Comparative Computational Study to Augment UbiA prenyltransferases Inherent in Purple Photosynthetic Bacteria Isolated from Mangrove Microbial Mats in Qatar for Coenzyme Q_{10} biosynthesis.
 Drishya M. George ${ }^{\mathbf{a} \star}$, Ramya Ramadoss ${ }^{\text {bौ }}$, Hamish R. Mackey ${ }^{\mathbf{c}}$, Annette S. Vincent ${ }^{\mathbf{d}^{*}}$
 ${ }^{\text {a }}$ College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar.

Email: dgeorge@hbku.edu.qa
${ }^{\text {b }}$ Biological Sciences, Carnegie Mellon University Qatar, Doha, Qatar.
Email: rramado2@andrew.cmu.edu
${ }^{\text {c }}$ College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar.

Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar.

Email: hmackey@hbku.edu.qa
${ }^{\text {d }}$ College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar.

Biological Sciences, Carnegie Mellon University Qatar, Doha, Qatar.
Email: annettev@andrew.cmu.edu , Tel: +9744484852

* Corresponding Author
* These authors contributed equally to this work

Fig. S1 Mixed (Pre-FACS) and enriched (Post-FACS) cultures at day 20, grown under (A) Low wave infra-red IR light conditions and (B) High wave IR light conditions.

Figure S2: Superposed structure: The crystal structure of substrate-bound UbiA from A. pernix K1deposited in protein data bank (PDB) under the PDB ID: 4OD5 was retrieved. The protein sequence of 4OD5 was retrieved from PDB. The protein sequence was modelled using I-TASSER [1] followed by MLSDS using MTiAutodock [2] with the same ligands in 4OD5. The substratebound UbiA crystal structure (protein-green and ligand-red) and the I-TASSER modelled, docked structure (protein-pink and ligand-dark blue) was superposed using CCP4 suite [3]. The superposed structure has a low RMSD score of $0.5 \AA$ with the ligands bound at similar positions, revealing the efficiency of modelling and MLSDS studies as a preliminary step preceding experimental studies. (A) Front-view of superposed structure. (B) Top-view of superposed structure.

Figure S3: Multiple sequence alignment. Representation of multiple sequence alignment of UbiA sequence protein sequences from A. pernix K1, the candidate organisms - R. adriaticum, R. marinum, R. blasticus and A. pfennigii and the industrial/native producers of CoQ10 - P. aeruginosa, P. denitrificans, A. tumefaciens, R. palustris and R. sulfidophilum using ESPript [4]. The secondary structure of PDB structure 4OD5 is represented at the top of the alignment. The conserved motifs are highlighted in green.

Figure S4: Z-score plot generated by ProSA: All the modelled structures predicted by ITASSER that were used for MLSDS were validated using ProSA tool [5] for model quality assessment. All the predicted models had z-score well within the range of experimental protein structures.

Figure S5: Ramachandran Plot: Ramachandran plots for all the modelled structures predicted by I-TASSER to be used for MLSDS were generated using PROCHECK [6] for model quality validation. More than 97% residues were present in the allowed region.

Table S1: Protein dataset.

Dataset of Protein Sequence entries of 4-Hydroxybenzoate octaprenyl transferase derived from UniProt database. This dataset was input to MMseqs2 tool for sensitive sequence search to cluster the protein sequences sharing 30% sequence identity and 50% minimum coverage.

Table S2: Preliminary clustering of protein sequences.
Largest Cluster, Cluster-19 identified during first step of clustering using MMseqs2 tool [7]. Protein Sequences share 30% sequence identity and 50% minimum coverage. Cluster-19 was further refined in next step by clustering the sequences that share 40% sequence identity and 80% minimum coverage.

Table S3: Refinement of largest cluster obtained from preliminary cluster analysis. Largest Cluster, Cluster-35 identified during Second step of clustering using MMseqs2 tool. Protein Sequences share 40% sequence identity and 80% minimum coverage.

Table S4: Summary of protein-ligand interactions.

Summary of binding energy, hydrogen bond forming residues, interacting amino acid residues (residue environment) within $5 \AA$ of PHBA/GSPP ligand and the phosphorylation sites (predicted using GPS 5.0 webserver) of wild-type and mutated variants of the UbiA enzymes of organisms listed in Table. 1. The amino acid residues within the residue environment which were also predicted as possible phosphorylation sites are highlighted in red. The UbiA enzyme from native/industrial producers of CoQ_{10} and the mutant from candidate organisms with least binding energy is highlighted in blue.

UbiA enzyme	Ligand	Binding energy (kcal/mol)	Hydrogen interaction	Residue environment	Predicted phosphorylation sites
R. blasticus					
Wildtype	PHBA	-4.48	$\begin{aligned} & \hline \text { R38 (1), } \\ & \text { S110 (1) } \end{aligned}$	$\begin{array}{\|l} \hline \text { R38, L39, R41, } \\ \text { R107, T108, K109, } \\ \text { S110, R111, P112 } \\ \hline \end{array}$	$\begin{aligned} & \text { T7, Y36, S40, T48, } \\ & \text { Y52, S78, S79, T92, } \\ & \text { T97, T108, S110, } \end{aligned}$
	GSPP	-2.37	R41 (2)	$\begin{aligned} & \text { R38, L39, R41, R44, } \\ & \text { P45, T48, L51, R87, } \\ & \text { C91, N94, D95, } \\ & \text { R107, T108, K109, } \\ & \text { S110, R111, P112 } \end{aligned}$	$\begin{aligned} & \text { S115, S119, S134, } \\ & \text { S140, Y141, S145, } \\ & \text { S152, Y159, T166, } \\ & \text { S189, S191, Y200, } \\ & \text { S202, T207, Y209, } \end{aligned}$
R99H Mutant	PHBA	-5.19	$\begin{aligned} & \hline \text { P4 (1), } \\ & \text { R41 (2), } \\ & \text { N306 (1) } \end{aligned}$	$\begin{aligned} & \hline \text { P4, P5, T7, P8, R41, } \\ & \text { Y210, F303, L304, } \\ & \text { N306, R307 } \end{aligned}$	$\begin{aligned} & \text { Y210, T212, Y214, } \\ & \text { S229, T230, S238, } \\ & \text { T260, S264, S298 } \end{aligned}$

| | GSPP | -2.82 | R41 (2) | P4, P5, T7, P8, R41,
 D43, Y210, Y214,
 F303, L304, N306, |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Q98H
 Mutant | PHBA | -4.87 | R43 (1),
 F295 (1),
 R296 (1),
 R299 (1) | R43, G46, W47, L49,
 L50, Y209, R294,
 F295, R296, S297,
 N298, R299, E300 |
| :--- | :--- | :--- | :--- | :--- | :--- |

			N303 (1), R304 (1)	G172, L173, A174, I202, I206,	T64, S90, T95, T106, T107, S108, S113,
	GSPP	-2.64	R39 (3), N92 (1)	R39, D41, R42, G45, C89, N92, D93, D96, T117, S129, T138,	S150, Y157, T164, I99, D100, V103,

			Y208, F300, R301, N303, R304, D305		
				GSPP P2, T4, R39, A40, D41, G45, L49, R85, N92, D93,	

			$\begin{aligned} & \text { R340 (2), } \\ & \text { L344 (1) } \end{aligned}$	$\begin{aligned} & \text { A342, G343, L344, } \\ & \text { V347 } \end{aligned}$	
	GSPP	-4.21	A306 (1)	$\begin{aligned} & \text { Q48, V49, F50, L83, } \\ & \text { L84, L86, P87, C88, } \\ & \text { S91, F210, A214, } \\ & \text { L232, Y233, S235, } \\ & \text { G236, W239, T287, } \\ & \text { V290, A306, G309, } \\ & \text { V310, F313, N339, } \\ & \text { R340, D341, A342, } \\ & \text { G343, L344, I345, } \\ & \text { P346, V347, F349 } \\ & \hline \end{aligned}$	
K252A Mutant	PHBA	-6.57	$\begin{aligned} & \text { R2 (1), } \\ & \text { S91 (2), } \\ & \text { L294 (1) } \end{aligned}$	$\begin{aligned} & \text { M1, R2, L3, S91, I92, } \\ & \text { L94, A95, L232, } \\ & \text { V290, L294, V295, } \\ & \text { S298, S299, G300, } \\ & \text { A301, G302, A306, } \\ & \text { P346, F349, F350 } \end{aligned}$	
	GSPP	-3.63	$\begin{aligned} & \hline \text { F101 (1), } \\ & \text { L102 (2) } \end{aligned}$	$\begin{aligned} & \text { M1, R2, L3, S91, I92, } \\ & \text { L94, A95, T99, } \\ & \text { G100, F101, L102, } \\ & \text { W103, L104, L232, } \\ & \text { V290, L294, V295, } \\ & \text { S298, S299, G300, } \\ & \text { A301, G302, A306, } \\ & \text { P346, F349, F350, } \\ & \text { A353, V354, L355, } \\ & \text { G356 } \end{aligned}$	
A. tumefaciens					
Wildtype	PHBA	-5.56	R87 (1)	L46, M47, C50, F79, G82, S83, V84, M86, R87, V156, A176, F177, W179, G180, M183,	$\begin{aligned} & \text { S5, S8, S12, S16, Y21, } \\ & \text { S27, Y31, S53, S64, } \\ & \text { S68, T71, S83, T92, } \\ & \text { Y93, T108, S110, } \\ & \text { S115, S119, S143, } \end{aligned}$
	GSPP	-2.85	$\begin{aligned} & \text { N94 (1), } \\ & \text { Y159 (1) } \end{aligned}$	$\begin{aligned} & \text { R36, L46, M47, C50, } \\ & \text { F79, G82, S83, V84, } \\ & \text { M86, R87, C91, N94, } \\ & \text { R107, V156, Y159, } \\ & \text { P160, A162, K163, } \\ & \text { P169, Q170, F172, } \end{aligned}$	$\begin{aligned} & \text { T148, S152, Y159, } \\ & \text { T166, S178, Y200, } \\ & \text { S203, T207, Y210, } \\ & \text { T212, Y214, T223, } \\ & \text { S229, T230, T238, } \\ & \text { Y246, T248, S256, } \end{aligned}$

				L173, A176, F177, W179, G180, M183, Y210, D211, Y214, A215, D218, D222, I227, G228, S229	$\begin{aligned} & \text { Y267, S268, S298, } \\ & \text { S313 } \end{aligned}$
P. denitrificans					
Wildtype	PHBA	-5.57	$\begin{aligned} & \text { R306 (1), } \\ & \text { R307 (1) } \end{aligned}$	$\begin{aligned} & \hline \text { R44, L54, W209, } \\ & \text { T210, Y213, L300, } \\ & \text { F303, R304, N306, } \\ & \text { R307 } \end{aligned}$	$\begin{aligned} & \hline \text { T3, T7, T12, S17, T18, } \\ & \text { Y31, S43, T51, S70, } \\ & \text { T95, T100, T111, S113, } \\ & \text { S118, T122, S134, } \\ & \text { T143, S155, Y162, } \\ & \text { T169, Y203, T210, } \\ & \text { Y213, T215, Y217, } \\ & \text { S232, T233, T241, } \\ & \text { T250, S252, T271, S305 } \end{aligned}$
	GSPP	-3.13	V253 (1)	$\begin{aligned} & \text { R44, L54, P57, C58, } \\ & \text { G61, I62, A65, F180, } \\ & \text { N181, V184, P199, } \\ & \text { A202, Y203, A205, } \\ & \text { G206, W209, T210, } \\ & \text { Y213, V253, L254, } \\ & \text { L256, G257, L258, } \\ & \text { V260, L274, V277, } \\ & \text { L300, F303, R304, } \\ & \text { N306, R307, G310, } \\ & \text { V313, F316 } \end{aligned}$	
P. aeruginosa					
Wildtype	PHBA	-4.71	$\begin{aligned} & \hline \text { L34 (1), } \\ & \text { N182 (1) } \end{aligned}$	$\begin{aligned} & \text { L33, L34, L35, W36, } \\ & \text { P37, T38, S41, Y156, } \\ & \text { I160, L179, N182, } \\ & \text { W185, L232, F245, } \\ & \text { L249, G282, I285 } \end{aligned}$	T4, Y32, T38, S41,T87, T94, S98, T105,S113, T120, T123,T124, S128, S136,Y138, Y144, T145,Y146, Y147, Y156,S157, T165, S174,T186, Y189, S191,Y192, Y193, T196,S208, T209, S223,T228, Y246, S262,T263, T289, Y293
	GSPP	-2.46	$\begin{aligned} & \text { R } 24 \text { (2), } \\ & \text { R } 27 \text { (1) } \end{aligned}$	$\begin{aligned} & \text { R24, R27, I31, L33, } \\ & \text { L34, L35, W36, P37, } \\ & \text { T38, S41, R66, G69, } \\ & \text { C70, N73, D74, T87, } \\ & \text { R90, P91, Y138, } \\ & \text { P139, L152, Y156, } \\ & \text { I160, L178, N182, } \\ & \text { W185, L232, F245, } \\ & \text { L249, G282, I285 } \end{aligned}$	

References

1. Roy, A. et al. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725-738. 10.1038/nprot.2010.5
2. Labbe, C.M. et al. (2015) MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res 43, W448-454. 10.1093/nar/gkv306
3. Winn, M.D. et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallographica Section D 67, 235-242. doi:10.1107/S0907444910045749
4. Robert, X. and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42, W320-324. 10.1093/nar/gku316
5. Wiederstein, M. and Sippl, M.J. (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 35, W407-W410. 10.1093/nar/gkm290
6. Laskowski, R. et al. (1993) PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283-291. 10.1107/S0021889892009944
7. Steinegger, M. and Söding, J. (2017) MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology 35, 1026-1028. 10.1038/nbt. 3988
