
Combinatorial Multi-armed Bandits in

Competitive Environments

Submitted in partial fulfillment of the requirements for
the degreee of

Doctor of Philosophy
in

Electrical & Computer Engineering

Jinhang Zuo
B.E., Communication Engineering, Nanjing University of Posts and Telecom.

M.S., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

September 2022



© Jinhang Zuo, 2022

All Rights Reserved



Abstract
Multi-armed bandits (MAB) have attracted much attention as a

means of capturing the exploration and exploitation tradeoff in sequential
decision making. In the classical MAB problem, at each round, a player
chooses one arm from a fixed arm set and receives a random reward based
on an unknown distribution. Nevertheless, in many real-world applica-
tions, the problems have a combinatorial nature among multiple arms
and possibly non-linear reward functions. Combinatorial multi-armed
bandits (CMAB) have been extensively studied for these settings, and
most previous works consider CMAB from a single-player’s perspective:
at each round, one player chooses a set of arms to play, observes the
feedback from them and receives a reward. However, motivated by appli-
cations such as online advertising (i.e., advertisers put ads on websites
to attract user clicks), there might exist multiple players (advertisers)
competing over the same set of arms (websites). This competition among
players has been less studied and brings significant challenges to the
design and analysis of bandit algorithms.

In this thesis, we introduce the competitive CMAB problem from
two different perspectives. We first consider competitive CMAB from
the follower’s perspective, where a follower and a competitor play with
the same set of arms. We assume the follower can choose his action
after observing the action of the competitor and study how the follower
can maximize his own reward given the competitor’s actions. We then
introduce competitive CMAB from the multi-players’ perspective, where
multiple players choose combinatorial actions on the same set of arms.
Our objective is to design bandit algorithms that maximize the collective
reward across all players. We provide general formulations of both settings
and design bandit algorithms with theoretical guarantees for real-world
applications, including social influence maximization, dynamic channel
allocation, and general resource allocation.
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Chapter 1

Introduction

1.1 Background

The multi-armed bandit (MAB) problem has been extensively studied in statistics
and machine learning. In the classical MAB problem, there are K arms, each having
an unknown reward distribution. At each round, a player chooses one of these
arms and receives a random reward drawn from its reward distribution. The goal
is to maximize the long-term cumulative reward of the player over multiple rounds.
The MAB problem captures the fundamental tradeoff between exploration and
exploitation in sequential decision making: exploring unknown arms can potentially
discover an arm with a higher reward while exploiting the best-known arm may avoid
choosing arms with low rewards. Most MAB algorithms use the history of rewards
received from the played arms to design strategies for choosing arms in future rounds.
The performance of a bandit algorithm is measured by its expected regret, which is
the difference in the expected cumulative reward between always playing the best
arm and playing arms according to the algorithm. Existing results [1] show that one
can achieve a T -round regret of O(log T ), which is asymptotically optimal.

Nevertheless, in many real-world applications, the problems have a combinatorial
nature among multiple arms and possibly non-linear reward functions. The combina-
torial multi-armed bandit (CMAB) framework has been proposed for these settings
[2, 3, 4] and has been applied to various applications in recommender systems [5],
wireless networking [6], social networks [7], etc. In traditional CMAB problems, one
player selects a combinatorial action (i.e., a combination of arms) to play in each
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round, which would trigger a set of arms. The outcomes of the triggered arms are
observed as feedback to the player. The player then uses the observed feedback to
update his knowledge of the arms, which is used for action selection in later rounds.

Let us consider an example of traditional CMAB in online advertising. As shown
in Figure 1.1, an advertiser wants to put advertisements on a set of m web pages to
attract user clicks. Due to a budget constraint, the advertiser can choose at most k
web pages. Each user has a click-through probability for the advertisement on the
certain page he visited, but this probability is unknown by the advertiser. The users
will visit these web pages repeatedly (i.e., homepages of news websites), and the
goal of the advertiser is to maximize the total number of user clicks over multiple
rounds. The advertiser needs to repeatedly select k web pages, observe the click
results to learn the click-through probabilities, and decide which pages to choose in
future rounds. Besides the exploration and exploitation tradeoff, CMAB has to deal
with the exponential number of possible actions (e.g.,

(
m
k

)
choices of web pages in

online advertising) that makes exploring all actions infeasible especially when m is
extremely large.

Figure 1.1: Online advertising.

Another application of CMAB is in music recommendation. As shown in Fig-
ure 1.2, the recommender agent recommends an ordered list of k songs among m

songs to the user. At each round, a user arrives and checks the recommended list
from the first to the last. The user has a click probability on each song and will
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stop checking the list once clicking a song. The agent observes the song on which
the user clicks, and knows the user did not click on previous songs in the list. It
uses this information to update its estimates of each song’s click probabilities. The
goal of the agent is to maximize the number of clicks over time without knowing
the click probabilities. This problem is also called cascading bandits [5], which is a
special case of CMAB. Same as the online advertising example, the possible number
of actions is exponential (i.e., m!

(m−k)!
). CMAB algorithms avoid the direct exploration

of these actions via learning the click probabilities of individual songs and making
decisions based on the learned statistics.

Figure 1.2: Music recommendation.

Most previous works consider CMAB problems from a single-player’s perspective:
in the example of online advertising, they only consider one advertiser putting a
single type of advertisement on web pages. However, in the real-world advertising
problem, there might exist different types of competing advertisements on these web
pages, either provided by the same advertiser or other competing advertisers. This
competition among players has been less studied and brings significant challenges to
the design and analysis of CMAB algorithms.

In this thesis, we introduce two new competitive CMAB settings that explicitly
model the competition between players.

• Competitive CMAB from the follower’s perspective: in this setting, we consider
a player and a competitor (or a group of competitors) playing with the same
set of arms. Playing on the same arm incurs competition, which might lead
to a potential loss of the reward. We call this competitive CMAB from the
follower’s perspective as we assume the player can choose her action after
observing the action of the competitor and our objective is to maximize the
collected reward of the player. In the online advertising example shown in
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Figure 1.3, it can model that the advertiser puts her advertisement on web
pages that may already have competing advertisements.

Figure 1.3: Online advertising from the follower’s perspective.

• Competitive CMAB from the multi-players’ perspective: in this setting, instead
of making decisions for one single player, we need to choose combinatorial
actions for multiple players who play with the same set of arms. Again, playing
on the same arm incurs competition, which might lead to a potential loss of
the reward. Our objective is to maximize the overall reward for all players. We
consider both the centralized and the distributed settings. In the centralized
settings, we assume there exists a central controller making decisions for
all players and also observing the feedback from all players. In the online
advertising example shown in Figure 1.4, it can model that the advertiser needs
to put competing advertisements for different products on the web pages. In
the distributed settings, each player chooses her action individually only based
on her own feedback. Our goal is to find a learning policy that can be deployed
on all players to maximize the overall reward. In the online advertising example,
it can model that a group of advertisers put competing advertisements on the
same set of web pages without any communication between each other.

4



Figure 1.4: Online advertising from the multi-players’ perspective.

Table 1.1: Summary of different settings.

Setting Competitive Combinatorial Player Decision Maker Objective
Traditional CMAB [2, 3, 4] ✗ ✓ single single single
Multi-player MAB [6, 8] ✓ ✗ multiple individual players all players

Follower ✓ ✓ follower & competitor follower follower
Multi-player: centralized ✓ ✓ multiple central controller all players
Multi-player: distributed ✓ ✓ multiple individual players all players

1.2 Overview of Our Approaches

In this section, we give an overview of our proposed approaches for different com-
petitive CMAB problems. We first compare our proposed competitive settings with
traditional CMAB and multi-player MAB settings in Table 1.1. We are the first to
consider the competitive CMAB problem where both the follower and the competitor
can take combinatorial actions. Different from previous multi-player bandits [6, 8],
our competitive CMAB from the multi-players’ perspective allow the players to take
combinatorial actions in both centralized and distributed settings.

For the competitive CMAB from the follower’s perspective, we study it with the
application in social networks.

• Online competitive influence maximization [9]. Online influence maxi-
mization has attracted much attention as a way to maximize influence spread
through a social network while learning the values of unknown network param-
eters. Most previous works focus on single-item diffusion. In this thesis, we
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introduce a new Online Competitive Influence Maximization (OCIM) problem,
where two competing items (e.g., products, news stories) propagate in the same
network (as in Figure 1.5) and influence probabilities on edges are unknown.
We consider one of the items as the follower. At each round, given the seed
nodes of the competing item, the follower chooses k nodes as the seed set,
observes the full diffusion results of both items, and uses them to learn the
influence probabilities for future seed selection. The objective is to maximize
the total number of nodes influenced by the follower over multiple rounds.
Compared to the online advertising problem with a bipartite graph discussed
above, the OCIM problem is more challenging as it considers the influence
propagation of competing items in a general social graph. We adopt a com-
binatorial multi-armed bandit (CMAB) framework for OCIM, but unlike the
non-competitive setting, the important monotonicity property (influence spread
increases when influence probabilities on edges increase) no longer holds due to
the competitive nature of propagation, which brings a significant new challenge
to the problem. We provide a nontrivial proof showing that the Triggering
Probability Modulated (TPM) condition for CMAB still holds in OCIM, which
is instrumental for our proposed algorithms OCIM-TS and OCIM-OFU to prov-
ably achieve sublinear Bayesian and frequentist regret, respectively. We also
design an OCIM-ETC algorithm that requires less feedback and easier offline
computation, at the expense of a worse frequentist regret bound. Experimental
evaluations demonstrate the effectiveness of our algorithms.

For competitive CMAB from the multi-players’ perspective, we study it with the
applications in dynamic channel allocation and general resource allocation.

• Dynamic Channel Allocation with Pre-observations [10]. We consider
the stochastic multi-armed bandit (MAB) problem in a setting where a player
can pay to pre-observe arm rewards before playing an arm in each round. The
single-player version of this problem can also be viewed as cascading bandits
with position discounts [11], while we extend it to the multi-player settings.
The formulation is inspired by Cognitive Radio Networks (CRNs), where users
can use wireless channels when they are unoccupied by primary users. In each
round, a user can sense (pre-observe) some channels (arms) to check their
availability (reward) before choosing a channel to transmit data (play). Sensing
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Figure 1.5: Example of online competitive influence maximization.

more arms leaves less time for data transmission, inducing a cost of making
pre-observations. Figure 1.6 shows an example of such pre-observations. Apart
from the usual trade-off between exploration and exploitation, we encounter an
additional dilemma: pre-observing more arms gives a higher chance to play the
best one, but incurs a larger cost. For the single-player setting, we design an
OBP-UCB algorithm and prove a T -round regret upper bound O(K2 log T ). In
the multi-player setting, collisions will occur when players select the same arm
to play in the same round. We design a centralized algorithm, C-MP-OBP, and
prove its T -round regret relative to an offline greedy strategy is upper bounded
in O(K

4

M2 log T ) for K arms and M players. We also propose distributed versions
of the C-MP-OBP policy, called D-MP-OBP and D-MP-Adapt-OBP, achieving
logarithmic regret with respect to collision-free target policies. Experiments
on synthetic and real data show that C-MP-OBP and D-MP-OBP outperform
random heuristics and offline optimal policies that do not allow pre-observations.

• Resource Allocation [12, 13]. We study the sequential resource allocation
problem where a decision maker repeatedly allocates budgets between resources.
Motivating examples include allocating limited computing time or wireless
spectrum bands to multiple users (i.e., resources). As shown in Figure 1.7, at
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Figure 1.6: Illustration of pre-observations in a wireless network.

each timestep, the decision maker should distribute its available budgets among
different resources to maximize the expected reward over time, or equivalently
to minimize the cumulative regret. In doing so, the decision maker should learn
the value of the budget allocated for each user from feedback on each user’s
received reward. For example, users may send messages of different urgency
over wireless spectrum bands; the reward generated by allocating spectrum to
a user then depends on the message’s urgency. We assume each user’s reward
follows a random process that is initially unknown. We design combinatorial
multi-armed bandit algorithms to solve this problem with discrete or continuous
budget allocations. We prove the proposed algorithms achieve logarithmic
regrets. In addition, since rewards received by the same user under different
budget allocations are often correlated in practical settings, we propose a novel
correlated combinatorial bandit algorithm that can achieve reduced regrets
relative to correlation-agnostic algorithms. We demonstrate the effectiveness of
all proposed algorithms through experiments for several wireless applications.
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Figure 1.7: Sequential budget allocation.

1.3 Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews the traditional
non-competitive CMAB problem and introduces a new algorithm with an improved
regret bound. Chapter 3 introduces the general formulation and algorithms for
competitive CMAB from the follower’s perspective and discusses its application in
influence maximization. Chapter 4 introduces the general formulation for competitive
CMAB from the multi-players’ perspective and discusses its applications in wireless
networking and general resource allocation. Chapter 5 concludes the thesis and
discusses future research directions.
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Chapter 2

Non-competitive CMAB

2.1 Introduction

In this section, we introduce the traditional non-competitive CMAB problem: in each
round, one player selects a combinatorial action to play, which would trigger a set of
arms. The outcomes of the triggered arms are observed as feedback to the player.
The player then uses the observed feedback to update his knowledge of the arms,
which is used for arm selection in later rounds. We first review the general CMAB
problem formulation, then discuss the classical CUCB algorithm [2] and its regret
bound. We also introduce a new TPVM bounded smoothness condition that helps
reduce the regret dependency on the batch size and design a BCUCB-T algorithm
with an improved regret bound [14]. Notice that such regret bound improvement
may also be extended to the competitive CMAB problems in later chapters, but it
requires a thorough discussion on the TPVM condition for these competitive settings,
which is an interesting future direction.

2.2 Problem Formulation

We study the non-competitive combinatorial multi-armed bandit problem with
probabilistic triggering arms (CMAB-T). Following the setting from [3], a CMAB-T
problem instance can be described by a tuple ([m],S,D, Dtrig, R), where [m] =

{1, 2, ...,m} is the set of base arms; S is the set of actions; D is the set of possible
distributions over the outcomes of base arms with bounded support [0, 1]m; Dtrig is

10



the probabilistic triggering function and R is the reward function, the definitions of
which will be introduced shortly.

In CMAB-T, the learning agent interacts with the unknown environment in a
sequential manner as follows. First, the environment chooses a distribution D ∈ D
unknown to the agent. Then, at round t = 1, 2, ..., T , the agent selects an action
St ∈ S and the environment draws from the unknown distribution D a random
outcome X t = (Xt,1, ...Xt,m) ∈ [0, 1]m. Note that the outcome X t is assumed to be
independent from outcomes generated in previous rounds, but outcomes Xt,i and
Xt,j in the same round could be correlated. Let Dtrig(S,X) be a distribution over
all possible subsets of [m], i.e. its support is 2[m]. When the action St is played
on the outcome X t, base arms in a random set τt ∼ Dtrig(St,X t) are triggered,
meaning that the outcomes of arms in τt, i.e., {Xt,i}i∈τt are revealed as the feedback
to the agent, and are involved in determining the reward of action St. Function Dtrig

is referred as the probabilistic triggering function. At the end of the round t, the
agent will receive a non-negative reward R(St,X t, τt), determined by St,X t and τt.
CMAB-T significantly enhances the modeling power of CMAB [15] and can model
many applications such as cascading bandits and online influence maximization [3].

The goal of CMAB-T is to accumulate as much reward as possible over T rounds,
by learning distribution D or its parameters. Let µ = (µ1, ..., µm) denote the mean
vector of base arms’ outcomes. Following [3], we assume that the expected reward
E[R(S,X, τ)] is a function of the unknown mean vector µ, where the expectation
is taken over the randomness of X ∼ D and τ ∼ Dtrig(S,X). In this context, we
denote r(S;µ) ≜ E[R(S,X, τ)] and it suffices to learn the unknown mean vector
instead of the joint distribution D, based on the past observation.

The performance of an online learning algorithm A is measured by its regret,
defined as the difference of the expected cumulative reward between always playing
the best action S∗ ≜ argmaxS∈S r(S;µ) and playing actions chosen by algorithm A.
For many reward functions, it is NP-hard to compute the exact S∗ even when µ is
known, so similar to [3], we assume that the algorithm A has access to an offline
(α, β)-approximation oracle, which for mean vector µ outputs an action S such that
Pr [r(S;µ) ≥ α · r(S∗;µ)] ≥ β. Formally, the T -round (α, β)-approximate regret is
defined as

Reg(T ;α, β,µ) = T · αβ · r(S∗;µ)− E
[∑T

t=1 r(St;µ)
]
, (2.1)

11



where the expectation is taken over the randomness of outcomes X1, ...,XT , the
triggered sets τ1, ..., τT , as well as the randomness of algorithm A itself.

In the CMAB-T model, there are several quantities that are crucial to the
subsequent study. We define triggering probability p

D,Dtrig,S
i as the probability that

base arm i is triggered when the action is S, the outcome distribution is D, and
the probabilistic triggering function is Dtrig. Since Dtrig is always fixed in a given
application context, we ignore it in the notation for simplicity, and use pD,S

i henceforth.
Triggering probabilities pD,S

i ’s are crucial for the triggering probability modulated
bounded smoothness conditions to be defined below.

Owing to the nonlinearity and the combinatorial structure of the reward, it is
essential to give some conditions for the reward function in order to achieve any
meaningful regret bounds [2, 3, 15]. The following are two standard conditions
originally proposed by [3].

Condition 2.1 (Monotonicity). We say that a CMAB-T problem instance satisfies
monotonicity condition, if for any action S ∈ S, any two distributions D,D′ ∈ D
with mean vectors µ,µ′ ∈ [0, 1]m such that µi ≤ µ′

i for all i ∈ [m], we have
r(S;µ) ≤ r(S;µ′).

Condition 2.2 (1-norm TPM Bounded Smoothness). We say that a CMAB-T
problem instance satisfies the triggering probability modulated (TPM) B-bounded
smoothness condition, if for any action S ∈ S, any distribution D,D′ ∈ D with mean
vectors µ,µ′ ∈ [0, 1]m, we have |r(S;µ′)− r(S;µ)| ≤ B

∑
i∈[m] p

D,S
i |µi − µ′

i|.
The first monotonicity condition indicates the reward is larger if the parameter

vector µ is larger. The second condition bounds the reward difference caused by the
parameter change (from µ to µ′). One key feature is that the parameter change in
each base arm i ∈ [m] is modulated by the triggering probability pD,S

i . Intuitively,
for base arm i that is unlikely to be triggered/observed (small pD,S

i ), Condition 2.2
ensures that a large change in µi only causes a small change (multiplied by pD,S

i ) in
the reward, and thus one does not need to pay extra cost to observe such arms. Many
applications satisfy Condition 2.1 and Condition 2.2, such as linear combinatorial
bandits [16], combinatorial cascading bandits [17], online influence maximization [3].

12



2.3 CUCB Algorithm and Regret Bound

In this section, we introduce the CUCB algorithm (Algorithm 2.1) in [2] for the
CMAB-T problem. The algorithm maintains the empirical estimate µ̂i for the true
mean µi, and feed the upper confidence bound µ̄i to the offline oracle to obtain
the next action S to play. The upper confidence bound µ̄i is large if arm i is not
triggered often (Ti is small), providing optimistic estimates for less observed arms.
We next restate its improved regret bound in [3] owing to the 1-norm TPM bounded
smoothness condition.

Definition 2.1 (Gap). Fix a distribution D and its expectation vector µ. For each
action S, we define the gap ∆S = max(0, α · r(S∗;µ)− r(S;µ)). For each arm i, we
define

∆i
min = inf

S∈S:pD,S
i >0,∆S>0

∆S, ∆i
max = sup

S∈S:pD,S
i >0,∆S>0

∆S.

As a convention, if there is no action S such that pD,S
i > 0 and ∆S > 0, we define

∆i
min = +∞, ∆i

max = 0. We define ∆min = mini∈[m] ∆
i
min, and ∆max = maxi∈[m] ∆

i
max.

Let S̃ = {i ∈ [m] | pD,S
i > 0} be the set of arms that could be triggered by S.

Let K = maxS∈S |S̃|. We use ⌈x⌉0 to denote max{⌈x⌉, 0} for any real number x.

Theorem 2.1. For the CUCB algorithm on a CMAB-T problem instance that
satisfies monotonicity (Condition 2.1) and TPM bounded smoothness (Condition 2.2)
with bounded smoothness constant B, (1) if ∆min > 0, we have distribution-dependent
bound

Reg(T ;α, β,µ) ≤
∑
i∈[m]

576B2K lnT

∆i
min

+
∑
i∈[m]

(⌈
log2

2BK

∆i
min

⌉
0

+ 2

)
· π

2

6
·∆max + 4Bm;

(2) we have distribution-independent bound

Reg(T ;α, β,µ) ≤ 12B
√
mKT lnT +

(⌈
log2

T

18 lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max + 2Bm.

2.4 Batch-size Independent Regret Bound

As defined in the previous section, K is the maximum number of arms that can be
triggered, which also has been considered as the batch size [18]. In this section, for
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Algorithm 2.1 CUCB with computation oracle.
1: Input: m,Oracle
2: For each arm i, Ti ← 0 {maintain the total number of times arm i is played}
3: For each arm i, µ̂i ← 1 {maintain the empirical mean of Xi}
4: for t = 1, 2, 3, . . . do
5: For each arm i ∈ [m], ρi ←

√
3 ln t
2Ti

{the confidence radius, ρi = +∞ if Ti = 0}
6: For each arm i ∈ [m], µ̄i = min {µ̂i + ρi, 1} {the upper confidence bound}
7: S ← Oracle(µ̄1, . . . , µ̄m)

8: Play action S, which triggers a set τ ⊆ [m] of base arms with feedback X
(t)
i ’s,

i ∈ τ
9: For every i ∈ τ , update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti

10: end for

the CMAB-T framework, we improve the regret dependency on the batch size K from
O(K) in [3] to O(logK) or O(log2K) in [14]. Notice that K is quite large in some
applications, e.g., K can be hundreds of thousands for influence maximization in a
large social network. Our main tool is a new condition called triggering probability
and variance modulated (TPVM) bounded smoothness condition, replacing the TPM
condition (Condition 2.2). We will define the TPVM condition, compare it with the
TPM condition and the Gini-smoothness condition of [18], and show our algorithm
and regret analysis that utilizes this condition.

2.4.1 TPVM Bounded Smoothness Condition

In this section, we introduce a new smoothness condition for many important
applications as follows.

Condition 2.3 (Directional TPVM Bounded Smoothness). We say that a CMAB-T
problem instance satisfies the directional TPVM (Bv, B1, λ)-bounded smoothness
condition (Bv, B1 ≥ 0, λ ≥ 1), if for any action S ∈ S, any distribution D,D′ ∈ D
with mean vector µ,µ′ ∈ (0, 1)m, for any non-negative ζ,η ∈ [0, 1]m s.t. µ′ =

µ+ ζ + η, we have

|r(S;µ′)− r(S;µ)| ≤ Bv

√√√√∑
i∈[m]

(pD,S
i )λ

ζ2i
(1− µi)µi

+B1

∑
i∈[m]

pD,S
i ηi. (2.2)

Remark 1 (Intuition for Condition 2.3). Looking at Eq.2.2, if we ignore
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the (1 − µi)µi term in the denominator and set λ = 2, the RHS of 2.2 becomes
Bv

√∑
i∈[m](p

D,S
i )2ζ2i +B1

∑
i∈[m] p

D,S
i ηi, which holds with Bv = B1

√
K by applying

the Cauchy-Schwarz inequality to Condition 2.2. However, the regret upper bound
following this modified 2.2 would not directly lead to the improvement in the regret
due to the

√
K factor in Bv. To deal with this issue, an important observation here is

that for many applications, the reason that Bv is large is the reward changes abruptly
when parameters µi approach 0 or 1. This motivates us to plug in the 1/(1− µi)µi

term in 2.2 to enlarge the square root term when µi is close to 0 or 1, so that Bv

can be as small as possible. On the other hand, notice that when µi approaches 0 or
1, the variance Vi ≤ (1− µi)µi is also very small, 1 so the estimation of µi should be
quite accurate. Therefore, the gap ζi between our estimation and true value produces
a variance-related term that cancels the (1− µi)µi in the denominator. Since ζi in
2.2 is modulated by both triggering probability pD,S

i and inverse upper bound of the
variance 1/(1 − µi)µi, we call Condition 2.3 the directional triggering probability
and variance modulated (TPVM) condition for short, where the term “directional”
is explained in the next remark. The exponent λ ≥ 1 on the triggering probability
gives flexibility to trade-off between the strength of the condition and the quantity
of the regret bound: With a larger λ, we can obtain a smaller regret bound, while
with a smaller λ, the condition is easier to satisfy and allows us to include more
applications.

Remark 2 (On directional TPVM vs. undirectional TPVM). In the
above definition, “directional” means that we have ζ,η ≥ 0 such that µ′ ≥ µ in every
dimension. This is weaker than the version of the undirectional TPVM condition,
where ζ,η ∈ [−1, 1]m, and the ηi in the right hand side of Eq.(2.2) is replaced with
|ηi|. The reason we use the weaker version is that some applications only satisfy the
weaker version. To differentiate, we use TPVM< when we refer to the directional
TPVM condition.

Remark 3 (Relation between Conditions 2.2 and 2.3). First, when
setting ζ to 0, the directional TPVM condition degenerates to the directional TPM
condition. However, Condition 2.2 is the undirectional TPM condition, which is
typically stronger than its directional counterpart. Thus, in general Condition 2.3
does not imply Condition 2.2. Nevertheless, with some additional assumptions

1For bounded random variable X ∈ [0, 1] with mean µi, variance Vi = E[X2] − E[X]2 ≤
E[X]− (E[X])2 ≤ (1−µi)µi, where the equality is achieved when X is a Bernoulli random variable.
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Algorithm 2.2 BCUCB-T: Bernstein Combinatorial Upper Confidence Bound
Algorithm for CMAB-T

1: Input: Base arms [m], computation oracle ORACLE.
2: Initialize: For each arm i, T0,i ← 0, µ̂0,i = 0, V̂0,i = 0.
3: for t = 1, ..., T do
4: For arm i, compute ρt,i according to 2.3 and set UCB value µ̄t,i = min{µ̂t−1,i +

ρt,i, 1}.
5: St = ORACLE(µ̄t,1, ..., µ̄t,m).
6: Play St, which triggers arms τt ⊆ [m] with outcome Xt,i’s, for i ∈ τt.
7: For every i ∈ τt, update Tt,i = Tt−1,i + 1, µ̂t,i = µ̂t−1,i + (Xt,i − µ̂t−1,i)/Tt,i,

V̂t,i =
Tt−1,i

Tt,i

(
V̂t−1,i +

1
Tt,i

(µ̂t−1,i −Xt,i)
2
)
.

8: end for

Condition 2.3 does imply Condition 2.2 with the same coefficient B1. Conversely, by
applying the Cauchy-Schwartz inequality, one can verify that if a reward function is
TPM B1-bounded smooth, then it is (directional) TPVM (B1

√
K/2, B1, λ)-bounded

smooth for any λ ≤ 2. For some applications, we are able to reduce their Bv

coefficient from B1

√
K/2 to a coefficient independent of K, leading to significant

savings in the regret bound.

Remark 4 (Comparing with [18]). [18] introduce a Gini-smoothness condition
to reduce the batch-size dependency for CMAB problems, which largely inspires our
TPVM< condition. Their condition is specified in a differential form of the reward
function, with parameters γ∞ and γg. We emphasize that their original condition
cannot handle the probabilistic triggering setting in CMAB-T. One natural extension
is to incorporate triggering probability modulation into their differential form of Gini-
smoothness. However, we found that the resulting TPM Gini-smoothness condition
is not strong enough to guarantee desirable regret bounds (See Appendix). This moti-
vates us to provide a new condition directly on the difference form |r(S;µ′)− r(S;µ)|,
similar to the TPM condition in [3]. Our TPVM< condition (Condition 2.3) can
be viewed as extending Lemma 6 of [18] to incorporate triggering probabilities and
bound the difference form |r(S;µ′)− r(S;µ)|. Intuitively, B1 and Bv correspond to
γ∞ and γg, respectively, but since they are for different forms of definitions, their
numerical values may not exactly match one another.
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2.4.2 BCUCB-T Algorithm and Regret Analysis

Our proposed algorithm BCUCB-T is a generalization of the BC-UCB algorithm [18]
which originally solves the non-triggering CMAB problem. Algorithm 2.2 maintains
the empirical estimate µ̂t,i and V̂t,i for the true mean and the true variance of the
base arm outcomes. To select the action St, it feeds the upper confidence bound
µ̄i into the offline oracle, where µ̄i optimistically estimates the µi by a confidence
interval ρt,i. Compared with the CUCB algorithm which uses confidence interval
ρt,i =

√
3 log t
2Tt−1,i

for the CMAB-T problem, the novel part is the usage of empirical

variance V̂t−1,i to construct the following “variance-aware” confidence interval:

ρt,i =

√
6V̂t−1,i log t

Tt−1,i

+
9 log t

Tt−1,i

(2.3)

This confidence interval leverages on the empirical Bernstein inequality instead of
the Chernoff-Hoeffding inequality. For the first term in 2.3, V̂t−1,i is approximately
equal to the true variance Vi ≤ (1 − µi)µi and this indicates the estimation of µi

is more accurate when µi is close to 0 or 1, which will cancel out the (1 − µi)µi

coefficient of the Bv term in Condition 2.3 as we discussed before. The second term
of Eq.(2.3) is to compensate the usage of the empirical variance V̂t−1,i, rather than
the true variance Vi which is unknown to the learner. We next give its regret bound.

Theorem 2.2. For a CMAB-T problem instance ([m],S,D, Dtrig, R) that satisfies
monotonicity (Condition 2.1), and TPVM< bounded smoothness (Condition 2.3)
with coefficient (Bv, B1, λ),

(1) if λ > 1, BCUCB-T (Algorithm 2.2) with an (α, β)-approximation oracle
achieves an (α, β)-approximate regret bounded by

O

∑
i∈[m]

B2
v logK log T

∆min
i

+
∑
i∈[m]

B1 log
2

(
B1K

∆min
i

)
log T

 ; (2.4)

(2) if λ = 1, BCUCB-T (Algorithm 2.2) with an (α, β)-approximation oracle
achieves an (α, β)-approximate regret bounded by

O

∑
i∈[m]

log

(
BvK

∆min
i

)
B2

v logK log T

∆min
i

+
∑
i∈[m]

B1 log
2

(
B1K

∆min
i

)
log T

 . (2.5)
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Remark 5 (Discussion for Regret Bounds). Looking at the above regret
bounds, for λ > 1 and λ = 1, the leading terms are O(

∑m
i=1

B2
v logK log T

∆min
i

) and

O(
∑m

i=1(log
BvK
∆min

i
)B

2
v logK log T

∆min
i

). When Bv ≥ B1 (which typically holds) and gaps are
small (i.e., ∆i

min ≤ 1/ log2K), the dependencies over K are O(logK) and O(log2K),
respectively. For the setting of CMAB-T, [3] is the closest work to our work, where
the reward function satisfies Condition 2.1 and Condition 2.2 with coefficient B1.
As mentioned in Remark 3 in 2.4.1, their reward function trivially satisfies our
Condition 2.3 with coefficient (B1

√
K/2, B1, 2) so our work reproduces a bound of

O(
∑

i∈[m]
B2

1K logK log T

∆min
i

), matching [3] up to a factor of O(logK). For applications

that satisfy TPVM (or TPVM<) condition with non-trivial Bv, i.e., Bv = o(B1

√
K),

our work improves their regret bounds up to a factor of O(K/ logK). As for the
lower bound, according to the lower bound results in [19], our regret bound is tight
up to a factor of O(log2K) on the (degenerate) non-triggering CMAB case.

Proof ideas. Our proof uses some events to filter the total regret and then bound these
event-filtered regrets separately. As will be shown in the supplementary material, the
event that contributes to the leading regret is Et = {∆St ≤ et(St)}, where the error
term et(St) = O(Bv

√∑
i∈S̃t

( log t
Tt−1,i

)(pD,St

i )λ +B1

∑
i∈S̃t

( log t
Tt−1,i

)(pD,St

i )). To handle the
probabilistic triggering, our key ingredient is to use the triggering probability group
technique proposed in [3] in the definition of the above events. For the λ = 1 case, one
new issue arises since the triggering probability group divides sub-optimal actions
S into infinite geometrically separated bins (1/2, 1], (1/4, 1/2]..., (2−j, 2−j+1), ...,

over pD,S
i , and the regret should be proportional to the number of bins (which

are infinitely large). To handle this, we show that it suffices to consider the first
j ≤ jmax

i = O(log BvK
∆min

i
) bins (which is why Eq.(2.5) has this additional factor in

the leading term) and the regret of other bins (with very small pD,S
i ) can be safely

neglected. To bound the leading regret filtered by Et as mentioned earlier, we use
the reverse amortization trick from [3, 20] and adaptively allocate each arm’s regret
contribution (according to thresholds on the number of times arm i is triggered).
Note that these thresholds are carefully chosen for the error term et(St), since trivially
following the thresholds in [3] would either yield no meaningful bound or suffer from
additional O(log T ) or O(logK) factors in the regret. As a by-product, one can
also use our analysis to replace that of [18] and [7] (where similar error term et(St)

appears) to improve their bound by a factor of O(logK).
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2.5 Summary

In this chapter, we review the general formulation of the non-competitive CMAB
problem and two standard conditions of the reward function to achieve meaningful
regret bounds. We discuss the CUCB algorithm from the previous work as well as its
regret bound. We then introduce a new TPVM bounded smoothness condition for
the reward function to enable batch-size independent regret bounds. The proposed
BCUCB-T algorithm achieves improved regret dependency on the batch size compared
to the CUCB algorithm.
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2.6 Proof

In this section, we provide detailed proofs for Theorem 2.2. For the structure of
this section, we first introduce some useful tools in Section 2.6.1 that will be helpful
for our analysis. Next, we transform the total regret to the regret terms filtered by
some events in Section 2.6.2. Then we provide regret bounds for all these regret
terms. For these regret terms, we give the proof for the leading regret term: the
proof giving Theorem 2.2 that uses the reverse amortization trick (see Eq. (2.38) and
Eq. (2.49)) are in Section 2.6.3. It is notable that this trick can be used to improve
[7, 18, 21] in a similar way, owing to the fact that their error terms have the similar
form as ours shown in Eq. (2.24) (except without triggering probability modulation).

2.6.1 Useful Concentration Bounds and Definitions

We use the following tail bound for the construction of the confidence radius and
our analysis.

Lemma 2.1 (Empirical Bernstein Inequality [22]). Let (Xi)i∈[n] be n i.i.d random
variables with bounded support [0, 1] and mean E[Xi] = µ. Let X̂n ≜ 1

n

∑
i∈[n] Xi and

V̂n ≜ 1
n

∑
i∈[n](Xi − X̂n)

2 be the empirical mean and empirical variance of (Xi)i∈[n].
Then for any n ∈ N and y > 0, it holds that

Pr

|X̂n − µ| ≥

√
2V̂ny

n
+

3y

n

 ≤ 3e−y (2.6)

We use the following Bernstein Inequality to bound the difference between the
empirical variance and the true variance.

Lemma 2.2 (Bernstein Inequality [23]). Let (Xi)i∈[n] be n independent random
variables in [0, 1] with mean E[Xi] = µ and variance Var[Xi] ≜ E[X2

i ]−(E[Xi])
2 = V .

Then with probability 1− δ:

1

n

∑
i∈[n]

Xi ≤ µ+
2 log 1/δ

3n
+

√
2V log 1/δ

n
. (2.7)

Similar to [3], we define the event-filtered regret, the triggering group, the counter,
the nice triggering event and the nice sampling event to help our analysis.
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Definition 2.2 (Event-Filtered Regret). For any series of events (Et)t≥[T ] indexed
by round number t, we define the RegAα,µ(T, (Et)t≥[T ]) as the regret filtered by events
(Et)t≥[T ], or the regret is only counted in t if E happens in t. Formally,

RegAα,µ(T, (Et)t≥[T ]) = E

∑
t∈[T ]

I(Et)(α · r(S∗;µ)− r(St;µ))

 . (2.8)

For simplicity, we will omit A,α,µ, T and rewrite RegAα,µ(T, (Et)t≥[T ]) as Reg(T, Et)
when contexts are clear.

Definition 2.3 (Triggering Probability (TP) group). For any arm i and index j,
define the triggering probability (TP) group (of actions) as

SD
i,j = {S ∈ S : 2−j < pD,S

i ≤ 2−j+1}. (2.9)

Notice {SD
i,j} forms a partition of {S ∈ S : pD,S

i }.
Definition 2.4 (Counter). For each TP group Si,j, we define a counter Ni,j which
is initialized to 0. In each round t, if the action St is chosen, then we update Ni,j to
Ni,j + 1 for (i, j) that St ∈ SD

i,j. We also denote Ni,j at the end of round t as Nt,i,j.
Formally, we have the following recursive equation to define Nt,i,j as follows:

Nt,i,j =


0, if t = 0

Nt−1,i,j + 1, if t > 0 and St ∈ SD
i,j

Nt−1,i,j, otherwise.

(2.10)

Definition 2.5 (Nice triggering event N t
t ). Given a series integers {jmax

i }i∈[m], we
say that the triggering is nice at the beginning of round t, if for every triggered group
identified by (i, j), as long as 6 ln t

1
3
Nt−1,i,j2−j ≤ 1, there is Tt−1,i ≥ 1

3
Nt−1,i,j · 2−j. We

denote this event as N t
t .

Lemma 2.3 (Appendix B.1, Lemma 4 [3]). For a series of integers (jmax
i )i∈[m], we

have Pr[¬N t
t ] ≤

∑
i∈[m] j

max
i t−2 for every round t ∈ [T ].

Proof. We refer the readers to Lemma 4 in Appendix B.1 from [3] for detailed
proofs.

Definition 2.6. We say that the sampling is nice at the beginning of round t if: (1)

21



for every base arm i ∈ [m], |µ̂t−1,i − µi| ≤ ρt,i, where ρt,i =
√

6V̂t−1,i log t

Tt−1,i
+ 9 log t

Tt−1,i
; (2)

for every base arm i ∈ [m], V̂t−1,i ≤ 2µi(1− µi) +
3.5 log t
Tt−1,i

. We denote such event as
N s

t .

The following lemma bounds the probability that N s
t does not happen.

Lemma 2.4. For each round t, Pr[¬N s
t ] ≤ 4mt−2.

Proof. Let N s,1
t ,N s,2

t be the event (1) and event (2), where N s
t = N s,1

t

⋂N s,2
t . We

first bound the probability that N s,1
t does not happen, we have

Pr[¬N s,1
t ] = Pr

∃i ∈ [m] s.t. |µ̂t−1,i − µi| >
√

6V̂t−1,i log t

Tt−1,i

+
9 log t

Tt−1,i

 (2.11)

≤
∑
i∈[m]

∑
τ∈[t]

Pr

|µ̂t−1,i − µi| >

√
6V̂t−1,i log t

τ
+

9 log t

τ
, Tt−1,i = τ

 (2.12)

≤ 3mt−2, (2.13)

where Eq. (2.12) is due to the union bound over i, τ , Eq. (2.13) is due to Lemma 2.1
by setting y = 3 log t and when Tt−1,i = τ, µ̂t−1,i and V̂t−1,i are the empirical mean
and empirical variance of τ i.i.d random variables with mean µi.

We then bound the probability that second event N s,2
t does not happen using

the similar proof of [18, Eq. (7)]. Fix Tt−1,i = τ and consider (Y 1
i , ..., Y

τ
i ), where

Y k
i = (Xk

i − µi)
2 ∈ [0, 1] and Xk

i is the random outcome of the k-th i.i.d trial. Since
Xk

i are independent across k, Y k
i are independent across k as well. In this case,

one can verify that V̂t−1,i =
1
τ

∑τ
k=1(X

k
i − µi)

2 − ( 1
τ

∑τ
k=1X

k
i − µi)

2 ≤ 1
τ

∑τ
k=1(X

k
i −

µi)
2 = 1

τ

∑τ
k=1 Y

k
i ; E[Y k

i ] = E[(Xk
i )

2] − µ2
i ≤ E[Xk

i ] · 1 − µ2
i = (1 − µi)µi; and

Var[Yi] = E[(Y k
i )

2]− (E[Y k
i ])

2 ≤ E[(Y k
i )

2] ≤ E[Y k
i ] ≤ (1− µi)µi. By Lemma 2.2 over

τ i.i.d random variable (Y k
i )k∈τ , it holds with probability at least 1− t−3 that

1

τ

τ∑
k=1

Y k
i ≤ E[Y k

i ] +
2 log t

n
+

√
6Var[Y k

i ] log t

τ
(2.14)
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This implies

V̂t−1,i ≤
1

τ

τ∑
k=1

Y k
i ≤ E[Y k

i ] +
2 log t

τ
+

√
6Var[Y k

i ] log t

τ
(2.15)

≤ µi(1− µi) +
2 log t

τ
+

√
6(1− µi)µi log t

τ
(2.16)

≤ µi(1− µi) +
2 log t

τ
+ µi(1− µi) +

3 log t

2τ
(2.17)

= 2µi(1− µi) +
3.5 log t

τ
(2.18)

where Eq. (2.16) is using 2ab ≤ a2 + b2 and a =
√

2µi(1− µi), b =
√

3 log t
n

.

Now by applying union bound over i ∈ [m] and τ ∈ [t], we have Pr[¬N s,2
t ] ≤ mt−2.

Lastly, applying union bound over N s,1
t and N s,2

t , we have Pr[¬N s
t ] ≤ 4mt−2.

After setting up all the above definitions, we can prove Lemma 2.5 about the
confidence radius, which appears in the main content.

Lemma 2.5. Fix every base arm i and every time t, with probability at least 1−4mt−3,
it holds that

µi ≤ µ̄t,i ≤ min{µi + 2ρt,i, 1} ≤ min

{
µi + 4

√
3

√
µi(1− µi) log t

Tt−1,i

+
28 log t

Tt−1,i

, 1

}
.

(2.19)

Proof. Recall that µ̄t,i = min{µ̂t−1,i + ρt,i, 1} = min{µ̂t−1,i +
√

6V̂t−1,i log t

Tt−1,i
+ 9 log t

Tt−1,i
, 1}.

Under event N s,1
t , we have |µi − µ̂t,i| ≤ ρt,i by Lemma 2.4, hence the first and the

second inequality in Lemma 2.5 holds.
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For the last inequality, under event N s,2
t , it holds that

µi + 2ρt,i = µi + 2

√6V̂t−1,i log t

Tt−1,i

+
9 log t

Tt−1,i

 (2.20)

≤ µi + 2

√6 · (2µi(1− µi) +
3.5 log t
Tt−1,i

) log t

Tt−1,i

+
9 log t

Tt−1,i

 (2.21)

≤ µi + 4
√
3

√
µi(1− µi) log t

Tt−1,i

+ 2
√
21

log t

Tt−1,i

+
18 log t

Tt−1,i

(2.22)

≤ µt−1,i + 4
√
3

√
µi(1− µi) log t

Tt−1,i

+
28 log t

Tt−1,i

, (2.23)

where Eq. (2.22) uses
√
a+ b ≤ √a+

√
b.

Since N s
t = N s,1

t

⋂N s,2
t and by Lemma 2.4, Eq. (2.19) holds with probability at

least 1− 4mt−2.

2.6.2 Decompose the Total Regret to Event-Filtered Regrets

In this section, we decompose the regret

Reg(T, {}) = Reg(T,N s
t ,N o

t ) +Reg(T,¬(N s
t

⋂
N o

t ))

≤ Reg(T,N s
t ,N o

t ) +Reg(T,¬N s
t ) +Reg(T,¬N o

t ),

where N s
t is defined in Definition 2.6, N o

t denotes the event where oracle successfully
outputs an α-approximate solution (with probability at least β). We have the
following lemma to do the decomposition.

Lemma 2.6. [Leading Regret Term] Let r(S;µ) be TPVM smoothness with coeffi-
cients (Bv, B1, λ), and define the error term

et(St) = 4
√
3Bv

√√√√∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i )λ + 28B1

∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i ) (2.24)

and event Et = I{∆St ≤ et(St)}. The regret of Algorithm 2.2, when used with (α, β)
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approximation oracle is bounded by

Reg(T ) ≤ Reg(T,Et) +
2π2

3
m∆max. (2.25)

Proof. Under event N s
t ,N o

t , by Lemma 2.5, it is easily to check that

µ̄t,i ≤ min{µt−1,i + 4
√
3

√
µi(1− µi) log t

Tt−1,i

+
28 log t

Tt−1,i

, 1}

≤ µt−1,i + 4
√
3

√
µi(1− µi)(

log t

Tt−1,i

∧ 1

28
) + 28(

log t

Tt−1,i

∧ 1

28
) (2.26)

Therefore, it holds that

αr(S∗;µ) ≤ αr(S∗; µ̄t) ≤ r(St; µ̄t) (2.27)

≤ r(St;µ) + 4
√
3Bv

√√√√∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i )λ + 28B1

∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i ),

(2.28)

where the first inequality in Eq. (2.27) is due to monotonicity condition (Condi-
tion 2.1) and second inequality in Eq. (2.27) is due to event N o

t , Eq. (2.28) is
because of Eq. (2.26) and the TPVM condition (Condition 2.3) by plugging in
ζi = 4

√
3
√

µi(1− µi)(
log t
Tt−1,i

∧ 1
28
) and ηi = 28( log t

Tt−1,i
∧ 1

28
).

So Reg(T,N s
t ,N o

t ) ≤ Reg(T,Et). Now for Reg(T,¬N s
t ), by Lemma 2.4 it holds

that

Reg(T,¬N s
t ) ≤

T∑
t=1

Pr[¬N s
t ] ≤

T∑
t=1

4mt−2 ≤ 2π2

3
m∆max. (2.29)

Similarly by definition, it holds that

Reg(T,¬N o
t ) ≤ (1− β)T∆max. (2.30)

Therefore Reg(T, {}) ≤ Reg(T,Et) +
2π2

3
m∆max + (1− β)T∆max. And we have

Reg(T ) = Reg(T, {}) − (1 − β)T∆max ≤ Reg(T,Et) +
2π2

3
∆max, which concludes

Lemma 2.6.
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Recall that event Et = {∆St ≤ et(St)}, where

et(St) = 4
√
3Bv

√√√√∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i )λ + 28B1

∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i ).

We will further decompose the event-filtered regret Reg(T,Et) into two event-filtered
regret Reg(T,Et,1) and Reg(T,Et,2),

Reg(T,Et) ≤ Reg(T,Et,1) +Reg(T,Et,2), (2.31)

where Et,1 = {∆St ≤ 2et,1(St)}, Et,2 = {∆St ≤ 2et,2(St)}, and

et,1(St) = 4
√
3Bv

√√√√∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i )λ,

et,2(St) = 28B1

∑
i∈S̃t

(
log t

Tt−1,i

∧ 1

28
)(pD,St

i ).

The above inequality holds since the following facts: We can observe et,1(St) +

et,2(St) = et(St). From Et, we know either Et,1 holds or Et,2 holds. So Et implies that
1 ≤ I{Et,1}+I{Et,2}, and thus ∆StI{Et} ≤ ∆StI{Et,1}+∆StI{Et,2}, which concludes
Reg(T,Et) ≤ Reg(T,Et,1) + Reg(T,Et,2). The next two sections will provide two
different proofs for Reg(T,Et,1), Reg(T,Et,2) separately, where the second improves
the first by a factor of O(logK).

2.6.3 Improved Analysis Using the Reverse Amortized Trick

In this section, we are going to bound the Reg(T,Et,1) and Reg(T,Et,2) separately
under the event N t

t . The idea is to use a refined reverse amortization trick originated
in [3] and to allocate the regret ∆St to each base arm according to carefully designed
thresholds. Note that it is highly non-trivial to derive the right thresholds and regret
allocation strategy so that the K,T factors are as small as possible, which is our
main contribution.

26



Upper bound for Reg(T,Et,1). We first break Reg(T,Et,1) into two parts and
bound them separately: Reg(T,¬N t

t ) and Reg(T,Et,1

⋂N t
t ).

For Reg(T,Et,1

⋂N t
t ), under the event N t

t , let c1 = 4
√
3 and we set jmax

i =
1
λ
(⌈log2 c21B

2
vK

(∆min
i )2
⌉+ 1). We first define a regret allocation function

κi,j,T (ℓ) =



c21B
2
v2

(−j+1)(λ−1)

∆min
i

, if ℓ = 0 and j ≤ jmax
i ,

2

√
24c21B

2
v2

(−j+1)(λ−1) log T

ℓ
, if 1 ≤ ℓ ≤ Li,j,T,1 and j ≤ jmax

i ,
48c21B

2
v2

(−j+1)(λ−1) log T

∆min
i

1
ℓ
, if Li,j,T,1 < ℓ ≤ Li,j,T,2 and j ≤ jmax

i ,

0, if ℓ > Li,j,T,2 or j > jmax
i ,

(2.32)

where Li,j,T,1 =
24c21B

2
v2

(−j+1)(λ−1) log T

(∆min
i )2

, Li,j,T,2 =
48c21B

2
v2

(−j+1)(λ−1)K log T

(∆min
i )2

.

Lemma 2.7. For any time t ∈ [T ], if N t
t and Et,1 hold, we have

∆St ≤
∑
i∈S̃t

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
), (2.33)

where jSt
i is the index of the triggering group Si,j such that 2−j

St
i < pD,St

i ≤ 2−j
St
i +1.

Proof. By event Et,1, which is defined in Eq. (2.24), we apply the reverse amortization
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(Eq. (2.38))

∆St ≤
∑
i∈S̃t

4c21B
2
v(p

D,St

i )λ min{ log t
Ti,t−1

, 1
28
}

∆St

(2.34)

≤ −∆St + 2
∑
i∈S̃t

4c21B
2
v(p

D,St

i )λmin{ log t
Ti,t−1

, 1
28
}

∆St

(2.35)

≤
∑
i∈S̃t

(
8c21B

2
v(p

D,St

i )λmin{ log t
Ti,t−1

, 1
28
}

∆St

− ∆St

|S̃t|

)
(2.36)

≤
∑
i∈S̃t


8c21B

2
v(p

D,St

i )λmin{ log t

1
3
N

t−1,i,j
St
i

2−j
St
i

, 1
28
}

∆St

− ∆St

|S̃t|

 (2.37)

≤
∑
i∈S̃t


8c21B

2
v(2

−j
St
i +1)λ min{ log t

1
3
N

t−1,i,j
St
i

2−j
St
i

, 1
28
}

∆St

− ∆St

K


︸ ︷︷ ︸

(2.38,i)

, (2.38)

where Eq. (2.34) is by the definition of Et,1, which says

∆2
St
≤
∑
i∈S̃t

4c21B
2
v(p

D,St

i )λmin{ log t
Ti,t−1

,
1

28
},

by dividing both sides by ∆St > 0. Eq. (2.35) is because we double the LHS and
RHS of Eq. (2.34) at the same time and then put one into the RHS, Eq. (2.36) is by
putting −∆St inside the summation, Eq. (2.38) is due to pD,St

i ≤ 2−j
St
i +1 given by

the definition of jSt
i and |S̃t| ≤ K.

Note that the Eq. (2.35) is called the reverse amortization trick, since we allocate
two times of the total regret and then minus the ∆St term to amortize the regret
when ℓ > Li,j,T,2 or j > jmax

i in Eq. (2.33), which saves the analysis for arms that
are sufficiently triggered. Now we bound (2.38, i) under different cases.

When j > jmax
i , we have (2.38, i) ≤ 8c21B

2
v(2

−j
St
i

+1)λ

∆St
· 1
28
− ∆St

K
≤ 8c21B

2
v

∆St

(∆min
i )2

c21B
2
vK
· 1
28
−

∆St

K
≤ ∆min

i

K
· 8
28
− ∆St

K
≤ 0 = κ

i,j
St
i ,T

(N
t−1,i,j

St
i
).
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When N
t−1,i,j

St
i

> L
i,j

St
i ,T,2

, we have (2.38, i) ≤ 8c21B
2
v(2

−j
St
i

+1)λ log t

1
3
N

t−1,i,j
St
i

·2−j
St
i ∆St

− ∆St

K
≤

48c21B
2
v2

(−j
St
i

+1)(λ−1) log T

∆St

1
N

t−1,i,j
St
i

− ∆St

K
<

(∆min
i )2

K∆St
− ∆St

K
≤ 0 = κ

i,j
St
i ,T

(N
t−1,i,j

St
i
).

When L
i,j

St
i ,T,1

< N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,2

and j ≤ jmax
i , we have (2.38, i) ≤

8c21B
2
v(2

−j
St
i

+1)λ log t

1
3
N

t−1,i,j
St
i

2−j
St
i ∆St

− ∆St

K
≤ 48c21B

2
v2

(−j
St
i

+1)(λ−1) log T

∆St

1
N

t−1,i,j
St
i

− ∆St

K
<

48c21B
2
v2

(−j
St
i

+1)(λ−1) log T

∆St

1
N

t−1,i,j
St
i

≤ 48c21B
2
v2

(−j
St
i

+1)(λ−1) log T

∆min
i

1
N

t−1,i,j
St
i

= κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

and j ≤ jmax
i , we further consider two different cases

N
t−1,i,j

St
i
≤ 24c21B

2
v2

(−j
St
i

+1)(λ−1) log T

(∆St )
2 or 24c21B

2
v2

(−j
St
i

+1)(λ−1) log T

(∆St )
2 < N

t−1,i,j
St
i
≤ L

i,j
St
i ,T,1

=

24c21B
2
v2

(−j
St
i

+1)(λ−1) log T

(∆min
i )2

.

For the former case, if there exists i ∈ S̃t so that N
t−1,i,j

St
i
≤ 24c21B

2
v2

(−j
St
i

+1)(λ−1) log T

(∆St )
2 ,

then we know
∑

q∈S̃t
κ
i,j

St
q ,T

(N
t−1,q,j

St
q
) ≥ κ

i,j
St
i ,T

(N
t−1,i,j

St
i
) = 2

√
24c21B

2
v2

(−j
St
i

+1)(λ−1) log T

N
t−1,i,j

St
i

≥ 2∆St > ∆St , which makes Eq. (2.33) holds no matter what. This means we do
not need to consider this case for good.

For the later case, when 24c21B
2
v2

(−j
St
i

+1)(λ−1) log T

(∆St )
2 < N

t−1,i,j
St
i

, we know that

(2.38, i) ≤ 48c21B
2
v2

(−j
St
i +1)(λ−1) log T

∆St

1

N
t−1,i,j

St
i

= 2

√√√√24c21B
2
v2

(−j
St
i +1)(λ−1) log T

(∆St)
2

1

N
t−1,i,j

St
i

√√√√24c21B
2
v2

(−j
St
i +1)(λ−1) log T

N
t−1,i,j

St
i

≤ 2

√√√√24c21B
2
v2

(−j
St
i +1)(λ−1) log T

N
t−1,i,j

St
i

= κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When ℓ = 0 and j ≤ jmax
i , we have (2.38, i) ≤ 8c21B

2
v(2

−j
St
i

+1)λ

∆St
· 1

28
− ∆St

K
≤

c21B
2
v(2

−j
St
i

+1)λ

∆St
≤ c21B

2
v(2

−j
St
i

+1)λ

∆min
i

= κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

Combining all above cases, we have ∆St ≤
∑

i∈S̃t
κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

Since N
t,i,j

St
i

is increased if and only if i ∈ S̃t and consider all possible Nt,i,jSi
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where κi,jSi ,T (S,Nt−1,i,jS) > 0, we have

Reg(T,Et,1

⋂
N t

t )

≤
∑
t∈[T ]

∑
i∈S̃t

κ
i,j

St
i ,T

(Nt−1,i,jSt ) (2.39)

≤
∑
i∈[m]

jmax
i∑
j=1

c21B
2
v(2

−j+1)λ

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

Li,j,T,1∑
ℓ=1

2

√
24c21B

2
v2

(−j+1)(λ−1) log T

ℓ

+
∑
i∈[m]

jmax
i∑
j=1

Li,j,T,2∑
Li,j,T,1+1

48c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

1

ℓ
(2.40)

≤
∑
i∈[m]

jmax
i∑
j=1

c21B
2
v(2

−j+1)λ

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

96c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

48c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

(1 + logK) (2.41)

=
∑
i∈[m]

jmax
i∑
j=1

c21B
2
v(2

−j+1)λ

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

48c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

(3 + logK) (2.42)

When λ > 1, we have

Reg(T,Et,1

⋂
N t

t ) ≤
∑
i∈[m]

∞∑
j=1

c21B
2
v2

−j+1

∆min
i

+
∑
i∈[m]

∞∑
j=1

48c21B
2
v2

(−j+1)(λ−1) log T

1− 2(λ−1)∆min
i

(3 + logK)

=
∑
i∈[m]

2c21B
2
v

∆min
i

+
∑
i∈[m]

48c21B
2
v log T

∆min
i

(3 + logK).

When λ = 1, we have

Reg(T,Et,1

⋂
N t

t ) ≤
∑
i∈[m]

∞∑
j=1

c21B
2
v2

−j+1

∆min
i

+
∑
i∈[m]

jmax
i

48c21B
2
v log T

∆min
i

(3 + logK)

=
∑
i∈[m]

2c21B
2
v

∆min
i

+
∑
i∈[m]

log
c21B

2
vK

(∆min
i )2

48c21B
2
v log T

∆min
i

(3 + logK).
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When λ > 1, we have Reg(T,Et,1) ≤
∑

i∈[m]
2c21B

2
v

∆min
i

+
∑

i∈[m]
48c21B

2
v log T

∆min
i

(3+logK)+

mπ2

6
log2

(
c21B

2
vK

λ(∆min)2

)
∆max.

When λ = 1, we have Reg(T,Et,1) ≤
∑

i∈[m]
2c21B

2
v

∆min
i

+
∑

i∈[m] log
c21B

2
vK

(∆min
i )2

48c21B
2
v log T

∆min
i

(3+

logK) + mπ2

6
log2

(
c21B

2
vK

(∆min)2

)
∆max.

Upper bound for Reg(T,Et,2). As usual, we first break Reg(T,Et,2) into two
parts and bound them separately: Reg(T,Et,2

⋂N t
t ) and Reg(T,¬N t

t ).

For Reg(T,Et,2

⋂N t
t ), under the event N t

t , let c2 = 28 be a constant and
K = maxS∈S |S̃|. We set jmax

i = ⌈log2 4B1c2K
∆min

i
⌉+1. We first define a regret allocation

function

κi,j,T (ℓ) =


∆max

i , if 0 ≤ ℓ ≤ Li,j,T,1 and j ≤ jmax
i

24c2B1 log T
ℓ

, if Li,j,T,1 < ℓ ≤ Li,j,T,2 and j ≤ jmax
i

0, if ℓ > Li,j,T,2 + 1 or j > jmax
i ,

(2.43)

where Li,j,T,1 =
24c2B1 log T

∆max
i

, Li,j,T,2 =
24c2B1K log T

∆min
i

.

Lemma 2.8. For any time t ∈ [T ], if N t
t and Et,2 hold, we have

∆St ≤
∑
i∈S̃t

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
), (2.44)

where jSt
i is the index of the triggering group Si,j such that 2−j

St
i < pD,St

i ≤ 2−j
St
i +1.
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Proof. By event Et,2, we have

∆St ≤
∑
i∈S̃t

2c2B1p
D,St

i min{ log t
Ti,t−1

,
1

28
} (2.45)

≤ −∆St + 2
∑
i∈S̃t

2c2B1p
D,St

i min{ log t
Ti,t−1

,
1

28
} (2.46)

≤
∑
i∈S̃t

(
4c2B1p

D,St

i min{ log t
Ti,t−1

,
1

28
} − ∆St

|S̃t|

)
(2.47)

≤
∑
i∈S̃t

4c2B1p
D,St

i min{ log t
1
3
N

t−1,i,j
St
i
2−j

St
i

,
1

28
} − ∆St

|S̃t|

 (2.48)

≤
∑
i∈S̃t

4c2B12
−j

St
i +1 min{ log t

1
3
N

t−1,i,j
St
i
2−j

St
i

,
1

28
} − ∆St

K


︸ ︷︷ ︸

(2.49,i)

, (2.49)

where Eq. (2.45) is by the definition of Et,1 and by dividing both sides by ∆St > 0,
Eq. (2.46) is because we double the LHS and RHS of Eq. (2.45) at the same time
and then put one into the RHS, Eq. (2.47) is by putting −∆St inside the summation,
Eq. (2.49) is due to pD,St

i ≤ 2−j
St
i +1 given by the definition of jSt

i and |S̃| ≤ K.

Similar to Eq. (2.49), Eq. (2.46) is called the reverse amortization. Now we bound
(2.49, i) under different cases.

When j > jmax
i , we have (2.49, i) ≤ 4c2B12

−j
St
i +1 − ∆St

K
≤ 4c2B1

∆min
i

c2B1K
− ∆St

K
≤

∆min
i

K
4
28
− ∆St

K
≤ 0 = κ

i,j
St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i

> L
i,j

St
i ,T,2

, we have (2.49, i) ≤ 4c2B12
−j

St
i +1 log t

1
3
N

t−1,i,j
St
i

2−j
St
i

−

∆St

K
≤ 24c2B1 log T

N
t−1,i,j

St
i

− ∆St

K
<

∆min
i

K
− ∆St

K
≤ 0 = κ

i,j
St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,2

and j ≤ jmax
i , We have (2.49, i) ≤

4c2B12
−j

St
i +1 log t

1
3
N

t−1,i,j
St
i

2−j
St
i

− ∆St

K
= 24c2B1 log T

N
t−1,i,j

St
i

− ∆St

K
< 24c2B1 log T

N
t−1,i,j

St
i

= κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

and j ≤ jmax
i , If there exists i ∈ S̃t so that

N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

=, then we know
∑

q∈S̃t
κ
i,j

St
q ,T

(N
t−1,q,j

St
q
) ≥ κ

i,j
St
i ,T

(N
t−1,i,j

St
i
) =

∆max
i ≥ ∆St , which makes Eq. (2.44) holds no matter what. This means we do not

need to consider this case for good.
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Combining all above cases, we have ∆St ≤
∑

i∈S̃t
κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

Since N
t,i,j

St
i

is increased if and only if i ∈ S̃t and consider all possible i, jSi and
Nt,i,jSi

where κi,jSi ,T (Nt−1,i,jS) > 0, we have

Reg(T,Et,2

⋂
N t

t )

≤
∑
t∈[T ]

∑
i∈S̃t

κ
i,j

St
i ,T

(Nt−1,i,jSt )

≤
∑
i∈[m]

jmax
i∑
j=0

Li,j,T,1∑
ℓ=1

∆max
i +

∑
i∈[m]

jmax
i∑
j=1

Li,j,T,2∑
Li,j,T,1+1

24c2B1 log T

ℓ

≤
∑
i∈[m]

jmax
i∑
j=1

24c2B1 log T +
∑
i∈[m]

jmax
i∑
j=1

24c2B1 log(
K∆max

i

∆min
i

) log T

=
∑
i∈[m]

jmax
i∑
j=1

24c2B1

(
1 + log(

K∆max
i

∆min
i

)

)
log T

≤
∑
i∈[m]

24c2B1

(
log2

B1c2K

∆min
i

)(
1 + log(

K∆max
i

∆min
i

)

)
log T

Finally we can bound Reg(T,Et,2):

Reg(T,Et,2) ≤
∑
i∈[m]

24c2B1

(
log2

B1c2K

∆min
i

)(
1 + log(

K∆max
i

∆min
i

)

)
log T

+
mπ2

6
log2

4B1c2K

∆min
i

∆max.
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Chapter 3

Competitive CMAB from the
Follower’s Perspective

3.1 Introduction

In this chapter, we study the competitive CMAB problem from the follower’s
perspective, where a player and a competitor (or a group of competitors) play
with the same set of arms. Playing on the same arm incurs competition, which
might lead to a potential loss of the reward. We assume the follower can choose his
action after observing the action of the competitor and consider how the follower
can maximize his own reward given the competitor’s actions. Figure 3.1 shows an
example of it in coupon allocation. There are two items with coupons 1 and 2,
respectively. If a customer receives a coupon, he will buy the corresponding item
with an unknown probability. In real-world applications, the customers may need to
buy the items repeatedly (e.g., buying mobile plans monthly), so it is possible to
learn their preferences with the coupons and use them for future coupon allocations.
The competition happens if a customer receives both coupons, which will affect
the customer’s decision. If we consider item 1 as the follower, with the known
allocation of coupon 2, the problem becomes allocating coupon 1 to customers to
maximize the total number of customers buying item 1. In the following sections, we
will introduce the general problem formulation and corresponding algorithms, then
discuss a concrete application to influence maximization in social networks.
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Figure 3.1: Competitive coupon allocation.

3.2 Problem Formulation

We consider a learning game with a player A and a competitor B.1 We call player A
the “follower” who will always choose actions after competitor B. They play with an
environment consisting of m random variables X1, · · · , Xm called base arms following
a joint distribution D over [0, 1]m. Distribution D is chosen by the environment from
a class of distributions D before the game starts. The player knows D but not the
actual distribution D in advance.

The learning process runs in discrete rounds for t = 1, 2, . . . , T . In round t,
competitor B first takes an action S

(t)
B from an action space SB, which is observed

by follower A. Follower A then chooses an action S
(t)
A from an action space SA,

based on S
(t)
B and the feedback history from previous rounds. Since the action

of the competitor and the action of the follower will jointly affect the obtained
reward of the follower, we define S(t) = (S

(t)
A , S

(t)
B ) as the joint action in round t and

S(t) =
{
S | S = (S

(t)
A , S

(t)
B ), S

(t)
A ∈ SA

}
as the joint action space such that S(t) ∈ S(t).

Since the joint action space, S(t), can also be viewed as the context in round t, we call
this setting as the general contextual combinatorial multi-armed bandit problem with
probabilistically triggered arms (C2MAB-T). The environment draws an independent
sample X(t) = (X

(t)
1 , · · · , X(t)

m ) from the joint distribution D. When action S(t) is

1It can be extended to multiple competitors by grouping their actions together.
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played on the environment outcome X(t), a random subset of arms τt ∈ [m] are
triggered, and the outcomes of X(t)

i for all i ∈ τt are observed as the feedback to
the player. τt may have additional randomness beyond the randomness of X(t). Let
Dtrig(S,X) denote a distribution of the triggered subset of [m] for a given action
S and an environment outcome X. We assume τt is drawn independently from
Dtrig(S

(t), X(t)). The player obtains a reward R(S(t), X(t), τt) fully determined by
S(t), X(t) and τt. A learning algorithm aims at selecting actions S(t)’s over time based
on past feedback to accumulate as much reward as possible.

For each arm i, let µi = EX∼D[Xi]. Let µ = (µ1, · · · , µm) denote the expectation
vector of arms. We assume that the expected reward E[R(S,X, τ)], where the
expectation is taken over X ∼ D and τ ∼ Dtrig(S,X), is a function of action S and
the expectation vector µ of the arms. Thus, we denote rS(µ) := E[R(S,X, τ)]. We
assume the outcomes of arms do not depend on whether they are triggered, i.e.,
EX∼D,τ∼Dtrig(S,X)[Xi | i ∈ τ ] = EX∼D[Xi].

The performance of a learning algorithm A is measured by its expected re-
gret, which is the difference in expected cumulative reward between always playing
the best action and playing actions selected by algorithm A. Let opt(t)(µ) =

supS(t)∈S(t) rS(t)(µ) denote the expected reward of the optimal action in round t. We
assume that there exists an offline oracle O, which takes context S(t) and µ as inputs
and outputs an action SO,(t) such that Pr{rSO,(t)(µ) ≥ α · opt(t)(µ))} ≥ β, where α

is the approximation ratio and β is the success probability. Instead of comparing
with the exact optimal reward, we take the αβ fraction of it and use the following
(α, β)-approximation frequentist regret for T rounds:

RegAα,β(T ;µ) =
∑T

t=1 α · β · opt(t)(µ)−∑T
t=1 rSA,(t)(µ), (3.1)

where SA,(t) is the action chosen by algorithm A in round t.

Another way to measure the performance of the algorithm A is using Bayesian
regret. Denote the prior distribution of µ as Q. When the prior Q is given, the
corresponding Bayesian regret is defined as:

BayesRegAα,β(T ) = Eµ∼QRegAα,β(T ;µ). (3.2)

Note that the contextual combinatorial bandit problem is also studied in [24, 25].
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They consider the context features of all bases arms, which can affect their expected
outcomes in each round, and assume the action space of super arms is a subset of
[m]. However, we do not bond the context with base arms and consider the feasible
set of super arms, S(t), as the context, which is more flexible than a subset of [m].
Besides, we are the first to consider probabilistically triggered arms in the contextual
combinatorial bandit problem.

In order to guarantee the theoretical regret bounds, we consider two conditions
given in [3]. The first one is monotonicity, which is stated below.

Condition 3.1. (Monotonicity). We say that a C2MAB-T problem instance satisfies
monotonicity, if for any action S, for any two expectation vectors µ = (µ1, . . . , µm)

and µ′ = (µ′
1, . . . , µ

′
m), we have rS(µ) ≤ rS(µ

′) if µi ≤ µ′
i for all i ∈ [m].

The second condition is Triggering Probability Modulated (TPM) Bounded
Smoothness. We use pSi (µ) to denote the probability that the action S triggers arm i

when the expectation vector is µ. The TPM condition in C2MAB-T is given below.

Condition 3.2. (1-Norm TPM bounded smoothness). We say that a C2MAB-T
problem instance satisfies 1-norm TPM bounded smoothness, if there exists C ∈ R+

(referred as the bounded smoothness coefficient) such that, for any two expectation
vectors µ and µ′, and any action S, |rS(µ)− rS(µ

′)| ≤ C
∑

i∈[m] p
S
i (µ)|µi − µ′

i|.

3.3 Algorithm and Regret Analysis

3.3.1 Algorithm with Monotonicity

For the general C2MAB-T problem that satisfies both monotonicity (Condition
3.1) and TPM bounded smoothness (Condition 3.2), we introduce a contextual
version of the CUCB algorithm [3], which is described in Algorithm 3.1. Recall
that S(t) is the action space in round t. We define the reward gap ∆

(t)
S =max(0, α ·

opt(t)(µ) − rS(µ)) for all actions S ∈ S(t). For each arm i, we define ∆i,T
min =

mint∈[T ] infS∈S(t):pSi (µ)>0,∆
(t)
S >0

∆
(t)
S and ∆i,T

max = maxt∈[T ] supS∈S(t):pSi (µ)>0,∆
(t)
S >0

∆
(t)
S .

If there is no action S such that pSi (µ) > 0 and ∆
(t)
S > 0, we define ∆i,T

min = +∞
and ∆i,T

max = 0. We define ∆
(T )
min = mini∈[m]∆

i,T
min and ∆

(T )
max = maxi∈[m]∆

i,T
max. Let

S̃ = {i ∈ [m] | pSi (µ) > 0} be the set of arms that can be triggered by S. We define
K = maxS∈S(t) |S̃| as the largest number of arms could be triggered by a feasible
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Algorithm 3.1 Contextual CUCB with offline oracle O, C2-UCB
1: Input: m, Oracle O.
2: For each arm i ∈ [m], Ti ← 0. {maintain the total number of times arm i is

played so far.}
3: For each arm i ∈ [m], µ̂i ← 1. {maintain the empirical mean of Xi.}
4: for t = 1, 2, 3, . . . do
5: For each arm i ∈ [m], ρi ←

√
3 ln t
2Ti

. {the confidence radius, ρi = +∞ if Ti = 0.}

6: For each arm i ∈ [m], µ̄i = min{µ̂i + ρi, 1}. {the upper confidence bound.}
7: Obtain context S(t).
8: S(t) ← O(S(t), µ̄1, µ̄2, . . . , µ̄m).
9: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X

(t)
i ’s,

i ∈ τ .
10: For every i ∈ τ update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

11: end for

action. We use ⌈x⌉0 to denote max{⌈x⌉, 0}. Contextual CUCB (C2-UCB) has the
following regret bounds.

Theorem 3.1. For the Contextual CUCB algorithm C2-UCB (Algorithm 3.1) on an
C2MAB-T problem satisfying 1-norm TPM bounded smoothness (Condition 3.2) with
bounded smoothness constant C, (1) if ∆(T )

min > 0, we have a distribution-dependent
bound

Regα,β(T ;µ) ≤
∑

i∈[m]
576C2K lnT

∆i,T
min

+ 4Cm+
∑

i∈[m]

(⌈
log2

2CK

∆i,T
min

⌉
0
+ 2
)
· π2

6
·∆(T )

max,

(3.3)

and (2) we have a distribution-independent bound

Regα,β(T ;µ) ≤ 12C
√
mKT lnT + 2Cm+

(⌈
log2

T
18 lnT

⌉
0
+ 2
)
·m · π2

6
·∆(T )

max.

Proof. We first show that Lemma 5 in [3] still holds for Contextual CUCB algorithm
in the C2MAB-T problem. Let N s

t be the event that at the beginning of round t, for
every arm i ∈ [m], |µ̂i,t − µi| ≤ ρi,t. Let Ht be the event that at round t oracle O
fails to output an α-approximate solution. In Lemma 5 from [3], it assumes that N s

t

and ¬Ht hold, then we have

rS(t)(µ̄t) ≥ α · opt(t)(µ̄t) ≥ α · opt(t)(µ) = rS(t)(µ) + ∆
(t)

S(t) . (3.4)
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Algorithm 3.2 C2-TS with offline oracle O
1: Input: m, Prior Q, Oracle O.
2: Initialize Posterior Q1 = Q
3: for t = 1, 2, 3, . . . do
4: Draw a sample µ(t) from Qt.
5: Obtain context S(t)

6: S(t) ← O(S(t),µ(t)).
7: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X

(t)
i ’s,

i ∈ τ .
8: Update posterior Qt+1 using X

(t)
i for all i ∈ τ .

9: end for

By the TPM condition, we have

∆
(t)

S(t) ≤ rS(t)(µ̄t)− rS(t)(µ) ≤ C
∑
i∈[m]

pS
(t)

i (µ)|µ̄i,t − µi|, (3.5)

which is in the same form of Eq.(10) in [3]. Hence, we can follow the remaining
proof of its Lemma 5. With Lemma 5, we can follow the proof of Lemma 6 in [3]
to bound the regret when ∆

(t)

S(t) ≥ MS(t) , where MS(t) = maxi∈S̃(t) Mi and Mi is a
positive real number for each arm i. Finally, we take Mi = ∆i,T

min. If ∆(t)

S(t) < MS(t) ,
then ∆

(t)

S(t) = 0, since we have either S̃(t) = ∅ or ∆(t)

S(t) < MS(t) ≤Mi for some i ∈ S̃(t).
Thus, no regret is accumulated when ∆

(t)

S(t) < MS(t) . Following Eq.(17)-(22) in [3], we
can derive the distribution-dependent and distribution-independent regret bounds
shown in the theorem.

3.3.2 Algorithm without Monotonicity

For the general C2MAB-T problem without monotonicity, we proposed two algo-
rithms, C2-TS, C2-OFU, that can still achieve logarithmic Bayesian and frequentist
regrets respectively. We also present C2-ETC that has a tradeoff between feedback
requirement and regret bound.

C2-TS is described in Algorithm 3.2. Different from OCIM-TS, we input a general
prior Q (which depends on D and might not be Beta distributions anymore) and
update the posterior distribution Qt accordingly. With the same definitions in 3.3.1
and δ

(T )
max = maxµ ∆

(T )
max, it has the following Bayesian regret bound.
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Algorithm 3.3 C2-OFU with offline oracle Õ
1: Input: m, Oracle Õ.
2: For each arm i ∈ [m], Ti ← 0. {maintain the total number of times arm i is

played so far.}
3: For each arm i ∈ [m], µ̂i ← 1. {maintain the empirical mean of Xi.}
4: for t = 1, 2, 3, . . . do
5: For each arm i ∈ [m], ρi ←

√
3 ln t
2Ti

. {the confidence radius, ρi = +∞ if Ti = 0.}

6: For each arm i ∈ [m], ci ← [(µ̂i − ρi)
0+, (µ̂i + ρi)

1−]. {the estimated range of
µi.}

7: Obtain context S(t).
8: S(t) ← Õ(S(t), c1, c2, . . . , cm).
9: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X

(t)
i ’s,

i ∈ τ .
10: For every i ∈ τ update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

11: end for

Theorem 3.2. For the C2-TS (Algorithm 3.2) on an C2MAB-T problem satisfying
1-norm TPM bounded smoothness (Condition 3.2) with bounded smoothness constant
C, we have the Bayesian regret bound

BayesRegα,β(T ) ≤ 12C
√
mKT lnT + 2Cm+

(⌈
log2

T
18 lnT

⌉
0
+ 4
)
·m · π2

6
· δ(T )

max,

(3.6)

.

C2-OFU is described in Algorithm 3.3. Similar to OCIM-OFU, it requires an
offline oracle Õ that takes the context S(t) and ci’s (ranges of µi’s) as inputs and
outputs an approximate solution S(t). With such an oracle, C2-OFU has the following
frequentist regret bounds.

Theorem 3.3. For the C2-OFU (Algorithm 3.3) on an C2MAB-T problem satisfying
1-norm TPM bounded smoothness (Condition 3.2) with bounded smoothness constant
C, (1) if ∆(T )

min > 0, we have a distribution-dependent bound

Regα,β(T ;µ) ≤
∑

i∈[m]
576C2K lnT

∆i,T
min

+ 4Cm+
∑

i∈[m]

(⌈
log2

2CK

∆i,T
min

⌉
0
+ 2
)
· π2

6
·∆(T )

max,

(3.7)
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Algorithm 3.4 C2-ETC with offline oracle O
1: Input: m, k, N , T , Oracle O.
2: For each arm i, Ti ← 0. {maintain the total number of times arm i is played.}
3: For each arm i, µ̂i ← 0. {maintain the empirical mean of Xi.}
4: Exploration phase:
5: for t = 1, 2, 3, . . . , ⌈mN/k⌉ do
6: Obtain context S(t).
7: Play action S(t) ∈ S(t), which contains k base arms that have not been chosen

for N times.
8: Observe the feedback X

(t)
i for each base arm in S(t), i ∈ τdirect.

9: For each arm i ∈ τdirect update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X
(t)
i − µ̂i)/Ti.

10: end for
11: Exploitation phase:
12: for t = ⌈mN/k⌉+ 1, . . . , T do
13: Obtain context S(t).
14: S(t) ← O(S(t), µ̂1, µ̂2, . . . , µ̂m).
15: Play action S(t).
16: end for

and (2) we have a distribution-independent bound

Regα,β(T ;µ) ≤ 12C
√
mKT lnT + 2Cm+

(⌈
log2

T
18 lnT

⌉
0
+ 2
)
·m · π2

6
·∆(T )

max.

Besides C2-TS and C2-OFU, we also provide a general explore-then-commit
algorithm C2-ETC, as described in Algorithm 3.4. In the general setting, τdirect

is defined as the set of base arms that is deterministically triggered by the action
in question. C2-ETC is simple and only requires feedback from directly triggered
arms, but it has a worse regret bound and requires the following condition besides
Condition 3.2.

Condition 3.3. For some k ≥ 1, given any context S(t) and any set S ′ ⊆ [m] with
|S ′| = k, there exists S ∈ S(t) such that pSi (µ) = 1 for every i ∈ |S ′|.

With such a condition, C2-ETC has the following frequentist regret bounds.

Theorem 3.4. For the C2-ETC (Algorithm 3.4) on an C2MAB-T problem satisfying
Condition 3.3 and 1-norm TPM bounded smoothness (Condition 3.2) with bounded

smoothness constant C, (1) if ∆(T )
min > 0, when N = max

{
1, 2C2m2

(∆
(T )
min)

2
ln(

kT (∆
(T )
min)

2

C3m
)

}
,
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we have a distribution-dependent bound

Regα,β(T ;µ) ≤ m
k
∆

(T )
max +

2C2m3∆
(T )
max

k(∆
(T )
min)

2

(
max

{
ln

(
kT (∆

(T )
min)

2

C2m2

)
, 0

}
+ 1

)
(3.8)

and (2) when N = (Ck)
2
3m− 2

3T
2
3 (lnT )

1
3 , we have a distribution-independent bound

Regα,β(T ;µ) ≤ O(C
2
3m

4
3k− 1

3T
2
3 (lnT )

1
3 ). (3.9)

The proofs of Theorem 3.2, 3.3 and 3.4 generally follow the same steps in
Section 3.6.2, 3.6.3 and 3.6.5.

3.4 Application in Influence Maximization

3.4.1 Introduction

Influence maximization, motivated by viral marketing applications, has been exten-
sively studied since [26] formally defined it as a stochastic optimization problem:
given a social network G and a budget k, how should a set of k seed nodes in G

be chosen such that the expected number of final activated nodes under a given
diffusion model is maximized? They proposed the well-known Independent Cascade
(IC) and Linear Threshold (LT) diffusion models, and gave a greedy algorithm that
outputs a (1 − 1/e − ϵ)-approximate solution for any ϵ > 0. However, they only
considered a single item (e.g., product, idea) propagating in the network. In reality,
different items could propagate concurrently in the same network, interfering with
each other and leading to competition during propagation. Several competitive
diffusion models [27, 28, 29, 30, 31] have been proposed for this setting. We use
a Competitive Independent Cascade (CIC) model [32], which extends the classical
IC model to multi-item influence diffusion. We consider the competitive influence
maximization problem between two items from the “follower’s perspective”: given
the seed nodes of the competitor’s item, the follower’s item chooses a set of nodes
so as to maximize the expected number of nodes activated by the follower’s item,
referred to as the influence spread of the item.

We refer to the above problem as “offline” competitive influence maximization,
since the influence probabilities on edges, i.e., the probabilities of an item’s propaga-
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Table 3.1: Summary of the proposed algorithms.

Algorithm No Prior? Offline computation Feedback Regret

OCIM-TS × Standard Full propagation Bayes. O(
√
T lnT )

OCIM-OFU ✓ Hard Full propagation Freq. O(
√
T lnT )

OCIM-ETC ✓ Standard Direct out-edges Freq. O(T
2
3 (lnT )

1
3 )

tion along edges, are known in advance. It can be solved by a greedy algorithm due
to submodularity [32]. However, in many real-world applications, the influence prob-
abilities on edges are unknown. We study the competitive influence maximization
in this setting, and call it the Online Competitive Influence Maximization (OCIM)
problem. In OCIM, the influence probabilities on edges need to be learned through
repeated influence maximization trials: in each round, given the seed nodes of the
competitor, we (i) choose k seed nodes; (ii) observe the resulting diffusion that
follows the CIC model to update our knowledge of the edge probabilities; and (iii)
obtain a reward, which is the total number of nodes activated by our item. Our goal
is to choose the seed nodes in each round based on previous observations so as to
maximize the cumulative reward.

Most previous studies on the online non-competitive influence maximization
problem use a combinatorial multi-armed bandit (CMAB) framework [2, 4], an
extension of the classical multi-armed bandit problem that captures the tradeoff
between exploration and exploitation in sequential decision making. In CMAB, a
player chooses a combinatorial action to play in each round, observes a set of arms
triggered by this action and receives a reward. The player aims to maximize her
cumulative reward over multiple rounds, navigating a tradeoff between exploring
unknown actions/arms and exploiting the best known action. CMAB algorithms
must also deal with an exponential number of possible combinatorial actions, which
makes exploring all actions infeasible.

To the best of our knowledge, we are the first to study the online competitive
influence maximization problem. We introduce a general contextual combinatorial
multi-armed bandit framework with probabilistically triggered arms (C2MAB-T) for
OCIM. Within this framework, OCIM presents a new challenge: the key monotonicity
property (influence spread increases when influence probabilities on edges increase)
no longer holds due to the competitive nature of propagation, and thus upper
confidence bound (UCB) based algorithms [2, 4] cannot be directly applied to OCIM.
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Such non-monotonicity also complicates the analysis of the important Triggering
Probability Modulated (TPM) condition for CMAB [3], and we provide a non-trivial
new proof to show it still holds for OCIM. We are the first to identify the OCIM
problem as a natural CMAB problem without monotonicity and tackle it from three
directions, providing three solutions with different tradeoffs, as shown in Table 3.1:
OCIM-TS uses standard offline oracles to achieve good Bayesian regret, but requires
prior knowledge of edge probabilities; OCIM-OFU has a stronger frequentist regret
bound without prior knowledge, but requires harder offline computation; and OCIM-
ETC uses standard offline oracles and fewer observations, but leads to a worse
frequentist regret bound. None is a perfect solution for OCIM, but we believe their
tradeoffs shed light on the challenges involved in solving OCIM and even general
CMAB problems without monotonicity. Our regret analysis of OCIM-TS delicately
combines the key property of Thompson Sampling (TS) with the TPM condition
to tackle non-monotonicity and allows any benchmark (exact, approximate, or even
heuristic) oracle; our analysis of OCIM-OFU and OCIM-ETC extends the analysis
for CMAB to a new contextual setting (C2MAB-T) where the contexts are defined
as the feasible sets of super arms and are not bonded with base arms. Experiments
on two real-world datasets demonstrate the effectiveness of our proposed algorithms.

Related Work. [26] formally defined the influence maximization problem in
their seminal work. Since then, the problem has been extensively studied [33].
[34] presented a breakthrough approximation algorithm that runs in near-linear
time, which was improved by a series of algorithms [35, 36, 37]. A number of
studies [27, 28, 29, 30, 31, 38] addressed competitive influence maximization problems
where multiple competing sources propagate in the same network. [27] proposed
the distance-based and wave propagation models, and considered the influence
maximization problem from the follower’s perspective. [28] considered the CIC
model and gave an algorithm for computing the best response to an opponent’s
strategy.

When the influence probabilities of edges are unknown, the non-competitive online
influence maximization problem has been extensively studied [2, 3, 4, 7, 39, 40]. [2]
studied the problem under the IC model and proposed a general CMAB framework.
We introduce a new contextual extension of CMAB, called C2MAB-T, different from
the contextual CMAB studied by [24] and [25]: they consider the context features of
all base arms and assume the action space of super arms is a subset of all base arms,
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while we consider the feasible set of super arms as the context, which is more flexible
than a subset of all base arms. [3] introduced a triggering probability modulated
(TPM) bounded smoothness condition to remove an undesired factor in the regret
bound of [2]. [7] introduced a budgeted online influence maximization framework,
where marketers optimize their seed sets under a budget rather than a cardinality
constraint. Our OCIM-TS algorithm is similar to the Combinatorial Thompson
Sampling (CTS) algorithm of [20]. However, CTS requires an exact oracle and has
frequentist regret bound, while OCIM-TS allows any benchmark oracle and has
Bayesian regret bound. [41] studied the Bayesian regret of CTS for CMAB, but they
also require an exact oracle and a monotonicity assumption that does not hold for
OCIM. Our Bayesian regret analysis is also different from that of [42]: they only
study a simple special CMAB problem, while we provide the regret bound for general
C2MAB-T instances, including the OCIM problem.

3.4.2 OCIM Formulation

In this section we present the formulation of OCIM. We first introduce the traditional
competitive influence maximization problem, and then discuss its online extension
where edge probabilities are unknown.

Competitive Independent Cascade Model

We consider a Competitive Independent Cascade (CIC) model, which is an extension
of the classical IC model to multi-item influence diffusion. A network is modeled
as a directed graph G = (V,E) with n = |V | nodes and m = |E| edges. Every
edge (u, v) ∈ E is associated with a probability p(u, v). There are two items, A and
B, trying to propagate in G from their own seed sets SA and SB. The influence
propagation runs as follows: nodes in SA (resp. SB) are activated by A (resp. B) at
step 0; at each step s ≥ 1, a node u activated by A (resp. B) in step s− 1 tries to
activate each of its inactive out-neighbors v to be A (resp. B) with an independent
probability p(u, v) that is the same for A and B (i.e., we consider a homogeneous
CIC model). The homogeneity assumption is reasonable since typically A and B are
two items of the same category (thus competing), so they are likely to have similar
propagation characteristics.

If two in-neighbors of v activated by A and B respectively both successfully
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activate v at step s, then a tie-breaking rule is applied at v to determine the final
adoption. In this section, we consider two types of tie-breaking rules: dominance [29]
and proportional [43] tie-breaking rules. Dominance tie-breaking with A > B (resp.
B > A) means v will always adopt A (resp. B) in a competition. Proportional tie-
breaking means that if there are nA in-neighbors activated by A and nB in-neighbors
activated by B trying to activate v at the same step, the probability that v adopts
A (resp. B) is nA

nA+nB
(resp. nB

nA+nB
). The same tie-breaking rule also applies to the

case when a node u is selected both as an A-seed and a B-seed. The process stops
when no nodes activated at a step s have inactive out-neighbors.

We consider the follower’s perspective in the optimization task: let A be the
follower and B be the competitor. Then given SB, our goal is to choose at most k

seed nodes in G as SA to maximize the influence spread of A, denoted as σA(SA, SB),
which is the expected number of nodes activated by A after the propagation ends.
According to [29]’s result, the above optimization task under the homogeneous CIC
model with the dominance tie-breaking rule has the monotone and submodular
properties, and thus can be approximately solved by a greedy algorithm.

OCIM Model

In the online competitive influence maximization (OCIM) problem, the edge proba-
bilities p(u, v)’s are unknown and need to be learned: in each round t, given S

(t)
B , we

can choose up to k seed nodes as S
(t)
A , observe the whole propagation of A and B

that follows the CIC model, and obtain the reward, which is the number of nodes
finally activated by A in this round. The propagation feedback observed is then used
to update the estimates on edge probabilities p(u, v)’s, so that we can achieve better
influence maximization results in subsequent rounds. Our goal is to accumulate as
much reward as possible through this repeated process over multiple rounds.

We introduce a new contextual combinatorial multi-armed bandit framework
with probabilistically triggered arms (C2MAB-T) for the OCIM problem, which is a
contextual extension of CMAB-T from [3]. In OCIM, the set of edges E is the set
of (base) arms [m] = {1, ...,m}, and their outcomes follow m independent Bernoulli
distributions with expectation µe = p(u, v) for all e = (u, v) ∈ E. We denote the
independent samples of arms in round t as X(t) = (X

(t)
1 , . . . , X

(t)
m ) ∈ {0, 1}m, where

X
(t)
i = 1 means the i-th edge is on (or live) and X

(t)
i = 0 means the i-th edge is
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off (or blocked) in round t, and thus X(t) corresponds to the live-edge graph [26] in
round t. We consider the seed set of the competitor, S(t)

B , as the context in round t

since it is determined by the competitor and can affect our choice of S(t)
A . We define

S(t) =
{
S | S = (S

(t)
A , S

(t)
B ), |S(t)

A | ≤ k
}

as the action space in round t and S(t) ∈ S(t)

as the real action. We define the triggered arm set τt as the set of edges reached by
the propagation from either S

(t)
A or S

(t)
B . Thus, τt is the set of edges (u, v) where u

can be reached from S(t) by passing through only edges e ∈ E with X
(t)
e = 1. The

outcomes of X(t)
i for all i ∈ τt are observed as the feedback. We denote the obtained

reward in round t as R(S(t), X(t)), which is the number of nodes finally activated by
A. The expected reward rS(t)(µ) = E[R(S(t), X(t))] is a function of the action S(t)

and the vector µ = (µ1, . . . , µm). Note that our framework can also handle dynamic
tie-breaking rules over different rounds, by treating the tie-breaking rule as a part
of the context. For ease of explanation, we assume a fixed tie-breaking rule in this
section.

The performance of a learning algorithm A is measured by its expected regret,
which is the difference in expected cumulative reward between always playing the best
action and playing actions selected by algorithm A. Let opt(t)(µ) = sup

S
(t)
A

rS(t)(µ)

denote the expected reward of the optimal action in round t. Since the offline
influence maximization under the CIC model is NP-hard [29], we assume that there
exists an offline (α, β)-approximation oracle O, which takes S(t)

B and µ as inputs and
outputs an action SO,(t) such that Pr{rSO,(t)(µ) ≥ α · opt(t)(µ))} ≥ β, where α is the
approximation ratio and β is the success probability. Instead of comparing with the
exact optimal reward, we use the following (α, β)-approximation frequentist regret
for T rounds:

RegAα,β(T ;µ) =
∑T

t=1 α · β · opt(t)(µ)−∑T
t=1 rSA,(t)(µ), (3.10)

where SA,(t) := (S
A,(t)
A , S

(t)
B ) is the action chosen by algorithm A in round t. Here

S
(t)
B is the context and S

A,(t)
A is the seed set of item A chosen by algorithm A.

Another way to measure the performance of the algorithm A is using Bayesian
regret [44]. Denote the prior distribution of µ as Q (we will discuss how to derive Q
for OCIM in Section 3.4.4). When the prior Q is given, the corresponding Bayesian
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regret is defined as:

BayesRegAα,β(T ) = Eµ∼QRegAα,β(T ;µ). (3.11)

We will design algorithms to solve the OCIM problem and bound their achieved
Bayesian and frequentist regrets in Section 3.4.4 and Section 3.4.5, respectively.

3.4.3 Properties of OCIM

In this section, we first show that the key monotonicity property for CMAB does not
hold in OCIM. We then prove that the important Triggering Probability Modulated
(TPM) condition still holds, which is essential for the analysis of all proposed
algorithms.

Non-monotonicity

The monotonicity condition given by [3] could be stated as follows in the context of
OCIM: for any action S = (SA, SB), for any two expectation vectors µ = (µ1, . . . , µm)

and µ′ = (µ′
1, . . . , µ

′
m), we have rS(µ) ≤ rS(µ

′) if µi ≤ µ′
i for all i ∈ [m]. Figure 3.2

shows a simple example of OCIM that does not satisfy the monotonicity condition.
The left and right nodes are the seed nodes of A and B; the numbers below edges
are influence probabilities. It is easy to calculate that rS(µ) = µ1(1− µ2) + 2, for
both dominance and proportional tie-breaking rules. Thus, if we increase µ2, rS(µ)
will decrease, which is contrary to monotonicity. In general, for every edge (u, v),
depending on the positions of the A- and B-seeds, increasing the influence probability
of (u, v) may benefit the propagation of A or may benefit the propagation of B and
thus impair the propagation of A. Thus, the influence spread of A has intricate
connections with the influence probabilities on the edges.

Figure 3.2: Example of non-monotonicity in OCIM.

The lack of monotonicity poses a significant challenge to the OCIM problem. We
cannot directly use UCB-type algorithms [2], as they will not provide optimistic
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solutions to bound the regret.

Triggering Probability Modulated (TPM) Bounded Smoothness

The lack of monotonicity further complicates the analysis of the Triggering Probability
Modulated (TPM) condition [3], which is crucial in establishing regret bounds for
CMAB algorithms. We use pSi (µ) to denote the probability that the action S triggers
arm i when the expectation vector is µ. The TPM condition in OCIM is given below.

Condition 3.4. (1-Norm TPM bounded smoothness). We say that an OCIM
problem instance satisfies 1-norm TPM bounded smoothness, if there exists C ∈ R+

(referred to as the bounded smoothness coefficient) such that, for any two expecta-
tion vectors µ and µ′, and any action S = (SA, SB), we have |rS(µ) − rS(µ

′)| ≤
C
∑

i∈[m] p
S
i (µ)|µi − µ′

i|.
Fortunately, with a more intricate analysis, we are able to show the following

TPM condition.

Theorem 3.5. Under both dominance and proportional tie-breaking rules, OCIM
instances satisfy the 1-norm TPM bounded smoothness condition with coefficient
C = C̃, where C̃ is the maximum number of nodes that any one node can reach in
graph G.

The proof of the above theorem is one of the key technical contributions of
the paper. In the non-competitive setting, an edge coupling method could give a
relatively simple proof for the TPM condition.2 The idea of edge coupling is that for
every edge e ∈ E, we sample a real number Xe ∈ [0, 1] uniformly at random, and
determine e to be live under µ if Xe ≤ µe and blocked if Xe > µe, and similarly
for µ′. This couples the live-edge graphs L and L′ under µ and µ′ respectively.
In the non-competitive setting, due to the monotonicity property, we only need to
consider the TPM condition when µ ≥ µ′ (coordinate-wise), and this implies that
L′ is a subgraph of L, which significantly simplifies the analysis. However, in the
competitive setting, monotonicity does not hold, and we have to show the TPM
condition for every pair of µ and µ′. Thus, L and L′ no longer have the subgraph
relationship. In this case, we have to show that for every coupling L and L′, for

2The original proof in [3] occupies several pages, but [45] (in their Appendix E) provide a much
shorter proof based on edge coupling.
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Algorithm 3.5 OCIM-TS with offline oracle O
1: Input: m, O, Prior Q =

∏
i∈[m] Beta(ai, bi).

2: for t = 1, 2, 3, . . . do
3: For each arm i ∈ [m], draw a sample µ

(t)
i from Beta(ai, bi); let µ(t) =

(µ
(t)
1 , · · · , µ(t)

m ).
4: Obtain context S

(t)
B .

5: S(t) ← O(S(t)
B ,µ(t)).

6: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X
(t)
i ’s,

i ∈ τ .
7: for all i ∈ τ do
8: ai ← ai +X

(t)
i ; bi ← bi + 1−X

(t)
i .

9: end for
10: end for

every v ∈ V that is activated by A in L but not activated by A in L′, it is because
either (a) some edge e = (u,w) is live in L but blocked in L′ while u is A-activated
(or equivalently e is A-triggered); or (b) some edge e is live in L′ but blocked in
L while e is B-triggered. The case (b) is due to the possibility of B blocking A’s
propagation, a unique scenario in OCIM. The above claim needs nontrivial inductive
proofs for dominance and proportional tie-breaking rules, and then its correctness
ensures the TPM condition.

3.4.4 Bayesian Regret Approach

In our OCIM model, since the samples of base arms follow Bernoulli distributions with
mean vector µ, we can assume the prior distributions of µ, Q, are Beta distributions,
where µi ∼ Beta(ai, bi) for all arm i. Given the prior distributions of all arms,
we propose an Online Competitive Influence Maximization-Thompson Sampling
(OCIM-TS) algorithm, which is described in Algorithm 3.5. We initialize the prior
distribution of each arm i to Beta(ai, bi). Then we take the context S

(t)
B and the

sampled µ(t) from prior distributions as inputs to the oracle O, and get an output
action S(t). After taking this action, we get feedback X

(t)
i ’s from all triggered arms

i ∈ τ , then use them to update the prior distributions of all triggered base arms in τ .
Let S̃ = {i ∈ [m] | pSi (µ) > 0} be the set of arms that can be triggered by S. We
define K = maxS∈S(t) |S̃| as the largest number of arms that could be triggered by a
feasible action. We provide the Bayesian regret bound of OCIM-TS.
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Theorem 3.6. The OCIM-TS algorithm has the following Bayesian regret bound
with C̃ as defined in Theorem 3.5:

BayesRegα,β(T ) ≤ O(C̃
√
mKT lnT ). (3.12)

This regret bound essentially matches the distribution-independent frequentist
regret bound of OCIM-OFU in the next section. The proof of the above theorem
is inspired by the posterior sampling regret decomposition of [44]. However, we
combine the key property of posterior sampling with the TPM condition in Theorem
3.5 to tackle non-monotonicity. OCIM-TS can also be applied to general C2MAB-T
problems and allows any benchmark offline oracles (e.g., approximate or heuristic
oracles).

3.4.5 Frequentist Regret Approach

Although OCIM-TS can solve the OCIM problem with a standard offline oracle
(e.g., TCIM in [38]), it requires the prior distribution of the network parameter µ,
which might not be available in practice. In this section, we first propose the OCIM-
OFU algorithm. It achieves good frequentist regret without the prior knowledge,
but requires a new oracle to solve a harder offline problem. We then design the
OCIM-ETC algorithm, which requires less feedback and easier offline computation,
but yields a worse frequentist regret bound.

OCIM-OFU Algorithm

As discussed in Section 3.4.3, due to the lack of monotonicity, we cannot directly
use UCB-type algorithms. However, it is still possible to design bandit algorithms
following the principle of Optimism in the Face of Uncertainty (OFU). We first
introduce a new offline problem that jointly optimizes for both the seed set S∗ and
the optimal influence probability vector µ∗, where each dimension of µ∗, µ∗

i , is
searched within a confidence interval ci, for all i ∈ E.

maximize
S,µ

rS(µ)

subject to |SA| ≤ k, S = (SA, SB)

µi ∈ ci, i = 1, . . . ,m.

(3.13)
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Algorithm 3.6 OCIM-OFU with offline oracle Õ
1: Input: m, Oracle Õ.
2: For each arm i ∈ [m], Ti ← 0. {maintain the total number of times arm i is

played so far.}
3: For each arm i ∈ [m], µ̂i ← 1. {maintain the empirical mean of Xi.}
4: for t = 1, 2, 3, . . . do
5: For each arm i ∈ [m], ρi ←

√
3 ln t
2Ti

. {the confidence radius, ρi = +∞ if Ti = 0.}

6: For each arm i ∈ [m], ci ← [(µ̂i − ρi)
0+, (µ̂i + ρi)

1−]. {the estimated range of
µi.}

7: Obtain context S
(t)
B .

8: S(t) ← Õ(S(t)
B , c1, c2, . . . , cm).

9: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X
(t)
i ’s,

i ∈ τ .
10: For every i ∈ τ update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

11: end for

We then define a new offline (α, β)-approximation oracle Õ to solve this problem.
Oracle Õ takes SB and ci’s as inputs and outputs µÕ and action SÕ = (SÕ

A , SB),
such that Pr{rSÕ(µ

Õ) ≥ α · rS∗(µ∗)} ≥ β, where (S∗,µ∗) is the optimal solution for
Eq.(3.13).

With the offline oracle Õ, we propose an algorithm following the principle of
Optimism in the Face of Uncertainty (OFU), named OCIM-OFU. The algorithm
maintains the empirical mean µ̂i and confidence radius ρi for each edge probability.
It uses the lower and upper confidence bounds to determine the range of µi: ci =

[(µ̂i − ρi)
0+, (µ̂i + ρi)

1−], where we use (x)0+ and (x)1− to denote max{x, 0} and
min{x, 1} for any real number x. It feeds S

(t)
B and all current ci’s into the offline

oracle Õ to obtain the action S(t) = (S
(t)
A , S

(t)
B ) to play at round t. The confidence

radius ρi is large if arm i is not triggered often, which leads to a wider search space
ci to find the optimistic estimate of µi. We provide its frequentist regret bound.

Theorem 3.7. The OCIM-OFU algorithm has the following distribution-independent
bound with C̃ defined in Theorem 3.5 ,

Regα,β(T ;µ) ≤ O(C̃
√
mKT lnT )

The above regret bound has the typical form of
√
T lnT , indicating that it is
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tight on the important time horizon T . In fact, it has the same order as in [3]’s for
the CMAB problem under monotonicity, despite the fact that the OCIM problem
does not enjoy monotonicity, and matches the lower bound of CMAB with general
reward functions in [19]. This result is due to our non-trivial TPM condition analysis
(Theorem 3.5) that shows the same condition as in [3]’s setting with monotonicity.

Computational Efficiency. We now discuss the computational complexity of
implementing the OCIM-OFU algorithm. We show the complexity of the new offline
optimization problem in Eq. (3.13).

Theorem 3.8. The offline problem in Eq.(3.13) is #P-hard.

As mentioned before, the original offline problem, i.e., maximizing rS(µ) over S

when fixing µ, can be solved by several algorithms [38] based on submodularity of
rS(µ) over S. A straightforward attempt on the new offline problem in Eq.(3.13) is
to show the submodularity of g(S) = maxµ rS(µ) over S, and then to use a greedy
algorithm on g to select S. Unfortunately, we find that g(S) is not submodular
(see Section 3.6.4 for a counterexample). Implementing the oracle Õ is then a
challenge. However, it is possible to design efficient approximate oracles for bipartite
graphs, which model the competitive probabilistic maximum coverage problem with
applications in online advertising [2]. The main idea is that we can pre-determine
that either the lower or the upper bound of ci is optimal and should be chosen as µ∗

i

depending on the tie-breaking rule, then use existing efficient influence maximization
algorithms to get approximate solutions. The competitive propagation in the general
graph is much more complicated, but we have a key observation that the optimal
solution for the optimization problem in Eq.(3.13) must occur at the boundaries of
the intervals ci. Based on that, we discuss solutions for some specific graphs such as
trees. See Section 3.6.4 for more details.

OCIM-ETC Algorithm

In this section, we propose an OCIM Explore-Then-Commit (OCIM-ETC) algorithm.
It has two advantages: first, it does not need the new offline oracle discussed in
Sec. 3.4.5; and second, it requires fewer observations than our other algorithms:
instead of the observations of all triggered edges, i.e., τ , it only needs the observations
of all direct out-edges of seed nodes.

Like other ETC algorithms [46], OCIM-ETC divides the T rounds into two phases:
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Algorithm 3.7 OCIM-ETC with offline oracle O
1: Input: m, N , T , Oracle O.
2: For each arm i, Ti ← 0. {maintain the total number of times arm i is played so

far.}
3: For each arm i, µ̂i ← 0. {maintain the empirical mean of Xi.}
4: Exploration phase:
5: for t = 1, 2, 3, . . . , ⌈nN/k⌉ do
6: Take k nodes that have not been chosen for N times as SA.
7: Observe the feedback X

(t)
i for each direct out-edge of SA, i ∈ τdirect.

8: For each arm i ∈ τdirect update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X
(t)
i − µ̂i)/Ti.

9: end for
10: Exploitation phase:
11: for t = ⌈nN/k⌉+ 1, . . . , T do
12: Obtain context S

(t)
B .

13: S(t) ← O(S(t)
B , µ̂1, µ̂2, . . . , µ̂m).

14: Play action S(t).
15: end for

an exploration phase and an exploitation phase. In the exploration phase, it chooses
each node as the seed node of A for N times. The exploration phase thus takes
⌈nN/k⌉ rounds. In the exploitation phase, it takes S

(t)
B and the empirical means µ̂i

as inputs to the oracle O mentioned in Sec. 3.4.2, then plays the output action SO,(t).
We give its frequentist regret bound.

Theorem 3.9. The OCIM-ETC algorithm has the following distribution-independent
regret bound with C̃ defined in Theorem 3.5, when N = (C̃mk)

2
3n− 4

3T
2
3 (lnT )

1
3 ,

Regα,β(T ;µ) ≤ O((C̃mn)
2
3k− 1

3T
2
3 (lnT )

1
3 ). (3.14)

Although this regret bound is worse than that of the OCIM-OFU algorithm in
Theorem 3.7, OCIM-ETC requires easier offline computation and less feedback since
it only needs to observe the results of direct out-edges of seed nodes, which shows
the tradeoff between regret bound and feedback/computation in OCIM.
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3.4.6 Extension to Probabilistic Competitor’s Seed Distribu-

tion

In [38], the authors extend the offline CIM problem to a probabilistic setting where
the competitor’s seed distribution is known (i.e., the probability of each node being
selected as a seed by the competitor). In this section, we extend our algorithms to
handle two new settings where the competitor has a probabilistic seed distribution.
Note that we need to slightly modify the TPM condition for these settings. We
denote the expected reward of follower A as r(SA, DB,µ), where SA is the seed set of
A, DB is the seed distribution of B. We use pi(SA, DB,µ) to denote the probability
that either SA or SB will trigger arm i when the seed set of A is SA, the seed set of
B, SB, is sampled from DB, and the expectation vector is µ. The modified TPM
condition is given below.

Condition 3.5. (Modified TPM bounded smoothness). We say that an OCIM prob-
lem instance satisfies modified TPM bounded smoothness, if there exists C ∈ R+ such
that, for any two expectation vectors µ and µ′, and any seed set SA and seed distribu-
tion DB, we have |r(SA, DB,µ)− r(SA, DB,µ

′)| ≤ C
∑

i∈[m] pi(SA, DB,µ)|µi − µ′
i|.

With a similar analysis of Theorem 3.5, we can show the following TPM condition
when the competitor has probabilistic seed distribution.

Theorem 3.10. Under both dominance and proportional tie-breaking rules, OCIM
instances satisfy the modified TPM bounded smoothness condition with coefficient
C = 2C̃, where C̃ is the maximum number of nodes that any one node can reach in
graph G.

Known dynamic seed distribution. In round t, the competitor’s seed set
S
(t)
B follows a distribution D

(t)
B , i.e., S(t)

B ∼ D
(t)
B . However, the follower only knows

D
(t)
B but not S

(t)
B before choosing S

(t)
A . Since our proposed framework has a nice

separation between online learning and offline computation, in this setting, only
the offline computation part will be affected. Specifically, we can replace the oracle
O(S(t)

B ,µ(t)) in OCIM-TS and OCIM-ETC with a new oracle Onew(D
(t)
B ,µ(t)). For

OCIM-OFU, similar to oracle Õ, we need a new oracle Õnew that takes D(t)
B and the

confidence intervals {ci} as inputs and outputs S(t)
A . We can use the TCIM algorithm

of [38] to design Onew and Õnew. Our proposed algorithms will have the same regret
bounds as in Theorems 3.6 and 3.7.

Unknown fixed seed distribution. In this setting, the seed distribution of the
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competitor, DB, is unknown to the follower but fixed for all rounds. To solve this
problem, we introduce a virtual B seed node uB, which connects to each existing
node u with an unknown edge probability p(uB, u) equal to the probability of u being
selected as a B seed. This reduces the case of probabilistic seed selection to the
standard CIC model with a known seed node uB. The unknown edge probabilities
p(uB, u)’s can be learned together with the edge probabilities in the original graph.
Therefore, we do not need to know the competitor’s seed selection in advance and
can learn it over time through the online learning process. Our algorithms will have
the same regret guarantees as in Theorems 3.6 and 3.7.

3.4.7 Experiments

Datasets and settings. To validate our theoretical findings, we conduct experiments
on two real-world datasets widely used in the influence maximization literature, with
detailed statistics summarized in Table 3.2. First, we use the Yahoo! Search
Marketing Advertiser Bidding Data3 (denoted as Yahoo-Ad), which contains a
bipartite graph between 1, 000 keywords and 10, 475 advertisers. Every entry in
the original Yahoo-Ad dataset is a 4-tuple, which represents a “keyword-id” bid by
“advertiser-id” at “time-stamp” with “price”. We extract advertiser-ids and keyword-
ids as nodes, and add an edge if the advertiser bids the keyword at least once. Each
edge shows the "who is interested in what" relationship. This dataset will contain
11, 475 nodes and 52, 567 edges. The motivation of this experiment is to select a set of
keywords that is maximally associated to advertisers, which is useful for the publisher
to promote keywords to advertisers. We then consider the DM network [47] with 679
nodes representing researchers and 3, 374 edges representing collaborations between
them. We simulate a researcher asking others (i.e., SA) to spread her ideas while
her competitor (i.e., SB) promotes a competing proposal. We set the parameters of
our experiments as the following. For the edge weights, Yahoo-Ad uses the weighted
cascade method [26], i.e. p(s, t) = 1/deg−(s), where deg−(s) is the in-degree of node
s, and weights for DM are obtained by the learned edge parameters from [47]. For
Bayesian regrets, we set a prior distribution of µe ∼ Beta(5we, 5(1− we)), where we

is the true edge weight as specified above.
We model non-strategic and strategic competitors by selecting the seed set SB

3https://webscope.sandbox.yahoo.com
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Table 3.2: Dataset Statistics.

Network n m Average Degree

DM 679 3, 374 4.96
Yahoo-Ad 11, 475 52, 567 4.58

uniformly at random (denoted as RD) or by running the non-competitive influence
maximization algorithm (denoted as IM). In our experiments, we set |SA| = |SB| = 5

for Yahoo-Ad and |SA| = |SB| = 10 for the DM dataset, and B > A. Since the
optimal solution given the true edge probabilities cannot be derived in polynomial
time, for Yahoo-Ad, we use the greedy solution as the optimal baseline, which is a
(1 − 1/e, 1)-approximate solution. For the DM dataset, we use the IMM solution
as the optimal baseline, which is a (1− 1/e− ϵ, 1− n−l)-approximate solution. For
frequentist regrets, we repeat each experiment 50 times and show the average regret
with 95% confidence interval. For Bayesian regrets, we draw 5 problem instances
according to the prior distributions, conduct 10 experiments in each instance and
report the average Bayesian regret over the 50 experiments.

Algorithms for comparison. For OCIM-TS, since the true prior distribution is
unknown for the frequentist setting, we use the uninformative prior Beta(1, 1) for each
µe. For OCIM-OFU, we shrink its confidence interval by αρ, i.e., ρi ← αρ

√
3 ln t/2Ti,

to speed up the learning. The role of αρ represents a tradeoff between theoretical
guarantees and real-world performance. αρ ≥ 1 provides theoretical regret bounds for
the worst-case (i.e., our algorithms have sublinear regret for any problem instance)
and most of the bandit literature gives regret analysis under this condition. However,
in practice, we often do not face the worst problem instance. Taking a more
aggressive αρ helps speed up the learning empirically [48], though the algorithms
may incur linear regrets for bad problem instances (which are likely rare in practice),
preventing us from achieving worst-case theoretical regret bounds. We compare
OCIM-OFU/OCIM-TS to the ϵ-Greedy algorithm with parameter ϵ = 0 (denoted as
the EMP algorithm) and ϵ = 0.01, which inputs the empirical mean into the offline
oracle with 1− ϵ probability and otherwise selects SA uniformly at random.

Running time. We show the average running times for different algorithms in
Table 3.3. For the Yahoo-Ad dataset, OCIM-ETC is the fastest one as it only needs
to call the oracle for one time before the exploitation phase. The running time of
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Table 3.3: Average Running Time (second/round).

Dataset OCIM-OFU OCIM-TS OCIM-ETC ϵ-greedy EMP

Yahoo-Ad 1.221 1.641 0.729 1.244 1.226
DM 1.142 1.195 0.621 1.173 1.125

OCIM-TS is slower than that of OCIM-OFU because it requires an extra sampling
procedure to generate Thompson samples. For the DM dataset, all algorithms
consume less time since the graph is smaller, but the relative order for different
algorithms are preserved.

Experiments for frequentist regrets. Figures 3.3a and 3.3b show the results
for Yahoo-Ad. First, the regret of OCIM-OFU grows sub-linearly with respect to
round T for all αρ, consistent with Theorem 3.7’s regret bound. Second, we can
observe that OCIM-OFU is superior to EMP and ϵ-Greedy when αρ = 0.05. When
αρ = 0.2, OCIM-OFU may have larger regret due to too much exploration. The
OCIM-TS algorithm has larger slope in regrets compared to other algorithms. We
speculate that such large slope comes from the uninformative prior, which requires
more rounds to compensate for the mismatch of the uninformative and the true
priors.

The results on the DM dataset are shown in Figs. 3.3c and 3.3d. Generally,
they are consistent with those on the Yahoo-Ad dataset: OCIM-OFU also grows
sub-linearly w.r.t round T . When αρ = 0.05, OCIM-OFU has smaller regret than
all baselines. Moreover, the difference between OCIM-OFU and the baselines for
the non-strategic competitor (RD) is more significant than that of the strategic
competitor’s (IM), because the non-strategic competitor is less “dominant” and
OCIM-OFU can carefully trade off exploration and exploitation to maximize A’s
influence. OCIM-TS learns faster and achieves better performance in this dataset
compared to that in the Yahoo-Ad dataset.

Experiments for Bayesian regrets. We show Bayesian regrets of all algorithms
in Figure 3.4. All algorithms except for OCIM-TS have similar curves. OCIM-TS,
however, achieves at least two orders of magnitudes lower regret (BayesReg(T ) ≈
100) compared with other algorithms. The reason is that OCIM-TS leverages its
prior knowledge to quickly converge to the optimal solution, but other algorithms
cannot use this knowledge effectively.
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(a) Yahoo-Ad, RD (b) Yahoo-Ad, IM (c) DM, RD (d) DM, IM

Figure 3.3: Frequentist regrets of algorithms.

(a) Yahoo-Ad, RD (b) Yahoo-Ad, IM (c) DM, RD (d) DM, IM

Figure 3.4: Bayesian regrets of algorithms.

Experiments for A > B Tie-breaking Rule. When we consider A > B in
bipartite graphs, we can trivially ignore SB to choose SA since the influence spread
ends in one diffusion round, and OCIM becomes the online influence maximization
problem without competition. We show such results in Figure 3.5. Note that the
distribution of B no longer affects the performance of A when A > B and we only
use one figure for the IM and RD distribution. For general graphs, we use the same
DM dataset and parameter settings described in Sec. 3.4.7, and the only difference
is that A now dominates B. We show the results in Figure 3.6. Overall, the results
and the analysis for A > B are consistent with B > A.

(a) Yahoo-Ad, Freq. (b) Yahoo-Ad, Bayesian

Figure 3.5: Frequentist/Bayesian regrets for the Yahoo-Ad graph when A > B.

Experiments for OCIM-ETC. We show the frequentist/Bayesian regret results
for the OCIM-ETC algorithm in Figure 3.7, Figure 3.8 and Figure 3.9. In Figure 3.7,
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(a) DM, RD, Freq. (b) DM, IM, Freq. (c) DM, RD, Bayesian (d) DM, IM, Bayesian

Figure 3.6: Frequentist/Bayesian regrets for the general graph DM when A > B.

we set exploration phase to be 250 rounds and the experiments show that we suffer
linear regrets in both the exploration and the exploitation phase, meaning that the
unknown parameters are under-explored. Thus we reset exploration to be 1500

and Figure 3.9 shows that OCIM-ETC now has constant regret in the exploitation
phase. For DM dataset, since the node number and the edge number are less
than Yahoo-Ad, we can see constant regrets after 1000 rounds of exploration in
Figure 3.8. Compared with OCIM-OFU/OCIM-TS, OCIM-ETC requires more
rounds to learn the unknown influence probabilities and has larger regrets than
OCIM-OFU/OCIM-TS, but with sufficient exploration (which is much less than the
theoretical requirements N = (C̃m)

2
3 (nk)−

1
3T

2
3 (lnT )

1
3 in Theorem 3.9) OCIM-ETC

can yield constant regrets during the exploitation phase in our experiments.

(a) RD, Frequentist (b) IM, Frequentist (c) RD, Bayesian (d) IM, Bayesian

Figure 3.7: Frequentist/Bayesian regrets of OCIM-ETC for the Yahoo-Ad graph.

(a) RD, Frequentist (b) IM, Frequentist (c) RD, Bayesian (d) IM, Bayesian

Figure 3.8: Frequentist/Bayesian regrets of OCIM-ETC for the DM graph.
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(a) RD, Frequentist (b) IM, Frequentist (c) RD, Bayesian (d) IM, Bayesian

Figure 3.9: Frequentist/Bayesian regrets of OCIM-ETC for the Yahoo-Ad graph with
1500 rounds of exploration.

Experiments for Probabilistic Seed Distribution. For the settings where
the competitor has unknown fixed seed distribution, we first run the non-competitive
influence maximization algorithm for SB. and get the best 5 seeds on Yahoo-Ad and
the best 10 seeds on DM, respectively, We then consider the seed distribution of SB

as choosing each node from the best seeds with probability 0.5, i.e., the probability
that choosing all best 5 seeds on Yahoo-Ad is 0.55 and the probability that choosing
all best 10 seeds on DM is 0.510. This seed distribution of SB is unknown to our
algorithms. In our experiments, we set |SA| = 5 for Yahoo-Ad and |SA| = 10 for DM,
and assume B > A. Figure 3.10 shows that OCIM-OFU is still superior to EMP
and ϵ-Greedy for this setting with more complex competitor actions. We omit the
results of OCIM-TS here as it requires the prior knowledge of the competitor’s seed
distribution. However, as long as the given prior does not differ much from the true
prior, OCIM-TS will also achieve good regret results.

(a) Yahoo-Ad (b) DM

Figure 3.10: Frequentist regrets with unknown fixed competitor’s seed distribution.
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3.5 Summary

In this chapter, we study the competitive CMAB problem from the follower’s
perspective. We first formulate it as a general C2MAB-T problem, then introduce
four bandit algorithms for different settings with different regret guarantees. We
also provide an in-depth study of its application to the online competitive influence
maximization problem.
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3.6 Proof

3.6.1 Proof of Theorem 3.5

Proof. Let rvS(µ) be the probability that node v is activated by A. From the proof
of Lemma 2 in [3], we know that if for every node v and every µ and µ′ vectors we
have

|rvS(µ)− rvS(µ
′)| ≤

∑
e∈E

pSe (µ) |µe − µ′
e| , (3.15)

then Theorem 3.5 is true. Notice that

rvS(µ) = EL∼µ [1{v is activated by A under L}] (3.16)

rvS(µ
′) = EL′∼µ′ [1{v is activated by A under L′}] (3.17)

where L and L′ are two live-edge graphs sampled under µ and µ′, respectively. As
mentioned in Sec. 3.4.3, we use an edge coupling method to compute the difference
between rvS(µ) and rvS(µ

′). Specifically, for each edge e, suppose we independently
draw a uniform random variable Xe over [0, 1], let

L(e) = L′(e) = 1, if Xe ≤ min(µe, µ
′
e)

L(e) = 1, L′(e) = 0, if µ′
e < Xe < µe

L(e) = 0, L′(e) = 1, if µe < Xe < µ′
e

L(e) = L′(e) = 0, if Xe ≥ max(µe, µ
′
e)

where L(e) represents the live/blocked state of edge e in live-edge graph L. Notice
that L and L′ does not have the subgraph relationship. Let X := (X1, . . . , Xe), the
difference can be written as:

rvS(µ)− rvS(µ
′) = EX [f(S, L, v)− f(S, L′, v)], (3.18)

where f(S, L, v) := 1{v is activated by A under L}. Since f(S, L, v) − f(S, L′, v)

could be 0, 1 or -1, we will discuss these cases separately.
1) f(S, L, v)− f(S, L′, v) = 0.

This will not contribute to the expectation.
2) f(S, L, v)− f(S, L′, v) = 1.
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This will occur only if there exists a path such that: under L, v can be activated
by A via this path, while under L′, v cannot be activated by A via this path. We
denote this event as E1. We will show that E1 occurs only if at least one of EA1 and
EB1 occurs.

EA1 : There exists a path u→ v1 → · · · → vd = v such that:
1. u is activated by A under both L and L′

2. edge (u, v1) is live under L but not L′

EB1 : There exists a path u′ → v′1 → · · · → v′d′ = v such that:
1. u′ is activated by B under both L and L′

2. edge (u′, v′1) is live under L′ but not L

Figure 3.11: Path P0, P1, P2 and P3.

Lemma 3.1. E1 occurs only if at least one of EA1 and EB1 occurs.

Proof. Let us first discuss the relationship between E1, EA1 and EB1 . For E1, if v can
be activated by A under L but not L′, it is because either: (a) some edge e = (u,w)

is live in L but blocked in L′ while u is A-activated (or equivalently e is A-triggered);
or (b) some edge e is live in L′ but blocked in L while e is B-triggered. The former
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could be relaxed to EA1 , and the latter could be relaxed to EB1 . Notice that EA1 and
EB1 are not mutually exclusive and we are interested in the upper bound of P{E1}.

Assuming E1 is true, consider the shortest path P0 := {u0 → u1 → · · · → ul0 = v}
from one seed node of A, u0, to node v, such that under L node v is activated by A

but under L′ it is not. When E1 is true, there must exist a node that is not activated
by A in P0 under L′. We denote the first node from u0 to v (i.e., closest to u0) in P0

that is not activated by A under L′ as ui.
Next, let us consider the live/blocked state of edge (ui−1, ui). We already know

edge (ui−1, ui) is live under L. If edge (ui−1, ui) is blocked under L′, since ui−1

is activated by A under both L and L′, it directly becomes EA1 . Otherwise, if
edge (ui−1, ui) is live under L′, the reason that node ui is not activated by A

could only be that it is activated by B. In this case, there must exist a path
P1 := {u′

0 → u′
1 → · · · → u′

l1
= ui} from one seed node of B, u′

0, to node ui, such
that ui is activated by B under L′ but not L. This can only occur when there exists
a node that is not activated by B in P1 under L. We denote the first node from u′

0

to u′
l1

(i.e., closest to u′
0) in P1 that is not activated by B under L as u′

j. Notice
that when the tie-breaking rule is A > B, we have l1 < i ≤ l0 as B should arrive
at ui earlier than A; when the tie-breaking rule is B > A, we have l1 ≤ i ≤ l0 as
B should arrive at ui no later than A. We will discuss the case of the proportional
tie-breaking rule separately after the discussion of the dominance tie-breaking rules.

Then, let us consider the live/blocked state of edge (u′
j−1, u

′
j). We already know

edge (u′
j−1, u

′
j) is live under L′. If edge (u′

j−1, u
′
j) is blocked under L, since u′

j−1 is
activated by B under both L and L′, it directly becomes EB1 . Otherwise, if edge
(u′

j−1, u
′
j) is live under L, the reason that node u′

j is not activated by B could only
be that it is activated by A. It also means neither EA1 nor EB1 occurs so far. In this
case, there must exist a path P2 := {u′′

0 → u′′
1 → · · · → u′′

l2
= u′

j} from one seed node
of A, u′′

0, to node u′
j, such that u′

j is activated by A under L but not L′. This can
only occur when there exists a node that is not activated by A in P2 under L′. We
denote the first node from u′′

0 to u′′
l2

(i.e., closest to u′′
0) in P2 that is not activated by

A under L′ as u′′
k. Notice that when A > B, we have l2 ≤ j ≤ l1 < l0 as A should

arrive at u′
j no later than B; when B > A, we have l2 < j ≤ l1 ≤ l0 as A should

arrive at u′
j earlier than B.

Now let us consider the live/blocked state of edge (u′′
k−1, u

′′
k). We already know

edge (u′′
k−1, u

′′
k) is live under L. If edge (u′′

k−1, u
′′
k) is blocked under L′, since u′′

k−1
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is activated by A under both L and L′, it directly becomes EA1 . Otherwise, if
edge (u′′

k−1, u
′′
k) is live under L′, the reason that node u′′

k is not activated by A

could only be that it is activated by B. In this case, there must exist a path
P3 := {u′′′

0 → u′′′
1 → · · · → u′′′

l3
= u′′

k} from one seed node of B, u′′′
0 , to node u′′

k, such
that u′′

k is activated by B under L′ but not L. This can only occur when there exists
a node that is not activated by B in P3 under L. We denote the first node from u′′′

0

to u′′′
l3

(i.e., closest to u′′′
0 ) in P3 that is not activated by B under L as u′′′

s . Notice
that when A > B, we have l3 < k ≤ l2 ≤ l1 as B should arrive at u′′

k earlier than A;
when B > A, we have l3 ≤ k ≤ l2 < l1 as B should arrive at u′′

k no later than A.

Again, let us consider the live/blocked state of edge (u′′′
s−1, u

′′′
s ). We already know

edge (u′′′
s−1, u

′′′
s ) is live under L′. If edge (u′′′

s−1, u
′′′
s ) is blocked under L, since u′′′

s−1 is
activated by B under both L and L′, it directly becomes EB1 . Otherwise, if edge
(u′′′

s−1, u
′′′
s ) is live under L, similar to the discussion above, we need to consider a new

path P4 with length l4 and l4 < l2.

For the case of the proportional tie-breaking rule, in addition to the edge coupling,
we also need to couple the permutation order [43] for each node in L and L′. More
specific, for each node j, we randomly permute all of its in-neighbors, then when
we need to break a tie on j, we find its activated neighbor i that is ordered first in
the permutation order, and assign the state of i as j’s state. Assuming the same
permutation order in L and L′, let us consider path P0 and P1 again. If l0 = l1, then
ui must be v. If EA1 does not occur in P0, then the only neighbor of v in P1 must be
ordered before the only neighbor of v in P0 in the permutation order on v. However,
if EB1 does not occur in P1, with such permutation order, it is impossible that v is
activated by A under L but not L′. As a result, if neither EA1 nor EB1 occurs in path
P0 and P1, we have l2 ≤ l1 < l0 in the case of the proportional tie-breaking rule.

To sum up, if neither EA1 nor EB1 occurs in path P0 and P1, we need to check
whether they could occur in a new path P2 shorter than P0, and P3 shorter than P1.
As a result, we only need to check whether EA1 or EB1 occurs in the path with only
one edge. In that case, EA1 or EB1 occurs for sure. Thus, by induction, we conclude
that at least one of EA1 and EB1 occurs when considering any path with more than
one edge, so E1 will occur only if at least one of EA1 and EB1 occurs.

Now, let us consider the two events in EA1 for a specific edge e = (u, v1). We find
that the first event {u is activated by A under both L and L′}, is independent of
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the second event {edge e is live under L but not L′}, since the live/blocked state of
edge e does not affect the activation of its tail node u. Also, for edge e = (u, v1), the
probability of these two events can be written as

P{u is activated by A under L and L′} = P{e is triggered by A under L and L′},

(3.19)

P{e is live under L but not L′} =

µe − µ′
e if µe > µ′

e

0 otherwise.
(3.20)

As a result, we have:

P{EA1 } ≤
∑

e:µe>µ′
e

P{e is triggered by A under L and L′}(µe − µ′
e) (3.21)

Since EA1 and EB1 are symmetric, we also have:

P{EB1 } ≤
∑

e:µ′
e>µe

P{e is triggered by B under L and L′}(µ′
e − µe) (3.22)

Combining with Lemma. 3.1, we have

P{E1} ≤ P{EA1 }+ P{EB1 } (3.23)

3) f(S,w1, v)− f(S,w2, v) = −1.
Similar to the previous case, this will occur only if there exists a path such that:
under L′, v can be activated by A via this path, while under L, v cannot be activated
by A via this path. We denote this event as E−1. We show that E−1 occurs only if at
least one of EA−1 and EB−1 occurs.
EA−1: There exists a path u→ v1 → · · · → vd = v such that:

1. u is activated by A under both L and L′

2. edge (u, v1) is live under L′ but not L

EB−1: There exists a path u′ → v′1 → · · · → v′d′ = v such that:
1. u′ is activated by B under both L and L′

2. edge (u′, v′1) is live under L but not L′

Since they are symmetric with EA1 and EB1 , following the same analysis, we can
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get

P{EA−1} ≤
∑

e:µ′
e>µe

P{e is triggered by A under L and L′}(µ′
e − µe) (3.24)

P{EB−1} ≤
∑

e:µe>µ′
e

P{e is triggered by B under L and L′}(µe − µ′
e) (3.25)

P{E−1} ≤ P{EA−1}+ P{EB−1} (3.26)

Combining all cases together, we have:

|rvS(µ)− rvS(µ
′)| = |EX [f(S, L, v)− f(S, L′, v)]|
≤ |1 · P{E1}+ (−1) · P{E−1}|
≤
∣∣1 · (P{EA1 }+ P{EB1 }

)
+ (−1) ·

(
P{EA−1}+ P{EB−1}

)∣∣
≤
∑
e∈E

P{e is triggered by A or B under L and L′} |µe − µ′
e| .

(3.27)

The last inequality above is due to:

|P{EA1 } − P{EB−1}| ≤
∑

e:µe>µ′
e

P{e is triggered by A or B under L and L′}|µe − µ′
e|

|P{EB1 } − P{EA−1}| ≤
∑

e:µ′
e>µe

P{e is triggered by A or B under L and L′}|µe − µ′
e|

Notice that Eq.(3.27) could be relaxed to:

|rvS(µ)− rvS(µ
′)| ≤

∑
e∈E

P{e is triggered by A or B under L} |µe − µ′
e|

≤
∑
e∈E

pSe (µ) |µe − µ′
e| . (3.28)

3.6.2 Proof of Theorem 3.6

Proof. We define G(t) as the feedback of OCIM in round t, which includes the out-
comes of X(t)

i for all i ∈ τt. We denote by Ft−1 the history (S(1), G(1), · · · , S(t−1), G(t−1))
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of observations available to the player when choosing an action S(t). For the Bayesian
analysis, we assume the mean vector µ follows a prior distribution Q. In round
t, given Ft−1, we define the posterior distribution of µ as Q(t) (i.e., µ(t) ∼ Q(t)

where µ(t) is given in Alg. 3.5). As mentioned in Section 3.4.4, OCIM-TS allows any
benchmark offline oracles, including approximation oracles. We consider a general
benchmark oracle O(SB,µ). As oracle O might be a randomized policy (e.g., an
(α, β)-approximation oracle with success probability β), we use a random variable
ω ∼ Ω to represent all its randomness. In order to discuss the performance of
OCIM-TS with oracle O, we rewrite the Bayesian regret in Eq.(3.11) as

BayesReg(T ) = Eω∼Ω,µ∼Q

[
T∑
t=1

(
rO(S

(t)
B ,µ)

(µ)− rO(S
(t)
B ,µt))

(µ)
)]

. (3.29)

Notice that O(S(t)
B ,µ) is the action taken by the player if the true µ is known, while

O(S(t)
B ,µt) is the real action chosen by OCIM-TS. The original regret definition in

Eq.(3.11) is a special case of Eq.(3.29) for an (α, β)-approximation oracle, and will
focus on this general form in this proof.

The key step to derive the Bayesian regret bound of OCIM-TS is to show that
the conditional distributions of µ and µt given Ft−1 are the same:

P(µ = · | Ft−1) = P(µt = · | Ft−1), (3.30)

which is true since we use Thompson sampling to update the posterior distribution
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of µ. With this finding, we consider the Bayesian regret in Eq.(3.11):

BayesReg(T )

=Eω∼Ω

[
T∑
t=1

Eµ∼Q,µt∼Qt

[
rO(S

(t)
B ,µ)

(µ)− rO(S
(t)
B ,µt)

(µ)
]]

(3.31)

=Eω∼Ω

[
T∑
t=1

EFt−1

[
Eµ∼Q,µt∼Qt

[
rO(S

(t)
B ,µ)

(µ)− rO(S
(t)
B ,µt)

(µ)
]
| Ft−1

]]
(3.32)

=Eω∼Ω

[
T∑
t=1

EFt−1

[
Eµ∼Q,µt∼Qt

[
rO(S

(t)
B ,µt)

(µt)− rO(S
(t)
B ,µt)

(µ)
]
| Ft−1

]]
(3.33)

=E

[
T∑
t=1

[
rO(S

(t)
B ,µt)

(µt)− rO(S
(t)
B ,µt)

(µ)
]]

, (3.34)

where Eq.(3.33) comes from applying Eq.(3.30) to Eq.(3.32). Let St = O(S(t)
B ,µt)

and Ct = {µ′ : |µ′
i− µ̂i,t| ≤ ρi,t,∀i}, where ρi,t =

√
3 ln t/2Ti,t−1 and Ti,t−1 is the total

number of times arm i is played until round t. We define ∆St = rSt(µt)− rSt(µ) and

M =
√

576C̃2mK lnT/T . By Eq.(3.34), we have

BayesReg(T )

=E[
T∑
t=1

∆St ] (3.35)

≤E

[
T∑
t=1

∆StI{∆St ≥M,µt ∈ Ct,µ ∈ Ct,N t
t }
]

︸ ︷︷ ︸
(a)

+E[
T∑
t=1

∆StI{µt /∈ Ct}] + E[
T∑
t=1

∆StI{µ /∈ Ct}]︸ ︷︷ ︸
(b)

+ E[
T∑
t=1

∆StI{∆St ≤M}]︸ ︷︷ ︸
(c)

+E[
T∑
t=1

∆StI{¬N t
t }]︸ ︷︷ ︸

(d)

(3.36)

We can bound these three terms separately. For term (a), when µt ∈ Ct,µ ∈ Ct,
we could bound |µi,t − µi| ≤ |µi,t − µ̂i,t| + |µi − µ̂i,t| ≤ 2ρi,t,∀i. When ∆St ≥
M and N t

t (Definition 7 in [3]) holds, by the proof of Lemma 5 in [3], we have
∆St ≤

∑
i∈S̃t

κji,T (Mi, Ni,ji,t−1) where S̃t is the set of arms triggered by St and
κji,T (Mi, Ni,ji,t−1) is defined in [3]. We have
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(a) = E

[
T∑
t=1

∆StI{∆St ≥M,µt ∈ Ct,µ ∈ Ct,N t
t }
]

≤ E

 T∑
t=1

∑
i∈S̃t

κji,T (Mi, Ni,ji,t−1)


≤ E

∑
i∈[m]

+∞∑
j=1

Ni,j,T−1∑
s=0

κj,T (M, s)



≤ 4C̃m+
∑
i∈[m]

576C̃2K lnT

M

For term (b), we can observe that E[I{µ ∈ Ct}|Ft−1] = E[I{µt ∈ Ct}|Ft−1], since
Ct is determined given Ft−1, and given Ft−1, µ and µt follow the same distribution.
Since maxSt ∆St ≤ n, we have

(b) = E[
T∑
t=1

∆StI{µt /∈ Ct}] + E[
T∑
t=1

∆StI{µ /∈ Ct}]

≤ n

(
E[

T∑
t=1

I{µt /∈ Ct}] + E[
T∑
t=1

I{µ /∈ Ct}]
)

= n

(
E

[
T∑
t=1

E [I{µt /∈ Ct}|Ft−1]

])
+ n

(
E

[
T∑
t=1

E [I{µ /∈ Ct}|Ft−1]

])

= 2n

(
E

[
T∑
t=1

E [I{µ /∈ Ct}|Ft−1]

])

= 2n

(
E

[
T∑
t=1

I{µ /∈ Ct}
])

= 2n

(
T∑
t=1

P (µ /∈ Ct)
)

≤ 2π2mn

3
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For term (c), we can bound it by

(c) = E[
T∑
t=1

∆StI{∆St ≤M}] ≤ TM

For term (d), similar to Eq.(20) in [3], we have

(d) = E[
T∑
t=1

∆StI{¬N t
t }] ≤

π2

6
·
∑
i∈[m]

jimax · n

Combine them together, we have

BayesReg(T ) ≤4C̃m+
∑
i∈[m]

576C̃2K lnT

M
+

2π2mn

3
+ TM +

π2

6
·
∑
i∈[m]

jmax(M) · n

where jmax(M) =
⌈
log2

2C̃K
M

⌉
0
. Take M =

√
576C̃2mK lnT/T , we finally get finally

get the Bayesian regret bound of TS-OCIM:

BayesReg(T ) ≤ 12C̃
√
mKT lnT + 2C̃m+

(⌈
log2

T

18 lnT

⌉
0

+ 4

)
· π

2

6
· n ·m.

3.6.3 Proof of Theorem 3.7

Proof. We first introduce the following definitions to assist our analysis. Recall
that S(t) is the action space in round t. We define the reward gap ∆

(t)
S =max(0, α ·

opt(t)(µ)− rS(µ)) for all actions S ∈ S(t). For each base arm i, we define ∆i,T
max =

maxt∈[T ] supS∈S(t):pSi (µ)>0,∆
(t)
S >0

∆
(t)
S and ∆i,T

min = mint∈[T ] infS∈S(t):pSi (µ)>0,∆
(t)
S >0

∆
(t)
S . If

there is no action S such that pSi (µ) > 0 and ∆
(t)
S > 0, we define ∆i,T

max = 0 and
∆i,T

min = +∞. We define ∆
(T )
max = maxi∈[m]∆

i,T
max and ∆

(T )
min = mini∈[m]∆

i,T
min. Let

S̃ = {i ∈ [m] | pSi (µ) > 0} be the set of arms that can be triggered by S. We
define K = maxS∈S(t) |S̃| as the largest number of arms could be triggered by a
feasible action. We use ⌈x⌉0 to denote max{⌈x⌉, 0}. If ∆(T )

min > 0, we provide the
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distribution-dependent bound of the OCIM-OFU algorithm.

Regα,β(T ;µ) ≤
∑

i∈[m]
576C̃2K lnT

∆i,T
min

+ 4C̃m+
∑

i∈[m]

(⌈
log2

2C̃K

∆i,T
min

⌉
0
+ 2
)
· π2

6
·∆(T )

max.

To prove the distribution-dependent and the distribution-independent regret
bounds, we generally follow the proof of Theorem 1 in [3]. However, since we extend
the original CMAB problem to a new contextual setting where the action space S(t)

is the context, and monotonicity does not hold in the OCIM setting, we need to
modify their analysis to tackle these changes. We introduce a positive real number
Mi for each arm i and define MS(t) = maxi∈S̃(t) Mi. Define

κj,T (M, s) =


4 · 2−jC̃, if s = 0,

2C̃
√

72·2−j lnT
s

, if 1 ≤ s ≤ ℓj,T (M),

0, if s ≥ ℓj,T (M) + 1,

where

ℓj,T (M) =

⌊
288 · 2−jC̃2K2 lnT

M2

⌋
.

Let N s
t be the event that at the beginning of round t, for every arm i ∈ [m],

|µ̂i,t − µi| ≤ 2ρi,t. Let Ht be the event that at round t oracle Õ outputs a solution,
S(t) = {S(t)

A , S
(t)
B } and µ(t) = (µ

(t)
1 , . . . , µ

(t)
m ), such that rS(t)(µ(t)) < α · rS∗(µ∗), i.e.,

oracle Õ fails to output an α-approximate solution. Let N t
t be the event that the

triggering is nice at the beginning of round t (Definition 7 in [3]). The following
lemma explains how κ contributes to the regret.
Lemma 3.2. For any vector {Mi}i∈[m] of positive real numbers and 1 ≤ t ≤ T , if
{∆(t)

S(t) ≥MS(t)},¬Ht,N s
t and N t

t hold, we have

∆
(t)

S(t) ≤
∑
i∈S̃(t)

κji,T (Mi, Ni,ji,t−1),

where ji is the index of the TP group with S(t) ∈ Si,ji (see Definition 5 in [3]).

Proof. By N s
t and 0 ≤ µi ≤ 1 for all i ∈ [m], we have

∀i ∈ [m], µi ∈ ci,t =
[
(µ̂i,t − ρi,t)

0+, (µ̂i,t + ρi,t)
1−] . (3.37)
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It means that we have the correct estimated range of µi for all i ∈ [m] at round t.
Combining with ¬Ht for the offline oracle Õ, we have

rS(t)(µ(t)) ≥ α · rS∗(µ∗) ≥ α · opt(t)(µ) = rS(t)(µ) + ∆
(t)

S(t) . (3.38)

By the TPM condition in Theorem. 3.5, we have

∆
(t)

S(t) ≤ rS(t)(µ(t))− rS(t)(µ) ≤ C̃
∑
i∈[m]

pS
(t)

i (µ)|µ(t)
i − µi|. (3.39)

We want to bound ∆
(t)

S(t) by bounding pS
(t)

i (µ)|µ(t)
i − µi|. We first perform a trans-

formation. Since ∆
(t)

S(t) ≥MS(t) , we have C̃
∑

i∈[m] p
S(t)

i (µ)|µ(t)
i − µi| ≥ ∆

(t)

S(t) ≥MS(t) .
Then we have

∆
(t)

S(t) ≤ C̃
∑
i∈[m]

pS
(t)

i (µ)|µ(t)
i − µi|

≤ −MS(t) + 2C̃
∑
i∈[m]

pS
(t)

i (µ)|µ(t)
i − µi|

≤ 2C̃
∑
i∈[m]

[
pS

(t)

i (µ)|µ(t)
i − µi| −

Mi

2C̃K

]
. (3.40)

In fact, if N s
t holds and µ

(t)
i ∈ ci,t for all i ∈ [m],

∀i ∈ [m], |µ(t)
i − µi| ≤ 2ρi,t = 2

√
3 ln t

2Ti,t−1

. (3.41)

So far, all requirements on bounding ∆St in Lemma 5 from [3] are also satisfied
by ∆

(t)

S(t) of OCIM-OFU algorithm in the OCIM setting without monotonicity. We
can then follow the same steps to bound pS

(t)

i (µ)|µ(t)
i − µi| in the two cases they

considered (combining their Eq.(11)-(13)) and get

∆
(t)

S(t) ≤ 2C̃
∑
i∈[m]

[
pS

(t)

i (µ)|µ(t)
i − µi| −

Mi

2C̃K

]
≤
∑
i∈S̃(t)

κji,T (Mi, Ni,ji,t−1).
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With Lemma 3.2, we can follow the proof of Lemma 6 in [3] to bound the regret
when {∆(t)

S(t) ≥MS(t)},¬Ht,N s
t and N t

t hold.

Reg({∆(t)

S(t) ≥MS(t)} ∧ ¬Ht ∧N s
t ∧N t

t ) ≤
∑
i∈[m]

576C̃2K lnT

Mi

+ 4C̃m. (3.42)

Finally, we take Mi = ∆i,T
min. If ∆(t)

S(t) < MS(t) , then ∆
(t)

S(t) = 0, since we have
either S̃(t) = ∅ or ∆

(t)

S(t) < MS(t) ≤ Mi for some i ∈ S̃(t). Thus, no regret is
accumulated when ∆

(t)

S(t) < MS(t) . Following Eq.(17)-(21) in [3], we can derive the
distribution-dependent regret bound

Regα,β(T ;µ) ≤
∑

i∈[m]
576C̃2K lnT

∆i,T
min

+ 4C̃m+
∑

i∈[m]

(⌈
log2

2C̃K

∆i,T
min

⌉
0
+ 2
)
· π2

6
·∆(T )

max.

(3.43)

To derive the distribution-independent bound, we take Mi = M =
√
(576C̃2mK lnT )/T ,

follow Eq.(23) in [3] and get

Regα,β(T ;µ) ≤ 12C̃
√
mKT lnT + 2C̃m+

(⌈
log2

T
18 lnT

⌉
0
+ 2
)
· π2

6
· n ·m. (3.44)

3.6.4 Computational Efficiency of OCIM-OFU

Proof of Theorem 3.8

Proof. In order to prove Theorem 3.8, we first introduce a new optimization problem
denoted as P1: given S, the new problem aims to find the optimal µi for one edge i

to maximize rS(µ), while fixing the values of all others. The following lemma shows
it is #P-hard.
Lemma 3.3. Given S and fixing µe for all e ̸= i, finding the optimal µi ∈ ci for one
edge i that maximizes rS(µ) is #P-hard.
Proof. We prove the hardness of this optimization problem via a reduction from
the influence computation problem. We first consider a general graph G0 with n

nodes and m edges, where all influence probabilities on edges are set to 1/2. Given
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SA, computing the influence spread of A in such a graph is #P-hard. Notice that
there is no seed set of B in G0. Now let us take one node v in G0 and denote
its activation probability by A as hA(G0, SA, v). Actually, computing hA(G0, SA, v)

is also #P-hard and we want to show that it can be reduced to our optimization
problem in polynomial time.

Figure 3.12: Construction of G1 based on G0.

We first construct a new graph G1 based on G0. For G1, we keep G0 and
SA unchanged, then add several nodes and edges as shown in Fig. 3.12. We add
node 1 to the seed set of B and node 5 to the seed set of A, so the joint action
S = {SA ∪ {5}, SB = {1}}. In this new graph G1, we consider the optimization
problem of finding the optimal µ1 (influence probability on edge (3, 4)) within its
range c1 that maximizes rS(µ). Notice that the influence probability γ on edge
(1, 3) is a constant and µ1 would only affect the activation probability of node 4.
We denote the activation probability by A of node 4 as hA(G1, S, 4). In order to
maximize rS(µ), we only need to maximize hA(G1, S, 4). It can be written as:

hA(G1, S, 4) =
1

2

[
(1− γ) · hA(G1, S, v)− γ

]
· µ1 +

1

2
. (3.45)

It is easy to see hA(G1, S, 4) has a linear relationship with µ1, so the optimal µ1

could only be either the lower or upper bound of its range c1. Assuming we can solve
the optimization problem of finding the optimal µ1, then we can determine the sign
of µ1’s coefficient in Eq.(3.45): if the optimal µ1 is the upper bound value in c1, we
have (1− γ) ·hA(G1, S, v)− γ ≥ 0; otherwise, (1− γ) ·hA(G1, S, v)− γ < 0. It means
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we can answer the question that whether hA(G1, S, v) is larger (or smaller) than γ
1−γ

.
Notice that hA(G0, SA, v) = hA(G1, S, v), so we can manually change the value of γ
to check whether hA(G0, SA, v) is larger (or smaller) than x = γ

1−γ
for any x ∈ [0, 1],

Recall that all edge probabilities in G0 are set to 1/2, so the highest precision of
hA(G0, SA, v) should be 2−m. Hence, we can use a binary search algorithm to find the
exact value of hA(G0, SA, v) in at most m times. It means computing the activation
probability of v in G0 can be reduced to the optimization problem of finding the
optimal µ1 in G1, which completes the proof.

We then show that P1 is a special case of Eq.(3.13). The main idea is to relax
the constraints |SA| ≤ k, S = {SA, SB} in Eq.(3.13) and show that it can find the
optimal µ for any given S. Consider a graph G with n nodes and a given seed set
S = {SA, SB}. We construct a new graph G′ by manually add additional n + 1

nodes pointing from each seed node in SA. If we can solve the optimization problem
Eq.(3.13) in the new graph G′, since SA must be the optimal seed set of A and the
added nodes will not affect the prorogation in G, we will also find the optimal µi’s
in the original graph G for the given S. Then, it is easy to see P1 is a special case
of Eq.(3.13) since P1 only find the optimal µi for one edge i. With Lemma 3.3, we
know Eq.(3.13) is also #P-hard.

Non-submodularity of g(S)

In Section 3.4.5, we introduce g(S) = maxµ rS(µ), which is an upper bound function
of rS(µ) for each S. If g(S) is submodular over S, we can use a greedy algorithm on
g(S) to find an approximate solution. However, the following example in Fig. 3.13
shows that g(S) is not submodular.
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Figure 3.13: Example showing that g(S) is not submodular.

In Fig. 3.13, the numbers attached to edges are influence probabilities. Only the
influence probability of edge (4, 8) is a variable and we denote it as µ1. We assume
µ1 ∈ [0, 1] and SB = {5}. Let us consider some choices of SA. When SA is chosen as
{0}, {0, 1} or {0, 2}, the optimal µ1 that maximizes rS(µ) is 1; when SA is chosen as
{0, 1, 2}, the optimal µ1 that maximizes rS(µ) is 0. Based on this observation, we
can calculate g(S) (assuming SB = {5}):

g(SA = {0}) = 2 +
17

24
,

g(SA = {0, 1}) = 5 +
17

24
× 4

5
,

g(SA = {0, 2}) = 5 +
17

24
× 4

5
,

g(SA = {0, 1, 2}) = 8 +
17

24
× 1

2
+

3

4
.

Thus we have

g(SA = {0, 1}) + g(SA = {0, 2}) < g(SA = {0}) + g(SA = {0, 1, 2}), (3.46)

which is contrary to submodularity.
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Bipartite Graph

We consider a weighted bipartite graph G = (L,R,E) where each edge (u, v) is
associated with a probability p(u, v). Given the competitor’s seed set SB ⊆ L, we
need to choose k nodes from L as SA that maximizes the expected number of nodes
activated by A in R, where a node v ∈ R can be activated by a node u ∈ L with an
independent probability of p(u, v). As mentioned before, if A and B are attempting
to activate a node in L at the same time, the result will depend on the tie-breaking
rule. If all edge probabilities are fixed, i.e., µ is fixed, rS(µ) is still submodular
over SA, so we can use a greedy algorithm as a (1 − 1/e, 1)-approximation oracle
Ogreedy. Based on it, let us discuss the new offline optimization problem in Eq.(3.13)
under our two tie-breaking rules: (1) A > B: since B will never influence nodes in
R earlier than A in bipartite graphs, and A will always win the competition, from
A’s perspective, we can ignore SB to choose SA. In this case, all edge probabilities
should take the maximum values: for all i ∈ E, µi equals to the upper bound of
ci, and we then use the oracle Ogreedy to find SA. (2) B > A: since A will never
influence nodes in R earlier than B in bipartite graphs, and B will always win
the competition, all out-edges of SB, denoted as ESB

, should take the minimum
probabilities to maximize the influence spread of A. All the other edges in E\ESB

should take the maximum probabilities. Formally, for all i ∈ ESB
, µi equals to the

lower bound of ci; for all i ∈ E\ESB
, µi equals to the upper bound of ci. We then

use the oracle Ogreedy to find SA. To sum up, in bipartite graphs, rS(µ) is optimized
by pre-determining µ based on the tie-breaking rule, and then using the greedy
algorithm to get a (1− 1/e, 1)-approximation solution. Since the time complexity of
influence computation in the bipartite graph is O(m), the time complexity of the
offline algorithm is equal to that of the greedy algorithm, O(kmn).

General Graph

GraphWe The competitive propagation in the general graph is much more complicated,
so it is hard to pre-determine all edge probabilities as in the bipartite graph case.
However, we have a key observation:

Lemma 3.4. When fixing the seed set S = {SA, SB}, reward rS(µ) has a linear
relationship with each µi (when other µj’s with j ̸= i are fixed). This implies that
the optimal solution for the optimization problem in Eq.(3.13) must occur at the
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boundaries of the intervals ci’s.

Proof. We can expand rS(µ) based on the live-edge graph model (Chen et al., 2013a):

rS(µ) =
∑
L

|ΓA(L, S)| · Pr(L) =
∑
L

|ΓA(L, S)|
∏

e∈E(L)

µe

∏
e/∈E(L)

(1− µe), (3.47)

where L is one possible live-edge graph (each edge e ∈ E is in L with probability
µe and not in L with probability 1− µe, and this is independent from other edges),
ΓA(L, S) is the set of nodes activated by A from seed sets S = {SA, SB} under
live-edge graph L and E(L) is the set of edges that appear in live-edge graph L.
Eq.(3.47) shows that rS(µ) is linear with each µi, so the optimal µi must take either
the minimum or the maximum value in its range ci.

Lemma 3.4 implies that for any edge e not reachable from B seeds, it is safe to
always take its upper bound value since it can only helps the propagation of A. This
further suggests that if we only have a small number (e.g. logm) of edges reachable
from B, then we can afford enumerating all the boundary value combinations of
these edges. For each such boundary setting µ, we can use the IMM algorithm (Tang
et al., 2014) to design a (1− 1/e− ϵ, 1− n−l)-approximation oracle OIMM with time
complexity TIMM = O((k + l)(m+ n) log n/ϵ2). We discuss such graphs that satisfy
the above condition in directed trees. Specifically, we consider the in-arborescence,
where all edges point towards the root. For any node u in the in-arborescence, there
only exists one path from u to the root; if u is selected as the seed node of B, it could
only propagate via this path. Hence, if the depth of the in-arborescence is in the
order of O(logm), the number of edges reachable from SB would be O(|SB| · logm).
In this case, we can use the IMM algorithm for O(m|SB |) combinations to obtain
an approximate solution with time complexity O(m|SB | · TIMM). Examples of such
in-arborescences with depth O(logm) could be the complete or full binary trees.

For general graphs, designing efficient approximation algorithms for the offline
problem in Eq. (3.13) remains a challenging open problem, due to the joint opti-
mization over S and µ and the complicated function form of rS(µ). Nevertheless,
heuristic algorithms are still possible. In the experiment section, we employee the
following heuristic with the B > A tie-breaking rule: for all outgoing edges from
B seeds, we set their influence probabilities to their lower bound values, while for
the rest, we set them to their upper bound values. This setting guarantees that the
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first-level edges from the seeds are always set correctly, no matter how we select A

seeds. They do not guarantee the correctness of second or higher level edge settings
in the cascade, but the impact of those edges to influence spread decays significantly,
so the above choice is reasonable as a heuristic.

3.6.5 Proof of Theorem 3.9

Proof. The OCIM-ETC algorithm is described in Alg. 3.7. We utilize the following
well-known tail bound in our proof.
Lemma 3.5. (Hoeffding’s Inequality) Let X1, . . . , Xn be independent and identically
distributed random variables with common support [0, 1] and mean µ. Let Y =

X1 + . . . ,+Xn. Then for all δ ≥ 0,

P {|Y − nµ| ≥ δ} ≤ 2e−2δ2/n.

Let µ̂ = (µ̂1, . . . , µ̂m) be the empirical mean of µ. Recall that oracle O
takes S

(t)
B and µ̂ as inputs and outputs a solution S(t). Let us define event

F =
{
rS(t)(µ̂) < α · opt(t)(µ̂)

}
, which represents that oracle O fails to output an

α-approximate solution, and we know P(F) < 1− β.

With the same definitions in Appendix 3.6.3, we can decompose the regret as:

Regα,β(T ;µ) ≤ ⌈nN/k⌉ ·∆(T )
max +

T∑
t=T−⌈nN/k⌉+1

[
αβ · opt(t)(µ)− E

[
rS(t)(µ̂)

]]

≤ ⌈nN/k⌉ ·∆(T )
max +

T∑
t=T−⌈nN/k⌉+1

[
αβ · opt(t)(µ)− β · E

[
rS(t)(µ̂) | ¬F

]]

≤ ⌈nN/k⌉ ·∆(T )
max +

T∑
t=T−⌈nN/k⌉+1

[
α · opt(t)(µ)− E

[
rS(t)(µ̂) | ¬F

]]
.

(3.48)

Next, let us rewrite the TPM condition in Theorem 3.5. For any S, µ and µ′, we
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have

|rS(µ)− rS(µ
′)| ≤ C

∑
i∈[m]

pSi (µ)|µi − µ′
i|

≤ C
∑
i∈[m]

|µi − µ′
i|

≤ Cm ·max
i∈[m]
|µi − µ′

i|, (3.49)

where C is the maximum number of nodes that any one node can reach in graph G.
Let S∗,t

µ denote the optimal action for µ in round t. Under ¬F , we have

rS(t)(µ̂) ≥ α · rS∗,t
µ̂
(µ̂)

≥ α · rS∗,t
µ
(µ̂)

≥ α · rS∗,t
µ
(µ)− α · Cm ·max

i∈[m]
|µi − µ̂i|

≥ rS(t)(µ) + ∆
(t)

S(t) − α · Cm ·max
i∈[m]
|µi − µ̂i|, (3.50)

where the third inequality is due to Eq.(3.49). Combining Eq.(3.49) and Eq.(3.50)
together, we have

∆
(t)

S(t) ≤ rS(t)(µ̂)− rS(t)(µ) + α · Cm ·max
i∈[m]
|µi − µ̂i|

≤ (1 + α) · Cm ·max
i∈[m]
|µi − µ̂i|. (3.51)

Let us define δ0 :=
∆

(T )
min

2Cm
. If maxi∈[m] |µi − µ̂i| < δ0, then we know S(t) is at least an

α-approximate solution, such that ∆
(t)

S(t) = 0. Then the regret in Eq.(3.48) can be
written as

Regα,β(T ;µ) ≤ ⌈nN/k⌉ ·∆(T )
max +

(
T − ⌈nN/k⌉

)
· 2m exp(−2Nδ20) ·∆(T )

max

≤
(
⌈nN/k⌉+ T · 2m exp(−2Nδ20)

)
·∆(T )

max. (3.52)

The first inequality is obtained by applying the Hoeffding’s Inequality (Lemma 3.5)
and union bound to the event maxi∈[m] |µi − µ̂i| ≥ δ0. Now we need to choose
an optimal N that minimizes Eq.(3.52). By taking N = max

{
1, 1

2δ20
ln

4kmTδ20
C

}
=
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max

{
1, 2C2m2

(∆
(T )
min)

2
ln(

kT (∆
(T )
min)

2

C3m
)

}
, when ∆

(T )
min > 0, we can get the distribution-dependent

bound

Regα,β(T ;µ) ≤
2C2m2n∆

(T )
max

k(∆
(T )
min)

2

(
max

{
ln

(
kT (∆

(T )
min)

2

C2mn

)
, 0

}
+ 1

)
+
n

k
∆(T )

max, (3.53)

Next, let us prove the distribution-independent bound. Let N denote the event
that |µ̂i − µi| ≤

√
2 lnT
N

for all i ∈ [m]. By the Hoeffding’s Inequality and union
bound, we have

P{¬N} ≤ m · 2

T 4
≤ 2

T 3
. (3.54)

When N holds, with Eq.(3.51), we have

∆
(t)

S(t) ≤ 2Cm ·
√

2 lnT

N
, (3.55)

and the regret in Eq.(3.48) can be written as

Regα,β(T ;µ) ≤ ⌈nN/k⌉ · n+
T∑

t=T−⌈nN/k⌉+1

∆
(t)

S(t)

≤ ⌈nN/k⌉ · n+O

(
T · Cm ·

√
lnT

N

)
. (3.56)

We can choose N so as to (approximately) minimize the regret. For N = (Cmk)
2
3n− 4

3T
2
3 (lnT )

1
3 ,

we obtain:
Regα,β(T ;µ) ≤ O((Cmn)

2
3k− 1

3T
2
3 (lnT )

1
3 ). (3.57)

To complete the proof, we need to consider both N and ¬N . As shown in Eq.(3.54),
the probability that ¬N occurs is very small, and we have:

Regα,β(T ;µ) = E [Regα,β(T ;µ) | N ] · P{N}+ E [Regα,β(T ;µ) | ¬N ] · P{¬N}
≤ E [Regα,β(T ;µ) | N ] + T · n ·O(T−3)

≤ O((Cmn)
2
3k− 1

3T
2
3 (lnT )

1
3 ). (3.58)
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3.6.6 Proof of Theorem 3.10

Proof. As mentioned in Section 3.4.6, we need to introduce a virtual B seed node uB,
which connects to each existing node u with an unknown edge probability p(uB, u)

equal to the probability of u being selected as a B seed. By adding these virtual
nodes and edges, we get a new graph G′ with 2n nodes and m+ n edges. Since SB

is fixed under G′, we can follow the same steps in the proof of Theorem 3.5 to show
the TPM condition holds under G′. Note that the maximum number of nodes that
any one node can reach in G′ is twice as that in the original graph G, so the new
bounded smoothness coefficient C = 2C̃.
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Chapter 4

Competitive CMAB from the
Multi-players’ Perspective

4.1 Introduction

In this chapter, we study the competitive CMAB problem from the multi-players’
perspective, where multiple players choose combinatorial actions on the same set of
arms. Playing on the same arm incurs competition, which might lead to a potential
loss of the reward. Our objective is to maximize the overall reward for all players. We
first introduce the problem formulation of the centralized and distributed settings. In
the centralized setting, we assume there exists a central controller making decisions
for all players and also observing the feedback from all players. In the distributed
setting, each player chooses her action individually only based on her own feedback.
We then discuss the dynamic channel allocation application, where the competition
comes from the collision of shared channels. We also discuss the application to the
general online resource allocation problem, where the competition can be modeled
as the constraints on resources.

4.2 Problem Formulation

We consider a learning game with M player. They play with an environment
consisting of K random variables X1, · · · , XK called base arms following a joint
distribution D over [0, 1]K . Distribution D is chosen by the environment from a
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class of distributions D before the game starts. The players know D but not the
actual distribution D in advance. The learning process runs in discrete rounds. We
consider both centralized and distributed settings.

In the centralized setting, there is a central controller for all player. In round t,
based on the feedback history from previous rounds, the central controller chooses a
joint action S(t) = (S

(t)
1 , · · · , S(t)

M ) from an action space S for all players, where S
(t)
m

is the action taken by player m. The environment draws an independent sample
X(t) = (X

(t)
1 , · · · , X(t)

K ) from the joint distribution D. When joint action S(t) is played
on the environment outcome X(t), a random subset of arms τt ∈ [m] are triggered, and
the outcomes of X(t)

i for all i ∈ H(S(t), τt) are observed as the feedback to the central
controller, where H is the feedback function. τt may have additional randomness
beyond the randomness of X(t). Let Dtrig(S,X) denote a distribution of the triggered
subset of [K] for given joint action S and an environment outcome X. We assume
τt is drawn independently from Dtrig(S

(t), X(t)). The central controller obtains a
reward R(S(t), X(t), τt) fully determined by S(t), X(t) and τt. A learning algorithm
aims at selecting actions S(t) over time based on past feedback to accumulate as
much reward as possible. Note that the feedback function H(S(t), τt) and the reward
function R(S(t), X(t), τt) are problem-specific and depend on the competition model.

In the distributed setting, players choose their own actions without any commu-
nication with each other. In round t, based on the feedback history of itself from
previous rounds, each player m chooses an action S

(t)
m from an action space Sm.

We can still consider the joint action of all players as S(t) = (S
(t)
1 , · · · , S(t)

M ). The
environment draws an independent sample X(t) = (X

(t)
1 , · · · , X(t)

K ) from the joint
distribution D. When joint action S(t) is played on the environment outcome X(t),
a random subset of arms τt ∈ [m] are triggered, and the outcomes of X(t)

i for all
i ∈ Hm(S

(t), τt) are observed as the feedback to player m, where Hm is the feedback
function of player m. τt may have additional randomness beyond the randomness
of X(t). Let Dtrig(S,X) denote a distribution of the triggered subset of [m] for
given joint action S and an environment outcome X. We assume τt is drawn inde-
pendently from Dtrig(S

(t), X(t)). Each player m obtains a reward Rm(S
(t), X(t), τt)

fully determined by S(t), X(t) and τt. We denote the overall reward of all players as
R(S(t), X(t), τt). Note that the relationship between the individual reward Rm and
overall reward R is problem-specific, for example, R can be either the sum or the
minmax of all Rm’s. A learning algorithm deployed on all players aims at selecting
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action S(t)’s over time based on the past feedback to accumulate as much overall
reward as possible.

For each base arm i, let µi = EX∼D[Xi]. Let µ = (µ1, · · · , µm) denote the
expectation vector of arms. We assume that the expected reward E[R(S,X, τ)],
where the expectation is taken over X ∼ D and τ ∼ Dtrig(S,X), is a function of
the joint action S and the expectation vector µ of the arms. Thus, we denote
rµ(S) := E[R(S,X, τ)]. The performance of a learning algorithm A is measured by
its expected regret, which is the difference in expected cumulative reward between
always playing the best action and playing actions selected by algorithm A. Let
opt(µ) = supS(t)∈S rµ(S

(t)) denote the expected reward of the optimal joint action
in round t. We assume that there exists an offline oracle O, which takes µ as input
and outputs a joint action SO,(t) such that Pr{rµ(SO,(t)) ≥ α · opt(µ)} ≥ β, where α

is the approximation ratio and β is the success probability. Instead of comparing
with the exact optimal reward, we take the αβ fraction of it and use the following
(α, β)-approximation frequentist regret for T rounds:

RegAα,β(T ;µ) = T · α · β · opt(µ)−∑T
t=1 rµ(S

A,(t)), (4.1)

where SA,(t) is the joint action of all players chosen by algorithm A in round t.

4.3 Application in Dynamic Channel Allocation

4.3.1 Introduction

In the classical MAB problem, a player chooses one of a fixed set of arms and receives
a reward based on this choice. The player aims to maximize her cumulative reward
over multiple rounds, navigating a tradeoff between exploring unknown arms (to
potentially discover an arm with higher rewards) and exploiting the best known arm
(to avoid arms with low rewards). Most MAB algorithms use the history of rewards
received from each arm to design optimized strategies for choosing which arm to
play. They generally seek to prove that the regret, or the expected difference in the
reward compared to the optimal strategy when all arms’ reward distributions are
known in advance, grows sub-linearly with the number of rounds.
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Introducing Pre-observations

The classical MAB exploration-exploitation tradeoff arises because knowledge about
an arm’s reward can only be obtained by playing that arm. In practice, however,
this tradeoff may be relaxed. [49], for example, suppose that at the end of each
round, the player can pay a cost to observe the rewards of additional un-played arms,
helping to find the best arm faster. In cascading bandits [5], players may choose
multiple arms in a single round, e.g., if the “arms” are search results in a web search
application.

In both examples above, the observations made in each round do not influence
the choice of arms in that round. We introduce the MAB problem with pre-
observations, where in each round, the player can pay to pre-observe the realized
rewards of some arms before choosing an arm to play. For instance, one might play
an arm with high realized reward as soon as it is pre-observed. Pre-observations can
help to reconcile the exploration-exploitation tradeoff, but they also introduce an
additional challenge: namely, optimizing the order of the pre-observations.
This formulation is inspired by Cognitive Radio Networks (CRNs), where users can
use wireless channels when they are unoccupied by primary users. In each round, a
user can sense (pre-observe) some channels (arms) to check their availability (reward)
before choosing a channel to transmit data (play). Sensing more arms leaves less
time for data transmission, inducing a cost of making pre-observations.

In this pre-observation example, there are negative network effects when multiple
players attempt to play the same arm: if they try to use the same wireless channel,
for instance, the users “collide” and all transmissions fail. In multi-player bandit
problems without pre-observations, players generally minimize these collisions by
allocating themselves so that each plays a distinct arm with high expected reward.
In our problem, the players must instead learn ordered sequences of arms that they
should pre-observe, minimizing overlaps in the sequences that might induce players to
play the same arm. Thus, one user’s playing a sub-optimal arm may affect other users’
pre-observations, leading to cascading errors. We then encounter a new challenge
of designing users’ pre-observation sequences to minimize collisions but still
explore unknown arms. This problem is particularly difficult when players cannot
communicate or coordinate with each other to jointly design their observation
sequences. To the best of our knowledge, such multi-player bandit problems with
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pre-observations have not been studied in the literature.

Applications

Although many MAB works take cognitive radios as their primary motivation
[50, 51, 52], multi-player bandits with pre-observations could be applied to any
scenario where users search for sufficiently scarce resources at multiple providers that
are either acceptable (to all users) or not. We briefly list three more applications.
First, users may sequentially bid in auctions (arms) offering equally useful items,
e.g., Amazon EC2 spot instance auctions for different regions, stopping when they
win an auction. Since these resources are scarce, each region may only be able to
serve one user (modeling collisions between users). Second, in distributed caching,
each user (player) may sequentially query whether one of several caches (arms) has
the required file (is available), but each cache can only send data to one user at a
time (modeling collisions). Third, taxis (players) can sequentially check locations
(arms) for passengers (availability); collisions occur since each passenger can only
take one taxi, and most locations (e.g., city blocks that are not next to transit hubs)
would not have multiple passengers looking for a taxi at the same time.

Our Contributions

Our first contribution is to develop an Observe-Before-Play (OBP) policy
to maximize the total reward of a single user via minimizing the cost spent on
pre-observations. Our OBP policy achieves a regret bound that is logarithmic with
time and quadratic in the number of available arms. It is consistent with prior
results [53], and more easily generalizes to multi-player settings.

We next consider the multi-player setting. Unlike in the single-player setting,
it is not always optimal to observe the arms with higher rewards first. We show
that finding the offline optimal policy to maximize the overall reward of all players
is NP-hard. However, we give conditions under which a greedy allocation that
avoids user collisions is offline-optimal; in practice, this strategy performs well.
Our second research contribution is then to develop a centralized C-MP-OBP
policy that generalizes the OBP policy for a single user. Despite the magnified loss
in reward when one user observes the wrong arm, we show that the C-MP-OBP
policy can learn the arm rankings, and that its regret relative to the offline greedy
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strategy is logarithmic with time and polynomial in the number of available arms
and users. Our third research contribution is to develop distributed versions of
our C-MP-OBP policy, called D-MP-OBP and D-MP-Adapt-OBP. Both
algorithms assume no communication between players and instead use randomness
to avoid collisions. Despite this lack of communication, both achieve logarithmic
regret over time with respect to the collision-free offline greedy strategies defined in
the centralized setting.

Our final contribution is to numerically validate our OBP, C-MP-OBP,
and D-MP-OBP policies on synthetic reward data and channel availability
traces. We show that all of these policies outperform both random heuristics and
traditional MAB algorithms that do not allow pre-observations, and we verify that
they have sublinear regret over time. We further characterize the effect on the
achieved regret of varying the pre-observation cost and the distribution of the arm
rewards.

Related Work

Multi-armed Bandit (MAB) problems have been studied since the 1950s [1, 54].
[55], for instance, propose a simple UCB1 policy that achieves logarithmic regret
over time. Recently, MAB applications to Cognitive Radio Networks (CRNs) have
attracted attention [56, 57], especially in multi-player settings [52, 58, 59, 60, 61]
where users choose from the same arms (wireless channels). None of these works
include pre-observations, though some [50, 51, 62] consider distributed settings.
[53, 63] study the single-player MAB problem with pre-observations, but do not
consider multi-player settings.

The proposed MAB with pre-observations in a single-player setting is a variant
on cascading bandits [5, 17, 64]. The idea of pre-observations with costs is similar
to the cost-aware cascading bandits proposed in [65] and contextual combinatorial
cascading bandits introduced in [11]. However, in [65], the reward collected by the
player can be negative if all selected arms have zero reward in one round; in our
model, the player will get zero reward if all selected arms are unavailable. Moreover,
most cascading bandit algorithms are applied to recommendation systems, where
there is only a single player. To the best of our knowledge, we are the first to study
MAB problems with pre-observations in multi-player settings.
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Figure 4.1: Illustration of pre-observations.

4.3.2 Single-player Setting

We consider a player who can pre-observe a subset of K arms and play one of them,
with a goal of maximizing the total reward over T rounds. Motivated by the CRN
scenario, we assume as in [59] an i.i.d. Bernoulli reward of each arm to capture the
occupancy/vacancy of each channel (arm). Let Yk,t

iid∼ Bern(µk) ∈ {0, 1} denote the
reward of arm k at round t, with expected value µk ∈ [0, 1]. As shown in Figure 4.1, in
each round, the player chooses a pre-observation list ot := (o

(1)
t , o

(2)
t , . . . , o

(K)
t ), where

o
(i)
t represents the ith arm to be observed at t and ot is a permutation of (1, 2, . . . , K).

The player observes from the first arm o
(1)
t to the last arm o

(K)
t , stopping at and

playing the first good arm (reward = 1) until the list exhausts. We denote the index
of the last observed arm in ot as I(t), which is the first available arm in ot or K if
no arms are available. Pre-observing each arm induces a constant cost τ ; in CRNs,
this represents a constant time τ for sensing each channel’s occupancy. We assume
for simplicity that 0 < Kτ < 1. The payoff received by the player at t then equals:
(1− I(t) τ)Y

o
(I(t))
t ,t

; if all the arms are bad (reward = 0) in round t, then the player
will get zero reward for any ot. Given {ot}Tt=1, we can then define the total realized
and expected rewards received by the player in T rounds:

r(T ) :=
T∑
t=1

(1− I(t) τ)Y
o
(I(t))
t ,t

(4.2)

E[r(T )] =
T∑
t=1

K∑
k=1

{
(1− k τ)µ

o
(k)
t

k−1∏
i=1

(1− µ
o
(i)
t
)

}
, (4.3)
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where
∏0

i=1(1 − µ
o
(i)
t
) := 1. We next design an algorithm for choosing ot at each

round t to maximize E[r(T )]. We assume µ1 ≥ µ2 ≥ · · · ≥ µK without loss of
generality and first establish the optimal offline policy:

Lemma 4.1. The optimal offline policy o∗
t that maximizes the expected total reward

is observing arms in the descending order of their expected rewards, i.e., o∗
t =

(1, 2, . . . , K).

Algorithm 4.1 Observe-Before-Play UCB (OBP-UCB)
1: Initialization: Pull all arms once and update ni(t), µi(t), µ̂i(t) for all i ∈ [K]
2: while t do
3: ot = argsort(µ̂1(t), µ̂2(t), . . . , µ̂K(t));
4: for i = 1 : K do
5: Observe arm o

(i)
t ’s reward Y

o
(i)
t ,t

;
6: n

o
(i)
t
(t+ 1) = n

o
(i)
t
(t) + 1;

7: µ
o
(i)
t
(t+ 1) = (µ

o
(i)
t
(t)n

o
(i)
t
(t) + Y

o
(i)
t ,t

)/n
o
(i)
t
(t+ 1);

8: if Y
o
(i)
t ,t

= 1 then
9: Play arm i for this round;

10: n
o
(j)
t
(t+ 1) = n

o
(j)
t
(t) for all j > i;

11: µ
o
(j)
t
(t+ 1) = µ

o
(j)
t
(t) for all j > i;

12: break;
13: end if
14: end for
15: Update µ̂i(t) for all i ∈ [K];
16: t = t+ 1;
17: end while

Given this result, we propose an UCB (upper confidence bound)-type online
algorithm, Observe-Before-Play UCB (OBP-UCB), to maximize the cumulative
expected reward without prior knowledge of the {µk}Kk=1. The OBP-UCB algorithm
is formally described in Algorithm 4.1 and uses UCB values to estimate arm rewards
as in traditional MAB algorithms [55]. Define µi(t) as the sample average of µi up
to round t and ni(t) as the number of times that arm i has been observed. Define
µ̂i(t) := µi(t) +

√
2 log t
ni(t)

as the UCB value of arm i at round t. At each round, the
player ranks all the arms i in descending order of µ̂i(t), and sets that order as ot.
The player observes arms starting at o(1)t , stopping at the first good arm (Y

o
(i)
t ,t

= 1)
or when the list exhausts. She then updates the UCB values and enters the next
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round. Since we store and update each arm’s UCB value, the storage and computing
overhead grow only linearly with the number of arms K.

We can define and bound the regret of this algorithm as the difference between
the expected reward of the optimal policy (Lemma 4.1) and that of the real policy:

R(T ) :=E[r∗(T )]− E[r(T )]

=
T∑
t=1

K∑
k=1

{
(1− k τ)µk

k−1∏
i=1

(1− µi)− (1− k τ)µ
o
(k)
t

k−1∏
i=1

(1− µ
o
(i)
t
)

}
.

(4.4)

Theorem 4.1. The total expected regret can be bounded as:

E[R(T )] ≤∑K−1
i=1

{
iWi

∑K
j=i+1[

8 log T
∆i,j

+(1+π2

3
)∆i,j ]

}
, where Wk := (1−k τ)∏k−1

i=1 (1−

µi) and ∆i,j := µi − µj.

The expected regret E[R(T )] is upper-bounded in the order of O(K2 log T ), as
also shown by [53]. However, our proof method is distinct from theirs and preserves
the dependence on the arm rewards (through the Wi in Theorem 4.1). Since Wk

converges to 0 as k → ∞, we expect that the constant in our O(K2 log T ) bound
will be small. Numerically, when there are more than 8 arms with expected rewards
uniformly drawn from (0, 1), our new regret bound is tighter than the result from [53]
in 99% of our experiments. Moreover, unlike the analysis in [53], our regret analysis
can be easily generalized to multi-player settings, as we show in the next section.

Algorithms with better regret order in T can be derived [63], but the regret bound
of their proposed algorithm has a constant term (independent of T ), K2η2, where
η =

∏K
i=1(1− µi)

−1. This constant term is exponential in K so it can be significant
if K is large. The same work also provides a lower bound in the order of Ω(K log T )

when the player can only choose less than K arms to pre-observe in each round.

4.3.3 Centralized Multi-player Setting

In the multi-player setting, we still consider K arms with i.i.d Bernoulli rewards; Yk,t

denotes the realized reward of arm k at round t, with an expected value µk ∈ [0, 1].
There are now M ≥ 1 players (M ≤ K) making decisions on which arms to observe
and play in each round. We define a collision as two or more users playing the same
arm in the same round, forcing them to share that arm’s reward or even yielding
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(a) Non-greedy optimal policy. (b) Assigning arms.

Figure 4.2: Multi-player observation lists with expected rewards.

zero reward for all colliding players, e.g., in CRNs. In this setting, simply running
the OBP-UCB algorithm on all players will lead to severe collisions, since all users
may tend to choose the same observation list and play the same arm. To prevent
this from happening, we first consider the case where a central controller can allocate
different arms to different players.

At each round, the central controller decides pre-observation lists for all players;
as in the single-player setting, each player sequentially observes the arms in its list
and stops at the first good arm. The players report their observation results to
the central controller, which uses them to choose future lists. A policy consists of
a set of pre-observation lists for all players. Define om,t := (o

(1)
m,t, o

(2)
m,t, . . . , o

(i)
m,t, . . . )

as the pre-observation list of player m at round t, where o
(i)
m,t represents the ith

arm to be observed. The length of om,t can be less than K. Since collisions will
always decrease the total reward, we only consider collision-free policies, i.e., those
in which players’ pre-observation lists are disjoint. Policies that allow collisions
are impractical in CRNs as they waste limited transmission energy and defeat the
purpose of pre-observations (sensing channel availability), which allow users to find
an available channel without colliding with primary users. The expected overall
reward of all players is then:

E[r(T )] =
T∑
t=1

M∑
m=1

|om,t|∑
k=1

{
(1− kτ)µ

o
(k)
m,t

k−1∏
i=1

(1− µ
o
(i)
m,t

)

}
. (4.5)
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Unlike in the single-player setting, the collision-free requirement now makes
the expected reward for one player dependent on the decisions of other players.
Intuitively, we would expect that a policy of always using better arms in earlier steps
would perform well. We can in fact generalize Lemma 4.1 from the single-player
setting:

Lemma 4.2. Given a pre-observation list om,t for time t, player m maximizes its
expected reward at time t by observing the arms in descending order of their rewards.

With Lemma 4.2, we can consider the offline optimization of the centralized
multi-player bandits problem. With the full information of expected rewards of
all arms, i.e., {µi}Ki=1, the central controller allocates disjoint arm sets to different
players, aiming to maximize the expected overall reward shown in (4.5). We show in
Theorem 4.2 that the offline problem is NP-hard.

Theorem 4.2. The offline problem of our centralized multi-player setting is NP-hard.

Proof. Define xij = 1 if the central controller allocates arm j to player i and 0

otherwise. The offline optimization problem can be formulated as:

max
M∑
i=1

K∑
j=1

{[
1− (

∑
k<j

xik + 1)τ
]
xijµj

∏
k<j

(1− xikµk)
}

s.t. xij ∈ {0, 1},
M∑
i=1

xij ≤ 1, j = 1, . . . , K,

where we define
∑

∅ := 0 and
∏

∅ := 1. We show the Weapon Target Assignment
(WTA) problem [66] with identical targets, which is NP-hard [67], can be reduced in
polynomial time to a special case of our problem with τ = 0: The WTA problem
with identical targets aims to maximize the sum of expected damage done to all
targets (mapped to be players), each of which can be targeted by possibly multiple
weapons (mapped to be channels), where each weapon can only be assigned to at
most one target and weapons of the same type have the same probability (mapped
to be µk) to successfully destroy any target. Then, it is equivalent to maximizing
the expected reward of all players when τ = 0 in our problem.

Although it is hard to find the exact offline optimal policy, Lemma 4.2 suggests
that a collision-free greedy policy, which we also refer to as a greedy policy , might
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be closed to the optimal one. We first define the ith observation step in a policy
as the set of arms in the ith positions of the players’ observation lists, denoted by
si,t := (o

(i)
1,t, o

(i)
2,t, . . . , o

(i)
M,t) for each round t. We define a greedy policy as one in which

at each observation step, the players greedily choose the arms with highest expected
rewards from all arms not previously observed. Formally, assuming without loss
of generality that µ1 ≥ µ2 ≥ · · · ≥ µK , in the ith observation step, players should
observe different arms from the set si,t = {(i− 1)M + 1, (i− 1)M + 2, . . . , iM}. In
the simple greedy-sorted policy, for instance, player m will choose arm (i−1)M+m

in the ith observation step. A potentially better candidate is the greedy-reverse
policy: at each observation step, arms are allocated to players in the reverse order
of the probability they observe an available arm from previous observation steps.
Formally, in the ith observation step, arm (i− 1)M + j is assigned to the player m
with the jth highest value of Πi−1

l=1(1 − µ
o
(l)
m,t

), or the probability player m has yet
not found an available arm. Experiments show that when there are 3 players and 9
arms with expected rewards uniformly drawn from (0, 1), the greedy-reverse policy
is the optimal greedy policy 90% of the time. In fact,

Lemma 4.3. When K ≤ 2M , the optimal policy is the greedy-reverse policy.

In general, the optimal policy may not be the greedy-reverse one, or even a greedy
policy. Figure 4.2a shows such a counter-intuitive example. In this example, player 1
should choose the arm with 0.15 expected reward, not the one with 0.25 expected
reward, in step 2. Player 1 should reserve the higher-reward arm for player 3 in a
later step, as player 3 has a lower chance of finding a good arm in steps 1 or 2. In
practice, we expect these examples to be rare; they occur less than 30% of the time
in simulation. Thus, we design an algorithm that allocates arms to players according
to a specified greedy policy (e.g., greedy-sorted) and bound its regret.

We propose an UCB-type online algorithm, Centralized Multi-Player Observe-
Before-Play (C-MP-OBP), to learn a greedy policy without prior knowledge of
the expected rewards {µk}Kk=1. The C-MP-OBP algorithm is described in Algorithm
1, generalizing the single-player setting. To simplify the discussion, we assume
K/M = L, i.e., each player will have an observation list of the same length, L, when
using a greedy policy. Note that if K is not a multiple of M , we can introduce
virtual arms with zero rewards to ensure K/M = L. At each round t, the central
controller ranks all the arms in the descending order of µ̂i(t), the UCB value of arm i
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Algorithm 4.2 Centralized Multi-Player OBP (C-MP-OBP)
1: Initialization: Pull all arms once and update ni(t), µi(t), µ̂i(t) for all i ∈ [K]
2: while t do
3: α = argsort(µ̂1(t), µ̂2(t), . . . , µ̂K(t));
4: for i = 1 : L do
5: si,t = α[(i− 1) ∗M + 1 : i ∗M ]
6: end for
7: for m = 1 : M do
8: for i = 1 : L do
9: Observe arm si,t[m]’s reward Ysi,t[m],t;

10: nsi,t[m](t+ 1) = nsi,t[m](t) + 1;
11: µsi,t[m](t+ 1)

12: =
(
µsi,t[m](t) + Ysi,t[m],t

)
/nsi,t[m](t+ 1);

13: if Ysi,t[m],t = 1 then
14: Player m plays arm si,t[m] for this round;
15: nsj,t[m](t+ 1) = nsj,t[m](t) for all j > i;
16: µsj,t[m](t+ 1) = µsj,t[m](t) for all j > i;
17: break;
18: end if
19: end for
20: end for
21: Update µ̂i(t) for all i ∈ [K];
22: t = t+ 1;
23: end while

at round t, and saves that order as α. Then it sets the first M arms in α, α[1 : M ],
as s1,t, the second M arms in α, α[M + 1 : 2M ] as s2,t, and so on, assigning the
arms in each list to players according to the specified greedy policy. Each player m’s
observation list is then om,t = (s1,t[m], . . . , sL,t[m]). At the end of this round, the
central controller aggregates all players’ observations to update the UCB values and
enter the next round.

We define the regret, R(T ) := E[r∗(T )]− E[r(T )], as the difference between the
expected reward of the target policy and that of C-MP-OBP algorithm:

R(T ) =

T,M,L∑
t,m,k=1

{
(1− kτ)µ(k−1)M+m

k−1∏
i=1

(1− µ(i−1)M+m)− (1− kτ)µ
o
(k)
m,t

k−1∏
i=1

(1− µ
o
(i)
m,t

)

}
.

(4.6)

97



Defining cµ := µmax
∆min

, we show the following regret bound:

Theorem 4.3. The expected regret of C-MP-OBP is bounded by

E[R(T )] ≤ cµK
2(L2 + L)

(
8 log T

∆min

+ (1 +
π2

3
)∆max

)
,

where ∆max = max
i<j

µi − µj, ∆min = min
i<j

µi − µj.

The expected regret E[R(T )] is upper bounded in the order of O(K2L2 log T ),
compared to O(K2 log T ) in the single-player setting. Thus, we incur a “penalty” of
L2 in the regret order, due to sub-optimal pre-observations’ impact on the subsequent
pre-observations of other users. We note that, if pre-observations are not allowed,
we can adapt the proof of Theorem 4.3 to match the lower bound of O(KM log T )

given by [51].

4.3.4 Distributed Multi-player Setting

We finally consider the scenario without a central controller or any means of commu-
nication between players. In the CRN setting, for instance, small Internet-of-Things
devices may not be able to tolerate the overhead of communication with a cen-
tral server. The centralized C-MP-OBP policy is then infeasible, and specifying a
collision-free policy is difficult, as the players make their decisions independently. We
propose a Distributed Multi-Player Observe-Before-Play (D-MP-OBP) online
algorithm in which each player distributedly learns a “good” policy that effectively
avoids collisions with others. Specifically, it converges to one of the offline collision-
free greedy policies that we defined in Section 4.3.3; we then show that D-MP-OBP
can be adapted to achieve a pre-specified greedy policy, e.g., greedy-reverse. To
facilitate the discussion, we define η

(t)
k as an indicator that equals 1 if more than one

player plays arm k in round t and 0 otherwise. As in the centralized setting, o(k)m,t

denotes the kth arm in player m’s observation list at round t.
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Algorithm 4.3 Distributed Multi-Player OBP (D-MP-OBP)
1: Initialization: Pull all arms once and update ni(t), µi(t), µ̂i(t) for all i ∈ [K]
2: while t do
3: α = argsort(µ̂1(t), µ̂2(t), . . . , µ̂K(t));
4: for i = 1 : L do
5: si,t = α[(i− 1) ∗M + 1 : i ∗M ]
6: end for
7: for i = 1 : L do
8: if m∗

i = 0 OR m∗
i /∈ si,t then

9: The player uniformly at random selects an arm from si,t to observe and
record the index of the chosen arm as m∗

i ;
10: end if
11: Observe the reward Ysi,t[m∗

i ],t
;

12: nsi,t[m∗
i ]
(t+ 1) = nsi,t[m∗

i ]
(t) + 1;

13: µsi,t[m∗
i ]
(t+ 1)

14: =
(
µsi,t[m∗

i ]
(t) + Ysi,t[m∗

i ],t

)
/nsi,t[m∗

i ]
(t+ 1);

15: if Ysi,t[m∗
i ],t

= 1 then
16: The player plays arm si,t[m∗] for this round;
17: nsj,t[m∗](t+ 1) = nsj,t[m∗](t) for all j > i;
18: µsj,t[m∗](t+ 1) = µsj,t[m∗](t) for all j > i;
19: break;
20: end if
21: end for
22: if a collision occurs then
23: Update m∗

i = 0;
24: end if
25: Update µ̂i(t) for all i ∈ [K];
26: t = t+ 1;
27: end while

The D-MP-OBP algorithm is shown in Algorithm 4.3. As in the C-MP-OBP
algorithm, in each round, each player independently updates its estimate of the
expected reward (µk) for each arm k using the UCB of µk. Each player then sorts the
estimated {µk}Kk=1 into descending order and groups the K arms into L sets. We still
use si,t to denote the list of arms that the players observe in step i at round t. Since
users may have different lists si,t depending on their prior observations, we cannot
simply allocate the arms in si,t to users. Instead, the users follow a randomized
strategy in each step i at round t. If there was a collision with another player on
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arm i at round t− 1 or the arm chosen in round t− 1 does not belong to her own
set si,t, then the player uniformly at random chooses an arm from her si,t to observe.
Otherwise, the player observes the same arm as she did in step i in round t− 1. If
the arm is observed to be available, the player plays it and updates the immediate
reward and the UCB of the arm. Otherwise, she continues to the next observation
step. Note that this policy does not require any player communication.

To evaluate D-MP-OBP, we define a performance metric, Loss(T ), to be the
maximum difference in total reward over T rounds between any collision-free greedy
policy and the reward achieved by D-MP-OBP. Thus, unlike the regret E[R(T )]
defined for our C-MP-OBP policy, E[Loss(T )] does not target a specific greedy
policy. Moreover, unlike C-MP-OBP, our D-MP-OBP algorithm provides fairness in
expectation for all players, as they have equal opportunities to use the best arms in
each observation step.

Theorem 4.4. The total expected loss, E[Loss(T )], of our distributed algorithm
D-MP-OBP is logarithmic in T .

We finally define the D-MP-Adapt-OBP algorithm, which adapts Algorithm
4.3 to steer the players towards a specific policy by adding a small extra term for
each player. We define a function f(·) for each player to map the arm chosen in the
first observation step to the arm chosen in the following steps given the predictions
of each µk. With some abuse of notation, we define olm,t as the arm chosen by player
m for step l in round t. The function f then steers the players to the collision-free
greedy policy given by ol+1

m,t = f(olm,t, { ˆµk(t)}Kk=1),∀l = 1, ..., L− 1 for each player m;
we define the regret with respect to this policy.

We can view the function f as replacing the player index in the centralized setting
with the relative ranking of the arm chosen by this player in prior observation steps.
As an example, the greedy-sorted policy used in Section 4.3.3 is equivalent to: (1)
letting players choose different arms, and (2) the player that chooses the arm in
position m continuing to choose the arm with the mth best reward of its set si,t in
each subsequent step. Thus, we can steer the players to specific observation lists
within a given collision-free greedy policy. Their decisions then converge to the
specified policy.

Theorem 4.5. The expected regret, E[R(T )] of our distributed algorithm D-MP-
Adapt-OBP is logarithmic in T .
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(a) OBP-UCB. (b) C-MP-OBP. (c) D-MP-OBP.

Figure 4.3: Sublinear regret in each setting.

Table 4.1: Average % reward improvements of OBP-UCB.

τ single-opt random single-real random-real
0.01 102% 5% 76% 6%
0.05 92% 34% 71% 47%
0.1 78% 140% 63% 245%

We observe from the proof of Theorem 4.5 that the regret is combinatorial in
M but logarithmic in T , unlike the centralized multi-player setting’s O(K2L2 log T )

regret in Theorem 4.3. This scaling with M comes from the lack of coordination
between players and the resulting collisions.

4.3.5 Experiments

We validate the theoretical results from Sections 4.3.2–4.3.4 with numerical simula-
tions. We summarize our results as follows:

Sublinear regret: We show in Figure 4.3 that our algorithms in the single-
player, multi-player centralized, and multi-player distributed settings all achieve
a sublinear regret, respectively defined relative to the single-player offline optimal
(Lemma 4.1), the greedy-sorted policy, and a collision-free-greedy-random policy that
in each step greedily chooses the set of arms but randomly picks one collision-free
allocation. Figure 4.3b shows our C-MP-OBP algorithm’s regret is even negative for
a few runs: by deviating from the greedy-sorted policy towards the true optimum,
the C-MP-OBP algorithm may obtain a higher reward. The regret of D-MP-OBP in
Figure 4.3c is larger than that of C-MP-OBP, likely due to collisions in the distributed
setting.
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Table 4.2: Average C-MP-OBP, D-MP-OBP % improvement.

τ single-opt random single-real random-real
0.1 41%, 27% 7%, 39% 35%, 198% 4%, 30%
0.2 33%, 20% 15%, 47% 28%, 183% 10%, 36%
0.3 22%, 11% 30%, 60% 19%, 165% 20%, 47%

Superiority to baseline strategies: We show in Tables 4.1 and 4.2 that our
algorithms consistently outperform two baselines, in both synthetic reward data
(K = 9 arms with expected rewards uniformly drawn from [0, 0.5] and M = 3 players
for multi-player settings) and real channel availability traces [68]. Our first baseline is
a random heuristic (called random for synthetic data and random-real for real
data trace) in which users pre-observe arms uniformly at random and play the first
available arm. Comparisons to this baseline demonstrate the value of strategically
choosing the order of the pre-observations. Our second baseline is an optimal offline
single-observation policy (single-opt), which allocates the arms with the M

highest rewards to each player (in the single-player setting, M = 1). These optimal
offline policies are superior to any learning-based policy with a single observation,
so comparisons with this baseline demonstrate the value of pre-observations. When
the rewards are drawn from a real data trace, they may no longer be i.i.d. Bernoulli
distributed, so these offline policies are no longer truly “optimal.” Instead, we take a
single-observation UCB algorithm (single-real) as the baseline; this algorithm
allocates the arms with the top M (≥ 1) highest UCB values to different users, and
each player still observes and plays one such arm in each round.

Tables 4.1 and 4.2 show the average improvements in the cumulative reward
achieved by our algorithms over the baselines after 5000 rounds over 100 experiment
repetitions with different τ . In each setting, increasing τ causes the improvement over
the random baseline to increase: when τ is small, there is little cost to mis-ordered
observations, so the random algorithm performs relatively well. Conversely, increasing
τ narrows the reward gap with the single-observation baseline: as pre-observations
become more expensive, allowing users to make them does not increase the reward
as much.

Effect of µ: We would intuitively expect that increasing the average rewards µi

would increase the reward gap with the random baseline: it is then more important
to pre-observe “good” arms first, to avoid the extra costs from pre-observing occupied
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arms. We confirm this intuition in each of our three settings. However, increasing
the µ’s does not always increase the reward gap with the single-observation baseline,
since if the µ’s are very low or very high, pre-observations are less valuable. When the
µ’s are small, the player would need to pre-observe several arms to find an available
one, decreasing the final reward due to the cost of these pre-observations. When
the µ’s are large, simply choosing the best arm is likely to yield a high reward, and
the pre-observations would add little value. Figures 4.4a and 4.4b plot the reward
gap with respect to x ( µ’s are drawn from U(0, x)) : an increase in x increases the
reward gap with the random baseline, but has a non-monotonic effect compared to
the single-observation baseline. Similar trends are also found in multi-player settings.
In Figures 4.5a–4.5d, we plot the reward gap with respect to µ in the centralized
and distributed multi-player settings. As in the single-player setting, an increase
in µ increases the reward gap with the random baseline, but has a non-monotonic
effect compared to the single-observation baseline.

(a) Single-observation baseline. (b) Random baseline.

Figure 4.4: Average cumulative reward gaps in the single-player setting.

4.4 Application in Resource Allocation

4.4.1 Introduction

Resource allocation, which generally refers to the problem of distributing a limited
budget among multiple entities, is a fundamental challenge that arises in many
types of systems, including wireless networks, computer systems, and power grids.
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(a) C-MP-OBP: single-opt. (b) C-MP-OBP: random.

(c) D-MP-OBP: single-opt. (d) D-MP-OBP: random.

Figure 4.5: Average cumulative reward gaps in the single-player, centralized multi-player,
and distributed multi-player settings.

Generally, the entity in charge of distributing the budget wishes to do so in an
“optimal” manner, where “optimality” may be defined according to a variety of
objectives. In this work, we consider an online version of the resource allocation
problem, where the objective is not known a priori but can be learned over time based
on feedback from the users to whom the budget is allocated. In the online resource
allocation problem, a decision maker (agent) must repeatedly distribute its available
budgets among different resources (users). Each resource will generate a random
reward based a general reward function of the allocated budget and other, unknown
factors. As the resource allocation task is repeated over time, the decision maker can
gather information about the reward functions and the unknown distributions from
observed reward feedback. Its goal is to maximize the cumulative total reward, or
equivalently, minimize the cumulative regret compared to the total achievable award
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if the reward distributions were known.
In this section, we introduce offline and online versions of the general resource

allocation problem without specifying the exact forms of the reward functions.
We assume that the obtained rewards of different resources are independent from
each other and that the agent has to balance the tradeoff between exploration and
exploitation: as the total budget is limited, the agent needs to intelligently allocate
it to not only the resources that may provide high rewards, but also those that
have not been tried many times yet. We consider both discrete and continuous
budget allocations, which can be applied to different real-world applications. For
example, discrete budget allocation can be used in the case of allocating computation
tasks with the same job size to different servers, while continuous budget allocation
can model the power allocation problem on wireless channels. In these examples,
uncertainty in the reward functions can result from unknown competition for server
resources and unknown channel conditions for individual users, respectively.

We propose two algorithms, CUCB-DRA and CUCB-CRA, for online discrete and
continuous resource allocation, respectively. We adopt the Combinatorial Multi-arm
Bandit (CMAB) framework [2] for the online Discrete Resource Allocation (DRA)
problem. The proposed CUCB-DRA algorithm considers the action “allocating a

budget to resource k” as a base arm (k, a). By introducing these base arms, CUCB-
DRA does not have to learn the exact form of the reward functions of different
resources, and only needs to maintain the upper confidence bounds (UCBs) on
the expected rewards of playing the (k, a)’s, which are updated by the obtained
rewards from each resource in each round. We prove that CUCB-DRA achieves
logarithmic regret with the number of rounds T . For the online Continuous Resource
Allocation (CRA) problem, as the action space becomes infinite, we cannot directly
apply the CMAB framework. We propose a CUCB-CRA algorithm integrating
CMAB with fixed discretization [69] that splits the continuous action space into a
discrete one. This discretization technique relies on a Lipschitz condition, which
is satisfied by many types of real reward functions. We decompose the cumulative
regret into the learning regret and the discretization error, then choose the optimized
discretization granularity to minimize the sum of them. We show that CUCB-
CRA achieves logarithmic regrets with T . In addition, since the rewards obtained
from the same resource under different budget allocations are often correlated in
practical applications, we propose a correlated combinatorial bandit algorithm [13]
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that can achieve improved regret bounds than correlation-agnostic algorithms. We
demonstrate the effectiveness of all proposed algorithms through experiments in
wireless applications.

Related Work. The classical resource allocation problem has been extensively
studied for decades [70, 71, 72, 73]. Recently, the online version of the resource
allocation problem has attracted much attention [74, 75, 76, 77]. For example, [75]
introduced the online linear resource allocation problem where the reward functions
are assumed to be linear, while [76] studied online resource allocation with censored
feedback. [77] considered the online resource allocation problem with concave reward
functions. All of these previous works assumed specific types of reward functions,
while in this thesis, we introduce an online resource allocation framework with general
reward functions and show that combinatorial bandit techniques can be used to
achieve logarithmic solution regret. To best of our knowledge, we are also the first
to formally model the presence of discrete and continuous budgets in online resource
allocation problems. Our proposed CUCB-DRA is based on the CUCB algorithm
in [2]. However, CUCB was designed for a binary action space, which we extend to
the finite discrete space, by introducing a new definition of base arms for the online
discrete resource allocation problem. CUCB-CRA further extends the action space
to an infinite continuous space, by combining the idea of CUCB with that of fixed
discretization in [69]. Its regret analysis relies on the Lipschitz condition defined in
[69] and the 1-norm bounded smoothness condition defined in [3].

The idea of capturing correlations in reward across different arms was previously
studied in the context of classical multi-armed bandits, i.e., the setting where only
one base arm is played in each round, in [78, 79]. Another closely related line
of work, where only one base arm is played in each round, is that of structured
bandits [80, 81, 82], where the mean rewards corresponding to different base arms
are related to one another through a hidden parameter θ. While the mean rewards
between different arms are related to one another in structured bandits, they are
not necessarily correlated. Due to this, the correlated bandit framework [78, 79] fits
better to the problem setting of online resource allocation where reward realizations
are known to be correlated. We extend this idea of correlated bandits to the
combinatorial bandit framework and propose the correlated UCB algorithm for
online resource allocation. The extension is non-trivial as the classical multi-armed
bandit and combinatorial bandit often require different design of algorithms and
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regret analysis due to the selection of multiple base arms within provided constraints
as opposed to the selection of the single base arm in each round. Upon doing so, we
are able to exploit the correlations to obtain significant performance improvements
as demonstrated in later sections. To the best of our knowledge, this is the first
work to show that O(1) regret can be achieved in certain online resource allocation
problems.

4.4.2 Problem Formulation

In this section, we formulate the problem of allocating a fixed budget to multiple
resources. We first introduce the offline problem and then consider the online setting.

Offline Setting

We consider a general resource allocation problem where a decision maker has access
to K different types of resources. The decision maker has to split a total amount of Q
divisible budget and allocate ak amount of the budget to each resource k ∈ [K]. For
example, the budget may represent compute time, and each resource may represent
a user of a particular server. We consider a general reward function fk(ak, Xk) of
each resource k, where ak is the allocated budget and Xk is a random variable that
reflects the random fluctuation of the generated reward. Notice that the allocated
budget ak’s could be either discrete (e.g., ak ∈ N) or continuous (e.g., ak ∈ R≥0),
and we denote the feasible action space of ak as A. For the offline setting, we assume
the distributions of Xk for all k ∈ [K] are known in advance and denote them as Dk.
Our goal is to maximize the expected total reward collected from all resources. This
can be formulated as the optimization problem below:

maximize
ak

E

[
K∑
k=1

fk(ak, Xk)

]

subject to
K∑
k=1

ak ≤ Q, ak ∈ A
(4.7)

With different reward functions fk(ak, Xk) and action spaces A, the hardness of this
offline optimization problem varies. For example, it becomes a convex optimization
problem if fk(ak, Xk) is convex over ak and A is a convex set for all k ∈ [K]; at the
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other extreme, it can also be a NP-hard combinatorial optimization problem when
A is a discrete set. We will not specify the exact form of the optimization problem,
but only assume that there exists an offline approximation oracle that can give us an
approximate solution with constant approximation ratio. More details of the offline
oracle will be discussed in the next section.

Online Setting

Now we introduce the online version of the general resource allocation problem, which
is a sequential decision making problem. In each round t, we allocate ak,t budget
to resource k for all k ∈ [K], subject to the total budget constraint,

∑K
k=1 ak,t ≤ Q.

We then observe the semi-bandit feedback, which is the reward fk(ak,t, Xk,t) from
each resource k, where Xk,t is sampled from an unknown distribution Dk. The total
obtained reward is

∑K
k=1 fk(ak,t, Xk,t). Our goal is to accumulate as much total

reward as possible through this repeated budget allocation over multiple rounds.

We denote the budget allocation to all resources at round t as at = (a1,t, · · · , aK,t)

and the joint distribution of all independent Xk,t’s as D = (D1, · · · , DK). The
expected reward in round t can be defined as r(at,D) = E

[∑K
k=1 fk(ak,t, Xk,t)

]
.

We consider a learning algorithm π that makes the budget allocation aπ
t for round

t. We can then measure the performance of π by its (expected) regret, which
is the difference in expected cumulative reward between always taking the best
offline allocation and taking the budget allocation selected by algorithm π. Let
opt(D) = supat

r(at,D) denote the expected total reward of the optimal allocation
in round t. As discussed in the previous section, we assume that there exists an
offline (α, β)-approximation oracle O, which outputs an allocation aO

t such that
Pr{r(aO

t ,D) ≥ α · opt(D))} ≥ β, where α is the approximation ratio and β is the
success probability. Instead of comparing with the exact optimal reward, we take
the αβ fraction of it and use the following (α, β)-approximation regret for T rounds:

Regπα,β(T ;D) = T · α · β · opt(D)−∑T
t=1 r(a

π
t ,D), (4.8)

In the next two sections, we give solution algorithms for our resource allocation
problem that achieve sublinear (α, β)-approximation regrets when the action space
A is discrete (Section 4.4.3) and continuous (Section 4.4.4).
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4.4.3 Online Discrete Resource Allocation

In this section, we consider the online Discrete Resource Allocation (DRA) problem,
where ak,t is chosen from a discrete action space. For example, the ak,t may represent
the numbers of users that should be allocated to different wireless channels. For
simplicity, we assume that the action space of ak,t is Ad = {0, 1, · · · , N − 1} where
|Ad| = N ≤ Q+1 and Q is again the available budget. Thus, the full allocation space
is {at | ak,t ∈ Ad,

∑
k ak,t ≤ Q}. In order to solve the online problem introduced in

Section 4.4.2, we adapt a Combinatorial Multi-arm Bandit (CMAB) framework [2].
We maintain a set of base arms S = {(k, a) | k ∈ [K], a ∈ Ad}, where the total
number of base arms |S| = KN . For each base arm (k, a) ∈ S, we denote the expected
reward of playing (k, a) as µk,a = EXk,t∼Dk

[fk(a,Xk,t)] and let µ = (µk,a)(k,a)∈S. We
can rewrite the expected total reward obtained in round t as a function of at and µ:

r′(at,µ) = E

[
K∑
k=1

fk(ak,t, Xk,t)

]

=
K∑
k=1

∑
a∈Ad

µk,a · 1{ak,t = a}, (4.9)

which reflects the fact that the expected total reward is the sum of the expected
reward of all chosen base arms.

Based on the new parameters {µk,a}, we propose the CUCB-DRA solution
algorithm described in Alg. 4.4. The algorithm maintains the empirical mean µ̂k,a

and a confidence radius ρk,a for the reward of each arm (k, a) ∈ S. It feeds the
budget Q and all the upper confidence bounds {µ̄k,a} into the offline oracle O to
obtain an allocation at for round t. The confidence radius ρk,a is large if arm (k, a)

is not chosen often (Tk,a, which denotes the number of times this arm has been
chosen, is small). We define the reward gap ∆a=max(0, α · opt(D) − r(a,D))

for all feasible allocations a ∈ AK
d ,
∑K

k=1 ak ≤ Q. For each arm (k, a), we define
∆k,a

min = infa∈AK
d :ak=a,∆a>0∆a, ∆k,a

max = supa∈AK
d :ak=a,∆a>0∆a. We define ∆min =

min(k,a)∈S ∆
k,a
min and ∆max = max(k,a)∈S ∆

k,a
max. We then provide the regret bounds of

the CUCB-DRA algorithm.

Theorem 4.6. For the CUCB-DRA algorithm on an online DRA problem with a
bounded smoothness constant B ∈ R+ [3]
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Algorithm 4.4 CUCB-DRA with offline oracle O
1: Input: Budget Q, Oracle O.
2: For each arm (k, a) ∈ S, Tk,a ← 0. {maintain the total number of times arm

(k, a) is played so far.}
3: For each arm (k, a) ∈ S, µ̂k,a ← 0. {maintain the empirical mean of fk(a,Xk).}
4: for t = 1, 2, 3, . . . do
5: For each arm (k, a) ∈ S, ρk,a ←

√
3 ln t
2Tk,a

. {the confidence radius, ρk,a = +∞ if
Tk,a = 0.}

6: For each arm (k, a) ∈ S, µ̄k,a = µ̂k,a + ρk,a. {the upper confidence bound.}
7: at ← O((µ̄k,a)(k,a)∈S, Q).
8: Take allocation at, observe feedback fk(ak,t, Xk,t)’s.
9: For each k ∈ [K], update Tk,ak,t and µ̂k,ak,t : Tk,ak,t = Tk,ak,t + 1, µ̂k,ak,t =

µ̂k,ak,t + (fk(ak,t, Xk,t)− µ̂k,ak,t)/Tk,ak,t .
10: end for

1. if ∆min > 0, we have a distribution-dependent bound

Regα,β(T,D) ≤∑(k,a)∈S
48B2Q lnT

∆k,a
min

+ 2BKN + π2

3
·KN ·∆max (4.10)

2. we have a distribution-independent bound

Regα,β(T,D) ≤ 14B
√
QKNT lnT + 2BKN + π2

3
·KN ·∆max. (4.11)

Notice that our regret results hold for any finite discrete action space Ad. The
only change in the regrets will be the replacement of N with the actual |Ad|. We rely
on the following properties of r′(at,µ), which are required by the general CMAB
framework in [3], to bound the regret.

Condition 4.1. (Monotonicity). The reward r′(at,µ) satisfies monotonicity, if
for any allocation at, any two vectors µ = (µk,a)(k,a)∈S, µ′ = (µ′

k,a)(k,a)∈S, we have
r′(at,µ) ≤ r′(at,µ

′), if µk,a ≤ µ′
k,a for all (k, a) ∈ S.

Condition 4.2. (1-Norm Bounded Smoothness). The reward r′(at,µ) satisfies the
1-norm bounded smoothness condition, if there exists B ∈ R+ (referred as the bounded
smoothness constant) such that, for any allocation at, and any two vectors µ =

(µk,a)(k,a)∈S, µ′ = (µ′
k,a)(k,a)∈S, we have |r′(at,µ) − r′(at,µ

′)| ≤ B
∑

(k,a)∈S |µk,a −
µ′
k,a|.

It is easy to check that both properties hold for r′(at,µ) in Eq. (4.13).
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4.4.4 Online Continuous Resource Allocation

In Section 4.4.3, we propose an algorithm to solve the online resource allocation
problem with discrete action space A. However, in many real-world resource
allocation applications, the budget can be continuous, i.e., A is an infinite continuous
space. In this section, we study the online Continuous Resource Allocation (CRA)
problem, where ak,t is chosen from a continuous space Ac = [0, Q]. For example,
the actions ak,t may be amounts of electricity that a smart power grid pulls from
different electric vehicle charging stations. The full allocation space then becomes
{at | ak,t ∈ Ac,

∑
k ak,t ≤ Q}. As in Section 4.4.3’s discrete setting, we still define the

set of base arms as S = {(k, a) | k ∈ [K], a ∈ Ac}, but unlike the discrete setting, we
now have to maintain an infinite number of base arms. Thus, we cannot directly apply
the CMAB framework. However, we can use a simple but powerful technique called
fixed discretization [69], with the assumption that the reward function fk(ak,t, Xk,t)

satisfies a Lipschitz condition:

|fk(a,Xk,t)− fk(b,Xk,t)| ≤ L · |a− b|, (4.12)

where L is the Lipschitz constant known to the algorithm. This condition is satisfied
by many realistic reward functions, e.g., fk(a,Xk,t) = max {a−Xkt, 0}, which
represents a reward of 0 if the allocated budget a does not meet a requirement Xkt,
with linearly increasing reward otherwise.

We consider a discretization of Ac and denote it as Ãc. We define optA(D) =

supak,t∈A r(at,D) as the maximum expected total reward under action space A and
distribution D. We can decompose the cumulative regret in Eq. (4.8) as:

Regπα,β(T ;D) = T · α · β · optÃc
(D)−

T∑
t=1

r(aπ
t ,D)︸ ︷︷ ︸

1○

+T · α · β ·
(
optAc

(D)− optÃc
(D)

)︸ ︷︷ ︸
2○

,

(4.13)

where 1○ is the learning regret under action space Ãc and 2○ is the discretization
error. Both of them depend on the discretization space Ãc.

We propose a CUCB-CRA algorithm that makes a uniform discretization of
the budget for each resource. It divides the original action space Ac = [0, Q] into
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Algorithm 4.5 CUCB-CRA with offline oracle O
1: Input: Budget Q, Lipschitz constant L, Time horizon T , Oracle O.
2: Let ϵ = (B

2Q2 lnT
L2KT

)
1
3 , discretize Ac = [0, Q] into Ãc = {0, ϵ, 2ϵ, · · · , (N − 1) · ϵ}.

3: Run CUCB-DRA algorithm with discrete action space Ãc.

intervals of fixed length ϵ = Q
N−1

, so that Ãc consists of N multiples of ϵ, i.e.,
Ãc = {0, ϵ, 2ϵ, · · · , (N − 1) · ϵ}. With the Lipschitz condition, it is easy to see that
2○ ≤ T · α · β · LKϵ. To bound 1○, we simply view this term as the regret of the
discrete resource allocation problem discussed in Section 4.4.3, where the number of
base arms is still KN . Based on Theorem 4.6, we know the regret in 1○ is in the
order of O(B

√
QKNT lnT ). Choosing ϵ = (B

2Q2 lnT
L2KT

)
1
3 , the regret in Eq.(4.13) is

minimized and we have

Theorem 4.7. For the CUCB-CRA algorithm on an online CRA problem with a
bounded smoothness constant B, we have a distribution-independent bound

Regα,β(T,D) ≤ O((BQK)
2
3L

1
3T

2
3 (lnT )

1
3 ).

We note that Theorem 4.7’s distribution-independent regret bound is looser than
that of Theorem 4.6 for the discrete resource allocation problem, by a factor of
O (T/ lnT )

1
6 . This factor primarily stems from the additional regret due to the

fixed discretization in the continuous case. Adaptive discretization methods, e.g.,
as proposed in [69, 83] for other MAB problems with continuous arms, may allow
further reduction of the regret.

4.4.5 Correlated CMAB for Resource Allocation

Correlated CMAB Framework

In several application settings, there may be some information on the knowledge
of reward functions fk(ak, Xk). As a result, the knowledge of the reward from one
base arm (i, k) may provide some information on the reward that would have been
obtained from entity k if budget j was allocated to entity k. This is illustrated in
Figure 4.6. The rewards corresponding to a base arm (i, k), i.e., budget i to entity k,
is a function of the allocated budget i and underlying randomness Xk associated with
entity k. The rewards for base arms (i, k) and (j, k), i.e., different budget allocations
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within entity k, are correlated through Xk. There may be also correlations in the
rewards across different entities if X1, X2, . . . XK are correlated. For instance, in the
power allocation example, where the objective is to allocate the total power Q among
K different channels to maximize the total throughput, the throughput at channel
k is given by log

(
1 +

ak,t
Xk,t

)
. Here, ak,t represents the power allocated in channel

k and Xk denotes the hidden noise in channel k at round t. As the expression of
throughput, i.e., the reward function fk(ak, Xk), is known, the throughput in channel
k at power i provides some information on what the reward would have been if power
j was allocated to channel k. More generally, rewards obtained from one base arm
(i, k) may provide some information on the reward of another base arm (j, ℓ). As a
result, the rewards corresponding to different base arms are correlated. We capture
the presence of such correlations in the form of pseudo-rewards, as defined below:

Definition 4.1 (Pseudo-Reward). Suppose that we sample the base arm (i, k) and
observe reward r. We call a quantity s(j,ℓ),(i,k)(r) as the pseudo-reward of base arm
(j, ℓ) with respect to base arm (i, k) if it is an upper bound on the conditional expected
reward of base arm (j, ℓ), i.e.,

E[fℓ(j,Xℓ) | fk(i,Xk) = r ] ≤ s(j,ℓ),(i,k)(r). (4.14)

For convenience, we set s(j,ℓ),(j,ℓ)(r) = r ∀j, ℓ.
When no information is known, pseudo-rewards between two base arms are not

known, then they can be set equal to the maximum possible reward. This makes our
formulation quite general and in fact subsumes the correlation agnostic combinatorial
framework studied in [12]. Next, we show how the pseudo-rewards can be evaluated
in practice.

Obtaining pseudo-rewards from reward correlations within the same
entity. These pseudo-rewards can be evaluated easily in several different practical
settings. For instance, if the form of the functions fk(ak, Xk) is known, then the
pseudo-reward of base arm (j, k) with respect to base arm (i, k) can be obtained as

s(j,k),(i,k)(r) = max
x

fk(j, x) s.t. fk(i, x) = r. (4.15)

Note that pseudo-rewards can be obtained even in the scenario where only probabilis-
tic upper and lower bounds on fk(ak, Xk) are known, i.e., f

k
(ak, Xk) ≤ fk(ak, Xk) ≤
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Figure 4.6: Illustration of reward correlation.

f̄k(ak, Xk) w.p. 1− κ. In this scenario, we can construct pseudo-rewards as follows:

s(j,k),(i,k)(r) = (1− κ)2×
(

max
{Xk:fk

(i,Xk)≤r≤f̄k(i,Xk)}
f̄k(j,Xk)

)
+ (1− (1− κ)2)×M,

(4.16)

where M is the maximum possible reward that a base arm can provide. We evaluate
this pseudo-reward by first identifying the range of values within which Xk lies based
on the reward with probability 1 − κ. The maximum possible reward of the base
arm (j, k) within the identified range of Xk is then computed with probability 1− κ.
Due to this, with probability (1− κ)2, the conditional reward of base arm (j, k) is
at most maxXk:fk

(i,Xk)≤r≤f̄k(i,Xk) f̄k(j,Xk). As the maximum possible reward is M

otherwise, we get (4.16).

Obtaining pseudo-rewards from reward correlation across entities. In
the most general scenario, there may be knowledge of reward correlations across
entities as shown in Figure 4.7. Upon observing a reward r from a base arm, pseudo-
rewards s(j,ℓ),(i,k)(r), give us an upper bound on the conditional expectation of the
reward from base arm (j, ℓ) given that we observed reward r from arm (i, k). The
reward received for entity k at a given budget i may provide some information on
what the reward would have been if budget j were allocated to entity k, leading to
correlations within entity. The rewards of different entities may also be correlated.
This can occur if the random variables Xk and Xℓ, i.e., the hidden random variables
corresponding to two different entities k and ℓ, are correlated. These correlations
can be incorporated in our framework through pseudo-rewards s(j,ℓ),(j,k), which are
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an upper bound on the conditional expected reward. For instance, in the application
of financial optimization, the company may invest its total budget among different
products. As the performance of different products are likely to be correlated, the
reward feedback under budget i for product k may inform something about the
reward feedback for product ℓ under budget j. Such correlations can be modeled
through pseudo-rewards, which may either be known from domain knowledge or
from previously performed controlled experiments. For example, based on previously
performed experiments, it may be known that the expected reward obtained from
product ℓ under budget j is at most y whenever the reward obtained for product
k under budget i is x. Note that in this modeling, one does not need to explicitly
capture what the inherent randomness Xk represents and its corresponding values.
This is a key strength of our proposed framework, as in several applications Xk

could be hard to interpret and model. For instance, in the financial optimization
example, Xk may represent underlying market conditions that are complex and
subsequently the reward functions fk(ak, k) are also unknown. Even in such settings,
the pseudo-reward based framework allows one to capture the correlation across
different base arms.

…!!,! !#,! !$,! !%,!

Reward 
realization 

r

…!!,# !$,# !%,# !&,#

Reward correlation 
within the same entity

Reward correlation 
across entities
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E [Rj,`|R1,1 = r]  s(j,`),(i,1)(r)

Figure 4.7: Pseudo-rewards from reward correlation across entities.

Correlated-UCB Algorithm

We now propose the correlated-Upper Confidence Bound algorithm for resource
allocation (corr-UCB-RA) that uses existing correlation in rewards across base arms
to maximize the long-term cumulative reward.
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Algorithm 4.6 Correlated UCB for resource allocation with offline oracle O
1: Input: Oracle O.
2: For each base arm (i, k) ∈ A × K, ni,k(t) ← 0. {maintain the total number of

times base arm (i, k) is played so far.}
3: for t = 1, 2, 3, . . . do
4: For each base arm (j, ℓ) ∈ K × A, evaluate its KA pseudoUCB indices

U(j,ℓ),(i,k)(t) ≜ ϕ̂(j,ℓ),(i,k)(t) +B
√

2 log t
n(i,k)(t)

5: For each (j, ℓ) ∈ A×K, U(j,ℓ)(t) = min(i,k) U(j,ℓ),(i,k)(t)
6: St ← O((Ui,k(t))(i,k)∈A×K)
7: Take allocation St, observe feedback fk(ak,t, Xk,t)’s
8: Update n(ak,t,k), the empirical pseudo-rewards ϕ̂(j,ℓ),(i,k)(t) for all (j, ℓ), the

empirical reward for base arm (i, k) ∈ St
9: end for

Under the correlated combinatorial bandit framework, the pseudo-reward for base
arm (j, ℓ) with respect to the base arm (i, k) provides an estimate on the reward of
base arm (j, ℓ) based on the reward obtained from base arm (i, k). We now define
the notion of empirical pseudo-reward, which can be used to obtain an optimistic
estimate of µ(j,ℓ) through just reward samples of base arm (i, k).

Definition 4.2 (Empirical and Expected Pseudo-Reward). After t rounds, a base
arm (i, k) is sampled n(i,k)(t) times. Using these n(i,k)(t) reward realizations, we
can construct the empirical pseudo-reward ϕ̂(j,ℓ),(i,k)(t) for each base arm (j, ℓ) with
respect to base arm (i, k) as follows.

ϕ̂(j,ℓ),(i,k)(t) ≜

∑t
τ=1 1(i,k)∈St s(j,ℓ),(i,k)(fk(i,Xk,τ ))

n(i,k)(t)
, (4.17)

(j, ℓ) ∈ K ×A \ {(i, k)}. (4.18)

The expected pseudo-reward of base arm (j, ℓ) with respect to base arm (i, k) is defined
as

ϕ(j,ℓ),(i,k) ≜ Es(j,ℓ),(i,k)(fk(i,Xk)). (4.19)

For convenience, we set ϕ̂(i,k),(i,k)(t) = µ̂(i,k)(t) and ϕ(i,k),(i,k) = µ(i,k). Note that the
empirical pseudo-reward ϕ̂(j,ℓ),(i,k)(t) is defined with respect to base arm (i, k) and it
is only a function of the rewards observed by sampling base arm (i, k).
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Definition 4.3 (PseudoUCB Index U(j,ℓ),(i,k)(t)). We define the PseudoUCB Index
of base arm (j, ℓ) with respect to base arm (i, k) as follows.

U(j,ℓ),(i,k)(t) ≜ ϕ̂(j,ℓ),(i,k)(t) +

√
2 log t

n(i,k)(t)
. (4.20)

Furthermore, we define U(j,ℓ)(t) = min(i,k) U(j,ℓ),(i,k)(t), the tightest of the KA upper
bounds for base arm (j, ℓ).

At each round, the algorithm computes these pseudo-UCB indices U(j,ℓ) for each
base arm (j, ℓ). These indices are then fed to the oracle to obtain the budget
allocation vector St at round t. At the end of each round we update the empirical
pseudo-rewards ϕ̂(j,ℓ),(i,k)(t) for all (j, ℓ), the empirical reward for arm (i, k) ∈ St,
where St denotes the set of base arms played in round t. We next show the regret
bound of the proposed Corr-UCB-RA algorithm. To state our result, we first define
the notion of competitive and non-competitive base arms.

Definition 4.4 (Competitive and Non-Competitive base arms). If ϕ(j,ℓ),(i,k) ≤ µ̄(j,ℓ)

for some (i, k) ∈ S∗ then base arm (j, ℓ) is called Non-competitive, otherwise it is
called Competitive. Here, S∗ denotes the set of base arms played in the oracle’s
optimal budget allocation vector S∗. Furthermore, we define the pseudo-gap of a base
arm (j, ℓ) as ∆̄(j,ℓ) = µ̄(j,ℓ) −max(i,k)∈S∗ ϕ(j,ℓ),(i,k).

Note that the pseudo-gap is greater than zero for non-competitive base arms and
is less than or equal to zero for competitive base arms. The definition of pseudo-gap
is useful to state our regret bounds. Intuitively, a base arm (j, ℓ) is non-competitive
if it can be inferred that the mean reward of (j, ℓ) is smaller than the threshold µ̄(j,ℓ)

through just the samples of a base arm belonging to the oracle’s optimal budget
allocation S∗. In what follows, we refer to the total number of competitive base
arms as C and the set of competitive base arms as C. As mentioned earlier, the
Corr-UCB-RA algorithm selects the budget allocation S∗ with high probability if
the indices of base arms U(i,k) are close to their true means. In the presence of
correlations, we show that this can be achieved by sampling competitive base arms
O(log T ) times and non-competitive base arms only O(1) times. This occurs as the
non-competitive base arms can be identified as sub-optimal based on samples of
optimal base arms. We formalize this intuition to get the following regret bound for
our Corr-UCB algorithm.
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Theorem 4.8. The expected cumulative regret of the Correlated-UCB algorithm for
resource allocation is upper bounded as

Regα(T,D) ≤
∑

(i,k)∈C

∆(i,k)
max

 8 log T(
g−1

(
∆

(i,k)
min

))2 + 2

 +

∑
(i′,k′)∈K×A\{C}

∆(i′,k′)
max (4KAt0 + 6(KA)3) + 2(KA)2∆max (4.21)

= C ·O(log T ) +O(1), (4.22)

where C ⊆ K×A is set of competitive base arms with cardinality C, and t0 = inf

{
τ ≥

2 : g−1
(
∆

(i,k)
min

)
≥ 4
√

2K log τ
τ

∀(i, k), ∆̄(i,k) ≥ 4
√

2K log τ
τ

∀(i, k) ∈ A×K \ C
}

.

Remark 1 (Competitive and Non-competitive base arms). Recall that a
base arm (i, k) is said to be non-competitive if the expected pseudo-reward of base
arm (i, k) with respect to some base (j, ℓ) ∈ S∗ is smaller than µ̄(i,k). Note that the
optimal set of arms S∗, reward distributions of individual base arms are unknown at
the beginning and as a result, the Corr-UCB-RA initially does not know which base
arms are competitive and non-competitive.

Remark 2 (Reduction in the effective set of base arms). Upon comparison
with the regret of the UCB-RA algorithm, from Lemma 1, we see that our proposed
algorithm reduces the regret from KA×O(log T ) to C ×O(log T ), since only C out
of the total KA need to be sampled O(log T ) times before the condition in Claim 1
is met with high probability. As a result, the Corr-UCB-RA only explores C out
of the KA base arms explicitly and effectively reduces the problem with KA base
arms to one with C base arms.

Remark 3 (Bounded regret in certain settings). Whenever the set C is
empty, the proposed Corr-UCB-RA algorithm achieves bounded regret, which is an
order-wise improvement over the regret of correlation agnostic UCB-RA algorithm.
One scenario in which this can occur is if the functions fk(·) are invertible with
respect to Xk given ak. More generally, whenever the sub-optimal base arms can
be identified as sub-optimal through just the samples of optimal base arms, we
get a bounded regret. Note that the algorithm initially has no knowledge about
the optimality/sub-optimality of base arms and in such cases it identifies them by
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sampling the sub-optimal base arms only O(1) times.

4.4.6 Experiments

To validate our theoretical findings, we conduct experiments on three applications
in wireless networks. First, we apply our CUCB-DRA algorithm to the dynamic
channel allocation problem, where multiple wireless devices share a limited number of
wireless channels. Second, we use the CUCB-CRA algorithm to solve the online water
filling problem [84], which is essential to the power allocation in OFDM systems [85].
Finally, we use the Corr-UCB algorithm to solve a dynamic user allocation problem
in wireless networks, where we need to allocate new incoming users to different
wireless access points with an unknown number of existing users. We evaluate our
algorithm in the setting with a non-invertible reward function.

Dynamic Channel Allocation

For the dynamic channel allocation problem, we set K = 4, Q = 8, which represents
that there are 8 wireless devices sharing 4 orthogonal channels. We assume that
each device uses the slotted-ALOHA protocol with the same traffic load 0.05, and
each channel has random background traffic uniformly sampled from [0.05, 0.15].
Our goal is to allocate one channel to each device such that their total throughput
is maximized. In this setting, we use the CUCB-DRA algorithm, where the base
arm (k, a) becomes assigning a devices to channel k, and the expected reward fk

is the average throughput of channel k. We repeat the experiment 50 times, and
Figure 4.8 shows the average regrets of different methods with 95% confidence
interval. We shrink the confidence radius in our CUCB-DRA algorithm by γ, i.e.,
ρk,a ← γ

√
3 ln t/2Tk,a, to speed up the learning, though our theoretical regret bound

requires γ = 1. We compare CUCB-DRA to the ϵ-greedy algorithm with exploration
probability ϵ = 0.01 and find CUCB-DRA with γ = 0.01 achieves 50% less regret
than ϵ-greedy over 5000 rounds.

Online Water Filling

To evaluate the performance of CUCB-CRA, we consider the water filling problem
where a total amount of one unit of power has to be assigned to 3 communication
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Figure 4.8: Regrets of CUCB-DRA for dynamic channel allocation problem.

channels, i.e., Q = 1, K = 3, with the objective of maximizing the total communica-
tion rate. The communication rate of the ith channel is given by log(βi + xi), where
xi represents the power allocated to channel i and βi represents the floor above the
baseline at which power can be added to the channel. It can be written as a convex
optimization problem:

maximize
xi

K∑
i=1

log(βi + xi)

subject to
K∑
i=1

xi = Q, xi ≥ 0.

(4.23)

For the online water filling problem, the {βi} are unknown and uniformly sampled
from [0.8, 1.2]. As it is a online continuous resource allocation problem, we choose
different discretization granularities ϵ from {0.25, 0.2, 0.1.0.05} for CUCB-CRA, i.e.,
N = 4, 5, 10, 20. We repeat the experiment 50 times and Figure 4.9 shows the average
regrets with 95% confidence interval. The results of CUCB-CRA are consistent with
our analysis in Eq.(4.13): with the increase of the discretization granularity ϵ, the
learning regret decreases and the discretization error increases; as a result, the overall
regret first decreases then increases.

Dynamic User Allocation

In this section, we apply our corr-UCB-RA algorithm to a dynamic user allocation
problem in wireless networks. Our goal is maximize the total throughput of wireless
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Figure 4.9: Regrets of CUCB-CRA for the online water filling problem.

access points (APs) by allocating new incoming users to them. The number of
existing users associated to each AP is time-varying, which affects the traffic load
on the AP. We assume each user has a fixed traffic load of 0.2 and consider the
well-known ALOHA protocol [86] for each AP. We consider K APs and Q new
incoming users at each round. Let Xk denote the number of existing users in each
AP k and ak denote the number of new users allocated to it. Note that we assume
all the users of an AP will leave when the round ends, so ak in the current round will
not affect Xk in the future rounds. Our goal is to maximize the total throughput:

maximize
ak

K∑
k=1

0.2(Xk + ak)e
−0.2(Xk+ak)

subject to
K∑
i=k

ak = Q, ak ∈ N.

We extract {Xk}, the number of existing users in each AP, from a real-world
dataset [87]. We choose 4 APs (91, 92, 94, 95) on the 3rd floor of Building 3 on
campus, and record their associated users from 13:00 to 16:00 on March 2, 2015. The
detailed distribution of the number of existing users on different access points can
be found in the Appendix. In our experiment, at each round, we first sample {Xk}
from the extracted distribution, then allocate Q = 8 new users to these four APs.
Since the throughput function is non-invertible, our algorithm cannot directly infer
Xk from the observed throughput of each AP and needs to maintain the pseudoUCB
indices of base arms. We compare it with the UCB-RA algorithm. Figure 4.11 shows
the average regrets with 95% confidence interval over 20 experiments. The result is
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consistent with our analysis: corr-UCB-RA achieves 25% less regret than correlation
agnostic UCB-RA algorithm. This occurs as the corr-UCB-RA algorithm is able to
make use of the correlations between the reward of base arms to incur a regret of
C ·O(log T ) as opposed to KA ·O(log T ). We also show the relationship between Q

and the total regret after 2000 rounds in Figure 4.10: with the increase of Q, the
total regret of corr-UCB-RA increases much more slowly than that of UCB-RA.
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Figure 4.10: Regret comparison between CUCB-CRA and Corr-UCB-RA.
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Figure 4.11: Performance comparison between Corr-UCB-RA and CUCB-CRA.
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4.5 Summary

We introduce the centralized and distributed versions of the competitive CMAB
problem from the multi-players’ perspective in this chapter. We discuss both settings
in the dynamic channel allocation application and propose algorithms with regret
guarantees. We also study the general online resource allocation problem with the
centralized setting and discuss how the correlated information can help improve the
regret bounds of the proposed algorithms.
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4.6 Proof

4.6.1 Proof of Lemma 4.1, 4.2

Proof. Assume there exists an observation list oold such that o
(i)
old = b, o

(j)
old = a, and

i < j, µa > µb. In other words, the ith arm to be observed in oold has less expected
reward than the jth arm. Now let us consider a new observation list onew, which
switches arms a and b in oold and leaves the other arms unchanged. Define the
one-round expected reward of oold and onew as rold and rnew. From (4.3), we can find
that the gap between rold and rnew is only caused by the ith to the jth arm in the
observation list, so we get:

rnew − rold =

j∑
k=i

{
(1− k τ)µ

o
(k)
new

k−1∏
x=1

(1− µ
o
(x)
new

)− (1− k τ)µ
o
(k)
old

k−1∏
x=1

(1− µ
o
(x)
old
)

}

=
i−1∏
x=1

(1− µ
o
(x)
new

)

{
(1− i τ)(µa − µb)−

j−1∑
k=i+1

{
(1− k τ)(µa − µb)µo

(k)
new

k−1∏
x=i+1

(1− µ
o
(x)
new

)
}
−

(1− j τ)(µa − µb)

j−1∏
x=i+1

(1− µ
o
(x)
new

)

}

>
i−1∏
x=1

(1− µ
o
(x)
new

)

{
(1− i τ)(µa − µb)− (1− (i+ 1) τ)(µa − µb)

j∑
k=i+1

µ
o
(k)
new

k−1∏
x=i+1

(1− µ
o
(x)
new

)−

(1− (i+ 1) τ)(µa − µb)

j−1∏
x=i+1

(1− µ
o
(x)
new

)

}

≥
i−1∏
x=1

(1− µ
o
(x)
new

)

{
(1− i τ)(µa − µb)− (1− (i+ 1) τ)(µa − µb)

}

≥
i−1∏
x=1

(1− µ
o
(x)
new

)

{
τ (µa − µb)

}
≥ 0.

(4.24)
Thus, the expected reward of onew is always larger than that of oold. As a result,
exchanging arms a and b in oold always improves the expected reward. We can then
conclude that the optimal policy for the single-player setting is o∗

t = (1, 2, . . . , K),
which is Lemma 4.1. For the centralized multi-player setting, similarly, the optimal
ordering is where no arm has lower expected reward than any arm observed after it,
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which concludes the proof of Lemma 4.2.

4.6.2 Proof of Theorem 4.1

Proof. To prove Theorem 4.1, let us firstly rewrite (4.4) as:

R(T ) =
T∑
t=1

K∑
k=1

{
(1− k τ)µk

k−1∏
i=1

(1− µi)− (1− k τ)µ
o
(k)
t

k−1∏
i=1

(1− µ
o
(i)
t
)

}

≤
T∑
t=1

K∑
k=1

{
(1− k τ)(µk − µ

o
(k)
t
)
k−1∏
i=1

(1− µi)

}
.

(4.25)

The last inequality holds since
∏k−1

i=1 (1−µi) is always not greater than
∏k−1

i=1 (1−µ
o
(i)
t
)

for any ot when µ1 ≥ µ2 ≥ · · · ≥ µK . Now let us focus on this inequality. At round
t, if o(k)t > k (i.e., the kth pre-observed arm has better average reward than arm
k), then µk − µ

o
(k)
t
≥ 0 and the regret for o

(k)
t is nonnegative; if o

(k)
t < k, then

µk − µ
o
(k)
t
≤ 0, and the regret for o(k)t is non-positive. In order to upper bound R(T ),

we can ignore the negative terms and only count the positive regrets for all o(k)t > k.
These positive regrets come from observing arms with lower expected rewards before
those with higher expected rewards. Letting Wk := (1 − k τ)

∏k−1
i=1 (1 − µi) and

∆i,j := µi − µj, the total regret can be bounded as:

R(T ) ≤
T∑
t=1

K∑
k=1

{
Wk ∆k,o

(k)
t
1{o(k)t > k}

}
. (4.26)

Define Ti,j as the number of times that the ith arm to be observed in ot is arm j,
i.e., Ti,j :=

∑T
t=1 1{o

(i)
t = j}. We then rewrite (4.26):

R(T ) ≤
T∑
t=1

K−1∑
i=1

K∑
j=i+1

{
Wi ∆i,j1{o(i)t = j}

}

=
K−1∑
i=1

K∑
j=i+1

{
Wi ∆i,j

T∑
t=1

1{o(i)t = j}
}

=
K−1∑
i=1

K∑
j=i+1

{
Wi ∆i,j Ti,j

}
.

(4.27)
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In order to bound E[R(T )], we need to bound E[Ti,j] for all i < j.
Lemma 4.4. ∀ i, j ∈ [K] with i < j, under Algorithm 1, E[Ti,j ] ≤ i (8 log T

∆2
i,j

+ 1 + π2

3
).

Proof. Algorithm 1 sorts the UCB values to determine the pre-observation list ot,
so Ti,j is equal to the number of times that µ̂j(t), the UCB value of arm j, is the ith

largest one in µ̂(t). In that case, at least one arm in the set {1, 2, . . . , i} has smaller
UCB value than µ̂j(t), since at most i− 1 arms have larger UCB values than µ̂j(t).
Thus, Ti,j can be bounded by the number of times that the minimum UCB value of
arms {1, 2, . . . , i} is less than µ̂j(t):

Ti,j ≤
T∑
t=1

1{min
k∈[i]

µ̂k(t) ≤ µ̂j(t)}

≤
T∑
t=1

i∑
k=1

1{µ̂k(t) ≤ µ̂j(t)}

≤
i∑

k=1

T∑
t=1

1{µ̂k(t) ≤ µ̂j(t)}.

(4.28)

Since i < j and k ∈ [i], we can bound
∑T

t=1 1{µ̂k(t) ≤ µ̂j(t)} using the same idea
to bound the number of times of choosing sub-optimal arms in traditional UCB1
algorithm [55]. We can get:

E[Ti,j] ≤
i∑

k=1

E

[
T∑
t=1

1{µ̂k(t) ≤ µ̂j(t)}
]

≤
i∑

k=1

{
8 log T

∆2
k,j

+ 1 +
π2

3

}

≤ i (
8 log T

∆2
i,j

+ 1 +
π2

3
),

(4.29)

which concludes the proof.

Combining Lemma 4.4 and (4.27) gives the upper bound of the expected regret
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in Theorem 4.1:

E[R(T )] ≤
K−1∑
i=1

K∑
j=i+1

{
Wi ∆i,jE[Ti,j]

}

≤
K−1∑
i=1

{
iWi

K∑
j=i+1

[
8 log T

∆i,j

+ (1 +
π2

3
)∆i,j]

}
.

(4.30)

4.6.3 Proof of Lemma 4.3

Proof. When K ≤ 2M , there are at most two observation steps for each player.
As shown in Figure 4.2b, we assume µa, µb is larger than µc, µd, and now the
expected reward for player 1 and player 2 is rold = (1− τ)(µa + µb) + (1− 2τ)[(1−
µa)µc + (1− µb)µd]. If we switch arms with µa and µd, the expected reward becomes
rnew = (1− τ)(µd + µb) + (1− 2τ)[(1− µd)µc + (1− µb)µa], so the gap between them
is:

rold − rnew = (1− τ)(µa − µd)− (1− 2τ)(1− µb + µc)(µa − µd)

≥ (1− τ)(µa − µd)− (1− 2τ)(µa − µd)

≥ τ(µa − µd)

≥ 0.

(4.31)

So the expected reward will only decrease when switching an arm with lower expected
reward from step 2 to step 1, which ensures the optimal offline policy to be a greedy
policy.

4.6.4 Proof of Theorem 4.3

Proof. Unlike (4.25), we cannot directly upper bound (4.6) since
∏k−1

i=1 (1−µ(k−1)M+m)

is not always less than
∏k−1

i=1 (1 − µ
o
(i)
m,t

). Due to the correlation between different
players’ expected rewards, the analysis of the regret is challenging. Our idea is to
decompose the regret into two parts: the first part is the regret caused by putting
the arms into the wrong observation steps; the second part is the regret caused by
different arm allocations within one observation step, where the set of arms to be
allocated is correct. Define Rs

i,k(T ) as the regret caused by putting arm i > kM
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into a wrong observation step k, when all previous observation steps are correct. In
Figure 4.2b’s illustration, this corresponds to an arm being placed in the incorrect
column, though the arms in prior columns are placed correctly. We will show why
this is sufficient to capture the first part of the total regret. Define Ra

i,k as the regret
caused by arm i in the correct observation step k, i.e., (k − 1)M + 1 ≤ i ≤ kM , to
capture the second part of the total regret. This regret corresponds to arm i being
placed in the correct column k but incorrect row in Figure 4.2b. We can then rewrite
the total regret as:

R(T ) ≤
L∑

k=1


K∑

i>kM

Rs
i,k(T ) +

kM∑
i=(k−1)M+1

Ra
i,k(T )

 . (4.32)

In order to find the upper bound of R(T ), we need to bound Rs
i,k(T ) and Ra

i,k(T )

separately. Let us first consider Rs
i,k(T ). Denote T s

i,k as the number of times that
arm i is in the kth observation step. Under algorithm 4.2, we can bound E[T s

i,k] for
all i > kM .
Lemma 4.5. We have E[T s

i,k] ≤ kM (8 log T
∆2

kM,i
+ 1 + π2

3
),∀ i > kM .

Proof. Algorithm 2 sorts the UCB values to determine om,t, so T s
i,k is equal to the

number of times that µ̂i(t), the UCB value of arm i, should be at least the kM th

largest one in µ̂(t). In that case, at least one arm in the set {1, 2, . . . , kM} has
smaller UCB value than µ̂i(t), since at most kM − 1 arms have larger UCB values
than µ̂i(t). Thus, T s

i,k can be bounded by the number of times that the minimum
UCB value of arms {1, 2, . . . , kM} is less than µ̂i(t):

T s
i,k ≤

T∑
t=1

1{ min
j∈[kM ]

µ̂j(t) ≤ µ̂i(t)}

≤
T∑
t=1

kM∑
j=1

1{µ̂j(t) ≤ µ̂i(t)}

≤
kM∑
j=1

T∑
t=1

1{µ̂j(t) ≤ µ̂i(t)}.

(4.33)

Since i > kM and j ∈ [kM ], we can bound
∑T

t=1 1{µ̂j(t) ≤ µ̂i(t)} using the same
idea to bound the number of times of choosing sub-optimal arms in traditional UCB1
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algorithm [55]. We can get:

E[T s
i,k] ≤

kM∑
j=1

E

[
T∑
t=1

1{µ̂j(t) ≤ µ̂i(t)}
]

≤
kM∑
j=1

{
8 log T

∆2
j,i

+ 1 +
π2

3

}
≤ kM (

8 log T

∆2
kM,i

+ 1 +
π2

3
),

(4.34)

which concludes the proof.

In order to find the upper bound of Rs
i,k(T ), we also need to consider the value of

regret in each round. Define Rmax
k as the maximum one-round regret for one player

when he has a wrong arm in the kth observation step and all previous selected arms
are correct. We consider the worst case to get this maximum regret, which puts
this wrong arm i on the first place in the kth observation step, i.e., o(k)1,t = i, since
µ1+(k−1)M > µ2+(k−1)M > · · · > µkM . From (4.5), we can get:

Rmax
k ≤

L∑
j=k

{
(1− jτ)µ(j−1)M+1

k−1∏
x=1

(1− µ(x−1)M+1)

}
≤ (L− k + 1)µ(k−1)M+1.

(4.35)

Recall that α = µmax
∆min

, where µmax = max
i

µi and ∆min = min
i<j

∆i,j . Combining Lemma

4.5 and (4.35) gives the upper bound of Rs
i,k(T ):

E[Rs
i,k(T )] ≤ Rmax

k E[T s
i,k]

≤ kM(L− k + 1)(
8 log T

∆2
kM,i

+ 1 +
π2

3
)µ1+(j−1)M

≤ αkM(L− k + 1)

[
8 log T

∆kM,i

+ (1 +
π2

3
)∆kM,i

] (4.36)

Let us move to the discussion of Ra
i,k(T ). This part of the regret comes from the

fact that, at the kth observation step, although players choose from the correct set
of arms {(k − 1)M + 1, (k − 1)M + 2, . . . , kM}, there are M ! possible allocations,
which might cause regret compared to the baseline policy. Now we need to consider
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the regret of putting arm i into the wrong place within the correct observation step
k, where (k − 1)M + 1 ≤ i ≤ kM . Denote T a

i,k as the number of times that arm i

appears in a wrong place at the correct observation step k. Under Algorithm 4.2, we
can bound E[T a

i,k] for all (k − 1)M + 1 ≤ i ≤ kM .
Lemma 4.6. For all (k − 1)M + 1 ≤ i ≤ kM , under Algorithm 4.2, E[T a

i,k] ≤
(i− 1) ( 8 log T

∆2
i−1,i

+ 1 + π2

3
) + (K − i) ( 8 log T

∆2
i,i+1

+ 1 + π2

3
).

Proof. Let us first consider that arm i appears before its correct place and denote
the number of times it happens as T a−

i,k . Algorithm 4.2 sorts the UCB values of arms,
so T a−

i,k is equal to the number of times that µ̂i(t), the UCB value of arm i, is at least
the i− 1 largest one in µ̂(t). In that case, at least one arm in the set {1, 2, . . . , i− 1}
has smaller UCB value than µ̂i(t), since at most i− 2 arms have larger UCB values
than µ̂i(t). Thus, T a−

i,k can be bounded by the number of times that the minimum
UCB value of arms {1, 2, . . . , i− 1} is less than µ̂i(t). On the other hand, if arm i

appears after its correct place, denote the number of times it happens as T a+
i,k . In

that case, at least one arm in the set {i + 1, i + 2, . . . , K} has larger UCB value
than µ̂i(t), since at most K − i arms have smaller UCB values than µ̂i(t). Thus,
T a+
i,k can be bounded by the number of times that the maximum UCB value of arms
{i+ 1, i+ 2, . . . , K} is larger than µ̂i(t). We can get:

T a−
i,k ≤

T∑
t=1

1{ min
1≤j≤i−1

µ̂j(t) ≤ µ̂i(t)}

≤
i−1∑
j=1

T∑
t=1

1{µ̂j(t) ≤ µ̂i(t)}.
(4.37)

T a+
i,k ≤

T∑
t=1

1{ max
i+1≤j≤K

µ̂j(t) ≥ µ̂i(t)}

≤
K∑

j=i+1

T∑
t=1

1{µ̂j(t) ≥ µ̂i(t)}.
(4.38)

Similar to Lemma 4.5, we can bound both terms T a−
i,k and T a+

i,k , and T a
i,k should be
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less than their sum:

E[T a
i,k] ≤ E[T a−

i,k ] + E[T a+
i,k ]

≤ E

[
i−1∑
j=1

T∑
t=1

1{µ̂j(t) ≤ µ̂i(t)}+
K∑

j=i+1

T∑
t=1

1{µ̂j(t) ≥ µ̂i(t)}
]

≤
i−1∑
j=1

{
8 log T

∆2
j,i

+ 1 +
π2

3

}
+

K∑
j=i+1

{
8 log T

∆2
i,j

+ 1 +
π2

3

}
≤ (K − 1) (

8 log T

∆2
min

+ 1 +
π2

3
),

(4.39)

which concludes the proof.

With Lemma 4.6 and (4.35), we can write Ra
i,k as:

E[Ra
i,k(T )] ≤Rmax

k E[T a
i,k]

≤(L− k + 1)(i− 1)(
8 log T

∆2
i−1,i

+ 1 +
π2

3
)µ1+(j−1)M

+(L− k + 1)(K − i)(
8 log T

∆2
i,i+1

+ 1 +
π2

3
)µ1+(j−1)M

≤cµ(L− k + 1)(i− 1)

[
8 log T

∆i−1,i

+ (1 +
π2

3
)∆i−1,i

]
+cµ(L− k + 1)(K − i)

[
8 log T

∆i,i+1

+ (1 +
π2

3
)∆i,i+1

]
.

(4.40)

Define Tmax :=
8 log T
∆min

+ (1 + π2

3
)∆max. Finally, with (4.5), (4.36) and (4.40), we can

bound E[R(T )]:

E[R(T )] ≤
L∑

k=1


K∑

i>kM

E[Rs
i,k(T )] +

kM∑
i=(k−1)M+1

E[Ra
i,k(T )]


≤

L∑
k=1

{
K∑

i>kM

cµkM(L− k + 1)Tmax +
kM∑

i=(k−1)M+1

cµ(L− k + 1)(K − 1)Tmax

}
≤cµL2K2 Tmax + αL2MK Tmax

≤cµK2(L2 + L)Tmax.

(4.41)
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4.6.5 Proof of Theorem 4.4

Proof. In order to prove Theorem 4.4, we first consider the following lemma:
Lemma 4.7.

E[Loss(T )] ≤ µmaxE[# of collisions] +
L∑

k=1

K∑
i>km

Rs
i,k(T ) (4.42)

Proof. Here Rs
i,k is as defined in (4.32). Lemma 4.7 essentially upper-bounds Loss(T )

by the maximum regret caused by collisions and the total regret due to observing
arms in the wrong steps. Whenever there are collisions at any given round t, the
expected loss of reward compared to any offline policy is no larger than the highest
regret at t over all users who encounter a collision, i.e., every user gets zero reward
in our policy while every user gets the highest reward in expectation in the offline
policy. When there’s no collision, the loss compared to any greedy policy is caused by
observing arms in the wrong steps, i.e., which is at most

∑L
k=1

∑K
i>kmRs

i,k(T ).

To further upper-bound E[Loss(T )], we proceed in the next lemma to upper-
bound E[# of collisions] across all players. The basic idea of the proof is to consider
the number of collisions in: (1) rounds where each player chooses from the correct
list of arms in each observation step and (2) rounds in which there exists at least one
player having at least one arm in the wrong step. We respectively call these (1) good
phases (i.e., sequential rounds where the first condition is satisfied in each round) and
(2) bad rounds. The term K

(
2M−1
M

)
upper-bounds the number of collisions of each

step in each good phase, and M upper-bounds that in each bad round. Since the
number of non-sequential good phases is no larger than the number of bad rounds
plus one, the lemma follows.
Lemma 4.8. The total expected number of collisions is at most

(
K

(
2M − 1

M

)
+M

)
×

L∑
k=1

K∑
i>kM

E[T s
i,k] (4.43)

Proof. It is easy to verify the total number of collisions over all bad rounds are at
most M times the total number of those rounds. Thus, in the following, we only
need to consider the good phases. In a good phase, every user has the same (and also
correct) set of arms to observe in each step i. We simply check how the M users are
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“assigned to” the M arms in each step i. We first consider a given round t where every
user encounters a collision in round t− 1. In this case, each user will uniformly at
random select one out of those M arms in round t. We now consider the total number
of distinct configurations of arms and users. Since in this lemma, we are calculating
the number of collisions rather than the reward or regret of each user, we do not
distinguish different users choosing the same arm. Thus, two configurations are
distinct iff there exists at least one arm that has a different number of assigned users
between these two configurations. This random process is equivalent to assigning M

balls into M boxes which has a total of
(
2M−1
M

)
distinct configurations [88]. Now we

consider the cases where γ out of M users (let M > γ > 0 will continue to choose
the same arms as in the previous round, since there was no collision in the previous
round. Similarly, the number of distinct user-arm configurations is at most

(
2M−1−γ
M−γ

)
,

which is smaller than
(
2M−1
M

)
. Since each user’s decision is only dependent on his

decision and outcome in the previous round, this random process of assigning users
to arms over time is a Markov chain with at most

(
2M−1
M

)
states. Moreover, it’s easy

to verify that once the process enters a state where users choose different arms in a
given step, it will stay in this state, as long as the good phase hasn’t transitioned
to a bad round. Therefore, this stochastic process is an Absorbing Markov chain
with an absorbing time no larger than

(
2M−1
M

)
rounds [59]. Thus, the total number

of collisions of each step within each good phase is at most M
(
2M−1
M

)
. However, we

have to consider an extreme case where for any given observation step i, it enters an
absorbing state with a number of

(
2M−1
M

)
rounds, but the chosen arms of all users

are realized to be unavailable. Thus, all of them have to enter observation step i+ 1

and the process starts over from a possibly transient state. The worst case is that
the above extreme case happens over all K/M observation steps. Therefore, the
maximum number of collisions in a good phase is at most K

(
2M−1
M

)
. Combining the

total number of bad rounds with the number of collisions in each good phase and
bad round respectively, the lemma follows.

Note that the multiplicative term in (4.43), E[T s
i,k], has been given in (4.34).

Putting (4.43) and (4.36) into (4.42), we get Theorem 4.4. While this loss bound
is logarithmic in the number of rounds T , like the O(K

3

M
L log(T )) regret bound

given in Theorem 4.3 for the C-MP-OBP policy, it is combinatorial in M instead of
being polynomial in K = LM . The lack of coordination in the distributed setting
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introduces an additional cost from possible collisions.

4.6.6 Proof of Theorem 4.5

Proof.
Lemma 4.9. The total expected regret,

E[R(T )] ≤ µmaxE[# of collisions] +
L∑

k=1

 K∑
i>km

Rs
i,k(T ) +

KM∑
i=1(k−1)M+1

Ra
i,k(T )


Proof. The total expected regret can be upper-bounded by the sum of the expected
loss and the expected regret due to choosing the wrong arm from the right step over
all users. Combining the proof in Theorem 4.4 and (4.40), this lemma follows.

To further upper-bound R(T ), we upper-bound the expected number of collisions
in the following lemma.
Lemma 4.10. We have:

E[# of collisions] ≤M

((
2M − 1

M

)
+ 1

)
×

L∑
k=1

 K∑
i>kM

E[T s
i,k] +

KM∑
i=(k−1)M+1

E[T a
i,k]


Proof. Interestingly, the first term in (4.44) (the number of collisions in a good phase)
is smaller than that of our fair strategy D-MP-OBP. This can be explained intuitively
as follows. According to our D-MP-Adapt-OBP, the decisions of the steps 2, · · · , L
are determined by the decisions of step 1 and f(·), given the reward estimations of all
arms. Therefore, within a good phase, when the first step becomes collision-free, the
following steps will all be collision-free. In this sense, the number of collisions will
not increase with the number of observation steps. Consistent with the terminologies
used in the proof of Lemma 4.8, we consider each round where there exists a user
who either chooses an arm in the wrong observation step (a bad round) or chooses
the wrong arm from the right observation step. The analysis for the collisions in the
former event is the same as Lemma 4.8. The latter event can be divided into three
cases: (1) in the first observation step, multiple users play the same arm; (2) in a
later observation step i > 1, two or more user choose an unavailable arm j in step
i−1, and they both choose arm f(j, {µ̂k}Kk=1) in step i; (3) in a later observation step
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i > 1, the user has a different order of arms with at least one other user, e.g., user
1 and user 2 are supposed to choose the arms in the second position and the third
position respectively but they both choose arm 2 as user 2 mistakenly ranks arm 2 in
the third position. In any one of the above three cases, there is at most one collision
encountered by each user in each round. Now we consider the good phases in which
users have the same (and correct) order of arms. For the first observation step, there
are at most M

(
2M−1
M

)
rounds before entering an absorbing state. Since the positions

of arms to choose in each step i > 1 are determined by the arms chosen in step 1,
observing the arms in each observation step i > 1 (only when the arms chosen in the
previous observation arm sets are unavailable) does not transition the state from an
absorbing state to a transient state. Thus, the total expected number of collisions
in a good phase over all steps is still M

(
2M−1
M

)
, which does not increase with the

number of observation steps. Putting the above together, the lemma follows.

Combining Lemma 4.9, Lemma 4.10, (4.36), and (4.40), the theorem directly
follows.

4.6.7 Proof of Theorem 4.6

Proof.
Lemma 4.11. Let N s

t be the event that at the beginning of round t, for every arm
(k, a) ∈ S, |µ̂k,a,t−1 − µk,a| < ρk,a,t. Then for each round t ≥ 1, Pr{¬N s

t } ≤ 2|S|t−2.

Proof. For each round t ≥ 1, we have

Pr{¬N s
t } = Pr

{
∃(k, a) ∈ S, |µ̂k,a,t−1 − µk,a| ≥

√
3 ln t

2Tk,a,t−1

}

≤
∑

(k,a)∈S

Pr

{
|µ̂k,a,t−1 − µk,a| ≥

√
3 ln t

2Tk,a,t−1

}
.

=
∑

(k,a)∈S

t−1∑
s=1

Pr

{
Tk,a,t−1 = s, |µ̂k,a,t−1 − µk,a| ≥

√
3 ln t

2Tk,a,t−1

}
. (4.44)

When Tk,a,t−1 = s, µ̂k,a,t−1 is the average of s i.i.d. random outcomes of arm (k, a).
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With Hoeffding’s Inequality, we have

Pr

{
Tk,a,t−1 = s, |µ̂k,a,t−1 − µk,a| ≥

√
3 ln t

2Tk,a,t−1

}
≤ 2t−3, (4.45)

Combining Eq.(4.44) and (4.45), we have Pr{¬N s
t } ≤ 2|S|t−2.

We generally follow the proof of Theorem 4 in [3], with the different definition of
the base arm. We first introduce a positive real number Mk,a for each arm (k, a). Let
Ft be the event {r′(at, µ̄) < α · opt(µ̄)}, which represents the oracle fails in round t.
Define Ma = max(k,a)∈a Mk,a for each action a. Define

κT (M, s) =


2B, if s = 0,

2B
√

6 lnT
s

, if 1 ≤ s ≤ ℓT (M),

0, if s ≥ ℓT (M) + 1,

where
ℓT (M) =

⌊
24B2Q2 lnT

M2

⌋
.

We then show that if {∆at ≥Mat}, ¬Ft and N s
t hold, we have

∆at ≤
∑

(k,a)∈at

κT (Mk,a, Tk,a,t−1). (4.46)

The right hand side of the inequality is non-negative, so it holds naturally if ∆at = 0.
We only need to consider ∆at > 0. By N s

t and ¬Ft, we have

r′(at, µ̄t) ≥ α · opt(µ̄t) ≥ α · opt(µ) = r′(at,µ) + ∆at

Then by Condition 4.2,

∆at ≤ r′(at, µ̄t)− r′(at,µ) ≤ B
∑

(k,a)∈at

(µ̄k,a,t − µk,a).
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We are going to bound ∆at by bounding µ̄k,a,t − µk,a. We have

∆at ≤ B
∑

(k,a)∈at

(µ̄k,a,t − µk,a)

≤ −Mat + 2B
∑

(k,a)∈at

(µ̄k,a,t − µk,a)

≤ 2B
∑

(k,a)∈at

[
(µ̄k,a,t − µk,a)−

Mat

2BQ

]

≤ 2B
∑

(k,a)∈at

[
(µ̄k,a,t − µk,a)−

Mk,a

2BQ

]
. (4.47)

By N s
t , we have µ̄k,a,t − µk,a ≤ 2ρk,a,t, so

(µ̄k,a,t − µk,a)−
Mk,a

2BQ
≤ 2ρk,a,t −

Mk,a

2BQ
≤ 2

√
3 lnT

2Tk,a,t−1

− Mk,a

2BQ
.

If Tk,a,t−1 ≤ ℓT (Mk,a), we have (µ̄k,a,t−µk,a)−Mk,a

2BQ
≤ 2
√

3 lnT
2Tk,a,t−1

≤ 1
2B

κT (Mk,a, Tk,a,t−1).

If Tk,a,t−1 ≥ ℓT (Mk,a) + 1, then 2
√

3 lnT
2Tk,a,t−1

≤ Mk,a

2BQ
, so (µ̄k,a,t − µk,a) − Mk,a

2BQ
≤ 0 =

1
2B

κT (Mk,a, Tk,a,t−1). In conclusion, we have

(4.47) ≤
∑

(k,a)∈at

κT (Mk,a, Tk,a,t−1).
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Then for all rounds,

T∑
t=1

I({∆at ≥Mat} ∧ ¬Ft ∧N s
t ) ·∆at ≤

T∑
t=1

∑
(k,a)∈at

κT (Mk,a, Tk,a,t−1)

=
∑

(k,a)∈S

Tk,a,T∑
s=0

κT (Mk,a, s)

≤
∑

(k,a)∈S

ℓT (Mk,a)∑
s=0

κT (Mk,a, s)

= 2B|S|+
∑

(k,a)∈S

ℓT (Mk,a)∑
s=1

2B

√
6 lnT

s

≤ 2B|S|+
∑

(k,a)∈S

∫ ℓT (Mk,a)

s=0

2B

√
6 lnT

s
ds

≤ 2B|S|+
∑

(k,a)∈S

4B
√

6 lnTℓT (Mk,a)

≤ 2B|S|+
∑

(k,a)∈S

48B2Q lnT

Mk,a

.

So

Reg({∆at ≥Mat} ∧ ¬Ft ∧N s
t ) = E

[
T∑
t=1

I({∆at ≥Mat} ∧ ¬Ft ∧N s
t ) ·∆at

]

≤ 2B|S|+
∑

(k,a)∈S

48B2Q lnT

Mk,a

.

By Lemma 4.11, Pr{¬N s
t } ≤ 2|S|t−2. Then we have

Reg(¬N s
t ) ≤

T∑
t=1

2|S|t−2 ·∆max ≤
π2

3
|S| ·∆max,

Reg(Ft) ≤ (1− β)T ·∆max.
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With these two bounds, we have

Reg({}) ≤ Reg(Ft) +Reg(¬N s
t ) +Reg({∆at ≥Mat} ∧ ¬Ft ∧N s

t ) +Reg(∆at < Mat)

≤ (1− β)T ·∆max +
π2

3
|S| ·∆max + 2B|S|+

∑
(k,a)∈S

48B2Q lnT

Mk,a

+Reg(∆at < Mat).

Since Regα,β(T,D) = Reg({})− (1− β)T ·∆max,

Regα,β(T,D) ≤ π2

3
|S| ·∆max + 2B|S|+

∑
(k,a)∈S

48B2Q lnT

Mk,a

+Reg(∆at < Mat).

For the distribution-dependent bound, take Mk,a = ∆k,a
min, then Reg(∆at < Mat) = 0

and we have

Regα,β(T,D) ≤
∑

(k,a)∈S

48B2Q lnT

∆k,a
min

+ 2BKN +
π2

3
·KN ·∆max.

For the distribution-independent bound, take Mk,a = M =
√

(48B2QKN lnT )/T ,
then Reg(∆at < Mat) ≤ TM and we have

Regα,β(T,D) ≤
∑

(k,a)∈S

48B2Q lnT

Mk,a

+ 2BKN +
π2

3
·KN ·∆max +Reg(∆at < Mat)

≤ 48B2QKN lnT

M
+ 2BKN +

π2

3
·KN ·∆max + TM

= 2
√

48B2QKNT lnT +
π2

3
·KN ·∆max + 2BKN

≤ 14B
√

QKNT lnT +
π2

3
·KN ·∆max + 2BKN.

4.6.8 Proof of Theorem 4.8

Proof.
Claim 4.1. If U(i,k) ≥ µ(i,k) ∀(i, k) ∈ K ×A and the UCB-RA and Corr-UCB-RA
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algorithms select a budget allocation St at round t where,

µ(i,k) ≤ U(i,k) < µ̄(i,k) ∀(i, k) ∈ St,

then St is equal to the oracle’s optimal allocation S∗. Here, the thresholds µ̄(i,k) are
defined as

µ̄(i,k) = µ(i,k) + g−1(∆
(i,k)
min ).

Proof of Claim 1. In total there are |K| × |A| base arms. Index these base arms
with indices z in the set {1, 2, . . . |K| × |A|} such that ∆

(1)
min ≥ ∆

(2)
min ≥ . . .∆

(z)
min ≥

. . . ≥ ∆
(|K|×|A|)
min .

We consider a case where µz ≤ Uz(t) < µz + g−1(∆
(z)
min) ∀z ∈ St and Uz > µz∀z.

Define y to be the smallest index such that base arm y is selected in St. From the
definition of base arm y and through Condition 4.2 we have,

||USt(t)− µSt||∞ < g−1(∆
(y)
min) (4.48)

⇒ |r(St,U(t))− r(St,µ)| < ∆
(y)
min. (4.49)

As Uz(t) > µz ∀z, we have the following from the monotonicity condition,

r(St,µ) + ∆
(y)
min > r(St,U(t)) (4.50)

≥ r(S∗,U(t)) (4.51)

≥ r(S∗,µ) (4.52)

Here, we have (4.51) as the allocation St is obtained from offline oracle and hence
it is optimal for the UCB index vector, and its expected reward is larger than the
allocation S∗. (4.52) arises from the monotonicity condition as Uz > µz∀z. This
shows that if µz ≤ Uz(t) < µz + g−1(∆

(1)
min) ∀z ∈ St and Uz > µz ∀z, then the

expected reward for the budget allocation St,

r(St,µ) > r(S∗,µ)−∆
(y)
min. (4.53)
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As base arm y is selected in St, then by definition of ∆(y)
min,

max(r(St,µ)|St ∈ SB, (i, k) = y ∈ St) ≤ r(S∗,µ)−∆
(y)
min, (4.54)

which shows that the maximum reward that can be attained if the allocation St

was sub-optimal and base arm y was selected is upper bounded by r(S∗,µ) −
∆

(y)
min. Upon comparing (4.54) and (4.53), we conclude that if µz ≤ Uz(t) < µz +

g−1(∆
(z)
min) ∀z ∈ St and Uz > µz∀z, then the budget allocation vector St is equal to

S∗, which is the oracle’s unique optimal solution to the budget allocation problem.

Proof of Theorem 1. We now discuss the regret analysis of Theorem 4.8. In order
to bound the regret, we first define the notion of a responsible base arm.
Definition 4.5 (Responsible). A base arm (i, k) is responsible at round t, if

1. It was selected in round t and

2. U(i,k)(t) ≥ µ̄(i,k)

By Claim 1, if a sub-optimal budget allocation was selected in round t, it implies
that either U(i,k)(t) < µ(i,k) for some (i, k) ∈ K×A or at least one of the selected base
arms in St was responsible. Therefore, the expected number of rounds in which a
sub-optimal allocation was played (referred to as bad rounds) can be upper bounded
by

E[Bad rounds(T )] ≤
∑

(i,k)∈K×A

E[r(i,k)(T )]

+
∑

(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T )], (4.55)

with r(i,k)(T ) denoting the number of rounds for which base arm (i, k) is responsible
up until round T and nU(i,k)<µ(i,k)

(T ) representing the number of rounds in which
U(i,k)(t) < µ(i,k) for some (i, k) until round T . This inequality arises as a result of
the union bound and linearity of expectation. Moreover, whenever arm (i, k) is
responsible in round t, the regret incurred in that round can be upper bounded by
by ∆

(i,k)
max (by definition of ∆(i,k)

max in Theorem 4.6). In scenarios where U(i,k)(t) < µ(i,k)

for some (i, k), the regret incurred in that round can be upper bounded by ∆max (by
definition of ∆max in Theorem 4.6). Using this observation, we can now bound the
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regret as

E[Reg(T )] ≤
∑

(i,k)∈K×A

E[r(i,k)(T )]×∆(i,k)
max

+
∑

(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T )]×∆max. (4.56)

Using Hoeffding’s inequality, it can be shown that the second term is upper
bounded by an O(1) constant, the details are presented in Lemma 7 in the appendix.
To bound the regret in (4.56), we bound Er(i,k)(T ) separately for non-competitive and
competitive base arms. More specifically, we show that Er(i,k)(T ) is upper bounded
by an O(1) constant for non-competitive base arms and is O(log T ) for competitive
base arms. There are two key components to show upper bounds on Er(i,k)(T ) for
non-competitive base arm (i, k). Suppose the base arm is non-competitive with
respect to (j, ℓ), i.e., ϕ(i,k),(j,ℓ) < µ̄(i,k) and (j, ℓ) ∈ S∗.

1. The probability of base arm (i, k) being responsible in round t jointly with the
event that nj,ℓ(t) >

2t
3

is small.

Pr

(
(resp(i,k)(t), n(j,ℓ)(t) ≥

2t

3

)
≤ t−3 ∀t > 3KAt0.

This occurs as upon obtaining a large number of samples of base arm (j, ℓ),
the expected pseudo-reward of base arm (i, k) is smaller than µ̄(i,k) with high
probability. As a result, the probability that base arm (i, k) is responsible is
small. The details of this can be seen in Lemma 4.

2. The probability that a sub-optimal budget allocation is made for more than t
3

times till round t is upper bounded as,

Pr

(
T sub-opt(t) ≥ t

3

)
≤ 6(KA)2

(
t

3KA

)−2

∀t > 3KAt0,

We show this in Lemma 9 through Lemma 6,8 by showing that r(i,k)(T ), which
is the number of rounds for which base arm (i, k) is responsible till round
T , is smaller than t

3KA
with high probability. Additionally, nU(i,k)<µ(i,k)

(T ),
representing the number of rounds in which U(i,k)(t) < µ(i,k) for some (i, k) till
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round T , is smaller than t
3

with high probability. Using these two arguments
(1) and (2) above, we bound the expected times a non-competitive base arm
(i, k) is responsible until round t in Lemma 10 as

Er(i,k)(T ) ≤ 3KAt0 +
T∑

t=3KAt0

t−3 + 6(KA)2
(

t

3KA

)−2

(4.57)

= O(1). (4.58)

Next, we bound the term Er(i,k)(T ) for competitive sub-optimal arms. We do so in
Lemma 11, by showing that after base arm (i, k) has been sampled O(log T ) times,
the probability of base arm being responsible at round t decays as t−2 and as a result
Er(i,k)(T ) is O(log T ). This combined with (4.58), leads to Theorem 4.8.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we study the competitive CMAB problem from two different perspec-
tives. We first review the traditional non-competitive CMAB problem and propose
an algorithm with improved regret bounds. We then introduce competitive CMAB
from the follower’s perspective, where a follower and a competitor play with the same
set of arms. We formulate it as a general C2MAB-T problem and propose bandit
algorithms with tradeoffs between prior knowledge, feedback level, computation
efficiency, and regret bound. We have an in-depth study on its application to the
online competitive influence maximization (OCIM) problem. We also introduce com-
petitive CMAB from the multi-players’ perspective, where multiple players choose
combinatorial actions on the same set of arms. We formulate the centralized and
distributed settings and study both in the dynamic channel allocation problem. We
propose bandit algorithms for different settings and prove their theoretical regret
bounds. We also study the general online resource allocation problem, which can be
viewed as a centralized problem. We design CMAB algorithms to solve this problem
with discrete or continuous budget allocations and discuss how to improve the regret
bounds with correlated information.
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5.2 Future Work

As discussed in Chapter 2, whether the regret bound improvements in non-competitive
CMAB can be extended to the competitive settings is still an open problem. For
competitive CMAB from the follower’s perspective, though we discuss probabilistic
competitor’s seed selection in the OCIM problem, it is not clear how to handle the
unknown competitor’s action in the general setting. We believe the key step is to
find a proper (modified) TPM condition and use it to control the incurred regret. For
competitive CMAB from the multi-players’ perspective, it is interesting to consider
players’ arrivals and departures. For the online resource allocation problem, we only
consider random variables in the objective function; in real-world applications, the
random variables may also appear in the constraints. Another interesting direction
is to study correlated information in general CMAB problems: although CMAB
algorithms learn from the base arm level to avoid exponential explorations on super
arms, the number of base arms can still be huge, making it impractical to learn
about these base arms within limited rounds. With correlated information across
base arms, it might be possible to further reduce the regret bound.
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