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Abstract

Given the dire consequences of climate change, there are growing incentives to curb
carbon emissions by reducing energy consumption and increasing the penetration of
renewable energy generation, along with other measures to jointly combat this global
challenge. In this thesis, we focus on learning-based controls to 1) reduce the energy con-
sumption in buildings, and 2) to facilitate the integration of distributed energy resources
(DERs).
Recently, there is increasing interest in applying reinforcement learning (RL) for en-

ergy systems operation given that 1) high-fidelity models for these system are resource-
intensive to develop and not commonly available, 2) energy systems are heterogeneous
and the solution for one system may not be transferable to others, and 3) some of
these systems are undergoing transitions and thus the control should be adaptive and
future-proof.
While RL is a promising solution, real-world applications of RL agents are numbered

due to the facts that 1) RL agents generally take a long time to learn and reach acceptable
performance and that 2) the actions by RL agents may not satisfy safety constraints
posed by the underlying physical systems or the functional requirements. Thus, RL
agents should learn safely and sample-efficiently to be practical for real-world energy
systems.
Firstly, we address the challenge of sample complexity in Research Question 1, grounded

in the application of improving energy efficiency in building operations. We expedite
the learning process by warm-starting the RL agent with expert demonstrations and by
incorporating domain knowledge on building thermodynamics in its policy. We validate
that our proposed agent, Gnu-RL, can be deployed on real-world testbeds with satisfac-
tory initial performance, and improve energy efficiency over time. In a notable exper-
iment, Gnu-RL was deployed to operate a real-world testbed for three weeks, wherein
it saved 16.7% of cooling demand compared to the existing controller while maintaining
better thermal comfort. In comparison to existing methods, Gnu-RL is both practical
and scalable as it only requires historical data and minimal engineering to be applied to
other buildings.
Secondly, we focus on the application of facilitating the integration of DERs from both

the demand side and the supply side. In Research Question 2, we utilize the inherent
flexibility in a class of building loads — thermostatically controlled loads (TCLs), which
accounts for 20% of the electricity consumption in the United States — to provide grid
services. By characterizing the set of admissible action sequences (i.e. feasible for the
TCLs and satisfying the end-use requirements) we propose a distributed control solution,
COHORT, to coordinate a population of heterogeneous TCLs to jointly provide grid
services. We demonstrate that COHORT is applicable to use cases including, but not
limited to, generation following, minimizing ramping, and peak load curtailment. Aside
from simulation studies, we validated COHORT in a hardware-in-the-loop simulation,
including a real-world testbed and simulated instances of TCLs. During the 15-day
experimental period, COHORT reduced daily peak loads by an average of 12.5% and
maintained comfortable temperatures. COHORT is computationally scalable to both
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large population sizes and long planning horizons, which unlock the potential to shift
TCLs over extended periods of time, e.g. shifting wind and solar power from times when
it might otherwise be curtailed to times it may be needed over the course of a day.
In Research Question 3, we extend Research Question 2 to incorporate network con-

straints on top of device-level constraints. Specifically, we focus on controlling inverters,
through which DERs are connected to the distribution networks, to ensure voltage con-
straints are not violated, as over-voltage has already become a common occurrence in
areas with high renewable penetration. On the IEEE 37-bus feeder system, our pro-
posed approach, PROF satisfies the voltage constraints 100% of the time, compared to
22% over-voltage violations incurred by a Volt/Var control strategy. Voltage support
from inverters increase the hosting capacity of the existing networks and reduce the
curtailment of renewable generation. Furthermore, as the renewable energy resources
gradually replace fossil fuel ones over the course of coming decades, a learning-based
control strategy can adapt to the transitioning power grid.
Finally, we consider the problem of power system operation in the abstracted form

of high-dimensional, non-linear systems. To enforce safety constraints in performance-
driven learning in the general case of high-dimensional, non-linear systems, we propose
SAGE by incorporating Hamilton-Jacobi (HJ) reachability theory, a safety verification
method for non-linear systems, into the constrained Markov decision process (CMDP)
framework. Though HJ reachability is traditionally not scalable to high-dimensional sys-
tems, we demonstrate that with neural approximation, the HJ safety value can be learned
directly on vision context—the highest-dimensional problem studied via the method, to-
date. We evaluate our method on several benchmark tasks, including Safety Gym and
Learn-to-Race (L2R), a recently-released high-fidelity autonomous racing environment.
Our approach has significantly fewer constraint violations in comparison to other con-
strained RL baselines in Safety Gym, and achieves the new state-of-the-art results on
the L2R benchmark task.
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1. Introduction

There is increasing interest in applying learning-based control for energy systems oper-
ation, as 1) high-fidelity models for these system are resource-intensive to develop and
not commonly available, 2) energy systems are heterogeneous and the solution for one
system may not be transferable to others, and 3) some of these systems are undergoing
transitions and thus the control should be adaptive and future-proof.
While reinforcement learning (RL) is a promising solution, real-world applications of

RL agents are numbered due to the facts that 1) RL agents generally take a long time
to learn and reach acceptable performance, and 2) that the actions during the learning
phase may not satisfy functional requirements or be feasible for the underlying physical
system. Thus, RL agents should learn safely and sample-efficiently to be practical for
real-world energy systems.
In Research Question 1, we work towards the vision of RL agents learning to con-

serve energy in buildings, while maintaining a satisfactory comfort level. In Research
Question 2, we extend the idea to a populations of buildings coordinating with each
others to jointly provide grid services, while satisfying building-level constraints. In Re-
search Question 3, the RL agent learns to control distributed energy resources (DERs)
safely with consideration of both local and grid-level constraints. We also consider the
abstracted problem of how to learn a safe set for high-dimensional, non-linear systems.

1.1. Industry Problems

Given the dire consequences of climate change, there is growing incentive to curb carbon
emissions by 1) reducing energy consumption, and 2) increasing the penetration of re-
newable energy [168, 60, 179], along with other approaches to jointly combat this global
challenge. In this thesis, we focus on improving upon the existing control strategies 1)
to reduce the energy consumption in buildings, and 2) to facilitate the integration of
variable renewable energy resources.

1.1.1. Energy-efficient Building Operation

Buildings are good candidates for energy-saving strategies due to the sheer size of their
energy consumption. Concretely, buildings account for about 40% of the total energy and
70% of the electricity consumption in the United States [141, 91], and it is estimated that
up to 30% of that energy usage may be reduced through advanced sensing and control
strategies [92, 78]. Furthermore, replacing existing control logic with more intelligent
ones requires almost no retrofit and would be a cost-effective solution.

However, this potential is largely untapped into. The majority of buildings sys-
tems today are still operated by rule-based and feedback controls, such as hysteresis or
proportional-integral-derivative (PID) control [38], which depends on engineers to man-
ually specify the control parameters and occupancy schedules. These control parameters
and occupancy schedules are generally conservative, and as a result the building environ-
ments are often conditioned unnecessarily. Furthermore, these prescriptive and reactive
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control strategies do not take into consideration predictive information on disturbances,
such as weather and occupancy, leading to sub-optimal energy performance [126].

Case Study: To examine the energy performance of existing control, we conducted a
case study in four rooms on Carnegie Mellon University (CMU) campus, during the fall
semester (September 1 - December 10) in 2019. The testbed includes one classroom, one
student lounge, and two conference rooms, ranging from 215.3 - 1025.5 ft2. By adopting
a reactive rule-based control (RBC), we decreased total heating and cooling demand
by 14.2% in comparison to the weather normalized performance of the existing control
over the same time period in 2018, while maintaining a similar level of thermal comfort
(Figure 1.1). The reactive RBC simply replaced the design occupancy with the actual
occupancy count from sensor measurements [163], and only used it to adjust the minimal
airflow rate per the guidelines on demand-controlled ventilation in ASHRAE 62.1 [14].
The significant energy savings from refining a single setpoint showcase the conserva-

tiveness of existing control and reaffirm the large energy-saving potential in buildings.
For instance, the existing control assume that each room operates under a fixed schedule
from 6:00-22:00 regardless of weekday or weekend, which corresponds to 66.6% utiliza-
tion (the dashed black line in Figure 1.1). In comparison to the actual utilization, the
existing control unnecessarily conditions these rooms around 10 to 20% of the time.

Figure 1.1: Performance of reactive RBC in comparison to the existing control. Ther-
mal comfort is estimated by the deviation of actual zone temperature from
its setpoint. By determining airflow rate based on actual occupancy count
instead of a fixed schedule, there is on average 14.2% savings in total heating
and cooling demand.

1.1.2. Renewable Energy Integration

There is growing incentive to replace traditional fossil fuel-based generation with renew-
able ones, e.g. solar, wind, hydro, and geothermal. For instance, the maximum hourly
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penetration of utility-scale wind and solar generation reached 62.6% in California Inde-
pendent System Operator (CAISO) in 2018 [198]. In contrast to hydro and geothermal
energy resources, solar and wind ones are not constrained by local conditions, such as
surface runoff and geology, but are uncertain and variable [135]. These variable renew-
able energy resources introduce unintended challenges for grid operators.

• The intermittent and variable nature of renewable generation makes it difficult to
balance supply and demand of energy in the power grid. Traditionally, demand-
side load is viewed as uncontrollable, while supply-side resources manage power
generation to match it [165]. Such paradigm is no longer sufficient to accommodate
an increasing penetration of renewable resources [118, 1], which is not only non-
dispatchable, but also of uncertain and variable nature. This calls for new ways to
match supply and demand over multiple timescales [135], i.e. from sub-second to
inter-daily.

• High penetration of renewable generation without proper control leads to con-
straint violations in the distribution network. For instance, over-voltage has al-
ready become a common occurrence in areas with high renewable penetration
[109, 196]. Thus, it is of growing importance to account for network constraints
in distribution networks with high penetration of distributed energy resources1

(DER) [98]. To alleviate voltage violations, the IEEE 1547.8-2018 standard [22]
recommends a Volt/Var control strategy, in which the reactive power contribution
of an inverter2 is adjusted based on local voltage measurements. Unfortunately,
such network-agnostic control based on local information only reduces, but does
not avoid over-voltage and other violations.

• A related issue is that existing control in face of constraint violations lead to cur-
tailment of available renewable generation. The original IEEE 1547-2003 standard
specifies that inverters simply trip and disconnect from the grid when the voltage
exceed limits, even when there is still behind-the-meter load [109]. The updated
IEEE 1547-2018 takes a reactive power priority approach, meaning that the in-
verter will prioritize providing voltage support and curtail active power as needed.

A case study of more than 1300 solar panel installations showed that on the worst
day 5% of the customers experienced the most severe impact, with a generation
loss of at least 16% [196]. Furthermore, the curtailment is distributed unevenly;
customers far away from the distribution feeders suffered the most loss. In 2018,
461,043 MWh of renewable generation was curtailed in CAISO [1], sufficient to
power a small country. A projection of the future power systems in the United

1Distributed energy resources refer to energy resources connected to distribution networks, includ-
ing both generation units such as micro-turbines, photo-voltaic panels, and energy storage such as
batteries [9].

2An inverter is a power electronics device that connects a DER with the distribution network. It convert
native DC electricity into grid-compatible AC power, by controlling switching semiconductor devices
at a fast timescale [135].
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States with high renewable energy penetrations [151] show massive curtailment in
off-peak load conditions.

• An inverter-dominated grid has low-inertia, and as a result reduced stability [135,
154]. Inverters do not have the inherent inertia from mechanical rotors in the case
of synchronous machines [135, 154]. As a result, distribution network with high
renewable penetration requires active control at much faster timescales [154].

1.2. Research Vision

In light of these industry challenges, this thesis presents contributions to achieve the
following research vision.

Smart buildings learning to conserve energy, while maintaining occupants’ comfort
at a satisfactory level. It was envisioned in [161, 159, 160] more than 20 years ago that
smart homes of the future have household appliances endowed with microprocessors, and
communicates with each other to satisfy occupants’ needs. The benefits of realizing this
vision include improvement in energy efficiency and occupants’ comfort [141, 24, 92].
Given the reduced cost of hardware and communication infrastructure, this vision seems
extremely feasible today.
However, it was also pointed out that the bottleneck of this vision lies in the pro-

gramming effort required [160]. In the context of a smart home, the controller needs to
incorporate models of the thermodynamics and the mechanical system, take into con-
sideration occupants’ behaviour and preferences, and finally balance multiple competing
objectives. Furthermore, building environments are heterogeneous, e.g. they have differ-
ent layouts, system configurations, and occupancy patterns. Thus, the solution for one
building is not directly transferable to another. Given the daunting task of implement-
ing these considerations manually for individual buildings, it is asserted in [160] that an
intelligent environment must be adaptive.

Research question 1 (Section 1.4.1) works towards this vision, by developing a practical
and scalable reinforcement learning solution for building control—Gnu-RL [38, 42], to be
described in Section 3. The proposed solution is practical, as it is sample efficient and can
be deployed to real-world testbeds, using no prior information other than historical data.
Since the proposed solution learns from and adapts to the environment autonomously,
it is scalable to the heterogeneous building stock.

Building loads coordinating with each other to provide demand flexibility, while sat-
isfying device-level constraints. To address the challenge of matching the supply and
demand of energy, given the non-dispatchable and variable nature of renewable gen-
eration, a promising solution is to tap into the flexibility of demand-side resources to
reduce, shift, or modulate their loads in response to price or control signals [165]. Such
demand flexibility can be utilized to provide grid services3, improve grid resiliency [165],

3Grid services refer to the services that support the delivery of electricity from the utility to the
consumer and provide value through avoided electricity system costs [165].
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and reduce operating costs [35].
Buildings are, again, ideal candidates due to their aggregate capacity. It is esti-

mated that a fourth of all electricity demand in the United States will be dispatchable
if buildings respond to dispatch signals [141]. Specifically, we focus on a class of flexible
building loads—residential thermostatically controlled loads (TCLs), such as air condi-
tioners (ACs), refrigerators, and electric water heaters, which account for about 20%
of the electricity consumption in the United States [103]. They derive their flexibil-
ity through thermal inertia, and thus can provide grid services without compromising
their end uses. Furthermore, 11% of the households in the United States are already
equipped with smart thermostats [127], which provides a readily-available control and
communication infrastructure.
Research question 2 (Section 1.4.2) improves upon existing methods, such that the

proposed solution—COHORT [42] (Section 4) is scalable to long planning horizons, e.g.
shifting wind and solar power from times when it might otherwise be curtailed to times
it may be needed over the course of a day. This improvement unlocks the potential for
TCLs to provide grid services that utilize buildings’ thermal mass to shift loads over
extended period of time, which is identified as the most promising use case for these
loads by [92, 135, 186].

Inverters learning to control safely, i.e. satisfying both grid-level and device-level con-
straints. There are more than 2.3 million solar generators connected to the distribution
networks in the United State today [152]. The growing penetration of grid-connected
photo-voltaics (PVs), along with other DERs, calls for improved control strategies to in-
tegrate these DERs and to facilitate a seamless transition into the future power systems
with high renewable penetration [135].

Recall that DERs, such as solar panels, micro-turbines, and batteries, are connected
to the distribution networks via inverters. While inverters present challenges as they
have low-inertia and behave differently from traditional synchronous machines, the silver
lining is that they allow for fast actuation and flexible control. In fact, the control
policy, instead of the inverter’s physical properties, dictates the inverter’s dynamics and
interaction with the grid [135].
For Research question 3 (Section 1.4.3), we develop a strategy, PROF (Section 5), to

flexibly embed convex operational constraints into neural policies, such that the invert-
ers learn to control safely, i.e. satisfying both inverter-level and grid-level constraints.
Embedding safety guarantees in a learning-based solution instills confidence in industry
practitioners.
A limitation of PROF is that it assumes the existence of a nominal model, with which

to construct the safe set. Furthermore, the nominal model is not updated through
interactions with the environment. For Research question 3 (Section 1.4.3), we also
consider the abstracted problem of learning about safety for a high-dimensional, non-
linear systems, and validate it in a challenging safety-critical task of autonomous racing
(Section 6).
Being able to learning about safety through interactions with the environment enables
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the inverters to adapt to the transitioning power grid autonomously, as renewable gen-
eration gradually replaces fossil fuel-based one over the course of coming decades, At
the same time, DERs are installed by customers spontaneously and thus are opaque to
distribution system operators (DSO) [196, 109].

1.3. Scope and Assumptions

In Research Question 1 (Section 1.4.1), we focus on the energy efficiency of heating,
ventilation, and air conditioning (HVAC) systems, which accounts for 30% of the en-
ergy consumed in buildings [141]. We envision the proposed solution (Section 3) to be
transferable to other building systems. We assume operational data, particularly the
state-action pairs, are logged in building automation system (BAS) for existing build-
ings.
In Research Question 2 (Section 1.4.2), we focus on utilizing the demand flexibility in

residential TCLs to provide grid services. This research question is network-agnostic, i.e.
we do not consider the impact of TCL coordination on network constraints [185]. We
adopt a direct load control-based approach, as opposed to methods based on economic
incentives4. We expect the proposed solution (Section 4) to be applicable to other
demand-side resources, such as batteries and thermal storage. We assume there exists
the control and communication infrastructure (e.g. networked thermostats) for a load
aggregator to have two-way communication with and be able to control a population of
TCLs.
In Research Question 3 (Section 1.4.3), we focus on operating inverters that connects

DERs to the distribution networks, while satisfying voltage constraints. Since PV panels
are the most prevalent DERs, we focus primarily on grid-connected PVs. We assume
each inverter has the capabilities to communicate its states and take setpoints per IEEE
1547.1-2020 [22] guidelines for new installations.

1.4. Research Questions

We formulate the research questions that will be addressed in this thesis.

1.4.1. Research Question 1

What is a practical and scalable reinforcement learning solution that can be deployed
in real-world building HVAC systems with satisfactory initial performance, without
the need for high-fidelity simulation models? This research question aims to develop
a practical and scalable solution for operating building HVAC systems by combining the
strength of MPC and RL. MPC and RL were identified as options for optimal control of
building systems in the seminal work by Michael C. Mozer [159] more than 20 years ago
and are the two most popular approaches for HVAC control in literature. However, the
majority of building stocks are still operated by on-off or PID control, despite the large
energy saving potentials and successful demonstrations of advanced control strategies

4We refer interested readers to [35] for a comparison of direct load control vs. price-based methods.
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reported in the literature. As discussed in Section 3.2, both approaches have drawbacks
that limit their wide-spread adoption.

Challenge: MPC is not scalable due to the heterogeneity of building environments.
MPC optimize an objective function iteratively over a receding time horizon. Despite
many successful applications of MPC (e.g., [178, 149]), its wide-spread adoption has
been limited by the need of accurate models [177, 126]. This is especially challenging as
buildings are heterogeneous [147], e.g. they have different layouts, HVAC configurations,
and occupancy patterns. Thus, custom models are required for each thermal zone or
building. By some estimates, modeling can account for up to 75% of the time and
resources required for implementing MPC in practice [182]. Another drawback is that
MPC treats modeling and planning as two separate tasks. The quality of the model is
evaluated by criteria such as prediction error, which does not necessarily lead to good
control performance.

Challenge: RL is not practical for real-world building systems due to its sample com-
plexity. RL, on the other hand, is a learning-based approach that adapts to different
environments by learning a control policy through direct interaction with the environ-
ment [199]. RL has achieved remarkable success in mastering many highly complex tasks
such as playing Go [158] and StarCraft [207]. It has also been shown to be a feasible ap-
proach for optimal control of HVAC systems [61, 145]. However, the flexibility of the RL
framework comes at the cost of increased sample complexity [121]. Taking recent pub-
lished results as examples, an RL agent may need 5 million interaction steps (47.5 years
in simulation) to achieve the same performance as a feedback controller on an HVAC
system [226]. Even after pre-training an RL agent on expert demonstrations, it may still
require an additional year of training in simulation to achieve similar performance to a
baseline controller [117].
While these results show that RL agents can be trained successfully in simulation,

high-fidelity models are generally not available for individual thermal zones or buildings.
Thus, training RL agents in simulation is not scalable and shifts the focus back to
modeling (and calibration) [219].

1.4.2. Research Question 2

How to coordinate a large, heterogeneous population of TCLs to provide a wide
range of grid services in a computationally-scalable manner, while incorporating de-
tailed, system-specific models and constraints from individual loads? This research
question aims to develop a practical, scalable, and versatile solution for coordinating
a heterogeneous population of TCLs to provide grid services. There are two core dif-
ficulties with TCL coordination: large state-action space and non-convex constraints
posed by individual loads. Building loads must be aggregated across a population to
be a meaningful resource at the grid-level [165], which results in a problem with a large
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state action space5. The set of all admissible power profiles of a TCL, defined here as
flexibility [230], is combinatorial and non-convex, the size of which grows exponentially
with the planning horizon6.
As discussed in Section 4.2, none of the existing approach is computationally-scalable

to both large population sizes and long planning horizons. Furthermore, we want to
validate the proposed solution is practical for real-world systems, motivated by the ob-
servation from literature that there exist large discrepancy between performance reported
in simulation and in real-world testbeds.

Challenge: No existing approach is computationally-viable for long planning hori-
zons, when models and constraints for individual TCLs are considered. Centralized,
distributed, and decentralized approaches have been proposed for TCL coordination (as
summarized in Section 4.2). A distributed architecture, where each system is responsible
for its own control and coordinates with others to jointly achieve a grid-level objective,
can address many of the limitations of centralized and decentralized approaches. Most
similar to our work, a distributed control solution is proposed in [31], which incorporates
detailed models and constraints for individual loads and is, at the same time, scalable
to large population sizes. However, it does not address the difficulty that the number of
admissible action sequences grows exponentially with the planning horizon.
From an application perspective, the greatest potential exists in grid services that use

the building’s thermal mass to shift loads [186, 91]. However, load shifting typically
entails a long planning horizon, e.g. day-ahead scheduling. Addressing this challenge
unlocks the potential for a most promising use case.

Challenge: It is unclear how well simulation-based validation reflect performance on
real-world systems. Given the practical difficulty of simultaneously controlling a large
number of testbeds, the majority of works on this topic validated their approaches in
simulation. The large discrepancy between performance reported in simulation and in
real-world testbeds [162] motivates us to evaluate our proposed method realistically.

1.4.3. Research Question 3

There is growing interest in enforcing some notion of safety in RL algorithms, e.g., satis-
fying safety constraints, avoiding worst-case outcomes, or being robust to environmental
stochasticity [87]. We focus on the notion of safety as satisfying constraints. Enforc-
ing safety constraints in performance-driven learning boils down to two sub-problems
[63, 106]: 1) safely optimizing a performance controller given a safety set, and 2) learn-
ing the safety set by interacting with the environment (safe exploration).

5To provide a concrete example, Pennsylvania-New Jersey-Maryland (PJM) Interconnection requires
at least 0.1MW of capacity for an entity to participate in the auxiliary service market. Assuming
that an AC consumes 1kW and can shift 10% of its power consumption without violating comfort, a
load aggregator has to coordinate at least 1000 ACs to be eligible for the auxiliary service market.

6A TCL operates in discrete action space, i.e. on or off. To satisfy constraints on the state, i.e. the
temperature, the actions need to be coupled over time through the thermodynamics [230].
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Research Question 3.1: How to safely learn a controller for inverters, given a con-
vex safety set characterizing the grid-level and inverter-level constraints? This sub-
question assumes that a safety set is given a priori, and focuses on learning a performance
controller given the safety set. To simplify the problem, the safety set is constructed via
a linearized grid model with bounded linearization error [28]. The resulting safety set is
convex and a conservative under-approximation of the true safety set.

Research Question 3.2: How to optimize a policy subject to safety constraints in a
high-dimensional, non-linear system? While the linearized grid model simplifies the
specification of the safety set, the constructed safety set is conservative and curtails
renewable energy unnecessarily in comparison to the AC-OPF solution. We abstract the
problem and raise the general question on how to construct the safety set for a general
high-dimensional and non-linear system.

1.5. Organization

The rest of the thesis is organized as follows. Section 6.3 presents shared background
knowledge. Section 3 summarizes the work that addresses Research Question 1. Section
4 presents the proposed approach to tackle Research Question 2. Section 5 and Section
6 discuss the solutions to Research Question 3.1 and Research Question 3.2. Finally,
Section 7 recaps the contributions and discusses directions for future work.
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2. Preliminaries

This section presents shared background knowledge. Other background technical con-
cepts will be described in individual sections.

Reinforcement Learning

RL learns an optimal control policy through direct interaction with the environment.
The optimal control problem may be formulated as a Markov Decision Process7 (MDP),
as shown in Figure 2.1.

State, 𝑋" = 𝑥 Agent
Policy, 𝜋&(𝑢|𝑥)

Action, 𝑈" = 𝑢EnvironmentReward, 𝑅"-. = 𝑟
State, 𝑋"-. = 𝑥′

Figure 2.1: The agent-environment interaction in a Markov Decision Process

At each time step t, the agent selects an action Ut = u ∈ U given the current state
Xt = x ∈ X based on its policy πθ : X −→ P(U) (Eq. 2.1a), where X is the state space,
U is the action space. In modern RL, the policy is commonly approximated by a neural
network parameterized by θ [156]. Using a neural network as a function approximator
allows one to handle large state-space and generalize from past experiences [199]. When
the agent takes the action u, there is a state transition Xt+1 = x′ based the environment
dynamics f : X ×U −→ X (Eq. 2.1b) and the agent receives a reward Rt+1 = r based on
a reward function R : X × U −→ R. Unless stated otherwise, the cost is the negative of
the reward (Eq. 2.1c).

u ∼ πθ(u|x) = P(Ut|Xt = x; θ) (2.1a)

x′ ∼ f(x, u) = P(Xt+1|Xt = x, Ut = u) (2.1b)

r = R(x, u) = −C(x, u) (2.1c)

The objective of RL is to find a optimal policy πθ∗ that maximizes the expected total
reward or, equivalently, minimizes the expected total cost.

θ∗ = argmax
θ

Eπθ

[ ∞∑
k=0

γkrt+k

]
= argmin

θ
Eπθ

[ ∞∑
l=0

γlck+l

]
(2.2)

7While Richard Bellman’s notation is more commonly seen in RL literature (i.e. s-states, a-actions,
r-rewards), we adopt Lev Pontryagin’s notation (i.e. x-states, u-actions, c-costs) to be consistent
with classical control literature.
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RL methods can be categorized as model-free and model-based based on whether a
model of the environment is used. There are three common approaches to model-free RL,
i.e. value-based methods, policy gradient methods, and actor-critic methods. Valued-
based methods, e.g. Q-learning and its variants, learns the policy indirectly by learning
a value function, e.g. Qπ(x, u) (Eq. 2.3a) or Vπ(x) (Eq. 2.3b), and takes the action that
maximizes the value function with exploration. γ is the discount factor. Alternatively,
one may use the advantage function, Aπ(x, u) as given in Eq. 2.3c, which could be
interpreted as how much a given action improve upon the policy’s average behaviour.
The value function may be updated via methods such as Bellman backup [199]. A
major shortcoming of Q-learning is that it is only applicable to problems with discrete
action spaces. Thus, for problems with continuous action space, each continuous action
need to discretized into a number of discrete actions.

Qπθ
(x, u) = Eπθ

[ ∞∑
k=0

γkrt+k|xt = x, ut = u
]

(2.3a)

Vπθ
(x) = Eπθ

[ ∞∑
k=0

γkrt+k|xt = x
]

(2.3b)

Aπθ
(x, u) = Qπθ

(x, u)− Vπθ
(x) (2.3c)

Policy gradients methods directly search for an optimal policy πθ∗ , using stochastic
estimates of policy gradients (Eq. 3.1), and are applicable to problems with continuous
action spaces. Some examples of policy gradient methods include REINFORCE [199],
Truth Region Policy Optimization (TRPO) [188], and Proximal Policy Optimization
(PPO) [190]

g := ∇θEπθ

[ ∞∑
k=0

γkrt+k

]
(2.4a)

θ ← θ + αĝ (2.4b)

Actor-critic methods, e.g. Advantage Actor-Critic (A2C), Asynchronous Advantage
Actor-Critic (A3C) [155], and Deep Deterministic Policy Gradient (DDPG) [?], are
hybrids of the value-based and policy gradient approaches. Actor-critic methods use a
policy network to select actions (the actor), and a value network to evaluate the action
(the critic). A2C and A3C use a Q-network as critic and thus are only applicable to
problems with discrete action spaces, i.e. the same drawback as Q-learning. DDPG, on
the other hand, is applicable to problems with continuous action spaces. Although we
classified PPO as a policy gradient method, one can and should incorporate a critic for
variance reduction and more robust performance.
Alternatively, one can incorporate a model of the environment to improve the sample

efficiency. Previously, it was believed that model-based RL could not perform as well as
model-free RL asymptotically. But, recent work [53] has shown that model-based RL can
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match the asymptotic performance of model-free RL algorithms, while being significantly
more sample efficient. A common idea for model-based RL is to simultaneously learn
a model of the environment and plan ahead based on the learned model. The classical
Dyna-Q [199] is an example of such approach. Developing upon the idea, people have
modeled the environment with Gaussian Process [122], locally linear models [214], and
neural networks [53].
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3. Gnu-RL: A practical and scalable solution for building
control

This section summarize the work, published in [38, 39], to address Research Question 1.
Also related to these work is [43], which studies the problem of off-policy evaluation in
the context of building control.

2: Online Learning

Real-World Environment

1: Offline Pretraining

Historical Data

Policy Gradient
-∇"#$% ∑' ('

Differentiable MPC Policy, )*

Optimizer

Model: +',- = /"(+', 2')

Objective
Constraints

Gnu-RL Agent

Action, 2'

State, +'

Reward, ('∇"ℒ567'ℒ567'

Learner Action, 82'

State, +'

Expert Action, 2' ⊝

Forward Pass Backpropagation

Figure 3.1: Gnu-RL Framework. The Gnu-RL agent utilizes a Differentiable MPC policy,
which encodes domain knowledge on planning and system dynamics. In the
offline pretraining phase, the agent is initialized by imitating historical data
from the existing controller. In the online learning phase, the agent continues
to improve its policy end-to-end using a policy gradient algorithm.

3.1. Introduction

To overcome the challenges as summarized in Section 1.4.1, we propose Gnu-RL8: a
novel approach that enables practical deployment of RL for HVAC control and requires
no prior information other than historical data from existing HVAC controllers (Figure
3.1). It leverages a recently-developed Differentiable MPC policy [12] that encodes do-
main knowledge on system dynamics and control, making it both sample-efficient and
interpretable. Prior to any interactions with the environment, a Gnu-RL agent can be
pre-trained on historical data through imitation learning, enabling it to match the be-
havior of the existing controller. Once it is put in charge of controlling the environment,
the agent continues to improve its policy end-to-end, using Proximal Policy Optimization
(PPO) [190], a policy gradient algorithm.
By integrating an policy gradient algorithm with a Differentiable MPC policy, our pro-

posed approach combined the strength of both MPC and RL. Gnu-RL is the 1st solution
that enable real-world deployment of RL agents for building HVAC control, without the
resource-intensive process of developing high-fidelity simulation models. In comparison,
we only need historical data, which is commonly logged in building automation system
(BAS) and is a readily-available information source for existing buildings.

8The name Gnu comes from drawing an analogy between RL agents and animals. Gnus are among the
most successful herbivores in the African savanna, and part of their success can be attributed to the
precociality of their youngsters who are able to outrun predators within a day after their birth.
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Gnu-RL was validated on three DOE commercial reference building models [64], a
model of a 600m2 multi-functional space [226] on CMU campus, and a real-world con-
ference room (Section 3.5.3). We evaluated the performance of Gnu-RL via its energy-
efficiency and thermal comfort, in comparison to existing control.

3.2. Related Work

In this section, we review literature on optimal control of building HVAC systems. Model
predictive control (MPC) and reinforcement learning (RL) were identified as options for
optimal control of building systems in [159] and are the two most popular approaches
for HVAC control in the literature.

Model Predictive Control for HVAC. Model predictive control is a planning-based
method that solves an optimal control problem iteratively over a receding time horizon.
Some of the advantages of MPC are that it takes into consideration future disturbances
and that it can handle handle multiple constraints and objectives, e.g. energy and
comfort [126].
However, it can be argued that the main roadblock preventing widespread adoption of

MPC is its reliance on a model [177, 126]. By some estimates, modeling can account for
up to 75% of the time and resources required for implementing MPC in practice [182].
Because buildings are highly heterogeneous, a custom model is required for each thermal
zone or buliding [147].
Privara et al. [177] identified two paradigms for modeling building dynamics: physical-

based and statistical-based. Physical-based models, also referred to as white-box models,
e.g. EnergyPlus, utilize physical knowledge and material properties of a building to build
detailed representations of the building dynamics. One shortcoming is that such models
are not control-oriented [16]. Nonetheless, it is not impossible to use such models for
control. For instance, [229] used exhaustive search optimization to derive control policy
for an EnergyPlus model. Furthermore, physical-based models require significant mod-
eling effort to develop, because they have a large number of free parameters (e.g. 2,500
parameters for a medium-sized building [124]), and information required for determining
these parameters are scattered in different design documents [97].
Statistical-based models assume a parametric model form, which may have physi-

cal underpinnings (i.e. grey-box models) or not (i.e. black-box models), and identifies
model parameters directly from data. An example of grey-box models is the RC model,
which draws an analogy to resistance and capacitance in electric circuits to describe
thermodynamics [178]. While statistical-based modeling is potentially scalable, a prac-
tical problem is that the experimental conditions needed for accurate identification of
building systems fall outside of normal building operations [5]. Alternatively, excita-
tion signals from actuators may be used to help identify model parameters [178, 5, 15],
which requires careful design of experiments [33] and may disturb normal operation.
Even then, it was still difficult to identify some parameters even with supposedly rich
excitation signals [5].
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Figure 3.2: Summary of training time reported in the literature; By incorporating do-
main knowledge and expert demonstration, our proposed Gnu-RL agent dras-
tically reduced training time compared to existing works.

Finally, there are many sources of stochasticity and uncertainty in building dynamics
[149], adding to the modeling difficulty. Learning-based MPC [15] accounts for the
stochasticity by modeling the building dynamics in a semi-parametric form, where the
zone temperature evolves following a linear model and the internal thermal gain is learned
from data as a non-parametric term. Learning-based MPC also decouples robustness and
performance by using a statistical model to optimize performance and a deterministic
model to impose comfort constraints. Adaptive MPC attempts to overcome some of
these challenges by updating model parameters online with new observations. Here
the objective is to estimate model parameters that minimize the difference between
prediction and observation over time. Examples of this line of work include the use
of Extended Kalman Filter [85] and Unscented Kalman Filter [149] to simultaneously
estimate states and model parameters.

Reinforcement Learning for HVAC. The early works by [145, 61] demonstrated the
potential of using RL for optimal HVAC control. However, practical application of RL
was limited by its sample complexity, i.e. the long training time required to learn control
strategies, especially for tasks associated with a large state-action space [145, 61]. In Fig-
ure 3.2, we summarized the training time reported in [145, 61, 219, 142, 215, 226, 117, 86].
We acknowledge the limitations of the summary. Firstly, the RL agents were evaluated
in different environments of varying complexity, making direct comparison impossible.
We only considered works that evaluated their agents in physics-based emulators, includ-
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ing EnergyPlus, TRNSYS, and MATLAB Simulink. Another limitation is that most of
these papers reported the total training time. A more meaningful evaluation metric may
be the amount of time required to reach the same performance as a baseline controller.
Despite these limitations, the observation here is that the amount of time used for train-
ing is typically in the order of years. In our work [38], we proposed Gnu-RL, a precocial
agent that is capable of controlling HVAC system well at “birth”.
To reduce sample complexity, researchers have adopted different approaches, such as

injecting domain knowledge [172], pre-training the agent [142, 117], and incorporating a
model of system dynamics [59, 164]. For example, [172] initialized a Q-learning algorithm
with an MPC prior. However, they assumed a overly simple grey-box model, which has
an analytical MPC solution. Such is generally not the case for practical application.
Alternatively, [142, 117] used historical data to pre-train the agent. Specifically, [142]
populated the replay memory with historical data and [117] used historical state-action
pairs for expert demonstrations. Finally, [59, 164] used models to assist RL. [59] used a
neural network (NN) based model to supply additional state-action pairs. [164] used a
NN as a model for state transitions and incorporated multi-step planning into RL. The
experiments in [164] showed that model-based RL was generally superior to model-free
RL in terms of sample efficiency, energy performance, and occupants’ comfort.
Despite the numerous publications on this topic, applications beyond simulation are

numbered. Of the publications referenced earlier, for example, only [145, 226] deployed
their RL agents in real-world testbeds. However, they both assumed the existence of
high-fidelity models for training their agents in simulation. Such approach shifts the
focus back to modeling [219] and is not scalable. Similarly, [59] also reported a real-world
deployment, but provided no quantitative results. More recently, Google announced a
40% energy consumption reduction in their data centers [76], but to our knowledge no
technical publication of this achievement is available yet. It should be noted, though,
that in the broader scope of building systems there are real-world applications of RL in
systems other than HVAC, including water heaters [125] and lighting systems [169].

3.3. Preliminaries

We now present background technical concepts used by Gnu-RL.

3.3.1. Proximal Policy Optimization

Policy gradient methods directly optimize the policy πθ to maximize the expected total
reward (Eq. 3.1a). To do that, these methods compute an estimate of the policy gradi-
ent defined in Eq. 3.1b and optimize the objective with stochastic gradient ascent (Eq.
3.1c). Aside from the obvious benefit of being able to handle continuous action spaces,
policy gradients methods have several advantages over value-based ones, as discussed in
[199] . Firstly, policy gradient methods can learn both deterministic and stochastic poli-
cies, while there is no natural way to learn stochastic policy with value-based methods.
Secondly, the policy may be a simpler function to approximate, and thus policy-based
methods typically learn faster and yield a superior asymptotic policy. Finally, the choice
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of policy parameterization is a natural way to inject domain knowledge into RL.

θ∗ = argmax
θ

Eπθ

[ ∞∑
k=0

γkrt+k

]
(3.1a)

g := ∇θEπθ

[ ∞∑
k=0

γkrt+k

]
(3.1b)

θ ← θ + αĝ (3.1c)

A variety of policy gradient algorithms have been proposed in the literature. Perhaps,
REINFORCE [199] is the most well-known one. However, it suffers from large perfor-
mance variance and unstable policy updates [190]. PPO [190] is the most recent work
in a line of research that improved upon vanilla policy gradient methods, including Nat-
ural Policy Gradients [120] and Trust Region Policy Optimization (TRPO) [188]. The
intuition behind these methods is that in each update the policy πθ should not change
too much. This idea is most clear with the objective of TRPO (Eq. 3.2), which is to
maximize an importance weighted advantage estimate, subject to a constraint on the
size of the policy update.

max
θ

Êt

[
πθ(ut|xt)
πθold(ut|xt)

Ât

]
s.t. Êt [KL [πθ(·|xt), πθold(·|xt)]] ≤ δ

(3.2)

However, it is not straightforward to solve the optimization problem posed in Eq. 3.2,
due to the constraint. PPO simplified the problem using a surrogate objective, given
in Eq. 3.3a. wt(θ) denotes the importance weighting of the policy after and before

the update, i.e. πθ(ut|xt)
πθold

(ut|xt)
, and ϵ is a hyperparameter. For ease of notation in future

discussion, we denote the negative of the objective as LPPO (Eq. 3.3b). PPO is known
to be stable and robust to hyperparameters and network architectures [190]. It was also
shown to outperform methods, such as A3C [155] and TRPO [188].

max
θ

Êt

[
min(wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(3.3a)

LPPO(θ) = −Êt

[
min(wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(3.3b)

There are a number of options one can use for the advantage estimate Ât, including total
rewards (Eq. 3.4a), Q-function, advantage function, and k-step TD residual (Eq. 3.4b).
[189] provides a thorough discussion on possible options and the bias-variance trade-off
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of these options.

Ât,R =
∞∑
k=0

γkrt+k (3.4a)

Ât,TD = −Vπ(xt) +
k−1∑
l=0

γlrt+l + γkVπ(xt+k) (3.4b)

3.3.2. Differentiable MPC

Since the success of [156], it is common to approximate the policy πθ(u|x) with a neural
network. However, a generic neural network does not encode any domain knowledge on
planning or system dynamics, which is abundant in existing HVAC control literature.
We hypothesized that encoding such knowledge in the policy would expedite the learning
process.
In this paper, we took advantage of a newly developed differentiable MPC policy [12]

in place of a neural network. In the forward pass, the differentiable MPC policy solves a
box-constrained linear-quadratic regulator (LQR) problem given in Eq. 3.5. Specifically,
it finds the optimal trajectory, τ∗1:T = {x∗t , u∗t }1:T , which minimizes the quadratic cost
function over the planning horizon 1 : T (Eq. 3.5a) and satisfies a linear model of
the system dynamics (Eq. 4.1a). Furthermore, the Differentiable MPC implementation
allows one to incorporate box constraints on the control action (Eq. 3.5c). It is also
possible to use the differentiable MPC policy for non-quadratic cost and non-linear
dynamics with local linear quadratic approximation.

τ∗1:T = argmin
τ1:T

∑
t

1

2
τTt Ctτt + cTt τt (3.5a)

s.t. x1 = xinit, xt+1 = Ftτt + ft (3.5b)

u ≤ u ≤ ū (3.5c)

In the backward pass, the differentiable nature of the policy allows us to update the
model parameters end-to-end. The learnable parameters are {C, c, F, f}. The derivatives
of the loss with respect to the model parameters can be obtained by differentiating the
Karush-Kuhn-Tucker (KKT) conditions of the problem given in Eq. 3.5, using the
techniques developed in [13]. While the LQR problem (eq:lqr) is convex, optimizing
an objective with respect to controller parameters is not [12]. This is analogous to the
dual-estimation problem formulation in Adaptive MPC, i.e. simultaneously estimating
states and parameters. Even for a linear system, the dual-estimation problem yields a
non-convex problem [85].
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3.4. Approach

The overall framework of our approach is summarized in Figure 3.1. To make our agent
precocial, we took advantage of domain knowledge on HVAC control and expert demon-
stration from existing controllers. Specifically, a Gnu-RL agent utilizes a differentiable
MPC policy, which encodes domain knowledge on planning and system dynamics. The
training includes two phases: offline pretraining and online learning. In the offline pre-
training phase, the agent is initialized by imitating the historical state-action pairs from
the existing controller. Using this approach, the Gnu-RL agent learns to behave simi-
larly to the existing controller, without any interaction with the environment. Thus, the
pretrained agent is precocial and may be deployed into a real-world environment directly
with minimal disturbance to normal operation. In the online learning phase, the agent
interacts with the environment and improves its policy using a policy gradient algorithm.
While the agent already performs reasonably well at the onset of online learning phase,
it continues to fine-tune its policy based on new observations.
We first formulate the HVAC control problem, (Section 3.4.1) and then elaborate on

the procedures used to train the agent during the offline pretraining phase (Section 3.4.2)
and the online learning phase (Section 3.4.3).

3.4.1. Problem Formulation

We adapt the problem formulation in the Differentiable MPC policy (i.e., Eq. 3.5)
to HVAC control. We use a linear model for the system dynamics, as shown in Eq.
3.6a. Though building thermodynamics are non-linear in nature, we assume that it
may be locally linearized for the state-action space and the temporal resolution that
we are interested in [177]. We define the state xt as the zone temperature and the
action ut depends on the specific problem. One should choose the action such that it is
consistent with the linear assumption or linearize it to be so. Besides the state xt and
the control action ut, we also consider uncontrollable disturbances dt, such as weather
and internal thermal gains. We define the number of states, actions, and disturbances
as m,n, p respectively. Thus, xt ∈ Rm, ut ∈ Rn, dt ∈ Rp, A ∈ Rm×m, Bu ∈ Rm×n, and
Bd ∈ Rm×p. Eq. 3.6a can be written in the form of Eq. 4.1a, as shown in Eq. 3.6b. While
the original formulation of Differentiable MPC policy learns ft, we only learn Bd since
the disturbances may be supplied by predictive models. Thus, the learnable parameters
θ are {A,Bu, Bd}, which characterize the building thermodynamics. Compared to using
a neural network policy, the number of free parameters is drastically reduced and the
policy is interpretable to engineers. At each time step t, we provide the agent with
predictive information on disturbance for the planning horizon, i.e. dt:t+T−1.

xt+1 = Axt +Buut +Bddt (3.6a)

=
[
A Bu

]︸ ︷︷ ︸
F

[
xt
ut

]
︸ ︷︷ ︸

τt

+Bddt︸︷︷︸
ft

(3.6b)
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Our objective (Eq. 3.7) is to minimize energy consumption, while maintaining thermal
comfort. We balance relative importance of thermal comfort and energy with hyperpa-
rameter η. One may choose different values of η for occupied and unoccupied periods.
We use the quadratic different difference between actual zone temperatures and setpoints
as a proxy for thermal comfort, and thus Ot = ηtIm and pt = −ηtxt,setpoint. The cost
with respect to actions may be defined based on the specific problem; some options may
be Rt = In or st = 1⃗. Similarly, Eq. 3.7a can be written in the form of Eq. 3.5a, as
shown in Eq. 3.7b. The Differentiable MPC allows for a learnable cost function, but
we assume the cost function to be specified by engineers.

Ct(xt, ut) =
1

2
xTt Otxt + pTt xt +

1

2
uTt Rtut + sTt ut (3.7a)

=
1

2

[
xTt uTt

]︸ ︷︷ ︸
τTt

[
Ot 0
0 Rt

]
︸ ︷︷ ︸

Ct

[
xt
ut

]
︸︷︷︸
τt

+
[
pTt sTt

]︸ ︷︷ ︸
cTt

[
xt
ut

]
︸︷︷︸
τt

(3.7b)

There are some finer points that we need to highlight. The Differentiable MPC policy
outputs the optimal trajectory over the planning horizon, i.e. τ∗t:t+T−1 = {x∗t , u∗t }t:t+T−1.
However, we only take the first optimal action u∗t and re-plan at the next time step based
on new observations. This avoids compounding model error over time. We use the re-
planning procedure for both offline pretraining and online learning. Moreover, since the
HVAC control problems we are interested in have continuous action spaces, we use a
Gaussian policy [199] around the optimal action u∗t (Eq. 3.8). σ can be interpreted as
the amount of exploration.

ût ∼ πθ(u|x) =
1√
2πσ2

exp

(
−(u− u∗t )

2

2σ2

)
(3.8)

It should be noted that [12] demonstrated the Differentiable MPC policy in the context
of imitation learning, which is a supervised learning problem. Here we extended it to
policy learning, which is generally considered as a harder problem.

3.4.2. Offline Pretraining

Imitation learning is a supervised approach for an agent to learn a policy. The premise
is that it is easier for the expert to demonstrate the desired behaviour, compared to
asking the expert to encode or fine-tune a policy [192]. In an HVAC control application,
the existing controller can be considered as the expert and the historical state-action
pairs logged in BAS as expert demonstrations. Specifically, the agent learns the mapping
between states to actions, i.e. the policy πθ(u|x), using expert demonstrations as ground
truth.
In behaviour cloning, one minimizes the mean squared error (MSE) loss between the

expert actions and learner actions. Since the Differentiable MPC policy also produces
next-state predictions, we minimized the MSE loss between the states and actions from
the expert and our agent simultaneously, as given by Eq. 3.9. ut and ût are the actions
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from the expert and the learner respectively. xt+1 and x̂t+1 are the actual next state
versus the next state predicted by the learner. The hyperparameter λ balances the
relative importance of actions and next-state predictions. For instance, the engineer can
choose a larger λ, if he has limited confidence on the actions of the existing controller.
The procedures for offline pre-training are outlined in Algorithm 1. We can repeat the
procedures in Algorithm 1 for a suitable number of epochs. For parameter selection, we
make a train-test split over the expert demonstrations and select θ̂ with the smallest
test loss.

LImit(θ) =
∑
t

λ||xt+1 − x̂t+1||22 + ||ut − ût||22 (3.9)

Algorithm 1: Offline Pre-training - Imitation Learning

Input: A Differentiable MPC policy πθ;
Input: Expert demonstrations X, U ;
Randomly initialize policy parameter θ = {A,Bd, Bu};
for i = 0, . . . , # Episodes do

for t = 0, . . . , # Steps do
ût = πθ(xt);
x̂t+1 = fθ(xt, ut);

end
θ ←− θ − α∇θLImit(θ);

end
Output: A pre-trained policy, πθ̃

3.4.3. Online Learning

We adopt a policy gradient algorithm for this paper, because it integrates naturally with
the Differentiable MPC policy. To elaborate, one can replace a neural network with a
Differentiable MPC policy, and update model parameters, θ, using the same approach
as laid out in Eq. 3.1. The procedures for online learning with PPO are outlined in
Algorithm 2.
As mentioned in Section 3.3.1, there are a number of possible choices for advantage

estimate Ât. In our prior work [38], we used the total rewards (Eq. 3.4a) for ease of
implementation. But, this option also results in the largest variance. On the other hand,
using advantage function results in the smallest variance, but the advantage function
must be learned first [189], which is problematic given we want our agent to be precocial.
A good compromise may be the baselined version of total rewards given in Eq. 3.10,
where π0 refers to the policy from the existing controller and Vπ0 is its value function. Vπ0

can be learned offline based on historical data. Since Vπ0 is not a function of θ,∇θVπ0 = 0.
Thus, offset a baseline from the total rewards reduces variance without introducing a
bias. The intuition of this formulation is well-explained in [117]. Due to nature of
HVAC control problem, the rewards fluctuate with weather and operation condition,
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e.g. occupied and unoccupied, regardless of the policy. To reduce variance from using
raw rewards, one can use offset the rewards by those that would have been obtained by
the existing controller. This reformulates the original objective of maximizing expected
total reward to improving upon the policy of the existing controller.

Ât =

∞∑
k=0

γkrt+k − Vπ0(xt) (3.10)

Algorithm 2: Online Learning - PPO (Modified from [190])

Input: A pretrained policy, πθ̃ ;
for i = 0, . . . , # Episodes do

θold ← θ;
for t = 0, . . . , # Steps do

ût = πθ(xt);
xt+1, rt+1 = env.step(ût);

end

Compute Ât;
With minibatch of size M;

θ ←− θ − α∇θLPPO(θ);

end

3.5. Experiments and Results

Gnu-RL was validated on three DOE commercial reference building models [64], a model
of a 600m2 multi-functional space [226] on CMU campus, and a real-world conference
room.

3.5.1. Experiment 1: Simulation Study on Commercial Reference Buildings

We validated that our proposed approach is indeed a practical and scalable solution for
HVAC control. We also show our approach is generalizable across different buildings,
by applying it to the warehouse, the small office, and the medium office from the
DOE commercial reference buildings [64]. We demonstrated that the Differentiable
MPC policy is superior to a generic neural network policy, in that it is interpretable,
more sample efficient, and has smaller performance variance. Specifically, we compared
the Differentiable MPC policy to a long short-term memory (LSTM) network, with
reference to [212]. Finally, we established two performance baselines for benchmarking
the RL agents: an optimal LQR, i.e. the theoretical performance upper bound, and a
PI controller, which is representative of controllers in existing buildings.
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Figure 3.3: Summary of the experiments on the warehouse, the small office, and the
medium office; Each experiment is repeated over 5 random seeds. The
performance of our proposed Gnu-RL agent is compared to a LSTM policy,
during offline pretraining and online learning. We also include two baselines:
an optimal LQR and a PI controller. All rewards are normalized by that of
the PI controller for the corresponding environment.
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Simulation Environments. The simulation environments used in this experiment are
based on the warehouse, the small office, and the medium office from DOE com-
mercial reference buildings. We utilized OpenBuild [93]], a toolbox for co-simulation
and controller design, for fast prototyping of controllable environments based on the
EnergyPlus models. OpenBuild abstracts away the complexity of HVAC system and
allows control over the heat flux to zones of the building directly. Furthermore, Open-
Build creates a linear state-space model of the building thermodynamics, such that the
optimal performance may be calculated analytically to benchmark the performance of
our proposed approach.
Each linear state-space model is created based on the RC modeling framework, where

the building envelope is represented as a connected graph of thermal nodes. We denote
the temperature at these thermal nodes as zt ∈ Rl, where l is the number of thermal
nodes. The disturbance dt to each thermal node includes weather and internal thermal
gains from lighting, equipment, and occupancy. Both the RC model parameters and
disturbances are calculated based on building and weather descriptions from the Ener-
gyPlus files. We tabulated the dimensions of the state-space model created by OpenBuild
in Table 3.1.

Table 3.1: Dimensions of the state-space models of the warehouse, the small office,
and the medium office; Only the zone temperatures, i.e. the states, are
observable, while the temperature at the other thermal nodes are not.

Warehouse Small Office Medium Office

# of thermal nodes (l) 99 144 358

# of states (m) 2 5 15
# of actions (n) 2 5 15
# of disturbances (p) 27 57 85

We assume that only the zone temperatures xt are observable. As one can see in Table
3.1 the number of zones is much smaller than that of the thermal nodes, i.e. m << l.
The actions ut are the heat flux to each zone, and thus m = n and Bu is a square matrix
for each environment. For all three buildings, we conducted the experiment on Typical
Meteorological Year 3 (TMY3) weather sequence [217] in Chicago. For this experiment,
we defined the cost function as in Eq. 3.11 and use a constant η = 10.

Ct(xt, ut) =
η

2
||xt − xt,setpoint||22 +

1

2
||ut||22 (3.11)

Implementation Details. All three environments used a 15-min simulation and control
time step. Both the Gnu-RL agent and the LSTM agent plan ahead for 6 steps, i.e. a 1.5-
hour planning horizon. We considered each calendar day as an episode and each calendar
year as an epoch. To making training easier, particularly for the LSTM policy, we
incorporated an episodic reset mechanism, i.e. the temperature at all thermal nodes was
reset to setpoint at the beginning of each day. This prevents the agent from being stuck
at undesirable state-space for excess amount of time. We used min-max normalization
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to normalize all disturbance terms to 0-1. We also provided the agent with ground truth
information on future disturbances.
RL for all our experiments9 was implemented in PyTorch [171]. Following [12], we

used RMSprop [203] as the optimizer for the Differentiable MPC policy and ADAM [128]
as the optimizer for the LSTM policy. The LSTM policy has 2 layers, each with 32 units
and ReLU activation. To have a fair comparison, the LSTM policy has the same input
and output as the Differentiable MPC policy, i.e. input = {xt, dt:t+T−1} and output =
{ut:t+T−1}.
All experiments were repeated over 5 random seeds. For offline pretraining, we used

a learning rate of 1 × 10−3, except for the Gnu-RL agent in the small office, where
we used a learning rate of 1 × 10−2 due to the particularly bad initialization. For
the Differentiable MPC policies, we initialized A and Bu to be identity matrix and
randomly initialized Bd with a uniform distribution over [0, 0.1]. The LSTM policies
were initialized by PyTorch defaults. While we minimizes the imitation loss during
offline pretraining, we evaluated the performance directly by letting the agents control
the environment. Specifically, we froze the policy every 100 episodes and let the agent
control the environment with a reduced amount of exploration, i.e. σ = 0.1. We report
the mean and standard deviation of the episodic rewards over 30 randomly sampled
episodes.
For online learning, we used a learning rate of 2.5× 10−4 for the Differentiable MPC

policy, and a learning rate of 5×10−4 for the LSTM policy. We evaluated the performance
following the same procedure as in offline pretraining, i.e. we evaluate the policy every
100 episodes and report the mean and standard deviation of rewards over 30 episodes. We
re-scaled the reward to be around 1, for better performance [105]. For hyperparameters,
we used γ = 0.8, ϵ = 0.1, and M = 48. For the Differentiable MPC policy, we used a
σ that linearly decayed from 1 to 0.1. For the LSTM policy, we let the neural network
learn σ simultaneously.

The results for both offline pretraining and online learning are summarized in Figure
3.3, where we compared the performance of the Differentiable MPC policy with that
of the LSTM policy. For each experiment, we average the mean and the standard
deviation of episodic rewards over the 5 runs and show the confidence interval of one
standard deviation around the mean. At the same time, we also plotted the performance
of individual runs with a thinner line weight. For ease of comparison, we normalize all
rewards by that of the PI controller for the corresponding environment.
We also compared the performance of RL agents with two baselines: an optimal LQR

and a PI controller.
Optimal LQR: Since OpenBuild linearized the system dynamics, one can derive the
optimal performance analytically for each environment with LQR. We assume the LQR
has ground truth parameters of the model, full observability over all the thermal nodes zt,
and perfect predictive information of disturbances. These assumptions are not realistic.
But, this provides us with a theoretical upper bound for the control performance.
PI Controller: For a more realistic performance baseline, we developed a PI controller

9The code is available at https://github.com/INFERLab/Gnu-RL.
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for each zone with MATLAB PID tuner [153] based on ground truth model parameters.
This is representative of controllers in existing buildings. Furthermore, we simulate
state-action pairs with these PI controllers as expert demonstration.

Results: Offline Pretraining. In the offline pretraining phase, the agents were pre-
trained by imitating expert demonstration from the PI controllers. We trained all agents
for 5 epochs, i.e. we go through 1-year worth of expert demonstration for 5 times. As
shown in Figure 3.3, the performance had plateaued by then. By the end of offline
pretraining, the Gnu-RL agents were performing similarly to the PI controllers. In fact,
the Differentiable MPC policy outperformed the PI controller in the warehouse and
the medium office. We hypothesize that the domain knowledge encoded in the Dif-
ferentiable MPC policy enabled the agent to extrapolate beyond expert demonstration.
While the Gnu-RL agent in the small office was not performing as well as the PI
controller, it drastically improved upon its poor initial performance. Furthermore, given
the same information, the Differentiable MPC policy achieved significantly better per-
formance than its LSTM counterpart. This phenomenon was also observed in [12]. Due
to its encoded knowledge, the Differentiable MPC policy was able to learn with lower
sample complexity compared to a neural network. Finally, the Differentiable MPC pol-
icy has much smaller performance variance than the LSTM policy, which is desirable in
practice. The same characteristics was also observed during online learning.
Note that the Differentiable MPC policies were initialized in the same way for the three

environments, which worked well for the warehouse and the medium office, but not for
the small office. This implies the initialization scheme should be based on the specific
environment. Since the parameters could be trapped in local minimal, it is preferable
to initialize as well as possible. Engineering estimates of the parameters, which have
well-defined physical meaning, may be a more appropriate initialization scheme.

Results: Online Training. In the online training phase, the agents continue to improve
their policies through direct interaction with the environment. We trained all agents
for 5 epochs, i.e. we go through the TMY3 weather sequence 5 times. As shown in
Figure 3.3, the Gnu-RL agents in the warehouse and the medium office were already
performing better than the PI controller at the onset of online training phase and thus
they basically provided energy savings and / or comfort improvement for free. On the
other hand, the LSTM policy consistently under-performed the Gnu-RL agents over
the 5-year training period. In fact, the best-performing LSTM policy only approached
the performance of the PI controller in the warehouse at the end of 5-year training
period. Theoretically, a sufficiently expressive neural network policy would eventually
outperform the model-based Differentiable MPC policy. But, that is not meaningful for
practical applications.
In the warehouse, the Gnu-RL agent improved its performance approaching the op-

timal. But, we also see fluctuations in performance. This may be a result of learning
rate being too large, when the performance was already close to optimal. The perfor-
mance of the Gnu-RL agent in the small office suffered due to the poor initialization.
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Regardless, the agent improved its policy and approached the performance of the PI
controller over time. This again highlights the importance of having a reasonably good
initialization. Alternatively, other improvements may be available to expedite the learn-
ing. In the medium office, the performance curves for both the Gnu-RL agent and
the LSTM policy were close to flat throughout the training period. We hypothesize the
large state-action space of this environment makes convergence difficult [145].

3.5.2. Experiment 2: Simulation Study on Intelligent Workspace

We also validated our approach in a simulation environment with detailed HVAC system.
Specifically, we trained and evaluated our agent using the EnergyPlus model from [226],
which was modeled after the Intelligent Workspace (IW) on Carnegie Mellon Univer-
sity (CMU) campus. For offline pretraining, we used a baseline P-controller for expert
demonstration and simulated the state-actions pairs under the TMY3 weather sequence,
from Jan. 1st to Mar. 31st. We pretrained our agent on the simulated state-action
pairs. For online learning, We deployed our agent in the simulation environment, using
the weather sequence in 2017 from Jan. 1st to Mar. 31st. Since the simulation environ-
ment, the state-action space, and the weather sequence for training and testing are the
same as those in [226], our results are directly comparable. However, [226] assumed the
existence of a high-fidelity model for training, while we only assumed the existence of
historical data from the existing controller.
To understand how our approach compare to MPC, we compared imitation learn-

ing with system identification during the offline pretraining stage, and policy gradient
methods with Adaptive MPC during the online learning stage. In the offline pretraining
phase, we initialized our agent with imitation learning. In comparison, it is possible to
initialize the agent with system identification using the same information. System iden-
tification is the class of methods that estimate model parameters of a dynamic system
based on input and output signals [146]. Specifically, prediction error methods (PEM)
look for parameters that minimize the difference between predicted states and observed
states. For online learning, we compared our approach to Adaptive MPC. RL algorithms
update model parameters end-to-end, with the objective of maximizing expected reward.
On the other hand, it is also possible to update parameters online using Adaptive MPC,
with the objective of minimizing prediction error [85, 149].

Simulation Testbed. The IW (Figure 3.4) is a 600m2 multi-functional space, including
a classroom, a common area, and offices. We used the same EnergyPlus model used in
[226], which was calibrated against operational data. In this experiment, we controlled
the water-based radiant heating system. Figure 3.4b shows a schematic of the system
and the control logic. The hot water is supplied by a district heating plant. The supply
water (SW) flow is kept constant and the supply water temperature is controlled by a
P-controller to maintain zone temperature. We trained our agent to control the supply
water temperature in place of the existing P-controller during the heating season. The
allowable range of supply water temperature is 20-65◦C. The variables considered for
this problem are listed in Table 3.2. The cost function used for this experiment and the
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Figure 3.4: Simulation testbed based on Intelligent Workspace. (a) is a geometric view
of the EnergyPlus model rendered by OpenStudio [99], and (b) is a schematic
of the water-based radiant heating system

real-world experiment presented in Section ?? in given in Eq. 3.12.

Ct(xt, ut) =
ηt
2
||xt − xt,setpoint||22 +

1

2
||ut||1 (3.12)

Table 3.2: The state, action, and disturbance terms defined for the simulation study on
Intelligent Workspace, a 600m2 multi-functional space

X - State Zone Temperature (◦C)

U - Control Action SW Temperature (◦C)

D - Disturbance Outdoor Air Temperature (◦C)
Outdoor Air Relative Humidity (%)
Diffuse Solar Radiation (W/m2)
Direct Solar Radiation (W/m2)
Occupancy Flag
Wind Speed (m/s)

Implementation Details. The implementation details are the same as Section 3.5.1,
unless specified otherwise. We used the OpenAI Gym [30] wrapper for EnergyPlus
developed in [226] to interface with the simulation environment. The EnergyPlus model
has a 5-minute simulation time step. Following [226], each action was repeated for
3 times (a 15-min control time step). The agent plans ahead for 12 steps (a 3-hour
planning horizon). We shifted the 20-65◦C range of supply water temperature setpoint
to 0-45◦C for the control action. We used η = 3 during occupied periods and 0.1 during
unoccupied periods. For offline pre-training, we used a learning rate of 1 × 10−4 and a
λ of 100. λ was adjusted so that loss from states and loss from actions were about the
same magnitude. During online training, we used a learning rate of 5× 10−4.
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Results: Offline Pretraining. Note that the existing P-controller for supply water
temperature operates 24/7, which is not the intended behaviour for our agent and is
not a fair comparison.10 Instead, we modified the existing P-controller to be operational
only during occupied periods, and call it the baseline P-controller. We simulated state-
action pairs using the baseline P-controller under TMY3 weather sequence from Jan.
1st to Mar. 31st, as expert demonstrations.
We compared the performance of initializing model parameters, i.e. θ = {A,Bu, Bd},

with imitation learning and system identification. We used PEM for system identifica-
tion, as described in [177]. We assumed the same model (Eq. 3.6a) and used the same
time series for both initialization schemes. We evaluated the performance of the two ini-
tialization schemes by letting the pretrained agents control the simulation environment
under the TMY3 weather sequence, with fixed parameters. Figure 3.5 shows the behav-
ior of the initialized agents over a five-day period, neither of which had interacted with
the environment before. The agent initialized with imitation learning behaved similarly
to the baseline P-controller and tracked temperature setpoint well. The agent initialized
with system identification, however, consistently underestimated the amount of heating
required, despite its small prediction error (RMSE = 0.15 ◦C).
The poor performance of the agent initialized with system identification is not sur-

prising, as the experimental conditions required for accurate identification of building
systems fall outside normal building operations [5]. In practice, excitation signals from
actuators were often necessary to identify model parameters [178, 5]. However, such
procedure requires careful design of experiments [5] and may disturb normal operation.
Instead, we successfully initialized the agent with imitation learning on observational
data, which neither required experimentation nor disturbed occupants. The superior
performance of imitation learning can be attributed to the fact that the agent imitated
the expert on top of learning system dynamics. Learning how the expert would have
acted under a given circumstance was directly relevant to the control task.

Results: Online Training. After pretraining, our agent controlled the environment
using the actual weather sequence in 2017. The left hand side of Figure 3.6 shows the
behaviour of Gnu-RL at the onset of training for a four-day period. Gnu-RL already
knew how to track temperature setpoint as well as the baseline P-controller, despite the
fact that it had not interacted with the environment before. In comparison, a recent
publication on the same environment [226] took 47.5 years in simulation to achieve
similar performance to the existing controller.
The results with comparison to [226] are tabulated in Table 3.3. The heating demand

and predicted percent dissatisfied (PPD) were calculated by EnergyPlus. Similar to
[226], we only considered PPD during occupied periods. Our agent saved 6.6% energy
and better maintained comfort compared to the best performing RL agent in [226]. To
understand where the energy savings come from, we show a close-up view of the state-
action pairs over a single day on the right hand side of Figure 3.6. While the baseline

10To illustrate the control strategy used by the existing P-controller, we included the data traces from
the actual system from Jan. 1 to Jan.4, 2017 in Figure 3.6.
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Figure 3.5: Comparison of two initialization schemes: imitation learning vs. system iden-
tification (evaluated on TMY3 weather sequence); The agent initialized with
imitation learning behaved similarly to the baseline P-controller, while the
agent initialized with system identification consistently underestimated the
heat requirement. Both agents were initialized with the same information,
i.e. export demonstration from the baseline P-controller.

P-controller heats up the space following a fixed occupancy schedule, Gnu-RL preheats
the space prior to occupancy and lets temperature float towards the end of occupancy.
This explains the savings with respect to the baseline P-controller. It is worth noting that
the preheating behaviour was not present in the baseline P-controller. The knowledge
embedded in the Differentiable MPC policy enabled our agent to extrapolate beyond
expert demonstration.

Our approach finds model parameters that maximize expected reward using a policy
gradient algorithm. Alternatively, Adaptive MPC updates model parameters online by
minimizing prediction error. We compare the performance of two approaches with their
respective objectives: minimizing prediction error (Eq. 3.13) and maximizing expected
reward (Eq. 3.3). To minimize prediction error, we use the same procedures as in
Algorithm 2, but use LPEM in place of LPPO. Both agents are initialized with the same
parameters from imitation learning.

LPEM(θ) =
∑
t

(xt+1 − x̂t+1)
2 (3.13)

Figure 3.7 compares the performance of optimizing two different objectives over time.
Because the rewards are also a function of the weather sequence, we show the difference
between rewards from the agent and that from the baseline P-controller, which we call
residual reward. While optimizing LPEM resulted in consistently smaller prediction
error, optimizing LPPO resulted in larger overall reward. Table 3.3 also shows that the
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Figure 3.6: Performance of the Gnu-RL agent at the onset of deployment; The Gnu-RL
already tracked temperature setpoint as well as the baseline P-controller.

PEM agent failed to maintain comfort, despite its small prediction error. One way to
interpret this result is that minimizing prediction error is only a surrogate for learning
a control policy [12]. It is clear from the comparison that small prediction error does
not necessarily translate to good control performance. We observed a similar result in
Section 3.5.2. Another common observation from both comparisons is that it is highly-
effective to directly optimize the task objective, whether it is imitation or control.

Table 3.3: Comparison of performance during online learning phase

Heating
Demand

PPD
Mean

PPD
SD

(kW) (%) (%)

Existing P-Controller [226] 43709 9.45 5.59
Agent #6 [226] 37131 11.71 3.76

Baseline P-Controller 35792 9.71 6.87
Gnu-RL 34687 9.56 6.39
Gnu-RL + LPEM 24901 18.77 12.48

3.5.3. Experiment 3: Real-World Deployment

Given the promising results in our simulation studies, we repeated our experiment in a
real-world conference room on campus, during Jun. 5th-Jun. 25st, 2019 to validate that
our approach can make possible real-world deployment of RL for HVAC control with no
prior information other than historical data. While the procedure here follows the same
framework, there are additional challenges from a real-world deployment. Firstly, the
existing controller in our testbed is not able to track temperature setpoint well. Thus, our
agent needed to learn from sub-optimal expert moves. Secondly, real-world deployment
demands a higher-level of robustness compared to simulation study. For instance, the
agent’s intended actions are not necessarily the same as the actions taken, e.g. there is

31



−5

0

5

10
Residual Reward

17-01-01 17-02-01 17-03-01 17-03-31
0

1

2
Prediction Error (◦C)

LPEM LPPO

Figure 3.7: Comparison of two approaches Policy Gradient (LPPO) vs. Adaptive MPC
(LPEM ); While optimizing LPEM resulted in consistently smaller prediction
error, optimizing LPPO resulted in larger overall reward.

a 1-2 minute delay with the BAS interface. Finally, RL is sensitive to hyperparameters
and other implementation details [105]. However, it is difficult to fine-tune these design
choices in a real-world deployment. We resorted to using the implementation details that
worked well for the simulation study (Section 3.5.2) unless specified otherwise, although
the implementation details may not be optimal for this specific problem.
To validate that Gnu-RL indeed make possible real-world deployment of RL agents

using only historical data, we deployed it in a conference room on CMU campus for a
three-week period, during Jun. 5th-Jun. 25st, 2019. The Gnu-RL agent was pretrained
on a month of historical data from the summer in 2017 and 2018. Throughout the three-
week experiment, the Gnu-RL agent continuously improved its policy, and learned to
maintain thermal comfort well despite the complex occupancy pattern by the end of the
experiment.

Testbed. The conference room is a 20m2 single-zone space (Figure 3.8a) controlled by
a variable air volume (VAV) box. Figure 3.8b shows a schematic of the HVAC system
and the control logic. In the cooling season, the VAV box discharges a variable volume
of cool air into the room. The cool air is supplied by an air handling unit (AHU) at
55◦F . In this experiment, we controlled the amount of airflow that was supplied to
the room. We let the existing PID controller determine the damper position to meet
our proposed airflow setpoint. The VAV box is also equipped with a hot-water-based
reheat coil, which was kept closed throughout the experiment for energy efficiency. The
variables used in the problem is listed in Table 3.4. In the existing control logic, the
maximum allowable airflow is 200 CFM, and the minimum allowable values are 10 CFM
for unoccupied periods and 35 CFM for occupied periods. We followed the same upper
and lower bounds for our control action.

Results: Offline Pre-training. We used the time sequences from May 1 to August 31
in 2017 and 2018 for training and testing respectively. We manually selected days where
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(a) A photo of the testbed (b) A schematic of the VAV under control

Figure 3.8: Real-world Testbed

Table 3.4: The state, action, and disturbance defined for controlling the conference room

X - State Indoor Air Temperature (◦F )

U - Control Action Supply Airflow (CFM)

D - Disturbance Outdoor Air Temperature (◦F )
Discharge Air Temperature (◦F )
Occupancy Flag
Occupancy Count

the controller tracks the temperature reasonably well: 20 days from 2017 for training and
13 days from 2018 for testing. Again, We pre-trained our agent using imitation learning.
We iterated over the training set for 20 epochs and picked the set of parameters with
smallest test loss. The MSE were 0.1 and 0.028 for the state and normalized action,
respectively.

Results: Online Learning. Figure 3.9 shows how our agent’s behavior evolved over
the three-week experiment period. Each snapshot shows the state-action pairs over a
one-day period. Initially (6/10), our agent knew to pre-cool the space before scheduled
occupancy, but it tended to overshoot. At Week 2 (6/17), the agent was no longer
overshooting. But, it consistently underestimated the amount of cooling required to
maintain temperature. By the end of the experiment (6/24), the agent was tracking
setpoint reasonably well despite the varying number of occupants. Also shown in Figure
3.9, there were quite a few discrepancies between the meeting schedule and the real-time
occupancy counts. Other than that, there were also counting errors from the occupancy
sensor. For instance, there is a positive cumulative counting error towards the end of
6/17.
The performance of our agent with comparison to the existing controller, which follows

a fixed occupancy schedule from 6am to 10pm, is summarized in Table 3.5. The Gnu-RL
agent saved 16.7% of total cooling demand compared to the existing control strategy,
while tracking temperature setpoint significantly better. It should be noted that the
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Figure 3.9: Performance of the Gnu-RL agent during a three-week real-world deploy-
ment; The Gnu-RL agent continuously improved its policy over time.

Table 3.5: Summary of results for real-world deployment

Cooling
Demand

OAT IAT
Mean SD RMSE

(kWh) (◦F ) (◦F ) (◦F )

Existing
Controller

Jun. 2017 169.4 69.6 6.9 2.4
Jun. 2018 130.7 71.9 7.1 2.7
Normalized 99.4 - - -

Gnu-RL 82.8 69.9 6.2 1.02

cooling demand is not proportional to the energy consumption. The total cooling de-
mand11 of the existing controller is calculated using the historical data from Jun. 2017
and 2018 and is normalized for the duration of the experiment and outdoor air tem-
perature (OAT), following the Weather Normalized Method suggested by Energy Star
[195]. Since it is difficult to calculate predicted percentage of dissatisfied (PPD) [77],
a thermal comfort metric, for the real-world deployment, we used the RMSE between
indoor air temperature (IAT) and setpoint as a proxy for comfort and evaluate it only
during occupied periods.

3.6. Discussion and Conclusions

We proposed Gnu-RL, a precocial RL agent that is capable of controlling HVAC at
“birth”. To achieve this, we bootstrapped our agent with domain knowledge and expert
demonstration. We demonstrated in both simulation studies and a real-world deploy-
ment that Gnu-RL had reasonably good initial performance and continued to improve
over time. Firstly, we demonstrated that the Gnu-RL agent is scalable, by applying it
to three different buildings. Furthermore, we showed that the Differentiable MPC pol-

11The cooling demand is calculated as Q̇ = cṁ∆T , where Q is the cooling demand, c is the specific
heat of air, m is the amount of airflow, and ∆T is the difference between mixed air temperature and
supply air temperature from the AHU. Mixed air is the mixture of recirculation air and outdoor air.
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icy is superior to a LSTM policy in that it is interpretable, more sample-efficient, and
has smaller performance variance. In another simulation study, we benchmarked our
approach to a recent publication, and our agent saved 6.6% energy compared to the best
performing RL agent in [226], while maintaining occupants’ comfort better. We also
compared our approach to alternatives, i.e. system identification and Adaptive MPC,
and demonstrated that it is more effective to optimize task objectives end-to-end. In
the real-world conference room, where Gnu-RL was deployed for a three-week period, it
saved 16.7% of cooling demand compared to the existing controller, while tracking the
temperature setpoint better.
All the energy savings were achieved without the need for a high-fidelity model. Thus,

to use our approach in practice, an engineer only needs to specify the state, action, and
disturbance terms of interest and define the cost function. The only prior information we
used was historical data from the existing controllers. While we discussed our approach in
the context of HVAC, it is readily transferable to the control of other building systems.
Furthermore, the requirement of historical data does not preclude the usage of this
method on new buildings. Since, there are only a small number of free parameters and
these parameters have well-defined physical meaning, it is straightforward to initialize
these parameters with engineering calculations.
In summary, our proposed approach, Gnu-RL, was shown to be a promising practical

and scalable RL solution for HVAC control. However, there are many potential improve-
ments to explore in future work, starting by relaxing some of the assumptions made here.
For example, we assumed that future occupancy information was available, which is sel-
dom the case. As future work, we will incorporate a probabilistic occupancy model into
the RL framework. For reference, [139] presented the close connection between RL and
probabilistic graphical models. Similarly, we assumed that building systems can be lo-
cally linearized. The assumption worked for the problems we considered, but it may or
may not extrapolate to more complex problems.
Additionally, we identified a few directions for further research. Firstly, there is a

need for standardized evaluation, including common simulation testbeds, baseline con-
trollers, and evaluation procedures, such that researchers can compare their results on
equal footings. As a step towards this direction, we conducted a simulation study in
the same environment as in [226], along with the same state-action space and weather
sequence, making our results comparable. We also make our code publicly available
at https://github.com/INFERLab/Gnu-RL. Regarding evaluation procedures, we refer
readers to [105], which provided a thorough discussion on the challenges in reproducing
RL results, along with recommendations.
Secondly, there is a need to develop offline evaluation procedures for pretrained agents

[71]. To elaborate, in our real-world deployment, we could only observe the imitation
loss from our agent after offline pretraining. Yet, it was an indirect proxy for control
performance. In fact, our agent tended to overshoot at initialization, contrary to our ex-
pectation based on the imitation loss. Thus, there is a need to evaluate the performance
of pretrained agents without access to the environment. This is important in practice
to reassure building owners / operators the expected performance of a novel controller
before deploying it in a real building.
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Thirdly, there are a number of engineering decisions one needs to make when applying
our approaches, ranging from initialization of model parameters, the hyperparameter η
that balances energy and comfort, and other hyperparameters used during online learn-
ing. Furthermore, one cannot expect to do hyperparameter selection for real buildings in
the same way as in simulation. We made those decisions based on implementation details
used in the literature and engineering judgments. While these decisions generally worked
well in our experiments, they do not guarantee good results (recall the experiment on
the small office in Section 3.5.1). More experiments on different environments may
lead to additional insights on how to make these decisions intelligently.

Finally, control problems with larger state-action spaces generally require longer learn-
ing/training time [145]. This is observed in our experiment on the medium office. In
existing buildings, HVAC controllers operates independently based on their local in-
formation. But, for scenarios where whole-building control is necessary, there may be
a need for multi-agent RL, where the large original problem is subdivided into more
tractable sub-problems.
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4. COHORT: Coordination Of HeterOgeneous Residential
TCLs

This section summarize the work, published in [42], to address Research Question 2
(Section 1.4.2). [46] is a precursor of [42], and [213] is an extension of it, where the
modeling aspect is published as a simulation environment for RL research.
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Figure 4.1: COHORT. The load aggregator coordinates a population of TCLs to jointly
optimize a grid-level objective, while satisfying each TCL’s constraints, char-
acterized by the set Pi. The load aggregator and each TCL coordinates at
the level of its power trajectory, ui, until a consensus is reached among the
population. Each TCL is responsible for its own control and tracks ui locally
with its preferred strategy.

4.1. Introduction

Growing peak demand in some regions and increasing penetration of renewable genera-
tion in others are presenting challenges for grid operators to balance supply and demand
[75, 118]. Traditionally, demand-side load is viewed as uncontrollable, while supply-side
resources manage power generation to match it. An emerging paradigm is to tap into the
flexibility of demand-side resources to reduce, shift, or modulate their loads in response
to price or control signals [165]. Such demand flexibility can be utilized to provide grid
services, improve grid resiliency [165], and reduce operating costs [35].

In this work, we focus on load control12[35] of residential thermostatically controlled
loads (TCLs), such as air conditioners (ACs), refrigerators, and electric water heaters,
which account for about 20% of the electricity consumption in the United States (US)
[103]. Due to their inherent flexibility through thermal inertia, they can provide grid
services without compromising their end uses. However, there are two challenges to
utilizing TCL flexibility. Firstly, TCLs must be aggregated across a population to be
a meaningful resource at the grid-level [165], which results in a control problem with a

12As opposed to methods based on economic incentives. We refer interested readers to [35] for a com-
parison of load control vs. price-based methods.
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large state-action space. Secondly, the constraints posed by each TCL are combinatorial
and thus non-convex [31], due to the fact that a TCL operates in discrete action space,
i.e., on or off.

We present a novel framework (Figure 4.1) for the Coordination Of HeterOgeneous
Residential Thermostatically controlled loads (COHORT) to jointly optimize a grid-level
objective, while satisfying each TCL’s end-use requirements and operational constraints.
To effectively handle the large state-action space, we adopt a distributed control archi-
tecture, where each TCL is responsible for its own control and coordinates with oth-
ers to find a grid-level solution. Similar to [31], we decompose the grid-level problem
into smaller subproblems and coordinate their solutions using the alternating direction
method of multipliers (ADMM) [29]. The advantages of the distributed architecture
compared with centralized and decentralized approaches are elaborated in Section 4.2.
To address the second challenge, we characterize each TCL’s flexibility, i.e., the set of
all admissible power profiles [230], as a convex set through relaxation. As a result, CO-
HORT is computationally viable for tasks with long planning horizons (e.g., 24 hours),
thereby addressing a limitation of [31]—namely that its computational cost grows ex-
ponentially with the planning horizon. After coordination, we use low-frequency pulse
width modulation (PWM), inspired by [32], to translate the solution of the convex-
relaxed problem back to on/off activation. Since the coordination process makes no
assumption on each TCL’s control scheme, the TCL may opt for alternative strategies
with reference-tracking capability, such as model predictive control (MPC) and global
thermostat adjustment (GTA).
COHORT can incorporate detailed, system-specific dynamics and constraints of indi-

vidual TCLs. At the same time, its computational cost scales well with both population
size and planning horizon. As a result, COHORT is generalizable to a wider variety of
grid objectives, compared to existing methods, which we demonstrate through three dis-
tinct use cases: generation following, minimizing ramping, and peak load curtailment. As
a proof of concept, we evaluated COHORT in simulation, targeting challenges arising
from increasing penetration of renewable generation [118] under, generation following
and minimizing ramping, based on load profiles from California Independent System
Operator (CAISO) [115].
Then, we validated that COHORT is practical for real-world TCLs. To do that, we

developed a hardware-in-the-loop (HIL) simulation, including a real-world residential AC
controlled via a smart thermostat, and simulated instances of ACs modeled after real-
world data traces. In a 15-day experimental period, COHORT reduced daily peak loads
by 12.5% on average based on load profiles from Pennsylvania-New Jersey-Maryland
(PJM) Interconnection [175], while maintaining comfort in the real-world testbed.

4.2. Related Work

We review existing work on TCL control, and include work on other flexible loads if the
methodology is relevant.
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Architectures for TCL control. The primary challenge for jointly controlling a large
number of TCLs is the large state-action space. To address this challenge, a popular
approach is to develop an aggregate model for the population and control the popula-
tion in a centralized manner. Examples of such aggregate model include the state bin
transition model [130, 225] and the virtual battery model [103, 230]. However, these
aggregate models depend on the assumptions that each system may be characterized by
a 1st- (or 2nd- [225]) order linear model, and that all systems in the population share
the same model structure and control scheme. These aggregate models have low fidelity
and do not capture system-specific dynamics. Specifically, aggregate TCL modeling is
ill-suited for predicting long-term responses—a pre-requisite for tasks with long planning
horizons, such as load shifting [31]. Alternatively, one can jointly control building loads
as a centralized MPC problem [209], but, while this approach allows for incorporation
of detailed building models and system-specific constraints, it is computationally expen-
sive and also raises privacy concers, as it requires each building to share an excessive
amount of information with the load aggregator, including: thermal models, system
specifications, control logic, and occupants’ usage pattern and comfort preferences.
Aside from the centralized architecture, decentralized control [204] and distributed

control [58, 150, 31] approaches have also been proposed in the literature. Taking ad-
vantage of the fact that system frequency is a universally-available indicator for supply-
demand imbalance, [204] determines the action of each TCL with a power response
model based on locally-available information. The key advantage of a decentralized
control approach is that each system can be controlled based on local information, with-
out any communication. However, this characteristic also constrains the applications of
decentralized control to frequency or voltage regulation and real-time load shaping [31].
In a distributed architecture, which we adopt in this work, each system is responsible

for its own control, and it coordinates with others to jointly achieve a grid-level objec-
tive. In [150], the distributed MPC scheme allocated the aggregate load to TCL clusters
following a time-invariant weight. However, this allocation scheme does not account for
the fact that the flexibility available at each building is time-varying, and thus does not
fully utilize the aggregate flexibility [209]. [?] used a similar distributed MPC approach,
but adaptively learned the allocation scheme with an evolutionary strategy. Most sim-
ilar to this work is [31], which also used ADMM for distributed optimization. A major
advantage is that the computation is distributed to and parallelized at each TCL. A sig-
nificant limitation of [31] the computational cost grows exponentially with the planning
horizon. Specifically, it represented each TCL as a set of feasible state-action trajecto-
ries, the size of which is NT

a , where Na is the number of alternative actions considered at
each time-step, and T is the number of time-steps in the planning horizon. Given that
the trajectories depends on initial state and future disturbances, the trajectories need
to be unrolled at each time-step. Another limitation is that the solution is only optimal
with respect to the set of trajectories under consideration.

Experimental Validation. The majority of works on this topic validated their ap-
proaches in simulation. In particular, works such as [130, 103, 204, 230, 150, 31] validated
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their approach on population of TCLs simulated with 1st-order linear thermal model,
using model parameters sampled from assumed distributions. It is unclear how well such
validation reflects performance on real-world systems. [218] demonstrated 1st- and 2nd-
order models failed to accurately capture the thermodynamics of an individual electric
water heater. Furthermore, there is a large difference between performance reported in
simulation and in real-world testbeds. For instance, [103] reported a maximum absolute
percentage error of less than 1% tracking a 4s frequency regulation signal in a simulation
study. In comparison, in a real-world experiment on 300 residential ACs, [162] reported
a median absolution percentage error of 6.7% executing 1-hour demand response (DR)
events, which is arguably a much simpler task. Such discrepancy calls for more realistic
evaluation. Other attempts at realistic evaluation include [56] which developed linear
models based on configurations of real households, and [166], which used a co-simulation
environment with EnergyPlus models.

Optimization Objectives. A myriad of grid-level objectives have been discussed in the
literature, such as: energy cost minimization [56], DR events [225, 204, 166, 162], fre-
quency regulation [103, 230], generation following [150, 31], reference tracking [130], and
peak load reduction [58]. However, these works generally formulate their approaches
based on their specific use case, without discussing their generalizability to other appli-
cations.

4.3. Preliminaries

We now present background technical concepts used by COHORT, including TCL mod-
eling (Section 4.3.1) and ADMM (Section 4.3.2).

4.3.1. TCL Model and Flexibility

Here, we introduce the modeling of an individual TCL and define its flexibility. The
contents is largely inspired by [230], from which we made modifications based on our
problem.

System Dynamics. The temperature dynamics of an individual TCL is commonly
modeled with Eq. 4.1a [130, 103, 230], where Tt is the TCL temperature, Ta,t is the
ambient temperature, and mt ∈ {0, 1} is the binary control variable representing the
operating state, i.e., on or off, at time t. The negative sign associated with the control
action assumes the TCL is operating in cooling mode, which could be changed to a
positive sign to reflect heating. Pm is the rated power. Denoting the thermal resistance
and capacitance of the TCL as R and C respectively, the model parameters can be
calculated as: a = exp{−∆T/(RC)} and bt = ηtR, where ∆T is the time-step and
ηt is the time-varying coefficient of performance (COP). While the thermodynamics is
linear, it is difficult to analyze the system dynamics in Eq. 4.1a due to the discrete
control variable mt. A common approach is to apply convex relaxation to the discrete
control variable, which results in a linear system approximation (Eq. 4.1b) [130, 103,
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230]. The new control variable ut ∈ [0, Pm], i.e., power consumption of the TCL, is
continuous instead of discrete. This approach is justified as the aggregate behavior of a
TCL population can be approximated accurately by Eq. 4.1b [230].

Tt+1 = aTt + (1− a)(Ta,t − btmtPm) (4.1a)

Tt+1 = aTt + (1− a)(Ta,t − btut) (4.1b)

The TCL dynamics over a planning horizon, t : t+T − 1, is thus characterized by Eq.
4.2a (or more concisely Eq. 4.2b), where Bu = diag(−(1 − a)bt, . . . ,−(1 − a)bt+T−1).
Throughout this work, boldface lower-case letters, e.g., x, are vectors, and boldface
upper-case letters, e.g., A, are matrices; x, x0, u ∈ IRT and A, Bu ∈ IRT×T . Denoting
the number of disturbance terms as l, we have D ∈ IRT×l and bd ∈ IRl. In this case,
the disturbance term only includes the ambient temperature, l = 1.

1
−a 1

. . .
. . .

−a 1


︸ ︷︷ ︸

A


Tt+1

Tt+2

...
Tt+T


︸ ︷︷ ︸

x

=


aTt

0
...
0


︸ ︷︷ ︸

x0

+Bu


ut

ut+1

...
ut+T−1


︸ ︷︷ ︸

u

+


Ta,t

Ta,t+1

...
Ta,t+T−1


︸ ︷︷ ︸

D

[
1− a

]︸ ︷︷ ︸
bd

(4.2a)

Ax = x0 +Buu+Dbd (4.2b)

Constraints. Each TCL needs to satisfy the end-use requirements and respect the op-
erational constraints. In this case, we require the TCL temperature to be within the
deadband, i.e., Tt ∈ [Tsp − ∆, Tsp + ∆], where Tsp is the setpoint and ∆ is half of the
deadband. At the same time, the system needs to be operating with in its power limits,
i.e., Pt ∈ [0, Pm]. Combining the system dynamics given in Eq. 4.2b, the aforementioned
constraints can be written as Eq. 4.3, where u = [0], u = [Pm], x = [Tsp − ∆], and
x = [Tsp +∆].

u ≤ u ≤ u; x ≤ A−1(x0 +Buu+Dbd) ≤ x; (4.3)

Flexibility. We adopt the definition of flexibility proposed in [230], where the flexibility
of a system is the set of all admissible power profiles. Our formulation of Eq. 4.4
is generalized from that in [230], to incorporate non-linear systems. P denotes the
flexibility of the system, T (xk, uk) denotes the state transition function, and xk, xk,
uk, and uk are the lower and upper bounds for state and action of the given system at
time k. An important intuition is that the flexibility is coupled over time through the
thermodynamics [230]:

P =

[ut:t+T−1]

∣∣∣∣∣∣
xk+1 = T (xk, uk);
uk ≤ uk ≤ uk; ∀k ∈ {t, . . . , t+ T − 1}
xk+1 ≤ xk+1 ≤ xk+1;

 (4.4)

For the specific case of TCL, which follows the linear dynamics in Eq. 4.1b, the
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flexibility P of a TCL can be expressed as Eq. 4.5.

P = U ∩ X (4.5)

where U = {u|u ≤ u ≤ u} and X = {x|x ≤ A−1(x0 +Buu+Dbd) ≤ x}, as derived in
Eq. 4.3. Note that P boils down to a set of linear inequalities, which is geometrically
interpreted as a polytope13 [230].

4.3.2. ADMM

ADMM is a well-established distributed convex optimization algorithm, which decom-
poses a large problem into smaller subproblems and coordinates the solutions to find a
global optimum [29]. Generally, ADMM solves problems in the form of Eq. 4.6.

min
u,v

f(u) + g(v)

s.t. Au+Bv = c
(4.6)

Specifically, we introduce the application of ADMM to a canonical problem: the sharing
problem, as given in Eq. 4.7, where fi is a local objective for agent i, and g is the global
objective—defined as a function of the aggregate of all decision variables from the agents:

min
ui

N∑
i

fi(ui) + g(
N∑
i

ui) (4.7)

By introducing a copy of the decision variable ui as vi, the sharing problem can be
written in a ADMM-compatible form (Eq. 4.8):

min
u,v

N∑
i

fi(ui) + g(
N∑
i

vi)

s.t. ui − vi = 0, i = 1, . . . , N

(4.8)

The update rules for solving the problem are given in Eq. 4.9, where w is the dual
variable, ρ is a hyperparameter, and the superscript (k) denotes the value of a variable
at the kth iteration. We elaborate on the intuition behind these update rules here. The
sharing problem can be interpreted as the agents coordinating their decisions so as to
strike a balance between the local and the global objectives. Hence, ui and vi are each
agent’s solutions to its local problem and the global objective, respectively. The dual
variable wi, as calculated in Eq. 4.9c, is the cumulative disagreement between ui and vi.
Thus, wi, which we also call the incentive variable, communicates how to adjust each
agent’s solutions such that they would agree, i.e., ui = vi. Thus, in the u-update step
(Eq. 4.9a), each agent solves its local problem, while mindful of its solution to the global
problem. Similarly, in the v-update step (Eq. 4.9b), the agents jointly optimize the global
objective, while ensuring their decisions are close to those of their local problems.

13A polytope can be characterized as a set S = {x ∈ Rn|Ax ≤ b}.

42



u
(k+1)
i =argmin

ui

fi(ui) +
ρ

2
∥ui − v

(k)
i + w

(k)
i ∥22 (4.9a)

v
(k+1)
i =argmin

vi
g(

N∑
i

vi) +
Nρ

2
∥u(k+1)

i − vi + wi
(k)∥22 (4.9b)

w
(k+1)
i =wi

(k) + u
(k+1)
i − v

(k+1)
i (4.9c)

A shortcoming of the updates rules given in Eq. 4.9 is that it requires a copy of the
decision variable for each agent, i.e., vi. Intuitively, the global objective only depends
on the aggregate behavior of the population, and thus a more efficient algorithm (Eq.
4.10) is possible using the mean of the variables, denoted as ū, v̄, and w̄ respectively.

u
(k+1)
i =argmin

ui

fi(ui) +
ρ

2
∥ui − u

(k)
i + ū(k) − v̄(k) + w̄(k)∥22 (4.10a)

v̄(k+1) =argmin
v̄

g(Nv̄) +
Nρ

2
∥ū(k+1) − v̄ + w̄(k)∥22 (4.10b)

w̄(k+1) =w̄(k) + ū(k+1) − v̄(k+1) (4.10c)

An equality such as v
(k)
i = v̄(k) + (u

(k)
i + w

(k)
i ) − (ū(k) + w̄(k)), to show Eq. 4.9 and

Eq. 4.10 are equivalent, can be derived from the stationarity condition [31]. For more
details on the algorithm, we refer interested readers to [29].

4.4. Approach

We first formulate the problem and elaborate on the optimization procedure, with focus
on the coordination between the load aggregator and the TCLs (Section 4.4.1). We then
describe a PWM-based strategy for TCL-level control (Section 4.4.2).

4.4.1. Problem Formulation and Optimization

The problem we address can be formulated as Eq. 4.11: we want to simultaneously
optimize a grid-level objective g(·), which is a function of aggregate power consumption,
and make sure the actions of each TCL are admissible based on operational constraints
and end-use requirements, characterized by the set Pi. By applying convex relaxation
to discrete actions, and characterizing the flexibility as a convex set Pi, our approach
is computationally viable for tasks with long planning horizons. Recall the definition
in Section 4.3.1, ui ∈ IRT is the power consumption of a TCL over a planning horizon.
The subscript i denotes the ith TCL. While we did not include any TCL-level objective
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Figure 4.2: Coordination. The u-update step is distributed to and computed in parallel
at each TCL as a projection operation. The load aggregator calculates ū,
and then updates v̄ and w̄. Finally, the load aggregator broadcasts the ū,
v̄, and w̄ to the population. This procedure repeats until convergence.

other than satisfying its constraints, it is possible to incorporate such objectives.

min
ui

g(

N∑
i

ui)

s.t. ui ∈ Pi, ∀i
(4.11)

The problem in Eq. 4.11 can be written in a ADMM-compatible form (Eq. 4.12) by (i)
introducing a copy of the variable ui as vi, and (ii) representing the constraints set Pi
with the indicator function IPi . By definition, IPi(ui) = 0, if ui ∈ Pi, else IPi(ui) = ∞
[202]. The large penalty for an inadmissible ui forces the solver to find ui that satisfies
the constraints.

min
ui,vi

∑
i

IPi

(
ui

)
+ g

(∑
i

vi

)
s.t. ui = vi

(4.12)

Note that Eq. 4.12 now has the same form as Eq. 4.8, and thus may be solved with the
update rules in Eq. 4.10. Figure 4.2 summarizes the coordination procedure between
the load aggregator and each TCL. Firstly, each TCL updates its action, ui, locally.
Given that fi = IPi and Pi is a polytope for a TCL, the u-update step (Eq. 4.10a) may
be implemented efficiently as a projection operation [202], also illustrated in Figure 4.2.
To simplify notation, we denote ui

+ = vi
(k)−wi

(k) = ui
(k)− ū(k)+ v̄(k)− w̄(k); ui

+ can
be interpreted as the desired power profile for TCL i at the end of the kth iteration, and
the projection ProjPi

(ui
+) ensures that the coordinated power profile is admissible for

the TCL. Secondly, the load aggregator collects the actions from all agents to find the
mean, ū, and sequentially updates v̄ following Eq. 4.10b, and w̄ following Eq. 4.10c.
Finally, the load aggregator broadcasts ū, v̄, and w̄ to all TCLs, such that they can
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update ui locally. This procedure repeats until convergence.
While we use ADMM in this work, we note that alternative distributed optimization

algorithms exist in the literature, such as consensus-based approaches [?] that are espe-
cially relevant for distributed energy management. However, for the application in this
paper, ADMM is suitable given the communication topology14 and provides scalability
given the ease of solving each TCL’s local problem. There are three key advantages to
the ADMM-based approach for this application. Firstly, the ADMM naturally decom-
poses the grid-level problem into subproblems. Thus, each TCL can ensure its local
objective and constraints are satisfied, without sharing them with the load aggregator,
thereby preserving privacy. Secondly, the u-update at each TCL is computed in parallel.
Thus, the approach is highly scalable to large population. Finally, ADMM is guaranteed
to converge to the grid-level optimum given a convex objective [29]. As will become clear
through our demonstrations, a variety of grid objectives can be formulated as convex
problems.

4.4.2. TCL-level Control

Recall that we applied convex relaxation to TCL dynamics, i.e., mtPm ∈ {0, Pm} (Eq.
4.1a) to ut ∈ [0, Pm] (Eq. 4.1b), such that the grid-level objective can be optimized
efficiently over long time horizons. In this section, we describe how to translate the
continuous power trajectory back to on/off actuation with PWM, a method for generat-
ing quasi-continuous output from an on/off actuator. In [32], it was demonstrated that
a TCL could be treated as a variable power unit via low-frequency PWM. The action
normalized by rated power, ut/Pm ∈ [0, 1], can be interpreted as duty cycle ratio, i.e.,
the portion of time the TCL is on within the control time-step. Specifically, we imple-
mented PWM with Sigma-Delta (Σ-∆) modulation [170], where TCL switches between
on and off when the cumulative error, ϵt =

∑t
k=0(uk/Pm −mk)∆T , exceeds the limits.

Figure 4.3 illustrates its use in tracking a sine wave. It is clear from Figure 4.3 that
fewer switchings are needed when a signal is close to either 0 or 1. We also observe that
the solution tends to be close to a feasible initialization. The intuition may be that an
individual TCL does not need to drastically change its default behavior to collabora-
tively achieve a grid-level objective. Given these observations, we initialize each ui with
a sequence of interlaced 0s and Pms to encourage sparsity in the solution. Furthermore,
by placing 0s and Pms with care in the initialization, short-cycling can be reduced.

4.5. Experiment 1: Simulation Study

In this section, we evaluated COHORT in simulation as an initial proof of concept.
Following [130, 103, 204, 230, 150, 31], we validated our approach on a population
of TCLs simulated with 1st-order linear thermal models (Eq. 4.1a). We simulated
1000 TCLs, using parameters sampled from uniform distributions around nominal values
[130, 103, 204, 230]. Specifically, we followed the same parameter distributions and values

14i.e. there being a load aggregator that centrally collects and broadcasts information. In comparison,
consensus-based methods would be more suitable for peer-to-peer communication topology.
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Figure 4.3: Sigma-Delta modulation converts a continuous signal to a discrete signal by
switching states when the cumulative error, ϵ, exceeds the limits (dashed
black lines).

for temperature setpoint and exogenous variable as [103]. We used a deadband of ∆=
1oC throughout this work. While these assumptions may not reflect realistic system
dynamics and population heterogeneity, we adopted them such that the performance of
our approach is directly comparable to those reported in the literature. We lifted these
assumption and validated COHORT in a real-world testbed in Section 5.6.
We applied COHORT to address challenges arising from increasing penetration of

renewable generation. Firstly, we used the inherent flexibility in the TCL population to
absorb the variations in renewable generation in a generation following use case (Section
4.5.1). Secondly, we shifted the TCL load to alleviate the need to quickly ramp up /
down energy generation in areas of high renewable penetration (Section 4.5.2). The load
curves used for both use cases (Figure 4.4) are from CAISO [115] on 31 March 2020.

4.5.1. Use Case 1: Generation Following

The generation following signal was produced following the same procedure in [31], as
shown in Figure 4.4a. The TCL population tracked a scaled version of the generation
following signal around its baseline power consumption. The objective function is the
mean squared error (MSE) between the reference signal, denoted by ũ, and actual ag-
gregate energy consumption (Eq. 4.13). Other tasks such as DR events [225, 204] and
frequency regulation [103, 230] boil down to tracking a given reference signal, and thus
may be addressed with the same objective function.
All the optimization problems in this work15 were solved using CVXPY [?] with hyper-

parameter ρ = 10. In this use case, we used a 5-min control time-step, and planned for
the next time-step, i.e., T = 1. For tracking with PWM, it is necessary to use a smaller
time-step. Throughout this work, we used a tracking time-step that is 1/15 of the control
time-step. The error limit used for Σ-∆ modulation is 0.1kWh in the simulation study.

15The code is available at https://github.com/INFERLab/COHORT.
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[118].

Figure 4.4: Load Profiles from CAISO, 2020/03/31
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ui||22 (4.13)

The behavior of the TCL population is shown in Figure 4.5. COHORT tracked the
reference signal with a small error, while maintaining the temperature of the popula-
tion within the deadband (dashed green line). Note that the discrepancy between the
reference signal and actual power consumption came solely from discretization error.
The performance of our approach with comparison to seminal works on TCL control
is summarized in Table 4.1. Our tracking performance is comparable to that in [130],
reported in normalized16 root MSE (RMSE), and is not as good as [103], reported in
mean absolute percentage error (MAPE). While [103] may be more suited for reference
tracking tasks, it is not applicable to any planning-based task, e.g. load shifting. Com-
pared to the baseline scenario where the TCL population only maintains temperature,
our approach increased the switching frequency by 158.7%, which is similar to [103, 130].
By adjusting the error limits in Σ-∆ modulation, one can trade-off tracking performance
and switching frequency.

Figure 4.6 show actions of individual TCLs. We initialized each action with either 0 or
Pm based on its previous action, and switched if the temperature was close to the edge
of the deadband. Given this initialization scheme, the majority of continuous actions

16by average aggregate power
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Figure 4.5: Simulation Study. (Top) the temperature distribution and (Bottom) the
aggregate power of the population

ut are close to either 0 or Pm, making conversion to on/off actuation possible with a
reasonable number of switchings.
In this use case, our approach took an average of 5.4 iterations to reach consensus.

Interestingly, the number of iterations till convergence is almost independent of the
population size, which is also observed in [88]. Since the u-update step is distributed to
and computed in parallel at each TCL, the overall computation time and the computation
cost at the load aggregator scale very well with the population size.

Table 4.1: Performance Comparison for Reference Tracking

Tracking Switching
IncreaseNorm. RMSE MAPE

(%) (%) (%)

[130] 0.8-2.27 - 170-300
[103] - < 1 116.7

COHORT 2.04 1.53 158.7

4.5.2. Use Case 2: Minimize Ramping

While we first evaluated our approach in a reference tracking use case, a major advantage
of COHORT compared with existing methods is its ability to coordinate TCLs over long
time horizons. Thus, we applied our approach to flatten the duck curve by shifting load
over a day. Specifically, we used a 15-min control time-step, and plan for an entire day
ahead, i.e., T= 96. An example of the duck curve, named after its resemblance to a
duck [118], is given in Figure 4.4b. We scaled down the load curve such that the TCL
demand accounts for 20% of the total demand [103]. We formulate the objective as
minimizing total ramping, i.e., the difference in net demand between consecutive time-
steps (Eq. 4.14). Ptotal, Pnet, andPgen are the total demand, net demand, and renewable
generation, respectively. This problem is also known as total variation minimization
[57]. While this objective is trickier to optimize, convergence to global optimum is still
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guaranteed, because gtv is a convex function.

gtv
(∑

i

ui

)
=

t+T∑
k=t+1

|Pnet,k − Pnet,k-1|

where, Pnet = Ptotal −Pgen

Ptotal = Pnon-shiftable +
∑
i

ui

(4.14)

The behavior of the TCL population for this use case is also shown in Figure 3. The
TCLs systematically shifted their load and reduced ramping by 23.1% compared to
the baseline scenario, where the TCL population was operated by on-off control. The
temperature of the TCLs shifted accordingly within the deadband. Since the TCLs are
operating in cooling mode, reduced energy consumption results in higher temperature,
and vice versa. Note that the 23.1% reduction in ramping is based on the assumption
that 20% of total demand is flexible. Further reduction is possible by extending our
approach to other flexible loads.

4.6. Experiment 2: Hardware-in-the-loop Simulation

In this section, we validated COHORT in a HIL simulation, with primary focus on its
performance on a real-world testbed. Specifically, we controlled a residential AC via a
smart thermostat. More details on the real-world testbed is presented in Section 4.6.1.
We augmented the testbed with simulated instances of residential ACs, modeled after
real-world data traces (Section 4.6.2). We integrated the real-world system and the
simulated instances as a HIL simulation, and showcased it in a peak load curtailment
use case, based on load profiles from PJM [175], as elaborated in Section 4.6.3. The
HIL simulation was executed from 11-25 July 2020, a 15-day period, and the results are
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Figure 4.7: The floor plan of the apartment is shown in (a), with the circle and the
rectangle marking the location of the smart thermostat and the indoor AC
unit. The apartment is instrumented with (b) an ecobee smart thermostat
and (c) an eGauge energy metering unit.

summarized in Section 4.6.4.

4.6.1. Real-World Testbed

The testbed is first author’s apartment located in Pittsburgh, PA, USA (Figure 4.7). The
1632 ft2 apartment has three regular occupants and was occupied most of the time during
the experimental period. The AC unit is controlled via an ecobee smart thermostat,
installed at a location shaded from direct solar radiation, and energy consumption of the
AC is monitored for verification only via eGauge energy metering [74], with sampling
rate up to 1Hz. Power measurements are not needed for control.
We monitored zone temperate and sent commands to the smart thermostat via ecobee

API [73]. To get the effect of on/off commands, we sent a low temperature setpoint (70
oF) when we want the AC to be on and a high temperature setpoint (80 oF) when we
want the AC to be off. This simple strategy worked surprisingly well. Figure 4.8 shows
a comparison of the commands vs. the power draw on the AC circuit (at 1Hz) for an
on/off event. The response of the AC to on is almost instantaneous, and the response to
off is delayed by a few seconds, but negligible compared to the control time-step. Such
response was observed throughout the experiment. The ease of integration with a smart
thermostat implies COHORT could be scaled to 11% of households in the US already
equipped with smart thermostats [127], with minimal effort and no retrofit.

4.6.2. Modeling of Residential ACs

To have a population of simulated ACs with realistic thermodynamics and population
heterogeneity, we took advantage of ecobee’s Donate Your Data dataset [72]. For a
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Figure 4.8: Comparison of the on/off commands vs. the actual power draw by the AC
measured at 1Hz

comprehensive description of the dataset, we refer interested readers to [111]. We selected
households in the same municipal area as the real-world testbed using data from 2019.
We only used households with single-stage cooling, no less than 60 cooling days17, and
less than 10% missing data. These criteria left us with 106 households. While the
simulated population size is relatively small, the primary focus of the HIL simulation is
on the real-world testbed.
The raw data came in 5-min intervals and we down-sampled it to 15-min based on

the control time-step. We used the same model form as [123] (Eq. 4.15), where Tt is the
control temperature, ut is the duty cycle ratio, Ta,t is the outdoor ambient temperature,
and do,t and ds,t are binary flags for occupancy sensor activation and scheduled sleep
time. These variables would be explained shortly. Both the model orders, i.e., p and
q, and the disturbance terms were selected based on the Akaike Information Criterion
(AIC). The median of selected model orders are p = 5 and q = 2.

Tt+1 =

p−1∑
i=0

aiTt−i +

q−1∑
i=0

bu,iut−i + baTa,t + bodo,t + bsds,t (4.15)

The state variable, the control temperature, is what an ecobee uses for operating the AC
with respect to the setpoint. It is a weighted average of the temperature measurements
at the main thermostat and remote sensors [111]. Note that the control temperature in
the dataset came in 1F resolution. The control action, duty cycle ratio, is the equipment
run-time normalized between 0 and 1. Similar to [111], we assumed that the house was
occupied if any of the motion sensors were triggered or during scheduled sleep time. Since
the raw data from occupancy sensors were sharp spikes, we passed the data through a
low-pass filter. We used a separate variable for scheduled sleep time. Despite having
different form from Eq. 4.1b, Eq. 4.15 can also be written in the form of Eq. 4.2b as a
linear system, and thus the same formulation of flexibility (Eq. 4.5) still applies.

We evaluated the modeling performance with mean absolute error (MAE) over 1 to 6

17Cooling days are defined as days the AC is operating exclusively in cooling mode, following [111].
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Figure 4.9: Distribution of model prediction error for 1 to 6 hour prediction horizons
over 106 households

hour prediction horizons. Figure 4.9 shows the distribution of MAE over 106 households.
The train set and the test set were the first 2/3 and last 1/3 of cooling days, respectively.
The weather was checked to have a similar distribution over the train-test split. The
majority of prediction error is less than 1F even at a 6-hour prediction horizon. This
result is comparable to that of [123]. Bear in mind, in interpreting the results, that the
control temperature came in a low resolution of 1F.

4.6.3. Experimental Setup

Growing peak demand decreases the average utilization of generators [75] and increases
the need to build and operate high marginal cost peaking generation [35]. Thus, we
showcased our approach on a peak load curtailment use case, the objective of which is
given in Eq. 4.16. As an infinity norm18 minimization problem, the solver minimizes the
maximum total load within the planning horizon. We used a 15-min control time-step
and found a 16-hour planning horizon to be sufficient. We re-planned at each hour to
avoid compounding modeling error. Similar to the experiment in Section 4.5.2, we scaled
down the PJM load profile with the assumption that TCL loads account for about 20%
of the total load.

gpeak
(∑

i

ui

)
= ||Ptotal||∞

where, Ptotal = Pnon-shiftable +
∑
i

ui

(4.16)

We integrated the real-world testbed with simulated instances of residential ACs to
form an HIL simulation. The HIL simulation is also integrated with day-ahead weather

18Infinity norm is defined as ||x||∞ := max(|xi|).
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forecast via Dark Sky API [193] and total load profile from PJM Data Miner 2 [175].
We modeled the real-world testbed using the same procedures as described in Section

4.6.2. Note that the temperature time series pulled from ecobee API comes in 0.1F res-
olution, and thus allows for more accurate modeling. To identify the system accurately,
the testbed was excited by square wave signals, one-hour on followed by one-hour off, on
10 July 2020. During the experiment, the model was updated regularly based on new
data. We used Pm=1.4kW for the real-world system based on actual power measure-
ments. As discussed in Section 4.4.2, we initialize ui with sequences of interlaced 0s and
Pms to encourage sparsity in the solution. For the AC unit, we initialized the solution
for each hour with [Pm, 0, 0, 0] and used an error limit of 0.075kWh.
For the simulated instances, we selected models that performed no worse than 75th

percentile on any of the prediction horizon, which left us with 72 households. The dataset
does not contain information on the rated power of the AC units, and thus we sized the
AC based on the floor area, following Energy Star recommendations [?]. We used the
same occupancy data from the same time last year. The temperature setpoint for the
entire population, including the real-world testbed, was assigned to be 75F throughout
the experiment.

4.6.4. Results

The performance of COHORT compared with the baseline scenario, where the TCL
population was operated by on-off control, is exemplified in Figure 4.10, using time
series from 24 July 2020. The baseline TCL load was simulated using a model of the
real-world testbed, along with the rest of the population, based on the same weather
data. The baseline total load was a scaled down version of the actual PJM load profile,
under the assumption that TCLs account for about 20% of the total load. At the
aggregate level (Figure 4.10a), the TCL peak approximately coincides with the utility
peak in the baseline scenario (dashed lines). COHORT systematically shifted the TCL
load away from peak hours to early morning, thereby reducing the utility peak by 15%.
The temperature of the population shifted accordingly. By pre-cooling the households
when the demand was low, the TCLs could reduce energy consumption during the peak
hours and let temperature slowly float up, without violating comfort constraints. The
same behavior is observed in the real-world testbed (Figure 4.10b).
Also in the real-world testbed, the planned vs. actual duty cycle ratio at each 15-min

control time-step shows good overall agreement. By initializing the actions at each hour
with [Pm, 0, 0, 0], the on events were spaced apart, thereby reducing the risk of short
cycling. The temperature, as logged by ecobee at 5-min intervals, was maintained within
the deadband. To compare with the baseline scenario, we also include in the same plot
the temperature time-series in the real-world testbed on 27 July 2020, when the ecobee
maintained temperature at 75F setpoint using its default strategy. The slightly wider
temperature range and the gradual temperature shift were barely perceptible by the
occupants. All occupants were happy with their thermal comfort during the experiment.
In single blind tests, occupants not involved in the experiment were not able to tell if
the AC was operated by COHORT or on-off control.
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Figure 4.10: HIL Simulation. Behaviour of (a) the population and (b) the real-world
testbed on 2020/07/24
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Over the 15-day experimental period, COHORT reduced daily peak loads by an aver-
age of 12.5% (with a 2.9% standard deviation), when the TCL accounts for about 20% of
the total load. In comparison, the peak load was reduced by 8.8% in the best-performing
case in [56], when the TCL peak account for 74% of the utility peak in the baseline sce-
nario. While the experimental setups are different, the difference in performance likely
comes from the fact that a mere 1-hour planning horizon was used in [56]. Instead, we
planned ahead for 16-hour and managed to level the total load from about 6:00-21:00 in
the case shown in Figure 4.10a. This affirms the advantage of being able to plan over
long time horizons.

4.7. Conclusions

We proposed COHORT, a novel distributed control solution for coordinating TCLs to
jointly optimize a grid-level objective, while satisfying each TCL’s end-use requirements
and operational constraints. Our approach decomposes the grid-level problem into sub-
problems and coordinates their solutions to find the grid-level optimum. To be compu-
tationally viable over long planning horizons, we apply convex relaxation to the discrete
action space and characterize each TCL’s flexibility as a convex set. After coordina-
tion, each TCL tracks the agreed-upon power trajectory locally with a PWM-based
strategy, which translates the continuous power back to on/off actuation. Since each
TCL is responsible for its own control, it can incorporate detailed and system-specific
dynamics and constraints, which is difficult to accomplish in a centralized architecture.
Furthermore, the coordination process is independent of each TCL’s dynamics and con-
trol scheme, making COHORT extensible to other flexible loads.
We validated COHORT in simulation studies and a HIL simulation to address chal-

lenges arising from growing peak demand and increasing penetration of renewable gen-
eration. In the generation following use case, our approach showed comparable perfor-
mance to prior work. A major advantage of our approach compared with existing work
is its ability to coordinate TCLs over long planning horizons. Thus, we applied it to
load shifting use cases, assuming TCLs account for 20% of the total load [103]. Firstly,
we used it to smooth out the duck curve, based on actual load profile from CAISO, and
reduced ramping by 23.1% compared to the baseline scenario. Secondly, we applied it
to curtail peak load based on load profile from PJM. The experiment was conducted on
a HIL simulation, including a real-world testbed. Over the 15-day experiment period,
COHORT reduced daily peak loads by an average of 12.5%. Furthermore, the occupants
living in the real-world testbed, i.e., the first author’s apartment, reported no discomfort
and could not distinguish whether the AC was operated by on-off control or COHORT.
Finally, COHORT is easily integrated with a commercial smart thermostat, which pro-
vides readily-available control and communication infrastructure. Thus, our approach
is scalable to households already equipped with smart thermostats with minimal effort
and no retrofit.
In summary, COHORT is shown to be a practical, scalable, and versatile solution

for coordinating TCLs to provide grid services. Currently, quite a few iterations are
required to reach consensus for problems with long planning horizons, which may raise
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concern about the communication cost. This was discussed in [88], with the conclusion
that the network latency and message size between the aggregator and the end users
during coordination are not bottlenecks for modern networks19. Regardless, the number
of iterations could be reduced by initializing COHORT with an approximate solution
from imitation learning, to be incorporated as future work. Another research direction
would be to extend the current work to other flexible loads, with tracking strategies
tailored to those loads.

19More concretely, the message size is less than 1KB per agent per iteration in our problem setup and
the total message size grows linearly with the number of agents. Overall, the bandwidth requirement
is low. As a reference, the network latency for 4G network ranges from 30 to 160ms. Even for 100
iterations, the latency is small compared to a 1-hour re-planning time-step sufficient for load shifting.
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5. PROF: PROject Feasibility for energy optimization

This section summarize the work, published in [40], to address to Research Question
3.1 (Section 1.4.3). [138] is a related attempt in embedding the power flow constraints
within the learning algorithm.

1
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Figure 5.1: The PROF framework. Our policy consists of a neural network followed by
a differentiable projection onto a convexified set of operational constraints,
Ĉk (which is constructed via an approximate model, f̂k, of the environment).
The differentiable projection layer enforces the constraints in the forward
pass, and induces policy gradients that make the neural network cognizant
of the constraints in its learning.

5.1. Introduction

There has been increasing interest in using learning-based methods such as reinforcement
learning (RL) for applications in energy systems control. However, a fundamental chal-
lenge with many of these methods is that they do not respect the physical constraints or
functional requirements associated with the systems in which they operate. Therefore,
there have been many calls for embedding safety guarantees into learning-based methods
in the context of energy systems applications [228, 90, 66].

One common proposal to address this challenge is to provide machine learning meth-
ods with “soft penalties” to encourage them to learn feasible solutions. For instance, the
authors of [226, 38] incentivize their RL-based building HVAC controller to satisfy ther-
mal comfort constraints by adding a constraint violation penalty to the reward function.
While such approaches often involve tuning some weight on the penalty term, recent
work has proposed more theoretically-grounded approaches to choosing these weights;
for instance, in the setting of approximating AC optimal power flow, the authors of
[79, 37] interpret the weight on their constraint violation penalty as a dual variable, and
learn it via primal-dual updates. [100] adopt a similar approach in an inverter control
problem. However, a challenge with these types of “soft penalty” methods in general is
that while they incentivize feasibility, they do not strictly enforce it, which is potentially
untenable in safety-critical applications.
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Given this limitation, a second class of approaches has aimed to strictly enforce op-
erational constraints. For instance, in some cases, the outputs of a machine learning
algorithm can be clipped post-hoc in order to make them feasible. However, a challenge
is that such post-hoc corrections are not taken into account during the learning process,
potentially negatively impacting overall performance. More recent approaches based in
deep learning have therefore aimed to enforce simple classes of constraints in a way that
can be taken into account during learning; for instance, [222] train a neural network
to approximate AC optimal power flow (OPF), and enforce box constraints on certain
variables via sigmoid activations in the last layer of the neural network. In general, how-
ever, existing approaches have only been able to accommodate simple sets of constraints,
prompting a need for methods that can incorporate broader classes of constraints.
In this work, we propose a method to enforce general convex constraints into RL-

based controllers in a way that can be taken into account during the learning process. In
particular, we construct a neural network-based policy that culminates in a projection
onto a set of constraints characterized by the underlying system. While the “true”
constraints associated with the system may be somewhat complex, we observe that
simple, approximate physical models are often available for many systems of interest,
allowing us to specify convex approximations to the relevant constraints. The projections
onto these (approximate) sets can thus be characterized as convex optimization problems,
allowing us to leverage recent developments in differentiable convex optimization [13, 6]
to train our neural network and projection end-to-end using standard RL methods. The
result is a powerful neural policy that can flexibly optimize performance on the true
underlying dynamics, while still satisfying the specified constraints.
We demonstrate our PROjected Feasibility approach, PROF, on two settings of inter-

est. Specifically, we explore a building operation setting in which the goal is to reduce
energy consumption during the heating season, while ensuring the satisfaction of thermal
comfort constraints. We additionally explore an inverter control setting where the goal
is to mitigate curtailment, while satisfying inverter operational constraints and nodal
voltage bounds. In both settings, we find that our controller achieves good performance
with respect to the control objective, while ensuring that relevant operational constraints
are satisfied.
To summarize, our key contributions are as follows:

• A framework for incorporating convex constraints. We propose a projection-
based method to flexibly enforce convex constraints within neural policies (as sum-
marized in Figure 5.1). By examining the gradient fields of the differentiable pro-
jection layer, we recommend the incorporation of an auxiliary loss for more robust
results. We also show in an ablation study (Section 5.5.3) that propagating gra-
dients through the differentiable projection layer is indeed conducive to policy
learning.

• Demonstration on building control. In the building control setting, we show
that PROF further improves energy efficiency by 10% and 4%, respectively, com-
pared to the best-performing RL agents in [226] and [38]. By using a locally-linear
assumption to approximate the building thermodynamics and thereby formulating
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the constraints as a polytope [230, 42], we largely maintain the temperature within
the deadband, except when the control is saturated.

• Demonstration on inverter control. In the inverter control setting, PROF sat-
isfies the voltage constraints 100% of the time over more than half a million time
steps (1 week at one second per time step), with a randomly initialized neural
network, compared to 22% over-voltage violations incurred by a Volt/Var control
strategy. With respect to the objective of minimizing renewable generation cur-
tailment, PROF performs as well as possible within its conservative safety set after
learning safely for a day.

5.2. Related Work

Our approach relies on recent developments in implicit neural network layers, and is
thematically similar to several recent works in safe RL. We briefly discuss these topics,
and refer interested readers to [66, 228, 90, 183, 70] for comprehensive reviews of relevant
work in power and energy systems application domains.

Implicit layers. A neural network can be viewed as a composition of functions, or
layers, with parameters that can be adjusted to improve performance on some task.
While many of the layers commonly used within neural networks (e.g., convolutions or
sigmoid functions) represent explicit functions that provide a direct mapping between
inputs and outputs, there has recently been a great deal of interest in expanding the set
of commonly-used layers to include those representing implicit functions [131]. This has
included the creation of layers capturing optimization problems [13, 65, 205, 211, 6, 94],
physical equations [62, 48, 95], sequence modeling processes [17], and games [143]. In
this work, we leverage advances in differentiable optimization in particular, namely by
incorporating a differentiable convex optimization layer into our neural policy in order
to project proposed control actions onto the feasible set of constraints.

Safe reinforcement learning. While (deep) RL methods in general lack safety or sta-
bility guarantees, there has been recent interest in learning RL-based controllers that
attempt to maintain some notion of safety during training and/or inference – e.g., to
satisfy physical constraints or avoid particularly negative outcomes [87]. These include
methods that aim to determine “safe” regions of the state space by making smoothness
assumptions on the underlying dynamics [210, 25, 206, 7], methods that combine con-
cepts from RL and control theory [157, 148, 174, 36, 102, 224, 67], approaches based
on formal verification logics [112, 104, 84], and methods that aim to bound some (dis-
counted) cost function characterizing violations of safety constraints [220, 200, 3, 10].
While the particular notion of “safety” considered varies between settings, relevantly
to the present work, several of these prior works employ some form of differentiable
projection within the loop of deep RL. For instance, within the context of constrained
Markov decision processes (C-MDPs), [220] project neural network-based policies onto
a linearly-constrained set of policies with bounded cumulative discounted cost. In the
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context of asymptotic stability, [67] project the actions output by their controller onto
a convex set of actions satisfying stability specifications obtained via robust control. In
the setting of robotic motion planning, [173] project actions onto a linear set of robotic
operational constraints, and apply separate updates to the neural network based on both
pre-projection and post-projection actions. Similarly to this prior work, our approach
employs differentiable projections within a neural network policy to enforce operational
constraints over some planning horizon.

5.3. Preliminaries

We now present background on technical concepts used by PROF.

5.3.1. Differentiable Projection Layers

As previously described, a neural network is a composition of parameterized functions
(layers) whose parameters are adjusted during training via backpropagation (a class of
gradient-based methods). Any function can be incorporated into a neural network as a
layer provided that it satisfies two main conditions. The first condition is that it must
have a forward procedure to map from inputs to outputs (i.e., do inference). The second
is that it must have a backwards procedure to compute gradients of the outputs with
respect to the inputs and function parameters, in order to enable backpropagation.
With that in mind, consider the L2-norm projection PC : Rn → C that maps from

some point in û ∈ Rn to its closest point in some constraint set C ⊆ Rn as follows:

PC(û) = argmin
u∈C

1

2
∥u− û∥22. (5.1)

In cases where C is convex, Equation 5.1 is a convex optimization problem. The forward
procedure of this operation can then be implemented by simply solving the optimization
problem, e.g., using standard convex optimization solvers. Perhaps less evidently, it is
also possible to construct a backwards procedure for this problem by using the implicit
function theorem [134], as described in previous work (e.g., [13, 6]).

As an example, consider the case where C characterizes linear constraints, i.e., C ≡
{u : Au = b,Gu ≤ h} for some A ∈ Rneq×n, b ∈ Rneq , G ∈ Rnineq×n, and h ∈ Rnineq . It is
then possible to efficiently compute gradients through Equation 5.1 by implicitly differ-
entiating through its KKT conditions, i.e., conditions that are necessary and sufficient
to describe its optimal solutions. In particular, as described in [13], the KKT conditions
for stationarity, primal feasibility, and complementary slackness for this case are given
by

u⋆ − û+AT ν⋆ +GTλ⋆ = 0

Au⋆ − b = 0

diag(λ⋆)(Gu⋆ − h) = 0,

(5.2)

where u⋆, λ⋆, and ν⋆ are the optimal primal and dual solutions. By the implicit function
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theorem, we can then take derivatives through these conditions at the optimum in order
to obtain relevant gradients. Specifically, the total differentials of these KKT conditions
are given by

du− dû+ dAT ν⋆ +ATdν + dGTλ⋆ +GTdλ = 0

dAu⋆ +Adu− db = 0

diag(Gu⋆ − h)dλ+ diag(λ⋆)(dGu⋆ +Gdz − dh) = 0.

(5.3)

As described in [13], these equations can then be rearranged to solve for the Jacobians
of any of the solution variables u⋆, λ⋆, ν⋆ with respect to any of the problem parame-
ters û, A, b,G, h (or, in practice, to solve directly for these Jacobians’ left matrix-vector
product with some backward pass vector, in order to reduce space complexity).

While the above example is for the case of a linearly-constrained projection operation,
these kinds of gradients can be computed for convex projection problems in general.
For instance, [67] compute gradients through a projection onto a second order cone by
differentiating through the fixed point equations of their solver, and [6] provide a method
and library for differentiable disciplined convex programs. A key benefit of using these
kinds of projection layers for constraint enforcement is that they allow gradients through
the enforcement procedure to flow back to the neural network, thereby informing the
parameter updates of this network during training.

5.4. Approach

We now describe PROF, which incorporates differentiable projections onto convex(ified)
sets of operational constraints within a neural policy.

5.4.1. Problem Formulation

Consider a discrete-time dynamical system

xk+1 = f(xk, uk, wk), (5.4)

where xk ∈ Rs is the state at time k, uk ∈ Ra is the control input, wk ∈ Rd is an
uncontrollable disturbance (which we assume to be observable), and f : Rs×Ra×Rd →
Rs denotes the system dynamics. Letting Xk and Uk denote the allowable state and
action space, respectively, we can define the set of all feasible actions over the planning
horizon T as Ck, where

Ck =

{
uk:k+T−1

∣∣∣∣∣ xi+1 = f(xi, ui, wi),
xi ∈ Xi, ui ∈ Ui ∀i ∈ {k, ..., k + T − 1}

}
. (5.5)

Our goal is then to learn a policy that optimizes the control objective, J , while enforcing
the operational constraints. To simplify notation, we denote u = uk:k+T−1. In the case
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of a deterministic policy, i.e., u = πθ, the learning problem is simply

min
θ

J(θ) s.t. πθ ∈ Ck. (5.6)

In the case of a stochastic policy, e.g. u ∼ N (µ, diag(σ2)), [µ,σ] = πθ(xk), we can
write the problem as

min
θ

J(θ) s.t. u,µ ∈ Ck. (5.7)

In this case, it is necessary to sample actions around µ in order to estimate policy
gradients. At the same time the actions sampled from πθ might fall outside of Ck. Thus,
we enforce that both µ and the sample action u satisfy the constraints.

5.4.2. Approximate Convex Constraints

In practice, there are two key challenges inherent in solving Equations 5.6–5.7 as writ-
ten. The first is that the disturbances wi are not known ahead of time, meaning that the
optimization problem must be solved under uncertainty. One approach to addressing
this, from the field of robust control [231], involves constructing an uncertainty set over
the disturbance, and then optimizing for worst-case or expected cost under this uncer-
tainty set. Here, we simply assume a predictive model of the disturbances is available.
(By re-planning frequently, we observe that the prediction errors have limited empirical
impact on performance in the two applications we study.) We will use the notation ŵk

to denote our forecast of the disturbance if k is a future time step, and the true value of
the disturbance if k is the present or a prior time step.

The second challenge pertains to the form of the set Ck, which may be poorly structured
or otherwise difficult to optimize over. In particular, our framework relies on obtaining
convex approximations to the constraints in order to enable differentiable projections (see
Section 5.3.1). Fortunately, for many energy systems applications, some approximate
model f̂k is often available based on domain knowledge that allows Ck to be approximated
as a convex set, despite the complex nature of the true dynamical system.
Thus, letting f̂i denote our approximations of the dynamics and ŵi denote the (forecast

or known) disturbance at each i = k, . . . , k + T − 1, we define our approximate convex
constraint set as

Ĉk =

{
uk:k+T−1

∣∣∣∣∣ xi+1 = f̂i(xi, ui, ŵi),
xi ∈ Xi, ui ∈ Ui

∀i ∈ {k, ..., k + T − 1}
}
. (5.8)

We note that f and w are approximated solely for the purposes of constructing approx-
imate constraint sets, and are not used otherwise during training and inference (i.e.,
our neural policy interacts with the true dynamics and disturbances during training and
inference).
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Algorithm 3: PROF

procedure main(env, J):
// input: environment, control objective
initialize neural network π̂θ, replay memoryM
specify RL algorithm A, batch size M , update interval K
specify planning horizon T
// online execution
for k = 1, . . . do

observe state xk
predict future disturbances ŵk:k+T−1

construct constraint set Ĉk, policy πθ = PĈk ◦ π̂θ
compute uk = inference(πθ, xk, T)
execute action env.step(uk)
save memory.append(xk, uk, ŵk:k+T−1)
// update policy every K time steps
if mod(k,K) = 0 then

π̂θ = train(π̂θ, J ,M, A)
end

end

end

procedure inference(πθ, xk, T):
// input: neural policy, current state, planning horizon
select action uk:k+T−1 ∼ πθ
// only return the current action; replan at each time step
return uk

end

procedure train(π̂θ, J ,M, A):
// input: neural policy, objective, replay memory, RL algorithm
initialize L(θ) = 0
for i = 1, . . . ,M do

sample x, u, w ∼M
construct constraint set Ĉk, policy πθ = PĈk ◦ π̂θ
compute training loss

L(θ) += J(θ) + λ∥πθ(x)− π̂θ(x)∥22

end
train π̂θ via A to minimize L
return π̂θ

end
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5.4.3. Policy Optimization

Let π̂θ be any (e.g., fully-connected or recurrent) neural network parameterized by θ. Our
policy entails passing the output from the neural network to the differentiable projection
layer PĈk characterized by the approximate constraints, which enforces that the resultant
action is feasible with respect to these constraints. The overall (differentiable) neural
policy is then given by

πθ(xk) = PĈk ◦ π̂θ(xk).
20 (5.9)

The key benefit of embedding a differentiable projection into our policy is that it
enforces constraints in a way that is visible to the neural network during learning. In
this work, we implement the differentiable projection using the cvxpylayers library [6].
We construct the following loss function, which is a weighted sum of the control

objective J and an auxiliary loss term to be explained shortly in this section. λ > 0 is
a hyperparameter.

L(θ, xk) = J(θ) + λ∥πθ(xk)− π̂θ(xk)∥22. (5.10)

We then train our policy (Equation 5.9) to minimize this cost using standard approaches
in deep reinforcement learning. The full algorithm is presented in Algorithm 3.

Visualization of gradient fields. To provide more intuition on the differentiable pro-
jection layer and our cost function, we visualize the gradient fields in a hypothetical
example with a deterministic policy and a planning horizon of T = 1. Specifically, for
the purposes of illustration, let u• and u⋆ denote unique optimal actions minimizing
some convex control cost J in the unconstrained and constrained settings, respectively:

u• ∼ πθ• ; θ• = argmin
θ

J(θ)

u⋆ ∼ πθ⋆ ; θ⋆ = argmin
θ

J(θ) s.t. u ∈ Ck.

In Figure 5.2, we then plot the gradient fields in two cases: (a) u• ̸∈ Ck, and (b) u• ∈ Ck.
Note that u• and u⋆ are assumed to be known here for illustrative purposes only, and
are not known during training.
In particular, we plot the gradients (black arrows) of ∥u•−PCk ◦π̂∥22 with respect to the

output of the neural network π̂. These indicate the direction in which the neural network
would be incentivized to update in order to minimize the system cost. If no differentiable
projection were embedded within the policy, all the gradients would point towards u•

without regard for the constraints. Instead, in the case of u• ̸∈ Ck (Figure 5.2a), the
gradients through the differentiable projection layer point towards u⋆ instead of u•.
More specifically, if π̂θ(xk) ∈ Ck, then the projection layer is simply the identity, and the
gradients point directly towards u⋆; otherwise, the gradients point along the boundary
of Ck in the direction of u⋆.
This case is of particular interest, as in many practical applications some operational

constraint will be binding. As a concrete example, the ultimate energy-saving strategy

20We use the notation f ◦ g(x) := f(g(x)) to denote function composition.
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(a) (b)

π̂

π = PC ◦ π̂
u•

u?
−∇π̂||π − u•||22
−∇π̂||π̂ − π||22

C

Figure 5.2: Illustrative example of gradients from the differentiable projection layer.
u• and u⋆ denote unique optimal actions minimizing some convex con-
trol objective J in the unconstrained and constrained settings, respectively;
∇π̂∥π − u•∥22 is thus a proxy for ∇π̂J . (a) u

• ̸∈ C. The gradients ∇π̂J point
towards u⋆ as desired, such that π = PĈ ◦ π̂ will reach this optimal point.
(b) u• = u⋆ on the interior of C. The gradients ∇π̂J do not cause π̂ (or its
projection) to update towards the interior. Adding a weighted auxiliary loss
term, e.g., ∥π − π̂∥, can help direct updates towards the interior.
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for building operations is to keep all mechanical systems off (i.e., u• = 0), which obviously
violates occupants’ comfort requirements and is outside the set of allowable actions (i.e.,
u• ̸∈ Ck). Thus, the problem is to find a policy that uses the mechanical system as little
as possible without violating comfort requirements. Given the common case where the
control objective is convex, this then lies on the boundary of the constraint set (i.e.,
u⋆ = PCk ◦ u•).

We also depict the case where the solution of the unconstrained problem already
satisfies the constraints, i.e., u• = u⋆ ∈ Ck (Figure 5.2b). If this is generally the case
for a particular application, we note that a constraint enforcement approach (ours or
otherwise) is likely not needed, and indeed utilizing gradients through the projection
layer may actually degrade performance. Specifically, if π̂θ(xk) ̸∈ Ck, the gradients do not
point towards the interior of the constraint set, meaning that πθ(xk) = PCk ◦ π̂θ(xk) will
lie on the boundary of the constraints despite the optimal solution being in the interior.
This can be amended by augmenting the loss function with a (weighted) auxiliary term
such as ∥πθ(xk)− π̂θ(xk)∥22 whose gradients (blue arrows) point towards the interior.

It may not be known a priori whether or not u• is in the constraint set in general or
at any given time, except when domain experts are fully clear on the structure of the
solutions for specific applications. In particular, Ck is time-varying, making it difficult
to know for sure whether or not the constraints will indeed be binding at any given
time. For robustness, we therefore recommend incorporating the auxiliary loss ∥πθ(xk)−
π̂θ(xk)∥22 within the RL training cost, unless it is known from domain knowledge that
the constraints will certainly be active. As such, we formulate the training cost function
as previously given in Equation 5.10.

5.5. Experiment 1: Energy-efficient Building Operation

There is significant potential to save energy through more efficient building operation.
Buildings account for about 40% of the total energy consumption in the United States,
and it is estimated that up to 30% of that energy usage may be reduced through advanced
sensing and control strategies [78]. However, this potential is largely untapped, as the
heterogeneous nature of building environments limits the ability of control strategies
developed for one building to scale to others [38]. RL can address this challenge by
adapting to individual buildings by directly interacting with the environment.
The most important constraint in building operation is to maintain a satisfactory

level of comfort for occupants, while minimizing energy consumption. It is common in
the RL-based building control literature to penalize thermal comfort violations [226, 38],
which incentivizes but does not guarantee the satisfaction of these comfort requirements.
In comparison, our proposed neural policy can largely maintain temperature within the
specified comfortable range, except when the control is saturated.
We evaluate our policy in the same simulation testbed as [226, 38], following the same

experimental setup as [38]. Specifically, we first pre-train the neural policy by imitating
a proportional-controller (P-controller). We then evaluate and further train our agent
in the simulation environment, using a different sequence of weather data.
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5.5.1. Problem Description

Simulation testbed. We utilize an EnergyPlus (E+) model of a 600m2 multi-functional
space (Figure 5.3a), based on the Intelligent Workplace (IW) on Carnegie Mellon Uni-
versity (CMU) campus, located in Pittsburgh, PA, USA. The system of interest is the
water-based radiant heating system, of which a schematic is provided in Figure 5.3b.
In this experiment, we control the supply water temperature so as to maintain the state
variable, i.e., the zone temperature, within a comfortable range during the heating sea-
son. In the existing control, the supply water (SW) is maintained at a constant flow
rate, and its temperature is managed by a P-controller. For more information on the
simulation testbed, refer to [226].

Approximate system model. We approximate the environment as a linear system as
follows:

xk+1 ≈ f̂(xk, uk, wk) = Axk +Buuk +Bdwk, (5.11)

where xk represents the zone temperature and uk represents the supply water temperature.
wk includes distributions from weather and occupancy. While building thermodynamics
are fundamentally nonlinear, the locally-linear assumption works well for many control
inputs [177]. We identify the approximate model parameters A, Bu, and Bd with pre-
diction error minimization [177] on the same data used to pre-train the RL agent (see
Section 5.5.2). The root mean squared error (RMSE) of this model on a unseen test set
is 0.14oC.

Objective. Since our goal is to minimize energy consumption, we define the control
cost at each time step as the agent’s control action, i.e. supply water temperature, which
is linearly proportional to the heating demand, i.e., ck = uk.
In contrast to the objectives in [226, 38], which are defined as weighted sum of energy

cost and some penalty on thermal comfort violations, we consider the thermal comfort
requirement as hard constraints, in the form of Equation 5.7.

Constraints. To maintain a satisfactory comfort level, we require the zone temperature
to be within a deadband X = {x | 21.9oC ≤ x ≤ 25.5oC} when the building is occupied,
based on the building code requirement of 10% Predicted Percentage of Dissatisfied
(PPD) [77]. We allow for a wider temperature range during unoccupied hours. For
the action, the allowable range of supply water temperature for the physical system is
U = {u | 20oC ≤ u ≤ 65oC}.
While it may appear from this description that we have only simple box constraints

on both the state and action, we highlight the fact that actions are coupled over time
through the building thermodynamics [230]. More concretely, a future state depends on
all past actions. Thus, a box constraint on xk+l+1 is in fact a constraint on uk:k+l. In
this case, assuming f̂ to be a linear system, Ĉk is then a set of linear inequalities, which
can be geometrically interpreted as a polytope.21 We refer interested readers to [42, 230]

21A polytope can be characterized as a set S = {x ∈ Rn|Ax ≤ b}.
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Figure 5.3: Building simulation testbed (reproduced from [38]).

for more details on this formulation. In fact, it was experimentally demonstrated in [42]
that projecting actions onto the polytope constructed with an approximate linear model
was sufficient to maintain temperature within the deadband in a real-world residential
household (though [42] did not then differentiate through this projection).

Control time step. The EnergyPlus model has a 5-minute simulation time step. Fol-
lowing [226, 38], we use a 15-min control time step (i.e., each action is repeated 3 times)
and a planning horizon of T = 12 (i.e., a 3 hour look-ahead).

5.5.2. Implementation Details

Offline pre-training. We pre-train a long short-term memory (LSTM) recurrent pol-
icy (without a subsequent projection) by imitating a P-controller operating under the
Typical Meteorological Year 3 (TMY3) [217] weather sequence, from Jan. 1 to Mar.
31. We min-max normalize all of the state, action, and disturbance, and use a learning
rate of 10−3. Specifically, we use the pre-trained weights after training on the expert
demonstrations for 20 epochs following the same procedures as [44]. We refer readers to
[44] for more details on the neural network architecture, training procedures, loss, and
performance evaluation.

Online policy learning. We optimize the policy with PPO [190] over the weather se-
quence in 2017 from Jan. 1 to Mar. 31. We use λ = 10 (see Equation 5.10), a learning
rate of 5 × 10−4, and RMSprop [203] as the optimizer22. We update the policy every
four days, by iterating over those samples for 8 epochs with a batch size of 32. For
hyperparameters, we use a temporal discount rate of γ = 0.9, ϵ = 0.2 (see Equation 3.3),
and a Gaussian policy (see Equation 5.7) with σ linearly decreased from 0.1 to 0.01.

22The code is available at https://github.com/INFERLab/PROF.
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Table 5.1: Performance comparison. Our method saves energy while incurring minimal
comfort violations.

Heating PPD
Demand Mean SD
(kW) (%) (%)

Existing P-Controller [226] 43709 9.45 5.59
Agent #6 [226] 37131 11.71 3.76

Baseline P-Controller [38] 35792 9.71 6.87
Gnu-RL [38] 34687 9.56 6.39

LSTM & Clip + No Update 37938 8.55 3.39
LSTM & Clip 36068 ± 2187 9.18 ± 0.67 3.49
PROF (ours) 33271 ± 1862 9.68 ± 0.48 3.66

5.5.3. Results

After pre-training on expert demonstrations from the baseline P-controller, our agent
directly operated the simulation testbed based on actual weather sequences in Pittsburgh
from Jan. 1 to Mar. 31 in 2017. Figure 5.4a shows the behavior of our agent at the
onset of deployment over a 3-day period. The baseline P-controller reactively turns
on heating when the environment switches from unoccupied to occupied, which results
in thermal comfort violations in the mornings. In comparison, PROF preheats the
environment such that the environment is already at a comfortable temperature when
occupants arrive in the morning. Notably, the differentiable projection layer manages to
enforce this preheating behavior despite this behavior not being present in the expert
demonstrations.
Figure 5.4b shows the behavior of our agent in comparison with Gnu-RL [38], having

interacted with and trained on the environment for a month. Gnu-RL is updated via
PPO, similarly to the current work, and incorporates domain knowledge on system
dynamics. In comparison to Gnu-RL [38], which ends up trying to maintain temperature
at the setpoint, PROF learns an energy-saving behavior by maintaining the temperature
at the lower end of the deadband. This explains the further energy savings compared
with Gnu-RL [38]. However, we also notice that the temperature requirement may be
violated on cold mornings. This happens when the control action is saturated, i.e., full
heating over the 3-hour planning horizon is not sufficient to bring temperature back to
the comfortable range. (In principle, even these constraint violations could be mitigated
by increasing the length of the planning horizon.)
Table 5.1 summarizes the performance of our agent with comparison to the RL agents

in [226, 38]. Our proposed agent (averaged over 5 random seeds) saves 10% and 4%
energy compared to the best-performing agents in [226] and [38], respectively.
We also compare our method to two ablations: (1) LSTM & Clip + No Update, which

uses the same pre-trained weights and the projection layer to enforce feasible actions,
but does not update the policy, and (2) LSTM & Clip, which uses the same pre-trained
weights and the projection layer to enforce feasible actions during inference, but does not
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Figure 5.4: Behavior of our proposed agent (a) at the onset of deployment, with pre-
trained weights based on expert demonstrations and (b) after a month of
interacting with and training on the environment.
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propagate gradients through the differentiable projection layer in the policy updates. We
find that LSTM & Clip slightly improves upon LSTM & Clip + No Update, but is less
performant compared to PROF. This affirms our hypothesis that the gradients through
the differentiable projection layer are cognizant of the constraints and are thus conducive
to policy learning.

5.6. Experiment 2: Inverter Control

Distributed energy resources (DERs), e.g., solar photovoltaic (PV) panels and energy
storage, are becoming increasingly prevalent in an effort to curb carbon dioxide emissions
and combat climate change. However, DERs interfacing with the power grid via power
electronics, such as inverters, also introduce unintended challenges for grid operators.
For instance, over-voltages have become a common occurrence in areas with high renew-
able penetration [196], and power electronics-interfaced generation has low-inertia and
requires active control at much faster timescales compared to traditional synchronous
machines [154].
To alleviate these issues, IEEE standard 1547.8-2018 [22] recommends a Volt/Var

control strategy in which the reactive power contribution of an inverter is based on local
voltage measurements. As will be clear in our empirical evaluation, this network-agnostic
heuristic based on local information alleviates, but does not avoid, over-voltage issues.
Given that the optimal solution needs to be obtained at the system-level and that the
problem needs to be solved at very short timescales, a common paradigm is to address
the problem in a quasi-static fashion [116] adopted in works such as [18, 116, 100], where
one chooses a policy over the next time period, e.g., 15 minutes-1 hour, and uses the
policy without update for fast inference. In this work, we adopt the same paradigm and
consider real-time control on a 1-second timescale of both active (P) and reactive (Q)
power setpoints at each inverter.
We envision that a neural policy can learn from its prior experiences, in contrast to

the traditional fit-and-forget approach [66], and is capable of making decisions faster
compared to solving optimization problems. Our primary contribution compared to
existing work is the ability to enforce physical constraints within the neural network.
In fact, we successfully enforce voltage constraints 100% of the time with a randomly
initialized neural network, over more than half a million time-steps (i.e., 1 week with a
one-second time step). The assumed control and communication scheme is consistent
with the new definitions for smart inverter capabilities under IEEE standard 1547.1-
2020 [114].

5.6.1. Problem Description

The problem we are considering here is to control active and reactive power setpoints at
each inverter in order to maximize utilization (i.e., minimize curtailment) of renewable
generation, while satisfying the maximum and minimum grid voltage requirements. Here,
we first define the considered test case and input data, and describe the model of the
network. We refer readers to [18] for more details on the problem set-up.
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Figure 5.5: IEEE 37-bus feeder system, where the solar PV systems are indicated by
green rectangles.

IEEE 37-bus test case. We evaluate our method on the IEEE 37-bus distribution test
system [113], with 21 solar PV systems indicated by green rectangles in Figure 5.5. We
utilize a balanced, single-phase equivalent of the system, and simulate the nonlinear AC
power flows using PYPOWER [180]. For the simulation, the solar generation and loads
are based on 1-second solar irradiance and load data collected from a neighborhood in
Rancho Cordova, CA [19] over a period of one week (604800 samples).

Approximate system model. Denote the number of buses, excluding the slack bus (e.g.,
the distribution substation), as N , the net active and the reactive power as p ∈ RN and
q ∈ RN , and the voltage at all buses as v ∈ RN . We linearize the AC power flow
equations around the flat voltage solution, i.e. v̄ = 1, using the method in [28]. The
reference active and reactive power corresponding to v̄ = 1 is denoted as p̄ and q̄. The
linearized grid model, f̂ , is given by Equation 5.12, where R, B ∈ RN×N represent
system-dependent network parameters that can be either estimated from linearization
(e.g., [28]) or data-driven methods:

v ≈ f̂(p,q) = v̄ +R(p− p̄) +B(q− q̄)

= v̄ + [R,B]︸ ︷︷ ︸
H

[
p− p̄,
q− q̄

]
︸ ︷︷ ︸

u

. (5.12)
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Figure 5.6: PROF satisfies voltage constraints throughout the experiment, and learns to
minimize curtailment as well as possible within its conservative safety set,
Ĉk, after learning safely for a day.

A notable advantage of the method in [28] is that the resulting model has bounded error
with respect to the true dynamics. By incorporating the error bound when constructing
the safety set, the safety set is guaranteed to be a conservative under-approximation of
the true safety set, and thus allow us to satisfy voltage constraints 100% of the time.

Policy. Our policy takes as input the voltage from the previous time-step, load, and
generation at all the buses, and outputs active and reactive power setpoints at each
inverter. (This is a deterministic policy; see Equation 5.6.) Note that while the grid
model (Equation 5.12) contains all N buses, only those with inverters are controllable.
Our neural architecture is similar to the one used in [100], which consists of a utility-

level network, and inverter-level networks for individual inverters. The utility-level net-
work collects information from all nodes, and broadcasts an intermediate representation
to all inverter-level networks. Using this information along with its local observations,
each inverter makes its local control decisions, which are then projected onto the con-
straints (discussed below).

Objective. The objective is to minimize the curtailment of solar generation, or equiv-
alently to maximize the utilization of the available solar power, pav. Specifically, letting
I denote the set of buses with inverters, the objective is

J(θ) = min
pI ,qI

∑
i∈I

[pav,i − pi]+, where
[
pI qI

]
= πθ (5.13)

Constraints. For an individual inverter, i, with rated power si and an available power
(from available solar generation) pav,i, the feasible action space is

Ui(k) = {(pi, qi) : 0 ≤ pi ≤ pav,i(k), p
2
i + q2i ≤ s2i }

U(k) := U1(k)× · · · × U|I|(k).
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At the same time, the voltage at each bus should remain between 0.95-1.05 p.u. The
primary challenge of satisfying voltage constraints is that the voltage at each bus depends
on actions of neighboring nodes, i.e.

X = {v | 0.95× 1 ≤ v ≈ v̄ +Hu ≤ 1.05× 1},

where the sparsity pattern of H is characterized by the admittance matrix. We jointly
project actions from all inverters at each time step k onto the constraints U(k) ∩ X .

5.6.2. Implementation Details

We evaluate PROF by executing it over the 1-week dataset (at 1 second) once. Similarly
to other quasi-static approaches, we update the policy every 15-minutes. Similarly to
[100], we optimize the neural policy with stochastic samples by directly differentiating
through the objective (Equation 5.13) and the linearized grid model (Equation 5.12).
However our method differs in that [100] characterized the constraints as a regularization
term, and learned the policy via primal-dual updates. We incorporate the constraints
directly via the differentiable projection layer and thus guarantee constraint satisfaction.
We use λ=10 (see Equation 5.10), a learning rate of 10−3, and RMSprop [203] as the

optimizer. At every 15 minutes, we sample 16 batches of data with size of 64 from the
replay memory. We keep a replay memory size of 86400, i.e., samples from the previous
day. For the both the utility-level network and the inverter-level network, we use fully-
connected layers with ReLU activations. The utility-level network has hidden layer sizes
(256, 128, 64), and each inverter-level network has hidden layer sizes (16, 4) and outputs
active and reactive power. On top of the neural network, we implement the differentiable
projection layer, following the constraints described in Section 5.6.1.
We compare our methods to three baselines, (1) a Volt/Var strategy following IEEE

1547.8 [22], (2) the optimal solution with respect to the linearized grid model, and (3)
the optimal solution with respect to the true AC power flow equations.

5.6.3. Results

The performance of PROF in comparison to the three baselines is summarized in Fig-
ure 5.6. For clarity, we only show the maximum voltage over all buses; under-voltage is
not a concern for this particular test case.
We see that the Volt/Var strategy violates voltage constraints 22.3% of time, mostly

around noon when the solar generation is high and there is a surplus of energy. Since
the Volt/Var baseline does not adjust active power, there is no curtailment.
In comparison, PROF satisfies the voltage constraints throughout the experiment,

even with a randomly initialized neural policy. While PROF performs poorly on the
first morning, it quickly improves its policy. In fact, the behavior of PROF is barely
distinguishable from the optimal solution with respect to the linearized grid model,
after learning safely for a day. This implies that PROF learned to control inverters as
well as possible given its approximate model, which constructs a conservative under-
approximation of the true safety set.
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The optimal baseline with respect to the true AC power flow equations unsurprisingly
achieves the best performance with respect to minimizing curtailment, as it can push
the maximum voltage to the allowable limit in order to maximally reduce the amount of
curtailed energy. However, inverter control is a task that requires near real-time inputs,
and we find that running this baseline can be prohibitively slow. Specifically, we evaluate
the computation time of different operations by averaging over 1000 randomly sampled
problems from our dataset on a personal laptop. For PROF, on average, a forward pass
in the neural network (excluding the projection layer) took 4.5 ms and the differentiable
projection operation took 8.6 ms. The computation cost of the differentiable projection
could be further reduced by using customized projection solvers such as the ones in
[13, 67] that avoid the “canonicalization” costs introduced by general-purpose solvers
such as the one we use [6]. In comparison, solving the optimization baseline with respect
to the true AC power flow equations took 1.02s on the same machine, which is even
longer than the 1s control time-step.

5.7. Discussion and Conclusions

In this work, we have presented a method, PROF, for integrating convex operational
constraints into neural network policies for energy systems applications. In particular,
we propose a policy that entails passing the output of a neural network to a differentiable
projection layer, which enforces a convex approximation of the operational constraints.
These convex constraint sets are obtained using approximate models of the system dy-
namics, which can be fit using system data and/or constructed using domain knowledge.
We can then train the resultant neural policy via standard RL algorithms, using an aug-
mented cost function designed to effect desirable policy gradients. The result is that our
neural policy is cognizant of relevant operational constraints during learning, enhancing
overall performance.
We find in both the building energy optimization and inverter control settings that

PROF successfully enforces relevant constraints while improving performance on the
control objective. In particular, in the building thermal control setting, we find that our
approach achieves a 4% energy savings over the state of the art while largely maintain-
ing the temperature within the deadband. In the inverter control setting, our method
perfectly satisfies the voltage constraints over more than half a million time steps, while
learning to minimize curtailment as much as possible within the safety set.
While these results demonstrate the promise of our method, a key limitation is in its

computational cost. In particular, computing a projection during every forward pass
of training and inference is decidedly more expensive than running a “standard” neural
network. A fruitful area for future work – both in the context of our method, and
in the context of research in differentiable optimization layers as a whole – may be
to improve the speed of such differentiable projection layers. For instance, this might
entail developing special-purpose differentiable solvers [13, 67] for optimization problems
commonly encountered in energy systems applications, developing approximate solvers
that do not rely on obtaining optimal solutions in order to compute reasonable gradients,
or employing cheaper projection schemes such as α-projection [191] where possible.
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Additionally, the success of our method (and many other constraint enforcement meth-
ods) depends fundamentally on the quality of the approximate model used to characterize
the constraint sets. In particular, this determines the extent to which the resultant ap-
proximate constraint sets are a good representation of the true operational constraints.
While we were able to employ reasonably high-quality approximation schemes in the
context of this work, future work on safely updating the models or the constraint sets
directly [81] may greatly improve the quality of the solutions.
More generally, while our work highlights one approach to enforcing physical con-

straints within learning-based methods, we believe this is only the start of a broader con-
versation on closely integrating domain knowledge and control constraints into learning-
based methods. In particular, strictly enforcing physical constraints will be paramount
to the real-world success of these methods in energy systems contexts, and we hope that
our paper will serve to spark further inquiry into this important line of work.
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6. SAGE: Safe Autonomous racinG on Ego-vision

This section addresses Research Question 3.2 (Section 1.4.3) in a challenging task of
autonomous racing. Analogous to racing being traditionally used as the proving ground
for automotive technology, we also envision autonomous racing to be a particularly chal-
lenging proving ground for autonomous agents. As autonomous technology approaches
maturity, it is of paramount importance for autonomous vehicles to adheres to safety
specifications, whether in urban driving or high-speed racing. Racing demands each
vehicle to drive at its physical limits with little safety margin, when any infraction could
lead to catastrophic failures. Given this inherent tension, autonomous racing serves as
a particularly challenging proving ground for safe learning algorithms.
[108] is a precursor of this work, where we developed and released an open-source, high-

fidelity, and multi-modal environment, Learn-to-Race (L2R) for autonomous racing.
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Figure 6.1: SAGE Overview. (a) The safety critic, QS , verifies the safety of a state-
action pair by checking if QS(x, u) ≥ ϵ. Some examples of safe vs. unsafe
states are provided, using safety margin ϵ = 3, u = 0, and speed = 10m/s.
(While vehicle pose is NOT available to the safety critic, we illustrate them
here for reference.) (b) SAGE consists of two policies, which are in charge
of safety and performance, independently. The safety controller intervenes
when the current state-action pair is deemed unsafe by the safety critic.

6.1. Introduction

Racing requires each vehicle to make sub-second decision in a fast changing environment
and operate at its physical limits [144], when any safety infraction could lead to catas-
trophic failure. Thus, autonomous racing is a particularly challenging proving ground for
autonomous agents to optimize performance, while adhering to safety constraints. In the
reinforcement learning (RL) literature, it is common to define safety as satisfying safety
specifications [181] under the constrained Markov decision process (CMDP) framework
[10], which extends the Markov decision process (MDP) by incorporating constraints on
expected cumulative costs.

Due to the low sensor cost and high information content, camera-based perception
is gaining increasing popularity in autonomous vehicles [197]. While end-to-end au-
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tonomous driving on visual input is an extensively-researched topic for urban driving,
largely thanks to the release of the CARLA simulator [68], it is less so for high-speed
racing, which may be partly attributed to the lack of open-source, high-fidelity simula-
tion environments. The recent release of Learn-to-Race (L2R) [107] changes that and
lowers the barrier of entry for autonomous racing research.
In this work, we study the problem of constrained RL for autonomous racing, using

the vehicle’s ego-camera view and speed as input. Due to the nature of the task, the
autonomous agent needs to be able to 1) identify and avoid unsafe scenarios and 2) make
fast safety verification given the perception data. In Figure 6.1a, we show examples of
ego-camera views and the corresponding safety value QS(x, u), estimated by our pro-
posed safety critic, and the distance to road boundary l(x). While it is straightforward to
determine whether a state is safe based on the vehicle pose, which is illustrated for refer-
ence, the distinction from ego-camera views is much more subtle. Also evident from the
examples is that safety does not necessarily corresponds to distance to road boundary.
Regarding the requirement for fast decision-making, in our experiments, L2R operates
under the setting where the simulator executes the agent’s command upon receiving it,
and does not wait for the agent to complete its computation. Thus, high latency can
adversely impact agent performance, where, as discussed in prior art [197], perception
stacks in autonomous race-cars account for nearly 60% of total latency.
Given these considerations, we propose to incorporate Hamilton-Jacobi (HJ) reachabil-

ity theory, a safety verification method for general non-linear systems, into the CMDP
framework. HJ reachability not only provides a control-theoretical approach to learn
about safety, but also enables low-latency safety verification. As a reachable set takes
into consideration all possible trajectories over a specified time horizon, safety verifica-
tion via HJ reachability only requires evaluating the safety value of the current state.
Furthermore, safety verification under HJ Reachability theory does not depend on the
performance policy. Thus, we can bypass the challenges involved with solving a con-
strained optimization problem with a neural policy and learn two policies that indepen-
dently manage safety and performance (Figure 6.1b): the performance policy focuses
exclusively on optimizing performance, while the safety critic verifies if the current state
is safe and intervenes when necessary. We refer to our approach as Safe Autonomous
racinG on Ego-vision (SAGE).
Secondly, we compare the HJ Bellman update rule [81] to alternatives for learning a

safety critic [194, 26] on two classical control benchmarks, where safe states are known,
analytically. In comparison to expected cumulative costs, the safety value defined by
HJ reachability characterizes the worst case outcome, which is more amenable to safety
analysis. Given the same off-policy samples, the HJ Bellman update rule is more accurate
and sample efficient.
Finally, we evaluate our methods on Safety Gym [181] and Learn-to-Race (L2R) [107],

a recently-released, high-fidelity autonomous racing environment, which challenges the
agent to make safety-critical decisions in a complex and fast-changing environment.
While SAGE is by no means free from failure, it has significantly fewer constraint vi-

23Unsafe here refers to QS(x, u) < ϵ.
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olations compared to other constrained RL baselines in Safety Gym. We also report
new state-of-the-art results on the L2R benchmark task, and show that incorporating a
learnable safety critic grounded in control theory boosts performance especially during
the initial learning phase.

6.2. Related Work

Autonomous racing. One approach for autonomous racing is via model predictive con-
trol [144, 184, 119], which solves an optimization problem with a model of the system
dynamics. Aside from the challenges in modeling the complex dynamics, a significant
drawback of such approach is the dependence on extensive sensor installation for lo-
calization and state estimation [34]. Another approach is to use a modular pipeline
[119, 197], starting from perception on raw sensory inputs, to localization and object-
detection, and finally to planning and control. While this approach is most commonly
used in practice, disadvantages of the approach include over-complexity and error prop-
agation [221, 83]. Recently, there is a lot of interest in using RL-based approaches for
autonomous racing. In [82, 50], RL agents were trained using low-dimensional features
as inputs. In [45, 69], intermediate features were extracted from perception pipelines to
determine control actions. In [34, 216], RL agents were trained end-to-end on visual in-
puts by imitating expert demonstration; in [34], a data-driven model of the environment
was further utilized to train the agent by unrolling future trajectories.
In comparison to racing, there is significantly more literature on end-to-end au-

tonomous driving for urban scenarios [54, 167, 55, 46, 223, 176, 227, 223]. It is beyond
our scope to cover this large research field, and we refer interested readers to survey
papers, such as [221, 96], for more information. While we focus on high-speed racing
and its unique challenges, we believe the discussion here for safety analysis on ego-vision
is also relevant to urban driving.
Constrained reinforcement learning. There is growing interest in enforcing some
notion of safety in RL algorithms, e.g., satisfying safety constraints, avoiding worst-case
outcomes, or being robust to environmental stochasticity [87]. We focus on the notion
of safety as satisfying constraints. CMDP [10] is a widely-used framework for studying
RL under constraints, where the agent maximizes cumulative rewards, subject to limits
on cumulative costs characterizing constraint violations. Solving a CMDP problem is
challenging, because the policy needs to be optimized over the set of feasible states; this
requires off-policy evaluation of the constraint functions, to determine whether a policy
is feasible [4]. As a result, safety grows with experience, but requires diverse state-action
pairs, including unsafe ones [194]. Furthermore, one needs to solve a constrained op-
timization problem with a non-convex neural policy. This may be implemented with
techniques inspired by convex optimization, such as primal-dual updates [26] and pro-
jection [220], or by upper bounding the expected cost at each policy iteration [4]. Most
relevant to our work is [26, 194, 201], which also uses a safety critic to verify if a state
is safe; we compare our control-theoretic learning rule with theirs in Section 6.5.1.
Guaranteed safe control. Guaranteeing the safety of general continuous nonlinear
systems is challenging, but there are several approaches that have been successful. These
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methods typically rely on knowledge of the environment dynamics. Control barrier
functions (CBFs) provide a measure of safety with gradients that inform the acceptable
safe actions [11]. For specific forms of dynamics, e.g., control-affine [49], and unlimited
actuation bounds, this approach can be scalable to higher-dimensional systems and can
be paired with an efficient online quadratic program for computing the instantaneous
control [49]. Unfortunately, finding a valid control barrier function for a general system
is a nontrivial task. Lyapunov-based methods [51, 52] suffer from the same limitation of
requiring hand-crafted functions.
HJ reachability is a technique that uses continuous-time dynamic programming to

directly compute a value function that captures the optimal safe control for a general
nonlinear system [20, 80]. This method can provide hard safety guarantees for systems,
subject to bounded uncertainties and disturbances. There are two major drawbacks to
HJ reachability. The first is that the technique suffers from the curse of dimensional-
ity and scales exponentially with number of states in the system. Because of this, the
technique can only be used directly on systems of up to 4-5 dimensions [20]. When us-
ing specific dynamics formulations and/or restricted controllers, this upper limit can be
extended [47, 133]. Second, because of this computational cost, the value function is typ-
ically computed offline based on assumed system dynamics and bounds on uncertainties.
This can lead the safety analysis to be invalid or overly conservative.
There are many attempts in injecting some form of control theory into RL algorithms.

In comparison to works that assume specific problem structure [49, 63] or existence of a
nominal model [49, 23], our proposed approach is applicable to general nonlinear systems
and does not require a model. But, we do assume access to a distance metric defined
on the state space. Our primary inspiration is recent work by [81] that connects HJ
reachability with RL and introduces a HJ Bellman update, which can be applied to
deep Q-learning for safety analysis. This method loses hard safety guarantees due to the
neural approximation, but enables scalable learning of safety value function. However,
an agent trained using the method in [81] will focus exclusively on safety. Thus, we
extend the method by formulating it within the CMDP framework, thereby enabling
performance-driven learning.

6.3. Preliminaries
Constrained MDPs. The problem of RL with safety constraints is often formulated
as a CMDP. On top of the MDP tuple (X ,U , R,F), where X is the state space, U is the
action space, F : X ×U −→ X characterizes the system dynamics, and R : X ×U −→ R is
the reward function, CMDP includes an additional set of cost functions, {C1, . . . , Cm},
where each Ci : X × U −→ R maps state-action transitions to costs characterizing con-
straint violations.
The objective of RL is to find a policy π : X −→ P(U) that maximizes the expected

cumulative rewards, V π
R (x) = Exk,uk∼π

[∑∞
k=0 γ

kR(xk, uk)|x0 = x
]
, where γ ∈ [0, 1) is

a temporal discount factor. Similarly, the expected cumulative costs are defined as
V π
Ci
(x) = Exk,uk∼π

[∑∞
k=0 γ

kCi(xk, uk)|x0 = x
]
; CMDP requires the policy to be feasible

by imposing a limit for the costs, i.e., VCi(π) ≤ χi, ∀i. Putting everything together, the
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RL problem in a CMDP is:

π∗ = argmax
π

V π
R (x) s.t. V π

Ci
(x) ≤ χi ∀i. (6.1)

HJ Reachability. To generate the safety constraint, one can apply HJ reachability to
a general nonlinear system model, denoted as ẋ = f(x, u). Here x ∈ Rn is the state, u is
the control contained within a compact set U . f is assumed uniformly continuous and
bounded, and Lipschitz in x for all u. For discrete-time approximations, the time step
∆t > 0 is used. We denote all allowable states as K, for which there exists a terminal
reward l(x), such that x ∈ K ⇐⇒ l(x) ≥ 0. An l(x) that satisfies this condition is the
signed distance to the boundary of K. Taking autonomous driving as an example, K is
the drivable area and l(x) is the distance to road boundary or obstacle. This set K is
the complement of the failure set that must be avoided. The goal of this HJ reachability
problem is to compute a safety value function that maps a state to its safety value, with
respect to l(x), over time. This is done by capturing the minimum reward achieved over
time by the system applying an optimal control policy:

VS(x, T ) = sup
u(·)

min
t∈[0,T ]

l(ξux,T (t)), (6.2)

where ξ is the state trajectory, T < 0 is the initial time, and 0 is the final time. To solve
for this safety value function, a form of continuous dynamic programming is applied
backwards in time, from t = 0 to t = T , using the Hamilton-Jacobi-Isaacs Variational
Inequality (HJI-VI):

min

{
∂VS

∂t
+max

u∈U
⟨f(x, u),∇VS(x)⟩, l(x)− VS(x, t)

}
= 0,

VS(x, 0) = l(x).

(6.3)

The super-zero level set of this function is called the reachable tube, and describes
all states from which the system can remain outside of the failure set for the time
horizon. For the infinite-time, if the limit exists, we define the converged value function
as VS(x) = limT→−∞ VS(x, T ). While the HJI-VI is difficult to solve, once solved, safety
verification only requires evaluating the safety value of the current state.
Once the safety value function is computed, the optimal safe control can be found

online by solving the Hamiltonian: π∗
S(x) = argmaxu∈U ⟨f(x, u),∇VS(x)⟩. This safe

control is typically applied in a least-restrictive way, wherein the safety controller be-
comes active only when the system approaches the boundary of the reachable tube, i.e.,
u ∼ π if VS(x, T ) ≥ 0 and π∗

S otherwise.
The newly introduced discounted safety Bellman equation [81] modifies the HJI-VI in

(6.3) in a time-discounted formulation for discrete time:

VS(x) = (1− γ)l(x) + γmin

{
l(x),max

u∈U
VS(x+ f(x, u)∆t)

}
,

VS(x, 0) = l(x).

(6.4)
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Algorithm 4: SAGE-Environment Interaction

Initialize: Performance actor π and critic Q;
Initialize: Safety actor πS and critic QS ;
for i = 0, . . . , # Episodes do

x = env.reset()
while not terminal do

u ∼ π(x);
// The safe actor intervenes when the current state-action is deemed
unsafe by the safety critic.

if QS(x, u) < ϵ then
u ∼ πS(x)

end
x′, r = env.step(u)
// Update performance actor-critic and safety actor-critic. See
Appendix A.2 for details.

end

end

This formulation induces a contraction mapping, which enables convergence of the value
function when applied to dynamic programming schemes, commonly used in RL.

6.4. Safe Autonomous racinG on Ego-vision

In this section, we describe our framework for safety-aware autonomous racing. We
are inspired by guaranteed-safe methods, such as HJ reachability, which provides a
systematic way to verify safety. Thus, we formulate our problem as a combination of
constrained RL and HJ reachability theory, adopting a control-theoretic approach to
learn safety. Building upon prior work on neural approximation of HJ Reachability
[81], we demonstrate that it is possible to directly update the safety value function on
high-dimensional sensory input, thereby expanding the scope of applications to problems
previously inaccessible. We highlight the notable aspects of our framework:
i) HJ reachability provides a control-theoretic and low-latency way to verify safety. By in-
corporating HJ Reachability theory in the CMDP framework, we have a control-theoretic
update rule to learn about safety and can verify safety by evaluating the safety value of
the current state. Another positive outcome of the formulation is that the original con-
strained problem is decomposed into two unconstrained optimization problems, making
our formulation more amenable to gradient-based learning.
ii) Scales to high-dimensional visual context. Compared to standard HJ Reachability
methods, whose computational complexity scales exponentially with the state dimension,
we updated the safety value directly on vision embedding, with neural approximation.
This is the highest-dimensional problem studied studied via HJ reachability to-date.
Problem formulation. We inject HJ reachability theory into the CMDP framework.
Starting with Eqn. 6.1, we can interpret the negative of a cost as a reward for safety
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Figure 6.2: We use two classical control benchmarks, double integrator and Dubins’ car,
to evaluate the performance of different learning rules for safety analysis.
(a) shows the safety value function of the double integrator and the black
line delineates VS(x) = 0, within which the particle can remain within the
allowable range of x ∈ [−1, 1]. (b) shows the iso-surface of the safety value
function at 0, i.e., VS(x) = 0, for Dubins’ Car, within which the car can
reach a unit circle at the origin. The performance comparison is summarized
in (c).

and, without loss of generality, reverse the direction of the inequality constraint. Recall
that the super-zero level set of the safety value function, i.e., {x|Vs(x) ≥ 0}, designates
all states from which the system can remain within the set of allowable states, K, over
infinite time horizon. Thus, the safety value function derived from HJ Reachability can
be plugged into CMDP (Eqn. 6.5):

π∗ = argmax
π

V π
R (x), s.t. VS (x) ≥ ϵ, (6.5)

where ϵ ≥ 0 is introduced as a safety margin. A key difference from the original CMDP
formulation (Eqn. 6.1) is that constraint satisfaction, VS(x) ≥ ϵ, no longer depends
on the policy, π. Thus, we can bypass the challenges of solving CMDPs (Section 6.2)
and decompose learning under safety constraints into optimizing for performance and
updating safety value estimation. While a number of works have similar dual-policy
architecture [49, 23, 201], ours design is informed by HJ Reachability theory. Another
difference is that HJ Reachability considers safety as absolute, and there is no mechanism
to allow for some level of safety infraction, and thus χi in Eqn. 6.1 is not longer present.
Update of Safety Critic. We apply HJ Bellman update, in place of standard Bellman
backup, to learn the safety value function. The learning rule proposed by [81] is defined
on discrete action space, which we modify for continuous action space (Eqn. 6.6). While
the safety actor is sub-optimal during learning, the resulting HJ Bellman target is a
conservative estimation of the safety value, as QS(x

′, u′) ≤ maxu′∈U QS(x
′, u′), which

is desirable for safety analysis. QS(x, u) is updated model-free using state-action tran-
sitions, and only additionally requires l(x). We assume l(x) can be acquired from the
vehicle’s sensing capability [27] or estimated from perception [45].

QS(x, u) = (1− γ)l(x) + γmin{l(x), QS(x
′, u′)},

u′ ∼ πS(x
′).

(6.6)
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SAGE. We propose SAGE, which consists of a performance policy and a safety policy.
The safety backup controller is applied in a least restrictive way, only intervening when
the RL agent is about to enter into an unsafe state, i.e., u ∼ π, if QS(x, u) ≥ ϵ and
u ∼ πS otherwise. The performance policy may be implemented with any RL algo-
rithm. Since we expect the majority of samples to be from the performance policy, it is
more appropriate to update the safety actor critic with an off-policy algorithm. In this
work, we base our implementation of the safety actor critic on soft-actor critic (SAC)
haarnoja2018soft. The safety critic is updated with Eqn. 6.6, and the safety actor πS
parametrized by θθ is updated via Eqn. 6.7, where η is the learning rate.

θS ← θS + ηEx,u∼D∇uQS(x, u)∇θπθS (x). (6.7)

Algorithm 4 provides an overview for SAGE and a detailed version is presented in Ap-
pendix A.2.

6.5. Experiments

We evaluate SAGE on three sets of benchmarks, of increasing difficulty. While the our
intended application is autonomous racing, the first two set of benchmarks can be con-
sidered as some abstraction of vehicles with the objective of avoiding obstacles and/or
moving towards goals. Firstly, we evaluate on two classical control tasks, where the
safe vs. unsafe states are known analytically, and we compare the HJ Bellman update
used in SAGE to alternatives for learning safety critics in the literature. Secondly, we
compare SAGE to constrained RL baselines in Safety Gym. Finally, we challenge SAGE in
Learn-to-Race and conduct ablation to better understand how different components of
SAGE contribute to its performance.

6.5.1. Experiment: Classical Control Benchmarks

As mentioned earlier, safety critics have been trained in other works [26, 194] with
different learning rules. The objective here is to compare the HJ Bellman update with
alternatives. Thus, we focus on safety analysis with off-policy samples, and evaluate
on two classical control benchmarks Double Integrator [81] and Dubins’ Car [20], where
the safe / lively24 states (Figure 6.2a and 6.2b) and the optimal safety controller are
known analytically. Double Integrator characterizes a particle moving on the x-axis,
with velocity v. By controlling the acceleration, the objective is to keep the particle on
a bounded range on x-axis. Dubins’ Car is a simplified car model, where the car moves
at a constant speed. By controlling the turning rate, the goal is to reach a unit circle
regardless of the heading. More information on the two tasks are provided in Appendix
A.1.1.

In this experiment, we generate state-action pairs with a random policy, and evaluate
the safety value function with respect to the optimal safety controller, π∗

S . In both
Safety Q-functions for RL (SQRL) [194] and the Conservative Safety Critic (CSC) [26],

24Liveness refers the ability to reach the specified goal [110].
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Figure 6.3: Performance of SAGE with comparison to baselines in the CarGoal1-v0 (top
row) and PointGoal1-v0 (bottom row) benchmarks (averaged over 5 random
seeds). In Goal tasks, agents must navigate to observed goal locations (in-
dicated by the green regions), while avoiding obstacles (e.g., vases in cyan,
and hazards in blue).

the safety value function is defined as the expected cumulative cost, i.e., Qπ
C(x, u) :=

Exk,uk∼π

[∑∞
k=0 γ

kC(xk)|x0 = x, u0 = u
]
, where C(xk) = 1 if a failure occurs at xk and 0

otherwise. In this case, both the environment and optimal safety policy are deterministic.

Thus, by definition, Q
π∗
S

C (x, π∗
S(x)) should be 0 if x is a safe state. SQRL uses the

standard Bellman backup to propagate the failure signal. On top of that, CSC uses
conservative Q-learning (CQL) [137] to correct for difference between the behavior policy,
i.e., the random policy, and the evaluation policy, i.e., the optimal safety policy, and
overestimates QC to err on the side of caution.
Since the safe vs. unsafe states are known for these benchmark tasks, we can directly

compare the performance of these safety critics learned with different learning rules
(Figure 6.2c). While the theoretical cut-off for safe vs. unsafe states is 0, the performance
of SQRL is sensitive to the choice of the cut-off; thus, we report AUROC instead. For
both CQL and SQRL, we do a grid search around the hyperparameters used in the
original papers and report the best results. The implementation details and additional
results are included in Appendix A.1.2. Directly applying Bellman update for safety
analysis, as in SQRL, performs reasonably well on Double Integrator, but not on the
more challenging Dubins’ Car. In our experiment, CQL consistently under-performs
SQRL. In comparison, HJ Bellman update has AUROC close to 1 on both tasks and
has very small variance over different runs. It is worth-noting that the result with the
HJ Bellman update is achieved without explicitly addressing the distribution mismatch
[208], which typically challenges off-policy evaluation problems. This experiment only
compares the efficacy of the different learning rules for safety critic given the same off-
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(a) Aerial (b) Third-person (c) Ego-view

Figure 6.4: We use the Learn-to-Race (L2R) framework [107] for evaluation; this en-
vironment provides simulated racing tracks that are modeled after real-
world counterparts, such as the famed Thruxton Circuit in the UK
(Track01:Thruxton, (a)). Here, learning-based agents can be trained and
evaluated according to challenging metrics and realistic vehicle and envi-
ronmental dynamics, making L2R a compelling target for safe reinforcement
learning. Each track features challenging components for autonomous agents,
such as sharp turns (shown in (b)), where SAGE only uses ego-camera views
(shown in (c)) and speed.

policy samples, and does not intend to compare other aspects of SQRL and CSC.
One caveat is that SQRL and CQL uses a binary signal for failures, while HJ Bellman

update has access to the distance, l(x). On one hand, HJ Bellman update does assume
more information. On the other hand, it may be more practical to learn safety from
distance measurements than experiencing failures. Applied to autonomous driving, this
translates to learning to avoid obstacles from distance measurements that are becoming
prevalent on cars with assisted driving capabilities [27], in comparison to experiencing
collisions.

6.5.2. Experiment: Safety Gym

We additionally evaluate our proposed approach, SAGE, in Safety Gym [181]. Specifi-
cally, we evaluate on the standard CarGoal1-v0 and PointGoal1-v0 benchmarks, where
the agent navigates to a goal while avoiding hazards. We compare SAGE against base-
lines including: Constrained Policy optimization (CPO) achiam2017constrained, an un-
constrained RL algorithm (Proximal Policy optimization (PPO) schulman2017proximal),
and its Lagrangian variant (PPO-Lagrangian). By default, distance measurements from
LiDAR are available to all baselines in these benchmarks, and thus SAGE has direct
access to l(x). Episodic Performance and Cost curves are shown in Figure 6.3 and
implementation details are included in Appendix A.3.
PPO-SAGE has significantly fewer constraint violations, compared to other baselines,

and the number of violations decreases over time. While CPO and PPO-Lagrangian take
into account that a certain number of violations are permissible, there is no such mecha-
nism in SAGE, as HJ Reachability theory defines safety in an absolute sense. While the
inability to allow for some level of safety infractions, unfortunately, compromises perfor-
mance, SAGE learns mature obstacle-avoidance behaviors, compared to some policies,
which may ignore traps in favor of fast navigation to goal locations. Violations that do
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occur in SAGE result from neural approximation error, and the number of violations
decreases over time as the safety actor-critic gains experience, despite the randomized
and constantly-changing episodic layouts.

6.5.3. Experiment: Learn-to-Race

Task Overview. In this paper, we evaluate our approach using the Arrival Au-
tonomous Racing Simulator, through the newly-introduced and OpenAI-gym compliant
Learn-to-Race (L2R) task and evaluation framework herman2021learn. L2R provides
multiple simulated racing tracks, modeled after real-world counterparts, such as Thrux-
ton Circuit in the UK (Track01:Thruxton; see Figure 6.4). L2R can provide access to
RGB images from any specified location, semantic segmentation, and vehicle states (e.g.,
pose, velocity). In each episode, an agent is spawned on the selected track. At each time-
step, it uses its observations to determine normalized steering angle and acceleration.
All learning-based agents receive the reward specified by L2R, which is formulated as a
weighted sum of reward for driving fast and penalty for leaving the drivable area; the
main objective is to complete laps in as little time as possible. Additional metrics are
defined to evaluate driving quality.
Implementation Details. To characterize the performance of our approach, we report
results on the Average Speed and the Episode Completion Percentage (ECP) metrics
herman2021learn as proxies for agent performance and safety, respectively. We report
other metrics defined by L2R in Appendix A.6.
We use Track01:Thruxton in L2R (Fig. 6.4) for all stages of agent interaction with

the environment. During training, the agent is spawned at random locations along the
race track and uses a stochastic policy. During evaluation, the agent is spawned at a
fixed location and uses a deterministic policy. The episode terminates when the agent
successfully finishes a lap, leaves the drivable area, collides with obstacles, or does not
progress for a number of time-steps. For each agent, we report averaged results across 5
random seeds, evaluated every 5000 steps over an episode (one lap). We use SAC as the
performance policy, and all agents only have access to ego-camera view (Figure 6.4c) and
speed, unless specified otherwise. The implementation, including network architecture
and hyperparameters, are detailed in Appendix A.5.
Ablation Study. To demonstrate the benefit of utilizing domain knowledge in the form
of a nominal model, we use a kinematic bike model [132] to calculate the safety value and
derive the corresponding safety controller, detailed in Appendix in A.4. We refer to this
as the static safety actor-critic. In all our experiments, only the static safety actor-critic
has access to vehicle pose, i.e., location and heading. We evaluate the performance of
this static safety actor-critic by coupling a random agent with it (SafeRandom). We
test SafeRandom on a series of safety margins to account for unmodelled dynamics; the
performance averaged over 10 random seeds is summarized in Figure A.9. For instance,
ϵ ≥ 4.2 achieves 80+% ECP, in comparison to 0.5% ECP by Random agent.
We examine the effect of having a safety controller, by comparing SAC with an instance

of itself that is coupled with a static safety actor-critic (SafeSAC). We set the safety
margin ϵ to be 4.2, based on empirical results from SafeRandom. We also compare the
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Figure 6.5: Left: Episode percent completion and Right: speed evaluated every 5000
steps over an episode (a single lap) and averaged over 5 random seeds. Results
reported based on Track01:Thruxton in L2R.

performance of using the static safety actor-critic (SafeSAC) and a dynamically-updating
one (SAGE). Since the SAGE agent is expected to have a better characterization of the
safety value, the agent no longer depends on a large safety margin to remain safe and
thus SAGE uses a safety margin of 3.0m, which accounts for the vehicle dimensions25. We
also report results of SafeSAC with the same safety margin in in Appendix A.6.
Results. The performance comparison between different agents is summarized in Figure
6.5. For reference, a single lap in Track01:Thruxton is 3.8km, whereas CARLA, the de
facto environment for urban driving research, has in total 4.3km drivable roads in the
original benchmark [55]. Thus, successfully completing an episode, i.e., a lap, is quite
challenging. The static safety actor-critic significantly boosts initial safety performance.
With the help of the static safety actor-critic, the SafeSAC can complete close to 80% of a
lap, in comparison to slightly more than 5% with SAC. This, again, showcases the benefit
of injecting domain knowledge in the form of a nominal model. However, there are two
notable limitations with the static safety controller. Firstly, it is extremely conservative,
hard-braking whenever the vehicle is less safe. As a result, the SafeSAC agent has an
initial speed of less than 10km/h. Secondly, as the SAC learns to avoid activating the
safety controller and drive faster, the static safety controller is no longer able to recover
the vehicle from marginally safe states. In fact, by applying the ‘optimal’ safety action
from Eqn. A.9, i.e., maximum brake and steer towards centerline, the vehicle will lose
traction and spin out of control. As a result, the ECP actually decreases over time for
SafeSAC.
SAGE learns safety directly from vision context and can recover from marginally safe
states more smoothly. Having a safety actor-critic that is dedicated to learning about
safety significantly boosted the initial safety performance of SAGE, in comparison to
the SAC agent, even though both the performance and the safety actor-critics are ran-

25The HJ reachable tube is computed with respect to the back axle of the vehicle and does not account
for the physical dimension of the vehicle. Using the car length as the safety margin is a rough
engineering estimate.
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domly initialized. Moreover, this shows that the safety value function can be learned
from scratch on vision embedding. In practice, we envision the safety actor-critic to be
warm-started with the nominal model or observational data, and fine-tuned by interac-
tions with the environment. Furthermore, the learnable safety actor-critic can recover
from marginally safe states smoothly, avoiding the two undesirable behaviors from the
static safety actor-critic. A qualitative comparison of such behaviors is available at the
anonymized paper website. While SAGE outperforms other baselines, there is still sig-
nificant performance gap with human, as the speed record at Thruxton Circuit is 237
km/h (average speed).

6.6. Conclusion

In this paper, we propose SAGE for end-to-end autonomous racing, which can learn to
identify unsafe states from ego-camera views and recover from unsafe states, despite
the complex dynamics with unstable regimes. We demonstrate on two classical control
benchmarks that the HJ Bellman update is more effective than alternatives for learning
the safety critic. Compared to constrained RL baselines in the Safety Gym, we show
that SAGE has significantly fewer constraint violations. We report the new state-of-the-
art result on Learn-to-Race, and we demonstrate that the safety value can be learned
directly on visual context, thereby expanding HJ reachability to broader applications.
Throughout our experiments, we find it is highly effective to inject domain knowledge,

in the form of nominal model or control-theoretic learning rule. In our experiments,
the safety actor-critics were randomly initialized. But, in practice, we expect it to be
pre-trained with a nominal model and/or observational data, prior to interacting with
the environment. While neural approximation enables us to scale HJ reachability to
high-dimensional visual inputs, we unfortunately lose the hard guarantees on safety. An
important next-step is to characterize neural approximation error and find ways to retain
the safety guarantees with function approximators.
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7. Conclusions

In this section, we first recap the contributions and practical implications of individual
chapters, echoing the research vision in Section 1.2. Then, we point out some directions
for future work.

7.1. Contributions and Practical Implications

Gnu-RL: Buildings account for about 40% of the total energy in the United States [141],
and it is estimated that up to 30% of that energy usage may be reduced through advanced
sensing and control strategies [92, 78]. However, as discussed in Section 1.4.1, MPC is not
scalable due to the heterogeneity of building environments, and RL is not practical for
real-world building systems due to its sample complexity. To address Research Question
1, we combine the strength of MPC and RL, and propose a control strategy that is both
practical and scalable. Gnu-RL can be deployed on real-world building systems with
satisfactory initial performance, using no prior knowledge other than historical data.
In our experiments, both in simulation and on a real-world testbed, we show Gnu-RL
improve energy efficiency over time, while maintaining a satisfactory level of thermal
comfort.

COHORT: COHORT is a practical, scalable, and versatile solution to coordinate a
population of TCLs, which account for 20% of the electricity consumption in the United
States, to jointly provide grid services. COHORT can incorporate detailed, system-
specific models and constraints from individual TCLs, and at the same time is scalable
to large population sizes. Furthermore, COHORT is computationally-scalable to long
planning horizons, which unlocks the potential to shift TCLs over extended period of
time, which is identified as the most promising use case for these loads by [92, 135, 186].
As a result, COHORT is not only applicable to reference tracking, but also load shifting
use cases, such as ramping minimization and peak load curtailment. Finally, we validated
COHORT is practical for real-world systems via a hardware-in-the-loop simulation.

PPOF: PROF is a method to flexibly enforce convex operational constraints within
neural policies, in such a way that the constraints are taken into account during the
learning process. Over-voltage has already become a common occurrence in areas with
high renewable penetration. In the experiment on a distribution network, PROF, con-
trolling inverter setpoints, satisfies the voltage constraints 100% of the time, in com-
parison to 22% over-voltage violations incurred by a Volt/Var control baseline. Voltage
support from inverters increase the hosting capacity of the existing networks and reduce
the curtailment of renewable generation. Furthermore, as the renewable energy resources
gradually replace fossil fuel ones over the course of coming decades, a learning-based con-
trol strategy enables the inverter to adapt to the transitioning power grid autonomously.
At the same time, embedding safety guarantees in a learning-based solution instill con-
fidence in industry practitioners.
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SAGE: We propose SAGE by incorporating HJ reachability theory, a safety verifi-
cation method for non-linear systems, into the CMDP framework, as an approach to
enforce safety constraints in performance-driven learning. Though HJ reachability is
traditionally not scalable to high-dimensional systems, we demonstrate that with neu-
ral approximation, the HJ safety value can be learned directly on vision context—the
highest-dimensional problem studied via the method, to-date. We evaluate our method
on several benchmark tasks, including Safety Gym and Learn-to-Race (L2R), a recently-
released high-fidelity autonomous racing environment. Our approach has significantly
fewer constraint violations in comparison to other constrained RL baselines in Safety

Gym, and achieves the new state-of-the-art results on the L2R benchmark task.

7.2. Future Work

Here, we also summarize some possible directions for future work, on top of the more
specific research directions at the end of each chapter.

Recent developments in offline RL present new ways to utilize historical data. Ex-
isting buildings can be expected to have a large amount of historical data stored in the
BAS. How to best learn from the historical data to improve the current operation is a
pivotal question. In Gnu-RL, one of the key ideas is to apply behavior cloning on his-
torical data to warm-start the agent. Behavior cloning is a classical idea that formulates
the optimal control task as a supervised learning task, assuming the historical data is
generated by an expert. Recent developments in offline RL [140] present a new paradigm
for utilizing the same historical data. In the case that the behavior policy is sub-optimal,
as in the case of hysteresis or PID control, offline RL should have superior performance
compared to behavior cloning on the same data based on the analysis in [136]. On
the other hand, behavior cloning is easy to implement, and potentially more attractive
from an engineering perspective. Thus, further research is needed to understand what
technique is most appropriate for utilizing historical building data to improve current
operation.

Being able to enforce safety constraints will be paramount to the real-world success
of learning-based methods in energy systems. While we examined approaches to
enforce device-level and network-level constraints, arising from human needs or physical
necessity in this thesis, we believe this is only the start of a broader conversation on
closely integrating domain knowledge, and control theory into learning-based methods.
We hope that this thesis will serve to spark further inquiry into this important line of
work. There is growing urgency to curb carbon emissions by improving the operation of
existing energy systems, along with other approaches to jointly combat climate change.
Embedding safety guarantees in learning-based solutions is essential to instill confidence
in industry practitioners and enable widespread adoption.

How to retain hard safety guarantees from HJ reachability theory, while scaling to
high-dimensional systems with function approximator? While HJ reachability theory
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is a powerful tool for safety analysis that provides hard safety guarantees for general
non-linear systems, subject to bounded disturbances [20, 80], a major drawback of the
approach is that its computational complexity scales exponentially with the number of
states in the system. Thus, there is strong incentive in using function approximation
to scale to high-dimensional autonomous systems. Numerous attempts [8, 21, 187, 80,
110, 41] have been made in developing methods to learn the value function with neural
networks. However, these methods, unfortunately, lose the safety guarantees, except
under restricted settings.
The outstanding question here is whether it is possible to retain some form of safety

guarantees while using function approximation, e.g., neural networks, which is necessary
to scale to high-dimensional systems.
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[55] Codevilla, F., Santana, E., López, A. M., and Gaidon, A. Exploring
the limitations of behavior cloning for autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (2019), pp. 9329–9338.

[56] Cole, W. J., Rhodes, J. D., Gorman, W., Perez, K. X., Webber, M. E.,
and Edgar, T. F. Community-scale residential air conditioning control for ef-
fective grid management. Applied Energy 130 (2014), 428–436.

[57] Condat, L. A direct algorithm for 1-d total variation denoising. IEEE Signal
Processing Letters 20, 11 (2013), 1054–1057.

[58] Costanzo, G. T., Gehrke, O., Bondy, D. E. M., Sossan, F., Bindner,
H., Parvizi, J., and Madsen, H. A coordination scheme for distributed model
predictive control: Integration of flexible ders. In IEEE PES ISGT Europe 2013
(2013), IEEE, pp. 1–5.

[59] Costanzo, G. T., Iacovella, S., Ruelens, F., Leurs, T., and Claessens,
B. J. Experimental analysis of data-driven control for a building heating system.
Sustainable Energy, Grids and Networks 6 (2016), 81–90.

[60] Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet,
G., and Pietzcker, R. C. The underestimated potential of solar energy to
mitigate climate change. Nature Energy 2, 9 (2017), 1–9.

[61] Dalamagkidis, K., Kolokotsa, D., Kalaitzakis, K., and Stavrakakis,
G. S. Reinforcement learning for energy conservation and comfort in buildings.
Building and environment 42, 7 (2007), 2686–2698.

97



[62] de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J., and
Kolter, J. Z. End-to-end differentiable physics for learning and control. In
Advances in Neural Information Processing Systems (2018), pp. 7178–7189.

[63] Dean, S., Tu, S., Matni, N., and Recht, B. Safely learning to control the con-
strained linear quadratic regulator. In 2019 American Control Conference (ACC)
(2019), IEEE, pp. 5582–5588.

[64] Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini,
P., Liu, B., Halverson, M., Winiarski, D., Rosenberg, M., et al. US De-
partment of Energy commercial reference building models of the national building
stock.

[65] Djolonga, J., and Krause, A. Differentiable Learning of Submodular Models.
In Advances in Neural Information Processing Systems (2017), pp. 1013–1023.

[66] Dobbe, R., Hidalgo-Gonzalez, P., Karagiannopoulos, S., Henriquez-
Auba, R., Hug, G., Callaway, D. S., and Tomlin, C. J. Learning to control
in power systems: Design and analysis guidelines for concrete safety problems.
Electric Power Systems Research 189 (2020), 106615.

[67] Donti, P. L., Roderick, M., Fazlyab, M., and Kolter, J. Z. Enforcing
robust control guarantees within neural network policies. In International Confer-
ence on Learning Representations (2021).

[68] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V.
Carla: An open urban driving simulator. In Conference on robot learning (2017),
PMLR, pp. 1–16.

[69] Drews, P., Williams, G., Goldfain, B., Theodorou, E. A., and Rehg,
J. M. Aggressive deep driving: Combining convolutional neural networks and
model predictive control. In Conference on Robot Learning (2017), PMLR,
pp. 133–142.
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[147] Lü, X., Lu, T., Kibert, C. J., and Viljanen, M. Modeling and forecast-
ing energy consumption for heterogeneous buildings using a physical–statistical
approach. Applied Energy 144 (2015), 261–275.

[148] Luo, B., Wu, H.-N., and Huang, T. Off-Policy Reinforcement Learning for
H∞ Control Design. IEEE Transactions on Cybernetics 45, 1 (2014), 65–76.

104



[149] Maasoumy, M., Razmara, M., Shahbakhti, M., and Vincentelli, A. S.
Handling model uncertainty in model predictive control for energy efficient build-
ings. Energy and Buildings 77 (2014), 377–392.

[150] Mahdavi, N., Braslavsky, J. H., Seron, M. M., and West, S. R. Model
predictive control of distributed air-conditioning loads to compensate fluctuations
in solar power. IEEE Transactions on Smart Grid 8, 6 (2017), 3055–3065.

[151] Mai, T., Hand, M. M., Baldwin, S. F., Wiser, R. H., Brinkman, G. L.,
Denholm, P., Arent, D. J., Porro, G., Sandor, D., Hostick, D. J.,
et al. Renewable electricity futures for the united states. IEEE Transactions on
Sustainable Energy 5, 2 (2013), 372–378.

[152] Mather, B., and Yuan, G. Onward and upward: Distributed energy resource
integration [guest editorial]. IEEE Power and Energy Magazine 18, 6 (2020), 16–
19.

[153] Mathworks. Tune PID controllers - MATLAB.
https://www.mathworks.com/help/control/ref/pidtuner-app.html, 2020. Ac-
cessed: 2020-04-19.

[154] Milano, F., Dörfler, F., Hug, G., Hill, D. J., and Verbič, G. Founda-
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A. SAGE - Supplementary Materials

A.1. Classical Control Benchmarks

The objective of this section is to compare the learning rule proposed by [81], i.e.,
Q(x, u) = (1−γ)l(x)+γmin{l(x),maxu′∈U Q(x′, u′} with alternatives for learning safety
value function. We evaluate it on two classical control benchmarks, Double Integrator
and Dubins’ Car, as described in Section A.1.1, where the analytical solution to safe
states and optimal safe actions are known. Thus, we implement the learning rule here as
Eqn. A.1. This is slightly different from the general case of Eqn. 6.6, where the optimal
safety policy is unknown.

Q(x, u) = (1− γ)l(x) + γmin{l(x), Q(x′, u′},
where u′ = π∗

S .
(A.1)

A.1.1. Model Dynamics

Double Integrator. The double integrator models a particle moving along the x-axis
at velocity v. The control input is the acceleration a. The goal in this case is keep the
particle within a fixed boundary, in this case x ∈ [−1, 1], subject to a ∈ [−1, 1].{

ẋ = v

v̇ = a
(A.2)

By solving the Hamiltonian, i.e., π∗
S(x) = argmaxu∈U ⟨f(x, u),∇VS(x)⟩, we can get the

optimal safe control as:

a∗ =

{
a if ∂VS/∂v ≥ 0

a otherwise
(A.3)

Dubins’ Car. The Dubins’ car models a vehicle moving at constant speed, in this case
v = 1. Similar to the kinematic vehicle model, x, y, ϕ describes the position and heading
of the vehicle, and control input is the turning rate u ∈ [−1, 1]. The goal is to reach a
unit circle centred at the origin. 

ẋ = v cos(ϕ)

ẏ = v sin(ϕ)

ϕ̇ = u

(A.4)

Note that Dubins’ Car is a reach task, i.e. reaching a specified goal, instead of an avoid
task, i.e. avoiding specified obstacles. The reach task can be simply implemented by
setting π∗

S(x) = argminu∈U ⟨f(x, u),∇VS(x)⟩ bansal2017hamilton. In other words, the
optimal safe action for a given state is the one that minimises the distance to the goal.
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The corresponding optimal safe control is

u∗ =

{
u if ∂VS/∂θ ≥ 0

u otherwise
(A.5)

The ground truth safety value function for these two benchmarks are shown in Figure
6.2a and 6.2b.
Implementation & Evaluation. We use a neural network with hidden layers of size
[16, 16] for the double integrator and [64, 64, 32] for Dubins’ car. We use ADAM [128]
as the optimiser with a learning rate of 0.001, batch size of 64. We update the safety
value function over 25K steps for Double Integrator and 50K steps for Dubin’s Car, and
report classification accuracy every 1000 steps averaged over 5 random seeds. While the
safety value is defined over continuous state space, we evaluate the performance over a
discrete mesh on the state space. By definition, the safety value at a given state x is
Q(x, u∗), where u∗ = π∗

S(x).
Qualitative Results. Qualitative comparison between the ground truth value and that
learned via HJ Bellman update is shown in Figure A.1 and A.2. As we can see, the neural
approximation largely recovers the ground truth value, except for minute difference.
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Figure A.1: A comparison between the ground truth safety value and that learned via HJ
Bellman update for double integrator; The black line delineates VS(x) = 0.

While we do not need to learn the safety actor in this case, we further demonstrate
that ∇uQS(x, u) can indeed by used to update the safety actor. In Figure A.3, we
compare the ground truth ∂V/∂v, with which one can determine the optimal safe action
with Eqn. A.3, and the gradient through the safety critic, i.e., ∇uQS(x, u). We can see
that ∇uQS(x, u), consistently point towards the correct optimal safe action within the
safe set, i.e., the area delineated by the black line. The safety value outside the safe
set is not learned, as the region is outside the support of data when episodes terminate
upon failures.
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Figure A.2: A comparison between isosurface of the ground truth safety value (blue) and
that learned via HJ Bellman update (green) for Dubins’ car
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Figure A.3: The gradients through the safety critic, i.e., ∇uQS(x, u), consistently point
towards the correct optimal safe action, as indicated by ∂V/∂v (Eqn. A.3),
within the safe set (the area delineated by the black line) for double inte-
grator.

A.1.2. Learning Rule Comparison for Safety Critic

Firstly, we describes the approaches pertaining to learning the safety critic in [194, 26].
In both Safety Q-functions for RL (SQRL) srinivasan2020learning and Conservative
Safety Critic (CSC) bharadhwaj2020conservative, the safety critic is defined as the ex-
pected cumulative cost, i.e. Qπ

C(x, u) := Exk,uk∼π

[∑∞
k=0 γ

kC(xk)|x0 = x, u0 = u
]
, where

C(xk) = 1 if a failure occurs at xk and 0 otherwise. Both papers endowed the safety
critic, Qπ

C(x, u) with a probabilistic interpretation, i.e. the expected probability of fail-
ure.
SQRL. The safety critic is trained by propagating the failure signal using the standard
Bellman backup, as in Eqn. A.6, where D denotes the replay memory, γS is a time-
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discount parameter, and Q̄π
C is the delayed target network. This approach for learning

the safety critic is also adopted in [201].

Qπ
C ← Ex,u,x′∼D

[
C(x) + γS(1− C(x))Eu′∼πQ̄

π
C(x

′, u′)
]

(A.6)

CSC. On top of using Bellman backup to propagate the failure signals, CSC uses con-
servative Q-learning (CQL) kumar2020conservative to correct for the distribution mis-
match between the behaviour policy and the evaluation policy, and overestimate QC

to err on the side of caution. The resulting objective is given in Eqn. A.7, where
BπQ(x, u) = C(x) + γEx′∼P (x′|x,u),u′∼π(x′)Q̄(x′, u′) is the Bellman operator and α is a
hyperparamter that controls the extent of conservativeness. If α = 0, the objective is
the same as that of SQRL.

L =
1

2
Es,a∼D

[
QC(x, u)− BπQ̄C(x, u))

]
− α

[
Ex∼D,u∼π(x)QC(x, u)− Ex,u∼DQC(x, u)

] (A.7)

Note that CSC reversed the sign in front of α compared to the original implementation
in CQL so as to over-estimate QC . This learning objective does not guarantee point-wise
conservativeness, but conservativeness in expectation, i.e. EπQ̂

π
c (x, u) ≥ EπQ

π
c (x, u). τ

is the rate for polyak averaging of the target network, i.e. Q′ ←− τQ+ (1− τ)Q′.
Implementation Details. In [194], the authors used a learning rate of 3 × 10−4,
γS = 0.7. Using the same learning rate, we did grid search over γS = [0.7, 0.9] and
τ = [0.1, 0.01]. We observed that γS = 0.9 had better performance, and thus selected
γS = 0.9 and τ = 0.1.
In [26], the authors used a learning rate of 2× 10−4, γS = 0.99, and selected α = 0.5

from from 0.05, 0.5, and 5. Using the same learning rate and γS , we did grid search over
α = [0.01, 0.05, 0.5, 5] and τ = [0.1, 0.01]. We selected α = 0.01 and τ = 0.1.
Results. The main results are summarized in Figure 6.2c. In Figure A.4, we show
a qualitative comparison between the ground truth safety value and that learned via
different learning rules. In interpreting the results, note that both the environment and

optimal safety policy are deterministic. Thus, Q
π∗
S

C (x, π∗
S(x)) should be 0 if x is a safe

state, following the definition. Due to the difference in definition, i.e., QS(x) ≥ 0 is safe
for HJ safety value and QC(x) ≤ 0 is safe in SQRL and CQL, we plot 1−QC such that
in Figure A.4 the larger value consistently indicates safety and the cut-off for safe vs.
unsafe is 0.
SQRL largely captures the correct safe states, though the classification performance

is highly dependent on picking an appropriate threshold. CQL does underestimate the
level of safety (and overestimate QC) as intended, and the pattern of underestimation
appear to corresponds to ∇xQS (refer to Figure A.3).
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Figure A.4: Comparison between the group truth safety value and the safety critics from
different learning rules for double integrator

A.2. Algorithm

relies on a dual policy structure, the rationale of which is explained in Section 6.4. This
pairing of a safety policy and a performance policy is important, as we are able to decom-
pose the problem of learning under safety constraints into optimizing for performance
and updating the safety value function, separately.
We optimize the performance policy using SAC, but it may be switched for any other

comparable RL algorithms. The safety policy is used least-restrictively, that is only
intervene when the RL agent is about to enter into an unsafe state and thus allowing the
performance policy maximum freedom in exploring safely. Instead of using the optimal
safe policy from solving Hamiltonian, the safe policy is updated via gradients through
the safety critic, same as other actor-critic algorithms.

A.3. Implementation Details: Safety Gym Experiment

Following the default CarGoal1-v0 and PointGoal1-v0 benchmarks in Safety Gym, all
agents were given LiDARs observation with respect to hazard, goal, and vase, with
avoiding hazards as the safety constraints. Both environments were initialised with a
total of 8 hazards and 1 vase. Agent’s are endowed with accelerometer, velocimeter,
gyro, and magnetometer sensors; their LiDAR configurations included 16 bins, with
max distance of 3.
The baselines we considered, i.e., CPO, PPO and PPO-Lagrangian follows the default

implementation that comes with Safety Gym. PPO- wraps the proposed safety actor
critic around the PPO base agent. Despite PPO being an on-policy algorithm, the safety
critic was implemented with off-policy updates, using prioritised memory replay based
on the TD-error of predicting safety value. Since l(x) is small in this environment, we
scaled cost by a factor of 100. For the safety actor-critic, We used γS annealing from 0.85
to 1 following [81], τ = 0.005, critic learning rate of 0.001, actor learning rate of 0.0003,
and α = 0.2 (regularisation on policy entropy). We used a safety margin ϵ = 0.25,
mainly to account for the dimension of the hazards (radius = 0.2).
For each model, on each Safety Gym benchmark, results were reported as the average
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Algorithm 5: : Safe Autonomous Racing via Approximate Reachability on
Ego-vision

Initialize: performance critic Qϕ and actor πθ;
Initialize: safety critic QϕS

, and actor πθS ; target networks ϕ
′
S ← ϕS ;

Initialize: replay buffer D;
for i = 0, . . . , # Episodes do

x = env.reset()
while not terminal do

u ∼ πθ(x);
// The safe actor intervenes when the current state-action is deemed
unsafe by the safety critic.

if QϕS
(x, u) < ϵ then

u ∼ πθS (x)
end
x′, r = env.step(u)
D.store(x, a, x′, r)
x = x′

Update performance critic Qϕ and actor πθ with preferred RL algorithm;
// Update the safety critic:
Sample N transitions (x, u, x′) from D;
// Calculate the target value with the discounted Bellman safety update

y = (1− γ)l(x) + γmin{l(x), Qϕ′
S
(x′, u′)},

where u′ ∼ πθS

LϕS
= N−1

∑
(QϕS

(x, u)− y)2

ϕS ← ϕS − α∇ϕS
LϕS

// Update the safety actor with deterministic policy gradient:

θS ← θS + αN−1
∑
∇uQ(x, u)∇θSπθS (x)

// Update the target networks:

ϕ′
S ← τϕS + (1− τ)ϕ′

S

end

end

across 5 instances. All experiments in Safety Gym were run on an Intel(R) Core(TM)
i9-9920X CPU @ 3.50GHz – with 1 CPU, 12 physical cores per CPU, and a total of 24
logical CPU units.
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A.4. Static Safety Actor-Critic Derived from Kinematic Bike Model
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(b) Vs(x, y, v, ϕ) computed via the nominal model, where v=12m/s

Figure A.5: (a) We compute the safety value function, via a kinematic vehicle model.
(b) We illustrate different views of the 4D state space, given fixed velocity
and three different yaw angles, indicated by the blue arrows.

To demonstrate the benefit of utilizing domain knowledge in the form of a nominal
model and to compare with the learnable safety actor-critic in , we use the kinematic
vehicle model [132] (see Figure A.5a), which is a significant simplification of a realistic
race car model [119], to compute the safety value and corresponding ‘optimal’26 safety
controller. The dynamics and ‘optimal’ safety control is given in Eqn. A.8 and A.9,
where the state is x = [x, y, v, ϕ], and the action is u = [a, δ]. x, y, v, ϕ are the vehicle’s
location, speed, and yaw angle. a is the acceleration, and δ is the steering angle. The
actions are bounded, i.e., a ∈ [a, a] and δ ∈ [δ, δ]. L = 3m is the car length.

f(x,u) =


ẋ = v cos(ϕ)

ẏ = v sin(ϕ)

v̇ = a

ϕ̇ = v tan δ/L

(A.8)

a∗ =

{
a if ∂VS/∂v ≤ 0

a else
,

δ∗ =

{
δ if ∂VS/∂ϕ ≥ 0

δ else

(A.9)

Intuitively, the ‘optimal’ safety policy brakes and steers towards the center of the track
as much as possible. We also derive the ‘optimal’ safety policy here. The optimal safety
control is derived by solving the Hamiltonian as given in Eqn. A.10a. By definition,

26only with respect to the nominal model
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∇VS(x) = [∂VS/∂x, ∂VS/∂y, ∂VS/∂v, ∂VS/∂ϕ].

π∗
S(x) = argmax

u∈U
⟨f(x,u),∇VS(x)⟩ (A.10a)

= arg max
[a,δ]∈U

[v cos(ϕ)
∂VS

∂x
+ v sin(ϕ)

∂VS

∂y

+ a
∂VS

∂v
+ v tan δ/L

∂VS

∂ϕ
] (A.10b)

= arg max
[a,δ]∈U

[a
∂VS

∂v
+ v tan δ/L

∂VS

∂ϕ
] (A.10c)

From Eqn A.10c, it is clear that the actions given by Eqn. A.9 maximize the Hamiltonian.
We parametrized the racetrack as a cubic spline and computed l(x) by projection onto

the spline. Setting VS(x, 0) = l(x), we calculated the backward reachable tube using
the code from [89]. For efficient computation, we divided the racetrack into overlapping
segments and computed the safety value segment-wise. Fig. A.5b illustrates resulting
safety value function at slices of state space, as the agent enters into a sharp turn. It is
clear that the safety value at each location can be quite different from the initialization,
l(x).

A.5. Implementation Details: Learn-to-Race Experiment

Vision Encoder. We condition the optimization of the performance policy as well
as the safety value updates on pretrained embedding of vehicle’s visual scene context.
The perception module maps ego-images from the on-board RGB camera to feature
embedding of reduced dimension. To learn this mapping, we use a standard variational
autoencoding (VAE) [129] paradigm, with a convolutional encoder.
We use an image reconstruction objective with binary cross-entropy loss, Adam opti-

mizer [128], and a latent vector dimension of 32. We train the VAE encoder to reconstruct
ego-images, sampled from the vehicle’s front camera during random agent execution; ex-
amples are provided in Figure A.6. We further refine the encoder by training the VAE
module to reconstruct projected road boundaries, illustrated in Figure A.7, with inputs
in the left column and the reconstructed outputs in the right column.
Neural Architecture. As illustrated in Figure A.8, the vision encoder takes an image
as input to produce a latent vector, which is concatenated with speed and action embed-
ding and passed to the performance and safety actor-critics. The specific implementation
of layers are summarized in Table A.1.
Specifically, we use a squashed Gaussian policy (Eqn. A.11) for both performance and

safety actors, following [101].

u = tanh(µ(x) + σ(x)⊙ ξ), ξ ∼ N (0, I) (A.11)

Agent training details. During training, the agent is spawned at random locations
along the race track and uses a stochastic policy. During evaluation, the agent is spawned
at a fixed location and uses a deterministic policy. The episode terminates when the

119



Figure A.6: VAE image reconstruction, with real images in the left column and recon-
structed images in the right column.

agent successfully finishes a lap, leaves the drivable area, collides with obstacles, or does
not progress for a number of steps. For each agent, we report averaged results across 5
random seeds, evaluated every 5000 steps over an episode (one lap). In total, we train
each agent over 250,000 steps, and evaluate it over 50 episodes.
During its interaction with the environment, the agent receives a 192×144 ego-camera

view and its speed at each time-step. The agent encodes the RGB image frame and its
speed to a 40-dimensional feature representation, subsequently used as input to both
actor-critic networks. We initialise the replay buffer with 2000 random transitions,
following [2]. After 2000 steps, we perform a policy update at each time step. For the
SafeSAC agent, we only save state-action transitions from the performance actor to the
replay buffer. For the agent, we save all state-action transitions.
Implementation Details. For all experiments, we implemented the models using the
PyTorch 1.8.0. We optimised both the performance and safety actor-critic with Adam
[128], with a learning rate of 0.003. We used γ = 0.99 for the performance critic, and
annealed γS from 0.85 to 1 for the safety critic following [81]. We used τ = 0.005 for
the performance critic, and τ = 0.05 for the safety critic. For both the performance and
safety actor, we include the policy entropy term with α = 0.2. We used a batch size of
256, and a replay buffer size of 250,000.
Computing hardware. For rendering the simulator and performing local agent veri-
fication and analysis, we used a single GPU machine, with the following CPU specifica-
tions: Intel(R) Core(TM) i5-4690K CPU @ 3.50GHz; 1 CPU, 4 physical cores per CPU,
total of 4 logical CPU units. The machine includes a single GeoForce GTX TITAN X
GPU, with 12.2GB GPU memory. For generating multi-instance experimental results,
we used a cluster of three multi-GPU machines with the following CPU specifications:
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Figure A.7: VAE reconstruction of projected road boundary images, with real images in
the left column and reconstructed images in the right column.
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Figure A.8: SAGE neural architecture overview.

2x Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz; 80 total CPU cores using a Cascade
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Table A.1: Network Architecture

Operation Input (dim.) Output (dim.) Parameters

Visual Encoder
Conv2d (N, chan, 42, 144), chan : 3→32 conv1 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv1, chan : 32→64 conv2 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv2, chan : 64→128 conv3 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv3, chan : 128→256 conv4 k:=(4,4), s:=2, p:=1, activation:=ReLU
Flatten — — —

Visual Encoder Bottleneck Representation
Linear (mu) N × h dim N × 32 —
Linear (sigma) N × h dim N × 32 —

Visual Decoder (only for pre-training Visual Encoder)
Unflatten — — —
ConvTranspose2d encoder.conv4: encoder.conv4.chan: 256 →128 convtranspose1 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose1, chan : 128 →64 convtranspose2 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose2, chan : 64 →32 convtranspose3 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose3, chan : 32 →3 convtranspose4 k:=(4,4), s:=2, p:=1, activation:=Sigmoid

Safety Actor-Critic
actor network — — —
q function1 — — —
q function2 — — —

Performance Actor-Critic
actor network — — —
q function1 — — —
q function2 — — —

Actor Network (Policy): SquashedGaussianMLPActor
Linear N × 32 N × 64 activation:=ReLU
Linear N × 64 N × 64 activation:=ReLU
Linear N × 64 N × 32 activation:=ReLU
Linear (projection: mu layer) N × 32 N × 3 —
Linear (projection: log std layer) N × 32 N × 3 —

Q function
speed encoder — — —
regressor — — —

Speed Encoder
Linear N × 1 N × 8 activation:=ReLU
Linear N × 8 N × 8 activation:=Identity

Regressor
Linear N × 42 N × 32 activation:=ReLU
Linear N × 32 N × 64 activation:=ReLU
Linear N × 64 N × 64 activation:=ReLU
Linear N × 64 N × 32 activation:=ReLU
Linear N × 32 N × 32 activation:=ReLU
Linear N × 32 N × 1 activation:=Identity

Table A.2: Learn-to-Race task [107] results on Track01 (Thruxton Circuit), for learning-
free agents, with respect to the task metrics: Episode Completion Percentage
(ECP), Episode Duration (ED), Average Adjusted Track Speed (AATS), Av-
erage Displacement Error (ADE), Trajectory Admissibility (TrA), Trajectory
Efficiency (TrE), and Movement Smoothness (MS). Arrows (↑↓) indicate di-
rections of better performance, across agents. Bold results in tables A.2 and
A.3 are generally best, however, asterisks (*) indicate metrics which may be
misleading, for incomplete racing episodes.

Agent ECP (↑) ED* (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)
HUMAN 100.0± 0.0 78.6± 5.2 79.29± 4.7 2.4± 0.1 0.93± 0.01 1.00± 0.02 11.7± 0.1

Random 0.50± 0.30 4.67± 3.2 11.90± 3.80 1.5± 0.60 0.81± 0.04 0.33± 0.38∗ 6.7± 1.1

MPC 100.0± 0.0 301.40± 10.10 45.10± 0.0 0.90± 0.10 0.98± 0.01 0.85± 0.03 10.4± 0.60

Lake architecture; memory of 512 GiB DDR4 3200 MHz, 16x32 GiB DIMMs. Each
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Table A.3: Learn-to-Race task [107] results on Track01 (Thruxton Circuit), for learning-
based agents.

Agent ECP (↑) ED* (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)
SAC 61.61± 38.57 272.75± 256.51 47.99± 30.9 1.54± 1.07 0.94± 0.02 0.28± 0.12 11.84± 2.12

SafeRandom (ours), δ = 3.0 36.46± 23.71 654.37± 447.05 8.44± 1.37 3.93± 0.21 0.81± 0.10 0.00± 0.00 13.21± 1.88

SafeRandom (ours), δ = 4.2 63.63± 39.46 761.80± 494.65 11.68± 1.07 2.74± 0.16 0.90± 0.07 0.02± 0.01 13.63± 2.01

SafeSAC (ours), δ = 3.0 25.70± 11.31 66.90± 23.22 49.67± 3.34 1.35± 0.05 0.86± 0.06 0.14± 0.05 8.46± 2.35

SafeSAC (ours), δ = 4.2 49.05± 41.66 617.52± 842.49 33.83± 26.21 1.80± 0.63 0.91± 0.12 0.07± 0.11 10.03± 2.75

(ours) 79.94± 23.20 59.19±29.99 53.28±3.76 0.99±0.17 0.91± 0.03 0.22± 0.03 9.27± 1.68

machine includes 8x NVIDIA GeForce RTX 2080 Ti GPUs, each with 11GB GDDR6 of
GPU memory. Experiments were orchestrated on the these machines using Kubernetes,
an open-source container deployment and management system.
All experiments were conducted using version 0.7.0.182276 of the Arrival Racing Simu-

lator. The simulator and Learn-to-Race framework [107] are available for academic-use,
here: https://learn-to-race.org.

A.6. Additional Results

Performance of the SafeRandom agent. Recall that the SafeRandom agent takes
random actions and uses the safety value function precomputed from the nominal model.
The optimal safety controller intervene whenever the safety value of the current state
falls belong the safety margin. The safety margin is necessary because 1) the nominal
model is a significant over-simplification of vehicle dynamics, and 2) the HJ Reachability
computation does not take into consideration of the physical dimension of the vehicle.
The performance of the SafeRandom agent at different safety margin is summarised

in Figure A.9. For safety margin ϵ ≥ 4.2, the SafeRandom agent can finish 80+% of the
lap, and thus we use ϵ = 4.2 as the safety margin for the SafeSAC agent. On the other
hand, the performance decrease drastically when the safety margin is reduced to 3.
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Figure A.9: Performance of the SafeRandom agent at different safety margin (averaged
over 10 random seeds)

SafeSAC & performance with same safe margin. While we choose the safety
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margin ϵ based on performance of the SafeRandom agent over a range of margins and
our best engineering judgement, some may wonder if the superior performance of over
SafeSAC may be attributed to the use of different safety margins. Thus, we also show
here the performance of a SafeSAC agent with the same safety margin as in Figure
A.10. Given the smaller safety margin, the ECP is low initially, which is inline with the
observation from SafeRandom. Furthermore, the ECP barely improves over time. As
the performance agent learns to drive faster, it is increasingly difficulty for the static
actor-critic to catch the vehicle in marginally safe states.
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Figure A.10: Performance of SafeSAC (ϵ = 3) with comparison to

Learn-to-Race benchmark results. In tables A.2 and A.3, we follow [107] in report-
ing on all of their driving quality metrics, for the Learn-to-Race benchmark: Episode
Completion Percentage (ECP), Episode Duration (ED), Average Adjusted Track Speed
(AATS), Average Displacement Error (ADE), Trajectory Admissibility (TrA), Trajec-
tory Efficiency (TrE), and Movement Smoothness (MS).
We highlight the fact that such metrics as TrA, TrE, and MS are most meaningful

for agents that also have high ECP results. Taking TrA, for example, safe policies score
higher ECP values but may spend more time in inadmissible positions (as defined by
the task, i.e., with at least one wheel touching the edge of the drivable area), compared
to policies without a safety backup controller that may quickly terminate episodes by
driving out-of-bounds (thus spending less time in the inadmissible positions). On the
other hand, policies that have low completion percentages also have low ED scores, due
to more frequent failures and subsequent environment resets.

We observe new state-of-the-art performance received by our approach, across the
driving quality metrics, in the Learn-to-Race benchmark.
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