
ARTICLE OPEN

The neuroscience of advanced scientific concepts
Robert A. Mason 1,2✉, Reinhard A. Schumacher 2 and Marcel Adam Just 1,2

Cognitive neuroscience methods can identify the fMRI-measured neural representation of familiar individual concepts, such as
apple, and decompose them into meaningful neural and semantic components. This approach was applied here to determine the
neural representations and underlying dimensions of representation of far more abstract physics concepts related to matter and
energy, such as fermion and dark matter, in the brains of 10 Carnegie Mellon physics faculty members who thought about the main
properties of each of the concepts. One novel dimension coded the measurability vs. immeasurability of a concept. Another novel
dimension of representation evoked particularly by post-classical concepts was associated with four types of cognitive processes,
each linked to particular brain regions: (1) Reasoning about intangibles, taking into account their separation from direct experience
and observability; (2) Assessing consilience with other, firmer knowledge; (3) Causal reasoning about relations that are not apparent
or observable; and (4) Knowledge management of a large knowledge organization consisting of a multi-level structure of other
concepts. Two other underlying dimensions, previously found in physics students, periodicity, and mathematical formulation, were
also present in this faculty sample. The data were analyzed using factor analysis of stably responding voxels, a Gaussian-naïve Bayes
machine-learning classification of the activation patterns associated with each concept, and a regression model that predicted
activation patterns associated with each concept based on independent ratings of the dimensions of the concepts. The findings
indicate that the human brain systematically organizes novel scientific concepts in terms of new dimensions of neural
representation.
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INTRODUCTION
Physics is the fundamental science that studies the interactions of
matter and energy across all scales of space and time. From
antiquity to the present, science has struggled to find the best
possible conceptual framework for understanding the physical
world. While basic physics concepts such as velocity and torque
have perceptual counterparts that can provide a neural basis for
their representation, it is unclear how the brain has accommo-
dated to represent non-intuitive or counter-intuitive concepts
involving the subatomic, quantum, and cosmological realms. Here
we characterize the representation of the most advanced scientific
concepts in the field of physics, as they occur in the brains of
university faculty physicists. Recent functional magnetic resonance
imaging of brain function has enabled the study of how various
types of mundane, everyday concepts are neurally and cognitively
represented in the human brain. We now apply this approach to
understanding the underlying neural and semantic organization
of highly abstract contemporary scientific concepts in the brains
of active physicists.
The brain organization of meaning refers to the underlying

dimensions of representation that are used in the human brain.
For example, physical objects such as hand tools are neurally
represented in terms of how one’s body interacts with the object,
what the object looks and feels like, and what its purpose is. Each
of these underlying dimensions of meaning correspond to the
activation pattern in a particular brain subsystem, such as the
wielding of a hammer being represented in the brain’s motor
representation of arm movement. In the domain of classical
physics, the multiple underlying dimensions of concepts such as
gravity and wavelength and light include a dimension of energy
flow, a dimension of periodicity, and a dimension of visualized
causal motion1. But now we ask, what are the dimensions of

representation of contemporary scientific concepts such as dark
matter or multiverse, concepts without any associated perceptual
or motor information?
This study investigated the cognitive and neural dimensions

that underlie the representation of post-classical concepts like
dark matter, which differ from classical concepts. The “classical”
domain of physics includes fruitful concepts dating from antiquity,
the middle ages, the renaissance, and up to about the end of the
19th century. Classical concepts are associated with discoveries
and insights by thinkers such as Aristarchus, Archimedes, Alhazen,
Newton, Faraday, and Maxwell (among many others). Classical
physics may be said to capture the operations of nature using
matter, energy, forces, and fields that are straightforward to
visualize and to grasp intuitively with some training. For instance,
while a force cannot directly be seen, physicists can imagine “an
arrow of force” of definite size and direction acting upon a
material object. Similarly, the energy contained in a system cannot
be seen in a pictorial sense, but the intuitive idea of a conserved
quantity that flows from one specific form to another can be
related to human perceptual experience. Most fMRI research on
physics has focused on intuitive physics2 and classical Newtonian
forces3–5.
Near the beginning of the twentieth century, however, a

paradigm shift arose requiring a radical conceptual change. This
shift occurred with the introduction of successful ideas that were
not amenable to direct visualization or ordinary intuition. These
included quantization of various classical concepts, the relativiza-
tion of space and time, the plethora of sub-atomic particles that
obey rules for which there are no classical analogs, unexpected
emergent phenomena with no classical analogs, and new celestial
building blocks for which there are no classical analogs. These
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concepts arose not from perceptual experience, but from the
generative capabilities of the human brain.
Such “post-classical” concepts as dark matter or fermion are

distinguished for our purpose as being (a) less easy to visualize
directly as mental images, (b) possibly failing to have an everyday
intuitive aspect that “makes sense”, even after repeated exposure,
and (c) require the introduction of new rules of behavior (“laws”)
that have no correspondence to ordinary life experience. Such
concepts can be thought of as more abstract, in the sense that
they are less related to perception, but simply labeling them as
abstract fails to specify the cognitive content of the abstraction.
Our study begins to provide some of that specification.
The present study obtained the fMRI-based activation patterns

for each of 45 concepts (shown in Table 1), and then applied
factor analysis to the activation levels of representative voxels to
find the main factors or dimensions along which the activation
patterns are organized. (We henceforth use dimensions and
factors interchangeably, preferring factors when referring to the
factor analysis outcomes and dimensions when referring to neural
organization). One subset of the concepts was drawn from
“classical” concepts familiar to physics undergraduates, while
another subset was drawn from concepts that are generally post-
classical, familiar to Ph.D. physicists irrespective of their research
specialties, and often requiring ideas from quantum physics or
being of a speculative nature. As a caution, we note that the
concepts labeled as post-classical often also have classical
components to them. For example, a neutrino has both a classical
aspect, being a particle like any other, flying through space with
mass and momentum, but at the same time it has oscillatory
quantum aspects that are unexplainable classically.
Using this approach of factor analyzing the neural signatures of

physics concepts, we demonstrate that there are four describable
factors underlying the neural representations of both classical and
post-classical physics concepts, constituting a kind of orthogonal
vector basis of the neural representations. Furthermore, we show
that (a) each physics concept has a distinct associated activation
pattern that can be accurately identified by a statistical classifier,
(b) that the activation patterns for each concept are measurably
common across scientists, (c) that the activation pattern for a
concept that has been excluded from the modeling of the other
44 concepts can be accurately predicted by a model that uses
expert behavioral ratings of the concept with respect to the
postulated underlying dimensions, and (d) that the faculty’s
representations of basic physics concepts can be reliably
distinguished from those of students. These findings provide a
first characterization of the neural organization for representing
advanced physics concepts.

RESULTS
Five types of results are reported below: 1. Description of the
neural dimensions underlying advanced physics concepts in
physicists; 2. Testing of the dimension descriptions using a
generative model to predict the brain activation of “new”
individual concepts that have been held out from the modeling;
3. Identification of individual concepts from their neural signa-
tures; 4. Assessment of the commonality of the neural signatures
across physicists; and 5. Machine learning to differentiate faculty
from students based on their neural representations of classical
physics concepts.

Neural dimensions of physics concept knowledge in experts
Physics concepts are represented in terms of a consistent and
identifiable set of neural dimensions in the brains of experts,
namely Carnegie Mellon Physics Department faculty. Four
semantic dimensions emerged from a factor analysis procedure
(see Methods section) of the consistently activated voxels. These
factors constitute an orthogonal set of dimensions that collectively
underpinned the neural representations of all of the concepts.
The interpretations of the dimensions are:

1. relating to a measurable magnitude;
2. relating to a mathematical formulation;
3. entailing a repeated systematic change over time as in

periodicity or wave-related concepts;
4. relating to classical physics as opposed to post-classical

intangible but consilient ideas.

The interpretations of the dimensions were initially developed
by one of the authors (RS), based primarily on how the concepts
were ordered by their factor scores along each dimension, with
particular attention paid to the concepts near the extremes of the
dimension. This was followed by a rating of the concepts along
each of the four dimensions (as interpreted) by six Carnegie
Mellon physics faculty members who had not participated in the
fMRI study. They rated how strongly each of the 45 concepts was
related to each of the four hypothesized dimensions using a
7-point rating scale. There were two quantitative measures of how
well the hypothesized dimensions accounted for the fMRI
activation data, as described below: one measure was the
correlation between the expert ratings of the concepts relative
to each factor and the concepts’ factor scores on that factor, and
the other measure was the accuracy of prediction of the activation
pattern of held-out concepts based on their ratings. The
dimensions are described in more detail below.

Table 1. The 45 stimulus concepts used in the study, drawn from various physics sub-fields.

Post-classical concepts

boson, fermion, muon, neutrino, particle decay;

anti-particle, cosmology, dark matter, multiverse, quasar;

gamma ray, inertial frame, Lorentz invariant, simultaneity, tachyon;

coherence, commutator, duality, wave function

Classical concepts

acceleration, centripetal force, gravity, torque, velocity;

direct current, electric field, force, potential energy, voltage;

frequency, light, radio waves, sound waves, wavelength;

buoyancy, Coriolis force, fractal dimension, Lagrangian, Hamiltonian;

precession, canonical ensemble, conduction, crystal lattice, diamagnetism, insulator

Concepts were either defined as either classical (Newtonian or Maxwellian) or post-Classical. The concepts are grouped here by physics subfield.
The partitioning of concepts in this study into classical and post-classical is somewhat arbitrary (grouping label designated by italics): it was generated by one
of the authors (RS), a particle physics experimentalist with over 30 years of experience teaching physics to undergraduate and graduate students.
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Measurable magnitude. Concepts with high factor scores on this
dimension include those that have continuously variable values
such as frequency, wavelength, acceleration, and torque. In contrast,
low factor scores were associated with non-numerical concepts
like dark matter, duality, cosmology, and multiverse. The factor
scores on the measurable magnitude dimension for all of the
concepts are shown in Fig. 1. The concepts at the extreme ends of
the dimension clearly reflect the interpretation, as they did for the
other three dimensions.
To assess how well the interpretation of the dimension fits the

data, correlations between the concepts’ factor scores and the
ratings provided by the independent set of physics faculty were
computed for each factor. The correlation (Pearson’s r) between
the concepts’ measurable magnitude ratings and their factors
scores was 0.74 for all 45 concepts and 0.97 for the 10 concepts at
the extremes of the dimension, as shown in Fig. 2 (both of these
correlation coefficients are significant at p < 0.01). The ratings and
the factor scores are particularly well correlated for the concepts
at the two ends of the distribution; the relationship remains but is
less strong for the concepts in the middle parts of the dimension.
The brain locations associated with this factor were mostly left-
lateralized, and more lateralized than for the other factors. The
clusters of voxels that loaded highly on this measurable
magnitude factor were located primarily in left middle to superior

temporal gyrus, left inferior parietal, left superior parietal, and left
intraparietal sulcus (IPS), and to a lesser degree, left hemisphere
precuneus, left superior frontal gyrus, and occipital regions. The
centroids of the clusters associated with each of the factors are
shown in Supplementary Table 1.

Mathematical formulation. Concepts with high factor scores on
this dimension, including commutator, Lagrangian, and Hamilto-
nian, were strongly associated with mathematical expressions,
equations, or transformations. Concepts with low factor scores on
this dimension included sound waves, quasar, and direct current,
concepts that do not require a mathematical formulation to be
grasped. The correlation between the concept ratings along this
dimension and the factors scores was 0.45 for all 45 concepts and
0.87 for the 10 concepts at the dimension extremes (both were
significant at p < 0.01). The clusters of voxels with high loadings on
this factor were located in left superior parietal, left supplementary
motor, right precentral sulcus and right pars triangularis.

Periodicity/wave-related. The concepts that had high factors
scores on this dimension included wave function, light, radio
waves, gamma ray, and coherence. The concepts with low factor
scores included inertial force, buoyancy, and canonical ensemble,
none of which are periodic. The correlation between the ratings

Fig. 1 The fMRI-based factor scores for the 45 concepts on the measureable magnitude dimension (vertical axis). The contrast between
the concepts at the two ends of the dimension (highlighted in blue text) indicates the nature of the dimension.

Fig. 2 Factor scores for the measurable magnitude factor from the fMRI brain data (x-axis) were well correlated (r= 0.74) with the mean
expert ratings of the concepts with respect to that factor (y-axis). The concepts at the extreme ends of the factor score distribution that are
influential for factor interpretation are highlighted in blue in a larger font.
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and the factors scores was 0.47 for all 45 concepts and 0.94 for the
10 concepts at the dimension extremes (both were significant at
p < 0.01). The clusters of voxels with high factor loadings on this
factor were located in right inferior frontal gyrus (including a pars
triangularis and a pars opercularis cluster), right middle temporal,
and right angular gyrus/inferior parietal regions, with additional
clusters located in left inferior temporal and bilateral precuneus.

Classical vs. post-classical. This factor was interpreted as a
categorical dimension that distinguished between classical and
post-classical concepts. The concepts with high factor scores
(classical concepts) included velocity, acceleration, force, potential
energy, and torque, but also other classical concepts such as
canonical ensemble, light, and direct current, as well as associated
mathematical tools like Lagrangian and Hamiltonian. The concepts
with low factor scores included post-classical concepts such as
anti-particle, multiverse, and tachyon. The correlation between the
ratings and the factor scores was 0.35 for all 45 concepts and 0.95
for the extreme 10 concepts at the dimension extremes (these two
correlation coefficients were significant at p < 0.02 and p < 0.01,
respectively). In the discussion section, the cognitive processes
involved in thinking about post-classical concepts are categorized
into four classes (reasoning about intangibles, assessing consi-
lience, causal reasoning, and knowledge management) that each
correspond to specific brain locations (voxel clusters).

Word length. The factor scores of the concepts along this
dimension were highly correlated with the character-length of
the concept label (r= 0.81; p < 0.001). The voxels with high factor
loadings on this factor were located almost exclusively in the
occipital lobe where first-order visual word-perception processing
occurs. This factor simply reflects the neural encoding of the visual
form of the word that names the concept. This finding provides a
validity check on the method of relating factor scores to
properties of the concepts.

Unlabeled factor. One additional dimension accounted for
above-threshold variance in the first-level factor analysis and re-
emerged in the second level analysis (see “Methods” section). This
dimension was also present when rotations other than varimax
(e.g., equimax, parsimax, and quartrimax) were investigated.
However, physics experts were unable to develop an interpreta-
tion that accounted for the concepts’ factor scores. Concepts
associated with one extreme of this factor were anti-particle,
precession, Lagrangian, acceleration, commutator, and fractal
dimension. Voxels with high factor loadings on this dimension

were located in the periphery of the visual cortex (occipital lobe,
cuneus, and left occipital parietal junction) and in a right middle
frontal region, typically active in working memory tasks.

Predicting the activation pattern of held-out individual
concepts, based on the concept ratings along the four main
dimensions
A regression model developed a mapping from the mean ratings
(averaged across raters) of 44 of the 45 concepts along the four
main dimensions to the mean activation level of 30 cluster
locations associated with the four factors. The mapping was based
on the activation data from 7 of the 10 participants. (The 30 cluster
locations were the minimal set obtained from a factor analysis of
the data from the three participants with the highest concept
classification accuracies. The predictive modeling was performed
on the remaining 7 participants’ data). The weights from this
regression model, obtained from the mapping between concept
ratings and activation levels in the 30 locations for 44 of the
concepts, were used to predict the activation pattern of the left-
out (45th) concept in the 30 factor-related locations, as shown
schematically on the left side of Fig. 3.
The predictive model was evaluated in two ways: (1) the

similarity of the model predictions to the observed activation
patterns, which was assessed using R2 (the goodness of fit as the
proportion of the variation in the observed activation data
explained by the predictions of the model); and (2) the ability to
distinguish among concepts, which was assessed using classifica-
tion accuracy based on the distance between the predicted and
observed activation of each concept. On the first measure, the
model had a good fit to the data as indicated by a mean R2 of 0.82
(averaged over the 45 predictions and seven test participants, with
a standard deviation of 0.11 across all participants and concepts;
the mean R2 was 0.81 when the 3 participants whose data
established the factor locations were included). The mean
observed and predicted activation values in the 30 clusters are
shown on the right side of Fig. 3 for a sample concept, dark matter.
The second measure of the predictive model, classification

accuracy, indicated the predictive model’s ability to distinguish
among the concepts. A classifier was trained to identify each
concept, based on the proximity (vector correlation distance)
between the observed activation for a test concept and the set of
predicted activation patterns for all of the concepts. (Here, and
throughout the paper, normalized rank accuracy of the classifica-
tion performance was computed as the normalized rank of the
correct label in the classifier’s posterior-probability-ordered list of

Fig. 3 The predictive model presented graphically and as data. The left panel is a schematic representation of the predictive model. The
right panel shows a scatterplot of observed and predicted activation values in the 30 factor-related clusters for a sample concept, dark matter,
where R2= 0.85. For this illustration, the predictive model was applied to a mean dataset obtained by averaging the activation data of all
participants, and developing the mapping from the ratings of the other 44 concepts along the four main factors to the mean activation level
of the 30 cluster locations associated with the factors. The resulting regression weights were then applied to the ratings for the left-out (45th)
concept (dark matter) to predict its activation values in those 30 locations.
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all the classes. If the classification were operating at chance level,
one would expect a mean normalized rank accuracy of 0.50,
indicating that the correct word appeared on average between
the 22nd and 23rd position in the classifier’s output of a ranked list
of the 45 items). The mean normalized rank accuracy across the
seven participants was 0.70 (p < 0.001 by permutation test), and
0.69 when all ten participants were included. Thus the predictive
model based on the semantic factors makes accurate and reliably
discriminative predictions.

Within-participant identification of physics concepts from
their neural signatures in a bottom-up model
In addition to the classification above, based on the predictive
model, a more conventional discriminative classifier (Gaussian
Naïve Bayes) was trained to identify a concept from its activation
pattern. The classifier was trained on a subset (4 of the 6
presentations) of the fMRI data from each participant and then
tested on an independent subset (the mean of the remaining two
presentations) of that same participant’s data, using as features
the 120 most stable voxels in each fold (iteration) of the cross-
validation protocol. The 45 physics concepts were classified with a
mean normalized rank accuracy of 0.78 (range= 0.57–0.92).
(When occipital cortex voxels were excluded, to limit the impact
of the non-semantic word length factor, the mean classification
accuracy decreased to 0.75. Recall that the predictive model,
which also excluded voxels related to visual perception of the
concept label achieved a mean rank accuracy of 0.70). Individual
participant rank accuracies were reliably above a p < 0.001 chance
level for 8 of the 10 participants and above a p < 0.05 level for the
remaining two participants. The three participants whose data
were used to establish factor locations for the predictive modeling
had accuracies of 0.87, 0.88, and 0.92. Thus the concepts are
reliably identifiable from their neural signatures in this bottom-up
analysis.

Commonality of the neural signatures across physicists
The commonality of the neural representations across participants
was assessed by training a classifier on data (voxel activation
levels) for each of the concepts from all but one participant and
then testing it on the data of the left-out participant. The features
were the activation levels at 120 voxel locations that had a
consistent profile across the nine participants in the training set
(i.e. voxels with high pairwise correlations between participants’
mean activation levels over presentations). The mean cross-
participant classification rank accuracy to identify the 45 concepts
for the 10 participants was 0.70 (range= 0.53–0.81). These reliable
results (nine participants had accuracies greater than chance at
p < 0.01 and one participant at p < 0.05) indicate the commonality
across participants of the neural representations of these physics
concepts.

Differentiating faculty from students based on their neural
representations of classical physics concepts
In all, 15 of the 45 concepts that had been presented to the faculty
group were basic classical concepts that had also been presented
to a student group in a previous study1. These concepts were
acceleration, centripetal force, gravity, torque, velocity, direct current,
electric field, force, potential energy, voltage, frequency, light, radio
waves, sound waves, and wavelength. A machine-learning classifier
was trained to identify whether the neural representations of
these classical concepts had come from a faculty member or a
student. The brain locations (voxel clusters) that were used as
features in this classification were obtained by taking the union of
the factor locations obtained in two separate factor analyses
performed on the data of each group on the voxel activation
patterns of the 15 elementary concepts.

When the classifier was trained on the group membership data
for all 15 concepts from all but one participant, it achieved a mean
accuracy of 0.79, correctly classifying the group membership for
10 of 10 faculty and 5 of 9 students. (The four members of the
student group misclassified as faculty were all recent graduates
who were enrolled in graduate programs. Their conceptualization
of the 15 basic concepts were apparently more similar to the
faculty than to the undergraduate students. The five correctly
classified students were all undergraduates.) The finding that the
neural representations of the more advanced students were more
similar to the faculty than were the representations of more junior
students suggests that the neural representations change system-
atically with additional learning or with academic progress. Thus it
may be possible to assess the degree of a student’s learning in
terms of some property of the neural representations and more
generally to investigate the relationship of individual differences
in academic achievement to properties of neural representations,
as others have suggested4,6.
To identify the set of concepts whose activation best

discriminated between the groups, a reiterative stepwise classifi-
cation procedure (analogous to stepwise regression) was
performed7, yielding four most discriminating concepts: sound
waves, radio waves, gravity, and force. Some of the discriminating
concepts had high factor scores on the periodicity factor, which
was associated with similar locations in the two groups (bilateral
inferior temporal and right parietal). However, the clusters at these
locations were smaller and more spatially compact in the faculty
group, possibly due to increased neural efficiency8. The factor
locations that were specific to the faculty group included right
frontal and right temporo-parietal junction clusters, possibly the
result of activation of remote associations9. In summary, faculty
physicists’ neural representations of some basic concepts were
reliably distinguishable from students’ representations.

DISCUSSION
This study identified the content of the neural representations in
the minds of physicists considering some of the classical and post-
classical physics concepts that characterize their understanding of
the universe. In this discussion, we focus on the representations of
post-classical concepts, which are the most recent and most
abstract and have not been previously studied psychologically.
The neural representations of both the post-classical and classical
concepts were underpinned by four underlying neurosemantic
dimensions, such that these two types of concepts were located at
opposite ends of the dimensions. The neural representations of
classical concepts tended to be underpinned by underlying
dimensions of measurability of magnitude, association with a
mathematical formulation, having a concrete, non-speculative
basis, and in some cases, periodicity. By contrast, the post-classical
concepts were located at the other ends of these dimensions,
stated initially here in terms of what they are not (e.g. they are not
periodic and not concrete). Below we discuss what they are.
The main new finding is the underlying neural dimension of

representation pertaining to the concepts’ presence (in the case of
the classical concepts) or absence (in the case of the post-classical
concepts) of a concrete, non-speculative basis. The semantic
characterization of this new dimension is supported by two
sources of converging evidence. First, the brain imaging
measurement of each concept’s location on this underlying
dimension (i.e. the concepts’ factor scores) converged with the
behavioral ratings of the concepts’ degree of association with this
dimension (as we have interpreted it) by an independent group of
physicists. (This type of convergence occurred for the other three
dimensions as well.) Second, the two types of concepts have
very distinguishable neural signatures: a classifier can very
accurately distinguish the mean of the post-classical concepts’
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signatures from the mean of the classical concepts’ within each
participant, with a grand mean accuracy of 0.93, p < 0.001.

Neural representations of post-classical concepts
As physicists ventured into conceptually new territory in the 20th
century and developed new post-classical concepts, their brains
organized the new concepts with respect to a new dimension that
had not played a role in the representation of classical concepts.
To describe what mental processes might characterize the post-

classical end of this new dimension, it is useful to consider what
attributes of the post-classical concepts could have led to their
being neurally organized as they are and what cognitive and
neural processes might operate on these attributes. Previously
mentioned was that post-classical concepts often involve their
immeasurability and their lower likelihood of being strongly
associated with a mathematical formulation and periodicity, both
of which are attributes that are often absent from post-classical
concepts.

A new neurosemantic organization for post-classical concepts
More informative than the “absent” attributes are four types of
cognitive processes evoked by the post-classical concepts: (1)
Reasoning about intangibles, taking into account their separation
from direct experience and their lack of direct observability; (2)
Assessing consilience with other, firmer knowledge; (3) Causal
reasoning about relations that are not apparent or observable; and
(4) Knowledge management of a large knowledge organization
consisting of a multi-level structure of other concepts.
In addition to enabling the decoding of the content of the

participants’ thoughts, whether they were thinking of dark matter
or tachyon for example, the brain activation patterns are also
informative about the concomitant psychological processes that
operate on the concepts, in particular, the four processes listed
above are postulated to co-occur specifically with the post-
classical concepts. The occurrence of these processes was inferred
from those locations of the voxel clusters associated with (having
high loadings on) the classical/post-classical factor, specifically the
factor locations where the activation levels increased for the post-
classical concepts. (These voxel clusters are shown in Fig. 4, and
their centroids are included in Table 2). Inferring a psychological
process based on previous studies that observed activation in that
location is called reverse inference. This can be an uncertain
inferential method because many different processes or tasks can
evoke activation at the same location. What distinguishes the
current study are several sources of independent converging
evidence, in conjunction with the brain locations associated
with a factor (and not simply observed activation), indicating a
particular process.
First, a statistically reliable decoding model predicted the

activation levels for each concept in the factor locations, based on
independent ratings of the concepts with respect to the
postulated dimension/factor. The activation levels of the voxels

in the factor locations were systematically modulated by the
stimulus set, with the post-classical concepts, a specific subset of
the stimuli eliciting the highest activation levels in these locations,
resulting in the highest factor scores for this factor. Thus these
brain locations were associated with an activation-modulating
factor, not with a stimulus or a task. Second, the processes are
consistent with the properties participants reported to have
associated with the post-classical concepts. These properties
provide converging evidence for these four types of processes
occurring. For example, the concept of multiverse evoked proper-
ties related to assessing consilience, such as “a hypothetical way to
explain away… constants.” Another example is that tachyons and
quasars were attributed with properties related to reasoning about
intangibles, such as “quasi-stellar objects”. Third, the processes
attributed to the factor locations were based not simply on an
occasional previous finding, but on the large-scale meta-analysis
(the Neurosynth database, Yarkoni et al.10) using the “association
based test” feature. The association between the location and the
process was based on the cluster centroid locations; particularly
relevant citations are included in the factor descriptions. Each of
the four processes is described in more detail below.

Fig. 4 Factors locations associated with the post-classical end of the classical vs. post-classical dimension (i.e. those whose activation was
increased for post-classical concepts). The factor clusters are encircled and numbered for ease of reference in the text and their centroids are
included in Table 2. These locations correspond to the four classes of processes evoked by the post-classical concepts.

Table 2. Brain regions associated with the post-classical concepts,
grouped by hypothesized cognitive process (designated in italic).

Cluster
number
on figure

x y z # of Voxels

Reasoning about intangibles

Left Supramarginal 8 −56 −51 23 11

Right inferior temporal 5 59 −59 −11 15

Assessing consilience

Left medial frontal 6 −12 54 26 4

Right middle frontal 2 41 8 58 3

Causal reasoning

Left supramarginal 8 −56 −51 23 11

Right superior parietal 1 26 −65 52 15

Right middle frontal 3 47 43 22 7

Right inferior orbital frontal 4 45 28 −35 2

Knowledge management

Left medial frontal 6 −12 54 26 4

Left medial frontal 7 −15 53 10 2

Unassigned clusters

Right fusiform Not shown 28 −35 −17 2

The activation levels of the voxel clusters in these regions increased for the
post-classical concepts with extreme factor scores associated with this
dimension. Since regions are multipotent, some are grouped under more
than one process.
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Reasoning about intangible concepts. The nature of many of the
post-classical concepts entails the consideration of alternative
possible worlds. The post-classical factor location in the right
temporal area (shown in cluster 5 in Fig. 4) has been associated
with hypothetical or speculative reasoning in previous studies. In a
hypothetical reasoning task, the left supramarginal factor location
(shown in cluster 8) was activated during the generation of novel
labels for abstract objects11. Additionally, the right temporal factor
location (shown in cluster 5) was activated during the assessment
of confidence in probabilistic judgments12.

Assessing consilience. Another facet of post-classical concepts is
that they require the unknown or non-observable to be brought
into consilience with what is already known. The right middle
frontal cluster (shown in cluster 2) has been shown to be part of
a network for integrating evidence that disconfirms a belief13.
This consilience process resembles the comprehension of an
unfolding narrative, where a new segment of the narrative must
be brought into coherence with the parts that preceded it.
When readers of a narrative judge the coherence of a new
segment of text, the dorsomedial prefrontal cortex location
(shown in cluster 6) is activated14. This location is associated
with a post-classical factor location, as shown in Fig. 4. Thus
understanding the coherence of an unfolding narrative text
might involve some of the same psychological and neural
consilience-seeking processes as thinking about concepts like
multiverse.

Causal reasoning. Thinking about many of the post-classical
concepts requires the generation of novel types of causal
inferences to link two events. In particular, the inherent role of
the temporal relations in specifying causality between events is
especially complex with respect to post-classical concepts. The
temporal ordering itself of events is frame-dependent in some
situations, despite causality being absolutely preserved, leading
to counter-intuitive (though not counter-factual) conclusions.
For example, in relativity theory the concept of simultaneity
entails two spatially separated events that may occur at the
same time for a particular observer but which may not be
simultaneous for a second observer, and even the temporal
ordering of the events may not be fixed for the second observer.
Because the temporal order of events is not absolute, causal
reasoning in post-classical terms must eschew inferencing on
this basis, but must instead rely on new rules (“laws”) that lead
to consilience with observations that indeed can be directly
perceived.
Another example, this one from quantum physics, concerns a

particle such as an electron that may be conceived to pass
through a small aperture at some speed. Its subsequent
momentum becomes indeterminate in such a way that the
arrival location of the particle at a distant detector can only be
described in probabilistic terms, according to new rules (“laws”)
that are very definite but not intuitive. The perfectly calculable
non-local “wave function” of the particle-like object is said to
“collapse” upon arrival in the standard Copenhagen interpreta-
tion of quantum physics. Increasingly elaborate probing of
physical systems with one or several particles, interacting alone
or in groups with their environment, has for decades
elucidated and validated the non-intuitive new rules about
limits and alternatives to classical causality in the quantum
world. The fact that new rules regarding causal reasoning are
needed in such situations was described as “the heart of
quantum mechanics” and as containing “the only mystery” by
Richard Feynman15.
Generating causal inferences to interconnect a sequence of

events in a narrative text evokes activation in a right temporal
and right frontal location (shown in clusters 3 and 4) which are
post-classical factor locations16–18 as shown in Fig. 4. Causal

reasoning accompanying perceptual events also activates a
right middle frontal location (shown in cluster 3) and a right
superior parietal location (shown in cluster 1)19. Notably, the
right parietal activation is the homolog of a left parietal cluster
associated with causal visualization1 found in undergraduates’
physics conceptualizations, suggesting that post-classical con-
cepts may recruit right hemisphere homologs of regions
evoked by classical concepts. Additionally, a factor location in
the left supramarginal gyrus (shown in cluster 8) is activated in
causal assessment tasks such as determining whether the
causality of a social event was person-based (being a hard
worker) or situation based (danger)20.

Knowledge management. Although we have treated post-
classical concepts such as multiverse as a single concept, it is far
more complex than velocity. Multiverse entails the consideration of
the uncertainty of its existence, the consilience of its probability of
existence with measurements of matter in the universe, and the
consideration of scientific evidence relevant to a multiverse.
Thinking about large, multi-concept units of knowledge, such as
the schema for executing a complex multi-step procedure evokes
activation in medial frontal regions (shown in cluster 6)21,22.
Reading and comprehending the description of such procedures
(read, think about, answer questions, listen to, etc.) requires the
reader to cognitively organize diverse types of information in a
common knowledge structure. Readers who were trained to self-
explain expository biological texts activated an anterior prefrontal
cortex region (shown in cluster 7 in Fig. 4) during the construction
of text models and strategic processing of internal representa-
tions23.
This underlying cognitive function of knowledge management

associated with the post-classical dimension may generate and
utilize a structure to manage a complex array of varied
information that is essential to the concept. This type of function
has been referred to as a Managerial Knowledge Unit22. As applied
to a post-classical concept such as a tachyon, this knowledge
management function would contain links to information to
evaluate the possibility of the existence of tachyons, hypothetical
particles that would travel faster than light-speed in vacuum. The
concept invokes a structured network of simpler concepts (mass,
velocity, light, etc.) that compose it. This constitutes a knowledge
unit larger than a single concept.

All four dimensions underlie the neural representations
Although the discussion has so far focused on the most novel
dimension (the classical vs. post-classical), all four dimensions
together compose the neural representation of each concept,
which indicates where on each dimension a given concept is
located (assessed by the concept’s factor scores). The bar graphs
of Fig. 5 show how the concepts at the extremes of the
dimensions can appear at either extreme on several dimensions.
These four dimensions are:

1. the classical vs. post-classical dimension, as described
above, which is characterized by contrasting the intangible
but consilient nature of post-classical concepts versus the
quantifiable, visualizable, otherwise observable nature of
classical concepts.

2. the measurability of a magnitude associated with a concept,
that is, the degree to which it has some well-defined extent
in space, time, or material properties versus the absence of
this property.

3. the periodicity or oscillation which describes how many
systems behave over time versus the absence of periodicity
as an important element.

4. the degree to which a concept is associated with a
mathematical formulation that formalizes the rules and
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principles of the behavior of matter and energy versus being
less specified by such formalizations.

The locations of the clusters of voxels with high loadings on
each of the factors are shown in Fig. 6.
Classical concepts with high factor scores on the measurability

factor, such as frequency, wavelength, acceleration, and torque, are
all concepts that are often measured, using devices such as
oscilloscopes and torque wrenches, whereas post-classical con-
cepts such as duality and dark matter have an uncertainty of
boundedness and no defined magnitude resulting in factor scores

at the other end of the dimension. This factor is associated with
parietal and precuneus clusters that are often found to be
activated when people have to assess or compare magnitudes of
various types of objects or numbers24–26, a superior frontal cluster
that exhibits higher activation when people are comparing the
magnitudes of fractions as opposed to decimals27, and an
occipital-parietal cluster (dorsolateral extrastriate V3A) that acti-
vates when estimating the arrival time of a moving object28.
Additional brain locations associated with this factor include left
supramarginal and inferior parietal regions that are activated

Fig. 5 Factor scores of concepts at the extremes of the four factors. A concept may have a high factor score for more than one factor; for
example, potential energy appears as measurable, mathematical, and on the classical end of the post-classical dimension. In contrast, multiverse
appears as non-measurable, non-periodic, and post-classical.

Fig. 6 Factor locations for the five factors (35 voxel clusters) are depicted on a rendered brain. Colors differentiate the factors and greater
color transparency indicates greater depth. Sample concepts from the two ends of the dimensions are listed. The post-classical factor
locations include those whose activations were high for post-classical concepts (their locations are shown in Fig. 4) as well as those locations
whose activations were high for classical concepts.
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during the processing of numerical magnitudes;26 and left
intraparietal sulcus and superior parietal regions activated during
the processing of spatial information29. This factor was not
observed in a previous study that included only classical concepts
and hence the factor would not have differentiated among the
concepts1.
The mathematical formulation factor is salient for concepts that

are clearly associated with a mathematical formalization. The three
concepts that are most strongly associated with this factor,
commutator, Lagrangian, and Hamiltonian, are mathematical
functions or operators. Cluster locations that are associated with
this factor include: parietal regions that tend to activate in tasks
involving mathematical representations30,31 and right frontal
regions related to difficult mental calculations32,33. The parietal
regions associated with the factor, which extend into the
precuneus, activate in arithmetic tasks34. While most if not all
physics concepts entail some degree of mathematical formulation,
post-classical concepts such as quasar, while being measurable,
are typically not associated with an algebraic formulation.
The periodicity factor is salient for many of the classical

concepts, particularly those related to waves: wave function, light,
radio waves, and gamma rays. This factor is associated with right
hemisphere clusters and a left inferior frontal cluster, locations
that resemble those of a similarly described factor in a
neurosemantic analysis of physics concepts in college students1.
This factor was also associated with a right hemisphere cluster in
the inferior frontal gyrus and bilateral precuneus.

Predicting the activation pattern of novel concepts
For all four underlying semantic dimensions, the brain activation-
based orderings of the physics concepts with respect to their
dimensions were correlated with the ratings of those concepts
along those dimensions by independent physics faculty. This
correlation makes it possible for a linear regression model to
predict the activation pattern that will be evoked by future
concepts in physicists’ brains. When a new physics concept
becomes commonplace, (such as a new particle category, say,
magnetic monopoliae), it should be possible to predict the brain
activation that will be the neural signature of the magnetic
monopole concept, based on how that concept is rated along the
four underlying dimensions.
The neurosemantic conceptual space defined by the four

underlying dimensions includes regions that are currently sparsely
populated by existing concepts, but these regions may well be the
site of some yet-to-be theorized concepts. It is also possible that as
future concepts are developed, additional dimensions of neural
representation may emerge, expanding the conceptual space that
underpins the concepts in the current study.

EXTENSIONS AND LIMITATIONS
This account of the neural representation of physics concepts may
generalize to other scientific disciplines, such as the biological
sciences, where the concepts and dimensions presumably are
related to the properties of living things and their transformations.
One of the first documented neurosemantic disturbances
associated with brain damage concerned the selective loss of
knowledge in laypersons about living versus nonliving things35,36.
This neural living-nonliving dimension may turn out to be central
in representing scientific concepts among biological scientists.
However, neuroimaging studies of advanced scientific thinking
remain uncommon, and the existing studies have not examined
the representations of concepts. For example, two fMRI studies of
skilled mathematicians focused on the processes used in solving
complex math problems37,38 and on the execution of
calculations39.

The findings concerning physics faculty may have implications
for the training of future physicists. If the underlying dimensions
of neural representation of concepts in a scientific discipline are
known, then it may be advantageous to intentionally teach those
concepts using the underlying neurosemantic dimensions to
describe, explain, and define the concepts. For example, the
oscillatory nature of light and sound energy concepts could be
one of their properties that are explicitly taught together. Indeed,
at various universities there are undergraduate courses with titles
similar to “Waves and Vibrations”.
One limitation of these findings is that the observed association

of the concepts with the four underlying dimensions is based on
only the first four seconds of thought. Our findings indicate that it
would be quite likely for a physicist thinking of mass to think of a
concomitant magnitude, but much less so in the case of electron.
However, given more time, even a concept like electron, which
has no magnitude in the naïve sense, can be subsequently
thought of in terms of the magnitude of its charge, magnetic
moment, or velocity. Thus the neural representations that this
study assessed are the first-order representations rather than
extended associations that may eventually be evoked.

CONCLUSION
Scientific thought is a product of a specialized component of
human culture, built on a structured but plastic neural infra-
structure. The neural representations of advanced physics
concepts exhibit the brain’s organization of the concepts in terms
of its own representational schemas. Scientific progress built on
this neural organization continually enlarges the conceptual grasp
of the discipline and constitutes some of the most notable
intellectual accomplishments of the human mind and brain.

MATERIALS AND METHODS
Participants
Ten right-handed faculty members (all male, between the ages of 35 and
67) from the Carnegie Mellon University Physics Department participated
in the fMRI scanning task. All scanned participants gave signed informed
consent approved by the Carnegie Mellon Institutional Review Board. The
native languages of the participants included English, German, and
Mandarin Chinese. Data from three additional participants were not
included due to reasons withheld here for privacy in this small group. Six
additional faculty members (5 male, 1 female, between the ages of 40 and
79) from the Physics Department who had not been scanned participated
as physics experts to rate the concepts according to the postulated
dimensions.

Experimental paradigm
The stimuli were 45 physics terms with five concepts from each of nine
physics topic areas: (particle/nuclear physics, astrophysics, condensed
matter, special relativity, classical mechanics, quantum mechanics,
elementary classical mechanics, elementary energy/electricity, and ele-
mentary light/sound). These concepts were selected to be representative
of the knowledge of any Ph.D.-level academic physicist, irrespective of
research specialization. The 15 concepts from three elementary categories
were a subset of those included in a previous investigation of physics
concepts in college students (11).
The set of 45 concepts was presented six times (in six different random

permutation orders of the 45 items). Each concept label was visually
presented on a video screen for 4 s during which the participant thought
about the properties of the concept, followed by a 6 s rest period, during
which the participant fixated on a shrinking and gradually disappearing
blue ellipse displayed in the center of the screen. There were seven
additional longer presentations (17 sec) of a shrinking ellipse distributed
across the session to provide a baseline measure of brain activity.
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Task
The participants were instructed to actively and re-iteratively think about
the properties of the presented concept. To promote their consideration of
a consistent set of properties or features across the six presentations of
each concept, participants were asked to write down two or three
properties of their choosing for each item prior to the scanning session (for
example, the properties for the term velocity might be vector quantity,
movement related, and directional). Although this task is naturalistic, it is
fairly demanding and could invite inattention. A sufficiently high level of
classification accuracy (as described below) is used to ensure that all
participants paid attention and performed the task throughout the
experiment.

fMRI procedures
Functional images were acquired on a Siemens Verio (Erlangen, Germany)
3.0T scanner at the Scientific Imaging and Brain Research Center of
Carnegie Mellon University using a gradient echo planar imaging (EPI)
pulse sequence with TR= 1000ms, TE= 25ms and a 60° flip angle. Twenty
5-mm-thick AC-PC aligned slices were imaged with a gap of 1 mm
between slices using a 32-channel head coil. The acquisition matrix was
64 × 64 with 3.125-mm× 3.125-mm× 5.0-mm in-plane resolution. Images
were corrected for slice acquisition timing, motion, and linear trend, and
were normalized to the Montreal Neurological Institute (MNI) template
without changing voxel size (3.125 × 3.125 × 6mm) using SPM8 (Wellcome
Dept. of Cog. Neurology). The gray matter voxels were assigned to
anatomical areas using Anatomical Automatic Labeling (AAL) masks (31).
The percent signal change (PSC) relative to the fixation condition was

computed at each gray matter voxel for each stimulus presentation. The
main input measure for the subsequent analyses consisted of the mean
activation level averaged over the four 1-s brain images acquired within a
four second window, offset five seconds from the stimulus onset (to
account for the delay in hemodynamic response). This measure has
previously resulted in higher classification accuracies than other conven-
tional measures.

Selecting voxels with stable activation patterns
A stable voxel was defined as one that responded similarly to the 45-item
stimulus set each time the set was presented. This measure is of a voxel’s
stability and was computed as the mean pairwise correlation between its
set of 45 activation levels across all pairs of the presentations that served
as training input for a given classification model. High stability is thus an
analytic for the replicability of the voxel’s semantic tuning curve. The voxel
selection is based on only the training data for the model in each cross
validation fold and is then applied to the test data. Additional details are
listed in the Supplementary Methods.

Factor analysis methods
Factor analysis was applied to the activation data for three purposes: to
reduce the dimensionality of the neural activity associated with the 45
different stimulus items to a modest number of components, to determine
the ordering of the items with respect to each factor by their factor scores,
and to determine the multiple brain locations of the stable voxels that
were most associated with each factor. A two-level exploratory factor
analysis (FA) procedure was applied. First, the individual level FA applied to
the individual data of the three most accurately classified participants (in
the bottom-up classification of the concepts), as has been done in a
previous study (3, 11). The goal of these individual factor analyses was to
obtain similar outcomes (factor structures) in multiple participants by
focusing on the individual datasets with the greatest systematicity. Second,
a group level FA was performed on the aligned and merged data of these
three participants. A Matlab implementation of a principal FA algorithm
including varimax rotation, equivalent to the SAS v. 9.2 (http://www.sas.
com), procedure was used. This FA procedure is described in detail
elsewhere41,42 and in the Supplementary Methods.
At the individual level, four separate factor analyses were performed on

each participant using activation data from four regions, namely frontal,
parietal, temporal-fusiform, and occipital lobes bilaterally (as defined in the
Automated Anatomical Labeling (AAL) atlas40). The input data was the
matrix of intercorrelations among the activation profiles (the vector of
activation levels) across the 45 concepts of the 120 most stable voxels in
each of these regions. The rationale for performing a separate FA in each
lobe rather than one FA for the entire cortex was to prevent any of the

regions from dominating the set of input stable voxels, as the occipital
regions might have done otherwise. The choice of the particular number of
voxels per region was motivated by similar analyses in other datasets
where a total of 120 to 150 voxels produced a consistent range of maximal
classification accuracy. The individual level FA’s provided a set of 10 factors
per lobe, each characterized by their factor scores for the 45 concepts and
the factor loadings of the input voxels.
The group level factor analysis based on the output of the individual-

level analyses was then used to identify factors that were common across
regions and participants. The search for commonality of factors across
regions was motivated by the assumption that a factor would be
underpinned by a large-scale cortical network with representation in
multiple and disparate brain regions. The input to the group-level analysis
consisted of the factor scores for the 45 items associated with the ten
dominant individual-level factors in each lobe obtained from the three
most accurately classified participants. Voxels were uniquely assigned to
one of the factors by using their highest (absolute value) loading above a
0.4 threshold. For each factor, the associated voxels tended to cluster in 4
to 12 different locations in the brain. Voxel clustering was performed by
finding at least two neighboring voxels associated with a given factor. A
cluster of two voxels is not likely to be spurious because their combined
volume of 117mm3 is substantial and more importantly that they were
each stable in all three participants. The factors were aligned across the
three participants by the correlations of their factor scores for the 45 items.
The output of the group level FA was a set of factors, a corresponding

set of factor scores for the concepts, and clusters of voxels with high
loadings on the factors. More specifically, the FA produced three
interpretable semantic factors (measurable magnitude, periodicity, and
mathematical expression) and one factor corresponding to the visual
property of word length. (A factor was considered interpretable if some
interpretation fairly clearly applied to the five items at each of the two
extremes of the dimension).
A second attempt was made to find additional interpretable factors by

focusing on stable voxels clusters that had not been associated with any
interpretable factor. These voxels’ factor scores from the individual-level
analyses were subjected to a second exploratory group-level factor
analysis, resulting in the emergence of an additional interpretable factor
(post-classical) well as one remaining uninterpretable factor. The resulting
set of factors from both group-level analyses (the initial group level FA on
all clusters and the secondary group level FA on the any remaining
uninterpretable clusters) included the four physics-related semantic
factors, one uninterpretable factor, and a word length factor. Only the
four semantic factors were used in analyzing the data of the other seven
participants. Supplementary Table 1 lists the centroids of the 35 clusters
associated with the semantic factors in the group-level FA.
The factors/dimensions emerging from these three participants’ data

were also present to a very large degree in the fMRI data of the other
participants, such that the four semantic factors were reproduced in a
separate verification factor analysis on the full set of ten participants. When
the word length factor was included, 47 out of 50 possible participant-
cluster regions were present in the individual participants’ FA’s.

Machine learning analyses
Gaussian Naïve Bayes (GNB) classifiers were used to identify the 45 physics
concepts (for an overview of the GNB classifier cross-validation as applied
to fMRI data see41 and the Supplementary Methods). The classifiers were
trained using the activation levels of stable voxels from only a subset of the
data (the training set), and then tested on the remaining independent data
(the test set) using a cross-validation procedure. For the within-participant
classification, the training set on each fold consisted of the data for each
item (i.e. the activation levels of the selected voxels) from four of the six
presentations and the test set consisted of the mean of the data from the
remaining two presentations. For cross-participant classification, the
classifier was trained on the data from nine participants and tested on
the 10th, left-out participant. In the latter analysis, each participant’s data
was averaged over the six presentations. Then the 120 voxels with the
most similar activation profiles across the 45 concepts (assessed with
correlation) across the nine participants in the training set were selected as
features for the classifier.

Ratings task
An independent set of six faculty who were not participants in the fMRI
study rated the 45 concepts with respect to the four interpreted semantic/
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physics dimensions using a 7-point scale. Participants rated items along
one dimension at a time, with three of the dimensions (measurable
magnitude, periodicity, and mathematical) presented in a random order,
and the classical-postclassical dimension last. Instructions described the
dimension as precisely as possible, using as examples items that were not
part of the stimulus set. For example, the instructions for the measurable
magnitude dimension stated:
“This attribute refers to the degree to which a concept has a measurable

magnitude. The concepts at one end clearly have a measurable magnitude
(and should get a rating of “7”) whereas the concepts at the other end of
the dimension clearly do not have a well-defined magnitude and should
get a rating of “1”. An example of a concept with a measurable magnitude
ismass, which might receive a rating of “7” for this attribute. An example of
a concept without a measurable magnitude is electron, which might
receive a rating of “1.” If a concept has some intermediate degree of
relationship to magnitude (such as divergence), please give it a rating
around the middle of the scale.”

Predictive modeling
In this model, the postulated relation of each concept to each of the four
dimensions was estimated by the mean ratings described above. A linear
regression model with four predictor variables developed a mapping
between the ratings along the four dimensions (factors) of all but one
concept and the mean fMRI activation level in each of the 30 factor
clusters/locations for that concept. (The mean activation for a cluster was
defined as the mean activation level of the five most stable voxels (stable
across the six presentations for all but one concept in the training set) in a
cuboid around the centroid of the factor cluster. Because averaging was
done over five voxels, clusters smaller than five voxels were excluded from
this analysis resulting in a set of 30 clusters.) The model weights were then
applied to the ratings of the left-out concept to predict the activation
pattern for that concept.

Comparison between faculty representations acquired in the
current study and student representations from a previous
study
Comparisons between the two groups were based on only the 15
elementary concepts that had been presented to both groups. First,
separate factor analyses of the faculty group and the student group each
produced four factors. Each factor was associated with 2 to 5 clusters. The
subsequent classification of group membership used a union of the factor
cluster locations from these two factor analyses, provided that the cluster
was present in at least four participants from the contributing group. This
resulted in a set of 11 clusters. The activation level associated with a cluster
was the mean activation level of the six voxels that were most stable for
the 15 concepts (across presentations) from that participant in that cluster.
To identify the most discriminating concepts, a reiterative procedure

analogous to stepwise regression was performed. In the first iteration, the
group classification was performed using only one concept at a time,
determining which single concept of the 30 resulted in the highest
classification accuracy. In the second iteration, the classification was
performed using pairs of concepts, namely the single concept that
produced the highest accuracy in the first iteration as well as each of the
29 other concepts. All pairs that produced at least as high an accuracy as
achieved on the previous iteration were explored in the third iteration,
where triplets of concepts were used, namely the pairs that produced the
highest accuracy in the previous iteration plus each of the remaining 28
concepts. This stepwise addition of discriminating concepts continued
until adding any one of the remaining concepts resulted in a decrease in
accuracy.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data will be made available from the corresponding author upon reasonable
request.
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