Carnegie Mellon University
Software Engineering Institute

Designing Vultron:
A Protocol for Multi-Party Coordinated
Vulnerability Disclosure (MPCVD)

(Vultron v0.4.0)

Allen D. Householder

September 2022

SPECIAL REPORT
CMU/SEI-2022-SR-012
DOI: 10.1184/R1/19852798
CERT Division

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright ©2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Homeland Security under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development center sponsored by the United States
Department of Defense. The view, opinions, and/or findings contained in this material are those of the
author(s) and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation. References herein to any specific commercial product, process, or
service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,
MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN "AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EX-
CLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineer-
ing Institute at permission@sei.cmu.edu. * These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM22-0559

mailto:permission@sei.cmu.edu

Table of Contents

Acknowledgments viii
Abstract X
1 Introduction 1
1.1 Goals 3
1.2 Objectives 4
1.3 What Does “Success” Mean in Coordinated Vulnerability Disclosure (CVD) 4
1.4 Report Preview 6
1.5 Terms and Definitions 7
1.6 Notation 8

2 Report Management (RM) Model 9
2.1 RM State Machine 9
2.1.1 RM States 9

2.1.2 RM State Transitions 12

2.1.3 RM Deterministic Finite Automaton (DFA) Fully Defined 15

2.2 RM Discussion 15
2.2.1 The Secret Lives of Finders 15

2.2.2 RM Interactions Between CVD Participants 15

2.2.3 RM State Subsets 19

3 Embargo Management (EM) Model 20
3.1 EM State Machine 20
3.1.1 EM States 21

3.1.2 EM State Transitions 22

3.1.3 EM DFA Fully Defined 24

3.2 EM Discussion 24
3.2.1 Embargo Principles 24

3.2.2 Embargo Scale and Duration 25

3.2.3 Embargo Participants Are Free to Engage or Disengage 25

3.2.4 Entering an Embargo 26

3.2.5 Negotiating Embargoes 27

3.2.6 Default Embargoes 28

3.2.7 Early Termination 31

3.2.8 Impact of Case Mergers on Embargoes 32

3.2.9 Impact of Case Splits on Embargoes 32

3.2.10 Inviting Others to an Embargoed Case 33

3.2.11 Consequences of Non-Compliance 36

4 CVD Case State Model 37
4.1 CVD Case Substates 37
411 The Vendor Awareness Substate (v, V) 37

4.1.2 The Fix Readiness Substate (f, F) 37

4.1.3 The Fix Deployed Substate (d, D) 38

4.1.4 The Public Awareness Substate (p, P) 38

4.1.5 The Ezploit Public Substate (z, X) 38

4.1.6 The Attacks Observed Substate (a, A) 38

4.1.7 CVD Case State (CS) Model Design Choices 38

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2 CVD Case States

4.2.1 CS Start and End States

4.2.2 CS Model Wildcard Notation
4.3 CS Transitions

4.3.1 CS Transitions Defined

4.3.2 A Regular Grammar for the CS model
4.4 CS Model Fully Defined

5 Model Interactions
5.1 Interactions Between the RM and EM Models
5.2 RM-CVD and EM - CVD Model Interactions
5.2.1 Vendor Notification
5.2.2 Fix Ready
5.2.3 Fix Deployed
5.2.4 Public Awareness
5.2.5 Exploit Public
5.2.6 Attacks Observed

6 A Formal Protocol Definition for Multi-Party Coordinated Vulnerability Disclo-
sure (MPCVD)
6.1 Communication Protocol Definitions
6.2 Number of Processes
6.3 States
6.3.1 Unreachable States
6.3.2 Vendors (Fix Suppliers)
6.3.3 Non-Vendor Deployers
6.3.4 Non-Vendor, Non-Deployer Participants
6.4 A Lower Bounds on MPCVD State Space
6.5 Starting States
6.6 Message Types
6.6.1 RM Message Types
6.6.2 EM Message Types
6.6.3 CS Message Types
6.6.4 Other Message Types
6.6.5 Message Type Redux
6.7 Transition Functions
6.7.1 RM Transition Functions
6.7.2 EM Transition Functions
6.7.3 CVD Transition Functions
6.7.4 General Transition Functions
6.8 Formal MPCVD Protocol Redux
6.9 Worked Example
6.9.1 A Finder Becomes a Reporter
6.9.2 Vendor Evaluates Embargo
6.9.3 Vendor Sets Priority
6.9.4 Coordination With a Coordinator
6.9.5 Embargo Teardown, Publish, and Close

7 Modeling an MPCVD Al Using Behavior Trees
7.1 CVD Behavior Tree
7.2 Vulnerability Discovery Behavior
7.3 Report Management Behavior Tree
7.3.1 Report Validation Behavior
7.3.2 Report Prioritization Behavior

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

39
39
40
40
40
43
43

45
45
46
46
47
47
48
48
49

50
50
50
51
52
52
54
55
56
57
58
59
60
60
61
61
62
63
64
66
68
68
69
69
69
71
71
73

76
77
78
79
80
81

7.3.3 Report Closure Behavior

7.4 Embargo Management Behavior Tree
7.4.1 Propose Embargo Behavior
7.4.2 Terminate Embargo Behavior

7.5 Do Work Behavior
7.5.1 Deployment Behavior
7.5.2 Fix Development Behavior
7.5.3 Reporting Behavior
7.5.4 Publication Behavior
7.5.5 Monitor Threats Behavior
7.5.6 CVE ID Assignment Behavior
7.5.7 Acquire Exploit Behavior

7.6 Receiving and Processing Messages Behavior
7.6.1 Process RM Messages Behavior
7.6.2 Process EM Messages Behavior
7.6.3 Process CS Messages Behavior
7.6.4 Process Other Messages Behavior

8 Implementation Notes
8.1 An MPCVD Case Object
8.1.1 The Case Class
8.1.2 The Report Class
8.1.3 The Message Class
8.1.4 The LogEvent Class
8.1.5 The Participant Class
8.1.6 The Contact Class
8.1.7 The Enumeration Classes
8.2 Process Implementation Notes
8.2.1 RM Implementation Notes
8.2.2 EM Implementation Notes
8.2.3 CS Implementation Notes
8.3 General Notes
8.3.1 Message Formats
8.3.2 Transport Protocol
8.3.3 Identity Management

9 Future Work
9.1 CVD Directory
9.2 Reward Functions
9.2.1 A Reward Function for Minimizing RM Strings
9.2.2 A Reward Function for Minimizing EM Strings
9.3 Embargo Management Does Not Deliver Synchronized Publication
9.4 Ontology
9.5 Modeling and Simulation

10 Conclusion
Request for Feedback

A Interactions Between the MPCVD Protocol and SSVC
A.1 SSVC Supplier and Deployer Trees
A.2 SSVC Coordinator Trees
A.3 SSVC Decision Points and the MPCVD Protocol
A.3.1 Exploitation

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

82
82
84
85
85
86
88
88
90
92
93
93
94
95
97
97
99

100
100
100
100
100
102
102
102
103
103
103
104
104
104
104
105
105

106
106
107
107
108
108
108
109

110
111

112
112
112
113
113

A.3.2 Report Public 113

A.3.3 Supplier Contacted 113

A.3.4 Report Credibility 114

A.3.5 Supplier Engagement 114

A.3.6 Supplier Involvement 114

A.3.7 Engagement vs. Involvement: What'’s the Difference? 115

B MPCVD Protocol and ISO/IEC Standards 117
B.1 ISO/IEC 30111:2019 117
B.2 ISO/IEC 29147:2018 118
B.3 ISO/IEC TR 5895:2022 120

C Embargo Management and the iCalendar Protocol 123
C.1 Proposing an Embargo 123
C.2 Embargo Counterproposals 125
C.3 Proposing a Change to an Existing Embargo 125
C.4 Terminating an Existing Embargo 125
References/Bibliography 127
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5
Figure 3.1
Figure 4.1

Figure 6.1
Figure 6.2

Figure 6.3

Figure 6.4
Figure 6.5
Figure 6.6

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25
Figure 7.26

Figure 8.1

The RM Process

Notional Diagram of a Finder RM DFA Interacting with a Vendor RM DFA

Notional Diagram of a Finder RM DFA Interacting with RM DFAs from
Both a Coordinator and a Vendor RM

Notional Diagram of a Finder RM DFA Interacting with a Coordinator and

Two Vendor RM DFAs in an MPCVD Case
High-Level Examples of Other Common MPCVD Scenarios

The EM Process
CVD Case State Process

MPCVD Protocol State Model Summary for a Single Participant

A Finder Becomes a Reporter, and a Vendor Acknowledges the Report
Without Yet Accepting the Embargo

A Vendor Evaluates a Proposed Embargo and Responds in a Variety of
Ways

A Vendor Prioritizes a Report

A Reporter Engages a Coordinator, Who, in Turn, Engages a Vendor
Embargo Teardown, Publication, and Report Closure

Basic Behavior Tree

CVD Process Behavior Tree

Discover Vulnerability Behavior Tree
Report Management Behavior Tree
Validate Report Behavior Tree
Prioritize Report Behavior Tree

Close Report Behavior Tree

Embargo Management Behavior Tree
Propose Embargo Behavior Tree
Terminate Embargo Behavior Tree
Do Work Behavior Tree

Deployment Behavior Tree

Fix Development Behavior Tree
Reporting Behavior Tree

Identify Participants Behavior Tree
Notify Others Behavior Tree
Publication Behavior Tree

Prepare Publication Behavior Tree
Monitor Threats Behavior Tree

CVE Assignment Behavior Tree
Acquire Exploit Behavior Tree
Receive Messages Behavior Tree
Process RM Messages Behavior Tree
Process EM Messages Behavior Tree
Process CS Messages Behavior Tree
Process Other Messages Behavior Tree

UML Class Diagram of a Notional MPCVD Case Object

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13
16

17

18
19

22
41

70

71

72
73
74
75

77
77
78
79
80
81
82
83
84
85
86
87
88
88
89
90
91
91
92
93
93
94
95
96
98
99

101

Figure A.1 Mapping Vendor RM States to the Stakeholder-Specific Vulnerability Cat-
egorization (SSVC) Supplier Engagement (Left) and Supplier Involvement
(Right) Decision Point Values

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

115

Vi

List of Tables

Table 1.1
Table 2.1
Table 4.1

Table 6.1

Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9

Table B.1
Table B.2
Table B.3

Table C.1

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

CS Transition Events [10]
Common CVD Actions by Role and Their Effects on the RM Model
CVD Case Status Labels

MPCVD Protocol Message Types (1;;) and the Corresponding Sender
State Changes

RM Messages Sent and State Transitions

RM Messages Received and State Transitions

EM Messages Sent and State Transitions

EM Messages Received and State Transitions

CS Messages Sent and State Transitions

CS Messages Received and State Transitions

General Messages Sent and State Transitions

General Messages Received and State Transitions

Mapping ISO/IEC 30111:2019 Onto the MPCVD Protocol
Mapping ISO/IEC 29147:2018 Onto the MPCVD Protocol
Mapping ISO/IEC TR 5895 Onto the MPCVD Protocol

Mapping Embargo Information to iCalendar Semantics

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

37

62
63
64
65
65
66
67
68
68

117
119
121

124

vii

Acknowledgments

The author thanks his colleagues at the CERT Coordination Center (CERT/CC) for their
contributions to the development of the protocol proposed in this report: Brad Runyon, Lau-
rie Tyzenhaus, Chuck Yarbrough, Jonathan Spring, and Art Manion. Together, they helped
keep the ball rolling by reviewing work in progress, paying attention to the details, asking in-
sightful questions, and suggesting numerous improvements along the way.

I also owe my gratitude to Eric Hatleback, Timur Snoke, Vijay Sarvepalli, and Sam Perl,
whose curiosity and conversations were helpful in sifting through a number of concepts inte-
gral to the underlying principles of the protocol proposed in this report.

Thanks as well to Barbara White and Sandy Shrum for their helpful editing advice.

Colledanchise and Ogren’s book Behavior Trees in Robotics and AI: An Introduction [6], cou-
pled with Dr. Ogren’s Behavior Tree tutorials on YouTube provided essential background for
Chapter 7.

This work was made possible through funding from the Cybersecurity and Infrastructure Se-
curity Agency (CISA) in support of the CERT/CC’s Multi-Party Coordinated Vulnerability
Disclosure (MPCVD) efforts.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Abstract

The Coordinated Vulnerability Disclosure (CVD) process addresses a human coordination
problem that spans individuals and organizations. In this report, we propose a formal pro-
tocol specification for Multi-Party Coordinated Vulnerability Disclosure (MPCVD) with the
goal of improving the interoperability of both CVD and MPCVD processes. The Vultron pro-
tocol is composed of three interacting Deterministic Finite Automata (DFAs) for each CVD
case Participant representing the Report Management (RM), Embargo Management (EM),
and CVD Case State (CS) processes. Additionally, we provide guidance and commentary on
the associated MPCVD Participant capabilities and behaviors necessary for this interoperabil-
ity to be realized.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY X
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Xi

1 Introduction

The Coordinated Vulnerability Disclosure (CVD) process addresses a human coordination
problem that spans individuals and organizations. As we wrote in The CERT® Guide to Co-
ordinated Vulnerability Disclosure [14, 13],

Perhaps the simplest description of the CVD process is that it starts with at

least one individual becoming aware of a vulnerability in a product. This discov-
ery event immediately divides the world into two sets of people: those who know
about the vulnerability, and those who don’t. From that point on, those belonging
to the set that knows about the vulnerability iterate on two questions:

1. What actions should I take in response to this knowledge?
2. Who else needs to know what, and when?

The CVD process continues until the answers to these questions are “nothing,”
and “nobody.”

CVD Is Multi-Party Coordinated Vulnerability Disclosure (MPCVD), and MPCVD Is CVD.
Any given CVD case is made up of many individual disclosure events, for example,

* from a Finder to one or more Vendors and/or Coordinators
* from Vendors and Coordinators to other Vendors and Coordinators
* from Finders, Vendors, and Coordinators to Deployers and the Public

In recent years, software supply chains have evolved such that software library and component
vulnerabilities have become just as much a part of the everyday CVD process as vulnerabili-
ties in Vendors’ proprietary code. This means that many CVD cases we encounter require co-
ordination across multiple vendors. As a result, we find it decreasingly useful to differentiate
between “traditional” (i.e., two-party) CVD and MPCVD. In this report, we use both terms
interchangeably.

CVD <= MPCVD

Practically speaking, this means that readers should not infer from our use of CVD in one
place that we meant to exclude the multi-party scenario, nor that our use of MPCVD implies
the exclusion of the single-vendor CVD scenario. Instead, our intent is to construct a protocol
that adequately addresses the MPCVD scenario where Nyepndors = 1 and for which the “tradi-
tional” CVD case is merely a special (and often simpler) case where Nyendors = 1.

Context of Our Recent Work. This report, in the context of recent CVD work at the CERT
Coordination Center (CERT/CC), is one of four foundational documents aimed at increasing
the professionalization of the CVD process. The following is the full set of foundational docu-
ments (thus far):

* The CERT Guide to Coordinated Vulnerability Disclosure (the CVD Guide) in both its
original [14] and updated forms [13], provides a “field guide” perspective to the CVD
process and its natural extension into MPCVD.

» A Stakeholder-Specific Vulnerability Categorization [27, 28, 29] provides decision sup-
port for prioritizing vulnerability response activities closely associated with the CVD
process.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* A State-Based Model for Multi-Party Coordinated Vulnerability Disclosure [10] describes
a model that encompasses all possible CVD case histories into a set of measures and
metrics for the efficacy of CVD processes. That report is an expanded version of “Are
We Skillful or Just Lucky? Interpreting the Possible Histories of Vulnerability Disclo-
sures,” an article published in the Association for Computing Machinery (ACM) Journal
of Digital Threats: Research and Practice (DTRAP) [12].

* This report, which proposes an abstract formal protocol for MPCVD, ties together vari-
ous concepts from all three of the above.

Whereas the CVD Guide offers a narrative description of both the CVD process and the
many scenarios one can expect to encounter as a Participant therein, in this report, we pro-
vide an additional layer of formality in the form of a protocol for MPCVD.

What We Mean by Protocol. We first define what we mean by our use of the term protocol
by providing a few common usages from the Oxford English Dictionary [26].

* (Computing and Telecommunications) A (usually standardized) set of rules governing
the exchange of data between given devices, or the transmission of data via a given com-
munications channel.

* (In extended use) the accepted or established code of behavior in any group, organiza-
tion, or situation; an instance of this.

Both usages are relevant to this report. First, insofar as we seek to scale the MPCVD process
through the use of automation and software-augmented human processes, we wish to propose
a formal technical protocol that can serve as the basis of such technical tools. Chapter 6 ad-
dresses this first definition in specific detail after explicating its component parts and their
interactions in Chapters 2, 3, 4, and 5.

Second, recognizing that MPCVD is primarily a coordination process among human Partici-
pants with the goal of remediating extant vulnerabilities in deployed information systems, a
protocol must not only address the technical formalities of communicating code but also ex-
tend to the expected behaviors of the human Participants that rely on it. In this second sense,
we address the term protocol in these ways:

* The CVD Guide offers a narrative protocol for practitioners to follow based on decades
of accumulated experience and observation of the CVD process at the CERT/CC [14,
13].

* The CVD Case State (CS) model from the Householder and Spring 2021 report [10] of-
fers a prescriptive protocol outlining the high-level goals of the CVD process, as derived
from a first-principles approach to possible CVD case histories.

* This report describes a normative protocol designed to structure and guide practitioners
toward those goals.

To that end, we offer this report as a proposal for such an MPCVD protocol.

Why Vultron? The working name for our protocol is Vultron, an homage to the fictional
robot Voltron. In the Voltron animated series, a team of protectors joins forces to defend the
universe from their adversaries. Their defensive mission requires a combination of indepen-
dent defenders coordinating their efforts to achieve their goals. Like Voltron, our MPCVD
protocol comprises a combination of humans and the technical processes and mechanisms that
empower them. Together, those humans, processes, and mechanisms must function both indi-
vidually and in coordination and cooperation with others to protect information systems and
the people who depend on them from exploitation by adversaries.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Version Numbering Scheme. While we have not yet mapped out a future release sched-
ule, in anticipation of future revisions, we have chosen a semantic versioning scheme for the

Vultron protocol. Specifically, Vultron versions will be assigned according to the format
MAJOR.MINOR.MICRO, where

* MAJOR represents the zero-indexed major version for the release.

* MINOR represents a zero-indexed counter for minor releases that maintain compatibility
with their MAJOR version.

* MICRO represents an optional zero-indexed micro-version (patch) counter for versions
that update a MINOR version.

Trailing zero values may be omitted (e.g., 3.1 and 3.1.0 denote the same version, similarly

5 and 5.0). It may be useful at some point to use pre-release tags such as -alpha, -beta, -rc
(with optional zero-indexed counters as needed), but we reserve that decision until their neces-
sity becomes clear. The same goes for build-specific tags; while we do not currently have a use
for them, we do not rule out their future use.

Because of the early nature of the current version of the protocol (0.4.0), as of this writing,
no backward compatibility commitments are made or implied within the 0.x versions. We
anticipate this commitment will change as we get closer to a major release.

1.1 Goals

The overall goal of our MPCVD protocol effort is to achieve interoperability among CVD pro-
cess implementations according to the broad definition of that term found in the SEI report,
Current Perspectives on Interoperability [21]:

Interoperability. The ability of a collection of communicating entities to (a) share specified
information and (b) operate on that information according to an agreed operational se-
mantics

This definition encompasses both (a) syntactic and (b) semantic interoperability. The goal of
this report is to lay the foundation for the semantic interoperability of CVD processes across
Participants. Syntactic interoperability, in the form of message formats and the like, will be
left as future work (§9).

Addressing semantic interoperability first is a deliberate choice. If we were to go in the reverse
order, we might wind up with systems that exchange data quickly and accurately yet still fail
to accomplish the mutually beneficial outcomes that MPCVD sets out to achieve. Carney et
al. illustrate the importance of semantic interoperability in their report Some Current Ap-
proaches to Interoperability [5]:

There is a limited number of ways that agreements on meaning can be achieved.
In the context of design-time interoperability, semantic agreements are reached
in the same manner as interface agreements between the constituent sys-

tems. .. However, in the context of run-time interoperability, the situation is more
complex, since there is need for some manner of universal agreement, so that a
new system can join, ad-hoc, some other group of systems. The new system must
be able to usefully share data and meaning with those other systems, and those
other systems must be able to share data and meaning from an unfamiliar new-
comer.

In this excerpt, replace the word “system” with the concept of a “CVD Case Participant,”
and the need for semantic interoperability as a means of achieving coordination in MPCVD
becomes clear:

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[...] However, in the context of run-time interoperability, the situation is more
complex, since there is need for some manner of universal agreement, so that a
new CVD Participant can join, ad-hoc, some other group of CVD Participants [in
a CVD Case]. The new CVD Case Participant must be able to usefully share data
and meaning with those other CVD Case Participants, and those other Partici-
pants must be able to share data and meaning from an unfamiliar newcomer.

Elsewhere in the same report, Carney et al. write [5],

In the hoped-for context of unbounded systems of systems, trust in the actions
and capabilities provided by interoperating parties is essential. Each party to an
interaction must have, develop, or perceive a sense of whether the actions of inter-
operating parties can be trusted. This sense of trust is not Boolean (e.g., parties
can be trusted to varying degrees), is context dependent (Party A can be trusted
in a particular context but not in another), and is time sensitive (Party A can be
trusted for a certain period). Further, the absence of trust—distrust—is less
dangerous than misplaced trust: it is better to know that you cannot trust a par-
ticular party than to misplace trust in a party

The protocol we propose is intended to promote trust between MPCVD Participants both
within an individual case as well as over time and across cases.

1.2 Objectives

The objectives of this report are as follows:

1. Provide a set of common primitives to serve as an ontological foundation for CVD pro-
cess definitions across organizations.

2. Construct abstract workflows that support the inter-organizational coordination and
synchronization required for the CVD process to be successful.

3. From those primitives and workflows, identify a set of message types needed for the
CVD process to function.

4. Provide high-level requirements for the semantic content of those message types.

1.3 What Does “Success” Mean in CVD

We take as a base set of criteria the ordering preferences given in the Householder and Spring
2021 report [10]. While we incorporate this model fully in Chapter 4, some notation is nec-
essary to proceed here. The CS model is built on the idea that there are six events of signifi-
cance in the lifespan of every vulnerability: Vendor Awareness, Fix Ready, Fix Deployed, Pub-
lic Awareness, Exploit Public, and Attacks Observed. Brief descriptions of those events are
listed in Table 1.1.

The Householder and Spring 2021 report defines a set of 12 ordering preferences over these

6 events [10]. We present them in roughly descending order of desirability according to the
partial order developed in that report [10]. Items closer to the top of the list are indicators of
CVD skill. The symbol < is read as precedes.

Fix Deployed Before Public Awareness (D < P). For a fix to be deployed prior to public
awareness, a lot has to go right in the CVD process: The vendor has to know about the
vulnerability, create a fix, and deploy it—all without public knowledge——and has to
achieve all that prior to any exploits being published or attacks becoming known to the
public. Furthermore, it requires that the Vendor has the capability to deploy fixes with-
out intervention by the system owner or user, which is a rare engineering feat unattain-

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 1.1: CS Transition Events [10]

Case Event | Symbol | Description

Vendor Awareness A% The Vendor knows the vulnerability exists.

Fix Ready F A fix has been created by the Vendor and is ready to be
deployed.

Fix Deployed D The fix has been deployed to vulnerable instances.

Public Awareness P The public becomes aware of the existence of the vul-

nerability, whether through the successful completion of
a CVD process or otherwise.

An exploit for the vulnerability is made public.

Attacks against vulnerable instances of the software
have been observed.

Exploit Public
Attacks Observed

>

able by many software supply chains. More often, fix deployment (D) requires users
and/or system owners (Deployers) to take action. The need to inform Deployers im-
plies a need for public awareness of the vulnerability, making this criteria impossible to
achieve in those scenarios.

Fix Ready Before Public Awareness (F < P). Deployers (i.e., the public) can take no ac-
tion until a fix is ready. Because public awareness also implies adversary awareness, the
vendor-adversary race becomes even more critical when this condition is not met. Only
Vendors who can receive and act on vulnerability reports—whether those reports origi-
nate from inside or outside of the organization—are able to achieve this goal.

Fix Deployed Before Exploit Public (D < X). Deploying a fix before an exploit is made
public helps reduce the net risk to end users.

Fix Deployed Before Attacks Observed (D < A). Attacks occurring before a fix has been
deployed are when there’s maximum risk to users; therefore, we wish to avoid that situa-
tion.

Fix Ready Before Exploit Public (F < X). Exploit publication prior to fix readiness repre-
sents a period of increased threat to users since it means that attackers can exploit the
vulnerability even if they lack exploit development skills. When fixes are ready before
exploits are made public, defenders are better positioned to protect their users.

Vendor Awareness Before Public Awareness (V < P). Public awareness prior to vendor
awareness can cause increased support costs for vendors at the same time they are expe-
riencing increased pressure to prepare a fix.

Fix Ready Before Attacks Observed (F < A). As in the case with published exploits, when
fixes exist before attacks are observed, defenders are in a substantially better position to
protect their users.

Public Awareness Before Exploit Public (P < X). There is broad agreement that it is bet-
ter for the public to find out about a vulnerability via a CVD process rather than be-
cause someone published an exploit for any adversary to use.

Exploit Public Before Attacks Observed (X < A). This criterion is not about whether
exploits should be published or not. It is about whether we should prefer histories in
which exploits are published before attacks happen over histories in which exploits are
published after attacks happen. Because attackers have more advantages in the latter
case than the former, histories in which X < A are preferable to those in which A < X.

Public Awareness Before Attacks Observed (P < A). Similar to the exploit case above,
public awareness via CVD is generally preferred over public awareness resulting from

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

incident analysis that results from attack observations.

Vendor Awareness Before Exploit Public (V < X). If public awareness of the vulnerabil-
ity prior to vendor awareness is bad, then a public exploit is at least as bad because it
encompasses the former and makes it readily evident that adversaries have exploit code
available for use.

Vendor Awareness Before Attacks Observed (V < A). Attacks prior to vendor awareness
represent a complete failure of the vulnerability remediation process because they indi-
cate that adversaries are far ahead of defenders.

Taken together, these twelve ordering preferences constitute the minimum set of outcomes we
hope to emerge from the protocol proposed in this report.

1.4 Report Preview

MPCVD is comprised of independent Participants performing their own CVD-related pro-
cesses. Those processes can be represented by Finite State Machines (FSMs), specifically as
Deterministic Finite Automata (DFAs). CVD processes (and the DFAs representing them)
can be decomposed hierarchically. We propose three main DFAs as the core of our MPCVD
protocol:

1. A Report Management (RM) DFA represents each CVD Participant’s engagement with
a particular report (Chapter 2).

2. An Embargo Management (EM) DFA negotiates and establishes the timing of future
disclosures and publications (Chapter 3).

3. A CVD Case State DFA tracks the events in Table 1.1, as originally described in the
Householder and Spring 2021 report [10] and summarized in Chapter 4 of this report.

Chapter 5 contains a discussion of the interactions among these three state machine models.

However, a set of agents independently executing processes is not coordinated, and if they are
not coordinated, then whatever they are doing does not deserve the name CVD. Hence, there
is a need for a protocol to describe the interactions necessary to coordinate these processes.
Communicating FSMs provide a formal way to define a communications protocol, which co-
ordinates the activities of independent DFAs through the interchange (e.g., sending and re-
ceiving) of messages [4]. We map our multiple DFA model onto a formal protocol definition in
Chapter 6.

However, an MPCVD protocol needs to do more than just provide formally defined commu-
nication mechanisms. It also needs to normalize the expected behaviors and activities that
the communication protocol enables. In this sense, our protocol expands upon ISO/IEC
29147:2018 Vulnerability Disclosure, ISO/TEC 30111:2019 Vulnerability Handling Processes,
and ISO/IEC TR 5895:2022, which, taken together, provide a high-level normative standard
for CVD activities [16, 17, 18].

Developed in response to the growing complexity of video game Non-Player Character (NPC)
Artificial Intelligence (AI) FSMs, Behavior Trees offer a way to organize and describe agent
behaviors in a straightforward, understandable way. Using Behavior Trees, agent processes
can be modeled as sets of behaviors (e.g., pre-conditions, actions, and post-conditions) and
the logic that joins them together. Today, Behavior Trees are used in video game software

to develop realistic NPCs and in robotics to create reactive and adaptive behaviors from au-
tonomous agents. Behavior Trees offer a high potential for automating complex tasks through
a hierarchical decomposition of the logic and actions required to complete those tasks.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The behaviors we are interested in modeling are the various CVD activities described in the
CVD Guide (e.g., find contacts, send reports, validate reports, prioritize reports, create fixes,
publish reports, publish fixes, deploy fixes) [14]. Chapter 7 uses Behavior Trees to describe
MPCVD Participant activities and their interactions with the MPCVD protocol proposed in
Chapter 6.

Additional implementation notes, including a simplified case data model, can be found in
Chapter 8. Chapter 9 covers future work not addressed here. Our conclusion is in Chapter
10.

Appendices are included to provide connections to closely related work: In Appendix A, we
provide a mapping between the MPCVD protocol and relevant portions of the Stakeholder-
Specific Vulnerability Categorization (SSVC), a vulnerability response prioritization model
also developed by the CERT/CC. Appendix B contains a detailed crosswalk of our protocol
with ISO/TEC 29147:2018 Vulnerability Disclosure, ISO/TEC 30111:2019 Vulnerability Han-
dling Processes, and ISO/IEC TR 5895:2022 Multi-party coordinated vulnerability disclosure
and handling. Appendix C maps concepts from the EM process onto the iCalendar protocol.

A list of acronyms is provided at the end of the report.

1.5 Terms and Definitions

Throughout this report, we refer to CVD Roles from the CERT Guide to Coordinated Vulner-
ability Disclosure [14, 13]:

Finder. The individual or organization that identifies the vulnerability

Reporter. The individual or organization that notifies the vendor of the vulnerability

Vendor (Supplier). The individual or organization that created or maintains the vulnerable
product

Deployer (User). The individual or organization that must deploy a patch or take other re-
mediation action

Coordinator. An individual or organization that facilitates the coordinated response process

The Vendor role is synonymous with the Supplier role as it appears in SSVC Version 2 [29].
The Deployer role is synonymous with the User role in ISO/TEC 29147:2018 and ISO/IEC
30111:2019 [16, 17], while the other roles are named consistent with those standards.

We also add a new role in this report, which we expect to incorporate into a future version of
the CVD Guide:

Exploit Publisher. An individual or organization that publishes exploits (Exploit Publishers
might be the same as Finders, Reporters, Coordinators, or Vendors, but this is not guar-
anteed. For example, Vendors that produce tools for Cybersecurity Red Teams might
play a combination of roles: Finder, Reporter, Vendor, Coordinator, and/or Exploit
Publisher.)

Finally, we have a few additional terms to define:

CVD Case. The unit of work for the overall CVD process for a specific vulnerability spanning
the individual CVD Case Participants and their respective RM and EM processes

CVD Case Participant. Finder, Vendor, Coordinator, Deployer, etc., as defined above
Vulnerability Report. The unit of work for an individual Case Participant’s RM process

A diagram showing the relationship between CVD Cases, Participants, and Reports can be
found in Figure 8.1.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.6 Notation

Before we proceed, we need to formally define our terms. In all of these definitions, we take
the standard Zermelo-Fraenkel set theory. We adopt the following notation:

Set Theory Symbols
« {...} an unordered set that makes no assertions about sequence

* (...) depending on the context: (1) an ordered set in which the items occur in that
sequence, or (2) a tuple of values

* |z| the count of the number of elements in a list, set, tuple, or vector z
* the normal proper subset (C), equality (=), and subset (C) relations between sets
* € the membership (is-in) relation between an element and the set it belongs to

* < the precedes relation on members of an ordered set: o; < o; if and only if 0;,0; €
s and ¢ < j where s is an ordered set

|X| the size of (the number of elements in) a set X

(XN, aset of N sets X;, indexed by i; used in Chapter 6 in the context of Commu-
nicating FSM, taken from the article on “On Communicating Finite State Machines” [4]

Logic Symbols
* — implies
* < if-and-only-if (bi-directional implication)
* A the logical AND operator
* = the logical NOT operator
Directional Messaging Symbols
*+ — a message emitted (sent) by a process
* — a message received by a process
DFA Symbols
« — a transition between states, usually labeled with the transition type (e.g., %)
* (Q,q0,F,%,d) specific symbols for individual DFA components that are introduced
when needed in Chapters 2, 3, and 4
. <<Si>i]\;1, <oi)f\;1, (Ml-’j>2;:17 succ> formal protocol symbols that are introduced at the
beginning of Chapter 6

Our depictions of DFA as figures use common state diagram symbols (circles and arrows).

We follow Unified Modeling Language (UML) conventions for sequence and class diagrams in
Chapters 6 and 8. We introduce a few additional notation details specific to Behavior Trees
when needed at the beginning of Chapter 7.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 Report Management (RM) Model

In this chapter, we describe a high-level workflow for CVD Report Management (RM). The
RM process should be reasonably familiar to anyone familiar with Information Technology
Service Management (ITSM) workflows such as problem, change, incident or service request
management. In particular, any workflow in which work items (e.g., incident reports, problem
tickets, change requests) are received, validated, prioritized, and work is subsequently com-
pleted, should map onto the RM process outlined in this chapter.

In the interest of maintaining the potential for interoperability among different organizations’
internal processes, our protocol does not specify intra-organizational subprocesses within each
state, although we give examples of such subprocesses in §7.5. For further reference, ISO /TEC
30111:2019(E) [17] provides recommendations for Vendors’ internal processes that can be
mapped into the RM process. We provide such a mapping in Appendix B.

2.1 RM State Machine

In this section, we first cover the states themselves before proceeding to a discussion of the
transitions between them. Next, we provide a discussion of the Participant-specific semantics
of the state transitions. We use DFA notation to describe our RM model.

A DFA is defined as a 5-tuple (Q, qo, F, X, 0) [20]:
* Q is a finite set of states.
* go € Q is an initial state.
* F C Qis aset of final (or accepting) states.
* Y is a finite set of input symbols.

e § is a transition function § : @ x ¥ — Q.

2.1.1 RM States

Our proposed RM DFA models a report lifecycle containing seven states, shown in (2.1).

Q"™ = {Start, Received, Invalid, Valid, @.1)
Accepted, Deferred, Closed} '

In this example, we use underlined capital letters as a shorthand for the state names. We use
this convention throughout the remainder of this report. Each Participant in a CVD case will
have their own RM state.

RM states are not the same as CVD case states. Case states follow the Householder-Spring
model summarized in §4, as originally described in the 2021 report [10]. Further discussion of
the interactions of the RM and CS models is found in §5.2.

2.1.1.1 The Start State (5)

The Start state is a simple placeholder state for reports that have yet to be received. It is,
in effect, a null state that no CVD Participant would be expected to reflect in their report

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

tracking system. We include it here because it will become useful when we are modeling co-
ordination that spans multiple Participants in a formal protocol in Chapter 6. Otherwise, the
discussion until then will mostly ignore it.

2.1.1.2 The Received State (R)
Reports initially arrive in the Received state.

Vendors lacking the ability to receive reports will find it exceedingly difficult if not impossible
to participate in the CVD process. Therefore,

* Vendors SHOULD have a clearly defined and publicly available mechanism for receiving
reports.

Similarly, those who coordinate others’ responses to vulnerability reports also need to have a
report receiving capability; otherwise, they are not capable of coordinating vulnerability dis-
closures. Hence,

* Coordinators MUST have a clearly defined and publicly available mechanism for receiv-
ing reports.

Exiting the Received state requires a Participant to assess the validity of a report. Note that
validation is distinct from prioritization, as covered in §2.1.1.4. As an example, a Vendor
might later choose to defer further response on a Valid report due to other priorities.

Validity criteria need not be limited to technical analysis. For instance, a Coordinator might
only accept reports within their specific scope of concern and consider reports outside their
scope to be Invalid even if they believe the report accurately describes a real vulnerabil-
ity. Alternatively, a Vendor might institute a policy designating reports unaccompanied by
a working proof-of-concept exploit as Invalid by default.

* All Participants SHOULD have a clearly defined process for validating reports in the
Received state.

» Participants SHOULD perform at least a minimal credibility check on reports as a mini-
mum validation process before exiting the Received state.

* Participants MAY perform a more technical report validation process before exiting the
Received state.

* Regardless of the technical rigor applied in the validation process, Participants
SHOULD proceed only after validating the reports they receive.

» Participants SHOULD transition all valid reports to the Valid state and all invalid re-
ports to the Invalid state.

* Regardless of the content or quality of the initial report, once a Vendor confirms that a
reported vulnerability affects one or more of their product(s) or service(s), the Vendor
SHOULD designate the report as Valid.

2.1.1.3 The Invalid State (I)

Reports in the Invalid state have been evaluated and found lacking by the recipient. This
state allows time for the Reporter to provide additional information and for the receiver to
revisit the validation before moving the report to Closed.

The reasons for a report to be put in this state will vary based on each recipient’s validation
criteria, and their technical capability and available resources. The Invalid state is intended
to be used as a temporary holding place to allow for additional evidence to be sought to con-
tradict that conclusion.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* Participants SHOULD temporarily hold reports that they cannot validate pending addi-
tional information.

» Participants SHOULD provide Reporters an opportunity to update their report with
additional information in support of its validity before closing the report entirely.

* Participants MAY set a timer to move reports from Invalid to Closed after a set period
of inactivity.

2.1.1.4 The Valid State (V)

Reports in the Valid state are ready to be prioritized for possible future work. The result of
this prioritization process will be to either accept the report for follow-up or defer further ef-
fort.

* Once a report is in the Valid state, Participants MAY choose to perform a shallow tech-
nical analysis on it to prioritize any further effort relative to other work.

* Participants SHOULD have a bias toward accepting rather than deferring cases up to
their work capacity limits.

In other words, prioritization is only necessary if the workload represented by active valid re-
ports exceeds the organization’s capacity to process those reports.

Prioritization schemes, such as SSVC [29] or the Common Vulnerability Scoring System
(CVSS) [24], are commonly used to prioritize work within the CVD process; however, specific
details are left to Participant-specific implementation.’

2.1.1.5 The Accepted State (A)

The Accepted state is where the bulk of the work for a given CVD Participant occurs. Re-
ports reach this state for a Participant only once the Participant has deemed the report to be
both valid and of sufficient priority to warrant further action. The Accepted state has a differ-
ent meaning for each different Participant.

* For our purposes, Finders/Reporters enter the Accepted state only for reports that they
intend to put through the CVD process. If they have no intention of pursuing CVD,
there is no need for them to track their actions using this protocol. See §2.2.1.

* Vendors usually do root cause analysis, understand the problem, and produce a fix or
mitigation.
» Coordinators typically identify potentially affected Vendors, notify them, and possibly

negotiate embargoes.

We provide additional elaboration on the sorts of activities that might happen in the Accept
state in §7.5.

* A report MAY enter and exit the Accepted state a number of times in its lifespan as a
Participant resumes or pauses work (i.e., transitions to/from the Deferred state).

2.1.1.6 The Deferred State (D)

The Deferred state is reserved for valid, unclosed reports that are otherwise not being ac-
tively worked on (i.e., those in Accepted). It parallels the Invalid state for reports that fail to
meet the necessary validation criteria in that both states are awaiting closure once it is deter-
mined that no further action is necessary.

See also Appendix A, where we connect a few of the dots between SSVC and this protocol model.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For example, a Participant might use the Deferred state when a valid report fails to meet
their prioritization criteria (2.7), or when a higher priority task takes precedence over an ac-
tive report, as in (2.9).

* A report MAY enter and exit the Deferred state a number of times in its lifespan as a
Participant pauses or resumes work (i.e., transitions from/to the Accepted state).

* Reports SHOULD exit the Deferred state when work is resumed (2.10), or when the
Participant has determined that no further action will be taken (2.11).

* CVD Participants MAY set a policy timer on reports in the Deferred state to ensure
they are moved to Closed after a set period of inactivity.

2.1.1.7 The Closed State (C)

The Closed state implies no further work is to be done; therefore, any pre-closure review (e.g.,
for quality assurance purposes) should be performed before the case moves to the Closed state
(i.e., while the report is in Invalid, Deferred, or Accepted).

* Reports SHOULD be moved to the Closed state once a Participant has completed all
outstanding work tasks and is fairly sure that they will not be pursuing any further ac-
tion on it.

2.1.1.8 RM Start and End States
The RM process starts in the Start state.

g, = Start (2.2)

The RM process ends in the Closed state.

F = {Closed} (2.3)

2.1.2 RM State Transitions

The actions performed in the RM process represent the allowed state transitions in the corre-
sponding DFA.

* A Participant’s RM process begins when the Participant receives a report.

* Each Participant SHOULD subject each Received report to some sort of validation pro-
cess, resulting in the report being designated as valid or inwvalid based on the Partici-
pant’s particular criteria.

In other words, the Received state corresponds to the Validation phase of The CERT Guide
to Coordinated Vulnerability Disclosure [14].

» For Valid reports, the Participant SHOULD perform a prioritization evaluation to de-
cide whether to accept or defer the report for further work.

Similarly, the Valid state is equivalent to the Prioritization (Triage) phase of the CVD Guide
[14]. The SSVC model is illustrative here, although any prioritization scheme could be substi-
tuted as long as it emits a result that can be mapped onto the semantics of “continue work”
or “defer further action” [29]. Appendix A takes a closer look at how SSVC fits into the pro-
tocol we are defining.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

receive validate accept

S = Start invalidate

R = Received

V =Valid

A = Accepted

I = Invalid

D = Deferred close
C = Closed

Figure 2.1: The RM Process

Note that the Start state is a placeholder to assist with modeling the coordination process as a formal
protocol; it is not a “real” state. Underlined letters in transition names will be used as shorthand in both
the text and subsequent figures.

* Participants SHOULD close reports that require no further work (e.g., those that have
been in Invalid or Deferred for some length of time, or those in Accepted, where all
necessary tasks are complete.)

These actions constitute the set of symbols for the RM DFA| as shown in (2.4).

¥ = {receive, validate, invalidate, accept, defer, close} (2.4)

2.1.2.1 RM Transitions Defined

In this section, we define the allowable transitions between states in the RM process model.
The RM process, including its states and transitions, is depicted in Figure 2.1.

To begin, a Participant must receive a report. Recall that the Start state is a placeholder, so
this action simply puts the receiving Participant into the Received state at the beginning of
their involvement in the case.

receive

Start ——— Received (2.5)

The Participant must validate the report to exit the Received state. Depending on the valida-
tion outcome, the report will be in either the Valid or Invalid state.

lidat .
2 Valid

invalidat .
Lnuane®®, Imwvalid

Received — { (2.6)

Once a report has been validated (i.e., it is in the RM Valid state, ¢"™ € V'), the Participant
must prioritize it to determine what further effort, if any, is necessary. Appendix A contains
an example of how the SSVC model can be applied here, although any prioritization scheme
could be substituted. Prioritization ends with the report in either the Accepted or Deferred
state.

accept
——— Accepted
Valid = { oo P (2.7)
——— Deferred
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Some Participants (e.g., Finders and Coordinators) need to engage someone else (e.g., a Ven-
dor) to resolve a case. To do this, the sender Participants must also be in the Accepted state;
otherwise, why are they working on the case? In the following equation, we use brackets and
subscripts to indicate the interaction between two instances of the RM model: one bracket
represents the sender and receiver states before the message is transmitted, while the other
is for the end state of both Participants. Although the sender’s state does not change, the
recipient’s state moves from Start to Received.

{Acceptedsender} receiverecipient Acceptedgender (2.8)
_— .

Startrecipient Receivedrecipient

A Participant might choose to pause work on a previously Accepted report after revisiting
their prioritization decision. When this happens, the Participant moves the report to the
Deferred state.

Accepted defer, Deferred (2.9)

Similarly, a Participant might resume work on a Deferred report, moving it to the Accepted
state. .
Deferred ~“*% Accepted (2.10)

Finally, a Participant can complete work on an Accepted report or abandon further work on
an Invalid or Deferred report.

Accepted or \
Invalid or | %% Closed (2.11)
Deferred

Our model assumes that Valid reports cannot be closed directly without first passing through
either Accepted or Deferred. It is reasonable to wonder why close is not a valid transition
from the Valid state. The answer is that we wanted to allow prioritization and closure to be
distinct activities; deferral is reversible, whereas closure is not. Often a Participant might ini-
tially defer a case only to resume work later, once more information has arrived. However,
there is nothing stopping a Participant from instituting a process that goes from Valid to
Deferred to Closed in rapid (even immediate) succession.

2.1.2.2 RM as a Regular Grammar

Following the state machine diagram in Figure 2.1, equation (2.12) represents the RM process
model as a right-linear grammar:

S —=rR
R —oV il
I =V |eC
0" =9V —aA|dD (2.12)
A —dD|cC
D —aA|cC
C —e

The strings generated in the language defined by this grammar can be useful for exploring the
possible sequences of states each report might encounter for each Participant. The 15 shortest
paths are ric, rvac, rvde, rivac, rivde, rvade, rvdac, rivade, rvadac, rvdade, rivdac, rivdade,

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

rvdadac, rivadac, and rvadadc. Due to the structure of the RM DFA, longer strings just add
more defer-accept (da) or accept-defer (ad) cycles prior to closure (¢). The usually limited
duration of the RM process coupled with the tendency for CVD Participants to prefer to
avoid frequent starts and stops means that we expect the vast majority of reports to follow
one of the above paths, with the remainder falling into marginal extensions. Further discus-
sion of a reward function to evaluate RM DFA strings is discussed as future work in §9.2.1.

2.1.3 RM DFA Fully Defined

Taken in combination, the full definition of the RM DFA (Q, qo, F,X,0)"™ is given by equa-
tions (2.1), (2.2), (2.3), (2.4), and (2.12). For convenience, we assembled them into (2.13).

Q"™ ={S,R,I,V,A,D,C}, (2.1)
Q" =S, (2.2)
Frm ={C1, (2.3)
5 ={r,i,v,a,d,c}, (2.4)
S— rR
RM = R— oV |il (2.13)
I—» WV |cC
™ =LV s aA|dD (212
A— dD|cC
D— aA|cC
C— ¢

2.2 RM Discussion

State transitions represent messaging opportunities to communicate CVD case status among
Participants.

* CVD Participants SHOULD announce their RM state transitions to the other Partici-
pants in a case.

This is the lynchpin that makes the RM model point toward a technical protocol. Every state
transition implies a different message type.

2.2.1 The Secret Lives of Finders

While the Finder’s Received, Valid, and Invalid states are useful for modeling and simula-
tion purposes, they are less useful to us as part of a potential CVD protocol. Why? Because
for anyone else to know about the vulnerability (and as a prerequisite to CVD happening at
all), the Finder must have already validated the report and prioritized it as worthy of further
effort to have any reason to attempt to coordinate its disclosure. In other words, CVD only
starts after the Finder has already reached the Accepted state for any given vulnerability to
be reported. Correspondingly, this also represents their transition from Finder to Reporter.
Nevertheless, for now, we retain these states for completeness. We revisit this topic in our
derivation of a protocol state model for Reporters in §6.3.4.

2.2.2 RM Interactions Between CVD Participants

Each Participant in a case has their own instance of the RM state model. Participants can
change their local state independent of the state of other Participants. Events within a CVD
case may trigger a state transition in one Participant while no transition occurs in another.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.1: Common CVD Actions by Role and Their Effects on the RM Model

CVD Role(s) RM
Finder | Vendor | Coordinator | Action transition
v Discover vulnerability (hidden) (2.5)
v Analyze discovery (hidden) (2.6)
v Decide whether to initiate CVD (hidden) (2.7)
v v v Notify Vendor (2.8)
v v v Notify Coordinator (2.8)

v v Receive report (2.5)
v v Validate report (2.6)
v v v Prioritize report (2.7)
v v v Pause work (2.9)
v v v Resume work (2.10)
v v v Close report (2.11)

Rt

c C

Finder Vendor

Figure 2.2: Notional Diagram of a Finder RM Deterministic Finite Automaton (DFA) Interacting
with a Vendor RM DFA

The Finder proceeds from discovery (start — Ry) and must reach the Ay state prior to notifying the
Vendor (corresponding to the r transition shown in the center), who, in turn, starts in their own R,, state.
The goal of a Finder notifying the Vendor is to get the Vendor into state A, implying that the report
provided should be both valid and of sufficiently high priority that the Vendor will make both the v and a
transitions upon receipt. The report submission transition (r) triggers the S = R transition in the Vendor
but does not alter the Finder’s state.

For example, the notify another Participant action in (2.8) shows that even though the sender
is the one taking the action, it is the recipient’s state that changes. Table 2.1 lists role-based
actions. A few examples of this model applied to common CVD and MPCVD case scenarios
follow.

Finder-Vendor CVD. A simple Finder-Vendor CVD scenario is shown in Figure 2.2. As ex-
plained in §2.2.1, many of the Finder’s states would be hidden from view until they reach the
Accepted (Ay) state. The receive action bridging Ay % R, corresponds to the notify other
participants action defined by (2.8).

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

0’0’01 07020
%110

Finder Coordinator Vendor

Figure 2.3: Notional Diagram of a Finder RM DFA Interacting with RM DFAs from Both a Co-
ordinator and a Vendor

As in Figure 2.2, the Finder must reach the Ay state prior to notifying anyone. In this scenario, the
Finder first attempts to notify the Vendor (ro) but fails (for whatever reason) to achieve the goal of in-
ducing the Vendor into state A,,. The Finder then notifies the Coordinator (r1), who, in turn, starts in
their own R, state. The Finder’s goal in notifying the Coordinator is to get the Coordinator into state A.,
implying that the report provided should be both valid and of sufficiently high priority that the Coordinator
will make both the v and a transitions upon receipt. In turn, the Coordinator must reach the A. state
prior to notifying the Vendor (r2), who subsequently starts in their own R, state. Once again, the goal of
notifying the Vendor is to get the Vendor into state A,, implying the need to prompt the Vendor to make
both the v and a transitions upon receipt. State transition labels are omitted for clarity but are consistent
with Figures 2.1 and 2.2. The report submission transitions (ro, r1, =) correspond to the S = R transi-
tion for each recipient, although they do not necessarily trigger a state transition in the sender.

Finder-Coordinator-Vendor CVD. A slightly more complicated scenario in which a Finder
engages a Coordinator after failing to reach a Vendor is shown in Figure 2.3. This scenario is
very common in our experience at the CERT/CC, which should come as no surprise consider-
ing our role as a Coordinator means that we do not participate in cases following the previous
example. Here we see three notification actions corresponding to (2.8):

* First, Ay 2% R, represents the Finder’s initial attempt to reach the Vendor.

* Next, Ay 2% R, is the Finder’s subsequent attempt to engage with the Coordinator.

* Finally, the Coordinator contacts the Vendor in A, = R,,.
MPCVD with a Coordinator and Multiple Vendors. A small MPCVD scenario is shown in
Figure 2.4. As with the other examples, each notification shown is an instance of the notify
other participants action from (2.8). Contrary to the previous example, this scenario starts

with the Finder contacting a Coordinator, perhaps because they recognize the increased com-
plexity of coordinating multiple Vendors’ responses.

* First, Ay 1% R, represents the Finder’s initial report to the Coordinator.
* Next, A, RET R,, shows the Coordinator contacting the first Vendor.

* Finally, the Coordinator contacts a second Vendor in A, RN R,,.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

afale

Vendor 2

Figure 2.4: Notional Diagram of a Finder RM DFA Interacting with a Coordinator and Two Ven-
dor RM DFAs in an MPCVD Case

In this scenario, the Finder must reach the A; state prior to notifying the Coordinator (r), who, in turn,
starts in their own R, state. The goal of ry is to get the Coordinator into state A., implying that the report
provided should be both valid and of sufficiently high priority that the Coordinator will make both the v
and a transitions upon receipt. In turn, the Coordinator must reach the A. state prior to notifying the
Vendors (r1, r2), who, in turn, start in their own R,,, and R,,, states, respectively. The goal of r1 and r,

is to get each Vendor into their respective A, states, implying that the report provided should be both
valid and of sufficiently high priority that each Vendor will make both the v and a transitions upon receipt.
State transition labels are omitted for clarity but are consistent with Figures 2.1 and 2.2. The report sub-
mission transitions (ro, 1, 2) correspond to the S = R transition for the recipient, although they do not
necessarily trigger a state transition in the sender.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

To. T‘lgc

(jh ()7“0(:"7“2<)
T2 TS

(a) Finder Coordinates MPCVD (b) Vendor Coordinates MPCVD

>
7"3 7“1_1
GROLOKD GEDEOLD
> > >|
T4 7“3 7'8
() (& w)(w)
>

(c) Vendor Engages Coordinator for MPCVD (d) Supply-Chain MPCVD Incl. a Coordinator

Figure 2.5: High-Level Examples of Other Common MPCVD Scenarios

Each node in the diagrams represents a single Participant’s entire RM state machine as detailed in
Figure 2.1. We have collapsed each Participant into a single node to save space. Note that, as with
previous examples, any given Participant must reach the Accept (A) state in their own RM process to
notify others.

A Menagerie of MPCVD Scenarios. Other MPCVD RM interaction configurations are pos-
sible, of course. We demonstrate a few such scenarios in Figure 2.5, where this time each cir-
cle represents a Participant’s entire RM model. We have observed all of the following interac-
tions at the CERT/CC:

* A Finder notifies multiple Vendors without engaging a Coordinator (Figure 2.5a).

* A Finder notifies a Vendor, who, in turn, notifies other Vendors (Figure 2.5b) or engages
a Coordinator to do so (Figure 2.5¢).

* Supply-chain oriented MPCVD often has two or more tiers of Vendors being notified by
their upstream component suppliers, with or without one or more Coordinators’ involve-
ment (Figure 2.5d).

We intend the RM model to be sufficiently composable to accommodate all such permuta-
tions.

2.2.3 RM State Subsets

Before proceeding, we pause to define a few useful subsets of RM states (--- C Q") for future
use:

Open ={R,I,V,D, A} ()

Valid Yet Unclosed = {V, D, A} ()
Potentially Valid Yet Unclosed = {R,V, D, A} (2.14c)
Active = {R,V, A} ()

Inactive = {I,D,C} ()

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 Embargo Management (EM) Model

In this chapter, we describe the basic primitives necessary for the CVD Embargo Management
(EM) process. For our purposes, an embargo is an informal agreement among peer CVD case
Participants to refrain from publishing information about a vulnerability until some future
point in time relative to the report at hand. Once an embargo has expired, there is no further
restriction on publishing information about the vulnerability.?

CVD case Participants must be able to propose, accept, and reject embargo timing proposals
according to their individual needs. Additionally, Participants may want to attempt to gain
agreement that enables specific details about a vulnerability to be shared with other Partici-
pants or made public. Such content considerations are outside the scope of this proposal. We
focus our discussion on the when of an embargo, not the what.

Unlike the RM model, in which each Participant has their own instance of the RM DFA, EM
states are a global property of a CVD case.

* A CVD case SHALL NOT have more than one active embargo at a time.

Even in an MPCVD case having a vertical supply chain—in which Vendors must wait on their
upstream suppliers to produce fixes before they can take action on their own, as in Figure
2.5d—our intent is that the embargo period terminates when as many Vendors as possible
have been given an adequate opportunity to produce a fix.

Embargoes Are Not NDAs. Importantly, CVD embargoes are not Non-Disclosure Agree-
ments (NDAs). An NDA (also known as a Confidentiality agreement) is a legally binding con-
tract between parties, often accompanied by a reward for compliance and/or some penalty in
the event of unauthorized disclosure. NDAs do, on occasion, have a place in CVD processes,
but the relatively rapid pace and scale of most MPCVD embargoes makes per-case NDAs pro-
hibitively difficult. As a result, we are intentionally setting aside NDA negotiation as beyond
the scope of this proposal.

On the surface, many bug bounty programs may appear to fall outside our scope because
they are often structured as NDAs in which compliance is rewarded. For some bounty pro-
grams, the penalty for non-compliance or early disclosure is limited to the loss of the reward.
For others, non-compliance can lead to the forfeiture of a promise of amnesty from the pur-
suit of civil or criminal charges that might otherwise apply because of security or acceptable-
use policy violations. Nevertheless, we are optimistic that the bulk of this protocol (i.e., the
parts that do not interfere with the contractual provisions of bounty-associated NDAs) will be
found to be compatible with the full variety of bounty-oriented CVD programs existing now
and in the future.

3.1 EM State Machine

As with our definition of the RM model in Chapter 2, we describe our EM model using DFA
notation.

To recap, A DFA is defined as a 5-tuple (Q, qo, F, X, 0) [20].
* Q is a finite set of states

* o € Q is an initial state

2Reminder: Exploits are information about vulnerabilities too.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

« F C Qis a set of final (or accepting) states
* Y is a finite set of input symbols

e § is a transition function d : Q@ x ¥ — Q

3.1.1 EM States

CVD cases are either subject to an active embargo or they are not. We begin with a simple
two-state model for the embargo state:

simple = {None, Active} (8.1)

However, because embargo management is a process of coordinating across Participants, it
will be useful to distinguish between the None state and an intermediate state in which an
embargo has been proposed but not yet accepted or rejected. We might call this the None +
Proposed state, but we shortened it to Proposed.

Similarly, we want to be able to discriminate between an Active embargo state and one in
which a revision has been proposed but is not yet accepted or rejected, which we will denote
as the Active + Revise state, shortened to Revise. Finally, we wish to distinguish between
the state in which no embargo has ever been established (None), and the final state after an
active embargo has ended (eXited). Combining these, we get the following set of EM states,
which we denote as Q¢ in (3.2).

Q°™ = {None,
Proposed,
Active, (3.2)
Revise,
eXited}

As a reminder, we use the underlined capital letters as shorthand for EM state names later in
the document. Also note that ¢ € A is distinct from ¢" € A. An embargo can be Active,
while a Report can be Accepted, and these are independent states. Be sure to check which
model a state’s shorthand notation is referring to.

Start and Final States. The EM process starts in the None state. The process ends in one
of two states: If an embargo agreement is eventually reached, the EM process ends in the
eXited state. Otherwise, if no agreement is ever reached, the EM process ends in the None
state. Formal definitions of each are shown in (3.3) and (3.4), respectively.

g5 = None (3.3)
Fem = {None, eXited} (3.4)
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

N = None
P = None + Proposed

E

% A = Active

z R = Active + Revise
X = eXited

BT' opose BT’OpOSG

Figure 3.1: The EM Process

Initial embargo negotiations occur on the left side of the diagram, while renegotiation happens on the
right.

3.1.2 EM State Transitions

The symbols of our EM DFA are the actions that cause transitions between the states:
* An embargo MAY be proposed.
* Once proposed, it MAY be accepted or rejected.

* Once accepted, revisions MAY be proposed, which MAY, in turn, be accepted or
rejected.

* Finally, accepted embargoes MUST eventually terminate.

A summary of the available actions is shown as 3™ in (3.5).

X" = { propose, reject, accept, terminate} (3.5)

Once again, the underlined lowercase letters will be used as shorthand for the EM transition
names in the remainder of the document.

3.1.2.1 EM Transitions Defined

Now we define the possible state transitions. Figure 3.1 summarizes the EM process DFA
states and transitions.

Propose a new embargo when none exists:

propose

None ——— Proposed (3.6)
Accept or reject a proposed embargo:
accept .
——— Active
Proposed § ,¢jcet (3.7)
———— None

An existing embargo can also be renegotiated by proposing a new embargo. The existing em-
bargo remains active until it is replaced by accepting the revision proposal.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

propose(new)

Activegq Revise (3.8)
If the newly proposed embargo is accepted, then the old one is abandoned. On the other
hand, if the newly proposed embargo is rejected, the old one remains accepted.

accept(new)

Activenew (3.9)

Revise)
reject(new) .

—————% Activeyyq

Existing embargoes can terminate due to timer expiration or other reasons to be discussed in
§3.2.7. Termination can occur even if there is an open revision proposal.

eXited (3.10)

Active terminate
. _—
Rewvise

3.1.2.2 A Regular Grammar for EM

Based on the actions and corresponding state transitions just described, we define the transi-
tion function §¢ for the EM process as a set of production rules for the right-linear grammar
using our single-character shorthand in (3.11).

N — pP e
P— pP|rN|aA
"M =<A— pR|tX (8.11)
R— pR|aA|rTA|tX
X — €

Due to the numerous loops in the DFA shown in Figure 3.1, the EM grammar is capable of

generating arbitrarily long strings of propose-propose and propose-reject histories matching
the regular expression (p*r)*(pa(p*r)*(pa)?t)?. As an example, here is an exhaustive list
of all the possible traces of length seven or fewer:

pr, pat, ppr, ppat, papt, prpr, pppr, ppppr, pprpr, prppr, pappt, ppapt, pppat,
papat, paprt, prpat, pppppr, papppt, prpppr, ppprpr, ppappt, pppapt, prprpr,
papapt, pprppr, pappat, paprpt, prppat, prpapt, ppaprt, pprpat, ppapat, papprt,
ppppat, pprprpr, prprppr, paprppt, prpprpr, pappprt, papppat, ppppapt, prpaprt,
papappt, pappapt, pppappt, pprpppr, pppprpr, prpopppr, ppprppr, ppapppt, ppaprpt,
papprpt, ppapprt, ppappat, prpppat, prpapat, ppprpat, ppppppr, pprppat, papapat,
paprpat, ppapapt, prprpat, paprprt, prppapt, pppapat, pprpapt, pppaprt, pppppat,
prpappt, papaprt, pappppt

However, because EM is a human-oriented scheduling process, our experience suggests that
we should expect there to be a natural limit on CVD Participants’ tolerance for churn during
embargo negotiations. Hence, we expect most paths through the EM DFA to be on the short
end of this list in practice. We offer some thoughts on a potential reward function over EM
DFA strings as future work in §9.2.2.

For example, it is often preferable for a Vendor to accept whatever embargo the Reporter ini-
tially proposes followed closely by proposing a revision to their preferred timeline than it is for
the Vendor and Reporter to ping-pong proposals and rejections without ever establishing an
embargo in the first place. In the worst case (i.e., where the Reporter declines to extend their
embargo), a short embargo is preferable to none at all. This implies a preference for strings

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

starting with par over strings starting with ppa or prpa, among others. We will come back to
this idea in §3.2.6 and in the worked protocol example at the end of Chapter 6, specifically in
§6.9.2.

3.1.3 EM DFA Fully Defined

Taken together, the complete DFA specification for the EM process (Q, go, F, 3, §)¢™ is shown
in equations (3.2), (3.3), (3.4), (3.5), and (3.11), respectively. For convenience, we have assem-
bled them in shorthand form in (3.12).

Q°" ={N,P, AR, X}, (3.2)

" =N, (3.3)

Fem ={N, X}, (3.4)

e ={p,r,a,t}, (3.5)

EM = N — pP e (3.12)

P— pP|rN|aA

5" ={ A— pR|tX (3.11)
R— pR|aA|rA|tX
X — €

3.2 EM Discussion

Embargoes are a means of inhibiting public disclosure of a vulnerability while defenses are
prepared (e.g., until fix development has completed for a reasonable quorum of Vendors). The
goal of the EM process is not to establish an exact publication schedule for every Participant
to adhere to. Rather, it is to establish a window spanning from the present to some future
time, during which Participants are expected not to publish or otherwise disclose information
about the vulnerability to non-Participants outside of the CVD case.

3.2.1 Embargo Principles

An embargo is a social agreement between independent parties acting in the interest of pro-
viding vulnerability fixes to users in a timely manner while minimizing attacker advantage in
the interim. However, embargoes are not always appropriate or useful within the context of
any given CVD case.

With that in mind, we offer the following principles as guidance. We begin with some behav-
ioral norms that define what it means to cooperate with an embargo.

* Embargo Participants SHOULD NOT knowingly release information about an embar-
goed case until either

1. all proposed embargoes have been explicitly rejected
2. no proposed embargo has been explicitly accepted in a timely manner
3. the expiration date/time of an accepted embargo has passed

4. an accepted embargo has been terminated prior to the embargo expiration date and
time due to other reasons (e.g., those outlined in §3.2.7)

* Additional Participants MAY be added to an existing embargo upon accepting the
terms of that embargo.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* Adding Participants to an existing embargo SHALL NOT constitute “release” or “publi-
cation” so long as those Participants accept the terms of the embargo. See §3.2.10.

Furthermore, we need to establish a few norms related to embargo timing.
* An embargo SHALL specify an unambiguous date and time as its endpoint.

* An embargo SHALL NOT be used to indefinitely delay publication of vulnerability in-
formation, whether through repeated extension or by setting a long-range endpoint.

* An embargo SHALL begin at the moment it is accepted.
* Embargoes SHOULD be of short duration, from a few days to a few months.

3.2.2 Embargo Scale and Duration

Given all other facts about a vulnerability report being equal, there are two factors that con-
tribute significantly to the success or failure of an embargo: scale and duration. The more
people involved in an embargo, the more likely the embargo is to fail.

* Embargo participation SHOULD be limited to the smallest possible set of individuals
and organizations needed to adequately address the vulnerability report.

Similarly, the longer an embargo lasts, the more likely it is to fail.

* Embargo duration SHOULD be limited to the shortest duration possible to adequately
address the vulnerability report.

3.2.3 Embargo Participants Are Free to Engage or Disengage

As we described at the beginning of the chapter, an embargo is not the same thing as an
NDA, even if they have similar effects. Because it is a contract, an NDA can carry civil or
even criminal penalties for breaking it. CVD embargoes have no such legal framework. Hence,
CVD Participants are free to enter or exit an embargo at any time, for any reason. In fact,
CVD Participants are not obliged to agree to any embargo at all. However, regardless of their
choices, Participants should be clear about their status and intentions with other Participants.
There are a few good reasons to exit an embargo early. (See §3.2.7.)

* Participants MAY propose a new embargo or revision to an existing embargo at any
time within the constraints outlined in §3.2.4.

* Participants MAY reject proposed embargo terms for any reason.
* Participants in an embargo MAY exit the embargo at any time.

Note that a Participant leaving an embargo is not necessarily the same as the embargo itself
terminating. Embargo termination corresponds to the ¢°™ € {A, R} L X transition in the
EM model and reflects a consensus among case Participants that the embargo no longer ap-
plies. A Participant leaving an Active embargo means that the embargo agreement between
other Participants remains intact, but that the leaving Participant is no longer involved in the
case.

* Participants stopping work on a case SHOULD notify remaining Participants of their
intent to adhere to or disregard any existing embargo associated with the case.

» Participants SHOULD continue to comply with any active embargoes to which they
have been a part, even if they stop work on the case.

» Participants who leave an Active embargo SHOULD be removed by the remaining Par-
ticipants from further communication about the case.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

These points imply a need for Participants to track the status of other Participants with re-
spect to their adherence to the embargo and engagement with the case. We will return to
these concepts with the case_engagement and embargo_adherence attributes described in

§8.1.5.

CVD is an iterated game, and actions have consequences. Leaving an embargo early in one
case may have repercussions to Participants’ willingness to cooperate in later cases.

» A Participant’s refusal to accept embargo terms MAY result in that Participant being
left out of the CVD case entirely.

» Participants SHOULD consider other Participants’ history of cooperation when evaluat-
ing the terms of a proposed embargo.

Finally, embargo termination removes a constraint rather than adding an obligation.

* Participants SHOULD not publish information about the vulnerability when there is an
active embargo.

» Participants MAY publish information about the vulnerability when there is no active
embargo.

* Embargo termination SHALL NOT be construed as an obligation to publish.

A discussion of how to decide who to invite to participate in a CVD case is addressed in
§3.2.10.

3.2.4 Entering an Embargo

Negotiating and entering into a new embargo for a case is only possible within an embargo
“habitable zone” defined in terms of the CS model as laid out below. The notation for CS

model states is explained in Chapter 4, but the contextual explanation below should suffice
for now.

* CVD Participants MUST NOT propose or accept a new embargo negotiation when any
of the following conditions are true:

1. Information about the vulnerability is already known to the public (¢°® € ---P--).
2. An exploit for the vulnerability is publicly available (¢°* € ----X-).

3. There is evidence that the vulnerability is being actively exploited by adversaries
(qCS € veeen A)

* CVD Participants MAY propose or accept an embargo in all other case states
(¢°° € --pza).

* CVD Participants SHOULD NOT propose or accept a new embargo negotiation when
the fix for a vulnerability has already been deployed (¢°° € VF Dpzxa). Counterexamples
include (a) when an embargo is desired to allow for a downstream Vendor to synchronize
their fix delivery or deployment, and (b) when a Vendor has deployed a fix but wants to
complete their root cause analysis prior to releasing information about the vulnerability.

* CVD Participants MAY propose or accept a new embargo when the fix for a vulnera-
bility is ready but has neither been made public nor deployed (¢** € V Fdpxa). Such
an embargo SHOULD be brief and used only to allow Participants to prepare for timely
publication or deployment.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2.5 Negotiating Embargoes

Asymmetry is inherent in the CVD process because those who currently have the vulnerabil-
ity information get to decide who they will share it with. This asymmetry puts Reporters at
somewhat of an advantage when it comes to the initial report submission to another Partici-
pant. We will discuss some ways to improve (but not fully remove) this asymmetry in §3.2.6,
but for now we just need to acknowledge that it exists.

 Participants MAY accept or reject any proposed embargo as they see fit.
* Receivers SHOULD accept any embargo proposed by Reporters.
* Receivers MAY propose embargo terms they find more favorable as they see fit.

* Participants MAY withdraw (reject) their own unaccepted Proposed embargo.

Respond Promptly. Timely response to embargo proposals is important. Explicit accep-
tance is expected.

* Participants SHOULD explicitly accept or reject embargo proposals in a timely manner.
(For example, embargo agreement or rejection SHOULD NOT be tacit.)

* Participants MAY interpret another Participant’s failure to respond to an embargo pro-
posal in a timely manner as a rejection of that proposal.

* In the absence of an explicit accept or reject response from a Receiver in a timely
manner, the Sender MAY proceed in a manner consistent with an EM state of None
(¢°™ € N).

Don’t Give Up. Once an embargo negotiation has failed the first time, Participants have no
further obligations. They are, however, encouraged to try again.

* In a case where the embargo state is None and for which an embargo has been proposed
and either explicitly or tacitly rejected, Participants MAY take any action they choose
with the report in question, including immediate publication.

* Participants SHOULD make reasonable attempts to retry embargo negotiations when
prior proposals have been rejected or otherwise failed to achieve acceptance.

Participants need not wait for embargo negotiations to conclude before submitting a report.
However, by doing so, they might give up some of their leverage over the Receiver in the em-
bargo negotiations.

* Participants MAY withhold a report from a Recipient until an initial embargo has been
accepted.

* Submission of a report when an embargo proposal is pending (¢ € P) SHALL be
construed as the Sender’s acceptance (¢°" € P % A) of the terms proposed regardless of
whether the Sender or Receiver was the proposer.

Addressing Validation Uncertainty. Participants might prefer to delay accepting or reject-
ing a proposed embargo until after they have had an opportunity to review the report through
the validation and (possibly) prioritization processes. However, because other Participants

are under no obligation to withhold publication of cases not covered by an active embargo,

we recommend that a short embargo be used until the validation process concludes, at which
point, it can be extended with a revision.

» Participants MAY use short embargo periods to cover their report validation process,
and subsequently revise the embargo terms pending the outcome of their report valida-
tion and/or prioritization processes.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

» Participants SHOULD remain flexible in adjusting embargo terms as the case evolves.

3.2.6 Default Embargoes

As described in §3.1.2.2, the EM process has the potential for unbounded propose-reject
churn. To reduce the potential for this churn and increase the likelihood that some embargo is
established rather than a stalemate of unaccepted proposals, we offer the following guidance.

Declaring Defaults. First, we note that all CVD Participants (including Reporters) are free
to establish their own default embargo period in a published vulnerability disclosure policy. In
particular, we recommend that CVD report recipients (typically Vendors and Coordinators)
do so.

» Participants MAY include a default embargo period as part of a published Vulnerability
Disclosure Policy.

* Recipients SHOULD post a default embargo period as part of their Vulnerability Disclo-
sure Policy to set expectations with potential Reporters.

Using Defaults. Next, we work through the possible interactions of published policies with
proposed embargoes. Each of the following scenarios assumes a starting state of ¢ € N,
and a negotiation between two parties. We cover the extended situation (adding parties to
an existing embargo) in §3.2.10. For now, we begin with the simplest case and proceed in an
approximate order of ascending complexity.

In each of the following, subscripts on transitions indicate the Participant whose proposal is
being acted upon, not the Participant who is performing the action. For example, asenger in-
dicates acceptance of the Sender’s proposal, even if it is the Receiver doing the accepting.

* If neither Sender nor Receiver proposes an embargo, and no policy defaults apply, no
embargo SHALL exist.

™ eN (3.13)

* If the Sender proposes an embargo and the Receiver has no default embargo specified by
policy, the Receiver SHOULD accept the Sender’s proposal.

qem c N Psender P Asender A (314)

* The Receiver MAY then propose a revision.

qem E A Preceiver R (3.15)

* A Receiver’s default embargo specified in its vulnerability disclosure policy SHALL be
treated as an initial embargo proposal.

" e N Preeeivery, p (3.16)

* If the Receiver has declared a default embargo in its vulnerability disclosure policy and
the Sender proposes nothing to the contrary, the Receiver’s default embargo SHALL be
considered as an accepted proposal.

qem c N Preceiver P Areceiver A (317)

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* If the Sender proposes an embargo longer than the Receiver’s default embargo, the Re-
ceiver’s default SHALL be taken as accepted and the Sender’s proposal taken as a pro-
posed revision.

qe7n c N Preceiver P Psender P Areceiver A Tsender R (3.18)

* The Receiver MAY then accept or reject the proposed extension.
R Asender A
e { Teender (3.19)
R =" A

* If the Sender proposes an embargo shorter than the Receiver’s default embargo, the
Sender’s proposal SHALL be taken as accepted and the Receiver’s default taken as a
proposed revision.

qe7n c N Preceiver P Psender P Asender A Treceiver R (3.20)

* The Sender MAY then accept or reject the proposed extension.

Areceiver A
em ¢ {R (3.21)

R Treceiver A

A Game Theory Argument for Accepting the Shortest Proposed Embargo. Readers
may notice that we have taken a “shortest proposal wins” approach to the above guidance.
This is intentional, and it results directly from the asymmetry mentioned in §3.2.5: The Re-
ceiver is faced with a choice to either accept the Reporter’s proposal and attempt to extend
it or to reject the proposal and end up with no embargo at all. Therefore, if we take the
stance that for a vulnerability with no fix available, any embargo is better than no embargo,
it should be obvious that it is in the Receiver’s interest to accept even a short proposed em-
bargo before immediately working to revise it.

The alternative is impractical because the Reporter is not obligated to provide the report to
the Receiver at all. In the scenario where a Reporter proposes a short embargo and the Re-
ceiver rejects it because it is not long enough, the Reporter might choose to exit the negotia-
tion entirely and publish whenever they choose without ever providing the report to the Re-
ceiver. That is not to say that we recommend this sort of behavior from Reporters. In fact,
we specifically recommend the opposite in §3.2.5. Rather, it once more acknowledges the time-
dependent informational asymmetry inherent to the CVD process.

A Logical Argument for Accepting the Shortest Proposed Embargo. Perhaps the above
reasoning comes across as too Machiavellian for some readers. Here is a different perspective:
Say a Reporter proposes an embargo of n days, while the Vendor would prefer m days. If n
and m are given in units of days, we can look at them as a series of individual agreements,
each of 1 day in length. We will represent each Participant as a vector representing that Par-
ticipant’s willingness to perpetuate the embargo on each day. Embargo willingness will be rep-
resented as a 1 if the Participant is willing to commit to keeping the embargo on that day,
and a 0 if they are not. For simplicity’s sake, we assume that each Participant is willing to
maintain the embargo up to a certain point, and then their willingness goes away. In other
words, each vector will be a series of zero or more 1s followed by zero or more Os. For exam-
ple, [1,1,1,1,0,0,0] represents a Participant’s willingness to engage in a 4-day embargo.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For our two Participants, let x and y be zero-indexed vectors of length max(n,m).

|x| = maz(n,m) (3.22)
ly| = maz(n,m) (3.23)

The elements of each vector represent each respective Participant’s willingness for the em-
bargo to persist on each consecutive day.

1 it

X=|z:z;= s n for 0 <4 < max(n,m) (3.24)
0 otherwise

y=\|yity= Lifi< m for 0 < ¢ < max(n, m) (3.25)
0 otherwise

Note that we have constructed these vectors so that each vector’s scalar sum is just the length
of embargo they prefer.

Now we can define an agreement vector z as the pairwise logical AND (A) of elements from x
and y:

zZ = [zl tzi=x; ANy, for 0<i< maz(n,m)] (3.28)

For example, if one party prefers an embargo of length n = 4 days while another prefers one of
length m = 7 days, we can apply (3.24), (3.25), and (3.28) as follows:

>

]

Il
—| = =
>—l:>— [
o R
o Rl
ol o
ol o
ol o

From this, we can see that the scalar sum of the agreement vector—and therefore the longest
embargo acceptable to both parties—is simply the lesser of n and m:

Y¥(z) = min(n,m) (3.29)

The Shortest Proposed Embargo Wins. In other words, if a Reporter proposes a 90-day
embargo, but the Vendor prefers a 30-day embargo, we can think of this as a series of 1-day
agreements in which both parties agree to the first 30 days of the embargo and disagree be-
yond that. By accepting the shorter 30-day embargo, the Reporter now has 30 days to con-
tinue negotiations with the Vendor to extend the embargo. Even if those continued negoti-
ations fail, both parties get at least the 30-day embargo period they agreed on in the first
place. This should be preferable to both parties versus the alternative of no embargo at all

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

were they to simply reject the shorter proposal. Typically it is the Reporter who desires a
shorter embargo than the Vendor. We chose our example to demonstrate that this analysis
works between any two parties, regardless of which party wants the shorter embargo.

On our way to making this principle explicit, we immediately came across a second scenario
worth a brief diversion: What to do when multiple revisions are up for negotiation simultane-
ously? Based on the idea of extending the above to an efficient pairwise evaluation of multiple
proposals, we suggest the following heuristic:

1. Sort the proposals in order from earliest to latest according to their expiration date.

2. Set the current candidate to the earliest proposal.

3. Loop over each remaining (later) proposal, evaluating it against the current candidate.
4

. If the newly evaluated proposal is accepted, it becomes the current candidate and the
loop repeats.

o

Otherwise, the loop exits at the first rejected proposal.

6. The current candidate (i.e., the latest accepted proposal) becomes the new Active em-
bargo.

7. If the earliest proposed revision is rejected—implying that none of the later ones would
be acceptable either—then the existing Active embargo remains intact.

Summarizing the principles just laid out as rules

* When two or more embargo proposals are open (i.e., none have yet been accepted) and
q°™ € P, Participants SHOULD accept the shortest one and propose the remainder as
revisions.

* When two or more embargo revisions are open (i.e., an embargo is active yet none of the
proposals have been decided) and ¢°™ € R, Participants SHOULD accept or reject them
individually, in earliest to latest expiration order.

3.2.7 Early Termination

Embargoes sometimes terminate prior to the agreed date and time. This is an unavoidable, if
inconvenient, fact arising from three main causes:

1. Vulnerability discovery capability is widely distributed across the world, and not all
Finders become cooperative Reporters.

2. Even among otherwise cooperative CVD Participants, leaks sometimes happen.

3. Adversaries are unconstrained by CVD in their vulnerability discovery, exploit code de-
velopment, and use of exploit code in attacks.

While many leaks are unintentional and due to miscommunication or errors in a Participant’s
CVD process, the effect is the same regardless of the cause. As a result,

* Participants SHOULD be prepared with contingency plans in the event of early embargo
termination.

Some reasons to terminate an embargo before the agreed date include the following:

* Embargoes SHALL terminate immediately when information about the vulnerability
becomes public. Public information may include reports of the vulnerability or exploit
Code. (qCS E {...P.., .X})

* Embargoes SHOULD terminate early when there is evidence that the vulnerability is
being actively exploited by adversaries. (¢°° € {-----A})

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* Embargoes SHOULD terminate early when there is evidence that adversaries possess
exploit code for the vulnerability.

* Embargoes MAY terminate early when there is evidence that adversaries are aware of
the technical details of the vulnerability.

The above is not a complete list of acceptable reasons to terminate an embargo early. Note
that the distinction between the SHALL in the first item and the SHOULD in the second is
derived from the reasoning given in §4.3.1, where we describe the CS model’s transition func-
tion. Embargo termination is the set of transitions described by (3.10).

Waiting for All Vendors to Reach Fix Ready May Be Impractical. It is not necessary for
all Vendor Participants to reach ¢°®* € V F-.-- before publication or embargo termination.
Especially in larger MPCVD cases, there comes a point where the net benefit of waiting for
every Vendor to be ready is outweighed by the benefit of delivering a fix to the population
that can deploy it. No solid formula for this exists, but factors to consider include the market
share of the Vendors in ¢°° € V F---- compared to those with ¢°® € -f----; the software sup-
ply chain for fix delivery to Deployers; the potential impact to critical infrastructure, public
safety /health, or national security; etc.

* Embargoes MAY terminate early when a quorum of Vendor Participants is prepared to
release fixes for the vulnerability (¢¢° € VF----), even if some Vendors remain unprepared

(qCS c f)

» Participants SHOULD consider the software supply chain for the vulnerability in ques-
tion when determining an appropriate quorum for release.

3.2.8 Impact of Case Mergers on Embargoes

While relatively rare, it is sometimes necessary for two independent CVD cases to be merged
into a single case. This can happen, for example, when two Finders independently discover
vulnerabilities in separate products and report them to their respective (distinct) Vendors.

On further investigation, it might be determined that both reported problems stem from a
vulnerability in a library shared by both products. In this scenario, each Reporter-Vendor pair
might have already negotiated an embargo for the case. Once the cases merge, the best option
is usually to renegotiate a new embargo for the new case.

* A new embargo SHOULD be proposed when any two or more CVD cases are to be
merged into a single case and multiple parties have agreed to different embargo terms
prior to the case merger.

* If no new embargo has been proposed, or if agreement has not been reached, the earliest
of the previously accepted embargo dates SHALL be adopted for the merged case.

» Participants MAY propose revisions to the embargo on a merged case as usual.

3.2.9 Impact of Case Splits on Embargoes

It is also possible that a single case needs to be split into multiple cases after an embargo has
been agreed to. For example, consider a vulnerability that affects two widely disparate fix
supply chains, such as a library used in both Software-as-a-Service (SAAS) and Operational
Technology (OT) environments. The SAAS Vendors might be well positioned for a quick fix
deployment while the OT Vendors might need considerably longer to work through the lo-
gistics of delivering deployable fixes to their customers. In such a case, the case Participants
might choose to split the case into its respective supply chain cohorts to better coordinate
within each group.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* When a case is split into two or more parts, any existing embargo SHOULD transfer to
the new cases.

» If any of the new cases need to renegotiate the embargo inherited from the parent case,
any new embargo SHOULD be later than the inherited embargo.

* In the event that an earlier embargo date is needed for a child case, consideration
SHALL be given to the impact that ending the embargo on that case will have on the
other child cases retaining a later embargo date. In particular, Participants in each child
case should assess whether earlier publication of one child case might reveal the exis-
tence of or details about other child cases.

» Participants in a child case SHALL communicate any subsequently agreed changes from
the inherited embargo to the Participants of the other child cases.

Note that it may not always be possible for the split cases to have different embargo dates
without the earlier case revealing the existence of a vulnerability in the products allocated to
the later case. For this reason, it is often preferable to avoid case splits entirely.

3.2.10 Inviting Others to an Embargoed Case

As anyone who has tried to schedule a meeting with multiple attendees can attest, multi-
party scheduling can be difficult. When that schedule must also accommodate work comple-
tion schedules for an MPCVD case, it becomes even harder. In §3.2.6, we laid out a heuris-
tic for resolving multiple embargo proposals, “The Shortest Embargo Proposed Wins.” More
specifically, we recommended that Participants accept the earliest proposed end date and im-
mediately propose and evaluate the rest as potential revisions. This principle applies to any
MPCVD case, even at its outset.

Embargo negotiations can become contentious in larger cases. Many MPCVD cases grow over
time, and it is usually easier to establish an embargo with a smaller group than a larger one.
Conflict resolution via consensus agreement is fine if it works. In fact, in scenarios where Par-
ticipants who have already agreed to an embargo get to choose who else to add to the em-
bargo, the existing consensus can be a strong influence for the new Participant to consent to
the existing agreement.

In other words, it is usually preferable to present an already-accepted embargo to new Partic-
ipants and get their agreement before potentially revising the embargo than it is to wait for
a large multi-party negotiation to succeed before establishing an embargo in the first place.
When consensus fails, however, it may be helpful for the group to appoint a case lead to re-
solve any conflicts. Such scenarios are often an opportunity for a third-party Coordinator to
be engaged [16].

Therefore,

* Participants SHOULD attempt to establish an embargo as early in the process of han-
dling the case as possible.

* Participants SHOULD follow consensus agreement to decide embargo terms.

* When consensus fails to reach agreement on embargo terms, Participants MAY appoint
a case lead to resolve conflicts.

* Participants MAY engage a third-party Coordinator to act as a neutral third-party case
lead to resolve conflicts between Participants during the course of handling a case.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2.10.1 Who to Invite

The Finder/Reporter is, by definition, a Participant in any CVD case by virtue of their
knowledge of the vulnerability in the first place. Additional Participants usually fall into one
of three categories:

» All known Vendors of affected software SHOULD be included as Participants.
» Third-party Coordinators MAY be included as Participants.

* Other parties MAY be included as Participants when necessary and appropriate. Exam-
ples we have observed in past cases include Deployers, subject matter experts, and gov-
ernment agencies with relevant regulatory oversight or critical infrastructure protection
responsibilities.

3.2.10.2 Adding Participants to an Existing Embargo

Adding new Participants to a case with an existing embargo might require the new Partici-
pant to accept the embargo prior to receiving the report.

* When inviting a new Participant to a case with an existing embargo, the inviting Partic-
ipant SHALL propose the existing embargo to the invited Participant.

* A newly invited Participant to a case with an existing embargo SHOULD accept the
existing embargo.

* The inviting Participant SHOULD NOT share the vulnerability report with the newly
invited Participant unless the new Participant has accepted the existing embargo.

* The inviting Participant MAY interpret the potential Participant’s default embargo con-
tained in their published vulnerability disclosure policy in accordance with the default
acceptance strategies listed in §3.2.6.

* A newly invited Participant to a case with an existing embargo MAY propose a revision
after accepting the existing embargo.

3.2.10.3 When to Invite Participants

In MPCVD there are practical considerations to be made regarding the timing of when to no-
tify individual Participants. The primary factor in these decisions stems from the interaction
of the Active embargo with the potential Participant’s existing (explicit or implicit) disclosure
policy.

Participants with Disclosure Policies Shorter Than an Existing Embargo. Adding a po-
tential Participant with a known default disclosure policy shorter than an extant embargo
leaves Participants with these options to choose from:

1. Shorten the existing embargo to match the potential Participant’s policy.

2. Propose the existing embargo to the potential Participant, and, upon acceptance, share
the report with them.

3. Delay notifying the potential Participant until their default policy aligns with the exist-
ing embargo.
4. Avoid including the potential Participant in the embargo entirely.
For example, say a Vendor has a seven-day maximum public disclosure policy. Participants in
a case with an existing embargo ending in three weeks might choose to notify that Vendor two

weeks from now to ensure that even the default disclosure timeline remains compatible with
the extant embargo.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* Participants with short default embargo policies SHOULD consider accepting longer em-
bargoes in MPCVD cases.

* Participants in an MPCVD case MAY delay notifying potential Participants with short
default embargo policies until their policy aligns with the agreed embargo.

Participants with Disclosure Policies Longer Than an Existing Embargo. Similarly,
adding a Participant with a known default disclosure policy longer than an extant embargo
leaves Participants with the following options to choose from:

1. Lengthen the existing embargo to match the potential Participant’s policy.

2. Propose the existing embargo to the potential Participant, and, upon acceptance, share
the report with them.

3. Avoid including the potential Participant in the embargo entirely.

In the case of a Vendor with a longer default policy than the existing embargo, it is still
preferable to give them as much lead time as possible even if it is not possible to extend the
embargo to their preferred timing.

* In the interest of receiving the report in the first place, potential Participants with a
longer default policy than an existing case SHOULD accept the embargo terms offered.

» After accepting an existing embargo, newly invited Participants with a longer default
policy than an existing case MAY propose a revision to the existing embargo, if desired,
to accommodate their preferences.

» Existing Participants MAY accept or reject such a proposed revision as they see fit.

» Participants in a case with an existing embargo SHOULD notify Vendors with a longer
default embargo policy.

» Participants in a case with an existing embargo MAY choose to extend the embargo to
accommodate a newly added Participant.

Untrustworthy Participants. Unfortunately, not all potential CVD Participants are equally
trustworthy with vulnerability information. For example, a Vendor might have sub-par oper-
ational security or even business practices that result in adversaries often finding out about
vulnerabilities in their products before the end of an embargo period. Participants might also
be subject to regulatory regimes in which they are required by law to share known vulnerabili-
ties with government agencies having oversight responsibilities.

* Participants that are known to leak or provide vulnerability information to adversaries
either as a matter of policy or historical fact SHOULD be treated similar to Participants
with brief disclosure policies.

Acknowledging that adversary is not a universally agreed-upon category, the definition of ad-
versary in the above is left to individual Participants.

The maximal interpretation of the above is that untrustworthy Participants are left to be no-
tified by the publication of the vulnerability report. This is the equivalent of treating them
like a Participant with a default zero-day maximum embargo policy.

Coordinators. Third-party Coordinators, as Participants who are neither Finders nor Ven-
dors, often play an important role in MPCVD cases, especially those with broad impact across
the software supply chain or with acute critical infrastructure or public safety impacts. Most
Coordinators strive to be consistent in their MPCVD practices and have well-documented dis-
closure policies along with significant histories of handling previous cases. All of these factors

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

make the argument for including third-party Coordinators in CVD cases of sufficient complex-
ity, impact, or importance.

Other Parties. Some Participants in CVD have their own policies that prohibit notification
of any parties unable to directly contribute to the development of a fix for a particular vul-
nerability. Typically, these policies take the form of “only Vendors of affected products” or
similar such restrictions.

The CERT/CC’s position as a third-party Coordinator in numerous cases is that this ap-
proach can be appropriate for straightforward scenarios, such as those in which a Vendor is
in direct contact with their downstream Vendors and can coordinate the response within that
community. However, it falls short in some cases, such the following;:

* Vulnerabilities are found to affect a broad spectrum of Vendors and products, especially
when cases cross industry sectors or otherwise include Participants having widely diver-
gent operational tempos or software delivery models.

* Vulnerabilities affect systems deployed in high-impact niches, such as critical infrastruc-
ture, public safety, and national security.

* Outside expertise is needed to understand the implications or impact of a vulnerability
beyond the participating Vendors; sometimes the most knowledgeable parties work for
someone else.

3.2.11 Consequences of Non-Compliance

Considering multiple cases over time, MPCVD can be thought of as an iterated game analo-
gous to the Prisoner’s Dilemma. One notable strategy for the Prisoner’s Dilemma is tit for tat
in which non-cooperation from one party in one round can be met with non-cooperation from
the opposite party in the next. While MPCVD is usually much bigger than a toy two-player
game, we feel it is necessary to encode the possibility that non-cooperation will have down-
stream consequences.

* Participants MAY decline to participate in future CVD cases involving parties with a
history of violating previous embargoes.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 CVD Case State Model

In this chapter, we revisit the CVD Case State (CS) model from the Householder and Spring
2021 report [10]. A complete derivation of the CS model can be found in that report. Here,
we are primarily interested in the final model, which comprises 32 states and their transitions.

As in the previous two chapters, we wish to define a DFA 5-tuple (Q, Y, 6, go, F') [20], this
time for the CS model. However, due to the size of the final CS model, we begin with some

necessary background on the substates of the model in §4.1 prior to defining the Case States
in §4.2.

4.1 CVD Case Substates

In our model, the state of the world is a specification of the current status of all the events
in the vulnerability lifecycle model described in the Householder and Spring 2021 report [10].
We describe the relevant factors as substates below. For notational purposes, each substate
status is represented by a letter for that part of the state of the world. For example, v means
no Vendor awareness and V' means the Vendor is aware. The complete set of status labels is
shown in Table 4.1.

4.1.1 The Vendor Awareness Substate (v, V)

The Vendor Awareness substate corresponds to Disclosure in the Arbaugh, Fithen, and
McHugh article, “Windows of Vulnerability: A Case Study analysis” [1] and vulnerability dis-
covered by Vendor in Bilge and Dumitrag’s article, “Before we knew it: an empirical study

of zero-day attacks in the real world” [3]. In the interest of model simplicity, we are not con-
cerned with how the Vendor finds out about the vulnerability’s existence—whether it was
found via internal testing, reported within a CVD process, or noticed as the result of incident
or malware analysis.

4.1.2 The Fix Readiness Substate (f, I)

The Fir Readiness substate refers to the Vendor’s creation and possession of a fix that could
be deployed to a vulnerable system if the system owner knew of its existence. Here we dif-

fer somewhat from previous models [1, 9, 3]; their models address the release of the fix rather
than its readiness for release. This distinction is necessary because we are interested in model-
ing the activities and states leading up to disclosure. Fix release is a goal of the CVD process,
whereas fix readiness is a significant process milestone along the way.

Table 4.1: CVD Case Status Labels

Status | Meaning Status | Meaning
v Vendor is not aware of vulnerability. v Vendor is aware of vulnerability.
f Fix is not ready. F Fix is ready.
d Fix is not deployed. D Fix is deployed.
P Public is not aware of vulnerability. P Public is aware of vulnerability.
x No exploit has been made public. X Exploit has been made public.
a No attacks have been observed. A Attacks have been observed.
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.3 The Fix Deployed Substate (d, D)

The Fix Deployed substate reflects the deployment status of an existing fix. The model in the
Householder and Spring 2021 report [10] was initially designed to treat this substate as a sin-
gular binary state for a case, but we intend to relax that here to reflect a more realistic per-
spective in which each Deployer maintains their own instance of this state value. It remains a
binary state for each Deployer, which, however, is still a simplification.

4.1.4 The Public Awareness Substate (p, P)

The Public Awareness substate corresponds to Publication in the Arbaugh, Fithen, and
McHugh article [1], time of public disclosure in Frei et al.’s article Modeling the Security
Ecosystem—The Dynamics of (In)Security [9]; and vulnerability disclosed publicly in Bilge
and Dumitrag’s article [3]. The public might find out about a vulnerability through the Ven-
dor’s announcement of a fix, a news report about a security breach, a conference presentation
by a researcher, or a variety of other means. As above, we are primarily concerned with the
occurrence of the event itself rather than the details of how the public awareness event arises.

41.5 The Exploit Public Substate (x, X)

The Exploit Public substate reflects whether the method of exploiting a vulnerability has been
made public in sufficient detail to be reproduced by others. Posting Proof of Concept (PoC)
code to a widely available site or including the exploit code in a commonly available exploit
tool meets this criteria; privately held exploits do not.

4.1.6 The Attacks Observed Substate (a, A)

The Attacks Observed substate reflects whether attacks have been observed in which the vul-
nerability was exploited. This substate requires evidence that the vulnerability was exploited;
we can then presume the existence of exploit code regardless of its availability to the public.
Analysis of malware from an incident might meet Attacks Observed but not Exploit Public,
depending on how closely the attacker holds the malware. Use of a public exploit in an attack
meets both Exploit Public and Attacks Observed.

4.1.7 CS Model Design Choices

We chose to include the Fiz Ready, Fiz Deployed, and Public Awareness events so that our
model could better accommodate two common modes of modern software deployment:

* shrinkwrap is a traditional distribution mode where the Vendor and Deployer are dis-
tinct entities, and Deployers must be made aware of the fix before it can be deployed.
In this case, both Fiz Ready and Public Awareness are necessary for Fixz Deployment to
occur.

* SAAS is a more recent delivery mode where the Vendor also plays the role of Deployer.
In this distribution mode, Fiz Ready can lead directly to Fix Deployed with no depen-
dency on Public Awareness.

We note that so-called silent fizes by Vendors can sometimes result in a fix being deployed
without public awareness even if the Vendor is not the Deployer. Thus, it is possible (but un-
likely) for Fiz Deployed to occur before Public Awareness even in the shrinkwrap mode above.
It is also possible, and somewhat more likely, for Public Awareness to occur before Fiz De-
ployed in the SAAS mode as well.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2 CVD Case States

In the CS model, a state ¢°° represents the status of each of the six substates. State labels
inherit the substate notation from above: lowercase letters designate events that have not oc-
curred, and uppercase letters designate events that have occurred in a particular state. For
example, the state V FdpXa represents Vendor is aware, fix is ready, fix not deployed, no pub-
lic awareness, exploit is public, and no attacks. The order in which the events occurred does
not matter when defining the state. However, we will observe a notation convention keeping
the letter names in the same case-insensitive order (v, f,d,p, z,a).

CS states can be any combination of statuses, provided that a number of caveats elaborated
in §4.3 are met. One such caveat worth noting here is that valid states must follow what we
call the Vendor fir path.® The reason is causal: For a fix to be deployed (D), it must have
been ready (F') for deployment. And for it to be ready, the Vendor must have already known
(V') about the vulnerability—symbolically, D = F = V. As a result, valid states must
begin with one of the following strings: vfd, V fd, VFd, or VFD.

The CS model is thus composed of 32 possible states, which we define as Q¢ in (4.1).

v fdpxa, vfdPzxa, vfdpXa, vfdPXa,
vfdprA, vfdPzA, vfdpXA, vfdPXA,
V fdpxa, V fdPzxa, VfdpXa, VfdPXa,
VfdpxA, VfdPzA, VfdpXA, VfdPXA,

Q¥ = V Fdpza, VFdPza, VFdpXa, VFdPXa, (4.1)
VFdpzxA, VFdPxA, VFdpXA, VFIPXA,
VFDpxa, VFDPxa, VFDpXa, VFDPXa,
VFDpxA, VFDPxA, VFDpXA, VFDPXA
4.2.1 CS Start and End States
All vulnerabilities start in the base state ¢§® in which no events have occurred.
q;° = vfdpza (4.2)
The lone final state in which all events have occurred is VFDPX A.
F ={VFDPXA} (4.3)

Note that this is a place where our model of the vulnerability lifecycle diverges from what we
expect to observe in CVD cases in the real world. There is ample evidence that most vul-
nerabilities never have exploits published or attacks observed [11, 19]. Therefore, practically
speaking, we might expect vulnerabilities to wind up in one of

F'={VFDPxa,VFDPxA,VFDPXa,VFDPXA}

at the time a report is closed (i.e., when ¢"™ 5 (). In fact, most count a CVD as success-
ful when reports are closed in ¢ € V FDPza because it means that the defenders won the
race against adversaries. The distinction between the RM and CS processes is important; Par-
ticipants can close cases whenever their RM process dictates, independent of the CS state. In
other words, it remains possible for exploits to be published or attacks to be observed long
after the RM process has closed a case.

3See §2.4 of the Householder and Spring 2021 report [10] for an expanded explanation of the Vendor fix path.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2.2 CS Model Wildcard Notation

We frequently need to refer to subsets of Q. To do so, we will use a dot (-) to represent a
single character wildcard. For example, V F'dP-- refers to the subset of Q¢ in which the Ven-
dor is aware, a fix is ready but not yet deployed, and the public is aware of the vulnerability,
yet we are indifferent to whether exploit code has been made public or attacks have been ob-
served. Specifically,

VFdP--={VFdPxa,VFdPxA,VFdPXa,VFIPXA} C Q%

4.3 CS Transitions

In this section, we elaborate on the input symbols and transition functions for our CS DFA.
A row-wise reading of Table 4.1 implies a set of events corresponding to each specific substate
change, which we correspond to the symbols in the CS DFA.

* V — A Vendor becomes aware of a vulnerability vfd--- — V fd---

* F — A Vendor readies a fix for a vulnerability V fd--- — V Fd---

* D — A Deployer deploys a fix for a vulnerability V Fd--- — VFD---

* P — Information about a vulnerability becomes known to the public ---p-- — ---P-
* X — An exploit for a vulnerability is made public -2+ — - X"

* A — Attacks exploiting a vulnerability are observed -----a — ---A

We define the set of symbols for our CS DFA as 3¢°:

> ={V,F,D,P, X A} (4.4)

Here we diverge somewhat from the notation used for the RM and EM models described in
previous chapters, which use lowercase letters for transitions and uppercase letters for states.
Because CS state names already use both lowercase and uppercase letters, here we use a bold
font for the symbols of the CS DFA to differentiate the transition from the corresponding sub-

state it leads to: e.g., vfd-- Y, Vfd---.

For the CS model, an input symbol ¢ € ¥ is “read” when a Participant observes a change
in status (a Vendor is notified and exploit code has been published, etc.). For the sake of sim-
plicity, we begin with the assumption that observations are globally known—that is, a status
change observed by any CVD Participant is known to all. In the real world, we believe the
MPCVD protocol proposed in §6 is poised to ensure eventual consistency with this assump-
tion through the communication of perceived case state across coordinating parties.

4.3.1 CS Transitions Defined

Here we define the allowable transitions between states in the CS model. A diagram of the CS
process, including its states and transitions, is shown in Figure 4.1.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 4.1: Complete Map of the 32 Possible States in the CS Model of Vulnerability Disclo-
sure and Their Allowed Transitions (V, F, D, P, X, A)

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

41

Transitions in the CS model follow a few rules described in detail in §2.4 of the Householder
and Spring 2021 report [10], which we summarize here:

* Because states correspond to the status of events that have or have not occurred, and
all state transitions are irreversible (i.e., we assume history is immutable), the result will
be an acyclic directed graph of states beginning at ¢§° = vfdpra and ending at F¢ =
{VFDPXA} with allowed transitions as the edges. In practical terms for the CS model,
this means there is an arrow of time from v fdpxa through VFDPX A in which each
individual state transition changes exactly one letter from lowercase to uppercase.

* The Vendor fix path (vfd-- Y, Vfd-- 5 vFrd- 2 VFD--) is a causal requirement as
outlined in §4.2.

* Vendors are presumed to know at least as much as the public does; therefore, v--P-- can
only lead to V--P--.

* Exploit publication is tantamount to public awareness; therefore, ---pX- can only lead to
e PX-.

In this model, attacks observed when a vulnerability is unknown to the public (---p-A) need
not immediately cause public awareness (---P-A), although, obviously, that can and does hap-
pen. Our reasoning for allowing states in ---p-A to persist is twofold:

* First, the connection between attacks and exploited vulnerabilities is often made later
during incident analysis. While the attack itself may have been observed much earlier,
the knowledge of which vulnerability it targeted may be delayed until after other events
have occurred.

* Second, attackers are not a monolithic group. An attack from a niche set of threat ac-
tors does not automatically mean that the knowledge and capability of exploiting a par-
ticular vulnerability is widely available to all possible adversaries. Publication, in that
case, might assist other adversaries more than it helps defenders.

In other words, although ---p-A does not require an immediate transition to ---P-A the way

~pX- P, ..PX. does, it does seem plausible that the likelihood of P occurring increases when
attacks are occurring. Logically, this is a result of there being more ways for the public to
discover the vulnerability when attacks are happening than when they are not. For states in
---p-a, the public depends on the normal vulnerability discovery and reporting process. States
in ---p-A include that possibility and add the potential for discovery as a result of security inci-
dent analysis. Hence,

* Once attacks have been observed, fix development SHOULD accelerate, the embargo
teardown process SHOULD begin, and publication and deployment SHOULD follow as
soon as is practical.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.2 A Regular Grammar for the CS model

Following the complete state machine diagram in Figure 4.1, we can summarize the transition
functions of the CS model as a right-linear grammar §¢°:

vfdpra — V Vfdpza | P vfdPza | X vfdpXa | A vfdpxA
vfdprA =V VfdpzA | P ofdPzA| X vfdpXA
vfdpXa —PufdPXa

vfdpXA =P ofdPXA

vfdPxa — V VfdPzxa

vfdPxA -V VfdPzA

vfdPXa -V VfdPXa

vfdPXA =V VfdPXA

V fdpzxa — F VFdpza | P VfdPzxa | X VfdpXa | AV fdpzA
V fdpx A —F VFdpzA | P VfdPzA | X VfdpXA
VfdpXa — P VfdPXa

VidpXA =P VfIPXA

V fdPza — F VFdPza | X VfdPXa | AV fdPzA
VfdPzA —FVFdPzA | X VfdPXA

VfdPXa —F VFdPXa| AVfdPXA

VfdPXA —F VFIPXA

V Fdpza — D VFDpza | P VFdPza | X VFdpXa | A VFdpxA
VFdprA — D VFDprA|P VFdPzA | X VFdpX A
VFdpXa — P VFdPXa

VFdpXA — P VFIPXA

VFdPra — D VFDPza|X VFdPXa | A VFdPzA
VFdPzA —DVFDPzA|XVFDPXA

VFdPXa —DVFDPXa|AVFIPXA

VFdPXA — DVFDPXA

V F Dpzxa — P VFDPxa | X VFDpXa | A VFDpxA
VFDpzrA — P VFDPzA|X VFDpXA

VFDpXa — P VFDPXa

VFDpXA —PVFDPXA

VFDPza —XVFDPXa|AVFDPzA

VFDPxA — XVFDPXA

VFDPXa — AVFDPXA

VFDPXA —e¢

(4.5)

A more thorough examination of the strings generated by this grammar, their interpretation
as the possible histories of all CVD cases, and implications for measuring the efficacy of the
overall CVD process writ large can be found in the Householder and Spring 2021 report [10].

4.4 CS Model Fully Defined

In combination, the full definition of the CS DFA (Q, qo, F, %, §)° is given by equations (4.1),
(4.2), (4.3), (4.4), and (4.5). For convenience, we have assembled them into (4.6).

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

vfdpxa,
vfdprA,
V fdpzxa,
V fdpz A,
V Fdpzxa,
VFdpzA,
V FDpza,
VFDpzA,

q5° =vfdpza,
Fe ={VFDPXA},

QCS

vfdpzra
vfdprA
vfdpXa
vfdpX A
vfdPza
vfdPxA
vfdPXa
vfdPXA
V fdpxa

V fdpz A
VfdpXa
VfdpX A
V fdPza
VfdPzA
VfdPXa
VfdPXA
V Fdpza
VFdpzA
VFdpXa
VFdpX A
VFdPza
VFdPzA
VFdPXa
VFIPXA
V FDpza
VFDpxA
VFDpXa
VFDpXA
VFDPzxa
VFDPxA
VFDPXa
VFDPXA

CcS =

(SCS —

vfdPzxa, vfdpXa, vfdPXa,
vfdPzA, vfdpXA, vfdPXA,
V fdPza, VfdpXa, VfdPXa,
VfdPzA, VfdpXA, VfdPXA,
VFdPzxa, VFdpXa, VFdPXa, ('’
VFdPzA, VFdpXA, VFIPXA,
VFDPxa, VFDpXa, VFDPXa,
VFDPxA, VFDpXA, VFDPXA

¥ ={V,F,D,P,X A},

— V Vfdpza | P vfdPza | X vfdpXa | A vfdpxA
=V VfdpzA| P vfdPzA| X vfdpXA

S PufdPXa

S P ufdPXA

— V VfdPxa

&V VfdPzA

~ V VfdPXa

SV VfdPXA

— F VFdpza | P VfdPzxa | X VfdpXa | AV fdpzA
S F VFdpzA | P VfdPzA | X VfdpX A
P VfdPXa

S P VfdPXA

— F VFdPza | X VfdPXa | AV fdPzA
—FVFdPzA | X VfdPXA

—-F VFdPXa | AVfdPXA
—FVFIPXA

— D VFDpza | P VFdPza | X VFdpXa | A VFdpzA
— D VFDpzA | P VFdPzA | X VFdpXA
— P VFdPXa

— P VFdIPXA

— D VFDPzxa | X VFdPXa | A VFdPxA
—-DVFDPzA| X VFDPXA
—-DVFDPXa| A VFIPXA
—-DVFDPXA

— P VFDPzxa | X VFDpXa | A VFDprA
—PVFDPxzA| X VFDpXA
—PVFDPXa

—PVFDPXA

— X VFDPXa | AVFDPzA

— X VFDPXA

— A VFDPXA

— e

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

(4.1)

(4.5)

44

5 Model Interactions

In this chapter, we reflect on the interactions between the Report Management (RM), Em-
bargo Management (EM), and CVD Case State (CS) models within the overall MPCVD pro-

Cess.

5.1 Interactions Between the RM and EM Models

There are additional constraints on how the RM and EM processes interact.

Start Embargo Negotiations As Early as Possible

* The EM process MAY begin (i.e., the initial propose transition ¢° € N £ P) prior to
the report being sent to a potential Participant (¢"™ € S), for example, when a Partici-
pant wishes to ensure acceptable embargo terms prior to sharing a report with a poten-
tial recipient.

+ If it has not already begun, the EM process SHOULD begin when a recipient is in RM
Received (¢"™ € R) whenever possible.

Negotiate Embargoes for Active Reports
* Embargo Management MAY begin in any of the active RM states (¢"™ € {R,V, A}).
* Embargo Management SHOULD NOT begin in an inactive RM state (¢"™ € {I, D,C}).

Negotiate Embargoes Through Validation and Prioritization

* Embargo Management MAY run in parallel to validation (¢"™ € {R, I} ACDN {V,1})

d
and prioritization (¢"™ € V {odh, {4, D}) activities.

Renegotiate Embargoes While Reports Are Valid Yet Unclosed

« EM revision proposals (¢°" € A % R) and acceptance or rejection of those pro-

posals (¢°™ € R ﬂ A) MAY occur during any of the valid yet unclosed RM states

(QTm € {Vv A, D})

Avoid Embargoes for Invalid Reports...

* Embargo Management SHOULD NOT begin with a proposal from a Participant in RM
Invalid (¢"™™ € I).

...but Don’t Lose Momentum if Validation Is Pending

* Outstanding embargo negotiations (¢ € P Arph, {N, P}) MAY continue in RM

Invalid (¢"™ € I) (e.g., if it is anticipated that additional information may be forth-
coming to promote the report from Invalid to Valid) (¢"™ € I RN V).

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Only Accept Embargoes for Possibly Valid Yet Unclosed Reports

a

* Embargo Management MAY proceed from EM Proposed to EM Accepted (¢°™ € P —
A) when RM is neither Invalid nor Closed (¢"™ € {R,V, A, D}).

* Embargo Management SHOULD NOT proceed from EM Proposed to EM Accepted
when RM is Invalid or Closed (¢"™ € {I,C}).

r

* Embargo Management MAY proceed from EM Proposed to EM None (¢™ € P — N)
when RM is Invalid or Closed.

Report Closure, Deferral, and Active Embargoes

* Participants SHOULD NOT close reports (¢"™ € {I,D, A} 5 C') while an embargo is
active (¢°™ € {A, R}).

* Instead, reports with no further tasks SHOULD be held in either Deferred or Invalid
(¢"™ € {D,I}) (depending on the report validity status) until the embargo has termi-
nated (g™ € X). This allows Participants to stop work on a report but still maintain
their participation in an extant embargo.

« Notwithstanding, Participants who choose to close a report (¢"™ € {I,D,A} 5 C)
while an embargo remains in force (¢°™ € {A, R}) SHOULD communicate their intent
to either continue to adhere to the embargo or terminate their compliance with it.

* Report closure or deferral does not terminate an embargo. A Participant’s closure or
deferral (¢"™ € {C, D}) of a report while an embargo remains active (¢ € {A, R}) and
while other Participants remain engaged (¢"™ € {R,V, A}) SHALL NOT automatically
terminate the embargo.

* Any changes to a Participant’s intention to adhere to an active embargo SHOULD be
communicated clearly in addition to any necessary notifications regarding RM or EM
state changes.

5.2 RM-CVD and EM - CVD Model Interactions

The RM and EM models interact with the CS model described in Chapter 4. Here we will
review the constraints arising from the interaction of the RM and EM models with each of
the CS transition events represented by its symbols. As a reminder, the CS transition symbols
(3¢%) from the Householder and Spring 2021 report [10] are represented as bold capital letters.

¥ ={V,F, D, P, X, A} (4.4 revisited)

Global vs. Participant-Specific Aspects of the CS Model. The CS model encompasses
both Participant-specific and global aspects of a CVD case. In particular, the Vendor fix path
substates—Vendor unaware (vfd), Vendor aware (V fd), fix ready (VF'd), and fix deployed
(V FD)—are specific to each Vendor Participant in a case. On the other hand, the remaining
substates represent global facts about the case status—public awareness (p, P), exploit public
(z,X), and attacks observed (a, A). This local versus global distinction will become important
in Chapter 6.

5.2.1 Vendor Notification

Vendor Awareness (V) occurs when a Participant—typically a Finder, Coordinator, or an-
other Vendor—is in RM Accepted and notifies the Vendor (¢°° € vfd-- Y, Vfd-). In turn,
the Vendor starts in ¢"™ = Received and proceeds to follow their validation and prioritization
routines. We previously outlined this in Table 2.1.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Depending on which parties are involved in a CVD case, the EM process might already be
underway prior to Vendor notification (e.g., ¢°™ € {P, A, R}). For example, a Reporter and
Coordinator might have already agreed to a disclosure timeline. Or, in an MPCVD case, other
Vendors may have already been coordinating the case under an embargo and only recently
realized the need to engage with a new Vendor on the case. The latter example is consistent
with public narratives about the Meltdown/Spectre vulnerabilities [31].

Once a case has reached ¢“° € V fdpzxa for at least one Vendor,
 If the EM process has not started, it SHOULD begin as soon as possible.
* Any proposed embargo SHOULD be decided (accept, reject) soon after the first Vendor

is notified.

propose
None ——— Proposed

reject

——— None
cs em }DTOpOSCd accept
¢ € Vfdpra = ¢ € ——— Accepted (5.1)
Accepted
Revise

5.2.2 Fix Ready

Fix Readiness (F) can occur only when a Vendor is in the Accepted state. As a reminder, in
MPCVD cases, each affected Vendor has their own RM state, so this constraint applies to
each Vendor individually.

With respect to EM, when the case state is ¢°° € V F-pzxa, it’s usually too late to start a new
embargo. Once a case has reached ¢“° € V F-pxa,

* New embargo negotiations SHOULD NOT start.
* Proposed but not-yet-agreed-to embargoes SHOULD be rejected.

+ Existing embargoes (¢°™ € {Active, Revise}) MAY continue but SHOULD prepare to
terminate soon.

None
reject
Proposed ———— None

q° € VF-pra = ¢ €
Accepted

Revise

In MPCVD cases, where some Vendors are likely to reach ¢°® € V F'---- before others,

* Participants MAY propose an embargo extension to allow trailing Vendors to catch up
before publication.

» Participants SHOULD accept reasonable extension proposals for such purposes when
possible (e.g., when other constraints could still be met by the extended deadline).

5.2.3 Fix Deployed

For vulnerabilities in systems where the Vendor controls deployment, the Fix Deployment (D)
event can only occur if the Vendor is in ¢"™ = Accepted.

For vulnerabilities in systems where Public Awareness must precede Deployment (P < D),
the Vendor status at the time of deployment might be irrelevant—assuming, of course, that

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

they at least passed through ¢"™ = Accepted at some point as is required for Fix Ready (F),
which, in turn, is a prerequisite for deployment (D).

As regards EM, by the time a fix has been deployed (¢°* € VFD---),
* New embargoes SHOULD NOT be sought.
* Any existing embargo SHOULD terminate.

None

reject
Proposed ———— None
terminate

Accepted ———— eXited

terminate

Revise ——— eXited

¢ € VED- = ¢°™ ¢ (5.3)

As with the Fiz Ready scenario in §5.2.2, MPCVD cases may have Vendors in varying states
of Fixz Deployment. Therefore the embargo extension caveats from that section apply to the
Fiz Deployed state as well.

5.2.4 Public Awareness

Within the context of a coordinated publication process, (P) requires at least one Participant
to be in the ¢"™ = Accepted state because Participants are presumed to publish only on cases
they have accepted. Ideally, the Vendor is among those Participants, but as outlined in the
CERT Guide to Coordinated Vulnerability Disclosure [14], that is not strictly necessary.

That said, the publishing party might be outside of any existing coordination process. For
example, this is the situation when a report is already in the midst of a CVD process and a
party outside the CVD case reveals the vulnerability publicly (e.g., parallel discovery, embargo
leaks).

As for EM, the whole point of an embargo is to prevent P from occurring until other objec-
tives (e.g., ¢°® € VF-pz-) have been met. Therefore, once P has happened and the case state
reaches ¢°° € ---P--,

» New embargoes SHALL NOT be sought.
* Any existing embargo SHALL terminate.

None

reject
Proposed ~2“%5 None

terminate

Accepted —— eXited

terminate

Revise ———— eXited

qcs c...P. — qem c

5.2.5 Exploit Public

Exploit publishers may also be presumed to have a similar RM state model for their own
work. Therefore, we can expect them to be in an RM Accepted state at the time of exploit
code publication (X). However, we cannot presume that those who publish exploit code will
be Participants in a pre-public CVD process. That said,

* Exploit Publishers who are Participants in pre-public CVD cases (¢°* € ---p--) SHOULD
comply with the protocol described here, especially when they also fulfill other roles
(e.g., Finder, Reporter, Coordinator, Vendor) in the process.

For example, as described in the Householder and Spring 2021 report [10], the preference for
P < X dictates that

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* Exploit publishers SHOULD NOT release exploit code while an embargo is active
(¢ € {A,R}).

In the Householder and Spring 2021 report [10], the authors argue that public exploit code is
either preceded by Public Awareness (P) or immediately leads to it. Therefore, once X has
occurred (¢°° € - X),

» New embargoes SHALL NOT be sought.
» Any existing embargo SHALL terminate.

None

reject
Proposed %% None

terminate

Accepted ——— eXited

terminate

Revise ————— eXited

e X = ¢ e (5.5)

5.2.6 Attacks Observed

Nothing in this or any other CVD process model should be interpreted as constraining adver-
sary activity.
» Participants MUST treat attacks as an event that could occur at any time and adapt
their process as needed in light of the available information.

As we outlined in §3.2.7, when attacks are occurring, embargoes can often be of more benefit
to adversaries than defenders. However, we also acknowledged in §4.3.1 that narrowly scoped
attacks need not imply widespread adversary knowledge of the vulnerability. In such scenar-
ios, it is possible that early embargo termination—leading to publication—might be of more
assistance to other adversaries than it is to defenders. Thus, we need to allow room for Partic-
ipant judgment based on their case-specific situation awareness.

Formally, once attacks have been observed (¢°° € ----A),
* New embargoes SHALL NOT be sought.
* Any existing embargo SHOULD terminate.

None

reject
Proposed I None

qc‘S =N A — qem c .) (56)
Accepted Lerminate, o Xited
Revise L™ o Xited
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 A Formal Protocol Definition for MPCVD

The MPCVD process can be described as a Communicating Hierarchical State Machine. In
this chapter, we begin by laying out the requirements for a formal protocol definition followed
by a step-by-step walkthrough of each of those requirements as they relate to the RM, EM,
and CS models we described in preceding chapters.

6.1 Communication Protocol Definitions

A communication protocol allows independent processes, represented as finite state machines,
to coordinate their state transitions through the passing of messages. Brand and Zafiropulo [4]
defined a protocol as follows. A protocol with N processes is a quadruple:

protocol = <<Si>£\i1, <0i>£V:1, (Mm}gj:l, succ> (6.1)

Where
* N is a positive integer representing the number of processes.
« (S;)N, are N disjoint finite sets (.S; represents the set of states of process 7).
* Each o; is an element of .S; representing the initial state of process i.

* (M; ~>£\’7j:1 are N2 disjoint finite sets with M;; empty for all i. M;; represents the mes-

sages that can be sent from process ¢ to process j,
* succ is a partial function mapping for each ¢ and j,
Si X Mij — Sz and Sz X Mji — Sz

succ(s, z) is the state entered after a process transmits or receives message z in state s.
It is a transmission if x is from M;; and a reception if = is from Mj;.

The global state of a protocol given by (6.1) is a pair (S, C), where

* S is an N-tuple of states (si1,...,sy) with each s; representing the current state of pro-
cess 1.
» C is an N2-tuple (C10y s CIN C2 s eeees ,cn,N), where each ci,j is a sequence of mes-

sages from M, ;. The message sequence c; ; represents the contents of the channel from
process i to j. (Note that ¢; ; is empty when ¢ = j since processes are presumed to not
communicate with themselves.)

We detail each of these in the subsequent sections of this chapter: NV in §6.2, (S,)f\il in §6.3,
<0i>i]i1 in §6.5, (Mi)jﬁ\;:l in §6.6, and (succ)ij\i1 in §6.7.

6.2 Number of Processes

The processes we are concerned with represent the different Participants in their roles (Finder,
Vendor, Coordinator, Deployer, and Other). Each Participant has their own process, but Par-
ticipants might take on multiple roles in a given case. The total number of processes N is sim-
ply the count of unique Participants, as shown in (6.2).

N = |Participants| = |Reporters U Vendors U Coordinators U Deployers U Others| (6.2)

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3 States

Each Participant in an MPCVD case has a corresponding RM state, an EM state, and an
overall CS state. Therefore, we can represent a Participant’s state as a triple comprising the
state of each of these models as in (6.3).

dParticipant = (qrm/v qem7 qcs> (63)

Good Participant situation awareness makes for good CVD decision making.

» Participants SHOULD track the state of other Participants in a case to inform their own
decision making as it pertains to the case.

An example object model to facilitate such tracking is given in §8.1. However, the protocol we
are developing is expected to function even when incomplete information is available to any
given Participant.

» Adequate operation of the protocol MUST NOT depend on perfect information across
all Participants.

A generic state model for a CVD Participant can be composed from the Cartesian product of
Q. Q" and Q° as shown in (6.4).

S

R N 1%}

I P vfd » . a
Si=|V|x|A|lx||Vfd x[]x[]x[} (6.4)

D R VFd P X A

A X VFD

C Qern ch

©
>
3{

Note that (6.4) splits the case state (Q°®) into chunks corresponding to the Vendor fix path

(wfd ¥ Vid £ VFd 2 VFD) and the public-exploit-attack (pra =3 PXA) sub-
models detailed in the Householder and Spring 2021 report [10]. This is done for two reasons.
First, it gives us a more compact notation to represent the 32 states of the CS model. Second,
it highlights the fact that the Vendor fix path represents the state of an individual Partici-
pant, whereas the public-exploit-attack sub-model represents facts about the world at large.
Because not all Participants are Vendors or Deployers, Participants might not have a corre-
sponding state on the vfd — V FD axis. Therefore, we add a null element & to the set of
states representing the Vendor fix path.

Thus, one might conclude that a total of 1,400 states is possible for each Participant, as
shown in (6.5).

|Si] = [Q™[-[Q7™[-[Q¥[=T7-5-(5-2-2-2) = 1400 (6.5)

However, this dramatically overstates the possibilities for individual CVD Participant Roles
because many of these states will be unreachable to individual Participants. In the remainder
of this section, we detail these differences.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.1 Unreachable States

For any Participant, the RM Closed state implies that the EM and CVD Case states do not
matter. Similarly, for any Participant, the RM Start state represents a case that the Partic-
ipant doesn’t even know about yet. Therefore, the Start state also implies that the EM and
CVD Case states do not matter. We use * to represent the “don’t care” value.

g e{S,CF = (¢ ex)U(¢” €%) (6.6)
A public exploit implies the vulnerability is public as well. In other words, ¢¢* € ---pX- is an

ephemeral state that resolves quickly to ¢* € ---PX-. (As a reminder, dots () in CVD case
state notation indicate single-character wildcards.)

¢ € X = ¢ e.-PX- (6.7)

Furthermore, when a vulnerability becomes public, the EM state no longer matters.

qcs c P - qem € % (68)

Taken together, we can modify (6.4) in light of (6.6), (6.7), and (6.8). The result is shown in
(6.9).

(S, *,%)
‘Rl [N o 1
I P vfd
a
V] x|A| x Vid x[p]x[x}x A
D R VFd
A X VFD |
S; = (6.9)
R o
I vfd
X a
Vx[*]x Vfd X{P}XXXA
D VFd
A VED |
(C, %, %)

This means that each Participant must be in one of 352 possible states.

ISiI:52(5.5.(5-1.1-2))+(5~1-(5-1-2~2)+1 (6.10)

6.3.2 Vendors (Fix Suppliers)

Vendors are the sole providers of fixes. Therefore, they are the only Participants in a CVD

case for which the V fd vrd 2 vED path is possible. Furthermore, since they are
Vendors by definition, they do not have access to the vfd state or the & state that was just

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

added. As a Vendor has a report in Received, it is, by definition, at least in the V fd case
state.

Vendors create fixes only when they are in the Accepted RM state. Because the Received,
Invalid, and Valid states come strictly before the Accepted state in the RM DFA, there is no
way for the Vendor to be in either V Fd or VFD while in any of those states.

qungndor € {R’ I, V} = q€/§endor € V.fd (61 1)

Vendors with the ability to deploy fixes themselves have access to three states in the fix path:
{Vfd, VFd, VFD}. However, this is not always the case. Vendor Participants without a de-
ployment capability can only create fixes, limiting them to the middle two states in the fix
path: {V fd, VFd}. Additional discussion of the distinction between Vendors with and with-
out a deployment capability can be found in the Householder and Spring 2021 report [10].

We apply these caveats to the generic model from (6.9) to arrive at a Vendor state model in
in (6.12)

(S, %, %)
N
R P .
a unprioritized,
R [Vfd} ~ {p} x [m} x A maybe embargoed
\% R
X
N
P Vfd
D a prioritized,
A Al VEFd | x {p} x [m} x A maybe embargoed
Sivendor = R VFDY
_X
B)))
[T a unprioritized,
I *] x _Vfd} x {P] x X x A] embargo irrelevant
V - -
I T v fd _
bl H x || VFd | x |P| x x] w | @] | prioritized,
A X A embargo irrelevant
- i _VF Dt L
(€, %)

(6.12)

The T on VFD in (6.12) indicates that the V F D state is accessible only to Vendors with
a deployment capability. As tallied in (6.13) and (6.14) respectively, there are 128 possible
states for a Vendor with deployment capability and 100 for those without.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1Si verge | =14+ (3-5-(1-1-1-2)) +(2-5-(3-1-1-2))
+(3-1-(1-1-2-2))+(2-1-(3-1-2-2)) +1 (6.13)
—128

1Sivenaor| =1+ (3:5-(1-1-1-2)) 4+ (2-5-(2-1-1-2))
+(3-1-(1-1-2-2))+(2-1-(2-1-2-2)) +1 (6.14)
=100

6.3.3 Non-Vendor Deployers

We just explained that not all Vendors are Deployers. Likewise, not all Deployers are Ven-
dors. Most CVD cases leave Non-Vendor Deployers entirely out of the CVD process, so their
appearance is expected to be rare in actual cases. However, there are scenarios when an
MPCVD case may include Non-Vendor Deployers, such as when a vulnerability in some crit-
ical infrastructure component is being handled or when the MPCVD protocol is used in the
context of a Vulnerability Disclosure Program (VDP). These Non-Vendor Deployers partici-

pate only in the d D, D transition on the fix path. Similar to the Vendor scenario in §6.3.2, it
is expected that Deployers actually deploy fixes only when they are in the RM Accepted state
(implying their intent to deploy). Therefore, their set of possible states is even more restricted
than Vendors, as shown in (6.15).

(S, #,%)
N
R P .
a unprioritized,
Ll x4 x {d} ” [p} x [x} x A maybe embargoed
V R
X
[N
P
D o lal x d o [} « [w] K prioritized,
Sipeptoger = A B D p A maybe embargoed (6.15)
X
o d
[T a unprioritized,
Ipx *} x ld] x {P] x X x A embargo irrelevant
|4
D " { } " d y [P} AR prioritized,
A * D X A embargo irrelevant
(C,%,%)
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Thus, Non-Vendor Deployers can be expected to be in 1 of 100 possible states, as shown in

(6.16).

|S; =1+(3-5-(1-1-1-2))+(2-5-(2-1-1-2))
+(31-(1-1-2-2))+(2-1-(2-1-2-2)) +1 (6.16)

=100

Deploye.r|

6.3.4 Non-Vendor, Non-Deployer Participants

Finally, CVD cases often involve Participants who are neither Vendors nor Deployers. Specif-
ically, Finder/Reporters fall into this category, as do Coordinators. Other roles, as outlined

in the CERT Guide to Coordinated Vulnerability Disclosure [14], could be included here as
well. Because they do not participate directly in the Vendor fix path, these Non-Vendor, Non-
Deployer CVD Participants fall into the & case substate we added to (6.4). Their state model
is shown in (6.17).

(5%, %)

‘R] [N

1 P

VI x Al x U@} X {p} X {x} X Z (maybe embargoed)
D R

A X

Siower =4 (6.17)

R

I

l‘; X [*} X “@} X {P} X)x(X Z (embargo irrelevant)
A

(C, *, %)

Non-Vendor Non-Deployer CVD Participants (Finder/Reporters, Coordinators, etc.) will be in
1 of 72 states, as calculated in (6.18).

=1+(5-5-(1-1-1-2) 4+ (5-1-(1-1-2-2)) +1
=72

‘Siothe'r

(6.18)

Finder-Reporters. As we discussed in §2.2.1, the early Finder states are largely hidden from
view from other CVD Participants unless they choose to engage in the CVD process in the
first place. Therefore, for a CVD protocol, we only need to care about Finder states once they
have reached RM Accepted. Coincidentally, this is also a convenient way to mark the transi-
tion from Finder to Reporter.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

(S, *,%) (hidden)
(R, *,%) (hidden)
(I,#,%) (hidden)
(V,*,%) (hidden)

N
P
Sinerorser = i x | Al x [g} X [p} X [:c] X Z maybe embargoed (6.19)
R
X
lj X [*} X “@} X [P} X ; X Z embargo irrelevant
(C, %, %)

Thus, for all practical purposes, we can ignore the hidden states in (6.19) and conclude that
Finders who go on to become Reporters have only 29 possible states during a CVD case.

|Si

=(2-5-(1-1-1-2))+(2-1-(1-1-2-2)) +1
=29

Reporter

(6.20)

6.4 A Lower Bounds on MPCVD State Space

Now we can touch on the lower bounds of the state space of an MPCVD case. Generically, we
would expect the state space for N Participants to take the form of equation (6.21).

N
|Srotar] = [] 15:] (6.21)
=1

The upper bound on the MPCVD state space is simply 352"V ~ 10255, However, because of
the Role-specific limits just described in §6.3, we already know that this overcounts the possi-
ble states significantly. We can do better still. If we ignore transient states while Participants
converge on a consistent view of the global state of a case, we can drastically reduce the state
space for an MPCVD case. Why? There are two reasons:

1. Because they represent facts about the outside world, the eight ---pra — ---PXA CS
substates are global to the case, not to individual Participants. This means all Partici-
pants should rapidly converge to the same substate.

2. Similarly, the five EM states are also global to the case and should converge rapidly.

Given these two observations, we can pull those global terms out of the state calculations for
individual Participants,

|Sglobal‘ =8x5=40 (6.22)

which leaves

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Reporter =142=23
Vendor =2+3+(2-2)+3+(2:-2)=16
Vendor/Deployer =2+3+(2-3)+3+(2-3) =20

S articipant| = 6.23
|Sparticipant] Coordinator =2+5=17 ()
Deployer =243 =15
Others =2+5=17
So our state space looks like
N enaor
|Stotar] = 40 x 3Nreporter 5 16NVendor » 9 Deptover (6.24)

% 7NCoordinator % 5NDEployE'r % 7N()thcr

With these values in mind, we see that

* A two-party (Finder-Vendor) case might have a lower bound state space of 40 x 3 x 16 =
1,920 states.

* A case like Meltdown/Spectre (with six Vendors and no Coordinators) might have 40 x
3 x 165 ~ 107 states.

* A large, but not atypical, 200-Vendor case handled by the CERT/CC might have 40 x
3 x 16290 x 7 ~ 10?4 possible configurations.

* In the case of the log4j vulnerability CVE-2021-44228 in December 2021, the CERT/CC
notified around 1,600 Vendors after the vulnerability had been made public [22]. Had

this been an embargoed disclosure, the case would have a total state space around
102000'

That said, while these are dramatic numbers, the reader is reminded that the whole point of
the MPCVD protocol is to coordinate the process so that it is not just hundreds or thousands
of Participants behaving randomly.

6.5 Starting States

Each Participant begins a case in the state where the report management process is in the
start state, there is no embargo in place, and the case has not made any progress.

A formal definition of the Participant start state is shown in (6.25).

0; = (0™, of™, 0f°) = (S, N,vfdpza) (6.25)

K2 K2

Following the discussion in §6.3, the starting states for Vendors, Deployers, and other Partici-
pants are shown in (6.26) (6.27), and (6.28), respectively.

Oivonaor = (S, N vfdpza) (6.26)
Oipepioger = (S, N, dpzra) (6.27)
Oivener = (S, N, pza) (6.28)
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For a case to really begin, the Finder must at least reach the A state. Therefore, at the point
when a second party finds out about the vulnerability from a Finder, the Finder is presumed
to be already at gpinder = (4, N, pxa).

Oipinaer = (A, N, pza) (6.29)

We will show in §6.7 how this plays out. But first, we need to define the message types that
can be exchanged between Participants.

6.6 Message Types

In §6.3, we identified four main roles in the MPCVD process: Finder/Reporter, Vendor, Co-
ordinator, and Deployer. Here we will examine the messages passed between them. Revisiting
the definitions from §6.1,

M;\N._ are N? disjoint finite sets with M;; empty for all i: M, represents the
J/i,j=1) pty J P
messages that can be sent from process ¢ to process j.

The message types in our proposed MPCVD protocol arise primarily from the following prin-
ciple taken directly from the CVD Guide [14]:

Avoid Surprise — As with most situations in which multiple parties are engaged
in a potentially stressful and contentious negotiation, surprise tends to increase the
risk of a negative outcome. The importance of clearly communicating expectations
across all parties involved in a CVD process cannot be overemphasized. If we ex-
pect cooperation between all parties and stakeholders, we should do our best to
match their expectations of being “in the loop” and minimize their surprise. Pub-
licly disclosing a vulnerability without coordinating first can result in panic and
an aversion to future cooperation from Vendors and Finders alike. CVD promotes
continued cooperation and increases the likelihood that future vulnerabilities will
also be addressed and remedied.

Now we condense that principle into the following protocol recommendation:

* Participants whose state changes in the RM, EM, or CVD State Models SHOULD send
a message to other Participants for each transition.

If you are looking for a one-sentence summary of the entire MPCVD protocol, that was it.
As a reminder, those transitions are

* RM state transitions X" = {r, v, a,1,d, c}

« EM state transitions X" = {p, a,r, t}

* CVD state transitions £ = {V,F,D,P, X, A}

We will address the specific circumstances when each message should be emitted in §6.7, but
first we need to introduce the message types this recommendation implies. We cover messages
associated with each state model, in turn, below, concluding the section with a few message
types not directly connected to any particular state model.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.6.1 RM Message Types

With the exception of the Finder/Reporter, each Participant’s involvement in a CVD case
starts with the receipt of a report from another Participant who is already in the Accepted
(g™ € A) state.*

Report Submission (RS) is a message from one Participant to a new Participant containing
a vulnerability report.

We continue with a list of state-change messages originating from a Participant in the RM
process:

Report Invalid (RI) is a message indicating the Participant has designated the report as in-
valid.

Report Valid (RV) is a message indicating the Participant has designated the report as valid.

Report Deferred (RD) is a message indicating the Participant is deferring further action on
a report.

Report Accepted (RA) is a message indicating the Participant has accepted the report for
further action.

Report Closed (RC) is a message indicating the Participant has closed the report.
Report Acknowledgement (RK) is a message acknowledging the receipt of a report.

Report Error (RE) is a message indicating a Participant received an unexpected RM mes-
sage.

A summary of the RM message types is shown in (6.30).

M™ ={RS,RI,RV,RD,RA, RC,RK, RE} (6.30)

All state changes are from the Participant’s (sender’s) perspective, not the recipient’s perspec-
tive. We will see in §6.7 that the receipt of a Report Submission is the only message whose
receipt directly triggers an RM state change in the receiver. All other RM messages are used
to convey the sender’s status.

* Participants SHOULD act in accordance with their own policy and process in deciding
when to transition states in the RM model.

* Participants SHOULD NOT mark duplicate reports as invalid.
* Instead, duplicate reports SHOULD pass through Valid (¢"™

m
S
be subsequently (immediately or otherwise) deferred (¢"™ € V
original.

<

), although they MAY
D) in favor of the

1=

» Participants SHOULD track the RM states of the other Participants in the case.

An example object model for such tracking is described in §8.1. Furthermore, while these mes-
sages are expected to inform the receiving Participant’s choices in their own RM process, this
protocol intentionally does not specify any other recipient RM state changes upon receipt of
an RM message.

4As we discuss in §2.2.1, the Finder's states ¢"™ € {R,I,V} are not observable to the CVD process because
Finders start coordination only when they have already reached ¢"™ = A.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.6.2 EM Message Types

Whereas the RM process is unique to each Participant, the EM process is global to the case.
Therefore, we begin with the list of message types a Participant SHOULD emit when their
EM state changes.

Embargo Proposal (EP) is a message containing proposed embargo terms (e.g., date/time
of expiration).

Embargo Proposal Rejection (ER) is a message indicating the Participant has rejected an
embargo proposal.

Embargo Proposal Acceptance (FA) is a message indicating the Participant has accepted
an embargo proposal.

Embargo Revision Proposal (EV) is a message containing a proposed revision to embargo
terms (e.g., date/time of expiration).

Embargo Revision Rejection (E.J) is a message indicating the Participant has rejected a
proposed embargo revision.

Embargo Revision Acceptance (EC) is a message indicating the Participant has accepted a
proposed embargo revision.

Embargo Termination (ET) is a message indicating the Participant has terminated an em-
bargo (including the reason for termination). Note that an Embargo Termination mes-
sage is intended to have immediate effect.

* If an early termination is desired but the termination date/time is in the future,
this SHOULD be achieved through an Embargo Revision Proposal and additional
communication as necessary to convey the constraints on the proposal.

Embargo Acknowledgement (EK) is a message acknowledging receipt of an EM message.

Embargo Error (E'F) is a message indicating a Participant received an unexpected EM mes-
sage.

A summary of the EM message types is shown in (6.31).

M®™ = {EP,ER,EA,EV,EJ,EC,ET, EK, EE} (6.31)

6.6.3 CS Message Types

From the CS process in §4, the following is the list of messages associated with CS state
changes:

Vendor Awareness (C'V) is a message to other Participants indicating that a report has
been delivered to a specific Vendor. Note that this is an announcement of a state change
for a Vendor, not the actual report to the Vendor, which is covered in the Report Sub-
mission (RS) above.

* Vendor Awareness messages SHOULD be sent only by Participants with direct
knowledge of the notification (i.e., either by the Participant who sent the report to
the Vendor or by the Vendor upon receipt of the report).

Fix Readiness (C'F) is a message from a Participant (usually a Vendor) indicating that a
specific Vendor has a fix ready.

Fix Deployed (CD) is a message from a Participant (usually a Deployer) indicating that
they have completed their fix deployment process. This message is expected to be rare
in most MPCVD cases because Deployers are rarely included in the coordination effort.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Public Awareness (CP) is a message from a Participant indicating that they have evidence
that the vulnerability is known to the public. This message might be sent after a Partic-
ipant has published their own advisory or if they have observed public discussion of the
vulnerability.

Exploit Public (CX) is a message from a Participant indicating that they have evidence that
an exploit for the vulnerability is publicly available. This message might be sent after a
Participant has published their own exploit code, or if they have observed exploit code
available to the public.

Attacks Observed (C'A) is a message from a Participant indicating that they have evidence
that attackers are exploiting the vulnerability in attacks.

CVD Case State Acknowledgement (CK) is a message acknowledging receipt of a CS mes-
sage.

CVD Case State Error (CE) is a message indicating a Participant received an unexpected
CS message.

A summary of the CS message types is shown in (6.32).

M ={CV,CF,CD,CP,CX,CA,CK,CE} (6.32)

6.6.4 Other Message Types

Finally, there are a few additional message types required to tie the coordination process to-
gether. Most of these message types are not associated with a specific state change, although
they might trigger activities or events that could cause a state change in a Participant (and
therefore trigger one or more of the above message types to be sent).

General Inquiry (GI) is a message from a Participant to one or more other Participants to
communicate non-state-change information. Examples of general inquiry messages in-
clude but are not limited to

* asking or responding to a question

* requesting an update on a Participant’s status

* requesting review of a draft publication

* suggesting a potential Participant to be added to a case
* coordinating other events

* resolving a loss of Participant state synchronization

General Acknowledgement (GK) is a message from a Participant indicating their receipt of
any of the other messages listed here.

General Error (GFE) is a message indicating a general error has occurred.

A summary of the General message types is shown in (6.33).

M* = {GI,GK,GE} (6.33)

6.6.5 Message Type Redux

Thus, the complete set of possible messages between processes is M; ; = M™™ U M*™ U M U
M*. For convenience, we collected these into (6.34) and provide a summary in Table 6.1.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.1: MPCVD Protocol Message Types (M;;) and the Corresponding Sender State
Changes

Process Model | M;; | Message Type | Emit when
RS | Report Submission A
RI | Report Invalid RL 1T
RV | Report Valid {R, I} BV
RM RD | Report Deferred (V,At 4D
RA | Report Accepted {Vv,D} % A
RC | Report Closed {I,D,A} & C
RK | Report Acknowledgement < receipt >
RE | Report Error < error >
EP | Embargo Proposal {(N,P} 2 P
ER | Embargo Proposal Rejection PLN
EA | Embargo Proposal Acceptance P35 A
EM EV | Embargo Revision Proposal AL R
EJ | Embargo Revision Rejection RL A
EC | Embargo Revision Acceptance RS A
ET | Embargo Termination {A, R} LX
EK | Embargo Acknowledgement < receipt >
EFE | Embargo Error < error >
CV | Vendor Aware vfd- Y, Vfd--
CF | Fix Ready Vid- 5 VFd.
CD | Fix Deployed VFd- 2 VED-
CS CP | Public Aware pe By pe.
CX | Exploit Public ez X
CA | Attacks Observed | oo ay . A
CK | CVD Case State Acknowledgement < receipt >
CE | CVD Case State Error < error >
GI | General Inquiry < anytime >
General GK | General Acknowledgement < receipt >
GE | General Error < error >

RS, RI,RV,RD, RA, RC, RK,

where i # j;
M, ;= RE,EP,ER,EA,EV, EJ, EC, @ otherwise; (6.34)
» ET,EK,EE,CV,CF,CD,CP, v
fori,j < N

CX,CA,CK,CE,GI,GK,GE

Message formats are left as future work in §8.3.1.

6.7 Transition Functions
Revisiting the formal protocol definition from the beginning of the chapter,
succ is a partial function mapping for each ¢ and j,
S X M; — S; and S; x Mj; — S;

succ(s, x) is the state entered after a process transmits or receives message = in
state s. It is a transmission if x is from M;; and a reception if = is from Mj;.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.2: RM Messages Sent and State Transitions (S; x M — S;)

Sender Precondition | Sender Transition | Message
(sn € 5i) (Sn = Sn+1) Type(s)

qcs qrm qem qcs qrm qem M1 .

* A * — - — RS

« {RV} x| — 51 - RI

* {R, I} *x | - 3V - RV

« {(vay o« | - 4D - RD

* {V, D} * - 354 — RA

x {I,D,A} x | — SO - RC

* % * — - — RE

* * * — — — RK

In this section, we describe the transition functions for the RM, EM, and CVD Case pro-
cesses, respectively. Note that while the RM process is largely independent of the other two
process models, the EM and CVD process models have some noteworthy interactions, which
we will cover in detail.

6.7.1

RM Transition Functions

Because it only reflects an individual Participant’s report handling status, the RM process
operates largely independent of both the EM and CS processes. Otherwise,

Participants MUST be in RM Accepted to send a report (RS) to someone else.

Participants SHOULD send RI when the report validation process ends in an invalid
determination.

Participants SHOULD send RV when the report validation process ends in a valid de-
termination.

Participants SHOULD send RD when the report prioritization process ends in a
deferred decision.

Participants SHOULD send RA when the report prioritization process ends in an accept
decision.

Participants SHOULD send RC' when the report is closed.

Participants SHOULD send RFE regardless of the state when any error is encountered.
Recipients MAY ignore messages received on Closed cases.

Recipients SHOULD send RK in acknowledgment of any R* message except RK itself.

Vendor Recipients should send both C'V and RK in response to a report submission
(RS). If the report is new to the Vendor, it MUST transition ¢¢* Y, Vid--.

Any R« message, aside from RS, received by recipient in ¢"™ € S is an error because it
indicates the sender thought the receiver was aware of a report they had no knowledge
of. The Recipient SHOULD respond with both an RFE to signal the error and GI to find
out what the sender expected.

Recipients SHOULD acknowledge RE messages (RK) and inquire (GI) as to the nature
of the error.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.3: RM Messages Received and State Transitions (S; x M — S;)

Because the RM process is independent of the EM process, ¢°* is omitted as a subcolumn of both Re-
ceiver Precondition (¢°™ € x) and Receiver Transition (g;"" = q;,1)-

Recv. Receiver Precondition | Receiver Transition Response
Msg. (sn € S) (S — Sna1) Msg(s).
Mj’ qcs qmn qcs qrm Mz j
* * C - — —
S v SR
vfd- SV Fd---
{R,1,V, D, A} / | RK + CV (Vendor)
RS Veeens S — - R
{R,I,V,D, A} —
* {R,I,XiD,A} - _>_R RK (Non-Vendor)
RI,RV,RD, * {R,1,V,D, A} - - RK
RA,RC * S - — RE+GI
RE * * — — RK +GI
RK * * — _ _

Table 6.2 lists each RM message type and the states in which that message is appropriate to
send along with the corresponding sender state transition. Table 6.3 lists the effects of receiv-
ing RM messages on the receiving Participant’s state coupled with the expected response mes-
sage.

6.7.2 EM Transition Functions

The appropriate Participant behavior in the EM process depends on whether the case state
q®° is in ---pza or not.

» Participants SHALL NOT negotiate embargoes where the vulnerability or its exploit is
public or attacks are known to have occurred.

» Participants MAY begin embargo negotiations before sending the report itself in an RS
message. Therefore, it is not an error for an Ex message to arrive while the Recipient is
unaware of the report (¢"™ € S).

* Participants MAY reject any embargo proposals or revisions for any reason.

* If information about the vulnerability or an exploit for it has been made public, Partici-
pants SHALL terminate the embargo (¢¢° € {---P-, - X-}).

+ If attacks are known to have occurred, Participants SHOULD terminate the embargo
(qCS C e A)

* Participants SHOULD send E'K in acknowledgment of any other Fx message except
EK itself.

* Participants SHOULD acknowledge (EK) and inquire (GI) about the nature of any er-
ror reported by an incoming E'E message.

Table 6.4 lists each EM message type and the states in which that message is appropriate to

send along with the corresponding sender state transition. Table 6.5 lists the effects of receiv-
ing an EM message to the receiving Participant’s state, grouped by the EM message type re-
ceived.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.4: EM Messages Sent and State Transitions (S; x M™ — S;)

Sender Precondition | Sender Transition | Message
(sn € 5i) (Sn = Sn+1) Type(s)
qCS qrm qem qCS qrm qem M’L .
N o - zp EP
P a
— — — A EA
-C
bra A~ xRl BV
R - - LA EJ
- - 5a EC
P - - 5N ER
A - - ! ET
+ -C R - X
. — B FK
EE

Table 6.5: EM Messages Received and State Transitions (S; x M¢™ — S;).

Incoming EM Messages do not trigger any change in q°° or ¢"™ ; therefore, those subcolumns are omit-

Je

ted from the Receiver Transition column. When CS is ¢° ¢ ---pxa, embargoes are not viable.

Recv. Receiver Precondition | Receiver Transition | Response
Msg. (sn €5;) (Sn — Sn+1) Msg(s).
M] . qCS qu qem qem M’L .
p
EP N —>_P
P a
FEA — A
- pIa —|C P
EV]
- EK
EJ R A
EC 5 A
ER P 5N
A t
ET * -C R - X
X —
EP N —
, ER
A P - N
BV —pra —C A
t
1o, R =X ET
EC
EFE -C * — EK +GI
EK * * — —
Any EM msg.
not
addressed * —c * B BE
above

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

65

Table 6.6: CS Messages Sent and State Transitions (S; x M3 — S;)

By convention, case states are labeled in the order v fdpxa. Participant state is a tuple of the individ-

ual CVD Case, RM, and EM states S; = (¢®°,q"™,¢°™). Note that when a CS message induces a
q"™ or q°™ state change, the corresponding RM or EM message should be sent as indicated in Ta-

bles 6.2 and 6.4, respectively. Dots (-) in states indicate single wildcards. For example, V fd... includes
V fdpxa, V fdPxA, V fdPX A, etc. Asterisks (x) indicate arbitrary wildcards. Dashes (—) indicate no
state change.

Sender Precondition Sender Transition Message
(sn € 5;) (5n = Sny1) Type(s)
qCS qrm qem qCS qrm qem, M{)js
vfd- S x Yovid- LR — cv
Vd- —C % 5 VFd- - - CF
VEd- —C x 2. VFD. - - CcD
{N7 X} -
e O P PP - N cp
{A, R} - X
{Nv X} -
wpze —C P XP.PX. - ILN|CX+CP
{A, R} - X
{N, X} -
wPpe O P X, ..PX. - N CX
{A, R} - X
{v, X} -
..... a =C P AA - LN CA
{A, R} - X

6.7.3 CVD Transition Functions

The Vendor-specific portions of the CS (Vendor Awareness, Fiz Ready, and Fixz Deployed) are
per-Participant states. Therefore, the receiver of a message indicating another Participant has
changed their {v, V'}, {f, F'} or {d, D} status is not expected to change their own state as a
result.®

However, this is not the case for the remainder of the CS substates. As above, the appropriate
Participant response to receiving CS messages (namely, those surrounding Public Awareness,
Ezxploit Public, or Attacks Observed) depends on the state of the EM process.

* Participants SHALL initiate embargo termination upon becoming aware of publicly
available information about the vulnerability or its exploit code.

» Participants SHOULD initiate embargo termination upon becoming aware of attacks
against an otherwise unpublished vulnerability.

Table 6.6 lists each CVD message type and the states in which that message is appropriate
to send along with the corresponding sender state transition. Table 6.7 lists the effects of re-
ceiving a CS message to the receiving Participant’s state coupled with the expected response
message.

SEffective coordination is usually improved with Participants’ mutual awareness of each other’s state, of course.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.7: CS Messages Received and State Transitions

Note that when a CS message induces a ¢°™ state change, the corresponding EM message should be
sent as indicated in Table 6.4. Dots (-) in states indicate single wildcards. Asterisks (x) indicate arbitrary
wildcards. Dashes (—) indicate no state change.

Recv. | Receiver Precondition Receiver Transition Response
Msg. (sn €5:) (8n = Sn+1) Msg.
M_] . qCS qrm qem qCS qT‘ﬂ’), qem sz
cv
CF * -C * — — —
CD
P 5N
{N, X} -
P -C * _ _ _
P oSN
cepre —C {A, R} 5P ..Px. - 4% oK
CX {N, X} _
wPr O B X, ..pPX. _ _
—PX- =C * _ _ _
P 5N
wpa =C {4 R} A pA - Ly
CA {N, X} _
wPa —C X A pA _ _
..... A - * _ _ _
CFE * -C * — — — CK+GI
CK * -C * — — — —
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.8: General Messages Sent and State Transitions (S; x M;; — S;)

Sender Precondition | Sender Transition | Message
(sn € Si) (8n = Sn+1) Type(s)
qCS qu qem qCS qT‘TYL qem]\47]7
- - - GI
- - - GK
- - - GE

Table 6.9: General Messages Received and State Transitions (S; x Mj; — S;)

Receiver Precondition | Recv. | Receiver Transition | Response
(sn, € Si) Msg (Sn = Sn+1) Msg(s).
qCS qrm, qenz MJ . qCS qrm qem Mz .
GI - - - GK
GK - - - -
GE - - - GI

6.7.4 General Transition Functions

Finally, for the sake of completeness, in Tables 6.8 and 6.9, we show that general inquiries, ac-
knowledgments, and errors are otherwise independent of the rest of the processes. No state
changes are expected to occur based on the receipt of a General message. Note that we do not
mean to imply that the content of such a message is expected to have no effect on the pro-
gression of a case, merely that the act of sending or receiving a general message itself does not
imply any necessary state change to either the sender or receiver Participants.

Table 6.8 lists each general message and the states in which it is appropriate to send along
with the corresponding sender state. Table 6.9 lists the effects of receiving a general message
to the receiving Participant’s state coupled with the expected response message.

6.8 Formal MPCVD Protocol Redux

In this chapter, we have formally defined an MPCVD protocol

N N N
protocoly poyp = <<S’i>i:17 (0i)iz1> (Mij)i i1 succ>

where
* N is a positive integer representing the number of MPCVD Participants in a case and

« (S;)N, are N disjoint finite sets in which each S; represents the set of states of a given
Participant i (6.9), as refined by (6.12), (6.15), (6.19), and (6.17).

. (0i>f\;1 is the set of starting states across all Participants in which each o; is an element
of S; representing the initial state of each Participant 4, as detailed in (6.26) (6.27),
(6.28), and (6.29).

. <Mij>£\fj:1 are N2 disjoint finite sets with M;; empty for all i. M;; represents the mes-
sages that can be sent from process ¢ to process j. A list of message types is defined in
(6.34) and summarized in Table 6.1.

* succ is a partial function mapping for each ¢ and j,

S; XMij—>Si and S; XMji—>Si

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

indicating the state changes arising from the sending and receiving of messages between
Participants. The full set of transition function definitions for our protocol is shown in
Tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9.

A summary diagram of the MPCVD state model S; for an individual Participant is shown in
Figure 6.1.

6.9 Worked Example

We conclude the chapter with a brief worked example showing a few usage scenarios of the
protocol. We use UML Sequence Diagrams to show the interaction between Participant roles.

6.9.1 A Finder Becomes a Reporter

As mentioned in §2.2.1, Finders have a few hidden state transitions before the CVD process
really begins. An example of this is shown in Figure 6.2a. The Finder must discover, validate,
and prioritize their finding before initiating the CVD process.

Finders become Reporters when they report a vulnerability to someone else. Figure 6.2b
shows a Finder sending a report (RS) in conjunction with an embargo proposal (EP) to a
Vendor. The Vendor receives the report and updates their state accordingly. Then the Ven-
dor replies to acknowledge receipt of the report and the embargo proposal, and confirms that
they (i.e., the Vendor) are aware of the report (RK, EK, and CV, respectively). Note that
the EK response is intended to convey receipt of the embargo proposal (EP) but does not
constitute acceptance of the proposal. We will discuss that in the next subsection.

6.9.2 Vendor Evaluates Embargo

In Figure 6.3, we show a variety of responses a Vendor might have to an embargo proposal.

First is a basic accept sequence in which the Vendor accepts the proposed embargo and tells
the Reporter this through an FA message, as shown in Figure 6.3a. The Reporter acknowl-
edges this with an FK in response.

Figure 6.3b shows a rejected proposal. As above, this is a simple sequence where the Vendor
indicates their rejection of the proposal with an FR message, and the Reporter acknowledges
this with an FK message.

Figure 6.3c demonstrates a Vendor embargo counterproposal. The Vendor responds to the
Reporter’s prior EP message with an EP message of their own. The Reporter initially ac-
knowledges the counterproposal with an RK message and then evaluates it and accepts with
an F'A message. Finally, the Vendor acknowledges the acceptance with an FK message. Note,
however, that there is no active embargo until the Reporter accepts it. This method of coun-
terproposal might delay the establishment of an embargo.

Finally, Figure 6.3d offers what we think is a better approach than a simple counterproposal.
In this “Accept-then-Counter” sequence, we see that the Vendor initially accepts the Re-
porter’s proposed embargo and immediately follows up with a revision proposal of their own.
The difference is that by initially accepting the proposal, the Vendor ensures that they are in
an active embargo state before attempting to renegotiate. The sequence shown in Figure 6.3d
is intended to be consistent with the previous discussion surrounding default embargo strate-
gies in §3.2.6. One might think of this as the “Yes-And” rule for embargo negotiations.®

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CS Transition Order Preferences
V<P V<X V<A

F<P F<X F<A
D<P D<X D<A
P<X P<A X<A

CX+CP

S(vfd) CVD ﬁ) Legend
-F/R — sent
4) e @ = %‘ — received

= sent or received

Figure 6.1: MPCVD Protocol State Model Summary for a Single Participant

This diagram is offered as a quick-reference “score card” to facilitate conversations about the model. It
is not meant to be a complete representation of the model presented in §6. Omitted here are the inter-
actions between the various state models. Acknowledgments (RK, EK,CK,GK) and error messages
(RE,EE,CE,GE) are also omitted. A summary of outgoing message types is shown in Table 6.1.
Some states are not reachable by certain CVD Roles. CVD Roles include Finder/Reporter (F/R) Vendor
(V), Coordinator (C), Deployer (D), and Other (O). Also note that the CS model is more complicated
than what is shown here. Here it is broken up into two parts, CS(pxa) and CS(vfd), to simplify the di-
agram. The CS model split also reflects the idea that the CS(pxa) substates are a global property of
the overall case, while the CS(vfd) substates are local to each Participant. Similarly, the RM model is
per-Participant whereas the EM model belongs to the case and shares its state across all Participants.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Finder

Finder Vendor

-

Find Vulnerablllty) gmesS = A M B
discover() Report Vulnerability to Vendor)
t_Z21s=(R,N,vfdpzra) RS, EP
validate() receive()
< < ™ eSS R
-2 s=(V,N,vfdpza) I3 ¢™menNZP
prioritize() RK,EK,CV @ €vfd L Vid
ol
L_Z2s=(A,N,vfdpza)

Y A\

(b) Initial Report to Vendor

(a) A Finder Chooses to Do CVD

Figure 6.2: A Finder Becomes a Reporter, and a Vendor Acknowledges the Report Without
Yet Accepting the Embargo

6.9.3 Vendor Sets Priority

Figure 6.4 offers two responses from a Vendor in the course of prioritizing a report. Figure
6.4a shows a Vendor accepting the report for further work (presumably to develop a patch)
with an RA message. On the contrary, Figure 6.4b shows the Vendor deferring the report
with an RD message. In both cases, the Reporter acknowledges the Vendor’s messages with
an RK message.

6.9.4 Coordination With a Coordinator

Figure 6.5 shows the process of a Reporter engaging a Coordinator, who, in turn, engages a
Vendor. The process begins in Figure 6.5a with the Reporter sending a report along with an
embargo proposal to the Coordinator (RS, EP). The Coordinator acknowledges receipt with
an RK, EK response. After evaluating the proposed embargo, the Coordinator accepts it with
an FA message. The Coordinator proceeds to validate and prioritize the report, emitting an
RV and RA along the way.

Proceeding to Figure 6.5b, the Coordinator now acts as a proxy for the Reporter, notifying
the Vendor and passing along the embargo information through an RS, EP message of its
own. The Vendor accepts the existing embargo (FA) and proceeds to validate (RV') and pri-
oritize (RA) the report. Relevant responses from the Vendor are passed through to the Re-
porter. Having accepted the report for further work, the Vendor continues with creating a

fix for the reported vulnerability. When complete, the Vendor conveys their readiness to the
Coordinator, who in turn passes this information along to the Reporter through the C'F' mes-
sage.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Reporter || Vendor Reporter || Vendor

[] [] [] []
Accept Embargo Proposau si=(—,P—) Reject Embargo Proposau si=(—,P—)
accept() reject()
EA ER
EK EK
—————— > - === ==
tCilas=(—4A-) LI

(a) Vendor Accepts Embargo Proposal (b) Vendor Rejects Embargo Proposal

Reporter || Vendor

[[
Accept-then-Counter) si=(—,P—)
accept()
Reporter J| Vendor EA <
EK
[] hn 7
Counter-Propose) si=(—,P,—) t_Zla
propose()
ropose r€]
propose() BV
EP K
EK |{l 1 Al 7
******* g LD
--21P accept(
accept(€]
— EC
EA EK
EK 1
) LiZlia
Llllia
M M (d) Vendor Accepts Embargo Proposal Then Pro-
(c) Vendor Counters Embargo Proposal poses Revision

Figure 6.3: A Vendor Evaluates a Proposed Embargo and Responds in a Variety of Ways

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Reporter §| Vendor Reporter §| Vendor

[]] []]

Prioritize Report: AccepU si=(V,—,Vfd-) Prioritize Report: Defer) si = (V,—,Vfd--
prioritize() prioritize()
RA RD
RK RK
——————— > F------>
tZla,s=(4,—,-) told,s=(D,—,—)
Y Y Y Y
(a) Vendor Accepts Report for Further Work (b) Vendor Defers Further Work on Report

Figure 6.4: A Vlendor Prioritizes a Report

6.9.5 Embargo Teardown, Publish, and Close

Any Participant can initiate an embargo teardown. We happened to show the case where the
Coordinator initiates it in Figure 6.6a, sending an embargo termination message (ET) to all

parties in the case (Reporter and Vendor in this scenario). Recipients of the ET message ac-
knowledge receipt and update their EM state accordingly.

Once the embargo has been exited, any Participant may now publish. In Figure 6.6b, we show
the Vendor publishing first. They notify the Coordinator that they have published using a C' P
message to convey that information about the vulnerability is now public. The Coordinator
relays this information to the Reporter. Both the Reporter and the Coordinator publish their
own reports shortly thereafter.

Having no further work to be done on the case, the Reporter closes their report and tells the
Coordinator using an RC' message in Figure 6.6¢c. This prompts the Coordinator to review
their outstanding tasks and decide to initiate the closure of their own report. In turn, the Co-
ordinator relays this to the Vendor, who also closes their report.

Note that for all three scenarios shown in Figure 6.6, there is no specific order in which Par-
ticipants must act. We could just as easily have shown the Reporter initiating an embargo
teardown because of a leaked media report or the Vendor exiting an embargo early because
they had their fix ready sooner than expected.

Furthermore, our protocol only sets a discrete end to the embargo period, it intentionally
does not address a publication schedule. Once the embargo has been exited, any Participant
may publish at any time. Participants might choose to coordinate publication schedules more
closely, but there is nothing in the protocol to require it. With the recognition that more con-
cise publication scheduling might be needed in some situations, we revisit this concern as fu-
ture work in §9.3.

Finally, report closure is a per-Participant choice. We chose to show a simple case where all
Participants agreed at approximately the same time that there was nothing further to be
done. This will not always be the case, nor is it necessary.

6“Yes-And” is a heuristic taken from improvisational theatre in which Participants are encouraged to agree with
whatever their counterpart suggests and add to it rather than reject it outright. It serves as a good model for coopera-
tion among parties who share an interest in a positive outcome.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Reporter || Coordinator

Reporter || Coordinator || Vendor

[] []
Reporter-Coordinator Engagement)
RS, EP
RK,EFK
Pisbirekiotuall
eval_EP()
EA
EK
———————— >
LIIDigm S5 A
validate()
RV
RK
———————— >
PN Vi
prioritize()
RA
RK
———————— >
LI S A

(a) A Reporter Engages a Coordinator

[] [] []
Coordinator-Vendor Engagement)
RS,EP
cv RK,CV
Pl A
CK eval_EP()

- :
SRS
|y

|

77777777 >| k-—1g°™ i) A
validate()

::U
2=

i qmn l> vV
prioritize()

::U
AR

a—— qrm 1> A
create_fix()

77777777 . 2Ilges D VFd--

Q

= |3
'
=S

A A A

(b) A Coordinator Engages a Vendor

Figure 6.5: A Reporter Engages a Coordinator, Who, in Turn, Engages a Vendor

Both receiving parties (Coordinator and Vendor) perform their own validation and prioritization behav-
iors. The Vendor develops a fix and communicates readiness to the other Participants. (This process is

continued in Figure 6.6.)

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A\

A\

(c) A Reporter Closes the Case

Figure 6.6: Embargo Teardown, Publication, and Report Closure

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Reporter || Coordinator || Vendor

Reporter || Coordinator || Vendor] -

——— Publish) em|d y: s c v Py v p.
[] [] [] publish()
Embargo Teardown) " EN L X CP

em_check(CP) CK
——————— >
ET ET | CK |
EK EK publish() publish() | H-- -, P
———————— M K-------1 F F <--
LIITt LIIDP LZI0P
(a) A Coordinator Initiates an Embargo Teardown (b) A Vendor Publishes First
Reporter | | Coordinator || Vendor
] - -
Close) 4mdh < c
close()
“"Re
RK close()
=" feJ
;: : T C [~ RC
RK close()
L
RC
RK
H------- >
<.l
LiZlic

A Coordinator initiates embargo teardown. This is followed by Vendor publication, which, in turn, triggers
both the Coordinator and Reporter to publish. Finally, the Reporter’s report closure causes both the
Coordinator and Vendor to choose to close their respective reports.

75

7 Modeling an MPCVD Al Using Behavior Trees

With the formal definition of our proposed MPCVD protocol behind us, we now turn our
attention to reflect on one of many possible paths toward implementation. We find that Be-
havior Trees have a number of desirable properties when it comes to automating the kinds of
complex behaviors our protocol demands.

Behavior Trees are a way of designing and programming hierarchical behaviors [6]. They orig-
inated in the computer gaming industry to develop realistic Artificial Intelligences (Als) to
control Non-Player Characters (NPCs) [23, 15] in games. More recently, Behavior Trees have
been used in robotics to create adaptive behaviors using autonomous Al agents [25, 2]. Behav-
ior Trees offer a high potential for automating complex tasks. Agent processes can be mod-
eled as sets of behaviors (pre-conditions, actions, and post-conditions) and the logic that joins
them. Behavior Trees offer a way to organize and describe agent behaviors in a straightfor-
ward, understandable way.

In this chapter, we use Behavior Trees as a method for describing MPCVD Participant activi-
ties and their interactions with the MPCVD protocol model from Chapter 6. These behaviors
map approximately to the activities described in the CVD Guide (e.g., validate report, priori-
tize report, create fix, publish report, publish fix, deploy fix) [14, 13].

If Behavior Trees were merely a notational convention, they would already have been useful
enough to include here to structure the high-level business logic of the MPCVD protocol. But
they also offer a way to prototype software agents that reflect the activities of CVD Partici-
pants. Because Behavior Trees are inherently hierarchical, they are composable. Both condi-
tions and actions can be composed into small task-oriented behaviors, which can, in turn, be
composed to represent more complex agent behaviors. As a result, independent agents using
Behavior Trees can be composed into multi-agent behaviors that achieve goals.

A Brief Introduction to Behavior Tree Notation. Behavior Trees consist of a hierarchy of
nodes represented as a Directed Acyclic Graph (DAG). A Behavior Tree execution always be-
gins at the root node, and execution is passed along the tree by ticking each child node ac-
cording to the logic built into the tree. When ticked, each node does its job and returns one
of three statuses: Success, Failure, or Running. A full introduction to Behavior Trees can be
found in Colledanchise and Ogren’s book Behavior Trees in Robotics and AI: An Introduc-
tion [6].

Node types include

Root has no parent nodes, has one or more child nodes, and can be of any of the control-flow
types.

does not change the state of the world, has no child nodes, and returns only Suc-
cess or Fuailure.

has no child nodes; performs a task, which might change the state of the world; and
returns Success, Failure, or Running.

Sequence ticks each child node, returning the last Success or the first Failure, or Run-
ning if a child returns Running.

Fallback ticks each child node, returning the first Success or the last Failure, or Running
if a child returns Running.

Loop repeatedly ticks child nodes until an exit condition is met.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

v
] -
postcondition ! @reconditio@ tasky !

task, | | set postcondition task. | | taskg

Figure 7.1: Basic Behavior Tree

O

(until interrupt)

v v M ¥
discover receive report embargo
vulnerability | | messages | | management | | management
Fig. 7.3 Fig. 7.22 Fig. 7.4 Fig. 7.8

Figure 7.2: CVD Process Behavior Tree

Parallel ticks all child nodes simultaneously, and returns Success when m of n children
have returned Success.

A basic Behavior Tree is shown in Figure 7.1. In it, we see two motifs that come up through
the remainder of the chapter. On the left side is a Fallback node (), which short-circuits to
Success when the postcondition is already met. Otherwise, some activity will occur in task,
and, assuming that it succeeds, the postcondition is set. As a result, the fallback node ensures
that Success means that the postcondition is met.

On the right side is a sequence (=) that hinges on a precondition being met prior to some
set of actions being taken. Assuming the precondition is met, task, fires and, assuming it
succeeds execution, proceeds to another fallback node. This fallback node represents a set of
tasks in which one only needs to succeed for the fallback to return Success. If task. succeeds,
then task, does not run.

Behavior Trees are composable—that is, a task node in one tree can be replaced with a more
refined Behavior Tree in another. We leverage this feature throughout the remainder of this
chapter to describe an agent model for an MPCVD Participant as a set of nested Behavior
Trees that reflect the protocol described in the previous chapters.

7.1 CVD Behavior Tree

We begin at the root node of the CVD Behavior Tree shown in Figure 7.2. The root node is a
simple loop that continues until an interrupt condition is met, representing the idea that the
CVD practice is meant to be continuous. In other words, we are intentionally not specifying
the interrupt condition.

The main sequence is comprised of four main tasks:

* Discover vulnerability. Although not all Participants have the ability or motive to dis-

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.2
|
Q’IO vulnerability founcD

v
qrm, r R
discovery discovery discover RS,
capability priority vulnerability
q°® Yy

Role # Vendor AN

Figure 7.3: Discover Vulnerability Behavior Tree

cover vulnerabilities, we include it as a task here to call out its importance to the overall
CVD process. We show in §7.2 that this task returns Success regardless of whether a
vulnerability is found to allow execution to pass to the next task.

* Receive messages. All coordination in CVD between Participants is done through the
exchange of messages, regardless of how those messages are conveyed, stored, or pre-
sented. The receive messages task represents the Participant’s response to receiving the
various messages defined in Chapter 6. Due to the degree of detail required to cover all
the various message types, decomposition of this task node is deferred until §7.6 so we
can cover the next two items first.

* Report management. This task embodies the RM process described in Chapter 2 as in-
tegrated into the MPCVD protocol of Chapter 6. The RM Behavior Tree is described in
§7.3.

* Embargo management. Similarly, this task represents the EM process from Chapter 3
as integrated into the MPCVD protocol of Chapter 6. The EM Behavior Tree is decom-
posed in §7.4

A further breakdown of a number of CVD tasks that fall outside the scope of the formal
MPCVD protocol of Chapter 6 can be found in §7.5. In that section, we examine a num-

ber of behaviors that Participants may include as part of the work they do for reports in the
Accepted RM state (¢"™ € A).

Behaviors and state changes resulting from changes to the CS model are scattered throughout
the other Behavior Trees where relevant.

7.2 Vulnerability Discovery Behavior

CVD is built on the idea that vulnerabilities exist to be found. There are two ways for a CVD
Participant to find out about a vulnerability. Either they discover it themselves, or they hear
about it from someone else. The discovery behavior is modeled by the Discover Vulnerability
Behavior Tree shown in Figure 7.3. External reports are covered in §7.6.1.

The goal of the Discover Vulnerability Behavior is for the Participant to end up outside of the
Start state of the Report Management process (¢"™ ¢ S). Assuming this has not already oc-

curred, the discovery sequence is followed. If the Participant has both the means and the mo-
tive to find a vulnerability, they might discover it themselves. Should this succeed, the branch

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.2

|
v v ¥ 1

v
- e
¢ €R) |validate| (¢"™ €1) |?| (¢"™ €V) |prioritize

Fig. 7.5 Fig. 7.6

close | | validate
Fig. 7.7 Fig. 7.5

close | | prioritize
Fig. 7.7 Fig. 7.6

prioritize | | do work
Fig. 7.6 Fig. 7.11

Figure 7.4: Report Management Behavior Tree

sets ¢ € S 5 R and returns Success. We also show a report submission (RS) message
being emitted as a reminder that even internally discovered vulnerabilities can trigger the
CVD process—although, at the point of discovery, the Finder is the only Participant, so the
RS message in this situation might be an internal message within the Finder organization (at
most).

Should no discovery occur, the branch returns Success so that the parent process in Figure
7.1 can proceed to receive messages from others. Because of the amount of detail necessary to
describe the receive messages behavior, we defer it to §7.6. Before we proceed, it is sufficient
to know that a new report arriving in the receive messages behavior sets ¢"™ € S = R and
returns Success.

7.3 Report Management Behavior Tree

A Behavior Tree for the Report Management model is shown in Figure 7.4. The Report Man-
agement process is represented by a Fallback node. Note that we assume that completing the
process will require multiple ticks of the Behavior Tree since each tick can complete, at most,
only one branch.

The first check is to see whether the case is already Closed (¢"™ € C). If that check succeeds,
the branch returns Success, and we're done. If it doesn’t, we move on to the next branch,
which addresses reports in the Received state (¢"™ € R).

The only action to be taken from ¢"™ € R is to validate the report. We address report vali-
dation in §7.3.1, but, for now, it is sufficient to say that the validate report behavior returns

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.4

qr7n 6 V ! ﬁ

l l o
e Py
evaluate evaluate RV
q"™ € {R,I}) |credibility | | validity s
EI

gather
info no new info)

Figure 7.5: Validate Report Behavior Tree

Success after moving the report to either Valid (¢"™ = V) or Invalid (¢"™™ AN I).

The next branch covers reports in the Invalid state (¢"™ € I). Here we have two options:
either close the report (move to ¢"™ < C, §7.3.3), or retry the validation.

For reports that have reached the Valid state (¢"™ € V), our only action is to prioritize the
report. Report prioritization is addressed in detail in §7.3.2 but returns Success after moving

the report to either Accepted (¢"™ % A) or Deferred (¢"™ LN D).

Directing our attention to the lower () tier of Figure 7.4, we reach behaviors associated with
reports that have been both validated and prioritized. Deferred reports (¢"™ € D) can be
Closed or have their priority reevaluated, but otherwise are not expected to receive additional
work.

Similarly, Accepted reports (¢"™ € A) can also be Closed or have their priority reevaluated.
However, they are also expected to receive more effort—the do work task node, which we ex-
plore further in §7.5.

We are taking advantage of the composability of Behavior Trees to simplify the presentation.
Behaviors that appear in multiple places can be represented as their own trees. We explore
the most relevant of these subtrees in the next few subsections.

7.3.1 Report Validation Behavior

A Report Validation Behavior Tree is shown in Figure 7.5. To begin with, if the report is al-
ready Valid, no further action is needed from this behavior.

When the report has already been designated as Inwvalid, the necessary actions depend on
whether further information is necessary, or not. If the current information available in the
report is sufficient, no further action is necessary and the entire behavior returns Success.
However, a previous validation pass might have left some indicator that more information was
needed. In that case, execution proceeds to the sequence in which the gather info task runs.
If nothing new is found, the entire branch returns Success, and the report remains Invalid. If
new information s found, though, the branch fails, driving execution over to the main valida-
tion sequence.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.4

J

v 3

¥
; 2
v
l evaluate l l
g™ e{V,D, A} priority @riom’ty + DefeD !

P
D

(enough info) gqmeA) |— E@ £D,

gather " = A
info | (no new info) accept R4,

Figure 7.6: Prioritize Report Behavior Tree

The main validation sequence follows when none of the above conditions have been met. In
other words, the validation sequence is triggered when the report is in Received and its valid-
ity has never been evaluated or when the report was originally determined to be Invalid but
new information is available to prompt reconsideration. The validation process shown here

is comprised of two main steps: a credibility check followed by a validity check as outlined in
§2.1.1.2.

As a reminder, a report might be in one of three categories: (a) neither credible nor valid, (b)
credible but invalid, or (¢) both credible and valid. Assuming the report passes both the cred-
ibility and validity checks, it is deemed Valid, moved to ¢"™ = V, and an RV message is
emitted.

Should either check fail, the validation sequence fails, the report is deemed Invalid and moves
(or remains in) ¢"™ € I. In that case, an RI message is sent when appropriate to update
other Participants on the corresponding state change.

7.3.2 Report Prioritization Behavior

The Report Prioritization Behavior Tree is shown in Figure 7.6. It bears some structural sim-
ilarity to the Report Validation Behavior Tree just described: An initial post-condition check

falls back to the main process leading toward accept, which, in turn, falls back to the deferral

process. If the report is already in either the Accepted or Deferred states and no new informa-
tion is available to prompt a change, the behavior ends.

Failing that, we enter the main prioritization sequence. The preconditions of the main se-
quence are that either the report has not yet been prioritized out of the Valid state (¢"™ € V)
or new information has been made available to a report in either ¢"™ € {D, A} to trigger a
reevaluation.

Assuming the preconditions are met, the report priority is evaluated. For example, a Partic-
ipant using SSVC [29] could insert that process here. The evaluation task is expected to al-
ways set the report priority. The subsequent check returns Failure on a defer priority or Suc-
cess on any non-deferral priority. On Success, an accept task is included as a placeholder for
any intake process that a Participant might have for Accepted reports. Assuming that it suc-

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

qm™ 5
— close RC
(close criteria meD report b

Figure 7.7: Close Report Behavior Tree

ceeds, the report is explicitly moved to the Accepted (¢"™™ 4 A) state, and an RA message is
emitted.

Should any item in the main sequence fail, the case is deferred, its state set to ¢"™ 4, D,
and an RD message is emitted accordingly. Similarly, a defer task is included as a callback
placeholder.

7.3.3 Report Closure Behavior

The Report Closure Behavior Tree is shown in Figure 7.7. As usual, the post-condition is
checked before proceeding. If the case is already Closed (¢"™ € C'), we’re done. Otherwise, the
main close sequence begins with a check for whether the report closure criteria have been met.
Report closure criteria are Participant specific and are, therefore, out of scope for this report.
Nevertheless, once those closure criteria are met, the actual close report task is activated (e.g.,
an OnClose callback). The sequence ends with setting the state to Closed (¢"™ < C) and
emitting an RC' message.

7.4 Embargo Management Behavior Tree

The Embargo Management Behavior Tree is shown in Figure 7.8. It follows the state transi-
tion function in Table 6.4. Recall that the EM process begins in the ¢°™ € N state and ends
in one of two states:

* in the eXited (¢°™ € X) state after having established an Active embargo, or
* in the None (¢°™ € N) state after having exhausted all attempts to reach an agreement

The tree starts with a check to see whether no report has arrived or whether the report has
already Closed (¢"™ € {S,C}). If either of these conditions is met, no further effort is
needed, and the tree succeeds. Next, the tree checks whether the embargo has already eXited
(¢°™ € X). If it has, that leads the tree to succeed. Failing that, the treat checks to see if the
case has moved outside the “habitable zone” for embargoes. The ¢°® ¢ ---pza condition is true
when attacks have been observed, an exploit has been made public, or information about the
vulnerability has been made public. If one of those conditions is met and the embargo state is
None (g°™ € N), the check returns Success, and the tree terminates, consistent with §3.2.4.

Otherwise, we continue through each remaining EM state. When there is no embargo and
there are no outstanding proposals (g™ € N), the only options are to either stop trying or
propose a new embargo. The decision to stop trying to achieve an embargo is left to individ-
ual Participants, although we did provide some relevant guidance in §3.2.5.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

propose | | terminate
Fig. 7.9 Fig. 7.10 & | —
™ 5N
: E
reject LR,
&
|
¥
terminate current propose | |terminate
Fig. 7.10 terms ok Fig. 7.9 Fig. 7.10 &
¢“m 5 A
)
|
{ v
%
1
¢ 5 A| /willing to"\ |propose
evaluate | | accept EA counter Fig. 7.9
Figure 7.8: Embargo Management Behavior Tree
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

v v v v
@CS € ---pch ! select offer terms
3

; v
@cs c d) @ther reasolD L
J |

G]em e {P, R}) Cno new proposaD ¢m L p e B R

@em € {N, P} Bl (¢ e (A R) AN

Figure 7.9: Propose Embargo Behavior Tree

When there is an outstanding embargo proposal (¢ € P), we first attempt the ter-
minate task. We shall see in §7.4.2 that this task returns Success if there is a reason for
¢“meP LN,

Otherwise we proceed to the bottom (&) tier of Figure 7.8 to evaluate and possibly accept
the proposal. Acceptance leads to an EM state transition to ¢°™ € A and emission of an EA
message.

On the other hand, the proposed terms may not be acceptable. In this case, the Participant
might be willing to offer a counterproposal. The counterproposal is covered by the propose
behavior described in §7.4.1.

Assuming neither of these succeeds, we return to the top tier of Figure 7.8 and reject the pro-
posal, returning to ¢°”* € N and emitting a corresponding E'R message.

This brings us to the middle ({) tier of Figure 7.8. The process within the Active (¢°™ € A)
state is similarly straightforward. If there is reason to terminate the embargo, do so. Other-
wise, either the current embargo terms are acceptable, or a new embargo should be proposed.

Finally, we handle the Revise EM state (¢°™ € R). The structure of this branch mirrors that
of the Proposed state discussed above. Again, we check to see if there is cause to terminate
doing so, if needed. If termination is not indicated, we proceed once again to the bottom (&)
tier to evaluate the proposed revision, either accepting or countering the proposal. When nei-
ther of these succeed, the revision is rejected and the EM state returns to ¢¢”* € A with the
original embargo terms intact. An E'J message conveys this information to the other Partici-
pants.

7.4.1 Propose Embargo Behavior

The Propose Embargo Behavior Tree is shown in Figure 7.9. It consists of a sequence that
begins with a check for embargo viability as outlined in §3.2.4. Once the checks succeed, it
proceeds to selecting embargo terms to propose. Implementations of this task might sim-

ply draw from a default policy, as in §3.2.6, or it might be a case-specific decision made by

a Participant. Embargo terms can be proposed from any of the non-eXited states (¢°™ €

{N, P, A, R}). If a new or revised embargo has already been proposed, the tree then checks
whether a counterproposal is desired. Assuming it is not, no proposal is made, and the behav-
ior succeeds. Otherwise, proposals from state ¢ € N emit EP and transition ¢®™ 2 P,
whereas those from ¢°” € A emit EV and move to ¢° £ R. Proposals from states ¢°" € P
or ¢°™ € R represent counterproposals and, therefore, do not change the EM state. They do,

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figs. 7.8,7.19,7.24 or 7.25

|

v ¥ ¥
¢ € {N.X)
¥ ¥
“m 5N J qm L X
ER .
¢°m e P ! —_— (¢°™ e {AR}) exit embargo LI
! v

3
@Cs ¢ "'px@ (other reasorD @CS ¢ ~-~pch Gimer expirecD @ther reasorD

Figure 7.10: Terminate Embargo Behavior Tree

however, emit EP or EV messages as appropriate.

7.4.2 Terminate Embargo Behavior

The Terminate Embargo Behavior Tree is shown in Figure 7.10. It consists of two major be-
haviors depending on whether an embargo has been established or not.

If the EM state is None or eXited, (¢°™ € {N,X}), the tree succeeds immediately. The next
node handles the scenario where no embargo has been established. The behavior descends into
a sequence that checks whether we are in Propose (¢¢™ € P). If we are, we check to see if
there is a reason to exit the embargo negotiation process. One such reason is that the case
state is outside the embargo “habitable zone,” but there may be others that we leave unspec-
ified. If any reason is found, then the proposal is rejected, the state returns to None, and an
E'R message is sent.

Should that branch fail, we still need to handle the situation where an embargo has already
been established. Following a confirmation that we are in either Active or Revise, we again
look for reasons to exit, this time adding the possibility of timer expiration to the conditions
explicitly called out. Terminating an existing embargo might have some other teardown proce-
dures to be completed, which we represent as the exit embargo task. Finally, the EM state is
updated to eXited and an ET message is emitted.

The Terminate Embargo Behavior Tree appears in multiple locations in the larger tree. We
will encounter it again as a possible response to evidence collected via threat monitoring
(§7.5.5) as well as in response to certain CS or EM messages in states when an embargo is no
longer viable (§7.25 and §7.24, respectively).

7.5 Do Work Behavior

Although it is not directly addressed by the formal MPCVD protocol defined in Chapter 6,
the do work node of the RM Behavior Tree in Figure 7.4 and §7.3 is where much of the CVD
effort happens. As a result, it is worth spending some time reviewing what some of the under-
lying work actually entails.

In this section, we will expand on the set of behaviors shown in Figure 7.11. Specifically, we
will cover the following tasks, each in its own subsection.

* Deployment

* Developing a fix

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.4

|

= (m/n)
¢ ¥ ¥ — ¥ 3 J }
deployment | | develop report publication | | monitor | | assign | | acquire | | other
Fig. 7.12 fix to others Fig. 7.17 threats | |CVEID | | exploit | | work
Fig. 7.13 Fig. 7.14 Fig. 7.19 Fig. 7.20 Fig. 7.21

Figure 7.11: Do Work Behavior Tree

* Reporting to others
* Publication

* Monitoring threats

* Assigning CVE IDs
* Acquiring exploits

The other work task is included as a placeholder for any Participant-specific tasks not repre-
sented here.

Note that Figure 7.11 models this behavior as a parallel Behavior Tree node, although we in-
tentionally do not specify any Success criteria regarding what fraction of its children must
succeed. Decisions about which (and how many) of the following tasks are necessary for a
Participant to complete work on their Accepted CVD cases are left to the discretion of indi-
vidual Participants.

7.5.1 Deployment Behavior

The Deployment Behavior Tree is shown in Figure 7.12. The goal of this behavior is either for
the case to reach the ¢°° € D state or for the Participant to be comfortable with remaining in
a Deferred deployment state.

Assuming neither of these conditions has been met, the main deployment sequence falls to the
Developer role. It consists of two subprocesses: prioritize deployment and deploy. The pri-
oritize deployment behavior is shown in the fallback node in the center of Figure 7.12. The
subgoal is for the deployment priority to be established, as indicated by the Deployer’s RM
state ¢"™ € {D, A}. For example, a Deployer might use the SSVC Deployer Tree [29] to de-
cide whether (and when) to deploy a fix or mitigation. If the deployment priority evaluation
indicates further action is needed, the report management state is set to ¢"™ € A. An RA
message is emitted, and the overall prioritization behavior succeeds. Otherwise, when the de-
ployment is Deferred, it results in a transition to state ¢"" € D and emission of an RD mes-
sage.

The deploy behavior is shown in the diamond tier () of Figure 7.12. It short-circuits to Suc-
cess if either the deployment is Deferred or has already occurred. The main sequence can fire
in two cases:

1. when the Deployer is also the Vendor and a fix is ready (¢°® € F)

2. when the Deployer is not the Vendor but the fix is both ready and public (¢°* € P and
¢ eF)

Assuming either of these conditions is met, the deploy fix task can run, the case status is up-
dated to ¢°° € D, and C'D emits on Success. Should the deployment sequence fail for any

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

i v

v M
B B
v 1
no new \(Role € Deployer) & monitoring monitor
(g™ @ info] req't. deployment

5D
¥

(¢ e{D,A}) | = R
| o
prioritize g =
deployment | (priority # defer RN
¢

|

(q”’je D) @CS € :/FD) (mitigation¢ dep/oyecD
l 1

b .
sopr] |1 222 (i) | i
(¢ e VFd-) | fix <2, K
{ v
(Role = Vendov) @CS € ..dP-)

Figure 7.12: Deployment Behavior Tree

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.11
l
(Role * Vendm) @CS € VF)
) L
@ Create| |¢=* & VFd..-
CF,

Fix

Figure 7.13: Fix Development Behavior Tree

Fig. 7.11

|

O

(until effort limit)

l

identify notify
participants | | others
Fig. 7.15 Fig. 7.16

Figure 7.14: Reporting Behavior Tree

reason, a fallback is possible if undeployed mitigations are available.

Finally, returning to the top part of the tree, Participants might choose to monitor the de-
ployment process should they have the need to.

7.5.2 Fix Development Behavior

The Fix Development Behavior Tree is shown in Figure 7.13. Fix development is relegated to
the Vendor role, so Non-Vendors just return Success since they have nothing further to do.
For Vendors, if a fix is ready (i.e., the case is in ¢°* € VF'----), the tree returns Success. Oth-

erwise, engaged Vendors (¢"™ € A) can create fixes, set ¢°* € V fd-- Y VFd- and emit CF
upon completion.

7.5.3 Reporting Behavior

The CERT Guide to Coordinated Vulnerability Disclosure describes the reporting phase as
the process of identifying parties that need to be informed about the vulnerability and then
notifying them [14]. Reporting only works if the intended recipient has the ability to receive
reports, as outlined in §7.2.

The Reporting Behavior Tree is shown in Figure 7.14. The tree describes a Participant that
performs reporting until either their effort limit is met, or they run out of Participants to no-
tify.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.14
|

all relevant
parties known

v v ¥
identify identify identify
Vendor(s) | | Coordinator(s) | | other parties

Figure 7.15: Identify Participants Behavior Tree

7.5.3.1 Identify Participants Behavior

The Identify Participants Behavior Tree, shown in Figure 7.15, ends when all relevant parties
have been identified. Until that condition is met, the Participant can proceed with identifying
Vendors, Coordinators, or other parties relevant to the coordination of the case. Note that we
are intentionally avoiding setting any requirements about who is relevant to a case since we
leave that to each Participant’s judgment.

7.5.3.2 Notify Others Behavior

The Notify Others Behavior Tree is shown in Figure 7.16. Its goal is for all intended recipients
to receive the report, thereby reaching the ¢"™ € R state. Each pass through this part of the
tree chooses a Participant from a list of eligible recipients constructed in the Identify Partic-
ipants Behavior. The method for choosing the recipient is left unspecified since Participants
can prioritize recipients how they see fit.

The process proceeds to clean up the eligible recipients list when either the recipient is al-
ready believed to be in ¢"™ € R or if the effort expended in trying to reach the recipient has
exceeded the Participant’s limit. Such limits are entirely left to the discretion of each Partici-
pant. If the chosen recipient is pruned by this branch, the branch returns Success.

If the chosen recipient was not pruned, then the cleanup branch fails and execution trans-
fers to the second branch to notify the recipient. The first step in the notification branch is

a check for an existing embargo. If the embargo management state is one of ¢°™ € {N, P, X },
there is no active embargo, and the Participant can proceed with notification. Otherwise, in
the case of an already active embargo (i.e., ¢°™ € {A, R}), there is an additional check to en-
sure that the potential recipient’s policy is compatible with any existing embargo. This check
allows for a reporting Participant to skip a recipient if they are likely to cause premature ter-
mination of an extant embargo.

Once at least one of these checks is passed, the notification sequence proceeds through finding
the recipient’s contact information, sending the report, and updating the Participant’s knowl-
edge of the recipient’s report management state.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

choose

recipient
¢ ¥
] 1 1
remove find send report | | recipient
pient contact EiZN ™SR

recipient effort
qmES exceeded
recipient policy compatible
(¢™ e {A,R}) w/active embargo

Figure 7.16: Notify Others Behavior Tree

7.5.4 Publication Behavior

The Publication Behavior Tree is shown in Figure 7.17. It begins by ensuring that the Par-
ticipant knows what they intend to publish, followed by a check to see if that publication
has been achieved. Assuming that work remains to be done, the main publish sequence com-
mences on the right-hand branch.

The process begins with preparation for publication, described in §7.5.4.1, followed by a pre-
publication embargo check. This behavior is a simple check to ensure that no embargo re-
mains active prior to publication. Note that the embargo management process may result in
early termination of an existing embargo if the Participant has sufficient cause to do so. (See
the detailed description of the EM behavior in §7.4.)

Once these subprocesses complete, the publish task fires, the case state is updated to ¢°° € P,
and a C'P message emits.

7.5.4.1 Prepare Publication Behavior

The Prepare Publication Behavior Tree is shown in Figure 7.18. There are separate branches
for publishing exploits, fixes, and reports. The publish exploit branch succeeds if either no ex-
ploit publication is intended, if it is intended and ready, or if it can be acquired and prepared
for publication. The publish fix branch succeeds if the Participant does not intend to publish
a fix (e.g., if they are not the Vendor), if a fix is ready, or if it can be developed and prepared
for publication. The publish report branch is the simplest and succeeds if either no publica-
tion is intended or if the report is ready to go.

Once all three branches have completed, the behavior returns Success.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

no publish
exploit

v
prepare embargo i, lp
publication | | management q Cj P
orioritize Fig. 7.18 Fig. 7.8 @ € {N, XD publish
publication publication
intents set intents
Figure 7.17: Publication Behavior Tree
Fig. 7.17
l 1 1
exploit reprioritize exploit no publ/ reprioritize fix
ready ! publication intent fix

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

SD q“EV -

publication intent

acquire fix
exploit | | prepare exploit development prepare fix
Fig. 7.21 for publication Fig. 7.13 for publication
¢
M v

no publ/
report

repo
ready

prepare report
for publication

reprioritize report

publication intent

Figure 7.18: Prepare Publication Behavior Tree

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

91

Fig. 7.11
|
it
B

terminate
embargo
Fig. 7.10
monitor | | ¢° A, 4| | monitor o5 X monitor | "7
attacks ca public q C?X public | | ¢ C?P
exploits ! — reports i
q°® Pop

<qCS€P> cpP

Figure 7.19: Monitor Threats Behavior Tree

7.5.5 Monitor Threats Behavior

The Monitor Threats Behavior Tree is shown in Figure 7.19. For our purposes, monitoring
consists of a set of parallel tasks, any one of which can lead to embargo termination. The
three conditions of interest are taken straight from the embargo exit criteria:

* If attacks are observed, the ¢°* A, A transition occurs, and a C'A message is emitted.

* If a public exploit is observed, the ¢°* X, X transition occurs, and a C'X message is
emitted. In the special case where the exploit is made public prior to the vulnerability

itself being made public,” there is an additional ¢ P, P transition and C'P emission.

* Finally, if the vulnerability information has been made public, then the ¢¢* P, pand
emits C'P.

In the event that one or more of these events is detected, the terminate embargo behavior is
triggered.

There are many other good reasons to monitor and maintain awareness of cybersecurity
threats. The behavior shown here is intended as a minimal set of things that CVD Partici-
pants should watch out for in the course of performing their CVD practice.

"Corresponding to a Type 3 Zero Day Exploit as defined in §6.5.1 of [10]

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.11
|
B
1
Request ID
v v

Qs éNAD @ssignable) Assign ID

Figure 7.20: CVE Assignment Behavior Tree

Fig. 7.11

have exploit) | — | (exploit deferred
exploit desired

v v)’
exploit evaluate find develop | | purchase
priority set priority | | exploit| | exploit exploit

Figure 7.21: Acquire Exploit Behavior Tree

T -

7.5.6 CVE ID Assignment Behavior

Many CVD practitioners want to assign identifiers to the vulnerabilities they coordinate. The
most common of these is a Common Vulnerabilities and Exposures (CVE) ID, so we provide
an example CVE ID Assignment Behavior Tree, shown in Figure 7.20. While this tree is con-
structed around the CVE ID assignment process, it could be easily adapted to any other iden-
tifier process as well.

The goal is to end with an ID assigned. If that has not yet happened, the first check is
whether the vulnerability is in scope for an ID assignment. If it is, the Participant might be
able to assign IDs directly, assuming they are a CVE Numbering Authority (CNA) and the
vulnerability meets the criteria for assigning IDs.

Otherwise, if the Participant is not a CNA, they will have to request an ID from a CNA.
Should both assignment branches fail, the behavior fails. Otherwise, as long as one of them
succeeds, the behavior succeeds.

7.5.7 Acquire Exploit Behavior

Some Vendors or other CVD Participants might require a proof-of-concept exploit to accom-
pany an incoming report for it to pass their validation checks. To that end, an Acquire Ex-

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Fig. 7.2

J

O
(until fail)

]
B

i‘(m e)
q’l'mgc n

3
Sg queu
ot empty

push msg

pop msg
¥ v v v
process process process process
RM EM CS other
messages | | messages | | messages | | messages
Fig. 7.23 Fig. 7.24 Fig. 7.25 Fig. 7.26

Figure 7.22: Receive Messages Behavior Tree

ploit Behavior Tree is shown in Figure 7.21. The goal of this behavior is for the Participant to
be in possession of an exploit.

If the Participant does not already have one, the main acquisition sequence is triggered. The
sequence begins by ensuring that the exploit acquisition activity has sufficient priority to con-
tinue. If it does, the Participant has one of three options to choose from: they can find one
somewhere else, develop it themselves, or pay someone for the privilege.

The overall behavior returns Success when either an exploit is acquired or when one is not
desired and is therefore deferred. It can fail in the scenario where an exploit is desired but not
acquired.

7.6 Receiving and Processing Messages Behavior

Now we return to the CVD Behavior Tree in Figure 7.2 to pick up the last unexplored branch,
Receive Messages. The Receive Messages Behavior Tree is shown in Figure 7.22. It is a loop
that continues until all currently received messages have been processed. Each iteration checks
for unprocessed messages and handles them.

First, we encounter a case closure check. We assume that messages to existing cases will have
a case ID associated with all messages about that case and that new report submissions will
not have a case ID assigned yet, implying they are in the RM Start state (¢"™ € S). There-
fore, new reports will pass this check every time. However, messages received on an already
Closed case will short-circuit here and take no further action.

Assuming the message is regarding a new or unclosed case and the message has not yet been

processed, each message type is handled by a process-specific Behavior Tree, which we discuss
in the following sections. Although each process-specific behavior is described in a subsection
and shown in its own figure, they are all part of the same fallback node shown here.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

update sender
status

Figure 7.23: Process RM Messages Behavior Tree

7.6.1 Process RM Messages Behavior

The Process RM Messages Behavior Tree is shown in Figure 7.23. It is a child of the fallback
node started in Figure 7.22. Beginning with a precondition check for any RM message type,

the tree proceeds to a fallback node. RM acknowledgment messages (RK) receive no further
attention and return Success.

Next comes the main RM message processing sequence. A fallback node covers three major
cases:

* First comes a sequence that handles new reports (RS when ¢"™ € S). This branch
changes the recipient’s RM state regardless of the Participant’s role. If the Partici-
pant happens to be a Vendor and the Vendor was previously unaware of the vulner-
ability described by the report, the Vendor would also note the CS transition from

q°° € vfd Y, V fd and emit a corresponding C'V message.

* Next, we see that an RM Error (RE) results in the emission of a general inquiry (GI)
for Participants to sort out what the problem is, along with an RK to acknowledge re-
ceipt of the error.

* Finally, recall that the RM process is unique to each CVD Participant, so most of the
remaining RM messages are simply informational messages about other Participants’
statuses that do not directly affect the receiver’s status. Therefore, if there is already an
associated case (¢"™ ¢ S), the recipient might update their record of the sender’s state,
but no further action is needed.

For all three cases, an RK message acknowledges receipt of the message. Any unhandled mes-
sage results in an RFE response, indicating an error.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

terminate
embargo
Fig. 7.10

Figure 7.24: Process EM Messages Behavior Tree

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.6.2 Process EM Messages Behavior

The Process EM Messages Behavior Tree is shown in Figure 7.24. As above, it is a child of
the fallback node started in Figure 7.22. A precondition check for EM message types is fol-
lowed by a fallback node. EM acknowledgment messages (EK) receive no further attention
and return Success.

Messages That Lead to a Simple Acknowledgment. Next is a branch handling all the
messages that will result in a simple acknowledgment (EK). First, we handle embargo er-
ror messages (E'E), which additionally trigger a general inquiry (GI) message to attempt to
resolve the problem. Second are embargo termination messages (ET). If the Participant is
already in the EM eXited state (X), no further action is taken (aside from the FK). Oth-
erwise, if the Participant is in either Active or Revise EM states, the ET message triggers a
state transition ¢ L X. Embargo rejections are handled next in a simple sequence that
returns the state from Proposed to None.

The final chunk of the simple acknowledge branch handles EM messages received when the
case state permits embargo viability (¢°* € ---pxa). A variety of actions can be taken in this
case state, as shown in the lower () tier of Figure 7.24. An embargo proposal (EP) results
in either a move from None to Proposed or stays in Proposed, if that was already the case. An
embargo acceptance (FA) transitions from Proposed to Active. Similar to the EP behavior,
an embargo revision proposal (EV') either moves from Active to Revise or stays in Revise, as
appropriate. Finally, we deal with revision rejection (EJ) or acceptance (EC') when in the
Revise state. Climbing back up the tree, we see that Success in any of the branches in this or
the previous paragraph results in an acknowledgment message EK.

Messages That Require More than a Simple Acknowledgment. Returning to the top
portion of the tree in Figure 7.24, we come to a branch focused on handling EM messages
when an embargo is no longer viable—in other words, when the case has reached a point
where attacks are occurring, or either the exploit or the vulnerability has been made public
(¢°® & ---pra). This branch takes us to the Terminate Embargo tree in Figure 7.10 (§7.4.2).

Finally, back at the top of Figure 7.24, when no other branch has succeeded, we emit an em-
bargo error (E'E) message to relay the failure.

7.6.3 Process CS Messages Behavior

The Process CS Messages Behavior Tree is shown in Figure 7.25. We are still working through
the children of the fallback node in Figure 7.22. And as we’'ve come to expect, a precondition
check leads to a fallback node in which CS acknowledgement messages (CK) receive no fur-
ther attention and return Success. The main CS message-handling sequence comes next, with
all matching incoming messages resulting in emission of an acknowledgment message (CK).

Messages That Change the Participant’s Case State. The tree first handles messages in-
dicating a global CS change. Information that the vulnerability has been made public (CP) is
met with a transition to the Public Aware state in the CS model when necessary. Similarly,
information that an exploit has been made public forces both the X and P transitions, as
necessary. Because the P transition, should it occur in response to a C' X message, represents
possibly new information to the case, it triggers the emission of a C'P message to convey this
information to the other Participants. Likewise, a message indicating attacks underway trig-
gers the A transition.

Again, we note that any of the P, X, or A transitions in the CS model imply that no new
embargo should be entered, and any existing embargo should be terminated. Hence, the se-

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CK
v 3
v
terminate update sender
embargo | (CV,CF,CD status
Fig. 7.10

qCS e .--P.- %

Figure 7.25: Process CS Messages Behavior Tree

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 7.26: Process Other Messages Behavior Tree

quence described in the previous paragraph leads to the embargo termination described in
§7.4.2.

Messages That Do Not Change the Participant’s Case State. Next, we see that messages
indicating Vendor Awareness (C'V'), Fix Readiness (CF), and Fixz Deployed (CD) are treated
as mere status updates for the Participant because they are recognized and acknowledged but
trigger no further action directly. Recall from §§5.2 and 6.3.2 that the vfd--- — --- = VFD--
portion of the CS model is unique to each Vendor Participant, and similarly, from §6.3.3, that
the --d--- — --D--- portion is unique to each Participant in the Deployer role. Therefore, mes-
sages representing another Participant’s status change for this portion of the CS do not di-
rectly affect the receiving Participant’s status. This is not to say that the Participant might
not choose to take some action based on their knowledge of a Vendor’s (or Deployer’s) status.
Rather, such follow-up would be expected to occur as part of the Participant’s do work pro-
cess outlined in §7.5.

Following the tree to the right, we encounter the familiar motif of an error (CE) triggering a
general inquiry (GI) to seek resolution.

In the top of Figure 7.25, we have handled all expected messages, so anything else would re-
sult in an error condition and emission of a C'E message accordingly.

7.6.4 Process Other Messages Behavior

The Process Other Messages Behavior Tree is shown in Figure 7.26. This tree represents the
final chunk of the fallback node in Figure 7.22. And here, for the final time, we see a message
type check and that general acknowledgment messages (GK) receive no further attention and
return Success. General inquiries (GI) get at least an acknowledgment, with any follow-up
to be handled by do work as described in §7.5. As usual, errors (GE) also trigger follow-up
inquiries (GI) in the interest of resolution.

Chapter Wrap-Up. In this chapter, we described a complete Behavior Tree for a CVD Par-
ticipant following the formal MPCVD protocol described in Chapter 6. Next, we discuss a few
notes regarding the eventual implementation of this protocol.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8 Implementation Notes

While a complete MPCVD protocol implementation specification is out of scope for this re-
port, we do have a few additional suggestions for future implementations. In this chapter, we
describe an abstract case object for use in tracking MPCVD cases. Next, we touch on the core
MPCVD protocol subprocesses (RM, EM, and CS), including how the CS model might inte-
grate with other processes. Finally, we provide a few general notes on future implementations.

8.1 An MPCVD Case Object

In this section, we describe a notional MPCVD Case object that incorporates the state ma-
chines and formal protocol of the previous chapters. The object model we describe is intended
to provide the necessary core information for an implementation of the protocol described

in §6 to function. Figure 8.1 depicts a UML Class Diagram of the Case model. It is not the
minimal possible model required by the MPCVD protocol of this report; for example, strictly
speaking, a Participant does not need to attempt to track the state of every other Participant,
but it might help to do so. Rather, this model is intended to be compact yet sufficient enough
for an implementation to effectively track the coordination effort of an MPCVD case.

The remainder of this section provides details about Figure 8.1.

8.1.1 The Case Class

The Case class has attributes to track the EM state as described in §3 and the global portion
of the CS (i.e., the pza substates), as outlined in §4. The Case class aggregates one or more
Reports and Participants, and 0 or more Messages and LogEvents.

8.1.2 The Report Class

The Report class represents the vulnerability report that serves as the impetus for the case.
Since it is possible for multiple reports to arrive that describe the same vulnerability, the
cardinality of the composition relationship allows for a Case to have many Reports. In most
Cases, however, there will be only a single associated Report.

8.1.3 The Message Class

The Message class represents a protocol message as outlined in §6.6. We expect that any im-
plementation of this model will expand this data type to include numerous message-related
attributes. Here, we highlight the minimum requirements that the protocol demands: Each
Message has an identified sender (who is a Participant in the case) and one or more message
types from §6.6. Message types are represented as flags since a single actual message might
represent multiple message types. For example, a report submission that includes an embargo
proposal might have both the RS and FP message type flags set.

Conceptually, one might think of the Case as a shared object among engaged Participants and
that Messages are sent to the Case for all Participants to see. In other words, the Case acts
as a broadcast domain, a topic queue, or a blackboard pattern (depending on your preferences
for networking or software engineering terminology). Because of this shared-channel assump-
tion, we omit a receiver attribute from the Message class, as the Case itself can serve as the
recipient of each message emitted by any Participant. Implementations of this model could, of
course, choose a more traditional messaging model with specified recipients.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

reports | Report
Case / Message
messages] .
em_state: EMStateEnum = None k’ﬁ ;esnd?r' :aﬁflE)ranLEnum
pxa_state: PXAStateEnum = pza N 9-type- VIsglyp

; ‘\rog%

0..*| LogEvent

1.*
Participant

participants

VendorParticipant

case_role: RoleFlags
rm_state: RMStateEnum = Start ----1
case_engagement: Boolean = True

embargo_adherence: Boolean = T'rue

vfd_state: VFDStateEnum = v fd

- DeployerParticipant

+ receive_message(Message)

- emit_.message(Message) vfd_state: VFDStateEnum = --d

1 Icontact
Contact
<flags> <enumeration>> <enumeration>> <enumeration>
RoleFlags EMStateEnum PXAStateEnum RMStateEnum
Finder None (N) pra Start (S)
Reporter Proposed (P) prA Received (R)
Vendor Active (A) pXa Invalid (I)
Coordinator Revise (R) pX A Valid (V)
Deployer Exited (X) Pza Accepted (A)
Other PzA Deferred (D)
PXa Closed (C)
PXA
<flags> <enumeration>>
MessageTypeFlags VFDStateEnum
RS, RI, RV, RD, RA, RC, RK, RE, vfd (--d)
EP,ER,FA,EV,EJ, EC, ET, EK, EE, Vfd(--d)
CV,CF,CD,CP,CX,CA,CK, CE, VFd (-d)
GI,GK,GE VFD (--D)

Figure 8.1: UML Class Diagram of a Notional MPCVD Case Object

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

101

8.1.4 The LogEvent Class

The LogEvent class is a placeholder to represent an event log or history for the Case. Al-
though not required for the protocol to operate, it is a good idea for Case tracking to include
a timestamped list of events (e.g., state changes or messages sent or received) so that new
Participants can be brought up to speed and so that cases can be analyzed for process im-
provement in the future.

8.1.5 The Participant Class

The Participant class represents an individual or organization’s involvement in the case. The
attributes of the Participant class are as follows:

case_role. A set of flags indicating the Role(s) this Participant plays in the Case (Flags are
used instead of an enumeration to convey that a Participant may have multiple roles in
a single Case. Roles may differ for the same actor across different cases. For example, an
organization might be the Vendor in one case and the Coordinator in another.)

rm_state. An enumeration attribute that captures the RM state for this Participant consis-
tent with §2

case_engagement. A Boolean attribute that indicates whether the Participant should be
included in future communications about the Case (This attribute is provided to allow
other Participants to recognize the status of other Participants. For example, a Reporter
who bows out of a case shortly after reporting it to a Coordinator might be listed as a
Participant with case_engagement = False and could, therefore, be left out of further
communication about the case.)

embargo_adherence. A Boolean attribute that indicates the expectation that a Participant
is adhering to any existing embargo (As discussed in §3.2.3, it is possible for a Partic-
ipant to exit a case while still agreeing to abide by the terms of the extant embargo.
Continuing our example of a Reporter leaving a case early, they might still be cooper-
ative and indicate their embargo_adherence = True. A more hostile Participant exit
could warrant setting embargo_adherence = False, likely triggering an embargo tear-
down procedure as a consequence.)

Participants can also emit (send) and receive messages. The + on receive_message indicates
that this capability is accessible to others (i.e., you can send a Participant a message). On the
contrary the - on emit_message conveys that this capability is only accessible to the Partici-
pant class itself (i.e., each Participant gets to decide if, when, and what messages to send).

Vendor and Deployer Participant Classes. The presence of the VendorParticipant and
DeployerParticipant classes—depicted as implementations of the Participant class—is neces-
sitated by the discussion in §6.3.2 and §6.3.3, where we described how Vendors and Deployers
have a unique part to play in the creation, delivery, and deployment of fixes within the CVD
process. These two classes add the vfd_state attribute with different possible values. Vendors
can take on one of four possible values (vfd, V fd, VFd, and VFD), whereas Deployers only
have two possible values (--d and --D). Other than that, Vendors and Deployers have the same
attributes as other Participants.

8.1.6 The Contact Class

Since a Participant is a specific relationship between an individual or organization and the
Case itself, we can safely assume that those individuals or organizations exist and persist in-
dependently of the Cases they participate in. Hence, each Participant class in a Case is asso-
ciated with a long-lived Contact record that represents an individual or organization. Defining

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 102
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

the Contact class is outside the scope of this report, so we will simply say that there is noth-
ing particularly special about it. One might reasonably expect Contacts to have names, email
addresses, phone numbers, etc.

A separate contact management process and accompanying directory service is a likely candi-
date for future integration work. We revisit this topic in §9.1. For now, we observe that simi-
lar directories already exist, although there is room for improvement:

* The Forum of Incident Response and Security Teams (FIRST) maintains a directory
of member teams for incident response purposes (https://www.first.org/members/
teams/).

* Disclose.io offers a searchable list of bug bounty and vulnerability disclosure programs
(https://disclose.io/programs/). Contributions are solicited as pull requests on
GitHub (https://github.com/disclose/diodb).

* Many vulnerability disclosure platform service providers host directories of the programs
hosted on their platforms.

8.1.7 The Enumeration Classes

The remainder of Figure 8.1 consists of classes representing the Role and Message Type flags
and various enumerations. The Roles are the same set we have used throughout this report, as
taken from the CVD Guide [14]. Message Type flags are consistent with §6.6. The enumera-
tion classes are consistent with the RM, EM, and CS state machines described in Chapters 2,
3, and 4, respectively.

8.2 Process Implementation Notes

Integrating the MPCVD protocol into everyday MPCVD operations requires each Participant
to consider how their business processes interact with the individual RM, EM, and CS process
models we described in Chapters 2, 3, and 4. In this section, we offer some thoughts on where
such integration might begin.

8.2.1 RM Implementation Notes

Roughly speaking, the RM process is very close to a normal I'TSM incident or service request
workflow. As such, the RM process could be implemented as a JIRA ticket workflow, as part
of a Kanban process, etc. The main modifications needed to adapt an existing workflow are to
intercept the key milestones and emit the appropriate RM messages:

* when the reports are received (RK)
* when the report validation process completes (RI, RV)
+ when the report prioritization process completes (RA, RD)

» when the report is closed (RC)

Vulnerability Draft Pre-Publication Review. MPCVD case Participants often share pre-
publication drafts of their advisories during the embargo period [16]. Our protocol proposal is
mute on this subject because it is not strictly necessary for the MPCVD process to complete
successfully. However, as we observe in Appendix B, the GI and GK message types appear to
provide sufficient mechanics for this process to be fleshed out as necessary. This draft-sharing
process could be built into the prepare publication process outlined in §7.5.4.1, where appro-
priate.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 103
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.first.org/members/teams/
https://www.first.org/members/teams/
https://disclose.io/programs/
https://github.com/disclose/diodb
https://disclose.io/programs/
https://github.com/disclose/diodb

8.2.2 EM Implementation Notes

In terms of the proposal, acceptance, rejection, etc., the EM process is strikingly parallel to
the process of scheduling a meeting in a calendaring system. In Appendix C, we suggest a po-
tential mapping of many of the concepts from the EM process onto iCalendar protocol se-
mantics.

8.2.3 CS Implementation Notes

Because part of the CS model is Participant specific and the other is global to the case, we
address each part below.

The vfd Process. Similar to the RM process, which is specific to each Participant, the v fd

process is individualized to each Vendor (or Deployer, for the simpler d D, D state transi-
tion). Modifications to the Vendor’s development process to implement the MPCVD protocol
are expected to be minimal and are limited to the following:

» acknowledging the Vendor’s role on report receipt with a C'V message

* emitting a C'F message when a fix becomes ready (and possibly terminating any active
embargo to open the door to publication)

* (if relevant) issuing a C'D message when the fix has been deployed

Non-Vendor Deployers are rarely involved in MPCVD cases, but when they are, their main
integration point is to emit a C'D message when deployment is complete.

The pxa Process. On the other hand, the pxa process hinges on monitoring public and pri-
vate sources for evidence of information leaks, research publications, and adversarial activity.
In other words, the pza process is well positioned to be wired into Participants’ threat intelli-
gence and threat analysis capabilities. Some portions of this process can be automated:

* Human analysts and/or automated search agents can look for evidence of early publica-
tion of vulnerability information.

* Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) signatures
might be deployed prior to fix availability to act as an early warning of adversary ac-
tivity.

* Well-known code publication and malware analysis platforms can be monitored for evi-
dence of exploit publication or use.

8.3 General Notes

The protocol and data structures outlined in this report are intended to facilitate interoper-
ability among individual organizations’ workflow management systems. As such, they are fo-
cused on the exchange of information and data necessary for the MPCVD process to function
and will not likely be sufficient to fully address any individual organization’s vulnerability re-
sponse process.

We conclude the chapter with a few general implementation notes.

8.3.1 Message Formats

We defined a number of message types in §6.6 and showed how they fit into a case in §8.1, but
we did not specify any format for these messages. Message formats can be thought of as two
related problems:

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 104
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Structure and Semantic Content of Each Message Type. In addition to the commen-
tary throughout this chapter, messages will likely need to have some sort of consistent header
information and some content specifically designed to address the semantic needs of each mes-
sage type. Such a format must include fields, datatypes, and an underlying formatting struc-
ture.

Container Syntax for Messaging and Data Exchange. While we have a predilection for
JavaScript Object Notation (JSON) Schema-defined formats, other format specifications (e.g.,
Extensible Markup Language (XML) Schema Definition standard (XSD) or Protocol Buffers
(protobuf)) could serve implementers’ needs just as well. In fact, to the degree possible, it
seems preferable for the container syntax to remain a late-binding decision in implementation.
As long as the structure and semantics are well defined, most standard data formats should be
adaptable to the task.

* MPCVD Protocol Messages SHOULD use well-defined format specifications (e.g., JSON
Schema, protobuf, XSD).

We anticipate that emerging formats like the OASIS Common Security Advisory Framework
(CSAF) [8, 7] and ontologies like the National Institute of Standards and Technology (NIST)
Vulnerability Data Ontology (Vulntology) [30] will play a part.

8.3.2 Transport Protocol

We have not specified how MPCVD protocol implementations connect to each other. Presum-
ably, technologies such as Representational State Transfer (REST) Application Programming
Interfaces (APIs) or WebSockets would be leading candidates to resolve this gap. However,
other system architectures could be adapted as well. For example, an Extensible Messaging
and Presence Protocol (XMPP) message-routing system might be desired, or even blockchain-
related technologies might be adaptable to portions of this protocol as well.

* MPCVD Protocol Implementations SHOULD use common API patterns (e.g., REST,
WebSockets).

8.3.3 Identity Management

We have not addressed Participant authentication as part of the protocol, but obviously im-
plementers will need to determine how Participants know who they are talking to. Individ-
ual user accounts with multi-factor authentication are the de facto standard for modern CVD
tools, but in an interoperable MPCVD world, the assumption of centralized identity manage-
ment may not be practical. Federated identity protocols such as OAuth, Security Assertion
Markup Language (SAML), and/or OpenID Connect may be useful.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 105
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9 Future Work

In this chapter, we review a number of items remaining as future work. We start with a dis-
cussion of the need for a CVD Directory and some of the difficulties it might pose. Next, we
revisit the concept of churn in the RM and EM processes and elaborate a few ideas to reward
efficient behavior. We wrap up the chapter with some brief thoughts on publication schedul-
ing, the potential use of ontologies for process interoperability, and ideas for future modeling
and simulation to further improve the MPCVD process.

9.1 CVD Directory

The idea of CVD embargoes implies a means of dividing the world into those who belong in
the embargo and those who do not. Because authentication is not the same as authorization,
we cannot simply rely on knowing who a Participant is; we also have to be able to identify
why they are relevant to a particular case.

Thus, we must ask this question: How do Participants find other relevant potential Partic-
ipants to invite to a case? In small CVD cases, the answer might be straightforward: The
affected product comes from a known Vendor, so the only question to answer is how best to
contact them. As a first approximation, Internet search engines offer a de facto baseline CVD
directory service simply because they allow any potential Reporter to search for <vendor
name> vulnerability report or similar terms to find an individual Vendor contact.?

But in larger MPCVD cases, there are a few entangled problems:

1. Tt can be difficult and inefficient to collect contact information for all possibly relevant
parties.

2. Even if contact information is widely available using searchable resources, many Ven-
dors’ preferred contact methods might preclude automation of mass notification (or re-
quire customized integration to ensure interoperability between report senders and re-
ceivers). Some Vendors only want email. Others require Reporters to create an account
on their bespoke bug-tracking system before reporting. Others ask for submissions via
a customized web form. All of these examples hinder the interoperability of MPCVD
processes.

3. It is not always clear which other Vendors’ products contain the affected product, which
limits MPCVD cases’ ability to follow the software supply chain.

4. Sometimes vulnerabilities arise in protocols or specifications where multiple implementa-
tions are affected. It can be difficult to identify Vendors whose products implement spe-
cific technologies. Software reverse engineering methods can be used to identify affected
products in some cases.

5. At the same time, some Vendors treat their product’s subcomponents as proprietary
close-hold information for competitive advantage; this might happen, for example, with
Original Equipment Manufacturer (OEM) or white label licensing agreements. While it
is certainly their prerogative to do so, this desire to avoid disclosing internal components
of a product can inhibit discovery—and therefore disclosure to the Vendor—that a vul-
nerability affects a product.

8Vendors can improve their discoverability by using a security.txt file on their websites. See the security.txt
website for more information (https://securitytxt.org/).

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 106
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://securitytxt.org/

When it comes to larger scale MPCVD, the inefficiency of ad hoc contact collection via search
engines is evident. Creating a directory of software Vendors and Coordinators and their vul-
nerability disclosure programs would be a step in the right direction. Community-operated di-
rectories such as the FIRST member list or Disclose.io serve as proof-of-concept of the value
such systems can provide.® We especially like the open source model that Disclose.io uses,
which solicits contributions from the community.'°

But further improvements to MPCVD contact management could be made by standardizing
the following:

* contact information records and the APIs to access them

* contact methods, including common protocols such as the one we just proposed, in con-
junction with common data object models and vocabularies or ontologies

* Software Bill of Materials (SBOM) publication and aggregation services
* mechanisms for Vendors to register their interest in specific technologies

The last of these suggested improvements is not without its challenges. It is difficult to pre-
vent adversarial parties (including Participants who might be competitors or have motives
incompatible with CVD principles) from registering interest in receiving vulnerability reports
about technologies in others’ products.

9.2 Reward Functions

Further optimization of the MPCVD protocol can be studied with the development of reward
functions to evaluate preferences for certain CVD case histories over others. Householder and
Spring [10] provide a method to measure skill () in CVD based on a partial order over the
CVD success criteria that make up the CS process, as outlined in §1.3. While not yet a fully-
realized reward function, we feel that the a4 skill measure has potential as the basis of a re-
ward function for the CS model.

The following subsections describe two additional reward functions.

9.2.1 A Reward Function for Minimizing RM Strings

In §2.1.2.2, we described a grammar that generates RM histories. The state machine can gen-
erate arbitrarily long histories because of the cycles in the state machine graph; however, we
found that human Participants in any real CVD case would likely check the amount of churn.
That sort of reliance on human intervention will not scale as well as a more automatable solu-
tion might.

As a result, we suggest that future work might produce a reward function that can be used to
optimize RM histories. Such a function would need to include the following:

* a preference for shorter paths over longer ones
* a preference for paths that traverse through ¢"™ € A over ones that do not

* a preference for Vendor attentiveness (The default path for an organization with no

CVD capability is effectively ¢ € § & R % I 5 C, which is short (good!). However,
assuming the vulnerability is legitimate, half of the desired CS criteria can never be
achieved (bad!). In other words, F < P, F < X, F < A D <P, D <X D<A
are impossible when the Vendor ignores the report. No reward function should provide
incentive for willful Vendor ignorance.)

9For more information, see the FIRST (https://wuw.first.org/members/teams/) and Disclose.io (https:
//disclose.io/programs/) websites.
Ohttps://github.com/disclose/diodb

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 107
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.first.org/members/teams/
https://disclose.io/programs/
https://disclose.io/programs/
https://github.com/disclose/diodb

* a preference for validation accuracy (Real vulnerabilities should pass through ¢"™ € V,
while bogus reports should pass through ¢"™ € I. The only RM paths path not involv-
ing at least one step through ¢"™ € A are the following.)

SLRLITS O Ignore an invalid case.

SLRLVL DS O Defer a valid case.

SLRLTS VLS DS O Initially ignore an invalid
case, then validate, but
defer it anyway.

qem, 6

To an outside observer, any of these could be interpreted as inattentiveness from an un-
communicative Participant. Yet any of these paths might be fine, assuming that (1) the
Participant communicates about their RM state transitions, and (2) the a transition was
possible but intentionally just not taken.

These last two imply some capacity for independent validation of reports, which, on the sur-
face, seems poised to add cost or complexity to the process. However, in any MPCVD case
with three or more Participants, a consensus or voting heuristic could be applied. For exam-
ple, should a quorum of Participants agree that a Vendor’s products are affected even if the
Vendor denies it, an opportunity exists to capture this information as part of the case.!!

9.2.2 A Reward Function for Minimizing EM Strings

Similarly, the EM process also has the potential to generate arbitrarily long histories, as
shown in §3.1.2.2. Again, reliance on humans to resolve this shortcoming may be acceptable
for now; however, looking to the future, we can imagine a reward function to be optimized.
The EM reward function might include the following:

* a preference for short paths

* a preference for quick agreement (i.e., the a transition appearing early in the EM his-
tory)

* a limit on how long an EM history can get without reaching ¢*™ € A at all (i.e., How
many proposal-rejection cycles are tolerable before giving up?)

9.3 Embargo Management Does Not Deliver Synchronized Publication

In our MPCVD protocol design, we were careful to focus the EM process on establishing when
publication restrictions are lifted. That is not the same as actually scheduling publications fol-
lowing the embargo termination. Our experience at the CERT/CC shows that this distinction
is rarely a significant problem since many case Participants simply publish at their own pace
shortly after the embargo ends. However, at times, case Participants may find it necessary to
coordinate even more closely on publication scheduling.

9.4 Ontology

Our proposed MPCVD protocol does not make its appearance in uncharted territory, where
no existing CVD systems or processes exist. Rather, we propose it as an improvement to in-
teractions among humans, systems, and business processes that already perform MPCVD
around the world every day. Thus, for adoption to occur, it will be necessary to map existing
systems and processes into the semantics (and eventually, the syntax) of whatever protocol
emerges as a descendant of our proposal.

"n fact, this very problem is why the individual Vendor records in CERT/CC Vulnerability Notes contain a
CERT/CC Addendum field.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 108
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Combined with the abstract case class model described in §8.1, an ontology (e.g., using Web
Ontology Language (OWL)) could accelerate the semantic interoperability between indepen-
dent Participant processes and tools that we set out to improve at the beginning of this re-
port.

9.5 Modeling and Simulation

The protocol formalisms and Behavior Trees provided in this report combined with the CS
model described in the Householder and Spring 2021 report [10] point the way toward im-
provements in MPCVD modeling and simulation. Given the complexity of the protocol state
interactions described in Chapter 6 and the corresponding behaviors described in Chapter 7,
we anticipate that modeling and simulation work will continue progressing toward a reference
implementation of the protocol we describe in this report.

Furthermore, the reward functions outlined in §9.2 can—once fully realized—Dbe used to eval-
uate the efficacy of future modifications to the protocol. This effort could, in turn, lead to fu-
ture improvements and optimizations of the MPCVD process. The modularity of Behavior
Trees provides ready ground for simulated experiments to determine what additional opti-
mizations to the MPCVD process might be made in the future.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

109

10 Conclusion

In this report, we described a proposal for an MPCVD protocol in the interest of improving
the interoperability of the world’s CVD processes. Our working name for this protocol is Vul-
tron, intended to evoke the coordination and cooperation required to assemble five robot lions
and their pilots into an ad hoc collective entity in defense against a shared adversary.

Our proposal is built on three primary processes, each modeled as DFAs:
1. the RM process model in §2
2. the EM process model in §3
3. the CS process model in §4, as originally described by Householder and Spring [10]

We discussed the interactions between these three DFAs in §5. Then, we combined them into
a single formal MPCVD protocol in §6, which we concluded with an example of the proposed
protocol in action.

We modeled the behavior of an individual MPCVD Participant in §7 as a nested set of Be-
havior Trees. The modularity of Behavior Trees allows for various Participants to be modeled
as agents, which serves two purposes. First, it identifies increased automation of portions of
the MPCVD process, improving the potential for human-machine hybrid CVD processes in
the future. Second, it provides a means to model Participant behaviors in software, which can
facilitate MPCVD process simulation and optimization at a scale previously unknown.

The implementation notes in §8 and the future work outlined in §9 set an agenda for MPCVD
process improvement research and development for the near future.

Finally, the MPCVD protocol proposed in this report—in conjunction with the CERT Guide
to Coordinated Vulnerability Disclosure [14, 13] and SSVC [27, 28, 29]—is intended to paint as
complete a picture as possible of the CERT/CC’s current understanding of how CVD should
be performed.

Ready to form Vultron!

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 110
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Request for Feedback

We intend for this report to be the start (not the end) of a conversation with the community.

Although we made every effort to ensure the completeness and accuracy of the information
contained in this report, there is always room for improvement. Please contact the author to
provide recommendations, corrections, opinions, or requests for clarification:

Allen D. Householder

https://www.sei.cmu.edu/contact-us/index.cfm?f=Al1len&l=Householder

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

111

https://www.sei.cmu.edu/contact-us/index.cfm?f=Allen&l=Householder

A Interactions Between the MPCVD Protocol and SSVC

Once a report has been validated (i.e., it is in the RM Valid state, ¢"™ € V), it must be pri-
oritized to determine what further effort, if any, is necessary. While any prioritization scheme
might be used, in this appendix, we apply the Stakeholder-Specific Vulnerability Categoriza-
tion (SSVC) model.

A.1 SSVC Supplier and Deployer Trees

The default outcomes for both the SSVC Supplier and Deployer Trees are Defer, Scheduled,
Out of Cycle, and Immediate. The mapping from SSVC outcomes to RM states is straight-
forward, as shown in (A.1) for the Supplier Tree and (A.2) for the Deployer Tree. The SSVC
Defer output maps directly onto the RM Deferred state. Otherwise, the three outputs that
imply further action is necessary—Scheduled, Out of Cycle, and Immediate—all proceed to
the RM Accepted state. The different categories imply different processes within the Accepted
state. But because the RM model does not dictate internal organizational processes, further
description of what those processes might look like is out of scope for this report.

— D when SSVC(Supplier Tree) = Defer

¢ e Scheduled (A1)
%4 A when SSVC(Supplier Tree) € { Out of Cycle

Immediate

— D when SSVC(Deployer Tree) = Defer

g™ e Scheduled (A.2)
%4 A when SSVC(Deployer Tree) € { Out of Cycle

Immediate

We remind readers of a key takeaway from the protocol requirements in the main part of this
report:

* Vendors SHOULD communicate their prioritization choices when making either a defer
{Vv, A} 4 D) or accept ({V,D} < A) transition out of the Valid, Deferred, or
Accepted states.

A.2 SSVC Coordinator Trees

SSVC version 2 offers two decision trees for Coordinators: A Coordinator Triage Tree and a
Coordinator Publish Tree. The outputs for the Coordinator Triage Decision Tree are Decline,
Track, and Coordinate. Similar to the Supplier Tree mapping in §A.1, the mapping here

is simple, as shown in (A.3). Again, whereas the Decline output maps directly to the RM
Deferred state, the remaining two states (Track and Coordinate) imply the necessity for
distinct processes within the Coordinator’s RM Accepted state.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 112
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

% D when SSVC(Coord. Triage Tree) = Decline

= (A.3)

a T
— A when SSVC(Coord. Triage Tree) € ra.ck
Coordinate

On the other hand, the SSVC Coordinator Publish tree falls entirely within the Coordinator’s
Accepted state, so its output does not directly induce any Coordinator RM state transitions.
However, a number of its decision points do touch on the protocol models, which we cover in
§A.3.

A.3 SSVC Decision Points and the MPCVD Protocol

Additional connections between the protocol and the SSVC decision trees are possible. We
now examine how individual SSVC tree decision points can inform or be informed by Partici-
pant states in the MPCVD protocol.

A.3.1 Exploitation

The SSVC Exploitation decision point permits three possible values: None, PoC, and Active.
These values map directly onto state subsets in the CS model, as shown in (A.4). A value

of None implies that no exploits have been made public, and no attacks have been observed
(i.e., ¢°° € ---za). The PoC value means that an exploit is public, but no attacks have been
observed (i.e., ¢°® € ---Xa). Finally, the Active value indicates attacks are occurring (i.e.,
q°° € - A). These case states and SSVC values are equivalent in both directions, hence our
use of the “if-and-only-if” (<=) symbol.

None — q¢“° € -zxa
SSV C(exploitation) = < PoC & ¢ €-Xa (A.4)
Active < ¢ €A

A.3.2 Report Public

The SSVC Report Public decision point also maps directly onto the CS model. A value of
Yes means that the report is public, equivalent to ¢°® € ---P--. On the other hand, a No value
is the same as ¢°® € ---p--. As above, “ <= " indicates the bidirectional equivalence.

Yes <+« ¢“¢€--P-

(A.5)
No < ¢“ €-p-

SSV C(report public) = {

A.3.3 Supplier Contacted

If the Supplier (Vendor) has been notified (i.e., there is reason to believe they are at least in
the RM Received state, equivalent to the V----- CS state subset) the Supplier Contacted value
should be Yes, otherwise it should be No.

Yes if q{/’andor ¢ S or q\c/sendor eV
SSVC(supp. contacted) = (A.6)
No if q{,/nc?ndor €Sor q\cfsendor € de

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 113
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.3.4 Report Credibility

Unlike most of the other SSVC decision points covered here that form a part of a Partici-
pant’s report prioritization process after report validation, the Report Credibility decision
point forms an important step in the Coordinator’s validation process. In fact, it is often the
only validation step possible when the Coordinator lacks the ability to reproduce a vulnera-
bility whether due to constraints of resources, time, or skill. Thus, a value of C'redible can be
expected to lead to an RM transition to Valid (¢"™ € R < V), assuming any additional val-
idation checks also pass. On the contrary, Not Credible always implies the RM transition to

Invalid (¢"™ € R = I) because “Valid-but-not-Credible” is a contradiction.

Credible implies ¢"™ < V (if validation also passes)

i (A7)
Not Credible implies ¢"™ — I

SSVC(report cred.) = {

A.3.5 Supplier Engagement

The possible values for the Supplier (Vendor) Engagement decision point are Active or
Unresponsive. From the Coordinator’s perspective, if enough Suppliers in a CVD case have
communicated their engagement in a case (i.e., enough Vendors are in the RM Accepted state
already or are expected to make it there soon from either the Received or Valid states), then
the SSVC value would be Active.

Vendors in Invalid or Closed can be taken as disengaged, and it might be appropriate to se-
lect Unresponsive for the SSVC Engagement decision point.

Vendors in either Received or Deferred might be either Active or Unresponsive, depending
on the specific report history.

This mapping is shown in (A.8) and on the left side of Figure A.1.

Active it g"m e {A,V}
Active e

SSVC(supp. eng.) = Unresponsive if ¢"™ € {R, D} (A.8)
Unresponsive if ¢ e {I,C, S}

A.3.6 Supplier Involvement

The Supplier Involvement decision point can take on the values Fixz Ready, Cooperative, or
Uncooperative/Unresponsive. We begin by noting the equivalence of the Fix Ready value
with the similarly named substate of the CS model.

SSVC(supp. inv.) = Fix Ready < ¢ € VF-- (A.9)

The Vendor RM states map onto these values as shown in (A.10) and on the right side of Fig-
ure A.1.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 114
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

SSVC Supplier RM States SSVC Supplier

Engagement (Vendor) Involvement
Fixz Ready
Cooperative
Active G
(2)
Unresponsive /[\ U n000p€7“ati?)6
_/ /Unresponsive

Figure A.1: Mapping Vendor RM States to the SSVC Supplier Engagement (Left) and Sup-
plier Involvement (Right) Decision Point Values

Fix Ready o rm
C’ooperative} ifgmeA

SSVC (supp. inv.) = Cooperative it g e v (A.10)
Uncoop./Unresp. if "™ € {R,I,D,C, S}

A.3.7 Engagement vs. Involvement: What’s the Difference?

Note the discrepancy between the mappings given for SSVC Supplier Engagement versus

those for Supplier Involvement. This distinction is most prominent in the connections from
the R and D RM states on the left and right sides of Figure A.1. These differences are the
result of the relative timing of the two different decisions they support within a CVD case.

The decision to Coordinate (i.e., whether the Coordinator should move from RM Valid to
RM Accept (¢"™ € V' & A)) occurs early in the Coordinator’s RM process. The SSVC Sup-
plier Engagement decision point is an attempt to capture this information. This early in the
process, allowances must be made for Vendors who may not have completed their own valida-
tion or prioritization processes. Hence, the mapping allows Vendors in any valid yet unclosed
state (¢"™ € {R,V, A, D}) to be categorized as Active for this decision point.

On the other hand, the decision to Publish—a choice that falls entirely within the Coordi-
nator’s RM Accepted state—occurs later, at which time, more is known about each Vendor’s
level of involvement in the case to that point. By the time the publication decision is made,
the Vendor(s) have had ample opportunity to engage in the CVD process. They might al-
ready have a Fix Ready (¢¢* € VF---), or they might be working toward it (i.e., SSVC
Cooperative). However, if the Coordinator has reached the point where they are making

a publication decision, and the Vendor has yet to actively engage in the case for whatever

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 115
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

reason—as indicated by their failure to reach the RM Accepted state or demonstrate progress
toward it by at least getting to RM Valid (¢"™ € {A,V})—then they can be categorized as
Uncooperative/Unresponsive.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 116
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

B MPCVD Protocol and ISO/IEC Standards

A number of ISO/TEC documents are relevant to our proposed MPCVD protocol.

» ISO/IEC 30111:2019 Information technology — Security techniques — Vulnerability han-
dling processes

» ISO/IEC 29147:2018 Information technology — Security techniques — Vulnerability dis-
closure

» ISO/IEC TR 5895:2022 Cybersecurity — Multi-party coordinated vulnerability disclosure
and handling

We cover each in its own section below.

B.1 ISO/IEC 30111:2019

Clause 7 of ISO/IEC 30111:2019 closely relates to our proposed MPCVD protocol [17]. Table
B.1 provides a mapping of ISO/IEC 30111:2019 onto the relevant concepts and sections of this

report.

Table B.1: Mapping ISO/IEC 30111:2019 Onto the MPCVD Protocol

30111:2019 Clause

Sub-Clause

MPCVD Protocol Mapping

§7.1.1 General
§7.1.2 Preparation

See specific
details below.

§7.1.3 Receipt

a) Internally
Found Vulnera-
bilities

§2.1.1.2 The Received State (R) (p. 10)
§6.6.1 RM Message Types (p. 59)

§7.2 Vulnerability Discovery Behavior (p. 78)
¢gmeS SR

b) Externally
Found Vulnerabili-
ties

§2.1.1.2 The Received State (R) (p. 10)
§6.6.1 RM Message Types (p. 59)

§7.6.1 Process RM Messages Behavior (p. 95)
qm™eS LR

¢) Publicly Dis-
closed Vulnerabili-
ties

§2.1.1.2 The Received State (R) (p. 10)
§6.6.1 RM Message Types (p. 59)

§6.6.3 CS Message Types (p. 60)

§7.5.5 Monitor Threats Behavior (p. 92)
§7.6.1 Process RM Messages Behavior (p. 95)
§7.6.3 Process CS Messages Behavior (p. 97)

¢gmeS LR
qCS e ...p.. 3) ...P..

§7.1.4 Verification

a) Initial investiga-
tion

§2.1.1.2 The Received State (R) (p. 10)
§7.3.1 Report Validation Behavior (p. 80)

om - JRST
g e v
R—>V

if invalid
if valid

b) Possible Process
Exit
1) Duplicate

attach to the original report

Continued on next page

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 117
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

30111:2019 Clause

Table B.1 — continued from previous page

Sub-Clause

MPCVD Protocol Mapping

2) Obsolete
product

3) Non-security

4) Other vendor

qrme{

qrmEI

§7.5.3 Reporting Behavior (p. 88)

IS0 if inwvalid
VA DS O ifvalid

S0

¢ eV A

¢) Root Cause
Analysis

§7.5 Do Work Behavior (p. 85)

qT’n'LeA

d) Further investi-
gation

§7.5 Do Work Behavior (p. 85)

q7"77l c A

e) Prioritization

§2.1.1.4 The Valid State (V) (p. 11)
§7.3.2 Report Prioritization Behavior (p. 81)

rm

q

VLD on defer
V% A on accept

f) Inform reporter

§7.3.1 Report Validation Behavior (p. 80)
§7.3.2 Report Prioritization Behavior (p. 81)
Emit RV, RI, RA, RD as appropriate.

§7.1.5 Remediation
development

all

§2.1.1.5 The Accepted State (A) (p. 11)
§4.1.2 The Fix Readiness Substate (f, F') (p. 37)

§5.2.2 Fix Ready (p. 47)

§7.5.2 Fix Development Behavior (p. 88)

q'r‘m c A
¢ e Vfd L VFd-

§7.1.6 Release

§4.1.2 The Fixz Readiness Substate (f, F') (p. 37)
§7.5.4 Publication Behavior (p. 90)

¢ € VFdp- £ VFdP-.

§7.1.7 Post-release

all

§7.3.3 Report Closure Behavior (p. 82)
§7.5.1 Deployment Behavior (p. 86)

{qcs € VF-P-

qrm, e

)

§7.2 Process moni-
toring

all

§7.5.1 Deployment Behavior (p. 86)

§7.3 Confidentiality

§7.4 Embargo Management Behavior Tree (p. 82)

§8 Supply chain
considerations

§7.5.3 Reporting Behavior (p. 88)

B.2 ISO/IEC 29147:2018

Similarly, ISO/IEC 29147:2018 also overlaps with our proposed MPCVD protocol [16]. Our
use of the following terms is consistent with ISO/IEC 29147:2018 §5.4 Systems, components,
and services: Systems, Components, Products, Services, Vulnerability, and Product interde-

pendency.

ISO/IEC 29147:2018 §5.5 Stakeholder Roles includes User, Vendor, Reporter, and Coordina-
tor. We generally use Deployer instead of User, but the rest are consistent.

Perhaps unsurprisingly, clauses 5 through 9 of ISO/IEC 29147:2018 overlap significantly with
our proposed MPCVD protocol. See Table B.2 for a thorough cross-reference.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

118

Table B.2: Mapping ISO/IEC 29147:2018 Onto the MPCVD Protocol

29147:2018 Clause

Sub-Clause

MPCVD Protocol Mapping

§5.6 Vulnerability
handling process
summary

5.6.1 General
5.6.2 Preparation
5.6.3 Receipt
5.6.4 Verification
5.6.5 Remediation
development

5.6.6 Release
5.6.7 Post-release

The first few subsections of ISO/IEC
29147:2018 §5.6 are recapitulated in
ISO/IEC 30111:2019. Accordingly, see the
corresponding rows of Table B.1

5.6.8 Embargo
period

§3.2 EM Discussion (p. 24)

§5.7 Information
exchange during
vulnerability dis-
closure

send-report-to

§6.6 Message Types (p. 58)
§7.5.3 Reporting Behavior (p. 88)

RS
m A+ — sender

q RS .
SS R+ 2 receiver

release-advisory-to

§6.6 Message Types (p. 58)
§7.5.4.1 Prepare Publication Behavior (p. 90)

e {A + BEERN sender

{R,V,A,D} + S receiver

§5.8 Confidentiality

all

§3 Embargo Management (EM) Model (p. 20)
§8.3.2 Transport Protocol (p. 105)

§5.9 Vulnerability

§4.1.4 The Public Awareness Substate (p, P) (p. 38)

advisories §7.5.4 Publication Behavior (p. 90)
§5.10 Vulnerability - §4.1.5 The Exploit Public Substate (z, X) (p. 38)
exploitation §4.1.6 The Attacks Observed Substate (a, A) (p. 38)

§7.5.5 Monitor Threats Behavior (p. 92)

§5.11 Vulnerabili-
ties and risk

§A Interactions Between the MPCVD Protocol and SSVC
(p. 112)

§6 Receiving vul-
nerability reports

6.1 General

§2 Report Management (RM) Model (p. 9)
§4.1.1 The Vendor Awareness Substate (v, V) (p. 37)
§7.6.1 Process RM Messages Behavior (p. 95)

§6.2 Vulnerability
reports

6.2.1 General

§2 Report Management (RM) Model (p. 9)
§7.5.3 Reporting Behavior (p. 88)

6.2.2 Capability to
receive reports

§2.1.1.2 The Received State (R) (p. 10)
§7.6.1 Process RM Messages Behavior (p. 95)

6.2.3 Monitoring

§7.6 Receiving and Processing Messages Behavior (p. 94)

6.2.4 Report
Tracking

§2 Report Management (RM) Model (p. 9)
§7.3 Report Management Behavior Tree (p. 79)
§8.1 An MPCVD Case Object (p. 100)

6.2.5 Report Ac-

§6.6.1 RM Message Types (p. 59)

knowledgement §7.6.1 Process RM Messages Behavior (p. 95)
§6.3 Initial assess- - §6.6.1 RM Message Types (p. 59)
ment §7.3.2 Report Prioritization Behavior (p. 81)
§6.4 Further inves- - §6.6.1 RM Message Types (p. 59)
tigation §7.5 Do Work Behavior (p. 85)
§6.5 On-going com- - §6.6 Message Types (p. 58)
munication

Continued on next page
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 119

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

29147:2018 Clause

Table B.2 — continued from previous page

Sub-Clause

MPCVD Protocol Mapping

§6.6 Coordinator

involvement

§2.2.2 RM Interactions Between CVD Participants (p. 15)
§3.2.10 Inviting Others to an Embargoed Case (p. 33)
§6.9.4 Coordination With a Coordinator (p. 71)

§7.5.3.2 Notify Others Behavior (p. 89)

§6.7 Operational
security

§8.3.2 Transport Protocol (p. 105)

§7 Publishing
vulnerability
advisories

all

§7.5.4 Publication Behavior (p. 90)
§4.1 CVD Case Substates (p. 37)

7.3 Advisory publi-
cation timing

§3.2.1 Embargo Principles (p. 24)

7.4 Advisory ele-
ments

§8.3.1 Message Formats (p. 104)

7.5 Advisory com-
munication

§7.5.4 Publication Behavior (p. 90)

7.6 Advisory for-

mat

§8.3.1 Message Formats (p. 104)

7.7 Advisory au-

§8.3.3 Identity Management (p. 105)

thenticity
7.8 Remediations §7.5.1 Deployment Behavior (p. 86)
§8 Coordination 8.1 General §2.1.1.2 The Received State (R) (p. 10)

§2.1.1.5 The Accepted State (A4) (p. 11)

§2.2.2 RM Interactions Between CVD Participants (p. 15)
§3.2.10 Inviting Others to an Embargoed Case (p. 33)

§7 Modeling an MPCVD AI Using Behavior Trees (p. 76)

8.2 Vendors play-
ing multiple roles

§2.1.1.2 The Received State (R) (p. 10)

§2.1.1.5 The Accepted State (A4) (p. 11)

§4.1.2 The Fix Readiness Substate (f, F') (p. 37)
§7.5.3 Reporting Behavior (p. 88)

§9 Vulnerability
disclosure policy

9.2.2 Preferred
contact mechanism

§7.6 Receiving and Processing Messages Behavior (p. 94)

9.3.2 Vulnerability
report contents

§8.1 An MPCVD Case Object (p. 100)

9.3.3 Secure com-
munication options

§8.3.2 Transport Protocol (p. 105)

9.3.4 Setting com-
munication expec-
tations

§3.2.6 Default Embargoes (p. 28)
§6.7 Transition Functions (p. 62)
§7.3 Report Management Behavior Tree (p. 79)

9.3.6 Publication

§7.5.4 Publication Behavior (p. 90)

9.4.3 Disclosure
timeline

§3 Embargo Management (EM) Model (p. 20)

B.3

ISO/IEC TR 5895:2022

The recently released ISO/IEC TR 5895:2022 intersects most directly with our topic [18].
Table B.3 contains our mapping of relevant sections of that technical report to our protocol

model.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 120
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table B.3: Mapping ISO/IEC TR 5895 Onto the MPCVD Protocol

TR 5895 Clause

Sub-Clause

MPCVD Protocol Mapping

§4 Concepts

§4.2.3 Risk Reduc-
tion Effectiveness

§3.2.7 Early Termination (p. 31)
§3.2.10 Inviting Others to an Embargoed Case (p. 33)

§5 MPCVD Sce-
narios in Scope

all

§3.2.10 Inviting Others to an Embargoed Case (p. 33)

§6 MPCVD Stake-
holders

all

§1.5 Terms and Definitions (p. 7)

§7 MPCVD Lifecy-
cle

§7.2 Policy Devel-
opment

§2 Report Management (RM) Model (p. 9)
§2.1.1.2 The Received State (R) (p. 10)
§3.2.6 Default Embargoes (p. 28)

§9.1 CVD Directory (p. 106)

§7.3 Strategy de-

§2.2.2 RM Interactions Between CVD Participants (p. 15)

velopment §3.2 EM Discussion (p. 24)

7.4 Know your §2.2.2 RM Interactions Between CVD Participants (p. 15)
customers §3.2.10 Inviting Others to an Embargoed Case (p. 33)

7.5 Encrypted §8.3.2 Transport Protocol (p. 105)

Communication

Methods and Con-
ference Calls

7.6 Processes and
Controls

See NDA note at the beginning of
§3 Embargo Management (EM) Model (p. 20)

§8 MPCVD life-
cycle for each
product

all

§7.5.1 Deployment Behavior (p. 86)
§7.5.2 Fix Development Behavior (p. 88)
§7.5.3 Reporting Behavior (p. 88)

§7.5.4 Publication Behavior (p. 90)

qu 6 A

§9 MPCVD life-
cycle for each
vulnerability

§9.1 Receipt

§2.1.1.1 The Start State (S) (p. 9)
§2.1.1.2 The Received State (R) (p. 10)
§4.1.1 The Vendor Awareness Substate (v, V') (p. 37)
§7.6.1 Process RM Messages Behavior (p. 95)
§7.5.3 Reporting Behavior (p. 88)
g™ e SLHR
¢ € vfd 5 Vfd-

§9.2 Verification

§2.1.1.2 The Received State (R) (p. 10)
§2.1.1.4 The Valid State (V) (p. 11)
§2.1.1.3 The Invalid State (I) (p. 10)
§3.2.1 Embargo Principles (p. 24)
§7.3.1 Report Validation Behavior (p. 80)
§7.3.2 Report Prioritization Behavior (p. 81)
§7.5.3 Reporting Behavior (p. 88)

SV
gqmeR],;

-1
Emit RV, RI, RA, RD as appropriate.

Continued on next page

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 121
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table B.3 — continued from previous page

TR 5895 Clause Sub-Clause MPCVD Protocol Mapping
§9.3 Remediation §2.1.1.5 The Accepted State (A4) (p. 11)
development §4.1.2 The Fix Readiness Substate (f, F') (p. 37)

§5.2.2 Fix Ready (p. 47)
§7.5.2 Fix Development Behavior (p. 88)
qu 6 A
¢ eVid- 5 VFd-

§9.4 Release

84.1.2 The Fix Readiness Substate (f, F') (p. 37)
§7.5.4 Publication Behavior (p. 90)

¢° € VFdp- £ VFdP-

§9.5 Post Release

§7.3.3 Report Closure Behavior (p. 82)

§7.5.1 Deployment Behavior (p. 86)
g™ € {A, D}

{qcs € VF-P-

§9.6 Embargo Pe-
riod

§2.2.2 RM Interactions Between CVD Participants (p. 15)
§3.2 EM Discussion (p. 24)

§5.1 Interactions Between the RM and EM Models (p. 45)
qem g X

§10 Information
exchange

§2.2.2 RM Interactions Between CVD Participants (p. 15)
§6.6 Message Types (p. 58)
§7.5.3 Reporting Behavior (p. 88)

§11 Disclosure

§3.2.10 Inviting Others to an Embargoed Case (p. 33)
§6.9.4 Coordination With a Coordinator (p. 71)
§7.5.4 Publication Behavior (p. 90)

§12 Use case for
hardware and fur-
ther considerations

§3.2.10 Inviting Others to an Embargoed Case (p. 33)
§5.1 Interactions Between the RM and EM Models (p. 45)
§7.5.3 Reporting Behavior (p. 88)

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 122
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

C Embargo Management and the iCalendar Protocol

This appendix is not considered a core part of the Vultron MPCVD protocol as proposed in
the main part of the report. We include it because the ideas outlined here were instrumental
to the development of the more general EM process in the main protocol and may remain of
use in future implementations.

The embargo negotiation process—in terms of the proposal, acceptance, rejection, etc.—is
strikingly parallel to the process of scheduling a meeting in a calendaring system. To that
end, we note the potential application of the iCalendar protocol specified in RFC 54452 to
the EM process with the semantics described in this section. While we anticipate that fu-

ture CVD APIs could adopt an iCalendar-compatible syntax like jCal (RFC 7265'3), for this
conceptual mapping, we use the basic iCalendar syntax from RFC 5445.

A CVD Case might have an associated iCalendar object. Embargo schedules can be repre-
sented as a single VEVENT object.

A mapping of EM concepts to iCalendar field mappings is provided in Table C.1.

* Reflecting the non-binding nature of embargoes, each ATTENDEE SHOULD be marked as
ROLE=0PT-PARTICIPANT in the invitation.

* Vulnerability details MUST NOT appear in the iCalendar data.

* A case or vulnerability identifier SHOULD appear in the VEVENT SUMMARY along with
the words “embargo expiration.”

* Case or vulnerability identifiers SHOULD NOT carry any information that reveals po-
tentially sensitive details about the vulnerability.

* An embargo proposal SHALL set RSVP: True for all attendees.

A Participant response with ATTENDEE: partstat=TENTATIVE serves as a basic acknowledg-
ment that the embargo proposal has been received, but it does not represent agreement to the
proposal.

The iCalendar ATTENDEE: partstat=DELEGATED value has no semantic equivalent in the EM
process.

C.1 Proposing an Embargo

Following the model of inviting a group of attendees to a meeting, a proposed embargo can be
achieved as follows:

1. An ORGANIZER sends an embargo invitation, represented by a VEVENT with
STATUS: TENTATIVE listing Participants as ATTENDEEs (¢“™ € N 2, P).

2. Each ATTENDEE has partstat=NEEDS-ACTION set on the invitation, indicating that they
have not yet accepted it.

3. Individual ATTENDEEs acknowledge (partstat=TENTATIVE), accept
(partstat=ACCEPTED), or decline (partstat=DECLINED). Their response is sent to
the ORGANIZER.

12RF(C-5445 Internet Calendaring and Scheduling Core Object Specification (iCalendar) https://datatracker.
ietf.org/doc/html/rfc5545
18RFC-7265 jCal: The JSON Format for iCalendar https://datatracker.ietf.org/doc/html/rfc7265

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 123
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://datatracker.ietf.org/doc/html/rfc5545
https://datatracker.ietf.org/doc/html/rfc5545
https://datatracker.ietf.org/doc/html/rfc7265

Table C.1: Mapping Embargo Information to iCalendar Semantics

Embargo Concept | iCalendar Mapping | EM Msg Type
Embargo object VEVENT -
Embargo ID SUMMARY :<case id> embargo -
expiration
E.mbargo End DTSTART = DTEND (0 duration -
ime and Date
event)
Proposer ORGANIZER -
ATTENDEE;
Participant (proposed) ROLE=0PT-PARTICIPANT; EP,EV
PARTSTAT=NEEDS-ACTION
Participant ATTENDEE;
(acknowledge proposal ROLE=0PT-PARTICIPANT; EK
without acceptance) PARTSTAT=TENTATIVE
ATTENDEE;
Participant (accepted) ROLE=0PT-PARTICIPANT; FA, EC
PARTSTAT=ACCEPTED
ATTENDEE;
Participant (rejected) ROLE=0PT-PARTICIPANT; ER,EJ
PARTSTAT=DECLINED
Details
(links to case trackers, etc.) DESCRIPTION i
Embargo status ¢*™ € P STATUS:TENTATIVE EP
Embargo status ¢°™ € A STATUS : CONFIRMED EA, EC
Embargo status ¢ € X STATUS : CANCELLED ET
due to early termination
Embargo status ¢°™ € N
due to lack of acceptance STATUS : CANCELLED ER
quorum
Other CATEGORIES: EMBARGO
RSVP: TRUE

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

124

4. If the ORGANIZER determines that there is a quorum of accepts, they mark the VEVENT as
STATUS: CONFIRMED (¢°™ € P % A).

5. If the ORGANIZER determines that there is no sufficient quorum of accepts, they mark the
new VEVENT as STATUS:CANCELLED (¢*™ € P 5 N).

C.2 Embargo Counterproposals

Counterproposals can be achieved in two ways:
1. by declining an initial invitation and then proposing a new one (¢°™ € P 5N P)
2. by proposing a new embargo without declining the first one (¢*™ € P LN P)

Either way, this is analogous to requesting a proposed meeting to be shifted to a different
time or date prior to accepting the original proposed meeting time. However, following the ar-
gument from §3.2.6, we suggest that Participants start by (1) accepting the shortest proposed
embargo and (2) proposing a revision to the new embargo instead, which we cover next.

C.3 Proposing a Change to an Existing Embargo

Similar to rescheduling an existing meeting, a proposed change to an existing embargo can
be achieved as follows. (This process assumes that an existing embargo is represented by a
VEVENT with STATUS: CONFIRMED.)
1. A new proposal is made as a VEVENT with STATUS:TENTATIVE and the same ATTENDEE
list as the existing one (¢°™ € A % R).

2. Each ATTENDEE on the new invitation has partstat=NEEDS-ACTION set, indicating that
they have not yet accepted the new invitation.

3. Individual ATTENDEEs acknowledge (partstat=TENTATIVE), accept
(partstat=ACCEPTED), or decline (partstat=DECLINED). Their response is sent to
the ORGANIZER.

4. If the ORGANIZER determines that there is a quorum of accepts (¢°™ € R % A), they
(a) mark the new VEVENT as STATUS : CONFIRMED
(b) mark the old VEVENT as STATUS : CANCELLED

5. If the ORGANIZER determines that there is no sufficient quorum of accepts (¢°™ € R 5
A), they

(a) mark the new VEVENT as STATUS:CANCELLED
(

b) retain the old VEVENT as STATUS : CONFIRMED

C.4 Terminating an Existing Embargo

Terminating an existing embargo (¢°™ € {A, R} L x) can be triggered in one of two ways:
* A normal exit occurs when the planned embargo end time has expired.

* An abnormal exit occurs when some external event causes the embargo to fail, such as
when the vulnerability or its exploit has been made public, attacks have been observed,
etc., as outlined in §3.2.7.

Translating this into iCalendar semantics, we have the following, which assumes an existing
embargo is represented by a VEVENT with STATUS : CONFIRMED.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 125
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1. Normal termination: The VEVENT retains its STATUS: CONFIRMED and passes quietly from
the future through the present into the past.

2. Abnormal termination: The ORGANIZER sets the VEVENT to STATUS:CANCELLED and
sends it out to the ATTENDEE list.

The above is consistent with our premise in §3.2.7: Embargo Termination (ET) messages are
intended to have immediate effect.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 126
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this document.

[1]

2]

[10]

[11]

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

William A. Arbaugh, William L. Fithen, and John McHugh. Windows of Vulnerability:
A Case Study Analysis. Computer, 33(12):52-59, 2000.

J. Andrew Bagnell, Felipe Cavalcanti, Lei Cui, Thomas Galluzzo, Martial Hebert,
Moslem Kazemi, Matthew Klingensmith, Jacqueline Libby, Tian Yu Liu, Nancy Pollard,
et al. An Integrated System for Autonomous Robotics Manipulation. In 2012 IEFE/RSJ
International Conference on Intelligent Robots and Systems, pages 2955-2962. IEEE,
2012.

Leyla Bilge and Tudor Dumitrag. Before We Knew It: An Empirical Study of Zero-Day
Attacks in the Real World. In Computer and Communications Security, pages 833—844.
ACM, 2012.

Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal
of the ACM (JACM), 30(2):323-342, 1983.

David Carney, David Fisher, Ed Morris, and Pat Place. Some Current Approaches to
Interoperability. Technical Note CMU/SEI-2005-TN-033, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, August 2005.

Michele Colledanchise and Petter Ogren. Behavior Trees in Robotics and AI: An Intro-
duction. CRC Press, 2020.

OASIS Common Security Advisory Framework Technical Committee. OASIS Common
Security Advisory Framework (CSAF) TC. https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=csaf, 2020. Accessed: 2022-06-29.

OASIS Common Security Advisory Framework Technical Committee. OASIS Com-
mon Security Advisory Framework (CSAF). https://oasis-open.github.io/csaf-
documentation/, 2022. Accessed: 2022-03-28.

Stefan Frei, Dominik Schatzmann, Bernhard Plattner, and Brian Trammell. Modeling
the Security Ecosystem: The Dynamics of (In)Security. In Economics of Information
Security and Privacy, pages 79-106. Springer, 2010.

Allen Householder and Jonathan Spring. A State-Based Model for Multi-Party Coordi-
nated Vulnerability Disclosure (MPCVD). Special Report CMU/SEI-2021-SR-021, Soft-
ware FEngineering Institute, Carnegie Mellon University, Pittsburgh, PA, July 2021.

Allen D Householder, Jeff Chrabaszcz, Trent Novelly, David Warren, and Jonathan M
Spring. Historical Analysis of Exploit Availability Timelines. In Workshop on Cyber
Security Experimentation and Test (CSET). USENIX, 2020.

Allen D. Householder and Jonathan Spring. Are We Skillful or Just Lucky? Interpret-
ing the Possible Histories of Vulnerability Disclosures. Digital Threats, Jul 2021. Just
Accepted.

Allen D. Householder, Garret Wasserman, Art Manion, and Chris King. The CERT guide
to coordinated vulnerability disclosure. https://vuls.cert.org/confluence/display/
CVD. Accessed: 2022-03-01.

Allen D Householder, Garret Wassermann, Art Manion, and Chris King. The CERT
Guide to Coordinated Vulnerability Disclosure. Special Report CMU/SEI-2017-SR-022,
Software Engineering Institute, Carnegie Mellon University, 2017.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

127

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=csaf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=csaf
https://oasis-open.github.io/csaf-documentation/
https://oasis-open.github.io/csaf-documentation/
https://vuls.cert.org/confluence/display/CVD
https://vuls.cert.org/confluence/display/CVD

[15] Damian Isla. GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI. https://
www . gamedeveloper . com/programming/gdc-2005-proceeding-handling-complexity-
in-the-i-halo-2-i-ai, March 2005.

[16] ISO. Information technology — Security techniques — Vulnerability disclosure. Standard
29147:2018, International Organization for Standardization, Geneva, CH, October 2018.

[17] ISO. Information technology — Security techniques — Vulnerability handling processes.
Standard 30111:2019, International Organization for Standardization, Geneva, CH, Octo-
ber 2019.

[18] ISO. Cybersecurity — Multi-party coordinated vulnerability disclosure and handling.
Technical Report TR 5895:2022, International Organization for Standardization, Geneva,
CH, June 2022.

[19] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Idris Adjerid, and Michael Roytman.
Exploit Prediction Scoring System (EPSS). Digital Threats, 2(3), July 2021.

[20] Shyamalendu Kandar. Introduction to Automata Theory, Formal Languages and Compu-
tation. Always learning. Pearson, 1st edition, 2013.

[21] Lisa L. Brownsword, David J. Carney, David Fisher, Grace Lewis, Craig Meyers, Edwin
J. Morris, Patrick R. H. Place, James Smith, and Lutz Wrage. Current Perspectives on
Interoperability. Technical Report CMU/SEI-2004-TR-009, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, March 2004.

[22] Art Manion. Apache Logdj allows insecure JNDI lookups. Vulnerability Note
VU#930724, CERT Coordination Center (CERT/CC), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, December 2021.

[23] Michael Mateas and Andrew Stern. A behavior language for story-based believable
agents. IEEE Intelligent Systems, 17(4):39-47, 2002.

[24] Forum of Incident Response and Security Teams. Common Vulnerability Scoring System
v3.1: Specification Document. https://www.first.org/cvss/v3.1/specification-
document, 2019. Accessed: 2022-06-29.

[25] Petter Ogren. Increasing Modularity of UAF Control Systems Using Computer Game
Behavior Trees. In ATAA Guidance, Navigation, and Control Conference, page 4458,
2012.

[26] Oxford English Dictionary Online. protocol, n. https://www-oed-com.cmu.idm.oclc.
org/view/Entry/153243, December 2021. Accessed February 17, 2022.

[27] Jonathan M Spring, Eric Hatleback, Allen D. Householder, Art Manion, and Deana
Shick. Prioritizing Vulnerability Response: A Stakeholder-Specific Vulnerability Cate-
gorization. White paper, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2019.

[28] Jonathan M Spring, Eric Hatleback, Allen D. Householder, Art Manion, and Deana
Shick. Prioritizing Vulnerability Response: A Stakeholder-Specific Vulnerability Cate-
gorization. In Workshop on the Economics of Information Security, Brussels, Belgium,
December 2020.

[29] Jonathan M Spring, Allen D. Householder, Eric Hatleback, Art Manion, Madison Oliver,
Vijay Sarvapalli, Laurie Tyzenhaus, and Charles Yarbrough. Prioritizing Vulnerability
Response: A Stakeholder-Specific Vulnerability Categorization (Version 2.0). White pa-
per, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2021.

[30] Chris Turner and David Waltermire. NIST Vulnerability Data Ontology. https:
//github.com/usnistgov/vulntology, 2022. Accessed: 2022-06-29.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 128
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www-oed-com.cmu.idm.oclc.org/view/Entry/153243
https://www-oed-com.cmu.idm.oclc.org/view/Entry/153243
https://github.com/usnistgov/vulntology
https://github.com/usnistgov/vulntology

[31] Rob Wright. Lessons learned from Meltdown and Spectre disclosure process. https:
//wuw.techtarget.com/searchsecurity/news/252446793/Lessons-learned-from-
Meltdown-and-Spectre-disclosure-process, August 2018.

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 129
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.techtarget.com/searchsecurity/news/252446793/Lessons-learned-from-Meltdown-and-Spectre-disclosure-process
https://www.techtarget.com/searchsecurity/news/252446793/Lessons-learned-from-Meltdown-and-Spectre-disclosure-process
https://www.techtarget.com/searchsecurity/news/252446793/Lessons-learned-from-Meltdown-and-Spectre-disclosure-process

Acronym List

ACM Association for Computing Machinery

Al Artificial Intelligence

API Application Programming Interface

CERT/CC CERT Coordination Center at the Software Engineering Institute (SEI)

CISA Cybersecurity and Infrastructure Security Agency, part of the United States of
America (US) Department of Homeland Security (DHS)

CNA Common Vulnerabilities and Exposures (CVE) Numbering Authority

CS Coordinated Vulnerability Disclosure (CVD) Case State

CSAF Common Security Advisory Framework by OASIS

CvD Coordinated Vulnerability Disclosure

CVE Common Vulnerabilities and Exposures by The MITRE Corporation (MITRE)

CVSS Common Vulnerability Scoring System, maintained by Forum of Incident Response
and Security Teams (FIRST)

DAG Directed Acyclic Graph
DFA Deterministic Finite Automaton
DHS US Department of Homeland Security

DTRAP Digital Threats: Research and Practice, an Association for Computing
Machinery (ACM) journal

EM Embargo Management

FFRDC Federally Funded Research and Development Center

FIRST Forum of Incident Response and Security Teams

FSM Finite State Machine

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IPS Intrusion Prevention System

ITSM Information Technology Service Management

JSON JavaScript Object Notation
MITRE The MITRE Corporation
MPCVD Multi-Party Coordinated Vulnerability Disclosure

NDA Non-Disclosure Agreement
NIST National Institute of Standards and Technology, part of the US Department of
Commerce

NPC Non-Player Character
OEM Original Equipment Manufacturer

oT Operational Technology
OWL Web Ontology Language, a World Wide Web Consortium (W3C) standard
PoC Proof of Concept

protobuf Protocol Buffers

REST Representational State Transfer

RM Report Management

SAAS Software-as-a-Service

SAML Security Assertion Markup Language

SBOM Software Bill of Materials

SEI Software Engineering Institute, a Federally Funded Research and Development
Center (FFRDC) operated by Carnegie Mellon University

SSVC Stakeholder-Specific Vulnerability Categorization

UML Unified Modeling Language

us United States of America
VDP Vulnerability Disclosure Program
CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 130

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

w3cC World Wide Web Consortium
XML Extensible Markup Language, a W3C standard

XMPP Extensible Messaging and Presence Protocol, an Internet Engineering Task
Force (IETF) standard

XSD Extensible Markup Language (XML) Schema Definition, a W3C standard

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY
(Leave Blank)

2. REPORT DATE
September 2022

3. REPORT TYPE AND DATES
COVERED
Final

4. TITLE AND SUBTITLE
Designing Vultron:

A Protocol for Multi-Party Coordinated Vulnerability Disclosure (MPCVD)

(Vultron v0.4.0)

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHORS
Allen D. Householder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2022-SR-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SEI Administrative Agent
AFLCMC/AZS

5 Elgin Street

Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B. DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
The Coordinated Vulnerability Disclosure (CVD) process addresses a human coordination problem that
spans individuals and organizations. In this report, we propose a formal protocol specification for Multi-
Party Coordinated Vulnerability Disclosure (MPCVD) with the goal of improving the interoperability of
both CVD and MPCVD processes. The Vultron protocol is composed of three interacting Deterministic
Finite Automata (DFAs) for each CVD case Participant representing the Report Management (RM),
Embargo Management (EM), and CVD Case State (CS) processes. Additionally, we provide guidance
and commentary on the associated MPCVD Participant capabilities and behaviors necessary for this

interoperability to be realized.

14. SUBJECT TERMS

Coordinated Vulnerability Disclosure, CVD, Multi-party Coordinated
Vulnerability Disclosure, MPCVD, Vulnerability Report, Embargo,
Vulnerability Disclosure Program, VDP, Vultron, Protocol, Deterministic
Finite Automata, DFA, Behavior Tree, Formal Protocol

15. NUMBER OF PAGES
145

16. PRICE CODE

17. SECURITY 18. SECURITY
CLASSIFICATION CLASSIFICATION OF
OF REPORT THIS PAGE
Unclassified Unclassified

19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF ABSTRACT
ABSTRACT UL
Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

CMU/SEI-2022-SR-012 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

132

	Designing Vultron: A Protocol for Multi-Party Coordinated Vulnerability Disclosure (MPCVD)
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	Goals
	Objectives
	What Does ``Success'' Mean in ?
	Report Preview
	Terms and Definitions
	Notation

	2 Report Management (RM) Model
	RM State Machine
	RM States
	RM State Transitions
	RM DFA Fully Defined

	RM Discussion
	The Secret Lives of Finders
	RM Interactions Between CVD Participants
	RM State Subsets

	3 Embargo Management (EM) Model
	EM State Machine
	EM States
	EM State Transitions
	EM DFA Fully Defined

	EM Discussion
	Embargo Principles
	Embargo Scale and Duration
	Embargo Participants Are Free to Engage or Disengage
	Entering an Embargo
	Negotiating Embargoes
	Default Embargoes
	Early Termination
	Impact of Case Mergers on Embargoes
	Impact of Case Splits on Embargoes
	Inviting Others to an Embargoed Case
	Consequences of Non-Compliance

	4 CVD Case State Model
	CVD Case Substates
	The Vendor Awareness Substate (v,V)
	The Fix Readiness Substate (f,F)
	The Fix Deployed Substate (d,D)
	The Public Awareness Substate (p,P)
	The Exploit Public Substate (x,X)
	The Attacks Observed Substate (a,A)
	CS Model Design Choices

	CVD Case States
	CS Start and End States
	CS Model Wildcard Notation

	CS Transitions
	CS Transitions Defined
	A Regular Grammar for the CS model

	CS Model Fully Defined

	5 Model Interactions
	Interactions Between the RM and EM Models
	RM-CVD and EM-CVD Model Interactions
	Vendor Notification
	Fix Ready
	Fix Deployed
	Public Awareness
	Exploit Public
	Attacks Observed

	6 A Formal Protocol Definition for MPCVD
	Communication Protocol Definitions
	Number of Processes
	States
	Unreachable States
	Vendors (Fix Suppliers)
	Non-Vendor Deployers
	Non-Vendor, Non-Deployer Participants

	A Lower Bounds on MPCVD State Space
	Starting States
	Message Types
	RM Message Types
	EM Message Types
	CS Message Types
	Other Message Types
	Message Type Redux

	Transition Functions
	RM Transition Functions
	EM Transition Functions
	CVD Transition Functions
	General Transition Functions

	Formal MPCVD Protocol Redux
	Worked Example
	A Finder Becomes a Reporter
	Vendor Evaluates Embargo
	Vendor Sets Priority
	Coordination With a Coordinator
	Embargo Teardown, Publish, and Close

	7 Modeling an MPCVD AI Using Behavior Trees
	CVD Behavior Tree
	Vulnerability Discovery Behavior
	Report Management Behavior Tree
	Report Validation Behavior
	Report Prioritization Behavior
	Report Closure Behavior

	Embargo Management Behavior Tree
	Propose Embargo Behavior
	Terminate Embargo Behavior

	Do Work Behavior
	Deployment Behavior
	Fix Development Behavior
	Reporting Behavior
	Publication Behavior
	Monitor Threats Behavior
	CVE ID Assignment Behavior
	Acquire Exploit Behavior

	Receiving and Processing Messages Behavior
	Process RM Messages Behavior
	Process EM Messages Behavior
	Process CS Messages Behavior
	Process Other Messages Behavior

	8 Implementation Notes
	An MPCVD Case Object
	The Case Class
	The Report Class
	The Message Class
	The LogEvent Class
	The Participant Class
	The Contact Class
	The Enumeration Classes

	Process Implementation Notes
	RM Implementation Notes
	EM Implementation Notes
	CS Implementation Notes

	General Notes
	Message Formats
	Transport Protocol
	Identity Management

	9 Future Work
	CVD Directory
	Reward Functions
	A Reward Function for Minimizing RM Strings
	A Reward Function for Minimizing EM Strings

	Embargo Management Does Not Deliver Synchronized Publication
	Ontology
	Modeling and Simulation

	10 Conclusion
	Request for Feedback
	Appendix A: Interactions Between the MPCVD Protocol and SSVC
	SSVC Supplier and Deployer Trees
	SSVC Coordinator Trees
	SSVC Decision Points and the MPCVD Protocol
	Exploitation
	Report Public
	Supplier Contacted
	Report Credibility
	Supplier Engagement
	Supplier Involvement
	Engagement vs. Involvement: What's the Difference?

	Appendix B: MPCVD Protocol and ISO/IEC Standards
	ISO/IEC 30111:2019
	ISO/IEC 29147:2018
	ISO/IEC TR 5895:2022

	Appendix C: Embargo Management and the iCalendar Protocol
	Proposing an Embargo
	Embargo Counterproposals
	Proposing a Change to an Existing Embargo
	Terminating an Existing Embargo

	References/Bibliography

