifiability). The family F is d-identifiable, if for any (d + 1) distinct

p0, p1..., pd ∈ S, the profile mapping Φp0,...,pd is injective, i.e. distinct functions in F are mapped to

distinct profiles.

In particular, if a family is d-identifiable, then for any distinct p0, p1..., pd the inverse profile-mapping

Φ−1
p :Rp→F exists, where Rp is the range of the mapping Φp.

IV.2.4. Robust Parametrization We first formally define a parametrization.

Definition 24 (Parametrization). An order-m parametrization for a family F of functions

is any one-to-one mapping from a compact set Θ⊆Rm to F . Moreover, each value θ ∈Θ is called

a parameter.

107

By abuse of notations, we may useD(p;θ) to denote the functionD(p) that parameter θ corresponds

to. As a standard assumption (see e.g. Broder and Rusmevichientong (2012)), we also assume that

the parameter set Θ to be compact, which leads to many favorable properties.

Assumption 3 (Compact Domain). The domain Θ of the parametrization is compact.

Under this assumption, the demand functions in F are bounded, and thus we may without loss of

generality also scale the range (i.e. target space) of those functions to be [0,1].

Assumption 4 (Smoothness). The mapping D : [0,1] × Θ → R is twice-differentiable and

admits continuous second partial derivative. In particular, since [0,1]×Θ is compact, under the

above assumption, there exist constants C(j) > 0 such that the j-th derivative satisfies |D(j)(p, θ)| ≤
C(j) for any (p, θ)∈ [0,1]×Θ and j = 0,1,2.

Recall that we previously defined the optimal price mapping p∗ from F to the domain, [0,1],

of the reward functions. Now that we introduced a parametrization, by abuse of notation we may

view the mapping p∗ as being defined on Θ⊆Rm, which enables us to consider its Lipschitzness.

Assumption 5 (Lipschitz Optimal Price Mapping). The optimal price mapping p∗ : Θ→
[0,1] is C∗-Lipschitz for some constant C∗ > 0.

In particular, by compactness of Θ, a sufficient condition for the above to hold is that p∗ admits

continuous first-order partial derivatives. This assumption is hence satisfied by most “smooth”

demand functions. For example, take linear demand function D(p; c) = 1− cp where p, c ∈ [0,1].

Then, the optimal price is p∗(c) =min{ 1
2c
,1}, which can be easily seen to be 1-Lipschitz.

The final ingredient for robust parametrization is motivated by the following robustness

of the natural parametrization D(p;θ) =
∑d

j=0 θjp
j for polynomials. Consider any distinct prices

p0, p1, ..., pd, and any d+1 real numbers y0, y1, ..., yd representing, for example, the mean reward at

each pi. We may then uniquely determine a degree-d polynomial by solving the linear equation
1 p0 p20... p

d
0

1 p1 p21... p
d
1

...
1 pd p2d... p

d
d

 ·

θ0
θ1
...
θd

=

y0
y1
...
yd

 .
The matrix on the left-hand side is often referred to as the Vandermonde matrix, denoted Vp :=

V (p0, ..., pd). One can easily verify that when pi’s are distinct, Vp has non-zero determinant and is

hence invertible, and hence

θ= V −1
p y,

where y= (y0, y1, ..., yd). Next consider the effect of a perturbation on y, in terms of the following

separability parameter.

108

Definition 25. For any p= (p0, ..., pd)∈Rd+1, define h(p) :=mini ̸=j |pi− pj|.

In words, this is the minimal distance between two distinct sample prices. To introduce the notion

of robust parametrization, let us first consider a result that is specific to only polynomial demand

functions.

Proposition 6. There exist constants C1,C2 > 0 such that for any p∈Rd+1 with 0<h(p)≤C1,

any ε≤C1, and y, ŷ ∈Rp with ∥y− ŷ∥∞ ≤C1, it holds that

∥V −1
p (y)−V −1

p (ŷ)∥∞ ≤C2 · ∥y− ŷ∥∞ ·h(p)−d. (33)

More concretely, let D(p, θ) be the underlying polynomial demand function, and y= Vp · θ.

Suppose ŷ corresponds to the empirical mean demands at prices p0, ..., pd. Then, one can estimate

θ using the plug-in estimator V −1
p · ŷ. Proposition 6 then upper bounds the estimation error of

this estimator, in terms of h(p) and the difference between y and ŷ. Our upper regret bounds are

based on such estimation-error bounds.

As we will soon see, in order to achieve sublinear regret, the value h = h(p) in our policy

has to converges to 0, as T goes to infinity. Thus, the dependence on h crucially affects our regret

bounds. Proposition 6 establishes a nice property for degree-d polynomials, that the estimation

error increases in the order of (1
h
)d, as h→ 0+. We introduce the notion of robust parametrization

by generalizing the above property beyond polynomials. Loosely, an order-d parametrization is

robust, if it admits a similar error bound to (33).

Definition 26 (Robust Parametrization). An order-d parametrization θ : Θ→F is robust,

if

a) it satisfies Assumptions 3, 4 and 5, and

b) there exist constants C1,C2 > 0 such that for any p ∈ Rd+1 with 0 < h(p) ≤ C1 and any

y, y′ ∈Rp with ∥y−y′∥∞ ≤C1, it holds that

∥Φ−1
p (y)−Φ−1

p (y′)∥∞ ≤C2 · ∥y−y′∥∞ ·h(p)−d.

IV.2.5. Markdown Dimension Now we are ready to define the markdown dimension.

Definition 27 (Markdown Dimension). The markdown dimension (or simply dimension)

for a family F of functions, denoted d(F), is the minimum integer d ≥ 0 such that F is (i) d-

identifiable, and (ii) admits a robust order-d parametrization. If no finite d satisfies the above

conditions, then d(F) =∞.

For example, under mild assumptions, any family of degree-d polynomials is d-dimensional

under the natural parametrization.

109

Proposition 7. Let F = {
∑d

j=0 θjx
j| θ ∈Θ} where Θ is compact. Then, F is d-dimensional.

We further illustrate our definition by considering the dimensions of some commonly used

families. As the simplest family, one may verify that our definition of 0-dimensional family (under

our assumptions) is equivalent to the separable family as defined in Section 4 of Broder and Rus-

mevichientong (2012). We provide more concrete examples below.

Proposition 8. The following families are 0-dimensional:

• single-parameter linear demand functions: F0 = {1− ax : b∈ [amin, amax]},

• exponential demand functions: F1 = {e1−ax : b∈ [amin, amax]},

• logit demand functions: F2 = { e1−ax

1+e1−ax : b∈ [amin, amax]},

Finally, we observe that by our definition, if a family of functions is not d-identifiable for any

d, then it is infinite dimensional, as illustrated by the following example.

Proposition 9. Let F be the set of all 1-Lipschitz functions on [0,1], then d(F) =∞.

In this work, for each finite d= 0,1,2, ..., we will propose an efficient markdown pricing policy

for dimension d families, which we also prove to be the best possible theoretically.

IV.2.6. Sensitivity Consider the Taylor expansion of a reward function R(x) around an opti-

mal price p∗:

R(p) =R(p∗)+ 0+
1

2!
R′′(p∗)(p− p∗)2 +

1

3!
R(3)(p∗)(p− p∗)3 + ...

Suppose the first nonzero derivative is R(k)(p∗). Then, the higher k, the less the revenue is sensitive

to overshooting (i.e. p < p∗). This motivates us to introduce the following concept, sensitivity, that

measures how fast the revenue function changes around the optimal price.

Definition 28 (Sensitivity). A reward function is called s-sensitive if every function R ∈F

is (s+1)-differentiable, with R(1) (p∗(R)) = ...=R(s−1) (p∗(R)) = 0 and R(s) (p∗(R))< 0. A family

F of reward functions is called s-sensitive if

a) every R ∈F is s-sensitive,

b) it admits a parametrization R(x;θ) satisfying Assumptions 3, 4 and 5, and

c) there is a constant C6 > 0 such that R(s) (p∗(R))≤−C6 < 0 for any R ∈F .

One can easily verify the following.

Proposition 10. Let R(x;θ) = θ − | 1
2
− x|s for x ∈ [0,1], then {R(x;θ) : θ ∈ [1

2
,1]} is an s-

sensitive family.

To utilize the sensitivity of a family, we will use a folklore result in the upper bound analysis.

110

Theorem 20 (Taylor’s Theorem with Lagrange Remainder). Let f : R→ R be (m+ 1)

times differentiable on an open interval (a, b). Then for any x,x′ ∈ (a, b), there exists some ξ with

(x− ξ) · (x′− ξ)≤ 0 such that

f(x′) = f(x)+
1

1!
f ′(x)(x′−x)+ ...+

1

m!
f (m)(x)(x′−x)s+

1

(m+1)!
f (m+1)(ξ)(x′−x)s+1.

Theorem 20 implies a key property for any s-sensitive reward functions. Suppose R is s-sensitive,

then for any ε > 0, we have

R(p∗ + ε) =R(p∗)+
R(s)(ξ)

s!
εs

where ξ ∈ [p∗, p∗+ε]. Since Θ is compact, there exists some constant Cs > 0 such that |R(s)(x, θ)| ≤

Cs for any x∈ [0,1] and θ ∈Θ. Thus,

|R(p∗ + ε)−R(p∗)| ≤ Cs
s!
|ε|s.

Consequently, if a policy overshoots or undershoots the optimal price by ε, the regret per round

is only O(εs), which is asymptoticly lower than the per-round regret O(ε2) without the sensitivity

assumption.

For unconstrained pricing (or continuum bandits), Kleinberg (2005) showed that a tight

T
s+1
2s+1 regret for s-sensitive reward functions. In particular, for s = 1, the regret becomes T 2/3,

which is strictly lower than the T 3/4 result. In this work we address a natural question: how does

the regret bounds for markdown pricing change as s increases?

IV.3. Policies and Results

We give an overview of our policies and prove regret upper bounds for zero, finite (non-zero) and

infinite dimensional families of demand functions. Moreover, we show that our policies achieves

nearly-optimal regret by providing lower bounds for each of these regimes.

IV.3.1. Zero-Dimensional Family We start with the simplest case, 0-dimensional demand

functions. We propose a policy called Cautious Myopic which proceeds by phases and makes con-

servative decisions. As opposed to the optimism in the face of uncertainty in UCB type policies,

our policy adopts conservatism in the face of uncertainty.

More precisely, we partition the time horizon so that the j-th phase consists of tj := ⌈2j logT ⌉

rounds (for simplicity we assume T is a multiple of ⌈logT ⌉), and thus in total there are K =

O(logT − log logT) phases. In each phase, the policy estimates the true parameter θ∗ using the

observations from the last phase, and builds a confidence interval around θ∗, which depends on

111

the number of length of this phase and also the constant Csg as defined in Assumption 2. Then,

in the next phase, the policy selects the largest optimal price of any parameter θ in the confidence

interval. We write t(j) :=
∑j

k=0 tk and for convenience t(0) = 0, and formally state this policy in

Algorithm 9.

Algorithm 9 Cautious Myopic Policy.

1: Input: a family F of demand functions and time horizon T .

2: p1← 1 ▷ Initialization

3: for j = 1, ...,K do

4: for t= t(j−1) +1, ..., t(j−1) + tj do ▷ Phase j starts

5: xt← pj ▷ Select pj for tj times in a row

6: Observe realized demand Dt

7: d̄j =
1
tj

∑tj
τ=1Dt(j−1)+τ ▷ Empirical mean demand in phase j

8: θ̂j←Φ−1
pj
(d̄j) ▷ Estimate parameter

9: wj← 2Csg
√

logT
tj

▷ Width of the confidence interval

10: pj+1←max{p∗(θ) : |θ− θ̂j| ≤wj} ▷ Conservative estimation of the optimal price

By bounding the expected regret in each round using concentration bounds, we obtain our

first following upper bound.

Theorem 21 (Zero-dimensional Upper Bound). Let F be any 0-dimensional, s-sensitive

family of demand functions. Then the Cautious Myopic (CM) Policy has regret

Reg(CM,F) =

{
O(log2 T), if s= 2,

O(logT), if s > 2.

As we discussed earlier, many simple families of demand functions such as single-parameter

linear or exponential demand functions satisfy s= 2, thereby having regret O(log2 T).

It is worth noting that this bound is asymptotically higher than the O(logT) upper bound in

the absence of the markdown constraint (Broder and Rusmevichientong (2012)). Intuitively, this

is because the CM policy strikes a balance between the risk of overshooting (the optimal price)

and getting close to the optimal price, by purposely distancing from the estimated optimal price.

Is this trade-off optimal? In other words, can we achieve o(log2 T) regret by taking more risk or

being more conservative?

112

We answer this question by showing that CM is indeed optimal, that is, there is an Ω(log2 T)

lower bound. Further, this result provides the first separation between the O(logT) regret for

unconstrainted pricing and markdown pricing for 0-dimensional demand families.

Theorem 22 (Zero-Dimensional Lower Bound). For any θ ∈R, define Dθ(x) = 1− θx for

x ∈ [1
2
,1] and consider F = {D(x;θ) : θ ∈ [1

2
,1]}. Then, F is 0-dimensional and for any policy π,

Reg(π,F) =Ω(log2 T).

IV.3.2. Finite-Dimensional Family Now we consider finite, nonzero dimensional families.

Different from the zero-dimensional case, now the learner is no longer able to estimate the true

parameter θ at a single price. Rather, for dimension d, the learner needs to collect demand samples

at d+1 distinct sample prices. This, however, introduces extra regret, since the optimal price may

lie between these sample prices.

Intuitively, a reasonable policy needs to trade off between the overshooting risk and the

learning rate. If the gap is large, the policy may learn the parameter efficiently, but there is

potentially a higher regret due to overshooting, in case the true optimal price lie between the

sample prices. On the other side, if the gap is small then there is less risk of overshooting but a

slower rate of learning.

We introduce our Iterative Cautious Myopic (ICM) Policy (Algorithm 10) that strikes such

balance nearly optimally, as we will soon see from Theorem 23 and Theorem 24. The policy consists

of m phases. In phase j ∈ [m], the policy selects d sample prices, evenly spaced with distance h, and

each for Tj times. Then, the policy estimates the optimal price based on the observed demands,

and constructs a confidence interval [Lj,Uj] centered at p̂j.

To determine the initial price pj+1 in the next phase, the policy considers the following three

cases. Note that the last price that the policy selects in phase j is pj − dh. We say a good event

occurs, if pj − dh > Uj. in which case we simply select the next sample price, pj+1, to be Uj. In

the dangerous event, the current price pj − dh is within the confidence interval, and we may have

already overshot the optimal price. In this case, we can no longer select pj+1 to be Uj due to

the markdown constraint. Instead, we select pj+1 = pj − dh. Finally in the overshooting event, as

the name suggests, our current price is already lower than the left endpoint Lj of the confidence

interval, and hence with high probability we have overshot the optimal price. In this case, we

immediately exit the exploration phase (i.e. the outer for-loop) and enter the exploitation phase,

wherein the current price is selected in all future rounds.

113

Algorithm 10 Iterative Cautious Myopic Policy.

1: Input: F ,m,{Tj}j∈[m], T

2: p1← 1,L0← 0,U0← 1 ▷ Initialization

3: for j = 1,2, ...m do ▷ Phases

4: for k= 0,1, ..., d do ▷ Sample at (d+1) equi-distant prices

5: Select price pj − kh for Tj times.

6: D̄k← 1
Tj

∑Tj
i=1Di ▷ Mean demand at pj − kh

7: θ̂←Φ−1
pj ,...,pj−dh(D̄0, ..., D̄d) ▷ Estimate Parameter

8: wj← 2h−d ·C2 ·Csg
√

d logT
Tj

▷ Width of confidence interval

9: Lj←min{p∗(θ) : ∥θ− p∗(θ̂)∥2 ≤wj} ▷ Lower confidence bound

10: Uj←max{p∗(θ) : ∥θ− p∗(θ̂)∥2 ≤wj} ▷ Upper confidence bound

11: if Uj ≤ pj − dh then pj+1←Uj ▷ Good event

12: if Uj > pj − dh≥Lj then pj+1← pj − dh ▷ Dangerous event

13: if pj − dh<Lj then Break ▷ Overshooting event

14: Select the current price in every future round ▷ Exploitation

Theorem 23 (Upper Bound for Finite d≥ 1). For any m = Õ(1), there exists suitable

choice of h > 0 and T1 < ... < Tm, such that the Iterative Cautious Myopic Policy Policy ICM =

ICM(T1, ..., Tm, h) achieves regret Reg(ICM,F) = Õ
(
T ρ(m,s,d)

)
where

ρ(m,s,d) =
1+

(
1+ s

2
+ ...+(s

2
)m−1

)
d(

s
2

)m
+
(
1+ s

2
+ ...+(s

2
)m−1

)
· (d+1)

.

In particular, for s= 2 and m= logT , we have

Reg (ICM,F) = Õ
(
T

d
d+1

)
.

In contrast to the upper bound for zero-dimensional family where the regret is only logarith-

mic in T , for d≥ 1 the regret scales polynomially in T . We complement the upper bound with an

nearly tight lower bound, up to logT factors, stated below.

Theorem 24 (Lower Bound for Finite d≥ 1). For any d≥ 2, there exists a d-dimensional

family F of demand functions on [0,1] such that for any markdown policy π,

Reg(π,F) =Ω(T
d

d+1).

114

In our proof, for each d ≥ 1 we consider a sub-family of (d + 1)-degree decreasing polynomial

demand functions – which is also d-dimensional – and show that there is a pair of such demand

functions on which any policy suffers regret Ω(T
d

d+1).

Markdown Dimension Markdown Unconstr. Pricing

d= 0 Θ(log2 T) Θ(logT)

1≤ d<∞ Θ̃(T d/(d+1)) Θ̃(
√
T)

Table 9 Regret bounds for markdown and unconstrainted pricing under unknown demand for s= 2.

We summarize our results for s= 2 in Table 9. We highlight our results in red, and emphasize

that each entry corresponds to two results, an upper bound and a matching lower bound. Notation

Θ̃ means ignoring logT terms.

IV.3.3. Infinite Dimensional Family For the infinite dimensional functions, it is more con-

venient to work with the mean revenue (or reward, which we use interchangeably) function R(x) :=

x ·D(x) instead of the demand function. In particular, this reward function can be determined

completely by D(x), and thus the reward function R(x) is unknown if and only if the demand

function D(x) is unknown. Further, it is straightforward to verify the following.

Fact. For any 0≤ d≤∞, a family of demand functions has dimension d if and only if its corre-

sponding family of reward functions has dimension d.

Many previous work on dynamic pricing and multi-armed bandits focused on infinite dimen-

sional families of demand functions. For example, it has been shown that for the family of Lipschitz

demand functions an Õ(T 2/3) regret can be achieved (Kleinberg (2005), Broder and Rusmevichien-

tong (2012)). Another well-studied setting is when the reward functions correspond to demand

functions that are unimodal (Yu and Mannor (2011), Combes and Proutiere (2014)), where a

binary search type policy achieves Õ(T 1/2) regret under an additional lower Lipschitz assumption.

In contrast to the unconstrained version, there is no markdown policy that achieves o(T)

regret on the family of Lipschitz reward functions (see Jia et al. (2021)). In fact, consider reward

functions with possibly multiple local optima. Suppose a policy detects a local optimum at some

high price phigh, then it faces a dilemma: if it stops at phigh, then a high regret is incurred since

it may potentially earn rewards at a faster rate at some lower price. On the other side, if it does

further reduce the price, it may be the case that no lower prices have as high reward as at phigh,

and due to the markdown constraint, the policy may not increase the price back to phigh, leading

to a high future regret.

115

It is worth noting that for finite dimensional families such dilemma is lifted, since by definition

of dimension, the learner may infer whether or not a lower price has higher reward rates by simply

collecting more samples at phigh. This is, however, not true for the Lipschitz family, since two

Lipschitz reward functions that behave drastically differently at low prices may be completely

identical at higher prices.

Nonetheless, Jia et al. (2021) showed that if the underlying demand functions are assumed

to be Lipschitz and unimodal (which are both satisfied by many commonly used families), then a

tight Θ̃(T 3/4) regret is achievable. With this unimodal assumption, the markdown pricing problem

essentially becomes finding the unique local optimum of the true revenue function. Specifically,

their lower bound is derived on a family of Lipschitz reward functions where the reward rate may

change abruptly at the peak.

Can the regret bound be improved if the reward functions are assumed to change smoothly?

We answer this question by generalizing their result to incorporate the sensitivity parameter. Let

FUs be the family of unimodal, s-sensitive reward functions.

Algorithm 11 Uniform Elimination Policy (UEm,∆).

1: Input: T,∆,m> 0

2: Initialize: Lmax← 0, w← 2Csg

√
logT
m

3: for j = 0,1,2, ..., ⌈∆−1⌉ do ▷ Exploration phase starts

4: xj← 1− j∆

5: Select price xj for the next m rounds and observe rewards Zj
1 , ...,Z

j
m

6: µ̄j← 1
m

∑m

i=1Z
j
i ▷ Compute mean rewards

7: [Lj,Uj]← [µ̄j −w, µ̄+w] ▷ Compute confidence interval for reward at current price

8: if Lj >Lmax then ▷ Keep track of the highest Lj

9: Lmax←Lj

10: if Uj <Lmax then ▷ Exploration phase ends

11: h← j ▷ Define the halting price

12: Break

13: Select price xh in all future rounds. ▷ Exploitation phase.

Theorem 25 (Upper Bound for Infinite-Dimensional Family). For any s ≥ 2, the Uni-

form Elimination Policy satisfies Reg(UEm,∆,FUs) =O(T
2s+1
3s+1).

116

We complement the above theorem with a lower bound in terms of both s and T , that

matches the upper bound in Theorem 25 for every s≥ 2.

Theorem 26 (Lower Bound for s-Sensitive Family). For any s≥ 2, there is a family F of

s-sensitive unimodal revenue curves satisfying Assumptions (1)-(4) such that any markdown policy

π satisfies Reg(π,F) =Ω(T
2s+1
3s+1).

Intuitively, this lower bound is caused by the following trade-off. On the one hand if we reduce the

prices too fast, we may have overshot by a lot when we halt; on the other hand if the speed is too

slow we may spend too much time at suboptimal prices, incurring a high regret.

This tight regret bound, T (2s+1)/(3s+1), highlights how sensitivity helps reduce the regret for

markdown pricing. Interestingly, as s grows to infinity, the regret approaches T 2/3, matching the

regret of the unconstrained pricing problem without any smoothness assumption.

IV.4. Upper Bounds

In this section, we prove the following tight regret bounds for the markdown version. To highlight

the technical challenges, we first rephrase the known tight regret bound for non-markdown version.

Theorem 27 (Broder and Rusmevichientong (2012)). For any zero-dimensional demand

family F , there is an algorithm with regret O(logT). Moreover, there exists a zero-dimensional

demand family F on which any algorithm has regret Ω(logT).

They considered a simple policy that estimates the true parameter using maximum likelihood

estimator (MLE), and then selects the optimal price of the estimated demand function. To bound

the expected regret in round t, they showed that the mean squared error (MSE) of the estimated

price is at most 1/t, and hence the expected total regret is
∑T

t=1
1
t
∼ logT .

IV.4.1. Zero-Dimensional Family While Theorem 27 is established by bounding the Mean

Square Error (MSE), due to the monotonicity constraint for markdown pricing, it no longer suffices

to consider the mean error. Rather, we need an error bound which (i) holds with high probability, so

that we can make conservative decision by selecting a price that is extremely unlikely to overshoot

the optimal price, and (ii) is sufficiently low, so that the total regret is also low. The following

lemma can be obtained as a direct consequence of Hoeffding’s inequality (Theorem 19).

Lemma 29. Let Z1, ..,Zm be a i.i.d. samples from a distribution D with subgaussian norm C.

Let B be the event that
∣∣E[D]− 1

m

∑
j=1Zj

∣∣≤ 2C ·
√

logT
m

, then P[B]≤ T−2.

117

Proof. By the Hoeffding inequality (Theorem 19), we have

P

[∣∣∣E[D]− 1

m

m∑
j=1

Zj

∣∣∣> 2C

√
logT

m

]
≤ exp

(
−
(2C

√
tj logT)

2

2tj ·C2

)
= T−2. □

Define Ej to be the event that
∣∣D(pj;θ

∗)− d̄j
∣∣≤ 2Csg

√
logT
tj

, where we recall that Csg is the

upper bound on the subgaussian norm of the demand distributions at any price, as formalized in

Assumption 2. Consider E =
⋂m

j=1 Ej. Note that Dj for j = t(j−1) +1, ..., t(j) are i.i.d. samples from

a subgaussian distribution with mean D(pj;θ
∗), and that Assumption 2 the sugaussian norm of

this distribution is at most Csg. Thus by Lemma 29, we have P[Ej]≤ T−2. By the union bound, we

have

P[E]≥ 1−T−2 · logT ≥ 1−T−1.

Since the expected regret per round is at most [0,1], we can condition on E by losing only an O(1)

term in the regret.

Conditional on E , the true parameter θ∗ is contained in the confidence interval Ij = [d̄j −
wj, d̄j +wj] where wj = 2Csg

√
logT
tj

, so the next selected price pj+1 =max{p∗(θ) : θ ∈ Ij} satisfies

pj ≥ p∗(θ∗), i.e. our policy does not overshoot the optimal price.

We next explain why the estimated price is close to p∗(θ∗). Since Φ is a robust parametriza-

tion, by definition we have

∥θ̂j − θ∗∥2 = ∥Φ−1
pj
(d̄j)−Φ−1

pj

(
Φpj (θ

∗)
)
∥

≤C2 · ∥d̄j −Φpj (θ
∗)∥

=C2 · ∥d̄j −D(pj;θ
∗)∥ ≤ 2C2 ·Csg

√
logT

tj
.

Moreover, by Assumption 5, the mapping p∗ is C∗-Lipschitz for some constant C∗ > 0, so the price

pj+1 selected in the (j+1)-st phase satisfies

|pj+1− p∗(θ∗)| ≤C∗∥θ̂j − θ∗∥2 ≤ 2C2 ·C∗ ·Csg

√
logT

tj
.

Since the length of phase j + 1 is tj+1, the regret incurred in this phase is at most

Cs

(
2C∗ ·C2 ·Csg

√
logT
tj

)s
· tj+1 in expectation. Note that there are in total K ≤ logT − log logT

phases, so we can bound the cumulative regret as

Reg(CM,F)≤
K∑
j=1

Cs

(
2C∗ ·C2 ·Csg

√
logT

tj

)s
· tj+1

=Cs

(
2C∗ ·C2 ·Csg

√
logT

)s
·
K∑
j=0

tj+1

t
s/2
j

(34)

118

We substitute tj with ⌈2j logT ⌉ and simplify the above for s= 2 and s > 2 separately. When s= 2,

(34) =Cs

(
2C∗ ·C2 ·Csg

√
logT

)2

·
K∑
j=0

tj+1

tj

=Cs (2C
∗ ·C2 ·Csg)2 logT · (logT − log logT)

=O(log2 T).

Now suppose s > 2. Then,

(34) =Cs

(
2C∗ ·C2 ·Csg

√
logT

)s
·
K∑
j=0

2j+1 logT

2j·
s
2 logs/2 T

≤Cs (2C
∗ ·C2 ·Csg)s · logT ·

K∑
j=0

2(1−
s
2)j+1

≤ 2Cs · (2C2 ·C∗ ·Csg)s · logT ·
∫ K

0

2(1−
s
2)xdx

= 2Cs · (2C∗ ·C2 ·Csg)s · logT ·
2

(s− 2) · ln 2
=O(logT).

Theorem 21 follows by combining the analyses for s= 2 and s > 2. □

IV.4.2. Finite-Dimensional Family In this section we first analyze the regret of the ICM

policy and prove Theorem 23, and then complement this upper bound with an almost matching

lower bound. Recall that the ICM policy is specified by two types of parameters: the gap h between

neighboring sampling prices in each phase, and the number Tj of rounds to stay at each sampling

price in phase j. To prove Theorem 23, we first present the following upper bound on the regret

of ICM for arbitrary choice of parameters h and Tj’s, and then optimize the choice of parameters

(up to polylogarithmic factors in T) by solving a linear program.

Proposition 11. Let F be a d-dimensional, s-sensitive (s ≥ 2) family of demand functions.

Suppose h> 0 and 0<T1 < ... < Tm where Tm = o(T). Denote ICM= ICM(T1, ..., Tm, h). Then,

Reg(ICM,F)≤ T1 +Cs

(
2C∗Csgh

−d
√

C5d logT
)s
·

(
m−1∑
j=1

T
−s/2
j−1 ·Tj +T−s/2

m ·T

)
+Cs (mdh)

s
T.

We briefly explain the intuition behind the above result before proceeding with finding the optimal

parameters. As the name suggests, the Iterative Cautious Myopic policy iteratively computes a

confidence interval [Lj,Uj] around the true optimal price, and conservatively moves to the right

119

endpoint of this interval. As a simplistic view, in phase j (assuming it ever takes place) the esti-

mation error is ∼ h−dT
−1/2
j−1 , and by definition of s-sensitivity, the regret incurred in phase j is

∼ (h−dT
−1/2
j−1)sTj.

To understand the final term, observe that when h is sufficiently small compared to Uj−Lj,

there is little risk of overshooting at the right endpoint Uj. However, when one selects larger h (for

faster learning rate), it may happen that the last sample price pj−dh in this phase overshoots the

optimal price, thereby incurring a regret term, as captured by the last term in the above bound.

Nonetheless, the actual proof involves carefully analyzing each of the three events (good,

dangerous and overshooting) that can possibly occur at the end of each phase, as formally defined

in Algorithm 10. Informally, each of these three events corresponds to the scenario where the price

at the end of this phase lies (1) on the right, (2) inside, or (3) on the left of the confidence interval

of the estimated optimal price.

Lemma 30. For each phase j = 1, ...,m, let Ej be the event that p∗(θ∗)∈ [Lj,Uj]. Then, P(Ej)≥
1− dT−2.

Proof. By the Hoeffding inequality (Theorem 19) and the subgaussian assumption (Assumption

5), for each k= 0, ..., d, it holds with probability at least 1−T−2 that

|D(pi− kh;θ∗)− d̄| ≤ 2Csg

√
logT

Tj
.

For simplicity we write Φ=Φpi,pi−h,...,pi−dh and d̄= (d̄0, ..., d̄d). Since for any v ∈Rd it holds ∥v∥2 ≤
√
d · ∥v∥∞, it holds with probability 1− (d+1)T−2 that

∥Φ(θ∗)− d̄∥2 ≤ 2Csg

√
logT

Tj
·
√
d.

Thus by definition of dimension, for sufficiently large Tj (hence sufficiently small ∥Φ(θ∗)− d̄∥2),

∥θ∗− θ̂∥2 = ∥Φ−1(d̄)−Φ−1(Φ(θ∗))∥2

≤C2h
−d · ∥Φ(θ∗)− d̄∥2

≤C2h
−d ·Csg2

√
logT

Tj
·
√
d=wj,

and θ∗ ∈ [Lj,Uj] follows immediately from the definition of Lj and Uj. □

Proof of Proposition 11. We first show that with high probability, our confidence interval forms

a nested sequence of intervals containing the true parameter θ∗. Recall that

Lj =min{p∗(θ) : ∥θ− p∗(θ̂)∥2 ≤wj} and Uj =max{p∗(θ) : ∥θ− p∗(θ̂)∥2 ≤wj}.

120

This lemma immediately implies a (high-probability) upper bound for the estimation error of

the optimal price. Recall that pj =max{p∗(θ) : ∥θ−p∗(θ̂)∥2 ≤wj}. By Lemma 30 and Assumption 5,

we deduce that conditional on Ej, for any p∈ [Lj,Uj] it holds

|p− p∗(θ∗)| ≤C∗∥θ∗− θ̂∥2 ≤C∗wj.

We will repeatedly apply this bound in the following regret analysis.

Proof of Proposition 11. By Lemma 30,

P(
m⋃
i=1

Ei)≤
m∑
i=1

P(Ei)≤ dT−2 ·m≤ T−1.

Thus, we may subsequently assume
⋂m

i=1 Ei occurs by losing only an O
(

1
T

)
-factor in regret.

We split our proof into two cases depending on whether the overshooting event ever occurs

in any phase.

Lj Uj

pj

pj − dh

pj+1

pj+1 − dh

Figure 6 Illustration of case 2.

Case (1). Suppose the overshooting event never occurs, i.e. in each j = 1, ...,m, we always have

pj − dh ≥ Lj ≥ Lj−1. Since pj ≤ Uj−1, we deduce that pj − kh ∈ [Lj−1,Uj−1] for all k = 0, .., d.

On the other hand, since we have conditioned on
⋃m

i=1 Ei, we have p∗(θ∗) ∈ [Lj−1,Uj−1], hence

|(pj−kh)−p∗| ≤Uj−1−Lj−1 ≤C∗wj for 0≤ k≤ d. Thus the regret incurred in this phase is at most

Cs · (Uj−1−Lj−1)
s
Tj ≤ Cs (C

∗wj)
s
Tj. Similarly, since the exploitation price p̃ := pm − dh satisfies

|p̃− p∗(θ∗)| ≤C∗wm, the expected regret per round in the exploitation phase is at most (C∗wm)
s
.

Therefore, we may bound the cumulative regret as

Reg(ICM,F)≤ T1 +Cs (C
∗w1)

s
T2 + ...+Cs (C

∗wm−1)
s
Tm+Cs (C

∗wm)
s
T

≤ T1 +
m∑
j=2

Cs

(
C∗ · 2Csgh−d

√
C5d logT

Tj−1

)s
Tj +Cs

(
C∗ · 2Csgh−d

√
C5d logT

Tm

)s
T

= T1 +Cs

(
2C∗Csgh

−d
√

C5d logT
)s
·

(
m−1∑
j=1

T
−s/2
j−1 ·Tj +T−s/2

m ·T

)
.

121

Case (2). Now suppose the overshooting event first occurs in some phase ℓ where 1 ≤ ℓ ≤ m,

formally

ℓ=min{s : ps− dh<Lj}.

As in case (1), the expected regret in phase j = 1, ..., ℓ−1 can be bounded by Cs ·(C∗wj−1)
s
Tj. Thus

it remains to bound the expected regret in the ℓ-th and the exploitation phase as Õ ((mdh)sT) .

Suppose the last phase that good event occurred is phase j (as illustrated in Fig 6). There are two

sub-cases.

i) Suppose j = ℓ− 1. Then, by definition of good event, we have pj − dh≥ Uj. Thus, the ICM

policy sets the next price to be pj+1 = Uj. Since p∗(θ∗) ∈ [Lj,Uj] and pℓ = pj+1 = Uj, the

exploitation price pℓ− dh satisfies

|pℓ− dh− p∗(θ∗)| ≤ |pℓ− dh−Uj|= |pℓ− dh− pℓ|= dh.

Thus, the future regret is at most Cs(dh)
sT .

ii) Now suppose j ≤ ℓ− 2. Then, the dangerous event must have occurred in phases j + 1, j +

2, ...ℓ− 1, so

pj+s+1 = pj+s− dh, ∀s= 1, ..., ℓ− j− 1.

In particular,

pℓ = pj+1− (ℓ− j− 1) · dh.

On the other side, by definition of the overshooting event, it holds

pℓ− dh≤Lj+1 ≤ p∗(θ∗)≤Uj+1 ≤Uj = pj+1,

i.e. pℓ− dh≤ p∗(θ∗)≤ pj+1. Thus,

|pℓ− dh− p∗(θ∗)| ≤ (ℓ− j− 1)dh.

Therefore, the regret in the exploitation phase is bounded by Cs|pℓ−dh−p∗|sT ≤Cs(mdh)sT .

The proof completes by combining the analyses for the above cases. □

We now determine the parameters to minimize the upper bound in Proposition 11.

Proof of Theorem 23. Write Ti = T zi , h= T−y. Then for any j ≤m− 1,

(h−dT
−1/2
j)sTj+1 = T sdy−

s
2 zj+zj+1 .

122

To find the optimal parameters, consider

LP(d) : min
x,y,z

T x

subject to T z1 ≤ T x, Regret in phase 1

T 2sdy+z2− s
2 z1 ≤ T x, Regret in phase 2

...

T sdy+1− s
2 zm ≤ T x, Regret in the exploitation phase

T 1−sy ≤ T x, Regret for overshooting

x, y, z ≥ 0,z ≤ 1

Taking logarithm with base T on both sides, the above becomes

min
x,y,z

x

s.t.

−1 0 1 0 0 0 ... 0
−1 sd − s

2
1 0 0 ... 0

−1 sd 0 − s
2

1 0 ... 0
−1 sd 0 0 − s

2
1 ... 0

......
−1 sd 0 0 0 ... − s

2
1

−1 sd 0 0 0 0 ... − s
2

−1 −s 0 0 0 0 ... 0

x
y
z1
z2
...

zm−1

zm

≤

0
0
...
0
−1
−1

x, y, z ≥ 0, z ≤ 1

Note that the above LP consists of m+2 variables and m+2 inequality constraints, so the

minimum is attained when all inequalities become identities. In this case, we have

z1 = x (35)

z2−
s

2
z1 = x− sdy

z3−
s

2
z2 = x− sdy

...

zm−
s

2
zm−1 = x− sdy

1− s

2
zm = x− sdy

1− sy= x (36)

By telescoping sum, we have

1−
(s
2

)m
z1 =

(
1+

s

2
+ ...+

(s
2

)m−1
)
· (x− dsy) .

123

Combining the above with (35) and (36), we have

1+

(
1+

s

2
+ ...+

(s
2

)m−1
)
d(1−x) =

(
1+

s

2
+ ...+

(s
2

)m)
x.

Rearranging, we obtain

x=
1+

(
1+ s

2
+ ...+(s

2
)m−1

)
d(

1+ s
2
+ ...+(s

2
)m−1

)
· (d+1)+

(
s
2

)m .

In particular, for s= 2, the above becomes

x=
md+1

m(d+1)+1
=

d

d+1
+

1

m(d+1)2
.

Choosing m= logT , we have T x = Õ(T
d

d+1). □

IV.4.3. Infinite- Dimensional Family In this section we first present a general regret upper

bound for policy UE∆,w, which immediately implies Theorem 25. To this aim, we need to intro-

duce another constant η, as motivated by the the following result. For notational convenience, we

abbreviate ∂k

∂xk
R(x;θ) as R(k)(x;θ) for any k≥ 0.

Lemma 31. Let F = {R(x, θ) : θ ∈ Θ} be a family of s-sensitive reward functions. Then, there

exists a constant η > 0 such that for any θ ∈Θ and x∈ [p∗(θ)− η, p∗(θ)] , it holds R(s)(x;θ)< 0 and

2R(s)(p∗(θ);θ)≤R(s)(x;θ)≤ 1

2
R(s)(p∗(θ);θ).

Proof. First consider any fixed θ ∈Θ. By definition of sensitivity, we have R(1)(p∗(θ), θ) = ...=

R(s−1)(p∗(θ), θ) = 0 and R(s)(p∗(θ), θ)< 0. Define

g(θ) = sup

{
γ ≥ 0 | 2R(s)(p∗(θ);θ)≤R(s)(x;θ)≤ 1

2
R(s)(p∗(θ);θ), ∀x∈ [p∗(θ)− γ, p∗(θ)]

}
.

By continuity of R(s) in x, we have g(θ)> 0 for any θ ∈Θ. We complete the proof by showing that

η := supθ∈Θ g(θ)> 0. Recall that Θ is compact, and R(s) is continuous in θ, we know that η can

be attained, i.e., there exists some θ ∈ Θ with g(θ) = η. Moreover, note that for any θ we have

g(θ)> 0, therefore η > 0, and the proof completes. □

We are now ready to state the main result in this section. Note that by choosing ∆ =

T−1/(3s+1) and w= T−2/(3s+1), we immediately obtain Theorem 25.

Proposition 12 (Upper Bound). Let F be any s-sensitive family for some s ≥ 2. Suppose

∆≤ Cs

8s!C(1) η
s and m≥ 4, then

Reg (UE∆,m,F) =O
(
∆−1w−2 logT +(w+∆s)T

)
where we recall that w= 2Csg

√
logT
m

.

124

Our analysis proceeds by conditioning on the following the notion of clean event, which occurs

with high probability as we will show soon.

Definition 29 (Clean event). Let Ej be the event that
∣∣R(xj)− µ̄j

∣∣≤ 2Csg

√
logT
m

, and E =⋂⌈∆−1⌉
j=1 Ej.

Note that by our choice of Lj,Uj, we know that E is simply the event that R(xj) ∈ [Lj,Uj] for all

1≤ j ≤∆−1. We next show that E occurs with high probability, and hence we may perform the

analysis conditional on E .

Lemma 32. P(E)≤ T−1.

Proof. Let R be the true reward function. Recall that Zj
i for i = t(j−1) + 1, ..., t(j) are i.i.d.

samples from a subgaussian distribution with mean R(xj), and that Assumption 2 the sugaussian

norm of this distribution is at most Csg. Thus by Lemma 29, we have P[Ej]≤ T−2. By the union

bound, we have P[E]≥ 1−T−2 · logT ≥ 1−T−1. □

In the rest of this section we will fix a true reward function R(x;θ) and write x∗ = p∗(θ) and

R(x) =R(x;θ).

Definition 30. Define xℓ be the closest sample price to x∗, i.e.

ℓ := argmin
0≤j≤∆−1

{|xj −x∗|}.

We first show that conditional on E , the policy will stop reducing the price and enter the exploitation

phase before reaching x∗− η.

Lemma 33. Suppose E occurs. For any m≥
(

4s!·8·Csg

Cs

)2

· η−2s logT and ∆≤ Cs

8s!C(1) η
s, we have

xh ≥ x∗− η.

Proof. Recall that x is said to be a sample price if x= 1− j∆ for some integer j. Consider the

smallest sample price x̃ above x∗− η, then |x∗− η− x̃| ≤∆. By Assumption 4, the first derivatives

are bounded by C(1) and hence R is C(1)-Lipschitz, so

|R(x̃)−R(x∗− η)| ≤C(1)|x∗− η− x̃| ≤C(1)∆ and |R(xℓ)−R(x∗)| ≤C(1)∆.

Moreover, by Theorem 20, and since R(1)(x∗) = ...=R(s−1)(x∗) = 0,

|R(x∗− η)−R(x∗)|=
∣∣∣∣R(s)(ξ)

s!
ηs
∣∣∣∣ (37)

for some ξ ∈ (x∗− η,x∗). By Lemma 31, |R(s)(ξ)| ≥ 1
2
· |R(s)(x∗)|, so

|R(x∗− η)−R(x∗)| ≥ |R
(s)(x∗)|
2s!

ηs. (38)

125

By combining the inequalities (37) and (38), we have

R(x̃)≤R(xℓ)−
(
|R(s)(x∗)|

2s!
ηs− 2C(1)∆

)
.

Recall that |R(s)(x∗)| ≥Cs, so for any ∆≤ Cs

8s!C(1) η
s, we have

|R(s)(x∗)|
2s!

ηs− 2C(1)∆≥ |R
(s)(x∗)|
4s!

ηs. (39)

Hence, suppose m≥
(

4s!·8·Csg

Cs

)2

· η−2s logT , then 4w≤ Cs
4s!

ηs ≤ |R(s)(x∗)|
4s!

ηs, and by (39)

R(x̃)<R(xℓ)− 4w. (40)

Since E occurs, we have |U(x̃)−R(x̃)| ≤w and |L(xℓ)−R(xℓ)| ≤w. Combining with (40), we obtain

U(x̃)<L(xℓ), and thus the halting criterion is satisfied at x̃, so xh ≥ x∗− η. □

Lemma 34. Let i := argmax0≤j≤∆−1{Lj}. Then for sufficiently small ∆, for any k ≥ 3 it holds

that

|R(xℓ+k)−R(xi)| ≥
Cs
2ss!

(k∆)s− 4w.

Proof. The proof can be split into showing the following inequalities:

1. |R(x∗)−R(xℓ)| ≤ Cs
s!
∆s,

2. |R(xi)−R(xℓ)| ≤max{4w, 2Cs
s!

∆s},

3. |R(xk+ℓ)−R(x∗)| ≥ Cs
s!
· ((k− 1)∆)

s
for k≥ 3.

Assuming these three inequalities are true, then by triangle inequality,

|R(xℓ+k)−R(xi)| ≥ |R(xℓ+k)−R(x∗)| − |R(x∗)−R(xℓ)| − |R(xi)−R(xℓ)|

≥ C

s!
· ((k− 1)∆)

s− Cs
s!

∆s− 4w+
Cs
s!

∆s

≥ Cs
s!

∆s ((k− 1)s− 1)− 4w

≥ Cs
2ss!

(k∆)s− 4w.

We now prove each of these three inequalities respectively.

Step 1. Applying Theorem 20 on the reward function R by setting x= x∗ and x′ = xℓ, we deduce

that there exists ξ ∈ [xℓ, x∗] with

R(xℓ) =R(x∗)+
R′(x∗)

1!
· (xℓ−x∗)+ ...+

R(s−1)(x∗)

(s− 1)!
(xℓ−x∗)s−1 +

R(s)(ξ)

s!
· (xℓ−x∗)s

=R(x∗)+
1

s!
R(s)(ξ) · (xℓ−x∗)s.

126

Thus, when |xℓ−x∗| is sufficiently small, we have

|R(x∗)−R(xℓ)| ≤
2Cs
s!
|xℓ−x∗|s ≤ 2Cs

s!
∆s,

where we used |xℓ−x∗| ≤∆.

Step 2. This is direct consequence of Step 1. In fact,

R(xℓ)≥R(x∗)− 2Cs
s!

∆s ≥R(xi)−
2Cs
s!

∆s.

On the other side, by definition of xi and event E , we have

R(xi)≥R(xℓ)− 4w.

Combining, we have |R(xi)−R(xℓ)| ≤max{4w, 2Cs
s!

∆s}.

Step 3. Applying Theorem 20 on x′ = xkℓ , we deduce that there exists ξ ∈ [xk+ℓ, x∗] with

R(xk+ℓ) =R(x∗)+
R′(x∗)

1!
· (xk+ℓ−x∗)+ ...+

R(s−1)(x∗)

(s− 1)!
(xk+ℓ−x∗)s−1 +

R(s)(ξ)

s!
· (xk+ℓ−x∗)s

=R(x∗)+
1

s!
R(s)(ξ) · (xk+ℓ−x∗)s. (41)

Applying Lemma 31, we have R(s)(ξ)≥Cs, thus by (41)

|R(xk+ℓ)−R(x∗)| ≥ Cs
s!
· |xk+ℓ−x∗|s

Note that by definition of xℓ, it holds, |x∗−xℓ| ≤∆, and thus

|x∗−xk+ℓ| ≥ |xℓ−xk+ℓ| − |x∗−xℓ| ≥ (k− 1)∆,

hence

|R(xk+ℓ)−R(x∗)| ≥ Cs
s!
· ((k− 1)∆)

s
. □

The crux of our proof lies in analyzing the regret in the exploitation phase. To this aim,

we use the above lemma to bound the per-round regret in the exploitation phase, formally stated

below.

Lemma 35. Suppose E occurs, then the halting price xh satisfies

R(xh)−R(x∗)≤ 6 · 3ss! ·Cs ·w+max{3s,Cs} ·∆s.

127

Figure 7 Illustration of Lemma 35

Proof. Consider any true reward function R ∈F .

Case 1. Suppose h≥ ℓ− 2, i.e. xh ≥ xℓ− 2∆. Since |xℓ−x∗| ≤∆, we have

|xh−x∗| ≤ |xℓ−xh|+ |x∗−xℓ| ≤ 2∆+∆= 3∆.

Thus by definition of sensitivity, when |xh−x∗| ≤ η it holds

|R(x∗)−R(xh)| ≤Cs · |xh−x∗|s ≤Cs · 3s∆s.

Case 2: Now suppose h≤ ℓ−3, i.e. xh ≤ xℓ−3∆. Let k= h− ℓ−1, so that xℓ+k is the last sample

price that the UE policy selected before halting at xh. Then by definition of xh, the halting criterion

is not satisfied at the xℓ+k, i.e. [L(xi),U(xi)]∩ [L(xℓ+k),U(xℓ+k)] ̸= ∅, so

|R(xi)−R(xℓ+k)| ≤ 4w.

Combining with Lemma 34, we have

4w≥ |R(xi)−R(xℓ+k)| ≥
Cs
2ss!

(k∆)s− 2w,

i.e.

(k∆)s ≤ 2ss! · 6w
Cs

. (42)

128

Note that |xh−x∗| ≤ (k+1)∆, we obtain

|R(xh)−R(x∗)| ≤Cs · ((k+1)∆)
s

by sensitivity

≤Cs ·
(
3

2
k∆

)s
since k= h− ℓ− 1≥ 2

≤ 6w ·Cs · 3ss!
Cs

= 6 · 3ss! ·Cs ·w by (42)

and the proof is complete. □

Proof of Proposition 12. Fix any R ∈F . Suppose E does not occur, then the regret is at most

T . Suppose E occurs, then by Lemma 35, the regret incurred in the exploitation phase is bounded

by
(

6·Cs·3ss!
C6

·w+max{3s,Cs} ·∆s
)
T .

On the other side, recall that each sample price is selected for at most m times, so the

cumulative regret incurred in the exploration phase is bounded by mT . Moreover, there are at

most ⌈∆−1⌉ sample prices. Recalling that w = 2Csg

√
logT
m

, i.e. m= 4C2
sgw

−2 logT , we can bound

the total regret as

Reg(UE∆,w,R)≤ P[E] ·T +P[E] ·
(
4C2

sgw
−2∆−1 logT +

(
6 ·Cs · 3ss!

C6

·w+max{3s,Cs} ·∆s

)
·T
)

≤ T−1 ·T +

(
4C2

sgw
−2∆−1 logT +

(
6 ·Cs · 3ss!

C6

·w+max{3s,Cs} ·∆s

))
·T

=O
(
∆−1w−2 logT +(∆s+w)T

)
,

and Proposition 12 follows. □

IV.5. Lower Bounds

IV.5.1. Preliminaries We now turn to proving our lower bound, which establishes mini-

max optimality. Our proof considers Bernoulli reward distribution at each price and employs the

following alternate view of a policy as binary decision trees, which we will make precise in this

section.

Definition 31 (Prefix). Let {0,1}∗ =
⋃∞
n=1{0,1}n∪{null} be the set of all finite-length binary

vectors, where null denotes the empty binary vector. For any v ∈ {0,1}∗ and k ∈Z, the k-prefix of

v is defined as vk = (v1, ..., vk).

We will consider probability spaces on sets containing the prefixes of every element.

Definition 32 (Downward Closed Sets). For any v,w ∈ {0,1}∗, we define w ≺ v if there

exists k ∈Z such that vk =w. A set Ω∈ {0,1}∗ is downward closed, if for any v ∈Ω and w≺ v, we

have w ∈Ω.

A decision tree is specified by a downward closed set equipped with a real-valued function.

129

Definition 33 (Decision Tree). A binary decision tree is a tuple (Ω, x) where Ω⊆ {0,1}∗ is

downward closed and x : Ω→R is a mapping. Moreover, each v ∈Ω is called a node.

Intuitively, for each node v= (v1, ..., vk), the value x(v) is just the price that the policy selects

upon observing demands v1, ..., vk at prices x(v1), ..., x(vk). Recalling that we have normalized the

price space to be [0,1], so we will subsequently consider only decision trees (Ω, x) with 0≤ x(v)≤ 1

for all v ∈Ω. For notational convenience, we suppress the notation x(v) simply as xv.

We next introduce an equivalent definition of markdown policy, using the language of decision

tree.

Definition 34 (Markdown Policy, Equivalent Definition). A markdown policy is a

decision tree (Ω, x) such that it holds that x(v1)≥ x(v2)≥ ...≥ x(vk) for any v= (v1, ..., vk)∈Ω.
One may verify that this definition of markdown policy is indeed equivalent to the one given in

Section IV.2. We next introduce some standard terminologies for decision trees, in case the reader

is not familiar with graph theory.

Definition 35 (Decision Tree Basics). Let A= (Ω, x) be a decision tree and v,w ∈Ω.
i). We say v is a leaf if there does not exist w ∈Ω with v≺w.

ii). The depth d(v) of v is defined to be the length of binary vector v. Denote L(Ω)⊆Ω the subset

of all leaves. Each node in Ω\L(Ω) is called an internal node.

iii). We say w is an ancestor of v if w ≺ v. If in addition, d(v) = d(w) + 1, then we say w is the

parent of v and denote w= par(v), and say v is a child of w.

iv). A decision tree is binary if every internal has exactly two children.

Given a binary decision tree, every reward function induces a natural probability measure

over the leaves. In fact, consider a random walk from the root to a random leaf, where at each

internal node v, the walk moves to each of the two children with probability R(xv) and 1−R(xv)

respectively, corresponding to whether there is a unit demand in this round. We formally define

this probability measure below.

Definition 36 (Probability Measure on Leaves). Let (Ω, x) be a decision tree and R :

[0,1]→ [0,1]. Write L=L(Ω). For each ℓ= (ℓ1, ..., ℓd)∈L, define

pR(ℓ) =
d∏
j=1

R
(
x(ℓj)

)ℓj · (1−R
(
x(ℓj)

))1−ℓj
The probability measure PR on (Ω,2L) is then given by PR(S) =

∑
ℓ∈S pR(S) for each S ⊆ L. We

also define ER to be the expectation under the probability measure PR.

At a high level, our proof relies on sample complexity lower bound for distinguishing between

two distributions, formally defined as follows.

130

Definition 37 (Adaptive Classifier). Consider R,B : [0,1]→ [0,1]. Let (Ω, x) be a decision

tree and f :L(Ω)→{R,B}. Then, (Ω, x, f) is called an adaptive classifier for R and B. Moreover,

given constants α,β ∈ [0,1], an adaptive classifier (Ω, x, f) is called (α,β)-confident if

PD := PR
(
f−1(R)

)
≥ α, (Detection probability is high)

and PFA := PB
(
f−1(R)

)
≤ β. (False-Alarm probability is low)

Our lower bound results all rely upon a Theorem due to Wald and Wolfowitz (1948) for

adaptive sequential hypothesis testing, which states that the expected number of samples collected

in order to adaptively distinguish between a pair R,B (referred to as “red” and “blue”) of

distributions must be lower bounded by a function of α,β and the KL-divergence.

Theorem 28 (Wald-Wolfowitz Theorem). Consider R,B : [0,1] → [0,1] and an (α,β)-

confident adaptive classifier (Ω, x, f). Denote ∆(R,B) = maxv∈ΩKL
(
R(xv),B(xv)

)
. Let D(ℓ) be

the depth of leaf ℓ∈L(Ω). Then,

ER[D]≥
α log α

β
+(1−α) log 1−α

1−β

∆(R,B)
, and EB[D]≥

β log β
α
+(1−β) log 1−β

1−α

∆(B,R)
. (43)

Subsequently, we apply this theorem to derive lower bounds for each of the following three regimes:

d= 0, 1≤ d<∞ and d=∞.

IV.5.2. Zero-Dimensional Family We first sketch the high level idea. Consider a policy π

with O(log2 T) regret. Fix a linear demand curve R, which we call the red curve, whose optimal price

we denote p∗R. For each t, we bound the expected regret in round t as follows. Choose ∆t ∼
√

logT
t

and construct a blue linear demand function B =B(t) whose optimal price is ∆t greater than p∗R.

Consider the following classifier induced by the price choice of π: define the output of this classifier

to be R if the price selected in round t is closer to p∗R, and B otherwise.

Recall that the WW theorem asserts that if both the type I, II errors of a classifier are “low”,

then the expected numbers of samples under both hypotheses are “high”. Now, on the one hand,

since the policy has low regret, under B the probability for overshooting should be extremely low.

On the other hand, we will consider consider small t, so that the number t of samples that the

classifier collects is “low”. Now, in order not to contradict WW Theorem, the error probability

under R must be large! In other words, with considerable probability, the price selected at time t

is greater than p∗R+∆t/2, hence a high regret is incurred under R in round t. Thus, by summing

the expected regret from round t= logT to
√
T , we can lower bound the regret by

√
T∑

t=1

∆2
t =

√
T∑

t=1

logT

t
∼ log2 T.

We now present a formal proof. We will use the contrapositive version of Theorem 28.

131

Corollary 3. Consider R,B : [0,1]→ [0,1],

∆(R,B) =max
v∈Ω

KL(Ber (R(xv),Ber(B(xv))) .

Suppose 0 ≤ α < 1
2
< β ≤ 1 and Let (Ω, x, f) be an (α′, β′)-confident adaptive classifier for R,B

satisfying

(i) α′ ≤ α, and

(ii)

ER[D]≤
α log α

β
+(1−α) log 1−α

1−β

∆(R,B)
, EB[D]≤

β log β
α
+(1−β) log 1−β

1−α

∆(B,R)
.

Then, 1−β′ ≥ 1−β.

Proof of Theorem 22. Let π be any markdown policy, which we also view as a decision tree in

this proof. Consider a fixed reward function R with optimal price p∗R = 1
2
. Fix t∈ [logT,T 1/2], and

let ∆t =
√

logT
t

. Consider a demand function B =Bt given by Bt(x) = 1− (1+∆t)x. Note that the

optimal price of B is p∗B = 1
2+∆t

, so p∗R+∆t ≤ p∗B ≤ p∗R+2∆t.

To apply Theorem 28, we consider the following classifier (Ωt, xt, ft), induced by π. The node

set Ω is simply all nodes in Ω of depth at most t, and xt is simply the mapping x : Ω→ [0,1]

restricted to Ωt. Define ft :L(Ωt)→{R,B} as follows:

ft(ℓ) =

{
B, if x(ℓ)> p∗R+ ∆t

2
,

R, else.

Let

α= PB[f(ℓ) =R], β = PB[f(ℓ) =B].

First we claim that if π has O(log2 T) regret, then α≥ T−1/2. In fact, suppose the true revenue

function is B and π selects a price lower than p∗B −∆t/2. Then, due to the markdown constraint,

an Ω(∆2
t) regret is incurred in each future round and hence the regret is Ω(α∆2

tT). Thus, to achieve

O(log2 T) regret, we need α∆2
tT ≤ log2 T, i.e.

α≤ t logT

T
= Õ(T−1/2).

We next conclude the proof using Corollary 3. Recall that logT ≤ t≤
√
T , so

t <
logT

∆2
t

≤ 3 logT

∆(R,B)
,

where the last step follows since maxxKL(R(x),B(x)) ≤∆2
t/3. By Corollary 3, since α = T−1/2,

and t= ER[D]< logT
∆(R,B)

, we have 1− β ≥ 1
4
. In other words, when R is the true revenue function,

132

w.p. 1
4
the price at t will be higher than p∗R + ∆t, hence the expected regret at this round is

Ω(∆2
t) =Ω(logT

t
).

Finally, since the above argument holds for all t ∈ [logT,T 1/2], the total regret under R is

lower bounded as

Reg(π,R)≥

√
T∑

t=logT

logT

t

= logT ·

√
T∑

t=1

1

t
−

logT∑
t=1

1

t

=Ω(log2 T)−O(logT · log logT) =Ω(log2 T),

and the proof is complete. □

IV.5.3. Finite-Dimensional Family We now prove Theorem 24. We first describe our proof

at a high level. For each d we construct a pair of demand functions Dblue,Dred on price space [1
2
,1]

with Dblue(1) = Dred(1). Moreover, price 1 is the unique optimal price of Dblue and suboptimal

for Dred. Since the gap between these two demand functions is tiny near price 1, to distinguish

between them we have to reduce the price away from 1. Thus learner faces the following trade-off:

if she reduces the price by too much, then a high regret is incurred under Dblue since its optimal

price is at 1; otherwise, the difference between these two curves is too small and she has to explore

for too many rounds near price 1, which is suboptimal for Dred, hence incurring a high regret.

Figure 8 Illustration of Lemma 36.

133

Consider a policy with low regret. Choosing suitable neighborhood [1−h,1], we convert this

policy into a classifier that returns Rr or Rb based on whether the price in round T
4
is within this

neighborhood. We first argue that if the policy has low regret, then it has to perform reasonably well

on this classification problem, otherwise an Ω(h2T) regret is incurred. Then, we use the generalized

Wald-Wolfowitz Theorem (Theorem 28) to show that in order to distinguish between these two

curves, the policy has to spend Ω(h−2d) rounds inside the neighborhood in expectation, incurring

Ω(h−2dT) regret under Rred.

Now we formalize the above ideas. As the key step, we first explicitly construct a pair of

demand curves with the following properties, and then show that distinguishing between this pair

of reward functions requires many samples, hence incurring a high regret.

Lemma 36. For any d≥ 1, there exists a pair Dred,Dblue of degree-d polynomial demand func-

tions satisfying the following properties.

1. Monotonicity: Both are non-increasing on [1/2,1],

2. First Order Optimality: Denote Ri(x) = x · Di(x) for i ∈ {red, blue}, then

maxx∈[1/2,1]Rblue(x) is attained at x= 1. Moreover, R′
blue(1) = 0,

3. Interior Optimal Price: The function Rred is maximized at some price x∈ [0, 1
2
],

4. Hardness Of Testing: Let Gap(h) = maxx∈[1−h,1]{|Dred(x) − Dblue(x)|}, then Gap(h) ≤

O(hd) as h→ 0+. In particular, this implies that Rblue(1) =Rred(1).

Proof. The proof involves explicit construction of the desired families of demand functions. In

the next two subsections, we consider the case d= 1 and d≥ 2 separately.

Step 1. Suppose d= 1. Let pmin = 1/2, pmax = 1. Consider the demand functions

Dblue(1−h) = 1+h, Dred(1−h) = 1+5h,

or, substituting x= 1−h,

Dblue(x) = 2−x, Dred(x) = 6− 5x.

Let us verify each of the four conditions in Lemma 36:

1. both curves are clearly strictly decreasing.

2. R0(x) = x(2 − x), so R′
0(x) = 2 − 2x. So its unique local maximum is attained at x = 1.

Moreover, R′′
0(1) =−2< 0.

3. R′
1(x) = 6− 10x, so R1 attains maximum at x= 3/5.

4. |Dblue(1−h)−Dred(1−h)|= 4− 4h=O(h).

134

Step 2. Suppose d≥ 2. In this case, consider the following two demand functions:

Db(M −h) = 1+h+ bhd, Dr(M −h) = 1+h+ rhd,

defined on the interval [0,M] where M will be chosen to be some large number soon. The proof

then follows by replacing h with Mh, hence re-scaling the domain to [0,1].

We first verify some trivial properties. Note that Db(1− h)−Dr(1− h) = (r− b)hd, so the

gap between these two demand functions around price M is on the order of O(hd), and hence the

last condition is satisfied.

We next verify that when b=M−d, the function Rb(x) attains maximum at x=M , formally,

for any d≥ 2, it holds R̄b(h)≤M for any h∈ [0,M]. To show this, observe that

R̄b(h)≤M ⇐⇒ M − 1

M
h2 +

(
h

M

)d
(M −h)≤M

⇐⇒
(

h

M

)d
(M −h)≤ 1

M
h2

⇐⇒
(

h

M

)d−1

(M −h)<h.

To show the above holds for all h∈ [0,M], we rescale h by setting h= ρM , where ρ∈ [0,1]. Then,

the above becomes (
ρM

M

)d−1

(M − ρM)<ρM,

i.e.

ρd−2(1− ρ)< 1,

where clearly holds for all ρ∈ [0,1] when d≥ 2.

We finally verify that maximum of Rr(x) is attained in the interior of [0,M]. First note that

Rr(0) = 0 and Rr(M) = 1, so it suffices to show that maxx∈[0,M]Rr(x)> 1. To this aim, note that

Rr(M −h)−Rb(M −h) = (r− b)hd, and the proof follows. □

It will be convenient for the proof to only consider policies represented by trees where the

node prices never change after T
2
.

Lemma 37 (Jia et al. (2021).). For any markdown policy A, there is a policy B which makes

no price change after T
2
such that Reg(B,R)≤ 2 ·Reg(A,R) for all R ∈ F̂L.

By Lemma 25, we may consider only policies which makes no price changes after T
2
. we first

construct a classifier (Ω′, x′, f ′) as follows. With some foresight choose h= T− 1
2d+2 . Let Ω′ = {v ∈

Ω : d(v)≤ T
4
, and x(v)≤ 1− h}, and x′ = x|Ω′ . Here, the reason for choosing T

4
in the step above

135

is we need to leave enough rounds for exploitation after going below price 1− h. Define f : Ω′→

{red, blue} as

f(ℓ) =

{
B, if x(ℓ)> 1−h,

R, else.

Recall that Pi denotes the distribution over the leaves of T under color i ∈ {red, blue}, and

that (T, f) is (α,β)-confident if

Pblue(f(ℓ) = red)≤ α, and Pred(f(ℓ) = red)≥ β.

We first show that if A has the target regret, then T := (Ω′, x′, f ′;) has to be (1/3,2/3)-confident.

Formally, we have the following lemma. Recall that N(a, b) is the number of rounds the policy

stays in price interval [a, b].

Lemma 38. If Reg(A)≤ T
d

d+1 , then T is (1
3
, 2
3
)-confident.

Proof. There are two cases. Suppose PR[f(L) =B]≥ 1
3
, then the policy selects prices in [1−h,h]

for T
4
rounds. Thus, ER[N(1− h,h)] ≥ T

4
· 1
3
= T

12
. In the other case, suppose PB[f(L) = R] ≥ 1

3
,

then with probability 1
3
the price becomes lower than 1− h. Note that R′

B(1) = 0, so by Taylor

expansion, an Ω(h2) regret is incurred in each future round. Since there are T
4
rounds remaining,

the total regret in this case is at least Ω(h2T). □

Then, we show that if T decides the color correctly with high confidence, then we must

spend many rounds (in expectation) in [1 − h,1]. In fact, by Theorem 28 and noting that

KL(Rred(x),Rblue(x))≤ h2d, we immediately obtain the following.

Lemma 39. Let D(ℓ) be the level of ℓ∈L(T). Suppose T is (1
3
, 2
3
)-confident, then

ER[D] = Ω(h−2d).

Note that the regret per round in [1 − h,1] under Dred is Ω(1), thus for any algorithm π with

O(T
d

d+1) regret, by Lemma 38 and 39,

Reg(π,R)≥ER[N(1−h,h)] ·Ω(1)≥ h−2d ·Ω(1) =Ω(T
d

d+1),

and Theorem 24 follows. □

136

xi − h xi + hxi
Figure 9 Bow-shaped (blue) and S-shaped (red) reward curves

IV.5.4. Infinite-Dimensional Family We next show Theorem 26. The proof uses similar

idea as in the lower bound proof in Jia et al. (2021). However, for each s≥ 2 we need to construct

an s-sensitive family of demand functions.

We consider the following s-sensitive family of unimodal reward curves. With some foresight,

choose h = T− 1
3s+1 . In the construction, we will use the following S-shaped curves (or S curves)

and bow-shaped curves (or B curves), as shown in Figure 9.

We now formally describe those S and B curves. For simplicity we assume m := 1
h
is an even

integral. Define a decreasing sequence xi = 1− (2i− 1)h for each i= 1, ...,m/2 of prices. Each pair

of curves Bi, Si are defined in the interval [xi−h,xi+h]. These two curves are identical at higher

prices than xi and, scanning from right to left, start to diverge at a rate of hs starting at xi.

Formally,

Bi(xi+ ξ) = yi− |ξ|s, ∀ξ ∈ [−h,h],

and

Si(xi+ ξ) =

{
yi+ |ξ|s, if ξ ∈ [−h,0],
yi− |ξ|s, if ξ ∈ [0, h],

where yi =
1
2
+2ihs.

Now we are ready to construct the reward functions using these gadgets. For i= 1, ...,m/2,

scanning from prices high to low, the reward function Ri is a concatenation of (i− 1) consecutive

137

S-curves, followed by one B curve, and finally a curve extending downwards the left portion of B

until reaching the x-axis. Formally for any i= 1, ..., m
2
,

Ri(x) =

Sj(x), if x∈ [xj −h,xj +h] for j ≤ i− 1,

Bi(x), if x∈ [xi−h,xi+h],

shs−1x+(yi−hs− shs−1 (xi−h)) if x≤ xi−h.

Finally, we need a special reward function R0, that consists only of S-curves on [1
2
,1], and

extends upwards when the prices moves below 1
2
, analogous to the construction to the roof curves

in the lower bound proof of Theorem 13 in the previous chapter. Formally,

R0(x) =

{
Rm

2
(x), if x≥ 1/2,

ym
2
+(xm

2
−x)s, if x∈ [0,1/2].

The lower bound is again showed using the Wald-Wolfowitz Theorem (Theorem 28). At a

high level, any reasonable policy π needs to solve a hypothesis testing problem in each interval

[xi−h,xi+h], which aims at distinguishing between R0 and Ri. Note that R0 and Ri are completely

identical on prices higher than xi, and only starts to differ on prices lower than xi, at a rate

of hs. Hence, the maximum KL divergence on this interval is ∼ h2s, and by the Wald-Wolfowitz

Theorem (Theorem 28), in expectation Ω(h−2s) samples are necessary assuming the policy π is

able to distinguish between these two reward functions.

To see why π must be able to distinguish between the two curves, for the sake of contradiction,

suppose otherwise, say, under true reward curve Ri the policy π has a high probability of mistakenly

return R0 as the true curve, and hence reduces the price below xi−h, incurring an Ω(hs) regret per

round. This leads to an Ω(hsT) = Ω(T
2s+1
3s+1) regret in future rounds, contradicting the low-regret

assumption (with suitably chosen constants). Since the number of intervals is Ω(h−1), we have

Reg(π,R0)≥Ω(h−2s) ·Ω(h−1) =Ω(h−1−2s) = T
2s+1
3s+1 ,

and the proof follows. □

138

Chapter V Short-Lived High-Volume Bandits: Algo-

rithms and Field Experiment
Consider the problem of recommending newly-created content. For long-lived content, the problem

is arguably straightforward: spend a negligible amount of time collecting sufficient data in the form

of user feedback, and then apply a suitable offline predictive model. For low volume content relative

to the number of recommendation, the problem is also well-understood: dedicated exploration

methods (e.g. A/B testing) are sufficient for determining which content to show. The question

then is, how should an online platform decide what content to display to each user? In addition to

the well-known “learning-vs-earning” trade-off in multi-armed bandit (MAB) models, the online

platform needs to resolve an additional concern: the balance between the exploration of newly

arriving and older contents. We propose a simple bandit-based approach that not only settles this

challenge but can be easily implemented in practice. We implemented this policy in a live field

experiment with a large lockscreen content platform which faces exactly this challenge. Over the

course of a field experiment running over two weeks, our policy achieved an 6∼ 12% improvement

in conversion rates, relative to a neural network based control policy.

V.1. Introduction

There has been a long history where online platforms leverage the scale of data, especially user

attention, to make better decisions for newly-arriving products or contents. By and large, recom-

mendation tasks can be classified into four categories based on the lifetime and volume of contents

generated (see Figure 10). For persistent (long-lived) content, the problem is arguably straightfor-

ward: spend a small amount of time collecting sufficient data in the form of user feedback, and then

a suitable offline predictive model, which might range in sophistication from a basic collaborative

filtering algorithms to, nowadays, deep neural networks (DNNs). For example, recently YouTube

deployed a recommender system comprised of two deep neural networks: one for candidate gener-

ation and one for ranking (Covington et al. (2016)).

Orthogonal to content lifetime, when there is a low volume of content relative to the number

of users, the problem is similarly well-understood: dedicated exploration methods (e.g. A/B test-

ing) are sufficient for finding the right segments of users for which the content is most appealing.

LinkedIn runs over 400 concurrent experiments per day to compare different designs of their web-

site, with the goal of, for example, encouraging users to better establish their personal profile, or

increasing the subscriptions to LinkedIn Premium (Xu et al. (2015)).

Naturally then, the most challenging settings are where the content to be recommended is

short-lived and high-volume. Such settings arise, for example, in content aggregation platforms (e.g.

139

Apple News) and platforms with content that is entirely user-generated (e.g. TikTok). In these

settings, both of the previous approaches are prone to failure: offline predictive algorithms do not

receive enough data on individual content to achieve meaningful accuracy due to the short lifetime,

and dedicated exploration methods are ill-suited to the high volume of contents.

In practice, platform such as Tiktok, Google and Kwai have deployed DNN-based recom-

mender system for short-lived contents, and frequently re-train the DNN by incorporating the

latest data. However, both retrieval of data and retraining of NN requires considerable amount of

time and space. This poses substantial challenge for the companies in terms of both human and

computational resources. To minimize the resources used for exploration, it is better to instead

focus on recommendation policies that are operationally simple and statistically interpretable.

We investigate this problem through collaboration with Glance, a large content-aggregation

platform who is faced with exactly this challenge. More precisely, Glance produces a high volume

of “Glance cards” (see Figure 10), which consists of a background picture carefully crafted by their

marketing team, and a link pointing to an external information source.

Figure 10 Left: Recommendation tasks may be categorized by lifetime and volume. Right: An example of

lockscreen cards created by Glance.

Multi-Armed Bandits (MAB, or simply “bandits”) provide a good framework for such policies.

On the one hand, compared to DNN’s, bandit policies are much more interpretable. On the other

hand, bandit policies usually involves simple computation or sampling, and as a result, they are

easier to code, maintain, and above all, computationally fast. We formulate the problem as an MAB

model where in each round, a set of arms, which model the newly-generated contents, arrives with

unknown mean conversion rates, and are available for a given short period of time. The platform

140

then selects and serves a set of arms to each user, and observes the conversion rates of the selected

arms.

As opposed to most previous work on MAB problems where the worst case input is considered,

in this work we assume that the reward rates are independently and identically distributed (i.i.d.)

with a known distribution. The reason is two-fold. First, this assumption better captures the

uncertainty in conversion rates in reality compared to the adversarial model. Further, it brings

extra structure that the learner may utilize for balancing the exploration between arms of different

ages. In this work, we will for simplicity consider D being uniform distribution, but all of the four

results in Table 10 can be generalized to distributions D such that D (i) has a finite support [a, b],

and (ii) admits a cumulative density function (cdf) F with 1−F (b− ε) =O(ε) for any ε∈ [0,1].

V.1.1. Our Contributions Our first contribution is formulating a problem that models the

recommendation problem for short-lived high volume items, faced by many online platforms nowa-

days. To be more precise, we consider a batched bandits model where arms are arriving and expiring

over time, with unknown reward rates that are drawn from the uniform distribution. We show two

lower bounds. Suppose there are K new items arriving each period, and n identical, static users on

the platform. We first present a general Ω
(

1
K

)
lower bound that holds for any n,K. However this

lower bound becomes very weak when K is large compared to n. This motivates us to consider the

case where K =Ω(
√
n), where we show an Ω(n−1/2) lower bound.

Our second contribution is proposing a novel policy called the Sieve Policy. The policy

iteratively removes the arms that are unlikely to be optimal in its cohort, based on the current

reward estimate, and hence focuses on finer estimates of the remaining arms. We prove that an

ℓ-layered Sieve Policy admits regret O
(

1
K
+ (K

n
)

ℓ
ℓ+2
)
, which decreases as we increase the number

ℓ of layers. Furthermore, when K = Ω(
√
n), by randomly sampling the arms, the regret of our

sieve policy becomes O(n
− ℓ

2(ℓ+1)), which approaches the aforementioned lower bound Ω(n−1/2) as

ℓ increases.

As our third contribution, we collaborated with Glance, an Indian lock-screen content plat-

form who faces exactly this challenge, to implement a basic version of our Sieve Policy in a large-

scale field experiment. Glance generates hundreds of content cards on an hourly basis, most of

which are available for at most 24 hours. They deployed a state-of-the-art Deep Neural Network

(DNN) based recommender system, which is time-consuming to re-train and hence unable to utilize

user feedback in a timely manner. In a live field experiment, we observed that our 1-layer sieve

policy, with minor adaptations for practical concerns, outperforms their DNN-based recommender

system by 6% in the number of impressions per user and 12% in the number of conversions per

user.

141

K <
√
n K ≥

√
n

Lower Bound 1
K

1√
n

Upper Bound
(
K
n

) ℓ
2ℓ+2 , ∀ℓ≤W

(
1√
n

)− W
2W+2

Table 10 Our Results

V.1.2. Related Literature A central problem in online platforms is content recommenda-

tion. Various techniques from different fields have been applied into designing better recommender

systems, including Deep Neural Networks (DNN) Aggarwal et al. (2016), and collaborative fil-

tering Koren and Bell (2015). Our key challenge is recommending short-lived contents, especially

in the face of high volume of contents. Since many firms are using Deep Neural Network (DNN)

based recommenders, a natural approach for recommending short-lived contents would be simply

be updating the DNN more frequently. While this approach has been adopted by leading platforms

such as Tiktok and Youtube, it is less realistic for relatively smaller platforms. In fact, frequent

updates of neural network involves retrieving the latest interaction data and retaining the DNN,

both of which can be substantially time consuming, and may require considerable expertise.

In contrast, online learning, or more specifically, the Multi-Armed Bandits (MAB) model,

provides an alternate framework for designing recommenders based on its simplicity and inter-

pretability. In the MAB problem (e.g. Lai and Robbins (1985)), the learner is given a set of arms,

each associated with an unknown distribution, from which a reward is independently drawn each

time the arm is selected. The goal is to sequentially select arms so as to maximize the total reward.

There is a growing literature on bandit-based policy in operations management and mar-

keting. For instance, Li et al. (2010) formulated the news article recommendation problem as a

contextual bandits problem, where they represented the users and news article as feature vectors,

and the expected reward when an article is recommended to a user is assumed to be a logistic

function of the inner product between the feature vectors. Bouneffouf and Rish (2019) summa-

rized some other practical applications of bandit-based algorithms, from recommender systems and

information retrieval to healthcare and finance.

There are two MAB variants most closely related to our problem. The first is mortal bandits

(Chakrabarti et al. (2008), Levine et al. (2017)), where each arm has a stochastic lifetime after

which it becomes unavailable. The other variant is Batched Bandits (Perchet et al. (2016), Gao

et al. (2019), Agarwal et al. (2017)). In this variant, the learner needs to select arms in batches,

subject to a given budget on the total number of batches she could use, and another budget on the

total number arms to be selected. In particular, the learner is allowed to determine the size of each

142

batch, rendering the technique inapplicable to the analysis of our problem. In fact, in practice the

batch sizes correspond to the number of interactions observed per period, which the decision-maker

has no control over in our setting.

Recently there is a growing literature on evaluating bandit-based policies via field experiments

on real systems. For example, Schwartz et al. (2017) considered how to allocate percentages of

impressions to each new ad, so as to maximize customer acquisition. They implemented a Thompson

sampling based policy in a live field experiment with a large retail bank, and observed a significant

increase in the customer acquisition rate. Ye et al. (2020) modeled the cold-start problem for online

advertising as contextual bandit, where the platform needs to trade off between the short-term

revenues and long-term market thickness. They demonstrated the efficacy of their policies via a

field experiment on a leading video-sharing platform.

V.1.3. Organization In Section V.2, we formally formulate the problem as a variant of MAB,

and introduce a lower bound on the regret. Then in Section V.3, we present our Sieve Policy and

upper bound its regret. Finally, we provide the full details and results of our field experiments in

Section V.4.

V.2. Model and Lower Bound

V.2.1. Formulation Consider a Multi-Armed Bandits (MAB) formulation of our problem. At

the start of each round t= 1,2, ..., a set At of K arms arrives, each arm a with an unknown reward

rate µ(a). To model the transient nature of the recommended content, each arm is associated with

a known lifetime W > 0, representing the number of rounds the arm remains available. Thus, in

round t, the set of available arms are ∪tτ=t−WAτ . For notational convenience, for 0< s< t we denote

At
s =∪tτ=sAτ , and define As = ∅ if s≤ 0.

The learner in each round t selects a multi-set of n available arms in a batched manner. The

random reward of each selected arm is independently drawn from Ber (µ(a)), and observed by the

learner. For concreteness, one may assume that there are n identical users in the platform, each to

be assigned to play exactly one arm in each round, and generates a random reward. A policy for

decision making can be formally specified by a sequence π = {πt : t= 1,2, ...} of mappings where

πt(a) denotes the number of times arm a is selected at time t.

We measure the loss of a policy by comparing it against the optimal policy that knows µ(a)

beforehand, in which case the policy simply selects the arm with the maximum reward rate for n

times, collecting an expected reward of n ·µmax(At
t−W), where we denote µmax(A) =maxa∈A µ(A)

for any set A of arms.

143

As opposed to most work on MAB where the benchmark is the worst-case input, we study a

more realistic scenario where the reward rates are assumed to be i.i.d drawn from a known, fixed

distribution D, and consider the performance of a policy on an “average” instance. More precisely,

we will consider an objective called the long-term average regret. Formally, for policy π define

Reg(π,T) =
1

nT
E

 T∑
t=1

∑
a∈At

t−W

πt(a) ·
(
µmax

(
At
t−W

)
−µ(a)

) ,
where the expectation is over the input as well as the random rewards. To measure the regret in

the long-run, we take limit and define the long-term average regret as

Reg(π) = lim
T→∞

Reg(π,T).

Compared to the worst-case analysis, this average case analysis not only enables us to achieve

richer theoretical results, but more importantly, better captures the reality and provides more

insights towards how to explore the arms in the face of short lifetime. In this work, we assume D

to be the uniform distribution on [0,1], though it is straightforward to extend our results to more

general distributions.

V.2.2. Lower Bounds: High Level Ideas We start with a simple Ω
(

1
K

)
lower bound. Recall

that the reward rates of the arms are drawn from the uniform distribution. At each round t, there

is a 1
W

probability that the reward-maximizing available arm a∗
t is contained in the arriving batch

At of arms. The policy now faces the following dilemma. Suppose the policy selects arms from At

for many times. Since it has no knowledge about At except that the reward rates are uniform, the

policy can not do much better than randomly guessing, incurring a high regret in this round.

On the other side, suppose the policy selects arms from At for very few times. Recall that At

contains a∗
t with probability 1

W
. Moreover, due to the uniform reward rate assumption, when the

above event occurs one should naturally expect µ(a∗) to be ∼ 1
KW

higher than the optimal arm in

At−W
t−1 . In this case, the regret incurred for selecting an arm from At−W

t−1 is ∼ 1
WK
· 1
K
= 1

W2K
, and

we obtain our first lower bound, as formally stated below.

Theorem 29. For any policy π, we have Reg(π)≥ 1
12W2K

.

However, this bound becomes weaker when K is large, so we next focus on the case when

K is “large” compared to n. Somewhat interestingly, we establish a lower bound which transitions

from the above 1
K

lower bound continuously to the large K regime. At a high level, we argue that if

a policy has regret, then it has to “identify” a nearly-optimal arm, and hence has to explore many

distinct arms, wherein a high regret is incurred. We formally state the second lower bound below.

Theorem 30. Suppose n≤K2, then for any policy π we have Reg(π)≥ 1
12W

√
n
.

144

V.2.3. The First Lower Bound. We first describe the high level idea. Suppose

We now make the above ideas precise. Consider the event

Gt−1 =

{
1− 2

(W − 1)K
≤ µmax(A

t−1
t−W)≤ 1− 1

(W − 1)K

}
that the input instance is “well-behaved”. We first show that this event occurs with large proba-

bility.

Lemma 40. If K ≥ 10 then P(Gt−1)≥ 1
8
.

Proof. Denote µmax = µmax(A
t−1
t−W). Let

H =

{
µmax ≥ 1− 1

(W − 1)K

}
and H ′ =

{
µmax < 1− 2

(W − 1)K

}
.

Then for K ≥ 10, we have

P
[
H
]
= P

[
µmax < 1− 1

(W − 1)K

]
=

(
1− 1

(W − 1)K

)(W−1)K

≥ 3

4
· e−1,

and thus P[H]≤ 1− 3
4e
. Moreover,

P[H ′] =

(
1− 2

(W − 1)K

) (W−1)K
2 ·2

≤ e−2.

Therefore,

P[Gt−1]≥ 1−P[H ′]−P[H]≥ 1−
(
1− 3

4e

)
− e−2 >

1

8
,

and the proof follows. □

We next lower bound the regret at time t conditional on Gt−1. For each t and event A, we

write Pt(A) = P[A|Gt−1] and Et(A) = E[A|Gt−1]. To analyze the above terms, we introduce the

following events. Consider the event

Et =

{∑
a∈At

πt(a)≥
n

2

}

be that π selects arms from At at time t for at least n
2
times. Further, define

E−
t =

{
µmax(At)≤ µmax(A

t−1
t−W)− 1

K

}
and E+

t =

{
µmax(At)≥ µmax(A

t−1
t−W)+

1

WK

}
.

One can verify that both events are likely to occur conditional on Gt−1, as formally stated below.

Lemma 41. Pt[E−
t]≥ 1

2
and Pt[E+

t]≥ 1
W
.

145

Intuitively, the regret is high at time t under the following two circumstances: (i) the policy selects

many arms from At but the optimal arm is not in At, and (ii) the policy selects At very few times

but the optimal arm is from At. We next characterize the regret under these two scenarios.

Lemma 42. It holds that Et[Rt|Et ∩E−
t]≥ n

2K
and Et(Rt|E t ∩E+

t)≥ n
2WK

.

Proof. Write µ∗
t = µmax(At). Consider the first inequality. Conditional on E−, the optimal arm

is not in At, and since Et occurs, i.e. the policy selects arms from At for
n
2
times, a high regret is

incurred. We formalize this idea as follows.

Et[Rt|Et ∩E−] =
∑

a∈At
t−W

Et[πt(a) · (µ∗
t −µ(a))|Et ∩E−]

≥
∑
a∈At

Et[πt(a) · (µ∗
t −µ(a))|Et ∩E−]

≥
∑
a∈At

Et[πt(a)|Et ∩E−] ·Et[µ∗
t −µ(a)|Et ∩E−]

≥

(∑
a∈At

Et[πt(a)|Et ∩E−]

)
·Et
[
µ∗
t −µmax(At)|Et ∩E−]

≥ n

2
· 1
K

=
n

2K
.

Now we show the second inequality. Conditional on E+, the optimal arm is in At, and since E t also

occurs, i.e. the policy selects arms in At−1
t−W for more than n

2
times, a high regret is incurred. We

formalize this idea below.

Et[Rt|Et ∩E+] =
∑

a∈At
t−W

Et[πt(a) · (µ∗
t −µ(a))|Et ∩E+]

≥
∑

a∈At−1
t−W

Et[πt(a) · (µ∗
t −µ(a))|Et ∩E+]

≥
∑

a∈At−1
t−W

Et[πt(a)|Et ∩E+] ·Et[(µ∗
t −µ(a))|Et ∩E+]

≥

 ∑
a∈At−1

t−W

Et[πt(a)|Et ∩E+]

 ·Et [(µ∗
t −µmax(A

t−1
t−W))|Et ∩E+

]
≥ n

2
· 1

WK
=

n

2WK
,

and the proof follows. □

146

Proof of Theorem 29. Observe that

Et(Rt) =Et(Rt|Et ∩E−) ·Pt(Et ∩E−)+Et(Rt|Et ∩E+) ·Pt(Et ∩E+)

+Et(Rt|E t ∩E−) ·Pt(E t ∩E−)+Et(Rt|E t ∩E+) ·Pt(E t ∩E+)

≥Et[Rt|Et ∩E−] ·Pt(Et ∩E−)+Et(Rt|E t ∩E+) ·Pt(E t ∩E+). (44)

The inequality follows since Rt ≥ 0 a.s. and hence each term above is non-negative. By Lemma 41

and 42, we have

(44)≥ n

2K
·Pt(Et ∩E−

t)+
n

2WK
·Pt(Et ∩E+

t)

≥ n

2WK
·
(
Pt(Et) ·Pt(E−

t)+Pt(Et) ·Pt(E+
t)
)

≥ n

2WK
·
(
1

2
·Pt(Et)+

1

W
·Pt(Et)

)
≥ n

2W 2K
,

where in the second inequality we used the key fact that the events Et and E+
t (Et and E−

t resp.)

are independent conditional on Gt−1. Combining the above with Lemma 40, we obtain

E[Rt]≥E[Rt ·1(Gt−1)] =E[Rt|Gt−1] ·P[Gt−1]≥
n

2W 2K
· 1
8
=

n

16W 2K
.

Summing over t and taking the limit, the regret of policy π is bounded as

Reg(π) = lim
T→∞

1

nT

T∑
t=1

E[Rt]≥
1

16W 2K
,

and the proof follows. □

V.2.4. The Second Lower Bound We first present the high level idea. With some foresight

define δ = n−1/2 and define an arm a to be δ-good if µ(a) ≥ 1 − δ and δ-bad otherwise. Since

K = Ω(
√
n), there is a high probability that the optimal arm is also δ-good, and thus we may

perform our lower bound analysis conditional on this event.

Fix some t and consider the regret Rt+W
t−W incurred from time t−W to t+W , where we recall

that W is viewed as a constant. Consider a policy whose cumulative regret in this period of time

is O(
√
n). The key idea is to consider the cold-start event that at time t, none of the δ-good arms

ever selected is still available. As the name suggests, when this event occurs, in order to attain low

regret, the policy has to first identify a δ-good arm and then exploit it. In other words, all past

information are “useless” for achieving low regret, and hence any reasonable policy behaves as if

the time horizon “restarts” at time t.

147

Intuitively, if Bt occurs then a high regret is incurred in the near future. More precisely,

we will show that Rt+W
t−W =Ω(

√
n) conditional on Bt. In fact, since the reward rates are unknown,

when selecting unexplored arms (i.e. arms that have never been selected) the policy is essentially

randomly guessing. By the uniform reward rate assumption, the policy has to select ∼ 1
δ
=
√
n

arms before encountering a δ-good arm. Moreover, when a δ-bad arm is selected, an Ω(1) regret is

incurred on average, and therefore Rt+W
t−W =Ω(

√
n).

We derive the lower bound by considering the number ℓ of unexplored arms the policy selects

during t−W to t. Suppose ℓ >
√
n, then by the uniform reward rate assumption, we have Rt+W

t−W =

Ω(
√
n). In the other case, suppose ℓ≤

√
n. Then, due to the uniform reward rate assumption, with

Ω(1) probability none of those ℓ arms is δ-good. Moreover, at time t all δ-good arms that arrived

before t−W have expired. Therefore at t, it is likely that no available δ-good arm has ever been

selected, and hence Bt occurs, which leads to a high regret. We next formalize the above ideas and

establish our Ω(n−1/2) lower bound.

Lemma 43. Suppose K >
√
n and define Gt = {µmax(A

t
t−W)≥ 1− δ} for each τ ≥W . Then,

P[Gt]≥
1

2
.

Proof. Since |µmax(A
t
t−W)|=WK and the reward rate of each arm is drawn i.i.d. from uniform

distribution, we have

P[Gt] = (1− δ)KW = (1− δ)
1
δ ·KWδ ≤ e−KWδ.

Since K >
√
n, we have Kδ >n

1
2 ·n− 1

2 ≥ 1, so P[Gt]≤ e−KWδ ≤ e−W ≤ 1
2
, i.e. P[Gt ≥ 1

2
]. □

In particular, this implies a lower bound on the long-run average reward.

Corollary 4. If K >
√
n, then

lim
T→∞

1

T

T∑
t=1

µ∗(at)≥ 1− δ.

We will subsequently write Et[·] = E[·|Gt] for any t. Fix some t and consider [t−W,t+W].

The next lemma says if a large number of unexplored arms is selected, then a high regret is incurred.

This is intuitive because the policy has no knowledge about each unexplored arm, except that its

reward rate is uniformly distributed.

Lemma 44. Let Vτ = {|Sτ | ≥
√
n

4W
} for any τ ∈N, then E[Rτ |Vτ]≥

√
n

12W
.

148

Proof. Note that

Eτ [Rτ |Vτ] =
∑
a∈A

Eτ [πτ (a) · (µ∗
t −µ(a))| Vτ]≥

∑
a∈A

Eτ [1(a∈ Sτ) · (1− δ−µ(a)) | Vτ]. (45)

Further, since a∈ Sτ is independent of µ(a) conditional on Vτ , we have

(45) =
∑
a∈A

Eτ [1(a∈ Sτ)|Vτ] · (1− δ−Eτ [µ(a)|Vτ])

≥E
[
|Sτ |

∣∣Vτ] ·(1

2
− δ

)
≥ 1

3δ
=

√
n

3W
,

and the proof follows. □

An arm a is called unexplored at the start of round t if it has never been selected before, i.e.∑t−1

τ=1 πτ (a) = 0. Let

Sτ = {a∈Aτ
τ−W : πτ (a)> 0 and

t−1∑
s=1

πs(a) = 0}

be the set of unexplored arms selected by the policy at round τ . The following says if the regret in

[t−W,t] is low, then the policy is likely to have under-explored in [t−W,t]. Consequently, at time

t it is likely that none of the near-optimal arms ever selected is still available.

Lemma 45. Let Bt = {µmax(St∩At
t−W)≤ 1−δ}. Suppose E

[∑t

τ=t−W Rτ

]
≤

√
n

12W
, then P[Bt]≥ 1

2
.

Proof. Consider the event Eτ = {maxa∈Sτ µ(a)≥ 1−n− 1
2 }. In words, this is the event that one

of the unexplored arms selected at time τ has high reward rate. We start with upper bounding

P[Eτ]. Observe that

P[Eτ] = P[Eτ |Vτ] ·P[Vτ] +P[Eτ |Vτ] ·P[Vτ]≤ P[Vτ] +P[Eτ |Vτ]. (46)

We will bound these two terms separately. First we claim that

P[Vτ]≤
1

4W
. (47)

In fact, for a contradiction suppose P[Vτ]> 1
4W

, then by Lemma 44,

E[Rτ]≥E[Rτ |Vτ] ·P[Vτ]>
√
n

3
· 1

4W
=

√
n

12W
,

contradicting the assumption that E
[∑t+W

τ=t Rτ

]
≤

√
n

12W
.

149

To bound the second term in (46). By definition of Eτ , for any integer C > 0 we have

P
[
Eτ

∣∣∣Sτ ≤C
]
≥ (1− δ)C ≥ (1− δ)

1
δ ·δC ≥ e−δC ,

where the last inequality follows since for any x∈R we have 1−x≤ e−x. It then follows that

P
[
Eτ

∣∣∣Vτ]= P
[
Eτ

∣∣∣Sτ ≤ √n
4W

]
≥ 1− δ ·

√
n

4W
= 1− 1

4W
.

Rearranging, we obtain

P
[
Eτ

∣∣∣Vτ]= 1−P
[
Eτ

∣∣∣Vτ]≤ 1

4W
. (48)

Combining (46),(47) and (48), we have P[Eτ]≤ 1
4W

+ 1
4W

= 1
2W

.

To conclude the proof, observe that if none of the events Eτ occurs for τ ∈ [t−W,t], then Bt

occurs. Therefore, by the union bound,

P [Bt]≥ P

[
t⋂

τ=t−W

Eτ

]
= 1−P

[
t⋃

τ=t−W

Eτ

]
≥ 1−W · 1

2W
=

1

2
,

and the proof follows. □

Intuitively, if Bt occurs and the regret in [t, t+W] is ≤ n1/2, then the policy has to identify

a nearly-optimal arm in the next W rounds, which leads to a high regret due to exploration, as

formalized below.

Lemma 46 (Wang et al. (2008)). E
[∑t+W

τ=t Rτ

∣∣∣Bt

]
≥

√
n

6W

We now combine the above to establish the second lower bound (Theorem 30).

Proof of Theorem 30. Decompose Rt+W
t−W as

Rt+W
t−W =

t+W∑
τ=t−W

ERτ =
t−1∑

τ=t−W

ERτ +
t+W∑
τ=t

ERτ .

Suppose the first term is at least
√
n

12W
, then the proof follows immediately. Otherwise, by Lemma 45,

we have P[Bt]≥ 1
2
, and hence by Lemma 46 we have

t+W∑
τ=t

ERτ ≥E

[
t+W∑
τ=t

Rτ

∣∣∣Bt

]
·P[Bt]≥

1

2
·
√
n

6W
=

√
n

12W
,

and the proof follows. □

150

V.3. Our Policy and Upper Bound

V.3.1. The Sieve Policy There are three basic ideas for designing policies for bandit prob-

lems: Upper Confidence Bound (UCB), Thompson Sampling (TS) and (Explore-Then-Commit)

ETC. However, since the arms are arriving online and hence may have different ages, the first two

policies would suffer high regret since they do not incorporate the age of the arms. Take UCB as

an example. The policy maintains a confidence interval for each arm possibly with different width,

and select the arm with the highest upper confidence bound. However, since new arms are arriv-

ing in each round, the policy will rarely prefer selecting well-explored over new arms since their

confidence intervals are much smaller than the new arms and hence unlikely to have the maximum

upper confidence bound.

In contrast, the Explore-Then-Commit (ETC) policy achieves sublinear regret. At each

round, the policy uses a small fraction of users to explore the newly arrived arms, and assign all

remaining users the empirically optimal arm, based on the exploration in the previous steps.

The above ETC policy has an obvious shortcoming: it only explores the newly arrived arms

and hence does not make full use of the lifetime W . In particular, this means the policy remains

the same for any given lifetime. Consider a natural improvement, dubbed a 2-Layered Sieve Policy,

specified by two parameters ε0, ε1. When a set A of K arms just arrives, the policy uses ε0n users to

explore A by selecting each a∈A for ε0n
K

times, and based on these outcomes, the policy computes

a subset S of surviving arms. In the next round, the policy uses ε1n users to further explore the

survivors, and computes an empirically optimal arm. For the remaining 1−ε0−ε1 fraction of users,

the policy simply selects the empirically optimal arm, among all arms of age at least 2.

More generally, one may repeat this process for ℓ≤W times (see Algorithm 12), and hope

that the regret bounds decrease as ℓ becomes large. An ℓ-layered Sieve Policy is specified by

exploration intensity parameters ε0, ..., εℓ−1, where εi represents fraction of users the policy uses

for (further) exploring the arms that survived the i-th layer of filtering, where
∑

i εi < 1.

V.3.2. Analysis of the Sieve Policy The main result in this section is the following regret

upper bound for ℓ-layered Sieve policy where ℓ≤W .

Theorem 31. Let εi = n− ℓ−i
ℓ+2 for each 0≤ i≤ ℓ− 1, then the ℓ-layered Sieve policy satisfies

Reg (ε0, ..., εℓ)≤O

 1

K
+

(
K log2K

n

) ℓ
ℓ+2

 .

151

Algorithm 12 Sieve Policy.

1: Input:

• ℓ: number of sieve layers,

• ε1, ...εℓ: exploration intensities,

• n: number of arms to select in each round

2: for t= 0,1, ..., do

3: for i= 0,1, ..., ℓ− 1 do ▷ Level-i exploration

4: if Sit−i ̸= ∅ then

5: nti←
εin

|Si
t−i|

▷ Number of times to select each arm in Sit−i

6: for a∈ Sit−i do

7: Observe rewards Xt
a,1, ...,X

t
a,ni

8: X
t

a =
1
nti

∑nti
j=1X

t
a,j ▷ Empirical mean

9: X
t

max←max{Xt

a : a∈ Sit−i} ▷ Empirically maximal reward rate

10: Si+1
t−i = {a∈ Sit−i : |X

t

a−X
t

max| ≤ 2(nti)
−1/2} ▷ Update the surviving arms

11: Ât← argmax{Xa : a∈
⋃t−ℓ
τ=t−W Sℓτ} ▷ Empirically optimal surviving arm

12: Select any arm in Ât for n−
∑ℓ−1

i=0 n
t
i times ▷ Exploitation

In particular, when K ≥
√
n, by running the ℓ-layered Sieve policy on

√
n randomly selected arms

from each batch, the upper bound becomes

O

 1√
n
+

(√
n log2 n

n

) ℓ
ℓ+2

=O
(
n− ℓ

2ℓ+2

)
.

Recall that Sjt denotes the surviving arms in At after j layers. The average regret can then be

bounded as

Reg(ε0, ..., εℓ)≤ ε0 · 1+ ε1 ·
(
µmax(A

t
t−W)−µmin(S

1
t−1)

)
+ ε2 ·

(
µmax(A

t
t−W)−µmin(S

2
t−2)

)
+

...+ εℓ−1 ·
(
µmax(A

t
t−W)−µmin(S

ℓ−1
t−ℓ+1)

)
+(1− ε0− ε1− ...− εℓ−1) ·

(
µmax(A

t
t−W)−µ(ât)

)
, (49)

where ât is the arm for the exploitation users. To bound the above, fix some j ∈ [ℓ−1] and consider

µmax(A
t
t−W)−µmin(S

j
t−j) =

(
µmax(A

t
t−W)−µmax(At−j)

)
+
(
µmax(At−j)−µmin(S

j
t−j)

)
.

Motivated by the above decomposition, we define the external regret (ER) and internal regret (IR)

for At−j as

IR=
ℓ−1∑
j=0

εj ·
(
µmax(At−j)−µmin(S

j
t−j)

)
+(1− ε0− · · ·− εℓ−1) ·

(
µmax(At−ℓ)−µ(ât)

)
, (50)

152

and

ER= ε1 ·
(
µmax(A

t
t−W)−µmax(At−1)

)
+ ε2 ·

(
µmax(A

t
t−W)−µmax(At−2)

)
+ · · ·

+ εℓ−1 ·
(
µmax(A

t
t−W)−µmax(At−ℓ+1)

)
+(1− ε0− · · ·− εℓ−1) ·

(
µmax(A

t
t−W)−µmax(At−ℓ)

)
.
(51)

It is straightforward to verify that (53) = IR+ER.

Roughly speaking, IR measures the regret due to the estimation error, or more precisely,

the difference in reward rates between the worst surviving arm and the optimal arm in a batch of

arms. Meanwhile, ER is the regret caused by restricting the choice of the exploitation arm ât to

only Sjt−j, i.e. the arms of age at least ℓ.

We bound IR and ER separately. Consider ER first. As an basic fact in probability theory,

for m i.i.d. samples Z1, ...,Zm ∼ U(0,1), it holds maxi∈[m]Zi ≈ 1− 1
m
. Applying this fact on the

available arms At
t−W at t and substituting m=WK, we have µmax(A

t
t−W)≈ 1− 1

WK
, and hence

Proposition 13. For any s with t−W ≤ s≤ t,

E
[
µmax(A

t
t−W)−µmax(As)

]
≤ 1

K
.

The analysis of IR is relatively more involved. Recall that each alive arm is selected for the

same number of times for exploration in every layer, and thus we may build a confidence interval

around each of them with the same width wi. Since the reward rates are uniformly drawn, we

expect there to be wiK alive arms, assuming K is large. In the next layer of sieving, the policy

uses εin impressions to explore these ∼ wiK alive arms, so each of these arms will be played for
εin
wiK

times. By concentration bounds, we can bound the width of this new confidence interval as

wi+1 ∼
(

εin

wiK

)− 1
2

. (52)

To express each wj in terms of εj’s, one may expand (52) iteratively and obtain

wi+1 =w
1/2
i ε

−1/2
i

(
K

n

)1/2

.

It is then straightforward to verify that for each i= 1,2, ...ℓ− 1,

wi ∼ ε−2−i

0 · ε−2−(i−1)

1 · ... · ε−
1
2

i−1

(
K

n

)1−2−i

.

Now we are ready to determine the optimal exploration intensity parameters, i.e. εi’s, for

and ℓ. Recall, by definition of confidence interval, that

µmax(At−j)−µmin(S
j
t−j)≤wj

153

for each j ≤ ℓ− 1. Combining with (50), we can bound the internal regret as

IR(ε0, · · · , εℓ−1)≤O (ε0 + ε1w1 + ε2w2 + · · ·+ εℓ−1wℓ−1 +wℓ) . (53)

To approximately minimize the above, one may select the parameters εi’s such that

ε0 = ε1w1 = ε2w2 = · · ·= εℓ−1wℓ−1 =wℓ. (54)

Let εi = n−xi and n/K = nC , then (54) can be re-written as

−x0 =−x1 +
1

2
x0−

1

2
C

−x0 =−x2 +
1

2
x1 +

1

4
x0−

3

4
C

−x0 =−x3 +
1

2
x2 +

1

4
x1 +

1

8
x0−

7

8
C

· · ·

−x0 =−xℓ+
1

2
xℓ−1 +

1

4
xℓ−2 + ...+

1

2ℓ
x0− (1− 1

2ℓ
) ·C

−x0 =
1

2
xℓ+

1

4
xℓ−1 + ...+

1

2ℓ+1
x0,

which is a linear equation system with ℓ+1 variables and equations. One may then verify that the

unique solution to the above system is xi =
ℓ−i
ℓ+2

C for 0≤ i≤ ℓ− 1, hence the regret is O
(
(K
n
)

ℓ
ℓ+2

)
.

Proposition 14. Let εi = n− ℓ−i
ℓ+2 for each 0≤ i≤ ℓ− 1, then it holds

IR(ε0, ..., εℓ)≤
(
K log2K

n

) ℓ
ℓ+2

.

Combining with Proposition 13, we obtain the following main upper bound in Theorem 31.

V.4. Field Experiment Setup

We further investigate this problem via a field experiment through collaboration with India’s largest

lockscreen content platform, Glance, that faces exactly this challenge. The platform curates 100-200

Glance cards (or simply cards) per hour, with content ranging from news articles to short videos.

Swiping through cards, users may click through what they find interesting and be redirected by

the link for further engagement. Over 70% of the cards expire within 48 hours.

The personalization algorithm that Glance deployed in early 2021 is based on a state-of-the-

art Deep Neural Network (DNN) that combines every user’s recent interactions with the text and

image features of the newly generated cards, to finalize a set of recommended cards sent to the user’s

mobile device. This DNN-based recommender has been proven to significantly outperform their

previous recommender (Oli et al.), such as a Naive Bayes classifier based on the cards’ categories.

154

Despite the efficacy of the current recommender, there is a considerable potential for improve-

ment. In the current DNN recommender, feedback from users only updates their behavioral signa-

ture for future prediction, and does not directly leverage the user feedback in making recommen-

dations of content cards. Moreover, it is computationally expensive to re-train the neural network

on a regular basis. In fact, it was updated every 12 hours and this already hit their computational

limit, which potentially hampered its performance. For example, an underrated card may become

unexpectedly popular, but the recommender may only detect this signal 12 hours after the card is

released.

In contrast, bandit based policies are computationally less costly and hence may be used

incorporate the user feedback to learn the conversion rates in a more timely manner. So the natural

question then is, are we able to improve the recommender if we update it more frequently, using

ideas from bandit theory?

We answer this question with a resounding yes. We implemented the simplest form of our sieve

policy in a field experiment on Glance’s real system involving 600,000 users over a period of two

weeks in mid 2021. Our policy, despite being intentionally handicapped by ignoring personalization,

outperformed Glance’s current (personalized) recommender significantly in user engagement. In

the remainder of this section, we present the details of the setup of the experiment, and explain

the experimental results in the Section V.5.

V.4.1. Overview of Glance’s System In Glance’s current system, the cards are stored in

the mobile devices, with expiring cards removed regardless of internet connection. When connected

to the internet, the device sends a replenishment request to Glance’s system if the current number

of cards in the device is lower than a certain threshold, on an hourly basis. Upon receiving such a

request, the recommender selects and replenishes the device with the number of cards requested,

solely based on a score predicted by the recommender.

We randomly partitioned approximately 600,000 users into two groups: a control group where

the current DNN-based recommender is deployed, and a treatment group where a variant of our

one-layer sieve policy is implemented.

V.4.2. Treatment Group Policy The policy for the treatment group can be specified by

two parameters, the exploration intensity ε and exploration threshold θ. A card is said to be well-

explored (resp. under-explored) if at least θ impressions have been observed from all users. The

policy maintains a posterior distribution for each card, updated hourly using Bayes’ rule based on

the user-engagement data included in the

155

Fitting Prior Using NN predictions. For each new card, the policy first computes a suitable

prior distribution which we will explain soon.

Upon a replenishment request for r cards from a user, the policy first randomly draws εr

under-explored cards. To decide another (1− ε)r arms, the policy imitates the classic Thompson

sampling policy as follows. The policy randomly draws a score for each well-explored cards from

its posterior distribution, and then selects the top (1− ε)r cards with highest scores.

In our field experiment, we consider a formulation of the problem where all users are viewed as

identical. While this is somewhat impractical, the field experiment results in this setting turned out

to be a strong argument for our approach: we observed that our online leaning based policy without

personalization outperforms the offline learning based recommender system with personalization.

To formulate Glance’s recommendation problem as a multi-armed bandits model, we need to

first specify the definition of reward. There are two commonly used metrics that measure the success

of recommendation for online platforms: click-through rate (CTR) and duration. For Glance, a

click-through occurs if the user clicks on the link embedded in a card. The duration of an impression

is simply the amount of time the user spends on it. Intuitively, a long view of on a card suggests

the users is likely to be interested, but if the duration is unreasonably long, it is usually because

the user is not paying attention to the card (e.g. use phone for flashlight, or forget to turn off the

phone). Thus motivated, we define the binary reward of an impression to be 1 if either there is a

click through or the duration is between some constants ℓ and u seconds.

One of the most commonly used policy for bandits is Thompson Sampling (TS) (see e.g.

the survey of Russo and Van Roy (2016)). The TS policy takes prior distribution as input and

maintains a posterior for the reward rates for the arms. Then at each round the policy computes

the posterior reward distribution for each arm, then draws a score from the posterior and selects the

arm with the highest score. TS-based policies has demonstrated excellent performance for newly-

created contents. For example, Schwartz et al. (2017) improved the customer acquisition rate by

8% in a live field experiment for displaying ads by deploying a TS-based MAB policy.

Consider the most natural adaptation of the TS policy: suppose a user requests r cards

(usually on the magnitude of 10-25) in this hour, then the policy draws a score for each card from

its posterior distribution, and recommends the r cards with highest scores to the user. Nonetheless,

this policy would select predominantly new cards, and old cards would be rarely selected, even

if some of them are shown to be popular by the past interaction data. In fact, on the one hand,

due to the sheer size of the user pool, the posterior distributions of cards will quickly collapse to

a spike after one or two updates. On the other hand, the posterior distributions of new cards are

156

Algorithm 13 SetPrior(g).

1: Input: m> 0, glance card g

2: Output: α,β ▷ Return a Beta distribution

3: Randomly sample m users u1, ..., um

4: for i= 1, ...,m do

5: µ(ui, g)← neural network prediction for pair (ui, g)

6: Compute the sample mean x̄ and variance v̄:

x̄← 1

m

m∑
i=1

µ(ui, g), v̄← 1

m− 1

m∑
i=1

(µ(ui, g)− x̄)
2

7: Set up Beta prior using the method of moments:

α← x̄

(
x̄(1− x̄)

v̄
− 1

)
, β =

1− x̄

x̄
α

more flat, so they are much more likely to be assigned an extremely high score by the TS policy

and hence be recommended to the user.

V.4.3. Counterfactual Simulation We performed an counterfactual simulation using

Glance’s interaction data in February 2021, aimed at demonstrating the effectiveness of the one-

layer Sieve policy. The data includes the following information about each interaction:

1. the hashed user name,

2. the card name,

3. the duration,

4. whether a click-through occurred

5. the start time of this interaction.

As the key challenge for the simulation, for each pair of user and card that had no interaction,

we do not know what could have happened when this card was assigned to the user. To circumvent

this issue, we consider the following counterfactual simulation. First we sort the interaction data

according to their start time, and partitioned the sorted data into blocks of size 50, which we

will consider one by one. Since the click-through (CT) events are rare (0.5%), to better compare

the performances between policies, for each we define interaction the reward to be 1 if either the

duration reaches 0.5 seconds, or there is a click-through. For each block, we let the policy under

consideration select the 20% cards (i.e. 10 out of 50) using its selection criterion. At the end of the

simulation, we compute the average reward rate of the cards selected by the policy.

157

Algorithm 14 Randomized One-Layer Sieve Policy

1: Input:ε∈ [0,1], θ≥ 0

2: for each hour t= 1,2, ... do

3: Receive a set Anew of new cards

4: Update the set A of available cards

5: for each card g ∈A do

6: if g ∈Anew then

7: (αg, βg)← SetPrior(g). ▷ Compute a prior reward distribution

8: else

9: ng← number of interactions of g in the last hour

10: hg← number of conversions of g in the last hour

11: αg← αg +hg, βg← βg +ng −hg ▷ Update the posterior distribution

12: Awell←{g : αg +βg > θ} ▷ Well-explored cards

13: for each user u do ▷ Thompson Sampling

14: Receive the number ru of cards requested by u

15: Au← cards that have never been assigned to u

16: for each card g ∈Au do ▷ Sample from the posterior

17: Draw Xu,g ∼Beta(αg, βg)

18: Sort Au

⋂
Awell by Xu,g in non-increasing order as g1, g2, ...

19: Sort Au\Awell by Xu,g in non-increasing order as g′1, g
′
2, ...

20: i, i′← 1

21: for j = 1, ...ru do ▷ Select and rank the cards

22: Zj←Ber(ε) ▷ Decide whether to explore or exploit

23: if Zj = 1 then ▷ Exploit

24: Sj← gi

25: i← i+1

26: else ▷ Explore

27: Sj← g′i′

28: i′← i′ +1

29: Send to u the cards {Sj : j = 1, ..., ru}

158

Figure 11 Counterfactual Simulation

We examine two policies. First we consider the Optimal Policy, which computes the average

reward rate of each card in advance, and then for each block selects the top 20% cards with highest

reward rates. The second policy is our One-Layer Sieve Policy, with exploration intensity chosen

to be ε0 = 0.2. More precisely, in each block, on the exploration side, we select 0.2× 10 = 2 newly-

arriving (i.e. released within 1 hour) cards randomly, and in case there are less than 2 such cards,

we select all of them. On the exploitation side, we select (1− 0.2)× 10 = 8 cards with the highest

reward rates in the past interactions.

We compare the average reward rates of the selected cards in our Sieve policy with that of

the Optimal Policy, as well as the overall average reward rate over all interactions, as shown in

Figure 11. Our Sieve Policy outperformed the overall reward rate by 20.8%.

V.4.4. Integrating Offline and Online Learning As one of the merits compared to other

optimism-based policies, the TS policy is able to incorporate the prior information, which in our

case, is the reward prediction returned by the currently deployed DNN. As Russo et al. (2017)

pointed out, “a careful choice of prior can significantly improve learning performance”. A good

prior becomes even more crucial in the face of short lifetime of arms. In our problem, however time

horizon (i.e. lifetime) of each card is short, hence an inaccurate prior (or not having a prior at all)

slows down the learning rate hence spoils the performance of the recommender. In contrast, the

prior is not as important for long-lived bandits since the time wasted for correcting the poorly-

chosen prior is negligible.

Thus motivated, we fit a Beta prior for each card using the DNN-based predictions on the

users. We first randomly sample 500 users, and then predict their reward rates for this card by

159

Figure 12 Generalizing our method to other applications.

querying the DNN-based model trained beforehand. Denote the sample mean and variance as x̄, v̄,

then the methods of moments (see e.g. Wasserman (2006)) estimates the Beta parameters α̂, β̂ as

α̂= x̄

(
x̄(1− x̄)

v̄
− 1

)
, β̂ =

1− x̄

x̄
α̂.

Our framework, summarized as Figure 2, can be generalized in many ways to various other

applications. First, the prior distribution can be replaced with any reasonable offline predictor, not

necessarily a neural network based one. Second, the items recommended can be any short-lived

items, ranging from videos or news articles for online platforms, to new products in brick-and-

mortar retailing.

V.5. Field Experiment Results

We implemented our Randomized One-Layer Sieve Policy (see Algorithm 12) in Glance’s real

system in the first 14 days of July 2021, and for the sake of comparison, we also requested Glance

to extract the impression data from the first 14 days of May 2021, on the same subset of users.

Before analyzing the experimental results, we first handle the outliers in the data, which

are introduced mainly in two ways. In practice, users may accidentally swipe two cards in a row,

without even looking at the second card. Alternatively, users may be distracted by other activities

and leave their phones unattended for minutes, generating extremely high duration.

We filter the interaction data as follows. On the one hand, since most cards are either articles

or short videos under 5 minutes, we remove impressions with duration over u= 300 seconds. On

the other hand, we also remove the impressions with duration less than ℓ= 0.2 seconds.

160

V.5.1. Metrics We will analyze the user engagement on two levels: per-user-per-day and

per-impression. Moreover, we consider two natural metrics (duration and click-throughs) for user

engagement, hence giving four metrics in total, as shown in Table 11.

In the per-impression analysis, we treat each impression as an individual, independent sample.

For example, the per-impression mean duration in Table 12 is simply the ratio between the total

duration and the total number of impressions. Since our Sieve Policy also performs online learning

on the per-impression level, we anticipate the MAB group to outperform in terms of both mean

duration and Click-Through Rate (CTR), assuming the experiment is implemented correctly.

Table 11 Types of Data In the Analysis

CT Duration
Per User-Day integral numeric
Per Impression binary numeric

However, Glance’s ultimate goal is to improve the total user engagement, rather than the

per-impression engagement, which motivated our analysis on the per-user-per-day level. Before

providing the formal definition, we first explain why it is necessary to group the data by users and

days respectively. As we recall, the partition of control versus experimental group was randomly

decided by Glance much earlier than the field experiment. In particular, a portion of old users have

left the platform, and thus the control and treatment groups have evolved to different sizes over

time. Therefore it is reasonable not to simply aggregate the user engagement in the two groups.

On the other side, at first sight it seems reasonable to consider the total duration of a fixed

user over all days. This metric, however, is flawed. In fact, our recommendation has little impact

on users’ decisions to enter the Glance app. Rather, the frequency at which users enter the app is

affected by many external factors, such as holidays and weekend, which may potentially introduce

extra noise. We thus also group each user’s impression data by day as follows. For each user-day

pair (u,d), we sum over the duration of all impressions of u on day d, hence obtaining a tuple

(u,d,Dud), where Dud denotes the total duration. Moreover, we only consider the days d when u

has at least one impression, in other words, we only consider days when the user actually used the

app.

Organization. In Section V.5.2 we will perform the analysis for all users, and then in Section V.5.3

we consider a subset of users who were more engaged, which we call engaged users. For each of

these two metrics, we will apply two fundamental statistical methods, the significance test and

difference-in-difference (DID) test.

161

Table 12 Overall Statistics for All Users

May July
NN MAB NN MAB

Per User-Day
Duration

Mean 175.910 175.548 137.059 142.618
SE Mean 0.699 0.659 0.6081 0.597
Median 44.250 44.279 32.973 34.430

#CT
Mean 1.275 1.273 0.941 1.010
SE Mean 9.251e-03 8.814e-03 7.276e-03 7.549e-03

Per Impression
Duration

Mean 3.9697 4.0195 4.1183 4.2391
SE Mean 4.529e-03 4.402e-03 5.738e-03 5.599e-03
Median 0.693 0.697 0.702 0.703

CTR
Mean 2.887e-02 2.915e-02 2.827e-02 3.001e-02
SE Mean 4.698e-05 4.568e-05 5.804e-05 5.671e-05

Table 13 Significance Testing

Basic Bootstrap
Z-score p-value Z-score p-value

Per User-Day
Duration 4.610 2.018e-06 4.6197 1.921e-06
CT 4.259 1.027e-05 4.2556 1.042e-05

Per Impression
Duration 6.963 1.665e-12 6.972 1.556e-12
CT 12.999 6.127e-39 12.933 1.469e-38

V.5.2. Analysis For All Users In this section we consider the engagement of all users

in terms of the four metrics in Table 11. The unit of duration in our our tables is second. We

first consider the overall statistics as summarized in Table 12. We observe that in May the user

engagement of the two groups are approximately identical, but in July the MAB group has a

significantly higher mean user engagement. Moreover, such improvement also appeared in median

duration, indicating that such improvement is more likely to be caused by an overall inflation in

duration, rather than just a heavier tail in the distribution.

It is worth noting that the user engagement per user per day decreased from May to July.

This is because May 2021 was when the Covid-19 pandemic reached its peak in India, where most

Glance users are located. During the pandemic lockdown, the users may have had more time to

spend on the app, resulting in a higher total engagement.

In the remainder of this subsection, we will show the statistical significance of our improve-

ment using two approaches: significance testing and difference-in-differences (DID) regression.

Significance Test. Suppose the true distribution of the metric of interest (e.g. duration or click-

thru) are XMay,XJuly for the NN group and YMay, YJuly for the MAB group. For each of these two

metrics, we are interested in the difference-in-differences before and after the bandit policy was

162

deployed, i.e. ∆= (Y July −XJuly)− (Y May −XMay). We aim to test between the hypotheses

H0 :E[∆]≤ 0 vs. H1 :E[∆]> 0.

For m ∈ {May, July}, let X
m
, Y

m
to be the sample mean in month m, possibly over different

number of samples. We first consider the basic Z-score, defined as

Z =

(
Y
July −X

July
)
−
(
Y
May −X

May
)

Ŝ
(55)

where

Ŝ = SE
((

Y
July −X

July
)
−
(
Y
May −X

May
))

=

√
V ar

((
Y
July −X

July
)
−
(
Y
May −X

May
))

.

Assuming the samples are nearly independent, we may approximate the above as√
1

NMay
X

S2
XMay +

1

NJuly
X

S2
XJuly +

1

NMay
Y

S2
YMay +

1

NJuly
Y

S2
Y July ,

where S2
Z is the sample variance of a pool Z of samples. As summarized in the “Basic” column of

Table 13, we reject the null hypothesis that the treatment effect is insignificant.

However, in reality the samples are not independent, since each user may (1) appear in both

months, (2) have multiple data points in a month, and (3) the same set of glance cards are shown to

both the treatment and control group. In fact, a user may have at most 14 data points in each group

since the experiment lasted for 14 days. We remove the dependence by bootstrapping as follows.

From each of these four pools of data points, we randomly draw 106 samples with replacement,

and redefine each Z̄ in (55) for each of Z =XMay,XJuly, Y May, Y July to be the bootstrap sample

mean. The results with bootstrapping is consistent with our earlier findings, as illustrated in the

“Bootstrap” column in Table 12.

Difference-In-Differences Regression. We first illustrate DID regression for per-user-per-day

user engagement. To this aim, we vectorize each tuple (u,d,Yud) into a vector (tud, iud, tud · iud, Yud)

where

tud = 1[day d is in July] and iud = 1[user u is in MAB group]

denote the time and intervention indicators respectively, and Yud ∈ {Cud,Dud} is the metric under

consideration (i.e. click-throughs or duration of user u on day d).

163

Figure 13 Click-through per impression. Figure 14 Duration per user-day pair.

We assume the metric Yud follows the linear model

Yud = β0 +β1tud+β2iud+β3tudiud+ εud (56)

where εud ∼N(0, σ2) with unknown variance σ2. Intuitively, β1 measures the effect of being assigned

to the treatment group, and β2 captures the overall trend over time. Thus, if there is no treatment

effect, the differences between the two groups should remain unchanged across May and July, and

therefore the means of the samples from the four pools (shown as the three solid red dots and one

hollow dot in Figure 15) will form a perfect parallelogram.

Now suppose there is indeed a positive treatment effect, then the top-right corner of this

quadrilateral will be raised (shown as the highest solid red dot in Figure 15). The variable β3 for

the composite variable measures exactly this lift. In fact, for day d in July and user u in MAB

group, we have iud = tud = 1, we have EYud = β0+β1+β2+β3, which is higher than the hollow dot

by β3. Finally, one can easily verify that β0 is simply the mean engagement of control group users

in May, by setting tud = iud = 0.

Under the Gaussian noise assumption, we are able to compute confidence intervals and p-

values for the coefficients βi’s, as shown in Tables 14. For both duration and CT, the coefficients

β3 are positive, with very low p-values, therefore the treatment effect (i.e. whether or not a user is

assigned to the MAB group) is indeed significant. Meanwhile, the coefficients β2 for the intervention

variables have high p-values, confirming that the partition of users is sufficiently random, at least

on the per-user-per-day level.

As shown in the second half of Table 14, we also consider per-impression user engagement.

Similar to the above analysis, we convert each impression j into a three-dimensional binary vec-

tor (tj, ij, Yj) where Yj is either the duration (continuous) or click-through indicator (binary) for

164

Figure 15 Illustration of DID regression.

impression j. While the duration per impression can be analyzed using the linear regression model

(56), for per impression click-through the labels Yj are binary and hence we apply logistic regression

instead: we assume Yj ∼Ber
(

ez

1+ez

)
where

z = β0 +β1tj +β2ij +β3tjij.

As opposed to the per-user-per-day regression, in this case all coefficients have tiny p-values,

for both CT and duration. In particular, the coefficient β2 for intervention has low p-value, indicat-

ing that the initial user-partition may not be truly random, in terms of per impression engagement.

Nonetheless, this difference is interpretable. In fact, our experiment was performed on random

user-groups that Glance has been using for months prior to our field test, on which some previous

experiments have been performed, potentially causing this discrepancy in user behavior.

V.5.3. Analysis For Engaged Users In this subsection we analyze the engagement of special

subsets of “engaged” users. We first consider the retention rate from May to July. A user is said to

be engaged in month m∈ {May, July} if she has at least k click-throughs in month m. The attrition

rate (for NN and MAB group respectively) is then defined to be the proportion of engaged users in

May who remained engaged in July. While there is no obvious choice for the threshold k, Figure 16

shows that for each k= 1,2, ...,10, the attrition rates of the MAB group is consistently higher than

165

Table 14 Difference-In-Differences Regression

Coef. Std. Dev. t p-value 0.025Q 0.975Q

Per User-Day

Duration

β0 175.9103 0.640 274.941 0.000 174.656 177.164
β1 -38.8514 0.942 -41.263 0.000 -40.697 -37.006
β2 -0.3622 0.887 -0.409 0.683 -2.100 1.375
β3 5.9208 1.303 4.544 2.759e-06 3.367 8.475

#CT

β0 1.2750 0.008 153.851 0.000 1.259 1.291
β1 -0.3341 0.012 -27.394 1.616e-165 -0.358 -0.310
β2 -0.0016 0.011 -0.141 0.888 -0.024 0.021
β3 0.0704 0.017 4.171 1.516e-05 0.037 0.103

Per Impression

Duration

β0 3.9697 0.005 863.796 0.000 3.961 3.979
β1 0.1486 0.007 20.234 2.753e-89 0.134 0.163
β2 0.0497 0.006 7.781 3.597e-15 0.037 0.062
β3 0.0711 0.010 6.998 1.298e-12 0.051 0.091

CTR

β0 -3.5198 0.002 -2092.794 0.000 -3.523 -3.517
β1 -0.0161 0.003 -5.947 1.365e-09 -0.021 -0.011
β2 0.0133 0.002 5.712 5.582e-09 0.009 0.018
β3 0.0474 0.004 12.819 6.417e-38 0.040 0.055

Note: All regression are linear regression except for per impression CT, where we applied logistic regres-

sion due to binary labels.

the NN group, which suggests that the choice of k is likely not essential. Thus, in the remaining

analysis we will fix this threshold to be k= 4 and repeat the analysis in Section V.5.2.

By comparing Table 12 and 15, we observed that for engaged users, both the per-user-per-

day duration and click-throughs are notably higher than the average over all users, indicating that

our definition for “engaged” user indeed captures the enthusiasm of users. As another noteworthy

observation, for each of the four DID regressions in Table 14 and 17, the coefficient β3 for the

magnitude of the composite variable is higher for the engaged users than for all users. This suggests

that the treatment effect is even more significant for the engaged users.

166

Table 15 Overall Statistics For Engaged Users

May July
NN MAB NN MAB

Per User-Day
Duration

Mean 404.707 403.228 303.002 314.272
SE Mean 2.142 2.010 2.670 2.496
Median 196.970 199.845 133.348 146.230

#CT
Mean 4.235 4.236 2.657 2.866
SE Mean 3.241e-02 3.080e-02 3.642e-0s2 3.661e-02

Per Impression
Duration

Mean 3.790 3.866 3.659 3.850
SE Mean 5.922e-03 5.802e-03 1.022e-02 1.076e-02
Median 0.619 0.622 0.594 0.598

CTR
Mean 3.954e-02 4.043e-02 3.198e-02 3.498e-02
SE Mean 6.802e-05 6.671e-05 1.074e-05 1.062e-05

Table 16 Significance Testing For Engaged Users

Basic Bootstrap
Z-score p-value Z-score p-value

Per User-Day
Duration 2.719 3.273e-03 2.717 3.289e-03
#CT 3.056 1.121e-02 3.064 1.089e-02

Per Impression
Duration 6.996 1.321e-12 7.060 8.301e-13
CTR 11.626 1.513e-31 11.478 8.482e-31

Figure 16 Attrition rates of the MAB and NN group. Figure 17 Duration per user-day pair.

References
Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. In Approximation, Ran-

domization and Combinatorial Optimization. Algorithms and Techniques, pages 1–9. Springer, 2008.

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited rounds of

adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In Conference

on Learning Theory, pages 39–75. PMLR, 2017.

167

Table 17 Difference-In-Differences Regression for Engaged Users

Coef. Std. Dev. t p-value 0.025Q 0.975Q

Per User-Day

Duration

β0 404.7074 2.008 201.569 0.000 400.772 408.643
β1 -101.7057 3.692 -27.548 2.338e-167 -108.942 -94.470
β2 -1.4791 2.782 -0.532 0.595 -6.932 3.974
β3 12.7489 5.083 2.508 0.012 2.786 22.711

CT

β0 4.2353 0.030 140.602 0.000 4.176 4.294
β1 -1.5787 0.055 -28.502 5.532e-179 -1.687 -1.470
β2 0.0006 0.042 0.015 0.988 -0.081 0.082
β3 0.2086 0.076 2.736 0.006 0.059 0.358

Per Impression

Duration

β0 3.7789 0.006 634.095 0.000 3.767 3.791
β1 -0.131 0.012 -10.854 9.544e-28 -0.154 -0.107
β2 0.0723 0.008 8.708 1.546e-18 0.056 0.089
β3 0.1162 0.017 6.998 1.298e-12 0.084 0.149

CT

β0 -3.190 0.002 -1771.359 0.000 -3.193 -3.186
β1 -0.220 0.004 -55.949 0.000 -0.228 -0.212
β2 0.0237 0.002 9.500 1.049e-21 0.019 0.029
β3 0.0691 0.005 12.942 1.303e-38 0.059 0.080

Note: As in the previous section, all regression are linear regression except for per impression CT, where

we applied logistic regression due to binary labels.

Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016.

Rajeev Agrawal. The continuum-armed bandit problem. SIAM journal on control and optimization, 33(6):

1926–1951, 1995.

Esther M Arkin, Henk Meijer, Joseph SB Mitchell, David Rappaport, and Steven S Skiena. Decision trees for

geometric models. International Journal of Computational Geometry & Applications, 8(03):343–363,

1998.

Peter Auer, Ronald Ortner, and Csaba Szepesvári. Improved rates for the stochastic continuum-armed bandit

problem. In International Conference on Computational Learning Theory, pages 454–468. Springer,

2007.

Yossi Aviv and Gustavo Vulcano. Dynamic list pricing. In The Oxford Handbook of Pricing Management.

2012.

Yossi Azar and Iftah Gamzu. Ranking with submodular valuations. In Proceedings of the twenty-second

annual ACM-SIAM symposium on Discrete Algorithms (SODA’11), pages 1070–1079. SIAM, 2011.

Moshe Babaioff, Shaddin Dughmi, Robert Kleinberg, and Aleksandrs Slivkins. Dynamic pricing with limited

supply. ACM Transactions on Economics and Computation (TEAC), 3(1):1–26, 2015.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks. In 2013

IEEE 54th Annual Symposium on Foundations of Computer Science, pages 207–216. IEEE, 2013.

168

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. InMachine Learning,

Proceedings of the Twenty-Third International Conference (ICML ’06), Pittsburgh, Pennsylvania, USA,

June 25-29, 2006, pages 65–72, 2006.

Hamsa Bastani, David Simchi-Levi, and Ruihao Zhu. Meta dynamic pricing: Learning across experiments.

Available at SSRN 3334629, 2019.

Gowtham Bellala, Suresh K. Bhavnani, and Clayton Scott. Active diagnosis under persistent noise with

unknown noise distribution: A rank-based approach. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,

2011, pages 155–163, 2011.

Omar Besbes and Assaf Zeevi. Dynamic pricing without knowing the demand function: Risk bounds and

near-optimal algorithms. Operations Research, 57(6):1407–1420, 2009.

John R Birge, Hongfan Chen, and N Bora Keskin. Markdown policies for demand learning with forward-

looking customers. Available at SSRN 3299819, 2019.

Gabriel R Bitran and Susana V Mondschein. Periodic pricing of seasonal products in retailing. Management

science, 43(1):64–79, 1997.

Djallel Bouneffouf and Irina Rish. A survey on practical applications of multi-armed and contextual bandits.

arXiv preprint arXiv:1904.10040, 2019.

Tamer Boyacı and Özalp Özer. Information acquisition for capacity planning via pricing and advance selling:

When to stop and act? Operations Research, 58(5):1328–1349, 2010.

Josef Broder. Online algorithms for revenue management. 2011.

Josef Broder and Paat Rusmevichientong. Dynamic pricing under a general parametric choice model. Oper-

ations Research, 60(4):965–980, 2012.

Sabri Celik, Alp Muharremoglu, and Sergei Savin. Revenue management with costly price adjustments.

Operations research, 57(5):1206–1219, 2009.

Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, and Yogish Sabharwal. Approximating

decision trees with multiway branches. In International Colloquium on Automata, Languages, and

Programming, pages 210–221. Springer, 2009.

Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and Mukesh K. Mohania.

Decision trees for entity identification: Approximation algorithms and hardness results. ACM Trans.

Algorithms, 7(2):15:1–15:22, 2011.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-armed bandits. Advances

in neural information processing systems, 21:273–280, 2008.

169

Boxiao Chen, Xiuli Chao, and Yining Wang. Data-based dynamic pricing and inventory control with censored

demand and limited price changes. Operations Research, 68(5):1445–1456, 2020.

Ningyuan Chen. Multi-armed bandit requiring monotone arm sequences. arXiv preprint arXiv:2106.03790,

2021.

Yiwei Chen and Vivek F Farias. Robust dynamic pricing with strategic customers. Mathematics of Operations

Research, 43(4):1119–1142, 2018.

Yuxin Chen, Seyed Hamed Hassani, and Andreas Krause. Near-optimal bayesian active learning with cor-

related and noisy tests. In Proceedings of the 20th International Conference on Artificial Intelligence

and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, pages 223–231, 2017.

Wang Chi Cheung, David Simchi-Levi, and He Wang. Dynamic pricing and demand learning with limited

price experimentation. Operations Research, 65(6):1722–1731, 2017.

Ferdinando Cicalese, Eduardo Sany Laber, and Aline Medeiros Saettler. Diagnosis determination: decision

trees optimizing simultaneously worst and expected testing cost. In Proceedings of the 31th International

Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 414–422, 2014.

Richard Combes and Alexandre Proutiere. Unimodal bandits: Regret lower bounds and optimal algorithms.

In International Conference on Machine Learning, pages 521–529, 2014.

Eric W Cope. Regret and convergence bounds for a class of continuum-armed bandit problems. IEEE

Transactions on Automatic Control, 54(6):1243–1253, 2009.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In

Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in neural information processing

systems, pages 337–344, 2005.

Arnoud den Boer and N Bora Keskin. Dynamic pricing with demand learning and reference effects. Available

at SSRN 3092745, 2020.

Arnoud V den Boer and Bert Zwart. Simultaneously learning and optimizing using controlled variance

pricing. Management science, 60(3):770–783, 2013.

Arnoud V den Boer and Bert Zwart. Dynamic pricing and learning with finite inventories. Operations

research, 63(4):965–978, 2015.

Utpal M Dholakia. If you are going to raise prices, tell customers why. Harvard Business Review, 2021.

Wedad Elmaghraby and Pınar Keskinocak. Dynamic pricing in the presence of inventory considerations:

Research overview, current practices, and future directions. Management science, 49(10):1287–1309,

2003.

170

Vivek F Farias and Benjamin Van Roy. Dynamic pricing with a prior on market response. Operations

Research, 58(1):16–29, 2010.

Kris Johnson Ferreira, David Simchi-Levi, and He Wang. Online network revenue management using thomp-

son sampling. Operations research, 66(6):1586–1602, 2018.

Guillermo Gallego and Garrett Van Ryzin. Optimal dynamic pricing of inventories with stochastic demand

over finite horizons. Management science, 40(8):999–1020, 1994.

Kyra Gan, Su Jia, Andrew Li, and Sridhar R Tayur. Toward a liquid biopsy: Greedy approximation algo-

rithmsfor active sequential hypothesis testing. Available at SSRN, 2021.

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem. arXiv

preprint arXiv:1904.01763, 2019.

M.R. Garey and R.L. Graham. Performance bounds on the splitting algorithm for binary testing. Acta

Informatica, 3:347–355, 1974.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning

and stochastic optimization. J. Artif. Intell. Res., 42:427–486, 2011. doi: 10.1613/jair.3278. URL

https://doi.org/10.1613/jair.3278.

Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active learning and

stochastic optimization. CoRR, abs/1003.3967, 2017. URL http://arxiv.org/abs/1003.3967.

Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning with noisy

observations. In Advances in Neural Information Processing Systems 23: 24th Annual Conference on

Neural Information Processing Systems 2010 (NIPS’10), Vancouver, British Columbia, Canada., pages

766–774, 2010.

Google. Transforming specialty retail with ai. Technical report, 2021.

Andrew Guillory and Jeff A. Bilmes. Average-case active learning with costs. In Algorithmic Learning

Theory, 20th International Conference, ALT 2009, Porto, Portugal, October 3-5, 2009. Proceedings,

pages 141–155, 2009.

Andrew Guillory and Jeff A. Bilmes. Interactive submodular set cover. In Proceedings of the 27th Interna-

tional Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 415–422,

2010.

Andrew Guillory and Jeff A. Bilmes. Simultaneous learning and covering with adversarial noise. In Proceed-

ings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington,

USA, June 28 - July 2, 2011, pages 369–376, 2011.

Anupam Gupta, Viswanath Nagarajan, and R Ravi. Approximation algorithms for optimal decision trees

and adaptive tsp problems. Mathematics of Operations Research, 42(3):876–896, 2017.

https://doi.org/10.1613/jair.3278
http://arxiv.org/abs/1003.3967

171

Swati Gupta and Vijay Kamble. Individual fairness in hindsight. In Proceedings of the 2019 ACM Conference

on Economics and Computation, pages 805–806, 2019.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In Machine Learning, Proceed-

ings of the Twenty-Fourth International Conference (ICML ’07), Corvallis, Oregon, USA, June 20-24,

2007, pages 353–360, 2007.

J Michael Harrison, N Bora Keskin, and Assaf Zeevi. Bayesian dynamic pricing policies: Learning and

earning under a binary prior distribution. Management Science, 58(3):570–586, 2012.

Aliza Heching, Guillermo Gallego, and Garrett van Ryzin. Mark-down pricing: An empirical analysis of

policies and revenue potential at one apparel retailer. Journal of revenue and pricing management, 1

(2):139–160, 2002.

Paul Heidhues and Botond Kőszegi. Regular prices and sales. Theoretical Economics, 9(1):217–251, 2014.

Christian Homburg, Wayne D Hoyer, and Nicole Koschate. Customers’ reactions to price increases: do

customer satisfaction and perceived motive fairness matter? Journal of the Academy of Marketing

Science, 33(1):36–49, 2005.

Zhenyu Hu, Xin Chen, and Peng Hu. Dynamic pricing with gain-seeking reference price effects. Operations

Research, 64(1):150–157, 2016.

Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees isNp-complete. Information

Processing Letters, 5(1):15–17, 1976/77.

Sungjin Im, Viswanath Nagarajan, and Ruben Van Der Zwaan. Minimum latency submodular cover. ACM

Transactions on Algorithms (TALG), 13(1):13, 2016.

Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, and Siddhartha S. Srinivasa.

Near optimal bayesian active learning for decision making. In Proceedings of the Seventeenth Inter-

national Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April

22-25, 2014, pages 430–438, 2014.

Su Jia, Viswanath Nagarajan, Fatemeh Navidi, and R. Ravi. Optimal decision tree with noisy outcomes.

In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and

Roman Garnett, editors, Annual Conference on Neural Information Processing Systems (NeurIPS),

pages 3298–3308, 2019.

Su Jia, Andrew Li, and R Ravi. Markdown pricing under unknown demand. Available at SSRN 3861379,

2021.

N Bora Keskin and Assaf Zeevi. Dynamic pricing with an unknown demand model: Asymptotically optimal

semi-myopic policies. Operations Research, 62(5):1142–1167, 2014.

172

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret for online

posted-price auctions. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.

Proceedings., pages 594–605. IEEE, 2003.

Robert D Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in Neural

Information Processing Systems, pages 697–704, 2005.

Yehuda Koren and Robert Bell. Advances in collaborative filtering. Recommender systems handbook, pages

77–118, 2015.

S Rao Kosaraju, Teresa M Przytycka, and Ryan Borgstrom. On an optimal split tree problem. In Workshop

on Algorithms and Data Structures (WADS’99), pages 157–168. Springer, 1999.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied

mathematics, 6(1):4–22, 1985.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Yanzhe Murray Lei, Stefanus Jasin, and Amitabh Sinha. Near-optimal bisection search for nonparametric

dynamic pricing with inventory constraint. Ross School of Business Paper, (1252), 2014.

Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. arXiv preprint arXiv:1702.07274, 2017.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized

news article recommendation. In Proceedings of the 19th international conference on World wide web,

pages 661–670, 2010.

Yan Liu and William L Cooper. Optimal dynamic pricing with patient customers. Operations research, 63

(6):1307–1319, 2015.

Zhen Liu, Srinivasan Parthasarathy, Anand Ranganathan, and Hao Yang. Near-optimal algorithms for shared

filter evaluation in data stream systems. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 133–146,

2008.

Ilan Lobel. Dynamic pricing with heterogeneous patience levels. Operations Research, 2020.

D. W. Loveland. Performance bounds for binary testing with arbitrary weights. Acta Inform., 22(1):101–114,

1985.

Michael Luca and Oren Reshef. The effect of price on firm reputation. Management Science, 2021.

Domen Malc, Damijan Mumel, and Aleksandra Pisnik. Exploring price fairness perceptions and their influ-

ence on consumer behavior. Journal of Business Research, 69(9):3693–3697, 2016.

Michael Mitzenmacher and Eli Upfal. Probability and computing: randomization and probabilistic techniques

in algorithms and data analysis. Cambridge university press, 2017.

173

Mikhail Ju. Moshkov. Greedy algorithm with weights for decision tree construction. Fundam. Inform., 104

(3):285–292, 2010.

Mohammad Naghshvar, Tara Javidi, and Kamalika Chaudhuri. Noisy bayesian active learning. In 50th

Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012, Allerton Park

& Retreat Center, Monticello, IL, USA, October 1-5, 2012, pages 1626–1633, 2012.

Feng Nan and Venkatesh Saligrama. Comments on the proof of adaptive stochastic set cover based on

adaptive submodularity and its implications for the group identification problem in ”group-based active

query selection for rapid diagnosis in time-critical situations”. IEEE Trans. Information Theory, 63

(11):7612–7614, 2017.

Javad Nasiry and Ioana Popescu. Dynamic pricing with loss-averse consumers and peak-end anchoring.

Operations research, 59(6):1361–1368, 2011.

Fatemeh Navidi, Prabhanjan Kambadur, and Viswanath Nagarajan. Adaptive submodular ranking and

routing. Oper. Res., 68(3):856–877, 2020.

Robert D. Nowak. Noisy generalized binary search. In Advances in Neural Information Processing Systems

22: 23rd Annual Conference on Neural Information Processing Systems 2009 (NIPS’09). Proceedings

of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada., pages 1366–1374, 2009.

Nishant Oli, Aditya Patel, Vishesh Sharma, Sai Dinesh Dacharaju, and Sushrut Ikhar. Personalizing multi-

modal content for a diverse audience: A scalable deep learning approach.

Yiangos Papanastasiou and Nicos Savva. Dynamic pricing in the presence of social learning and strategic

consumers. Management Science, 63(4):919–939, 2017.

Georgia Perakis and Divya Singhvi. Dynamic pricing with unknown non-parametric demand and limited

price changes. Available at SSRN 3336949, 2019.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg, et al. Batched bandit problems.

Annals of Statistics, 44(2):660–681, 2016.

Greg Petro. Markdown mania: A symptom of the wrong product at the wrong price. In Total Retail, page

Feb 20, 2017.

Sheng Qiang and Mohsen Bayati. Dynamic pricing with demand covariates. Available at SSRN 2765257,

2016.

Rama Ramakrishnan. Markdown management. In The Oxford Handbook of Pricing Management. 2012.

Julio J Rotemberg. Customer anger at price increases, time variation in the frequency of price changes and

monetary policy. Technical report, National Bureau of Economic Research, 2002.

Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling. The Journal

of Machine Learning Research, 17(1):2442–2471, 2016.

174

Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on thompson

sampling. arXiv preprint arXiv:1707.02038, 2017.

Aline Medeiros Saettler, Eduardo Sany Laber, and Ferdinando Cicalese. Trading off worst and expected cost

in decision tree problems. Algorithmica, 79(3):886–908, 2017.

Jad Salem, Swati Gupta, and Vijay Kamble. Taming wild price fluctuations: Monotone stochastic convex

optimization with bandit feedback. arXiv preprint arXiv:2103.09287, 2021.

Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display advertising using

multi-armed bandit experiments. Marketing Science, 36(4):500–522, 2017.

Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272, 2019.

Stephen A Smith and Dale D Achabal. Clearance pricing and inventory policies for retail chains. Management

Science, 44(3):285–300, 1998.

Kalyan Talluri and Garrett Van Ryzin. Revenue management under a general discrete choice model of

consumer behavior. Management Science, 50(1):15–33, 2004.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science, vol-

ume 47. Cambridge university press, 2018.

Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential probability ratio test. The Annals

of Mathematical Statistics, 19(3):326–339, 1948.

Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algorithms for infinitely many-armed bandits. Advances

in Neural Information Processing Systems, 21, 2008.

Zizhuo Wang. Intertemporal price discrimination via reference price effects. Operations research, 64(2):

290–296, 2016.

Zizhuo Wang, Shiming Deng, and Yinyu Ye. Close the gaps: A learning-while-doing algorithm for single-

product revenue management problems. Operations Research, 62(2):318–331, 2014.

Larry Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.

Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combi-

natorica, 2(4):385–393, 1982.

Shining Wu, Qian Liu, and Rachel Q Zhang. The reference effects on a retailer’s dynamic pricing and

inventory strategies with strategic consumers. Operations Research, 63(6):1320–1335, 2015.

Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. From infrastructure to cul-

ture: A/b testing challenges in large scale social networks. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 2227–2236, 2015.

175

Zikun Ye, Dennis Zhang, Heng Zhang, Renyu Philip Zhang, Xin Chen, and Zhiwei Xu. Cold start to improve

market thickness on online advertising platforms: Data-driven algorithms and field experiments. Avail-

able at SSRN 3702786, 2020.

Rui Yin, Yossi Aviv, Amit Pazgal, and Christopher S Tang. Optimal markdown pricing: Implications of

inventory display formats in the presence of strategic customers. Management Science, 55(8):1391–1408,

2009.

Jia Yuan Yu and Shie Mannor. Unimodal bandits. In ICML, pages 41–48. Citeseer, 2011.

	Introduction
	Optimal Decision Tree Problem Under Noisy Outcomes
	Markdown Pricing Under Unknown Demand
	Short-Lived High-Volume Bandits: Algorithms and Field Experiment

	Optimal Decision Tree and Submodular Ranking with Noisy Outcomes
	Introduction
	Contributions
	Related Work
	Preliminaries
	Optimal Decision Tree with Noise
	Adaptive Submodular Ranking (Noiseless Case)
	Adaptive Submodular Ranking with Noise
	Expanded Scenario Set

	Nonadaptive Algorithm
	Non-adaptive Algorithm for SFRN
	Analysis of Algorithm

	Adaptive Algorithms
	An O(clog||+logm)-Approximation Algorithm
	An O(r+logm)-Approximation Algorithm
	Application of Algorithm 2 and Algorithm ??o ODTN.

	ODTN with Many Unknowns
	Stochastic Set Cover Problem
	Membership Oracle
	The Main Algorithm

	Extension to Non-identifiable ODT Instances
	Experiments

	Markdown Pricing Under Unknown Demand
	Introduction
	Our Contributions.
	Previous Work

	Model
	Assumptions on the Reward Function
	Our Policies
	Our Results

	Proof of Upper Bounds
	Infinite Inventory: Proof of Theorem 11
	Finite Inventory: Proof of Theorem 12

	Proof of Lower Bound (Theorem 13)
	Preliminaries
	Wald-Wolfowitz Theorem and the Proof of Our Lower Bound
	Proof of Lemma 26
	Proof of Lemma 25

	Dynamic Pricing with Markup Penalty
	Dynamic Pricing with Few Markups
	Dynamic Pricing with Markup Penalty
	Unknown MPI

	Experiments
	Robustness Under Model Misspecification
	Impact of the Lipschitz Constant

	Conclusion

	Markdown Pricing Under Unknown Parametric Demand Models
	Introduction
	Our Contributions.
	Previous Work

	Model and Assumptions
	Basic Assumptions
	Measuring the Complexity of a Family
	Identifiability
	Robust Parametrization
	Markdown Dimension
	Sensitivity

	Policies and Results
	Zero-Dimensional Family
	Finite-Dimensional Family
	Infinite Dimensional Family

	Upper Bounds
	Zero-Dimensional Family
	Finite-Dimensional Family
	Infinite- Dimensional Family

	Lower Bounds
	Preliminaries
	Zero-Dimensional Family
	Finite-Dimensional Family
	Infinite-Dimensional Family

	Short-Lived High-Volume Bandits: Algorithms and Field Experiment
	Introduction
	Our Contributions
	Related Literature
	Organization

	Model and Lower Bound
	Formulation
	Lower Bounds: High Level Ideas
	The First Lower Bound.
	The Second Lower Bound

	Our Policy and Upper Bound
	The Sieve Policy
	Analysis of the Sieve Policy

	Field Experiment Setup
	Overview of Glance's System
	Treatment Group Policy
	Counterfactual Simulation
	Integrating Offline and Online Learning

	Field Experiment Results
	Metrics
	Analysis For All Users
	Analysis For Engaged Users

	Dissertation Jia.pdf
	DISSERTATION
	Titled
	Presented by
	Accepted by
	Approved by the Dean

