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Dissertation Abstract 

Technological change leads employers to transform their demand for workforce skills, 
with dramatic consequences for the distribution of economic prosperity and the future of work. 
However, different technologies can place different and even opposing pressures on skill 
demand and organizational structure: they may drive increased or decreased division of labor 
or make workers of different skill levels more or less competitive with machines. To understand 
and respond to these changes, the objective of the research in this dissertation is to develop 
and explore frameworks for thinking about technological change in relation to labor and 
organizations. This dissertation seeks to address four questions of interest (in each of four 
corresponding chapters) for our understanding of technology change, labor outcomes and 
opportunities for policy and strategy. 1) What are the implications of two simultaneous 
technological changes (automation, parts consolidation) for labor skill demand within an 
occupation? 2) Why and how do technological changes differ in their effects on skill demand? 
3) How are the effects of technology change modified when applied to tasks of different types? 
4) How might organizational structure and technical uncertainty provide different opportunities 
for worker participation in new technology development and implementation?  
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Introduction 

Technological change can lead employers to transform their demand for workforce 
skills, with dramatic consequences for the distribution of economic prosperity and the future of 
work. This dissertation focuses on the intersection of technological change, production process 
structure, and skill demand in order to identify and understand differences in the labor 
implications of different technologies. The dissertation is organized into four major chapters, 
each based on a different stream of academic work.  

Chapter 1 is derived from work published in Industrial and Corporate Change 
(Combemale, Whitefoot, Ales and Fuchs 2021). We measure the labor-demand effects of two 
simultaneous forms of technological change—automation of production processes and 
consolidation of parts. We collect detailed shop-floor data from four semiconductor firms with 
different levels of automation and consolidation. Using the O*NET survey instrument, we 
collect novel task data for operator laborers that contains process-step level skill requirements, 
including operations and control, near vision, and dexterity requirements. We then use an 
engineering process model to separate the effects of the distinct technological changes on 
these process tasks and operator skill requirements. Within an occupation, we show that 
aggregate measures of technological change can mask the opposing skill biases of multiple 
simultaneous technological changes. In our empirical context, automation polarizes skill 
demand as routine, codifiable tasks requiring low and medium skills are executed by machines 
instead of humans, whereas the remaining and newly created human tasks tend to require low 
and high skills. Consolidation converges skill demand as formerly divisible low and high skill 
tasks are transformed into a single indivisible task with medium skill requirements and higher 
cost of failure. We conclude by developing a new theory for how the separability of tasks 
mediates the effect of technology change on skill demand by changing the divisibility of labor. 

Chapter 2 is based on my academic job market paper (Combemale, Ales, Fuchs and 
Whitefoot 2022). This paper develops a general theory relating technology change and skill 
demand that is capable of rationalizing the labor impacts of various technology changes since 

the 19 th century. Performers (human or machine) face stochastic issues that must be solved in 
a given time to complete tasks. Firms choose how production tasks are divided into steps, the 
rate at which steps need to be completed, and the type of performer assigned to a step. 
Performers differ in the breadth of issues they can solve (generality) and in their tolerance for 
working at higher rates. Human performers tend to be generalists with low rate-tolerance. 
Machine performers tend to be specialists less sensitive to rate. Central to the theory are the 
cost of fragmenting tasks into smaller steps, the cost of allocating performers to multiple steps, 
and the negative relationship between step complexity and the rate of completing that step. 
We derive the cost-minimizing division of tasks, the level of automation of production, and the 
demand for workers of different skills that those conditions create. Our theory predicts that the 
division of tasks under increased complexity is skill polarizing; automation is skill polarizing at 
lower production volumes and upskilling at higher volumes; and that parts consolidation 
increases the demand for mid-level skills. We find counterparts to the theory across a range of 
industrial contexts and time periods, including the Hand-Machine Labor Study covering 
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mechanization and process improvement at the end of the 19th century, contemporary 
automotive body assembly, and emerging technological changes in optoelectronic 
semiconductors used for communications.  

Chapter 3 is based on my work extending the model of Chapter 2 to encompass how 
technology change interacts with tasks of different types in affecting the problem of the firm. 
By introducing different types of tasks, this extension of the previous model investigates 
implications of tasks with high and low-variance of production issues for automation. A key 
result of the expanded theory is that, due to greater human competitiveness with machines 
under high variance conditions, polarization of skill demand due to automation is more 
pronounced at sufficiently low volumes when tasks are of low variance. However, we also show 
in the model that the upskilling effect of automation (rather than polarization) occurs at lower 
volumes for low-variance tasks than for high variance. This work is part of a broader and 
continuing expansion of the model to encompass implications of technology change for 
managerial scope and structure and the division among workers or machines of solving 
different types of issues that emerge from production (Combemale and Whitefoot 2022).   

Chapter 4 is based on qualitative work drawing on my extensive observations of 
optoelectronics production and firms and interviews (Combemale and Fuchs 2022). In this 
stream of work, we draw on qualitative evidence from leading-edge firms and organizations in 
the optoelectronics industry to identify organizational characteristics associated with 
manufacturing worker participation in innovation, which may present an alternative to the 
passive or adversarial experience of many workers with respect to technological change. We 
identify possible firm-level mechanisms for generating greater worker scope of influence in the 
innovation process and discuss potential policy implications and further work. We find that 
firms in our sample which are more vertically integrated (outsource less) from design to 
production exhibit a greater tendency to interface between technology developers and 
production workers, and in turn we propose that this may give workers a greater influence over 
how their work will evolve. We find also in our sample that firms on the experimental leading-
edge of process innovation, with limited theoretical foundations, emphasized a reliance on 
experiential knowledge (for production and technology design workers) to support 
development. We observed in such contexts that production workers were able to serve as 
local experts on the highly sensitive “black-box” characteristics of specific equipment or 
processes. These observations suggest that firm structure and technical certainty could 
influence the role and influence of workers as participants in technological change.  
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Chapter 1: Not all technological change is equal: how the separability of 
tasks mediates the effect of technology change on skill demand 

1. Introduction 

A sizable literature seeks to understand the influence of technological change on 
employment, wages, and skill demand of labor (Card and DiNardo, 2002; Autor et al., 2003; 
Bartel et al., 2007; Vivarelli, 2014; Ales et al., 2015; Acemoglu and Restrepo, 2017).1 Many of 
these studies hypothesize that computation and automation technology increases demand for 
high skills relative to “middle skills,” and that these technologies may explain wage inequality 
among skill groups (Autor et al., 2008; Acemoglu and Autor, 2011; Autor and Dorn, 2013). 
Scholars recognize that multiple forms of technological change can occur concurrently (Pauling 
1964; Stoneman and Kwon, 1994; Colombo and Mosconi, 1995; Goldin and Katz, 1998; Bartel et 
al., 2007).2 However, the existing literature does not separately measure simultaneous 
technological changes, in part because of difficulty distinguishing the effects given available 
data. Aggregate observations capture the joint effect of all simultaneous changes but not the 
effects of individual technological changes which may oppose (and thus mask) each other. 

We focus on disentangling the skill demand effects of two examples of technological 
change: automation and consolidation. Our focus industry is optoelectronics, a subset of the 
semiconductor industry. In optoelectronics, consolidation is a product innovation that allows 
multiple formerly discrete components to instead be produced as a single component 
(Schwedes, 2002). In optoelectronics, there exist competing designs that are perfect substitutes 
in the market, but with different levels of part consolidation and automation of their 
production. We collect data from four leading firms pertaining to five different product designs 

 
1 Studies in the literature have highlighted skill-biased technological change (SBTC) as a 

source of unequal labor demand outcomes across skill. SBTC heterogeneously affects relative 
productivity or capital substitution of different types of labor, thereby changing demand 
(Brynjolfsson and Hitt 1995; Dewan and Min 1997; Bresnahan et al. 2002).  

2 There is historical evidence in the engineering literature of widespread simultaneous 
technological changes across a range of industries (Abernathy and Utterback 1978). Examples 
include process changes in the 19th to mid-20th centuries driven by simultaneous innovations 
in machine tooling, materials, and electrification (Rosenberg 1963; David 1985; Hounshell 
1984). More modern cases include the simultaneous adoption of broadband technology and 
automation across industries (Gramlich 1994; Koutroumpis 2009), simultaneous consolidation 
(Lecuyer 1999) and automation (Pillai et al. 1999) in semiconductors, and simultaneous 
automation (Jamshidi et al. 2010) and adoption of additive manufacturing (Mueller 2012) in 
aerospace. These distinct technological changes may not only produce competing designs from 
a consumer perspective, but also variations in the factor (e.g. labor) content of production 
(Anderson and Tushman 1990). Moreover, simultaneous technological changes can be 
complementary or occur independently from each other, and different combinations of 
technologies can be implemented by different firms or regions (e.g. Chung and Alcacer 2002; 
Fuchs and Kirchain 2010; Fuchs et al. 2011; Fuchs, Kirchain, and Liu 2011), contributing to 
differential labor outcomes.  
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for functionally homogeneous devices. Our data include information such as cycle times, yields, 
material usage, and machine prices for 481 production process steps, as well as labor usage and 
skills requirements for those same steps. These data are used to populate a Process-Based Cost 
Model (PBCM), an engineering process model which unpacks a firm’s production function into 
individual process steps and uses empirical data and technical information to calibrate each 
step. This method allows us to construct diverse technological scenarios which separate out 
different technological effects. We extend the PBCM literature by using this model to 
determine how different technological change affects the demand for different levels of worker 
skill. 

We make three main contributions. First, we show that technological change can affect 
skill demand within an occupation: our direct measurements show that automation polarizes 
skill demands for operators by decreasing demand for middle skills. Second, we find that other 
forms of technological change (here, consolidation) can have opposing effects to automation, 
causing aggregate measures that do not disentangle the two to be misleading. Third, we show 
through direct measurement of process step level parameters and skills, that technological 
change can be tasked-biased as well as skill-biased, and that task composition mediates the 
effect of technology change on skill demand. 

We develop a new theory for how the separability of tasks mediates the effect of 
technological change on skill demand by changing the divisibility of labor. Specifically, we seek 
to explain how, as in our results, there can be both one-way skill biases and multimodal shifts in 
skill demand (i.e. convergence or polarization). Here, the separability of tasks is the cost (and in 
some cases feasibility) of having tasks completed separately from each other. Although multiple 
tasks can be grouped into a “job” held by a single worker, tasks must be separable from one 
another for the division of labor. The skill requirements of a job are the maximum of the skill 
requirements across tasks. By these definitions, as the separability of tasks declines, tasks are 
combined into jobs held by individual workers, and skill demand converges or increases. 
Further, the more tasks that are inseparable, the more difficult it is to automate those tasks. 

Our theory for how task separability mediates the effect of technology change on skill 
demand is relevant for labor economics, management, and policy. Our direct measurement of 
simultaneous technological changes allows us to uncover mechanisms by which different 
technologies can be expected to have different labor outcomes. For policymakers and firms, 
understanding how task separability mediates the effect of different technology changes on 
skill demand is important for technology-specific policy. Our findings and theory are especially 
important for policymakers concerned with job outcomes for high-school level workers: while 
these workers are historically vulnerable to technological displacement in aggregate (Autor and 
Dorn, 2013; Acemoglu and Restrepo, 2017), not all technology change has the same effect on 
skill demand, and a granular understanding of labor outcomes is necessary to avoid overly blunt 
assessments of technological risks for labor. 

2. Literature review 

We review three aspects of the SBTC literature: commonly discussed patterns and 
heterogeneity in SBTC; the measurement of skills; and the focus of the literature on historic 
factor substitutions. We then introduce the literature on the capability based theory of the 
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firm, specifically nuances in that literature with respect to technological heterogeneity and 
factor substitutability. We then review the literature on engineering process models and their 
applications in engineering and management to understand the effects of technological 
decision-making. 

With respect to heterogeneous SBTC, while skill biased technological change could 
potentially affect the relative marginal product of labor skill levels in many different 
combinations, the SBTC literature has typically measured aggregated outcomes that show 
increased productivity returns to skill. Examples of SBTC increasing the returns to higher skill 
include automation (Autor et al., 2003 Autor and Dorn, 2013) as well as information technology 
adoption both across the economy (Bresnahan ., 2002; Michaels et al., 2014; Atasoy et al., 
2016) and on the factory floor (Bartel et al., 2007). The literature has recognized that 
organizational change, process, and management innovations could lead to heterogeneous 
worker productivity effects (Goldin and Katz, 1998; Caroli and van Reenen, 2001; Ichniowski 
and Shaw, 2009). Goldin and Katz, for example, suggest that changes in process technology 
such as the assembly line can increase the relative demand for low skill, while their work shows 
that more recent innovations such as continuous processing shifts skill demand upward, 
consistent with other work on SBTC. However, despite the recognition of heterogeneous SBTC, 
the literature has not been able to separate the potentially different labor effects of 
simultaneous technological changes. 

Detailed characteristics of a technology have relevance for its productivity and hence 
labor implications (Bartel et al., 2004), such as the types of tasks susceptible to automation 
(Autor et al., 2003). More recent task-focused work on automatability through machine 
learning suggests that within automation broadly, different occupational tasks are more 
substitutable with different automation methods (Brynjolfsson et al. 2018). Though automation 
is a strong focus of the literature on technological change and labor outcomes, there is also 
evidence of nonautomated changes in process technology and of consolidation affecting the 
composition of production. Process changes such as the assembly line and continuous 
processing may both have shifted relative demand for skill (Goldin and Katz, 1998). 
Consolidation is an inherent feature of modularization (or demodularization) in product 
architecture, making it relevant to the composition of industry and the internal organization of 
firms and their production activity (Ulrich and Eppinger, 1995; Baldwin and Clark, 2003) and 
hence the organization of processes and the division of labor. 

The existing literature linking technological change and labor outcomes is also primarily 
focused on the effects of historical technological change on labor market outcomes, and thus 
may also face challenges anticipating the consequences of emerging technologies for labor 
demand. Emerging implementations of technologies such as machine learning, (Brynjolfsson et 
al., 2017, 2018) may affect the marginal product of different labor skill levels in distinctive ways 
from other historical technological changes. 

With respect to measurement of the effect of SBTC, the literature draws heavily (but not 
solely) on education and wages as proxies of skill (Autor et al., 2003; Acemoglu and Autor, 
2011; Carneiro and Lee, 2011; Autor and Dorn, 2013), although different technological changes 
may have important, heterogeneous effects on skill requirements within the same aggregate 
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category (e.g. manufacturing jobs with all the same low educational requirements). Measures 
such as past wages can offer more detail than education (Autor et al., 2003; Autor and Dorn, 
2013) but have the potential to mask important worker reallocations and other shifts in 
demand, such as inversions in the relative demand for different types of skills (whose levels are 
not necessarily correlated) which are simplified onto an axis of past wages (Lane, 2005). In 
addition to education and wage as intermediaries for skill, a literature has also emerged 
suggesting that technological change may substitute for labor in certain types of tasks, 
potentially replacing “routine” labor while increasing demand for cognitive work (Autor, 2013) 
and allowing jobs to be rebundled around tasks which remain nonautomated (Brynjolfsson et 
al., 2018). This task approach to measuring technological change is relevant within jobs of the 
same educational or wage band and may reflect labor substitution effects not measured by 
education or wage. 

Studies that collect detailed technical and operation skill and training information on 
operators describe the direction but not the magnitude or distribution of skill demand changes 
under technological change (Bartel et al., 2004, 2007). Bartel et al. measure whether specific 
skills became more or less important to operators (as determined qualitatively by managers) 
after an establishment adopted information technology. This work suggests skill bias in 
technological change among manufacturing operators but lacks measures for differences in the 
level of skill required and the share of operators affected. Such measures less easily describe 
the magnitude of shifts in skill demand, as well as possibly overlooking multidirectional effects 
of technological change within the same skill (i.e. rather than a bidirectional skewing of skill 
requirements). 

Distinct from SBTC, the capability-based theory of the firm views technological change 
as the path-dependent result of local conditions and firm capabilities (Wernerfelt, 1984), with 
the implication that factor substitution is not unconstrained in the manner assumed by 
traditional production functions (Dosi and Grazzi, 2006). Firms face technologically feasible 
procedures to produce certain outputs: the capabilities of firms influence which procedures are 
available to them and at what level of efficacy they can be performed (Barney, 1986; Teece, 
1993). Using a given procedure requires certain input ratios to actually produce the desired 
output, regardless of factor prices. These constraints on substitution underlie the “recipe” 
perspective in the literature, which views technology as a sequence of procedures (a recipe) 
which the firm must perform to produce a good (Dosi and Grazzi, 2010). This restriction is 
important for potentially separating technologically driven changes in the feasible space of 
factor input ratios from narrower substitutions by firms within a certain technological regime. 

In our study, technological restrictions on substitution offer a useful analytical lens to 
extend approaches such as those used in the SBTC literature. Although substitution is restricted 
for a given technology, technology adoption provides a channel for long-run factor substitution: 
this view makes it possible to identify technological effects on skill demand directly from 
engineering-level technological parameters. Even under the strictest constraints of a Leontief 
view of production; however, heterogeneous production functions (such as suggested by the 
capability based theory of the firm) can generate aggregate factor substitution (Johansen, 1972) 
of the form typically seen in the SBTC literature, preserving the analytical benefits of such 
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approaches. Thus, technological restrictions on substitution do not require the suspension of 
factor substitution. 

Engineering process-based models and data make it possible to explicitly map current 
and future technological change—including expected future design decisions—to production 
processes, operations and hence factor demand at scale (Pearl and Enos, 1975; Fuchs and 
Kirchain, 2010). PBCMs have been used in engineering and management to understand the 
effects of technological decisions on factor demands and costs prior to large-scale investments 
(Bloch and Ranganthan, 1991; Field et al., 2007; Fuchs et al., 2008). These models have 
informed engineering and production decisions in multiple industries (Field et al., 2007; Ulu et 
al., 2017; Laureijs et al., 2018). Previous work (Fuchs and Kirchain, 2010; Fuchs et al., 2011b; 
Fuchs, 2014) used engineering models to show how shifting from a developed to a developing 
country changes which advanced products it is profitable for firms to pursue, thus questioning 
traditional assumptions in gains from trade. Whitefoot et al. (2017) use engineering models 
combined with oligopolistic equilibrium models to estimate the influence of energy efficiency 
regulations on technology adoption and tradeoffs with other product characteristics without 
conflating unobserved characteristics that are difficult to address econometrically. 

Engineering process models relax typical assumptions of classical production functions 
(e.g. time-constant factor share and degree of factor substitution) to capture novel factor 
substitutions and production relationships that may be important to the effects of technological 
change on factor demand and other economic behavior (Chenery, 1949; Pearl and Enos, 1975; 
Wibe, 1984; Smith, 1986; Lave, 1996). Thus, engineering process models accommodate 
heterogeneity in equipment, labor, and material input. Prior models have been used to 
simulate production, estimate cost, and simulate technology decision-making, but ours is the 
first to use a PBCM to study the implications of technological change on labor outcomes or to 
disentangle the implications of different forms of technological change.3  

3. Technology, firm and industrial context 

Consolidation occurs when multiple formerly discrete parts are designed as one 
component (Schwedes, 2002; Johnson and Kirchain, 2009). Consolidation is a product 
innovation with many process implications. Consolidation is enabled by technological advances 
in design (e.g. topology optimization), materials (e.g. composites or strained silicon), and 
processes (e.g. additive manufacturing or e-beam lithography). Consolidation can help reduce 
fabrication and assembly costs in manufacturing, (Smith, 1999; Selvaraj et al., 2009; Atzeni and 
Salmi, 2012) and improve performance in software design (Barrett et al., 1996; Sanner, 1999) 
and healthcare services (Doherty and Brensinger, 2004; Pitroda and Desai, 2017).4 Table 1 
provides examples of consolidation across several high value manufacturing industries. 

 
3 Not only is this application novel, developing it required changes to existing process 

models, to build skill requirements into each process step (described in detail in Appendix 1.1). 
4 A keyword search of global patents (Google Patents) shows that either "consolidation" 

or "integration" are mentioned in approximately 5 million patents from 1878 to the present 
(and 567,344 patents since January 1, 2009), including 2.37 million patents that also have the 
keyword "manufacturing" and 3.78 million patents that include keywords "software.” Other 



8 
 

Table 1 Examples of Consolidation by Industry and Number of Parts Consolidated 

Industry Example Parts Consolidated 

Aerospace 

(Thompson et al 2016) 

Additive manufacturing: 

fuel nozzles and engines 

18 parts to 1 (nozzle) 

855 parts to 12 (engine) 

Automotive  

(Fuchs et al 2008) 

Steel to polymers: auto 

bodies 

250 to 62 

Electronics 

(Moore 1995) 

Monolithic integration: 

transistors 

120 parts to 1 

Optoelectronics 

(NAS 2013) 

Monolithic integration: 

lasers  

20 parts to 3 

Automation changes the performer of a task from human workers to machines (Frohm 
et al., 2008). Automation is a process-based (rather than product design, as in consolidation) 
technological change (Carpanzano and Jovane, 2007). Automation is often described within the 
literature as skill-biased, principally eliminating manual or routine jobs and increasing demand 
for higher-skilled labor (Autor and Dorn, 2013). 

The optoelectronic devices on which we focus in this study combine electronics and 
photonics (light) to send and receive information. Optoelectronic device production can be 
broken into four main categories: (i) fabrication, (ii) subassembly, and (iii) final assembly (see 
Figure 1), with (iv) testing throughout the other three categories. In fabrication, materials are 
deposited and etched in specific sequences to control the behavior of electrons and photons 
(NAS, 2014). In subassembly, components are connected to one another according to the 
device architecture. In final assembly, optical fibers are attached to the device substrate, and 
the device is put into a standardized metal casing, or package. Testing throughout the process 
consists of visual inspection and machine-based tests of various device functions. See Appendix 
5 for further detail on the process steps. 

 
sectors include electronics (668,740 results), automotive/automobile (208,322 results), 
aerospace (20,934 results) and healthcare service (8,463 results). 
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Figure 1 Process Flow Categories 

In the optoelectronics industry, functionally homogeneous designs have different levels 
of consolidation: low consolidation designs with individual discrete components mounted onto 
a semiconductor wafer; medium consolidation (called “hybrid” integration by the industry) with 
some discrete parts fabricated together as single components; and high consolidation (called 
monolithic integration), with multiple components fabricated as one rather than assembling 
them together (NAS, 2013; Yang et al., 2016). 

The optoelectronics industry is globally distributed. Optoelectronics fabrication is 
concentrated in the USA and Japan, although capabilities also exist in China and Taiwan: 
optoelectronics fabrication is highly automated regardless of location. Assembly activities are 
spread throughout Europe, North America and East and Southeast Asia, with generally greater 
automation in North America, Japan and South Korea (NAS, 2014). Although fabrication and 
assembly of various designs is performed worldwide, the most consolidated designs tend to 
have production more often located in the USA and Japan. 

Optoelectronics is a particularly conducive case for heterogeneous technology regimes 
because even standardized optoelectronic devices permit significant internal variation in 
design. Competition in the specific optoelectronic devices we study is driven primarily by price 
(Fuchs and Kirchain, 2010; Personal Interviews with Industry Leaders).5 Prior research (Fuchs et 
al., 2011b) suggests that a low-cost leader did not exist among products with different levels of 
consolidation as far back as the mid-to-late 2000s. There are also widespread barriers to the 
adoption or replication of capabilities outside a firm, including specialized workforce 
requirements and technological uncertainty, which can provide the conditions for technological 

 
5Industry interviews also suggest some competition around serving client-firm needs, 

but customization is typically around form factor and hence independent of internal 
component consolidation. 
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heterogeneity (Wernerfelt, 1984; Peteraf, 2003). Even production scale-up within the same firm 
can mean shifting to new and uncertain production methods. 

4. Methods and research design 

4.1 Constructing the production function using engineering PBCMs 

We use engineering PBCMs to construct counterfactuals of technological changes at 
each production process step, which then allow us to map their consequences for skill demand. 
These models are constructed based on firm production plans across different contexts, basic 
scientific principles, and observations of production activities before and after a technological 
change (Bloch and Ranganthan 1991; Fuchs et al., 2006). For our purposes, the PBCM has the 
following advantages: (i) it allows us to recover production functions without relying on 
structural assumptions that may not be well supported by the nature of a technology or 
production process, (ii) it makes use of process step-level inputs rather than aggregate data, 
allowing us to map technological characteristics (such as the level of automation) directly to the 
production tasks and associated labor consequences, and (iii) it allows us to disentangle the 
labor demand implications of simultaneous technological changes by constructing 
counterfactual technological configurations that are technologically feasible but not observed 
in historical firm operations.6 

A PBCM unpacks the aggregate production function of a single product into individual process 
steps by mapping the product design (e.g. geometry) and process design (e.g. level of automation) 
decisions to actual technical parameters in each process step (e.g. cycle time, labor usage, equipment 
type, yields) and relationships among process steps (described in detail in Appendix 1). Our empirical 
values for model parameters allow us to implicitly represent the optimized production possibility 
frontier (e.g., resolving bottlenecks, minimizing worker downtime, etc.) conditional on technology 
choices, within the PBCM. These parameters come from product design, process, and factor input 
information collected from firms, such as the number of workers per machine. Each value represents 
locally efficient choices by the firm with respect to a production function given by a specific process and 
product technology. 

The process model takes as inputs the sequence of process steps (the “process recipe”) 
needed to produce the specified product design, and the choice of possible equipment 

 
6An alternative approach to capturing the production process is an Agent Based Model 

(ABM), which is a class of computational model that has been used to characterize transport 
and supply chains and other sequences of input-output relationships, including in 
manufacturing (Madureira and Santos 2005; Datta 2007; Holmgren et al 2012). The nature of 
the data captured for this study does not include the necessary statistical or scheduling 
information (e.g. shipping schedule) to model dynamics within the plant using an ABM. An 
advantage of the PBCM is that model’s assumptions about production relationships are 
embedded statically rather than stochastically, making it easier to follow how input parameters 
propagate through the model and, in turn, to develop mechanisms for how changes in inputs or 
model structure (e.g. technological changes to process flow) generate to outputs such as skill 
demand. Moreover, the PBCM allows us to characterize the efficient production possibility 
frontier for different technologies, whereas an ABM does not necessarily guarantee this 
outcome. 
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alternatives required to complete each step. The production of a final good can be thought of 
as a set of steps Φ = {1,… , n} ⊂ ℕ. Process steps may be thought of as collections of tasks that 
are performed with or on common equipment, toward a common intermediate output, by 
labor of the same type, without any intervening tasks that deviate from these three criteria.   

We label product technology, 𝑟 ∈ ℕ: for each 𝑟, there is a set of steps Φr to achieve the 
final product. Each step 𝑠 has a set 𝑃𝑠,𝑟 ⊂ Φr of steps that precede it (i.e. which must be 

completed before step 𝑠 can be completed),7 giving the total production process a “recipe” 
consisting of a set of steps Φ𝑟  and a corresponding collection of preceding steps 𝑷(𝑟) =

{𝑃𝑠,𝑟}|𝑠=1
𝑛 . Product technology affects the set of steps and the sequence (i.e. the precedents of 

steps) required to achieve the final product.  

Product technology also determines which process technologies, given by Ts,r ⊂ ℕ are 
available to perform each step (hence Ts,r corresponds to step 𝑠 and product technology 𝑟). 

Each step is performed using a technology labeled by 𝑡𝑠,𝑟 ∈ 𝑇𝑠,𝑟. 

PBCMs take labor, capital, and material as inputs to production. Each step 𝑠 has its own 
Leontief relationship, determined by process technology 𝑡𝑠, to generate output 𝑞𝑠: 

(1) 𝑞𝑠 = 𝑞(𝐾𝑠, 𝐿𝑠,𝑀𝑠 , 𝑡𝑠, 𝑃𝑠,𝑟) =

min {𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠), 𝑔𝑠,𝑡𝑠,𝑟
(𝐿𝑠), ℎ𝑠,𝑡𝑠,𝑟

(𝑀𝑠), {𝜎𝑠,𝑗,𝑡𝑠,𝑟
(𝑞𝑗)|𝑗𝜖𝑃𝑠,𝑟}} 

where 𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠) is a function of the capital inputs 𝐾𝑠 to step 𝑠, 𝑔𝑠,𝑡𝑠
(𝐿𝑠) a function of the labor 

input(s) 𝐿𝑠 and ℎ𝑠,𝑡𝑠,𝑟
(𝑀𝑠) a function of the material input(s) 𝑀𝑠 to step s. Each input term is 

possibly a vector of heterogeneous inputs (e.g. different types of machine under capital). 

𝜎𝑠,𝑗,𝑡𝑠,𝑟
(𝑞𝑗) is a function relating the output of other steps 𝑗 as inputs of step 𝑠, provided that 

these steps precede 𝑠. 

The Leontief functional form is used in PBCMs in many industrial contexts (Ngueyn, 
Tommelein and Ballard 2008; Fuchs et al 2008; Fuchs et al 2011; Ciez and Whitacre 2017; 
Laureijs et al 2019). Firms face a series of technologically feasible procedures with restrictions 
on the ratios of inputs to achieve a desired outcome. These restrictions do not prevent factor 
substitutability, however; aggregation across technologically heterogeneous production plants 
generates factor substitution (Houthakker 1955), and the choice of process technology by firms 
can change the optimal ratio of factors, providing factor substitutability through technology. In 
addition to being common in PBCMs, our interviews with plant managers and engineers 
highlighted both fixed input ratios to production under given technological parameters and the 
possible motivation of changing technology to alter these ratios of inputs (i.e. to perform factor 
substitution across technology choice).8 

 
7 This set may be empty in the scope of the model, including but not limited to the first 

step in a process. Steps may precede 𝑠 directly, in the sense of 𝑠 requiring an input produced in 
step 𝑖, or indirectly in terms of step 𝑠 requiring a direct input from a step that itself depends on 
the preceding steps. 

8This construction also aligns with the recipe view of technology in the capability-based 
theory of the firm (Dosi and Nelson 2010), in which it is not necessarily possible for a firm to 
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We use the “final step” of production to capture the production function of the entire 
process. By construction, a production process has one and only “final step,” 𝑛, such that for 
𝑖 ∈ 𝑃𝑛,𝑟  , ∀𝑖 ∈ Φ𝑟 , 𝑖 ≠ 𝑛 and (indicating an exclusive final step) ∄𝑗 ≠ 𝑛 s. t. 𝑖 ∈ 𝑃𝑗,𝑟  , ∀𝑖 ∈ Φr. 

Thus, the production structure given by 𝑃𝑛,𝑟  builds in all preceding steps. The inputs from prior 

steps into a step can also be incorporated. For a final product output volume of 𝑦 units, the 
production function embedded in a PBCM is analogous to the output of the final step: 9 

(2) 𝑦 = 𝑞𝑛 

Based on this relationship, one output of the PBCM is the minimum operator labor required per 
process step to satisfy a given production volume for given technological parameters: 

(3) 𝑞𝑠(𝑞𝑥) = ∑  𝜎𝑠,𝑗,𝑡𝑠,𝑟
−1 (𝑞𝑥)𝑥|𝑠∈𝑃𝑥(𝑟)  

(4) 𝐿𝑠
min(𝑞𝑛 , 𝑟, 𝑡𝑖|𝑖 ∈ Φ𝑟) = 𝑔𝑠,𝑡𝑠,𝑟

−1 (𝑞𝑠(𝑞𝑛)) 

where 𝜎𝑠,𝑗,𝑡𝑠,𝑟
−1  is the output of step 𝑠 encoded as material inputs to satisfy 𝑞𝑥. 

From process inputs per step, we map the inputs required to meet operations at scale.10 
Given input prices, the PBCM can then map from operations at scale to production cost (for a 
deeper engineering characterization of our PBCM, including cost functions, see Appendix 1).  

We now incorporate skill requirements for each step into our model. There are multiple 
skill types, indexed by 𝑣 ∈ ℕ (e.g. dexterity). A step with product technology 𝑟 and using 

process technology 𝑡𝑠,𝑟 has skill requirements for each skill type: 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) =

{𝑑𝑠
1(𝑟, 𝑡𝑠,𝑟),… , 𝑑𝑠

𝑣(𝑟, 𝑡𝑠,𝑟)}, where 𝑑𝑠
𝑣(𝑟, 𝑡𝑠,𝑟) indicates the level of skill required 𝑑 ∈ ℕ for skill 

type 𝑣.11  

Workers are indexed by their skill level across each skill type: a worker type indexed by 

𝑗 ∈ ℕ has a unique set of skill levels across skill types given by 𝐴𝑗 = {𝑎𝑗
1, … , 𝑎𝑗

𝑣}, where 𝑎𝑗
𝑣 is the 

 
trade off between any two inputs (e.g. butter and eggs in making a cake) without changing the 
final product or at least following a different recipe (Dosi and Grazzi 2006).  Indeed, changing 
the recipe to allow a different ratio of inputs would amount in our model to changing the 
production technology, and some factor ratios are simply (currently) infeasible in the domain of 
available production technologies. 

9 Equation (2) is analytically equivalent to 𝑦 =

min{ 𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠), 𝑔𝑠,𝑡𝑠,𝑟
(𝐿𝑠), ℎ𝑠,𝑡𝑠,𝑟

(𝑀𝑠), {𝜎𝑠,𝑗,𝑡𝑠,𝑟
(𝑞𝑗)|𝑗𝜖𝑃𝑠,𝑟}}|1

𝑛 

where the production process consists of process steps indexed 1 to 𝑛 and final output 
is simplified from the minimum of the output 𝑞𝑖  of each process step. The choice of product 
technology, by changing the steps and relations among steps in a production process 
represents a form of factor substitution in addition to the previously mentioned substitutability 
by production technology.  

10 The firms that we studied did not exhibit scale diseconomies or operate at volumes or 
under conditions suggesting scale diseconomies, and so we exclude any such relations from our 
model. 

11In our empirical context, our skill level data take values in the set {1,… ,7} for each skill 
type. 
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level of skill of worker type 𝑗 in skill type 𝑣. Note that 𝑎𝑗
𝑣 > 𝑎𝑖

𝑣 implies that worker 𝑗 is more 

skilled on that dimension than worker 𝑖. 

Labor inputs to step 𝑠, previously given as 𝐿𝑠, now also include the subscript 𝑗 for a 
complete notation of 𝐿𝑠,𝑗, indicating which type of worker is used in the step. The labor term in 

the production function now takes the expanded formulation:  

𝜀𝑠,𝑡𝑠,𝑟
(𝐿𝑠,𝑗) = 𝑔𝑠,𝑡𝑠,𝑟

(𝐿𝑠,𝑗)𝜃𝑠,𝑡𝑠,𝑟
(𝐴𝑗). 

 This formulation builds in the skill requirements of the step and the output effect of the 
labor type used failing to meet skill requirements. If the worker has a lower skill level on any 
dimension than the skill requirements of step 𝑠, then the output of the step will always be 0: 

𝜃𝑠,𝑡𝑠,𝑟 ( 𝐴(𝐿𝑠,𝑗)) ≔ {
1 if ∄𝑖 𝑠. 𝑡. 𝑎𝑗

𝑖 ∈ 𝐴𝑗  < 𝑎𝑠
𝑖 ∈ 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) 

0 if ∃𝑖 𝑠. 𝑡. 𝑎𝑗
𝑖 ∈ 𝐴𝑗  < 𝑎𝑠

𝑖 ∈ 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) 
.  

Thus, the production function building in worker skill now takes the form: 

(5) 𝑞𝑠
𝑠𝑘𝑖𝑙𝑙 = min {𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠), 𝜀𝑠,𝑡𝑠,𝑟

(𝐿𝑠,𝑗), ℎ𝑠,𝑡𝑠,𝑟
(𝑀𝑠), {𝜎𝑠,𝑗,𝑡𝑠,𝑟

(𝑞𝑗)|𝑗𝜖𝑃𝑠,𝑟}}. 

We assume wages are strictly increasing in labor skill level for any skill type without any 
additional output from higher labor skill, so that firms will choose labor inputs 𝑗 in step 𝑠 so that 

𝐴𝑗 = 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) . 

We use our PBCM to estimate the quantity of labor demanded (i.e. changes in 𝑎𝑠
𝑚  

leading to different required inputs for operations at scale) at differing levels of rated skill 
difficulty. We use the sum of labor required across process steps with a given skill level (1-5) 
and type to estimate the total quantity of labor required at that skill level. This information is 
used to generate quantitative (i.e. production process level) estimates of the direction(s) and 
magnitude of technological change effects on relative demand for different labor skills.12  

4.2. Research design 

Using a PBCM allows us to use well-documented, empirically founded structural rules 
(Appendix 1) to strip out possible covariation in automation and consolidation (or indeed firm 
heterogeneity) and recover causal, process step-level mechanisms relating each technological 
change to skill demand. To provide the necessary variation for our analysis, our sample covers 
positions across the industry technological domain, including firms at the technological frontier 
of the industry in terms of the level and timing of consolidation and automation, as well as 
firms with relatively low levels of automation and/or consolidation. The five firm product 
designs included in our study account for between 42% and 44% of the total annual output on 

 
12We also use our model to capture changes in relative demand to show changes in 

labor demand per unit output. That is, for constant volume, we show that the number of 
workers would decrease (or increase) given a technological change, and more precisely how the 
number of workers will change by skill level. However, our analysis does not include any 
prediction on changes in volume: thus, because technology change might also lead to a change 
in volume, we cannot predict whether the total number of employees in an industry will 
change. 
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the global market (see Table 2). Using this coverage of the industry, we construct four scenarios 
(A, B1, B2, and C) to separate the implications of automation and consolidation on skill 
demand.13 

Table 2 Normalized Annual Production Volume and Share of Industry Production by Product 
Design14 

Product Designs Industry Share (High 
Estimate) 

Industry Share (Low Estimate) 

Design 1 9% 9% 

Design 2 16% 15% 

Design 3 8% 7% 

Design 4 4% 4% 

Design 5 8% 7% 

Total 44% 42% 

The separation of automation and consolidation in our research design across four 
scenarios is illustrated in Table 3: it shows the positioning of each scenario in terms of its level 
of consolidation and automation. Note that scenarios B1 and B2 have the same level of 
consolidation but differ in their level of automation. Our research design consists of comparing 
skill demand generated across these four scenarios: changing consolidation changes the 
process flow, while changing automation changes which inputs are used in each step (e.g. a 
machine vs. a human). 

Table 3 Research Design: Consolidation without Automation, Automation without Consolidation 

 Low 
Consolidation 

Medium 
Consolidation 

High 
Consolidation 

Low 
Automation 

Scenario A Scenario B1  

High 
Automation 

 Scenario B2 Scenario C 

The production sequences that make up each scenario in our research design are drawn 
directly from firm production flows: that is, a step (e.g. die-attach) occurs in the same order as 

 
13Automation and consolidation were chosen because they were identified as significant 

sources of technological heterogeneity across firms based on our line observations and 
interviews with industry leaders. Other types of technologies, such as digitization or process 
standardization had little or no variation in our industry sample. For example, technologies 
supporting digitization and interconnection, logistics software, shop-floor statistical data 
collection and part-tracking capabilities had already been uniformly adopted in the firms that 
we studied. 

14 Low share estimates are based on upper bound estimates of industry production (Yole 
2016) and lower bound estimates of firm production volume. High share estimates are based 
on lower bound estimates of industry production and upper bound estimates of firm 
production volume. 
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in a real process, but our scenario analysis may rely on multiple feasible ways to perform that 
step based on our real-world observations.15 For each scenario, we create a baseline production 
function, and then multiple reconfigurations of the production functions based on observed 
inter-firm variation in inputs,16 in order to generate cost best case and worst case (i.e. 
minimizing and maximizing given the per-step inputs available across firms) and labor 
minimizing and maximizing configurations (see Appendix 1.2).17  To control for consolidation 
across our counterfactuals, we use consistent process flows (i.e. the same steps in the same 
order) but allow the level of automation of the steps to vary. Conversely, to control for 
automation, we generate counterfactuals with different process flows (i.e. to produce different 
designs) but with consistent levels of automation for all steps following Frohm et al.’s (2008) 
taxonomy of level of automation.18 We validate our model and scenarios by comparing our 
aggregate required input estimates to produce each firm’s device against in-house aggregate 
input quantity and cost estimates (see Appendix 2.3). 

Figure 2 shows a diagrams of the three levels of consolidation represented in our 
scenarios and indicates for each level of consolidation which components are consolidated; 
components consolidated with each other are fabricated as a single component with no 
assembly required.19 In the low consolidation case, each function of the device is performed by 
a different component, which must be fabricated individually and assembled into the whole. In 
medium consolidation, some functions are consolidated into a single component, requiring 
more complex fabrication but less assembly. The move from low to medium consolidation also 
involves collapsing some parallel production tasks into a single sequence. In high consolidation, 
further functions are consolidated into a single component, further reducing assembly. 

 
15 Fabrication is already highly automated across the industry (NAS 2013) and therefore 

does not vary across our automation scenarios. 
16 A firm may have the most efficient overall production of a design compared to other 

firms without having the most efficient configuration for each step required for producing that 
design. 

17 The development and implementation of an estimation process for interfirm variation 
in production cost and labor demand represents a methodological innovation of this paper over 
prior engineering process models.  

18Our sorting of tasks by level of automation is robust to the use of a widely cited 
taxonomy of level of automation other than Frohm et al: Kaber and Endsley (1997) (see 
Appendix 2.2).  

19Our firm domain includes the production of two designs that match our low 
consolidation case and three that match our medium consolidation case. There are no designs 
currently on the market that match our high consolidation case: we use process flows from 
Fuchs et al. (2011) for the high consolidation design and update their structure and inputs 
(including novel skills data) with data from across our sample firms (See Appendix 4). 
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Figure 2 Optoelectronic Products and Components by Level of Consolidation 

Our model specification and data allow us to identify technological parameters using 
only a subset of the equilibrium conditions: firm-level feasibility and firm-level optimality.20 We 
address two threats to econometric identification in Appendix 2.6: (i) changes in labor demand 
may be driven by firm characteristics as well as technological change and (ii) technological 
change is not geographically uniform. In brief, we address (i) by varying process steps used in 
our scenarios across multiple firms with distinct organizational characteristics and we are 
unconcerned by (ii) because we find that changes in skill demand with technology are 
consistent across the multiple countries in our sample. 

5. Data collection and model inputs 

We collect data on the required experience, education, training time, and skill levels of 
physical and cognitive skills to complete the tasks associated with every single process step (see 
Table 4). Our sample comprises four firms in total. These firms have operations across North 
America, Europe, Japan, China and Southeast Asia and include two of the broader industry’s 
largest companies by revenue as well as by volume. 

Of the six empirical process flows and attendant step-level parameters in our dataset, 
five were freshly collected from our four sample firms and populated for this article, and the 
sixth process flow (taken from the data used in Fuchs, 2011) was reverse-populated with novel 
skills data. Empirically, the process flows for the devices are from firm settings that dedicate 
one single line to produce the device. 

We contacted 12 firms and collected novel, extensive process data from four firms on 
five different processes. PBCMs used in the literature (e.g. Johnson and Kirchain, 2009; Fuchs et 
al., 2011a,b) require collecting data on more than 20 inputs for each step of the production 

 
20 The identification relies on our (empirically grounded) assumption that for each step 

of production the underlying relationship between factor inputs is Leontief so that for all factor 
prices, firm optimality implies a fixed ratio of inputs. 
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process. We scope our analysis to focus on the production line in each firm associated with the 
case optoelectronic device, and the immediate inputs associated therewith. For each of 481 
process steps, we collected standard operational inputs to a PBCM, such as yield rate21, cycle 
time22, and wages23 (see Appendix 2.2). We collected mean values as well as weekly maximum 
and minimum values for these inputs.24  

We measure skill requirement levels using the Department of Labor’s “Occupational 
Information Network” (O*NET) survey instrument, which rates skills using a 1-7 scale. The scale 
includes example anchors, shown to result in reliable and consistent ratings.25 For example, a 
dexterity level of 2 indicates the task requires a similar difficulty of dexterity as placing coins in 
a parking meter, while a dexterity level of 6 indicates a similar level of difficulty as assembling 
the inner workings of a wristwatch. We chose to collect data on operations and control, near 
vision, and dexterity based on our initial observations and interviews26 (O*NET). Although we 

 
21 Defined in our model as the number of pieces passing through a process step for 

processing at the next step. 
22 Defined in our model as the time to process a full batch (including any rejected parts) 

through a process step. Batch size is a per-step characteristic, often dependent on equipment 
type. 

23 Wages do not include the cost of employee benefits (e.g. health insurance). An 
estimated increase of 20% in the cost of labor to approximate these costs did not significantly 
alter results. 

24 We do not collect overhead and indirect labor costs: There is wide variation in the 
range of other products produced by the firms, and thus, significant variation in indirect inputs 
and overhead across firms derived from other products than the device of interest. We also do 
not collect data on energy usage, as prior data suggests that energy costs are negligible (Fuchs 
et al. 2011).  

25 The O*NET taxonomy was devised for use by the U.S. Bureau of Labor Statistics based 
on taxonomic methods common in the literature (c.f.e. Meehl and Golden 1982; Carrol 1993) 
and reflects a continuation of interest and capability typologies used in past skill tests (Dvorak 
1947) and occupational databases (e.g. Dictionary of Occupational Titles). The O*NET content 
model and survey instrument draws on an extensive literature for measuring and categorizing 
skills (Peterson et al. 1999) and abilities (Dvorak 1947; Meehl and Golden 1982; Carrol 1993; 
Geisinger et al. 2007); taxonomies of ability have been used in labor and psychology contexts to 
characterize individuals (Fleishman and Reilly 1992), and a literature has emerged specifically 
around developing taxonomies of ability, skill and tasks for O*NET and similar databases 
(Borman et al. 1999). Hence, the categorization of skill and ability and the calibration of skill or 
ability descriptions (e.g. level of precision) are well supported by examples and methods from 
past literature. 

26 Within the O*NET survey instrument, finger dexterity and near vision are physical 
abilities, while operations and control is a cognitive skill: “an ability is an enduring talent that 
can help a person do a job” and a “skill is the ability to perform a task well.” With reference to 
minimum capabilities and in connection to the task literature, however, we refer to all three 
dimensions as “skill requirements.” 
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employ a 1-7 scale based on the O*NET survey, no tasks in our study exceeded a difficulty 
rating of 5. This is unsurprising, as ratings of 6 or 7 reflect very high skill requirements (e.g. air 
traffic control).27 

Table 4 Labor-Related PBCM Inputs Collected 

Input Name Range/Typical Values 

Training and Experience 

Years of Education, Experience Education: Operator 8-12 years, Technician 14 
years, Engineer 16-18 years 
Experience: 0 – 2 years 

Training Time 3 to 30 days Training 

Annual Turnover Rate 10% to 33% 

Skill Requirements 

Operations and Control 
Controlling operations of equipment or systems 

 

2 = Adjust copy machine settings 
4 = Adjust speed of assembly line based on product 
6 = Control aircraft approach and landing at large 
airport 

Operations Monitoring  
Watching gauges, dials, or other indicators to 
make sure a machine is working properly. 
(collected but not reported in results due to close 
correlation with Operations and Control) 

2 = Monitor completion times while running a computer 
program 
4 = monitor machine functions on an automated 
production line 
6 = monitor and integrate control feedback in a 
petrochemical processing facility to maintain production 
flow 

Near Vision 

The ability to see details at close range (within a few 
feet of the observer) 

2 = Read dials on car dashboard 
5 = Read fine print 
6 = Detect minor defects in a diamond 

Dexterity 

The ability to make precisely coordinated movements of 
the fingers of one or both hands to grasp, manipulate, 
or assemble very small objects 

2 = Put coins in a parking meter 
4 = Attach small knobs to stereo equipment on assembly 
line 
6 = Put together the inner workings of a small 
wristwatch 

 
27 The existing O*NET database does not include the industry or establishment level 

detail to assess technological mechanisms at the process step level. Past studies in SBTC have 
used O*NET’s predecessor, the Dictionary of Occupational Titles (DOT) to measure changing job 
task and occupational requirements (Autor, Levy and Murnane 2003; Lewis and Mahony 2006) 
and employment polarization (Goos et al. 2009), but these studies use skill ratings for highly 
aggregated job descriptions (e.g. a machine operator) without capturing detailed skill 
heterogeneity at the level of specific production tasks (e.g. running an automated wire bond 
machine).  
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In addition to our process inputs and skill data for each of our 481 process steps, we 
have even more detailed worker task descriptions for 78 of our assembly process steps.28 For 
these process steps, we collect the level of automation for every task that makes up the step 
(e.g., within the same process step, an adhesive application task may be automated but a part 
inspection task may be manual).  

6. Empirical results 

6.1 Cost Curves and coexistence of competing technologies 

As can be seen in Figure 3, we find that a low-cost leader does not currently exist across 
different levels of consolidation and automation in the optoelectronics industry: the range of 
possible costs of production for optoelectronics firms are overlapping in any of the 
technological regimes that make up the dominant share of the industry by volume or revenue. 
This result holds strongly as annual production volumes increase, suggesting that even as firm 
or industry size grows, a dominant regime still does not necessarily emerge. All cost 
configurations correspond to fabrication sited in the USA, assembly sited in Developing East 
Asia for low automation scenarios and assembly sited in the United States for high automation 
scenario, though even in the same geographic context it may be possible for technological 
regimes to coexist, depending on firm capabilities. The dotted lines in the figure reflect our 
baseline configurations while the bands represent the best and worst case configuration of 
each technology scenario (with normalized axes to protect firm confidentiality): these show 
how different capabilities and strategies could map to cost. 29 

As can be seen in Appendix 3.5, the production cost implications from automation and 
consolidation differ with geographical context. Underlying our findings is a greater diffusion of 
some forms of consolidation (specifically, medium consolidation) worldwide than of 
automation. Lower wages in the developing world reduce the production cost savings from 
automation. In the developed world, automation has the greatest comparative value (vs. the 
developing world) in labor-intensive steps like assembly. As consolidation increases fabrication 
and reduces assembly steps, the production cost savings are greater in the developed world 
due to more expensive labor. However, at the lower edge of the cost distributions (i.e. the 
possible technical frontier), the returns to consolidation are more equal between developed 
and developing country firm locations. Consequently, consolidation offers savings across 
geographic context, which can encourage wider diffusion. 

Consistently across geographic contexts, however, automation permits more 
incremental capital investment than consolidation: where a single production step may be 
automated independently of the others (as indicated by the diversity of automation in our 

 
28These detailed task descriptions are drawn from the assembly processes of low as well 

as medium consolidation designs with process steps corresponding to both low and high 
automation in our scenario design.  

29 The values are normalized such that the highest empirical cost is set equal to $100 
and all other costs are adjusted proportionally, and the highest production volume in the range 
presented is set to 100 units with all other volumes adjusted proportionally. 



20 
 

data), consolidation requires changes across multiple production steps from fabrication to 
design, meaning that capital outlays must be made simultaneously. 

 

Figure 3 Unit Costs by Annual Production Volume, Level of Automation and Consolidation 

6.2 Process step and task-level implications of automation and consolidation 

In this section, we show how the type and number of production steps changes with 
technology, and how technological change affects labor demand for specific types of steps and 
tasks. We find that different technologies have different task-biases. We find that consolidation 
converges skill demands—increasing relative demand for medium skill levels—whereas 
automation polarizes skill demand—decreasing relative demand for medium skills. Additionally, 
both automation and consolidation affect different task categories at different rates. 

The error bars in the following figures reflect labor minimizing and maximizing 
configurations using per-step differences across firms. The figures that characterize labor 
demand are calculated at the median of the annual production volumes described by our 
industry participants.30 At this volume, the production lines in our scenarios mostly have fully 
utilized equipment, with a few exceptions particularly in the most highly automated scenarios. 

Figure 4 shows that the number of fabrication and testing steps increases with more 
consolidation, whereas the number of assembly steps decreases. These results are intuitive 
because under consolidation, components which were previously sub-assembled are fabricated 
jointly, thereby shifting tasks between these two categories of production. The increase in 
fabrication testing steps from medium to high consolidation may reflect process engineers 
expecting early challenges with process variability or quality for the high consolidation design, 
which is not yet produced commercially. 

 
30 We find that our results are robust to an increase from the median APV of our 

empirical sample to our maximum sample APV (available upon request). Also, note that number 
of process steps, shown in Figure 4, is independent of APV. 
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Figure 4 Process Breakdowns by Consolidation and Automation Scenario 

Figure 5 shows the number of operators required by process category within the model 
facility to meet the median of the annual production volumes of the facilities included in our 
data. Unpacking Figure 5 helps highlight the importance of the detailed manufacturing model. 
As can be seen in the figure, the number of operators in sub-assembly, final assembly, and 
testing decreases with consolidation.31 Although additional testing steps are required for high 
consolidation (as seen in Figure 4), labor is shared across testing steps and fabrication testing is 
sufficiently labor-efficient such that there is no significant increase in the net quantity of test 
operators. 

 
31Automation and consolidation both lead to a net decrease in labor demand per unit 

output, but as we note in section 3 our model does not account for how technological changes 
may affect equilibrium price and output and hence, the absolute number of jobs or optimal 
geographic sites for production. See Appendix 3.3 for further discussion. 
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Figure 5 Number of Operators Required by Scenario and Production Category 

Our findings above clearly show that automation and consolidation differentially affect 
the number of and labor demand for different categories of production step. We now examine 
in more detail the breakdown of production steps into categories of tasks. We discuss in turn 
which of these tasks are disproportionately affected by automation, and then those that are 
disproportionately affected by consolidation. 

Variation in the level of automation occurs most in assembly process steps, partly 
because fabrication is already highly automated (that is, fabrication was perhaps more 
susceptible to automation than assembly). Automation in assembly disproportionately affects 
certain testing and geometrically simpler assembly steps: picking up and placing components 
has been widely automated in different segments of our sample (though still performed 
manually at some firms), while the more challenging angle of attack, grip and force 
management of fiber attach have not been as readily automated. 

We find that different task categories, as with process categories (such as assembly), are 
automated at different rates: we describe apparent biases in which tasks within process steps 
are automated in Appendix 7.32   

6.3 Heterogeneous skill demand shifts with different technological changes 

We find that different technologies have different skill demand effects. Automation 
polarizes relative demand away from medium skill and toward low and high skill labor, while 

 
32 While our task data is limited to assembly, the highly automated fabrication at all 

firms would likely not have provided many examples of manual vs. automated tasks for detailed 
comparison. 
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consolidation converges demand toward the middle of the skill distribution. Figure 6 shows 
how operations and control skill demand changes with automation and consolidation. 
(Appendix 3.1 shows the same for near vision and for dexterity). Automation drives an upward 
shift in operations and control skill requirements, with fewer operators at levels 1 through 3 
and more at levels 4 and 5, and operators reduced the most at levels 2 and 3. Consolidation 
from low to medium drives convergence, with fewer operators proportionally and in absolute 
terms at the highest and lowest levels of skill, and more at the mid-levels (2–4). The shift in the 
number of operators under further consolidation from medium to high does not exceed the 
range of interfirm variation. 

 

Figure 6 Number of Operators by Scenario and Operations and control Requirement 

Figures 7 and 8 show how aggregate measures of technological change can mask the 
opposing labor outcomes of automation and consolidation. In these figures, the error bars 
reflect the maximum and minimum differences across scenarios using the labor minimizing and 
maximizing configurations described in Section 5. For operations and control, aggregate 
measures suggest a decrease in labor demand across skill levels 2–5 and no change for skill 
level 1. Once disaggregated, we see that automation decreases labor demand across all skill 
levels with the greatest losses in the middle (2–4), whereas consolidation increases labor 
demand across skill levels 2–4, and decreases demand at the extremes. For near vision, 
aggregate measures suggest a decrease in labor demand at the bottom and top (skill levels 1 
and 5), a decrease skill level 2 but an increase at levels 3 and 4. Once disaggregated, we see 
that automation decreases labor demand in the middle (skill levels 2 and 3), whereas 
consolidation decreases demand at the bottom and top (skill levels 1 and 5), and increases 
demand in the middle (skill levels 2 and 3). Other plots of aggregated versus disaggregated 
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outcomes can be seen in Appendix 3.1. In almost all the cases we developed, the aggregate 
measures mask opposing outcomes. 

 

Figure 7 Operations and Control Skill Effects of Disaggregated Automation and Consolidation: 
Shifting from Low Consolidation, Low Automation to Medium Consolidation, High Automation 

 

Figure 8 Near Vision Skill Effects of Disaggregated Automation and Consolidation: Shifting from 
Low Consolidation, Low Automation to Medium Consolidation, High Automation 
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Changes in operator skill requirements may not be independent across skill dimensions. 
Figure 9 shows the joint distribution of demand for operator skills, represented by the number 
of operators of given skill levels required in our model facility to meet a desired annual 
production volume under one of our production scenarios. 

We find that consolidation not only converges demand along one skill dimension but 
shifts demand from high and low skill sets toward medium skill sets. We measure operator skill 
simultaneously on two dimensions to create a two dimensional skillset requirement: operations 
and control, and near vision. We find that moving from low to medium consolidation (keeping 
low automation) shifts skill requirements from extremes (e.g. near vision, and operations and 
control ratings both of 1 or both of 5) toward more mid-level skill requirements (e.g. near vision 
and operations and control ratings of 2 or 3). Other plots of joint skill distributions are shown in 
Appendix 3 and suggest that this convergence holds for other skill pairings and for consolidation 
from medium to high. 

 

Figure 9 Consolidation from Low to Medium, Under Low Automation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 

6.4 Aggregating changes in skill demand 

We aggregate our detailed O*NET findings to identify common trends and suggest 
mechanisms behind these trends (see Figures 10 and 11). We first aggregate our detailed 
O*NET findings on the change in demand for skills (at consistent production volumes) in two 
ways: first, we group the O*NET skills we collect into one of two broader categories: cognitive 
or physical. The operations and control skill is the cognitive category; we group dexterity and 
near vision skills under the physical category. Second, we group the O*NET skill ratings into one 
of three broader categories: low, medium, and high. Here, we label a skill rating of 1 as “low,” a 
rating of 2, 3, or 4 as “medium,” and a rating of 5 as high. We then translate our detailed 
findings on the change in skill demand with technological change into these groupings. Here, 
demand is the number of operator jobs requiring a given level of skill and, so, change in relative 
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demand with technological change is given by the number of operator jobs by skill level under 
different technological scenarios. 

To obtain the change in demand for low cognitive skill with automation, we calculate 
the difference in the number of jobs at operations and control skill level 1 between our low 
automation, medium consolidation and our high automation, medium consolidation scenarios 
(thus holding consolidation constant while changing automation). To calculate the change in 
demand for medium cognitive skill with automation, we calculate the difference in the total 
number of jobs at operations and control skill levels 2, 3, and 4 between our low automation, 
medium consolidation and our high automation, medium consolidation scenarios. To calculate 
the change in demand for low physical skill with automation, we add the number of jobs with 
dexterity skill level 1 or near vision skill level 1, and then calculate the difference in number of 
jobs between our low automation, medium consolidation and our high automation, medium 
consolidation scenarios. 

For consolidation, since we measure two shifts in consolidation (low-to-medium and 
medium-to-high), we plot the results for both beside each other. We only suggest a 
generalizable relationship between consolidation and physical or cognitive skills if both changes 
in consolidation shift labor demand in the same direction for a given skill grouping. As with our 
empirical results in Section 6, the error bars in Figures 10 and 11 reflect the maximum and 
minimum differences in labor demand between technological scenarios.33 

We find that the number of jobs with high cognitive skill requirements decreases under 
both low-to-medium and medium-to-high consolidation, while overall medium skill jobs 
increase. While we find that the total demand for medium physical skill labor increases under 
low-to-medium and medium-to-high consolidation, some individual skill levels within the 
medium category show decline or no change. 

 

 
33 We show the full equations for this analysis in Appendix 1.3 and report intermediate 

outputs in Appendix 3.2.  Note that due to our aggregation of physical skills, a single job may 
appear in two different physical skill categories: for example, a job lost (gained) requiring low 
near vision skill and high dexterity skill would count toward changes in both low and high 
physical skill. 
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Figure 10 Aggregate Change in Number of Operator Jobs by Cognitive and Physical Skill Level 
Under Automation 

 

Figure 11 Aggregate Change in Number of Operator Jobs by Cognitive and Physical Skill Level 
Under Consolidation 

In the case of automation (Figure 10), we see demand for physical and cognitive skills 
shifting away from the middle, leading to skill polarization in operator jobs, as in the detailed 
case described in Section 6. Automation does not change aggregate demand for low level 
physical or cognitive skills. Jobs with high skill requirements decrease slightly, but far less than 
the change in medium skill. We find that in contrast to automation, consolidation (Figure 11) 
converges rather than polarizes overall demand for both the physical and cognitive skills 
required of operators in the industry. 
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7. Generalizability of empirical findings 

7.1. Matching optoelectronic labor demand implications to semiconductors 

Similarities between optoelectronics and other subsectors within the semiconductor 
industry34  suggest that matching the labor implications of automation and consolidation in 
optoelectronics to semiconductors more broadly offers a useful possible validation and 
comparative basis for drawing broader sectoral implications. 

We match the different levels of consolidation and automation examined in the 
optoelectronics context to historic parallels in electronic semiconductors. The design and 
production of our low automation, low consolidation scenario most closely resembles the state 
of electronic semiconductor production 30–40 years ago (NBER CES, 2018). We would expect 
the high automation, high consolidation case to best resemble electronic semiconductor 
production today or in recent years. 

Comparing our technological scenarios to the broader semiconductor sector; however, 
requires a few important caveats. First, optoelectronics has been able to benefit from the 
electronic semiconductor industry’s historical knowledge. As such optoelectronic 
semiconductor production is more advanced than electronic semiconductor production of 
40 years ago, despite current technological challenges (Cheyre et al., 2015; Yang et al., 2016). 
Second, the shift toward technologies that reduce labor share in semiconductors may also have 
accelerated the decline of labor share in optoelectronics, distorting the historical analogy 
between technology and labor share. Third, our model does not account for possible 
differences in the level of firm competition between optoelectronics and semiconductors, 
which could result in different technological strategies between historic semiconductors and 
the current optoelectronics industry. 

Table 5 compares the labor share of production costs across scenarios in our model to 
the trajectory of the semiconductor industry more broadly. We compare our PBCM outputs to 
aggregate data from Semiconductor and Related Device Manufacturing (NAICS 334413) 
industry, as available in the NBER Center for Economic Studies (CES) Manufacturing Industry 
Database.35 

Table 5 PBCM-Based Labor Share of Input Costs 

Scenario Labor Share Latest Matched 
Semiconductor 
Period* 

 
34 The vast majority of equipment used in optoelectronic semiconductors, including 

nearly all fabrication (e.g. metal oxide vapor deposition, lithography, etching) and much 
assembly and testing (e.g. pick-and-place, wirebonding, microscopes for visual inspection) have 
parallels in electronic device production (NAS 2013). 

35 Optoelectronic semiconductors are part of the same NAICS category, but with annual 
optoelectronic production volumes in the millions compared to total semiconductor annual 
production volumes forecasts above 1 trillion units in 2018 and starker differences historically, 
electronic semiconductor trends will easily dominate the aggregate data (Khan et al 2018). 
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Low Consolidation Low Automation 0.442 1986-1987 

Medium Consolidation Low Automation 0.308 1991-1992 

Medium Consolidation High 
Automation 

0.232 1999-2001 

High Consolidation High Automation 0.184 2006-2009 

*Based on the latest periods in NBER CES Time Series Data whose labor shares cover the labor 
share for each optoelectronics scenario in our study 

The placement of optoelectronics’ labor shares within the overall semiconductor 
industry are within the bounds of what we might expect given technological change in both 
industries. These results suggest that technological change and labor outcomes in 
optoelectronics have followed a trajectory similar to that of electronic semiconductor devices 
through their technological history. This finding is an important piece of validation for the 
outputs of the PBCM. Further, the increasing substitution of photonic components for 
electronic components (NAS, 2013) would suggest that such findings from the optoelectronics 
subsector will increase in relevance for the wider electronics industry. 

7.2 From firm capabilities to skill demand 

Our findings on the coexistence of multiple cost-competitive technological regimes in a 
commoditized market (Section 6.1) confirm that it is possible to disentangle the labor demand 
effects of automation and parts consolidation in our analysis of the optoelectronic industry. The 
coexistence of heterogeneous technological regimes is relevant to many other industries and 
contexts. Piore and Sable (1981, 1984), for instance, highlight the coexistence of flexible 
manufacturing versus mass production, and both approaches have now coexisted on an 
international scale for decades (Rungtusanatham and Salvador, 2008, Eckel and Neary, 2009). In 
their case they propose that society may choose flexible production over mass production, with 
more fulfilling outcomes for workers (and perhaps consumers as well). Notably, however, while 
flexible production may offer greater product customization, it does not offer the scale of 
production output possible with mass production (Womak et al., 1990). 

We add the implications for labor and skill demand to the discussion and evidence 
around coexisting, heterogeneous technology regimes. Specifically, different technologies can 
be used to produce perfect substitutes with comparable production costs, but substantially 
different skill demands. Combined with Fuchs and Kirchain (2010), our work shows that the 
production cost functions for heterogeneous technologies can overlap for an extended period 
(at least 10 years in optoelectronics). 

In showing that different technologies can be used to produce perfect substitutes with 
comparable production costs, but substantially different skill profiles, our findings open up the 
possibility that labor and skill outcomes can be chosen by firms without adversely affecting 
competitiveness or product outcomes. With comparable production costs under automation or 
consolidation, differences in the separability of capital investment (piece-meal automation by 
step or simultaneous consolidation across steps) may be important to such choices by capital-
constrained firms. Since certain geographic locations such as the USA and Europe may have a 
comparative advantage for producing consolidated designs, and because the most advanced 
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consolidated designs may have technological advantages for accessing other new markets in 
the longer term (Fuchs and Kirchain, 2010, Yang et al., 2016), policy-makers in the USA and 
Europe may wish to evaluate the implications of firms’ access to capital for technology adoption 
on national competitiveness and skill demands for their workforce. 

8. Theory and discussion: mechanisms for effect of technological change on tasks and 

jobs 

Our research design and step-level manufacturing data enable us to propose new theory 
for the relationship between technology change and skill demand. Although the focus of our 
paper is automation and consolidation, the underlying mechanisms for their different effects on 
skill demand could be shared by other technological changes. Unpacking the mechanisms 
driving the different implications for skill demand seen in our study requires defining five terms 
(see Table 6). 

Table 6 Theoretical Definitions 

Concept Definition Example 

Task36 An action that is not divisible into 
smaller units with a separate 
performer. 

Swinging a hammer onto a nail 
cannot be divided into completing 
half the arc of the hammer swing 
and then giving it to another 
worker. 

Performer The entity (human, machine, 
animal) which autonomously 
completes the task. 

The human swinging the hammer is 
the performer. 

Task 
Separability 

The feasibility (e.g. cost) of having 
two tasks assigned to different 
performers. 

Consolidation can make it infeasible 
for tasks to be performed in 
parallel. 

Job37 A union of one or more tasks which 
are performed by a single worker. 

Loading Machine A, letting it run 
autonomously to manage Machine 
B, then returning to unload Machine 
A. 

Task Skill The minimum level of skill (along 
one dimension, e.g. dexterity) for a 

Manually attaching a die to a 
substrate within a certain tolerance 

 
36 A process step (as in our empirics) is a continuous sequence of one or more tasks. Our 

focus in this theory on mapping tasks into jobs is analogous to steps which have a consistent 
performer (e.g.  Loading, monitoring and then unloading a wire-bonding machine). 

37 Our definition is similar to Autor, Levy and Murnane (2003) and Brynjolfsson, Mitchell 
and Rock (2018), though we are able to directly analyze the production elements of a job in 
developing our mechanisms. 
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performer to successfully complete 
a task to given specifications. 

and with a success rate of at least 
95% requires a Dexterity Skill Level 
of at least 4. 

Job Skill38 The maximum of skill requirements 
for tasks that make up a job.39 

A job consists of two tasks: A and B. 
A requires low physical skill and 
high cognitive skill. B requires high 
physical skill and low cognitive skill. 
The job thus requires both high 
physical and high cognitive skill. 

*In our production context, all workers were dedicated to a specific step, such that jobs and steps were identical. 
However, we break out these two concepts in our definition so that our technology mechanisms can generalize 
beyond a specific organizational model in optoelectronics. 

Our definition of job skill is particularly important to understanding our results and to 
our theory: any task whose skill requirements are greater than those of other tasks in a step or 
job increases the skill requirement of the entire job, while any task whose skill requirements 
are lower than the rest of the job has no effect on skill demand. Hence, the more separable 
tasks are from each other, the fewer tasks will be bundled into the same jobs and the lower the 
demand for skill within those jobs. 

We begin by identifying technology-specific mechanisms for the effect of each 
technology on skill demand. We then move to generalize these relationships by explaining the 
skill demand mechanism in terms of task separability. 

We identify two forces that drive the mechanism for the effect of automation on skill 
demand. The first explains why highly skilled labor may be less affected by automation than 
middle skill: highly physically and cognitively skilled steps often involve complex part 
geometries that make them harder to automate than more straightforward medium skill 
assembly tasks. An industry expert offers a practical example:  

“Machines are limited in what they can do. Most of the [epoxy] dispensing systems, for 
example, the needle is perpendicular to the thing you’re squeezing epoxy on. In optics, you use 
the third dimension; a lot happens vertically… it’s easier to use an operator. There’s a lot of 

 
38 The same definition holds for the skill demand of a process step (i.e. the upper 

envelope of task skill requirements): in our context, steps and jobs are the same, but they are 
important to separate in cases where workers are responsible for disconnected tasks (hence, 
multiple production steps). 

39 The skills required for a job are determined not by the job profile (e.g. “machine 
operator”) but by the actions associated with each task making up a job (e.g. “load and unload 
the machine” and “monitor for process defects”) and the particular skill requirements to 
perform each action in that context (e.g. monitoring one machine may require greater skill than 
another).39 For instance, essential tasks (such as unloading a machine) may require lower skill  
compared with tasks that are important but not strictly required (such as monitoring a machine 
at every instant). 
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factors that have to apply to make it worthwhile to spend the time and money to automate. 
You’re better off using skilled operators.” 

The second force driving the effect of automation explains why low skilled labor is less 
affected by automation than middle skill. Many of the requirements of the operator production 
tasks created by automation are at a lower skill level (e.g. loading and unloading a part, 
monitoring a machine), while not requiring sufficient volume of activity to justify a dedicated 
machine. Such work offers less scope for operator intervention (and thus, all else equal, 
demands less skill) than manual tasks.40    

The next step is to relate the two forces above to task separability. Automation 
represents a case of technology change which consists of substituting new performers for 
existing ones. We propose that the separability of tasks influences the likelihood of existing 
performers to be substituted by new performers. If tasks are highly inseparable, they tend to be 
grouped into jobs with correspondingly high skill requirements. Any technology that offers 
substitutes for existing performers needs to outperform incumbent performers on more 
dimensions the less separable tasks are. Conversely, if tasks are highly separable, it is easier to 
break them into pieces that are best suited to the capabilities of new performers. Thus, 
collections of tasks with high skill requirements see less substitution than lower skill, and 
affected jobs are likely to have their tasks separated from each other into yet lower skilled 
activities. 

In the case of automation, jobs whose tasks are separable can more easily be broken 
into operations for machines to perform. For example, fiber attachment in our context requires 
multiple simultaneous alignments and applications of force by a manual worker: these cannot 
be readily separated, and the job as a whole becomes difficult to automate. Because jobs with 
more tasks tend to be more difficult, separability-bias in automation leads to skill-bias by 
preserving higher skill activities. Meanwhile, automation of jobs with highly separable tasks 
generates new low-skilled jobs: activities such as transferring parts between workstations are 
examples of tasks with low-skill requirements which can be broken out from automated steps 
and assigned to workers. Automation thus interacts with task separability to generate skill 
demand polarization. 

Current theory proposes that the task composition of jobs can determine their degree 
of automatability (Brynjolfsson et al., 2018b), and that automation most affects routine tasks 
(Autor et al., 2008). However, the existing theory does not use task composition to explain 
multidirectional skill demand effects from automation. As we show, routine tasks—such as part 
orientations in assembly—can remain manual, showing that routineness is insufficient to 
understand the automatability of jobs. 

 
40 Though some machine operation is highly skilled, multiple industry experts explained 

that the role of a machine operator is often performing the rote (low physical and cognitive 
skill) motions of setting up and transferring parts: “The first thing you do is learn how to simply 
change out reels of parts that run out.  The next is to set up a new job… The machines are 
pretty automatic, and what you do is train them [operators] how to set up the machine.” 
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We identify three additional forces to understand the implications of consolidation for 
skill demand, one putting downward demand pressure on high skill demand, and two reducing 
low skill demand relative to middle skill. 

The first force, task elimination, accounts for a downward pressure on high skill 
demand. In our case, more parts are consolidated into a single unit, and a disproportionate 
share of assembly steps (and associated testing) is eliminated. Demand for the highest level 
skills is often reduced because these higher-level skills (such as complex part orientation) are 
predominantly required in operator assembly tasks, which are eliminated with consolidation. 
With fewer components, there are fewer opportunities for testing, which also require higher 
cognitive skill. Though the specific mapping of tasks to process categories (assembly, testing) 
may be industry-specific, the most cost-effective tasks to eliminate are (all else equal) those 
with the greatest skill demand, suggesting that adoption of consolidation could be more likely 
when this downward pressure on skill demand is realized. 

Task combination and increased cost of failure, our second and third forces, put 
downward pressure against the demand for low skill. Tasks throughout the production process 
are merged into the same step during consolidation, increasing the number of tasks per step: 
steps take on the highest requirements of their component tasks, thus driving up overall skill 
requirements. For example, in fabrication, certain deposition steps become longer and more 
complex in order to produce components with multiple functions. The cost of failure increases 
because consolidated parts mean that production failure with one part can now damage other 
parts as well. One of the experts we interviewed offered an instructive quote: 

“You’ve got to understand that quality is what this is all about. If you make a mistake it’s quite 
expensive.” 

The next step is to relate the three above forces to task separability. Consolidation 
represents a case of technology change that changes task separability, and thus, skill demand in 
jobs. If a technology reduces the separability of tasks, all else equal, jobs will consist of more 
tasks. Since the skill requirement of a job is the maximum of the skill requirements of its 
constituent tasks, such technologies will increase the demand for skill. That said, there may be a 
greater shift from low to medium skill demand than from medium to high, because any given 
task being added to a high-skill job is less likely to exceed the current skill content of the job 
than if the job is low-skilled. If so, and in combination with the elimination of some tasks by 
consolidation (e.g. bundles of assembly tasks no longer necessary), both low and high skill jobs 
can be lost while the greatest shift in demand is toward the middle. 

Change in the cumulative value of tasks due to consolidation also follows from the 
change in task separability. When tasks are inseparable, so are their outputs, such that failure in 
one task may compromise the work done in other tasks. Moreover, the cumulative value of a 
bundle of tasks increases with more tasks. The result is a shift toward higher skill demand, 
especially for previously low-skilled work, to reduce costly failures. 
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The existing literature has not connected technology change to skill demand through 
shifts in task separability as in our theory.41 Although the technology-specific forces we describe 
can apply in other contexts (especially semiconductors but also other industries), we expect the 
relationships between changes in task separability and skill demand outcomes to be the most 
general of our findings, as these do not rely on any particular mapping between skill and 
specific tasks. 

9. Conclusions 

This article fills a gap in the skill-biased technology change literature around the direct 
measurement of technological change and the mapping of technological change to skill demand 
through the characteristics of production. 

We demonstrate the benefits of directly mapping the effect of technological changes on 
skill demand using an engineering process model. We collect unprecedented data on the skill, 
training, education, and experience requirements of every step in a manufacturing process. The 
specificity of our model and data allows us to use counterfactual scenarios to simulate past, 
ongoing and emerging technological changes.42 We are thus able to disentangle simultaneous 
technological changes with differential labor effects invisible in aggregate data, and to 
characterize task-level mechanisms behind the skill demand effects of technological change. 

Although our deep level of data detail on specific technologies and contexts may not be 
feasible at an economy-wide level, we believe that such parameters should be collected more 
broadly by government and academic data collection efforts, such as through census 
instruments like the Annual Survey of Manufacturers. To quote a still-relevant 1986 interview 
with Simon (1986; The Failure of Armchair Economics): 

“We badly need better ideas of how to put together the stuff we find out at the micro-micro 
level and aggregate it.” 

Simon continues: 

“…if you studied about a dozen firms, you have a pretty good feeling of the range of behavior … 
the idea that we must have huge samples in order to know how a system works is not 
necessarily so.” 

We make three main contributions. First, we directly measure the effect of 
technological changes on skill demand, addressing the gap in the task-approach literature. In 
concert with literature on the polarization of skill demand, our findings suggest that automation 
not only polarizes skill demands across occupations, but within occupations. 

 
41 Baldwin and Venables (2013) suggest that reducing the divisibility of processes (task 

separability) would increase the cost of division of labor. They show that reducing frictions 
(costs) in the division of labor can increase polarization of factor intensity across nations (or 
firms): this result parallels our findings on skill demand outcomes. 

42These counterfactuals enable us to move beyond restrictive assumptions of classic 
production functions, of aggregate data, and of historic data being representative of the future.  
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Second, we show that aggregate measures of technological change can mask the 
opposing skill demand shifts of multiple technological changes. We find that, in contrast to 
automation (described above) consolidation converges skill demand toward middle skill. Our 
results thus provide empirical evidence for the coexistence of technological regimes with very 
different implications for skill demand. Understanding these differential effects of technologies 
on labor outcomes is a key first step to analyzing the impact of emerging technological changes 
on labor demand. 

Third, we leverage our task- and step-level data to develop new theory for how the 
separability of tasks mediates the effect of technology change on skill demand by changing the 
divisibility of labor. Our theory explains how technological change can generate complex, multi-
modal skill demand shifts. Technologies that decrease task separability lead to jobs with more 
tasks. Because job skill demand is the maximum of task skill requirements, more tasks can drive 
skill increases or convergence toward middle skill (as the skill demand of lower-skill jobs is more 
likely to be increased by new tasks). The situation is reversed with technologies that increase 
task separability, driving skill demand decreases or polarization. Technologies such as 
automation that substitute performers can also be described in terms of task separability: the 
least separable tasks are the least likely to be divided and their performers substituted 
(preserving high skill demand), while the most separable tasks are the most likely to split into 
new low-skill jobs due to technological change (generating low-skill demand), resulting in 
polarization of demand away from middle skill. 

The direct mapping of different technological changes onto labor outcomes, presented 
for the first time in this paper, enables us to uncover the mechanisms of skill demand effects at 
the level of tasks (task separability) and their aggregation into jobs. Our work introduces the 
relationships among tasks as a guide to understanding skill demand impacts of technological 
change, and it opens up new questions regarding the implications of technological change for 
labor markets and technology-specific policy responses. 
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Chapter 2: How It’s Made: A General Theory of the Labor Implications of 
Technology Change 

1. Introduction 

It has long been recognized that technology change plays an important role in labor 
markets, impacting inequality and the wage returns to skill. At the same time, technology has 
impacted workers in different manners over time. For example, the adoption of the factory 
system and machinery during the nineteenth century led to de-skilling (Goldin and Katz, 1998, 
34) while the automation of routine tasks during the 1970s-1990s led to up-skilling (Autor, Levy 
and Murnane 2003).43 While the literature has provided compelling evidence and explanation 
of these patterns in terms of substitutability between the capital that embodies a technology 
and worker skill, it does not explain why these differences in substitutability exist. 

In this paper, we develop a general theory with the goal of understanding why different 
technologies impact workers differently. The theory is constructed by describing how the 
demand for workers’ skill level is endogenously determined and deriving five dimensions on 
which technological change can affect this process. We formalize the theory in a structural 
model capable of analyzing operations-level production data, and we provide empirical 
counterparts to the theory showing how different technological changes can differentially 
affect skill demand. The model we develop is rich enough to incorporate insights from 
information theory, computer science, and industrial engineering concerning the production of 
goods and services and yet tractable enough to derive implications of technology change for 
the division of production tasks, automation, and skill demand. 

The starting point of the model is the set of tasks that must be completed to make a 
product or a service. To minimize the cost of producing at a given volume, a firm must choose 
how to divide this set of tasks into production steps. The firm also chooses the performer type 
for each step (human or machine), and the rate of production for each step. A basic feature of 
the model is that the difficulty of a step is increasing in the number of tasks (the length of step) 
and in the rate at which the step needs to be completed. The degree to which the difficulty of a 
step is impacted by the number of tasks or the rate of completion is specific to the type of 
performer: humans are less sensitive to the number of tasks than machines (more general than 
machines), but more sensitive to rate. In deciding the division of production, the firm faces a 
trade-off. More difficult steps require a more able, and thus more costly, performer. This 
mechanism provides an incentive for smaller steps. On the other hand, division of two 
sequential tasks incurs fragmentation costs, providing an incentive for longer steps. The firm 
must also take into account excess performer capacity, either by allowing a performer to be idle 
or by reallocating the performer to a different step. Reallocation incurs a performer-specific 
divisibility cost. This cost is higher for machines than humans. Within the context of our model, 
technological change can be described in terms of how it alters five dimensions: 1) the overall 

 
43 The literature studying the impact of technology on workers and specifically the way 

in which different technologies differ is vast. As a starting point refer to: Caselli (1999), 
Bresnahan, Brynjolfsson, and Hitt (2002), Acemoglu and Autor (2011) Autor and Dorn (2013), 
Dinlersoz and Wolf (2018), Eden and Gaggl (2019), Acemoglu and Restrepo (2020). 
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complexity of a process, 2) the cost of dividing tasks in a process, 3) the sensitivity of 
performers to the rate of production, 4) the sensitivity of performers to the number of tasks in 
a step, 5) the cost of dividing performers among multiple steps. 

We use the theory to characterize the impact of key technological changes on 
production and workers with three main results. First, we identify conditions under which it is 
optimal for firms to divide production into smaller steps. We show that heterogeneous costs of 
dividing different tasks are necessary for heterogeneity in performer ability demand within a 
firm (or skill demand in workers). We find that for division to occur, performer costs must be 
convex in the length of steps. This convexity occurs with sufficiently convex wages with 
increasing skill or with a sufficiently high production volume. From a historical perspective, the 
optimality of division of labor under high volume helps to explain the fact that the adoption of 
the factory system and later assembly line did not lead to significant variation in wages in 
certain production contexts. 

Second, we provide conditions under which it is optimal to automate a step. We find 
that two dimensions determine the choices of automation: the volume of production and the 
step length. Within these two dimensions, our theoretical results identify a region we call a 
cone of automation. Specifically, we find that at sufficiently low production volumes, no 
automation is optimal because the higher divisibility costs of machines lead firms to leave them 
idle, thus raising costs. At middle production volumes, it is optimal to automate middle-length 
steps. This causes machines to substitute for middle skill workers, generating skill polarization. 
Short steps are not automated because they have high rates of work and hence low machine 
utilization, leading to high idling costs. Long steps are also not automated at middle production 
volumes. As steps increase in length, the cost of a machine performer increases faster than a 
human performer, because machine performers are less general than human performers. At 
high volumes, machine utilization is high even at high rates of work, and so only the longest 
steps are not economical to automate (substituting for low and middle skill workers). The cone 
of automation is a useful result for understanding the root causes of historical variation in the 
effects of automation (Goldin and Katz, 1998) and the more recent polarization of occupational 
demand (Goos, Manning and Salmonons 2009). 

For our third main result, we explore how changes in the division of tasks can affect skill 
demand and hence wages. We show that declining costs of dividing tasks (occurring during the 
initial phases of the industrial revolution) reduces the lower bound of skill demand. We also 
consider technologies that reduce fragmentation costs but increase process complexity (such as 
modularization). We find that such technologies increase inequality between the highest and 
lowest wages by polarizing the upper and lower bounds of skill demand. This result also shows 
that technologies that reduce process complexity by eliminating opportunities to divide tasks 
(such as parts consolidation) can reduce inequality between the highest and lowest wages. 

We take our model to the data and provide empirical counterparts to key results of the 
theory. The model presented in the paper is rich enough to provide a tight linkage with 
production operations data. Up until recently, this type of data has rarely been used in the 
economic analysis of technology change. We use three sources of detailed operations data. The 
first dataset is the Hand and Machine Labor Study (Wright, 1898), covering mechanization and 
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process innovations at the time of the Second Industrial Revolution (1870s to 1910s). This 
dataset covers 15,700 process steps for 671 products spanning mining, agricultural, 
manufacturing and transportation service products. The other two data sets are contemporary 
and novel (collected by some of the authors in the present paper), capturing in great detail the 
optoelectronic semiconductor component production and assembly contexts (Combemale, 
Whitefoot, Ales and Fuchs, 2021) and the automotive body assembly context (Fuchs, Field, Roth 
and Kirchain, 2008). The optoelectronic semiconductor data involves hand-collected shop-floor-
level production data on five different design and production alternatives for a single data 
communications product. The data comes from extensive line observations, technical 
interviews (including skill assessments for each production step using the O*NET survey 
instrument) and operations data capturing the entirety of production at firms representing 42 
percent of the industry’s production volume. The automotive body assembly data contains 
detailed data on process flow from multiple major U.S. vehicle manufacturers and key inputs 
such as machine type and price as well as quantifiable engineering measures of process 
complexity (e.g. number of joins per step). 

The detailed production data we use supports multiple empirical connections to our 
theory. We start by connecting fundamental assumptions of the model to empirical evidence 
from our contemporary datasets. We find evidence (using the automotive and optoelectronic 
semiconductor data) of the trade-offs between the number of tasks in steps and the rate of 
operations, consistent with the developed model. We also find evidence (using the 
optoelectronic semiconductor data) that the level of ability demand is indeed increasing in the 
number of tasks in production steps. 

We find that the theory can rationalize patterns of substitution of machines for human 
workers during the second industrial revolution: we recover an empirical analog to the cone of 
automation directly from the production data in the Hand and Machine Labor study. We also 
show polarization of ability demand under automation in the optoelectronics context, 
consistent with the automation implications of our theory at middle production volumes. 

We also show that our theory can explain historical and contemporary changes in the 
distribution of worker ability demand under different technological regimes affecting the cost 
of dividing tasks. We show in the Hand and Machine Labor context that an increase in the 
division of tasks leads to polarization toward the highest and lowest wages, consistent with 
what the theory would predict for technology changes at the time such as interchangeable 
parts. The theory is also consistent with our observations in optoelectronics that technologies 
that reduce the divisibility of tasks but also process complexity (such as parts consolidation) 
lead to a convergence of ability demand, with less demand for the highest and lowest ability 
and higher demand for middle-level ability. 

The idea that the division of labor is an important feature driving the demand for labor 
and productivity goes back at least to Adam Smith, with the famous pin-factory example (Smith, 
1776). A small body of literature has analyzed when division of tasks should occur and what are 
the limits to the division of tasks. Smith himself argues that the degree of specialization is 
limited by market size, as small market sizes do not generate enough demand to support 
specialized firms. This insight is also supported by Stigler (1951). Other work has characterized 
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the productivity returns of and limits to the division of labor. For example, in Becker and 
Murphy (1992) and Yang and Ng (1998), a task is split across workers and the upper bound on 
the division of labor is given by coordination costs across teams. In our model this mechanism is 
captured by the costs of breaking up the sequence of production tasks into multiple steps and 
assigning them to different workers. 

This paper is related to three bodies of literature. First, it relates to literature modeling 
the task content of production (Autor, 2013; Acemoglu and Restrepo, 2018a,b). Similar to this 
literature, we consider a job as a bundle of steps and model the optimal assignment of a step to 
either a human or a machine. The emphasis of this literature (differently than ours) is in 
considering the long run effects of displacement of workers by capital. We take a broader 
approach to technology (going beyond automation) and emphasize the circumstances under 
which workers of different ability levels are displaced by other workers of different ability levels 
or by machines. 

Second, the paper relates to the literature on polarization of occupational demand 
(Goos, Manning, and Salomons, 2009; Acemoglu and Autor, 2011; Goos, Rademakers, 
Salomons, and Vandeweyer, 2019). This literature has identified aggregate changes in the 
occupational structure of advanced economies in the last few decades. Polarization refers to 
the fact that middle-wage occupations exhibit lower (or negative) growth relative to low and 
high paying occupations. This has been put forward as evidence of ICT-capital adoption 
replacing mid-level skills. With respect to this literature, our theory provides a micro-founded 
mechanism for these occupational changes. We show the condition in which automation is 
more likely to occur for mid-level skills, and also are able to examine when automation occurs 
for low-level skills. In addition, the data presented in this paper provides additional evidence of 
the polarization phenomenon being present when looking at workers within a plant. 

Third, the paper also connects to the literature on the labor consequences of different 
forms of automation, from traditional mechanization (Goldin and Katz, 1998) to robotics 
(Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020) to machine learning (Brynjolfsson 
et al., 2018). We do so by explaining how these and other technological changes affect task 
divisibility and may generate differential labor outcomes. For example, in our theory, robotics 
offers more general performers than traditional mechanization, leading to more automation of 
high skill steps, while machine learning offers both greater generality and greater divisibility, 
which leads to more automation of high and low skill steps. 

Our modeling strategy is related to the approach in (Garu), in which firms organize 
themselves into hierarchies. In their model problems of varying complexity are divided and 
assigned to different workers. As in our paper this approach creates an endogenous 
relationship between earnings and talent. Similarly to (Garicano and Rossi-Hansberg, 2006), we 
model production as generating a series of issues that need to be resolved. Differently from 
their paper, our theory allows for tasks to be arbitrarily divided, for different types of 
performers (human and machines), and for the production rate to be endogenously 
determined. 
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Our work is also related to the task-assignment literature.44 The literature studies the 
optimal assignment of heterogeneous workers to jobs of varying complexity or composition. 
The bulk of the task-assignment literature is fairly general in the set of jobs and skills analyzed. 
This is expected as the scope of the analysis encompasses the entirety of the labor market. 
Most of the work in this area studies properties of the indirect production function over 
occupations inherited from the assignment problem. To make progress in this direction, strong 
assumptions on the primitives of the production function are needed. Our approach is closer to 
the original motivation of (Rosen, 1978): we characterize the endogenous bundling and 
assignment of work activities.45 In our model, not only the assignment is endogenous but so 
also is the complexity of the job, which is determined by the set of tasks and the rate of 
production. 

This paper aslo builds on the literature relating technology change to process and firm 
structure. The idea of fragmentation costs in this paper connects to past work on modularity 
and integration in product and process design (Baldwin and Clark 2003; Baldwin 2008). We 
extend these costs to motivate heterogeneity in production steps and introduce performer 
characteristics. Prior work connects organizational changes with technological change and skill 
demand (Caroli and Van Reenen 2001; Bresnahan, Brynjolfsson and Hitt 2002). Our model 
allows skill demand effects of new technology to originate from substitution of performers 
within existing steps (a non-organizational change) as well as from the reorganization of tasks 
(organizational change). 

The paper proceeds as follows. Section 2 motivates and describes the key ingredients in 
the model. Section 3 formalizes the model. In Section 4 we analyze the implications of the 
model. We establish conditions for the optimality of division of tasks; give the relationship 
between step complexity and optimal rate and ability demand; describe different patterns of 
automation and their conditions and describe implication of changes in fragmentation costs. 
Section 5 provides empirical counterparts on the main findings of this paper. Section 6 
concludes. 

2. Empirical Motivation 

The starting point of the theory is the set of tasks that the firm must complete to 
produce a good, and the ability of a firm to divide production in multiple steps and assign these 
steps to either a human or machine performer. This feature is key as it will generate an 
endogenous demand for performers with a different ability level. Before formalizing the model, 
this subsection describes key features of technological change that have been analyzed in the 
economic and industrial engineering literature. These features will determine the key 
ingredients of the model. 

The historical literature provides extensive examples of the importance of the division of 
tasks for early US manufacturing. For example, Hounshell (1985) and Womak, Jones and Roos 

 
44 See for example, Rosen (1978); Costinot and Vogel (2010); Ales, Kurnaz and Sleet 

(2015); Lindenlaub (2017); Ocampo (2018); Haanwinckel (2020). 
45 We also study the effects of performer indivisibilities on differential returns to scale, a 

feature whose importance Rosen emphasized but did not include in the model. 
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(1990) provide specific measurement for Ford automotive assembly plants.46 They report that 
with the introduction of the moving assembly line around 1913, the average cycle time of a 
worker decreased from 2.3 to 1.2 minutes (the cycle time was 514 minutes before a fine 
division of tasks was introduced). At the same time the total amount of worker time per vehicle 
declined by 88 percent. Hounshell (1985) and Womak, Jones and Roos (1990) also report that 
the demand for the skill of workers also changed during the move from craft production to 
factories to the adoption of the assembly line. In the time of craft production a worker was 
trained via lengthy apprenticeships on many aspects of automobile fabrication and assembly; 
however, by the time the assembly line was in full usage, the average training time for a worker 
was measured in minutes. This is an important ingredient of our theory: the fewer the tasks to 
perform, the easier the job for a worker.47 

The difficulty of completing a job is also driven by the overall time a worker or a 
machine has available to complete a task. The trade-off between measures of complexity and 
speed of execution has been extensively documented for both humans and machines.48 The 
common denominator of these empirical regularities resides in the fact that any task requires 
information to be completed, and any operator has a limited bandwidth for such information 
(Shannon 1948). Our own measurements confirm these regularities. In Figure 12 we display 
machine-level data from the automotive industry taken from (Fuchs, Field, Roth and Kirchain 
2008). In this case, it can be clearly seen how more complex part production (involving multiple 
joins per each step) is associated with an overall decrease in the number of completed steps 
per unit of time.49 

 
46 For modern examples of the benefits of division of tasks outside of manufacturing 

refer to Staats and Gino (2012). 
47 For an example of this pattern for services refer to Autor, Levy and Murnane (2002), 

considering the division of tasks in a check-processing department before and after the 
introduction of computerized equipment. 

48  See the work of Fitts (1954), Welford (1981) and MacKay (1982) for the case of 
human motor movements; For application to robotic systems refer to Lin and Lee (2013). 

49 The time-per-join varies across steps (steps with more joins tend to require less time 
per-join), so that the relationship between complexity and the rate of steps completed is not 
merely a linear function of the number of joins. 
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(a) Speed Complexity Tradeoffs                          (b) Fragmentation Costs 

Figure 12 Motivation for model ingredients. Production data exhibits (a) tradeoffs between rate 
and step complexity, and (b) heterogeneous costs of fragmenting steps into less-complex 

bundles of tasks50 

 Dividing production into ever smaller steps can introduce several benefits as described 
above. However, the division of production is not costless. When production is divided, one 
task in a sequence is handled by a different performer from the next task. Transferring a work-
in-progress from one performer to another takes time for both parties and creates errors. This 
phenomenon has been extensively studied, see for example Becker and Murphy (1992) and 
Baldwin (2008). Our own measurements illustrate the importance of these costs. In Figure 12b, 
we look at machine-level data from the optoelectronic semiconductor manufacturing industry 
taken from Combemale, Whitefoot, Ales and Fuchs (2021). A lower bound on the step 
fragmentation costs is the time devoted by the operator to loading and unloading a machine. 
For a large number of steps, this time-cost alone amounts to more than 10 percent of all step-
wise production costs. Introducing fragmentation cost is also essential to understand the 
impact of a large number of technological developments. For example, a key development 
behind the growth of mass production is the introduction of exchangeable parts, which lowered 
the cost of splitting production across multiple workers and greatly increased productivity 
Hounshell (1985). Technological progress does not always lead to decreases in costs of splitting 
production. For example, parts integration in electronics reduces divisibility due to monolithic 
part integration (Combemale, Whitefoot, Ales and Fuchs 2021). 

The previous costs are embodied in the technology used in production. An additional 
source of costs in dividing production, and a final ingredient of the model, is incorporated in the 
cost of splitting performers across steps. Very short steps do not demand the full capacity of a 
performer, which introduces the possibility of a worker or a machine being under-utilized in 

 
50 For information on the data used for (a) refer to Fuchs, Field, Roth and Kirchain 

(2008). For information on the data used for (b) refer to Combemale, Whitefoot, Ales and Fuchs 
(2021). 
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production. Reallocating underutilized performers to other steps is not costless, for instance 
incurring time to reconfigure machines or for workers to change tooling or position. Differently 
from the previous costs, these opportunity costs now depend on the total level of production 
(see Hopp and Spearman (2011) and Laureijs, Fuchs and Whitefoot (2019) for an extensive 
analysis).  Hence, a common outcome of high reallocation costs is lower utilization of 
performers.  

Differences in utilization also appear to be associated in the aggregate with differences 
in occupational demand: Autor and Dorn (2013) explain the recent polarization of US 
employment by the substitution of routine tasks with information technologies, and recent 
theory (Acemoglu and Restrepo 2020) also tells us that automation drives up demand for the 
highest skills, substituting for humans in a domain of lower skill tasks that extends over time. 
However, as we show in the following figure, dis-aggregating from economy-wide data to 
changes in industry-level occupational demand within U.S. manufacturing suggest important 
industry variations that are not as readily explicable by current theory and that may be related 
to the costs described in this section.  

Following the example of Autor and Dorn, this figure is constructed by using Census 
IPUMS and American Community Survey (ACS) data to determine the change in the share of 
employment in occupations of different skill percentiles between 2000 and 2019, with the 
additional feature of dis-aggregating industries by their level of utilization based on Federal 
Reserve Data for manufacturing industries (requiring us to focus on manufacturing due to 
limitations of utilization data: see Appendix 11 for details).  Industries with low utilization over 
this period (such as aerospace manufacturing) show a strong polarization of occupational 
demand, while high utilization (such as automotive manufacturing) industries show a change 
more consistent with upskilling, seeing the largest relative growth in the highest-wage 
occupations. 

 

Figure 13 Relative Change in Occupational Demand Share by Industry Utilization (2000 - 2019) 
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The costs described in this section give intuitive dimensions to the problem of the firm 
in dividing production tasks: the firm must trade off between the cost of complex steps and the 
cost of dividing tasks and performers. We formalize these dimensions in the following section. 

3. Model 

The description of the model proceeds in several steps. First we describe the nature of 
production in terms of tasks and steps. Then we introduce the difficulty associated with each 
step. The description of how human or machine performers differ follows and the problem of 
the firm concludes this section.  

3.1 Tasks and Steps 

 A good or service is produced by executing a set of tasks. The set of tasks that need to be 
completed is described by the interval 𝒱 = [0, 𝜈] with 𝜈 finite.51 Tasks are indexed by 𝜈 ∈ 𝒱. A 
task can be performed by a human or a machine. We codify this information with the indicator 
function:𝑜(⋅): 𝒱 → {𝑚, ℎ}. When 𝑜(𝑣) = ℎ, a human (or when 𝑜(𝑣) = 𝑚, a machine) is 
performing task 𝑣. A consecutive group of tasks 𝒮𝑡 ⊆ 𝒱 performed by either a single human or a 
machine is referred to as a step.52 To define a step, we introduce a series of 𝑇 ≥ 1 thresholds 
{𝑠𝑡}𝑡=1

𝑇  that split the set of tasks into steps. For all 𝑡 we have 𝑠𝑡 ∈ 𝒱 and 𝑠𝑇 = 𝑣. 𝑇 thresholds 
define 𝑇 steps as follows: where 𝒮𝑡 = (𝑠𝑡−1, 𝑠𝑡] for 𝑡 = 2,… , 𝑇 and 𝒮1 = [0, 𝑠1]. The type of 
performer in step 𝑡 is defined with the indicator 𝑜𝑡 ∈ {𝑚, ℎ}. For every step, we associate a length 
𝑙𝑡 = 𝑠𝑡 − 𝑠𝑡−1 for all 𝑡 = 2, … , 𝑇 and 𝑙1 = 𝑠1.  

 
51 This definition of a set of tasks is quite flexible to different forms of organizing 

production. Note that the interval of tasks does not necessarily indicate that tasks must be 
carried out sequentially in time. The model is capable of representing production processes 
where tasks assigned to different performers can occur simultaneously, as occurs with parallel 
production of subsystems that are later assembled together. 

52 It is possible for multiple performers of the same type to be involved in the 
completion of a step, through parallelization or coordination. For instance in automobile 
assembly, a firm might employ multiple welders in parallel to meet a given production volume, 
with each welder independently performing the same tasks. Alternatively, the firm might 
require multiple performers to work simultaneously, such as when two workers lift a car door 
to place it into a vehicle frame Fuchs, Field, Roth and Kirchain (2011). These cases are treated 
equivalently in the model, provided that the performer type and ability is the same. It is also 
common for performers of different types to work simultaneously on a specific unit (e.g. a 
human and a collaborative robot). In this case, each performer is generally performing a 
different task: a human might be responsible for visual and cognitive tasks, while a robot may 
be responsible for strength-based tasks (Vicentini, 2021). In our model this case is described as 
separate steps (with fragmentation costs potentially incurred from the robot-human 
interaction). Because steps are defined by a performer, they do not distinguish between a 
human and a tool (and tooling may be part of the price of a performer); a tool makes a task 
easier for a human (or machine), while a machine performs a task (Frohm et al., 2008). 
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Remark 1  Each task completed contributes to the final value of the good or service. Let 𝑌 be 
that value. Then denote with 𝑦(⋅): 𝒱 → ℝ+ the individual contribution of tasks to the value of 
the good or service. We then have:  

 𝑌 = ∫
𝑣

0
𝑦(𝑣)𝑑𝑣. 

 The indexing of the tasks and their relationship with value added is quite flexible. In 
general, our interpretation is that steps that include a larger measure of tasks than other steps, 
are also more complex. If 𝑦(𝑣) is a constant for all 𝑣, these more complex steps also contribute 
more to the value added of the good.  

Associated with every consecutive pair of tasks there exists a fragmentation cost. This 
cost is paid by the firm whenever production is split into multiple steps, which are conducted by 
different performers. Fragmentation costs are characterized by the exact point at which a step 
ends, and by the type of performer executing the step. The costs are described by the function 
𝑓(⋅,⋅): 𝒱 × {0,1} → ℝ+. For a given production process split over 𝑇 steps and executed by 

performers according to 𝑜𝑖, total fragmentation costs are then by: ∑𝑇
𝑖=1 𝑓(𝑠𝑖, 𝑜𝑖). 

53 

3.2  Jobs and Difficulty 

 Firms define each job, assigned to either a human or machine, by assigning the 
performer to a step of a particular length and by determining the rate at which the step needs 
to be completed. These two dimensions define the different margins on which humans and 
machines have an advantage. As shown below, human performers (in general) have an 
advantage in the difficulty associated with step-length complexity, and machine performers (in 
general) have an advantage in the difficulty associated with the rate of completion of a step. 
The overall difficulty of a job for a human or machine performer is determined by these two 
dimensions as we explain next.  

Complexity 

During the execution of a step, a performer needs to solve a number of issues that arise 
in production to complete the step. The complexity of each issue is modeled according to an 
i.i.d. random variable 𝑋 ∈ 𝒳 ⊆ ℝ+. We assume that all moments of 𝑋 exist and are bounded. A 
key difference between a human and machine performer is the ability to solve closely related 
issues. For a typical machine, the ability to solve any issue is independent of the ability to solve 
other issues. For a human performer, the ability to solve an issue implies the ability to solve all 

 
53As an extension to the model we develop above, fragmentation costs can be thought 

of as deriving from the costs of transitional steps that allow a performer to hand-off the output 
of their task to another performer. Formally, the cost of these additional steps is:  

 𝑓(𝑠𝑖, 𝑜𝑖) = 𝐸 [(∑𝑁
𝑗=1 (𝑋𝑗)

𝜌𝑜𝑖)
1

𝜌𝑜𝑖] ;     𝑁 = ⌊𝑓(𝑠𝑖)/𝜆𝑓⌋;    𝑜𝑖 = ℎ,𝑚. 

This formulation introduces the arrival of fragmentation issues 𝜆𝑓 as a primitive parameter. It 

also generates a higher fragmentation cost for machine performers than human performers 
whenever 𝜌𝑚 < 𝜌ℎ.  
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easier issues. We formalize this distinction as follows. Given 𝑛 issues 𝑋𝑖  with 𝑖 = 1, … , 𝑛 the 
aggregate step-wide complexity is given by 𝐗(0|𝜌) = 0 and:  

 𝐗(𝑛|𝜌) = 𝐸 [(∑𝑛
𝑗=1 (𝑋𝑗)

𝜌)
1

𝜌] ,        𝑛 ≥ 1. 

The above equation is reminiscent of a CES production function with degree of 
substitutability 𝜌 (and elasticity of substitution equal to 1/(1 − 𝜌)). In our formulation, 𝜌 ∈
[1,∞) represents a key property of a performer; we will refer to 𝜌 as the degree of generality. 
Below we assume a human performer has a higher 𝜌 than a machine.  

Assumption 1 Let 𝜌ℎ  (𝜌𝑚) be the degree of generality of a human (machine) performer. Then 
𝜌ℎ > 𝜌𝑚 .  

  To understand the role of 𝜌, it is convenient to consider two extreme cases:   

1.  Perfect Generalist A perfect generalist is a performer with 𝜌 = ∞. In this case: 𝐗𝑔(𝑛) ≡
lim𝜌→∞𝐗(𝑛|𝜌) = max𝑖=1,…,𝑛𝑋𝑖, Let 𝑋𝑘:𝑛 the 𝑘-th order statistic out of a sample of 𝑛 draws of 𝑋. 

In this case the step-wide complexity for the perfect generalist is captured by 𝐗𝑔(𝑛) = 𝑋𝑛:𝑛. 
This scenario captures the case in which only the most complex issues drive step-complexity for 
the performer, because solving an issue of given complexity implies the performer can solve all 
issues of lesser complexity. 

2.  Perfect Specialist At the opposite end, a perfect specialist is a performer with 𝜌 = 1. This 
scenario captures the case in which each issue affects the step-wide complexity separately 
regardless of complexity. In this case 𝐗𝑠(𝑛) ≡ ∑𝑛

𝑖=1 𝑋𝑖, so that the complexity of all issues 
contribute to the overall step-wide complexity.  

To formally show the relationship between 𝜌 and complexity, it is helpful to relate the 
definition of 𝐗(𝑛|𝜌) to an 𝐿𝑝  norm. The result below follows from using Hermite-Hadamard 
inequalities for convex functions.  

Lemma 1  For all 𝑛 > 1, if 𝜌ℎ > 𝜌𝑚 then 𝑿(𝑛|𝜌ℎ) < 𝑿(𝑛|𝜌𝑚).  

Proof. In Appendix 8.  

We next look at the role of 𝑛 in the definition of complexity. For all 𝑛 and for 𝜌 ≥ 1 we 
have:  

 𝑛1/𝜌(𝐸[𝑋𝜌])1/𝜌 = (𝐸[∑𝑛
𝑗=1 (𝑋𝑗)

𝜌])
1

𝜌 ≥ 𝐸 [(∑𝑛
𝑗=1 (𝑋𝑗)

𝜌)
1

𝜌] = 𝐗(𝑛|𝜌), 

with equality holding when 𝜌 = 1 or 𝑛 ≤ 1. As the number of issues increases, the 
complexity of a step for human and machine performers increases at a different rate. To see 

this, consider the case for large 𝑛. Let 𝐒𝑛({𝑋𝑖}𝑖=1
𝑛 ) = ∑𝑛

𝑖=1 (𝑋𝑖)
𝜌 and 𝐒𝑛 = 𝐸[𝑆𝑛] = 𝑛𝐸[𝑋𝜌]. 

We then have from Proposition 2 in (Biau and Mason 2015) that:  

 lim
𝑛→∞

𝐗(𝑛|𝜌) ≈ 𝐸 [𝐒𝑛

1/𝜌
+

1

2

1−𝜌

𝜌2 𝐒𝑛

1/𝜌−2
(𝐒𝑛 − 𝐒𝑛)

2
+ ⋯] ≈ 𝑛1/𝜌(𝐸[𝑋𝜌])1/𝜌 . (1) 
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From (1) we see that 𝐗(𝑛|𝜌) increases more quickly with 𝑛 for lower values of 𝜌. Finally, 
𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌) is decreasing in 𝑛. This last observation is the basis for a concave 
relationship between step length and step complexity defined below. 

Remark 2 The difficulty of work originates from an interaction between tasks and the type of 
performer (e.g. task and different humans in (Campbell 1988)). Research highlights how, in 
general, humans are better able to solve a wide variety of issues than machines (see for 
example Wickens et al 2015) and experience a smaller increase in errors as complexity 
increases. When it is possible to divide complex work into many less complex parts, this human 
advantage is reduced, and machines can compete with humans in terms of low error rates. 
Humans experience sharp increases in their rate of failure as they are made to perform the 
same work faster; while machines are not immune to this effect, they typically outperform 
humans in terms of the error-effect of repeating simple tasks faster. As an example of this trade-
off, an industrial robot that can reliably perform its tasks can do so at much higher rates than a 
human, but would need to be reprogrammed and refitted to perform a different set of tasks, 
while a human could complete either set (Korsah et al 2013).  

Issue Arrival 

 Just as the magnitude of issues is uncertain, so is the number of issues that need to be 
solved in order to complete the step. To capture this feature, we model issues as a compound 
Poisson process.54 Issues arise according to a Poisson process with intensity 𝜆 so that the 
probability of 𝑛 issues arising in a step of length 𝑙 is given by:  

 𝑃𝑛(𝑙) =
(𝜆𝑙)𝑛

𝑛!
𝑒−𝜆𝑙 . 

 The parameter 𝜆 governs the relationship between step length (𝑙) and the expected 
number of issues denoted by 𝑁(𝑙) = 𝜆𝑙. The performer-specific expected complexity (or simply 
complexity henceforth) of solving the step is given by:  

 𝑐(𝑙|𝜌) = ∑∞
𝑛=0 𝑃𝑛(𝑙)𝐗(𝑛|𝜌). (2) 

The complexity of a step inherits properties of 𝐗(𝑛|𝜌). The following lemma summarizes 
key properties of complexity used later in this paper.  

Lemma 2  The function 𝑐(𝑙|𝜌) is: (i) strictly increasing and (ii) strictly concave in step length 𝑙.  

Proof. In Appendix 8.  

To fix intuition, it is helpful to go back to the case of performers being either perfect 
generalists or perfect specialists and see how different performer characteristics impact step 
complexity.  

Example 1 (A Solved Case) This example derives a closed form equation for the complexity level 
of a step for the case of a perfect generalist and a perfect specialist. Assume that each 𝑋𝑖  is 
uniformly distributed in [0,1]. We then have that the expected value for 𝑋𝑛:𝑛 is given by:  

 
54 The modeling of difficulty with 𝜌 = 1 becomes a version of the Cramer-Lundberg 

model. See also, Cai (2014). 
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 𝐸[𝑋𝑛:𝑛] =
𝑛

𝑛+1
. 

Since the number of issues and their complexity are assumed independent of each 
other, we have that the expected total difficulty to complete steps of length 𝑙𝑖 by a perfect 
generalist is given by:  

 𝑐(𝑙𝑖|∞) = ∑∞
𝑛=0

𝑛

𝑛+1

(𝜆𝑙𝑖)
𝑛

𝑛!
𝑒−𝜆𝑙𝑖 =

1

𝑒𝜆𝑙𝑖𝜆𝑙𝑖
+

𝜆𝑙𝑖−1

𝜆𝑙𝑖
. 

 From the above (and as proved previously), it is easy to see directly that 𝐷(𝑙𝑖|∞) is 
increasing and strictly concave in 𝑙𝑖 for all 𝜆. For a pure specialist, we have:  

 𝑐(𝑙𝑖|1) = ∑∞
𝑛=0

𝑛

2

(𝜆𝑙𝑖)
𝑛

𝑛!
𝑒−𝜆𝑙𝑖 =

𝜆𝑙𝑖

2
. 

 In contrast to 𝑐(𝑙𝑖|∞), 𝑐(𝑙𝑖|1) is linear in step length.  

Rate & Difficulty 

We now consider the second key characteristic of a job: the rate at which it is 
performed. A firm may choose the rate at which a performer must complete the tasks in a step. 
A higher production rate increases performer output per unit time but also raises the overall 
difficulty of a step. To proceed, we need to determine the unit of time. For simplicity, we will 
normalize time so that a unit of time corresponds to a work shift, which is exogenous to the 
model. Next consider the rate in terms of the number of repetitions of a step per unit time 
denoted by 𝑟 ≥ 𝑟 = 1.   Having determined the complexity of a step (𝑐) and the rate at which 

the performer executes the step (𝑟), we can now determine the overall difficulty of a step with 
these characteristics. Step difficulty is generated by an aggregator function 𝐷:ℝ2 → ℝ. A step 
with complexity 𝑐(𝑙|𝜌) performed by a performer of type 𝑜 = ℎ,𝑚 with rate 𝑟 is associated 
with a difficulty 𝐷(𝑐(𝑙|𝜌), 𝑟|𝑜). We assume the following for the difficulty function 𝐷.  

Assumption 2  The function 𝐷 is increasing in both arguments, linear and unbounded with 
respect to the first argument (complexity), and strictly convex with respect to the second 
argument (rate). The function 𝐷 is differentiable in both arguments. Denote with 𝐷′𝑟 the 
derivative of 𝐷 with respect to 𝑟. We assume:  

 𝐷′𝑟(𝑐, 𝑟, |ℎ) > 𝐷′𝑟(𝑐, 𝑟, |𝑚);        𝐷′′𝑟(𝑐, 𝑟, |ℎ) > 𝐷′′𝑟(𝑐, 𝑟, |𝑚),        ∀  𝑐 > 0, 𝑟 ≥ 𝑟; (3) 

  

 𝐷(𝑐(𝑙|𝜌ℎ), 𝑟|ℎ) < 𝐷(𝑐(𝑙|𝜌𝑚), 𝑟|𝑚),        ∀  𝑙 > 0. (4) 

Equations (3) and (4) formalize the differences between a human and machine 
performer with respect to sensitivity to rate. A step assigned to a human performer requires 
lower difficulty at low rate with respect to a machine performer. As the rate of the step grows, 
eventually the difficulty for a human performer overtakes that of a machine performer. The 
functional form 𝐷 allows a trade-off between length and rate for a constant difficulty level. 
Totally differentiating 𝐷(𝑐(𝑙|𝜌), 𝑟|ℎ) and keeping a constant difficulty level we get:  

 
𝑑𝑟

𝑑𝑙
= −𝑐′𝑙(𝑙|𝜌) ⋅ 𝐷′𝑙/𝐷′𝑟 . (5) 
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An important property of the 𝐷 function is the sensitivity with respect to rate 𝑟, which we define 
as:  

 𝜎 = 1 + 𝑟
𝐷′′𝑟

𝐷′𝑟
. (6) 

The value of 𝜎 controls the sensitivity of difficulty to the rate. An example of a functional form 
that satisfies Assumption 2 is:  

 𝐷(𝑐(𝑙|𝜌), 𝑟|𝑜) = 𝑐(𝑙|𝜌) ⋅ (𝑐 + 𝑟𝜍), (7) 

 with 𝑐 > 0 and 𝜍 > 1. The above specification features a lower bound on the difficulty, 

𝑐 ⋅ 𝑐(𝑙|𝜌), which is independent of 𝑟. In the functional form given by (7) we have that 𝜎 = 𝜍.  ∎ 

3.3  Performers 

 So far we have discussed two key differences between performers: 𝜌 and 𝜎. The former 
determines the ease with which a performer addresses problems of increased complexity. The 
latter summarizes the tolerance of a performer to an increase in rate. In general, these 
characteristics vary between performer types (human vs. machine) and among performers of 
the same type. For example, different machines can be characterized by their level of generality 
and rate-sensitivity. Humans may also differ from each other along these dimensions. 

The use of the aggregator 𝐷 defined in the previous section implicitly assumes that 
performers are heterogeneous along a single-dimensional ability level (denoted with 𝑎). When 
assigning an operator to a step, the ability level of the performer needs to be commensurate 
with the difficulty of the step. Formally, for a performer of type 𝑜 ∈ {𝑚, ℎ} with degree of 
generality 𝜌 is capable of executing a step of length 𝑙 with rate 𝑟 if 𝑎 ≥ 𝐷(𝑐(𝑙|𝜌), 𝑟|𝑜).55 

Divisibility 

 The final dimension characterizing performers is performer divisibility. Performers vary 
in the degree to which they can divide their time and reallocate their effort. A highly divisible 
human performer is able to complete additional tasks once the initial tasks associated with 
their job are completed. For example, a human computer programmer can quickly switch to 
answering emails once their programming tasks are completed. This performer therefore is not 
idle even when they can finish their tasks quickly (𝑟 is high), but can be reallocated to other 
productive tasks. In contrast, a robotic welding machine cannot switch to other tasks when the 
welding tasks are completed. The firm must pay for the performer (the rental price of capital in 
this case) even when they are idle.56 Unlike 𝜌 and 𝜎, the degree of divisibility is influenced not 
only by the type of performer but also by exogenous policy such as minimum shift labor laws.57 

 
55 In our model the ability of a worker is single dimensional. We abstract from explicitly 

modeling workers characterized by multidimensional abilities. Refer to Lindenlaub (2017) and 
Ocampo (2018) for work in this area. 

56 The inability to fully use the capacity of a performer is a common concern in the 
systems engineering literature. Refer to Hopp and Spearman (2011) for an extensive analysis. 

57 The divisibility of performers can also be affected by institutional and organizational 
constraints. For example, Schmitz and Teixeira (2008), when analyzing the Brazilian iron ore 
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In general there are two additional types of indivisibility of performers: the minimum 
time a performer can be allocated to the task, and the incremental amount that a performer 
can allocate to a task above the minimum (for example, a worker might work a minimum of 
four hours with hourly increments). We focus on the minimum time a performer can be 
allocated to the task. When encoding this restriction we assume that any higher rate of work 
provides no benefit. This restriction is summarized in the function: 𝑔(𝑅, 𝑟): ℝ+ × ℝ≥1 → ℝ+.58 

The function 𝑔 takes into account the rate at which a step is performed, 𝑟, and adjusts 
the fraction of performers needed per unit output accordingly. A higher 𝑟 denotes a shorter 
amount of performer time is devoted to the step, thus a lower performer cost for the step. The 
function 𝑔 also takes into account the number of products produced 𝑅. The reason for this 
dependency is due to the fact that the benefit of raising 𝑟 depends on the number of products 
to be processed and on the ability to reallocate the performer to a different task. To fix ideas 
we give two examples taken from Hopp and Spearman (2011):   

1.  Perfectly divisible performer. In this case we have:  

 𝑔𝑑𝑖𝑣(𝑅, 𝑟) =
1

𝑟
. 

In this case, any increase in 𝑟 translates into a proportionate reduction in the costs 
associated with the performer completing the assigned step. For this case, cost reductions from 
higher 𝑟 are independent of 𝑅. 

2.  Indivisible performer. This is the case of a performer that cannot be reallocated to a 
different task when idle. For this type of performer we have:  

 𝑔𝑛𝑑𝑖𝑣(𝑅, 𝑟) =
1

𝑅
⌈
𝑅

𝑟
⌉. 

 In this case, the gains from higher rate 𝑟 are limited by the number of products 
produced, 𝑅.  

 In general the function 𝑔(𝑅, 𝑟) is assumed to have the following properties:  

Assumption 3 For human (𝑜 = ℎ) and machine (𝑜 = 𝑚) performers, the function 𝑔𝑜(𝑅, 𝑟) is 
such that:   

1.  For all 𝑅, there exists an 𝑟(𝑅) such that 𝑔𝑜(𝑅, 𝑟) = 𝑔𝑜(𝑅, 𝑟(𝑅)) for all 𝑟 ≥ 𝑟(𝑅). In     
addition lim𝑅→0𝑟(𝑅) = 0;  

    2.  lim𝑅→∞𝑔𝑜(𝑅, 𝑟) = 1/𝑟;  

    3.  If 𝑟 > 𝑟′ then 𝑔0(𝑅, 𝑟) ≤ 𝑔𝑜(𝑅, 𝑟′) for all 𝑅;  

 
industry, document the productivity impact of organizational changes within the firm; 
specifically, they document how allowing repair staff to perform repairs outside their job 
classification (increasing the divisibility of the performer) increased labor productivity of these 
workers. 

58 Restriction on the incremental divisibility of workers would also be encoded in 𝑔. For 
analytical tractability, we do not assume a restriction on incremental work. 
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    4.  If 𝑅′ > 𝑅 then 𝑔0(𝑅, 𝑟) > 𝑔𝑜(𝑅′, 𝑟) for all 𝑟 > 𝑟(𝑅);  

    5.  For all 𝑅, 𝑟ℎ(𝑅) ≥ 𝑟𝑚(𝑅).  

 Condition 1 in the above Assumption formalizes the idea that, above a certain level of 
rate there are no further returns. This insight is commonly represented in the engineering 
literature by assuming that performers are  dedicated” to a process or to a step, meaning that 
their unused capacity cannot be productively used elsewhere. We refer to 𝑟𝑖(𝑅) as the specific 
minimum divisibility threshold for the performer. When 𝑟 > 𝑟, all output is produced with a 
single performer within the minimum time increment, and so increasing 𝑟 further cannot 
reduce the costs associated with the performer. Condition 2 states that as the output quantity 
grows, the constraint on the minimum time a performer can be allocated to the task becomes 
non-binding. Finally, Condition 5 encodes the idea that moving a human performer to a 
different task is easier than re-tasking a machine performer. 

We can now determine the total cost of assigning a performer to a step. Total step-costs 
are determined by the ability-price of the performers, 𝑤(𝑎) for humans and 𝑘(𝑎) for machines, 
as well as the cost saving associated with increasing the rate in which a step is executed, 
𝑔(𝑅, 𝑟). We have that the price of a performer to complete a step with ability 𝑎, rate 𝑟, and 
total number of products produced 𝑅 is given by:  

 𝑝(𝑎, 𝑟, 𝑅|𝑜𝑖) = {
𝑤(𝑎)𝑔ℎ(𝑅, 𝑟),    if  𝑜𝑖 = ℎ

𝑘(𝑎)𝑔𝑚(𝑅, 𝑟),    if  𝑜𝑖 = 𝑚
. (8) 

We assume the following conditions for functions 𝑤(⋅) and 𝑘(⋅): 

Assumption 4  The functions 𝑤(⋅) and 𝑘(⋅) are: positive, strictly increasing and weakly convex.  

We now have all the model ingredients needed to define the problem of the firm.  

3.4  Firm Optimization 

The firm chooses how to subdivide the production process by choosing the number and 
positions of steps and which performer to assign a given step. For each step, the firm also 
determines the required completion rate. We begin by taking the number of steps 𝑇 as given 
and finding the cost minimizing step thresholds, 𝑠𝑖, operator, 𝑜𝑖, ability, 𝑎𝑖, and rate, 𝑟𝑖, for each 
step 𝑖. We impose a lower bound of rate 𝑟 for later analysis, with the intuitive reasoning that 

there are technical limitations on each performer producing arbitrarily small fractions of a unit 
output.  

 𝐶(𝑅, 𝑇) = min
{𝑠𝑖}𝑖=1

𝑇 ,{𝑟𝑖,𝑎𝑖,𝑜𝑖}𝑖=1
𝑇

∑𝑇
𝑖=1 𝑝(𝑎𝑖, 𝑟𝑖, 𝑅|𝑜𝑖) + ∑𝑇

𝑖=1 𝑓(𝑠𝑖 , 𝑜𝑖) (9) 

 subject to:  

 𝑙1 = 𝑠1;     𝑙𝑖 = 𝑠𝑖 − 𝑠𝑖−1,    ∀  𝑖 = 2,… , 𝑇; (10) 

  

 𝑎𝑖 ≥ 𝐷(𝑐(𝑙𝑖|𝜌𝑜𝑖
), 𝑟|𝑜𝑖),        ∀  𝑖 = 1,… , 𝑇; (11) 

  

 𝑠𝑖 ∈ [0, 𝜈];        𝑠𝑖 ≤ 𝑠𝑖+1;         𝑜𝑖 ∈ {ℎ,𝑚};        𝑟𝑖 ≥ 𝑟,        ∀  𝑖 = 1,… , 𝑇; (12) 
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         𝑠0 = 0;        𝑠𝑇 = 𝑣. (13) 

 The two terms in (9) represent the performer and fragmentation costs associated with 
a given choice of 𝑇 (and performer characteristics). The per-unit cost of producing 𝑅 units is 
then determined by choosing the cost minimizing number of steps 𝑇.  

 𝐶(𝑅) = min
𝑇∈ℕ+

𝐶(𝑅, 𝑇). (14) 

We assume that firms take as given 𝑤(⋅) and 𝑘(⋅). 

4. Analysis 

 We analyze the environment of the model in four sections. First we analyze the 
conditions for the division of tasks to occur, finding that division can be driven by the structure 
of wages or by production volume. Second we analyze the relationship between step length 
and ability demand, rate, and wages. Third we analyze the conditions for firms to automate 
steps. We show how the effect of automation varies with production volume, showing 
polarization of skill demand at low volumes and up-skilling at high volumes. 

We conclude by analyzing the effect of changes in fragmentation costs on the division of 
production and the distribution of ability demand. We show first that variation in 
fragmentation costs over tasks is necessary for variation in demand for performer type and 
ability, then we show how changes in process technology can affect the inequality between the 
highest and lowest wages.  

4.1  The Structure of Production: Division of Tasks 

 The production problem described earlier provides a rich set of possibilities on how the 
structure of production can be organized. The organization is impacted by the cost associated 
with performers and with fragmenting production. In this section, we discuss conditions under 
which the firm finds it optimal to divide tasks across performers. For simplicity, we refer to 
human performers with wage rates 𝑤. However, the wage rate can simply be replaced with the 
rental price of capital to extend the discussion to the division of tasks among machines. 

Since the price of performers is strictly increasing in their ability, it follows that 
constraint (11) binds at the optimum. This result implies that a necessary condition for 
production tasks to be divided into more than one step is the existence of at least one 0 < 𝑙 <
𝜈 and 𝑟′, 𝑟′′ such that:  

𝑝(𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ), 𝑟∗ , 𝑅|ℎ) > 𝑝(𝐷(𝑐(𝑙|𝜌ℎ), 𝑟′|ℎ), 𝑟′, 𝑅|ℎ) + 𝑝(𝐷(𝑐(𝜈 −

𝑙|𝜌ℎ), 𝑟′′|ℎ), 𝑟′′, 𝑅|ℎ)   

(15) 

 where 𝑟∗ is the optimal 𝑟 without any division of tasks. The above inequality is strict 
since fragmentation costs are nonzero. We explore two forces that lead firms to divide tasks. 
The first is the effect of convex wages. The intuition for why convexity of wages lead to 
fragmentation is straightforward. A sufficiently convex wage in ability makes it extremely 
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expensive for a firm to hire a worker to execute a large non-fragmented step. Formally, this is 
described as follows.  

Proposition 1  Suppose that 𝑓(⋅, ℎ) is sufficiently low and that 𝑤(⋅) is sufficiently convex. Then 
division of tasks is optimal.  

Proof. If fragmentation costs 𝑓(⋅, ℎ) are sufficiently low, then the condition described in (15) is 
also sufficient. Suppose that, by contradiction, for all 𝑙 ∈ (0,1) and all 𝑟′, 𝑟′′ we have:  

 𝑝(𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ), 𝑟∗ , 𝑅|ℎ) ≤ 𝑝(𝐷(𝑐(𝑙|𝜌ℎ), 𝑟′|ℎ), 𝑟′, 𝑅|ℎ) + 𝑝(𝐷(𝑐(𝜈 −

𝑙|𝜌ℎ), 𝑟′′|ℎ), 𝑟′′, 𝑅|ℎ). 

To reach a contradiction, set 𝑙 = 𝜈/2, using (8) we have:  

𝑤(𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ))𝑔ℎ(𝑅, 𝑟∗)

≤ 𝑤(𝐷(𝑐(𝜈/2|𝜌ℎ), 𝑟′|ℎ))𝑔ℎ(𝑅, 𝑟′) + 𝑤(𝐷(𝑐(𝜈/2|𝜌ℎ), 𝑟′′|ℎ))𝑔ℎ(𝑅, 𝑟′′), 

setting 𝑟′ = 𝑟′′ = 𝑟∗ the above implies:  

 𝑤(𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ)) ≤ 𝑤(𝐷(𝑐(𝜈/2|𝜌ℎ), 𝑟

∗|ℎ)) + 𝑤(𝐷(𝑐(𝜈/2|𝜌ℎ), 𝑟
∗|ℎ)). (16) 

If 𝑤 is sufficiently convex, the function �̃�(𝑙) = 𝑤(𝐷(𝑐(𝑙|𝜌ℎ), 𝑟
∗|ℎ)), reaching a contradiction 

with equation (16).   ∎ 

  The previous result considered division of tasks as a way to reduce the cost of 
production for sufficiently convex wages, trading off against fragmentation costs. The notion of 
connecting division of tasks to increases in production efficiency dates to Adam Smith in the 
Wealth of Nations in his discussion of the division of labor (Smith 1776). Smith himself argues 
that the degree of specialization may also be limited by market size; we turn to this channel for 
division of labor next. The following proposition sharpens the trade-off present between 
fragmentation costs (related to cross-step coordination) and the size of output (related to the 
size of the market).  

Proposition 2 Suppose that: 𝑓(⋅, ℎ) is sufficiently low; 𝑅 is sufficiently high. If 𝐷′𝑟 =
𝜕𝐷

𝜕𝑟
 is 

sufficiently small (or 𝜈 is sufficiently large), then division of tasks is optimal.  

Proof. If fragmentation costs 𝑓(⋅, ℎ) are sufficiently low, then the condition described in (15) is 
also sufficient. Suppose that, by contradiction, for all 𝑙 ∈ (0,1) and all 𝑟′, 𝑟′′ we have:  

𝑝(𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ), 𝑟∗, 𝑅|ℎ) ≤ 𝑝(𝐷(𝑐(𝑙|𝜌ℎ), 𝑟′|ℎ), 𝑟, 𝑅|ℎ) + 𝑝(𝐷(𝑐(𝜈 − 𝑙|𝜌ℎ), 𝑟′′|ℎ), 𝑟′′, 𝑅|ℎ). 

Set 𝑙 = 𝜈/2, using (8) we rewrite the above as:  

 𝑤(𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ))𝑔ℎ(𝑅, 𝑟∗) ≤ (17) 

𝑤(𝐷(𝑐(𝜈/2|𝜌ℎ), 𝑟′|ℎ))𝑔ℎ(𝑅, 𝑟′) + 𝑤(𝐷(𝑐(𝜈/2|𝜌ℎ), 𝑟′′|ℎ))𝑔ℎ(𝑅, 𝑟′′) 

 

Set the values of 𝑟′ = 𝑟′′ = �̂� so that 𝐷(𝑐(𝜈|𝜌ℎ), 𝑟
∗|ℎ) = 𝐷(𝑐(𝜈/2|𝜌ℎ), �̂�|ℎ). From (5) we get:  

 �̂� = 𝑟∗ +
𝑐(𝑙|𝜌)

𝜕𝑙

𝐷′𝑙

𝐷′𝑟

𝜈

2
, (18) 
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From Assumption 3, for 𝑅 sufficiently high, we have 𝑔(𝑅, 𝑟) ≈ 1/𝑟 for all 𝑟. We rewrite (17) 
evaluated at 𝑟′ = 𝑟′′ = �̂� as �̂� < 2𝑟∗. From (18) we see that this condition is violated when 𝐷′𝑟 is 
sufficiently small or 𝜈 is sufficiently large thus reaching a contradiction. 
  ∎ 

4.2  Ability and wages 

In this section we explore the demand for ability in the production process. The demand 
for ability is determined by the length and the rate at which a step is completed. Since the 
latter can be adjusted in the short-run, we first provide a result linking length and rate. Then we 
provide a condition linking the length of a step and the overall ability level. The relationship 
between length and ability is a key property of the model, because it underlies the ability 
demand effects of automation and of division of tasks. To simplify the analysis for some of our 
results we assume the following structure for 𝑔(𝑅, 𝑟):  

Assumption 5  For human (𝑜 = ℎ) and machine (𝑜 = 𝑚) performers, 𝑔𝑜(𝑅, 𝑟) is given by:  

 𝑔𝑜(𝑅, 𝑟) = {
1𝑟,          if  𝑟 ≤ 𝑟𝑜(𝑅) = 𝑅𝑟𝑜

1𝑅𝑟𝑜 ,    if  𝑟 > 𝑟𝑜(𝑅) = 𝑅𝑟𝑜
, 

 with 𝑟ℎ > 𝑟𝑚.  

  In the above we can see that 𝑟 is the rate at which the total amount of time required to 
produce the quantity 𝑅 is equal to the minimum time increment that can be allocated to a 
performer. We also assume that the ability-price for performers (either human or machine) is 
well-behaved so that a unique rate level emerges for any step length. The following assumption 
guarantees this:  

Assumption 6  The function 𝒘, defined as:  

 𝐰(𝑥, 𝑜𝑖) = {

𝑥𝑤′(𝑥)

𝑤(𝑥)
,    if  𝑜𝑖 = ℎ

𝑥𝑘′(𝑥)

𝑘(𝑥)
,    if  𝑜𝑖 = 𝑚

, 

 is increasing for all 𝑥 > 0.  

The next proposition considers the impact of step length on the optimal rate and ability 
level for a constant performer type. 

Proposition 3  Suppose Assumptions 4, 5 and 6 hold. In addition, assume the following: (a) 𝐷 is 
separable between its two arguments and (b) 𝜎 > 𝑟𝐷′𝑟/𝐷 for all 𝑟. Given two steps 𝑖 and 𝑗 with 
the same performer, denote with 𝑟𝑖 (𝑎𝑖) and 𝑟𝑗 (𝑎𝑗) the optimal choice for rate (ability) in step 𝑖 

and 𝑗. Then if 𝑙𝑖 > 𝑙𝑗, we have that (i) 𝑟𝑖 ≤ 𝑟𝑗, (ii) if 𝑟𝑖, 𝑟𝑗 ∈ (𝑟, 𝑅𝑟ℎ) then 𝑟𝑖 < 𝑟𝑗, and (iii) 𝑎𝑖 > 𝑎𝑗. 

Proof. Suppose that 𝑜𝑖 = 𝑜𝑗 = ℎ (similar arguments follow for a machine performer). From (9), 

for step length 𝑙 the choice for 𝑟 solves:  

 min
𝑟≤𝑟≤𝑅𝑟ℎ

𝑤(𝐷(𝑐(𝑙|𝜌ℎ),𝑟|ℎ))

𝑟
. (19) 

We begin with the proof of (i). Suppose by contradiction that 𝑟𝑖 > 𝑟𝑗. The case in which 𝑟𝑗 =

𝑅𝑟ℎ is obvious as it is not optimal to increase rate in step 𝑖 (doing so would raise the ability 
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requirement of the step without benefiting from a lower usage of operator time). Consider now 
the case in which 𝑟𝑗 < 𝑅𝑟ℎ. If 𝑟𝑗 > 𝑟 we then have the following first order condition (from 

Assumption 4, the second order condition is verified) holding for both steps:  

 𝐰(𝐷(𝑐(𝑙𝑠|𝜌ℎ), 𝑟𝑠|ℎ)) =
𝐷(𝑐(𝑙𝑠|𝜌ℎ),𝑟𝑠|ℎ)

𝑟𝐷′(𝑐(𝑙𝑠|𝜌ℎ),𝑟𝑠|ℎ)
,        𝑠 = 𝑖, 𝑗. (20) 

Let function 𝑔 be defined as follows:  

 𝑔(𝑟𝑠) =
𝐷(𝑐(𝑙𝑠|𝜌ℎ),𝑟𝑠|ℎ)

𝑟𝐷′(𝑐(𝑙𝑠|𝜌ℎ),𝑟𝑠|ℎ)
, 

note that given Assumption (a) in the statement of the Lemma, function 𝑔 is independent of 
step length. We then have that:  

 𝑔′(𝑟) =
𝑟(𝐷′𝑟)2−𝐷𝐷′𝑟−𝑟𝐷𝐷′′𝑟

(𝑟𝐷′)2
, 

given Assumption (b) in the statement of the Lemma, we have from (6), that 𝜎 = 1 + 𝑟
𝐷′′𝑟

𝐷′𝑟
>

𝑟𝐷′𝑟

𝐷
 so that 𝑔′(𝑟) < 0 for all 𝑟 and all 𝑙. Hence:  

 
𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟𝑖|ℎ)

𝑟𝐷′(𝑐(𝑙𝑖|𝜌ℎ),𝑟𝑖|ℎ)
<

𝐷(𝑐(𝑙𝑗|𝜌ℎ),𝑟𝑗|ℎ)

𝑟𝐷′(𝑐(𝑙𝑗|𝜌ℎ),𝑟𝑗|ℎ)
. 

With the above, we then reach a contradiction with condition (20) since given the contradicting 
assumption together with Assumption 6, we have that 𝐰(𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟𝑖|ℎ)) >

𝐰(𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗|ℎ)). 

The case with 𝑟𝑗 = 𝑟 < 𝑟𝑖 can be analyzed in a similar fashion as the interior case above. In this 

case we have that the first order condition is given by:  

 𝐰(𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗|ℎ)) ≥
𝐷(𝑐(𝑙𝑗|𝜌ℎ),𝑟𝑗|ℎ)

𝑟𝐷′(𝑐(𝑙𝑗|𝜌ℎ),𝑟𝑗|ℎ)
. 

 The contradiction is reached in a similar manner as the previous case. 

We next show that (ii): if 𝑟𝑖, 𝑟𝑗 ∈ (𝑟, 𝑅𝑟ℎ) then 𝑟𝑗 > 𝑟𝑖. In this case we have that (20) holds for 

both steps. Given the previous result, we need to rule out 𝑟𝑖 = 𝑟𝑗. In this case we have 𝑔(𝑟𝑖) =

𝑔(𝑟𝑗). However, by Assumption 6, 𝐰 is strictly increasing, it follows that 𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟𝑖|ℎ) =

𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗|ℎ) reaching a contradiction since 𝑙𝑖 > 𝑙𝑗. 

We next show (iii): 𝑎𝑖 > 𝑎𝑗. If 𝑙𝑖 > 𝑙𝑗, from the previous result we have that 𝑟𝑖 ≤ 𝑟𝑗 with the 

inequality strict if 𝑟𝑖, 𝑟𝑗 ∈ (𝑟, 𝑅𝑟ℎ). Starting from this interior case we have (using the shorthand 

𝐰𝑗 = 𝐰(𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗|ℎ)).)  

 𝐰𝑗 = 𝑔(𝑟𝑗) < 𝑔(𝑟𝑖) = 𝐰𝑖 , (21) 

where the two equalities are from (20) and the assumption of interior 𝑟𝑖, 𝑟𝑗. While the 

inequality follows from the properties of 𝑔 discussed above together with 𝑟𝑖 < 𝑟𝑗. From (21) we 

have that 𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟𝑖|ℎ) > 𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗|ℎ). Since constraint (11) in the firm’s optimization 

problem is binding, it then follows that 𝑎𝑖 > 𝑎𝑗. 
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Next consider the cases that involve either 𝑟𝑖 = 𝑟𝑗 = 𝑟 or 𝑟𝑖 = 𝑟𝑗 = 𝑟ℎ. In this case 𝑎𝑖 > 𝑎𝑗  

follows from 𝑙𝑖 > 𝑙𝑗. Finally, we need to consider separately two remaining cases. First let 𝑟𝑗 =

𝑟ℎ and 𝑟𝑖 < 𝑟𝑗. In this case we have:  

 𝐰𝑖 ≥ 𝑔(𝑟𝑖) > 𝑔(𝑟𝑗) ≥ 𝐰𝑗 , (22) 

where the weak inequality originates from the first order condition of (19) and the possibility 
that the upper bound for 𝑟𝑗 or lower bound for 𝑟𝑖 might be binding. As before from (22) we 

conclude that 𝑎𝑖 > 𝑎𝑗. The remaining case has 𝑟𝑖 = 𝑟 and 𝑟𝑗 ∈ (𝑟, 𝑅𝑟ℎ) so that 𝑟𝑖 < 𝑟𝑗. This case 

proceeds as before noting that now the second weak inequality in (22) is now an equality.  ∎ 

The conditions on 𝐷 in the previous Proposition hold for the simpler example with 𝐷 given 
by (7). In this case separability is immediate and we have that (recall 𝜎 = 𝜍 for this functional 

form): 𝜍 >
𝜍𝑟𝜍

𝑐+𝑟𝜍 whenever 𝑐 > 0.  

4.3  Automation 

 In this section, we describe the conditions under which a firm automates a step by 
choosing a machine performer rather than a human. We show how automation impacts labor 
demand by showing that step length (𝑙) and production quantity (𝑅) is a key determinant for 
the patterns of automation. This section proceeds in three parts. We first show the existence of 
an upper bound on the length of automated steps, then show the existence of a lower bound; 
these results establish a region of automation and give us the effect of automation on the 
distribution of human performer ability demand. We then show how the range of steps 
automated evolves with production quantity (𝑅). Specifically, we show that if a step of a given 
length is automated for a given 𝑅 it is also automated for all 𝑅′ > 𝑅. This result is key in 
showing that the range of steps automated grows as 𝑅 increases. Combining the results of this 
section leads to a pattern of automation in (𝑅, 𝑙) space as displayed in Figure 14. In this Section 
we assume that fragmentation costs for machines are higher than for humans.59  

Assumption 7  For all 𝑠𝑡 ∈ 𝒱, 𝑓(𝑠𝑡, ℎ) < 𝑓(𝑠𝑡 ,𝑚).  

  

 
59 Difficulties in machine-machine interactions transferring work in progress are well 

documented (Korsah, Stentz and Dias, 2013), though this property is not essential for results of 
this section. 
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Figure 14 Automation Patterns: Volume and Step Length 

As we show below, if a step is long enough then it will not be automated, giving us the 
upper bound of a region of step lengths automated. This result is driven by the relatively higher 
generality (higher 𝜌) of humans. 

Proposition 4 (Upper Bound on Automation)  There exists 𝑙 such that 𝑜𝑖 = ℎ for all 𝑖 with 𝑙𝑖 >

𝑙.  

Proof. Suppose not, then for all 𝑙 there exists a 𝑗 with 𝑙𝑗 > 𝑙 such that 𝑜𝑗 = 𝑚. (Recall 𝑓(𝑠𝑗,𝑚) >

𝑓(𝑠𝑗, ℎ) from Assumption 7.) This implies that:  

 𝑘(𝑎𝑗
𝑚)𝑔𝑚(𝑅, 𝑟𝑗

𝑚) < 𝑤(𝑎𝑗
ℎ)𝑔ℎ(𝑅, 𝑟𝑗

ℎ). (23) 

Since 𝑘(⋅) and 𝑤(⋅) are increasing, given Assumption 3 Part 1, the optimal 𝑟 for either performer 

is always 𝑟 ≤ 𝑟 ≤ 𝑟. We then have 𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗
ℎ|ℎ) = 𝑎𝑗

ℎ ≤ 𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟|ℎ) ≡ 𝑎(𝑙𝑗), and 

𝐷(𝑐(𝑙𝑗|𝜌𝑚), 𝑟𝑗
𝑚|𝑚) = 𝑎𝑗

𝑚 ≥ 𝐷(𝑐(𝑙𝑗|𝜌𝑚), 𝑟|𝑚) ≡ 𝑎(𝑙𝑗). Substituting the previous inequalities in 

(23) we have:  

 𝑘(𝑎(𝑙𝑗)) < 𝑤(𝑎(𝑙𝑗))
𝑔ℎ(𝑅,𝑟)

𝑔𝑚(𝑅,𝑟)
. (24) 

For 𝑙 sufficiently high, the probability of drawing a small number of issues is small. We can then 
approximate step difficulty in (2) as:  

 𝑐(𝑙𝑖|𝜌) ≈ ∑∞
𝑛=𝑛 𝑃𝑛(𝑙)𝐗(𝑛|𝜌) 

with 𝑛 sufficiently high. We can then use the approximation of 𝐗(𝑛|𝜌) in (1) and substitute into 

(24) so that we have:  

 𝑘 (𝐷(�̃�𝑗
1/𝜌𝑚𝐸[𝑋𝜌𝑚]1/𝜌𝑚 , 𝑟|𝜌𝑚))) < 𝑤 (𝐷(�̃�𝑗

1/𝜌ℎ𝐸[𝑋𝜌ℎ]1/𝜌ℎ , 𝑟|𝜌ℎ))
𝑔ℎ(𝑅,𝑟)

𝑔𝑚(𝑅,𝑟)
. 
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Since 𝜌ℎ > 𝜌𝑚 (and 𝑘 = 𝑤) the above is violated for 𝑛𝑗 sufficiently large, reaching a 

contradiction.   ∎ 

The previous result is stated in terms of 𝑙 sufficiently high for a given step. A similar 
result holds for any 𝑙 if 𝜆 is instead sufficiently high. In both cases the step will feature a likely 
high number of issues. 

We now consider the case of automation of small steps. This lower bound of automated 
step-lengths is driven by the lower divisibility of machines than humans, such that �̅�𝑚 < �̅�ℎ 
(defined in Assumption 5). The result holds as long as step difficulty for small steps is not 
affected by varying rate. To define notation, let 𝑟ℎ(𝑙𝑖, 𝑅) and 𝑟𝑚(𝑙𝑖, 𝑅) be the optimal rate for 
humans and machines given the constraints �̅�ℎ and �̅�𝑚, and 𝑟ℎ

∗(𝑙𝑖), and 𝑟𝑚
∗ (𝑙𝑖) be the 

unconstrained optimal rate for human and machine respectively for a step of length 𝑙𝑖 with 
output 𝑅.60 Similarly, 𝑜𝑖  denotes the optimal choice of performer for step 𝑖. In the proposition 
that follows, we assume that human wages are sufficiently low for low ability levels.  

Proposition 5 (Lower Bound on Automation)  Suppose there exists a step 𝑖 with 𝑙𝑖 sufficiently 
small. Suppose also that 𝑙𝑖𝑚𝑐,𝑟→0𝑤(𝐷(𝑐, 𝑟|ℎ)) ≤ 𝑘(𝐷(𝑐, 𝑟|𝑚)). Then if 𝑅 is sufficiently low, we 

have that 𝑜𝑖 = ℎ.  

Proof. Suppose not, then:  

 𝑘(𝐷(𝑐(𝑙𝑖|𝜌𝑚), 𝑟𝑚|𝑚))𝑔𝑚(𝑅, 𝑟𝑚) < 𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟ℎ|ℎ))𝑔ℎ(𝑅, 𝑟ℎ). (25) 

If 𝑅 is sufficiently small we have that 𝑟𝑚 = 𝑟𝑚(𝑅) < 𝑟ℎ(𝑅) = 𝑟ℎ. This implies that 𝑔ℎ(𝑅, 𝑟ℎ) <
𝑔𝑚(𝑅, 𝑟𝑚). From (25) it follows that 𝑘(𝐷(𝑐(𝑙𝑖|𝜌𝑚), 𝑟𝑚|𝑚)) < 𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟ℎ|ℎ)). If 𝑙𝑖 is 
sufficiently small, we then have that 𝑐(𝑙𝑖|𝜌) ≈ 0; in addition, from Assumption 3 part 1 we have 
that lim𝑅→0𝑟𝑗 = 0 for 𝑜𝑗 = ℎ,𝑚. We then reach a contradiction with the assumption in the 

Proposition stating that lim𝑐,𝑟→0𝑤(𝐷(𝑐, 𝑟|ℎ)) ≤ 𝑘(𝐷(𝑐, 𝑟|𝑚)).  ∎ 

 The proof is straightforward and relies on the idea that, for low 𝑅, the advantage of a machine 
performer operating at high rate is eliminated. This of course requires a minimum wage for 
workers that is sufficiently low. At the opposite end, with high 𝑅, we expect the presence of 
automation since in this case the optimal machine rate is higher than the human rate. For this 
to occur we need the symmetrical assumption on costs assumed in Proposition 5:  

lim𝑐→0[lim𝑟→∞𝑤(𝐷(𝑐, 𝑟|ℎ))] ≥ lim𝑐→0[lim𝑟→∞𝑘(𝐷(𝑐, 𝑟|𝑚))]. 

Between the upper and lower bounds of automated step lengths, automation is driven 
by the lower sensitivity of machines to rate. For sufficiently short steps in which the constraint 
on machine rate is not binding, the lower rate-sensitivity of machines allows them to achieve 
lower cost than humans. We next consider the optimality of automation as the product 
quantity increases. For the next proposition, we keep the interval length fixed as we raise 
output 𝑅. This result is useful when comparing similar plants that operate at different scale. It 

 

60 That is 𝑟𝑗(𝑙𝑖, 𝑅) = argmin𝑟≤𝑅𝑟𝑗
{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑗),𝑟|𝑗))

𝑟
}; 𝑟𝑗

∗(𝑙𝑖) = argmin𝑟 {
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑗),𝑟|𝑗))

𝑟
}. 

When not a source of confusion, the dependency of 𝑟𝑗
∗ and 𝑟𝑗 on 𝑙𝑖 and 𝑅 is omitted. 
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also can provide insights on the optimal automation response of a plant faced with an increase 
in demand but not redesigning the entire production process. We have the following:  

Proposition 6 Suppose the 𝑔 function satisfies Assumption 5. Suppose that 𝑘(⋅) = 𝑤(⋅). Then if 
there exist 𝑖 such that 𝑜𝑖 = 𝑚 for a given 𝑅, then 𝑜𝑖 = 𝑚 for all 𝑅′ > 𝑅.  

Proof. Since step 𝑖 is automated and 𝑘(⋅) = 𝑤(⋅) it implies that:  

 min
𝑟≤𝑅𝑟𝑚

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟|𝑚))

𝑟
} < min

𝑟≤𝑅𝑟ℎ

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟|ℎ))

𝑟
}, (26) 

The proof proceeds by contradiction. Suppose that with 𝑅′ > 𝑅 the step of length 𝑙𝑖 is not 
automated. The contradicting assumption implies that:  

 min
𝑟≤𝑅′𝑟𝑚

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟|𝑚))

𝑟
} ≥ min

𝑟≤𝑅′𝑟ℎ

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟|ℎ))

𝑟
}, (27) 

Let �̃� be defined as the rate such that 𝐷(𝑐(𝑙𝑖|𝜌𝑚), �̃�|𝑚) = 𝐷(𝑐(𝑙𝑖|𝜌ℎ), �̃�|ℎ). This �̃� exists and is 
unique given conditions (3) and (4) in Assumption 2. For any 𝑟 < �̃� we have that:  

 
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟|𝑚))

𝑟
>

𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟|ℎ))

𝑟
, 

hence we have that for (26) to hold it must be the case that �̃� ≤ 𝑅𝑟𝑚. Given (3) and (4), it also 
follows that 𝐷′𝑟(𝑐(𝑙𝑖|𝜌𝑚), 𝑟|𝑚) < 𝐷′𝑟(𝑐(𝑙𝑖|𝜌ℎ), 𝑟|ℎ) and 𝐷′′𝑟(𝑐(𝑙𝑖|𝜌𝑚), 𝑟|𝑚) <
𝐷′′𝑟(𝑐(𝑙𝑖|𝜌ℎ), 𝑟|ℎ) for all 𝑟 ≥ �̃�. Since difficulty increases with respect to 𝑟 at a faster rate for 
human relative to machine performers, we reach a contradiction with (27).  
  ∎ 

 The previous results look at patterns of automation when changing the length of a step 
or separately when changing the size of the output. We next consider the interaction between 
these two components as we will see below as the output size increases (𝑅 goes up) so does 
the region of step-lengths that is optimal to automate. The end result is a cone of automation 
as highlighted in Figure 14. 

It is useful to define for a given 𝑅 the maximum and minimum length of a step that will 

not be automated. The maximum length denoted with 𝑙(𝑅) is the maximum 𝑙𝑖 such that:  

 min
𝑟≤𝑅𝑟𝑚

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟|𝑚))

𝑟
} = min

𝑟≤𝑅𝑟ℎ

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟|ℎ))

𝑟
}. 

 The minimum length 𝑙(𝑅) is similarly defined. In general, cases with no automation 

present will feature 𝑙(𝑅) = 𝑙(𝑅) = 0. Automation occurs whenever 𝑙(𝑅) > 𝑙(𝑅) or 𝑙(𝑅) =

𝑙(𝑅) > 0. An immediate implication of Proposition 6 is that for any 𝑅′ > 𝑅 we have 𝑙(𝑅′) ≥

𝑙(𝑅) and 𝑙(𝑅′) ≤ 𝑙(𝑅). We sharpen the characterization of the region of automation with the 

following result:  

Proposition 7  Let the assumptions of Proposition 6 hold. Consider two output levels 𝑅, 𝑅′ with 

𝑅′ > 𝑅. Consider a step of length 𝑙𝑖 = 𝑙(𝑅) or of length 𝑙𝑖 = 𝑙(𝑅). We have two cases of 

interest:   
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    • Suppose 𝑟𝑚(𝑙𝑖, 𝑅) = 𝑟𝑚
∗ (𝑙𝑖), then in the 𝑅′ scenario the step is not automated: 

𝑜𝑖(𝑅′) = ℎ;  

    • Suppose 𝑟𝑚(𝑙𝑖, 𝑅) < 𝑟𝑚
∗ (𝑙𝑖), then in the 𝑅′ scenario the step is automated: 𝑜𝑖(𝑅′) =

𝑚.  

 

Proof. We focus on the case 𝑙𝑖 = 𝑙(𝑅). The case for 𝑙𝑖 = 𝑙(𝑅) follows in a similar manner. (i) 

Suppose not. We then have 𝑜𝑖(𝑅′) = 𝑚. In addition, 𝑟𝑚(𝑙𝑖, 𝑅′) = 𝑟𝑚(𝑙𝑖, 𝑅) = 𝑟𝑚
∗ (𝑙𝑖), so that  

 
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟𝑚|𝑚))

𝑟𝑚
< min

𝑟≤𝑅′𝑟ℎ

{
𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟|ℎ))

𝑟
}, 

since the 𝑙𝑖 = 𝑙(𝑅), the step was not automated so we also have that  

 
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟𝑚|𝑚))

𝑟𝑚
≥

𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟ℎ(𝑙𝑖,𝑅)|ℎ))

𝑟ℎ(𝑙𝑖,𝑅)
, 

Since the choice of 𝑟ℎ(𝑙𝑖, 𝑅) is available for the scenario with 𝑅′ > 𝑅 the two above equations 
lead to a contradiction. 

(ii) Suppose not. We then have:  

 
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟𝑚(𝑙𝑖,𝑅′)|𝑚))

𝑟𝑚(𝑙𝑖,𝑅′)
≥

𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟ℎ(𝑙𝑖,𝑅′)|ℎ))

𝑟ℎ(𝑙𝑖,𝑅′)
. 

As a fist step we show that 𝑟ℎ(𝑙𝑖, 𝑅) > 𝑟𝑚(𝑙𝑖, 𝑅). Since 𝑙𝑖 = 𝑙(𝑅) we also have:  

 
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟𝑚(𝑙𝑖,𝑅)|𝑚))

𝑟𝑚(𝑙𝑖,𝑅)
=

𝑤(𝐷(𝑐(𝑙𝑖|𝜌ℎ),𝑟ℎ(𝑙𝑖,𝑅)|ℎ))

𝑟ℎ(𝑙𝑖,𝑅)
. (28) 

Since 𝑟𝑚(𝑙𝑖, 𝑅) < 𝑟∗(𝑙𝑖) it also follows that  

 
𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟𝑚(𝑙𝑖,𝑅′)|𝑚))

𝑟𝑚(𝑙𝑖,𝑅′)
<

𝑤(𝐷(𝑐(𝑙𝑖|𝜌𝑚),𝑟𝑚(𝑙𝑖,𝑅)|𝑚))

𝑟𝑚(𝑙𝑖,𝑅)
. 

If 𝑟ℎ(𝑙𝑖, 𝑅) = 𝑟ℎ(𝑙𝑖, 𝑅′) the previous three equations lead to a contradiction. It then 
follows that 𝑟ℎ(𝑙𝑖, 𝑅) < 𝑟ℎ(𝑙𝑖, 𝑅′) and hence 𝑟ℎ(𝑙𝑖, 𝑅) < 𝑟ℎ

∗(𝑅). This implies that both human 
and machine operators assigned to step 𝑙𝑖 with output 𝑅 are constrained: 𝑟𝑚(𝑙𝑖, 𝑅) = 𝑅𝑟𝑚 and 
𝑟ℎ(𝑙𝑖, 𝑅) = 𝑅𝑟ℎ. From Assumption 5 it then follows that 𝑟ℎ(𝑙𝑖, 𝑅) > 𝑟𝑚(𝑙𝑖, 𝑅). From (28) since 
𝑟ℎ(𝑙𝑖, 𝑅) > 𝑟𝑚(𝑙𝑖, 𝑅) we have that 𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟ℎ(𝑙𝑖, 𝑅)|ℎ) > 𝐷(𝑐(𝑙𝑖|𝜌𝑚), 𝑟𝑚(𝑙𝑖, 𝑅)|𝑚). From 
Assumption 2, it follows that an increase in 𝑟 will raise difficulty for the human performer more 
than for the machine performer. Consider now a level of output 𝑅′′ = 𝑅 + 𝜀 with 𝜀 > 0 and 
small. Since the increase in difficulty is higher for the human performer and the gain of an 
increase in 𝑟 is smaller for the human performer (recall that 𝑟ℎ(𝑙𝑖, 𝑅) > 𝑟𝑚(𝑙𝑖, 𝑅)) we then have 
that 𝑜𝑖 = 𝑚 at 𝑅′′. From Proposition 6 it also follows that 𝑜𝑖 = 𝑚 at 𝑅′ > 𝑅′′, reaching a 
contradiction.   ∎ 

4.4  Fragmentation Costs And Division of Tasks 

 In Section 2 we discussed how a significant source of technological change is the change 
in fragmentation costs. The goal of this section is to explore the relationship between changes 
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in fragmentation costs and the implied changes in the division of tasks and changes in ability 
demand. 

The production environment allows for an arbitrarily complex pattern of fragmentation 
costs. To make progress, this section considers two benchmarks: a uniform fragmentation cost 
case, and then an arbitrary fragmentation cost case affected by a uniform change in 
fragmentation costs. As a first step we show that variation in fragmentation costs over 
production tasks is a necessary condition for wage inequality. Without variation in 
fragmentation costs, step length is uniform and hence so is the ability demand for performers.  

Lemma 3  Suppose that the Assumptions of Proposition 1 and Proposition 3 hold. Consider the 

case in which 𝑓(⋅,⋅) = 𝑓. Then 𝑙𝑖 = 𝑙 and 𝑎𝑖 = 𝑎. for all 𝑖 = 1,… , 𝑇.  

Proof. Suppose not, then there exist two consecutive steps 𝑖, 𝑗 such that without loss of 

generality 𝑙𝑖 > 𝑙𝑗. Consider the alternative allocation with 𝑙 = (𝑙𝑖 + 𝑙𝑗)/2. For this allocation not 

to be optimal it must be the case that: 𝑝(𝐷(𝑐(𝑙𝑖|𝜌ℎ), 𝑟𝑖|ℎ), 𝑟𝑖, 𝑅|ℎ) +

𝑝(𝐷(𝑐(𝑙𝑗|𝜌ℎ), 𝑟𝑗|ℎ), 𝑟𝑗, 𝑅|ℎ) ≤ 2𝑝(𝐷(𝑐(𝑙|𝜌ℎ), 𝑟|ℎ), 𝑟, 𝑅|ℎ). The contradiction is then reached as 

in the proof of Proposition 1 exploiting sufficiently convex wages. The result for ability follows 
from Proposition 3.               ∎ 

While constant fragmentation costs do not create heterogeneity in skill demand, the 
level of skill is impacted by the level of fragmentation costs, even when these costs are 
homogeneous. As a first step we show that a general reduction in fragmentation cost leads to 
an increase in the number of steps.  

Lemma 4  Suppose that the Assumptions of Proposition 3 hold. Suppose also that the function 
𝑤(⋅) and 𝑘(⋅) are strictly convex. Consider an arbitrary profile for fragmentation costs 𝑓 with an 
associated 𝑇 thresholds. Consider an alternative profile for fragmentation costs 𝑓′ so that 𝑓′(𝑡,⋅

) = 𝑓(𝑡,⋅) − 𝑓 > 0 for all t. Let 𝑇′ be the optimal number of thresholds under 𝑓′. We have that 
(i) 𝑇′ ≥ 𝑇. Suppose now that 𝑤(⋅) and 𝑘(⋅) are sufficiently convex, then: (ii) If 𝑓′ sufficiently 
lower than 𝑓, then 𝑇′ > 𝑇; (iii) For 𝑓′ sufficiently low, then 𝑇′ is arbitrarily large; (iv) let 𝑙𝑚𝑖𝑛  

(𝑙′𝑚𝑖𝑛) be the length of the shortest step given 𝑇 (𝑇′), then for 𝑓 sufficiently large, 𝑙𝑚𝑖𝑛 > 𝑙′𝑚𝑖𝑛.  

Proof. We first establish that convex 𝑤(⋅) and 𝑘(⋅) implies 𝑝(𝑎, 𝑟) is convex in length. From 
Proposition 3, 𝑎𝑖  minimizing 𝑝(𝑎, 𝑟) in (9) is increasing in 𝑙, so that by Assumption 𝑤(𝑎) or 𝑘(𝑎) 
is convex in length. Note also that 𝑟 is weakly decreasing in 𝑙, so that for 𝑔(𝑅, 𝑟) weakly 
increasing and convex in 𝑟, 𝑝(𝑎, 𝑟) is also convex in length. This convexity holds even if the 
choice of performer changes in length: take any 𝑙𝑖 > 𝑙𝑗 such that 𝑜𝑖 ≠ 𝑜𝑗, with 𝑤(⋅), 𝑘(⋅) 

sufficiently convex by assumption. Then by cost-minimization, 𝑝(𝑎𝑖 , 𝑟𝑖|𝑜𝑖) ≥ 𝑝(𝑎𝑗, 𝑟𝑗|𝑜𝑗), so that 

by 𝑝(𝑎, 𝑟|𝑜) convex in 𝑙, 𝑜𝑗  preserves convexity of 𝑝 for steps of different length. The convexity 

of costs in length by Assumption and Proposition 3 holds even if there exists a constant 𝐷 such 

that 𝑎(𝑙 = 0) > 0. By the proposition, 𝑎 is strictly increasing in 𝑙: for sufficiently convex 𝑤, any 
𝑎(𝑙𝑖) − 𝑎(𝑙𝑗) > 0 ensures that 𝑝(𝑎, 𝑟) remains convex in length. For sufficiently convex 𝑤(𝑎) 

and 𝑘(𝑎), we can also ensure 𝑝(𝑎, 𝑟) is sufficiently convex in length. 
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The proof of (i) follows by contradiction: Suppose not. Then 𝑇′ < 𝑇. This implies that 
𝐶(𝑅, 𝑇′|𝑐′) < 𝐶(𝑅, 𝑇|𝑐′). Since the original allocation under cost 𝑐 is feasible, it follows that:  

𝐶(𝑅, 𝑇′|𝑐′) = ∑

𝑇′

𝑖=1

𝑝(𝑎′
𝑖, 𝑟

′
𝑖 , 𝑅|𝑜′

𝑖) + ∑

𝑇′

𝑖=1

𝑓′(𝑠′
𝑖 , 𝑜

′
𝑖) < ∑

𝑇

𝑖=1

𝑝(𝑎𝑖 , 𝑟𝑖, 𝑅|𝑜𝑖) + ∑

𝑇

𝑖=1

𝑓′(𝑠𝑖, 𝑜𝑖)            

= 𝐶(𝑅, 𝑇|𝑐) − 𝑇 ⋅ 𝑓. 

From the statement of the Lemma given the optimality of 𝑇 we have:  

𝐶(𝑅, 𝑇|𝑐) = ∑

𝑇

𝑖=1

𝑝(𝑎𝑖 , 𝑟𝑖, 𝑅|𝑜𝑖) + ∑

𝑇

𝑖=1

𝑐(𝑠𝑖, 𝑜𝑖) ≤ ∑

𝑇′

𝑖=1

𝑝(𝑎′
𝑖 , 𝑟

′
𝑖 , 𝑅|𝑜′

𝑖) + ∑

𝑇′

𝑖=1

𝑐(𝑠′
𝑖 , 𝑜

′
𝑖)             

= 𝐶(𝑅, 𝑇′|𝑐′) + 𝑇′ ⋅ 𝑓. 

Combining the two previous equations we get 0 < 𝑓 ⋅ (𝑇′ − 𝑇), reaching a contradiction if 𝑇′ <
𝑇. 

The proof of (ii) and (iii) follows the proof of Proposition 1: First note that 𝑙𝑚𝑖𝑛 ≤
�̅�

𝑇
. If not 

∑𝑇
𝑖=1 𝑙𝑖 > �̅�, reaching a contradiction. From (iii) for sufficiently high 𝑓′, we have we have 𝑇′ 

sufficiently greater than 𝑇 to ensure 𝑙𝑚𝑖𝑛 > 𝑙′𝑚𝑖𝑛.        
              ∎ 

The previous Lemma enables us to determine the changing demand for ability as 
fragmentation costs change. As fragmentation costs decrease, an immediate implication of 
Lemma 4 and Proposition 3 is a decrease in the lowest ability demanded. The following 
corollary formalizes this statement.  

Corollary 1  Suppose the Assumptions of Lemma 4 hold. Consider an arbitrary profile for 
fragmentation costs 𝑓. Consider an alternative profile for fragmentation costs 𝑓′ so that 𝑓′(𝑡,⋅

) = 𝑓(𝑡,⋅) − 𝑓 for all t. Let 𝑎𝑚𝑖𝑛 and 𝑎′𝑚𝑖𝑛  be the lowest ability demanded under fragmentation 
cost 𝑓 and 𝑓′, respectively. If 𝑓′ sufficiently lower than 𝑓, then 𝑎′𝑚𝑖𝑛 < 𝑎𝑚𝑖𝑛.  

The last result in Lemma 4 shows how a sufficiently large reduction in fragmentation 
costs results in a decrease in the minimum step length. There is not an equivalent property for 
the maximum step length in a process. Indeed it is possible for the maximum step length to 
increase due to an increase in 𝑇, even if the total cost of production decreases. The following 
example makes this point. 

Example 2 In this example we show how it is possible for the longest step length to increase as 
the number of steps increases. Let fragmentation costs be arbitrarily high for all 𝑡, except for 
three points, 𝑡𝑎 , 𝑡𝑏, 𝑡𝑐, with 𝑓(𝑡𝑎 ,⋅) = 𝑓(𝑡𝑐 ,⋅) and let 𝑓(𝑡𝑏,⋅) = 𝑓(𝑡𝑎 ,⋅) + 𝑑, with 𝑑 > 0. Let 𝑡𝑎 <

𝑡𝑐 − 𝑡𝑏 and 𝑡𝑏 >
�̅�

2
. For 𝑇 = 1 we have 𝑠1 = 𝑡𝑏 , the more centrally located cut. This is the case 

whenever the convexity of costs with respect to length dominates the higher fragmentation 
costs at 𝑡𝑏.  
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Figure 15 Maximum Step Length and T. (a) Case T=1, (b) Case T=2. 

For 𝑇 = 2 we have 𝑠1 = 𝑡𝑎  and 𝑠2 = 𝑡𝑐 . This occurs if the reduction in performer costs 
from placing step thresholds at 𝑡𝑎 , 𝑡𝑏  or 𝑡𝑏, 𝑡𝑐 relative to 𝑡𝑎 , 𝑡𝑐 are less than 𝑎. Figure 15 
summarizes the example when 𝑇 = 1 and 𝑇 = 2. The parametric scenario with 𝑝(𝑙) = 𝑙1.088, 
𝑡𝑎 = .4, 𝑡𝑏 = 7, 𝑡𝑐 = 7.5, �̅� = 10, 𝑑 = 0.05 delivers the required properties for the example.61 

While the effect of a change in fragmentation costs on the maximum step length is 
indeterminate under arbitrary conditions, we can place additional structure on fragmentation 
costs to restrict the effects on maximum length. If there exists any interval of tasks 𝑉 = [𝑡𝑖 , 𝑡𝑗] 

such that 𝑓(𝑡) is arbitrarily high for 𝑡 ∈ 𝑉, then the maximum step length will never be less 
than 𝑡𝑗 − 𝑡𝑖. In this case we refer to 𝑉 as a set of lumpable-tasks. It is natural to think of 

maximum step lengths being defined by regions of tasks which are indivisible or have arbitrarily 
high fragmentation costs, such as in highly controlled processes (e.g. material deposition as 
described in Combemale, Whitefoot, Ales and Fuchs (2021), continuous processing (e.g. in steel 
production as in Goldin and Katz (1998)), or highly interconnected tasks (e.g. indivisible loads in 
computing as in Berenbrink et al (2015)). Under this additional structure, maximum step length 
is insensitive to reductions in fragmentation cost, while the minimum step length is not. It is 
thus possible for technological changes to affect the upper and lower bounds of step 
complexity independently. These independent effects, as we show next, allow for technological 
changes that change the difference between the least and highest ability demand.  

 

 

 
61 Formally, we require 𝑡𝑎 , 𝑡𝑏, 𝑡𝑐  be such that 𝑝(𝑡𝑏) + 𝑝(�̅� − 𝑡𝑏) < min{𝑝(𝑡𝑐) + 𝑝(�̅� −

𝑡𝑐) − 𝑎, 𝑝(𝑡𝑎) + 𝑝(�̅� − 𝑡𝑎) − 𝑎}. Let 𝑡𝑎, 𝑡𝑐 be such that 𝑝(𝑡𝑐 − 𝑡𝑎) + 𝑝(�̅� − 𝑡𝑐) < 𝑝(𝑡𝑐 − 𝑡𝑏) +
𝑝(�̅� − 𝑡𝑏) + 𝑎 and 𝑝(𝑡𝑐 − 𝑡𝑎) + 𝑝(𝑡𝑎) < 𝑝(𝑡𝑏 − 𝑡𝑎) + 𝑝(𝑡𝑏) + 𝑎. 
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Changes in Issue Arrival 

 Important historic technological changes have simultaneously affected the complexity 
and divisibility of processes.62 Within the framework presented in this paper these 
technological changes can be described by a simultaneous change in fragmentation costs 𝑓 and 
in the parameter governing the average number of issues 𝜆. 63 In what follows, we consider the 
ability demand implications of a change in technology which increases issue arrival and 
sufficiently decreases fragmentation costs. We show that this change generates an increase in 
the upper bound of ability demanded and hence upward pressure on the highest wages in labor 
market equilibrium.  

Corollary 2  Suppose that the Assumptions of Proposition 3 hold. Suppose there exist a set of 

lumpable tasks �̂� of length 𝑙. Suppose also that under issue arrival 𝜆, the maximum step length 

is 𝑙. Consider an issue arrival 𝜆′ > 𝜆. Let 𝑎𝑚𝑎𝑥 and 𝑎′𝑚𝑎𝑥 be the lowest ability demanded under 
fragmentation cost 𝜆 and 𝜆′, respectively. If the performer for the longest step remains the 
same, we then have 𝑎′𝑚𝑎𝑥 > 𝑎𝑚𝑎𝑥.  

Proof. Since �̂� is lumpable, the maximum step length cannot be smaller than 𝑙 under any 
technological change. From the definition of complexity in (2) we observe that step length and 
issue arrival are perfect substitutes in their effect on complexity. The result then follows the 
proof of Proposition 3 substituting changes in 𝑙 with changes in 𝜆.               ∎ 

The previous Corollary requires a constant performer type for the longest step. If the 
longest step is sufficiently long, then by Proposition 4 this Assumption is automatically satisfied, 
as human performers are assigned to this step before and after the change in issue arrival rate. 

The previous Corollary together with Corollary 1 imply that in the presence of 
technological change that simultaneously lowers fragmentation costs and raises issue arrival, 
we will expect an increase of within-plant inequality. Together Corollary 1 and 2 provide a 
theoretical basis to understand how within-firm inequality might increase or decrease given 
different types of technological change.  

 
62 For instance, the development of the assembly line in manufacturing permitted a 

much finer division of tasks but entailed a more complex overall process with greater logistical 
and managerial requirements (Hounshell (1985), Chandler (1990)). The more recent 
phenomenon of design modularity in programming and other design allows for easier 
separation of work but increases system complexity (Baldwin, 2008). The inverse of this trade-
off is also possible. In modern manufacturing, parts consolidation, when formerly discrete parts 
are fabricated as one piece, makes dividing tasks more costly but also reduces the number of 
issues that might arise in assembly (Selvaraj, Radhakrishnan and Adithan, 2009; Combemale, 
Whitefoot, Ales and Fuchs 2021). 

63 Technological change affecting multiple dimensions are also intuitive from an 
adoption perspective. For example, a firm will not adopt a technology increasing fragmentation 
costs or issue arrival without an opposing effect reducing costs, such as reduced fragmentation 
cost or fewer issues. 
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5. Empirical Analysis 

In this section, we provide empirical counterparts to the theoretical results of the 
preceding section. First, increasing complexity of production requires performers with higher 
ability working at lower rates. Second, a reduction in fragmentation costs leads to an increase 
in the number of steps. Third, a reduction in fragmentation costs and an associated increase in 
issue arrival rates leads to an increase in the upper bound of ability demand, and a decline in 
the lower bound of ability demand. Fourth, a cone of automation forms where automation 
substitutes for workers of middle ability at low volumes, and the range of ability substituted 
widens as volume increases until automation substitutes for all but high ability. 

5.1  Data Sources 

In this section we use three datasets. Each dataset used provides detailed information 
on production operations. The three datasets are the Hand and Machine Labor Study of 1898; 
data on optoelectronic semiconductor manufacturing taken from (Combemale, Whitefoot, Ales 
and Fuchs, 2021); and data on contemporary auto-body assembly taken from (Fuchs, Field, 
Roth and Kirchain, 2008).  

The Hand and Machine Labor Study. 

The first dataset comes from the Hand and Machine Labor (HML) study (Wright, 1898).64 
The original data collection for this study was conducted by the Bureau of Labor Statistics 
between 1894 and 1898, with the goal of investigating the effect of the use of machines on 
labor. The study covers 672 products across the agricultural, manufacturing, mining, and 
transportation sectors. Detailed descriptions are provided for all products, which vary from 
harvesting hay to watch manufacturing to road repair and cargo loading. Processes range from 
one step to hundreds. Every step of every production process is coded in the data in terms of its 
motive power (e.g. hand, steam, water). Every product recorded in the hand and machine labor 
study is produced by exactly two separate processes: a "hand" process (a process that is 
relatively more manual), and a "machine" process (a process that is relatively more 
mechanized). The two processes represent a change in process structure and performer type to 
produce the same good with identical characteristics.65 The data characterizes each process 
step-by-step, analogously to the structure of steps in our model: for example, the hand process 
for producing hay consists of 1) mowing grass, 2) tending hay, 3) raking hay, 4) cocking hay, 5) 
hauling hay, 6) bailing hay and 7) weighing hay. The data includes the occupations employed in 
each step, the number of employees for each occupation for the step, the task content of the 
step and the motive power used in the step (e.g. hand, or different types of machine power 
such as water, steam, or electricity). Wages and operations data consist of the time worked per 
step cycle, the output per cycle of a process step, the number of workers required per step and 
the number of workers required per workstation. Each process step has a detailed task 
description, and coding to identify which step (or steps) in the hand process contains the same 

 
64 The dataset is also described in Atack, Margo and Rhode (2019). 
65 The original authors note rare exceptions, such as slabs of granite of different final 

weight or an 8-inch versus 9-inch pipe. These products are of the same composition, but 
different dimensions. 
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tasks as the machine process. For example, the machine process for making a sleigh (Product 
183) includes steps coded 2 and 3 for sanding panels and setting up the sleigh body, while the 
hand process has a step for setting up and sanding the body, coded as (2,3) to indicate that it 
contains the same tasks as the other process but combined into one step. Refer to Appendix 8 
for further details on this unique dataset. 

Direct Measurement of Production 

The remaining two datasets are direct measurement of plant-level production 
processes. This data is collected to identify the technical parameters of a highly detailed 
production model. These models, called Process Based Cost Models (PBCMs) in the industrial 
engineering and operations literature, are used across a variety of industries to inform 
engineering and production decisions. PBCMs describe the production of a single product in 
individual process steps and map characteristics of the product design (e.g. geometry) and 
process design (e.g. level of automation) to production outputs. This modeling approach 
provides the additional benefit of isolating the effects of technology changes at the level of 
individual process inputs, for example the effect of using a human or a machine to perform a 
specific production step on output. See (Combemale, Whitefoot, Ales and Fuchs, 2021) not for 
a detailed description of these models and the data collection process. 

Optoelectronic Semiconductor Manufacturing 

The first production process is the production of optoelectronic semiconductor 
transceivers for communications. We use data from the fabrication of semiconductor 
components to their assembly into a final package. The optoelectronic semiconductor industry 
is a useful case study for the effects of technology change because optoelectronic transceivers 
have a common form factor and end-use, so that they are functionally homogeneous while 
varying significantly in their internal design and method of production (i.e. in terms of the 
technological parameters in our theory). The optoelectronic semiconductor manufacturing 
dataset was originally collected and presented in (Combemale, Whitefoot, Ales and Fuchs, 
2021). This dataset allows us to compare step-level demand for worker skills (captured using 
the same methodology as the O ∗NET database) under different technological scenarios. These 
scenarios vary in the level of automation and the level of consolidation of product designs 
(increasing in the number of internal components which are jointly fabricated). 

Automobile Body Fabrication and Assembly 

The final dataset is from automobile body fabrication and assembly. This dataset was 
originally collected and presented in Fuchs, Field, Roth and Kirchain (2008). The data which we 
use in this paper characterize process flow and step-level process inputs for automobile body 
assembly. For each assembly process step, the data includes capital and labor inputs (demand, 
price) for each process cycle as well as operations parameters, specifically batch size and cycle 
time. The dataset also includes data for each step on the number of welding joins required for 
each part of the automobile body. 
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5.2  The Relationship Between Ability, Rate and Complexity 

In this Section, we use the optoelectronic semiconductor and automobile body 
production data to provide an empirical analogue to Proposition 3, which relates rate (𝑟) and 
ability (𝑎) to step length (𝑙). Following Remark 1, we use value added per step as a proxy for 
step length (this approximation relies on the second result in Proposition 3 relating ability and 
step length: longer steps have higher performer costs and hence higher value added). Assuming 
a competitive market for inputs and outputs (see (Combemale, Whitefoot, Ales and Fuchs, 
2021) for discussion of competitive market assumptions in optoelectronic semiconductor 
manufacturing), we calculate value added per step from the cost of labor and capital inputs to 
produce a unit of output from a step. Human performer costs are given by the compensation of 
workers divided by the worker time needed per unit output. Machine performer costs are given 
by the cost of the machine used, scaled by the time of use per part and the length of service life 
of the machine. The empirical results from both contemporary contexts, presented in Figure 16, 
are consistent with Proposition 3 by showing that rate is decreasing in step length. In the 
optoelectronic semiconductor context, the same wire-bonding machine takes longer to 
complete more complex configurations while preserving the same proportion of successful 
versus failed outputs. In the automobile body assembly context, more complex welding 
operations require more expensive machines (see Figure 15 in Appendix 10) or require the 
same machines to operate more slowly (in the case of human operators more complex steps 
are often associated with more expensive tooling). 

 

 

Figure 16 Log rates of production steps of increasing log value added. Data for (a) is from Fuchs, 
Field, Roth and Kirchain (2008). Data for (b) is from Combemale, Whitefoot, Ales and Fuchs 

(2021). 

We next use the step-level worker dexterity skill measures from the optoelectronic 
semiconductor data to explore the relationship between 𝑎 and 𝑙. Recall that Proposition 3 
provides conditions in which 𝑎 is strictly increasing in 𝑙. For this exercise, we proxy step length 𝑙 
on value added, specifically the value added by human performers from wage-costs per unit 
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output.66 In practice, production activity is shared in many steps between humans and 
machines, so to isolate the relationship between 𝑙 and human ability demand we consider only 
steps in which human labor costs are at least 70 percent of value added (the following results 
are robust to reducing minimum value added share to 60 percent). We compare across all steps 
in the dataset which have either a dexterity ability-level rating of 1 (the lowest value) or a level 
of 5 (the highest value recorded in the data).67 For context, level 1 indicates that the task is 
easier than putting coins into a parking meter, and level 5 means that it is harder than 
assembling small knobs onto stereo equipment in an assembly line. The distribution of labor 
costs associated with steps of high and low skill is consistent with Proposition 3 that highlights a 
negative relationship between ability and length. We have that average labor cost per unit for 
the low-skill steps (19 observations) is $0.19, while the average labor cost per unit for the high-
skill steps is $0.52. 

5.3  Fragmentation Costs and Division of Tasks 

 The time period covered by the HML dataset is characterized by a reduction of 
fragmentation costs.68 This dataset thus offers a useful empirical counterpart to the results of 
Section 4.4. As a first step we look at how the historical general reduction in fragmentation 
costs leads to changes in the number of production steps. In the HML dataset we look at 
mappings between hand and machine process steps to capture intervals which are affected by 
an increase in the division of tasks (for detailed information on the processing of data, refer to 
Appendix 9.2). We focus on the overall distribution of step lengths across all processes, because 
the HML dataset does not contain direct information on the fragmentation costs for each 
process. The results are displayed in Figure 17. 

 
66 Due to limitations of the data, we use a constant operator wage across all steps based 

on the average at each plant. 
67 As a check for robustness to skill type, we also performed a comparison between all 

steps whose maximum skill was 1 across the skills captured in the data (operations and control, 
dexterity, near vision) and steps whose maximum skill was 5. We found comparable results. 

68 For a historical account of the implications of technological change on manufacturing 
refer to Hounshell (1985) and Chandler (1990). 
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Figure 17 Fragmentation costs and step divisibility. (HML data). 

The figure displays a reduction in the number of processes that feature a small number 
of steps, consistent with the increased division of tasks provided by Lemma 4. In the context of 
our theory (see Lemma 4) this phenomenon is rationalized by a reduction in fragmentation 
costs. 

We next move to wages. Figure 18 is based on the HML data set. In this figure we 
restrict the analysis to steps with constant performer type (i.e. manual motive power regardless 
of whether the process is characterized as a hand or machine process). The figure displays the 
moments of four distinct distributions. With the leftmost two box charts, we compare the 
distribution of relative wages for tasks in which changing from the hand to the machine process 
does not incur changes in number of steps to perform those tasks (constant 𝑇). Relative wages 
are calculated using the wage of a performer divided by the average wage in their empirical 
plant.69 With the rightmost two box charts, we look at the case of tasks for which changing 
from the hand to the machine process leads to an increased number of steps (𝑇 increasing). In 
either case we compare the distribution of relative wages in the case of hand and machine 
processes. 

In Figure 18 the behavior of wages and ability is consistent with Corollary 1. For the case 
of increasing 𝑇, we observe a decrease of the lowest wages. As wages are monotone in abilities 

 
69We use relative wages to narrow in on plant-level distributions of wage and 

(indirectly) ability demand, as automation decisions occur within production plants. 
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this also suggests a decrease of ability demanded.70 The Corollary emphasizes how in the 
presence of decreasing fragmentation costs we expect downward pressure in demand for the 
lowest skills. To confirm that the changes in wages are indeed driven by changes in the number 
of steps, in the left panel we also consider products for which the number of steps did not 
change as the process moved from hand to machine. In this case, the widening of the 
distribution of relative wages is much smaller than the case of increasing 𝑇.    

 

Figure 18 Fragmentation costs and wages. (HML data). 

In Figure 18, for the case of increasing 𝑇, we also observe an increase in the relative 
wages at the top. Following the result in Corollary 2, this phenomenon can be rationalized by an 
increase in issue arrival. 

The HML dataset has the advantage of covering a variety of different industries and 
products. A downside is the lack of precise controls on the nature of fragmentation cost and 
lack of precise measurements of ability levels. To overcome these limitations we next look at 
the data from the optoelectronic semiconductor and automobile assembly. This modern 
production data allows for direct observation of ability and precise control over the changing 
nature of the process as fragmentation costs and average number of issue change. The 
optoelectronic semiconductor production data features adoption of different levels of 

 
70This pattern appears in direct industry observations. For example Womak, Jones and 

Roos (1990) confirm the shortening of steps as the Automotive industry moved away from the 
hand process. The cycle time of workers between 1908 and 1913 decreased from 514 to 2.3 
minutes. Similarly the training required for workers declined also to a few minutes. 
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automation and consolidation. For all levels of automation and consolidation, the final products 
are functionally homogeneous and perfect substitutes on the market. Changing the level of 
consolidation of the design drives step consolidation: the more consolidated the design, the 
fewer the step thresholds (𝑇). Consolidation of parts leads to an increase in fragmentation costs 
(𝑓) but also a reduction in assembly requirements, captured in our theory by reduced issue 
arrival (𝜆). The case of consolidation allows us to look for an empirical analogue of Corollary 1 
and Corollary 2 for constant performer type. Taking these two Corollaries together, we expect a 
convergence in ability demand (decline at the top and at the bottom), as fragmentation costs 
increase and issue arrival decrease (this is the opposite scenario as the one studied in the HML 
dataset). We use the skill-ratings collected for each step by (Combemale, Whitefoot, Ales and 
Fuchs, 2021) as a measure of 𝑎. Holding performer type constant across levels of consolidation, 
Figure 19 shows the effects of two changes in consolidation (from low to medium consolidation 
and then from medium to high consolidation) on the distribution of skill demand. We see that 
with consolidation skill demand converges toward middle skills. This is similar to the 
convergence in ability demand predicted by Corollary 1 and 2.  

 

Figure 19 Impact of technological change on skill demand.  
Data from (Combemale, Whitefoot, Ales and Fuchs, 2021). 

5.4  Automation 

The next set of empirical results relates to which steps in a production process are most 
likely to be automated. The results in Section 4.3 provide guidance on what steps are more 
likely to be automated when considering steps of different length or production processes with 
different levels of output. Together, the results of Section 4.3 describe what we refer to as a 
cone of automation where automation is more likely for higher level of output and for middle 
length steps (see Figure 14). In the following section, we consider the HML data and the 
optoelectronic semiconductor to find evidence for this pattern of automation. We also use the 
connections between our theory and HML empirics to suggest insights for understanding the 
finding from aggregate data presented in the introduction that low utilization industries 
experienced polarization of occupational demand in the period 2000-2019 while high utilization 
industries experienced a more "upskilling" shift toward high wage occupations. 
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We begin with the HML dataset. Ideally, to look at an empirical analogue for Figure 14, 
we need precise measurement of step length and observations of the production process at 
different output levels. The HML dataset provides a proxy of step length using wage data; in our 
theory, the longer the step, the higher the ability demanded for a constant performer type 
(e.g., human), and so the higher the wage. Unfortunately a process is observed at only one 
output level. Nevertheless, the HML dataset can be used for an empirical counterpart of Figure 
14. The key insight, described below, is to use the capacity utilization of each step as a proxy for 
the overall output level. The variety of processes observed across different products (correctly 
scaled) then provides variation in capacity utilization across steps. Before proceeding note that 
Figure 14 describes strict upper and lower bounds on automation for a given set of structural 
parameters. In the approach that follows, we compare different products in the HML dataset. 
Intuitively, the different products are heterogeneous in the production structural parameters 
(for example, they might differ in 𝜌 or 𝜎). Given this unobserved heterogeneity we expect to 
observe a probability of automation that varies as we vary wages and capacity utilization as 
opposed to a strict demarcation. 

In the model, changes in 𝑅 impact the firm choices by affecting the cost of performers. 
This occurs through the function 𝑔(⋅,⋅). As can be observed in Assumption 3, the role of 𝑅 is 
symmetric to the role of the minimum divisibility threshold of the performer 𝑟. So that an 
impact of an increase in 𝑅 can be achieved by an increase in 𝑟. With this logic, the results of 
Section 4.3 and the pattern in Figure 14 can be recast in terms of 𝑟 as opposed to 𝑅. The 
intuition for the existence of 𝑟 is that performers are underutilized. We develop a proxy of how 
close performers are to 𝑟 by their level of utilization: if a worker is highly underutilized, then it 
is likely that so will be a machine, and the constraint on 𝑟𝑚 will bind as in Proposition 6 and 7. 
This reasoning is helpful since the HML data, while not providing observation for different 𝑅 
allows us to recover the utilization of each performer in each process. We can then look at each 
manual step and determine how close the rate of the operator is to the minimum divisibility 
threshold. Using the same logic as Section 4.3, steps with high capacity utilization of human 
performers are more likely to be automated.  

 

Figure 20 Patterns of automation over wage and utilization bins. Numbers in each cell 
denote the percentage of steps automated in each step. (HML data). 
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We next briefly describe how 𝑟 is identified in the HML data (see Appendix 9.2 for 
additional details). The dataset provides information on the number of workers involved in a 
step and the amount of time the step requires in order to be completed. For each process, 
following (Hopp and Spearman 2011), we identify the bottleneck in production by looking at 
the step that requires the longest time to be completed. We determine the fractional utilization 
of a step by comparing its completion time to the completion time of the bottleneck. For 
example if a bottleneck requires 10 hours to be completed and a preceding step requires 1 hour 
to be completed, the fractional utilization of the preceding step is 1/10. Finally using the 
information on the number of performers on a given step we recover the fractional utilization 
of performers in a step. In the previous example, if the step has two workers assigned to it, it 
implies that the fractional utilization of performers in the step is 1/5 of a worker. This fractional 
performer utilization rate can be compared across steps and across processes and is used as 
one of the two key drivers for automation in Figure 20. 

The second dimension driving automation in Figure 14 is step length. The connection of 
this dimension to the data is more straightforward. Proposition 3 establishes a direct relation 
between step length and ability. As ability is not observed in the HML dataset we proxy this 
characteristic using worker wages (in the optoelectronic semiconductor data below we instead 
directly observe ability). For each production process, wages for each step are normalized by 
the average wage observed in that process. 

In the HML dataset, for each product we consider pairs of steps with identical task 
content between the hand and machine processes. We select steps from hand processes that 
were performed manually. We then measure whether a step has been automated in the 
machine process using a binary indicator of a change in motive power.71 Figure 20 displays the 
results. In the figure, each cell is ordered in terms of percentile of performer utilization and 
wage of the performer. The number in each cell denotes the percentage of steps in each range 
of utilization and wage that is automated. As expected from Figure 14, the pattern that 
emerges displays characteristics of a cone of automation: automation occurs more often at 
middle wage steps, and the range of middle wage steps that are likely to be automated 
becomes progressively larger for higher utilization steps. Intuitively, the most automated steps 
in the HML data are the ones in which a large fraction of worker time is devoted to a step thus 
allowing a machine in that step to be less rate-constrained. Additionally automation is more 
likely when wages are not too high or too low (so that machines are not executing a too 
complex step and as before are not rate-constrained). 

The application of the aggregate trends described in Figure 13 to the HML case also 
gives potential insights into the differences in occupational demand change between high and 
low utilization industries in Figure 13 in the motivation section. In keeping with Figure 14 from 
our theory and the relationship between utilization and rate constraints described above, we 
would expect industries with high levels of utilization to be further along the cone of 
automation than industries with low levels of utilization. This difference would imply that given 

 
71 We do not observe any instances of a hand step shifting to a less mechanized form of 

motive power in the equivalent step in the machine process. For additional details refer to 
Appendix 8.2 and 8.3. 
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exposure to new automation technology, low utilization industries would tend to see labor 
substitution at middle wages, shifting the share of demand toward low and high wage jobs. 
While we do not measure exposure to information technologies or other possible sources of 
automation in Figure 13, the change in occupational demand share for lower utilization 
industries is consistent with this feature of the theory. Our theory would also predict that 
higher levels of utilization should mean substitution across a broader range of wages, first 
driving demand toward the lowest and highest wage jobs and ultimately toward the highest 
wages. Again, we see this pattern in the change in occupational demand from 2000 to 2019, so 
that our theory could help explain the difference in demand evolution across industries. 

We next turn to optoelectronic semiconductor data. In this dataset we observe different 
production scenarios with different levels of automation.72 This level of detail allows us to 
precisely determine if a step has been automated or not. In addition, the available data allows 
us to determine the ability of each operator without relying on data. The data provides 
information on ability levels as defined in the O ∗NET database.73 In Figure 19  we display the 
results as we move from a low to medium level of automation. The data displayed is for a single 
output level. This figure can then be considered as a vertical slice of Figure 14 in a region where 
automation occurs. The vertical axis denotes the number of displaced workers being automated 
at a given skill level. As anticipated by our theory, the impact of automation is more evident for 
middle-skill workers. 

6. Concluding Remarks 

 In this paper, we provide a general theory relating technology change and labor 
demand. We emphasize three dimensions of the problem of the firm which are affected by 
technology change: the ease of fragmenting the production process into smaller steps (with 
associated changes in process complexity); the costs of allocating the same performer (human 
or machine) to multiple steps; and the trade-off between step complexity and rate of 
completion, where humans tend to solve more complex steps than machines but tend to have a 
slower completion rate. 

We find that implications of the theory are supported by empirical evidence across a 
wide range of technologies and industry contexts from the late 19th century and contemporary 
production. Human performers are favored against machines in high complexity steps, or at low 
output quantity, so that automation has a polarizing effect on skill demand at low output and 
an upskilling effect at higher output. The theory also offers insights for understanding aggregate 
changes in occupational demand not anticipated or explained by prior theory, such as the 
differential patterns of demand polarization versus upskilling in low versus high utilization 
industries. Technology changes that reduce fragmentation costs and increase process 
complexity can increase the spread of labor abilities demanded. Such technological changes put 

 
72 The change in level of automation is characterized using a taxonomy of automation, 

For additional details refer to Combemale, Whitefoot, Ales and Fuchs (2021). 
73 A skill of 1 is rated low, a skill of 5 or greater (levels 6 and 7 were not observed) high, 

and 2-4 medium. As shown in Combemale, Whitefoot, Ales and Fuchs (2021), this result is 
robust across different types of skills and without aggregation of skill rankings. 
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upward pressure on wage inequality. Conversely, we also find that technologies that increase 
fragmentation costs and lower complexity reduce the spread of labor abilities demanded, 
putting downward pressure on wage inequality. 

The theory offers multiple broad insights for technology change and the division of 
labor. First, the division of production into different steps is the origin of heterogeneous ability 
demand. Heterogeneous ability demand will not occur unless some steps are more costly to 
divide than others, and technological change can affect wage inequality by altering these 
fragmentation costs. Second, as machines become more divisible (e.g. through cloud 
computing), the effect of automation becomes less skill-polarizing and more upskilling. Third, 
the singularity point where all human labor is replaced by machines occurs when machines are 
general enough and cheap enough such that they no longer have a relative disadvantage in 
solving complex problems nor simple problems compared to humans, even in low output 
production processes. 

The theory also offers a unified explanation of technological change, capable of 
rationalizing a large number of empirical regularities observed in empirical data. In Table 7 we 
provide a mapping between major technological trends of the last two centuries captured 
empirically in this paper and deep parameters and functional forms of our model.74 Based on 
the theory, a taxonomy of technology change can be developed. A technology change may be 
described in terms of its effects on process complexity (𝜆), task separability (𝑓) and performer 
characteristics such as divisibility (𝑔), sensitivity of performers to rate (related to 𝜎) and 
generality (related to 𝜌). The classification of technology changes into their effects on these 
parameters suggests the resulting impacts of the technology on labor demand.   

Table 7 General Theory Applied to Empirically Captured Technology Changes 

  Technology Change   Period   Theory Interpretation   Labor Impact  

Mechanization: 
Substitution of 
human performers by 
machines  

 1870s-
1890s  

 Machine performers 
repeat tasks faster than 
humans but unable to 
perform highly varied 

work: 𝜌𝑚 < 𝜌ℎ  and 𝜎𝑚 <
𝜎ℎ. Machines less 
divisible than humans, 
�̅�𝑚 < �̅�ℎ.  

 Human ability demand 
polarized. Empirically: 
growth of higher skill 
professional jobs 
(Chandler 1990), more 
demand for unskilled labor 
(Atack, Margo and Rhode 
2019)  

Interchangeable 
Parts and Assembly 
Line: Increased 
standardization of 
parts and process to 
facilitate transfer of 

 1870s-
1910s  

 Increased process 
complexity, leading to 
𝜆 ↑, but facilitation of 
transfer and reduced 
post-processing of parts 
driving 𝑓 ↓  

 Upper bound of human 
ability demand increases, 
lower bound of demand 
decreases. Empirically: 
creation of new 
managerial jobs and of 

 
74 A more extensive table of technologies whose labor implications as documented in 

the literature match the theory (but without corresponding empirical analysis in this paper) is 
provided in Appendix 12.  
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work and minimize 
refitting 
requirements  

very simple production 
jobs. (Hounshell (1985); 
Womak, Jones and Roos 
(1990)) 

Consolidation of 
Parts: Formerly 
discrete parts 
fabricated as one  

 1970s-
2010s  

 Joint fabrication of parts 
makes some fabrication 
tasks indivisible, driving 
𝑓 ↑, allows simpler design 
and reduced assembly, 
driving 𝜆 ↓  

 Upper bound of human 
ability demand decreases, 
lower bound increases. 
Empirically: convergence 
of skill demand from low 
and high to middle, 
reduced division of 
production (Combemale, 
Whitefoot, Ales and Fuchs, 
2021)  

Automation and 
Computerization: 
Substitution of 
human labor by 
computer and 
machine performers  

 1960s-
2010s  

 Machine performers able 
to repeat tasks faster than 
humans but unable to 
perform highly varied 

work: 𝜌𝑚 < 𝜌ℎ  and 𝜎𝑚 <
𝜎ℎ. Compared to 
mechanization, 
performers are more 
general (𝜌 ↑), intense 
(𝜎 ↓) and divisible (�̅� ↑)  

 Polarization of worker 
ability demand at low 
volumes, shifting to high 
skill at high volumes. 
Empirically: up-skilling of 
skill demand (especially in 
manufacturing), aggregate 
polarization in conjunction 
with lower automation in 
services (Goos, 
Rademakes, Salomons and 
Vandeweyer (2019); 
Willcocks and Lacity 
(2016)) 

While the model is rich enough to model the skill demand implications of an 
unprecedented variety of technology changes, we also anticipate a number of extensions. A 
natural extension is to relax the assumption in the model that firms set their ability demand to 
ensure that a step is completed in expectation. This extension would allow firms to choose 
ability greater or less than difficulty at the cost of higher or lower successful completion (e.g., 
yield) rates. This extension could help explain certain empirical cases where high costs of failing 
to solve issues in a specific step would warrant higher demand for operator ability so that 
failure is less frequent. An additional extension could be imposing additional costs associated 
with the reorganization of a process. This extension would allow us to distinguish the effects of 
technology change with and without process reorganization, and could be extended to 
understand the incentives for different strategies of technology adoption across different firms 
or regions. 

  



77 
 

Chapter 3: How Task Characteristics Affect the Automation of Steps 
 

1. Introduction: 

This chapter refers to and offers an extension on the model described in "How It’s 
Made." An important feature of the model given in Chapter 3 is the ability to explain 
differential task-performer complementarities. It is widely observed that while machines are 
competitive with humans in many physical tasks, they are not currently competitive in many 
social tasks. The model as currently constructed could account for this difference in terms of 
different characteristics of tasks and the contexts in which they are performed. Most basically, 
if the number of issues (issue arrival rate) is greater for social tasks than physical tasks, then we 
would anticipate a lower rate of automation. 

If social tasks are generally less divisible than physical tasks, high fragmentation costs 
could explain why machines are more competitive in physical roles. Similarly, an occupation 
with tasks that have low fragmentation costs would be more susceptible to automation than 
one with high fragmentation costs. If the volume of production differs significantly across task 
contexts, it could also drive differential rates of automation for different types of tasks in the 
model: note for instance that customer support tasks such as directory assistance experienced 
high automation despite being social (e.g. Premkumar et al. 2002) 

Another feature of tasks discussed in the literature (Autor and Dorn 2013; Bessen 2016) 
is whether they are "routine," with the relevant prediction that routine tasks are more readily 
automated. It is possible to reflect this conception in the model by changing the variance of the 
number of issues in tasks. As we show next, the properties of performer generality and our 
assumptions on performer price suggest that a more generalist performer should become more 
cost-effective relative to a less generalist performer as the variance of number of issues 
increases, even as expected number of issues remains constant. 

To study the implications of greater variance in the number of issues, we analyze how 
performer generality affects the curvature of complexity in number of issues. We show in the 
following lemma that the difference in complexity between low and high generality performers 
is convex in the number of issues, for sufficiently high 𝑛. This property will allow us to show in a 
subsequent proposition that high variance in number of issues changes the difference in 
expected complexity between high and low generality performers and hence changes the cost of 
using humans or machines. 

2. Model 

This section builds on the model described in Combemale et al (2022: How It’s Made), 
with specific departures noted throughout. The extension made herein capture how issues of 
different types may occur depending on the type of task to be performed, with associated types 
of difficulty and performer ability to characterize differences in performer demand from new 
technology (e.g. effects of automation). 

Each task has a type 𝜓(𝑡) ∈ 𝒩, belonging to the set Ψ. Within a step, issues arise for each 
type of task according to the random process described in Sections 3.1 and 3.2 Combemale et al 



78 
 

2022, giving 𝑛𝜓 issues of given type with magnitude 𝑋𝑖
𝜓

 for 𝑖 = 1, . . , 𝑛𝜓. The span of tasks of 

type 𝜓 in a step is given by a type-specific length 𝑙𝜓 with a corresponding expected complexity 

value 𝑐(𝑙𝜓|𝜌) and hence difficulty 𝐷𝜓. Each performer, in turn, has an ability associated with 

each type given by 𝑎𝑗
𝜓

 for performer 𝑗, with a vector of abilities 𝐴Ψ. A step is not completed if 

performer ability of any type is less than difficulty of the corresponding type. 

For analytical progress in some cases, we call on two assumptions of independence across 
task type: firstly that issues across types are independent in their number and magnitude, and 
second that wages or capital prices are increasing in ability of all types, and that greater ability of 
one type weakly increases the derivative of price with respect to other types of ability.75 

Assumption 1 The number of issues 𝑛𝜓 and issue magnitudes 𝑥𝜓 are independent across 
different task types 𝜓  

Assumption 2 Performer price is given by 𝑤(𝐴𝜓) = 𝑘(𝐴𝜓), increasing in 𝑎𝜓 for all 𝜓 and with 
𝑑𝑤(𝐴𝜓)2

𝑑𝜓𝑖𝑑𝜓𝑗
≥ 0 for all 𝑖, 𝑗  

To make analytical progress, we will define a random variable 𝑌 ∈ 𝒩 with mean 0. "High 
variance" steps will have number of issues �̂� = 𝑛 + 𝑌. Let 𝐸(𝑛) be sufficiently high that 𝑝(�̂� <
0) ≈ 0.76 In the following proposition, we consider two steps of equal length, one of high 
variance and the other not, analogous to the idea of non-routine and routine work. 

Remark 1 The model could be further extended to make variance a property of tasks rather than 
steps: each task has a type 𝜓(𝑡) ∈ 𝒩 with a corresponding random variable 𝑌(𝜓) with mean 0 
and different variance for all 𝜓 (and a constant 𝑌(0) = 0 as a baseline level of issue variance in 
tasks). Aggregating across tasks in a step 𝑖, for any draw of number of issues 𝑛, there is a 

corresponding probability that any distribution 𝑌(�̂�) will be used to generate �̂�𝑖 = 𝑛 + 𝑌(�̂�)𝑖. 

The probability is given by 𝑝(𝑌(�̂�))𝑖 = ∫
𝑡∈𝑆𝑖,𝜓(𝑡)=�̂�

𝑡 𝑑𝑡, the share of tasks of type �̂�: a step 

with many tasks of a high variance type will thus also be high-variance. The step-level difference 
in variance considered in our analysis would be equivalent in this construction to an interval in 
which 𝜓(𝑡) = 0 for all 𝑡 ∈ 𝑆 for the low-variance case, and 𝜓(𝑡) = 1 for all 𝑡 ∈ 𝑆 for the high-
variance case. 

3. Analysis 

To study the implications of greater variance in the number of issues, we first analyze how 
performer generality affects the curvature of complexity in number of issues. In this subsection, 

 

75 By allowing heterogeneity in 
𝑑𝑤(𝐴𝜓)2

𝑑𝜓𝑖𝑑𝜓𝑗
 for different 𝑖, 𝑗, it is possible to capture 

complementarities across abilities in terms of price. 
76 One approach to modeling differences in variance of tasks while satisfying this 

condition is to impose some constant minimum 𝑛 for any step, so that �̂� = 𝑛 + 𝑛 + 𝑌: this 

feature would be analytically similar to the property of minimum difficulty 𝐷 provided in our 

functional specification of step difficulty. 
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we assume for analytical simplicity that steps have one type of issue (but still allow issue type 
and corresponding properties to vary between steps). 

Assumption 3  𝜓(𝑡𝑚) = 𝜓(𝑡𝑛) for all 𝑡𝑚 , 𝑡𝑛 ∈ 𝑆 and |𝛷𝑖| = 1 for all 𝑆𝑖.  

Remark 2 Given Assumption 3, the cost minimization problem of the firm in this model is 
equivalent to the problem of the firm given by Equation 16 in Combemale et al 2022.  

We show in the following lemma that the difference in complexity between low and high 
generality performers is convex in the number of issues, for sufficiently high 𝑛. This property will 
allow us to show in a subsequent proposition that high variance in number of issues changes the 
difference in expected complexity between high and low generality performers and hence 
changes the cost of using humans or machines. 

Lemma 1 Let 𝐸(𝑛) be sufficiently high so that 𝑋(𝑛|𝜌) ≈ 𝑛1/𝜌(𝐸[𝑋𝜌])1/𝜌 (see Equation 1 

Combemale et al 2022) and let Assumption 3 hold. Let 𝛥𝑿(𝑛|𝜌1, 𝜌2) = 𝑛1/𝜌1(𝐸[𝑋𝜌1])1/𝜌1 −

𝑛1/𝜌2(𝐸[𝑋𝜌2])1/𝜌2  be the difference in complexity between two performer types with generality 
𝜌1, 𝜌2. Then 𝛥𝑿(𝑛|𝜌1, 𝜌2) is convex and increasing in 𝑛.  

Proof. We know already from Lemma 1 (main paper) that 𝑋(𝑛|𝜌ℎ) < 𝑋(𝑛|𝜌𝑚), such that 
Δ𝐗(𝜌1, 𝜌2) > 0. To establish Δ𝐗(𝜌1, 𝜌2) convex and increasing in 𝑛, we want to show that 𝑖) 

𝑋(𝑛|𝜌) is increasing and concave in 𝑛, 𝑖𝑖) 
𝑑2𝑋(𝑛|𝜌)

𝑑𝑛𝑑𝜌
< 0 and 𝑖𝑖𝑖) that 

𝑑3𝑋(𝑛|𝜌)

𝑑𝑛2𝑑𝜌
< 0.  

If 𝑖 − 𝑖𝑖𝑖) hold, then 
𝑑𝑋(𝑛|𝜌𝑚)

𝑑𝑛
>

𝑑𝑋(𝑛|𝜌ℎ)

𝑑𝑛
> 0, giving 

𝑑Δ𝐗(𝜌𝑚,𝜌ℎ)

𝑑𝑛
=

𝑑𝑋(𝑛|𝜌𝑚)

𝑑𝑛
−

𝑑𝑋(𝑛|𝜌ℎ)

𝑑𝑛
> 0.  

We also have 
𝑑2𝑋(𝑛|𝜌ℎ)

𝑑𝑛2 <
𝑑2𝑋(𝑛|𝜌𝑚)

𝑑𝑛2 < 0, giving 
𝑑2Δ𝐗(𝜌𝑚,𝜌ℎ)

𝑑𝑛2 =
𝑑2𝑋(𝑛|𝜌𝑚)

𝑑𝑛2 −
𝑑2𝑋(𝑛|𝜌ℎ)

𝑑𝑛2 > 0, so that 

Δ𝐗(𝜌1, 𝜌2) is convex and increasing.  

𝑖) For convenience, let 𝑓(𝜌) = 𝐸(𝑋𝜌)
1

𝜌. We first derive with respect to 𝑛: 

 
𝑑𝐗(𝑛|𝜌)

𝑑𝑛
=

𝑛
1
𝜌
−1

𝜌
 

 
𝑑2𝐗(𝑛|𝜌)

𝑑𝑛2 = (
1

𝜌2 −
1

𝜌
)𝑛

1

𝜌
−2

𝑓(𝜌) 

We have 𝑋(𝑛|𝜌) increasing and concave in 𝑛.  

𝑖𝑖) 
𝑑2𝑋(𝑛|𝜌)

𝑑𝑛𝑑𝜌
=

𝑛
1
𝜌

𝜌
[𝑓′(𝜌) −

𝑓(𝜌)

𝜌
−

𝑙𝑛(𝑛)𝑓(𝜌)

𝜌2 ]. By the properties of p-norms, we have 𝑓′(𝜌) < 0, so 

that 𝑓′(𝜌) −
𝑓(𝜌)

𝜌
−

𝑙𝑛(𝑛)𝑓(𝜌)

𝜌2 < 0, hence 
𝑑2𝑋(𝑛|𝜌)

𝑑𝑛𝑑𝜌
< 0.  

 

𝑖𝑖𝑖) We now show that 
𝑑3𝑋(𝑛|𝜌)

𝑑𝑛2𝑑𝜌
< 0. 

 
𝑑3𝐗(𝑛|𝜌)

𝑑𝑛2𝜌
=

𝑛
1
𝜌
−1

𝜌
[(

1

𝜌
− 1)𝑓′(𝜌) + 𝑓(𝜌)(ln(𝑛)(

1

𝜌
− 1) + (

1

𝜌
−

2

𝜌2))] 
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For 𝜌 = 1, the result is trivial: (
1

𝜌
− 1)𝑓′(𝜌) + 𝑓(𝜌)(ln(𝑛)(

1

𝜌
− 1) + (

1

𝜌
−

2

𝜌2)) =

−𝑓(𝜌) < 0. For 𝜌 > 1 and for 𝑛 sufficiently high, (ln(𝑛)(
1

𝜌
− 1) + (

1

𝜌
−

2

𝜌2) <
1

𝜌
− 1. 

Substituting, we find (
1

𝜌
− 1)𝑓′(𝜌) + 𝑓(𝜌)(ln(𝑛)(

1

𝜌
− 1) + (

1

𝜌
−

2

𝜌2)) < (
1

𝜌
− 1)(𝑓(𝜌) + 𝑓′(𝜌)). 

Note that 𝑓′(𝜌) is negative, but as a 𝑝-norm, 𝐸(𝑋𝜌)
1

𝜌 is positive, decreasing and convex in 𝜌 for 

𝜌 > 1, so that 𝑓(𝜌) > |𝑓′(𝜌)|, giving us (
1

𝜌
− 1)(𝑓(𝜌) + 𝑓′(𝜌)) < 0.  ∎ 

We show that a sufficiently large increase in variance makes it economical to use human 
performers in steps that would otherwise be automated. This result is consistent with current 
theory on the greater feasibility of automating routine work than non-routine. It also suggests a 
means of comparing different types of tasks on a continuum from routine to non-routine, in 
terms of the variance of successful performance (indicative of greater variance of issues). Finally, 
and consistently with work on occupational content (e.g. Brynjolfsson et al), it suggests how the 
content of work may change if workers have mixed variance in the number of issues across their 
responsibilities: for example, low-variance work such as answering commonly asked questions 
(an FAQ) can be automated, while high-variance among uncommon questions requires a 
customer support worker. 

Proposition 1 Let the assumptions of Lemma 1 hold, and let Equation 16 in Combemale et al be 
solved such that there exist steps 𝑖, 𝑗 such that tasks 𝑡 ∈ [𝑠𝑖−1, 𝑠𝑖]. Let the number of issues in 𝑖 
be given by �̂� = 𝑛 + 𝑌 (with 𝜇𝑌 = 0 and variance 𝜍𝑌), while the number of issues in 𝑗 is only 𝑛. 

Let 𝐸(𝑛) be sufficiently high, so that 𝑋(𝑛|𝜌) ≈ 𝑛1/𝜌(𝐸[𝑋𝜌])1/𝜌 (see Equation 1). Let machine be 
the optimal choice of performer for step 𝑗: if 𝜍𝑌 sufficiently large, then the optimal performer for 
step 𝑖 is a human.  

Proof. For convenience, we define the difference in expected complexity of humans and 
machines as: Δ𝑐(𝑙|𝜌𝑚 , 𝜌ℎ) = 𝑐(𝑙|𝜌𝑚) − 𝑐(𝑙|𝜌ℎ) or Δ𝑐(𝑙|𝜌𝑚 , 𝜌ℎ , �̂�) for the high variance case. By 
Lemma 1, Δ𝐗(𝑛|𝜌1, 𝜌2) is convex and increasing in 𝑛: Δ𝑐(𝑙|𝜌𝑚 , 𝜌ℎ , �̂�) is the expected value of a 
convex function over the random variable �̂�, and hence is increasing and unbounded in 𝜍𝑌. It 
follows that there exists 𝜍𝑌 sufficiently great that the cost of a machine is greater than a human. 
∎ 

We now turn to the implications of variance for the cone of automation defined by 𝑙 and 

𝑙 in 𝑅. We show that for greater variance of issues, 𝑙 is increasing and 𝑙 is decreasing, narrowing 

the cone of automation. We would thus expect polarization of worker ability demand resulting 
from automation in high variance contexts to be less extreme in that the gap between the upper 
and lower bounds of automation is reduced. 

Remark 3 While variance in the number of issues increases the difference between human and 
machine complexity, it also reduces expected complexity for performers. Let the assumptions of 
Proposition 1 hold, with steps 𝑖, 𝑗 such that �̂�𝑖 = 𝑛 + 𝑌 and �̂�𝑗 = 𝑛. For 𝜌 = 1, 𝑿 is linear in 𝑛: 

hence for any variance in �̂� with 𝐸(�̂�) = 𝑛, 𝑐 = 𝐸(𝑿) is constant. For 𝜌 > 1 , 𝑿 is strictly concave 
in 𝑛: hence, for greater variance of 𝑌, 𝑐𝑖 is decreasing and strictly less than 𝑐𝑗. 
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Proposition 2 Let the assumptions of Proposition 1 hold. For 𝑌 constant, let the greatest lower 

and least upper bounds of step length automated be given by 𝑙 and 𝑙. Let 𝑙′ and 𝑙′ satisfy the 

conditions for the highest lower and least upper bounds of automation given 𝜍(𝑌) > 0 . Let 

𝜌𝑚 , 𝜌ℎ > 1. Then for 𝜍(𝑌) sufficiently great, 𝑖) 𝑙′ > 𝑙 and 𝑖𝑖) 𝑙′ < 𝑙 

Proof. 𝑖) By contradiction, suppose that 𝑙′ ≤ 𝑙 such that 𝑝(𝑙′|𝜌𝑚 , 𝜍(𝑌) > 0) < 𝑝(𝑙′|𝜌ℎ , 𝜍(𝑌) > 0) 

but 𝑝(𝑙′|𝜌𝑚 , 𝜍(𝑌) = 0) > 𝑝(𝑙′|𝜌ℎ , 𝜍(𝑌) = 0). Note as in Remark 2 that 𝑐(𝑙|𝜍(𝑌) = 0) >

𝑐(𝑙|𝜍(𝑌) > 0): by property of 𝑙, all 𝑙 < 𝑙 is manual, which is equivalent to all 𝑐(𝑙) < 𝑐(𝑙). Note 

that by Lemma 1, for 𝑙𝑖, 𝑙𝑗 such that 𝑐(𝑙𝑖|𝜌𝑚 , 𝜍(𝑌) > 0) = 𝑐(𝑙𝑗|𝜌𝑚 , 𝜍(𝑌) = 0), we have that 

𝑐(𝑙𝑖|𝜌ℎ , 𝜍(𝑌) > 0) < 𝑐(𝑙𝑗|𝜌ℎ , 𝜍(𝑌). 

This result implies that if 𝑝(𝑙′|𝜌𝑚 , 𝜍(𝑌) > 0) < 𝑝(𝑙′|𝜌ℎ , 𝜍(𝑌) > 0), then 𝑝(𝑙′|𝜌𝑚 , 𝜍(𝑌) =

0) < 𝑝(𝑙′|𝜌ℎ , 𝜍(𝑌) = 0), generating a contradiction. 

𝑖𝑖) For any 𝑙, Proposition 1 implies there exists 𝜍̂(𝑌) such that 𝑝(𝑙|𝜌𝑚 , 𝜍(𝑌) > 0) >

𝑝(𝑙|𝜌ℎ , 𝜍(𝑌) > 0). In such a case, (proof of Prop. 4 main paper) implies 𝑝(𝑙𝑖|𝜌𝑚 , 𝜍(𝑌) > 0) >

𝑝(𝑙𝑖|𝜌ℎ , 𝜍(𝑌) > 0). Hence, 𝑙′ satisfying the conditions of a least upper bound of automation given 

𝜍(𝑌) > 0 is less than 𝑙.   ∎ 

The implications of the propositions given in this section are depicted in the following 
figure, adapted from Figure 14 in Combemale et al (based on Propositions 4-7 of that paper). 
Steps for which a machine performer with 𝜎𝑚 < 𝜎ℎ; 𝜌𝑚 < 𝜌ℎ; �̅�𝑚 < �̅�ℎ  would be of lower cost 
are colored, indicating that a machine performer would be chosen instead of human; steps that 
would remain manual are in white. The dashed lines represent an "inner cone" of automation 
formed by the upper and lower bounds of automation given high variance of the number of issues 
within steps: note that when tasks are of high variance, the cone is constricted by shifting the 
upper and lower bounds of automation inward. This shift also results in polarization of ability 
demand occurring at higher production volumes than for low variance tasks. 

 

Figure 21 Cone of Automation Contracts with Higher Variance of Issues 
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4. Concluding Remarks 

In this paper, we develop an extension to the model described in Combemale et al 
(2022) to describe tasks of different types with corresponding differences in production issues. 
This new feature allows us to consider differences in tasks that are informative for 
understanding task-biases in technology change, such as automation. We show within the 
model that the ability-demand profile of steps that are cost-minimizing to automate varies with 
the task-characteristics of steps. We provide a formal method for describing the variability of 
steps (similar to the qualitative idea of “routineness” in prior literature) and show, consistently 
with prior theory, that steps with less variance of production issues are more cost-effective to 
automate. However, our results are nuanced with respect to the distribution of steps that are 
automated: we show in the model that the implications of issue variance by task type differ 
with production volume (or equivalently utilization). At low volumes, higher variance of issues 
within tasks can lead to reduced (narrower) polarization of ability demand due to automation, 
but at higher volumes the effect of automation under such conditions of high variance could 
remain polarizing while instead being upskilling under conditions of low variance. This result 
demonstrates that the effect of automation on the distribution of skill demand depends not 
only on volume and variability of issues across types of tasks, but on the interaction of these 
characteristics of production.   
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Chapter 4: Sorcery at the Technical Frontier: How Embedded Knowledge 
on the Production Line Can Give Workers a Role in Innovation 

 

1. Introduction 

Technological change in the United States has historically been associated with significant 
changes in skill and labor demand across the economy, with strong patterns of displacement 
and skill demand polarization in the manufacturing sector: workers can view technological 
change as a threat to their employment or that of future generations, leading to frustration or 
fear. Manufacturing in the US in particular is affected by powerful economic forces – including 
globalization and technological change – that have dramatically changed labor market 
outcomes for workers. The U.S.’s manufacturing value added grew by $587 billion (40%) from 
1999 to 2014 (World Bank); however, since the mid-1980s, the number of U.S. manufacturing 
employees manufacturing has declined (U.S. Bureau of Labor Statistics). Scholars have tried to 
pinpoint the source of this trend – to offshoring, automation, or both – but none have done so 
definitively (Autor and Dorn 2013; Goos et al 2014). Overall, across all industries there has been 
a polarization of labor demand with more jobs at the top and at the bottom of the income 
distribution and relatively fewer in the middle (U.S. Bureau of Labor Statistics). Technical 
change due to emerging technologies can directly alter the demand for worker skills 
(Combemale, Whitefoot, Ales and Fuchs 2021) and may thus further accelerate these trends.77 

Manufacturing, in addition to being strongly affected by technological change, is a 
significant epicenter of industrial research and development activity, accounting for 66% of 
Industrial R&D spending in the United States in 2015 (NSF 2018). This interaction of innovation 
and sectoral change raises the question of what role workers currently have or may have in 
process of innovation. With continued technological change a major part in potentially unstable 

 
77 Significant literature exists on skill-biased technological change and its influence on 

employment, wages, international trade, and productivity (Autor et al 2003; Card and DiNardo 
2002; Bartel et al 2007; Acemoglu and Restrepo 2017). Research, however, has been limited in 
its ability to directly measure different types of simultaneous technology change, and their 
possible relation to labor demand. The current approach in economics linking technical change 
and labor outcomes (c.f. Ales, Kurnaz, Sleet 2015) is mostly retrospective and top-down: 
dependent on aggregate historical data, it focuses on past episodes of technical change and 
works largely with coarse groups of workers ranked by historic occupational wages (Card and 
Dinardo 2002; Bresnahan and Brynjolfsson 2002; Autor, Levy and Murnane 2003; Acemoglu and 
Autor 2011; Pedro and Lee 2011; Autor and Dorn 2013). Traditional quantitative approaches 
may not be adaptive to technological or policy changes that displace firm behavior outside of a 
narrow band of historic factor substitutions captured by statistical data (Chenery 1949; Lave 
1966; Pearl and Enos 1975; Wibe 1984; Smith 1986). Such limitations present challenges in 
anticipating the effects of emerging technologies on labor outcomes, complicating policy efforts 
to mitigate associated labor market failures.  
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or uncertain employment conditions for many workers, especially over the long term 
(Brynjolfsson, Mitchell and Rock 2018), and common feelings of frustration and helplessness in 
the face of perceived future technological placement (Ananat et al 2017), a participatory role 
for workers in innovation offers an important contrast and potential alternative to a passive or 
adversarial labor experience of technology change. 

In this paper, we present qualitative insights from the optoelectronics industry on different 
innovation arrangements and the roles that these allow (or prevent) for production workers as 
participants in technological change. We identify organizational characteristics surrounding 
these arrangements and suggest mechanisms within firms which may generate more 
participatory roles in innovation for workers. We then provide a discussion of potential policy 
directions and needed future work to develop our findings.  

2. Literature Review 

The level of vertical integration by a firm is informative in anticipating the scope of 
innovation in which the firm (and its workers) may participate.  

The structure of a design architecture or of a firm have related implications for innovation 
outcomes. In the modularity literature, modularized designs allow local, more incremental 
innovation to occur while affecting only the elements of a single module, while more significant 
innovations may need to cross module boundaries, with greater associated costs (Baldwin and 
Clark 2000). This conceptualization links naturally with the theory of the firm, shifting modular 
boundaries for interfirm boundaries: a disaggregated value chain may be able to host 
incremental innovations, but costs are incurred when transacting across the chain (Chandler 
1993), potentially impairing the returns to innovation, and in particular imperfect contracts will 
impose costs for innovation involving multiple elements of the value chain (Antras 2005).  

Firms’ level of integration may also influence access to knowledge: if issues in innovation 
occur outside of the firm’s scope of activity, it must obtain and manage knowledge from 
elsewhere.  However, the more uncertain the technical circumstances, the more tacit the 
knowledge and the more difficult (or costly) it will be to transfer across the firm boundary, and 
the more uncertain the firms’ investments in innovation (Chesbrough 2004).  

Existing linkages between structure and innovation are informative in thinking about the 
possibility space for worker participation. However, the literature has not generally linked the 
role of workers in innovation to firm structure. In this paper, we build on the innovation 
literature by examining a multilateral association among workers, innovation, and firm 
structure. We show how firm structure may alter the possible interactions between workers 
and innovation happening outside their role, and hence the scope for their participation.  

3. Methods 

This paper draws on grounded theory-building principles (Glasner and Strauss, 1967; 
Eisenhardt, 1989; Yin 1989) to explore associations between the role of production workers in 
innovation and characteristics of firms employing them. We draw on qualitative evidence from 
a case study that we conducted of the optoelectronics industry at a time of ongoing but 
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heterogeneous technological change across the industry.78 Our results draw primarily on over 
30 semi-structured interviews with employees at 12 different firms and organizations in the 
industry across the United States, Europe and East Asia, covering every step of transceiver 
production as well as product and process development (the device manufacturers accounted 
for 42-44% of industry volume at the time of our study). Our firm sample captured the range of 
technological variation in the industry, allowing us to contrast mature technologies with efforts 
at the technical frontier: broadly we observed variation in two central technologies –
automation (substitution of machines for workers), consolidation (formerly discrete parts 
replaced by a single part with their collective functions).  

We spoke to engineers, senior technical officers, trainers, supervisors, and operators: our 
broad sample allowed us to capture the content and scope of production work and characterize 
the interface between workers and technological development in-house at each firm. In 
addition to interviews, we performed line observations across the production processes for five 
different optoelectronic device designs (three in the U.S. and two in Asia). The principal data for 
our subsequent qualitative analysis were the 1) types of technologies in use at each firm (along 
dimensions of consolidation and automation), 2) whether or not firm leaders considered their 
production processes to be technically well understood by engineers, 3) whether or not 
production workers were involved in process or product development, 4) whether or not there 
was equipment-specific knowledge that affected production outcomes, 5) firm geographic 
location (possibly varying between segments of the value chain under one firm), and 6) the 
organization of the firm, namely which segments of the industry value chain the firm occupied. 

4. Case Industry and Sample Firms: Optoelectronics Manufacturing 

Our case industry, optoelectronics, is forecast to reach $53 billion in global annual revenue 
in 2025 (MarketsandMarkets 2020): this industry, while a small subset of the $515 billion global 
semiconductor industry (Deloitte 2020), is both growing and sufficiently diversified to allow us 
to capture a variety of organizational types and technological regimes within our firm sample.  
The industry is distributed heavily across East Asia, India, the U.S., and Western Europe, with a 
value chain in four broad segments: component fabrication (and testing), component assembly 
into final product (and associated testing, subassembly, etc.), process design and product 
design.  In the United States, all stages of the value chain are represented, though within our 
firm sample and the industry more broadly the U.S. has relatively more of the industry’s 
product and process design sites than it does, for instance, assembly.   

Optoelectronic devices combine electronic and photonic (optical) elements for a variety of 
applications, broadly in sensory instruments (automotive, medical, aerospace), precision 
lighting (LEDs) and telecommunications (NAS 2013). Telecommunications dominate the current 
optoelectronics market, and optoelectronic transceivers are manufactured in the millions 
annually (Yole 2016). Transceiver devices use light to send and receive information and 
electronic components to convert information to and from light for transmission or procession. 
Transceivers must first have their components fabricated (using a process of material 

 
78See Combemale, Whitefoot, Ales and Fuchs 2021 for our quantitative work on this 

same industry around the labor implications of different technologies. 
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deposition and etching to achieve desired structure), and then each component must be 
assembled into the whole: thus, different transceiver designs affect the requirements for 
fabrication by changing component characteristics and also affect assembly work by changing 
how components must fit together.  

Broadly, two of the central technological changes ongoing in optoelectronics are 
automation and consolidation: automation in our sample occurs mostly in assembly (fabrication 
is already highly automated) and consists of introducing machines to substitute for manual 
tasks.  Consolidation involves the fabrication of formerly discrete components as single parts, 
thereby changing the content of fabrication and the structure and extent of assembly (Fuchs et 
al 2008).  

Because optoelectronic devices combine electronic and photonic elements, they pose a 
number of challenges in design and fabrication which differ from traditional electronics. The 
materials used for optical components (lasers) are often not the traditional silicon of 
electronics: common materials such as Indium-Phosphide have differing crystalline structures 
from silicon which add complexity to the interactions between them and limit co-fabrication 
(NAS 2013). Differences in the behavior of photons and electrons also mean that traditional 
semiconductor design solutions are not always well-suited to optoelectronic applications: one 
technical expert in our study noted: “The problem is that electrons will more or less follow the 
path you want them to [in a device], and photons don’t.” Indeed, CAD and other computer 
design solutions are not readily transferrable from electronics to optoelectronics in many cases, 
and while there is an emerging industry space for commercial optoelectronic design software, 
all firms in our sample relied at least partially on proprietary software developed in-house to 
accommodate their design technologies. Despite these differences there are broad overlaps in 
fabrication, and many optoelectronic producers rely on fabrication equipment designed for 
electronics. 

The firms in our sample vary significantly in their degree of vertical integration: 
qualitatively, we measure integration by the segments of the value chain in which a firm 
performs its primary activities. 79 These segments are product design, process design, 
component fabrication and assembly. The most integrated firms in our sample perform all four 
segments. Several firms in the sample are design-focused, specializing in the development of 
new transceiver designs, often with no fabrication capabilities: these are instead provided by 
foundries, which offer contract manufacturing services (often these same foundries serve the 
wider semiconductor industry as well).   

 
79It may be possible to think of a firm’s position in the industry into terms of outsourcing 

rather than vertical integration. However, outsourcing assumes that a firm performs a segment 
of the value chain, outsources the next and then eventually re-integrates outsourced work into 
its own production sequence: many firms in our sample may be destinations for outsourcing 
rather than outsourcers themselves, and hence a focus on which segments of value-added a 
firm performs is more informative for our analysis. 
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5. Qualitative Findings 

The differences between optoelectronics and electronic semiconductors give the industry 
two important characteristics.  Firstly, a lack of industry-specialized education.  Second, a higher 
degree of technical uncertainty concerning product design and process. These two 
characteristics are associated with the importance of worker experience, firm structure and 
ultimately the role of shop floor workers in innovation. 

5.1 On the Job Training and the Role of Worker Experience 

The optoelectronics industry is affected generally by a lack of specialized education: 
national entities such as the American Institute of Manufacturing Photonics (AIM-Photonics) 
seek to address a perceived lack of technical training for production workers, especially in 
fabrication: for now, the firms in our sample rely heavily on training on the job and worker 
experience to make up for traditional educational resources.80 Interviewees from senior 
technical staff to supervisors who began as line workers  consistently describe to us a premium 
in their hiring decisions on worker experience within the industry, frequently citing the lack of 
formal training or educational alternatives.  

The majority of trained engineers, who usually come into optoelectronics from a more 
traditional electronics background, must undergo a significant degree of on-the-job learning not 
only about the firm’s specific processes or designs, but also about the technical characteristics 
of optoelectronics. Multiple interviewees across different firms indicate that even PhD-level 
engineers usually do not come to the optoelectronics industry with full technical knowledge, 
and that adaptation could take a year or longer in some cases. 

Shop floor workers perform tasks in the fabrication and assembly stages of value added, 
though they have potential roles in design. On the shop floor, our sample firms employ workers 
in consistent broad categories: operators, responsible for production tasks and interacting with 
or monitoring machines during production, technicians, responsible for setting up and 
calibrating machines (though some job-setup is typically performed by operators) and for 
intervening when machines fail and cannot be restored by operators, supervisors, responsible 
for organizing and often training operators (though training is sometimes performed by more 
experienced or “lead” operators), and equipment and process engineers, responsible for 
solving high level process issues (often but not always in dialogue with workers). Typically, an 
operator’s role is fairly scheduled, performing well defined tasks throughout the shift, while 
technicians, supervisors and engineers often performed more ad-hoc functions. Our focus in 
this paper is primarily on operators. 

On the job training at all levels of employment is a feature in all manufacturing firms in 
our sample. Among shop floor operators, training is generally between two and eight weeks 
(with two the mode) for a given assembly task, while in fabrication training times are often 
much longer, sometimes lasting up to 6 months for a line worker to become qualified on a 
single type of fabrication equipment.  

 
80AIM-Photonics Technician certification program: 

https://aimphotonics.academy/workforce/workforce-training/technician-certification 

https://aimphotonics.academy/workforce/workforce-training/technician-certification
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In both fabrication and assembly, training general begins with a manual outlining both 
equipment and (in the case of assembly) manual work procedures that the worker will perform, 
as well as general introductory training to the work environment. Optoelectronic components 
in both fabrication and assembly are highly sensitive to material contamination and damage 
from static discharge, and in addition to the motions of their primary work, shop floor 
employees must learn protocols to minimize the risk of foreign contaminants. While some 
procedures such as switching into static-deterring slippers to step onto an assembly line are 
relatively trivial, more exacting standards in sensitive clean-room environments require full 
cleanroom body suits (affectionately referred to as “bunny suits” by several engineers and lead 
operators in our sample). Workers must learn not only how to change in and out of the suits in 
a timely fashion,81 but how to operate effectively within the constraints of the suit, which 
interviewees with cleanroom experience attested can be both a physical and a psychological 
challenge. Though all cleanroom employees receive demonstrations, instruction is not 
sufficient, and for fabrication workers especially,82 learning how to operate in the cleanroom 
suit is one of the first markers of the cleanroom experience that several firms in our sample 
value highly in manufacturing employees.  

The format of worker training after basic instruction is strongly associated in our sample 
with the scale of production at a plant. Workers typically receive active instruction on a piece of 
equipment, often from a more experienced worker or supervisor but, at the largest production 
scales, from trainers. In the transition from instruction to experience-building, depending on 
the scale of production, the equipment may on-line or off the production line. Whether from 
equipment off the production line or being used less efficiently by a less experienced worker, 
the cost of training in terms of “idle capital” is lower when work is principally manual (e.g. 
attaching an optical fiber): it may not be cost-effective for firms to dedicate high capacity, high-
cost equipment to a small flow of trainees. However, at the largest scale of operations, some 
firms in our sample maintain internal training programs with full time training staff and 
training-purposed multi-step equipment and workstation layouts. These layouts can also be 
reconfigured to train workers for specific processes or to retrain workers for novel processes. 

Except for the largest training programs with worker testing protocols, the best 
indicator of successful training is successful work, embedding the measurement of a worker’s 
skill in their direct job performance. Workers who begin to perform production activities on the 
line typically graduate from training to a probationary status (usually 3 months to a year and 
longer in fabrication than in assembly: see Table 8 for details) after demonstrating a certain 
number of proven good parts coming from their station. Probationary workers typically work 
under conditions with a greater ratio of supervisors to workers, or in smaller groups with a core 
of experienced workers. The involvement of supervisors or more experienced workers in the 
work of the trainee can be constructed through limitations on the tasks that the trainee or 
probationary worker is permitted to perform (such as calibrating a machine at the beginning of 

 
81 A senior engineer in our sample noted that he could do it in two minutes but knew of 

employees who could change in “about 30 or 45 seconds.” 
82 Though some highly sensitive assembly steps may also be performed in a cleanroom. 
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a shift), but it supervisor and senior worker involvement can also be at the discretion of more 
junior workers as they refer production problems up the managerial hierarchy.   

Table 8 Education, Training and Experience of Optoelectronic Shop Floor Operators 

Occupation Education Training & Probation Average Experience 

Assembly Operator High School 
(Less in 
developing 
nations) 

2-6 weeks training 
3-6 months probation 

1-3 Years 

Fabrication Operator High School or 
Technical 
Degree83 

1-3 months training 
3 months - 1 year 
probation 

5-10 Years 

Unlike in industries such as automotive assembly, where workers may be cross-trained 
across different equipment (Jordan, Inman and Blumenfeld 2004), optoelectronic shop floor 
operators tend to be dedicated to a specific type of equipment or (in the case of testing) class 
of equipment types. Equipment-specific expertise is narrower in fabrication, where a worker 
may be responsible for a single, specific machine and the jobs for which it is calibrated. Greater 
levels of qualification across the firms in our sample corresponded with greater worker 
autonomy: a fully qualified operator might be responsible for multiple machines, prepare them 
for jobs without technician support and serve as the first interrogator of equipment in the 
event of failure. Shop floor operators in optoelectronics are almost always at least high-school 
educated in the U.S. and developed world, sometimes less so in contexts such as developing 
East Asia. Assembly is usually a higher turnover environment than fabrication (and, hence, 
mean experience tends to be lower), but both have a wide variety of experience across 
workers, often less than five years in assembly but commonly up to ten or twenty years in both 
assembly and especially fabrication. Generally in our sample, an assembly operator’s 
performance gains from experience plateau after two to three years (based on observations at 
four plants), while the greater variety and complexity of equipment in fabrication can extend 
the gains from experience over years – an operator in fabrication typically works more years 
before an internal promotion (e.g. to lead operator) than does an assembly operator. 
Experience can manifest as a higher rate of performance with fewer errors committed by a 
worker (as in the example of cleanroom suits), but it also appears in problem diagnosis and 
solving: for instance, an experienced operator can learn to visually identify inputs that are likely 
to cause production errors in a machine, or can learn to recognize and solve failure states that 
are not identified by the manufacturer or, indeed, result from nonstandard applications of 
equipment in a novel production process. 

Internal promotion for operators based on experience and performance is common 
throughout our sample, though more so in fabrication than assembly. First, the classification of 
“lead” operator usually is used to reflect operators whose experience and skill make them 

 
83 Most fabrication operators in our sample were high-school educated, but all 

interviewees confirmed at least some fabrication operators on their shop floor with technical 
degrees. 
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suited to train others, but also to handle one or more complex pieces of equipment with 
greater autonomy and, often, to serve as a second line of problem-solving after less 
experienced workers. Many firms also have a strong pipeline from operators to technicians, 
waiving or reducing formal educational requirements for workers who develop expertise on 
specific machines: for U.S. workers, a promotion from operator to lead operator to technician 
means a shift in wages from about $14/hour for entry-level assembly workers to about 
$20/hour for more senior operators up to $28/hour for technicians, usually with a further 
premium for fabrication workers. This pipeline is especially important in firms that make use of 
custom or customized equipment, where outside training and certification are not useful 
measures of qualification.84 Most direct hires in technician roles have at least a two-year 
degree, though in practice the workforces in each firm are about equally split internally 
between high school and technical degrees, reflecting a significant level of advancement 
through experience. Higher supervisory roles and even engineering positions can also be 
reached through experience in some firms, though formal education becomes a stricter 
requirement for engineering in all the cases we observe: equipment and process engineering 
teams in our sample features some cases of individuals with a two-year technical degree, but 
we observe no cases of engineering-level workers with only a high school degree. Moving from 
process to product engineering, we observe a mixture of bachelor and master level engineers: 
master’s and doctoral-level engineers and material scientists are predominant in the firms we 
observed at the leading technological edge of the industry. 

5.2 Technical Uncertainty and Firm Structure 

The second industry characteristic, technical uncertainty, means both that production 
failures are frequent (and potentially quite expensive) and that the outcomes of design changes 
or new production processes in terms of productivity, skill requirements or labor demand are 
uncertain at the outset. From the firm perspective, the process of innovation begins with a 
change in product design (often to meet a specific client’s need), which is performed by several 
design engineers of various specializations, from more general roles such as layout design (how 
components fit together into a system) and circuit simulation to component-specific work such 
as laser or waveguide design: their product is then passed to fabrication engineers, who judge 
the feasibility of production and then engage production workers (the same process is later 
repeated for assembly).  

Production failures, investigation and rework or redesign are common at these stages: 
indeed, our firms reported at least one and often two iterations of experimentation and 
redesign stretching from operators back to design engineering roles: iterations might take a 
month, but often stretched for six months to a year, with full development cycles from initial 
design to full production on the order of two to three years for new material platforms and 
typically a year even for incremental product innovations.  Several firms cite continued 
technical uncertainty until the first 100,000 units of a new platform have been shipped, 
sometimes a year or more after the beginning of production “ramp-up.” All firms in our sample 

 
84 Notably, however, more customized equipment sometimes means that some 

technician roles are subsumed to the equipment engineers who designed the equipment. 
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describe a learning experience in production with each new design, and as we will expand in 
the next subsection, a sometimes-central role for production workers. 

The structure of firms in our sample is also associated with different levels of technical 
uncertainty, bearing out the innovation literature and also helping to inform how technical 
conditions and firm structure may interact to in turn affect the role of workers. Table 9 lays out 
the key organizational forms that occur in the industry and in our sample and maps these to the 
broad value chain described in section 4, and then to the level(s) of technical uncertainty faced 
by corresponding firms in our sample.  

Broadly, there are three categories of firm models: transceiver manufacturers (fabless, 
meaning without fabrication capabilities in-house, or with in-house fabrication), which span 
product design and at least some production, contract manufacturers (foundries and contract 
assembly), and consultants and equipment manufacturers, which directly (consultants) or 
indirectly (equipment manufacturers) participate in design of product or process but not 
production. Transceiver manufacturers self-defined in our sample based on performing product 
design, which differentiates them from contract manufacturers (foundries and assembly).  
Equipment manufacturers implicitly set some of the conditions for process design, and in our 
sample also designed specific operational protocols for their machines, sometimes 
collaboratively with customers. In addition, though not a model for firm organization, the 
optoelectronics industry hosts the American Institute of Manufacturing Photonics (AIM-
Photonics), which performs an industry-support role similar to a cutting-edge foundry or 
contract manufacturer for experimental product and process development (Manufacturing USA 
2020): such manufacturing institutes suggest a possible public analogue to the firm structures 
and their implications discussed in this paper. 

Table 9 Technical Uncertainty and Firm Integration Along the Optoelectronics Value Chain 

Organization 
Type(s) 

Product 
Design 

Process 
Design 

Fabrication Assembly Technical 
Uncertainty 

Number 
of 
Processes 
in Sample 

Integrated 
Transceiver 
Manufacturers 

Yes Yes Yes Yes Low 
(Legacy) to 
High 

3 

Fabless 
Transceiver 
Manufacturers 

Yes Yes* No Yes* Low 
(Legacy) to 
High 

2 

Foundries No No** Yes No Low 1 

Contract 
Assembly 

No Yes No Yes Low 4 

Design 
Consultants 

Yes*** Yes*** No No High 3 

Equipment 
Manufacturers 

No Yes No No Low to 
Medium 

2 

*Some firms observed performed limited outsourcing of process design and assembly functions but all kept at 
least a majority (by cost) of these activities in-house. 
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**The significant capital outlays for foundry equipment and relatively small capacity demanded by most foundry 
clients make it very rare for foundries to make any change in production process outside of the allowable process 
parameters established by the foundry’s Process Design Kit (PDK).  However, experimental work within the 
constraints of a PDK is often performed by a Foundry on behalf of a client. 
***Design Consultant processes studied accommodated both process and product design, varying according to the 
client’s needs. 

The configuration of a firm’s position along the optoelectronic value chain is associated 
in our sample with the level of technical uncertainty under which the firm may operate. 
Contract manufacturers need high volume processes that can be readily adapted to the needs 
of new customers, and thus tend (especially in the case of fabrication) to engage in production 
at low technical uncertainty. The exception to this role is the case of experimental services 
offered by these firms, usually providing small batch production to facilitate product design at a 
client firm: in these cases, however, the contract manufacturer can provide feedback but did 
not usually perform a technical design role (e.g. in the manner of a design consultant). All CMs 
must resolve some uncertainty concerning the adaptability of their standard production 
processes to new customer demands: the level of customization available to clients sets the 
level of technical uncertainty. Foundries have well-defined Process Design Kits (PDKs) which 
they offer their clients: documents or software which lay out the parameters under which the 
foundry’s equipment and workers are rated to operate and which serve as a first constraint on 
the designs that customers may attempt to produce: assembly CMs are often more flexible, and 
thus take a more active role in process design, though even here the level of process and 
equipment customization is much lower than at transceiver manufacturers that assemble in-
house.  

Design consultants and equipment manufacturers may specialize in a specific set of 
processes or product characteristics, but their rule is usually to offer solutions to firms without 
in-house capabilities in certain parts of design.  Thus, the design consultant and equipment 
manufacturers will often tend to serve smaller firms, potentially without the resources to fully 
integrate their production activities. Design consultants are not typically engaged in 
incremental work on existing platforms – more often, the processes we studied had to do with 
leading-edge designs and novel materials, such as highly consolidated devices (multiple 
components fabricated as one without assembly) or new material platforms to more easily co-
fabricate components. These design consultants are nevertheless typically separate from shop-
floor production, often performing design work and material science work away from the 
customer’s facilities. Equipment manufacturers, in contrast, typically provide varying types of 
equipment for established functions –  they are not usually developing equipment for entirely 
novel processes and designs, as these tend to be firm-specific and thus a narrow share of the 
industry and market.   

Transceiver manufacturers, then, would appear to have the greatest range of value 
added activities in their sphere and thus the greatest tendency to produce under technical 
uncertainty. Indeed, many transceiver manufacturers choose to integrate certain production 
activities for finer control and a less constrained design space for their products. However, 
some of the industry’s leading-edge firms in design are fabless, suggesting that a significant 
degree of innovation is possible without direct control over the entire value chain. Meanwhile, 
certain “legacy” designs, meaning products on well-established platforms with procedures and 
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component designs relatively unchanged in the last fifteen years,85 are produced by vertically 
integrated firms, following well-understood processes with little further innovation in design or 
process around the legacy product. Technical uncertainty is thus associated with but not fully 
married to the degree of integration: rather, the resources available to a firm in pursuing 
innovation differ according to its position on both dimensions. 

In the following figure, we summarize our analysis to show how the organizational models 
of the optoelectronics industry map onto the dimensions of technical certain and firm vertical 
integration.  

 

Figure 22 Distribution of Technical Certainty and Integration Across Organizational Models in 
Optoelectronics 

5.3 Embedded Knowledge and Worker Interfaces with Technology Change 

The fabrication of optoelectronic chips, laser diodes, waveguides and other components 
that make up optoelectronic transceivers involves a dozen or more unique pieces of equipment 
used in a process of hundreds of production steps.  Some individual machines may be 
applicable in dozens of production steps but will be dedicated to just a handful of steps. In 
some cases, the reason is simply one of capacity – the relevant process steps demand sufficient 
equipment time that a machine can be fully dedicated without being underutilized, and keeping 
the machine calibrated for the same small set of steps saves time for engineers, technicians and 
operators.  In assembly, we observed that it is common for workers to be dedicated to specific 
manual tasks: the number of employees hired for such tasks suggest that this dedication was 
possible because such tasks demanded enough person-hours to fully occupy a worker. 

However, not all equipment dedication falls neatly into the logic of capacity: there are 
facilities with individual machines on a full production line for a mature design with a history of 

 
85 Because many optical device applications have a standardized industry form factor 

and many device consumers put a premium on an established history of product reliability, 
legacy designs can survive for extended periods of time even against competition from new 
devices with the same form factor but different internal design. 
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hundreds of thousands or millions of units running below capacity (we have captured some at 
half capacity or less) working on an often small subset of the steps in which they could be 
applied, while a different machine of the same type handles other steps: the scale of 
production does not explain such underutilization, and the dedication of equipment to steps 
would seem to rule out the use of duplicate equipment to take over during production failures 
and unscheduled downtime.  Calibration time (that is, “transition costs” from one step to 
another) provide one explanation, but across multiple companies and fabrication sites, 
engineers have often described another reason: they simply do not know how to replicate the 
parameters under which a given piece of equipment operates economically.  Under such 
conditions, a machine and its neighbor of identical manufacturer and model are nevertheless 
not interchangeable. 

In optoelectronic fabrication, processes are “qualified” (similarly to workers within a 
process) after they reach certain standards of scale, uniformity of output and minimal rates of 
failure or unexpected downtime: often, however, equipment is also qualified for a given 
process.  That is, the process is not universally qualified for use either with other equipment or 
under contract fabrication with a foundry:86 the process meets standards when performed on 
the exact machines on a production line, often in an exact order.  This idiosyncrasy of capital is 
the “sorcery” (among other colorful descriptions given by interviewees) mentioned by at least 
one engineer at every facility or firm we have visited.   

To develop a reproducible process from these first black-box procedures on 
idiosyncratic equipment, some firms adopt an experimental line approach, using a dedicated 
production environment to test and develop new processes, often using the most experienced 
operators and giving them an active role in innovation. Another configuration of production 
with a similar function to the experimental line is the dedicated training line used by some 
firms: when adopting a new processes, especially in high process-turnover environments such 
as contract manufacturing, retraining may have an experimental role in the transmission from 
process design to practice, as experienced workers identify (and perhaps resolve) the flaws of a 
new process while learning it. 

While idiosyncratic equipment is seemingly more common in experimental contexts in 
our sample (owing to technical uncertainty and lower reproducibility of working processes and 
equipment), it is a very real phenomenon even moving outside of the laboratory or 
experimental line and onto the fab floor. Something in the machine’s history, its path to 
qualification, gives it the specific qualities to perform exactly the operations needed for a 
successful fabrication step and cannot easily be imported whole cloth to its neighbor.  When 
fabs do gain the capability to replicate operations across equipment, they will often impose 
very strict design limitations for clients and in-house designers on what can be produced on the 
equipment: outside of those parameters, one engineer tells us, “they cannot guarantee a good 

 
86 While foundry customers can specify quality standards and perform their own quality 

control procedures, such as product sampling, and they can negotiate (usually on the basis of 
their product volume) for limited exceptions to the Foundry’s PDK, they have relatively little 
direct control in the standard foundry model over which procedures and configurations the 
Foundry will accept. 
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part.”  These processes can be tamed, but often they remain poorly understood, and deviations 
can trip back over into the domain of “sorcery,” where the quirks of nominally standardized 
equipment and the intuition of the machine operators become an indispensable part of 
production that is sometimes unaccountable by rationalized process management. 

The uncertainty and specificity of such processes and equipment demand embedded 
knowledge, often not only of a process but of a specific piece of equipment. While a process 
remains uncertain and potentially difficult to reproduce, highly specialized, deeply contextual 
worker knowledge may be crucial to successful operations. This unique knowledge may also 
require worker skillsets that differ from those of workers within operations that are 
reproducible de novo outside of equipment history and calibration path-dependency.  The 
practitioners of “sorcery” may be line workers as much as engineers.  

Multiple firms that we interviewed note, unsurprisingly, that the degree of embedded 
knowledge was greatest with machine operators and technicians, then among process 
engineers (some of whom were involved in building custom equipment), then among design 
engineers.  These differences widen considerably depending on the degree of vertical 
integration: the most highly integrated firms that we study report a close interface between 
development engineers and technicians or production workers, who often supply feedback on 
machines under development. In this manner, workers can have an active influence over the 
nature of their future work, by affecting the characteristics of future equipment, in which they 
will again develop specialist expertise. Here, the degree of customization plays an important 
part: when equipment is purchased from a general semiconductor or other industrial line, the 
role of the engineer in adapting it may be lower and the opportunity for the worker to engage 
in the development of future work reduced. Even firms that we interviewed with a focus on 
providing process solutions for manufacturers had an emphasis on designing a process in-house 
(with their own dedicated team of higher-skilled operators and technicians) and then teaching 
it to workers at a client firm, contrasted with the more dynamic interface between process 
development and worker that we observed in integrated firms.87 

On the other hand, when a firm is disintegrated (as several in our sample are), the 
possibility for interfaces between workers and the firm’s technological development is often 
reduced. Workers at contract manufacturers must work within carefully fixed parameters to 
meet promised specifications: in turn, the constraints on allowable operations in these 
disintegrated environments limit the design space for firms and constrain their technological 
development. Put otherwise, environments with greater roles for workers in innovation may 
also provide greater technical flexibility to designers.  

In our firm sample, the embedded knowledge of workers becomes less sought after for 
innovation when considering manual production tasks. Manual work in optoelectronics includes 
the delicate art (so-described by a trainer) of attaching optical fibers at an angle and degree of 

 
87 At a higher level, interactions between workers and process engineers will inform 

reworking of broader assembly processes and indeed changes in product architecture if 
fabrication or assembly prove unsuccessful in their initial state. 
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precision that to-date has not been fully automatable in any context we observe. Not all 
workers possess the manual dexterity for such a task, and multiple firms noted the importance 
of experience and precision: yet such processes, while demanding, have much lower technical 
uncertainty than the “black box” of the fabrication environment. The skill and experience of the 
worker appears more disconnected from a role in innovation in our sample when the technical 
facts are well understood. 

The implications of technological uncertainty for worker participation in innovation may 
also be connected to the scope of uncertainty. Consolidation and automation in optoelectronics 
are an illustrative case. Consolidation, as a large-scale design change, requires simultaneous 
outlays of capital to modify large segments of production from fabrication to assembly, and in 
turn the consequences of technical uncertainty can be far-reaching, affecting the entire 
production process (Combemale, Whitefoot, Ales and Fuchs 2021). Automation, in contrast, 
carries some technical uncertainty but is more local, as individual process steps can be 
automated, sometimes (though not always) independently of the rest of the production 
process. The difference in scope of uncertainty between the two technologies is reflected in the 
experimental lines used by some larger firms, primarily for testing the production of new 
designs rather than for equipment automation: whereas automation might be more easily 
offloaded to engineering or indeed outside firms, handling a specific sub-process, the broad 
technical uncertainty associated with consolidation means that capturing the effects of design 
change requires a working example of every production step affected. These experimental 
lines, especially in their lack of mass standardization of equipment and procedures, allow 
workers an active and potentially more autonomous role as participants in technical innovation.  

6.. Discussion 

We summarize and synthesize our findings concerning worker participation in innovation in 
the following figure. Note that the level of “integration” influences how far the production 
worker’s presence on the value chain extends up toward product designers: the least 
integrated employer would only accept production orders from clients, with little to no 
customization or adaptation of process outside of a standard offering, thus allowing no context 
for a change in technology to be informed by the worker’s embedded knowledge. At a high 
level of integration, the firm would operate from the shop floor to the product design room, 
with direct linkages at least between workers and process engineers if not up to the design 
stage. As we have seen in the case of manual labor in assembly compared with fabrication, the 
degree of technical certainty of the firm, more so than whether a task is manual or not, is 
associated in our sample with the degree of engagement of the worker in innovation: 
uncertainty was the recurring theme in contexts where firms engaged significantly with 
production workers as direct participants in the firm’s technology development efforts.  

Thus, we propose two axes associated with the level of worker participation in technological 
development: technical certainty and level of integration.  In the next figure, we build on our 
analysis of the distribution of optoelectronic organization models to show how technical 
certainty and level of vertical integration are associated with worker participation in innovation. 
Both axes increase the degree of worker participation: more integration gives the worker 
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potentially farther-reaching influence on development, while less technical certainty makes the 
worker’s knowledge more urgent to avoid costly failures. 

 

Figure 23 Worker Participation in Innovation by Level of Firm Value-Chain Integration and 
Technical Certainty 

These findings are drawn from recurring themes in interviews with optoelectronics 
industry members at all levels of employment, and they are consistent in the U.S. and abroad, 
but further empirical work will be needed to separate these associations from other firm 
characteristics, and to collect the necessary outcome information to test them as mechanisms 
for worker participation. Further research is also needed to determine the extent to which 
participation as alternative to passiveness or conflict in worker experiences of technology 
indeed results in different employment, wage and psychological outcomes (e.g. a greater sense 
of ownership over a process of technological change which in current literature is associated 
with fear and frustration).  

Optoelectronics has a high variety of vertical integration and technical certainty, but 
another important trait as noted in our analysis is its lack of formal educational resources, 
resulting in greater firm reliance on worker experience and on the job training. These traits are 
not universal in manufacturing, and we show in stylized form in Figure 24 how other industries 
may map onto dimensions of technical uncertainty and vertical integration. We also note a 
third dimension from our analysis, sector-specific technical education: this dimension is more 
helpful for inter-industrial comparison, as educational resources are generally limited across 
optoelectronics. In industries such as Aerospace and Automotive manufacturing, with less 
technical uncertainty than optoelectronics and greater technical educational resources in both 
secondary and tertiary education (Lloyd 1999; Lin, Chen and Chen 2008)), we would expect a 
reduced premium on worker experience and on the job training, and potentially reduced 
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reliance in innovation on the localized “sorcery” of workers expert in the operation of specific 
equipment and uncertain processes.  

 

Figure 24 Stylized Industry Distributions by Range of Vertical Integration, Technical Certainty 
and Educational and Training Programs 

With the association between the level of vertical integration, technical uncertainty and 
worker roles in innovation comes a possible new dimension for policy: policy mechanisms 
which encourage reshoring of production, firm integration or interfirm collaboration on 
technical issues also have implications for the part that workers will be enabled to play in the 
innovations that affect their work and the economy at large. 

7. Conclusion 

This paper draws on extensive interviews with optoelectronics employees with 
experiences from the shop floor to product design and senior management, in order to study 
variations in the scope of worker participation in technological change. We find associations in 
our qualitative data between high levels of firm integration, high levels of technical uncertainty 
and the demand from firms for active worker participation as a contributor of knowledge and 
co-performer of innovative activity. Integration allows interfaces for worker knowledge to be 
adopted and uncertainty makes the worker’s embedded knowledge a crucial counterpart to 
imperfect technical understanding in engineering. With the influence of technological change 
on worker feelings of employment insecurity in many contexts, it is important for labor policy 
to identify opportunities for workers to take on a more participatory role in technological 
change, and to recognize that policy implications for firm vertical integration and interfirm 
innovation collaboration may also have direct implications for the role of labor as participatory 
in innovation rather than only recipient of its consequences. An important insight of our 
findings is that firm characteristics could affect their incentives to engage workers as co-
innovators, suggesting opportunities for a cooperative approach that can benefit workers and 
firms. Further research is needed to establish more clearly if the associations described in this 
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paper can be used to inform policy mechanisms, and indeed to evaluate empirically the 
benefits to workers of participation in the process of technological change. 
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Dissertation Summary and Conclusions 

The four chapters presented in this dissertation offer novel data, technological nuance, 
and new theoretical underpinnings to our understanding of the labor effects of technological 
change, such as skill demand, management structure and worker displacement.  

In the first chapter, we find across industries and times that not all technologies are 
equal in their implications for worker outcomes: for example, among shop floor workers in 
semiconductor manufacturing for communications, we find that skill demand is polarized away 
from the middle under automation, but that it converges toward middle skills when parts are 
consolidated as one. We also show that these very different outcomes for skill demand can 
have similar cost ranges. This evidence suggests that technology change need not lead to 
greater inequality, and it suggests a choice for decisionmaking around technology and labor 
outcomes.  

In the second chapter, we develop a general theory relating technology change to ability 
demand through the division of production tasks within a firm. In the theory, technology 
change affects the problem of the firm on five dimensions: 1) cost of dividing production tasks 
(fragmentation costs), 2) process complexity, 3) cost of dividing performers across steps 
(divisibility of performer), 4) sensitivity of performers to rate of production and 5) sensitivity of 
performers to number of tasks in a step (generality of performer). These dimensions can be 
used by firms and policymakers to interrogate new or emerging technologies, by seeking 
technical or operational evaluations of how each dimension may be changed by features of the 
technology.  

This work provides a formal structure for identifying and explaining ways in which 
technologies can have different effects on labor outcomes such as inequality, and for 
characterizing the dependencies between characteristics of production context and 
technological effects. A major finding is that polarization due to automation is dependent on 
the reallocation constraints on machines and hence on the volume of production in processes 
being automated: automation substitutes for mid-skill workers at lower production volumes 
(driving skill polarization toward ability and high ability workers) but substitutes for all but high 
ability at higher production volumes. We also show that design innovations, such as parts 
consolidation, lead to reduced inequality between the highest and lowest levels of ability 
demand by reducing process complexity but making tasks harder to separate (inversely to 
interchangeable parts historically).   

The third chapter of this dissertation extends the theoretical approach in the second 
chapter to understand how technology change interacts with characteristics of different tasks. 
We show in our model that polarization of demand due to automation interacts with the 
characteristics of production tasks. We show theoretically that polarization is greater when 
tasks have lower variation in the number of issues, but that at sufficiently high volumes 
automation in low-variance contexts can result in upskilling where high-variance tasks would 
still see polarization. These findings suggest different consequences from automation across 
industry and indeed occupational contexts with different levels of issue variance.  
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Future work building on this extension to the model will adapt and expand the task-type 
construction to study the origins of occupational bias and managerial hierarchy changes from 
new technology. In the envisioned model, after aggregating production tasks into steps, firms 
choose how many layers of issue-solving to use within each step and the type (human or 
machine) and abilities of performers (or sets of abilities across types of issues) assigned to each 
layer. Heterogeneous issues arise and progress from one layer to the next until they are solved 
by a sufficiently able performer. Technology change alters the cost-minimization problem of the 
firm by affecting characteristics of performers, types of issues or referral costs. This relationship 
will give rise to mechanisms for technology change to affect choice of managerial structure, 
inequality of skill demand within managerial hierarchies and generate occupation and task-
biased productivity changes.  

Potential insights from this expanded theory include identifying implications for 
inequality of skill demand within a hierarchy when technology (or other) changes allow greater 
flexibility of manager reallocation. We seek to ground the theory empirically by measuring how 
different technologies alter the structure of problem-solving and the division of labor across 
occupations. We focus on automation versus consolidation of parts in the optoelectronic 
semiconductor industry as examples of innovations that change the inputs to production and 
the structure of production, respectively. In anticipation of this extended work, I revisited and 
expanded my industry contacts in optoelectronic semiconductors and collected a new dataset 
from nine firms on direct, indirect and supervisory labor in over 90 manufacturing activities and 
in over 100 activities in process or product design, in-house or as a service.  

The fourth chapter offers a qualitative investigation of relationships between 
organizational structure and the productivity returns to worker experience under technological 
uncertainty, drawing on extensive observations and interviews from the optoelectronics 
context. Our findings suggest that firms integrating between technical design and production 
are better able to draw on embedded worker knowledge to solve “black box” problems, but 
that lower transferability of embedded expertise can leave such workers especially vulnerable 
to future technological disruption. 

The general theory of tasks and technology change presented in the second chapter 
offers significant opportunities for future work by relaxing assumptions or expanding mechanics 
of the model. A natural extension of this general theory work is to relax assumptions on 
production failure. The model assumes that firms set ability demand for each process step to 
solve a series of stochastic production issues in expectation. However, factors such as safety, 
material losses and scheduling costs drive firms to reduce rates of production failure.  

I plan to develop an extended model that endogenizes the rate of production failure as 
a firm choice, allowing me to study how technology change (e.g. testing methods) and worker 
skills interact with the optimal choice of operations regimes (e.g. make-to-order) and the safety 
or quality characteristics of products (Appendix 13 provides a preliminary sketch of model 
extensions to capture these features). The operations data I collected for prior papers directly 
capture production characteristics such as yield rate and the cost of non-performer inputs (e.g. 
materials) that may be lost with production errors. This work, in conjunction with my work on 
organizational structure, will allow me to study the relationship between technological change 
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and industry structure by modeling task separation and quality management at the boundary of 
the firm. 

The general theory in the second chapter provides insights into multiple technological 
changes, but it can characterize a much wider range of phenomena. A natural extension is in 
my ongoing work to develop a taxonomy of technological change, formalizing the implications 
of all possible parameter changes in the model for the division of tasks and demand for 
workers.  This avenue for future work could support two main objectives. The first is to build 
out a body of formal propositions whose implications will give academics and non-academic 
decisionmakers an “off the shelf” framework for readily dissecting the labor demand 
implications of technology change. This framework will also support analysis of technology 
adoption within existing steps (a non-organizational change) and the reorganization of tasks to 
adapt to new technology (organizational change). The second objective is to develop a suite of 
econometric methods for the estimation of parameters of the model in aggregate data, 
allowing the theory to be taken from detailed operations data to a wider selection of public 
data (such as the U.S. Survey of Manufacturers), expanding its research applicability (see 
Appendix 14 for a discussion of possible empirical identification strategies for key parameters 
of the general theory). 

The propositions of the taxonomy could also be developed to support analysis of the 
implications of strategy or policy choices with respect to technology change. One future paper I 
envision is assessing the labor implications of union policy, such as rules to prevent employers 
from reassigning workers to tasks outside of negotiated job descriptions. Such rules may reduce 
the divisibility of workers. In the general theory, lower divisibility can raise demand for given 
performers, but the higher divisibility of workers is an important advantage over machines. 
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Appendix 

 

Appendix 1: Equations for Process Based Cost Model in Chapter 1 

Appendix 1.1: Process-based Cost Model Architecture and Cost Calculations 

We build on the model decision rules used in Fuchs and Kirchain (2010) and Fuchs, 
Kirchain, and Liu (2011), the full equations for which can be found in Fuchs and Kirchain (2010). 
Rather than using the notation from Fuchs and Kirchain (2010) we represent the same and our 
new equations using the notation from Quantitative Entrepreneurship: Analysis for New 
Technology Commercialization (Michalek and Fuchs 2018). This newer notation provides 
several advantages in the extensions we develop over Fuchs and Kirchain (2010).  

Per Fuchs and Kirchain (2010), aggregate costs are calculated as follows: 

CTot = CMaterial + CLabor + CEquipment + CTooling + CBuilding  

Celement =
αelement

PV
 

Where Ctot is the unit production cost of the product, given an annual production 
volume PV. Celement  is the unit cost of an element (material, labor, equipment, tooling, 
building) and αelement  is the annual cost of each element. 

Compared with Fuchs and Kirchain (2010), we do not include energy costs as in Fuchs et 
al (2011), energy costs in the production of an optoelectronic device were less than one percent 
of unit production cost. We also, different from Fuchs and Kirchain (2010) do not include 
overhead costs, as our focus is on direct production and labor demand.  

We do not calculate embedded yields, i.e. yields that happen during the process but are 
not caught until later testing steps (see Fuchs and Kirchain (2010) for an extended discussion), 
as we do not have that information (nor did Fuchs and Kirchain (2010), in their case the 
embedded yields were estimates by engineers as to where the revealed yields were coming 
from.) In our paper, all yields are simply accounted for at the step where they show up 
empirically. 

Material Cost:  

We treat material costs as in Fuchs and Kirchain (2010), except we do not include a 
material scrap rate (i.e. extra material needed due to excess material that does not end up on 
the final part). This difference is because we received material inputs as total material required 
to go through one processing cycle (single unit or batch output) at each step, rather than as an 
amount of material required for the actual part plus some amount of additional material 
required for the step that would be lost and not end up on the final part.  

Labor Cost: 

We consider only direct operator labor for this paper. Our labor cost equation has two 
differences from Fuchs and Kirchain (2010): first, matching our empirical observations, we treat 
operator labor as always dedicated to process steps (labor is not dedicated in Fuchs and 
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Kirchain (2010)); in our empirical observations operators did not move between machines. 
Second, whereas all operators have the same wage in Fuchs and Kirchain (2010), in our model, 
we have different average operator wages for different process steps. Hence: 

AClabor = ∑ωshsu(vs)

s

 

ωs ∈ ℝ+ is average operator wage in step s ∈ ℕ (this may vary if some steps are 
performed in different locations); hs ∈ ℝ+ is the annual hours worked by an operator 
employed in a process step (in our model, typically 40 hours a week, 50 weeks a year for 2000 
hours a year, but allowed to vary). vs ∈ ℝ+ is the effective production volume of step s: taking 
the annual production volume γ of the finished good as given, vs is a function of both γ and the 
product of the yield rates yn = [0,1] of all steps i s. t. s ∈ Pi, where Pi is the set (see section 3 of 
the main body):  

vs = γ ∏ yn

i s.t.s∈Pi

 

u(vs) is the annual quantity of laborers demanded at a given process step:  

u(vs) = ⌈
ηs

hs
⌉ 

ηs =
n(vs)κs

 ψsρs
  

Where ηs is the annual labor time required in step s to satisfy effective production 
volume u(vs), n(vs) is the number of capital lines required in step s to satisfy its effective 
production volume, ψs is the fraction of equipment time requiring a human operator and ρs is 
the number of pieces of equipment in step j that one operator can manage and κs is the net 
available annual hours (after downtime) that capital in step s can operate. 

Capital Cost: (equipment and tooling)  

We annualize costs using the standard capital recovery factor formula, as in Fuchs and 
Kirchain (2010). As with Fuchs and Kirchain (2010), we use a discount rate of 10%. 

We treat equipment and tooling costs and calculate capital lines required n(vs) as in 
Fuchs and Kirchain (2010) and denoted in Michalek and Fuchs (2018), but with expanded 
options for capital sharing: in addition to capital dedicated to a process or shared across other 
products outside our model scope, we allow cases of capital sharing across multiple specific 
steps within the same production process but not across products. If capital is dedicated to the 
overall production process but shared across s ∈ R ⊆ Φ (see section 3 for discussion of the step 
set Φ) we define n(vs) the lines required in step s: 

n(vs) =
ls 

as
+

⌈⌈∑
lg
ag

g∈Φ ⌉ − ∑
lg
ag

g∈Φ ⌉

|R|
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Where ls is the line time required in step j to meet effective production volume (as in 
Fuchs and Kirchain (2010)) and as is the available annual time per line. 

Building Cost: 

In Fuchs and Kirchain (2010), building costs are linear with equipment, but they are 
described as a more general function of building capacity and required line time. We explicitly 
relate building costs linearly with equipment requirements, as in Michalek and Fuchs (2018):  

αBuilding = ∑n(vS)

s

bj,spq
BL 

Where bj,s is the square footage of type j ∈ ℕ (e.g. a cleanroom) required for a capital 

line in step s and pq
BL is the annualized cost per square foot of facility space type q, annualized 

using the standard capital recovery factor. 

Calculating Skill Demand and Interfirm Variation Ranges 

Where prior work generates broad ranges of possible costs based on individual variation 
of high and low parameters of production (sometimes treating the parameters of a piece of 
equipment as independent from each other), the model used in this paper for the first time 
builds in a step-level  (taking technology as fixed) optimization process to generate a set of 
empirical equipment and labor options that minimize (maximize) production cost or labor 
demand. By constructing these sets from individual equipment options, we allow parameters 
that are technologically and physically related to each other (e.g. batch size and cycle time) to 
remain related in the generation of bounds of possible variation from our empirical “baseline” 
estimates. We believe that minimum and maximum values of cost or labor demand obtained in 
this manner are more representative of current or near term technological constraints on 
production parameters and thus more likely to capture the true possibility for interfirm 
variation in cost and labor demand under differing technological scenarios – hence, our 
methodological innovation allows us to more precisely distinguish changes in factor demand 
(including labor skill demand) from interfirm variations. 

This skill bundling is a helpful approach for aggregation of skill requirements across 
process steps. It does not necessarily occur at the level of the entire production process, but 
rather it happens across a subset of process steps. One type of worker does not perform the 
entire production process: there might be (at most) N types of workers on N steps, but even 
some workers with responsibility across process steps (as in our model) would still lead to 
differentiation in skills demanded throughout the process. The logic for this bundling approach 
is that, empirically, some jobs involve responsibility for multiple process steps and performing 
all steps successfully will require meeting the maximum skill requirements across all steps. 

Skill Demand: 

In order to calculate the matrix Ds of demand for operators of each skill type in step s 
from our model, we first multiply the number of operators required at a given process step by 
an index matrix of the skills required for that step: 
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Ds(u(vs)) = [
θs(σ0, w0) ⋯ θs(σ0, w0)

⋮ ⋱ ⋮
θs(σ0, w0) ⋯ θs(σ0, w0)

] u(EPVj)
LB

 

Where u(vs) is the annual labor demanded at process step s for an annual output vs, 
and where θs(σξ, wj) is an indicator function of whether s requires labor of type and level 

σξ, wj ∈ ℕ 

tθs(σξ, wj)takes the value 0 if skill level w is not required and 1 if required, and 

∑ ∑ θs(σξ, wj)ξ = 0j  (meaning that two levels of the same skill cannot be required for the 

same step:88 within our theory, the higher of the two levels would be the required skill level).  
Thus, Ds is a matrix of process-step level demand for skill. The sum across the entire production 
process thus gives us the process-level demand matrix for skill: 

D = ∑Ds

n

s=1

 

Process Configurations that Minimize and Maximize Unit Production Cost or Labor 

In order to account for interfirm variation (see section 6.3-6.4), we select sequences of 
inputs (from the available empirical alternatives for each process step in the process) that will 
maximize or minimize unit production cost and labor quantity required and use these to 
construct ranges of production cost and labor demand. 

Each step s in a production process has a set of alternative equipment inputs Is ⊂ ℕ 
drawn from the empirical examples in our data of different firms performing the same 
production task. For a given scenario we refine the set Is  to elements is ∈ Is whose level of 
automation corresponds to the given scenario z (indexed λz,s(i)  ∈ {0,1}): { is|is ∈ Is, λz,s(is) =

1}. The mechanisms for interfirm variation hold with or without this refinement. 

All elements is ∈ Is have corresponding Leontief production functions relating capital, 
material and labor inputs to ys, the annual output of the step s: because of our Leontief 
construction, the selection of capital alternatives includes labor and material requirements. 
Because we collect our skill requirement data at the process-step level, each is also has a 
corresponding skill demand given ys. 

The range of labor required in a given process step is given by: 
[min
is∈Is

u(is, vs) , max
is∈Is

u(is, vs)] 

Thus, the range of labor skill demand for a production process is given by:  

 [∑min
is∈Is

Ds(Is)

n

s=1

,∑Ds(Is)]

n

s=1

 

 
88It may be possible for different tasks within a process step to require different levels of 

the same skill level, but in our empirical context operator jobs are at the process step level. 
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The range of annual production costs for step s is a function of input requirements as a 

function of is and ys multiplied by the vector of input prices p(is)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ ℝn.  A demand for input 

factors D(is)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∈ ℝn expresses the demand for labor, materials and capital dependent on choice 
of is, in which the parameters of the cost and input functions described prior, but not their 
structure, are determined by input alternatives. Input prices are collected for each possible 
input in our data and are expressed as a function of is. 

[min
is∈Is

(p(is)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ D(is)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ,max
is∈Is

(p(is)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ D(is)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ] 

Thus the range of overall production costs is given by: 

[∑min
is∈Is

(p(is)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ D(is)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 
n

s=1

,∑max
is∈Is

(p(is)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ D(is)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 
n

s=1

] 

As in 1.1, our process-based engineering model takes the annual production volume PV 
of the finished good as given, but EPVj is a function of both PV and the product of the yield 

rates yn. 

By definition, the inputs that give us our interfirm variation in labor demand also 
produce a range of production costs that is a subset of our interfirm cost range: we illustrate 
from our empirical data that the range of production costs (at the median annual production 

volume of our industry sample) associated with our sequence of labor variation inputs is equal 
to or within the range associated with our sequence of cost variation inputs:

 

Figure 25 Cost Range Comparisons of Interfirm Labor and Cost Variation Inputs 

Appendix 1.2: Equations for Aggregation of Shifts in Skill Demand 

We calculate the change in jobs of a given skill level within a given skill type using the 
following equation: 

∆Jw,σ(X, Y) = Jw,σ(Y) − Jw,σ(X) 

Where Jw,σ(X) is the number of operator jobs requiring level w ∈ ℕ (e.g. skill level 1) of 

skill type σ ∈ ℕ (indexing, e.g. near vision or operations and control) in scenario X.  We define 
∆Jw,σ(X, Y) as the change in operator jobs requiring skill level w when moving between 
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scenario X and scenario Y. Following the scenario codes in section 4, the change in demand for 
low skill (skill level 1) cognitive (i.e. operations and control) operators under automation is thus 
the change in demand for low cognitive skill between low automation (scenario B1) and high 
automation (scenario B2): 

∆Low Cognitive Skill Jobs: ∆J1,Ops & Control(B1, B2) = J1,Ops & Control(B2) − J1,Ops & Control(B1) 

∆High Cognitive Skill Jobs: ∆J5,Ops & Control(B1,B2) = J5,Ops & Control(B2) − J5,Ops & Control(B1) 

To calculate the change in demand for medium skill of a given type, we refer to the 
following equation where ∆Jm(X, Y) is the change in number of operator jobs with medium skill 
requirements (skill level 2 through skill level 4; w ∈ M = {2,3,4}): 

∆JM(X, Y) = ∑ ∑ Jw,σ(Y) − Jw,σ(X)

w∈Mσ

 

For example, the change in medium cognitive skill jobs under automation is given by: 

∆JOps & Control,M(B1, B2) = ∑ ∑ Jw,Ops & Control(B2) − Jw,Ops & Control(B1)

w∈Mσ

 

To calculate changes in jobs within skill categories that contain multiple skill types, we 
refer to: 

∆Jw,C(X, Y) = ∑ ∆Jw,σ(X, Y)

σ∈C

 

Where ∆Jw,C(X, Y) is the change in jobs at skill level w within a skill set C ⊂ ℕ.  The 

equation above is the change in jobs with skill level s in at least one of the skill types σ ∈ C (e.g. 
dexterity and near vision in physical skill). For example, the change in demand for low and high 
physical skills under automation is given by: 

∆Low Physical Skill Jobs: ∆J1,Physical(B1,B2) = ∆J1,Near Vision(B1, B2) + ∆J1,Dexterity(B1, B2) 

∆High Physical Skill Jobs: ∆J5,Physical(B1, B2) = ∆J1,Near Vision(B1, B2) + ∆J1,Dexterity(B1, B2) 

Combining our notation to calculate the change in medium skill jobs within C, we refer 
to: 

∆JM,C(X, Y) = ∑ ∑ ∆w,σ(X, Y)

w∈Mσ∈C

 

Where ∆Jm,C(X, Y) is the change in jobs at skill level m within skill category C. The 

equation above is the change in medium skill jobs across all skill types t in the category C (e.g. 
dexterity and near vision in physical skill).  
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Appendix 2: Data and Validation 

Appendix 2.1: Automation Level by Process Category and Automation Scenario 

Table 10 Taxonomy of Mechanical and Equipment Level of Automation (Frohm et al. 2008) 

Level of 
Automation 

Machinery and Equipment 

1 Totally physical – totally physical work, no tools are used, only the 
operators’ own muscle power. 

2 Static hand tool – physical work with support of static tool. (e.g. 
screwdriver) 

3 Flexible hand tool – physical work with support of flexible tool. (e.g. 
microscope) 

4 Automated hand tool – physical work with support of automated 
tool. (e.g. power screwdriver) 

5 Static machine/workstation – automatic work by machine that is 
designed for a specific task (e.g. curing oven) 

6 Flexible machine/workstation – automatic work by machine that can 
be reconfigured for different tasks (e.g. die attach machine) 

7 Totally automatic – totally automatic work; the machine solves all 
deviations or problems that occur by itself; autonomous systems. 

None of our process steps are “totally physical” or “totally automatic.” Most equipment 
in our study is in the 3 to 6 range, though some static hand tools exist (e.g. screwdrivers for 
packaging). Our per-step data includes detailed equipment descriptions (e.g. hand microscopes 
for visual inspection vs. automated testing tools or hand vs. power screwdrivers for physical 
assembly. In presenting results of the influence of technological change on physical and non-
physical tasks, we aggregate levels 1-4 in the taxonomy as “physical”, and levels 5-7 as non-
physical. We control for automation by matching input steps according to task, physical status 
and equipment description (e.g. Step 1 requires a microscope to physically inspect a part (level 
of adjustment 3) and must be matched with other inspection steps performed physically, using 
a microscope).  

While appropriate for our focus on the automation of a manufacturing production 
process, Frohm et al do not offer the only taxonomy of level of automation: alternate 
taxonomies include widely cited examples from Kaber and Endsley (1997) and Parasuraman, 
Sheridan and Wickens (2000). 

Kaber and Endsley focus on process control and Parasuraman et al focus on the level of 
automation of decision and action selection (i.e. interactions between humans and 
automation): our interest in performance of actions by humans or machines (rather than 
decision-making only) takes us beyond the scope of Parasuraman, and Kaber and Endsley’s 
taxonomy, while detailed, is prescriptive about the order (1-10) in which functional categories 
(monitoring, generating, selecting, implementing) are automated (see below).  

 

 



122 
 

Table 11 Endsley and Kaber’s LOA Taxonomy (1997) 

Level of 
Automation 

Functions 

Monitoring Generating Selecting Implementing 

1 Human Human Human Human 

2 Human/Computer Human Human Human/Computer 

3 Human/Computer Human Human Computer 

4 Human/Computer Human/Computer Human Human/Computer 

5 Human/Computer Human/Computer Human Computer 

6 Human/Computer Human/Computer Human/Computer Computer 

7 Human/Computer Computer Human Computer 

8 Human/Computer Human/Computer Computer Computer 

9 Human/Computer Computer Computer Computer 

10. Full 
Automation 

Computer Computer Computer Computer 

The taxonomy of Frohm et al. was chosen for its focus on manufacturing systems and its 
less prescriptive approach to the order of mechanization/automation of functions (allowing 
mechanical and equipment automation vs. information and control automation to occur at 
different rates). However, in our data, selecting functions (deciding on a particular option or 
strategy) are performed by humans and generating (formulating options to achieve system 
goals) functions are performed by machines only if the machine also performs monitoring and 
implementing functions. Thus variation in level of automation reduces to the monitoring and 
implementing functions identified by Endsley and Kaber. The four levels of automation from 
Endsley and Kaber taxonomy in our data are “manual control,” “action support” and “batch 
processing” and “shared control,” each strictly more automated than the last (unlike later levels 
of automation in the taxonomy, e.g. level 6 to level 7): taken to our data, the automation of 
different inputs to the same process steps using this taxonomy maps 1:1 with the relative 
automation across inputs based on Frohm et al, which we used to demarcate our low and high 
automation scenarios. 
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Appendix 2.2: Process Based Cost Model Inputs and Sample of Per Step Inputs 

Table 12 Other PBCM Inputs Collected 

Input Type Industry Sample 

Equipment and Tooling Inputs: Across 318 unique pieces of equipment and 108 unique tools 

Equipment Price 0 to $8,000,00 

Tooling Price $0 to $30,000 

Batch Size 1 to 34,000 

Yield Rate 85% to 100% 

Operation Time 0 to 44 hours 

Load/Unload Time 0 to 8.75 minutes 

Annual Downtime 5 days to 20 days 

Equipment Dedicated? True or False 

Labor Inputs: Across three categories of labor 

Supervisor to Operator Ratio N/A or 1:25 to 1:50 

Technician to Equipment Ratio N/A or 1:11 to 1:1 

Labor Dedicated? True or False 

Equipment to Operator Ratio 1:10 to 1.9 : 1 

Operator Wage $2.50 to $20.00 (varies by country) 

Supervisor Wage $6.00 to $30.00 (varies by country) 

Technician Wage $5.40 to $25.00 (varies by country) 

Material Inputs: Across 114 unique materials 

Material Price $0.00 to $31.00 per unit 

Facility Wide Inputs: Across 9 unique facilities 

Shift duration 8 to 12 hours 

Shifts per Day 1 to 3 

Facility-Wide Annual Downtime 0 to 2 weeks 

Values of 0 for an input indicate that there is no input of that type for a specific process 
step (e.g. $0.00 material price means no material input) or facility (e.g. 0 weeks Facility-Wide 
Annual Downtime). 

Appendix 2.3: Education, Training 

We find that operators with different levels of education (8-12 years) performed tasks 
with comparable equipment and process inputs (yields, cycle time, skill requirements). As our 
descriptive tables below illustrate, educational requirements and level of consolidation varied 
by region but were typically fixed at 8 or 12 years for all operators; operators in the United 
States, Europe and North America all required a high school education.  
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Table 13 Minimum Educational Requirements for Fabrication Operators 

 Low Consolidation Medium Consolidation High 
Consolidation 

Operator Share by 
Education 

Japan North America  
Controlled 
Scenario Only 8 Years 0% 0% 

12 Years 100% 100% 

Table 14 Minimum Educational Requirements for Assembly Operators 

 Low Consolidation Medium Consolidation High 
Consolidation 

Operator Share 
by Education 

China Developing 
East Asia 

North America 
And Europe 

China89  
Controlled 
Scenario Only 
 

8 Years 13%-16% 100%   10-15% 

12 Years 84%-87%  100% 100% 85-90% 

 

Appendix 2.4 Validation: 

In the following tables, we provide deidentified examples of empirical quantities of 
equipment and labor in our sample facilities for comparison with estimates produced by our 
models of those facilities. The models of individual process steps that underlie these facility-
level estimates were then used to construct our counterfactuals. In Table 15 and Table 16, 
variation in our estimates of equipment and labor quantity was driven by differences in 
utilization assumptions, with the upper bound assuming that inputs dedicated to specific 
process steps and the lower bound assuming that equipment was shared across all process 
steps in which it was utilized, as well as within-firm variation in operational inputs (e.g. load and 
unload time); the baseline assumption was that inputs were shared across steps. We discussed 
cases of apparent over or under capacity in our estimates with firms both as a means of 
checking operational parameters (e.g. cycle time) and calibrating our utilization assumptions, 
including varying whether our baseline estimate reflected shared or dedicated capital. 

Table 15 Sample of Empirical Validations of Equipment Quantity Estimates 

Process 
Category 

Equipment 
Type 

Equipment Quantity 
in Sample Facility 

Estimated Equipment 
Required in Sample 
Facility 

Testing Burn-In 10 10 

Subassembly Wire Bond 4 3 to 4 (baseline 4) 

Subassembly Die Bond 8 6 to 9 (baseline 7) 

 
89 Using low consolidation educational data to populate medium consolidation scenario. 
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Table 16 Sample of Empirical Validations of Labor Quantity Estimates 

Process 
Category 

Operator Quantity in 
Sample Facility 

Estimated Operators 
Required in Sample 
Facility 

All Assembly 220 190 to 235 (baseline: 212) 

Fabrication 50 48 to 64 (baseline: 48)  

To further validate our counterfactual scenarios, we also compared counterfactual unit 
cost estimates to our unit cost estimates of production within empirical facilities (we did not 
use firms’ estimate of unit cost as they did not necessarily include the same factors as our 
model). We find that unit productions costs in our counterfactuals overlap with our estimates 
of unit costs at empirical facilities for the range of annual production volumes shared by firms.   

Appendix 2.5: Robustness of Findings to Choice of Skills Measured 

While the O*NET survey instrument includes a wide variety of skills and abilities, we 
measure a subset of four. The omission of other skills in the O*NET database was partly a 
feasibility measure: firms supplied data on skill requirements for each process step, requiring 
an engineer or manager to fill out data for each skill and step, and asking these individuals to fill 
out all of the O*NET skill/ability requirements (35 skills, 52 abilities) for every single process 
step (481 across our dataset) would have been infeasible for participants. The current 
methodology for populating the O*NET database involves relatively small sample sizes for each 
occupation: task descriptions average 59 responses per occupation, abilities and skills average 8 
responses per occupation and skill. We collected data at the job level within the same 
occupation, capturing 481 process steps, task descriptions and their requirements in four 
skills/abilities. 

With this limitation in mind, the skills we chose to measure (near vision, finger dexterity, 
operation and control) were based on preliminary discussions with industry experts that 
suggested relevant areas of variation and past examples of specific skills used in the labor 
economics literature, such as manual dexterity and eye-hand-foot coordination from the 
Dictionary of Occupational Titles in Autor, Levy and Murnane (2003).90 We selected skills to 
demarcate physical or manual skill from cognitive skills relevant on the shop floor, including a 
fourth item (operations monitoring) which mapped very closely with “operation and control” in 
our data and thus was not included in our results. Our selections were further refined by 
characteristics of the industry and product we studied (e.g. physical strength is not relevant in 
the production of small optoelectronic products) and the nature of the occupation of shop floor 
operators (e.g. operators in the context we studied did not engage in instruction or 
coordination with peers as part of their daily job operations but rather completed job tasks 
individually).  

 
90 Based on task descriptions from firms and skill data collected, high levels of near 

vision and dexterity requirements jointly would approximate a high level of eye-hand-foot 
coordination 
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Appendix 2.6: Addressing Threats to Identification 

One threat to identification is that apparent shifts in labor demand partially reflect firm 
rather than technological characteristics. Firms non-randomly select their level of automation 
and consolidation, based on their capabilities and input characteristics (e.g. labor cost).91 To 
help address this identification issue, we collect not only technologically but organizationally 
representative sample of the industry: our sample covers both globally distributed firms and 
those with primarily U.S.-based production, as well as both vertically integrated (firms that 
perform design, fabrication and assembly) and “fabless” firms.92 Thus, we expect that our 
sample is representative of the range of firm efficiency levels: Given duplication of tasks across 
the firms, our data includes between 1 and 5 examples (on average 1.6 in assembly, 1.2 in 
fabrication) of each of the 362 unique production tasks, including at each level of automation 
and consolidation. In addition, to avoid confounding technological variation with interfirm 
variation, our results focus only on instances where labor demand differences across scenarios 
exceed our interfirm variation bands. 

Another threat to identification is that the apparent effect of automation may be biased 
by relatively higher (lower) labor productivity in certain countries. Within our sample, more 
tasks are automated in production facilities sited in the United States, Japan and Europe than in 
developing East Asia. We believe that this threat to identification is not a concern, because 
while level of automation and geography may be correlated, the skill demand effects of 
automation appear consistent across countries. While U.S. facilities tend to be more highly 
automated, our sample also includes U.S. production that is not highly automated. We find that 
these low automation tasks are comparable in their labor productivity (i.e. labor time per part) 
to tasks performed in East Asian facilities at the same level of automation. Moreover, more 
highly automated tasks in facilities across countries do not appear to be consistently more or 
less efficient with geography.  

 
91 This statement is based on our conversations with executives at each firm in our 

sample. 
92 Fabless firms do not possess fabrication capabilities but design devices and at least 

partially assemble them . Such firms make use of contract manufacturers, including foundries, 
which are large high-capacity fabrication facilities serving both optoelectronic and traditional 
semiconductor manufacturing (Hochberg and Baehr-Jones 2010). 
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Appendix 3: Results Not Shown in Main Body 

Appendix 3.1: Demand Distributions by Skill and Scenario 

3.1.1 Dexterity Requirements for Operators 

We observe that dexterity requirements skew upward from low to medium 
consolidation, reducing the lowest difficulty factor and increasing the absolute number (

 

Figure 26 Number of Operators by Scenario and Dexterity Requirement (Median APV) 

) and share (Error! Reference source not found.) of operators at the highest skill factor 
(5), even as the total number of operators decreases. Further consolidation (under high 
automation) reduces both lower (level 2) and high skill requirements (level 5), driving a shift 
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toward the center, as mid-level skill (i.e. level 3) operators increase in absolute terms (

 

Figure 26 Number of Operators by Scenario and Dexterity Requirement (Median APV) 

) as well as proportionally (Error! Reference source not found.). Automating the 
medium consolidation scenario, conversely, shifts operators toward lower skill requirements. 
The quantity of level 5 operators decreases in absolute and proportional terms, while levels 1, 3 
and 4 are stable and level 2 operators increases in absolute and proportional terms. Not only do 
dexterity-intensive final assembly tasks persist from low to medium consolidation, greater 
failure and yield considerations appear to drive an upward skewing in skill requirements. Unlike 
under low to medium consolidation, parallel process flows are not merged (i.e. process steps 
eliminated by consolidation were already sequential) from medium to high consolidation. This 
suggests that yield considerations driving dexterity requirements in medium consolidation are 
unchanged, and the effect of high dexterity task elimination is dominant, driving down dexterity 
requirements overall. 
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Figure 26 Number of Operators by Scenario and Dexterity Requirement (Median APV) 

 

Figure 27 Share of Operators by Scenario and Dexterity Requirement (Median APV) 
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Figure 28 Aggregate Dexterity Skill Effects of Disaggregated Automation and Consolidation: 
Shifting from Low Consolidation, Low Automation to Medium Consolidation, High Automation 

 

Figure 29 Aggregate Dexterity Skill Effects of Disaggregated Automation and Consolidation: 
Shifting from Medium Consolidation, Low Automation to High Consolidation, High Automation 
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3.1.2. Near Vision Requirements for Operators 

The distribution of near vision requirements does not exhibit the same upward skewing 
with consolidation under low automation as dexterity. Both extremes of our observed difficulty 
distribution (levels 1 and 5) under low consolidation are reduced in absolute terms (Figure 30) 
and proportionally (Figure 31) moving from low to medium consolidation. Consolidation 
(medium to high) under the high automation scenario does not displace the proportion of 
operators by near vision skill beyond the range of interfirm efficiency variation. Meanwhile, the 
number of operators with more moderate skill requirements increases, even as total operators 
decrease. Automation under medium consolidation appears to drive down the near vision 
requirements for operators. The number (Figure 30) and share (Figure 31) of operators at skill 
level 1 increases even as we see decline in the proportion and number of operators at skill 
levels 2 and 3.  

Medium to high consolidation does not change the per-step skill requirements of 
production beyond the range of interfirm efficiency variation; while testing and subassembly 
labor decreases relative to final assembly, the combined near vision distributions of testing and 
subassembly resemble final assembly, offsetting these skill effects. 

 

Figure 30 Number of Operators by Scenario and Near Vision Requirement (Median APV) 

0

50

100

150

200

250

N
u

m
b

er
 o

f 
O

p
er

at
o

rs

Level of Consolidation

Level 5

High AutomationLow Automation

Medium HighMediumLow

Level 1

Level 2

Level 3
Level 4

Operators by Near Vision Skill Level



132 
 

 

Figure 31 Share of Operators by Scenario and Near Vision Requirement (Median APV) 

 

Figure 32 Aggregate Near Vision Skill Effects of Disaggregated Automation and Consolidation: 
Shifting from Medium Consolidation, Low Automation to High Consolidation, High Automation 
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3.1.3. Operations and Control Requirements for Operators 

 

Figure 33 Share of Operators by Scenario and Operations and Control Requirement (Median 
APV) 

 

Figure 34 Operations and Control Skill Effects of Disaggregated Automation and Consolidation: 
Shifting from Medium Consolidation, Low Automation to High Consolidation, High Automation 
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3.1.4: Distribution of Physical Labor: Physical Tasks Preserved under Consolidation 

The following figure displays the number of operators required for three operator 
categories at our median sample APV: those involved in nonphysical or partially physical 
assembly tasks, those involved in fully physical assembly tasks and those involved in fabrication 
tasks. While we perform equipment matching on both the fabrication and assembly side, we 
find “fully physical steps” (Level of Automation 1-4) only in assembly. 

 

Figure 35 Physical, Nonphysical Assembly Operators, Total Fabrication Operators 

This result suggests a different relationship between consolidation and the elimination 
or substitution of labor requirements than automation; in this context, physical assembly tasks 
are typically associated with packaging and other elements of final assembly, which we note 
previously as being less susceptible to elimination through consolidation than subassembly, 
which tends to be more automated.  

Appendix 3.2: Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill 
Level 

 

Figure 36 Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level 
under Automation 
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Figure 37 Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level 
under Consolidation 

Appendix 3.3: Global Location of Jobs by Scenario 

In our empirical context, both automation and consolidation induce a net decrease in 
jobs per unit output; however, the potential effect of automation and consolidation on product 
price and (in the future) performance may lead to equilibrium labor outcomes that do not 
necessarily reduce total jobs. The implications for jobs in market equilibrium are beyond the 
scope of this paper. Similarly, technological change such as increasing automation or 
consolidation could also change the geographic distribution of jobs. As shown in Fuchs and 
Kirchain 2010, Fuchs et al 2011, and Fuchs 2014, which design technologies are most profitable 
for firms can change with manufacturing location, and particularly between developed and 
developing nations. In terms of the location of operator jobs, empirically, while we find low and 
high automated production lines in both developed and developing world, the highest levels of 
automation occur in the developed world. In our data, we only observe low consolidation 
production lines in the developing world, while we observe medium consolidation in both the 
developed and developing world. High consolidation—while not yet on the market—is likely 
only possible in the developed world in the near term (Fuchs and Kirchain 2010; Fuchs, Kirchain 
and Liu 2011). Figure 38 maps the geographic location of the facilities in our empirical data to 
the geographic locations represented in the production cost estimates of our design scenarios.  
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Figure 38 Probable Global Location of Jobs by Production Stage and Scenario 

We expect the correlation between high consolidation and manufacturing in developed 
country locations as well as the correlation between consolidation and potential for higher 
performance to also apply to other manufacturing contexts.  Consolidation is pursued for both 
its production cost and performance advantages in multiple industries, including aerospace, 
and automotive (Carle et al 1999). Consolidation removes labor-intensive assembly steps, the 
cost advantages of which are higher in developed nations. Furthermore, consolidation often 
involves advanced materials and process developments that require continual interaction 
between technical experts and the production line (Bohn 1995; Pisano 1997; Bohn 2005; 
Lecuyer 2006; Fuchs and Kirchain 2010), and these experts are currently primarily located in 
developed countries (Fuchs and Kirchain 2010; NAS 2013). Past work has shown in both 
optoelectronic semiconductor (Fuchs and Kirchain 2010) and automobile body (Fuchs et al 
2011) contexts that the most parts consolidated designs, while having short to medium term 
performance advantages, are only profitable when manufactured in developed countries.  

We likewise expect highly automated manufacturing to be more attractive in developed 
contexts and to open up opportunities for higher product performance. With higher wages, the 
higher capital costs and lower labor implications of automation will have greater cost savings in 
developed country contexts. Automation can also open up opportunities for higher product 
performance, through higher precision and increased opportunities for subsequent innovation 
(Utterback and Abernathy 1975).  

While technological capacity for consolidation and cutting edge automation are stronger 
(in optoelectronics) in the developed world, and the incentives for labor-cost savings are 
greater, we find that a developed-developing difference does not alone account for the 
coexistence of technologies. Assuming a developing world context for all processes, our 
consolidation and automation scenarios remain largely overlapping in their possible cost 
ranges, as show in Figure 39 (note that while low consolidation and automation appears 
dominant, its cost range overlaps slightly with all others at any volume and overlaps more 
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closely as volume increases). Indeed, as we observe in our firm sample and support in this 
figure, it is possible for different technological regimes to coexist in a developing context.   

 

Figure 39 Cost Ranges for Automation and Consolidation Scenarios in Developing World 

 

Appendix 3.4: Joint Skill Distribution Shifts 

 

Figure 40 Automation from Low to High, Under Medium Parts Consolidation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 
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Figure 41 Parts consolidation from Medium to High, Under High Automation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 

 

Figure 42 Parts Consolidation from Low to Medium, Under Low Automation: Shifts in the Joint 
Distribution of Operations and Control and Dexterity Skill 
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Figure 43 Parts consolidation from Low to Medium, Under Low Automation: Shifts in the Joint 
Distribution of Near Vision and Dexterity Skill 

 

 

Figure 44 Automation from Low to High, Under Medium Parts consolidation: Shifts in the Joint 
Distribution of Near Vision and Dexterity Skill 
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Figure 45 Parts Consolidation from Medium to High, Under Low Automation: Shifts in the Joint 
Distribution of Near Vision and Dexterity Skill 

 

Figure 46 Parts Consolidation from Medium to High, Under Low Automation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 

 

8 18

11

2

1

34 4

1

5

17

9

5 2

11

3

2

1

37

1

5

5

8

9

0

1

2

3

4

5

0 1 2 3 4 5

N
ea

r 
V

is
io

n
 S

ki
ll 

Le
ve

l

Dexterity Skill Level

High AutomationHigh Parts Consolidation
(90 operators)

Medium Parts Consolidation
(112 Operators)

13

18

25

24

9

8

2

10 1

1

10

1

2

2

15

26

12

6

3

9 1

2

0

1

2

3

4

5

0 1 2 3 4 5

O
p

e
ra

ti
o

n
s 

an
d

 C
o

n
tr

o
l S

ki
ll 

Le
ve

l

Near Vision Skill Level

High AutomationHigh Parts Consolidation
(90 operators)

Medium Parts Consolidation
(112 Operators)



141 
 

Appendix 3.5: Unit Cost Breakdowns at median annual production volume 

 

Figure 47 Unit Cost proportions by Cost Category 

 

Figure 48 Unit Costs by Cost Category 

Appendix 4: Fabrication Analysis 

In using our new fabrication data (i.e. data collected beyond Fuchs 2011), we make two 
assumptions. First, our new fabrication data pertain only to laser production (albeit from 
multiple industry sources). We assume the per-step characteristics (e.g. employee skill) relevant 
for laser fabrication are relevant to the fabrication of other components consolidated in our 
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study, such as waveguides. This assumption is unlikely to significantly affect our main 
conclusions because of similarities in the equipment (e.g. plasma etching machines) and 
operator production tasks (e.g. equipment monitoring during material deposition) across 
component types. Second, we assume that the process flows specified by current engineering 
production plans are an accurate representation of what they would be at full production. This 
assumption is most pronounced in the quantity of fabrication testing throughout the process 
flow for our high parts consolidation case, which may be overstated due to technological 
uncertainty (i.e. there may more testing at the immature stage of the technology if the process 
is less stable than we might expect at full production). This assumption is also unlikely to 
significant affect our main labor and cost because the input costs and labor associated with 
these uncertain testing steps represent a very small proportion of overall operators and costs, 
within the range of interfirm variation (even under what may be an overestimate of testing 
activity). 

In our fabrication data, the high parts consolidation fabrication process flow consists of 
118 total steps, compared with 57 process steps associated with the fabrication of the medium 
parts consolidation design. This increase is not uniform across process categories, however; 
certain deposition, etching and treatment stages see in reduced step count from medium to 
high parts consolidation. Process steps whose functional category is unique to high parts 
consolidation represent 28 of the 118 steps, while 33 of the 61 additional process steps under 
high parts consolidation consist of functional categories that are also present under medium 
parts consolidation. Hence, while a substantial share (23%) of the high parts consolidation 
process consists of functions unique to that process, more steps (77%) share a function with 
steps from the fabrication process for the medium parts consolidation design. Additionally, 
these unique functions represent 2 of 16 total function categories in the high parts 
consolidation scenario. 

Measurement and testing steps represent 54 of the 118 steps involved in fabrication of 
the high parts consolidation design, compared with 3 of 58 steps in the fabrication of the 
medium parts consolidation design. This disproportionate share of testing may have been 
driven by uncertainty around an immature technology (high parts consolidation designs do not 
yet appear on the market) and will likely be reduced as high parts consolidation designs enter 
production and mature; for instance, the high parts consolidation flow features 
photolithography testing, whereas medium parts consolidation involves no testing during 
photolithography. If fully reduced to the testing steps associated with medium parts 
consolidation, the high parts consolidation fabrication process would consist of 67 steps, or 9 
more than under medium parts consolidation (of which one would have a function unique to 
the high parts consolidation process). Even the increased testing steps under current 
technological uncertainty represent a relatively small commitment of capital and labor within 
our model, suggesting that our labor requirement and unit cost estimates are unlikely to be 
dramatically biased by relative technological uncertainty in the high parts consolidation case.  
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Table 17 Functional Categories and Number of Steps by Level of Parts Consolidation 

Function Category High Parts 
consolidation 

# Steps 
Medium 
Consolidation 

# Steps High 
Consolidation 

Difference in Step 
# from Medium 
Parts 
consolidation 

Incoming Inspection 1 1 0 

Thermal 4 2 -2 

CMP 1 1 0 

Epi 2 1 -1 

Anneal 1 1 0 

H-ion Implant 0 3 3 

Sputter 2 1 -1 

PECVD 7 6 -1 

Photolith 14 9 -5 

Plasma Etch 16 10 -6 

Wet Etch 3 0 -3 

Clean 2 11 9 

Resist Strip 1 19 18 

PL Test 0 25 25 

Measure 2 27 25 

Scribe Wafer Cleave 1 1 0 

Die Test 1 1 0 

Total 58 119 61 

 

Appendix 5: Sources of Process Step Level Production Data 

In the following table, we break down the names and numbers of process steps by 
process category (see section 3.2) and subcategory, for each level of consolidation in our study 
(low, medium, high). We also list the designs (identified by a number to preserve firm 
confidentiality) that provided the data for each process category at each level of consolidation. 

Table 18 Sources of Process Step Level Production Data 
Consolidation 
Level 

Process 
Category 

Process 
Subcategory 

Processes Data Sourced 
from Process 
Flow 
of  Design # 

Low Fabrication Surface 
Treatment 

Spin Dry (20) 
Wafer Cleave (2) 
Die Cleave (3) 
Chip Cleave (1) 
Clean and Strip (14) 
Planarization and Polish (4) 

3,5 

Growth 
Deposition 

Metal Organic Chemical Vapor Deposition 
(MOCVD) (19) 
Plasma-enhanced Chemical Vapor Deposition 
(PECVD) (2) 
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E-Beam Deposition (2) 
Cap Layer Removing (1) 

Etch Dry Etch (32) 
Ion Milling (2) 
Wet Etch (4)  

Lithography Resist Coat (11) 
Stepper (10) 
Photo-Lithography (11) 
Developer (13) 
Resist Remove (18) 

Thermal Anneal (1) 
Hot Plate (7) 
Bake (16) 
Alloy (3) 

Test Measure Film Thickness (2) 
Chip and Die Test (2) 
Visual Inspect (2) 

Other Other (11) 

Subassembly Component 
Attach 

Epoxy and Thermal Curing (12) 
Lens (1) 
Mounting (9) 
Die Bond (4) 
Discharge (1) 

3,4,5 

Wirebond Wire bond (6) 

Test Screening and Inspection (6) 
Characteristic Check (6) 
Data Check (3) 
Continuity Check (2) 
Other Tests (12) 

Final 
Assembly 

Packaging Weld (2) 
Vacuum Bake (2) 
Fiber Cut and Attach (4) 
Aging and other Treatments (2) 
Housing, Plating and Pads (7) 
Epoxy (1) 
Molding (5) 

3,4,5 

Test Inspection (10) 
Thermal Cycle Test (2) 
Final Tests and Quality Control (7) 

Other  

Medium Fabrication Surface 
Treatment 

Spin Dry (24) 
Wafer Cleave (2) 
Die Cleave (4) 
Chip Cleave (1) 
Clean and Strip (15) 
Planarization and Polish (4) 

4,5 

Growth 
Deposition 

Metal Organic Chemical Vapor Deposition 
(MOCVD) (23) 
Plasma-enhanced Chemical Vapor Deposition 
(PECVD) (6) 
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E-Beam Deposition (5) 
Cap Layer Removing (1) 

Etch Dry Etch (33) 
Ion Milling (2) 
Wet Etch (10)  

Lithography Resist Coat (15) 
Stepper (10) 
Photo-Lithography (12) 
Developer (13) 
Resist Remove (21) 

Thermal Anneal (1) 
Hot Plate (7) 
Bake (16) 
Alloy (2) 

Test Measure Film Thickness (2) 
Chip and Die Test (2) 
Visual Inspect (2) 

Other Other (12) 

Subassembly Component 
Attach 

Mounting (2) 
Lens (1) 
Epoxy (4) 
Module Installation (5) 

1,2,4,5 

Wirebond Wirebond (1) 
Test Measurement (2) 

Visual Inspect (1) 

Final 
Assembly 

Packaging Fiber Attach (2) 
Cleaning (1) 
Housing, Plating and Pads (5)  

1,2,4,5 

Test Module Test (5) 
Visual Inspect (1) 

High Fabrication Surface 
Treatment 

Spin Dry (24) 
Wafer Cleave (1) 
Die Cleave (2) 
Chip Cleave (1) 
Clean and Strip (15) 
Planarization and Polish (4) 

4,5 

Growth 
Deposition 

Metal Organic Chemical Vapor Deposition 
(MOCVD) (16) 
E-Beam Deposition (5) 
Cap Layer Removing (1) 

Etch Dry Etch (26) 
Ion Milling (2) 
Wet Etch (8)  

Lithography Resist Coat (15) 
Stepper (10) 
Photo-Lithography (12) 
Developer (13) 
Resist Remove (29) 

Thermal Anneal (1) 
Hot Plate (7) 
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Bake (16) 
Alloy (2) 

Test Measure Film, CD (27) 
Chip and Die Test (2) 
Defect Inspect (18) 
Optical Inspect (7) 
Visual Inspect (2) 

Other Other (39) 

Subassembly Component 
Attach 

Chip Bond (2) 
Epoxy (4) 
Bake (1) 
Mounting (2) 
Lens (1) 

1,2,4,5 

Wirebond Wirebond (1) 

Test Visual Inspect (1) 
Measurement (2) 

Final 
Assembly 

Packaging Fiber Attach (2) 
Cleaning (1) 
Housing, Plating and Pads (5) 

1,2,4,5 

Test Module Test (5) 
Visual Inspect (1) 

We now provide some additional detail on the content of each production category, and 
how differences in consolidation (as in the preceding table) affect each category 
technologically. 

In fabrication, the depositions of material and patterns of etching give each fabrication 
component a geometry which must be accommodated in assembly.  The production of 
consolidated designs must include architectures that can accommodate multiple functionalities 
(more with greater consolidation) (NAS 2014). During the fabrication process, operators may 
transfer work in progress between machines and calibrate or monitor equipment. 

In subassembly, each component must be fitted into the device architecture directly by 
being attached to a substrate or by being attached to a different component. Wirebonding 
allows the components in the device to interact with each other. The more consolidated a 
device, the fewer components must be fitted and linked together. Operators working in 
subassembly may manually perform attachment and bonding activities, transfer work in 
progress between machines and calibrate or monitor equipment.  

The device package in final assembly is a standardized “form factor” that allows it to 
interface with the rest of the communications or computing system. In this step, operators may 
take on manual roles such as attaching optical fibers or screwing together packaging cases, or 
they may perform transfer, calibration and monitoring roles as above. 

While some material inspection is performed during fabrication, many testing steps 
check whether a component (or the entire device) can perform its function. Testing can consist 
of visual inspection by performers (especially for defects in subassembly), of simple 
functionality tests such as shining light through a material or of more complex data 
transmission tests.  The more consolidated a device, the more functions overlap and the more 
they must be tested simultaneously. 
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Appendix 6: Task Biases in Automation 
 
 Across the subset of our process steps for which we have detailed task-specific data, we 
observe that different types of tasks in our data are automated at different rates. 

An industry expert described how automation differentially affects tasks: “The machines 
are very automatic, and basically what the operators are doing is putting in parts and taking 
them out. In most of this optical stuff, it’s not so true that you have this automatic transfer... 
they [operators] replenish reels or trays or sources of parts, and make sure that when things 
come off the end of the line, they’re properly packaged.” Based on our manufacturing task 
data, we divide tasks within process steps into one of three categories – preparation, execution, 
and monitoring – where a process step could contain multiple tasks in a given category. We 
give examples of each of these types of tasks from our empirical setting in Table 19. In 
examining past PBCMs, these task categories appear to generalize across manufacturing 
industries (Fuchs et al. 2008; Johnson and Kirchain 2009; Fuchs et al. 2011). We expect these 
task categories to also be informative in other industry contexts, including software and 
services.  

Table 20 and Table 21 report the breakdown in level of automation across 45 
production steps as observed in our firm data using detailed information on the level of 
automation at each task in the step.  We find that a majority of the tasks for which automated 
alternatives exist are execution, followed by monitoring (see Table 20) The large majority (91%) 
of process steps with automated tasks include an automated execution task (Table 21), with 
few cases of monitoring automated alone (9%) and no cases of preparation automated alone.  

Table 19 Task Categories and Examples 

Category of Tasks Examples of Tasks Example of Aggregation into Step 

Preparation Loading/Unloading a 
machine, Calibration, 
Laying out tools in a 
workstation 

Wire bonding 
Preparation 
Clean Station 
Load Station 
Execution 
Apply adhesive 
Attach wire to die 
Attach wire to substrate 
Monitoring 
Check wire hold 

Execution Hand wire bonding two 
parts, Activating a 
chemical vapor 
deposition machine 

Monitoring Is the operation running 
correctly? Does the part 
look of high quality? 

Table 20 Level and Share of Automation by Task Category 

Task Category Task Automation within Category Share of all automated Tasks 

Preparation 3% 3% 

Execution 53% 64% 

Monitoring 27% 33% 
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Table 21 Combinations of task categories automated within steps 

Combinations of task categories automated within 
steps 

Number of 
Steps 
Associated 

Share of all 
automated tasks 

Execution automated alone 22 49% 

Execution automated, monitoring automated 17 38% 

Monitoring automated alone 4 9% 

Preparation automated, execution automated 2 4% 

Preparation automated alone 0 0% 

Preparation automated, monitoring automated 0 0% 

All automated 0 0% 

 

Appendix 7: Structure and Theory of O*NET 

The O*NET dataset is organized according to a content model, with six overarching 
categories: Worker Characteristics, Worker Requirements, Experience Requirements, 
Occupation-Specific Information, Workforce Characteristics and Occupational Requirements. 

 

Figure 49 O*NET Content Model (source: National Center for O*NET Development) 

Worker Abilities and Worker Skills are captured in this model as subcategories; Worker 
Abilities are a subcategory of Worker Characteristics, and Worker Skills are a subcategory of 
Worker Requirements.  Worker Skills are acquired through formal education, experience and 
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on-the job training,93 whereas Worker Abilities are “enduring” characteristics that allow 
workers to perform tasks; the theoretical distinction between skills and abilities is somewhat 
loose in the content model (NAS 2010), resting mostly on the process of acquisition – skills are 
acquired through education, training or experience (i.e. learned to some extent), whereas 
abilities may or may not be innate (the content model and survey instrument is agnostic on this 
point for any given ability).  Abilities may feed into skills (Burtch et al 1982) or the ease of skill 
acquisition (Bartel and Lichtenberg 1987; Kanfer and Ackerman 1989), but the content model 
does not presume such mappings.   The restriction on skills as acquired capabilities, with more 
ambiguity for abilities, appears to be the primary distinction (NAS 2010), and it is also reflected 
in past literature (Carrol 1993) and in past Department of Labor measures (DOT US DOL 1991).  
As our study focuses on task-level capability requirements but not the acquisition of skills or 
abilities for meeting those requirements (and firms in our study do not have programs in place 
for skill development outside of very task-specific training), skills and abilities are both relevant 
labor characteristics and potential distinctions in their acquisition are not immediately in-scope 
to our research questions around shifting labor demand under technological change. 

Thus, skills and abilities influence worker performance and form part of the spectrum of 
requirements for certain occupations or tasks.94  These skills and abilities are more general than 
the occupation specific information section of the content model, which includes “tasks and 
tools” as descriptors of work; these descriptors allow a qualitative mapping of detailed, station 
or machine level work characterizations to the more aggregate “occupations” measured by 
O*NET. 

The O*NET taxonomy was devised based on taxonomic methods common in the 
literature (Meehl and Golden 1982; Carrol 1993) and reflects a continuation of interest and 
capability typologies used in past aptitude tests (Dvorak 1947) and occupational databases (e.g. 
Dictionary of Occupational Titles).  The O*NET content model and survey instrument draws on 
an extensive literature for measuring and categorizing skills (Peterson et al 1999) and abilities 
(Dvorak 1947; Meehl and Golden 1982; Carrol 1993; Geisinger et al 2007); taxonomies of ability 
have been used in labor and psychology contexts to characterize individuals (Fleishman and 
Reilly 1992), and a literature has emerged specifically around developing taxonomies of ability, 
skill and tasks for O*NET and similar databases (Borman et al 1999).  Hence, the categorization 
of skill and ability and the calibration of skill or ability descriptions (e.g. level of precision) are 
well supported by examples and methods from past literature. 

Appendix 8: Proofs of Chapter 2 Section 3 

Proof of Lemma 1 

Proof. For any realization of {𝑋𝑖}𝑖=1
𝑛 , from Lemma 2.1 in [35] we have that:  

 (∑𝑛
𝑗=1 (𝑋𝑗)

𝜌ℎ)
1

𝜌ℎ < (∑𝑛
𝑗=1 (𝑋𝑗)

𝜌𝑚)
1

𝜌𝑚 , 

 
93 However, experience and training as occupational credentials or requirements in their 

own right also fall under “experience requirements” 
94 Relating O*NET to the task-based framework in e.g. Acemoglu and Autor (2010) 
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the result then follows immediately.         ∎ 

 

Proof of Lemma 2 

 Proof. We have that for all 𝑛  

 
𝑑𝑃𝑛(𝑙)

𝑑𝑙
= 𝑃𝑛(𝑙) (

𝑛

𝑙
− 𝜆). 

Since 𝐗(𝑛|𝜌) is strictly increasing in 𝑛, we have that:  

 
𝑑𝑐(𝑙)

𝑑𝑙
= ∑∞

𝑛=1 𝑃𝑛(𝑙) (
𝑛

𝑙
− 𝜆)𝐗(𝑛|𝜌) > ∑∞

𝑛=1 𝑃𝑛(𝑙) (
𝑛

𝑙
− 𝜆)𝐗(1|𝜌), 

so that:  

 
𝑑𝑐(𝑙)

𝑑𝑙
> 𝐗(1|𝜌) [

1

𝑙
∑∞

𝑛=0 𝑛𝑃𝑛(𝑙) − 𝜆(1 − 𝑃0(𝑙))] = 𝐗(1|𝜌)𝜆𝑃0(𝑙) > 0. 

We next show concavity. Since 𝐗(0|𝜌) = 0 and since 
𝑛

𝑙
𝑃𝑛(𝑙) = 𝜆𝑃𝑛−1(𝑙), we have that  

 
𝑑𝑐(𝑙)

𝑑𝑙
= 𝜆∑∞

𝑛=0 𝑃𝑛(𝑙)(𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌)) > 0, 

so that:  

 
𝑑2𝑐(𝑙)

𝑑𝑙2
= 𝜆∑∞

𝑛=0 𝑃𝑛(𝑙) (
𝑛

𝑙
− 𝜆) (𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌)), 

so that:  

𝑑2𝑐(𝑙)

𝑑𝑙2
= 𝜆2 ∑

∞

𝑛=0

𝑃𝑛−1(𝑙)(𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌)) − 𝜆2 ∑

∞

𝑛=0

𝑃𝑛(𝑙)(𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌))

≤ 𝜆2 ∑

∞

𝑛=1

𝑃𝑛(𝑙)[(𝐗(𝑛 + 2|𝜌) − 𝐗(𝑛 + 1|𝜌)) − (𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌))] < 0. 

 Where the first inequality holds since 𝜆2𝑃0(𝑙)(𝐗(1|𝜌) − 𝐗(0|𝜌)) > 0 and the second 
inequality holds since 𝐗(𝑛 + 1|𝜌) − 𝐗(𝑛|𝜌) is decreasing in 𝑛.    ∎ 

 

Appendix 9: Hand and Machine Labor Data  

Appendix 9.1: Overview 

 For each product, the Hand and Machine Labor (HML) dataset includes general 
information on the process as well as detailed information on the steps required to create the 
product either using different methods: either by hand or using a machine. Products vary 
greatly in the complexity of production: the observed number of steps range from one to over 
two hundred and fifty. The data used in this paper comprise 247,482 step-level entries and 
11,862 process-level entries. The HML data is publicly available in a non-digitized form. The 
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entire dataset was digitized from scanned and physical copies of the data by undergraduate 
students at Carnegie Mellon University between 2019 and 2021.95 

The type and definition of variables present in the HML dataset are described below. 
Table 22 describes process-level variables, which apply across all steps and methods. For ease 
of comparison between processes of each method, the dataset reports observed production 
volumes for each process. The dataset also reports the input requirements to meet a  
conformed volume which is consistent across the hand and machine methods. Table 23 
describes variables which are reported for each step.   

Table 22 Process variables in HML data. 

  Variable Name   Definition   Example  

 Unit   Product name   Potatoes  

 Unit Volume   Volume of product 
captured for each full cycle 
of process  

 880 bushels  

 Conformed Volume   Volume of product per 
cycle used in presentation 
of step-level data  

 220 bushels  

 Method   Level of process 
mechanization  

 Hand/Machine  

 Total Employment   Number of people 
employed in process  

 4 people  

 Total Animals   Number and type of 
animals used in process  

 2 horses  

 Time Worked   The number of hours 
worked per day  

 10 hours  

 Year   Date of production process   1893  

 Unit Characteristics   Additional product details   From grafts  

 

 

 

 
95 Approximately 90% of products in the Hand and Machine Labor Study have been 

digitized so far. 
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Table 23 Step variables in HML data.  

  Variable Name   Definition   Example  

 Operation Number   Identifying code for the set of 
tasks in a process step  

 {2, 3}  

 Work Done   Description of the activities 
performed in a step  

 Planting Seed  

 Machine, Implement or Tool 
Used  

 Description of primary 
equipment used to complete 
step  

 Steam shovel  

 Motive Power   Source of power for 
operations described  

 Steam; Horse  

 Persons Necessary on One 
Machine  

 Number of workers required 
per machine or station  

 2 workers 

 Animals Necessary on One 
Machine  

 Number of animals required 
per machine or station (type 
recorded in motive power)  

 2 horses  

 Number of Workers   Number of workers required 
in a process step across all 
stations  

 4 workers  

 Sex   Sex of workers   M, F 

 Occupation   Occupational title of workers   Laborer  

 Age   Age (or age range) of workers   21-30  

 Time Worked   Total person-hours and 
minutes to complete step  

 1hr 15m  
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 Animal Time Worked   Total animal-hours and 
minutes to complete step  

 2hr 30m  

 Worker Pay Rate   Rate of pay (nominal dollars) 
for payment period  

 $1.00  

 Animal Pay Rate   Cost of animal (nominal 
dollars) for payment period  

 $0.375  

 Worker Pay Period   Payment cycle for workers   1 Day  

 Animal Pay Period   Cost cycle for animals   1 Day  

 Labor Cost   Total labor cost of producing 
conformed volume  

 $.125  

 Animal Cost   Total animal cost of 
producing conformed volume  

 $.0938  

 

Appendix 9.2: Mapping Hand and Machine Processes 

 We next describe the steps taken to map the data to the model. In the original data, 
entries concerning animal labor in production are given a distinct line with otherwise identical 
step information (tools, task content). Since there are never animals used in production without 
workers, we condense animal information into the same step as the human workers that 
manage them. Some steps also include workers with multiple occupational titles. When this 
occurs the dataset provides separate entries in the data. When mapping the task content 
between hand and machine methods, distinct occupations are kept as separate steps with the 
same task content. Any step containing multiple occupations (7.6 percent of steps observed) is 
excluded from our analysis of step automation or changes in the division of tasks among steps, 
because the division of tasks within occupations within a single step is not specified (and to 
avoid double-counting steps). 

For all products, we build a mapping between hand and machine processes. We index 
the tasks in hand and machine processes as 𝒱𝐻 and 𝒱𝑀 respectively. In terms of notation, 𝐻,𝑀 
indicate either hand or machine process-types. Every step 𝑖 contains a set 𝒮𝑖 of tasks. Note that 
it is possible for two steps 𝑖 ≠ 𝑗 to exist such that 𝒮𝑖

𝑀 ∩ 𝒮𝑗
𝑀 ≠ ⌀: for example, steps with 

content 1a and 1b in Hand are identical in task content to step 1 in Machine, and to each other. 
Any given step belongs to exactly one of the following six possible cases:   
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1.  1 to 1: Steps 𝑖𝐻 and 𝑗𝑀 belong to this case if they have the same task content and do not 
share task content with any other steps: 𝒮𝑖

𝐻 = 𝒮𝑗
𝑀 . For any 𝑛 ≠ 𝑖 then 𝒮𝑛

𝐻 ∩ 𝒮𝑗
𝑀 = ⌀, and for 

any 𝑚 ≠ 𝑗 then 𝒮𝑖
𝐻 ∩ 𝒮𝑛

𝑀 = ⌀. A 1 to 1 mapping is useful when analyzing a change in performer 
type or performer characteristics, independently of changes in the division of production.  

2.  1 to 0: a step 𝑖𝐻 belongs to this case if 𝑆𝑖
𝐻 ∩ 𝒱𝑀 = ⌀. These steps capture activities that are 

no longer performed in the machine case (e.g. post-processing work made unnecessary by 
process improvement). 

3.  0 to 1: a step 𝑖𝐻 belongs to this case if 𝑆𝑖
𝑀 ∩ 𝒱𝐻 = ⌀. These steps represent activities which 

are new to a process (e.g. firing a boiler, which would be unnecessary in a hand process without 
a steam engine). 

4.  1 to N: step 𝑖𝐻 belongs to this case if: (a) 𝒮𝑖
𝐻 ⊂ 𝒱𝑀 (all of its tasks are contained in the 

machine process), (b) ∃𝑚 ≠ 𝑛 such that 𝒮𝑛
𝑀 , 𝒮𝑚

𝑀 ⊂ 𝒮𝑖
𝐻 (tasks in the hand step are contained in 

more than one machine step), and (c) ∀𝑗 such that 𝒮𝑗
𝑀 ∩ 𝒮𝑖

𝐻 ≠ ⌀ we have 𝒮𝑗
𝑀 ∩ (𝒱𝑀\𝒮𝑖

𝐻 = ⌀) 

(no machine step with a task set intersecting the hand step contains tasks that are contained in 
any other hand step:96) Step 𝑗𝑀 belongs to this case if 𝒮𝑗

𝑀 ⊂ 𝒮𝑖
𝐻  such that 𝑖𝐻 satisfies the above 

conditions. This case allows us to capture an increase in the division of tasks.  

5.  M to 1: a step 𝑗𝑀 belongs to this case if: (a) 𝒮𝑗
𝑀 ⊂ 𝒱𝐻, (b) ∃𝑚 ≠ 𝑛 such that 𝒮𝑛

𝐻 , 𝒮𝑚
𝐻 ⊂ 𝒮𝑗

𝑀 

and (c) for any 𝑖 such that 𝒮𝑖
𝐻 ∩ 𝒮𝑗

𝑀 ≠ ⌀, 𝒮𝑖
𝐻 ∩ (𝒱𝑚\  𝒮𝑗

𝑀) = ⌀. Step 𝑖𝐻 belongs to this case if 

𝒮𝑖
𝐻 ⊂ 𝒮𝑗

𝑀 such that 𝑗𝑀 satisfies the above conditions. This case allows us to capture a decrease 

in the division of tasks. 

6.  M to N: any remaining step not included above belongs to this case.  

Table 24 reports the number and share of process steps for each method which belong 
to each of the six cases described above. We see that 78.6% of Hand steps and 83.4% of 
Machine steps belong to mappings which can be interpreted as changes in 𝑇 for fixed 𝒱, 
allowing them to be used to explore technological cases which vary or hold constant the 
division of tasks.   

Table 24 Mapping between steps of different methods recovered from HML data. 

  Process 
Mapping  

 Hand Steps   Share of Hand   Machine Steps   Machine Share  

 0 to 1   0   0   2948   .333  

1 to 0   204   .042   0   0  

1 to 1   2375   .484   2375   .269  

1 to N   639   .130   1921   .217  

M to 1   639   .130   131   .015  

M to N   1039   .212   1469   .166  

Missing 
Alternate  

 9   .02   0   0  

 Total   4896     8844    

 
96 Including tasks which occur in both step 𝑖𝐻 and another hand step. 



155 
 

The Missing Alternate row indicates steps from processes which do not have a 
corresponding process of the opposite method: in our data, one hand process had a 
counterpart machine process for which the authors of the Hand and Machine study could not 
compare task content and thus could not encode operation numbers. 

Appendix 9.3: Measuring Automation & Division of Tasks 

 To look at the impact of automation, we focus on the rate of automation of steps 
belonging to the 1:1 case described in the previous section (so to keep the task content of each 
step constant across the human and machine scenarios). As multiple products in the HML dataset 
are used for this analysis, a superscript 𝑝 ∈ 𝑃 is used to denote different products. We denote 

the motive power of step 𝑖 (e.g. hand power, mule power, steam power, etc.) as 𝜔𝑖
𝑝

. Next we 

construct an indicator of automation, i.e. a change in motive power between the hand and 
machine process. The HML dataset features no observations of motive power in hand processes 
such as steam or water shifting to  less mechanized motive powers such as hand or animal power 
in the respective machine processes. Given this we treat all changes in motive power as a shift 
toward automation. Formally, for two 1:1 mapped steps 𝑖𝐻,𝑝, 𝑗𝑀,𝑝, the index of automation is 
given by the difference in motive power between the steps:  

 

     𝜃 = {
1 if    𝜔𝑖

𝑝
≠ 𝜔𝑗

𝑝

0 if    𝜔𝑖
𝑝

= 𝜔𝑗
𝑝. 

 

To look at the implications of �̅� on the rate of automation, we construct a measure of 

the utilization of performers in each process step, 𝑢 =
𝑅

𝑟
. The lower the utilization of 

performers, the lower the returns to increasing rate and the closer the performer is to �̅�. To 
compare between process steps which were or not automated, we use the parameters of a 
step’s performer in the hand process to determine utilization given the volume in the machine 
process, as a proxy for �̅�. While the data does not include empirical production volume, we can 

recover an upper bound on the possible output of each process step: 𝑅𝑗
𝐻,𝑝

= 𝑟𝜇, where 𝑟 is the 

rate of output per performer shift and 𝜇 is the number of performers demanded per shift. The 
maximum effective output of any step in a production process cannot be greater than the 

maximum output of every other step (bottlenecks), giving us 𝑅𝑖

𝐻,𝑝
= min𝑖=1

𝑖=𝑁(𝑅𝑖
𝐻,𝑝

). 

We next look at the division of tasks. To remove the effect of other changes beyond the 
division of tasks, we control for task content and for the level of automation. For the former we 
only consider the case of steps mapping from 1 to 𝑁 (the decrease in the division of tasks is 
characterized by a 𝑀 to 1 mapping. As fewer than 20 steps exhibit this property, we do not 
consider this scenario). To control for the level of automation we further restrict the sample 
selection to steps in which the motive power is unchanged. 
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Appendix 10: Additional Results on Cost and Complexity 

 

Figure 50 Performer cost and step complexity. Prices in 2006 Dollars. For information on the 
data refer to Fuchs, Field, Roth and Kirchain (2008). 

 

Appendix 11: Aggregate Occupational Demand Trends 

11.1: Empirical Analysis 

To produce the aggregate occupational demand result in Chapter 2 Section 2, we employ 
an approach based on the LOESS smoothing method used in Autor and Dorn 2013, using IPUMS 
census data on individual employees. Our objective is to recover the share of employees in an 
industry who belong to different occupations with high or low average wages, and to characterize 
how these shares changed between 2000 and 2019. Differently from Autor and Dorn, to allow 
industry-level analysis, we use 2000 rather than 1980 as our basis (NAICs classification is 
implemented in the IPUMs dataset for the year 2000 and later). 

We classify industries based on whether they are above or below the median level of 
utilization in 2000: finer classifications (e.g utilization quartile) are highly inconsistent between 
2000 and 2019. The utilization data provided by the Federal Reserve (G.17: Industrial Production 
and Capacity Utilization) is available only for manufacturing industries and covers 27 mutually 
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exclusive NAICs codes at the 3 to 5 digit level. Due to these data limitations, we restrict our 
analysis of the IPUMS data specifically to manufacturing employees as defined by the NAICS code 
associated with the industry employer for each observation in the data. 

We construct a percentile ranking of occupations in the year 2000 based on their average 
log wage. For each industry (using the NAICs codes reported in IPUMs) we calculate the share of 
industry workers in each occupation. We repeat this operation for observations in the year 2019, 
but keep the occupation percentile rankings from 2000 for comparison. We then calculate the 
absolute change in occupational labor share for an industry by subtracting the 2000 share from 
the 2019 share; we construct our relative measure of change in demand share by dividing the 
absolute share by the occupation share in 2000. We then use a LOESS regression method to 
estimate a smoothed relationship between occupational wage percentile and change in demand 
share, using a span of 0.8 (though the result is still apparent with spans as low as 0.5). 

Table 25 Industry Utilization (2000) (U.S. Federal Reserve 2022) 

 

In Table 25, we reproduce the capacity utilization of industries captured by the Fed Data 
and IPUMs Data, aggregated the highest-level most common NAICs code (some industries are 
reported in the Fed tables at multiple 4 to 6 digit NAICs levels). 
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11.2 Supplemental Results 

While we use a relative measure of change in demand share to account for industry-level 
biases in initial occupational demand, we find similar results for the case of absolute change in 
demand share by industry utilization, as presented in the following figure. Note that while both 
high and low utilization industries show polarization in absolute terms, the shift toward high 
wage occupations is much more pronounced in the high utilization industry. As we would expect 
from the cone of automation in our theory, we observe a net decline in demand share for low-
wage occupations under high utilization, in contrast with the increase in share for low-wage 
occupations in low utilization industries. 

 

Figure 51 Change in Occupational Demand (2000-2019) by Industry Utilization 

Aggregating the industries used to recover changes in occupational demand by level of 
industry utilization, we find an overall pattern of polarization from 2000 to 2019, presented in 
Figure 52. This polarization resembles the findings of Autor and Dorn for the period 1985-2005, 
albeit with a more pronounced "upskilling" pattern of demand toward the highest wage 
occupations. This result suggests that while polarization remains a pattern of demand change 
(most strongly, as we show, in low utilization industries), it may be shifting toward a phenomenon 
of outright upskilling, with an overall decline in demand share for not only middle but low wage 
occupations in the industries we capture. 
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Figure 52 Change in Occupational Demand (2000-2019) Across Industry Utilization 

11.3 Industry Specific Results 

Our analysis focuses on three key manufacturing industries well represented in the IPUMs 
data: airplane manufacturing, automobile and light duty motor vehicle manufacturing and boat 
and ship manufacturing. All three industries experienced automation in this period (e.g. Min 
2008; Heping et al 2009; Angerer et al 2011), and are characterized by high numbers of 
employees per establishment relative to manufacturing overall near the beginning and end of 
the period 2000-2019 we analyze from IPUMs data (the latest detailed Statics of U.S. Businesses 
at time of writing date to 2018): on average, airplane manufacturing had 727 workers per 
establishment in 2000, 501 per establishment in 2018; automobile and light duty motor vehicle 
manufacturing had 617 workers per establishment in 2000, 787 per establishment in 2018; boat 
and ship manufacturing had 83 workers per establishment in 2000, 93 per establishment in 2018; 
compared with manufacturing overall with 46 workers per establishment in 2000 and 41 workers 
per establishment in 2018 (Statistics of U.S. Businesses, U.S. Census 2018) 

As the following figure illustrates, these industries differ in how their occupational 
demand distributions have evolved. All three industries experienced demand polarization 
(commonly attributed to automation in the literature (cite, cite)), but the polarization was most 
acute in aerospace in terms of the magnitude of share change, followed by boat and ship 
manufacturing. Automobile and light duty motor vehicle manufacturing also saw a different 
domain of polarization, with shifts away from the second and third quintiles of occupational 
wages, while airplane manufacturing saw the greatest shifts away from the third and fourth 
quintiles. Current theory does not explain why low-wage occupations are preserved in industries 
heavily exposed to automation, nor why an industry like aerospace should both see greater 
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preservation of lower wage occupations and more intense polarization at middle-to-higher wage 
occupations.97 

 

Figure 53 Change in Occupational Skill (Wage) Demand Share by Industry: Aerospace, 
Automotive and Ships&Boats (2000 to 2019) 

We also consider the case of two overlapping industry categories: machine shops and 
metal fabrication. Machine shops are a subset of metal fabrication, consisting of smaller 
establishments (15 employees per establishment in 2000) than the metal fabrication category 
overall (29 employees per establishment in 2000). The Machine Shop industry shows polarization 
of labor demand from 2000 to 2019, while the metal fabrication overall shows upskilling: as with 
the aerospace, automotive and ship manufacturing cases, current theory does not suggest why 
machine shops and metal fabrication should differ in the change in occupational demand. 

 
97 If, for instance, the exposure to automation is different across industries, it would not suggest a reason for demand for some wage 

classes to change more than others. 
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Figure 54 Change in Occupational Skill (Wage) Demand Share by Industry: Machine 
Shops and Metal Fabrication (2000 to 2019) 

Our theory provides an explanation for the different changes in the distribution of 
occupational demand across industries, from the view that each is exposed to automation. 

Aerospace and automotive manufacturing are among the largest employers in the U.S. 
manufacturing sector, both with significant historical automation and large establishments. 
However, production volume is much lower in aerospace (e.g. Boeing delivered fewer than 400 
aircraft in 2019 (Statista 2021)) than automotive (e.g. Ford sold over 2.4 million vehicles in the 
U.S. alone from Q4 2020 to Q4 2021 (Statista 2021)).98 Boat and ship manufacturing is chosen as 
an intermediate case, with higher volume than aerospace but much lower than the automotive 
industry. Our theory predicts that automation polarizes worker ability demand at low volumes of 
production, but that as volume increases the domain of automation shifts to become wider and 
eventually becomes upskilling rather than polarizing. Matching this prediction, the boat 
manufacturing industry shows greater polarization than automotive but less than aerospace. 

  

 
98 Regulatory requirements for aerospace production place a high cost on the adoption of new production technologies, such as 

automation, though there is not a reason that these regulatory costs should be heterogeneous along the occupational wage domain and drive 
the difference in distribution. 
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Appendix 12: Expanded Technology Change and Theoretical Interpretation 

Table 26 General Theory Applied to Historic and Contemporary Technology Changes 

  Technology Change   Period   Parameter Changes   Labor Impact  

Mechanization: Direct 
Substitution for Human 
Performers by 
Machines  

 
1870s-
1890s  

Machine performers able to repeat 
tasks better than humans but 
unable to perform highly varied 
work: machines less general and 

more intense, introducing 𝜌𝑚 < 𝜌ℎ 
and 𝜎𝑚 < 𝜎ℎ  

 Growth of 
managerial and 
professional jobs 
(high skill) (Chandler 
1990), more demand 
for unskilled labor 
(Atack Margo and 
Rhode 2019)  

Continuous Processing: 
materials produced 
without interruption, 
involving constant 
motion of product  

 
1870s-
1890s  

Interruptions from division of tasks 
are more disruptive to process flow, 
driving 𝑓 ↑  

 Upskilling (Goldin 
and Katz 1998) 

Interchangeable Parts 
and Assembly Line: 
increased 
standardization of parts 
and process layout to 
facilitate transfer of 
work in progress and 
minimize refitting 
requirements  

 
1870s-
1910s  

Increased process complexity from 
assembly and logistics, leading to 
𝜆 ↑, but facilitation of transfer and 
reduced postprocessing of 
independent parts driving 𝑓 ↓  

 Growth of 
managerial and 
professional jobs 
(high skill), decline of 
artisanal labor 
(middle skill) 
Hounshell 1985; 
Chandler 1990) 

Continuous Integration 
Software: tests 
independently 
developed code for 
reintegration into 
master code  

 2010s  Software-based testing of code 
significantly reduces time and error 
from code integration, reducing 
cost of multiple programmers 
working on copies of master code 
and hence 𝑓 ↓  

Greater division of 
tasks (Vasilescu et al 
2015) 

Consolidation of Parts: 
formerly discrete parts 
fabricated as one  

 
1970s-
2010s  

Joint fabrication of parts makes 
some fabrication tasks indivisible, 
driving 𝑓 ↑, but allows simpler 
design and reduced assembly and 
logistics, driving 𝜆 ↓  

Convergence of skill 
demand from low and 
high to middle, 
reduced division of 
production 
(Combemale et al. 
2021)  

Mainframe Operating 
Systems: supports 
scheduling of tasks and 
division of system 

 1960s  By allowing computers to divide 
their resources between tasks at 
much lower costs, drives �̅� ↑  

Higher utilization of 
computers allowing 
them to economically 
perform more and 
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resources by a 
computer  

narrower tasks 
(Hansen 1973)  

Automation and 
Computerization: 
substitution of human 
labor by computer and 
machine performers  

 
1960s-
2010s  

Machine performers able to repeat 
tasks better than humans but 
unable to perform highly varied 
work: machines less general and 

more intense, introducing 𝜌𝑚 < 𝜌ℎ 

and 𝜎𝑚 < 𝜎ℎ. Compared with 
earlier mechanization, performers 
are more general (𝜌 ↑), intense 
(𝜎 ↓) and divisible (�̅� ↑).  

 Upskilling of skill 
demand; polarization 
in conjunction with 
lower automation in 
services (Autor and 
Dorn 2013) 

Additive 
Manufacturing: 
production of parts by 
material deposition 
rather than subtraction  

 
1980s-
2020s  

Material deposition allows highly 
complex parts to be made by one 
machine, driving 𝜌𝑚 ↑, and 
flexibility of deposition methods 
allows machine reallocation, driving 
�̅�𝑚 ↓; motions of deposition can be 
harder to accelerate than 
subtractive processes, driving 𝜎 ↑  

Additive 
Manufacturing is 
implemented more in 
low volume or high 
complexity 
production steps 
(Atzeni and Salmi 
2012) 

Cloud Computing: 
sharing high system 
capacities among many 
individuals  

 
1990s-
2020s  

Increased divisibility of system 
resources drives �̅�𝑚 ↑  

 Decline in low skill 
clerical jobs (Dhar 
2012) 

 

Appendix 13: Managing the Cost of Failure 

The model described in Combemale et al. 2022 (How It’s Made) assumes that firms set 
ability demand for each process step to solve a series of stochastic production issues in 
expectation. However, factors such as safety, material losses and scheduling costs drive firms to 
reduce rates of production failure. The following builds toward an extended model that 
endogenizes the rate of production failure as a firm choice, allowing us to study how technology 
change (e.g. testing methods) and worker skills interact with the optimal choice of operations 
regimes (e.g. make-to-order) and the safety or quality characteristics of products. 

Operations data from prior papers can directly capture production characteristics such as 
yield rate and the cost of non-performer inputs (e.g. materials) that may be lost with production 
errors. 

Key extensions to "How It’s Made": 

    • Explicit ordering of steps, driving cost of failure up/downstream  

    • Introduction of step fixed costs (e.g. material inputs) to drive failure costs  

    • Variance in ability to solve problems (humans have higher variance)  

    • Optimal choice of 𝑎 (additional decision) building in probability of failure  
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Three broad categories of failure cases are described in the following equations. These 
equations will give structure to our analysis of how task inter-dependency and material intensity, 
and performer characteristics such as precision can generate bias in ability and performer 
demand.  

Repeating a Step: 

 𝐸(𝐶(𝑅, 𝑇)) = ∑𝑇
𝑖=1

𝑝(𝑎𝑖,𝑟𝑖,𝑅|𝑜𝑖)+𝑓(𝑠𝑖,𝑜𝑖)

𝑝(𝑎𝑖≥𝐷𝑖)
 

Repeating Prior Steps: 

 𝐸(𝐶(𝑅, 𝑇)) = ∑𝑇
𝑖=1

𝑝(𝑎𝑖,𝑟𝑖,𝑅|𝑜𝑖)+𝑓(𝑠𝑖,𝑜𝑖)

Π𝑗≥𝑖𝑝(𝑎𝑖≥𝐷𝑖)
 

Paying Fixed Cost: 

 𝐸(𝐶(𝑅, 𝑇)) = ∑𝑇
𝑖=1 𝑝(𝑎𝑖, 𝑟𝑖, 𝑅|𝑜𝑖) + 𝑓(𝑠𝑖 , 𝑜𝑖) + 𝑏𝑝(𝑎𝑖 ≥ 𝐷𝑖) 

The cost of production in a step is given 𝑝(𝑎, 𝑡, 𝑙, 𝑟, 𝑅,𝑚), which is assumed to be convex 
in 𝑎.  

Every task has a material intensity 𝑚 – the material inputs to a step are given by 

∫
𝑠𝑖

𝑠𝑖−1
𝑚(𝑡) 𝑑𝑡  

 

Appendix 14: General Theory Parameter Estimation Methods for Aggregate Data 

We are interested in recovering the relationship between length, rate and ability demand. 
Depending on the availability of measures, there are strategies available for the direct estimation 
of model parameters and for reduced form relationships. 

In order to directly estimate 𝜌 and 𝜎, we assume the functional form 𝐷 = (𝐷 +

𝐶(𝑙|𝜌))𝑟𝜎. Measures of 𝑟 may be obtained directly from operational data (e.g. on a per-step 

basis) or imputed from the ratio of volume to performer demand: e.g. �̂� =
𝑅

𝑁
 where 𝑁 is the 

number of performers.99 Some tasks have readily measurable length, such as if the parameters 
of tasks to be completed are quantifiable and uni-dimensional. For instance, the automotive 
assembly data measures of the number of joins required for a step give a direct approximation 
of 𝑙 for assembly steps. To estimate 𝜌 or 𝜎, a measure of 𝐷 is also necessary; by assumption in 
the model, firms choose 𝑎 = 𝐷. Measures of 𝑎 for a given step include education, or direct 
elicitation of ability demand using the O*NET Survey Instrument; wages do not support direct 
estimation of 𝜌 and 𝜎 without prior recovery of the functional form of 𝑤(𝑎). 

From any measure of 𝑟 and controls for 𝑙, it is possible to directly estimate 𝜎 from the 

equation 𝜎 =
𝑙𝑛(𝐷)−𝑙𝑛(𝐷+𝐶(𝑙|𝜌))

𝑙𝑛(𝑟)
. To obtain a direct estimation of 𝜌, we also require parameter 

values for issue arrival rate 𝜆 and the distribution of issue magnitude 𝜒. These parameters are 
unlikely to be separable from 𝜌 or 𝑙 in aggregate data, but can be approximated from deep 

 
99 Note that this ratio represents the lower bound of rate; it is possible for higher rates to be demanded than the minimum to satisfy 

volume, for instance if demand is heterogeneous in time, or uncertain. 



165 
 

operations-level data using the rate of production failures or recorded incidents for performers 
on steps of different lengths, controlling for performer ability. 

We now describe reduced form approaches that get at the essential tradeoffs between 
length, rate and ability demand with fewer and more aggregate measures. From 𝑙 and 𝑎 alone 
(given controls for 𝑟) it is possible to obtain 𝐶(𝑙|𝜌) for any constant performer type; hence it is 
possible to indirectly capture a change in 𝜌 by showing a change in 𝐶(𝑙|𝜌).100 

In addition to direct measures of 𝑙, it is possible to recover the length-ability demand 
relationship using only 𝑎 and controls for 𝑟, if two jobs (or steps) whose ability requirements are 
known are merged together into a new job whose ability requirements are also known. For 
instance, if 𝜌 = 1, then for constant rate the ability requirements of the job should be equal to 
the sum of the requirements of its components. If 𝜌 → ∞, then for constant rate the ability 
requirements of the job should be equal to the highest requirement of its component tasks. 

Without a measure of 𝑎 or specification on the functional form of 𝑤(𝑎), it is not possible 
to recover estimates of 𝜌 and 𝜎, but the margins between rate, complexity and wage can still be 
obtained in a reduced form and are governed by the same mechanisms in the model. An 
aggregate approximation of step length can be obtained from value added (see footnote X on 
use of value added as proxy of step length): in a relatively labor intensive (e.g. manual) step, step 

length can be approximated 𝑙 =
𝑤

𝑟
. Likewise, a relatively capital-intensive step may have step 

length approximated 𝑙 =
𝑘

𝑟
. 

The model has certain implications for representation within classical production 
functions, which are detailed below: 

 1.  In Cobb-Douglas, the 𝑔 function is intuitively connected to the returns to scale. The 
less divisible a performer, the more convex the production function. The intuition of factor 
complementarity (e.g. labor, capital or different skill levels of labor) given in Cobb-Douglas is 
connected to our model by the reasoning that given a certain number of performers, the firm 
will first assign them to the steps for which they are optimal, then to steps in which they are less 
optimal (e.g. machines fill middle-length steps first, then diminishing returns to capital absent 
increasing labor come from machines filling low and high length steps).  

    2.  Predictions for elasticity of substitution: as machines increase in 𝜌, they become 
more substitutable with humans (especially at higher length i.e high skill labor 𝐿𝐻). Volume 
affects elasticity of substitution between labor and capital (more elastic substitution of capital 
for labor at high volumes), and �̅� (divisibility) governs the degree to which volume affects 
elasticity of substitution. The theory suggests that CES assumptions may largely hold past 
sufficiently high volume, but that they are unlikely to hold in smaller firms that make up much 
of the economy.  

 
100 Without assuming or observing the underlying rate of issue arrival and magnitude distribution, it is not possible to characterize 𝜌 

except indirectly by the curvature of 𝐶(𝑙). For instance, if 𝐶(𝑙|𝜌) is approximately linear, then 𝜌 → 1. 
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    3.  Differences in intuition when process organization is static versus adaptive. For 
example: if low skill labor increases, and the firm is able to reorganize production into smaller 
steps, for which performer types is the low skilled labor substituting?  

 


