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Abstract

Social media usage, and its impact on people’s physical and mental health, is of
interest to a diverse range of academic disciplines and everyday people. Despite
this, we know very little about the ways in which, over months and years, someone’s
social media use may escalate to consume significant amounts of their daily leisure
time. Nor do we understand the ways in which a user’s posts may shift into
toxic or unexpectedly abusive patterns. Understanding the long-term dynamics
of use is complicated by the fact that day-to-day engagement has significantly
non-normal statistics and may fluctuate by orders of magnitude—informally, users
are sometimes driven to rare “binges” with lasting consequences for their future
trajectory. To address this complex interplay of timescales, this work presents a
Bayesian model for usage over time, flexible enough to capture a wide range of
short and long-term temporal dependencies. Examining the “dose response” curves
of a random sample of 500 users, we find that most users (≈ 90%) show evidence
for a stable, equilibrium level of use. A smaller “high-risk” subset (≈ 10%) show
evidence for instability: when short-term fluctuations drive their levels of use
sufficiently high, they enter a new phase of sustained, run-away usage. Once we
control for the levels of use, we find that “likes”, retweets, and other forms of
feedback received from other users do not significantly impact future behavior. This
casts doubt on the common heuristic that social media use is driven by an “addiction
to likes": for example, there is no evidence that a user whose posts receive an
unexpectedly low level of likes posts more to “make up the difference”. Finally,
in looking at the dynamics of user toxicity, we find a tail-risk effect: prior toxic
behavior rarely shifts the user’s median post, but rather increases the likelihood
of (otherwise rare) extreme toxicity. Our flexible dynamical modeling approach
reveals significant heterogeneity in the ways in which users adapt to social media
systems, and opens the door for more qualitative investigations into the outsized
effects social media may have on users across arbitrarily long timescales.

1 Introduction

Social media use is ubiquitous in modern society [3]. While many users derive great benefits from the
ability to connect with others online, there has been increasing attention to the negative consequences
of engagement, including the outsized mental and emotional effect on users that come from heavy use.
Negative effects include maladaptive repercussions such as depression, anxiety [11, 20], worsened
work performance [29], and political polarization [2, 15].
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Maladaptive social media usage, often referred to as social media addiction (SMA, though this term’s
legitimacy has been raised given its connection to physical addiction), has been approached through a
variety of different scientific paradigms [24]. This has produced a sea of different models of SMA,
with very little attempt at reconciling these contrasting approaches into a holistic definition of SMA
and unsafe social media use.

Before we can even begin to formally diagnose how SMA may arise, however, we still lack a clear
understanding of the dynamics of social media usage over time. While there is a heuristic sense
that “people love to use social media," how such usage evolves over time has been given very little
attention in the academic sphere. We still know little about long-term usage patterns (e.g., whether
users exhibit stable equilibria, complete runaway effects, or some combination of the two) and
the temporal patterns for other salient aspects of social media (such as hate speech and toxicity).
Additionally, much work in SMA research has highlighted the importance of perceived engagement
on usage [26, 23, 18], but such claims lack empirical validation and analysis through social media
usage in the wild.

One of the difficulties with SMA research is the existence of extreme and “bursty” fluctuations in
usage over time: it is not uncommon, for example, for a user who shows a steady level of a few posts
a day to suddenly engage at a much higher rate, many standard deviations above average—and just as
suddenly to return to lower levels of use. This complicates analyses that rely on the assumption of
normally-distributed statistics. A second difficulty is that these sudden bursts of activity might well
influence the user’s behavior on longer timescales but, again, standard statistical tools have difficulty
modeling how a “binge” might be followed by a “purge” (i.e., drastically lowered levels of use) or,
conversely, might more permanently elevate baseline usage.

To address this gap, we propose a novel methodology for analyzing social media usage time series
that is readily interpretable by domain experts, and is able to capture a surprisingly expressive range
of possible usage patterns.

The results of our modeling process highlight a few main takeaways:

1. We find that we may broadly categorize users into low, medium, and high risk for unhealthy
behavior groups, based on the dynamics of our estimated parameters for each user, and that
most users on Twitter fall within the low-to-no risk category.

2. We find that perceived engagement has no significant separable effect on either user posting
frequency or toxicity, even when accounting for adjustment to baselines. While this doesn’t
disprove possible attention mechanisms as a driving factor, it calls into question previous
conclusions of reaction to engagement effects on social media.

3. We also present an initial exploration of toxicity dynamics on Twitter, and find that all
investigated users showed very low toxicity rates, and that dynamical variations only seem
to fatten the tailed-ness of the toxicity distribution to moderate levels.

2 Previous Work

The general landscape for work on social media usage and its external effects is broad and incredibly
diverse. Namely, there exists a large psychology-driven wing that seeks to explain maladaptive social
media use through traditional psychological avenues. Work has been done to analyze social media
use in controlled experimentalal settings through attachment theory [26, 6], gratification theory [9],
planned behavior theory [13], and stimulus-response theory [27].

Outside of the traditional psychological theory, there has been work looking at social media use from
neurological perspectives [23], economic perspectives [1], and in placing the role of technology and
social media directly at the core of new addiction models [25, 19, 28]. These all offer interesting
possible addiction models and some noticeable empirical results in the randomized control setting,
though there is little common thread between most of these approaches. Additionally, the lack of
exploration of social media in non-control settings, and in true longitudinal cases, presents a clear
gap in all of these papers.

There has also been a vein of research attempting to apply machine learning (ML) approaches to
social media use, which is more in line with our methodological approach. There is an emerging
trend of ML being used for drug-related addiction research [17, 7], though work on specifically social
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media addiction has seen comparably less attention. [21] and [18] both provide limited experimental
studies in which modern ML techniques were used to predict maladaptive social media use.

These endeavors provide a decent methodological foundation, though the adherence to traditional
supervised learning approaches adds considerable assumptions to the modeling process (this problem
is true also in ML approaches for traditional addictive substances, as noted by [17]). Our method,
though it is "supervised" in the sense that we learn our model using matched pairs of predictor
and response variables, offers a departure from these approaches by assuming nothing about the
underlying definition or processes of social media addiction, and focuses only on truly observable
metrics (in this, being "unsupervised" with regards to modeling addiction).

With regards to measuring toxicity (and its wider implications) on social media, there has been a
large body of work on estimating text toxicity within the ML domain [10, 4], and additionally in
measuring polarization dynamics on social media, which are intrinsically linked to toxicity trends
[15, 2]. These works provide us with a robust methodological baseline to perform our investigation
of toxicity dynamics for individual users across time scales, which to our knowledge has never been
investigated before using state-of-the-art estimation approaches.

3 Data and Methods

3.1 Data Collection

Our research focuses specifically in modeling the dynamics of usage on the social networking site
Twitter. Twitter sports an easy-to-use public API, and given its relatively friendly data structure
(being a mostly text-based medium), it is often the website of choice for most hands-on social media
research [5]. By leveraging the academic tier of the public API, we are able to attain the entire public
posting history for a given user. We produced a pseudo-random sample of 500 users by randomly
sampling from users who had recently interacted with the top 20 most followed Twitter accounts (e.g.
Barack Obama, Ariana Grande, CNN, etc.), which became the basis for the empirical results of the
present paper.

3.2 Data Structure and Preprocessing

For every user in our dataset, we collected the full time-series of public posts they ever made. On
Twitter, there are four basic kinds of posts:

• Tweets: The main form of Twitter usage, comprising of at most 280 unicode characters and
optional media attached (i.e. images or video)

• Replies: Comments that are made to an original post’s thread
• Retweets: Shared versions of other users’ posts that contain no additional text from the

sharer
• Quotes: Retweets with added text by the sharer

In order to understand the mechanisms of usage on social media with regards to the content directly
generated by each user, we chose to remove retweets from our analyses. Thus, for every user, we
produce a time series of total daily posts made (excluding retweets). We center the time frame of this,
and all subsequent time series such that the hour with the lowest average posting per day becomes
midnight.

Additionally, there are also four basic types of engagement metrics that Twitter keeps track of for
each post: likes, replies, retweets, and quotes. We group these metrics into two broad categories:
Positive Valence Responses or PVR (likes and retweets, as such responses contain no text data and
thus generally only confer positive engagement), and Mixed Valence Responses or MVR (replies
and quotes, as the valence of such responses is unknown without attempting to directly estimate
the sentiment). For the purposes of the present study, we specifically focused on the Average PVR
(APVR) within a given time frame, as such a metric is more robust to changes in posting frequency
and avoids possibly erroneous sentiment estimation. For every user, we z-score their APVR time-
series using a month-long backwards-facing sliding window in order to encapsulate the possible
habituation effect [22, 16], in which users’ need for the addictive medium is generally mediated by
recent previous usage levels.
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On top of the posting frequency time series and APVR time series, we too look to estimate how
user toxicity evolves as a result of past behavior and perceived engagement. Using a pretrained
RoBERTa-based model [12] that estimates text toxicity (while balancing for unintended bias in such
estimations), we thus generate a time-series of average daily toxicity scores for each user, where
toxicity is constrained between 0 and 1 inclusive (as it is a measure of the "probability" that a given
post is toxic).

3.3 Methods

3.3.1 Bayesian Integer Autoregression

The basis of our quantitative approach is based in Bayesian inference through the programming
language STAN [8]. The advantages of a Bayesian approach to this problem are manifold. Consider
first, by contrast, a standard integer-based frequentist degree-1 autoregression: Given a sequence of
values Y1, Y2, . . . , YT , we attempt to learn a set of parameters β to some linear function f(x;β) such
that:

Yt = exp(f(Yt−1;β)) (1)

In this sense, we implicitly assume that each Yt follows a Poisson distribution with mean f(Yt−1;β).
The degree here notes the number of previous time step terms we may include in our parameterization.
There are a few things to note in such an approach. Namely, such frequentist estimation obfuscates the
stochastic process of such a time-series, and a priori assumes that the parameter distributions are of
some standard form (typically Gaussian). Additionally, the implicit Poisson assumption additionally
assumes no overdispersion, or more formally that the variance of the distribution is reasonably
identical to the mean, which is large assumption in practice.

In a Bayesian approach, we are now focused with learning the distribution over our predicted time-
series, and we additionally directly specify the prior distribution over our latent variables β. In order
to combat the possible overdispersion behavior in our time-series, we can assume that our Yt’s come
from a Negative Binomial distribution. While the Negative Binomial distribution is classically known
to model the number of successes (each with probability p) before r failures, we can alternatively
parameterize it with its mean µ and dispersion parameter ϕ, where if Y ∼ NegBin(µ, ϕ) then:

P (Y = y) =
Γ(ϕ+ y)

y!Γ(ϕ)

(
ϕ

ϕ+ µ

)ϕ (
µ

ϕ+ µ

)y

(2)

For some positive integer y and where Γ(x) is the gamma function. Note that as ϕ → ∞,
NegBin(µ, ϕ) → Pois(µ), and thus Negative Binomial regression acts as a strictly more expres-
sive form of integer-based modeling than Poisson regression. Thus, in a typical Bayesian model
specification to mirror (1), we would have that:

β ∼ P (θ)

ϕ ∼ Q(ψ) (3)
Yt ∼ NegBin(f(Yt−1;β), ϕ)

For some prior distributions P and Q parameterized by θ and ψ respectively. Notice that by directly
specifying the prior distributions on our latent variables and focusing on learning distributions rather
than point estimates, we are able to attain much more reliable uncertainty estimates on our parameters
and model fit in general.

3.3.2 Activity Model

We can now directly present our given model for user activity. For a given user with time series of
daily number of posts {Yt}Tt=1 (excluding retweets) and matched APVR time series {Xt}Tt=1, we say
that:
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Table 1: Estimated γ Values for Activity Model

γ Attention Effect % of Dataset

γ ≈ 0 No Response 66.5
γ > 0 Increases w/Increasing Attention 21.1
γ < 0 Increases w/Decreasing Attention 12.4

β0, β1, β2, γ ∼ Laplace(0, 1)
ϕ ∼ Exp(1) (4)

Yt ∼ NegBin(ReLU(β0 + β1Yt−1 + β2Y
2
t−1 + γXt−1), ϕ)

Where ReLU(x) = max(0, x) is used to allow for possibly negative latent parameters while enforcing
the nonnegativity constraint on the mean of the Negative Binomial distribution. Note that parameteri-
zations with added time series are normally referred to as exogenous autoregressive models. This
specific parameterization performed better or as good as a suite of other similar model specifications
tested (including fitting interaction terms, exponential coefficients, and/or hardline maximums on the
mean of the distribution) in terms of log-likelihood fit. Additionally, the presence of the quadratic
term allows for an intuitive understanding of user behavior through traditional psychological means,
as shown in the next section.

3.3.3 Toxicity Model

For modeling user toxicity, our time series of interest is now constrained within the range of real
numbers [0, 1], and not positive integers like before. Similar to how we can parameterize the
Negative Binomial distribution in terms of µ and ϕ, we can parameterize the Beta distribution (which
being defined on [0, 1] makes it an intuitive candidate distribution for estimating the distribution of
probabilities) in terms of mean µ and sample size ν, such that if T ∼ Beta(µ, ν) them:

P (T = x) = xµν−1(1− x)ν−µν−1

(
Γ(ν)

Γ(µν)Γ(ν − µν)

)
(5)

In this parameterization, ν has the nice property of qualitatively controlling the "shape" of the
distribution, with larger ν values leading to a clear centroid around µ while smaller ν values dictation
a right-skewed distribution.

Thus, for a given user and toxicity time series {Tt}Tt=1 and matched APVR time series {Xt}Tt=1, we
say that:

α0, α1, α2, γ ∼ Laplace(0, 1)
ν ∼ Exp(10) (6)

Tt ∼ Beta(ReLU(α0 + α1Tt−1 + α2T
2
t−1 + γXt−1), ν)

Where once again the ReLU term is used to enforce nonnegativity in the distribution mean.

For each user, we learn the parameters β0, β1, β2, γ, ϕ for the Activity model and α0, α1, α2, γ, ν for
the toxicity model using the No-U-Turn-Sampler [14], or NUTS method, a variant of Hamiltonian
Monte Carlo that eliminates the need for prior specification on the number of steps to evolve the
Hamiltonian at each main time step. We run the NUTS for each model with 4 chains of 1000 iterations
each using the PyStan API.

4 Results

4.1 Perceived Engagement Dynamics

Of key importance of this modeling procedure was to observe the effect that perceived positive
engagement, the Xt series, had on posting dynamics. As we can see in Table 1, about two thirds
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of users in our dataset had estimated γ parameters that were not significantly different from 0. In
the small minority of users who did have significant nonzero estimated γ values, we found that the
average absolute difference between the estimated negative binomial mean with and without the
γXt−1 term was heavily skewed towards zero, and never got above ≈ 4.

This highlights one of our major findings: we find little evidence of any significant separable
effect that perceived positive engagement has on posting dynamics. This calls into doubt previous
theories of SMA that propose modeling SMA through "engagement" as an addictive medium, and
thus may offer a somewhat more positive view of the social media landscape. Hence, for the rest
of the paper we disregard the γXt−1 and focus soley on the autoregressive mechanisms of previous
activity at play.

4.2 Activity Dynamics and Equilibria

We begin with a case study of four users in our dataset, labeled users i, j, k, and ℓ respectively for sake
of anonymity. In using a quadratic parameterization for our model, we can analyze the dose-response
curve for any given user in a deterministic setting (that is, if Yt = β0 + β1Yt−1 + β2Y

2
t−1 explicitly).

In this setting, we find multiple different equilibrium behaviors based on when, and how many times
the dose-response curve intersects with the Yt = Yt−1 line (which would yield a completely stationary
pattern at any value of Yt−1). We broadly characterize these behaviors in the following definition:

Definition 1 For any dose-response function f(Yt) and point Y ′
t such that f(Y ′

t ) = Y ′
t , if∣∣∣ df

dYt
|Yt=Y ′

t

∣∣∣ < 1, then Y ′
t is an attractor. If df

dYt
|Yt=Y ′

t
> 1 then Y ′

t is an repeller. If df
dYt

|Yt=Y ′
t
< −1,

then Y ′
t is a chaotic equilibrium.

For attractors, iterating the function will eventually converge to the Y ′
t value as long as there isn’t

another equilibrium point between the initial value and Y ′
t (for dose-response curves with only one

equilibrium point, starting anywhere will converge to the attractor. In the positive-slope repeller
case, iterating the function will yield points further and further away from the repeller given the
starting point, until the function either hits another equilibrium point or explodes completely. Chaotic
equilibria are an interesting theoretical case, as changes in the slope at such an equilibria can yield
both cyclic patterns and purely chaotic behavior as dictated by the appropriately scaled logistic map.

However, what we actually care about are the dynamics of the system in our modeled stochastic
setting, where each point sets the mean of a corresponding negative binomial distribution to be
sampled from. In this regime, we have the extra dispersion parameter ϕ, which implicitly controls the
shape of the distribution. When ϕ is small (especially when ϕ ∈ [0, 1]), the distribution is severely
right-skewed and shows no clear centroid around the mean. As ϕ increases, the distribution develops
a centroid around its mean µ ,which gradually flattens as µ ≫ ϕ.

In Figure 4.2, we plot the theoretical response curve along with the Yt = Yt−1 line and note any
equilibrium points, and additionally plot the last year’s worth of post data (in purple). Users i and
k are similar in their status as single-attractors, though they differ in terms of the ϕ values (as k’s
is much larger than i’s) and in the shape of the response curve (k doesn’t have any estimated effect
for the Y 2

t−1 term). We see these differences play out rather clearly in the actual time series, as the
attractor for user i is more of an "upper limit" of common use than an centroid (which is what we’d
expect with a low ϕ value), and random extreme points are mostly met with immediate collapse back
to low values (which we would expect with the quadratic response curve). For user k, the simulated
series is clearly centered about the attractor, and more extreme points are met with similar values as
they converge back to the equilibrium. Given this, we could reasonably characterize users i and k as
having "safe", self-moderating levels of usage.

Users j and ℓ are a different story. In user j, which has both an attractor and a repeller equilibrium,
most of the simulate points are clustered towards low values (as with the low ϕ any clear centering
about the attractor isn’t immediately clear), though posts further away from the attractor (and closer
to the repeller) happen at decent frequently and are rather close to the Yt = Yt−1 line (indicating only
slow regression to the attractor). User ℓ is even worse off, as with no equilibrium point the user has
multiple posting days with incredibly high values. In this sense, we could characterize j and ℓ as
being at risk for unhealthy usage.
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Figure 1: Dose-Response Curves (blue), with vertical lines for equilibria points (green and red) and
actual time series (purple) for users i (top left), j (top right), k (bottom left), and ℓ (bottom right).

Table 2: Taxonomy of users by dynamic properties

Group % of Dataset

Stable Attractors 89.45
Bi-Modal Attractor-Repellers 7.30
Fixed Repellers 3.25

Moving beyond these four examples, we can build a qualitative taxonomy of users by grouping them
into the following categories:

• Fixed Repellers (FR): Users with no positive equilibrium point, and thus show runaway
behavior that is only moderated by stochastic shocks to the system

• Stable Attractors (SA): Users with one attractor point, where usage is moderated not only
by stochastic shocks but also internal moderation effects to stay within some reasonable
range of posting frequency

– This group could be further split by response curve type (quadratic vs. linear, wherein
the former should exhibit more boom-bust mechanics while the latter shows more
gradual regression to stability) and by ϕ value

– Note that we also group users who have two equilibria with the higher of the two being
an attractor into this category (n = 1), as such behavior is mostly identical to that of
the 1 equilibrium attractor case.

• Bi-Modal Attractor Repellers (BMAR): Users with two equilibria, a lower attractor and
higher repeller, where usage is internally moderated below the repeller, but may exhibit
runaway chaotic behavior past the repeller cutoff.

In Table 4.2, we can see that users in the Stable Attractor group make up nearly 90% of our dataset,
withe 7% in the bi-modal group and just 3% in the fixed repeller group (note that though our model is
expressive enough to capture cyclic and chaotic behavior, we did not find any users in our dataset that
showed this behavior and thus excluded such behavior in our taxonomy). At a high level, this result
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Figure 2: Estimated Beta distributions at T = {0.1, 0.5, 0.9} for users i (top left), j (top right), k
(bottom left), and ℓ (bottom right).

highlights that while most users on Twitter may exhibit stable, "healthy" behavior, there is a
nonzero population of users who are at risk for possibly unhealthy usage.

4.3 Toxicity Dynamics

Given compute restrictions and the slow inference time of our chosen Toxicity model, we focus our
results here on our small case study of users i, j, k and ℓ once more. Note additionally for these users
that the γXt−1 terms are all insignificant (as we saw before with the Activity model), and thus we
disregard this term once again. While we can construct similar dose-response simulations (as in
Figure 4.2) for the toxicity model, we may also directly visualize the resultant Beta distributions at
different prior toxicity values. Figure 4.3 shows exactly this for our case study of users.

Namely, the main common thread in this limited case study is the fact that no amount of prior
toxicity shifts the mass of the distribution to the toxic side of the spectrum. Within this common
thread, we do see a wide range of behaviors: the stationary distribution of user j is one thing to note,
wherein the estimate ν is high enough to predict mass nearly only at the mean. Users i, k, and ℓ show
more dynamic behavior, with users i and ℓ showing quadratic response behavior with low ν values
(and thus a skewed heavy-tailed distribution) and user k showing linear response behavior with a
higher ν value (allowing for a centroid to appear around the mean).

It is interesting to note that in comparing both the Toxicity and Activity models, our users with
unstable activity patterns (j and ℓ) show completely relatively stable toxicity patterns, while our
users with more stable activity (i and k) display much more dynamic toxicity behavior. This possibly
raises the hypothesis that users at risk of unhealthy posting patterns may not be shifting their posting
content in any maladaptive way, and that users with more healthy posting patterns may still show
spikes of maladaptive behavior through the content of their posts, though more research is needed to
confirm this on a wider sample of users.
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5 Discussion

At a high-level, our work presents a robust modeling technique to the realm of social media addiction
research, which is both simple and interpretable, and is expressive enough to capture an incredibly
diverse range of potential user behavior patterns that extend to long time scales. In using this method,
we find that the state of social media use may not be as bleak as some make it out to be: most users
do show healthy levels of use, and don’t seem to react to perceived engagement in any meaningfully
separable way. This being said, we are also able to identify a nonzero population of users who are at
risk of potentially unhealthy usage on Twitter.

There are multiple avenues of further work that this project may motivate. Namely, while our initial
foray into modeling toxicity dynamics is insightful, more work must be done to produce generalizable
conclusions on common patterns between the toxicity of users (much like has been done in the activity
model), and to link to the two modeling approaches to create a more robust taxonomy of Twitter usage
as a whole. Additionally, there may be interested in extending the current parameterization of our
models to higher order polynomial terms, as such would allow for more complex equilibria behavior
that may capture the dynamics of usage or toxicity better than our quadratic model. Approximation
of the mean of the predictive distribution could even be done through more sophisticated approaches
utilizing recurrent neural networks (RNNs), though such explorations may trade off expressivity for
interpretability.

Given our modeling approach, we hope this opens the door for stakeholders, such as psychologists
and policy makers, to utilize our model for more qualitative analyses of maladaptive social media
use as whole. Since our model assumes nothing about the true underlying mechanisms of addiction
and only provides a way to predict usage dynamics, it is flexible enough to be used with a host of
prior addiction definitions and down-stream priorities. Thus, the approach presented here may have
profound implications for uniting the diverse field of researchers who care about social media use
under a similar methodological paradigm.
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