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Abstract 

Teams are a major facet of engineering and are commonly thought to be necessary when solving 

dynamic and complex problems, such as engineering design tasks. Even though teams collectively 

bring a diversity of knowledge and perspectives to problem solving, previous work has 

demonstrated that in certain scenarios, such as in language-based and configuration design 

problems, the production by a team is inferior to that of a similar number of individuals solving 

independently (i.e., nominal teams). Aid in the form of design stimuli catalyze group creativity and 

help designers overcome impasses. However, methods for applying stimuli in the engineering 

design literature are largely static; they do not adapt to the dynamics of either the designer or the 

design process, both of which evolve throughout the problem-solving process. Thus, the 

overarching goal of this dissertation is to explore, better understand, and facilitate problem 

solving computationally, via adaptive, process management.  

This dissertation first compares individual versus group problem solving within the domain 

of engineering design. Through a behavioral study, our results corroborate previous findings, 

exhibiting that individuals outperform teams in the overall quality of their design solutions, even 

in this more free-flowing and explorative setting of conceptual design. Exploiting this result, we 

consider and explore whether a human, process manager can lessen this underperformance of 

design teams compared to nominal teams, and help teams overcome potential deterrents that may 

be contributing to their inferior performance. The managerial interactions with the design teams 

are investigated and post-study interviews with the human process managers are conducted, in an 

attempt to uncover some of the cognitive rationale and strategies that may be beneficial throughout 

problem solving. Motivated from these post-study interviews, a topic-modeling approach then 

analyzes team cognition and the impact of these process manager interventions. The results from 
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this approach show that the impacts of these interventions can be computationally detected 

through team discourse. Overall, these studies provide a conceptual basis for the detection and 

facilitation of design interventions based on real-time, discourse data. 

Next, two novel frameworks are studied, both of which take steps towards tracking features 

of design teams and utilizing that information to intervene. The first study analyzes the impact of 

modulating the distance of design stimuli from a designers’ current state, in this case, their current 

design solution, within a broader design space. Utilizing semantic comparisons between their 

current solution and a broad database of related example solutions, designers receive 

computationally selected inspirational stimuli midway through a problem-solving session. 

Through a regression analysis, the results exhibit increased performance when capturing their 

design state and providing increased stimulus quality. The second framework creates an artificial 

intelligent process manager agent to manage the design process of engineering teams in real-time, 

tracking features of teams’ actions and communications during a complex design and path-

planning task with multidisciplinary team members. Teams are also placed under the guidance of 

human process managers for comparison. Across several dimensions, the overall results show that 

the AI manager agent introduced matches the capabilities of the human managers, showing 

potential in automating the management of a complex design process. Before and after analyses 

of the interventions indicate mixed adherence to the different types of interventions as induced in 

the intended process changes in the teams, and regression analyses show the impact of different 

interventions. Overall, this dissertation lays the groundwork for a computational development and 

deployment of adaptive process management, with the hope to make engineering designs as 

efficient as possible.  
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Chapter 1 : Introduction  
1.1 Motivation  

Teamwork pervades the practice of engineering, both in academia and industry. Providing a 

diversity of knowledge and perspectives, team problem solving is particularly crucial when the 

task may be too challenging or complex for individual expertise and effort. To effectively problem 

solve, team members must be able to collaborate and communicate with one another efficiently 

[1,2]. Beginning in the early stages of their careers, engineers are trained via problem- and project- 

based experiences that provide them with these hands-on, team-oriented skills to prepare them for 

the rigors and demands of engineering design in practice [3–5]. Sharpening these collaborative 

techniques can improve upon the competencies of making decisions, exchanging technical ideas, 

and resolving conflicts to help abate any dissension that may arise within the team [6,7]. Effective 

communication strategies can also lead to a common, shared mental model of the problem among 

team members, fostering team synergy and improving the collective team performance [8,9].  

Although there are potential benefits to teams, there also exist numerous, generally 

acknowledged deficiencies, highlighted and studied across different research fields [10]. Social 

loafing, for example, is a psychological phenomenon in which individuals tend to expend less 

effort when working in a group as opposed to working individually, even to the extent of 

withholding information from the rest of their group members [11,12]. This is due to the belief 

that an individual’s work (or lack of) will be obscured relative to the efforts by the rest of the team. 

Furthermore, group think is a psychological drive for a consensus among a group in an attempt to 

avoid any potential confrontations or disagreements. This phenomenon may lead to a premature 

decision by the group, even one that some members may not agree with, and in turn, can hinder 
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creative thinking [13,14]. A dominant individual can also emerge from the group, who pressures 

other team members and consequently has a greater share of impact on the final outcome of the 

team, often resulting in more polarized decisions [15]. This influence may not necessarily stem 

from a higher degree of knowledge or problem-solving ability, but from that individual simply 

being more persuasive and persistent. Thus, many of these deficiencies in teams have to do with 

the dynamics of the problem-solving process itself, as opposed to individual experience or 

knowledge. These deficiencies can even lead teams to underperform to individuals on the same 

task, including brainstorming studies, Remote Associate Test (RAT) puzzles, and configuration 

engineering design tasks. Perhaps, as Maier put it, there is a “need for an integration function” that 

could automatically mitigate some of these process shortcomings in groups by acting as their 

central nervous system [10]. The goal of such an integration function would be for it to intervene 

when a team veers off course to stimulate problem-solving and mitigate some of these process 

pitfalls.  

In the field of engineering design, stimulus techniques have already been shown to be 

effective in impact the problem-solving process [16,17]. However, one of the critical limitations 

of these interventions lies in their static nature. Specifically, stimuli provided during cognitive 

studies are determined a priori to problem solving, and do not adapt to the dynamics of the 

designer(s), design space, or process, all of which change and evolve throughout problem-solving. 

Some work with analogical stimuli shows that providing near and/or far stimuli to the problem 

domain creates beneficial and different impacts on ideation outcomes. For example, providing far 

stimuli has been shown to increase the novelty of solution outcomes, but this result does not 

necessarily hold with near stimuli [18]. What if these interventions not only modulate to the 

problem domain itself, but also the state of the designer(s) and design progress? To fully realize 
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this goal, these techniques need to adapt to the ongoing design state and be automatically 

implemented in real-time, perhaps via an artificial intelligent (AI) agent, which could serve as 

Maier’s “integration function.” This opens the question of how designers and the design state can 

be actively monitored during problem-solving by such an agent. 

The field of AI and human collaboration is quickly evolving and achieves superior 

outcomes by taking advantage of the complementary strengths of each, combing the creativity of 

humans with the analytical power of AI. Research focuses on the effectiveness of human-AI 

collaboration in augmenting the ability of humans and/or AI in solving complex problems. For 

example, Hu and Taylor exhibit the benefits of computer-aided design intelligent tutors, assisting 

students apply their learned knowledge to solve novel problems by guiding their exploration [19]. 

Instructional design agents support novice designers in exploring complex design spaces through 

a design study with a solar farm design problem [20]. Song et al. report that AI agents can 

effectively improve the performance of hybrid teams in the configurational and operational design 

of drones. The effectiveness of human-AI hybrid teams has also been seen in other contexts, such 

as tutoring and education [21], job shop scheduling [22], and clinical imaging [23]. 

Moreover, many efforts work towards the understanding, design, and improvement of 

human-AI interaction to facilitate collaboration [24,25]. For example, according to the information 

flow and role distribution between humans and AI, a group of researchers classify human-AI 

collaboration into two forms, human intelligence in the loop of artificial intelligence (human-in-

the-loop) and AI in the loop of human intelligence (AI-in-the-loop) to clarify the required 

characters of interactive AI [24]. In terms of AI design, the common language and the 

explainability and transparency of AI are considered essential to improve humans' understanding 

of and trust towards AI [25,26]. Van Den Bosch and Bronkhorst study human-AI collaboration in 
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complex decision making, categorizing six levels according to the type of interaction and level of 

collaboration [27]. Yang, Steinfeld, and Rosé identify design challenges of human-AI interaction 

and propose strategies for addressing them [28]. In this dissertation, AI will instead be used to 

improve the behaviors and problem-solving processes of teams in the field of design, a field 

requiring unique problem-solving strategies. The advantage of an AI agent in this research 

application is twofold: its ability to be able to track multiple metrics simultaneously and over time, 

and its ability to ascertain underlying patterns within data, such as team communication, that may 

not be perceivable via direct human inspection. 

Within teams, members collaborate and communicate. Team communication is a 

fundamental component of complex engineering design processes, especially those that engage 

multiple disciplines. It enables team members to integrate specialized knowledge, bridge gaps, and 

negotiate, playing a boundary spanning role that supports design knowledge sharing, exploration, 

collaboration, and coordination [29-31]. Prior studies recognize communication as a prime success 

factor of shared leadership in teams [32], impacting team creativity [33]. In design teams aiming 

at complex problem solving, the effectiveness of interpersonal communication influences team 

efficiency, performance, and progress toward their design. Inadequate or ineffective 

communication can hinder task and team achievements [34]. Moreover, studies on team 

communication facilitate our understanding of team cognitive processes. Accordingly, tracking 

team discourse and interactions could serve as a critical measure for an integrative AI agent to 

monitor and understand, in real-time, the evolving states of the designer(s) and design progress 

during problem-solving. 
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1.2 Thesis Statement  
Traditional human studies and team research in the engineering design theory and methodology 

field do not fully address real-time tracking of team dynamics and/or consider the evolving state 

of problem-solving teams. In order to effectively aid and provide feedback to teams, methods need 

to capture these dynamics that organically arise throughout the problem-solving process. Natural 

language processing and design stimulus techniques are tools studied across many different fields, 

such as computer science, design engineering, and human-computer interaction, to name a few. 

Integrated together, these techniques can serve as a fundamental basis for tracking the state of 

teams and intervening in real-time to improve the problem-solving process of engineering teams. 

Based on this framework, the following thesis statement is proposed for this dissertation:  

Real-time process management, via the monitoring of design cognition and discourse, can 

adapt to the state and dynamics of the designers and design progress, thereby facilitating 

the overall problem-solving design process. 

 

1.3 Dissertation Outline  
 
This overarching thesis will be supported through two main phases of work in this dissertation. 

The first phase includes an exploration study in order to uncover some of the mechanisms and 

nuances of real-time, process management as well as the utilization of team discourse as a measure 

to track teams. To begin, Chapter 2 presents a behavioral study with human process managers, 

who intervene with their design teams via a “manager bank” of prescribed stimulus techniques. 

However, unlike traditional stimulus methods, these stimuli are dynamically provided by the 

managers in real-time when deemed appropriate depending on the state of the teams’ actions and 

discourse, thus adapting to their current state. Post-study interviews with the human managers 
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reveal that a desire to invoke shifts in team discourse is a critical motivation for intervening. Driven 

by this result and the criticality of team communication in team problem-solving, Chapter 3 

analyses teams’ discourse data via a topic modeling approach. This analysis uncovers whether 

team members’ verbalizations can be leveraged to computationally detect the impact and effects 

of these managerial interventions and produce the desired topic shifts. These two chapters provide 

insights into the strategies of an effective AI manager and the feasibility of monitoring design 

discourse. 

The second phase of this dissertation works towards the facilitation of real-time 

interventions during problem-solving. Chapter 4 presents a framework that monitors the design 

state of designers midway through problem-solving and modulates the distance of design stimuli 

relative to that current state. Latent Semantic Analysis (LSA) indicates the distance of the design 

stimuli through semantic similarity, how semantically near or semantically far a stimulus lies. 

Computing semantic comparisons between design progress and a large database of potential design 

stimuli, these modulations are done, and the interventions are provided in real-time. Stimulus 

distance affects final design outcomes in different ways. Chapter 5 integrates many aspects of the 

previous chapters and demonstrates the development of an artificial intelligent process manager. 

Trained on previous team problem-solving data, this process manager tracks several features of 

teams (team communication and team action) and intervenes at discrete points in time. The AI 

agent is implemented in the context of a highly complex drone design and operations path-planning 

problem, and completed fully online, so teams are geographically distributed and 

interact/communicate with each other through an online platform. Chapter 6 then presents 

additional investigations on the process manager study from the preceding chapter. Before and 

after analyses are done to identify the impact of the interventions on the process behaviors of the 
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teams and regression models are trained to explore the correlation between the interventions and 

overall team performance. Finally, Chapter 7 provides a summary of the dissertation and major 

results, presents the main contributions to the research literature, as well as avenues for future work 

in these areas. 
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Chapter 2 : An Exploratory Study – The 
Effects of Real-Time Process 
Management1 

 
2.1 Introduction & Background  
While teams are a fundamental component of engineering, they may not always perform optimally 

or as expected [35]. Previous work in psychology and configuration engineering design has 

supported this assertion that teams may not always be maximally proficient [36-38]. Many of these 

studies utilize the term nominal team to refer to an equivalent team of participants who work 

individually, but whose efforts are pooled together with the best solution chosen to form the 

collective team performance. Nominal teams are necessary in these studies to be able to make 

comparisons between equivalent sized groups of individuals and interacting teams. In 

brainstorming studies, interacting groups are shown to generate fewer ideas than nominal 

brainstorming teams [39,40]. In language-based, Remote Associate Test (RAT) puzzles, 

interacting groups also perform worse than non-interacting nominal groups [41]. Remote 

Associate Tests are word-retrieval protocols which measure analytical and convergent thinking 

ability [42]. The test is done by having the participant form compound words/phrases through a 

given set of provided cue words by finding the common term that links with all three cues. It is 

inherently a language-based task because of this dependence on semantically related word 

 
1 The work presented in this chapter is published in:  

Gyory, J. T., Cagan, J., and Kotovsky, K., 2019, “Are You Better off Alone? Mitigating the 
Underperformance of Engineering Teams during Conceptual Design through Adaptive Process 
Management,” Res. Eng. Des., 30(1), pp. 85–102. 
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retrievals. Additionally, in configuration engineering design problems, McComb et al. 

behaviorally studied and computationally simulated human design teams. Configuration design 

refers to a subset of design problems that involve pre-defined set of components that can be 

combined based on interface constraints and requirements of the task [43]. In their work, they 

showed that under certain problem characteristics, such as objective alignment and global 

structure, zero interaction frequency among team members resulted in optimal performance [44]. 

This zero-interaction frequency finding indicates that individuals, i.e., nominal teams, would be 

the preferred structure under these circumstances. 

The current chapter exploits previous findings of individual and team performance but on 

a different type of design problem, conceptual engineering design. Conceptual design is free 

flowing and exploratory in the early stages as with brainstorming but narrows down to seek high 

quality and practical solutions. It is also structured and constrained as with configuration design, 

but while conceptual design is open-ended, configuration design is limited to the combinatorics of 

a finite set of enumerated components. Thus, because configuration design problems utilize these 

predefined components to work with, there is normally a single best assembly/solution [45]. 

Conceptual design is initially more open-ended, in that there could be multiple preferred solutions 

that satisfy the problem, although a single concept must be selected by the end amongst these 

design alternatives. Moreover, unlike previous brainstorming studies, this chapter presents an 

engineering design problem that more accurately emulates one that would be encountered in 

practice, with dynamically changing design constraints [46]. Thus, this chapter seeks, in part, to 

understand how teams behave in this early, albeit critical, part of the engineering design process.  

Engineering teams may often reach impasses during problem-solving [47], as do people 

solving RAT problems [48]. Additional aid in the form of analogies and solution examples has 
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been shown to stimulate group creativity and improve solution quality, particularity during 

brainstorming tasks and the ideation stage of conceptual engineering design [49, 50]. However, 

such aid can also lead to fixation, which is a blind adherence to a set of ideas or concepts. Fixation 

can suppress team creativity and lead to inferior overall performance [51,52]. Work on creativity 

tasks has tried to lessen this fixation effect, for example, through providing expansive versus 

restrictive examples [53], effectively managing non-verbal devices such as pictures or sketches 

[54], as well as examining the specificity and level of abstraction of such [55]. Furthermore, 

theoretical models have been developed for leadership strategies in creativity tasks [56]. Perhaps 

some of the aforementioned deficiencies in team problem-solving can be ameliorated in conceptual 

design if a portion of the resources used for solving the problem are instead used to guide and 

control the team’s design process. This chapter considers allocating these resources to a human 

manager, who acts as a team’s central processing system, to gather feedback and provide adaptive 

management. Previous work on design creativity provides stimuli to problem-solvers that are static 

in nature, such as in constant modalities and/or at pre-defined intervals. The integrative role of the 

process manager in this current work provides real-time feedback to design teams that is fluid in 

both modality and timing, adapting to a team’s current state and how they evolve throughout the 

problem-solving process. 

Consequently, this chapter is motivated by two goals. The first seeks to determine whether 

the underperformance of team problem-solving, identified in language-based and configuration 

design, applies to the conceptual phase of design, by comparing individual and team performance 

in this domain. The second goal is to explore whether a portion of the resources used for problem-

solving could instead be used to dynamically manage and control the design process of the 

remainder of the team and improve performance via a human process manager. The effect of the 
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process manager on design teams is studied and the performance compared to that of both 

unmanaged and nominal teams. After this comparison, an amalgamative analysis, with both 

quantitative and qualitative features, is done to uncover some of the managerial strategies, and the 

rationale behind which, are most beneficial to design teams.  

To form a conceptual framework, this chapter (Chapter 2.2) begins by introducing the 

experimental architecture and logistics of the behavioral study that is run to answer the 

aforementioned research goals. Here, three different types of team conditions will be defined, for 

consistency, and used throughout the remainder of the chapter: a managed team (problem-solvers 

who work together and are overseen by a more experienced process manager), an unmanaged team 

(problem-solvers who work together and are not overseen by a more experienced process 

manager), and a nominal team (individual problem-solvers who do not work together but are 

randomly placed together to form an artificial team). Also in this section is a description of how 

the process managers are chosen for this study and the methods by which they can intervene with 

their design teams. The next sections of the chapter provide an overview of the analysis metrics 

and techniques that are used to compare problem-solving performance (design quality, design 

novelty, and team cohesion), followed by the presentation of the results and the process manager 

interventions. The chapter concludes with a discussion of the strategies and cognitive rationale of 

the process managers, as well as a supplemental experiment studying the effect of verbalization. 

As the primary means of conveying ideas, teams are required to communicate and verbalize with 

each other, which is one of the main differences between individual and team problem solving. 

Also motivated by previous research studying this effect, whether verbalization acts as a cognitive 

deterrent during conceptual engineering design problem-solving is examined. Finally, limitations 
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of the study and future work are acknowledged, followed by brief remarks on the implications of 

this chapters results for engineering design teams and design practice. 

 

2.2 Methodology  

2.2.1 Experimental Conditions 
 
To address these two primary research goals, a behavioral study was run with freshman 

engineering students at Carnegie Mellon University in Pittsburgh, PA, USA. Participants for the 

study were recruited from the “Fundamentals of Mechanical Engineering” class, a freshman-level 

course in the Mechanical Engineering department. The intention was to recruit students with 

comparable and little to no prior exposure to techniques and theories in engineering design 

methods and conceptualization. In total, 95 freshman engineering students participated in the 

study. Because students were recruited through their engineering course and participated in the 

study in lieu of a scheduled lecture, they were not monetarily compensated for participating. 

However, during the period they were not participating in the study, they received an educational 

lecture on engineering ethics.  

These students, or novice designers, were randomly assigned to one of three different team 

conditions: a managed team, an unmanaged team, or a nominal team (see Figure 2.1). A managed 

team was composed of four freshman engineering students collectively solving the problem, with 

one mechanical engineering graduate student as a manager overseeing their design process. An 

unmanaged team was comprised of five freshman engineering students and no graduate student 

manager. The additional problem-solver in the unmanaged teams was to keep the number of 

problem-solving resources equivalent across the two experimental conditions. Lastly, a nominal 

team was composed of five randomly chosen freshman engineering students (of the 23 
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participants) who solved the problem individually but did not interact with each other. Instead, the 

best solution was chosen from amongst the five individual solutions. In total, there were eight 

managed and eight unmanaged teams, and 23 individuals from which eight nominal teams were 

artificially created to compare with the other team conditions. The method for generating the 

nominal teams will be discussed later in the chapter.  

  
 

2.2.2 Process manager selection and manager bank creation 
 
The managed teams were composed of four freshman novice designers and one graduate student 

process manager. These managers were able to intervene with their team to affect the solving 

process with different stimuli but could not directly contribute to the problem solution. The 

graduate students were selected for the study via a recruitment survey that was disseminated to a 

portion of the graduate student population in the Mechanical Engineering Department at Carnegie 

Mellon University. The response rate from the surveys was 68%, with 40 graduate students 

completing it.  

The desired managerial characteristics were the possession of engineering design 

knowledge and prior experience in leading a team. Using a Likert scale assessment, questions on 

FIGURE 2.1: PARTICIPANTS WERE RANDOMLY ASSIGNED TO ONE OF THE 
THREE TEAM CONDITIONS: A (a) MANAGED TEAM, AN (b) UNMANAGED TEAM, 

OR A (c) NOMINAL TEAM 
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the survey queried the graduate students to self-assess their mechanical engineering design 

knowledge, as well as their leadership experience. To minimize survey bias due to over- (or under-

) confidence in their own abilities, supplemental questions asked them for specifics such as 

undergraduate/graduate classes they had taken in engineering design, the area of their primary 

research, areas of interest outside of their primary research, and specific examples they had in 

leading a team. The eight graduate students with the highest level of design knowledge and 

leadership experience were selected as the process managers for the study. 

Even though the managers were instructed to intervene when they felt it necessary, they 

were only allowed to interact with items from a bank of prescribed stimuli. Three distinct 

categories of interventions were chosen, theoretically grounded in previous literature for different 

modalities and stimuli for improving ideation and problem-solving effectiveness. Inspired by the 

approaches of design by analogy and metaphor, keywords were selected, a technique known to 

help designers divergently think about and reframe the problem in a different domain [57,18]. 

Cognitive priming with solution examples, shown to increase quality output [49], inspired the use 

of different design components. Moreover, because visual representations have been shown to be 

a more effective modality [58] these components were pictorially depicted. Heuristics for creative 

problem-solving and management [59,60] influenced the use of design strategies, where designers 

with more structured planning and approach perform better. Thus, previous literature motivated 

the following intervention types that were, respectively, chosen: keywords, design components, 

and design strategies. 

The collection of permissible stimuli was created for this particular problem from questions 

in the manager recruitment survey. In the survey, each potential manager was asked to generate 

possible items in each of those categories that they might provide to a hypothetical engineering 
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team to aid in solving the design problem used in the study. After the graduate students with the 

highest level of engineering design knowledge and leadership experience were chosen through the 

survey, their answers to these questions were compiled. For the three intervention types, the six 

answers with the highest frequency between the chosen managers were aggregated to form the 

manager bank, shown in Figure 2.2. During the ensuing study, the process managers were only 

allowed to select from these 18 specific examples, that comprised the three categories, to intervene 

with. This compilation was done to control for variability and to maintain some consistency in the 

types of interventions. The keywords and design components in the bank were printed on cards 

that were physically handed to the design teams, while the design strategies were verbally spoken 

by the managers, all done when deemed appropriate. All in all, the study was purposefully designed 

to minimize the impact of differences or limitations in managerial skill, by recruiting graduate 

students with both design knowledge and leadership experience, and creating the manager bank, 

from which they were restricted to apply. 

Prior to the experiment, the graduate students were required to participate in a 30-min 

training session. During this session, which was led by one of the research investigators, the 

managers were trained on the experimental procedures. Other than reading the instructions, 

answering logistical questions, and intervening with a design strategy, the managers were not 

allowed to speak during the experiment. The managers were also told to keep notes on the exact 

times and types of interventions they used during the study with their teams. It was also 
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emphasized to them that they were not to help their team in directly solving the design problem 

but were there only to manage their team’s design process. 

 

Within 2 days following the experiment, a post-study interview was also conducted with 

each manager. During these interviews, the research investigator went through each intervention 

and asked the managers: “What made you interact [with item x]”, “Why did you interact with what 

you did”, and “What was the effect of your interaction?” The primary goal of these interviews was 

to determine what prompted the managers to interact with their teams, to gain a deeper 

understanding into the rationale underlying these interventions. During these interviews, the 

managers were allowed to refer to the notes they had taken during the study, to facilitate in their 

recollection of events, if necessary. 

 

 

FIGURE 2.2: THE COLLECTION OF INTERVENTION STIMULI WHICH THE 
PROCESS MANAGERS WERE ABLE TO USE DURING THE EXPERIMENT 
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2.2.3 Experimental protocol and materials 
 
The students’ 1-h and 50-min class period was broken up into two 55-min intervals. Half of the 

class was assigned to group A while the other half of the class was assigned to group B. While 

group A participated in the experiment for the first 55-min period, the other group received a 

lecture on engineering ethics, an agreed-upon request between the researchers and course 

instructor for running the study during the class period. For the second half of the class, the two 

groups switched. Within a group, students were evenly and randomly distributed among the 

different experimental conditions. The same experimental materials were provided to all 

participants, regardless of the team condition they were in. These items include a pen for everyone 

on a team and 3 sheets of 11′’×17′’ white, multipurpose paper. In the managed and unmanaged 

team conditions, the three sheets of paper were shared among the entire team to promote 

collaboration, while in the nominal condition, everyone received three sheets. Prior to participating 

in the experiment, individuals were asked to read and sign a consent form.  

During the experiment, participants were given 30 min to solve the following engineering 

design problem [49, 61, 62]: 

Problem Statement: 
Design a low-cost and easy to manufacture device that removes the outer shell from a peanut. 
Constraint 1:    
The device is meant to be utilized in developing countries where electricity may not necessarily 
be available as a power source.  
Constraint 2: 
In addition to the previous constraint, the proposed design must be able to separate a large 
quantity of peanuts from their shells, while causing minimal damage to the inner peanut. 
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To simulate a real-world, dynamically changing engineering problem, the two constraints were 

sequentially introduced 10 min and 20 min, respectively, into the study. These added constraints 

were meant to exacerbate the problem difficulty throughout problem-solving. An overview of the 

experimental timeline is shown in Figure 2.3.  

*Audio was not collected from the individuals (i.e., nominal teams), so they did not provide a verbal 
description 

 

Participants were allocated the entire 30 min to problem solve. To distinguish this task 

from a pure, creative brainstorming session, participants were told from the onset that they could 

initially (and were encouraged) to discuss and sketch about as many possible ideas for the problem, 

but by the end of the experiment, had to come up with a single design solution. This instruction 

was to encourage problem solvers to eventually bring closure to (i.e., select a concept), and 

potentially, iterate upon their final design. Each time a constraint was introduced during problem-

solving, they were instructed to continue their sketches on a new sheet of paper that was provided 

to them. By the end of the experiment, each team had three sheets of sketches, with the last sheet 

containing their final solution. Using audio recorders, both managed and unmanaged teams’ 

discourse was also collected throughout the experiment. At the conclusion of the experiment, one 

FIGURE 2.3: THE EXPERIMENTAL TIMELINE SHOWING THE INTRODUCTION OF THE 
PROBLEM STATEMENT, CONSTRAINTS, AND BLOCKS OF PROBLEM SOLVING 
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team member from these two conditions was also asked to provide a brief, verbal description of 

the group’s final design. The individuals and unmanaged teams were under the supervision of 

passive experimenters, who only read the experiment instructions, monitored time, and provided 

the experimental materials (sheets of sketching paper and constraints to the problem). In the 

managed condition, these same procedural responsibilities were assigned to the process managers. 

 

2.3. Data Analysis 
 
2.3.1 Ideation Metrics 
 
To compare the performance between the collaborative and nominal teams, their final designs from 

the end of the experiment are evaluated. According to Shah et al., accurate measures of ideation 

effectiveness, as well as how problem solvers explore within the design space, can be seen in the 

novelty, quantity, quality, and variety of their design output [63]. However, because the 

participants in this experiment are told to only come up with one final design solution, and both 

quantity and variety are a function of the number of ideas generated per individual, only the novelty 

and quality are used in this analysis. In practice, products need to work, but they do not need to be 

novel; thus, an effective solution is required while a novel solution is only desired. Thus, novelty, 

or uniqueness, of a solution is secondary to quality, given that low-frequency solutions are not 

necessarily good solutions, they are simply rare. Therefore, the teams’ final designs are evaluated 

based on these two ideation metrics, with quality taking precedence. 

 
2.3.2 Design Quality 
 
The quality of a design refers to its technical feasibility and how well a particular solution satisfies 

the engineering specifications of the problem. Two mechanical engineering graduate students at 
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Carnegie Mellon University, with extensive experience in design theory and methodology, rated 

the quality of the final designs based on how well a solution satisfies the constraints of the design 

prompt. Ratings are coded into the three distinct categories shown in Table 2.1.  

TABLE 2.1: QUALITY RATING CATEGORIES 

 

 

 

 

 

This three-point rating scale was chosen to minimize the subjectivity inherent in larger 

rating scales, at the expense of losing resolution in the scores, while enabling a judgement of 

excellent, acceptable, and poor. The raters were provided with brief instructions, the problem 

statement and constraints used in the study, and the corresponding category descriptions from 

Table 1, but did not receive any further training on how to score the designs. Because each design 

is scored by both raters, each design has two associated quality values. 

 
2.3.3 Design Novelty 
 
The novelty of a design solution defines how unconventional or unusual an idea is compared to 

other designs within the set of designs generated within the experiment. This definition represents 

the breadth of search through the design space. The authors prefer the term uniqueness as these 

designs may not have value or be truly rare beyond this study; however, for consistency with the 

design literature and by assimilation of the Shah et al. metric, the term novelty is used in this 

chapter. A posteriori evaluation of novelty is computed, in which comparisons are made relative 

to the ideas generated between participants during the experiment. Therefore, the design space is 

Rating Category Category Description 

0 
The design violates a constraint/function of 
the design problem. 
 

1 
The design poorly satisfies the 
constraints/functions of the design problem. 
 

2 
The design effectively satisfies all 
constraints/functions of the design problem. 
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populated with only those designs from the experiment. The novelty is calculated by looking at 

the different sub-functions of a design and identifying what mechanism is used to satisfy that sub-

function (Equation 1 and Equation 2). To meet all the engineering requirements of the problem 

statement from the study, an adequate solution can be broken down into five distinct sub-functions 

that must be satisfied by the design (each with an associated weight f). These include: an energy 

conversion (human/natural to mechanical) mechanism (f1), transportation of the peanuts through 

or along the device (f2), crushing/de-shelling of peanut shells (f3), sorting of the intact peanuts from 

their crushed shells (f4), and the collection of the harvested peanuts (f5). Shah et al., formulate the 

posteriori computation of the novelty, N, of a team’s design as:  

 

𝑁 =	∑ 𝑓!"
!#$ ∑ %!"&	(!"

%!"
	× 10	 ×	𝑝) ,*

)	#	$ 					(1) 

 
where Tji is the total number of ideas generated for sub-function j, Cji is the count of the current 

solution for function j, fj is the weight assigned to function j, signifying its importance, n is the 

total number of sub-functions (in this case, n = 5), m is the particular stage of the design process, 

and pi is the weight associated with that stage. Because the focus was only on one phase of the 

design process, the ideation phase, the above equation reduces to: 
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The multiplication of the constant 10 is to normalize the novelty scores on a scale from 0 to 10. 

The weights, fj, for each of the five sub-functions are chosen based on the experimenter’s estimated 

importance of the sub-functions’ contribution to the overall design problem. Accordingly, the 

chosen weights for the sub-functions to compute the overall novelty scores are fj = {0.25, 0.10, 

0.35, 0.20, 0.10}, where 1 ≤ j ≤ 5.  
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2.3.4 Generation of nominal teams 
 
To compare the performance of both the managed and unmanaged teams with the individual 

problem solvers, nominal teams are generated. Nominal teams are teams composed of individual 

problem solvers who did not interact during the study but are artificially placed together to form a 

team. Then, the cumulative best solution amongst the individuals’ solutions is considered the 

product of the entire team. In this experiment, five individuals are placed together so that they can 

be compared with the other team conditions. The nominal teams are computationally formed with 

a random number generator, under the following constraints: (1) all 23 individual problem solvers 

need to be placed on a team, (2) all but six individual problem solvers needed to be assigned to 

two different teams (assuming eight total teams with five students on each), and (3) every team 

had to consist of five unique individual problem solvers. This algorithm is repeated until eight 

valid nominal teams are generated. This random assignment removes any bias that could be formed 

because all members were equally likely of being selected for a team. In this experiment, the 

solution with the highest quality was chosen as the team solution. The intuition behind this is that, 

in practice, when individuals on a team select between possible designs (or their supervisor selects 

amongst candidate solutions), the design with the best quality would likely be the one chosen. If 

two designs are comparable with respect to their quality, then the design with the higher novelty 

is selected as the preferred idea. With this method, it is possible that a significantly superior design 

(in terms of quality and novelty) could appear on multiple teams. However, at most, an individual 

could only be placed on two different teams, and therefore, that design could only be considered 

at most twice.  
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2.3.5 Team cohesion 
 
In addition to measuring the solution output from the design teams, the teams’ dynamics are 

investigated. The audio recordings from the experiment are used for this purpose to measure the 

similarity of a teams’ discourse, i.e., the team cohesion, and how it evolves throughout problem 

solving. Latent semantic analysis (LSA) has been shown to quantify this level of semantic 

convergence in language-based communication between members in design teams [64]. The 

degree of a team’s cohesion has been shown to be directly proportional to their cognitive 

representation of the design problem and is accepted as an accurate measure of a team’s design 

performance [9]. Because the individual problem solvers that comprised the nominal teams were 

not audio recorded during the experiment, only the collaborative teams can be compared with one 

another with this measure. Therefore, this analysis will facilitate in addressing only the second 

research goal of this chapter: the impact of process management interventions on engineering 

teams.  

As background, LSA uses singular value decomposition (SVD) to determine the 

underlying patterns within text (here speech) by projecting the co-occurrence of words across 

documents (here speakers) to a lower rank (dimensional) approximation of the semantic space 

[65]. The SVD of a matrix, X, is shown in Equation 3: 

						𝑋 = 	𝑈𝑆𝑉% 	.							(3) 

For this experiment, matrix X is an [n x m] occurrence matrix with n number of words and m 

speakers, U is an [m x r] concept vector matrix with rank r, S is an [r x r] singular values matrix, 

and V is an [n x r] speaker matrix, containing speaker vectors. By mapping the co-occurrence of 

words into this new r-dimensional semantic space, the cosine similarity between speaker vectors 

can be computed to determine how closely related speakers’ semantic coherence is. The overall 
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semantic coherence of a design team is then computed by taking the average of all pairwise cosine 

similarities between members of a team.  

The pipeline for post-processing the audio files and running LSA to compute the semantic 

coherence is depicted in Figure 2.4. The text corpus for LSA is generated from the audio files 

recorded during the study. First, each audio file is transcribed, via an outsourced vendor, into a 

single transcript for each design team (step 1). Each transcript is then checked and verified for 

proper speaker identification. The speakers are then segmented out of the full experiment 

transcripts to obtain a text document representing each speaker on a team (step 2). For the managed 

teams, the manager document is excluded from the analysis because they are not included when 

computing the semantic similarity of a design team. The co-occurrence matrix, X, is then generated 

for each team (step 3) and weighted using the global, log-entropy (Equation 4) across speaker 

documents of a team [56]:  

𝑊 = 	1 +	-
𝑝)! log+@𝑝)!A
log+(𝑚)

	.						(4)
!

 

Pij is the ratio of the frequency of each term in a document to the frequency of each term over all 

documents. This global entropy weighting is used to dampen the effects of large differences in the 

frequency of words (i.e., gives less weight to terms that occur frequently or are commonly used, 

and more weight to terms that are less frequently used). After weighting the occurrence matrix, 

SVD is performed (step 4) to reduce the dimensionality of the matrix and speaker vectors are then 

extracted. The cosine-similarity is then computed between all pairs of speakers (step 5) and the 

average of those comparisons is taken as the team’s semantic similarity (step 6). 
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2.3.6 Manager Interventions 
  
The transcripts from the experiment are utilized, in conjunction with the post-study interviews, to 

designate the timing and type of managerial interventions. This exploratory analysis will provide 

insight into some of the managerial techniques and strategies utilized by the managers at different 

points in the design generating process. In order to do this, comparisons are made across three, 

equal 10-minute intervals of the experiment, which are delineated based off of when the constraints 

were added to the problem (i.e., before the first constraint was given, between the first and second 

constraints, and after the second constraint).  

 

FIGURE 2.4: REPRESENTATION OF THE PIPELINE FOR RUNNING LATENT 
SEMANTIC ANALYSIS (LSA) ON THE AUDIO TRANSCRIPTIONS 
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2.4. Results 

At the conclusion of the study, participants were instructed to have their single, final design circled. 

For both the managed and unmanaged teams, this solution was collaboratively chosen by all 

members on a team and therefore is representative of an entire team’s effort. These elected designs 

are extracted from the last sheet of sketches and utilized in the assessment of the previously 

discussed ideation metrics. A sample set of final design solutions from each team condition is 

shown in Figure 2.5.  

 
2.4.1 Design Quality 
 
As discussed in the analysis section, each design is rated for quality by two mechanical engineering 

graduate students as either 0, 1, or 2, depending on how well the solution satisfies the problem 

FIGURE 2.5: EXAMPLE FINAL DESIGN SOLUTIONS FROM AN UNMANAGED 
(TOP), A NOMINAL (BOTTOM-LEFT) AND A MANAGED (BOTTOM-RIGHT) 

ENGINEERING DESIGN TEAM 
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statement and design constraints. Figure 2.6 shows the frequency of designs binned into each of 

the categories, with the x-axis representing the three quality categories and the y-axis being the 

frequency of designs in each respective bin. Due to some subjectivity in this assessment, each 

design is scored by both graduate student raters to maintain consistency and objectivity in the 

scoring. To gain a sense of the degree to which the raters are consistent with one another, the 

intraclass correlation coefficient (ICC) is computed across all designs (ICC = 0.58), which is an 

acceptable correlation [67].  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

Because the data is ordinal and not normally distributed, a Mann-Whitney U-test, the non-

parametric version of the t-test, is run. The test reveals that both the managed teams (p < 0.014, 

effect r = 0.39) and nominal teams (p < 0.001, effect r = 0.64) generate designs of significantly 

higher quality than the unmanaged teams. The nominal teams’ designs tend to be of slightly higher 

quality than those of the managed teams (p < 0.15, effect r = 0.18). Thus, the first research goal of 

FIGURE 2.6: FREQUENCY OF QUALITY RATINGS FOR UNMANAGED 
TEAMS, MANAGED TEAMS, AND NOMINAL TEAMS 
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whether the performance of individuals surpasses teams in the domain of conceptual engineering 

design, can now be addressed. Indeed, the higher quality designs generated by the nominal teams, 

compared to unmanaged teams, are indicative of better overall performance.  

 

2.4.2 Design Novelty 
 
The final designs are evaluated using a posteriori measure of novelty (i.e., uniqueness), which 

describes how uniquely each of the five sub-functions are satisfied in a given solution, compared 

to the other solutions within the experimental design space. Table 2.2 provides a summary for each 

of the five sub-functions and the count (Cj) of each mechanism used to satisfy them. Summing 

these counts for each sub-function identifies how many teams in total, Ti, satisfy a particular sub-

function, where i ranges from 0 to 24, for 24 total design teams (eight in each of the three 

conditions).  

 
TABLE 2.2: THE COUNT OF DIFFERENT MECHANISMS USED IN DESIGN TEAMS’ 

SOLUTIONS 

 
 

In reference to the total counts, Tj, the only sub-function that was satisfied by all 24 teams 

is the crushing function, f3. The energy conversion sub-mechanism is the next highest, followed 

by the transportation function. This result is consistent with the chosen weights, fj, that were 
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discussed previously. For example, the sub-functions given the higher weights end up being 

fulfilled by more design teams, signifying their lack of ambiguity from the problem statement and 

importance to the overall design task. Substituting the counts (Cj) and totals (Tj) from Table 2.2 

into Equation 2, the novelty scores can be calculated for each team. Figure 7 shows that the 

managed teams have a significantly higher measure of novelty than both the nominal (p < 0.01, d 

= 1.35) and unmanaged teams (p < 0.007, d = 1.41). There is no significant difference between 

novelty of unmanaged and nominal teams’ designs. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

To determine whether the experimenter’s chosen values of the weights impact the results 

of the novelty, a sensitivity analysis is performed on the novelty formulation. The functions are 

first weighted equally (fj = 0.2), for each sub-function (equivalent to no weighting at all). Re-

computing the novelty, the results are identical to that originally found, with the managed teams 

exhibiting higher novelty than both unmanaged and nominal teams; the latter two having no 

FIGURE 2.7: AVERAGE NOVELTY SCORES FOR UNMANAGED, 
MANAGED, AND NOMINAL TEAMS. (ERROR BARS SHOW ±1 S.E.) 
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significant difference. Furthermore, to determine the sensitivity of the novelty score to the value 

of the individual weights, each weight is successively perturbed ±10% from its original value and 

the novelty is re-determined. When one weight is perturbed, the four remaining weights are 

readjusted so that the total weight sum remains at 1 (∑ 𝑓! = 1,
!#$ ). After recalculating the novelty 

with each new combination of weights, in every case, the managed team’s novelty score remains 

highest, and the unmanaged and nominal teams lower and similar. This analysis confirms that the 

scores are not sensitive to the originally chosen weights (which were, fj = [0.25, 0.10, 0.35, 0.20, 

0.10], for 1 ≤ j ≤ 5), and this weighted set will be the one used for purposes of this chapter.  

 
2.4.3 Team Cohesion 
 
Now that nominal teams have been shown to produce higher quality solutions than unmanaged 

teams, the second research goal can be addressed, namely, whether a manager is able to mitigate 

the costs associated with collaborative engineering design teams. From Figure 2.6 and Figure 2.7, 

the teams under the guidance of a manager generated solutions that were both significantly more 

novel and of slightly higher quality than the unmanaged teams. Post-processing the audio 

transcriptions according to the pipeline outlined in Figure 2.4 and running LSA on these 

transcriptions (Figure 2.8), the managed teams’ discourse exhibit higher semantic similarity over 

all three experimental intervals (p = 0.016, p = 0.026, p = 0.015, respectively). This result further 

supports the claim that the process managers can mitigate some of the performance costs of 

engineering design teams. It is also interesting to note that both team conditions exhibit a similar 

and consistent trend, showing a decrease in cohesion between the first and second intervals, 

followed by a small increase in the third interval.  
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2.4.4 Process Management Interventions 
 
Since process managers are shown to be beneficial, a preliminary analysis into some of these 

constructive managerial strategies can be done by examining the frequency and types of 

interventions throughout the experiment. A general summary of all the manager interventions is 

shown in Figure 2.9. As a recap, the allowable types of manager interventions are the keywords, 

design components, and design strategies that were depicted in the manager bank (Figure 2.2).  

FIGURE 2.8: LATENT SEMATIC ANALYSIS ON AUDIO RECORDINGS OF DESIGN 
TEAMS. (ERROR BARS SHOW ±1 S.E.) 
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The managers were able to interact with those prescribed items but could not otherwise speak with 

the design teams or help in directly solving the problem. In total, the managers intervene 52 times 

with 11 interventions in the first interval, 25 interventions in the second, and 16 during the final 

interval. Of the 52 interventions, 42% are design components, 31% are keywords, and 27% are 

design strategies. In order to understand the evolution of managerial strategy over the different 

problem-solving phases, Figure 2.10 depicts the temporal evolution of interventions. The 
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percentages shown are relative to the number of interventions per interval. For example, 45% of 

the design strategy interventions in the first interval equate to 5 distinct design strategy 

interventions. Overall, the design strategies and keywords comprise the majority of interventions 

in the first segment of the experiment, with a more equal distribution among all three types in the 

middle. By the end of the experiment, the largest proportion of managerial interventions are design 

components as the final design ideas are instantiated.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The post-study interviews with the graduate student managers are also evaluated to uncover 

the underlying motivations. This is useful for determining the rationale, and consequently, the 

feedback the managers used in deciding the most opportune times of intervening. After analyzing 

the interviews and sorting the interventions into common themes, four salient motivations 

emerged: assist the team in generating new ideas, help the team promote their current thought, 
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remind the team of the engineering design requirements, and improve the team dynamics. To get 

a better sense of how these motivations are binned, consider the ones shown in Table 2.3. 

 
TABLE 2.3: EXAMPLE MOTIVATIONS FROM POST-STUDY INTERVIEWS WITH 

MANAGERS 

 

For example, asking a manager why they intervened with the design strategy, “Can you think of 

similar ideas that already exist,” they responded with the first statement from Table 3: “There was 

no structure to their thought process, and there was no direction.” This intervention is 

characterized as “help generate new ideas,” because the engineering design team was not focused 

and having difficulty deciding how to approach the problem and brainstorm initial ideas. Each of 

the 52 manager interventions is analyzed and categorized in this way, by associating with it an 

underlying motivation.  

Similar to the intervention types, these motivations are examined across the three 

experimental intervals. The progression of managerial motivations is shown in Figure 2.11. The 

percentages are, again, relative to the number of interventions per interval. For example, 18% of 

the “reminder of engineering design requirements,” in the first interval equates to 2 distinct 

interventions. One central trend captured in Figure 2.11 is the steady increase of “reminder of 

Managerial Motivations 

Help Generate New Ideas:  
“There was no structure to their thought process, and there was no direction.”  
 
Promote Current Thought: 
“They were thinking through a bunch of human interfaces and they hadn’t really considered a crank, 
and I thought a crank would be a useful extension to the one’s they had considered” 
 
Remind of Engineering Design Requirements:  
“They had only focused on crushing the shell at that point and not thought about how to actually get the 
center of the peanut out of the shell” 
 
Improve Team Dynamics: 
“There was really one person leading it and I wanted everyone to have something to do and have them 
take different tasks.” 
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engineering design requirements”. This evolution suggests that assisting design teams in focusing 

on the constraints of the problem and attributes of their designs is an increasing objective of the 

process managers throughout the entire problem-solving process. This is true, particularly near the 

end of the experiment, when 75% of the interventions are categorized by this motive.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2.4.5 A Possible Mechanism: Verbalization 
 
Even though process management, in this experiment, is shown to be beneficial to design teams, 

individual problem solvers still perform marginally better in terms of their collective solution 

quality. One of the main differences between individual and collaborative team problem solving 

is the fact that teams need to verbalize to communicate ideas with one another. Sio et al. previously 

investigated the effect of this communicative process on RAT problems and found that thinking-

aloud nominal groups were impaired in comparison to nominal groups who solved the problem 
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quietly [41]. Perhaps this could be one of the main cognitive hindrances and costs of group problem 

solving, and one that the process management in this experiment is not able to mitigate.  

Consequently, a supplemental condition is run to examine the effects of verbalization 

during problem solving and to see if individuals who verbalize perform worse than individuals 

who do not verbalize during problem solving. The experimental architecture and logistics are 

identical to the previous nominal team group, except that participants are also told to think aloud 

during problem solving so that their thoughts on conceptualization could be followed. The time 

was carefully monitored, and if an individual went 10 seconds or longer without expressing their 

thoughts, the experimenter reminded them to continue verbalizing. In total, 22 additional freshman 

engineers participated in this condition of the experiment, and nominal teams were generated 

following the same algorithm discussed earlier. The designs were evaluated in the same way, and 

the results are shown in Figure 2.12.  

 

 

 

 

 

 

 

 

 

 

FIGURE 2.12: FREQUENCY OF QUALITY RATINGS BETWEEN SILENT NOMINAL TEAMS 
AND SPEAKING NOMINAL TEAMS 
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While the differences are in the right direction (silent outperforming speaking), there is no 

significant difference in the quality of design solutions between individuals who problem solve 

silently and those who concurrently verbalize. The inconsistency of this result with the results from 

the RAT problem task are likely due to a fundamental difference in the tasks: in particular the 

difference in the cognitive processing of spatial and verbal tasks. As shown by Brooks [68], tasks 

that are verbal in nature, such as the RAT problems, will be hindered by concurrently performing 

a task that is also verbal, such as thinking out loud, while spatial tasks, in his case visualizing 

action on a block letter, will not be so affected. Conceptual design is more of a spatial oriented 

problem [69]; thus, verbalization should not, and turns out does not, act as a cognitive barrier while 

concurrently solving the design problem, due to this difference in the form of processing. Thus, 

verbalization does not seem to be a direct cognitive barrier to this type of team problem solving, 

and additional work must be done to try to identify what features of collaborative teams put them 

in a disadvantage to individuals in conceptual engineering design.  

 

2.5 Discussion 
 
2.5.1 Effects and general strategies of process management 
 
As introduced at the beginning of the chapter, this research presents two primary goals. The first 

is to determine whether the performance of individuals (i.e. nominal teams) is superior to that of 

collaborative team problem solving in conceptual engineering design, a domain which shares the 

free-flowing, creative aspects of brainstorming, but possess the goal-oriented, and structured 

characteristics of configuration design. The results from this study support this claim, showing that 

unmanaged engineering design teams are not as proficient as individual problem solvers. Nominal 

teams generate design solutions of significantly higher quality. Exploiting this result, the second 
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aim of this chapter is to examine whether the underperformance of these design teams can be 

mitigated with resources allocated to the management of the design process via a human manager. 

The effects of a manager to the problem-solving process show that these teams do benefit, even 

when resources are taken away from directly solving the problem. The managed teams, with one 

less member and therefore fewer direct problem-solving resources, still perform better, with 

significantly higher quality design solutions than unmanaged teams. These teams also produce 

final designs that are of greater novelty (uniqueness across the set generated) - and are more 

cohesive throughout the experiment, as measured through the semantic similarity of their verbal 

discourse. Thus, the findings from this study show that real-time management of the design process 

closes the performance gap between individual problem solvers and teams. However, the nominal 

teams still produce designs of marginally higher quality than the teams that are managed, 

suggesting that there are still some deficiencies in design teams that managers are not able to 

mitigate.  

Given that the process management of design teams is shown to be beneficial, analyses can 

now focus on uncovering some of the constructive intervention strategies. Generally, the managed 

teams satisfy a greater number of the five identified sub-functions of the design problem, and in 

more unconventional ways than teams in either of the other conditions, resulting in higher novelty 

of their final designs. Of the 12 mechanisms, in Table 2.2, that are used by only a single design 

team (i.e., the most unique mechanisms), half of those are from managed teams. The set of these 

mechanisms includes lever, pivot, wind, lead screw, hammer, and scissors. Also, as depicted in 

Figure 2.11, reminding teams of the engineering design requirements is the only motivation that 

considerably increases throughout the entire experiment. This suggests that the managers play a 

major role in getting their teams to think about all requirements of the design.  
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Another significant trend in the manager interactions is the usage of the design component 

stimuli, which increases from 18% of the manager interventions in the first interval to 56% by the 

final segment. Because the design components are all specific mechanical elements, this trend is 

also consistent with the managers reminding their teams to consider the functional aspects of the 

design. For example, providing a team with the conveyor stimuli could prompt a design team to 

focus on the transportation of the peanuts through the device. Similarly, providing a team with the 

sieve component helps teams to concentrate on sorting the peanuts from their shells. One could 

argue that the managed teams become fixated and directly use the components that are provided 

to them during the interventions. Because the managers are trained not to speak when intervening 

with the design components, some of the participants may have perceived these particular 

interventions as additional requirements to the design problem. Even so, this does not undermine 

the fact that, overall, the managed teams’ designs are more novel. Also, as shown in Table 2.2, out 

of the most novel mechanisms (those with a count of 1), only the hammer design component is 

taken directly from the manager bank. As such, fixation on the specifics of manager suggestions 

is an unlikely implication from the interventions. 

Collectively examining the types and frequency of interventions over all three experimental 

intervals (Figure 2.10), coupled with the compilation of motivations (Figure 2.11), yields valuable 

insights into the managerial strategy and how it evolves throughout problem solving. The design 

strategies comprise the largest proportion of interventions in the first interval of the experiment 

(46%). This result suggests that toward the beginning of ideation, the managers want their teams 

to follow a more encompassing and exploratory search of the design space. Specifically, “Can you 

think of similar ideas that already exist,” and “Can you clearly identify the assumptions, 

constraints, and goals of the problem” are the two significant design strategies suggested by 
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managers in the early stages of the experiment. Similarly, in the first 10 minutes of the study, 46% 

of the interventions are motivated toward helping their design teams generate new ideas. This 

result agrees with the types of interventions, because in the early stages of brainstorming and 

ideation, effective exploration of the design space is important. As problem solving proceeded, the 

most frequent interventions focused on design components, with 56% of the interventions in the 

final experimental interval. The increasing implementation of design components, particularly 

near the end of the experiment, indicates that the managers try to get their teams to home in on a 

specific region, or subset of solutions, within the design space, to instantiate a final effective 

solution. Overall, it seems that the predominant tendency in managerial behavior is to push their 

teams to follow an exploratory-to-convergent search of the design space, which has been shown 

to be an effective strategy for concept generation and creativity in design [70,71], and thinking in 

design teams [72]. This exploratory-to-convergent funneling of design team efforts is also mirrored 

by the manager motivations, with 75% of the interventions in the last interval being prompted by 

reminding teams of the engineering design requirements. This rationale is critical in final design 

convergence and selection when improvements and iterations must be done to achieve all the 

engineering design specifications.  

 

2.5.2 Limitations and future work 
 
It should be acknowledged that the results from this chapter are prognostic as opposed to purely 

diagnostic. The underlying reason of why nominal team performance is superior is still an open 

question and requires future work to make any definitive conclusions. Perhaps some of the 

recognized deficient team characteristics from other literature, such as social loafing, may be at 

play here [73]. In observing the interaction of teams during the study, for example, it appeared that 
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some members did not participate as much as others; thereby indicating that social loafing could 

be the cause. Also of note, both the teams and individuals evolve what they perceive to be their 

best design. However, in the team condition, biases in decision-making and other team 

characteristics may possibly have influenced and inhibited the selection of their actual best design 

[74,75]. By the current definition of a nominal team, the best design amongst the collection of 

individuals is automatically chosen for them. This discrepancy in selection could have affected the 

difference in collaborative and nominal team performance, though this, and other theories that 

might account for the inferior performance of the design teams, are left for future investigation. 

Nonetheless, supplying process management did mitigate the negative effects of working in teams.  

 Moreover, the team structure in the experiment is both static and free; the structure does 

not change throughout problem solving and all members are free to communicate with all other 

members without any limitations. This structure could also have negatively affected and led to the 

inferior performance of design teams. Additional work on modeling different team structures 

which have shown to be more effective [76,77], such as hybrid teams, where individuals initially 

work on the problem separately before coming together to collaborate [78], could be an interesting 

direction. 

To gain a deeper understanding into managerial behavior, future work can focus on a more 

refined and in-depth analysis of the manager interventions to extract specific modalities and timing 

that are most beneficial to design teams. The evolution of each teams’ designs may also be tracked 

through the experiment to see how designs are affected by these interventions and whether 

managers help teams overcome some of the stumbling blocks associated with problem solving. 

The process managers were also recruited with similar skillsets and constrained in the types of 

interventions that could be used; this was purposefully done to equalize management capabilities 
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and reduce variability. Although fixation was not seen as directly impacting the teams (as the 

managed teams had more novel ideas), it would be interesting to see how enlarging the manager 

bank to create a more expansive example set, as well as changing the managers’ expertise, impact 

the design process [53]. Different evaluation metrics could also be studied, such as creativity, to 

determine how feedback influences such [79]. 

Because this study utilizes freshman engineering students from an academic institution and 

limits the problem-solving process to a short time frame, there are still unanswered questions about 

the generalization of the results outside the lab setting. Thus, future work can also consider if the 

results and observations from this current chapter extend to a larger scale and apply to engineering 

design teams in practice.   

 
2.6 Summary 

This chapter presents an empirical study to investigate individual versus group performance in the 

domain of conceptual engineering design. Accordingly, a behavioral experiment is run, in which 

freshman engineering students solve a conceptual design problem individually or in a collaborative 

team setting. Corroborating previous findings, those who work on the problem individually, when 

the cumulative best solution is selected, end up generating solutions of much higher quality than 

those whom work in unmanaged teams. An attempt to mitigate some of the deficiencies associated 

with design teams is then made by introducing a third condition, where partial resources are taken 

away from problem solving and reallocated to the process management of the team. Teams that 

are guided by this process management perform nearly as well as individuals, suggesting that, 

perhaps under the proper direction, teams can become as efficient as individual problem solvers 

(i.e., nominal teams).  
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After demonstrating the beneficial effect of managing resources applied to engineering 

design teams, a preliminary analysis into this process management is done. This analysis involves 

tracking the evolution and motivation of these interventions throughout the experiment. The 

general pattern emerging is an exploratory-to-convergent managerial strategy. Overall, managers 

seem to promote a breadth of search within the design space early on in the ideation process, 

resulting in more novelty and uniqueness in the solutions. Near the end ideation, management is 

used to help teams think about the engineering specifications and requirements of the design 

problem, and to refine search, as closure is brought to the process. Furthermore, managers also 

help their teams maintain cohesion in their thought, as measured by the semantic similarity of the 

team’s discourse.  

There could be several different explanations of why the unmanaged teams did not perform 

better than individuals, and taken alone, these results are not sufficient to provide any complete 

explanation. However, one of the main differences between team collaboration and independent 

problem solving is the role of verbalization. Thus, in an attempt to begin answer this question of 

the possibility that verbalization, acting as a cognitive barrier to problem solving, is also studied. 

An appendage to the current study is run where participants individually solve the same conceptual 

design problem, but this time, while simultaneously verbalizing their ideas out loud. Results show 

that verbalization does not act as a direct deterrent to problem solving, as those individuals who 

thought aloud generate solutions of nearly equal quality compared to those individuals who 

problem solved silently. Future work can identify other potential obstacles to team problem 

solving, as, at least in conceptual design, verbalization does not seem to be a factor. 

The empirical results from this chapter expand growing evidence that individuals are more 

effective than teams in a variety of problem-solving situations, including conceptual design [80]. 
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Ultimately, the hope is to understand why teams are not always maximally proficient, in what 

types of circumstances they significantly underperform, and what methods are most effective in 

assisting them. The study presented in this chapter is a step towards uncovering approaches and 

methods that can build more focused and efficient engineering design teams, which has major 

implications for how design teams work together, and problem solve in practice. 
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Chapter 3 : Enabling Automation via a 
Topic Modeling Approach2 

 
3.1 Introduction & Motivation 

Design cognition studies investigate how designers think and strategize during design activities 

[81]. A variety of methodologies exist to analyze these processes of thought including, but not 

limited to, case studies, protocol analysis, and empirical performance tests [82,83]. Concurrent 

verbalization, or thinking aloud, also reveals certain characteristics of design cognition, such as 

the interactions between design problem and design solution [84]. By analyzing and codifying 

team discourse data, Stempfle, et al., propose a two-process-theory of thinking in design teams 

[72]. Their work theorizes that four basic cognitive processes encapsulate design thinking, 

including the operations of generation, exploration, comparison, and selection. More 

computational approaches have also been utilized to study design team communication, including 

Latent Semantic Analysis (LSA). LSA has been shown to be effective in modeling mental 

knowledge representations by analyzing design team communications such as emails, reports, and 

automating the annotation and tagging processes of team discourse to predict performance [9, 49, 

64,85,86]. As the aforementioned works demonstrate, studying design team communication 

comprises a rich area. More critically, analyzing team interactions and communication amongst 

designers provides valuable insight into design processes and cognition, as well as predicting the 

state and effectiveness of problem-solving. Knowledge of this state/cognition of designers can 

 
2. The work presented in this chapter is published in:  

Gyory, J.T., Kotovsky, K. and Cagan, J., 2021. The Influence of Process Management: Uncovering the 
Impact of Real-Time Managerial Interventions via a Topic Modeling Approach. Journal of Mechanical 
Design, 143(11), p.111401 
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provide feedback into identifying the types of facilitation and mediations teams may require during 

problem solving.  

Apart from design communication, a large body of work in engineering design theory 

research studies methodologies that facilitate problem-solving effectiveness. These include 

providing near and far analogies, patents, example solutions, and/or functional structures as 

inspirational stimuli, among others [50, 53, 87-89]. Along this vein, more recent work furthers 

these findings by studying the effects of intervening with designs stimuli in near real time. Work 

by Goucher-Lambert, et al., modulates the distance of design stimuli from designers’ current 

design state during concept generation [90]. Midway through problem solving, designers provide 

their current solution to a design problem. Then, a stimulus is computationally provided in real 

time to support ideation, either near to or far from the current state of the designer. In that work, 

Latent Semantic Analysis (LSA), a method utilizing the co-occurrence of words and singular value 

decomposition to represent the semantic space, computes the semantic similarity between current 

design states and a design space corpus of potential stimuli. Furthermore, work by Gyory, et al., 

explores the effects of adaptive process management on design problem-solving [80,91]. Process 

managers guide design teams through problem solving and intervene in real time, when deemed 

appropriate. That work shows that teams under the guidance of process managers significantly 

outperform teams that are not, in terms of their final design solutions. While both of these works 

move towards real-time, adaptive interventions during design problem-solving, neither utilize 

discourse information in an algorithmic way to either monitor design progress or measure stimulus 

effects on design cognition. This chapter builds upon these studies (in fact, using data from the 
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latter), and utilizes topic modeling to computationally analyze team discourse and detect the effects 

of real-time, process management.  

Topic modeling spans a wide variety of algorithms, applications, and research domains. At 

the highest level, topic modeling constitutes a text mining process of automatically extracting 

themes or topics, (which are sometimes latent) from corpuses of text [92]. By “latent,” occasionally 

these themes/topics are not directly observable via direct inspection but are distinguishable through 

more nuanced and underlying similarities within the text. A specific type of method, used in this 

chapter, probabilistic topic modeling has been shown to be effective in identifying themes in 

unstructured text corpuses [93]. In all cases, the number of topics, specified by the researcher as 

an input to the algorithm, are assumed to be distributed across the entire corpus. In this way, the 

text corpuses can be modeled purely by their distributions over these topics. As an example, Rosen-

Zvi, et al., create an author-topic model from a collection of 1,700 conference proceedings and 

160,000 abstracts, and illustrate its predictive power by revealing relationships between authors, 

documents, topics, and words [94]. Similar analyses have been done on other large collections of 

documents, such as in articles from Science [95]. 

 Topic modeling has emerged as a valuable tool for researchers in the fields of engineering 

and engineering design theory. In transportation analysis, models are trained on corpuses of journal 

articles to identify sub-fields and provide a more holistic perspective on the current research 

landscape. In design research, Ball, et al., use it to model the expertise of members within multi-

disciplinary design teams to predict their success and performance as teams in mass collaboration 

efforts [96]. Further examples in engineering design utilize topics and sentiment analysis to study 

design spaces [97]. Specifically, a Bisociative Information Network, composed of conceptual 

similarities between design topics, represents inspiration in idea generation as a conceptual bridge 
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between domain topics [98]. Additionally, in requirements engineering, Bhowmik, et al., leverage 

topic modeling, augmented with part of speech tagging, to automatically generate requirements 

from stakeholders’ comments to support combinatorial creativity in requirements engineering. 

Kim’s group analyzes product designs and attributions through customers’ perspectives through 

online reviews by using Latent Dirichlet Allocation and other semantic methods [99-101]. While 

topic modeling has emerged in the field of engineering, thus far, it has not seen much utilization 

to dynamically study design team cognition under the impact of process manager interventions, 

which offers promising opportunities to research engineering design teams, as explored in this 

chapter.  

Consequently, this research utilizes a topic modeling framework to model discourse 

between members of a design team to study the impact of process manager interventions during 

problem-solving. Given that discourse provides insights into designer cognition and the state of 

the team over the course of problem solving, the specific goal is to explore and computationally 

detect the impact of these interventions during the problem-solving process. To this end, Section 

3.2.1 of this chapter presents the cognitive design study from which the discourse data was 

collected in prior work [91], as well as a brief introduction to the field of topic modeling and the 

topic modeling framework for processing the verbalization data. Section 3.3 follows with results 

on the overall difference in topic structures between managed and unmanaged design teams, 

including a dynamic look at these topic structures over time. The second main analysis studies the 

direct impact of the interventions on team cognition, by focusing on and comparing the team 

members’ discourse immediately prior to and following an intervention. Section 3.4 and 3.5 

conclude with a discussion of the results, particularly regarding process management and team 
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discourse for engineering design teams, closing with opportunities for future research regarding 

the extension to real-time monitoring and intervention for design teams.  

 

3.2 Background 
This section provides background for two relevant areas of this chapter: Section 3.2.1 provides an 

overview of the cognitive study from which the transcript data originates, including the different 

experimental team conditions, the design prompt, types of design interventions, and data 

collection. The subsequent sub-section (Section 3.2.2) introduces the topic modeling framework 

for intervention assessment, discussing the core text analysis method selected as an illustration in 

this chapter, including the bag-of-words model and Latent Dirichlet Allocation (LDA).  

 

 3.2.1 Initial Motivating Study – Problem Solving under Process 
Management 

 
The verbalization data presented in this chapter was collected from a behavioral study run with 

undergraduate, engineering students at Carnegie Mellon University. While only a general 

overview of the experiment methodology will be presented here, a more comprehensive outline is 

discussed in Gyory, et al., 2019 [91]. Student designers were randomly placed into teams and 

allowed 30 minutes to solve the following engineering design problem: 

Problem Statement: 
Design a low-cost and easy to manufacture device that removes the outer shell from a peanut. 
Constraint 1:    
The device is meant to be utilized in developing countries where electricity may not necessarily 
be available as a power source.  
Constraint 2: 
In addition to the previous constraint, the proposed design must be able to separate a large 
quantity of peanuts from their shells, while causing minimal damage to the inner peanut. 
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The two constraints were dynamically added during problem solving (10 minutes and 20 minutes 

into the experiment, respectively), to both exacerbate the difficulty of the problem and better 

emulate a dynamically evolving design task.  

The experiment included three distinct team conditions, two of which are relevant to this 

study: managed teams and unmanaged teams. The managed teams comprised four student 

designers, all actively engaged in the problem-solving process and under the guidance of a human 

process manager (experienced, mechanical engineering graduate students). In this condition, the 

process managers intervened with their design teams, when they deemed it appropriate, in order 

to facilitate problem solving. The interventions, described briefly next, were standardized across 

all managers. On the other hand, the unmanaged teams consisted of five student designers, all 

actively engaged in the problem-solving process and under the direction of a passive experimenter. 

These passive experimenters could only read instructions, provide the design prompt and 

constraints, and answer questions prior to the start of the experiment; otherwise, no communication 

between these facilitators and participants was permitted. The reduction in the number of student 

designers in the managed condition was meant to equalize the problem-solving resources between 

the managed (four active participants + manager) and unmanaged (five active participants) design 

teams. 

The process managers in the managed team condition intervened with their design teams 

to affect the problem-solving process. While free to intervene when they deemed it necessary, the 

managers could only select interventions from a pre-determined manager bank. Their 

interventions were limited to this set. The process managers were also not allowed to speak with 

their design teams other than to answer questions related to the experiment. This manager bank 

contained six design keywords, six design components, and six design strategies, all motivated 
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from pre-existing strategies and techniques for increasing ideation/problem-solving effectiveness 

[57,59,60,102]. The design keywords and design components were related to the specific design 

prompt (e.g., “sieve” as a design component and “high throughput” as a design keyword), while 

the design strategies were tactics appropriate and generalizable to any design scenario (e.g., “Are 

the requirements being met in your current design? Can you go back to a previous idea?”).  

An audio recorder collected the design team discourse throughout the experiment. Sixteen 

transcripts were collected in total, with eight teams in the managed condition and eight teams in 

the unmanaged condition. The transcripts were transcribed via an outsourced vendor and manually 

checked for proper speaker identification. In addition to the transcripts, other data collected from 

the study included design teams’ final designs (both a sketched drawing and a two-minute verbal 

description) and a complete recounting of manager interventions, including the timing and type. 

These were actively noted by the managers during the experiment. 

In the immediate days following the study, the researchers conducted a post-study 

interview with each of the process managers. These post-study interviews queried the managers 

on the motivations for and the perceived effects of their interventions (“What made you intervene 

with intervention [X]?”, “What was the effect of your interaction?”). The most common 

motivations noted include trying to get all team members to equally contribute to the process, 

reminding the team of the constraints, requirements, and goals of the problem, pushing teams to 

focus on a functional topic which they were either far away from our close to and needed an extra 

push, or to get the team back on track because they strayed completely away from the task [103]. 

These latter two motivations serve as the overarching inspiration for utilizing topic modeling as 

the computational approach in this chapter. If the managers felt that teams strayed from appropriate 

or conducive topics for effective problem solving, can these topic shifts be computationally 
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detected? Thus, this research addresses this question via a topic modeling framework to compare 

topic structures in the teams’ discourse.  

 

3.2.2 Text Analysis – Latent Dirichlet Allocation 
 
While a variety of methods for semantic text analysis and topic modeling exist and can be used 

within the framework introduced in this chapter, the algorithm chosen for use in this chapter is 

Latent Dirichlet Allocation (LDA) with a unigram, bag-of-words assumption [104]. As both a 

generative and probabilistic method, LDA models a corpus of documents as a collection of 

underlying topics. No knowledge of these topics necessarily exists a priori, as the training 

procedure tests across varying values. LDA then generates topics from the distribution of words 

and documents in the corpus and probabilistically determines the fit with each number of topics. 

The researcher determines the number of topics and topic model with the best fit to the data and 

research goals, as presented in this chapter in Section 3.1. Other methods for topic modeling 

include Latent Semantic Indexing (LSI), probabilistic latent semantic indexing (pLSI), non-

negative matrix factorization (NMF), and Term Frequency – Inverse Document Frequency (TF-

IDF) [105-107]. However, LDA overcomes some of the shortcomings of these precursor methods. 

Furthermore, LDA has been widely used on corpuses of many sizes, from micro-tweets, tweets, 

and micro-blogs, up to complete journal repositories [108-110], and results in more descriptive 

output, namely the actual topics that can be interpretable, and more differentiation to allow for 

potential explainability into the impact of the manager interventions. Bayesian probabilistic 

models, similar to LDA, have also been applied to discourse analysis [111,112]. Consequently, 

LDA was chosen for utilization in this chapter.  
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LDA assumes a bag-of-words model representation of the text corpus, one of the most 

commonly utilized methods in text analysis, information retrieval, and topic modeling [113]. Bag-

of-words captures the frequency of terms or words in each document and across the entire corpus 

of documents. The model in this chapter treats each individual word as its own feature (i.e., 

unigram model), though features can be represented by a sequence of 𝑛 words through an 𝑛-gram 

model which retains information about word ordering [114]. The bag-of-words model assumes 

that the order of which these features appear in the text does not matter. In text analysis, a word 

represents the most basic unit of vocabulary, and quantified by a basis unit vector: {1, . . . . , 𝑉}. In 

this case, a word signifies a unique utterance by a team member. It is from the co-occurrence of 

these words that underlying semantic similarities and topics can be inferred. Topics are defined as 

probability distributions over the set of words. Documents represent sequences of the words in the 

vocabulary, as denoted by 𝐰 = (𝑤$, 𝑤+, , 𝑤-, … , 𝑤. , ) for 𝑁  words in each document, and the 

documents are generated by random mixtures over these topics, with topic mixtures, (𝜃$	,….,		𝜃/). 

The entire corpus, 	𝐷 , defines the entire collection of these 𝑀  documents, 𝐷 =

{𝐰$, 𝐰+, 𝐰-, … . . 𝐰/}.  

For LDA’s generative process, a Dirichlet distribution is used to represent the topic-word 

distributions across the documents, given by Equation 5: 

 

																			𝑝(𝜃|𝛼) = 	
1

𝐵	(𝛼)
+𝜃!

"!#$
%

!&$

	,														(5) 

 

with 𝛫 topics and concentration parameter, 𝛼. The multivariate Beta function,	𝐵, normalizes this 

probability distribution. Then for each of the 𝑁 words in each document, a topic is chosen, 𝑧", 

from a multinominal distribution with parameter, 	𝜃 , and a word, 𝑤" , is chosen from a 
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multinominal probability conditioned on the topic 𝑧", 𝑝(𝑤"	|𝑧"	, 𝛽). Finally, the joint distribution 

of a topic mixture, given the above parameters, is:  

														𝑝(𝜃, 𝐳,𝐰	|𝛼, 𝛽) = 𝑝(𝜃|𝛼)+𝑝(𝑧'|𝜃)𝑝(𝑤'	|𝑧', 𝛽)									(6)
)

'&$

 

for a set of 𝐾 topics, 𝒛. 

 

3.3 Methodology 
A topic model first needs to be trained on the corpus of transcript data from the previously 

mentioned process management study. This section of the chapter describes this training 

framework and sets up subsequent analyses on the output of the topic model. All the natural 

language processing and text analysis algorithms throughout this chapter utilizes MATLAB’s 

implementation of LDA and supporting solvers.  

 
 
3.3.1 Topic Modeling Framework 
 
Figure 3.1 depicts the framework for training the topic model. The discourse of the design teams 

is identified by speaker, noting that the managed and unmanaged teams differ in the number of 

speakers (the unmanaged teams consist of five problem solvers while the managed teams consist 

of four problem solvers). The manager and experimenter dialogue are also removed from the 

discourse. 
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The transcripts are then further segmented into five-minute intervals to increase the corpus size 

per document, as needed to train sufficiently stable LDA models. In total, with eight managed and 

eight unmanaged teams, the entire corpus 𝐷 consists of 𝑀 =	96, distinct documents and 𝑁 =	741 

unique words. The average number of words per each five-minute interval document is 162 words, 

with a standard deviation of 25 words, and the average number of tokens per document being 452 

tokens with a standard deviation of 102 tokens.  

Prior to training the model, the transcripts undergo several pre-processing steps. The 

documents are first tokenized so that vectors of words represent each of the documents. All 

punctuation are removed, as well as the stop words identified in the Natural Language Toolkit 

(NLTK) [115]. Additional pre-processing steps includes the removal of infrequent words (those 

with frequencies less than 2), the removal of short (those less than two characters) words to 

eliminate noise with articles and non-words, as well as the stemming and lemmatization of words. 

FIGURE 1: TOPIC MODELING FRAMEWORK WITH MODEL TRAINING AND MODEL PREDICTION
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These two processes remove prefixes and suffixes of the vocabulary, so that all words remain in 

the same tense and return to their dictionary forms.  

During the topic model training, the corpus 𝐷 is randomly split into a training set and a test 

set. The training set incorporates 80% of the corpus (77 documents), while the test set contains the 

remaining 20% of the corpus (19 documents). All five-minute interval documents are considered 

during the randomization of splitting between these sets. While the two added constraints during 

the experiment (recall the first was added 10 minutes in with the second added 20 minutes) could 

add some noise during training, since the model is trained and testing on multiple randomizations 

of these two sets, and significant confounding effects from these constraints should be mitigated. 

Because the number of topics is not determined a priori for LDA, the topic model needs to be 

trained across a varying number of topics. Then, the number of topics with a better fit to the test 

data can be chosen. In this chapter, validation perplexity is used as one of the measures testing the 

fit to the data. Perplexity, a metric describing the goodness-of-fit, indicates how well the model, 

including the number of extracted topics, represents the documents; the lower the perplexity 

indicates a better fit [116–118]. The perplexity is mathematically defined in Equation 7 as:  

														𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷*+,*) = 𝑒𝑥𝑝 <	−	
∑ 𝑙𝑜𝑔𝑝(𝐰-).
-&$
∑ 𝑁-.
-&$

B		,									(7) 

with 𝑁0 being the total number of words and 𝑀 being the number of documents. 

 

3.3.2 Comparing Topic Mixture Outputs 
 
Following the training of the topic model, the model can be leveraged to transform topic mixtures 

of smaller discourse segments within the transcripts. The topic model dimensionally reduces 

documents into a probability distribution over the topic space (i.e., topic mixtures). As mentioned 

from the prior study, process managers intervened with a bank of prescribed stimuli which 
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included functional design components (hammer, conveyor, etc.) and design keywords (high 

throughput, sieve, etc.). As noted by the managers, these interventions were injected to direct team 

discourse. Therefore, comparing the discourse intervals immediately prior to and following an 

intervention should enable detection of the impact of that intervention. As shown in Figure 3.1 

three different intervals are used to analyze the impact of the interventions, where 𝐼1 designates 

the time of the intervention. Interval 1 (𝐼1&+) includes the discourse between two minutes and one 

minute prior to a process manager intervention, Interval 2 (𝐼1&$) includes team communication 

between one minute prior to and immediately up to the point of the intervention, and Interval 3 

(𝐼12$) includes the time immediately following the intervention and up to one minute after. An 

assumption of this chapter defines an “effective” topic shift as whether an intervention causes a 

topic shift towards the topic mixture of the intervention itself, indicating converging discourse on 

the intervention topic. As an illustrative example, an allowable design component intervention 

includes a sieve. The manager may intervene with the sieve component to get their team to start 

focusing on sorting of the peanuts from the crushed shells. The goal is to computationally uncover 

whether the team starts discussing not necessarily sieve specifically, but the concept, design, 

and/or function of sorting in general. Again, this idea of shifts in topic originates from the post-

study interviews conducted following the behavioral study, in which topic-related motivations 

emerged as a common theme throughout the manager interventions. The immediate goal is to 

determine whether those motivations are realized in producing effective behavior change. This 

overall notion motivated the inspection of Interval 2 and Interval 3. Interval 1 is included in the 

analysis as a control, controlling for the idea that teams were already moving closer to the 

intervention topic. These analyses are described in more detail later in the chapter. 
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To fully carry out the above analysis, a topic mixture for the intervention itself must be 

defined. Recall that the design keywords and design function interventions consist of a single word 

and/or image (e.g., the text and image of a sieve for a design component, and the text of high 

throughput for the design keyword). Consequently, in order to define the intervention topic 

mixtures, the full dictionary definitions of the words are used. For example, Merriam-Webster 

dictionary defines sieve as “a device with meshes or perforations through which finer particles 

of a mixture (as of ashes, flour, or sand) of various sizes may be passed to separate them from 

coarser ones, through which the liquid may be drained from liquid-containing material, or 

through which soft materials may be forced for reduction to fine particles” [119]. On the 

assumption that the words in the definition are relevant to the term, this text document for the 

intervention, when mapped into the topic space using the trained model, can now be used to 

define the topic mixtures of the interventions. In this above example, an intervention is 

perceived as effective not only if the team starts talking specifically about a sieve, but if they 

also start discussing meshes, the concept/function of separating, etc. Thus, including the 

dictionary definition as the topic mixture for the interventions provides this additional level of 

detail for detection. The intervention documents are not included in the training of the topic 

model itself.   

After extracting the topic probability distributions from the topic model, the distributions 

from the different intervals and the intervention need to be compared with each other. To measure 

the similarity between the topic probability distributions, the Kullback-Leibler (KL) divergence is 

used, also known as information divergence or relative entropy [120,121]. The KL divergence 

computes how different one probability distribution is from another probability distribution. It is 

more precisely defined in Equation 8, for a discrete probability distribution, as: 
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																	𝐷(𝑃||𝑄) = 	F𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥)

𝑑𝑥	,													(8)
ℝ"

 

where 𝑃 and 𝑄 represent two discrete, probability distributions, over the same variable, 𝑥 (which 

in this case are the topics). As 𝑃 and 𝑄 approach one another in similarity, the KL divergence 

approaches zero. It should be noted that the order for KL divergence matters, as the metric is not 

symmetric and does not follow the triangle inequality [122,123]. In other words, the divergence 

from 𝑃 to 𝑄 does not necessarily equal the divergence from 𝑄 to 𝑃. Thus, in order to make relative 

comparisons, all analyses in this chapter follow the same temporal ordering (relative to the timeline 

of the experiment) for the distributions. 

 

3.4 Results 
Section 3.4.1 first discusses the selection of the topic model with the specific number of topics. 

This includes results from different optimization solvers, perplexity, pointwise mutual 

information, as well as a parametric analysis on the concentration priors that describe the prior 

word and topic distributions. Next, analysis on the differences in design cognition, modeled as 

topic mixtures, between the managed and unmanaged teams is presented both statically (the overall 

transcripts themselves) and over time (Section 3.4.2). Then, a before and after analysis of specific 

manager interventions on the discourse detects the impact of the process managers on design 

cognition via directed topic shifts (Section 3.4.3).  

 

3.4.1 Topic Model – Validation & Selection 
 

As discussed in the previous section, the number of topics for topics models is not determined a 

prior, so the model must be trained over a varying number of topics. The model is trained across a 

range of one to thirty topics, and for each distinct number of topics, trained for 100 iterations. Each 
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iteration randomly selects the training and test sets from the corpus. Recall that the training set 

consists of 80% of the corpus, or approximately 77 documents, while the test set consists of the 

remaining 20% percent of the corpus, or 19 documents. Figure 3.2 shows the average validation 

perplexity of the 100 iterations over the range of topics: from one to thirty. Different optimization 

solvers are used in the fitting of the model to test performance. These include stochastic 

approximate variational Bayes [124,125], collapsed Gibbs sampling [126], approximate 

variational Bayes [127], and zeroth order, collapsed variational Bayes [127,128]. While more in-

depth comparisons between the four solvers lies outside the scope of this chapter, here the different 

solvers are compared by their fit to the data via validation perplexity on the held-out test set.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2 shows validation perplexity for the two better performing optimization solvers: 

approximate variational Bayes and collapsed Gibbs sampling. The lower the perplexity indicates 

a better fit. The other two solvers result in significantly worse performance, with stochastic 
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variational Bayes showing no increase in performance with increasing number of topics, and thus 

omitted from the figure. The two solvers shown behave a bit differently. While the validation 

perplexity decreases with an increasing number of topics for both, collapsed Gibbs sampling 

continues to decrease while approximate variational Bayes reaches a plateau before starting to 

increase in validation perplexity. While approximate variational Bayes plateaus at around 15 

topics, collapsed variational Bayes starts to become noisy around 20 topics and greater. Due to this 

difference in behavior, both are considered in choosing the number of topics as well as an 

additional measure – pointwise mutual information. 

Pointwise mutual information (PMI), or topic coherence, is measured across the same 

range of topics as the perplexity. PMI is occasionally used in lieu of, or in conjunction with, 

perplexity to characterize topic models, as it has been shown that perplexity can negatively 

correlate with human perception of the topics [129]. While human judges can be used, previous 

work in this area has demonstrated that it is possible to automatically measure topic coherence 

with near-human accuracy using topic coherence [130,131]. Specifically, pointwise mutual 

information scores the probability of pairs of terms taken from topics and their appearance across 

topics. In other words, PMI identifies overlap of information contained in topics. The same two 

better performing algorithms (in terms of validation perplexity) are graphed in Figure 3.3, which 

shows the average normalized PMI, calculated on the corpus, across the topics and models. As 

shown in the figure, both algorithms see a similar trend in pointwise mutual information gains. 

Both experience significant increases early on with smaller number of topics, both starting to settle 

between 12 and 18 topics. These trends are mutually considered with the previous trends from the 

validation perplexity to characterize and choose a topic model. 
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Taken together, both the validation perplexity and pointwise mutual information 

measurements support a similar range of topics. Since there are no significant differences in 

validation perplexity over the range from 15 to 20 topics (the two solvers are within a range of 

4.0), and both solvers’ PMI level around a similar range, 15 topics (the plateau in perplexity) is 

chosen throughout the remainder of this chapter and analysis. Now regarding the specific model, 

recall that 100 different topic models are averaged for each number of topics. For those models 

using 15 topics, the model with the lowest validation perplexity, across both solvers, is selected. 

The model chosen possesses a validation perplexity on the test set of, 𝑝(𝐷1341) 	= 	219.53. As a 

final level of validation, the cosine similarity is computed between all pairs of resulting topics. 

Measuring the intra-topic similarity between topics provides an additional measure of overlap 

between topics – the greater the similarity and overlap, the less distinct the topics are. Ideally, 
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topics should not significantly overlap. Excluding self-similarities, the average pairwise cosine 

similarity between topics for the selected model is 𝜇5.4. =	0.06.  

After selecting a specific topic model, a parametric analysis is performed to identify the 

sensitivity of this model with varying values of the two hyperparameters. The two hyperparameters 

for Latent Dirichlet Allocation, 𝛼 and 𝛽, describe the prior distributions on the topic and word 

concentrations, respectively, when fitting the model. Larger values of 𝛼 define documents as being 

composed of a wider variety of topics while larger values of 𝛽 define topics as being composed of 

a wider variety of words. Figure 3.4 shows the resulting surface from the parametric analysis on 

the hyperparameter priors. For the analysis, values of the priors vary from, 𝛼, 𝛽 ∈ [0.01 – 1] in 

100 equal intervals. As shown, with increasing values of both 𝛼 and 𝛽,	the validation perplexity 

value decreases. Only with low values of the hyperparameters, specifically at approximately 𝛼 ≤

0.4, does the result become sensitive, with a significant and steep increase in validation perplexity. 

Accordingly, the chosen model uses values of these hyperparameters with lower and less sensitive 

perplexity.  
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As defined earlier, the topics are represented by a vector, equal in length to the number of 

words in the entire corpus. The entire document corpus 𝐷, from the 16 transcripts, contains 𝑁 = 

741 distinct words after the aforementioned pre-processing steps, and thus represents the size of 

each topic vector. Each word in these topic vectors is assigned a probability value that appears in 

that particular topic. Therefore, these topics can be “visualized” by viewing the most probable 

words in the respective topics. Table 3.1 shows the ten most probable words for each of the 15 

resulting topics from the chosen topic model. Additionally, to illustrate a sample distribution 

within a topic, Table 3.2 shows the ten most probable words for Topic 11, along with their 

associated probabilities of occurrence. 
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TABLE 2: SAMPLE TOPIC SHOWING THE TEN MOST 
PROBABLE WORDS AND THEIR ASSOCIATED PROBABILITIES

Word Probability

crank 0.122

conveyor 0.063

peanut 0.062

belt 0.0621

fall 0.0606

roller 0.0484

final 0.0469

turn 0.0378

attach 0.0363

leave 0.032

TOPICS TOP 10 WORDS
Topic 1

(nPMI = 0.664) side, good, wait, top, bottom, draw, large, middle, view, kinda

Topic 2 
(nPMI = 0.862)

peanut, easy, manufacture, cost, remove, low, guess, metal, electricity,
plastic

Topic 3
(nPMI = 0.752)

peanut, hole, sort, big, hard, guess, bit, split, talk, apply

Topic 4
(nPMI = 0.783) design, kind, open, idea, cut, thing, work, nutcracker, slide, start

Topic 5
(nPMI = 0.742)

mmhmm, affirmative, time, push, crush, inside, constraint, work, fall, claw

Topic 6
(nPMI = 0.811) peanut, crack, kind, device, blade, size, roll, half, move, mechanism

Topic 7
(nPMI = 0.749) draw, circle, guy, minute, sheet, long, thing, mumble, handle, suppose

Topic 8
(nPMI = 0.850)

crush, small, piece, thing, separate, break, basically, pressure, force, move

Topic 9
(nPMI = 0.740) peanut, thing, hand, pull, press, clamp, spring, speaker, fall, hold

Topic 10
(nPMI = 0.686)

sieve, nut, funnel, high, add, shake, good, simple, amount, person

Topic 11
(nPMI = 0.742) crank, conveyor, peanut, belt, fall, roller, final, turn, attach, leave

Topic 12
(nPMI = 0.778) feel, wood, pretty, fine, flat, cheap, happen, edge, stuff, easily

Topic 13
(nPMI = 0.819)

basically, wheel, hmm, connect, power, process, spin, human, large, edge

Topic 14
(nPMI = 0.799) laughs, gear, lot, laugh, wire, pretty, box, gap, foot, version

Topic 15
(nPMI = 0.689)

replaces, nut, true, rotate, draw, screw, wall, sense, cylinder, call

TABLE 1: THE 15 EXTRACTED TOPICS WITH THE TEN MOST PROBABLE WORDS IN EACH TOPIC

TABLE 3.1: THE 15 EXTRACTED TOPICS WITH THE TEN MOST PROBABLE WORDS IN 
EACH TOPIC 

TABLE 3.2: SAMPLE TOPIC SHOWING THE TEN MOST PROBABLE WORDS 
AND THEIR ASSOCIATED PROBABILITIES 
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3.4.2 Comparing Topic Mixtures Between Managed and Unmanaged 
Teams 

 
After the topic model has been sufficiently trained, the model can be used to transform different 

documents into the topic space. This dimensionality reduction of discourse using the trained model 

produces a topic mixture profile for the input document. The topic mixture shows the probability 

for all fifteen topics appearing in that specific document. This initial analysis shows the topic 

mixtures of the entire transcripts themselves. That is, each of the eight managed and unmanaged 

teams’ transcripts are projected into the topic space, and the results shown in Figure 3.5. Each bar 

represents the average probability of the topic for both the unmanaged and managed teams. For 

example, in terms of Topic 1, the average probability that this topic appears across the managed 

teams’ discourse is 0.053, or 5.3%, while the average probability across the unmanaged teams’ 

discourse is 0.12, or 12%. 

 

FIGURE 3.5: TOPIC MIXTURES (TOPIC PROBABILITY DISTRICTIONS) FOR MANAGED 
AND UNMANAGED TEAMS’ TRANSCRIPTS (ERROR BARS SHOW ±1 S.E.) 

  

FIGURE 5: TOPIC MIXTURES (TOPIC PROBABILITY DISTRIBUTIONS) FOR MANAGED AND UNMANAGED 
TEAMS’ TRANSCRIPTS (ERROR BARS SHOW ±1 S.E.)
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Across the 15 different topics, using a two-tailed, non-parametric Mann Whitney U-test, 

four topics exhibit significant differences between the two team conditions: Topic 1 (p < 0.0047), 

Topic 10 (p < 0.028), Topic 11 (p < 0.05), and Topic 12 (p < 0.027). Topics 10 and 11 highlight 

an important finding from this analysis, which exhibit significantly higher probabilities of 

appearing in the managed teams’ discourse. These topics, visualized by their ten most probable 

terms (Table 3.1), contain more design components, for example: sieve, funnel, belt, roller, etc., 

with some of these functional components coming directly from the manager interventions. Thus, 

the managed teams are significantly more likely to discuss these functional components and are 

directly influenced by the manager interventions, which contain such functional concepts.  

 In addition to mapping the entirety of the transcripts into the topic space, five-minute 

discourse intervals can also be mapped (i.e., 𝑡 ∈ {0, 5}, 𝑡 ∈ {5, 10}, 𝑡 ∈ {10, 15}, 𝑡 ∈ {15, 20}, 

𝑡 ∈ {20, 25}, 𝑡 ∈ {25, 30}, where 𝑡 ∈ {𝑥, 𝑦} defines the interval from 𝑥 minutes to 𝑦 minutes in 

the experiment). Transforming to these smaller intervals provides a dynamic look at the topic 

distributions over the course of problem-solving, as well as the differences between the managed 

and unmanaged teams over these time periods. Figure 3.6 shows the difference in probability 

distributions over the topic space for those six specific time intervals. A positive difference 

indicates that the topic exhibits higher probability in the managed teams while a negative 

difference indicates higher probability in the unmanaged teams. 

Overall, computing the sum of the squared differences (SSD), the second half of the 

experiment shows greater disparities between the discourse of the managed and unmanaged teams, 

with the final interval exhibiting the largest, as shown in Table 3.3.  
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This result shows that the process managers create a larger impact during the second half of the 

experiment, as these intervals contain the largest overall differences in team discourse. Again, 

utilizing a two-tailed, non-parametric Mann Whitney U-test, several significant differences in each 

of the interval’s individual topics emerge between managed and unmanaged teams: five minutes 

(Topic 7 (p < 0.01) and Topic 8 (p < 0.01)), ten minutes (Topic 9 (p < 0.04)), fifteen minutes 

(Topic 3 (p < 0.01)), twenty minutes (Topic 1 (p < 0.05), Topic 10 (p < 0.01), and Topic 13 (p < 

0.01)), twenty-five minutes (Topic 1 (p < 0.01), Topic 8 (p < 0.05), Topic 10 (p < 0.02), and Topic 

12 (p < 0.04)), and thirty minutes (Topic 1 (p < 0.001) and Topic 12 (p < 0.02)). Topics 10 and 11, 

which both contain functional concepts, become increasingly more integral to the managed team 

members’ discourse as problem solving progresses, with Topic 10 becoming significantly more 

integral during the 20-minute and 25-minute intervals. On the other hand, Topic 1 becomes 

increasingly more integral to the unmanaged team members’ discourse, and this trend continues 

throughout the entirety of the experiment, becoming most significant in the final interval. 

Visualizing Topic 1 from Table 3.2 (the most probable words in the document), the topic focuses 

more on the abstract design process and structure rather than on concrete design functions, such as 

“draw,” “top,” “bottom,” “middle,” “view.” Linking this to the semantics of the design process, 

the discourse in this topic seems to be based on visualization and orientation, and contradicts the 

process manager strategies, whose focus near the end was to home their teams in on functional 

concepts and ideas. This significant focus, particularly at the end of the experiment when designs 

need to be past the abstract/conceptual stage, could have been one of the factors harming the 

Time (t – minutes) t ∈	{0, 5} t ∈	{5, 10} t ∈	{10, 15} t ∈	{15, 20} t ∈	{20, 25} t ∈	{25, 30}
Squared Difference 
(SSD) SSD =  0.015 SSD = 0.010 SSD = 0.011 SSD = 0.026 SSD = 0.021 SSD = 0.033

TABLE 3: SQUARED DIFFERENCES BETWEEN MANAGED AND UNMANAGED TEAMS’ DISCOURSE VIA 
THE TOPIC SPACE

TABLE 3.3: SQUARED DIFFERENCES BETWEEN MANAGED AND UNMANAGED TEAMS’ 
DISCOURSE VIA THE TOPIC SPACE 
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unmanaged teams, ultimately leading them to their inferior performance. However, further 

analyses to isolate this effect would be needed to determine the extent to which this focus 

detrimentally impacted the unmanaged teams.  

 
 

3.4.3 Detecting Effects of Manager Interventions 
 

The next analysis focuses on the effects of individual manager interventions on team discourse. 

As depicted in Figure 3.1, the topic mixture of the interval leading up to an intervention (𝐼1&$) is 

FIGURE 6: DIFFERENCE IN TOPIC MIXTURES (TOPIC PROBABILITY DISTRIBUTIONS) FOR MANAGED AND 
UNMANAGED TEAMS OVER TIME (ERROR BARS SHOW ±1 S.E.)
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FIGURE 3.6: DIFFERENCE IN TOPIC MIXTURES (TOPIC PROBABILITY DISTRIBTIONS) 
FOR MANAGED AND UNMANAGED TEAMS OVER TIME (ERROR BARS SHOW ±1 S.E.) 
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compared to the topic mixture of the interval immediately following an intervention (𝐼12$). The 

assumption of this analysis relies on the idea that the team members’ discourse should be more 

aligned with the intervention immediately following the manager intervention compared to before. 

For this analysis, 20 distinct interventions are studied, because: 1) the intervention is either a design 

keyword or a design component, or 2) the intervention is the specific design strategy intervention 

of, “Can you identify the assumptions, constrains, and goals of the problem?”, and 3) no other 

interruptions (i.e., constraints or manager interventions) occurred within the one minute prior to 

and following the intervention. The first two requirements ensure more topic-focused, concrete 

interventions. The remaining design strategies are more process related and thus unsuitable for 

study via the topic modeling framework. Accordingly, future work can consider how to 

computational detect these remaining design strategy interventions. The third criteria (that no other 

interruptions occur within the one-minute intervals), controls for other confounding variables in 

the analysis that could potentially cause additional topic shifts. As mentioned previously, these 20 

interventions came from a broader set of 52 total process manager interventions.  

For these 20 distinct interventions, the KL divergence computes the similarity between the 

topic probability distributions of the one-minute interval prior to the intervention (𝐼1&$) and the 

one-minute interval after the intervention (𝐼12$), both against the topic probability distribution of 

the intervention itself. Utilizing a two-tailed, non-parametric Mann Whitney U-test, results show 

that the topic mixtures in the minute following the intervention are significantly more similar to 

the intervention topic mixture than prior to the intervention (𝐼1&$= 0.69, 𝐼12$= 0.46, p < 0.005, 

effect r = 0.44, Ucrit = 127.5). This result indicates that the interventions generate a significant 

impact on the topic structure and design cognition of the design teams, leading them to direct the 

focus of their discourse on the provided topics of interventions.  
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To further corroborate this finding, an LSA model is also trained on the data. Similar in 

spirit to LDA, LSA instead utilizes singular value decomposition for dimension reduction as 

opposed to a probabilistic approach as LDA does. The semantic distances (via cosine distance, 𝐷5) 

between the one-minute discourse intervals, both before and after the interventions, are computed 

with the intervention documents. Across the same 20 interventions, the average cosine distance 

prior to an intervention is 𝐷5 = 0.67	with the average cosine distance following the interventions 

is 𝐷5 = 0.45, with the average change (using a temporal change with respective to experimental 

time, i.e., before intervention minus after intervention) in distance being ∆𝐷5 = 0.124. Again, the 

results indicate that the discourse immediately after an injected intervention is more similar 

(smaller 𝐷5) than prior to the intervention. 

A follow-up analysis provides further evidence that this similarity in topic mixtures is a 

direct effect of the interventions. In order to rule out the possibility that the design teams 

incrementally move closer and closer to a given topic over time on their own, the KL divergence 

between all three intervals’ topic mixtures with the intervention topic mixtures are computed. 

Thus, for the above notion to hold true, the divergence between the first interval’s topic mixture 

and the intervention topic mixture should be the largest, and then decrease through 𝐼1&$ and 𝐼12$. 

After computing the divergences, the changes between the before and after intervals of the 

intervention can be computed, as in Equation 9 and Equation 10:  

 

				𝛥$0 = 	𝐷(𝜃1#$%||𝜃1'*+2) − 𝐷(𝜃1#$&||𝜃1'*+2),     (9) 

 

				𝛥03 = 	𝐷(𝜃1#$&||𝜃1'*+2) − 𝐷(𝜃1#'&||𝜃1'*+2),     (10) 
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where 𝜃7#$%  is the topic mixture for 𝐼1&+ , 𝜃7#$&  is the topic mixture for 𝐼1&$ , 𝜃7#'&  is the topic 

mixture for 𝐼12$ , 𝜃7"138  is the topic mixture for the intervention, and 𝐷  is the KL divergence 

operator. For example, the first term in Equation 9 (𝐷(𝜃7#$%||𝜃7"138)) computes the KL divergence 

from 𝐼1&+’s topic mixture to the intervention’s topic mixture.  

Conceptually, Equation 9 shows whether the teams members’ discourse becomes more 

similar or dissimilar to the intervention prior to the intervention, while Equation 10 provides the 

same information, but over the intervention. Again, utilizing a two-tailed, non-parametric Mann 

Whitney U-test, results indicate that the changes between the intervals’ topic mixtures from 

Equations 9 and 10 are significantly different (∆c12= -0.14, ∆c23 = 0.23, p < 0.003, effect r = 0.48, 

Ucrit = 113.4). Not only are the average divergences significantly different, but they are opposite 

in sign. Consequently, in the two, one-minute intervals prior to the intervention, the team 

members’ discourse drifts away from that of the intervention, (i.e., becomes more dissimilar to the 

intervention), while during the one-minute intervals before and after the intervention, the team 

members’ discourse converges back to the intervention topic (i.e., becomes more similar to the 

intervention). Thus, the possibility that the design teams incrementally move closer and closer to 

a given topic over time is disproven, further corroborating that the topic shifts are caused directly 

by these manager interventions.  

 

3.5 Discussion 
The utilization of topic modeling for the framework in this chapter, to detect the effect of 

intervention on design team process, is motivated by several factors. The first, as mentioned 

previously, involves the post-study interviews conducted with the process managers. After 

querying the human managers on their rationale for intervening with their design teams, many 
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consisted of topic-related rationales. For example, one manager mentioned, “Uhh, they [the team] 

were getting really close to the idea and they had been really close to the idea of a blade for a long 

time, but it was just to push them a little bit farther in that direction. They had the drawing and 

were really close, but they started adding more complicated things that I did not really think would 

be helpful.” Additionally, another manager indicated, “They [the team] started talking, they were 

very close to the idea, wanting to have a sieve, but couldn’t come up with the idea themselves. 

They were trying to think of much more complicated solutions for that.” These quotes from the 

managers, representing just two of many, highlight the concept of topic pushes or topic shifts. 

Topic modeling provides an algorithmic way to computationally detect these changes and shifts in 

topic. Accordingly, the overarching question this research answers is whether these topics shifts 

can be computationally detected and reveal the plausible mechanism underlying the effectiveness 

of the managerial interventions. An additional motivation for utilizing topic modeling to answer 

the aforementioned research question lies in the algorithm output. The output of LDA, the 

illustrative technique used in this chapter, shows a probability distribution over a range of topics. 

Accordingly, this distribution provides a more holistic representation of the discourse data, as it 

maps team interactions along a spectrum of topics. This contrasts with other work in this area using 

manual/automatic coding, which maps lines of discourse to a single coding scheme.  

The topic model goes through an exhaustive training procedure, varying over a number of 

topics, optimization solvers, and training and test sets. For each number of topics and optimization 

solver, the model runs for 100 iterations (each data point in Figure 3.2 and Figure 3.3 averages 

across those 100 runs). The results for the two better performing optimization solvers, collapsed 

Gibbs sampling and approximate variational Bayes, show that the perplexity behaves a bit 

differently. While the validation perplexity decreases with an increasing number of topics for both, 
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collapsed Gibbs sampling continues to decrease while approximate variational Bayes reaches a 

plateau at around 15 topics. Collapsed variational Bayes starts to become noisy at 20 topics and 

greater. In addition to perplexity, pointwise mutual information (PMI), or topic coherence, is 

measured across the same range of topics. The two better fitting solvers in terms of validation 

perplexity are graphed in Figure 3.2, which shows the average PMI across the topics for a model. 

Both experience significant increases early on with smaller number of topics and start to settle 

between 12 and 18 topics. For the selection of the number of topics, this two-pronged approach 

acknowledges the limitations of perplexity when it comes to the perceptibility of topics via direct 

human inspection. While perhaps not the absolute optimal model, taking all these factors into 

consideration results in a pragmatically sufficient topic model for further analyses. A parametric 

analysis also tests the sensitivity of the hyperparameters describing the prior distribution, and a 

cosine similarity metric tests the overlap in the resulting topics.  

The goal of this chapter is not to compare the efficiencies or performance of different types 

of topic models and/or algorithms. Rather, the goal is to study the effects of managerial 

interventions via design discourse. Since there does not exist a ground truth for the discourse data 

(a prior knowledge of the exact topics to extract), it is difficult to formalize a precise measure of 

optimality or the “absolute best” model. The rigor of the model selection process for this chapter 

explores the space of models with LDA and selects the one that provides acceptable performance 

on the chosen metrics. Used consistently across conditions, the chosen model can then be used to 

analyze differences between teams and segments of discourse. In addition, a Latent Semantic 

Analysis (LSA) model further supports the overall findings in the convergence of discourse as an 

impact of the process manager interventions. Future work can explore how different modeling 

algorithms compare to LDA (besides LSA which already corroborates results in this chapter) and 
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perform on the discourse data. An additional opportunity can also explore training on larger 

corpuses such Wikipedia and Google News. 

With the model trained, two different analyses test whether the interventions can be 

detected within the design team discourse. The first (Section 3.4.2) maps entire transcripts, 

comparing the managed and unmanaged teams, along the topic space by outputting their associated 

topic mixtures (i.e., the topic probability distributions). Two interesting findings emerge. The first 

involves the topics most relevant to the design interventions, specifically Topic 10 and Topic 11. 

These two topics are significantly more probable in the managed teams, including more functional 

concepts and are more representative of the design component interventions. This result is 

validated by both 1) visualizing these two topics with their 10 most probable words, and 2) 

mapping the interventions themselves into the topic space (where topics 10 and 11 become more 

prominent). The second interesting finding involves Topic 2 – Topic 4. All three of these topics 

are nearly equal between the managed and unmanaged teams, and, apart from topic one, contain 

the highest probabilities across the space. These topics most pertain to the constraints and goals of 

the problem, so it is not surprising (and further validates the framework) that these topics appear 

highly and equally probable across both team conditions.  

A dynamic look at the topic mixtures across the experiment is also performed. Two 

interesting trends emerge from comparing the topic mixture space between the managed and 

unmanaged team conditions. Topics 10 and 11, which both contain more functional concepts, 

become increasingly more integral to the managed team members’ discourse throughout the 

experiment, particularly near the end. Furthermore, Topic 1 becomes increasingly more integral to 

the unmanaged team members’ discourse, reaching significance from the managed teams in the 

last two intervals of the experiment. The visualization of this topic shows more abstract, design 
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process related activity. Taken together, these two results point to managers guiding the solving 

process toward completion and refinement of the final designs, while the unmanaged teams tend 

to be more focused on design visualization. Future work can consider smaller intervals of the 

transcript, to gain more resolution in the evolution of the topic structures throughout problem 

solving.  

In order to ascertain the impact of the interventions, the second analysis (Section 3.4.3) 

performs a before and after investigation on 20 distinct manager interventions. Consequently, as 

shown in Figure 3.1, the one-minute intervals prior to an intervention and immediately following 

an intervention are mapped into the topic space. Using KL divergence to compare the similarity of 

probability distributions, the topic mixtures of these transcript intervals are compared to the topic 

mixture of the interventions themselves. Results reveal that, on average, the discourse becomes 

significantly more similar to the intervention immediately after the intervention. Taken together, 

these findings validate the detection of the topic shifts in discourse, which many of the managers 

claimed as their motivation for intervening. Of these 20 interventions studied, in four instances, 

the topic mixtures of the interval following the intervention actually become more dissimilar to 

the topic mixture of the intervention. These cases deserve a more thorough investigation. One of 

these cases has a near-zero change, while one of these four cases has a significantly larger 

difference than the others. In this particular instance, the manager directly perceives the 

intervention as ineffective, saying that “It really did nothing, not at all.” In this case, it is interesting 

to note consistency in how the manager perceives the intervention with the detection within the 

discourse, as the team members’ topic mixtures become more dissimilar immediately after the 

intervention. In general, deeper dives into these outlying cases can provide additional insight when 

considering the implementation and effectiveness of a real-time, intervention framework.  
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Overall, this chapter shows promise in a more automated approach to track design team 

discourse in real time. While Latent Dirichlet Allocation has been applied on smaller discourse 

such as tweets and micro tweets, recent developments and work in word embeddings, hierarchical 

topic models, and dynamic topic models have emerged for these purposes [132-134]. LDA was 

chosen for this specific chapter for its well-developed and wide utilization on texts of many sizes, 

accessibility, and previous application on discourse data. The comparison of LDA with these 

additional topic modeling algorithms lies outside the direct scope of this chapter (the main goal is 

not to find the most efficient topic modeling approach), but future work can consider the sensitivity 

of the corpus size and resulting topics with these other methods. Additionally, the domain, context, 

and process manager interventions for this problem are quite specific. The problem statement asks 

participants to design a peanut sheller, and over half of the process manager interventions are 

tailored towards this specific goal with the design components and design keywords. To fully 

understand the generalizability of this framework, analysis of different types of problem types and 

domains can be studied, as well as expanding beyond conceptual design problem solving. Finally, 

while this chapter identifies intended topics shifts in the behavior of the managed teams, additional 

experimental conditions need to be run to completely isolate this effect from all potential 

confounding variable, directly link this to overall more effective team performance, and explore 

other modes of process manager strategies.  

 

3.6 Summary 
This chapter utilizes a topic modeling approach to study the effects of process manager 

interventions via analysis of design team discourse. The transcripts, collected from the prior 

research study covered in Chapter 2, contain discourse of design teams solving a design problem 



Page 78  

under either the guidance or absence of a human process manager. The inspiration of this topic 

modeling perspective derives from post-study interviews conducted with the process managers. 

The goals of imbuing functional concepts into the discourse, and shifting to more relevant topics, 

serve as some of the primary motivations of the managers for intervening with the design teams.  

The topic modeling framework, in this instance Latent Dirichlet Allocation, can be 

leveraged to predict topic mixtures of the team discourse at different segments during problem 

solving. Training over several topics, optimization algorithms, and training and test sets, 15 topics 

emerge as the number of topics based on validation perplexity and pointwise mutual information 

metrics. After this exhaustive training procedure, and corroborative analyses with LSA, the topic 

model can now be used to transform different intervals of the transcripts into the topic space. The 

model outputs a probability distribution of the segments of transcripts over the 15 topics. This 

output allows a more holistic perspective on team discourse, as opposed to mapping to a single 

topic or coding scheme.  

In order to uncover the influence of the process managers, this chapter presents two 

analyses to detect the impacts of their interventions. First, the topic model framework is leveraged 

to predict the overall topic structures between managed and unmanaged teams. This includes both 

a holistic perspective, through the transformation of the entire transcripts themselves, as well as a 

more dynamic perspective, through the transformation of smaller, five-minute intervals over time. 

An additional analysis studies the direct impacts of the interventions by predicting the topic 

mixtures immediately prior to and immediately following the interventions. All these analyses 

corroborate similar findings, and show convergent effects on team discourse, and thus direct 

impacts of these inventions on design team cognition.  
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Design team interactions and discourse provide valuable insight into the state and cognition 

of designers, and effectively analyzing them can facilitate the design process. This research 

provides a computational perspective on not only studying design team verbalizations, but also 

leveraging communication to detect the effects of design interventions via shifts in topic mixtures. 

Overall, this chapter contributes towards the goal of an automated approach to track design team 

discourse in real time. Particularly as the collaboration of human and artificial intelligence 

designers to solve problems becomes more prevalent in practice, being able to computationally 

track the design state will be critically important to understand what types of interventions may be 

needed to maximize performance.  
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Chapter 4 : Modulating Distance of 
Design Stimuli to Design 
Progress3 

4.1 Introduction 
A wide variety of literature demonstrates the impactful nature of inspirational stimuli on design 

ideation, such as their ability to assist designers in developing solutions with improved 

characteristics (e.g., increased solution uniqueness and/or feasibility) [17, 135-137]. Additionally, 

the distance of the inspirational stimulus from the problem domain modulates its impact [88]. 

Typically, the “distance” of an inspirational stimulus refers to some measure of a stimulus’ 

proximity to the problem or design space currently occupied by the designer. When viewed on a 

continuum, the measure of distance of a stimulus is quantifiable using a variety of techniques, such 

as semantic similarity comparisons or the similarity between functional representations of designs. 

One can think of a “near” or “close” inspirational stimulus as one that comes from the same or a 

closely related domain as the problem. Conversely, a “far” stimulus comes from a distant domain. 

It has also been noted that near stimuli share significant surface level (object) features with the 

target, while far stimuli share little or no surface features [50]. However, a critical, and currently 

overlooked consideration impacting these findings is that the relative position of a designer 

solution within the design space is not static; it dynamically changes throughout problem solving.  

Since the distance of an inspirational stimulus is relative, a design solution evolving during 

ideation therefore directly determines what constitutes a stimulus as being either near or far. In 

 
3 The work presented in this chapter is published in:  

Goucher-Lambert, K., Gyory, J. T., Kotovsky, K., and Cagan, J., 2020, “Adaptive Inspirational Design 
Stimuli: Using Design Output to Computationally Search for Stimuli That Impact Concept Generation.,” 
ASME J. Mech. Des., 142(9), pp. 1–10. 
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other words, a far stimulus at the onset of design ideation is not necessarily the same distance as a 

far stimulus at the midpoint of design ideation. A goal of our research is to develop an 

individualized tool that enables designers to leverage the full power of inspirational stimuli during 

design ideation and problem solving. For this to be the case, such a tool should adapt to the current 

state of the designer in order to provide a stimulus that reflects the designers’ solution within the 

design space. However, most current approaches to selecting design stimuli are not responsive or 

adaptive to the dynamic state of designers. Typically, stimuli presented during cognitive studies 

are determined a priori. 

The work presented in this chapter contributes to and advances this ongoing research area 

by computationally selecting inspirational stimuli based upon a measure of the real-time status of 

designers’ completed activity. First, our approach determines the location of a designer’s solution 

within a larger design space halfway through an ideation session (referred to as their current 

“state”). To accomplish this, we employ a method of semantic similarity comparisons, 

computationally comparing the textual work of the designer to a pre-existing database of design 

concepts collected as part of a prior research study [135]. Using this information, an adaptive 

intervention is provided to the designer via a stimulus that is either near or far based upon the 

semantic similarity between all designs within the database and their current design. Thus, the 

overall goals of this chapter include: 1) determining whether or not the chosen method of design 

state detection and adaptive intervention is feasible (i.e., whether a design state can be measured 

in real-time), quantifiable (i.e., whether textual similarity can be used to provide near and far 

adaptive stimuli that are significantly different), and perceivable (i.e., can participants distinguish 

the differences between these categorizations) to designers, and 2) understanding the impact of 



Page 82  

adaptive stimuli on measurable design outcomes including the novelty, feasibility, and usefulness 

of design concepts.  

 

4.1.1 Analogical Reasoning in Engineering Design 
 
Prior work on the role of inspirational stimuli has predominately focused on “analogical reasoning” 

applied to design. However, there is currently debate as to whether this term is always appropriate 

for the design contexts in which it is used [138]. Formally, analogical reasoning is the process of 

retrieval and mapping of relations or information from a source to a target [139–141]. In this 

chapter, the term “inspirational stimulus” is utilized to more broadly encompass other types of 

stimuli intended to support design ideation that may not satisfy both of these conditions (retrieval 

and mapping). For example, a prior solution provided to a designer may enhance the likelihood of 

retrieving a useful concept from memory but does not guarantee a direct mapping incorporating 

aspects from the stimulus in a new solution for the problem.  

The relationship between the distance of inspirational stimuli and solution outcomes is also 

well studied. One intriguing result is the notion of a “sweet spot” (between near and far) of distance 

from a stimulus to the problem domain in which a stimulus is most impactful [88]. Because 

defining a sweet spot for a given research problem is an open area of research itself, most research 

investigations rely on the comparison between near and far stimuli. Recently, Goucher-Lambert 

and Cagan analyzed the impact of stimuli distance on the novelty (i.e., uniqueness), feasibility, 

and usefulness of solution concepts across a wide variety of conceptual design problems from 

literature [135]. That work revealed that near stimuli improve the usefulness and feasibility of 

design solutions compared to a control, whereas far stimuli improved the novelty of solutions. 

Additionally, separate work by Goucher-Lambert et al., utilized functional magnetic resonance 
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imaging (fMRI) to study neural activation patterns underpinning generating design concepts with 

and without inspirational stimuli of varying distances [8]. In that work, inspirational stimuli 

defined as close to the problem space activated a unique set of brain regions supporting memory 

retrieval and solving problems via insight (rather than by analysis) [18]. Across these two studies, 

closer stimuli were found to more reliably associate with positive ideation outcomes based on both 

behavioral and neuroimaging data. Other researchers have also found supporting evidence that 

conceptually near stimuli may in fact lead to better design outcomes than far stimuli [142]. As an 

additional contribution, the work presented in the current chapter explores the impact of 

inspirational stimulus distance on design outcomes, building on the aforementioned findings. 

 

4.1.2 Finding and Applying Design Interventions 
 

When should inspirational stimuli be provided to aid designers? Previous research has 

demonstrated that interventions are best introduced to problem solvers when there exists an open 

goal (i.e., when the solver has an understanding of the goal(s) they are trying to accomplish, but 

have not yet become fixated on a specific solution) [143–146]. Based on this, it would appear that 

inspirational stimuli should be presented at some point during problem solving before the designer 

has become fixated or has reached an impasse. However, the difficultly lies in determining the 

time frame that someone has reached such an impasse.  

Instead of trying to provide a designer with an inspirational stimulus at the correct moment, 

a different approach allows designers to search for stimuli on their own using structured inputs. 

One such example are ontology-based frameworks where designers can search for text or image-

based stimuli by specifying the object (e.g., chair) and function (e.g., to sit) of their ideas [147–

149]. Recently in the Human and Computer Interaction (HCI) community, computational tools 
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have been developed that allow for semi-directed analogy mining. Past approaches at solving this 

problem included word-embedding models such as GloVe [150], and an analogical search engine 

by Gilon et al., which looks for distant analogies for specific aspects of a product or design [151]. 

Additionally, Chan et al. developed an approach termed SOLVENT, which draws on pre-

annotations by humans regarding different features of possible stimuli (e.g., purpose, mechanisms, 

findings) and makes connections based upon semantic representations [152]. While this work is 

promising, future work in this area is necessary to reduce the burden on designers using these tools 

to search for relevant analogous examples. The current approach differs from these past 

contributions by trying to determine design stimuli based on unstructured rather than structured 

inputs. 

Another approach is to recruit the resources of an expert to help guide a designer towards 

unexplored areas of the design space. One initial step towards real-time management was an 

empirical study by Gyory et al., that investigated the characteristics of process management which 

are most effective for design teams [91]. In that exploratory work, a human process manager 

oversaw the problem-solving process of a collaborative design team solving a conceptual design 

problem. The managers tracked the state of the designers within the team, and freely intervened 

with prescribed stimuli (e.g., design components, select keywords, and/or design strategies) to 

affect the solving process when deemed necessary. These interventions adapt to a teams’ state, 

since the managers provided stimuli they felt were necessary in reaction to the design teams’ 

activity. Teams that were under the guidance of these process managers significantly outperformed 

teams that were not in terms of the quality of their solution output. The work by Gyory et al. 

exemplifies the benefits of real-time management and intervention in design teams. In the current 
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chapter, we build on this idea further by computationally providing real-time adaptive stimuli 

through semantic similarity comparisons. 

 

4.1.3 An Approach to Compare Design Content: Latent Semantic 
Analysis 
 

In order to conduct the semantic similarity comparisons that determine designers’ current state, as 

well as select the specific adaptive stimulus to provide them, Latent Semantic Analysis (LSA) was 

used. LSA computes the semantic similarity between text-based corpuses and has been shown to 

be well suited to a variety of semantic comparisons relevant to design. For example, LSA has been 

used to quantify the level of semantic convergence in language-based communication between 

members in design teams [9, 64], uncovering patterns in design repositories such as the US patent 

database [89], and visualizing the similarity between existing design concepts within a pre-defined 

design space in a network model [153]. 

LSA uses singular value decomposition (SVD) for dimension reduction [65]. Within this 

reduced space, semantic patterns can be uncovered between text-based documents by tracking the 

co-occurrence of words (represented as vectors). The cosine similarity between document vectors, 

which analytically computes semantic similarities, varies between zero (if the vectors are 

completely orthogonal and exhibit no similarity) and one (if the documents are identical). The 

current chapter leverages this analytical power of LSA to select design artifacts (inspirational 

stimuli) semantically near and semantically far from the designer’s current concept. The design 

concept is input as an unstructured description of what the designer believes is currently their best 

design solution. 
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4.1.4 Approaches for Measuring and Evaluating Conceptual Designs 
 

In order to study the impact of the introduced adaptive design intervention, this chapter relies on 

evaluations performed by trained expert raters. One such evaluation performed by expert raters is 

to assess the overall design quality of each conceptual design. Design quality is a prominent 

measure throughout the design literature, with the most common definition of design quality being 

what Shah, et al., term "a measure of the feasibility of an idea and how close it comes to meet the 

design specification" [63]. In their popular paper on metrics for ideation effectiveness, Shah, et al., 

represent quality as both tangible, physical characteristics of a design, as well as the functional, 

performance metrics, describing the nature of designs. Ahmed et al., provide a similar, but more 

precise definition for the utility of a design as: “a measure of the designs’ performance and can 

depend on multiple domain dependent factors like functionality, feasibility, usefulness, impact, 

investment potential, scalability, etc.” [154]. Some works have used less specific derivatives. For 

example, Hu and Reid attribute quality to be characteristics of "the physical property, user 

adoption, and cost-benefit ratio" [155]. Although this list is not exhaustive, it is clear that most, if 

not all, definitions realize quality as a multi-dimensional construct; some definitions focus on 

function, some focus on form, and others an amalgamation of the two.  

How then, are raters supposed to accurately assess such a metric when attempting to take into 

consideration, or even deduce, its various sub-dimensions? The subjectivity of measuring quality 

may very well stem from its dimensional and semantic uncertainty [156]. Furthermore, without a 

more discrete hierarchy, it is possible for raters to internally weigh the underlying sub-dimensions 

differently during assessments, leading to yet another source of subjectivity. Motivated by this 

concern, the current chapter explores the use of a new measure to represent the overall innovative 

potential of conceptual designs. Unlike quality, this new measure consists of three distinct sub-
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dimensions (feasibility, usefulness, and novelty) and directly describes how they should be 

combined.  

While various forms for design quality exist, they undeniably have certain dimensional 

commonalities. Even from the few definitions mentioned above, both Shah, et al., and Ahmed, et 

al., consider feasibility, or the level at which an idea is physically realizable [157]. Additionally, 

any design artefact must be able to satisfy its intended goal and meet all the design specifications 

and engineering constraints. Otherwise, the concept would not be useful in any form or function. 

Evidently, these two sub-dimensions (feasibility and usefulness) are commonly considered factors 

in the various definitions of design quality, even if not explicitly termed by researchers as such.  

Novelty is a less common design metric to associate with quality. Still, many researchers 

consider novelty in terms of ideation effectiveness and divergent thinking [63], with a common 

definition being the uniqueness of a design within a pre-defined set of concepts [158]. Important 

in ideation applications, novelty can lead to a higher probability of producing higher quality 

solutions via expanding the design space. In terms of product deployment, the novelty of a design 

can set products apart from each other, especially when products are similarly effective in their 

function. Therefore, novelty is a facet of innovation in an increasingly competitive marketplace, 

and a dimension considered moving forward [159,160].  

A previous study correlated quality with each of these dimensions (feasibility, usefulness, 

and novelty), on a corpus of design concepts originating from a cognitive experiment with 1106 

designs [135]. The concepts represented solutions to 4 distinct design problems (electricity: n = 

254, phone: n = 290, joint: n = 276, surface: n = 286). External evaluators, all Mechanical 

Engineering graduate students, rated the designs on the metrics of feasibility, usefulness, novelty, 

and quality, each on a range from zero to two. The interclass correlation coefficient was calculated 
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on a subset of the designs for each design metric separately (feasibility: ICC = 0.77, usefulness: 

ICC = 0.65, novelty: ICC = 0.71, quality: ICC = 0.50). All resulted in good or excellent 

consistency among raters, except for quality, which exhibited only a fair consistency. Correlations 

between dimensions, e.g., quality/feasibility (r = 0.43) and quality/usefulness (r = 0.73) were 

moderate to strong. However, there was no correlation between novelty and quality (r = 0.04). 

The latter result is not surprising, as the authors do not expect novelty, when considered by itself, 

to represent quality (i.e., novel designs may be poor designs). But as mentioned previously, novelty 

is still an important dimension for innovation. Thus, a focus of this chapter is on defining a new, 

and aptly named, measure for design potential as design innovation, I, which considers the 

feasibility, usefulness, and novelty of a design concept. 

 

4.2 Methodology 
To test the feasibility and impact of utilizing LSA to determine inspirational stimuli in response to 

the current design state of the designer, a human cognitive experiment was developed. The 

experiment explored the effects of two different LSA-determined distances of inspirational stimuli 

(near vs. far), as well as a control condition where participants were not provided with any 

stimulus. Their intermediate and final designs were evaluated across several outcome measures of 

interest, including feasibility, usefulness, and novelty.  

 

4.2.1 Participants 
 
Sixty-six participants (17 male, 49 female) were recruited for the cognitive study using a call for 

participation at Carnegie Mellon University and offered $10 compensation for their participation. 

All participants read, agreed to, and signed a consent form. Demographics consisted of both 
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university undergraduate and graduate students from a variety of majors and research interests 

including Engineering, Fine Arts, Computer Science, and Social Sciences. Data from six 

participants became corrupted during data collection, and thus excluded from the analysis.  

 

4.2.2 Experiment Overview 
 
Participants recruited for the cognitive study completed the 30-minute experiment, outlined in 

Figure 4.1. For the entirety of the experiment, participants interacted with a graphical-user 

interface (GUI), coded in MATLAB, which displayed the experiment instructions, the problem 

statement, and a countdown timer during the problem-solving blocks. After reading through the 

experiment instructions, participants received the problem statement, which asked them to think 

of solutions to “minimize accidents from people walking and texting on a cell phone” 

(abbreviated). This design problem, adopted from work by Miller et al. [162], has been previously 

utilized by a portion of the current research team in similar concept generation and design ideation 

tasks [18, 135, 153,161]. 

 

After reading through the experiment instructions and problem statement at their own pace, 

participants began generating solution concepts using paper and a digital pen (Neo Lab M1). The 

FIGURE 4.1: OUTLINE OF COGNITIVE STUDY 
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digital pen operated in the same way as a traditional pen but tracked pen strokes using a built-in 

camera (not analyzed in this study). Participants had 10 minutes to ideate and were encouraged to 

generate as many concepts as they wanted using any combination of textual and/or pictorial 

representations. At the end of the of the first 10-minute problem-solving block, the GUI instructed 

participants to type a 75-word textual description of one design solution in response to the 

following prompt: “Please provide what you consider to currently be your best solution”. Using 

this textual description of each participant’s current solution, LSA was run to make semantic 

comparisons between their solution text document and each of the 115 existing stimuli text 

documents within the design database. The resulting [116 x 116] output matrix from the SVD 

algorithm was unique to each participant, as it was comprised of both the 115 design stimuli 

(determined a priori), as well as a participant’s newly developed design.  

A balanced experimental design separated participants into one of three experiment 

conditions: near or far inspirational stimuli, and control, with 20 participants in each condition. 

Participants only saw one experimental condition during the experiment. The participants in either 

of the inspirational stimulus conditions (near or far), were immediately, in real time, provided with 

an inspirational stimulus for review (under 3 seconds of computational time). These stimuli were 

modulated based on their current design state. For the near inspirational stimulus condition, the 

stimulus provided was the closest stimulus within the design database (115 possible stimuli) to 

where they were at that point, based on the largest cosine similarity from LSA. In the far 

inspirational stimulus condition, the furthest stimulus within the database was given (lowest cosine 

similarity). Participants in the control condition immediately transitioned back to ideating after 

completing the write-up of their best design from the first ideation session. Finally, after the second 

10-minute ideation period, all participants completed a write-up of their final “best” design 
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solution. LSA was again performed between this final design write-up and the 115 set of design 

stimuli for data analysis purposes. The two different LSA comparisons between a participant’s 

midpoint or final design and the 115 design stimuli allowed for a way to computationally measure 

the impact of the design stimuli on problem-solving behavior. By computing the semantic distance 

between participants’ designs and the fixed stimulus space, a sense of the relative movement of a 

designer within this design space was extracted.  

 

4.2.3 Design Database 
 
The design database contained 115 possible inspirational stimuli adapted from prior work by 

Goucher-Lambert and Cagan [135]. During the prior research study, individuals generated 386 

solutions for the same design problem employed in the current chapter. All of the 386 hand-written 

solutions contained a mixture of text annotations, text descriptions, and drawings. Three 

mechanical engineering Ph.D. students, previously trained to evaluate outcome measures (e.g., 

novelty, feasibility, and usefulness) of the same designs, transcribed descriptions of the content for 

a random subset of 115 of the 386 design solutions. Each transcription contained a minimum of 

75 words. Initial pilot testing identified this word count threshold for each document as being 

necessary in order to obtain meaningful differences in LSA comparisons. Each of these 115 

documents (text descriptions) became one of the potential inspirational stimuli. In the prior work, 

all 115 inspirational stimuli were evaluated for their novelty, feasibility, and usefulness [135]. 

Consequently, this study utilized these same rating criteria to make assessments regarding the 

influence of stimuli on design solution outcomes.  
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4.2.4 Analysis of Design Solutions Generated During the Cognitive 
Study 
 
External raters evaluated both the intermediate designs (D1, after the first 10-minute ideation 

period) and the final designs (D2, after the second 10-minute ideation period) on the following 

outcome measures to understand the impact of the computationally selected inspirational stimuli: 

1. Feasibility: rated on an anchored scale from 0 (the technology does not exist to create 

the solution) to 2 (the solution can be implemented in the manner suggested). 

2. Novelty: rated on an anchored scale from 0 (the concept is copied from a common and/or 

pre-existing solution) to 2 (the solution is new and unique). Of note: “novelty” is 

considered as the uniqueness of the solution with respect to the entire solution set. 

3. Usefulness: rated on an anchored scale from 0 (the solution does not address the prompt 

and/or consider implicit problem constraints) to 2 (the solution is helpful beyond status 

quo). 

4. Quality: rated subjectively by each rater on a scale from 0 (low) to 2 (high).  

Two trained mechanical engineering Ph.D. candidates, both specializing in design methodology, 

performed all ratings for solution characteristics. The intraclass correlation coefficient (ICC) 

assessed the consistency between the two design raters using a 25% subsample of the entire dataset. 

The ICC values for novelty (0.78), feasibility (0.65), and usefulness (0.79) were all good or 

excellent [67]. The ICC value for quality was 0.51 (moderate) and therefore excluded from further 

analysis for being markedly lower than the other measures. 

In addition to the metrics noted, participants also provided self-ratings regarding the 

perceived usefulness and relevance of the provided inspirational stimuli. This information was 

collected at the end of the experiment, after participants had already written the description of their 

final design. Participants provided a self-rating for each metric ranging from 1 (low) to 5 (high). 
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The goal in collecting these ratings was to investigate whether or not the computationally 

determined levels for the inspirational stimuli (near vs. far) aligned with participants’ perceptual 

notion of these categories. Participant self-ratings were not compared to expert evaluations, and 

therefore a separate scale with a wider range was utilized. 

 

4.2.5 Design Innovation Measure: A Measure to Assess the Overall 
Potential of a Design Concept 
 
In addition to assessing the underlying sub-dimensions of the designs (e.g., feasibility, usefulness, 

novelty), it is important to holistically determine an idea's overall potential. To explore the overall 

“goodness” of the designs in the current research study, the research team adopted the design 

innovation measure, I, for conceptual design assessment. Design innovation, I, is an encapsulating 

measure for the overall goodness of a concept, leveraging more well-defined design attributes. 

These include the feasibility (F), usefulness (U), and novelty (N) of a design, all of which are 

important for innovation. Accordingly, this measure was defined as follows: 

    𝑰	 = (𝑭	 ∙ 	𝑼) + 𝑵 .    (11) 

To determine the accuracy and robustness of these underlying sub-dimensions to the overall 

goodness of concepts, additional formulations of the innovation measure, I, were explored in 

relation to quality (Table 4.1). Correlations were run between the design innovation measure and 

quality, not to necessarily equate the two measures, but to uncover if they follow similar trends. 

The variables F, U, and N represent the same sub-dimensions as in Equation 11, and the 

weights, w1, w2, and w3 are determined from a Principal Component Analysis (PCA) run on the 

rating data. The first formulation placed a greater penalty on feasibility and usefulness as opposed 

to novelty (i.e., if either F or U scores a 0, the entire (F-U) part of that formulation becomes 0). 

This formulation was motivated by the correlations discussed in Section 3.1.4 (i.e., feasibility and 
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usefulness being more significant and robust than novelty). Variants two (Equation 12) and three 

(Equation 13) both assumed equal weighting for the three sub-dimensions, and, consequently, 

equal importance to innovative potential. However, the second variation allowed for more 

resolution in the score range and thus also when comparing designs. The multiplicative nature of 

Equation 13 yielded a larger penalty for scoring zero on any one of the sub-dimensions and 

introduces a non-linearity for comparable increases to Equation 12. Equation 14 presented a linear 

combination of the dimensions, weighted by the importance of each in a reduced dimensional 

space obtained by performing PCA. Justification for the chosen formulation (Equation 11) is 

presented later in the results section.  

TABLE 4.1: FORMULATIONS OF DESIGN INNOVATION MEASURE, I 
𝑰	 = (𝑭 ∙ 𝑼) + 𝑵      (11) 

𝑰	 = 𝑭 + 𝑼+𝑵      (12) 

𝑰	 = 𝑭 ∙ 𝑼 ∙ 𝑵       (13) 

𝑰	 = 𝒘𝟏𝑭 +	𝒘𝟐𝑼+𝒘𝟑𝑵  (14) 

 

4.3 Results 
The resulting data from the methods outlined in Chapter 4.2 were analyzed to determine the impact 

of the computationally adaptive stimuli on design solution output. Specifically, the research 

objectives include: 1) to determine whether the computational method of design state detection 

and adaptive interventions via LSA was feasible (i.e., whether the design state can be measured in 

real-time), quantifiable (i.e., whether textual similarity can be used to provide near and far adaptive 

stimuli that are significantly different), and perceivable to designers (i.e., can participants 

distinguish the differences between these categorizations), and 2) to understand the impact of these 

adaptive stimuli on overall design outcomes (e.g., based on the design innovation measure score), 
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and across final design sub-dimensions, including the novelty, feasibility, and usefulness of 

solutions. 

 

4.3.1 Near vs. Far Inspirational Stimuli 

The first objective involves determining the utility and validity in using Latent Semantic Analysis 

to monitor a designer’s state. One way to verify the effectiveness of LSA is through examining 

whether or not the computational approach produced distinct categorizations of the inspirational 

stimuli provided to the designers. This categorization is determined using the two separate 

approaches described next. Figure 4.2 illustrates examples of a participant’s midpoint design 

description and the stimulus they were provided with, in both the near and far condition. 

FIGURE 4.2: EXAMPLE MIDPOINT DESIGNS AND RESPECTIVE PROVIDED 
STIMULI FOR BOTH THE NEAR AND FAR CONDITION 
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The first approach to verify the effectiveness of LSA compares the average semantic 

similarity between the stimuli provided in each experimental condition with the state (midpoint 

design) of that participant. From this analysis, a clear separation between the near and far 

inspirational stimuli emerges (Figure 4.3). Near inspirational stimuli have an average cosine 

similarity of 0.54, whereas the far stimuli have a much lower similarity of 0.28 (p << 0.01). In 

other words, near inspirational stimuli, as intended, are much closer to the (real-time) calculated 

state of the designer than the far stimuli. This verified that the quantitative method for determining 

stimulus distance worked appropriately and created substantially difference near vs. far categories.  

 

The second approach leverages ratings-based data collected at the end of the experiment 

from participants. Each participant was asked how: 1) relevant their provided inspirational 

stimulus was to their current design on a 1 (not relevant) to 5 (very relevant) Likert scale and 2) 

helpful their provided stimulus was in developing a solution in response to the problem, again on 

FIGURE 4.3: THE MEANING OF NEAR AND FAR STIMULI: TWO EXPERIMENTAL 
CONDITIONS WERE DEFINED USING LATENT SEMANTIC ANALYSIS AND THE 

CONDITIONS WERE SIGNIFICANTLY DISTINCT FROM ONE ANOTHER (BOXES SHOW 
UPPER AND LOWER QUARTILES) 
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a scale from 1 (not helpful) to 5 (very helpful). Results indicate that participants perceive near 

inspirational stimuli as significantly more relevant to their intermediate design solutions than the 

far stimuli (near: μ = 4.225 ± 0.16 S.E., far: μ = 3.35 ± 0.36 S.E., p < 0.02, d = 0.70). However, 

participants only found near field stimuli to be marginally more helpful during problem solving 

compared to the far stimuli (near: μ = 3.5 ± 0.27 S.E., far: μ = 3 ± 0.35 S.E., p < 0.13, d = 0.36). 

These results validate the computational approach to identify significantly different 

categorizations of near and far stimuli in response to the current state of designers. Furthermore, 

these categorizations match the perceived distances of the designers. However, designers perceive 

both conditions of stimuli as equally helpful to problem solving. 

 

4.3.2 The Impact of Near vs. Far Inspirational Stimuli on Design 
Problem Solving 
 
The most important goal of this chapter involves understanding how these computationally derived 

stimuli affect design ideation. The overall impact of each stimulus on a participant’s design output 

can be measured in a variety of ways. In this chapter, the two methods employed are: 1) the amount 

of convergence on the stimulus by the designer and 2) the designer’s relative movement within the 

design space.  

The amount of convergence refers to the semantic similarity between the final design and 

the provided stimulus for both the near and far conditions based upon the LSA cosine similarity 

value (Figure 4.4.A). From this analysis, results indicate that participants provided with 

semantically near stimuli converged significantly closer to those stimuli by the end of the 

experiment (p << 0.01, mean cosine similarity values: near: μ = 0.33, far: μ = 0.13). However, 

while participants’ designs remain more similar to near stimuli at the end of the experiment, far 

stimuli may have had a larger impact in the amount of participants’ "movement" within the design 
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space. A relative measure of the overall distance was determined by calculating both the semantic 

similarities between participants’ first design and the stimulus, as well as the final design and the 

stimulus, and taking the difference between them (Figure 4.4.B). The distances were calculated 

relative to the design stimuli themselves, because in order to compare this distance across 

participants, there needed to be a common reference point across participants. The design stimuli 

served as these common points of reference within the design space. From this analysis, there is a 

significant difference between the two conditions (p < 0.016). Participants provided with far 

inspirational stimuli move a greater distance in the design space from the beginning to the end of 

the design ideation period (near: μ = 0.07, far: μ = 0.12). 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.4: THE IMPACT OF INSPIRATIONAL STIMULI ON FINAL DESIGNS. THE LEFT SIDE OF 
FIGURES 4(A) AND 4(B) CONCEPTUALLY ILLUSTRATES THE DISTANCE MEASURED IN THE 

ACCOMPANYING PLOTS. A) PARTICIPANTS’ FINAL DESIGN CONCEPTS ARE MORE SIMILAR TO 
THE STIMULUS WHEN PROVIDED A NEAR STIMULUS; (B) FAR INSPIRATIONAL STIMULI LED TO 

MORE RELATIVE MOVEMENT (I.E., DISTANCE) WITHIN THE DESIGN SPACE.  
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4.3.3 The Impact of Near vs. Far Inspirational Stimuli on Sub-
Dimensions of Final Designs 
 
In order to understand the impact of different types of computationally derived inspirational stimuli 

on sub-dimensions of final designs (novelty, feasibility, and usefulness), the expert ratings of these 

design metrics are used. As discussed previously, two trained experts evaluated both the midpoint 

(D1) and final design solution (D2) concepts produced by each participant during the cognitive 

study. To completely understand the impact of the stimuli on performance, one needs to consider 

where a designer ended up (i.e., their D2) in reference to where they started prior to an intervention 

(i.e., their D1). By analyzing performance in this manner, one can see if providing a near or far 

stimulus is beneficial or detrimental to problem solving. Using these ratings, the difference 

between the final design and the prior design is calculated separately for each of the sub-dimension 

metrics (novelty, feasibility, usefulness), and each experimental condition (Figure 4.5). Results 

indicate that there is no significant difference between the conditions in terms of novelty. In other 

words, providing a participant with a near, far, or no stimulus did not significantly increase or 

decrease the rarity of their designs from D1 to D2. However, intervening with semantically near 

inspirational stimuli significantly increases the feasibility of designs compared to providing no 

stimulus (p = 0.05, d = 0.5). Additionally, providing semantically far stimuli significantly 

decreases the usefulness of designs (p < 0.01, d = 1.1).  
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4.3.4 Exploring Multiple Formulations of the Design Innovation 
Measure  
 
Correlations between design quality and design innovation for the different formulations of the 

design innovation measure (Table 4.1) are presented in Table 4.2. The results in Table 4.2 are 

separated based upon the 4 distinct design problems explored in prior work [135]. Specifically, 

these include: “A device to remove the shell from a peanut in areas with no electricity” (electricity), 

“A way to minimize accidents from people walking and texting on a cell phone” (phone), “A device 

to immobilize a human joint” (joint), and “A device that disperses a light coating of a powdered 

substance over a surface” (surface) [136,162-164]. The average sub-dimensional weights found 

through Principal Component Analysis (which was run separately on the three different design 

problems) was: w1 = 0.77, w2 = 0.54, and w3 = 0.37. Overall, the chosen formulation of Equation 

11 shows the highest correlation between innovation and quality on all 4 design problems. Along 

with its simplicity, Equation 11 is the chosen design innovation measure: 

               𝑰	 = (𝑭	 ∙ 	𝑼) + 𝑵	.				 	 	 	(11) 

FIGURE 4.5: MEAN DIFFERENCE BETWEEN FINAL (D2) AND INTERMEDIATE (D1) 
DESIGNS FOR THREE METRICS, SEPARATED BY EXPERIMENTAL CONDITION 
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However, it should be noted that all formulations exhibit fairly strong correlations, which supports 

both the accuracy and robustness of the three chosen sub-dimensions. Furthermore, when taken 

together, they are representative of the overall goodness of designs and possess merit as a useful 

design measure, without the burden of the less consistent quality evaluation.  

 
TABLE 4.2: CORRELATIONS BETWEEN QUALITY AND FOUR FORMULATIONS OF THE 

DESIGN INNOVATION MEASURE 
 

 

 

 

 

 

 
4.3.5 The Impact of Inspirational Stimuli on Overall Final Design 
Innovation 
 
An alternate method to examine the impact of the inspirational stimuli is to examine whether a 

specific intervention led to an overall better final design (instead of focusing on sub-dimensions 

as described previously). Recall that one of the design metrics originally rated by the external 

evaluators was the quality of designs. However, the ICC value for quality was much lower than 

the other design metrics (feasibility: ICC = 0.65, novelty: ICC = 0.78 usefulness: ICC = 0.79, 

quality: ICC =0.51). Consequently, due to this inconsistency between raters, quality cannot serve 

as a consistent measure of impact of the inspirational stimuli. Instead, the design innovation 

measure I is used to holistically encapsulate the goodness of design concepts.  

Equation 

Problem 
(1) (2) (3) (4) 

Electricity 0.60 0.56 0.46 0.57 

Phone 0.80 0.74 0.71 0.73 

Joint 0.72 0.58 0.044 0.71 

Surface 0.64 0.60 0.40 0.62 
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Utilizing the design innovation measure, the overall innovative potential of the design 

stimuli, I(DS), and both participants’ intermediate and final designs (I(D1) and I(D2), respectively) 

are calculated (Equation 15). Similar to the analysis presented previously (Figure 4.5), 

performance is assessed by examining the difference in innovation scores between D1 and D2. 

Again, the results support a similar finding, with no significant effect in the change of innovation 

scores (either increase or decrease) in relation to the stimulus condition.  

However, it is not completely accurate to only consider whether a stimulus is near or far 

when measuring its impact on problem solving. One limitation to the above analysis is that it does 

not consider the quality of the provided stimuli. For example, if a participant received a poor-

quality stimulus, regardless of its distance, one should not necessarily expect their final design to 

improve. Because quality is hard to consistently assess, the design innovation measure is again 

used to represent the overall goodness of stimuli. Here, the different stimuli that designers received 

during the experiment varied significantly regarding this measure. Consequently, a follow-up 

analysis is performed, which considers the innovation score of the stimuli:  

𝐶𝑜𝑟𝑟	([𝐼(𝐷+) −	𝐼(𝐷$)], [	𝐼(𝐷4) −	𝐼(𝐷$)]).	      (15) 

Equation 15 measures the correlation between a participant’s final design innovation score (I(D2)) 

and the innovation score of the received stimulus (I(DS)), both in reference to their intermediate 

design solution (I(D1)). From this analysis (Figure 4.6), it can be seen that an inspirational stimulus 

with a higher innovation score, relative to the intermediate design, is significantly correlated with 

a better final design (i.e., an increase in I from D1 to D2; r(38) = 0.67, p < 0.001). To ensure this 

correlation was independent of the bias introduced via the transformation in Equation 15, an 

additional analysis was performed. First, 1000 random samples for each of I(D1), I(D2), and I(DS) 

were drawn from a uniform distribution and fed through Equation 15 (rbias). Next, 1000-tuple 
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samples (each tuple set containing an I(D1), I(D2), and I(DS)) were taken from the experimental 

data (with replacement) and fed through Equation 15 (rexp). A Fisher z-transformation showed that 

the empirically derived correlation value (rexp) was stronger and significantly different from rbias 

(p << 0.001), revealing the independence of the result from any introduced bias. Using the 

aforementioned distribution to determine rexp, the following correlation value and 95% confidence 

interval were obtained: rexp = 0.67, 95% CI [0.63, 0.70]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The positive correlation between the innovation score of the stimulus and final design is true 

regardless of whether a participant received a near or far stimulus. Conversely, a participant that 

received a less innovative stimulus is more likely to produce a less innovative final design. These 

results provide an interesting, tangential perspective. When intervening during problem solving 

via inspirational stimuli, adapting stimuli based on relative quality (as measured here by design 

innovation, I) highly correlates with final design outcomes. 

FIGURE 4.6: THE OVERALL INNOVATIVENESS OF THE PROVIDED INSPIRATIONAL 
STIMULI IS PREDICTIVE OF THE FINAL DESIGN OUTCOME 
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4.4 Discussion 
Overall, this chapter provides an initial step toward real-time intervention during engineering 

design problem solving. Unlike other work that provides inspirational stimuli for designers a priori, 

the methods introduced here respond dynamically to an evolving state of participants’ design 

output. These stimuli are related design solutions sourced from a pre-existing database; they are 

intended to increase designers’ ability to recall useful ideas from memory that may aid in their 

ability to generate solutions with increased positive characteristics (e.g., feasibility and novelty; 

see discussion in Chapter 4.1). In this chapter, interventions are provided midway through problem 

solving and adapted to designers’ current solution output. The adapted stimuli, determined using 

Latent Semantic Analysis (LSA), represented solutions either semantically near or semantically 

far from designers’ present solutions. Thus, these stimuli occupy positions in the semantic design 

space either close to or far from the designers’ relative location.  

The results from this study demonstrate the applicability of semantic similarity measures, 

such as LSA, for identifying stimuli based on the current state of a designer. When the semantically 

near and far stimuli are extracted from the design space, two distinct and significantly different (in 

terms of semantic similarity) clusters emerged. This supports the notion that computationally 

defined near (or far) stimuli are, indeed, near and far. Furthermore, it provides evidence that the 

design space of stimuli contained designs distinct enough from one another. If the design space 

did not contain sufficiently distinct designs, it would not have been appropriate to categorize the 

designs as near and far. Additionally, results from the qualitative analyses showed that participants 

in each condition perceived the stimulus provided to them as equally helpful. Participants self-

rated near stimuli as significantly more relevant to the design problem compared to far stimuli, but 
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not significantly more helpful. Therefore, participants perceived the inspirational stimuli as equally 

helpful, but not significantly different in terms of their relevance.  

While this chapter applied LSA to adaptively select inspirational stimuli, there are other 

possible approaches. LSA bases its comparisons on semantic similarity; as such, this method can 

only handle and compare textual outputs of designers. Other topic modelling methods to handle 

text-based comparisons are Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet 

Allocation (LDA) [104,106]. The work presented in this chapter demonstrates LSA’s ability to 

quickly find relevant stimuli for use by designers. However, LSA could be compared to other 

approaches for adaptively finding textual stimuli for designers. Furthermore, theoretically, there is 

nothing preventing similar vector-based similarity comparisons from being made between images 

or other modalities of stimuli. Future work should also consider additional modalities of 

inspirational stimuli and ways to logically compare similarities between two or more different 

modalities other than text (i.e., mapping conceptually near and far between sets of images).  

After demonstrating the distinctiveness of both near and far inspirational stimuli, this study 

then explored their impact on design outcomes. In this chapter, evaluations of midpoint and final 

design solutions were used to assess the performance of the designers. Specifically, external raters 

evaluated the feasibility, usefulness, and novelty of each design. Results showed that participants 

provided with no stimuli had significantly less feasible design solutions, while those provided with 

far stimuli had significantly less useful design solutions. From this perspective, participants 

provided with near stimuli benefitted more from the intervention than those provided with the far 

stimuli. This corroborates previous findings from the authors which suggests near inspirational 

stimuli may be more helpful than far inspirational stimuli [135]. In contrast to the far and no 

stimulus conditions, the designs in the near condition were not negatively affected in their 
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feasibility or usefulness. Nonetheless, an important piece to the puzzle is still missing: the overall 

goodness of the stimuli themselves.  

This chapter utilizes a measure to capture the overall “goodness” of solutions to assess 

design concepts. The motivation for this measure stems from the ambiguity in a common design 

metric prevalent throughout the engineering design field: quality. Many works utilize this metric 

when assessing design artefacts, yet its holistic terminology and the variations in its definition, 

sometimes cloud the dimensions underlying its true meaning. For this reason, this chapter explores 

the use of a different measure. Literature review supports the concepts of feasibility and usefulness 

when considering the overall goodness of a design. Both are included in our newly defined design 

innovation measure. Novelty, while not as common of a sub-dimension for overall goodness, adds 

the element of uniqueness to the measure.  

In this chapter, different forms of the innovation measure are presented, motivated, and 

analyzed. Correlations with quality corroborate the underlying dimensions and the specific 

formulation proposed in this chapter (i.e., Equation 11) [90,153]. These four specific formulations 

were considered to explore a general subset of variations on the sub-dimensions and understand 

the sensitivity of the formulation to these variations. Future work should further investigate the 

stability and robustness of the proposed formulation with additional datasets. 

Participants’ midpoint and final solutions, as well as the provided inspirational stimulus, 

were analyzed using the newly defined design innovation measure. A similar analysis was carried 

out as described previously, but this time looking at the change in innovation scores between final 

designs and midpoint designs. Again, no significant change existed between conditions (near, far, 

or no stimulus). This suggests that providing an adaptive stimulus, either semantically near or 

semantically far, does not improve the innovation potential of solutions. In contrast, the innovation 
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score of the provided stimulus did impact designers’ outcomes: when provided with an 

inspirational stimulus with a relatively higher innovation score, designers were more likely to 

produce a more innovative final design, regardless of other inspirational stimulus conditions. 

Previous research has proposed a “sweet spot” for analogical stimuli, representing an 

analogy that lies somewhere in between the near and far fields and yields the most benefit for 

positive design outcomes [88]. Yet, the stimuli in this experiment occupy the far ends of the 

spectrum, as opposed to this sweet spot. With the analytic nature of LSA, perhaps a more precise 

designation of this sweet spot can be identified in order to understand where between the near and 

far fields this sweet spot truly lies. Based on the present study, it may be important to not only 

consider the distance of the provided stimulus, but also its relative innovative potential.  

While the stimulus conditions did not outperform the control condition on all dimensions 

of design metric outcomes, one explanation for this underperformance is the interruption endured 

during problem solving. Prior research is inconclusive regarding whether brief interruptions hurt 

or help problem solvers. For example, work by Gero et al. demonstrated that interruptions during 

design ideation are hurtful due to a cognitive shift from primary to secondary tasks [165]. Other 

works support this claim for problem solving in general, and have considered ways to mitigate the 

effects of disruptions [166–168]. Conversely, work by Sio et al. found that interruptions are 

beneficial [169]. Despite this, much of the previous research on the effects of design stimuli on 

design outcomes does not specifically study timing as a variable. Research from Tseng et al. found 

that stimuli are most helpful after the development of an open goal [145]. One thought is that the 

time when stimuli are typically provided during design studies may not occur during a period of 

deep problem solving (e.g., near the beginning of an experiment), and therefore do not cause this 
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cognitive shift to occur. The timing of the stimulus intervention is not specifically studied in this 

chapter; however, it is an area in need of future investigation.  

Another factor that may have impacted the inspirational stimuli conditions is team versus 

individual efforts. Providing example solutions halfway through problem solving may be 

analogous to two members on a team interacting or sharing ideas with each other at a set interval 

(i.e., independent work on the same design challenge with one opportunity to exchange current 

ideas/solutions). Because of deficiencies in group problem-solving, nominal teams (teams 

composed of individuals who do not collaborate during problem solving) have been shown to 

outperform teams in a variety of problem domains including brainstorming, conceptual design, 

configuration design, and verbalization tasks [41,44,80,170]. Under this theory, designers that did 

not receive an example solution should perform better because they did not collaborate with the 

computer team member (nominal teams). Those that did receive an example solution are hindered 

because of the interaction with the computer. To fully corroborate this theory, future work is 

needed to study this type of human-computer interaction of problem solving in “hybrid team” 

(human-computer) environments. The computational framework in this chapter provides promise 

for an effective design tool of the future. Forthcoming research can address how and when to 

intervene during design problem solving. More specifically, these open questions involve which 

modalities of interventions are best for designers, and when during the problem-solving process is 

most effective for them to be applied.  

 

4.5 Summary 
This chapter utilized Latent Semantic Analysis (LSA) to adaptively select relevant inspirational 

stimuli to aid designers during a cognitive study. Sixty designers were split into three conditions: 
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two conditions that modulated the distance of the provided inspirational stimulus and a control 

condition in which no stimulus was provided. The stimuli were selected based on the LSA 

comparison between the current status of the designers’ output and a database of design solutions. 

One key contribution of this chapter is the adaptive determination of which stimulus to provide to 

a designer based on their current output of design activity. Results indicate that LSA is a viable 

technique to make interventions with inspirational design stimuli. Using a newly defined measure 

of design innovation, this chapter also investigates the impact of the inspirational stimuli 

intervention on design output. The overall innovativeness of the provided stimuli significantly 

correlated with the overall innovativeness of the designers’ final design solutions. In fact, the 

overall innovativeness of a stimulus had a greater impact on a designer’s output than the relative 

distance of the stimulus. This highlights the need to provide stimuli to designers not only at specific 

distances relative to the solution space, but also while assessing the innovative potential of the 

inspirational stimulus. While more work is needed to automate the process of providing designers 

with positively impactful inspirational stimuli, the real-time computational approach presented in 

this chapter is a critical step towards realizing this goal. 
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Chapter 5 : A Data-Driven Approach to 
Process Management 

 

5.1 Introduction 
Fundamental in nearly all facets of engineering practice, engineers work in teams [2,171]. Teams 

benefit from amalgamating diverse sets of technical skills, experiences, personalities, and 

perspectives for problem solving [172,173]. Teams, along with their corresponding attributes and 

characteristics, have been well studied in the context of engineering tasks, which often require the 

success of members within a team to work efficiently with each other [9,44,174]. Engineering 

problems can be challenging and complex, requiring multiple disciplines working together to 

exchange information regarding constraints, goals, and converge their expertise. Even process-

oriented features, such as mere effort, have large impacts on team performance. With a theoretical 

basis in social psychology, social loafing, or when one team member contributes less due to being 

masked by the rest of the team [175,176], for example, can significantly hurt collective team 

performance. Thus, key factors such as communication, processes for engagement and information 

flow, and proper management can ultimately define the success or failure of a team [177,178].  

Effective communication and coordination between interrelated roles are essential for 

solving collaborative engineering problems [179–181]. Although team members usually work on 

specific design tasks individually, team communication facilitates and stimulates design processes 

and exchange information across disciplines. Thus, from the design team's perspective, specialist 

design knowledge is usually embedded throughout the team and needs to be communicated to 

become valuable information for the design artifact to be produced [180]. Ideally, engineering 

teams will continue to effectively and efficiently communicate despite the problem's complexity. 
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However, even with the increased availability of information technology, engineering teams still 

struggle to communicate [180–183], leading them astray and thereby restricting their ability to 

collectively manage complexity in order to achieve a design solution. 

Teams and communication are critical in designing complicated engineered systems, 

which often require managing coupled design parameters and multiple differing but interrelated 

factors, making the design process complex [184,185]. Artificial intelligence (AI) assistance 

methods have proven to be efficient in this area, supporting engineering teams in completing such 

challenging tasks rapidly and effectively. Engineers have used AI assistance tools to design 

products and explore the solution space more rapidly [186] and at different stages of the design 

process, including concept generation [187], concept evaluation [188], prototyping [189], and 

manufacturing [190], and concurrent-engineering design [191]. However, human-AI collaboration 

can also restrict team performance. Zhang et al. [192] reported that AI assistance hindered high-

performing teams' success. Different authors have studied the impacts of AI assistance in other 

aspects of engineering design, including decision-making, optimization, and computational tasks 

[193,194], and its effects on mental workload, frustration, and effort [195,196], and its influence 

on the behavior of designers during the design process. While previous works cover the use of AI 

as assistive tools, there exists a lack of focus in the literature on the use of AI in a managerial role 

for the direction and guidance of teams.  

Previous research highlights the power of process management on design teams, and a 

framework for understanding the role of real-time interventions. Gyory et. al. study the impacts of 

human process management on engineering design teams [91]. During a conceptual engineering 

design task, human managers intervene with a prescribed set of potential stimuli to affect their 

teams’ process. This study shows that teams under this process management significantly 
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outperformed unmanaged teams in the quality of their final design outcomes. The impacts extend 

to behavioral and process aspects as well, where the managed teams exhibit more engagement 

(contribution from all team members) and greater cohesion within their collective discourse. The 

current chapter seeks to explore whether such process management can be automated through an 

AI agent that could intervene in a similar way in real time. 

To begin to enable the automation of the interventions, once such a need is identified with 

work by Goucher-Lambert et. al., by computationally adapting stimuli to provide aid in real time 

during problem solving [90]. Midway through a conceptual engineering design task, participants 

transcribe their best solution at that point in time, and then provided a tailored stimulus through 

automatic semantic comparisons via Latent Semantic Analysis (LSA) [65]. Modulating the 

semantic distance of the stimuli to their current design solution produces varying impacts on 

designers’ ideation outcomes (e.g., design novelty, feasibility, usefulness, and overall innovative 

potential). More recent work by Gyory et. al. leverages the transcript data from the previously 

mentioned process managed teams and applies topic modeling techniques (including Latent 

Semantic Analysis and Latent Dirichlet Allocation) to computationally study design cognition and 

the impact of the interventions on communication [197]. The results show that with analyzing 

design discourse, the impact of the manager interventions can be detected, showing promise for 

the real-time implementation and detection via discourse information. While these previous works 

take steps towards real-time design process guidance, an automated system that identifies when 

interventions should take place (aka, triggers) and what an effective intervention at some point 

should be has not been automated or even considered. Advancing the power of AI opens the 

potential for dynamically tracking several team process measures and integrating them to 

determine applicable interventions to stimulate design teams’ performance.  



Page 113  

This chapter introduces an AI process manager agent to effectively guide the design 

process of engineering teams in real time, exploiting the performance results of team and 

behavioral outcomes from the human process managers demonstrated by Gyory, et al. [91]. In 

other words, this chapter demonstrates an effective AI agent that works in synergy with humans 

through interventions, resulting in a true AI-human hybrid team. The AI agent takes a data-driven 

approach to management, using real-time inputs to detect deficiencies in the team process and 

intervene at prescribed intervals. Trained on prior problem-solving team data on a similar drone 

design problem (that used the same experiential platform as this chapter), the AI induces ideal 

team process conditions over the course of the design problem. The inputs and measures tracked 

and integrated by the agent include team action and team communication data. To compare directly 

against human strategies, another experimental condition places teams under the guidance of a 

human process manager. Accordingly, while the AI agent takes a data-driven approach to 

management, this is compared to the more observational-based approach by the human process 

managers, though both have access to the same types of team inputs. Comparisons between the 

two types of management include the impact on team performance, intervention strategies, and 

team perceptions of effectiveness. Further insights can also be gained by the human process 

managers to identify the motivations (i.e., triggers) for intervening. Such insights can yield 

additional development opportunities of the AI process manager for real-time management. 

 

5.2 Methodology 

To study a data-driven approach to process management, this chapter develops an AI agent to 

process manage teams during a complex engineering design task. In a large-scale human study, 

two experimental conditions place teams under the guidance of either an AI agent or a human 
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process manager. Results are analyzed via effects on overall performance and analysis of team 

process and manager intervention strategies. Moreover, post-study questionnaires collected from 

all individual team members and the human process managers assess the behavioral and perceived 

impacts on intervention effectiveness. Some of the more critical outcomes from the surveys relate 

to the relevance and helpfulness of the interventions, perceived effects on team performance, and 

an understanding of the rationales the human process managers identified to trigger an intervention 

with their teams. Prior to discussing the central artifact of this chapter, the AI process manager, 

the next two sections first explain the experimental framework to provide better context for the 

process managers and interventions.  

 
5.2.1 Participants and Research Platform 
 
Approved by the Institutional Review Board at Carnegie Mellon University, participants complete 

the experiment fully online, only able to interact with each other and the experimenter via the 

experimental platform. In total, 199 sophomore-to-senior engineering students at Pennsylvania 

State University in the United States participate in the study, recruited from two different 

mechanical and industrial engineering courses. Participants receive $20 in compensation for their 

time and effort. All participants read, agree to, and sign a consent form prior to engaging in any 

aspect of the experiment. Participants are randomly distributed among and across two team 

conditions – AI or human process management. Teams consist of five participants with one 

additional participant in the human managed team condition as the human manager. Data from six 

teams are removed due to technical issues with the platform and participants arriving late or 

leaving early without finishing the experiment. Altogether, data for 31 teams are obtained 

successfully during the experiment: 16 teams in the human process manager condition and 15 

teams in the AI process manager condition.  
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The experimental research platform for the study, HyForm4, simulates a drone delivery 

fleet design and path-planning problem [198]. Using an online collaborative design environment, 

the platform partners AI design agents and humans. The platform contains an embedded chat 

interface, allowing participants to communicate information and share their problem-solving 

outcomes through specific channels during the study. While this chapter describes only a high-

level overview of HyForm, more in-depth details about the collaborative research platform and 

integrated design agents can be found in related work [185,199]. Note that the design agents in 

those references support the development of drones and path plans and are different from the 

process manager agent developed for this chapter. HyForm records all the communication, design 

actions, drone configurations, delivery routes, and performance metrics of each role within the 

teams, enabling complete reconstruction of a team’s problem-solving process.  

 

5.2.2 Experiment Overview – Experimental Timeline and HyForm 
Roles 
 
Participants complete the 65-minute experiment outlined in Figure 5.1. First, they read and sign 

the consent form, then provided 12 minutes to complete the pre-study questionnaire, tutorials, and 

problem brief. The pre-study questionnaire consists of questions related to their drone design, 

operations, business planning, and computational design experiences, in order to control for and 

confirm similar levels of expertise in these domains. Participants read through two tutorials, one 

related to their specific role and respective HyForm interface (each role uses a different interface), 

and the other related to the communication tool and team structure. The problem brief lays out the 

 
4  
https://github.com/hyform/drone-testbed-server/releases/tag/2021-March-v2 
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mission of the company and goals, describes the team structure and roles, and provides a more in-

depth explanation of their specific roles’ objectives. After completion of the pre-session materials, 

the first 20-minute problem-solving portion begins. Throughout these sessions, an external [to the 

team] process manager can intervene to affect the problem-solving behaviors and processes of the 

team. More details related to these interventions and the process manager are discussed in the 

following sections. After the first session, a short, three-minute break presents participants with an 

opportunity to review the experimental materials (tutorials and problem briefs). Then, a second 

20-minute problem-solving session commences. While similar to the first session in terms of 

overall objectives, the second session involves a “shock” to the customer market. After this second 

session, participants fill out a post-study questionnaire. For the members on the team (drone 

designers, operations specialists, and problem manager), this includes questions related to the 

perceived relevance and helpfulness of the interventions and their assessment of team 

performance. The human process managers fill out a different post-study questionnaire, which 

queries them on their strategy for intervening, the effectiveness of their interventions, and what 

additional types of interventions they would have liked to use.  

15 minutes 20 minutes 3 minutes 20 minutes 7 minutes

Pre session:
• Consent form
• Pre experiment 

questionnaire
• Problem brief
• Role description 

and tutorial

Mid session:
• Problem brief, 

tutorials, and 
role description 
reviews

• Break

Post session:
• Post experiment 

questionnaire
• Participant's 

compensation

Session 1 Session 2

Condition 2 Human Process 
Management Mid session Human Process 

Management Post session

Condition 1 AI Process 
Management Mid session AI Process 

Management Post session

Problem Shock

FIGURE 5.1: OVERVIEW OF THE EXPERIMENTAL TIMELINE 
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Using the collaborative research platform HyForm, teams design drone fleets and created 

delivery path plans to reach as many customers in the market as possible. A highly interconnected 

problem, each discipline (operations, design, and business) works together to achieve the 

objectives and optimize the overall profit for their team, given an initial budget of $15,000. The 

aforementioned problem shock refers to a change in the original market conditions to a COVID-

19 scenario where more customers with low weight medical deliveries are added to the market, 

along with a 30% reduction in drone costs. Each team consists of five members and Figure 5.2 

depicts the team structure. Each team contains two drone designers (design discipline), two 

operations specialists (operations discipline), and one problem manager (business discipline). The 

process manager is external to the team and is either a human or the AI agent. The team structure 

dictates the communication structure, shown by the arrows and dashed lines in the figure. The four 

distinct communication channels include: the design channel, the operations channel, the designer 

management channel, and the operations management channel. In the design channel, the two 

design specialists communicate with each other. Similarly, the operations channel permits the two 

operations specialists to interact with each other. The designer management channel allows the 

problem manager to communicate with both design specialists simultaneously, and the operations 

management channel permitted the problem manager to communicate with the two operations 

specialists simultaneously.  
On the team, the drone designers carry out the design of the drones with different 

requirements for payload capacity, range, and cost. Provided with a base drone design to start, the 

design specialists build and modify drones by adding or removing different components (batteries, 

airfoils, nodes, rods, and propellers), varying their sizes and locations. Once created, the drone 

designs are sent to the operations specialists, who create delivery paths to reach customers in the 
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market using the available drones’ capabilities and operation costs. The problem manager is 

responsible for handling the company budget, choosing the customers in the market, and serves as 

the communication-bridging node between the design specialists and operations specialists (as 

depicted in Figure 5.2). Ultimately, the problem manager decides whether to approve or reject the 

final team plans for submission.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
5.2.3 Process Manager & Interventions 
 
Throughout the two problem-solving sessions, an external process manager intervenes to affect 

the problem-solving behaviors of the team. The process manager observes features of the teams’ 

process in real time and provides suggestions at specific times during the experiment. Being 

external to the team, the process manager cannot directly communicate to specific team members 

or help in directly solving the problem. Instead, the process manager guides with a set of 

prescribed, process-related interventions from a pre-defined list. Using a pre-defined list made it 

possible to control the types of interventions for consistency across managers, as well as reducing 

FIGURE 5.2: TEAM STRUCTURE. ARROWS INDICATE COMMUNICATION CHANNELS 
FOR DIRECT INTERACTIONS 
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the additional variability induced by allowing for either a larger set or impromptu interventions. 

The process managers can intervene up to 12 distinct times across both twenty-minute problem-

solving sessions. Figure 5.3 presents an overview of the specific timing for the interventions. 

Actions and communications are tracked and collected in five-minute intervals (integrated by the 

AI agent and shown to the human managers) and this information is considered by both 

experimental conditions to determine applicable interventions. The intervention opportunities 

occur at 2.5-minute intervals from each other, with the first available intervention starting at 5 

minutes into each session (i.e., 5 minutes, 7.5 minutes, 10 minutes, 12.5 minutes, 15 minutes, and 

17.5 minutes). This 2.5-minute time period for interventions balances a tradeoff between ensuring 

enough real-time information to collect for the process managers while also ensuring enough 

opportunities to intervene within each problem-solving session, in this case six times during each 

session. For this research, the two experimental conditions differ on whether the process manager 

is a human or the AI agent. Both human and AI agent process managers choose from among the 
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same set of prescribed, process-related interventions. Therefore, for the entirety of the experiment, 

the teams never have any indication which type of process manager guides them. 

 

 

The human process managers have access to team information via a new mediation 

interface in HyForm (shown in Figure 5.4). Through the interface, the human managers observe 

in real time the team discourse occurring through all four communication channels, as well as the 

types of actions being performed by the drone designers and operations specialists. Pilot studies 

run prior to the actual data collection helped shape the design and improve the user experience of 

this interface. The right-hand side of the mediation interface lays out the set of prescribed 

interventions. A timer counts down until the next intervention (each 2.5-minute interval) and 

provides a buffer of 15 seconds to allow the human process manager to select a given intervention. 

Actions and communication tracked 
and collected in five-minute intervals

15 minutes 20 minutes 7 minutes 20 minutes 8 minutes

Pre session:
• Consent form
• Pre experiment 

questionnaire
• Problem brief
• Role description 

and tutorial

Mid session:
• Mid experiment 

questionnaire
• Problem brief
• Role description 

and tutorial

Post session:
• Post experiment 

questionnaire
• Participants 

compensation

Session 1 Session 2

Condition 2 Human Process 
Management Mid session Human Process 

Management Post session

Condition 1 AI Process 
Management Mid session AI Process 

Management Post session

10 minutes 20 minutes0 minutes

Interventions every 2.5 minutes

2.5 minutes

5 minutes

5 minutes 15 minutes

FIGURE 5.3: INTERVENTION TIMING 
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The process managers do not need to intervene at every interval. The intervention set includes a 

“No Intervention” option that does not send any message to the team. The human process managers 

decide to intervene based on their own assessment of the status of the team’s problem solving 

based on the available real-time data, the same data that the AI manager has access to. 

Table 5.1 and Table 5.2 show the interventions defined for this study, with action-based 

interventions in Table 5.1 and communication-based interventions in Table 5.2. Once the process 

managers choose an intervention, the intervention is delivered to the teams through a specific 

communication channel, shown in the right-hand column of the tables. “Design” indicates that the 

intervention goes to both design specialists, “Operations” indicates the intervention goes to both 

operations specialists and “Problem Manager” indicates that the intervention is only received by 

the problem manager. Three of the communication interventions go through all communication 

channels, and thus received by the entire team. While the AI agent implicitly identifies which team 

member(s) require an intervention, it does directly learn or track at the individual level, but rather 

at the team and discipline levels.    
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TABLE 5.1: ACTION-BASED INTERVENTIONS, ALONG WITH THE CHANNEL WITH WHICH 

THEY ARE INJECTED TO THE TEAMS DURING PROBLEM SOLVING 
 

Design Action Interventions Communication 
Channels 

Ops. planners, it would be good to continue working on and 
refining your plans a bit more. Operations 

Hey operations team, I suggest that you try evaluating and 
submitting your plan and starting fresh. Operations 

Hey operations team, try running the path-planning agent to help. Operations 

Drone designers, it would be helpful if you can continue working on 
and refining your drone designs a bit more. Design 

Hey drone design team, I would recommend evaluating and 
submitting your current design and starting fresh. Design 

Hey drone design team, check out the suggestions from the drone 
design agent. Design 

 

FIGURE 5.4: THE MEDIATION INTERFACE IN HYFORM FOR THE HUMAN PROCESS 
MANAGERS TO TRACK TEAM PROCESS (SCROLL BOXES ON THE LEFT) AND CHOOSE 

AN INTERVENTION (RIGHT-HAND COLUMN) AT DEFINED INTERVALS 
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TABLE 5.2: COMMUNICATION-BASED INTERVENTIONS, ALONG WITH THE CHANNELS 
THROUGH WHICH THEY ARE INJECTED TO THE TEAMS DURING PROBLEM SOLVING 

 

Communication Interventions Communication 
Channels 

Team, I think you should try focusing more on adjusting the design 
parameters to meet the goals of the problem, and share this with each 

other (cost, capacity, speed, budget, weight, etc.) 

Design, Operations, 
and Problem Manager 

Team, try focusing more on your strategy. Try optimizing and 
increasing/decreasing size of components and share this with each 

other. 

Design, Operations, 
and Problem Manager 

Hi team, try sharing your goals with each other a bit more and 
make sure they’re aligned. 

Design, Operations, 
and Problem Manager 

Ops team, please try to communicate with each other more. Operations 

Drone designers, please try to communicate with each other more. Design 

Hi problem manager, please try to communicate with your team 
more. Problem Manager 

 

5.2.4 Artificial Intelligent (AI) Process Manager Computational 
Framework 
 
During the problem-solving sessions, the AI process manager dynamically tracks several measures 

to determine the state of the team at a given point in time. These measures include communication 

frequency, communication semantics comprising similarity and content, and action frequency and 

diversity. Trained on prior team problem-solving data, the AI process manager induces the patterns 

of these measures temporally over the course of the problem-solving sessions from better 

performing teams, the goal being to reflect the behavioral dynamics of the teams, intervening when 

one of these measures significantly veers off course [199]. This section and Figure 5.5 present a 

more detailed description of the decision logic and conceptual framework for the underlying 

computation of the AI agent. As shown in the left-hand column of Figure 5.5, communication and 

action data represent the two main data input streams to the framework.  
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The AI agent utilizes the preceding five minutes of team data to determine appropriate 

interventions. Since the interventions occur every 2.5-minutes, the input represents a sliding 

window with 2.5-minutes of overlap of prior team data (as shown in Figure 5.3). As mentioned 

previously, these specific timings balance the tradeoff of maintaining an adequate amount of 

information for the AI agent to utilize as well as ensuring enough interventions throughout the 

experiment.  

 The first decision point in the computational framework (Figure 5.5) compares the overall 

team action frequency with the overall team communication frequency. Tradeoffs between effort 

spent on action versus spent on communication resulted in one of the more significant findings 

between the high and low performing teams from the previous HyForm experiment. Thus, this 

decision point leverages that finding, comparing the real-time, cumulative team communication 

and cumulative team action with that of the high performing teams. If the team’s action frequency 
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Too low 
Communication

Within bounds

Communication 
Frequency

Action Categories

Communication 
Semantics

Ops. planners, it would be good to continue working on and 
refining your plans a bit more.

Hey operations team, I suggest that you try evaluating and 
submitting your plan and starting fresh.

Hey operations team, try running the path-planning agent to 
help.

Drone designers, it would be helpful if you can continue 
working on and refining your drone designs a bit more.

Hey drone design team, I would recommend evaluating and 
submitting your current design and starting fresh.

Hey drone design team, check out the suggestions from the 
drone design agent.

Team, I think you should try focusing more on adjusting the 
design parameters to meet the goals of the problem, and 
share this with each other (cost, capacity, speed, budget, 
weight, etc.)

Team, try focusing more on your strategy. Try optimizing and 
increasing/decreasing size of components and share this with 
each other.

Hi team, try sharing your goals with each other a bit more and 
make sure they’re aligned.

Ops team, please try to communicate with each other more.

Drone designers, please try to communicate with each other 
more.

Hi problem manager, please try to communicate with your 
team more.

Too Low 
Action

HyForm Data

No Intervention

Choose one measure 
most off track

Design Parameters Content

Strategy Content

Semantic Similarity

FIGURE 5.5: FLOW DIAGRAM SHOWING THE CONCEPTUAL FRAMEWORK FOR THE 
ARTIFICIAL INTELLIGENT PROCESS MANAGER 
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measure is too low then the AI agent enters the action branch (top branch in Figure 5.5), and if the 

team communication frequency measure is too low then AI agent enters the communication branch 

(bottom branch in Figure 5.5). If both action and communication frequencies are within bounds 

(±1 standard error), then it chooses not to intervene. 

To mathematically compute which of the branches in Figure 5.5 to enter, the AI process 

manager computes a weighted z-score for each communication and action (Equations 16 and 17, 

respectively):  

𝑐𝑜𝑚) = |(𝑧459835" 	
×	𝑑5")|,													(16) 

 
𝑎𝑐𝑡𝑖𝑜𝑛) = |(𝑧45983+" 	

×	𝑑:")|.         (17) 
 
 
In descriptive statistics, the z-score provides a quantitative and normalized approach to determine 

how many standard deviations a raw score lies from the population mean. In Equations 16 and 17, 

the subscripts 𝑐 and 𝑎 represent communication and action, respectively, the subscript 𝑖 denotes 

the intervention number ( 𝑖  varies from 𝑖	 ∈ [1, 12]  for the twelve interventions across both 

problem-solving sessions), 𝑑 represents an effect size, with the z-score calculated as shown in 

Equation 18,  

	𝑧45983 =	
𝑥 − 	𝜇

r 𝜎
√𝑛
u
,																(18) 

 

where 𝑥 is the observed value taken from the real-time experiment, 𝜇 is the is population mean 

taken from the high-performing population data, 𝜎 is the standard deviation taken from the high-

performing population data, and 𝑛 is the total number of teams from the high-performing, prior 

data (in this case, 𝑛	 = 	11). Once the z-score determines how large the difference between the 

sampled team communication/action data is from that of the high-performing team data, the z-
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scores are further weighted by an effect size (𝑧,-./0-! 	and 𝑧,-./0"!  in Equations 16 and 17). From the 

prior HyForm team data, the differences in action and communication frequency between the high 

and low performing teams considerably fluctuated over time (as shown in Figure 5.6). Figure 5.6 

presents a moving average of the communication to action frequency ratio throughout that previous 

experiment.  

  

 

 

 

 

 

 

 

 

 
 

FIGURE 5.6: TRADEOFF IN ACTION AND COMMUNICATION BETWEEN THE HIGH-
PERFORMING (BLUE) AND LOW-PERFORMING (RED) TEAMS FROM THE PRIOR 

HYFORM EXPERIMENT [189] 
 

As shown, the differences between the high and low performing teams change over time. For 

example, in the latter half of the experiment, the high performing teams spend much more effort 

on communication. To take this additional dimension into account, the effect size (𝑑) determines 

the extent of this discrepancy between the high and low performing team data over the 12 different 

5-minute intervention intervals. 

An additional benefit of utilizing z-scores is that they help determine whether the values 

are within ±1 standard error from the high-performing data. Chosen as the threshold range for 
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whether the sampled measure is within bounds, if both the action and communication frequencies 

from the sampled data are within one standard error from the high-performing teams’ data, then 

the AI agent chooses not to intervene. Otherwise, the AI agent enters the branch with the lowest 

weighted z-score. The precise decision logic in Figure 5.7 determines which intervention branch 

to enter. Recall that the AI agent uses the preceding 5 minutes of data for computation (Figure 

5.3). For example, when 𝑖	 = 	2, at 7.5 minutes into the experiment (the first intervention occurs 

at 5 minutes), the AI agent uses communication and action data from 2.5 minutes up to 7.5 minutes. 

This 5-minute window holds for every intervention decision.  

Once the AI process manager chooses a particular branch, similar, though unweighted, z-

score calculations are computed on more specific team measures at the next decision point. These 

specific measures dictate the chosen intervention. For the action branch (top branch of Figure 5.5), 

z-scores are computed for each of the six action categories for the drone designers and the 

operations specialists. The sub-branches in the figure represent these six action categories. These 

categories include evaluating/submitting drone designs, iterating on drone designs, and running 

the drone design assistive agent for the drone designers; and submitting a path plan, iterating on a 

path plan, or running the assistive path planner agent for the operations specialists. Whichever of 

these action categories is most off from the high-performing team data determines the specific 

intervention to inject into the team. These are all discipline-level interventions, so either both drone 

designers or both operations specialists receive these interventions. 
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FIGURE 5.7: DECISION LOGIC FOR THE AI PROCESS MANAGER TO DETERMINE 
WHETER TO ENTER THE ACTION OR COMMUNICATION SETS OF INTERVENTIONS 

 

If the AI agent chooses the communication branch (bottom branch of Figure 5.5), two types 

of communication measures are calculated: communication semantics and communication 

frequency. Communication semantics includes team semantic similarity and design parameter and 

design strategy content. Latent Semantic Analysis (LSA) computes the discourse similarity 

amongst the design team (treating each role as a distinct document in the model) using a singular 

value decomposition approach to reduce dimensionality within the discourse. Then, the average 

!"# $ ∈ [	0, 12] 

		"!"#$%!" =	
$&" −		&&"
'(&"√*+

 

		"!"#$%#" =	
$"" −		&""
'(""√*+
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pairwise cosine similarity between role documents determines overall team semantic similarity. 

For the communication content, the AI agent counts sets of keywords for the problem-solving 

strategy and design parameter content. The keywords for design parameters include those related 

to the problem constraints and goals, including but not limited to velocity, payload, miles, houses, 

payload, profit; while the strategy keywords relate to how teams solve or adjust these design 

parameters and goals, such as increase, decrease, minimize, optimize, balance. The communication 

semantic interventions are team-level and thus received by the entire team. Communication 

frequency counts the total number of turns for each discipline (the three sub-branches off frequency 

in Figure 5.5 represent to the three disciplines of design, operations, and business). These three 

interventions are at the discipline-level and received by those respective roles. Once again, 

unweighted z-scores determine which metric is most off course. So, a z-score is calculated for all 

six dimensions and the largest z-scores determines which measure is most off course and induces 

the specific intervention. 

 

5.3 Results 

With the experimental methodology outlined in Section 5.2, Section 5.3 analyses the 

resulting data and compares the differences between the constructed AI agent and human process 

managers. These comparisons span several dimensions, including performance, intervention 

strategy, and perceived effectiveness. The maximum profit teams achieve across both sessions 

provides a measure of the overall performance. The intervention strategies between the AI and 

human process managers are examined by identifying the types and distributions of interventions 

used. Data from the post-study questionaries with the human process managers and team members 
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provide further insight into manager strategies and ascertain how team members perceive their 

interventions, such as their relevancy and helpfulness.  

 

5.3.1 Team Performance 
 

In this chapter, team profit serves as the overall measure to identify how teams perform 

under the guidance of either the AI agent or a human process manager. Team profit combines the 

achievements of both the drone design discipline and the operations discipline, by totaling the 

weight of packages and food delivered within the customer market. Accordingly, due to the highly 

coupled and interdisciplinary nature of the problem, profit relies on the success of both disciplines: 

the types of drones designed and the path plans created. The problem manager can submit multiple 

plans throughout the experiment, though the best plan (i.e., the plan with the highest profit) serves 

as the primary performance measure for the team.  
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Figure 5.8 shows the average maximum profit the team conditions achieve in each of the 

experiment sessions. Recall that the second session presents a problem shock to the team; the 

customer market shifts to one for COVID-19 where more customers with low weight medical 

deliveries are added to the market, along with a 30% reduction in drone costs. Across both sessions, 

the two experimental conditions perform similarly (𝑝 = 0.6, 𝑑	= 0.14), though a larger difference 

occurs in the second problem-solving session (𝑝 = 0.1, 𝑑 = 0.59). While neither session presents a 

difference at the 5% significance level, the trend between sessions presents an interesting finding. 

The profit of teams guided by the AI agent marginally improves after the problem shock, while 

the profit of teams under human process management decreases. This trend indicates towards 

better adaptation in process strategies to the problem shock with the data-driven approach to 

management of the AI manager, which already produces similar performance levels as human 

management.  
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Additionally, the post-study questionnaire queries participants on their perception of their 

teams’ performance. On an interval scale from 0 to 100, with 100 being perfect, team members 

rate both the perceived quality of the performance of their team as well as their team’s cohesion 

(cohesion describes “how your team worked together,” as defined to participants during the 

survey). Team member averages include the two drone designers, the two operations specialists, 

and the problem manager. Figure 5.9 shows that teams under guidance of the AI manager condition 

perceive the quality of their teams’ performance significantly higher (𝑝 = 0.016, 𝑑 = 0.41) and 

their teams’ cohesion as higher in a marginally significant way (𝑝 = 0.053, 𝑑 = 0.32). Furthermore, 

the human process managers perceive these quite differently than their respective team members. 

Figure 5.10 shows that in terms of both the quality of performance (𝑝 = 0.025, 𝑑	= 0.63) and 

cohesion (𝑝 = 0.004, 𝑑	= 0.81), the human process managers perceive these significantly better 

than the team itself. Thus, the analogous perception in performance levels hold from the viewpoint 

of the team itself, however, the process managers tend to relatively inflate these measures.  

 
FIGURE 5.9: THE AVERAGE PARTICIPANT RATING OF QUALITY (LEFT) OF TEAM 
PERFORMANCE AND TEAM COHESION (RIGHT). (ERROR BARS SHOW ±1 S.E.) 
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FIGURE 5.10: THE AVERAGE HUMAN PROCESS MANAGER RATING OF QUALITY OF 

TEAM PERFORMANCE (LEFT) AND TEAM COHESION (RIGHT). (ERROR BARS SHOW ±1 
S.E) 

 

5.3.2 Process Manager Strategies and Insights 
 
Having demonstrated equivalent levels of performance between the human and AI process 

managed teams, the intervention strategies are next compared. This analysis identifies the types of 

injected interventions across sessions and disciplines, as well as a deeper understanding of the need 

for intervening from the human managers via the post-study questionnaires. From the 

questionnaires, the human process managers answer questions related to the effectiveness of their 

own interventions and the dynamics within the teams they oversaw that triggered them to offer 

guidance when they did.  

In total, the human process managers intervene 127 times using all the interventions from 

the prescribed set, while the AI agent intervenes 167 times but only using 8 out of the prescribed 

interventions. While the AI process manager chooses to intervene more frequently, the human 

process managers tend to use more team-based interventions (37% of the humans’ interventions 

compared to 29% of the AI agent’s interventions). Figure 5.11 presents the distribution of 

interventions across team sessions and disciplines and the proportion of intervention categories. 
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The numbers next to each of the bars in the figure represent the raw counts. These are categorized 

by the two main intervention types: action-based interventions and communication-based 

interventions. Table 5.1 and Table 5.2 from the previous section present which interventions fall 

into the respective categories.  

 

Figure 5.11A shows the distribution of interventions to each team discipline (design 

specialists, operations specialists, and the problem managers). This includes team-level 

interventions; since each team-level intervention goes to all three disciplines, they are counted 

thrice in the figure. As shown, the AI process manager agent focuses more on the operations 

specialists than the human process managers, with the design specialists and problem managers 

FIGURE 5.11: (A)THE DISTRIBUTION OF PROCESS MANAGER INTERVENTIONS TO 
DISCIPLINE AND PROPORTION OF INTERVENTIONS DURING THE (B) FIRST AND (C) 

SECOND PROBLEM-SOLVING SESSIONS. NUMBERS INDICATE RAW COUNTS. 
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seeing more equal levels of interventions. Figure 5.11B and Figure 5.11C also shows the 

proportions of interventions by category for the two sessions. Both experimental sessions show 

similar levels of action and communication interventions for the two conditions, though the second 

session shows more considerable differences in behavior. A distinct commonality across these 

results is the high degree of similarity between the two process manager types regarding the 

emphasis on communication-based interventions. Across both problem-solving sessions, the 

proportion of communication interventions is much greater than the action interventions, and when 

compared overall (combining results across both problem-solving blocks), the proportion is nearly 

identical, with 70% of the interventions being communication-based and 30% of the interventions 

being action-based.  

The post-study questionnaire with the human process managers corroborates the emphasis 

on communication. A short answer prompt asks the process managers, “What were some of the 

reasons you did/did not intervene with your team? – try to be as specific as possible.” Nearly all 

the process managers incorporate communication in their responses, both reasons for and against 

intervening. Several process managers note that they intervene when either there is a lack of 

communication across the entire team or specifically within disciplines (i.e., if the drone designers 

were not communicating with each other). When describing instances when they do not intervene, 

some of the process managers note that they are reluctant to intervene during critical 

communication (i.e., sharing of critical information such as goals), as they do not want to interrupt 

the flow of information, or when the problem manager is perceived as effective in their role. Recall 

that in the particular team structure (Figure 5.2), the process manager is responsible for bridging 

the communication between disciplines. Thus, the holistic intervention strategies across both the 
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AI agent and humans highlight the need for effective communication during problem-solving and 

its criticality as a measure for a process manager to track.  

 

5.3.3 Intervention Effectiveness  
 
Having demonstrated the similarities between the AI agent and human process managers’ 

intervention strategy, the next questions examine the effectiveness of the interventions. However, 

one first needs to confirm if team members follow the interventions provided by the process 

manager. Figure 5.12 shows the percentage of team members rating their degree of compliance 

with the interventions received during the experiment. Asked during the post-study questionnaire, 

choices range on a categorical scale from “Always” to “Never.” As Figure 5.12 shows, members 

in both conditions quote similar levels of obeyance with the interventions. This similarity holds 

across the entire range of options. Overall, team members are more likely than not to respond to 

the interventions, as 65% said they “always” or “most of the time” followed the provided 

interventions. 

FIGURE 5.12: PERCENTAGE OF TEAM MEMBERS RATING THEIR ADHERENCE TO THE 
INTERVENTIONS PROVIDED BY THE PROCESS MANAGERS 
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While equally, and nearly all the time, willing to follow the interventions, team members 

next rate characteristics of the interventions they received. Again, these ratings range on an interval 

scale from 0 to 100, with 100 being perfect. Figure 5.13 tells a similar story in terms of the AI 

agent matching human performance. Regardless of whether the interventions come from a human 

or the AI process manager, teams rate both the relevance (𝑝 = 0.35, 𝑑 = 0.17) and helpfulness (𝑝 

= 0.11, 𝑑 = 0.29) of the interventions similarly (a higher score indicates higher helpfulness and 

relevancy). Furthermore, teams rate the AI agent just as sensitive (𝑝 = 0.71, 𝑑 = 0.05) to the needs 

of the team as the human process managers (higher score indicates higher sensitivity). Taken 

together, the results show that the AI agent process manager matches the human process managers, 

or human capabilities, in terms of providing interventions that are equally effective and relevant 

to the problem-solving process and satisfying the needs of the team.  

 

 
 
5.4 Discussion 
This research introduces an AI agent for real-time process management, comparing the behaviors 

and impacts to that of a human in the same role. Trained on prior team problem-solving data, the 
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AI process manager takes a data-driven approach. The training data involves the problem-solving 

characteristics of high-performing teams solving the same design task, also using the collaborative 

research platform, HyForm. Even though trained to produce prior team problem-solving behaviors, 

this chapter shows that the AI process manager matches the behaviors and capabilities of human 

management during new design sessions. The results throughout this chapter highlight this 

common theme between the two types of process managers, including team performance, 

intervention strategy, and the teams’ perception of the effectiveness and helpfulness of the 

interventions. Interestingly, team perceive the interventions provided by the AI process manager 

as just as relevant and sensitive to the needs of the teams as those provided by human observing 

the process.  

In terms of team output, teams perform similarly under the two types of process 

management. In the context of the problem used, the highest plan’s profit a team submits measures 

the performance of the team. While the teams perform similarly in terms of this measure, the trends 

are somewhat different. Recall that between problem-solving sessions, a problem shock forces 

teams to adjust their strategy (the problem shock involves a market switch in customers and 

changes to the cost of drones). Following the problem shock between sessions, the teams guided 

by the AI agent increase their performance while the human teams remain stable. While not 

reaching significance at 5% with the current population size, this trend indicates possible higher 

robustness in the process of the teams guided by the AI agent. Future work can increase the 

population size of the study to see if these trends persist and reach significance. However, the AI 

agent performs at least as effectively as the human process managers in guiding team problem 

solving in real time. Members on the AI-managed teams also perceive the quality of their teams’ 

performance significantly higher than those on the human managed teams. Furthermore, the 
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human process managers perceive both the quality and cohesion of their teams as significantly 

better than the team members they managed. This could be due to the human process managers 

not being able to evaluate how the team is doing in terms of their performance. While the process 

managers have access to the process and interactions of the team, they do not receive feedback on 

performance progress. An intriguing direction of future work can implement this feedback on 

progress within the AI agent’s framework and examine how this influences the managerial strategy 

and team performance.  

While the AI agent is trained on prior team problem-solving behaviors, the holistic 

intervention strategy between the AI and human process managers turns out to be remarkably 

analogous. Both rely heavily on communication-based interventions rather than action-based 

interventions, even though the prescribed intervention set includes an equal number of each. 

Nearly 70% of the interventions by both process manager types are communication-based. This 

trend also holds across problem-solving sessions after the problem shock. This highlights the 

criticality of communication within teams as an effective measure for process managers to track 

during problem solving. Differences between the two process managers start to show in the number 

of total interventions and in the number of team-based interventions. Overall, the human process 

managers are more balanced in their intervention strategy: they intervene fewer times, choosing 

more times not to intervene, choose more team-level interventions, and equally distribute their 

interventions across disciplines. The AI process manager focuses a bit more, showing more 

interventions to the operations specialists. Even with these differences, the data-driven process 

management is broadly similar to that of the human strategy.  

In refining the AI agent’s intervention framework for future research, further insights are 

gained by the post-study questionnaires with the human process managers. Asked whether they 
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felt constrained with the prescribed intervention set, nearly all (except one) felt constrained using 

the current set. This constraining of the intervention set reduced additional variability in the 

experimental design. Through a short answer question, they identified additional ways they would 

have liked to intervene with their teams. The desire for individualized interventions emerges as 

one of the main themes. The current set of interventions either go to the entire team or entire 

disciplines (i.e., both drone designers). Instead, future iterations of the AI process manager could 

identify deficiencies at the role-level and intervene with individual team members. Additionally, 

several process managers note that they would have liked custom interventions, coming up with 

specific interventions in real time, and directly interacting or chatting with the team. While the 

authors did consider this, this creates many additional layers of variability within the experimental 

design and would make it difficult to compare approaches. The process managers also comment 

on more interventions specific to the problem manager (in the current design, the only problem 

manager specific intervention is to increase their communication frequency), goal-specific 

interventions, and positive reinforcement. Regarding the latter, several participants indicate that 

instead of the “No intervention” option, it would be better to increase team morale and have an 

intervention to provide positive reinforcement such as, “Keep up the good work.” These aspects 

can be implemented in future iterations of the intervention framework.   

 While still only in its first version, the AI process manager presents boundless 

opportunities as an experimental testbed for future research. In its current form, the AI agent tracks 

design actions and certain aspects of communication at the team and discipline levels. As noted by 

a few of the human process managers, further iterations can track these measures at the individual 

level within roles and inject the interventions to specific team members. Studied across different 

context, the timing of the intervention, or interruptions generally, could possibly lead to different 
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impacts, either impeding or helping problem-solving [165,169,200,201]. Since timing is not a 

direct goal here, the experimental design followed a uniform timing approach to control for this, 

though different timing schemes, such as anachronistic scheduling, can be tested [202]. 

Additionally, in the current chapter, the manager tracks and facilitates the overall problem-solving 

process of the team. The manager might instead serve as a problem manager and mediate with 

interventions more relevant to the design task, goals, and constraints of the problem. In fact, the 

manager could be equipped with features of both and mediate with varying levels of problem- and 

process-related interventions. Since this research focuses on process, these specificities on task, 

goals, and constraints are not directly applicable to the process manager in this chapter. As well, 

the hope is that the method for process management is general, domain independent, and applies 

across problems, as will be explored in future work. 

A large body of literature in human computer interaction and artificial intelligence studies 

human trust in AI agents. As AI becomes more capable, intelligent, and integrated, humans may 

become more skeptical and less willing to listen or utilize its power. These questions are also 

important for the application of AI within this research. As a process manager, or in any type of 

managerial role for that matter, those within the team must have trust in order to actually respond 

to the provided interventions. Fortunately, the results of this chapter show that the team members 

did comply. The last question on the post-questionnaire even askes participants whether they 

thought the process manager was an AI agent or a human. Regardless of condition, there was an 

equal 75% / 25% split of those that believe the process manager was an AI agent versus human, 

respectively. So even though most participants believe the process manager to be an AI agent, they 

still listen. Future work can examine this finding further, in addition to this question of trust, to see 
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how these perceptions may affect their willingness to obey the process manager and if these 

perceptions change how they feel about the interventions they receive.  

 

5.5 Summary 
Process management brings profound benefits to aiding engineering teams and the engineering 

design process. Along this vein, this chapter creates an AI agent that manages the design process 

of teams in real time. This AI process manager dynamically tracks several action and 

communication-based features of team process, integrates them, and chooses an appropriate 

intervention. The problem context focuses on a highly interconnected drone design and path-

planning task, one that requires effective interdisciplinary collaboration for success. While the AI 

process manager takes a data-driven approach to intervening (trained on previous team problem-

solving data), this is compared to the impact and strategies of human process managers in the same 

role.  

The results of this chapter show that the developed AI process manager matches the 

capabilities of the human process managers. These similarities hold across several dimensions, 

including overall team performance, intervention strategy, as well as the perceived impact on team 

performance, process, and intervention efficacy. Overall, communication deficiencies and 

inefficiencies stood out as guiding measures to elicit interventions by both the human and AI 

process managers. This highlights the criticality of effective communication management, 

particularly during a highly interconnected and interdisciplinary design problem such as the one 

presented in this chapter. Moreover, the underlying computational framework for the AI agent 

shows promise as an experimental testbed for future research in real-time management. Additional 

measures and intervention and decision-making strategies can be implemented and tested to better 
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understand and enhance the impact of real-time process management during the design of complex 

engineering systems.  
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Chapter 6 : Impact of Real-Time Process 
Manager Interventions 

 

6.1 Introduction 

The goal of this chapter is to gain deeper insights on the impact of the process manager 

interventions from Chapter 5. In the preceding chapter, results compared the differences between 

the constructed AI process manager agent and human process managers regarding overall team 

performance, manager intervention strategy, and perceived effectiveness. Via a post-study 

questionnaire, team members perceived themselves as following the interventions provided by the 

managers, as shown in Figure 5.12. Here in Section 6.2, a set of before and after analyses 

corroborate whether the managers actually induce the intended changes in the process of the teams. 

Throughout this analysis, interventions are grouped by type and are studied across both manager 

conditions. For example, the impact of the three interventions related to communication frequency 

is computed in the same way, and thus these interventions are presented together and for teams in 

both manager conditions. Then Section 6.3 introduces trained regression models that identify the 

predictive nature of the interventions on team performance (i.e., whether some interventions 

possess a more beneficial impact than other interventions on the highest team profit achieved).  

As a quick review of the overall usage of the interventions, in total, the human process 

managers intervene 127 times using all 12 interventions from the prescribed set, while the AI agent 

intervenes 167 distinct times, but only using 8 out of the 12 prescribed interventions. The 

interventions sets are shown in Table 5.1 and Table 5.2, delineated by action-based and 

communicated-based interventions, respectively. Figure 6.1A illustrates the distribution of 

interventions across these two categories. Both manager conditions (human and AI agent) focus 
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40% more on communication-based types than action-based interventions (Figure 6.1A). Figure 

6.1B depicts the proportion of interventions across all managers, breaking communication-based 

interventions further down into those related to communication frequency and those related to 

communication content (and also includes “No Intervention”, as this was a separate option). The 

next section uses this breakdown for analyzing the impact of the interventions on team process, as 

the impact is measured slightly differently depending on the intervention type.   

 

6.2 Intervention Impacts on Team Process 

6.2.1 Communication Frequency Intervention  
 
The first set of interventions relate to communication frequency, or the last three interventions in 

Table 5.2. The process managers offer these interventions 117 times, constituting 35% of the total 

interventions. As these interventions are intended to increase the amount of communication in a 

specific discipline (drone designers, operations planners, or the problem manager), their impact is 

determined by measuring the communication frequency immediately before and after the 

FIGURE 6.1: THE TYPES OF MANAGER INTERVENTIONS USED BY THE PROCESS 
MANAGERS. (A) PERCENTAGE OF ACTION AND COMMUNICATION INTERVENTIONS 

USED BY MANAGER TYPE, (B) OVERALL PROPROTION OF MANAGER INTERVENTION 
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intervention is provided. Figure 6.2 shows the total communication count across all 117 instances 

for 2.5 minutes, the entire time between consecutive interventions. As the communication data in 

general is sparser than the action data, 2.5 minutes is chosen to capture enough data (and used for 

the next analyses on communication content). The figure only reflects the communication within 

the specific disciplines that receive one of these interventions. For example, for a specific team, if 

the provided interventions states: “Ops team, please try to communicate with each other more,” 

only the communication in the operations channels is considered at that specific time, rather than 

the entire teams’ discourse.  

 

 

 

 

 

 

 

 

 

In Figure 6.2, the ‘0.5’- minute bin counts up to 30 seconds after the intervention, the ‘1.0’ 

- minute bin counts the time from 30 seconds to 1-minute after the intervention, the ‘-0.5’- minute 

interval counts up to 30 seconds before the intervention, the ‘-1.0’ minute bin counts between 1 

minute and 30 seconds before the intervention, and etc. Overall, the figure shows a sharp, over 

threefold, increase in the communication frequency following these interventions. This increase in 

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

To
ta

l c
om

m
un

ic
at

io
n 

co
un

ts

Bins (minutes)

bin containing intervention

0.5-0.5 1.0 1.5 2.0 2.5-2.0 -1.5 -1.0

FIGURE 6.2: THE COMMUNICATION FREQUENCY COUNT OF TEAM DISCIPLINES, 
BOTH IMMEDIATELY PRIOR TO AND IMMEDIATELY FOLLOWING A COMMUNICATION 

FREQUENCY INTERVENTION 



Page 147  

communication lasts across the entire 2.5-minutes and still does not fully fall back to the levels 

immediately prior to the intervention. This trend indicates a significant influence of this 

intervention type on the communication behaviors of the teams.  

 

6.2.2 Communication Content Interventions 
 
The next set of interventions studied includes those related to communication content, or the first 

three interventions in Table 5.2. The managers offer these interventions 96 distinct times, 

constituting 28% of the total interventions used. These concentrate on the content of the discourse 

amongst the team rather than just on the frequency, identifying discussions on the design 

parameters, constraints, goals, the teams’ strategies, and the cohesiveness of their discourse. 

Again, in order to adequately measure the communication content, the 2.5-minutes prior to and 

after an intervention are used to measure their impact.  

Measuring the impact for the first two interventions in Table 5.2 involves identification of 

specific keywords related to the design parameters and design strategy, respectively. Non-

exhaustively, these include scanning for keywords such as: “velocity,” “payload,” “miles,” 

“houses,” “payload,” and “profit” for the design parameters, and “increase,” “decrease,” 

“minimize,” “optimize,” and “balance,” for design strategy. As discussed in the previous chapter, 

earlier problem-solving studies conducted with HyForm motivated the identification of these 

keyword sets. The final communication content intervention (“Hi team, try sharing your goals 

with each other a bit more and make sure they’re aligned”) focuses on the cohesion of the team. 

The AI agent triggers this intervention through the natural language processing technique, Latent 

Semantic Analysis (LSA), to measure discourse similarity. Thus, LSA also analyses its impact, 

computing the similarity of communication among all members on a team before and after these 
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interventions, again, in 2.5-minute intervals. To quantitatively assess the impact, the net change 

between the 2.5-minutes preceding and following an intervention is computed, with the variable, 

∆, indicating this difference ( ∆	= 𝑎𝑓𝑡𝑒𝑟 − 𝑏𝑒𝑓𝑜𝑟𝑒). Consequently, a positive net change (+∆) 

indicates an increase in a measure while a negative net change (−∆) indicates a decrease. As with 

the communication frequency, the assumption is that a positive influence from the process 

manager will cause an increase, or positive net change, in these measures.  

After computing the net change across all 96 instances of these three interventions, results 

indicate that there is not much of an impact on cohesion (showing a net increase in similarity of, 

∆594)"3=	+0.05, in which the similarity can range between 0 and 1) or design strategy keywords 

(showing a net increase of keyword count of, ∆418:1	= 	+0.00 keywords). However, there exists a 

large impact from the design parameter interventions, with a total net increase in design parameter 

usage of, ∆;:8:*	= +104 keywords. While the difference in these results is intriguing, the nature 

of how the different types of information need to be communicated, especially within the specific 

team structure, supports it. For example, the design parameters are concepts that are more likely 

needed to be, and more easily able to be, shared across the entire team. On the other hand, design 

strategy can be more easily understood on an individual basis. Since both the drone designers and 

operations planners focus on specific designs, design strategy is not as critical to share across the 

entire team.  

 

6.2.3 Design Action Interventions 
 
The last set of interventions analyzed are the design action interventions (all shown in Table 5.1) 

and offered by the process managers 80 distinct times, constituting 25% of the total interventions. 

These interventions are anticipated to elicit specific actions from team members. For example, the 
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intervention: “Hey operations team, try running the path-planning agent to help” intends to push 

the operations discipline to run the assistive, path-planning agent in HyForm. Accordingly, 

whether or not a specific action occurs within a 1-minute time period after an intervention 

determines the effectiveness of the intervention. The exception to this involves the two 

interventions related to drone/path iteration (the interventions in row one and four in Table 5.1 ). 

Instead of looking for one specific action, the impact of these two interventions is measured in a 

manner similar to the communication frequency interventions, with an aggregate count of all 

actions related to design iteration. Since design actions occur more frequently than team 

communication, 1-minute intervals are used as opposed to the 2.5-minute intervals used for the 

communicated-based interventions.  

Results across the set of action-based interventions differ quite dramatically. First, Figure 

6.3 shows the overall action count for the iteration-based interventions just discussed. The 

designation of time intervals on the 𝑥-axis in the figure follows the same nomenclature as that in 

Figure 6.2. As Figure 6.3 shows, there is no significant increase in the aggregate of design iteration 

actions following these specific interventions. In fact, the trend across time actually shows a 

decrease in the aggregate, indicating that these interventions are not well followed by teams. 

Again, the figure only reflects the actions within the specific disciplines that receive one of these 

interventions rather than the entire teams. 

Table 6.1 presents the results for the remaining four design action interventions. Since these 

interventions are intended to induce one specific type of design action, the impact of these is 

considered in a binary sense (i.e., did or did not the intervention occur within the one-minute 

threshold period). Moving down the rows, the table presents the total number of intervention 

instances (first row), the total number of effective instances (whether the intended action occurs 
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within the one-minute time period) (second row), and the total number of effective instances via 

percentage (third row). Out of these four, the only intervention showing high adherence prompts 

the drone designers to evaluate and submit their designs (column 1). Otherwise, the interventions 

show lower levels of process adherence from the teams, even though team members claimed to 

follow them.  

 

 

 
 
 
 
 
 
 
 
 

 
 

-1.5 -1 -0.5 0.5 1 1.5
Bins (minutes)

0

100

200

300

400

500

600

700

800

To
ta

l a
ct

io
n 

co
un

t
To

ta
l a

ct
io

n 
co

un
t

Bins (minutes)

bin containing intervention

FIGURE 6.3: THE DESIGN INTERATION ACTION FREQUENCY COUNT, BOTH 
IMMEDIATELY PRIOR TO AND IMMEDIATELY FOLLOWING A DESIGN ITERATION 

INTERVENTION 

“Hey drone design 
team, I would 

recommend evaluating 
and submitting your 
current design and 

starting fresh.”

“Hey drone design 
team, check out the 
suggestions from the 
drone design agent.”

“Hey operations team, I 
suggest that you try 

evaluating and 
submitting your plan 
and starting fresh.”

“Hey operations team, 
try running the path-

planning agent to help.”

Total # 10 5 7 9
Effective # 10 2 1 4

Percent Effective 100% 40% 14% 44%
Intervention 

Timing 35.72 seconds 178.10 seconds 221.95 seconds 93.96 seconds

Total Average 
(across all 

teams)
49.20 seconds 235.58 seconds 218.40 seconds 142.71 seconds

TABLE 6.1: THE TOTAL FREQUENCY AND FREQUENCY OF EFFECTIVENESS FOR 
FOUR DESIGN ACTION INTERVENTIONS 
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In addition to quantifying these interventions in a binary sense, the time-to-action is also 

considered. The time-to-action measures the time between when the process manager provides the 

intervention to the time that the intended action actually occurs following it. The idea assumes that 

in order to deduce whether these actions are induced by the process managers, as opposed to by 

random or natural occurrence, the time-to-action will be shorter during the intervention time 

periods where one of these four specific interventions are provided. Accordingly, rows four and 

five of Table 6.1 provide this additional insight. Row four shows the time-to-action for the specific 

time intervals for these specific four interventions, and row five provides the time-to-action across 

all intervention intervals. Overall, the time-to-action is shorter during the specific instances of 

these interventions (row four) at least for three out of the four interventions, and thus more likely 

to be attributed to the process managers. However, it should be noted that statistical analysis of 

this data presents challenging, as some of these include only one or two data points. Thus, while 

these results are descriptive, more data should be collected to allow for more definitive, inferential 

assessments.   

 
6.3 Regressing Interventions and Team Performance 
In order to determine the impact of the interventions on team performance, linear regression 

models are trained on the data. The overarching hypothesis is that certain interventions may be 

more effective (or predictive) of team performance than others. The predicator variables in the 

model are the counts of the number of times managers use each of the 12 interventions for a team, 

including the “No intervention” option, for a total of 13 independent variables. Since the maximum 

profit achieved by a team designates the team performance in this chapter, maximum profit 

represents the response variable. A separate linear regression model is trained for each problem-

solving session and each team condition, resulting in four models.  
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Table 6.2 presents the model statistics results from the four linear regression models. For 

both process manager conditions, the models for the first problem-solving session are significantly 

more predictive of overall performance than the trained models for the second problem-solving 

session, indicated by the larger R-squared values in the table. Due to this significant difference, 

these are the two models analyzed to gain further insights into the effects of interventions on team 

performance and differences between he human and AI process managers.  

 

 

 

 

 

 

 

Table 6.3 offers more details for the two regression models from the first problem-solving 

session. The first column shows each predictor variable (the 12 possible interventions, including 

“No intervention”), the second and third columns present the resulting estimates (i.e., coefficients) 

on each of the dimensions for the two models, columns four and five show the resulting 𝑝-values 

on each of these estimates for the two models, and the final column shows which specific 

intervention each dimension represents. Comparing the two models in this way highlights some 

interesting insights between the among the interventions as well as differences between the AI 

agent and human process managers.  

To analyze the parameter estimates, a positive value signals a positive correlation between 

estimate and team profit (i.e., the more times an intervention is used the greater the team profit, or 

Session 1 Session 2

AI R2 = 0.5260
F = 3.891, P = 0.038

R2 = 0.0669
F = 1.0004, P = 0.52

Human R2 = 0.9877
F = 93.28, P = 0.0016

R2 = -0.2894
F = 0.66, P = 0.74

TABLE 6.2: MODEL STATISTICS FOR EACH OF THE FOUR TRAINED LINEAR 
REGRESSION MODELS, ONE FOR EACH TEAM CONDITION (ROWS) AND 

PROBLEM-SOLVING SESSION (COLUMNS) 
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vice versa), whereas a negative correlation indicates a negative impact (the more times an 

intervention is used the lower the team profit). For both models, dimension 𝑥$- , (“No 

Intervention”) has a small impact on team performance, indicated by the small magnitude of their 

estimates relative to the other estimates within their respective regression model. While interesting, 

this provides a validation of the “No Intervention” option. Dimensions 𝑥$$ and 𝑥$+ highlight an 

additional insight. Both of these represent the dimensions focused on communication content, 

design parameters and design strategy, respectively. These dimensions also have relatively large 

and positive magnitudes on their parameter estimates, indicating that they have a greater positive 

impact on team performance. In fact, dimension 𝑥$$ has one of the greatest values for each model 

and, as seen from the previous before and after analysis, had a large impact on team process 

behaviors. The five interventions not used by the AI process manager throughout the first problem-

solving session result in estimators of 0 (𝑥$ , 𝑥< , 𝑥, , 𝑥= , and 𝑥>). Comparing across manager 

conditions, three of these interventions (𝑥<, 𝑥=, and 𝑥>,) significantly hurt teams in the human 

process manager condition, resulting in large, negative magnitudes of the parameter estimates. 

Integrating this with results from the before and after analyses from the previous section, four out 

of the five interventions not used by the AI process managers (the design actions) also did not 

induce behavioral impacts on the problem-solving process of the teams. Thus, these interventions 

might not have been impactful because they did not induce the associated behavioral impacts 

intended by the process managers.  

Comparing across the human and AI process manager models reveals interventions that 

yield different effects on team performance. Significant differences here are identified by 

computing the 95% confidence intervals on the parameter estimates and identifying those that do 

not overlap. The interventions resulting in these differences include 𝑥-, 𝑥?, 𝑥$@, and 𝑥$$. While 
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the latter three of these interventions all correlate positively with performance, 𝑥- does not. In the 

human-managed teams it negatively correlates with performance while in the AI-managed teams 

it positively correlates with performance. In fact, overall, the AI process manager model has only 

one intervention that negatively correlates with performance, 𝑥+,	whereas the human process 

manager model has six. Thus, there are fewer interventions that hurt the team in the AI process 

manager condition. This is a strong indication of a possible overall better strategy, or selection of 

interventions, by the AI process manager agent. While this did not necessarily produce better 

overall team performance for the AI team (Figure 5.8), other factors could have been at play that 

mitigated this effect, such as the ordering, timing, or adherence to the interventions. More analyses 

should be conducted to fully understand the nuances of these implications.  

 

Dimension Estimate, !
(AI) 

Estimate, !
(Human)

P-value
(AI)

P-value
(Human) Intervention

x1 0 307.67 - 0.2104 Drone designers, it would be helpful if you can continue working on and refining 
your drone designs a bit more.

x2 -84.69 -914.17 0.8859 0.0123 Drone designers, please try to communicate with each other more.

x3 1541.1 -3742.7 0.0956 0.0058 Hey drone design team, I would recommend evaluating and submitting your 
current design and starting fresh.

x4 0 -503.45 - 0.0959 Hey drone design team, check out the suggestions from the drone design agent.

x5 0 1207.9 - 0.107 Hey operations team, I suggest that you try evaluating and submitting your plan 
and starting fresh.

x6 0 -4229.1 - 0.00006 Hey operations team, try running the path-planning agent to help.

x7 0 -2966.5 - 0.0142 Hi problem manager, please try to communicate with your team more.

x8 759.84 3179.3 0.2303 0.0017 Hi team, try sharing your goals with each other a bit more and make sure they're 
aligned.

x9 394.94 999.97 0.1805 0.0838 Ops planners, it would be good to continue working on and refining your plans a 
bit more.

x10 610.55 4390.9 0.0444 0.0025 Ops team, please try to communicate with each other more.

x11 1501.3 3701.2 0.0964 0.0013
Team, I think you should try focusing more on adjusting the design parameters 
to meet the goals of the problem, and share this with each other (cost, capacity, 

speed, budget, weight, etc.).

x12 1329.5 1472 0.05 0.0061 Team, try focusing more on your strategy. Try optimizing and 
increasing/decreasing size of components and share this with each other.

x13 203.04 -97.71 0.4717 0.4726 No Intervention

TABLE 6.3: COMPARISON OF THE TWO REGRESSION MODELS FOR FIRST PROBLEM-
SOLVING SESSION 
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6.4 Summary 
The results from this chapter provide deeper insights into the effects of interventions from the 

developed AI process manager agent. While team members report they act in accordance with the 

interventions provided, this chapter presents before and after analyses to corroborate this. In fact, 

results show mixed adherence to the interventions, depending on intervention type. While the 

interventions focused on communication frequency and design parameter content show high 

influence on team process, others such as those focused on design actions show less impact, at 

least immediate impact. Measuring the time-to-action shows a tendency for teams to perform a 

certain action more quickly under a relevant intervention, though more data should be collected in 

future work to further validate this trend. In addition to analyzing the direct impact of the 

interventions on team process, trained regression models show which interventions yield higher 

prediction to team performance. Comparing the coefficients on the intervention variables within 

and across process manager conditions yields further findings and implications on the most 

impactful, both positive and negative, ones. Overall, the results from this chapter can be used to 

guide further insights to support the effective, process management of teams.  
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Chapter 7 : Conclusions, Contributions, 
and Areas for Future Work 

7.1 Overview 
Teams are fundamental across many fields, especially in engineering, to solve large, complex 

problems that require a breadth of domain expertise. However, it has been identified in social and 

cognitive psychology, as well as recently in the field of engineering design, that teams may not 

always perform as effectively as possible, are prone to pitfalls, and can even underperform 

compared to individual performance. Stimulus methods are one technique in the area of 

engineering design methods to facilitate the problem-solving process of designers. Within this 

field, research shows that stimuli can induce differing effects depending on the characteristics of 

said stimulus/intervention and even when the stimulus is provided during problem solving. 

Therefore, in order to be most impactful, there needs to be mechanism(s) to dynamically track 

designers and design teams to determine their state/progress to provide interventions in a manner 

that reflect that state. Accordingly, to address the aforementioned issue, this dissertation presents 

the following thesis statement:  

 

Real-time process management, via the monitoring of design cognition and discourse, can 

adapt to the state and dynamics of the designers and design progress, thereby facilitating 

the overall problem-solving design process. 

 

This thesis is supported through a set of frameworks that motivate and culminate in the 

development of an artificial intelligent (AI) process manager that intervenes in real-time during 

problem solving to affect the behavioral processes of teams. The advantage of an AI agent in this 
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research application is twofold: its ability to be able to track multiple metrics simultaneously and 

over time, and its ability to ascertain underlying patterns within data, such as team communication, 

that may not be perceivable via direct human inspection. To reach this goal, several exploration 

studies are conducted to analyze the efficacy of different interventions, strategies, and 

computational methodologies. These motivate the development of a data-driven approach to 

process management, which is tested in real-time during an interdisciplinary, complex engineering 

design problem through an online platform. The AI process manager framework can serve as a 

valuable testbed for future studies in the process management of engineering design teams.  

 In order to pursue the aforementioned thesis, first, Chapter 2 presents a large-scale, 

behavioral study with human process managers overseeing and intervening with design teams. 

This initial study explores the impact of real-time process management and different strategies for 

intervening. Furthermore, post-hoc interviews reveal the process managers’ motivations for 

intervening when and with what they did. Though stand alone in the insights revealed, this 

motivating study is also necessary in order to fully develop an AI manager that can emulate the 

strategies and nuances of human. Most critically, results show significant impact of the process 

managers on team performance, measured via final design output, with managed teams performing 

better than unmanaged teams, though still not quite as well as individual performance (enabled for 

comparison via the creation of nominal teams). In regard to team behaviors, the process-managed 

teams show higher team contribution and more cohesion in their communication. Analyzing the 

interventions provided over time, the overarching managerial strategy shows an exploratory-to-

convergent style, with design strategies making up the largest types of interventions early on in 

the design process before moving to more physical design components near the end of problem-

solving. Post-study interviews with the human process managers revealed that a desire to invoke 
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topic shifts in the teams’ discourse served as a critical motivation for their interventions. These 

motivations serve as one of the primary inspirations for utilizing topic modeling as a computational 

approach to enable the tracking of team discourse, as presented in the next chapter, Chapter 3.  

Team communication can provide valuable insight into the cognition of the designers and 

the design progress. Consequently, Chapter 3 studies whether team members’ discourse can be 

leveraged to computationally detect the impact and effects of the managerial interventions and 

produce the intended topic shifts in engineering design teams. Accordingly, topic models are 

trained on the transcript data from the behavioral team study from Chapter 2. Results show that 

the two team conditions significantly differ in a number of the extracted topics from the topic 

model, and in particular, those topics that most pertain to the manager interventions. Overall, 

managed teams’ discourse focus on topics much more related to design functions than the 

unmanaged teams, and a temporal look at numerous intervals during problem solving reveals the 

largest impacts occur during the latter half of problem solving. Finally, a before and after analysis 

of interventions reveal that the process manager interventions significantly shift the topics of the 

team members’ discourse toward that of the interventions immediately after they are provided.  

 Following these more exploratory chapters, Chapter 4 starts to move towards a 

computational framework that provides interventions in real-time during the problem-solving 

process. During the middle of a conceptual engineering design task, designers are provided with 

an inspirational stimulus. This stimulus, however, reflects their current design progress as the 

stimulus that is provided is either semantically “near” or “far” from their current design at that 

point in time. In regard to the impact on design performance, results highlight that near and far 

design stimuli have differing impact on the characteristics of final ideation outcomes. Furthermore, 

the overall innovativeness of the provided stimuli (i.e., the overall quality of the stimuli) 
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significantly correlates with the overall innovativeness of the designers’ final design solutions. In 

fact, the overall innovativeness of a stimulus has a greater impact on a designer’s output than the 

relative distance of the stimulus. This emphasizes the need to provide stimuli to designers not only 

at specific distances relative to the solution space, but also while assessing the innovative potential 

of the inspirational stimulus.  

 Chapter 5 then presents the development of an AI process manager to examine and 

compare the effects between a data-driven approach and human mediation. The computational 

framework for the AI process manager is derived by training on behaviors of teams from previous 

experiments. Several measures are tracked in near real-time to determine the state of the team and 

choose an appropriate intervention, including communication frequency, similarity, and content, 

and action frequency and type. Spanning across several dimension, results show that the AI process 

manager matches the capabilities of human process managers. These include team performance 

(i.e., team profit), intervention strategy, and perceived effectiveness. Furthermore, regardless of 

manager type (human or AI), team members note that they follow the interventions provided by 

the managers. The succeeding chapter of this dissertations presents additional analyses to 

determine if this is reflected within team process and behavior changes.  

 Chapter 6 presents further analyses from the AI process manager experiment from Chapter 

5. These analyses more precisely uncover the impact of specific interventions on team performance 

and process. Before and after analyses corroborate whether the managers induce the intended 

changes in the process of the teams. Additionally, regression models identify the predictive nature 

of the interventions on team performance. Results show mixed adherence to the interventions, 

particularly depending on the intervention type, in terms of the intended effect on team process. 

The interventions showing the highest impact relate to communication frequency and 
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communication content of design goals/constraints. The design action interventions show less of 

an immediate impact on team process. Measuring the time-to-action indicates a tendency for teams 

to perform a certain action more quickly given a relevant intervention. In addition to analyzing the 

direct impact of the interventions on team process, trained regression models show which 

interventions yield higher prediction to team performance, with each intervention as an 

independent variable in the model. Comparing the coefficients on the intervention variables, within 

and across process manager conditions, yields further findings and implications on the 

interventions that are most predictive of team performance. For instance, the interventions related 

to communication content, particularly those on design goals, are not only well followed but also 

show one of the highest correlations with team performance.  

 
7.2 Contributions 

The work incorporated in this dissertation adds several contributions to the research in engineering 

design theory, methodology, and automation. These can be summarized as follows:  

• Gain insight on the strategies of real-time, adaptive process management on design teams 

by analyzing the patterns and motivations exhibited by human managers 

 
• Introduce a topic modeling framework to study the impact of manager intervention in team 

cognition in real-time during the problem-solving process 

 
• Utilize real-time team discourse to computationally detect topic shifts and better 

understand the impact of process management during the problem-solving process 

 
• Develop and implement a framework to modulate the distance of design stimuli, through 

semantic similarities, to the current state of a designer in real-time 
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• Identification of metrics to automatically track design team state dynamically during 

problem solving 

 
• Develop an artificial intelligent process manager agent, that is trained on previous 

problem-solving behaviors, to intervene in real-time to affect the problem-solving process 

of teams  

 
• Identify the perceived and team process-induced impacts of a data-driven approach to 

process management  

 
7.3 Areas for Future Work 
In an effort to mitigate some of the shortcomings within teams, this dissertation demonstrates the 

strength of the impact of process management on engineering design teams. However, common 

with human research based on a limited number of behavioral experiments, future work is needed 

to fully understand the nuances of the results presented in this dissertation. The tools and 

implications throughout the preceding chapters lay out many directions and ideas for this future 

work. The non-exhaustive possibilities presented in this section can be roughly broken down into 

two distinct categories: those focused on the generality of the findings’ contexts and the further 

development and refinement of the AI process manager and underlying computational 

frameworks.  

 

7.3.1 Extension of Problem Contexts 
 
Throughout this dissertation, the experiments focus on a limiting number of contexts. These 

contexts include those related to the problem structure (e.g., problem type and domain), team 
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structure, and time frame of the experiments and problem-solving sessions. As a quick recap, in 

Chapter 2 (and for the topic modeling framework in Chapter 3), the design problem focuses on a 

30-minute, conceptual engineering design problem task with 2 distinct problem shocks. In Chapter 

4, the problem again, consists of a conceptual engineering design task, but was 20-minutes in 

length. The experiment in Chapter 5 (and the corresponding analyses in Chapter 6), presents a 

more complex, 40-minute engineering design task with one problem shock midway. While each 

of these experiments are already a bit different in their own right, the aforementioned contexts can 

be further extended to provide a more robust validation and generality of the findings presented.  

Two of the experiments consist of conceptual engineering design tasks, which form the 

early stages of the design process, requiring the tasks of concept generation and concept selection. 

The latter experiment on drone design and operations planning can be categorized as a 

configurational engineering design task. While together these two problem structures show 

generality, additional problem types and complexities can further validate the findings. The goal 

would be to move the experimental problems closer to those reflected by engineers in practice, 

which often poses challenging within a human-subjects, experimental setting. Additionally, some 

of the interventions in each of the experiments correspond to the specific problem structures and 

domains. For example, several of the interventions in Chapter 2 & 3 relate to peanut de-shelling 

and the action interventions in Chapter 5 & 6 correspond to drone design and path planning. Thus, 

extending the problem types will also enable the extension of possible interventions. The challenge 

here will be shifting away from the problem-specific interventions and/or having an AI agent 

identify these prior to problem-solving. Furthermore, engineering problems can encompass 

multiple meetings, days, weeks, or months. While time periods can also be a limiting factor within 

human subject studies, as the ones presented in this dissertation, it would be interesting to emulate 



Page 163  

the process of teams across longer time frames and identify how this impacts what types of 

interventions would be needed. These longer time periods may also affect team processes. For 

example, the culture and dynamics of teams can change over time, again, impacting the types of 

interventions that may be needed and even the overall strategies of process managers. With longer 

time periods additional challenges emerge, such as the need of accessing real-time communication 

amongst teams.  

Finally, the teams used within each of the respective studies are homogeneous in terms of 

their experiences and skillsets. Future studies can look at heterogeneous teams, made up of 

individuals with different expertise, experiences, and skillsets, and how that may affect the 

interventions and strategies required. The teams in the studies in Chapters 1 – 4 lack any significant 

structure, while the teams in the studies in Chapters 5 and 6 present a strict hierarchical structure. 

Understanding the intervention strategies required amongst other team structures would add to the 

generality of this work. Of course, the overarching goal is that the methodologies and frameworks 

for automating process management remain general, domain independent, and applies across 

problem contexts.  

Since the culminating AI process manager in this dissertation is trained on previous 

problem-solving data, in order to extend across contexts in the aforementioned ways, the goal will 

be to start forming and testing theories. In this way, such an AI process manager agent will not 

need to be “trained” prior to each new implementation. Instead, the AI agent can sense its current 

environment (novel problem contexts, team structures, time frames, etc.) and apply these theories 

to choose an appropriate intervention. The ultimate goal is that the automation and computational 

frameworks for process management is general, domain independent, and applies across problems.   
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7.3.2 Further Development of AI Process Manager  
 
The AI process manager and corresponding tools for automation developed for this dissertation 

can be utilized as a testbed for further analyses. Currently, the AI process manager tracks team 

communication (including frequency, aspects of its content, and similarity), as well as the 

frequency of specific types of actions. These all can be extended and built upon to administer 

different manager strategies and refine the team process measures that are tracked dynamically 

over time. For example, more individualized or customized interventions that are specific to 

individuals rather than to multiple players or the entire team can be administered. The latter would 

involve identifying deficiencies at the role level rather than the at the discipline level. Another 

interesting aspect is the notion of positive reinforcement. Instead of having the manager not 

intervene when they feel that a team is on the right path, the manager intervenes with a sentiment 

to boost team morale. This type of positive reinforcement could have tremendous impact on team 

attitude, efforts, and ultimately performance. Furthermore, the AI presently follows a set timing 

for the interventions, though this was a specific decision chosen in the experimental design to 

mitigate confounding variables. However, the manager can instead intervene more freely (or not 

intervene more freely) whenever they feel necessary. As noted by several of the human process 

managers in the post-study questionnaire, many chose not to intervene during important and 

critical conversations amongst the teams. Thus, these ad-hoc interventions can be further studied 

to provide further insights into the identification of appropriate timings.  

 The majority of the interventions and overall intervention strategy currently implemented 

in the AI process manager can be interpreted as convergent or goal directed. While two of the 

interventions ask designers to evaluate and submit their designers and start fresh, the remaining 

interventions do not explicitly push for exploration of the design space or other types of divergent 
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thinking. As this divergent-convergent search of the design space is not only a well-studied 

strategy within the engineering design literature, but also one that was witnessed among the 

process managers in Chapter 2, this would be an interesting strategy to emulate next within the AI 

framework and compare the impact to other strategies. In order to achieve this, this requires 

extending the intervention set to include ones that promote such an exploratory push of the design 

space, perhaps even modeling those from the initial behavioral experiment.   

 In addition to extending the types and timings of interventions, the team measures that are 

tracked by the process managers can also be adjusted. It its current form, the manager tracks the 

process of the team, so the manager is not intended to help in directly solving the problem, the 

reason why the AI only tracks communication and action behaviors. Instead, or in addition to these 

process measures, the manager can serve as a problem manager. In this way, different aspects of 

the team’s design state can be tracked, and the manager can mediate with interventions more 

relevant to the design task, goals, and constraints of the problem. This notion relates to aspects of 

the experiments presented in Chapters 1 and Chapter 4, where some of the provided interventions 

more directly aid in solving the design problem itself. Fundamentally, the AI can track where 

designers are within the design space and help push them in a certain direction, either exploring 

other regions or converging on specific design ideas. Also, this new conceptualization of the AI 

framework does not necessarily have to be mutually exclusive. The AI manager framework can 

integrate both of these notions of problem- and process-based management and serve these roles 

together by providing interventions related to both.  

 Another interesting avenue of future research is implementing an additional feedback 

mechanism into the AI process manager agent. For example, the analyses presented in Chapter 6 

(specifically, the before and after analyses) are conducted to identify whether teams actually 
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followed the interventions. This information can be reinserted back into the process manager as 

additional information to use in deciding the next intervention. Often, in the current framework 

with the restricted set of possible interventions, the AI process manager would use the same 

interventions multiple times in a row. Perhaps the AI can use this additional feedback to mitigate 

this and implement a different wording or phrasing to get the same information across (this 

reoccurrence of the same intervention multiple times in a row was noted by many of the 

participants in post-study questionaries). Further, in consideration of human interaction with the 

AI manager, timing and appropriateness of information should be considered to prevent the AI 

content or frequency from becoming annoying to the human user. Finally, different underlying 

computational frameworks can be implemented in the design of the AI agent. For example, latent 

semantic analysis is used as the natural language processing (NLP) technique to measure the 

similarity amongst the team communication. Other, perhaps more sophisticated and state-of-the-

art, NLP approaches such as short text topic modeling (STTP) can be used to measure this. 

Moreover, a probabilistic approach can be taken within the decision-making framework of the AI 

(i.e., the mechanism on how the AI actually chooses which intervention to implement).  

 In the end, the methodologies and tools this dissertation presents create promising 

opportunities for future research in automating process management. While teams are useful to 

problem-solving, there are underlying pitfalls that may cause them to underperform. This 

dissertation tasks useful steps towards this mitigation of pitfalls by proposing different 

computational approaches for real-time interventions that can track and adapt dynamically during 

the problem-solving process. The overarching research goal is to extend this management across 

contexts and capturing the right characteristics of teams to provide a rich set of potential 
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interventions. This will ultimately facilitate the problem-solving process and cause teams to 

perform as efficiently and effectively as possible.  
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