
CARNEGIE MELLON UNIVERSITY

School of Architecture
College of Fine Arts

Thesis

Submitted in Partial Fulfillment of the requirements for the degree of

Master of Science in Computational Design

TITLE:

Rematerializing Graphs
Learning Spatial Configuration

AUTHOR:
Michael Stesney

ACCEPTED BY ADVISORY COMMITTEE:

Daniel Cardoso Llach Principal Advisor DATE

Daragh B\rne Advisor DATE

Molly Wright Steenson Advisor DATE

0D\���UG������

May 25, 2021

Molly Wright Steenson
25 May 2021

Abstract

In architecture, recent developments in machine learning technologies have reener-

gized the established research areas of generative design and design analysis. Propo-

nents argue that data-driven systems can learn the implicit rules of architectural design

for the generation of new designs or the incorporation into new methods of architectural

research and analysis. This recent research has focused primarily on machine learning

model development, in particular the algorithms, but not the data from which the mod-

els learn. However, without a concurrent reflection on the data and the representations

used to encode the data, a critical understanding of the affordances and limitations of

data-driven machine learning tools in architecture is not possible. Therefore, in this

research I interrogate the data with a focus on graph-based representations of spatial

organizations. As a research method, I present the theoretical concepts tying graphs

to computational design theory to selected cutting-edge graph-based and data-driven

generative and analytical approaches. I also reconstruct an example of early genera-

tive design software and create computational instruments to explore, demonstrate and

evaluate the concepts presented in the literature research. Placing recent analytical and

generative techniques in the lineage of graph-based representations demonstrates how

the motivations of the early theorists, and limitations of graph representations them-

selves, are carried forward into the machine learning context. Further, investigating

the floor plan data sets essential to these technologies reveals the inherently contin-

gent nature of graph-based architectural data, and by extension, the contingency of the

results.

1

Contents

List of Figures 4

1 Introduction 6
1.1 Motivations . 6
1.2 Design Generation . 7

1.2.1 Hypothesis . 10
1.2.2 Structure of Document and Methods . 10

2 Background 12
2.1 Representing Spatial Configuration . 12

2.1.1 Scientific Aspirations . 12
2.1.2 Beyond Dissections . 17
2.1.3 Summary . 19

2.2 Learning Spatial Configuration . 20
2.2.1 Creating Data . 21
2.2.2 Embedding Relationships . 24
2.2.3 Spatial Analysis with Embeddings . 26
2.2.4 Data-driven Generative Systems . 29
2.2.5 Summary . 35

3 Methods 36
3.1 Vignette 1 - Dissecting and Enumerating . 36

3.1.1 Introduction . 36
3.1.2 Basis of Reconstruction . 38
3.1.3 Producing the Dissections . 40
3.1.4 Dissections to Adjacency Graphs . 44
3.1.5 Dissection Assignment . 44
3.1.6 Visualizing Dissections and Graphs . 49
3.1.7 Results . 49
3.1.8 Discussion . 50

3.2 Vignette 2 - Encoding Configuration . 52
3.2.1 Introduction . 52
3.2.2 Node Attributes . 53
3.2.3 Data Set . 55
3.2.4 Feature Engineering . 55

2

3.2.5 Classification Experiments . 57
3.2.6 Results . 58
3.2.7 Discussion . 59

3.3 Vignette 3 - Generating With Data . 63
3.3.1 Introduction . 63
3.3.2 Investigating the Data Set . 63
3.3.3 Floor Plan Encoding . 66
3.3.4 Data Representation . 66
3.3.5 Generative Model . 68
3.3.6 Discussion . 68

4 Conclusion 69
4.1 Contribution . 69
4.2 Next Steps . 71

References 71

3

List of Figures

1 Generative design as search within defined solution space (Mitchell, 1979) . . . 8
2 Quantification of building occupant travel patterns (March, 1971) 12
3 Topological lineage (left, right) (Steadman, 1983), (middle) (Mitchell, Stead-

man, & Liggett, 1976) . 15
4 English housing stock classification (Steadman, Brown, & Rickaby, 1991) . . . 16
5 Examples of planar graphs mapped to floor plans with the addition of circu-

lation spaces (Baybars & Eastman, 1980) . 17
6 Recent examples of floor plans generated from graph input (Shekhawat, Up-

asani, Bisht, & Jain, 2021) . 18
7 Composition of RPLAN data set (Wu et al., 2019) 24
8 Samples from LIFULL HOMES data set (Informatics Research Data Reposi-

tory [LIFULL HOME’S Dataset] , n.d.) . 25
9 Diagrams of graph, edge and node embedding into 2-dimensional vector space

(Abdelrahman, Chong, & Miller, 2020) . 26
10 Samples from Ferrando data set (Ferrando, Dalmasso, Mai, & Cardoso Llach,

2019) . 28
11 Representative examples of state of the art data-driven floor plan genera-

tors. a) (Wu et al., 2019), b) (Hu et al., 2020), c) (Nauata, Chang, Cheng,
Mori, & Furukawa, 2020), d) (Para, Guerrero, Kelly, Guibas, & Wonka, 2020),
e) (Nauata et al., 2021) . 34

12 Selected images from “Synthesis and Optimization of Small Rectangular Floor
Plans.” Adjacency and orientation requirement matrices, adjacency require-
ment graph, and possible solution. 37

13 Manipulation of cellular representations to generate new rectangular dissec-
tions. The permutation, standardization and removal stage are performed on
all cellular representations generated by the production rules. 39

14 Reconstruction of unique rectangular dissections through n=6 45
15 Graphic representations: a) cellular representation; b) rectangular dissection;

c) adjacency graph extracted from dissection; d) exterior nodes added to ad-
jacency graph; e) half-graph with east-west adjacencies; f) half-graph with
north-south adjacencies . 47

16 Assignment of adjacency and orientation requirements to rectangular dissection 48
17 Data set sample (Ferrando et al., 2019) . 52

4

18 Three scenarios: buildings encoded separately, buildings encoded together,
buildings encoded together with a common node 56

19 t-SNE plots of node vectors: a) embeddings only,buildings encoded separately,
setting 1; b) embeddings only, buildings encoded together, setting 1; c) em-
beddings only, buildings encoded with common node, setting 1; d, e, f) same
as a, b, c with setting 2; g) feature vectors . 61

20 a) Reconstructed vector format floor plan; b) Graphic representation of adja-
cency graph; c) Raster image of floor plan; d) Vector encoding raster image . . 67

List of Tables

1 Table of dissection enumeration results . 50
2 Table of graph and node features . 56
3 Table of node2vec parameter settings . 57
4 Node classification results (Percent correct) . 59
5 Building classification results (Percent correct) 60

List of Algorithms

1 Production: Boundary Addition . 40
2 Production: Subdivision of Component Rectangles 41
3 Production: Expansion and Boundary Addition 42

5

1 Introduction

1.1 Motivations

Broadly, my research interest lies in generative systems used to support architectural design

and research. I was introduced to these systems in the Generative Systems for Design course

taught by Prof. Ramesh Krishnamurti and Pedro Veloso. My final project in the course

explored procedural form generation using the Rhino CAD application with the Grasshopper

plug-in, Embryo, and the Biomorpher plug-in (Harding, 2016; Harding & Brandt-Olsen,

2018). Embryo is a generative system utilizing genetic programming. Inspired by philosopher

Manuel DeLanda’s argument that evolutionary design algorithms must allow for topological

variation of the generated forms, not only parametric variation, its generative search method

is modeled on computer scientist John Koza’s research into automated evolution of computer

programs (DeLanda, 2002; Koza, 1992). Biomorpher assists a designer by clustering large

numbers of generated options by similarity. The designer’s evaluation of the filtered options

informs the successive searches.

During the summer of 2020 I continued exploring generative systems while working for

a modular building manufacturer. The manufacturer desired to offer an online building

design generator to their developer clients. Leaving aside for a moment the possibility

that a complete architectural design process could ever be automated, even for as tightly

constrained a problem as these modular buildings, deeply engaging in the work brought me

many insights about generative design and exposed another way of considering topology in

generative design. Specifically, the incremental development of the tool gradually revealed

the need to generate and evaluate solutions constrained by their spatial configurations, not

simply formal assemblages. The generator we were building needed to derive both formally

and functionally successful buildings, yet one characteristic did not guarantee the other.

Allowing influence from both constraints promised to allow a broader formal search while

also increasing the likelihood of finding functionally correct solutions.

Researching computational representations of spatial organization took me beyond simple

6

bubble diagrams and into a study of the history of graphs in architectural design. Archi-

tectural historians are researching the role mathematical representations of shape and space

played in 20th century architectural theory. The historical research coincides with a burgeon-

ing research interest in graphs in other domains such as biology, computational chemistry,

social network analysis, and recommendation systems. Machine learning on graph structures

within these domains is an active research area and those efforts are beginning to influence

computational research and design in the architectural domain. The intersection of machine

learning and graph-based architectural representations suggested to me opportunities for a

timely research topic.

1.2 Design Generation

Today, within the building and design industry significant investments are being made to de-

velop powerful new tools that purport to generate designs. These investments are occurring

in tandem with advancements in visualization, physical modeling, and document production.

As more professionals gain the necessary skills, these technologies are gradually becoming

part of everyday design practice. In parallel, advanced manufacturing, materials, and con-

struction technology offer designers seemingly ever-expanding opportunities for creativity

and higher performing buildings. Increasing computer power, professional knowledge, mar-

ket pressures and the investments being made by software developers has led many people

to suggest that generative tools are poised to take a greater role in architectural practice in

the near future.

An example of the dissemination of generative tools is software developer AutoDesk’s

generative design platform for Revit (Revit Gen Design, n.d.). It offers designers a ready-

made workbench to automate the search of parametric design spaces. Because Revit is the

industry-standard building information modeling (BIM) software, access to the capabilities

of this tool will introduce the concept of generative design to many designers who may not

have otherwise sought it out. Other efforts go beyond tools that may assist designers at

the scope of a single project and instead attempt to redefine industrial and professional

7

roles and relationships. Spacemaker.ai, recently acquired by Autodesk, is an urban planning

tool for developers and designers (Spacemaker AI , n.d.). It allows developers to evaluate

the feasibility of a building site and real estate project using computer-generated building

options. Alphabet, the parent company of Google, is developing a similar platform called

Delve, under the umbrella of its subsidiary Sidewalk Labs (Delve, n.d.). The Sidewalk

Labs led development proposal for the (now defunct) smart-city project in Toronto, Canada,

suggests the opportunity big technology companies see in generative tools as an entry to the

design and construction market.

Figure 1: Generative design as search within

defined solution space (Mitchell, 1979)

However, the idea of a generative sys-

tem that can automate a design process

is not new and has been discussed since

Aristotle (Mitchell, 1979). Pursuit of these

systems has many motivations, including

speedier exploration of multiple design pos-

sibilities, the capability to address ever

larger and more complex design problems

or even the organizational symmetry of cou-

pling an automated manufacturing process

with an automated design process. For Aus-

tralian architectural theorist William Mitchell, the application of generative systems required

the framing of architectural design as a “special kind of problem-solving process" within a

"framework of a general theory of problem solving" (Mitchell, 1979, p. 37). Essential to

reframing design as a procedural method is the creation or adaptation of representational

systems amenable to the problem-solving process, and by extension, digital computers.

To generate suggests mechanical creativity and the ability to bring into existence some-

thing that did not exist. However, in the domain of generative systems, the term creativity

is misleading. Instead, generation is best defined as an act of finding options, variations

or solutions by searching within a defined search space. Figure 1 illustrates this concept.

Therefore, generative design in its most general sense has three components: 1) a system

8

representation amenable to computation, 2) an algorithmic search procedure, 3) a defined

search space. This neat framing is the basis of Mitchell’s argument for the value of digital

computer use in architectural design and persists today.

There are many different generative systems, while new and more sophisticated exam-

ples are being developed continuously. They can be grouped in numerous ways, but several

distinctions are helpful and will be referenced later. All provide output along a spectrum

between mathematically deterministic to (pseudo) random. Broadly, this is a function of

the level of constraint placed on the search of the design space. Additionally, all have a

characteristic level of designer interaction during the generative process. At one extreme is

no interaction at all. The system produces results solely from the initial input. At the other

extreme is a system that uses feedback from the designer to steer the generative process

in real time. During the generation process these systems may also assist the designer by

evaluating and sorting options for review by the designer. This process exploits the com-

puter’s capability to generate large quantities of options, while also exploiting the subjective

expertise of the designer.

As a result of continuous development in machine learning techniques, a new distinction

within generative systems has emerged. Data-driven generative processes operate funda-

mentally differently from conventional rule-based generative processes. The latter rely on

explicit rules to define system behavior and by extension the design space. These rules are

conceived and crafted by the system designer. Data-driven generative systems use the input

data to define the design space. The system then produces results using the implicit patterns

and rules learned from the data. Proponents argue that data-driven generative systems of-

fer a powerful tool to explore problems without closed-form solutions, such as most design

problems (Hu et al., 2020).

Floor plan creation is an example of a problem without a closed-form solution. At its

most basic level, a floor plan is a scaled map of the physical elements of a building. As such

it delineates the building’s spaces and the physical access between them. Devising generative

systems for floor plan creation is a popular area of research. One important lineage within

9

this domain employs mathematical graph abstractions to represent the spatial relationships

structured in floor plans. Here, graph nodes represent rooms or spaces, while graph edges

represent physical adjacency and passage between spaces.

1.2.1 Hypothesis

The use of graph-structured data for data-driven floor plan generation raises many exciting

prospects for new computational methods of architectural design and research. This thesis

takes the position that recent scholarship on a specific area of 20th century architectural

research that focused on the mathematical description of spatial organization provides a

lens to critically consider these technologies. Importantly, that period coincided with early

explorations of the affordances of digital computers in architectural design and analysis. The

mathematical abstractions developed are intimately connected to those explorations. Rather

than focusing on the algorithms employed by the cutting-edge data-driven generative systems

of today, my research interrogates the data and data transformations required to use the

algorithms. The primary hypothesis is that a critical understanding of the history of graph

structured representations of space is crucial to understanding the potential and limitation

of these new technologies.

1.2.2 Structure of Document and Methods

The Background chapter is divided into two sections. The Representing Spatial Configura-

tion section covers a particular focus of architectural research spanning between roughly 1965

and 1985 at Cambridge University in England. During this period interdisciplinary schol-

ars at Cambridge University, including Christopher Alexander, Lionel March, and Philip

Steadman created rigorous mathematical and geometric descriptions of space and shape.

Graph representations played a central role in their theories. They did not initiate the use of

graph representations in architectural design, and the intersection of graph representations

and architecture was being explored concurrently at other sites, such as the Massachusetts

Institute of Technology in Cambridge, Massachusetts. However, the work by Alexander,

10

March and Steadman is integral to the conceptual lineage of graphs in architectural the-

ory and design. The Learning Spatial Configuration section discusses the emerging use of

graph-structured data for architectural research and generative design employing machine

learning. Machine learning has opened new opportunities to perhaps address some of the

practical challenges faced by the 20th century researchers. Unlike the scholars in Cambridge,

current researchers of the data-driven generative systems may not be architects or designers;

instead, these researchers are computer scientists and mathematicians employing floor plan

design and graph representations to explore mathematical packing problems or using design

as a site explore ideas about artificial intelligence. Nevertheless, these studies raise many

interesting questions about the application of machine learning technology in architectural

design and research. In particular they offer an opportunity to ask questions about the spa-

tial representations and abstractions designed specifically for these tools. My analysis has

found that while these new research efforts have initiated new avenues of research, they have

also re-established some of the inherent limitations of graphical representations of spatial

organization.

The Methods chapter is broken into three sections which I have called computational

vignettes. Vignettes are computational instruments to explore, demonstrate and evaluate

the concepts presented in the Background section. Vignette 1 is a reconstruction of the algo-

rithms used by William Mitchell, Philip Steadman and operations researcher Robin Liggett

to enumerate a catalog of rectangular dissections. Additional algorithms search the catalog

to match dissections to design requirements. Vignette 2 investigates vector representations

(embeddings) of graph spatial organizations through machine learning classification exper-

iments. Vignette 3 demonstrates a data-driven floor plan generator. In doing so, it also

aims to demonstrate the critical role of data in these systems. Discussions of the results and

insights gained from each Vignette are included at the end of each. Finally, the Conclusion

will reflect on the overall thesis and propose areas for further research.

11

Figure 2: Quantification of building occupant travel patterns (March,

1971)

2 Background

2.1 Representing Spatial Configuration

2.1.1 Scientific Aspirations

During the post-World War II period, architectural researchers at Cambridge University

in England pursued scientific theories of architectural design. Motivated by, among other

things, the functionalism of the Constructivists and their anti-intuition doctrine, they be-

lieved that scientific methodologies were necessary for architecture to meet the design chal-

lenges of the built environment of the second half of the twentieth century (Keller, 2017).

While attempting to situate architecture as a scientific endeavor, they also placed archi-

tecture itself as the subject of scientific inquiry. Four primary themes laced together these

inquiries during the “1960s and 1970s: mathematics (particularly graph theory), computer

analysis, the quantification of programmatic and environmental requirements, and an over-

riding reliance on scientific analogies” (Keller, 2017). Figure 2 is an example of quantification

of travel patterns within a building collected with the intention of informing future building

design efforts.

12

Having completed his undergraduate degree in mathematics prior to pursuing his archi-

tectural studies, architect Christopher Alexander made early interdisciplinary connections

between graph theory and the architectural design process. He was also a very early prospec-

tor of the use of computers in architectural design. For Alexander, the graph structure

provided a formalism to both analyze and structure the design problem as well as describe

the structure of a spatial solution (Steenson, 2017). After leaving Cambridge, Alexander

completed his PhD at Harvard, the dissertation from which became the seminal Notes on

the Synthesis of Form, published in 1964. Although Alexander eventually disavowed his

mathematically deterministic approach to design, the analysis of space plan layout using

graph theory continued to be an important component of the work at Cambridge.

Published by Lionel March and Philip Steadman in 1971, The Geometry of Environment,

lays out their case for the relevance of “modern geometry” in architectural design (March,

1971). Among its many affordances, mathematics provides a symbolic representation system

adaptable to the expanding promise and rapid advancement of digital computer technology

into the practice of architecture. However, as Vardouli explains, the introduction of new

mathematical abstractions to architectural research was not solely prompted or resultant on

computer use. Instead, the refocus was motivated by “historically specific visions about the

intellectual and disciplinary benefits” of the new abstractions (Vardouli, 2020). In the Preface

to The Geometry of Environment, March summarizes the now quantifiable descriptions of

spatial relationships available in the adopted mathematical theories:

“Perhaps the chief difference between the traditional treatment of geometry in

architecture and the one presented here, is that, previously, geometry was em-

ployed to measure properties of space such as area, volume, angle, whereas the

new mathematical theories of sets, groups and graphs - to name but a few - en-

able us to describe structural relationships which cannot be expressed in metrical

forms, for example, ‘adjacent to’, ‘in the neighbourhood of’, and ‘contained by.’ ”

The authors also position their ideas as complementary to Notes on the Synthesis of Form, by

focusing more on form in contrast to Alexander’s emphasis on function. Although function is

13

not completely removed from the mathematical translations proposed, when demonstrating

graph representations of spatial relationships nodes are simply rooms, without any indication

of function.

By the early 70’s enthusiasm for the belief that form could be directly derived from func-

tion was waning (Keller, 2017). Research within the Centre for Land Use and Built Form

Studies (LUBFS) by Philip Tabor and Tom Willoughby persuasively argued that “quantifi-

ably optimized architectural solutions were largely impossible” (Keller, 2017). Furthermore,

architect and historian, Colquhoun argued, in opposition to the burgeoning Design Methods

movement, that “the configurations which [a designer] arrives at must be the result of an

intention, and not merely the result of a deterministic process” (Colquhoun, 1969). In the

Introduction and numerous other locations in Architectural Morphology, Steadman cautions

against the idea that mathematical descriptions of shape and form are arguments for, or lead

inevitably to, either a “functional determinism” or a design method approach to design. He

falls back to support the work with the belief that “understand[ing] geometrical limitations

and geometrical possibility formed a valuable and . . . neglected part of the general education

of the designer” (Steadman, 1983). Closing out the book, he proposes that the mathematical

study of architectural form, a morphology in the spirit of Geothe and D’Arcy Thompson’s

studies, is the beginning of a “ ‘natural history’ of architecture,” organized by geometry and

function type (Figure 3). Without abandoning the modernist break from historical type,

the graph of spatial configuration becomes solely a classification instrument, rather than a

container of generative potential, in the support of a “theory of built form.”

Work by the Centre for Configurational Studies to document the morphology of English

building stock further clarifies the role of graph representations as a tool for architectural

analysis and classification (Steadman et al., 1991). Researchers at the Centre believed that a

theory of morphological classification was necessary to support “scientific generalisations . . .

about the relationships of form to performance.” The survey of housing in Cambridge, Eng-

land, included approximately 400 residences. Each floor plan was stored in a digital format as

a typical floor plan and a graph, that indicated both adjacency and access. Documentation

and study of actual buildings added to their theory of built form by elaborating on addi-

14

Figure 3: Topological lineage (left, right) (Steadman, 1983), (mid-

dle) (Mitchell et al., 1976)

tional concepts that constrained the geometrical limits of graphs and rectangular dissections.

While crucial, these constraints are contingent and changing and therefore secondary to the

immutable rules of topology. The constraints include "functional need, technological factors

and legal requirements.” The order of these concerns, from dimensionless configuration to

specific dimensioned form, is expressed clearly in Figure 4.

Although the Centre for Configurational Studies moved away from graph representations

as seeds for an automatic floor plan design process, other researchers have continued the work

of the functionalist program. The progressive development of new algorithms aspires for re-

sults that are more similar to what a designer might create manually. “A Graph Theoretical

Approach for Creating Building Floor Plans,” includes a succinct history of the progress

and contributions made by each new generative algorithm using graph theory (Shekhawat,

Pinki, & Duarte, 2019). For example, some additional functionalities are the inclusion of

non-rectangular rooms, acknowledgment of exterior adjacencies, and inclusion of circulation

space. The progress is, however, not cumulative as each algorithmic approach is fundamen-

tally different from the others. Even the method proposed in the paper, although clearly able

to create dissections of greater variety than rectangular dissection algorithms of the 1970s

and 1980s, is not convincingly more useful than any of its predecessors. Figures 5 and 6 are

examples of floor plans generated in 1980 and 2021, respectively.

15

Figure 4: English housing stock classification (Steadman et al., 1991)

16

Figure 5: Examples of planar graphs mapped to floor plans with the

addition of circulation spaces (Baybars & Eastman, 1980)

2.1.2 Beyond Dissections

As an alternative to layout generation with sophisticated rectangular dissectors using a

graph structure as input, other pairings have been proposed. Shape grammars, introduced

by computer scientist James Gips and design and computation theorist George Stiny in 1972,

are a generative method that works directly with shape and form without reducing them to

abstraction (Stiny & Gips, 1971). Vardouli argues that graph abstractions and unmediated

shapes operate in two different “representation spaces” (Vardouli, 2020). The following three

projects attempt to utilize the strengths of each. Heitor et al. proposed a method to constrain

a shape grammar generator, the Malagueira grammar by José Duarte, with space syntax

graph methods (Heitor, Duarte, & Pinto, 2004). Duarte created the Malagueira grammar for

his PhD thesis at MIT. It is a generative shape grammar derived through study of Portuguese

architect Alvaro Siza’s realized projects in the Malagueira housing subdivision (Duarte,

2001). Through derivation of a design with the grammar, a correct spatial organization

is resultant from the formal generation. In other words, the spatial logic is implicit in the

grammar rules. Following the creation of the grammar, Duarte along with Heitor and Pinto,

analyzed the Siza designed houses and the grammar-generated houses using space syntax

measures. This analysis led them to propose rules to evaluate the developing graph structure

17

Figure 6: Recent examples of floor plans generated from graph in-

put (Shekhawat et al., 2021)

during the generative process. The additional evaluation, operating parallel to the formal

grammar, created a method of maintaining stylistic consistency without over constraining

the formal generative process.

A similar attempt at a single framework combining the abstract structure of graphs with

the formal generative process of shape grammars is proposed by Al-Jokhadar (Al-Jokhadar

& Jabi, 2016). Like the Malagueira grammar, this grammar was derived from existing

buildings but focused on a single type, rather than the work of a single designer. The work

hypothesizes that the "social, cultural and contextual aspects” of vernacular North African

homes can be encoded into a generative grammar at conception. Thus, they are arguing that

the spatial organizing structure can be explicitly situated within the rules of the grammar,

along with the formal principles and materiality.

Graphs can also be generated algorithmically with a grammar. Grasl and Economou

proposed such a generative system by translating the generative rules of a shape grammar

to the generative rules of a graph grammar. They successfully applied this approach to the

well-known Palladian grammar created by Stiny and Mitchell (Grasl & Economou, 2010;

Stiny & Mitchell, 1978). Spatial subdivision is achieved through the translation of edge

attributes into walls and openings. Although somewhat awkward in conception, this project

demonstrates the potential of entwining the formal system process of a shape grammar with

18

the spatial organizing structure of a graph grammar.

2.1.3 Summary

The mathematical representations of spatial configuration that were the focus during this

period supported two interrelated modes of architecture and design research: analytical

and generative. The analytical research of morphology conducted at the Centre for Con-

figurational Studies sought a scientific understanding of spatial configuration. Graphs were

considered valuable tools for generalization and classification of the built environment be-

cause they did not require subjective taxonomies of formal or historical typologies. Digital

computers played an important role in the creation and storage of morphological studies,

as demonstrated by the British housing stock study. This early database of architectural

information is a precursor to the data sets discussed in the following chapters.

Exhaustive enumerations of dissections span both the analytical and generative modes.

Analytically, the enumerations served as objective demonstrations of the capabilities and

limitations of the new mathematical representations of spatial configurations. The produc-

tion of enumerations also suggested a potential use for digital computers in architectural

practice. Steadman speculated that such a catalog of the enumerations could serve as a

reference to support research such as the British housing stock study. For generative design

purposes, the exhaustive enumerations served as a neutral data set of geometric relationships

in support of the generative process. Generation from enumerations is directly related to

the first computational vignette prepared in this thesis. Vignette 1 reconstructs an impor-

tant example of this approach and offers an opportunity to experience the proposed design

workflow.

Graphs of adjacency requirements also served as constraints in generative processes that

sought singular or small collections of solutions. Because the size of a dissection catalog

grows explosively as the number of rooms increases, catalogs of dissections are impractical

for anything but small rectangular floor plans. Instead, explicit algorithms based on graph

theoretical concepts create sets of solutions specific to the input adjacency requirements.

19

Generative approaches that do not use a catalog are the more common approach described

in the literature.

Today, graphs are common in architectural practice as bubble diagrams. Designers often

use bubble diagrams to quickly explore and communicate programmatic concepts prior to

resolving geometrical relationships. The natural analogies of bubbles to spaces and lines to

physical access is intuitively understood and make bubble diagrams ready tools for com-

municating abstract spatial relationships. Planners use adjacency matrices to communicate

design requirements, called the program, to the design team. Adjacency matrices serve as

a specification to guide and a target against which a realized design can be compared. 20th

century British architectural historian John Summerson 1 claimed that "The programme as

the source of unity is ... the one new principle involved in modern architecture" (Summerson,

1990). Graphs have proven to be an apt container for this principle.

2.2 Learning Spatial Configuration

Recent advancements in machine learning open new possibilities for spatial analysis and

design generation using the mathematical abstractions established by the architects and

mathematicians of the Cambridge group. Those two modes of research will structure the

areas of inquiry in this section. However, before returning to those ideas, three floor plan data

sets and the concept of vector embedding of graphs will be introduced. New research is being

conducted in the digital computing world of hardware optimized for machine learning tasks,

accessible through cloud computing services that make available vast computing power even

to small scale architectural researchers. The distribution of computing power is a notable

difference from the research discussed in the previous section. Because this is a nascent area

of research, work is only beginning to be published. All of the examples discussed in this

section have been published in the past two years and some propose complex machine learning

algorithms. While the technical aspects are critical to the evaluation of the project, my intent

is not to provide a technical explanation of the projects. Instead, I aim to place the projects
1Introduced to me by Molly Steenson

20

within a larger design context and lineage of the graph representations in architecture.

2.2.1 Creating Data

Large quantities of data are typically required for machine learning applications. This is

particularly true for data-driven generative systems. Although the common practice of em-

ploying crowd-sourcing marketplaces to sort, label, and clean data floor plan data presents

unique challenges. Public collections of floor plans in digital formats are relatively rare and

often contain a limited range of spatial and building types. It is reasonable to assume that

digital collections only represent a small fraction of the floor plans in archives. When avail-

able, digital floor plans are often stored in raster formats that do not allow for convenient

extraction of semantic information or geometry. This limitation is noted by nearly all re-

searchers in the field. At least one academic institution is explicitly addressing this challenge.

By offering a public database to store floor plans and tools to extract semantic information

from rasterized plans the institution hopes to encourage contributions (Building Database &

Analytics System (BuDAS), n.d.). The current focus of the database is limited to domestic

architecture.

Computer vision (CV) methods capable of converting common digital image formats to

vector formats usable by CAD software are an active research area. To accomplish this,

CV methods seek to emulate the expert human skill required to manually interpret plans.

Importantly, CV is also a machine learning technology that requires human labeled training

data which can be costly and time consuming. The enormous range of common graphic

styles for floor plans presents a great challenge to automated format translation systems.

Extensive pre-processing is often required, limiting the generalizability of CV tools.

Computer aided design software (CAD) is a standard technology for building design and

engineering practices and has been for decades. Even so, CAD formatted plans of published

projects and built work are typically not made available to the public. Makers of CAD

software, especially those hosting clients’ models on cloud computing services have a new

and unique position to collect contemporary plans. Understanding the value of such data

21

for development of their own products and to the design and research community in general,

some are currently exploring avenues to collect plans from the users of their software (Cheng,

2021). Access to this data will need to address significant privacy, intellectual property and

safety concerns.

Sensor data, IoT data, and other modes of spatial data suggest another method to build

data sets of spatial organization (Abdelrahman et al., 2020). Although there are significant

privacy and other important issues to consider, sensor data and data collected from other

sources, such as social media, may provide a closer to ground truth model of the built envi-

ronment. As noted above, data sets of floor plans are built on several levels of representation

and abstraction. The original floor plans were crafted for varying audiences, thereby in-

cluding, excluding, and emphasizing different information. Among other possibilities, sensor

data may create new opportunities to continue the functional and programmatic analysis of

space use initiated in the 20th century.

Three particular data sets are important to the projects presented in this background

section and to the vignettes. The first is the mosques and monasteries data set (Ferrando

et al., 2019). The data set contains the CAD plans, initial research data and tabular form

data of 19 monastery and 20 mosque complexes. Multiple online sources supplied the initial

information on each complex. Collection, sorting, interpreting and ultimately transforming

the raster images into a CAD format required expert skill and was primarily a manual

process. The elements in the CAD format were carefully devised to allow for automated

extraction of spatial relationships. Although too small to be used for a generative system,

this data set is presented for several reasons. First, the research that initially assembled and

experimented with the data set is discussed in the next section. Vignette 2 uses the same

data set for classification experiments because the spatial structures are complex and varied.

Finally, the original paper demonstrates and explicitly calls attention to the human labor

required to transform commonly available formats of architectural information into formats

applicable to machine learning.

The next two data sets address the challenge of sparse data and a labor-intensive col-

22

lection process in different ways. Both are composed of Asian residential floor plans and

both are large enough to be used for data-driven generative systems. Like the mosques and

monasteries data, both of these residential data sets were created for research exploring the

intersection of machine learning and spatial arrangement.

RPLAN is a data set created specifically to feed a floor plan generation tool created

by the same researchers (Wu et al., 2019). Numerous selection criteria were employed to

standardize the corpus of plans. Unusual layouts, those with unidentified rooms, and those

with rooms not among the thirteen most common types were removed. The authors also set

criteria for the overall area of the plan, the number of rooms, the presence of a living room,

the proportion of the living room to the overall area, and average room size. Figure 7 shows

the distribution of various floor plan characteristics with in the data set. Initially the plans

were in a vector format, but for the purposes of the machine learning architecture, each was

converted to a four-channel 256x256 pixel raster image. The channels contain a boundary

mask, inside mask, wall mask, and room mask. The room mask encodes the room types.

The final set contains over 80,000 plan images.

The data set is described as “manually collected,” but how and when the original vector

format plans were created or where they were found, how semantic information like room

function was determined, and the evaluation criteria for standard plans is not fully docu-

mented. The files available from the research group do not contain the vector formatted

files. As noted elsewhere, much research on floor plan data sets has focused on automated

creation of vector information and extraction of semantic information from raster images.

The seeming discounting of the vector format information is intriguing.

LIFULL HOME’s is a much larger and more diverse data set (Informatics Research Data

Repository [LIFULL HOME’S Dataset] , n.d.). Originally made public in 2015, the real

estate property data set contains over 5.3 million properties in the Japanese rental market.

The publishers, LIFULL, operate LIFULL HOME’S, “Japan’s largest . . . real estate and

housing information site” (LIFULL, n.d.). The website describes its mission as a platform

to connect renters to property owners, movers and other property services. According to the

23

Figure 7: Composition of RPLAN data set (Wu et al., 2019)

company’s blog post announcing the data set publication, LIFULL HOME’S hoped outside

groups “...will use the data set for research and use it for innovation that will transform the

search for a place to live” (LIFULLCreators, n.d.-b)!

In addition to images of floor plans, samples of which are shown in 8, the data set contains

photographs and many categories of property data such as rent and fees, general location,

building type and amenities, and neighborhood information. Although not explicitly stated,

the posted information on the data set implies that it includes all of the properties in the

LIFULL platform available at the time and the only criteria for property inclusion was the

presence of adequate information. In 2016, 5.15 million high-resolution floor plans of size

256x256 were added to the data set. The updated plans were a response to researcher

requests and justified that “active research on floor plans will lead to improved convenience

for users looking for a home in the medium to long term” (LIFULLCreators, n.d.-a). LIFULL

HOME’S also offers a data set toolkit in a GitHub repository. Although publicly available,

use of the data set is restricted to academic and research institutions.

2.2.2 Embedding Relationships

Structured relational data is common in many research domains such as computational bi-

ology and social network analysis. Typical machine learning techniques require data with

24

Figure 8: Samples from LIFULL HOMES data set (Informatics Research

Data Repository [LIFULL HOME’S Dataset] , n.d.)

simple relational structures, such as sequential data or data with fixed dimensions. Therefore,

complex relational data structures, like graphs, must be transformed into vector representa-

tions before machine learning techniques can be applied. There are many vector-embedding

techniques available, but in general, they all attempt to locate nodes or graphs in the vector

space by similarity, as diagrammed in 9. Successful techniques minimize the distance between

similar nodes or graphs and maximize the distance between dissimilar ones. Techniques that

capture the entire graph as a single vector are called graph embedding techniques. Like-

wise, those that capture nodes are node embedding techniques. Techniques break down into

two primary categories: unsupervised and supervised algorithms. Unsupervised algorithms

aim to extract the graph structure and the relationship of the objects in the graph. Su-

pervised algorithms also aim to capture the structure of the graph but they also capture

node attributes (Chami, Abu-El-Haija, Perozzi, Ré, & Murphy, 2020). The choice of vec-

tor representation is crucial to the performance of the machine learning application (Grohe,

2020).

Recent work involving graph representations of spatial organization explores the potential

25

Figure 9: Diagrams of graph, edge and node embedding into 2-dimensional

vector space (Abdelrahman et al., 2020)

utility of different embedding approaches. In architectural terms, vector embeddings aspire

to capture the semantic information extracted from floor plan representations and encoded

in the graph representation. As such, they are an additional abstraction level removed

from the original floor plan representation. Which spatial characteristics to include as node

attributes is a primary consideration when creating graph representations and the following

research takes several approaches. Function is a common choice, but any number of other

attributes are possible. Equally important is the edge representation. Edges commonly

represent adjacency and physical access and therefore make-up the relationship structure of

the graph. Edges may also be attributed with information that qualifies or quantifies the

type of the relationship represented by the edge. For example, values may be used to define

both desired connections and disconnections.

2.2.3 Spatial Analysis with Embeddings

For researchers looking to further the analytical methods of space syntax, vector embedding

methods may provide a new lens to study the relationship of spatial configuration and social

configuration. Initial steps toward the integration of machine learning into the lineage of

space syntax tools is proposed by Ferrando (Ferrando, 2018). By encoding the node infor-

mation as feature vectors, this research asks whether machine learning models can usefully

learn the quantitative measures of space syntax defined by architectural theorists Bill Hillier

and Julienne Hanson. From another perspective it is asking whether the feature vectors are

26

able to effectively contain the imprint of the social and cultural forces that they believe are

inherent in the spatial layout. Space syntax measures, such as betweenness centrality and

closeness centrality, are derived from the spatial organization graph using graph theoretic

methods. Metric measures such as room area and room isovist area are derived from the

floor plans. Further, the research seeks a method to “characterize abstract architectural

qualities in terms of quantifiable spatial features.” The two qualities chosen were spatial pri-

vacy and spatial intimacy. Labeling of the spatial qualities for a training data set required

expert human evaluation which limited the size of the data set. Classification experiments

predicted the privacy rating of the input space with modest success. Several problems may

have impacted the results, the complexity of the models, the size of the data set, and chosen

features of the vector representation.

Similar to the work by Ferrando but without employing space syntax measures, the

search for evidence of architectural spatial qualities within graph representations has also

been conducted with machine learning node embedding algorithms in lieu of hand-crafted

feature vectors (As, Pal, & Basu, 2018). This research scored a small set of speculative house

designs for “liveability” and “sleep-ability” qualities. The unsupervised random walk node

embedding algorithm, node2vec, which will be discussed in detail in Vignette 2, was used to

construct models intended to capture those qualities. The reported results were encouraging,

but as demonstrated by Ferrando’s research above, the limitations of a small data set are

significant. Therefore, the value of the research is the demonstration of possible methods

with potential for deployment when larger data sets become available.

The combination of graph embedding and a limited number of space syntax measures

has been successfully used to train a model to classify buildings by type. Exploring the

relationship between “spatial configurations and typological traits,” Ferrando, Dalmosso,

Mai and Cardoso Llach trained a machine learning model to recognize the difference between

mosque and monastery floor plans translated to graph representations. Samples from the

data set are shown in Figure 10 (Ferrando et al., 2019). In contrast to previous work, the

process made no explicit attempt to classify by abstract architectural characteristics. Instead,

at least in concept, those characteristics were learned by the graph embedding algorithm

27

and present in the vector space representation of each building’s spatial organization graph.

Classification experiments of the graph embeddings proved to be very successful.

Figure 10: Samples from Ferrando data set (Ferrando et al., 2019)

In addition to classification, machine learning applications using node embeddings have

been tasked with discovering clusters of spaces comprising common related functional assem-

blages. As et al. hypothesized that these relational substructures could operate as functional

design building blocks in a generative system (As et al., 2018). Because the function of a node

was essential to the vector representation, a supervised embedding algorithm was employed.

Although a generative system was not proposed, the concept of identifying and classifying

higher level substructures, essentially a functional pattern language, within a data set of

architectural plans presents a promising line of research.

28

2.2.4 Data-driven Generative Systems

Researchers and designers see different opportunities for structured data and graph repre-

sentations of spatial organization when used to drive generative systems. Data sets of floor

plans, graph embedding algorithms and generative machine learning systems offer new and

intriguing possibilities. Researchers are motivated by the desire to increase efficiency and

democratize the floor plan design process and provide a co-design AI for designers (Hu et

al., 2020; Nauata et al., 2020; Cheng, 2021). Researchers also use floor plan design to ex-

periment with particular types of geometric packing problems or use design in general as an

AI research problem (Para et al., 2020; Cheng, 2021). The research groups are interdisci-

plinary with individuals being associated with both computer science and design academic

departments. The creators of the House-GAN projects, in particular have a strong computer

science and software industry bias. For example, the lead researcher, Nelson Nauata, is a

PhD student in the computer science department of Simon Fraser University and is located

within the lab of Yasutaka Furukawa. In fact, only one of the six authors of the paper,

Chin-Yi Cheng, have any architectural education listed in their online profiles. The lab itself

and several of the researchers are also affiliated with Autodesk. Additionally, the computer

vision tools integral to the House-GAN projects where both developed within the Yasutaka

Furukawa lab.

Underlying this work is the argument that machine learning models have the potential to

learn the design rules implicit in the human created design examples used for training (Wu

et al., 2019). In other words, by pairing actual floor plans with their adjacency graphs, the

models “learn” the skill and design knowledge that the human designers used to create the

plans, ostensibly from the adjacency graph. Using the rules a generator can create new,

yet unseen floor plans from new adjacency graph input. Through this learning process the

data-driven generator may avoid altogether the need to create the explicit rules for spatial

subdivision that have been the focus of graph theoretic floor plan generator systems.

The developers of the generators employ several strategies to evaluate the results of their

generators. It should be noted that these are evaluations of the generated output, and

29

are not related to, at least not directly, the error that is calculated during model training.

Three evaluations methods are used - compatibility, diversity and realism. Compatibility

is a measure of the similarity of the output adjacency graph to the input adjacency graph.

It is determined by calculating the graph edit distance (GED). Although computationally

complex, GED represents the minimum number of edits required to transform a source

graph into a target graph. Individual outputs are calculated, but results can be aggregated

to gauge the performance of the generator in this category. Diversity is a measure of output

image variety in aggregate. It is determined using the Fréchet Inception Distance (FID). FID

compares the distribution of generated images with the distribution of the real images that

were used to train the generator. FID is applicable only for GAN generators using images.

Para argues that “The FID score correlates most strongly with the adjacency statistics, since

adjacencies can be captured by only considering small spatial neighborhoods around corners

and walls of a floor plan, but does not capture topology or room shape statics accurately

that require considering larger-scale features” (Para et al., 2020). Realism is a subjective

measure with project dependent criteria. However, the realism measure always engages

human evaluators to score the quality of the output as an architectural floor plan. Although

entirely subjective, the floor planness of the output is arguably the key criteria of data-driven

generators. The quality relates directly to the motivating claims that the generators can

create plans meaningfully equivalent to human created plans. It can also only be indirectly

addressed within the generator since human evaluation in not differentiable.

Generative Adversarial Networks (GANs) are one type of neural network model that

has recently attracted a lot of attention, both from researchers as well as in the popular

press (Goodfellow et al., 2014). The most well known methods work with raster images.

Seemingly real but entirely fictional photographs created with GANs can be unnervingly

convincing. In the architectural design domain, GANs using raster images have generated

floor plans with suggestive but not entirely satisfactory results (Chaillou, 2019). The fact

that only raster images are used is essential to this work. Transforming the image of a

floor plan into another completely different floor plan is computationally no different than

transforming a cat image into a racoon image. The mechanism gains no understanding of

30

the spatial structure represented in the plan. Instead it operates solely within the Euclidean

space of the pixels. Its objective is to generate an arrangement of pixels that is similar enough

to learned pixel arrangements to be convinced that the generated pixels are of the same class.

This is a fundamental difference with the GANs that generate spatial compositions using

graph structures.

Four recent generative projects using graph structures demonstrate the potential of data-

driven floor plan generation and each will be placed in the context of the themes outlined

above. Sample results of each project are shown in Figure 11. The first project was published

in 2019 and is the project that launched the RPLAN data set (Wu et al., 2019). The work

takes inspiration from methods of automatic generation of floor plans for virtual environ-

ments and games. Floor plan generation is defined simply as "...the process of determining

the position and size of several rooms." The generator follows a two-stage process of first

locating the room center points within a given boundary, followed by sub-dividing the space

within the boundary. This process is claimed to “imitate the human design process.” Rooms

are located sequentially, starting with the living room, using an iterative model employing

three deep neural networks. Walls are located with an autoencoder network and are trans-

formed to vector format with a post-processing step. Only a realism criteria was used to

evaluate the results. Several pairwise comparison surveys were conducted using the generator

results, the results of other cutting-edge floor plan generators, and samples from the training

data. Survey participants were asked to choose the plan they felt was more “plausible.”

The Graph2Plan project expands on the user interactivity possibilities of the generator

developed by Hu et al. and also uses the RPLAN data set (Hu et al., 2020). Specifically,

it allows a user to input a floor plan perimeter, room types and adjacency requirements. It

then retrieves samples from the data set that satisfy the requirements, allows for adjustment,

and generates floor plans compatible with the input information. Here, the graphs are used

as “informative templates for adjustment by [the] user.” A graph neural network is used

to embed the graph into a vector space. The floor plans are generated by a deep neural

network, trained on the data set, that primarily operates to fit room bounding boxes into

the plan perimeter, following what the authors call “design principles carried in the layout

31

graph.” The tool is proposed for game designers and “end users, where they wish to explore

early design intents, feasibility analyses, and mock-ups.” Computer vision, in particular the

Raster-to-Vector tools are used to translate the raster images of RPLAN into a vector format

prior to translation into a graph format. Again, a user study is conducted to determine the

relative success of the results using a pairwise comparison and “plausible” as the evaluation

criteria.

House-GAN (Nauata et al., 2020) and its descendent House-GAN++ (Nauata et al.,

2021) were developed by researchers at Autodesk together with others at academic insti-

tutions. Both were developed as part of a “co-design with AI” program intending to insert

artificial intelligence tools into a design workflow. The stated goals are to avoid interruptions

of a designer’s flow, decrease repetitive work, ease difficult work and lessen the expense of

costly work (Cheng, 2021). These goals are positioned as a response to broad generalizations

about a conventional design process.

“House design is an expensive and time-consuming iterative process. A standard

workflow is to 1) sketch a “bubble diagram” illustrating the number of rooms

with their types and connections; 2) produce corresponding floor plans and col-

lect clients feedback; 3) revert to the bubble diagram for refinement, and 4)

iterate. Given limited budget and time, architects and their clients often need to

compromise on the design quality. Therefore, automated floor plan generation

techniques are in critical demand with immense potentials in the architecture,

construction, and real-estate industries” (Nauata et al., 2020).

House-GAN uses the LIFULL HOME’S data set and the Raster-to-Vector CV tools to

convert the raster images in the data set to a vector format. The graph representations

extracted from the data set are referred to as bubble diagrams, further emphasizing the

purpose of the design tool. A published video demonstrates a computer interface in which

a user created bubble diagram in one panel, results in a selection of floor plans in another

panel. 2 These bubble diagrams represent the physical adjacencies of rooms and do not
2www.youtube.com/watch?v=Wo-8cC_aY4E

32

www.youtube.com/watch?v=Wo-8cC_aY4E

imply a physical connection.

Per the name, the model is based on a generative adversarial network in which the gen-

erator and discriminator models are convolutional message passing neural networks (Conv-

MPN). The graph nodes are not embedded into a 1-dimensional vector space but are instead

represented as volumes in the design space. The graph acts as a constraint on the gener-

ator. Because the GAN output is a raster image, computer vision (OpenCV) is used to

draw bounding boxes around the rooms and transform them to rectangles. The results were

evaluated on realism, diversity and compatibility. For the realism evaluation, a group of stu-

dents and architects selected the “better” plan of a pair. Pairs were composed of House-GAN

results, ground truth plans and the results of three other generator.

House-GAN++ modifies several important aspects of House-GAN. First, the input graph

is revised from an adjacency graph recording physical adjacency of spaces, to a graph only

recording physical access between spaces, i.e. doors. This reduction of connections creates

star shaped graphs with few cycles, or looping paths within the graph. The star shape is

in contrast to the triangulated tessellation form of the House-GAN graphs. Also impacting

the graph representation, an ‘exterior node’ is added and connected to the living room node

with an edge representing the entrance door. Second, the LIFULL HOME’S data set was

replaced with the RPLAN data set. As noted above, RPLAN is a more uniform data set

created specifically to support machine learning and spatial organization projects. To the

House-GAN network a conditional GAN has been added. The conditional GAN uses a

previously generated partial model as the next input constraint, enabling iterative layout

refinement. Finally, instead of OpenCV, another computer vision application capable of

creating non-rectangular rooms, Floor-SP, is used to vectorize the raw raster output.

The last project does not position itself as any sort of design tool, but instead addresses

floor plan generation as a class of layout generation within the larger class of content gen-

eration. The goal is “topologically and spatially consistent layout generation” through a

fully automated process. Additional user constraints such as required room properties and

perimeter footprint may be added to the generative process. Both the LIFULL HOME’S

33

and the RPLAN data sets are used. Instead of a generative neural network architecture like

a GAN or a variational autoencoder, a transformer architecture that builds graphs sequen-

tially is used. Room size and position are finalized using an optimization process. Unlike the

image-based generators discussed above, this method of building the graph and optimizing

rectangular shapes is reminiscent of the generator discussed in Vignette 1. Evaluation com-

pares generated results to ground truth with two metrics, FID and layout statistics. Layout

statistics are node and edge attributes and graph properties extracted from the database

plans. Output is mapped to an image to perform the FID analysis. A formal subjective

evaluation of results is not performed.

Figure 11: Representative examples of state of the art data-driven floor

plan generators. a) (Wu et al., 2019), b) (Hu et al., 2020), c) (Nauata et

al., 2020), d) (Para et al., 2020), e) (Nauata et al., 2021)

34

2.2.5 Summary

Although the world seems awash in data, the lack of floor plan data sets hinders machine

learning research into spatial configuration. Small data sets, such as those used by Ferrando

et al. limit the strength of results in analytic research. Large, but highly idiosyncratic data

sets, such those containing solely Japanese rental apartment, raise questions about the ap-

plicability of design solutions generated from them. Translating floor plans from physical

and digital formats into digital formats containing semantic information such as walls and

room function is a challenging technical problem and has parallels in many other research

domains. But it is more than a technical problem. Translation methods like computer vision

automate a process that often requires expert human skill and knowledge judgement. There-

fore, the decisions made by a tool’s designers greatly influences the information contained

in the data set made with that tool. Vignettes 2 and 3 will explore two different data sets

using analytical and generative modes of research.

Vector encoding of graph and node data offer potential new computational access to

structured data unavailable through graph theoretical techniques. Classification research

conducted using vector embedding of spatial topology suggests new avenues to pursue the

Centre for Configurational Studies’ project of a natural history of architecture classified by

configuration and shape. Vignette 2 takes up this idea and looks closely at one particular

embedding algorithm.

Like graph theoretical floor plan generators, data-driven generative systems use graph

structures to contain and input an architectural program into the system. However, instead

of generating plans using human crafted explicit rules and procedures, data-driven systems

use rules inferred from the rules implicitly contained in the real floor plans. Therefore, the

data-driving systems function as a pairing of a particular learning method and particular

data set. Although the pairing suggests a similarity to the exhaustive method of generative

design reconstructed in Vignette 1, the exhaustive method does not learn anything from the

catalog of dissections. Vignette 3 proposes a data-driven floor plan generator to explore the

concept of extracting implicit floor plan design rules.

35

3 Methods

The Methods chapter is broken into three computational vignettes. The vignettes are com-

putational instruments to ground and deepen the investigation of concepts presented in the

Background sections. By working directly with some of the computational ideas, a richer

and more nuanced understanding of the technology is achieved.

• Vignette 1 - Dissecting and Enumerating, reconstructs software to uncover some of the

foundational spatial representation concepts from the 1970’s encoded in the algorithms.

• Vignette 2 - Encoding Configuration, investigates graph embeddings of spatial config-

urations through machine learning classification experiments.

• Vignette 3 - Generating with Data, explores a large-scale floor plan data set using a

date-driven generative system.

Vignette 1 - Dissecting and Enumerating, reconstructs software to uncover some of the

foundational spatial representation concepts from the 1970’s encoded in the algorithms.

Vignette 2 - Encoding Vectors and Vignette 3 - Generating with Data use analytic and

generative machine learning approaches, respectively, to explore graphs, vector embedding

and data sets.

3.1 Vignette 1 - Dissecting and Enumerating

3.1.1 Introduction

Vignette 1 reconstructs selected algorithms from the body of work created by architects

exploring mathematical representation and computation of spatial organization during the

1970’s. The concept of software reconstruction as a mode of investigation was introduced by

Cardoso Llach and Donaldson (Cardoso Llach & Donaldson, 2019). Their research proposes

that new understandings of contemporary design practices can be gained by "combining

36

Figure 12: Selected images from “Synthesis and Optimization of Small

Rectangular Floor Plans.” Adjacency and orientation requirement matri-

ces, adjacency requirement graph, and possible solution.

historical research and creative prototyping." In this vein, the reconstruction aims to reveal

how particular concepts of architectural space and building configuration were encoded into

the algorithms. In addition to revealing aspects of the algorithms, the reconstruction allows

a direct interaction with the particular mode of design practice proposed by the software.

As a demonstrative reconstruction, I selected a graph and plan generation technique de-

scribed by Mitchell, Steadman and Liggett in their paper “Synthesis and Optimization of

Small Rectangular Floor Plans” (Mitchell et al., 1976). The work ties together many impor-

tant ideas outlined in Steadman’s book, Architectural Morphology (Steadman, 1983). Ideas

such as the “ ‘dimensionless’ representation of rectangular plans,” symmetry and counting are

critical to the generative algorithms described in the paper. Equally important are concepts

such as adjacency graphs, adjacency requirement matrices, orientation requirement matri-

ces, and their correlation to spatial arrangement. Examples of these concepts are shown

in 12. Absent though is any discussion of plan graphs and their dual graph relationship to

adjacency graphs featured in Steadman’s earlier “Graph theoretic representation of architec-

tural arrangement” (Steadman, 1973). The enumerations of all possible permutations of a

particular class of rectangular floor plans, created by hand in that paper, are generated by

a computer program developed in conjunction with his co-authors. The computer allowed

all permutations of plans up to and including eight rooms to be enumerated, a cumulative

37

total far beyond what could be created by hand.

In chapter 9 of Architectural Morphology, Steadman makes a distinction between “se-

lective” and “constructive” methods of floor plan generation. “Constructive” methods build

a plan to satisfy adjacency requirements. “Selective” methods, such as the one being re-

constructed here, find one or more satisfactory plans from an ostensibly complete catalog

of existing plans. Plan generation occurs in two stages after the catalog of dimensionless

plans has been created and saved. First, all dissections that satisfy the designer’s adjacency

requirements are collected. Next, although not demonstrated here, these dimensionless plans

are tested against the designer’s room size requirements.

3.1.2 Basis of Reconstruction

The authors provide only a few details of how the algorithms were originally implemented in

a computer. For example, the code was written in Fortran and at least some of the research

was conducted on an IBM 360/91 computer located at UCLA. It is unclear whether all of

the functionality described in the paper existed as a comprehensive computer application,

or only existed as a disjoint set of functions and routines. The logic of my own code follows

the structure of the paper. Although I could have arrived at similar results with an invented

top down structure, I believe that incrementally developing the building blocks presented in

the paper offers insight into the thought process and priorities of the authors.

All code was written in Python using Jupyter notebooks. The NetworkX package was

employed for graph structures and manipulation. The Numpy package was employed for

array structures and array manipulation. Rhino 6 and Grasshopper are used to visualize the

dissections and graphs.

38

Figure 13: Manipulation of cellular representations to generate new rect-

angular dissections. The permutation, standardization and removal stage

are performed on all cellular representations generated by the production

rules.

39

3.1.3 Producing the Dissections

Mitchell et al. describe three generative operations used to create topologically distinct

rectangular dissections.

• Boundary addition

• Subdivision of component rectangles

• Component expansion and boundary addition

All generative operations manipulate 1-dimensional or 2-dimensional array representa-

tions of the dissections. These operations produce large numbers of duplicates, therefore the

identification and removal of duplicates is a critical aspect of the generative process. Thus,

culling is also the most computationally expensive. After all of the unique dissections have

been found, a corresponding adjacency graph is created for each.

Generation is iterative and cumulative and begins with a base dissection of n = 2. Each

successive generation of dissections with n + 1 components uses the complete series of dis-

sections with n components as input.

Boundary Addition The first generative operation adds a new component along each

perimeter edge of the input dissection. The new component takes on the next largest integer

value of the input dissection. Four new dissections with n+1 components are created and

returned. Refer to Algorithm 1.

Algorithm 1 Production: Boundary Addition
1: procedure Add(D) . Create and return four arrays
2: ← maximum value in D + 1
3: Dt ← D + row of values on top
4: Dr ← D + column of values on right
5: Db ← D + row of values on bottom
6: D ← D + column of values on left
7: return Dt, Dr , Db, D

40

Subdivision of Component Rectangles The subdivision operation splits each input

dissection component greater than two cells into two separate components. The new com-

ponent takes on the next largest integer value of the input dissection. If the dimensions of

the component are greater than two in both dimensions, the component is split separately

in both directions. Multiple horizontal and vertical splits will occur if a component has

greater than two cells in any direction. Importantly, each split is conducted separately, not

cumulatively. A new dissection with n+1 components is returned for each split. Refer to

Algorithm 2.

Algorithm 2 Production: Subdivision of Component Rectangles
1: procedure Subdivide(D) . Subdivide components > 2 cells
2: m← minimum value in D
3: ← maximum value in D + 1
4: st← empty list
5: while m< do
6: CDm ← component m in D
7: if CDm,no.oƒ ros > 1 then
8: for ro← 1, CDm,no.oƒ ros − 1 do
9: D′ ← D

10: CD′m, CD′ ← CD′m subdivided at ro
11: append D′ to st
12: if CDm,no.oƒcomns > 1 then
13: for comn← 1, CDm,no.oƒcomns − 1 do
14: D′ ← D
15: CD′m, CD′ ← CD′m subdivided at comn
16: append D′ to st
17: m←m + 1
18: return st

Component Expansion and Boundary Addition The final generative operation both

extends input components and adds a new component separately on each perimeter edge

bordering more than one component. For example, along an edge with two border compo-

nents, cells are added along the length of the first component’s perimeter edge. The value

of these cells matches the input component, thereby expanding the size of that component.

A new component is added along the balance of the boundary edge. The new component

takes on the next largest integer value of the input dissection. Where more than two compo-

nents border a perimeter edge, the process is repeated along the perimeter edge. One more

41

component is expanded at each iteration while only one new component is ever added at

each iteration. Because this process is directional along each perimeter edge, it is necessarily

conducted in both directions, i.e. both left and right, or both up and down. A new dissection

of n+1 components is returned for each expansion-addition event. Refer to Algorithm 3.

Algorithm 3 Production: Expansion and Boundary Addition
procedure Expand and Add(D) . Expand 1 component and add 1 component

← maximum value in D + 1
st← empty list
n← number of components in Dtopro
if n > 1 then

comp′ ← components in D′
topro

for c← comp′ do . left to right
D′ ← D
ro′ ← D′

topro

ro′
eƒ tsde

← components left of and including c
ro′

rghtsde
← c . new component

ro′ ← ro′
eƒ tsde

+ ro′
rghtsde

D′ ← D′ with ro′ inserted above D′
topro

append D′ to st
for c← comp′

reersed
do . right to left

D′ ← D
ro′ ← D′

topro

ro′
rght

← components right of and including c
ro′

eƒ t
← c . new component

ro′ ← ro′
eƒ t
+ ro′

rght

D′ ← D′ with ro′ inserted above Dtopro
append D′ to st

Repeat similar procedure for Drghtcomn, Dbottomro, Deƒ tcomn

Remove Duplicates As noted above, removal of duplicates is critical to the goal of an

accurate enumeration. Duplicate dissections are those that are topologically indistinct when

disregarding the labeling of the components, rotation and reflection. Notably, topologi-

cally distinct dissections may have isomorphic graph representations. This is because of the

different relationships the rectangular components may have with the perimeter rectangle.

Duplicates are removed in two stages during generation. First, the duplicates are removed

42

from the series of dissections produced by the three generative operations applied to each

input array. The results are added to an intermediate list of results for that generative pass,

e.g. a list of five component dissections derived from all four component dissections. Second,

duplicates are removed from the intermediate list. Finally, the now unique dissections are

added to the master list of dissections.

Duplicate removal requires three preparatory steps to standardize the arrays and ensure

that all can be reliably compared. The first, dimensional minimization, occurs only once for

each newly created dissection. For arrays where n > 5, the production rules occasionally

create dissections with a redundant row or column. I define a redundant row or column

as one that can be removed without modifying the topology of the dissection. Potential

redundant rows or columns are those in which every value is part of a multi-cell component.

To keep the check simple, I employ a NetworkX implementation of the VF2 algorithm to

compare the graph representation of the dissection before and after the potential row or

column is deleted from the array. If the size reduced version retains isomorphism with the

original, it replaces the original.

The second and third steps are completed each time a new dissection is compared to those

in the unique list at both stages of the duplicate removal process. The second step rotates

the new dissection 90 degrees four times and then mirrors each rotation resulting in a series

of eight arrays topologically identical to the new dissection. The third step standardizes the

labels of each permutation. Label standardization is required because the dissection arrays

are compared element-wise. Working left to right and top to bottom, the components are

relabeled in order starting with zero.

If none of the standardized permutations element-wise match any of the dissections al-

ready in the unique dissection list, the standardized version of the new dissection is added

to the list of unique arrays. Refer to Figure 13 for a visualization of the steps.

Saving the Dissections The authors suggested that the enumerated dissections should

be classified and a storage system devised that utilizes the classifications. The classification

43

system would facilitate retrieval and analysis of individual and groups of dissections. I did

not classify the dissections and simply stored them in a list format using Python’s pickle

serialization library to maintain their Numpy array object structure. Once the dissection

arrays are translated to graph representations they are no longer needed. Adding classifica-

tion attributes to the graph data structure is a more efficient recording method should this

information be useful in the future.

3.1.4 Dissections to Adjacency Graphs

Two forms of graph data structures are created and utilized. First, from each dissection

a Python dictionary is created. Numpy methods are used to identify collections integers

forming the components. Each of these components are represented as nodes in the graph.

ID attributes are added to the graph as attributes. The geometric corners of each node are

recorded as attributes as well. Edges are created between nodes when the components are

adjacent to each other in the dissection array. Edge direction is recorded as an attribute with

each edge. Edges directions may be either East-West or North-South. Because the graphs

are not oriented at this stage, East-West and North-South could have been any arbitrary

designation. The standard dictionary structure is sufficient for most tasks requiring a graph

format. However, where sophisticated analysis is required, the dictionary is converted to a

NetworkX graph object. Analyses such as isomorphic comparison and planarity checking are

conducted with NetworkX graphs. A complete list of adjacency graphs is saved along with

the list of dissections.

3.1.5 Dissection Assignment

Searching the catalog for dissections that may satisfy the design specifications requires two

inputs from the user - an adjacency requirements matrix and an orientation requirements

matrix. A valid input is confirmed with several checks before a search is conducted. The

required adjacency matrix contains the “basic functional and circulation considerations” of

each space within the design. Within the matrix a ‘1’ indicates a required adjacency, a “-1”

44

Figure 14: Reconstruction of unique rectangular dissections through n=6

45

indicates a disallowed adjacency, and a “0” indicates a lack of requirement. Each row and

column is associated with a space.

The rows of an orientation requirement matrix represent the cardinal directions with an

additional row representing a general exterior adjacency. The columns represent each space.

Values within the matrix are defined as in the adjacency requirements matrix.

Validating the Input First, the two input matrices are converted to a single NetworkX

graph structure containing all the nodes and edges, including exterior. Each contains a

requirement attribute. This graph is then tested to ensure it can be embedded in a plane and

can create a rectangular dissection. A NetworkX function checks for planarity. Rectangular

dissection potential is checked by confirming that the graph does not contain any cliques

larger than three.

Filtering Potential Dissections Immediately, all dissections without the correct number

of nodes are removed from consideration. The degree sequence of each remaining dissection

is compared against that of the requirement graph. Should the dissection degree sequence

not provide the necessary connectivity, that dissection is removed from consideration.

Assignment The assignment algorithm is only lightly covered in the paper but is the key

functionality connecting the catalog of dissections to a floor plan design method. Since the

cataloged dissections are not oriented, the first assignment step creates eight rotated and

mirrored permutations of each filtered dissection. This process adds north, east, south and

west nodes and edges to the dissection graph. The goal of the assignment algorithm is to

find all successful mappings of the adjacency requirements graph to catalog of dissections.

The number of permutations to check becomes intractable even with relatively low numbers

of potential dissections. Therefore, heuristics are employed to eliminate search paths that

are guaranteed to fail. For each dissection graph, the process starts by assuming that each

adjacency requirement node can be mapped to each dissection node. Two simple checks are

then made. If the degree of the dissection node is not equal to or greater than the degree

46

Figure 15: Graphic representations: a) cellular representation; b) rectan-

gular dissection; c) adjacency graph extracted from dissection; d) exterior

nodes added to adjacency graph; e) half-graph with east-west adjacencies;

f) half-graph with north-south adjacencies

of the adjacency requirement node mapped to it, the adjacency requirement node cannot be

mapped to that node. Second, if any dissection node does not have edges to the exterior

nodes required by the adjacency requirement node, then the adjacency requirement node

cannot be mapped to it.

The last heuristic further reduces unnecessary computation by creating a list of "start

nodes." I define a start node as a node-to-node mapping that must be present for the re-

mainder of the mapping to be valid. For instance, if a particular adjacency requirement node

has a degree of four, and only one of the dissection nodes has a degree of four, that mapping

is a start node. Only permutations that contain these start node mappings are checked. For

a reasonably constrained adjacency requirement graph, these heuristics greatly reduce the

search time of the assignment process. After the duplicates are culled, the list of successful

dissection graphs, the list of mappings, the adjacency requirement graph, the adjacency re-

quirement matrix and the orientation matrix are saved. All graphs are converted to JSON

dictionaries prior to being saved.

47

Figure 16: Assignment of adjacency and orientation requirements to rect-

angular dissection

48

3.1.6 Visualizing Dissections and Graphs

The Rhino / Grasshopper platform and its Python scripting interface is used to display the

dissections and graphs. GHPython does not support Numpy and NetworkX, therefore, no

sophisticated graph or array analysis or manipulation can be executed in Grasshopper. The

graphs and adjacency requirements are imported into Grasshopper as JSON files and CSV

files respectively. GHPython scripts create geometry from the graphs. The rectangles, nodes

and edges are styled after the graphics in the paper and other work published by Steadman.

I did not attempt to create geometry similar to Steadman’s hand drawn dissections because

the graphic construction rules appear loose and idiosyncratic.

In addition to rectangular representations, I created geometry for graph representations

with nodes and edges, half-graphs, Steadman’s hand drawn stylized graphs and integer

arrays. Figure 15 provides examples of various display possibilities. The geometry scripts

are used to display both the dissection catalog and assignment graphs and dissections. To

reinforce that the assignment graphs and dissections describe floor plans, three-dimensional

wall geometry is created for each of the plans.

3.1.7 Results

Enumerations I used the dissection generation algorithms to create dissections with up

to eight components. The results were inline with the authors’ findings. I manually checked

the results for n <= 6 against the chart published in the appendix of the original paper

and there were no discrepancies. Refer to Figure 14 for a matrix of all dissections produced

by the algorithm for n <= 6. However, for dissections where n=7 and n=8 my code found

slightly more unique dissections than those reported in the paper. Specifically, 2 additional

n=7 dissections and 33 additional n=8 dissections were found, amounting to differences of

0.3% and 0.7%, respectively. Refer to Table 1 for tabulated results.

The authors do not claim that the algorithm produces exhaustive results, only that

the computer-generated results up to n=6 correspond to those created by hand in previous

49

no. of components 3 4 5 6 7 8

results in paper 2 7 23 116 683 4866

results from reconstruction 2 7 23 116 685 4899

Table 1: Table of dissection enumeration results

research. Even if there were tables of dissections to compare, the sheer number of dissections

makes such an effort practically impossible for the scope of this thesis. However, Mitchell

et al. state that a rigorous exhaustive enumeration is not required, and that the results are

sufficient.

Later work by Bloch, Krishnamurti and Roe arrived at consensus results counting rect-

angular dissections and that work is summarized in “Architectural Morphology” (Steadman,

1983). Using different algorithms, they found 24 n=5, 126 n=6, 815 n=7 and 6,465 n=8 dis-

sections. Clearly, the algorithm reconstructed above does not enumerate all of the possible

dissections, even when the rectangle count is relatively small.

Assignment The assignment of adjacency requirements to suitable rectangular dissec-

tions was also successful. Figure 16 demonstrates the results of a search conducted for a

five room adjacency requirement matrix. The paper does not provide benchmarks against

which to compare results. However, testing with numerous sets of adjacency and orientation

requirements produced satisfying results. Rigorously checking that the results are complete

becomes intractable for even for relatively small plans. Therefore, satisfactory indicates that

the results appear complete based on expected results and manual exploration of options.

3.1.8 Discussion

Reconstructing the code following the structure of the paper was successful in that the

process provided insights that I would not have discerned otherwise. This was most notable

within the enumeration portion of the exercise. The large differences in quantities between

50

the total possible dissections found by the authors and the total possible dissections found

by Krishnamurti’s color algorithms several years later, reflect a different concept of the

enumeration problem. Although presented as cellular representations, the three production

methods all follow the intuitive tactic of adding one room at a time to a set of valid floor

plans. This strategy is inherently graph based as it expands a valid planar graph one node

at a time without risk of loss of planarity. That is because the cellular representations,

and by extension the geometry of rectangular dissections, provide a framework to maintain

graph planarity. In a sense, it is an architectural approach to the problem. By this, I mean

that the algorithm does not escape from the fact that it is creating spatial relationships.

However, it is highly inefficient and ultimately does not achieve its goal of an exhaustive

catalog of rectangular dissections. Paradoxically, the coloring algorithms appear to achieve

better results far more efficiently by foregoing notions of rooms and room adjacencies at the

conception of each dissection. The spatial relationships are resultant from the process rather

than providing an originating source. Engaging with the dissection assignment tool as a

design tool proved difficult. The paper does not contain an example of how the input was

structured. A text-based matrix input method is consistent with the likely method used in

the original implementation. Creating adjacency and orientation requirements in a matrix

form is an unintuitive and challenging exercise.

For a small and familiar program such as a residence, I found myself first sketching spa-

tial relationships before committing to the effort of translating the relationships to matrix

form. The sketches unavoidably contained my thoughts on spatial and architectural quali-

ties. They also reflected my habits and personal tendencies of room shape and proportion.

Translation to matrix form excises this information and this suggests two possible designer

interaction modes. First, to follow my experience, rather than creating initial plans from a

source set of adjacency requirements, the tool can be used to quickly search for alternative

configurations of a designer’s initial sketch. Using the tool this way, a designer may find

alternate configurations outside of the constraints of their subjective tendencies. Second, a

designer could manipulate the adjacencies in the matrices to quickly modify the topology

of the plans and potentially gain intuition of the impact of the adjacency constraints on

51

the pool of satisfactory rectangular dissections. Such an approach could assist a designer to

resolve competing and contradictory programmatic desires. Although addressing a highly

limited class of floor plans, interacting with the tool revealed more exploratory potential

than simply “selecting” from a set of compliant options.

Two additional steps would add research value to this reconstruction. First, the room

size optimization algorithms should be implemented. Performance optimization is one of

the downstream goals of the design of the computable representations like graphs. Re-

construction would foreground the interrelationships of the mathematical abstractions and

optimization processes. Second, an interactive graphic interface should be created. With

an easy-to-use interface, non-expert users could interact with the tool and the underlying

spatial organization concepts.

3.2 Vignette 2 - Encoding Configuration

Figure 17: Data set sample (Ferrando et al., 2019)

3.2.1 Introduction

This vignette uses machine learning classification experiments to explore how unsupervised

node embedding methods may allow new computational access to spatial structures by way

of graph structures. I use the data set specifically created for classification experiments by

52

Ferrando, Dalmasso, Mai and Cardoso Llach (Ferrando et al., 2019). The data set contains

CAD plans and supporting data of 19 monastery and 20 mosque complexes modeled by the

researchers. A sample is shown in Figure 17. The buildings in the data set are spatially

complex and average over forty rooms per building. I anticipate that the complexity provides

greater variation in node neighborhoods leading to clearer differentiation of the embeddings.

3.2.2 Node Attributes

Space syntax analysis theory supports the use of both geometrical attributes like isovist

area, and graph theoretical ideas (Ferrando, 2018; Ostwald, 2011). However, without a

defined carrier node, metrics such as node depth, mean node depth and others pertaining

to the justified plan graph are not measurable. Therefore, those measures are not used in

the experiments conducted here. Devising a way to create features with these measures

may provide another angle from which to investigate the graph structural qualities that

unsupervised embedding techniques can learn.

Social network analysis (SNA) also provides methods for analyzing and quantifying node

qualities within a graph and methods for measuring characteristics of subgraphs and entire

graphs. Wurzer et al. propose a mapping between SNA measures and architectural pro-

gramming and space planning concepts (Wurzer, Lorenz, & Wien, 2016). The justification

of the mapping is supported by the space syntax theories of Hillier and Hanson, among

others (Hillier & Hanson, 1984). However, the paper did not explore SNA analysis on a

graph extracted from a building plan. Instead, it investigated the graph measures using a

hypothetical spatial adjacency matrix and hypothesized that the technique could be used

to evaluate programs, not plans. By evaluating programs, they argue, a designer can un-

derstand the functional performance of a class of buildings proposed by the program. Both

node and graph level metrics are discussed. The node level metrics they chose involved

measures of centrality, in other words, measures of the node’s importance or influence within

the graph. The space mappings list below shows the authors’ mapping of room relative

importance to common SNA measures of node relative importance. The building mappings

53

list shows the authors’ mapping of room group and building configuration characteristics to

common SNA measures of graphs. The algorithms used to calculate the measures are not

particularly important to this discussion. Instead, the list is intended to enumerate several

of the specific spatial characteristics argued to be uncovered with various SNA measures.

• Space mappings:

– Betweenness centrality: a measure of relative importance to circulation within
the space plan

– Closeness centrality: a measure of relative position within the space plan

– Eigenvector centrality: a measure of importance, determined by proximity to
other important spaces

– Degree centrality: a measure of connectedness of the space

– Local cluster coefficient: a measure of connectedness of the spaces in a neighbor-
hood

• Building mappings:

– Clique analysis: uncovers highly connected subgraphs of potential functional
groupings.

– Density: a measure of the relative connectedness of all spaces

– Average local clustering coefficient: a measure of the relative connectedness of all
spaces

– Global clustering coefficient: a measure of the relative connectedness of all spaces

The hypothesis underlying the use of unsupervised node embedding algorithms is that

they implicitly learn the node characteristics explicitly calculated by SNA centrality mea-

sures (Cohen, 2018; Grover & Leskovec, 2016). Additionally, they also embed within the

node embedding vector its relationship to other nodes. The node2vec algorithm is used in

this study. It is conceptually based on the skip-gram algorithm for the creation of word

embeddings. However, instead of incrementally evaluating each word and its neighbors in a

corpus of texts, node2vec explores the graph structure through a series of simulated random

walks. Multiple walks from each node sample its neighborhood. A user can control the bias

54

of the walks to explore further from the start node or stay closer to the start node. This is

achieved by adjusting the ratio of the "return” parameter, P, and the “in-out” parameter Q.

The authors theorize that exploration of larger neighborhoods will embed vectors with struc-

tural role characteristics. Conversely, exploration kept close to the start node will embed

vectors with a richer representation of their neighborhood.

3.2.3 Data Set

In addition to CAD files the data set contains text files, Python code and Grasshopper code.

The CAD files were created with Rhino 3D. Raster images collected from online databases

served as the initial data. Room boundary and connection to adjacent rooms were explicitly

defined as geometry in the CAD file. A custom Grasshopper script extracted area, isovist

area and room access information for each node in each plan. All nodes with access to the

exterior were connected to a single exterior node. The data was saved as a TXT file.

I began by creating a JSON file for each building’s data. The JSON format works well

with the NetworkX python module. The dictionary structure affords easy modification of

graph level data, nodes, edges and associated attributes. Although I initially set out to

modify the Grasshopper files to export JSON files, I found it more efficient to convert the

TXT files to JSON files. In the future, if different data is required from the models, the

Grasshopper script modification method will be used.

3.2.4 Feature Engineering

To each initial building data file, I added two new types of node and graph attributes and

these are listed in Table 2. The first type includes quantitative measures like the total

number of nodes and also graph theoretic measures like node degree. The graph theoretic

measures were created using NetworkX.

The second type is the node embedding vectors created with the node2vec algorithm.

55

Figure 18: Three scenarios: buildings encoded separately, buildings en-

coded together, buildings encoded together with a common node

Graph Attributes Node Attributes
No. of nodes Betweenness
No. of edges Degree centrality
Density Eigenvector centrality
Average cluster coefficient Closeness centrality
Transitivity Degree
List of cliques (greater than
two nodes)

Clustering coefficient

Table 2: Table of graph and node features

Two different embedding parameter settings, shown in Table 3, were used for each of three

scenarios. The vector dimension, walk length, number of walks and worker parameters were

chosen arbitrarily as the literature did not provide any guidance for these experiments. The

P and Q values of Setting 1 and Setting 2 are taken from original paper. Respectively,

they will cause random walks to remain closer to the start nodes to learn neighborhood

representations, or stretch further from the start node to learn structural characteristics.

The first scenario created embeddings using each building graph as a separate corpus.

This process created 39 separate vector spaces. The second scenario placed the nodes from

all of the buildings into a single graph composed of 39 separate components. Although a

single graph, the random walks were constrained within each component. However, all node

embeddings were created in a single vector space. The third scenario connected the separate

56

Parameter Setting 1 (Homophily) Setting 2 (Structural)
Vector dimension 64 64
Walk length 100 100
Number of walks 200 200
Workers 4 4
P value 1.0 1.0
Q value 2.0 0.5

Table 3: Table of node2vec parameter settings

components in scenario two by replacing the 39 exterior nodes with a single external node.

This connection allowed random walks to traverse between buildings. Figure 18 is a diagram

of the three strategies.

The node embedding vectors were added to each node in the JSON files. I created a

single vector representation for each building by calculating the centroid of the node vectors

of each building. This was also added to the JSON files.

3.2.5 Classification Experiments

Like the original research by Ferrand et al., I attempted to classify each node as belonging

to a mosque or monastery, and each building as either a mosque or a monastery. I used the

Weka machine learning workbench to run the classification experiments. First, I converted

the JSON files into CSV files. Separate file sets for building and node classification were

created. Each was a set of six files, one for each permutation of the different embedding

scenarios and parameter settings. Finally, I chose five algorithms representing different

learning strategies: SVM, SVM with a polynomial kernel, J48 decision tree, random forest

and naive bayes.

Because there are nearly 1,600 nodes, the node classification experiments were performed

with a 10-fold cross-validation. However, the small number of buildings in the data set

required a leave one out cross-validation method.

57

3.2.6 Results

Classification of nodes was more successful than classification of buildings. Node classifi-

cation achieved above 95% accuracy in several cases, while building classification averaged

below 70% accuracy when embeddings were included in the feature set. Tables 4 and 5

summarize the results.

Node Classification SVM with a polynomial kernel and decision tree classifiers achieved

consistently high accuracy when classifying nodes in all six combinations of embedding space

and node2vec parameter settings as shown in Table 4. In addition, accuracy was similar

across the three feature set groups in all six combinations.

Notably, classification using embeddings alone achieved better results than classification

with graph theory features alone in all but one category of vector spaces and node2vec

parameter settings. Combining the features and embeddings provided similar results on

average. The overall highest accuracies of 97.5% and 97.4% occurred with embeddings alone

and combined embeddings and features, respectively. The node2vec parameter settings of

p=1, q=2 created embeddings that performed slightly better than the p=1, q=0.5 settings

when buildings were encoded separately and together. However, the parameter settings

of p=1, q=0.5 performed slightly better when the buildings were encoded with a common

node. Embeddings created with all nodes in the same feature space were more successful

than embedding individual buildings separately. Connecting the buildings with a common

node caused a slight decrease in accuracy in comparison to buildings without the common

node connection.

Both the graph theoretic features and the embedding vectors achieved high accuracy.

This is encouraging and supports the hypothesis that the embedding vectors capture similar

information as the selection of SNA measure. However, I am surprised at the similar results

across the different combinations of embedding and random walk parameters. In particular,

I question the impact of the walk parameters and their purported ability to find and encode

the node qualities of homophily and structural equivalence.

58

Node Classification
Setting 1 Setting 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
Features 56.9 54.6 89.2 90.4 53.0

VS1 Encoding 53.1 88.8 75.3 92.0 59.7 52.0 85.3 76.5 88.8 61.8
Combined 54.1 89.9 84.7 90.2 62.46 52.3 86.8 84.0 89.7 62.5

VS2 Encoding 86.6 97.5 81.1 96.0 67.2 81.9 96.6 82.3 95.8 65.5
Combined 86.6 97.2 86.7 95.8 68.7 84.2 96.5 84.8 96.4 66.4

VS3 Encoding 79.7 94.6 77.3 94.5 72.5 82.0 95.8 77.8 95.8 77.3
Combined 80.4 95.8 85.2 96.3 63.3 83.3 95.6 87.4 97.4 68.5

A1 = SVM
A2 = SVM with polynomial kernel
A3 = Decision tree (J48)
A4 = Random forest
A5 = Naive Bayes
VS1 = Buildings encoded separately
VS2 = Buildings encoded together
VS3 = Buildings encoded with a common node

Table 4: Node classification results (Percent correct)

Building Classification Unfortunately, consistently separable nodes did not provide much

benefit when classifying the buildings represented by those nodes. In most cases, building

features alone were classified with the most accuracy. Vectors created when buildings were

encoded together and using the p=1, q=0.5 parameters created a building vector that clas-

sified with highest accuracy. However, in all but that one case, adding the building vector

to the other features reduced the classification accuracy. Potential strategies to address this

problem are presented in the Discussion section.

3.2.7 Discussion

There are numerous additional steps that can be taken with this data set and these exper-

iments. First, an in-depth error analysis should be performed to gain some understanding

about which nodes and buildings were misclassified and why. This will hopefully bring

59

Building Classification
Setting 1 Setting 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
Features 12.8 64.1 71.8 64.1 76.9

VS1 Encoding 41.0 43.6 59.0 38.5 35.9 56.4 59.0 53.8 56.4 43.6
Combined 38.5 41.0 74.4 51.3 69.2 56.4 61.5 66.7 64.1 71.8

VS2 Encoding 46.2 46.2 53.8 53.8 38.5 48.7 41.0 69.2 66.7 43.6
Combined 46.2 53.8 48.7 64.1 61.5 59.0 53.8 69.2 69.2 56.4

VS3 Encoding 48.7 56.4 56.4 59.0 56.4 48.7 56.4 56.4 59.0 56.4
Combined 48.7 53.8 48.7 59.0 61.5 48.7 48.7 53.8 59.0 64.1

A1 = SVM
A2 = SVM with polynomial kernel
A3 = Decision tree (J48)
A4 = Random forest
A5 = Naive Bayes
VS1 = Buildings encoded separately
VS2 = Buildings encoded together
VS3 = Buildings encoded with a common node

Table 5: Building classification results (Percent correct)

insight into the relationship between features and suggest improvements to feature space

design. When conducting early work in this vignette, I attempted a clustering process to

explore the data. The experiments provided limited insight, as shown in Figure 19. However,

both node2vec papers referenced in this study used clustering to demonstrate the algorithm’s

abilities to capture relevant structural information of a graph. Future work to understand

this divergence may provide another avenue to clarify the nature of the information encoded

by the algorithm, specifically with respect to the configuration of spaces within floor plans.

Also, I believe it is prudent to confirm the node classification results. The impressive results

may be too good to be accurate.

Next, alternate ways of encoding buildings should be explored. As seen in the results,

using the centroid of a building’s node vectors provided minimal traction for the classifiers.

Because node2vec is based on the word2vec algorithm, I will start by researching the meth-

ods used in document classification. These methods are thoroughly developed and may be

60

Figure 19: t-SNE plots of node vectors: a) embeddings only,buildings

encoded separately, setting 1; b) embeddings only, buildings encoded to-

gether, setting 1; c) embeddings only, buildings encoded with common

node, setting 1; d, e, f) same as a, b, c with setting 2; g) feature vectors

61

adaptable. Or, perhaps equally important, the research may illuminate the limitations of the

space-as-word, building-as-document transformation underlying the use of these algorithms

on spatial structure.

One important difference between the workings of node2vec and word2vec is the building

of the vocabulary. Spatial nodes are unique and therefore their vectors embed only what

can be learned from the context of that singular instance of the node. However, the same

word will occur many times within a corpus of documents. Because of this, the learned

word vector is influenced by many different neighborhoods. A common node labeling system

across all buildings in the corpus could be analogous to a word vocabulary. As et al. appear

to take this approach in their research (As et al., 2018). While they use space function as

the label, other label classification systems could offer opportunities as well.

Intuitively, a building’s exterior node and its relationship to the interior nodes and po-

tentially other buildings’ exterior nodes seems like an important consideration when creating

embeddings. However, the variations tested in these experiments did not suggest a strong

relationship between the exterior node configuration and classification accuracy. Because of

the importance of the exterior node to early graph research by Steadman and to the justified

plan graphs of space syntax, I believe experiments with other exterior node configurations

are warranted.

Finally, supervised embedding algorithms should be investigated. These preserve both

the structural and semantic information contained in the graph (Chami et al., 2020). Com-

parison between classification experiments performed with both supervised and unsupervised

may provide further insight into the nature of the spatial organization information actually

captured by vector embeddings.

62

3.3 Vignette 3 - Generating With Data

3.3.1 Introduction

Vignette 3 continues exploring floor plan data sets and the representation of that data as

graphs and vector embeddings. Instead of a machine learning model for classification, a

generative machine learning model that creates new floor plans from an input graph is the

instrument of the exploration. A selection of the LIFULL HOME’S data set (Informatics

Research Data Repository [LIFULL HOME’S Dataset] , n.d.) is used for floor plan data and

the model will be based on an implementation of a conditional GAN architecture created

by Jinmo Rhee and Pedro Veloso (Rhee & Veloso, 2021). The model is simpler than the

state of art models designed specifically for floor plan generation discussed in the background

section. However, it employs the basic concept of training a generative model on pairs of

floor plans and their associated graphs. In this case, the graph is represented by a vector

embedding. The process of preparing the data and employing a generative model is intended

to provide insights into the affordances of vector embeddings that classification models may

not.

3.3.2 Investigating the Data Set

Generative machine learning models require large numbers of samples for their learning.

The projects discussed in the Background section used data sets between approximately

60,000 and 120,000 plans. The LIFULL HOME’S data set, described in the Background

section, will be used for this study. I do not have the full data set of 5.3 million plans;

therefore, I use vector format translations that other researchers have made available from

their work with the data set. The developers of the Raster-to-Vector algorithm used the

LIFULL HOME’S data set to test their floor plan reading computer vision algorithms (Liu,

Wu, Kohli, & Furukawa, 2017). From the data set, they selected 870 plans. They then

manually annotated and vectorized the plans as the ground truth training data for their

neural network. The Raster-to-Vector GitHub page makes available the ground truth data,

63

the neural network model and text data for over 100,000 vectorized floor plan images. I have

downloaded both sets of data. House-GAN, discussed in the Background section, also uses

the LIFULL HOME’S data set and uses the Raster-to-Vector model to vectorize the data.

From the total data set, 117,587 vectorized plans were created and this collection is available

on the House-GAN GitHub page. The format of this data is optimized for House-GAN and

is slightly different from the Raster-to-Vector data. The differences will be explained below.

The Raster-to-Vector data is available as a collection of text files, while the House-GAN data

is available as a list of numpy arrays.

As a first step in understanding the data, set I visualized the data with geometry in

Rhino / Grasshopper using GHPython and the ground truth data from the Raster-to-Vector

project. I chose this data because it was manually annotated during creation, and therefore

I expected it to more closely reflect the information in the raster version of the floor plan.

Additionally, I was able to find elsewhere and then correlate the vector representation data

with the original floor plan raster image. This allowed me to spot check the concurrence

between the raster images and the vector representations.

I created custom scripts to translate the coordinate data to wall objects, perimeter poly-

lines, bounding boxes and geometry that represented doors and windows. Many of the

coordinate points left gaps between walls and resulted in walls overlapping. I was able to

craft fixes for several of the problems, but also created rules to reject plans that did significant

geometry problems. Nevertheless, the annotated ground-truth data was in fact congruous. I

noted the following observations about both file types. The raster images are highly stylized

diagrams and while the graphic style is similar, it is not uniform throughout the data set.

Rooms and spaces are often labeled, but the use of many spaces is signified only by symbols

for toilets, bathtubs, stoves, etc. The plans are not the same scale and contain no regular in-

dication of cardinal orientation. They also do not contain any indication of adjacent building

mass or any information on the space outside the entry door, i.e. is it an interior space like a

hallway or the exterior. In the vector representations each space in the plan is assigned one

of eleven labels by the annotator. However, the vector representations do not contain any

explicit indication where to separate two or more uses that are not physically separated by

64

a wall, e.g., a kitchen and living area. Exterior doors and windows are conflated, although

the entry door is often indirectly indicated with an entry mat icon.

After examining the data available from the Raster-to-Vector research, I investigated the

House-GAN subset. As noted above, this data set was created using the LIFULL HOME’S

data set and the Raster-to-Vector computer vision algorithm. That algorithm was said to

be 90% accurate by the original researchers (Liu et al., 2017). Although each vector floor

plan instance included the unique identifier of the original floor plan, those images are not

available and therefore direct comparisons are not possible. Therefore, I made judgements

on whether the geometry made sense as a floor plan in general and as a floor plan in the

family of floors plans that I had seen in the data set. Because of slight differences in format,

the Grasshopper / Rhino geometry reconstruction script had to be modified. The first

important item to note is that the list of possible room types was modified. The three

different bathroom types were consolidated into a single type, while a dining room type and

laundry room type were added. Also importantly, it appears that the problem of different

functional spaces not having physical separations was resolved by combining all such spaces

into a single space or by filtering out plans with such conditions. Indications of entry doors

were also not included in the House-GAN versions.

Despite the divergence from the original raster images by error or deliberate modifica-

tion, I have chosen to use the House-GAN vector representations for several reasons. First

and most importantly, the corners and connections of the geometry are better coordinated,

leaving no gaps and therefore reducing errors in the Grasshopper / Rhino geometry. Second,

by examining the raster images, I successfully created heuristics to infer which door was the

entry door. (A more thorough statistical analysis could be conducted.) Finally, the large

number of samples is sufficient for training a generative machine learning model.

Custom scripts extract the nodes and edges from the vector geometry of the floor plan.

Although many room and configuration characteristics are available from the data, I chose

to limit the scope and complexity of the exploration by only recording room function and

spatial adjacency in the graph.

65

3.3.3 Floor Plan Encoding

The method of vector embedding the graphs is critical to this vignette. To date, I do not

have a working solution. The node2vec embedding method used in Vignette 2 is transduc-

tive. All of the graphs and nodes must be present at the time of embedding. Additional

nodes or graphs cannot be added to the vector space without re-embedding the entire set

of information. This works well for the classification experiments where no new information

was introduced after the initial embedding process. However, the generative process pro-

posed in this vignette requires an inductive embedding method. In other words, the method

must be able to create new embeddings in the same vector space for graphs not seen during

the initial embedding process. New embeddings of new input graphs become the input for

the generator.

My research is focused on two potential methods, GraphSAGE and a Graph Attention

Network (GAT) method (Hamilton, Ying, & Leskovec, 2018; Velickovic et al., 2018). Both

have code available that I am currently trying to adapt for this project. The researchers

demonstrated the capabilities of each with inductive node-classification experiments on sev-

eral large data sets and graph-classification experiments of unseen graphs using a data set

of protein-protein interactions. The relevant experiment for my research is the classification

of protein graphs because the creation of embeddings for whole unseen graphs is a necessary

function of my proposed floor plan generator. There are significant differences between the

data sets. The protein-protein interaction data set is a small set of 24 graphs with an average

of 2372 nodes and is therefore much smaller than the floor plan data set and the graphs are

much larger and more complex. However, it is the best example that I have been able to

locate.

3.3.4 Data Representation

The Rhino / Grasshopper platform is inefficient for processing large numbers of floor plans,

and the necessary embedding libraries are not directly accessible. Therefore, after the meth-

66

Figure 20: a) Reconstructed vector format floor plan; b) Graphic rep-

resentation of adjacency graph; c) Raster image of floor plan; d) Vector

encoding raster image

ods for creating the plan geometry and extracting the graphs were functional, I exported the

GHPython code to a Jupyter notebook and used the Rhino3dm library for geometry objects.

From there the raster images are created for the GAN model. The Matplotlib library is used

to create 256x256 pixel images of the plans as color blocks, coded by function. Prior to

image creation each plan is translated to a center position and scaled to fit within a white

border. Examples of these three representations are shown in Figure 20 items a, b and c

The vector embedding procedure will be located within the notebook when it is functional.

The method to generate a 256x256 pixel image of an embedding vector to pair with the floor

plan image is complete. An example of a vector represented as a colored block is shown in

Figure 20 item d.

67

3.3.5 Generative Model

The conditional GAN architecture is based on the image-to-image translation model pix2pix

and was adapted by Rhee and Veloso (Isola, Zhu, Zhou, & Efros, 2018). Their model is

trained with raster image pairs of colored floor plans and corresponding colored bubble

diagrams. New raster floor plans are generated from new colored bubble diagrams input by

a model user. I modify the model to train on pairs composed of a colored floor plan and an

image of the corresponding vector encoding of the adjacency graph extracted from the floor

plan. Because the embedding method is not functional, I have not been able to achieve any

preliminary results to evaluate the applicability of this particular GAN architecture for the

experiment.

3.3.6 Discussion

Although generated results have not been achieved, the effort to create the generator brought

important insights. Hands on manipulation of the chosen data set revealed its ambiguities

and the significant level of reduction and abstraction from the ground truth of real apart-

ments. Automated translation systems unavoidably make mistakes. As noted above, the

Raster-to-Vector algorithm is claimed to be 90% accurate. How the 10% error rate is man-

ifested in the resultant vector floor plans is not clear. Without the original raster images

it is impossible for me to determine, but the geometry reconstructions of the House-GAN

data set revealed no obvious errors or misconfigurations. Although not precisely errors, the

algorithm is forced to ignore or make simplifications of input that it cannot parse. An im-

portant example of this limitation is the assignment of a single room type to represent two

or more rooms not separated by a door or small opening. Equally important, the original

raster images are not to scale, therefore the collection of resultant vectorized plans does not

have a consistent scale.

Further, the House-GAN creators also made design decisions about the data set. The

decision to modify the list of possible room types changed the semantic content of the original

68

floor plan images. The decisions to conflate doors and windows and provide no indication of

the front door directly reflect the design priorities of the House-GAN creators. After all of

these data set design decisions by the House-GAN creators and my own decisions to adapt

the contents of the data set, it is clear that the final content of the data set is inextricably

influenced by the intentions of the users. This suggests to me that there should be at least

as much if not more effort directed toward the open and deliberate design of data sets as

there is to the development of new algorithms. The results of the generator by Para shown

in 11 demonstrate the influence of the data set on the results.

4 Conclusion

4.1 Contribution

The research strategy of using historical research and software reconstruction to probe and

critique state-of-the-art computational design methods can be used to draw several con-

clusions. Two important lineages of graph-based representation methods emerged from

the foundational developments in the 20th century. The first employs graphs-based rep-

resentations as a tool for scientific generalization of the built environment. Braced with

mathematical rigor, graph-based representations offer the promise of objective classification

systems and generalized theories of building performance rooted in spatial configuration and

morphology. In this lineage, graph-based representations become a modern instrument to

reconfigure architectural history away from the traditional classification of formal and stylis-

tic typologies and toward one based on the immutable laws of geometry. In doing so, the

reconfiguration also is a proposal to reconnect to architectural history with techniques sup-

ported by digital computers and new mathematical concepts. The second lineage solidifies

graph-representations as carriers of architectural programmatic information. In this lineage

graph-based representations serve as a functionalist tool for form determination. They are

the conduit through which rationally determined functional requirements guide rationally

designed form-defining generative systems for optimal solutions.

69

State-of-the-art applications of machine learning to graph-based spatial representations

suggest new possibilities for the two lineages. The successful classification experiments of

Ferrando et al. and those I conducted in Vignette 2 demonstrate the potential of vector

spaces as locations for comparison and analysis of architectural space. Encoding of graph-

based representations sidesteps the role of abstract geometry and graph theory in floor

plan analysis without losing the primacy of plan configuration as the principal organizing

concept. Although not demonstrated here, extrapolating from work in other domains shows

that graphs, nodes and edges can be attributed with data that further enrich the vector

encodings creating new locations to pose questions of greater complexity and nuance.

Data-driven floor plan generation uses graph-based representation of floor plans to exploit

the modern concept of program in two ways. Like the generators reconstructed in Vignette

1, the generators proposed in Vignette 3 and discussed in section on data-driven generative

systems all employ graph representations to carry the program as input to the generator. But

program is not attributed to the data set of the rectangular dissections. The dissections are

neutral, dimensionless geometry. Their cells are presumptively receptive to any program of

matching configuration. In contrast, data-driven systems use graphs to extract the implicit

design program from each floor plan in the data set. The generative model is then trained on

pairs of programs, represented as graphs, and realized floor plans. Through the association of

both functional arrangements and geometric configuration, data-driven models demonstrate

more varied results. Admittedly, the work demonstrated so far is small in scale and the

results are decidedly normative. The motivations claimed by the creators of the state-of-

the-art generators tends toward the desire for automatic production of floor plans much like

the creators of the graph theoretic based generators. However, as noted in the Discussion

section of Vignette 3, creative and thoughtful data set design may offer alternative manners

of creative exploration with data-driven generators.

Lastly, the challenges of creating the vector representations in Vignette 3 raised impor-

tant and unexpected limitations to vector embeddings. The random walk methods used in

Vignette 2 are not applicable to generative or analytical systems that must encode unseen

graphs or nodes. Although graph embeddings appear to offer new computation access to spa-

70

tial configuration, the technology has limitations that will surely be tested as more research

employs the techniques.

4.2 Next Steps

By linking state-of-the-art machine learning on graph-based representations to an estab-

lished lineage of graph-based design and architectural research, a trajectory of future work

is suggested. The successful extraction of semantic information from floor plans and the

successful vector embedding experiments demonstrate that the combination of graph-based

representations and vector embeddings could be developed as a digital classification system

for architectural information.

The system would be in the direct lineage of the English building stock research con-

ducted by the Centre for Configurational Studies (Steadman et al., 1991). Of course, the

background research and vignettes also demonstrated that the challenge of collecting floor

plan information has improved surprisingly little since the Centre performed its studies.

A simple uniform format would encourage the academic and professional communities to

contribute to databases either their own design work or their data set creation efforts. An

attributed configuration-based representation format would be simpler and therefore more

likely to be successful and adopted than a system based on standardized representations

of conventional two-dimensional representations or three-dimensional models. In addition

to supporting research communities, a uniform format is critical to designing data sets for

machine learning generative systems.

References

Abdelrahman, M., Chong, A., & Miller, C. (2020, July). Build2Vec: Building Representation

in Vector Space. arXiv:2007.00740 [cs] . Retrieved 2020-11-10, from http://simaud

.org/2020/proceedings/102.pdf (arXiv: 2007.00740)

71

http://simaud.org/2020/proceedings/102.pdf
http://simaud.org/2020/proceedings/102.pdf

Al-Jokhadar, A., & Jabi, W. (2016). Humanising the Computational Design Process - Inte-

grating Parametric Models with Qualitative Dimensions. In Parametricism Vs. Mate-

rialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference

Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016,

pp. 9-18. CUMINCAD. Retrieved 2020-11-06, from http://papers.cumincad.org/

cgi-bin/works/paper/ascaad2016_003

As, I., Pal, S., & Basu, P. (2018, December). Artificial intelligence in architecture: Gen-

erating conceptual design via deep learning. International Journal of Architectural

Computing , 16 (4), 306–327. Retrieved 2020-08-07, from https://doi.org/10.1177/

1478077118800982 (Publisher: SAGE Publications) doi: 10.1177/1478077118800982

Baybars, I., & Eastman, C. M. (1980, September). Enumerating Architectural Arrangements

by Generating Their Underlying Graphs. Environment and Planning B: Planning and

Design, 7 (3), 289–310. Retrieved 2020-11-01, from https://journals.sagepub.com/

doi/abs/10.1068/b070289 (Publisher: SAGE Publications Ltd STM) doi: 10.1068/

b070289

Building Database & Analytics System (BuDAS). (n.d.). Retrieved 2021-03-28, from

https://sites.baylor.edu/budas/

Cardoso Llach, D., & Donaldson, S. (2019). An Experimental Archaeology of CAD. In J.-

H. Lee (Ed.), Computer-Aided Architectural Design. "Hello, Culture" (pp. 105–119).

Singapore: Springer. doi: 10.1007/978-981-13-8410-3_8

Chaillou, S. (2019, July). ArchiGAN: a Generative Stack for Apartment Building De-

sign. Retrieved 2020-12-16, from https://developer.nvidia.com/blog/archigan

-generative-stack-apartment-building-design/

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., & Murphy, K. (2020, May). Machine

Learning on Graphs: A Model and Comprehensive Taxonomy. arXiv:2005.03675

[cs, stat] . Retrieved 2020-12-16, from http://arxiv.org/abs/2005.03675 (arXiv:

2005.03675)

Cheng, C.-Y. (2021, March). Co-design with AI. Morphing Matter Lab, Human-Computer

Interaction Institute, School of Computer Science, Carnegie Mellon University.

Cohen, E. (2018, April). node2vec: Embeddings for Graph Data | Towards Data Science. Re-

72

http://papers.cumincad.org/cgi-bin/works/paper/ascaad2016_003
http://papers.cumincad.org/cgi-bin/works/paper/ascaad2016_003
https://doi.org/10.1177/1478077118800982
https://doi.org/10.1177/1478077118800982
https://journals.sagepub.com/doi/abs/10.1068/b070289
https://journals.sagepub.com/doi/abs/10.1068/b070289
https://sites.baylor.edu/budas/
https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/
https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/
http://arxiv.org/abs/2005.03675

trieved 2020-12-13, from https://towardsdatascience.com/node2vec-embeddings

-for-graph-data-32a866340fef

Colquhoun, A. (1969). Typology and Design Method. Perspecta, 12 , 71–74. Retrieved 2020-

09-21, from http://www.jstor.org/stable/1566960 (Publisher: The MIT Press)

doi: 10.2307/1566960

DeLanda, M. (2002). Deleuze and the Use of the Genetic Algorithm in Architecture. Archi-

tectural Design, 72 (1), 9–12.

Delve. (n.d.). Retrieved 2020-12-17, from https://hello.delve.sidewalklabs.com/

Duarte, J. P. (2001). Customizing mass housing : a discursive grammar for Siza’s Malagueira

houses (Thesis, Massachusetts Institute of Technology). Retrieved 2020-11-18, from

https://dspace.mit.edu/handle/1721.1/8189 (Accepted: 2005-08-23T18:09:22Z)

Ferrando, C. (2018). Towards a Machine Learning Framework in Spatial Anal-

ysis (Master of Science, Carnegie Mellon University, Pittsburgh, PA). Re-

trieved from https://kilthub.cmu.edu/articles/Towards_a_Machine_Learning

_Framework_in_Space_Syntax/7178417/files/13205726.pdf

Ferrando, C., Dalmasso, N., Mai, J., & Cardoso Llach, D. (2019). Architectural Dis-

tant Reading Using Machine Learning to Identify Typological Traits Across Multi-

ple Buildings. In Ji-Hyun Lee (Eds.) "Hello, Culture!" [18th International Confer-

ence, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea,

pp. 114-127. CUMINCAD. Retrieved 2020-09-13, from http://cumincad.scix.net/

cgi-bin/works/Show?cf2019_014

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . .

Bengio, Y. (2014, June). Generative Adversarial Networks. arXiv:1406.2661 [cs, stat] .

Retrieved 2021-05-22, from http://arxiv.org/abs/1406.2661 (arXiv: 1406.2661)

Grasl, T., & Economou, A. (2010). Palladian Graphs : Using a graph grammar to automate

the Palladian grammar. In FUTURE CITIES [28th eCAADe Conference Proceedings

/ ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.275-

283. CUMINCAD. Retrieved 2020-09-09, from http://papers.cumincad.org/cgi

-bin/works/Show?ecaade2010_005

Grohe, M. (2020, June). word2vec, node2vec, graph2vec, X2vec: Towards a Theory of

73

https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef
https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef
http://www.jstor.org/stable/1566960
https://hello.delve.sidewalklabs.com/
https://dspace.mit.edu/handle/1721.1/8189
https://kilthub.cmu.edu/articles/Towards_a_Machine_Learning_Framework_in_Space_Syntax/7178417/files/13205726.pdf
https://kilthub.cmu.edu/articles/Towards_a_Machine_Learning_Framework_in_Space_Syntax/7178417/files/13205726.pdf
http://cumincad.scix.net/cgi-bin/works/Show?cf2019_014
http://cumincad.scix.net/cgi-bin/works/Show?cf2019_014
http://arxiv.org/abs/1406.2661
http://papers.cumincad.org/cgi-bin/works/Show?ecaade2010_005
http://papers.cumincad.org/cgi-bin/works/Show?ecaade2010_005

Vector Embeddings of Structured Data. In Proceedings of the 39th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems (pp. 1–16). New York,

NY, USA: Association for Computing Machinery. Retrieved 2021-03-26, from http://

doi.org/10.1145/3375395.3387641 doi: 10.1145/3375395.3387641

Grover, A., & Leskovec, J. (2016, July). node2vec: Scalable Feature Learning for Networks.

arXiv:1607.00653 [cs, stat] . Retrieved 2020-08-28, from http://arxiv.org/abs/1607

.00653 (arXiv: 1607.00653)

Hamilton, W. L., Ying, R., & Leskovec, J. (2018, September). Inductive Representation

Learning on Large Graphs. arXiv:1706.02216 [cs, stat] . Retrieved 2021-04-16, from

http://arxiv.org/abs/1706.02216 (arXiv: 1706.02216)

Harding, J. (2016). Evolving Parametric Models using Genetic Programming with Artificial

Selection. In Complexity & Simplicity - Proceedings of the 34th eCAADe Conference -

Volume 1 (pp. 423–432). University of Oulu, Oulu, Finland: CUMINCAD. Retrieved

2020-05-11, from http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016

_163

Harding, J., & Brandt-Olsen, C. (2018, June). Biomorpher: Interactive evolution for para-

metric design. International Journal of Architectural Computing , 16 (2), 144–163. Re-

trieved 2020-05-11, from https://doi.org/10.1177/1478077118778579 (Publisher:

SAGE Publications) doi: 10.1177/1478077118778579

Heitor, T. V., Duarte, J. P., & Pinto, R. M. (2004, December). Combining Grammars and

Space Syntax: Formulating, Generating and Evaluating Designs. International Journal

of Architectural Computing , 2 (4), 491–515. Retrieved 2020-11-11, from https://doi

.org/10.1260/1478077042906221 (Publisher: SAGE Publications) doi: 10.1260/

1478077042906221

Hillier, B., & Hanson, J. (1984). The Social Logic of Space. Cambridge

[Cambridgeshire]: Cambridge University Press. Retrieved 2020-10-22, from

http://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=

711679&site=ehost-live&scope=site

Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., & Huang, H. (2020, April).

Graph2Plan: Learning Floorplan Generation from Layout Graphs. arXiv:2004.13204

74

http://doi.org/10.1145/3375395.3387641
http://doi.org/10.1145/3375395.3387641
http://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1706.02216
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_163
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_163
https://doi.org/10.1177/1478077118778579
https://doi.org/10.1260/1478077042906221
https://doi.org/10.1260/1478077042906221
http://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=711679&site=ehost-live&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=711679&site=ehost-live&scope=site

[cs] . Retrieved 2020-08-09, from http://arxiv.org/abs/2004.13204 (arXiv:

2004.13204) doi: 10.1145/3386569.3392391

Informatics Research Data Repository [LIFULL HOME’S Dataset]. (n.d.). Retrieved 2021-

03-15, from https://www.nii.ac.jp/dsc/idr/en/lifull/

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2018, November). Image-to-Image Translation

with Conditional Adversarial Networks. arXiv:1611.07004 [cs] . Retrieved 2021-05-05,

from http://arxiv.org/abs/1611.07004 (arXiv: 1611.07004)

Keller, S. (2017). Automatic Architecture: Motivating Form after Modernism. Chicago: The

University of Chicago Press.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, Mass: MIT Press.

LIFULL. (n.d.). LIFULL HOME’S. Retrieved 2021-04-03, from https://www.homes.co

.jp/

LIFULLCreators. (n.d.-a). High-definition floor plan image data has been added to "HOME’S

Dataset". Retrieved 2021-04-03, from https://www.lifull.blog/entry/2016/02/

01/144650

LIFULLCreators. (n.d.-b). We will start providing "HOME’S" property and image data sets

to researchers! Retrieved 2021-04-03, from https://www.lifull.blog/entry/2015/

11/17/164717

Liu, C., Wu, J., Kohli, P., & Furukawa, Y. (2017). Raster-To-Vector: Re-

visiting Floorplan Transformation. In (pp. 2195–2203). Retrieved 2021-03-

01, from https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Raster

-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.html

March, L. (1971). The geometry of environment: an introduction to spatial organization in

design. London: RIBA Publications.

Mitchell, W. J. (1979). Computer-aided architectural design. New York: Van Nostrand

Reinhold.

Mitchell, W. J., Steadman, J. P., & Liggett, R. S. (1976, June). Synthesis and Optimization

of Small Rectangular Floor Plans. Environment and Planning B: Planning and Design,

3 (1), 37–70. Retrieved 2021-01-14, from https://journals.sagepub.com/doi/abs/

75

http://arxiv.org/abs/2004.13204
https://www.nii.ac.jp/dsc/idr/en/lifull/
http://arxiv.org/abs/1611.07004
https://www.homes.co.jp/
https://www.homes.co.jp/
https://www.lifull.blog/entry/2016/02/01/144650
https://www.lifull.blog/entry/2016/02/01/144650
https://www.lifull.blog/entry/2015/11/17/164717
https://www.lifull.blog/entry/2015/11/17/164717
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.html
https://journals.sagepub.com/doi/abs/10.1068/b030037
https://journals.sagepub.com/doi/abs/10.1068/b030037

10.1068/b030037 (Publisher: SAGE Publications Ltd STM) doi: 10.1068/b030037

Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, Y. (2020, March).

House-GAN: Relational Generative Adversarial Networks for Graph-constrained House

Layout Generation. arXiv:2003.06988 [cs] . Retrieved 2020-09-10, from http://

arxiv.org/abs/2003.06988 (arXiv: 2003.06988)

Nauata, N., Hosseini, S., Chang, K.-H., Chu, H., Cheng, C.-Y., & Furukawa, Y. (2021,

March). House-GAN++: Generative Adversarial Layout Refinement Networks.

arXiv:2103.02574 [cs] . Retrieved 2021-03-10, from http://arxiv.org/abs/2103

.02574 (arXiv: 2103.02574)

Ostwald, M. J. (2011, July). The Mathematics of Spatial Configuration: Revisiting, Revising

and Critiquing Justified Plan Graph Theory. Nexus Network Journal , 13 (2), 445–470.

Retrieved 2020-11-06, from https://doi.org/10.1007/s00004-011-0075-3 doi: 10

.1007/s00004-011-0075-3

Para, W., Guerrero, P., Kelly, T., Guibas, L., & Wonka, P. (2020, November). Generative

Layout Modeling using Constraint Graphs. arXiv:2011.13417 [cs] . Retrieved 2021-02-

23, from http://arxiv.org/abs/2011.13417 (arXiv: 2011.13417)

Revit Gen Design. (n.d.). Retrieved 2020-12-17, from https://www.autodesk.com/

solutions/generative-design/architecture-engineering-construction

Rhee, J., & Veloso, P. (2021, March). Bubble2Floor. Carnegie Mellon University, School of

Architecture.

Shekhawat, K., Pinki, & Duarte, J. P. (2019). A Graph Theoretical Approach for Creating

Building Floor Plans. In J.-H. Lee (Ed.), Computer-Aided Architectural Design. "Hello,

Culture" (pp. 3–14). Singapore: Springer. doi: 10.1007/978-981-13-8410-3_1

Shekhawat, K., Upasani, N., Bisht, S., & Jain, R. N. (2021, July). A tool for computer-

generated dimensioned floorplans based on given adjacencies. Automation in Construc-

tion, 127 , 103718. Retrieved 2021-05-13, from https://www.sciencedirect.com/

science/article/pii/S0926580521001692 doi: 10.1016/j.autcon.2021.103718

Spacemaker AI. (n.d.). Retrieved 2020-12-17, from https://www.spacemakerai.com/

Steadman, P. (1973). Graph theoretic representation of architectural arrangement. Archi-

tectural Research and Teaching , 2 (3), 161–172. Retrieved 2020-08-28, from http://

76

https://journals.sagepub.com/doi/abs/10.1068/b030037
https://journals.sagepub.com/doi/abs/10.1068/b030037
http://arxiv.org/abs/2003.06988
http://arxiv.org/abs/2003.06988
http://arxiv.org/abs/2103.02574
http://arxiv.org/abs/2103.02574
https://doi.org/10.1007/s00004-011-0075-3
http://arxiv.org/abs/2011.13417
https://www.autodesk.com/solutions/generative-design/architecture-engineering-construction
https://www.autodesk.com/solutions/generative-design/architecture-engineering-construction
https://www.sciencedirect.com/science/article/pii/S0926580521001692
https://www.sciencedirect.com/science/article/pii/S0926580521001692
https://www.spacemakerai.com/
http://www.jstor.org/stable/24654905
http://www.jstor.org/stable/24654905

www.jstor.org/stable/24654905 (Publisher: Locke Science Publishing Company,

Inc.)

Steadman, P. (1983). Architectural morphology: an introduction to the geometry of building

plans. London: Pion.

Steadman, P., Brown, F., & Rickaby, P. (1991, March). Studies in the Morphology of the

English Building Stock. Environment and Planning B: Planning and Design, 18 (1), 85–

98. Retrieved 2021-03-19, from https://journals.sagepub.com/doi/abs/10.1068/

b180085 (Publisher: SAGE Publications Ltd STM) doi: 10.1068/b180085

Steenson, M. W. (2017). Architectural Intelligence: How Designers and Architects Created

the Digital Landscape. Cambridge, UNITED STATES: MIT Press. Retrieved 2020-

05-28, from http://ebookcentral.proquest.com/lib/cm/detail.action?docID=

5205402

Stiny, G., & Gips, J. (1971). Shape Grammars and the Generative Specification of Painting

and Sculpture. In Segmentation of Buildings for 3DGeneralisation. In: Proceedings of

the Workshop on generalisation and multiple representation , Leicester.

Stiny, G., & Mitchell, W. J. (1978, June). The Palladian Grammar. Environment and

Planning B: Planning and Design, 5 (1), 5–18. Retrieved 2021-04-04, from https://

journals.sagepub.com/doi/abs/10.1068/b050005 (Publisher: SAGE Publications

Ltd STM) doi: 10.1068/b050005

Summerson, J. N. (1990). The Case for a Theory of ‘Modern’ Architecture. In The unro-

mantic castle, and other essays (pp. 257– 266). London: Thames and Hudson.

Vardouli, T. (2020, June). Skeletons, Shapes, and the Shift from Surface to Structure in

Architectural Geometry. Nexus Network Journal , 22 (2), 487–505. Retrieved 2020-08-

28, from https://doi.org/10.1007/s00004-020-00478-0 doi: 10.1007/s00004-020

-00478-0

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018, Febru-

ary). Graph Attention Networks. arXiv:1710.10903 [cs, stat] . Retrieved 2021-05-02,

from http://arxiv.org/abs/1710.10903 (arXiv: 1710.10903)

Wu, W., Fu, X.-M., Tang, R., Wang, Y., Qi, Y.-H., & Liu, L. (2019, November). Data-driven

interior plan generation for residential buildings. ACM Transactions on Graphics ,

77

http://www.jstor.org/stable/24654905
http://www.jstor.org/stable/24654905
https://journals.sagepub.com/doi/abs/10.1068/b180085
https://journals.sagepub.com/doi/abs/10.1068/b180085
http://ebookcentral.proquest.com/lib/cm/detail.action?docID=5205402
http://ebookcentral.proquest.com/lib/cm/detail.action?docID=5205402
https://journals.sagepub.com/doi/abs/10.1068/b050005
https://journals.sagepub.com/doi/abs/10.1068/b050005
https://doi.org/10.1007/s00004-020-00478-0
http://arxiv.org/abs/1710.10903

38 (6), 234:1–234:12. Retrieved 2020-11-06, from http://doi.org/10.1145/3355089

.3356556 doi: 10.1145/3355089.3356556

Wurzer, G., Lorenz, W. E., & Wien, T. (2016). SpaceBook - A Case Study of Social

Network Analysis in Adjacency Graphs. In Herneoja, Aulikki; Toni Österlund and

Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe

Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp.

229-238. CUMINCAD. Retrieved 2020-11-19, from http://papers.cumincad.org/

cgi-bin/works/paper/ecaade2016_018

78

http://doi.org/10.1145/3355089.3356556
http://doi.org/10.1145/3355089.3356556
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_018
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_018

	List of Figures
	Introduction
	Motivations
	Design Generation
	Hypothesis
	Structure of Document and Methods

	Background
	Representing Spatial Configuration
	Scientific Aspirations
	Beyond Dissections
	Summary

	Learning Spatial Configuration
	Creating Data
	Embedding Relationships
	Spatial Analysis with Embeddings
	Data-driven Generative Systems
	Summary

	Methods
	Vignette 1 - Dissecting and Enumerating
	Introduction
	Basis of Reconstruction
	Producing the Dissections
	Dissections to Adjacency Graphs
	Dissection Assignment
	Visualizing Dissections and Graphs
	Results
	Discussion

	Vignette 2 - Encoding Configuration
	Introduction
	Node Attributes
	Data Set
	Feature Engineering
	Classification Experiments
	Results
	Discussion

	Vignette 3 - Generating With Data
	Introduction
	Investigating the Data Set
	Floor Plan Encoding
	Data Representation
	Generative Model
	Discussion

	Conclusion
	Contribution
	Next Steps

	References

