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Abstract
Large-scale infrastructures across various domains (e.g., Internet services,

sensor farms, operations monitoring etc.) produce ever-increasing amounts of
streaming data. As these data streams contain invaluable operational insights,
operators invest heavily on telemetry frameworks to extract these insights and
use them towards ensuring their infrastructure’s reliability and growth. In
this dissertation, we focus on telemetry for streaming video infrastructures. In
particular, this work is motivated by a previously unexplored aspect of video
telemetry, namely viewership analytics. That is, detecting and diagnosing video
viewership anomalies, simultaneously, across multiple subpopulations of view-
ers.

This dissertation aims at enhancing video operators’ toolbox with novel
telemetry capabilities for viewership analytics. Nevertheless, designing teleme-
try workflows for viewership analytics proves challenging on multiple fronts.
First, increases in volume and dimensionality of incoming data streams result
in a combinatorial explosion of data subpopulations to monitor and, as a result,
in prohibitive cost and resource overheads for operators. Second, the contex-
tual and non-stationary nature of viewership complicates the detection and
diagnosis of viewership anomalies. Last, the need to simultaneously monitor
ever-increasing numbers of subpopulations of viewers complicates extracting
the few critical, and often highly localized, events of interest needed to provide
actionable insights to operators.

Our work addresses these challenges through the design and implementation
of a suite of practical tools for video viewership analytics. First, we introduce
Hydra, a novel sketch-based analytics framework for efficient and general ana-
lytics over multidimensional data streams. We show that HYDRA offers robust
accuracy guarantees at one tenth (or less) of the operational cost of exact an-
alytics frameworks and does so with query latencies that are up to 20× lower
than existing alternatives. In Proteas, our second contribution, we leverage
key structural insights of viewership in order to enable accurate detection and
insightful diagnosis of viewership anomalies. We show that our approach en-
sures low numbers of false positives and outperforms the closest state-of-the-art
alternatives. Last, we illustrate how these insights can be combined in the de-
sign of an end-to-end telemetry framework. Through extensive analysis driven
by real-world datasets, we demonstrate that our findings can yield substantial
cost and resource benefits over existing solutions. Additionally, we discuss their
potential applicability in different domains, in addition to video.
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Chapter 1

Introduction

Large-scale infrastructures across various domains (e.g., Internet services, sensor farms,

operations monitoring, etc.) produce massive and ever-increasing amounts of streaming

data. As these data streams contain invaluable operational insights, operators rely heavily

on real-time telemetry frameworks to extract these insights and use them towards ensur-

ing their infrastructure’s reliability and growth. For instance, the analysis of machine-

generated server logs of a Facebook data center can shed light into the health and opera-

tional status of the service, whereas the analysis of Facebook user data can expose trends

and behavioral patterns that are invaluable from a business perspective.

In this thesis, we scope our focus on telemetry for video streaming services. Video streaming

services are a key component of today’s Internet and play an increasingly important role

in our everyday lives for entertainment, communication, and news. A recent study by

Cisco [22] predicts that by 2022, streaming video traffic will make up more than 82% of all

consumer Internet traffic — 4 times higher than it was in 2017. In addition, the advent of

the COVID-19 global pandemic has triggered fundamental changes in viewing behaviors

and spurred a tipping point in video streaming growth that shows no signs of reversal [8]. In

this increasingly competitive streaming landscape, the survival of video streaming services

critically depends on their ability to provide their customers with engaging content and

a seamless viewing experience. For example, research shows that even short increases in

video buffering rate can lead to∼40% less time watching online videos and cause substantial
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losses for ad-based content providers [104].

For these reasons, video streaming operators invest heavily in telemetry capabilities that,

in general, focus on two fronts; The first is to ensure that any service disruptions that might

impact viewer engagement are promptly detected and mitigated. For example, a telemetry

framework for video QoE that processes per-viewer measurements of various video-related

metrics (e.g., bitrate, buffering time, etc.) issues alerts when different subpopulations of

viewers are experiencing service disruptions. The second is to shed light into viewer habits

and preferences to optimize ad-placement and content production.

This work is motivated by an important, but previously unexplored aspect of video teleme-

try, that of detecting and diagnosing video viewership anomalies across multiple subpopu-

lations of viewers. In developing these capabilities, we also tackle a broader shortcoming

of existing telemetry, i.e., enabling efficient and scalable telemetry across a combinatorial

explosion of data subpopulations of interest. Overall, we design a suite of new designs and

tools that improve the state-of-the-art in telemetry frameworks and implement them in

the context of an end-to-end framework for viewership analytics.

1.1 Motivating Example — Viewership Analytics

Video streaming providers monitor the operational status and overall health of their in-

frastructure through various Quality-of-Experience (QoE) metrics (e.g., bitrate, buffering

etc.). Their goal is to promptly detect and diagnose anomalous incidents (e.g., ISP out-

ages, buggy players) [6, 26] that might affect subpopulations of their viewership base and to

inform appropriate mitigation efforts [102, 104]. Yet, while existing QoE-based monitoring

workflows are invaluable, they also suffer from critical blind spots. Our conversations with

analysts working in this domain have highlighted the need for viewership-based analytics

(viewership is defined as the the timeseries of the count of active viewers) to complement

existing monitoring workflows and to proactively identify anomalies that would be missed

by more conventional QoE metrics [102, 104]). We discuss a few illustrative case studies:

2



1. Platform failures. In a recent incident, a buggy update of a content provider’s au-

thentication service disconnected viewers and prevented them from logging back in

for one hour. During this time, video QoE metrics remained unchanged for the re-

maining viewers and as a result no QoE-based anomalies were raised. However, the

viewership of the content provider indicated a sharp drop. For this incident, the

provider was only informed about it through its Twitter support page!

2. Video encoding errors. During the live broadcast of a popular annual US event,

video encoding errors resulted in severe image pixelation and audio being out of

sync. Despite the corrupted content, QoE metrics such as buffering or video start

failures remained unaffected during the transmission and the incident went unnoticed

until the next day when the provider looked at its unexpectedly low total viewership

numbers.

3. Insufficient streaming resources. In high-stakes live transmissions, such as sports

events, video QoE alerts (e.g., high buffering) are particularly common. These alerts,

while indicating the presence of a problem, cannot often explain its underlying root-

cause; e.g., is this an outage or a sudden flash crowd that puts unexpected load

on streaming resources? Viewership-based analytics can enable operators to disam-

biguate and, thus take action minimizing the incident’s impact.

Opportunity Given that sustaining viewer engagement is one of operators’ overarching

goals, these anecdotal case studies demonstrate that there is ample opportunity to enhance

existing telemetry for video QoE through a framework that tracks video viewership and

provides actionable insights to the operator through detection and diagnosis of viewership

anomalies.
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1.2 Design Blueprint for a Viewership Analytics Frame-

work

Seen in a general context, anomaly detection and diagnosis are not new problems and have

been examined in several prior efforts in networked systems (e.g., [33, 45, 50, 53, 106, 110,

131]) and in data mining (e.g., [36, 62, 114, 115, 135, 140, 143, 155]). This allows us to

conceptualize a high-level view of the design of a framework for video viewership analytics

as follows:

Input Data The framework processes streams of video session summaries i.e., per-viewer

summaries of viewer activity and streaming video quality. Each data point in the stream

is multidimensional i.e., it consists of measurements of various video-QoE metrics along

with metadata that describe the video session across domain-specific dimensions, such as

ISP, CDN, City, Device and more. This is a standard data format for streaming video

telemetry as described in prior work (e.g., [102]) and illustrated in Figure 1.1.

CDN ISP City Content Device Bitrate
AKAMAI Verizon NYC GoT Roku TV 16.0

LEVEL3 Comcast SF Friends Apple TV 8.5

AKAMAI Cox NYC Mad Men iPhone 5.0

<Comcast, Viewership>

<NYC, Viewership> <Apple TV, NYC, 
Viewership>

Metric

5

Dimensions

Query 1:  Jitter of bitrate for NYC-based Viewers on Apple TV?
Query 2:  Temporal Change of bitrate in SF?
Query 3:  Most common bitrate values in NYC? …

Subpopulations

Figure 1.1: View of multidimensional video data

System Workflow At a high level, the viewership analytics framework should implement

two logical operations: (i) viewership estimation and (ii) alerting of viewership anomalies.

We describe them below:

1. Viewership Estimation. During this step, the framework ingests a batch of incoming

video session summaries and clusters them across combinations of dimension values to

represent subpopulations of viewers e.g., NYC-based viewers on iPhones (Figure 1.1).
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Then, for each subpopulation of viewers, the framework estimates its viewership count

i.e., the total number of active viewers. Over time, the system creates a timeseries

of viewership values per subpopulation.

2. Alerting. At this phase, the framework uses these estimations to monitor viewership

for anomalies. This component implements two sub-operations:

(a) Anomaly Detection. This step leverages the estimated viewership counts in

order to periodically detect viewership anomalies on a per-subpopulation basis.

It then outputs a list of anomalous subpopulation of viewers.

(b) Anomaly Diagnosis. Last, the diagnosis component, processes detected anoma-

lies in order to translate them to insightful and actionable insights for opera-

tors. This component focuses on root-cause attribution i.e., mapping detected

anomalies to plausible and possible root-causes in order to inform appropriate

mitigation efforts from operators, if possible.

Viewership analytics are an instance of multidimensional telemetry.

Note that viewership analytics are an instance of multidimensional telemetry. That is,

the system leverages multidimensional data in order to perform fine-grained viewership

estimation and anomaly detection on a per-subpopulation basis. The multidimensional

telemetry paradigm constitutes a positive development for operators as it enables more

fine-grained visibility into subpopulations of their data. Specifically, in the context of

video viewership, this translates to being able to accurately detect and diagnose video

viewership anomalies across different subpopulations of viewers.

1.3 Challenges of Viewership Analytics Workflows

Unfortunately, realizing the above workflow of multidimensional telemetry for viewership

analytics raises several important challenges.
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Challenge #1: Existing telemetry cannot efficiently scale with data subpopulations.

As video streaming services mature, the data they produce become increasingly multi-

dimensional [102]. This high data dimensionality results in a combinatorial explosion

of subpopulations to monitor and in prohibitive ingestion- and query-time overheads for

telemetry frameworks. In addition, the need of operators to analyze input data through

potentially multiple summary statistics induces extra compute/memory overheads, propor-

tional to the number of statistics of interest. In this respect, as we will extensively discuss

in Chapter 3, existing frameworks can be fundamentally limited in terms of the trade-

off across accuracy, scalability (across subpopulations), and generality (across summary

statistics they can estimate).

Challenge #2: Contextual anomalies and non-stationarity complicate detection.

A sudden drop/rise in the timeseries of viewership is not always anomalous; e.g., when

a popular show ends, viewership is expected to drop sharply and should not be marked

as anomalous. Therefore, anomaly detection needs to consider the context in which a

candidate anomaly appears [95]. While this contextual nature of anomalies is not unique

to viewership, it suggests we use model-based techniques for detection [62]. Unfortunately,

viewership is also non-stationary i.e., the timeseries’ statistical properties change over time,

making it difficult to accurately capture them with a model.

Challenge #3: Anomaly redundancy complicates diagnosis and contributes to alert

fatigue.

In practice, we want to monitor many subpopulations of viewers; e.g., did viewers us-

ing RokuTV have an outage? Note, however, that a single logical event (e.g., RokuTV

outage) can simultaneously manifest as an anomaly across multiple viewership groups

(e.g., for NYC-RokuTV, NYC-Comcast, SF-RokuTV). Naively raising alerts for all these

groups will overwhelm the analyst and complicate the diagnosis, thus raising the need for
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anomaly summarization. Unfortunately, techniques used in prior summarization and diag-

nosis works (e.g., [33, 45, 50, 53, 102, 106, 110, 131]), while insightful, cannot account for

the features of viewership that determine how a single incident manifests across multiple

groups.

1.4 A Taxonomy of Alternatives

6

Analytics 
Estimation Exact Estimates

Approximate 
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Sampling

Data
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Other 
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Online 
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Query-Time 
Sampling

Offline 
SamplingViewership 

Analytics

Figure 1.2: A taxonomy of alternatives

Having summarized the system design overview as well as the key challenges faced by op-

erators, we now introduce a taxonomy of alternatives (Figure 1.2) for viewership analytics

frameworks. This taxonomy also helps us put our contributions in context; the high-level

approach taken in this work in specified in bold text in Figure 1.2. We defer a more de-

tailed analysis of related work to Chapter 2 and examine each component of the telemetry

framework separately.

Analytics Estimation We classify existing analytics estimation approaches based on their

design decisions in order to achieve scalability:

1. Horizontal Scaling for exact analytics In this category we find analytics frameworks

whose distributed design enables reducing estimation latency through horizontal scal-
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ing of server resources (e.g., Spark [166], Hive [146] Hadoop [141], Dremel [121],

Druid [161], Flink [60]). These frameworks can provide precisely exact analytics and

their clusters scale along with the input data. However, as we will discuss in more

detail in Chapter 2, these approaches cannot cope with the overheads of multidimen-

sional analytics.

2. Approximate analytics To account for the inefficiencies of exact analytics, approx-

imate analytics frameworks tradeoff estimation accuracy for improved estimation

latencies. There are two broad categories of approximate frameworks, namely frame-

works implementing sampling (query-time or offline) [30, 31, 35, 43, 61, 66, 106,

121, 128, 142, 146] and frameworks implementing online aggregation or other data

summarization techniques [71, 72, 76, 84, 118, 165].

Given that scalability and interactive response times are some of our design objectives,

we take an approximate analytics approach. Additionally, given our strong requirements

for accuracy guarantees from our estimations, we opt for approaches that involve pre-

computations and, in particular, sketch-based analytics [71, 72, 76, 84, 118, 165].

Anomaly Detection Regarding detection of viewership anomalies, we see two broad

classes of approaches, namely model-based [51, 64, 68, 145, 167] and model-free ones [41,

123, 155, 168]. As we discuss extensively in Chapter 4, the specific characteristics of view-

ership, point in the direction of model-based detection.

1.5 Thesis Overview

1.5.1 Thesis Statement

Viewership analytics workflows are a necessary tool in video providers’ telemetry toolkit.

However, the ever-increasing multidimensionality of video data and the contextual and

non-stationary nature of viewership have created both scalability and anomaly detection
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challenges. This thesis (1) presents novel sketch-based algorithms to enable scalable view-

ership (and other analytics) estimation workflows, (2) leverages key structural insights of

viewership in order to enable accurate anomaly detection and insightful diagnosis, and (3)

presents the design of a novel end-to-end viewership analytics workflow.

1.5.2 High-level Approach Overview

In this thesis, we envision a framework for real-time video viewership analytics that im-

plements both analytics estimation as well as alerting. To that end, we develop a suite of

novel solutions for the viewership estimation and alerting (i.e., detection and diagnosis)

workflows. More specifically:

Viewership 
Analytics Alerting Data Streams

Actionable 
Insights

11

Figure 1.3: System overview

1. Viewership Estimation. We propose a novel, sketch-based workflow that enables

scalable, interactive, and provably accurate approximate estimations of viewership

(among a broader set of summary statistics) across subpopulations of viewers. This

component ingests multidimensional video data streams and aggregates them across

different combinations of dimensions values that represent different subpopulations of

viewers. Our sketching primitives enable efficient summarization of subpopulations of

viewers in sub-linear space (to the number of subpopulations) as well as approximate,

yet provably accurate, viewership estimations.

2. Alerting. The alerting component uses the viewership estimations to detect and diag-

nose viewership anomalies across subpopulations of viewers. For detection, we design

model-based approaches that leverage domain-specific insights about viewership in
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order to detect anomalous viewership behavior on a per-subpopulation granularity.

For diagnosis, we design a practical mechanism that scopes detected anomalies to

a small set of root-cause viewership groups. Then using a periodically updated,

signature-based library, we match detected anomalies with candidate root-causes in

order to produce insightful alerts.

1.5.3 Thesis Contributions and Key Results

Contribution #1: A scalable, sketch-based multidimensional analytics framework

(Chapter 3)

We present Hydra, a novel approximate analytics framework for efficient and general

analytics over multidimensional data streams. Hydra is based on two key ideas:

1. Enable scalability with a “sketch-of-sketches”: To tackle the combinatorial explo-

sion of subpopulations, we design Hydra-sketch, a “sketch of sketches” primitive

that enables efficient data stream summarization. This enables a reduction in the

framework’s ingestion-time memory cost of one to two orders of magnitude compared

to Spark- and Druid-based alternatives while at the same time offering robust and

provable accuracy guarantees.

2. Ensure high-fidelity estimations and generality across statistics with universal sketch-

ing:To provide high-fidelity estimations for a general set of summary statistics, we

leverage the power of universal sketching [118]. Unlike canonical sketch-based ap-

proaches that deploy one custom sketch type per statistic [84, 147, 148], a univer-

sal sketch allows for estimating multiple different summary statistics with only one

sketching structure using polylogarithmic space.

We analytically prove that combining the above sketch-of-sketches idea with universal

sketches ensures polylogarithmic space complexity to the data subpopulations for a given

target accuracy. Last, our analysis provides practical strategies for configuring Hydra.

Key Results: We show that Hydra offers robust accuracy guarantees (estimation error
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<5% with 90% probability), comparable to those of exact analytics frameworks at 1/10 of

their operating cost or less. Hydra’s memory footprint scales sub-linearly with dataset

size and number of data subpopulations, resulting in a 7−20× query latency improvement

compared to Spark- and Druid-based alternatives.

Contribution #2: An alerting framework for video viewership anomalies (Chapter 4):

Proteas is an alerting framework that detects and diagnoses viewership anomalies and

builds on the following structural insights:

1. Shape persistence for anomaly detection: Despite the non-stationarity of viewership,

we find that its underlying shape remains invariant over longer periods of time, and

can thus be leveraged as a basis for detection. By modeling this key structural

invariant using custom Gaussian Processes [139], we enable accurate, timely and

robust anomaly detection of viewership anomalies across multiple viewership groups.

2. Hierarchical group dependencies and spatiotemporal anomaly signatures: A single log-

ical event propagates predictably across viewership groups. Using practical heuristics,

we extract the set of candidate groups that best explain an anomalous incident. More-

over, while viewership anomalies might be the result of many different root causes,

we observe that anomalies resulting from similar incidents share common spatiotem-

poral features, allowing us to compile a library of anomaly signatures. This enables

associating each viewership incident to a small set of possible root causes for further

investigation.

Key Results: Under normal operating conditions, Proteas issues a practical (for the ana-

lyst) number of alerts with low numbers of false positives (precision >86%) and practically

no false negatives. Proteas outperforms the closest state-of-the-art alternatives by Twit-

ter [95] and Netflix [25] both quantitatively in terms of precision and qualitatively in terms

of trust shown by expert expert analysts to Proteas’s alerts over those issued by prior

work (> 95%). Our synthetic analysis shows that Proteas’s anomaly summarization

component prunes out >99% of redundant anomalies and accurately identifies the root-
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cause viewership groups by classifying anomalies in 4 broad classes of events. Proteas

identified 3 large-scale technical outages that affected up to 50% of the content provider’s

viewers and were not caught by the existing alerting workflows of a major video analytics

provider. Proteas tracked flash crowds during popular live events (e.g., sports games)

before the corresponding QoE alerts were raised, thus exposing the need for resource re-

provisioning. Last, Proteas uncovered qualitative insights into the pervasive changes in

viewership caused by COVID-19.

Contribution #3: An end-to-end multidimensional telemetry workflow for anomaly

detection

Combining the design insights of Hydra and Proteas, we prototype Integr, a scalable

and efficient end-to-end multidimensional telemetry framework for timeseries anomaly de-

tection. Through Integr, we demonstrate the feasibility of leveraging the provably ac-

curate, yet approximate, analytics estimations of Hydra in order to supply downstream

tasks such as anomaly detection.

Key Results: We compare Integr’s accuracy against a baseline telemetry framework that

runs timeseries anomaly estimation using precisely estimated analytics. We view the base-

line’s alerts as ground truth and estimate Integr’s false positives and negatives relative

to that ground truth. In the case of Integr, when approximate analytics estimation is

configured to achieve at least 95% accuracy, we observe that across two real-world datasets,

precision and recall are consistently above 95%. This is a strong indicator that approximate

estimations have negligible impact on the accuracy of anomaly detection. In addition, we

show that Integr brings the same resource and cost benefits as Hydra.

1.5.4 Generalizability of Observations

While the focus of this thesis has been on video streaming and, specifically, on viewership

analytics, we argue that many of our findings can be applied or extended to domains

other than video. Indeed, Hydra’s sketch-based approach to multidimensional telemetry
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is general-purpose and not video-specific. Regarding Proteas, while its shape-based

anomaly detection approach is derived from domain-specific insights, we speculate that

there exist various domains that exhibit similar structural patterns. For example, one such

domain could be the electric grid where power demand might exhibit the same diurnal

patterns as demand for streaming video. We discuss these future work-related questions

in Chapter 6.

1.6 Thesis Organization

This thesis proceeds as follows: In Chapter 2, we motivate the need for multidimensional

analytics, formulate the problem and discuss the limitations of the existing telemetry land-

scape. In Chapter 3 we present Hydra, our sketch-based framework for multidimensional

analytics. In Chapter 4 we introduce Proteas, a real-time alerting framework for video

viewership anomalies. Chapter 5 discusses how we bring the insights of Hydra and Pro-

teas together to design and implement an end-to-end telemetry framework for multidi-

mensional data. Finally, in Chapter 6, we summarize the lessons we learnt and propose

future work.
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Chapter 2

Background & Related Work

In this chapter, we provide some background on each of the two components of a viewership

analytics framework, namely viewership estimation and alerting. First, we focus on viewer-

ship estimation. As viewership estimation is an instance of multidimensional telemetry, we

first formalize the multidimensional telemetry domain and provide an overview of related

work. Then, we zoom in on the alerting component of viewership analytics, introduce some

key definitions and as well as related work.

2.1 Multidimensional Telemetry

By means of a series of motivating examples, below we formalize key notions of multidi-

mensional telemetry. Then, we outline related work.

2.1.1 Example Use Cases of Multidimensional Telemetry

Video streaming QoE To sustain viewer engagement and to maintain ad- and subscription-

driven revenue streams, streaming video providers monitor the health of their infrastructure

through various video-specific Quality-of-Experience metrics (e.g., bitrate, buffering ratio,

join time, viewership etc.). The operators’ goal is straightforward: detect and diagnose

incidents of interest or service disruptions and inform mitigation efforts. Examples of such
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incidents abound: Increases in buffering rate that can result in high drops in viewer engage-

ment. ISP outages or buggy video player updates that can drive groups of viewers away or

unexpected flash crowds and sudden increases in content demand that when undetected,

can generate technical disruptions due to insufficient resource provisioning.

To achieve the aforementioned goal, operators invest heavily in multidimensional telemetry

frameworks. These frameworks collect video session summaries i.e., multidimensional data

records that measure video QoE across various dimensions of interest (e.g., ISP, CDN,

CITY etc.) and, through appropriate analysis, provide operators with fine-grained visibility

into the perceived QoE of different subpopulations of viewers. As a consequence, the

telemetry framework can ideally detect and alert the operator on disruptions that might be

affecting different subpopulations of viewers so that they’re addressed in a timely fashion.

Resource utilization in data centers To ensure the sustained reliability of their infras-

tructure, data center operators analyze in real time measurements of hardware resource

utilization that characterize different subpopulations of servers, containers or applications.

For instance, one important priority of data center operators is to ensure that hardware

resources are appropriately distributed across different applications and that failures are

promptly detected and diagnosed. Let us consider the following examples of real-world out-

ages: In a recent incident, a small group of oversubscribed AWS EC2 servers unexpectedly

shut down due to overheating. As a result, an entire AWS availability zone covering the

greater Tokyo area, experienced degraded EBS volume performance. The overheating was

due to a control system failure that caused multiple, redundant cooling systems to fail in

parts of the affected Availability Zone [1]. In a different incident, due a buggy configuration

update reduced the number of hosts running the EC2 DNS resolver service. As a result, the

remaining healthy instances, experienced above normal utilization and, thus, EC2 network

connectivity and DNS resolution in the availability experienced sporadic outages [2].

Similar to the video-QoE usecase, these examples highlight the need of data center oper-

ators to ensure fine-grained visibility into different subpopulations of their resources (i.e.,

servers, containers, applications etc.). Many of the aforementioned failures could have been
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averted given more efficient multidimensional telemetry infrastructures in place.

Network flow monitoring Network management is a multi-faceted and complex opera-

tion that involves tasks such as traffic engineering [79, 118], attack and anomaly detec-

tion [138] or forensics [156]. To implement each of these tasks, network operators need

an accurate and timely analysis of various statistics on different application-level perfor-

mance metrics (e.g., flow distributions, per-flow packet sizes, latency, etc.) across different

subpopulations of flows, i.e., network flows grouped across combinations of packet header

fields.

Similar use-cases can also be identified in various other domains and applications, such

as sensor-based deployments, A/B testing [94, 105], exploratory data analysis [46, 150],

operations monitoring [29], sensor-based deployments [162], etc. The proliferation of mul-

tidimensional data in large-scale infrastructures makes multidimensional telemetry increas-

ingly relevant.

2.1.2 Formalizing Multidimensional Telemetry

At a high level, the goal of multidimensional telemetry is to enable the estimation of a

broad set of summary statistics simultaneously across multiple subpopulations of data.

We observe that, across the board, the multidimensional telemetry problem exhibits three

properties:

Property #1: Multidimensional data. Analytics are estimated on multidimensional data.

We define a multidimensional data record as x = (d1, . . . , dD, m), where di is the value

of a dimension Di and m is the value of metric M . For instance, in video streaming, QoE

metrics of interest might be bitrate or video buffering time whereas dimensions might be

the location of the viewer, their video player device, their ISP or CDN. The metrics and

dimensions are domain- and use case-specific.

Property #2: Analytics on data subpopulations. The desired analytics are estimated

in parallel across subpopulations of the input data. A subpopulation Qj is a collection
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of data records {xi} such that all xi ∈ Qj match on a subset of dimension values. With

a slight abuse of notation, we formally define Qj using this set of dimension values, i.e.,

Qj = {Dj,1 = dj,1 ∧ · · · ∧ Dj,l = dj,l}, where {D1, . . . ,Dl} ⊆ {D1, . . . ,DD}. In video

streaming, an exampleo of a data subpopulation is NYC viewers on AppleTV.

Property #3: Multiple statistics of interest. For each subpopulation, the operator might

want to estimate various summary statistics, such as heavy hitters, entropy, cardinality,

etc. A query qk specifies a data subpopulation Qj (or a set thereof), and a statistic g to

estimate using the values mi of xi ∈ Qj.

2.1.3 Existing Approaches for Multidimensional Telemetry

Despite their applicability across multiple domains, existing multidimensional frameworks

suffer from a well-known scalability challenge (discussed in more detail in Chapter 3).

More specifically, as data streams become increasingly multidimensional, telemetry frame-

works are expected to simultaneously monitor a combinatorial explosion of data subpop-

ulations [46, 84] which results in big, often prohibitive, overheads in terms of operating

cost and resources. Below, we look at how state-of-the-art telemetry frameworks attempt

to address this challenge. We broadly taxonomize existing frameworks in two categories

based on their underlying mechanism to achieve scalability.

Horizontal resource scaling In this category we find well-known (SQL and NoSQL)

analytics engines whose distributed design enables reducing estimation latency through

horizontal scaling of server resources (e.g., Spark [166], Hive [146], Hadoop [141], Dremel

[121], Druid [161], Flink [60]). These frameworks can provide precisely exact analytics and

their clusters scale along with the input data. However, as data volume and dimensionality

grow, (1) deploying these clusters becomes increasingly expensive and (2) the continuous

addition of resources results in decreasing performance gains due to data shuffling over-

heads [35].

18



Approximate estimates An orthogonal line of work reduces analytical processing la-

tency through approximate analytics estimations. These include both sampling and non-

sampling-based approaches. Below we discuss each one of these two broad classes in more

detail:

1. Data Sampling. These frameworks down-sample the original dataset to reduce re-

sponse time, with prior work exploring various sampling approaches; Query-time

sampling frameworks extend SQL through sampling operators enabling the operator

to express at query-time sampling semantics on the original dataset (e.g., uniform

sampling of entire dataset) [43, 61, 121, 128, 146]. Query-time sampling, while it gen-

erally allows programmers to utilize the full semantics of SQL, it does not offer any

accuracy guarantees or response time bounds. Pre-computed sampling approaches on

the other hand, use a pre-processing step to create samples that are used to answer a

narrower (but still useful) set queries. While they offer low latency, a key drawback

of these approaches is their ability to only offer accuracy estimates (in the form of

confidence bounds) a posteriori i.e., after the query has executed. Additionally, cre-

ating and maintaining these samples is expensive. BlinkDB, for instance, leverages

stratified sampling to build samples only for data partitions that commonly appear in

aggregation queries [30, 31, 35, 142]. Therefore, pre-computed sampling approaches

are often limited to only a narrow set of queries, thus lacking generality. In addition,

given that sampling approaches cannot guarantee accuracy, this results resulting in

low user trust [66, 107].

2. Online Data Aggregations (OLA). This class of works propose the idea of providing

approximate answers which are constantly refined during query execution. It pro-

vides users with interfaces enabling users to stop the query once they are satisfied

with the resulting accuracy. However, as streaming data comes in random order,

providing apriori accuracy guarantees while maintaining performance constraints is

infeasible [63, 69, 90, 93].

3. Data Summaries. There exists a great deal of work on developing custom data syn-

opses (e.g., sketches, histograms, data cubes) that queries are applied on. Sketches
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in particular are data summaries offering sound apriori accuracy guarantees and are

natural fits for streaming data applications as they only need to make one pass over

the incoming data stream. However, sketches also present several disadvantages that

raise questions regarding their ability to meet the requirements of a multidimen-

sional analytics engine; First, sketches are, in general, tailor made for a specific type

of aggregation (entropy, quantiles etc.) [71, 72, 76, 118, 165]. Additionally, common

practice in prior work [84] suggests that there needs to be a sketch per subpopula-

tion. Intuitively, as the number of possible dimensions in the dataset increases, the

resulting combinatorial explosion of groups makes the task of allocating a sketch per

statistic and subpopulation infeasible.

Nevertheless, this classification is not strict and it is not uncommon to encounter frame-

works that combine the above capabilities. For instance, both Apache Spark and Druid

allow for data summarization at ingestion time such that incoming data are stored as a

key-value store where the keys are distinct (Qj , mi) tuples and the values are their respec-

tive counts. These hybrid approaches enable data reduction without compromising the

frameworks ability to offer precise estimations.

2.2 Detection and Diagnosis of Viewership Anomalies

2.2.1 Formalizing Viewership Analytics

Viewership We define viewership of a subpopulation of viewers (i.e., a viewership group)

as the timeseries of the count of active viewers for that subpopulation. Figure 2.1 illustrates

the timeseries of daily viewership for a particular viewership group across four consecutive

weeks.

Viewership anomalies We define as a viewership anomaly, broadly, as any unexpected

change in the timeseries of viewership (e.g., sudden rise or drop) that warrants technical

intervention in order to be mitigated. For instance, Figure 2.1 illustrates an example of a
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Figure 2.1: Motivating example of viewership anomaly. Real viewership values not shown.

large scale incident that manifested itself as a multi-hour long viewership drop. The figure

depicts the timeseries of viewership for the same weekday across 4 consecutive weeks. As

we can observe, there is a visible and sharp viewership drop in Week 4. The incident

affected viewers of a major US-based content provider on RokuTV and was attributed to

platform malfunction. During that period, no QoE alerts were raised and the issue went

undetected. Viewership was the only indicator of the presence of this technical disruption.

Operator requirements Our discussions with analysts at a video analytics firm indicated

that video operators have several requirements from an viewership analytics framework.

We discuss those below:

1. Automated detection workflows. Given the large number of subpopulations that the

alerting component needs to monitor in parallel, operators need automatic detection

workflows. More specifically, operators ideally need a framework that minimizes the

manual effort needed per-subpopulation while ensuring accurate anomaly detection.

2. Concise alerts to minimize alert fatigue. As mentioned previously, one single logical

event might manifest as multiple redundant anomalies across subpopulations. To

avoid releasing multiple, often redundant, alerts to the operator, the alerting workflow

should be able needs to scope the anomalous incidents detected to the subpopulation
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the event originates from. This will minimize alert fatigue for the operator and ideally

ensure that the finite number of human analyst cycles will be optimally utilized.

3. Interactive alerting latencies. Ideally, operators need to be issued alerts as soon as

the incident of interest occurs. Therefore, the alerting workflow needs to operate at

interactive timescales.

2.2.2 Existing Approaches for Detecting and Diagnosing Viewership

Anomalies

To the best of our knowledge, we are the first to formally investigate methods for anomaly

detection and diagnosis in the context of video viewership. Nevertheless, below we provide

a broad taxonomy of timeseries anomaly detection techniques as well as an overview of

prior works focusing on root-cause attribution.

Detection There is a plethora of candidate approaches for timeseries anomaly detection.

We broadly taxonomize these approaches in two categories:

1. Model-based approaches. These approaches leverage persistent statistical properties

of the timeseries in order to build a model that captures them and uses them as a

predictor of future timeseries values. There is a variety of model-based approaches

for timeseries anomaly detection, including classical approaches such as exponential

smoothing [64], autoregressive models [167], STL decomposition [51, 68, 145] etc.

2. Model-free Approaches. Model-free approaches opt for the more-lightweight strategy

of relying on short history windows in order to detect anomalies. Similar to model-

based approaches, this category contains a variety of well-known approaches, such as

control charts [155], EWMA [168], CUSUM [123] or change-point detection [41].

Diagnosis Previous research has also focused on extensively analyzing root-causing in

systems and networks. In particular, a well-established approach to diagnosis (which we

also employ within this dissertation) involves building libraries of anomaly signatures. Nev-
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ertheless, prior works on diagnosis that broadly leverage signatures are generally domain-

and usecase-specific [33, 45, 50, 53, 106, 110, 131].

As we discuss extensively in Chapter 4, in our work we opt for model-driven anomaly

detection and diagnosis based on anomaly signatures. However, as we will see, viewership

exhibits several properties that prevent the use of well-known prior efforts.
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Chapter 3

Enabling Efficient and General

Subpopulation Analytics in

Multidimensional Data Streams with

Hydra

Large-scale infrastructures across various domains (e.g., Internet services, sensor farms,

operations monitoring) produce data streams that are growing both in data volume and

dimensionality [15, 44, 46, 134]. Increasingly, these data streams are multidimensional;

i.e., they contain measurements of metrics along with complex metadata that describe said

measurements across domain-specific dimensions. For instance, video streaming services

analyze measurements of viewer quality of experience or viewership in order to detect issues

that might impact viewer engagement across dimensions, such as ISP, CDN, Device, City,

etc. [102, 104]. Similarly in other domains such as network and data center monitoring,

we see similar trends [1, 2, 118].

In these settings, analysts need interactive and accurate estimates of diverse summary

statistics across multiple data subpopulations. For instance in video streaming, we need to

monitor different statistics (e.g., cardinality, histogram, entropy) of viewer quality metrics

25



(e.g., bitrate, buffering time) across subpopulations of viewers (e.g., viewers in NYC on

Comcast, etc.) [104]. Similarly, in network monitoring, operators need to analyze net-

work flows grouped by combinations of their 5-tuple (srcIP, dstIP, srcPort, dstPort, pro-

tocol) [118].

Providing interactive and accurate estimates across multiple summary statistics and sub-

populations is challenging on two fronts. First, the high data dimensionality results in

a combinatorial explosion of subpopulations to monitor and in prohibitive ingestion- and

query-time overheads. Second, the multiple summary statistics induce compute and/or

memory overheads, proportional to the number of statistics of interest. In this respect,

existing frameworks are fundamentally limited in terms of the tradeoff across accuracy,

scalability (across subpopulations), and generality (across summary statistics they can es-

timate). Exact analytics frameworks (e.g., Spark [166], Hive [146], Druid [161]) that rely

on horizontal resource scaling entail poor cost-performance tradeoff as datasets become

larger. While approximate analytics [66] (e.g., sampling- or sketch-based analytics) can

trade off estimation accuracy for lower cost and improved interactivity, these too suffer

undesirable tradeoffs. For instance, sampling-based approaches provide generality across

metrics and can handle many subpopulations, but cannot offer accuracy guarantees. On

the other hand, sketch-based analytics (e.g., [30, 34, 67, 84, 85, 147, 148, 165]) can of-

fer robust accuracy guarantees, but cannot address the combinatorial explosion of data

subpopulations and also incur per-statistic effort.

In this chapter, we present Hydra, a novel sketch-based analytics framework for efficient

and general analytics over multidimensional data streams. Hydra is based on two key

ideas:

1. To tackle the combinatorial explosion of subpopulations, we design a “sketch of

sketches” primitive that enables efficient data stream summarization. This enables

a reduction in the framework’s ingestion-time memory cost of one to two orders of

magnitude compared to Spark- and Druid-based alternatives while at the same time

offering robust and provable accuracy guarantees.
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2. To provide high-fidelity estimations for a general set of summary statistics, we lever-

age the power of universal sketching [118]. Unlike canonical sketch-based approaches

that deploy one custom sketch type per statistic [84, 147, 148], a universal sketch

allows for estimating multiple different summary statistics with only one sketching

structure using polylogarithmic space.

We analytically prove that combining the above sketch-of-sketches idea with universal

sketches ensures polylogarithmic space complexity to the data subpopulations for a given

target accuracy. This analysis also provides practical strategies for configuring Hydra.

We prototype Hydra on top of Apache Spark. Our choice of framework was based on the

ease of implementation as, in practice, Hydra’s design is not tied to any existing platform.

We implement several practical system optimizations to further improve Hydra’s empirical

accuracy and runtime.

We evaluate Hydra using two real-world datasets; (1) a 2h-long CAIDA traces from the

equinix-NYC vantage point, collected in January 2019 [3, 4] and (2) a real-world trace of

video QoE from a video analytics provider capturing the perceived QoE of viewers of a

US-based content provider [7].1 To further evaluate the sensitivity of Hydra-sketch, we

also leverage a synthetic multidimensional dataset drawn from a Zipf (Pareto) distribution

with different parameter values [85, 148].

We compare Hydra against 5 baselines: A native Spark-SQL implementation for precisely

exact analytics, a Spark-based sampling implementation that uniformly samples incoming

data, a sketch-based approach that allocates one universal sketch instance per data sub-

population and two key-value based implementations (on Apache Spark and Apache Druid)

that pre-aggregate data at ingestion time and provide precisely accurate analytics . Our

1Ethical Considerations: All video QoE data used in this work are covered by NDAs prohibiting any

re-sharing with 3rd parties even for research purposes. Further, video QoE data have been reviewed

and validated by the operator with respect to GPDR compliance (e.g., no identifier can be associated

to person), and data processing only looks at QoE measurements per combination of session dimension

values. No personal and/or contact information was available in the data used for this study. The data

were properly anonymized and no identifying/personal data were used during our analysis.
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evaluation shows that:

1. Hydra offers robust accuracy guarantees (error <5% with 90% probability), com-

parable to those of exact analytics frameworks at 1/10 of their operational cost or

less.

2. Hydra’s memory footprint scales sub-linearly with dataset size and number of data

subpopulations, resulting in 7-20× query latency improvement compared to Spark-

and Druid-based alternatives.

3. Hydra’s configuration heuristics ensure close to optimal accuracy-memory tradeoff

and our performance optimizations improve end-to-end runtime by 30%.

3.1 Evaluating the Limitations of Prior Work

In the previous chapters, we provided background on multidimensional telemetry and

hinted at the scalability challenge existing frameworks face. To empirically evaluate this

claim, we analyze the cost and performance of existing works (discussed in Chapter 2)

during Data Ingestion and Query Estimation. Specifically, for ingestion, we look (1) at

the computational overhead of processing multidimensional streams and (2) at the data

resident cost after ingestion. For estimation, we look at the additional CPU and memory

complexity per query for a given accuracy target (when setting one is possible).

Notation Definition

V Dataset Size

Q Number of data subpopulations

D Number of Data Dimensions

C Cardinality of each data dimension

Table 3.1: Notation for analysis of multidimensional analytics problem

As shown in Table 3.1, let us denote the dataset size (in terms of number of data records)

as V and let Q be the number of data subpopulations. Suppose the number of dimen-
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Ideal Regime

Figure 3.1: Cost-accuracy analysis for existing analytics systems.

sions is D and each dimension has cardinality C . Therefore, a multidimensional data

record belongs in 2D different subpopulations and there are O(C D) subpopulations in the

dataset. In practice, we find that O(2D × V ) is a tighter empirical bound for Q and we

will use that moving forward. In practice, each multidimensional data record belongs in 2D

subpopulations, and in our datasets we do not generally see all possible values per dimen-

sion. Finally, let us assume that the framework needs to estimate O(S) different statistics.

Therefore, the total number of summary statistics queries expected to be estimated is

O(Q × S) = O(2D × V × S).

We generally observe that ingestion incurs a memory and CPU cost of O(Q) or O(V ),

depending on whether the framework pre-aggregates data (e.g., Apache Druid using the

data roll-up feature [161]). Similarly, the estimation time overheads can be as high as

O(Q × S) or O(V × S) respectively. In summary, we observe that existing frameworks

incur significant memory and compute overheads either at ingestion time or at estimation

time, due to their linear scaling with respect to S and/or exponential scaling with respect

to D.
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Empirical analysis To empirically corroborate this analytical intuition, we evaluate the

cost-accuracy tradeoff for several analytics frameworks when used in a multidimensional

context (Figure 3.1). We quantify frameworks’ accuracy as a function of their operational

cost when asked to estimate in real-time 4 summary statistics from a 120GB real-world

dataset with approximately 5.6 million data subpopulations. Following the typical cloud

billing model [20], we use the total runtime times the number of cluster nodes used (20)

as a proxy for the $ cost. We provide a detailed description of our experimental setup and

baselines in §3.5. Ideally, we need a framework whose cost-accuracy tradeoff lies in the

shaded green region, i.e., it offers the accuracy of a precise analytics frameworks at the

cost of sampling. However, we observe that the cost gap between the cheapest (1% uniform

sampling) and the most expensive baselines (precisely accurate Spark-SQL) is two orders of

magnitude wide. Furthermore, a sketch-based approach where the framework allocates one

sketch per subpopulation, while cheaper than Spark-SQL, remains expensive as it allocates

exponentially many sketch instances, thus incurring high memory overheads.As discussed

in §3.5, this baseline uses universal sketching i.e., a sketch type that can simultaneously

estimate all 4 statistics of interest per subpopulation with one sketch. Last, precise base-

lines that summarize data at ingestion time, such as Apache Druid and Spark (denoted as

Spark-KV) lie in the middle between Spark-SQL and sampling.

Key takeaway Meeting the requirements for multidimensional analytics is challenging

due to both the overheads incurred by the combinatorial explosion in data subpopulations

and the number of summary statistics the framework needs to simultaneously monitor.

In practice, we see that existing frameworks cannot strike a reasonable balance between

operators’ requirements for coverage across subpopulations, high-fidelity general analytics

and real-time estimations. This motivates us to rethink how we can support such analytics

workloads at scale.
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Figure 3.2: Comparison of ingestion and estimation cost (CPU time, memory) for different

sketch-based analytics designs.

3.2 Hydra: System Overview

Ideally, we want to strike an optimal balance between cost and accuracy guarantees, while

supporting many statistics over all subpopulations. In this section, we give a high-level

view of Hydra and of the key design contributions to reduce these overheads without

compromising accuracy.

3.2.1 Key Ideas

To enable strong accuracy guarantees, we take a sketch-based approach at scale. However,

as we saw, allocating O(S) sketch instances per data subpopulation cannot address the

combinatorial explosion of subpopulations and the large number of required summary

statistics. To avoid these overheads, we introduce two key ideas, as illustrated in Figure 3.2.

Note that the figure highlights the theoretical improvements in space complexity from

Hydra’s design ideas.

Idea 1: Controlling the combinatorial explosion of subpopulations with a “sketch of

sketches”. Our first idea is to reduce the prohibitively large O(Q) = O(2D×V ) ingestion-
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time memory overhead of sketch-based telemetry through a novel “sketch of sketches”. We

show that by maintaining a w × r array of sketch instances (shown in Fig. 3.2), where

w × r � 2D × V , Hydra reduces the memory cost of estimating O(S) statistics from

O(2D × V × S) to O(w × r × S). The intuition is that unlike canonical sketch-based

approaches that maintain one sketch instance per subpopulation [84], we can multiplex

multiple subpopulations into one sketch instance and then query that instance with pre-

dictable estimation error.

Idea 2: Combining a sketch of sketches with universal sketching to estimate multi-

ple summary statistics. To reduce the need for instantiating sketches of different types

to cover each of the O(S) summary statistics, Hydra leverages the power of universal

sketching [58, 118]. Universal sketching allows us to replace O(S) sketches with a single

sketch algorithm, which enables the simultaneous estimation of multiple different statistics

per subpopulation. This design choice further reduces the framework’s space complexity

from O(w × r × S) to O(w × r).

3.2.2 Hydra’s Workflow

To support multidimensional workloads at scale, we envision Hydra as a distributed

framework consisting of one frontend and multiple worker nodes. Its input are 1) streams

of batched multi-dimensional data, ingested in parallel at the worker nodes and 2) esti-

mation queries provided by the operator to the frontend node. Data ingestion happens at

the worker nodes, whereas the frontend node is responsible for configuration dissemina-

tion, sketch merging and statistic estimations. Each worker node summarizes its incoming

data stream in one local instance of Hydra-sketch which is configured to ensure specific

accuracy guarantees and memory footprint (§3.3.6). These sketches are then collected at

the frontend node, merged into one unified Hydra-sketch instance for answering queries.

Data is ingested in batches or epochs. Hydra executes two logical operations per epoch;

(1) Data Ingestion, and (2) Query Estimation.

1. Data Ingestion: Hydra compactly summarizes information per data subpopula-
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Figure 3.3: Hydra’s example workflow.

tion during data ingestion in Hydra-sketch instances. For every incoming data

item, Hydra first identifies what subpopulations the data point belongs in and cor-

respondingly updates Hydra-sketch.

2. Query Estimation: Query estimation runs at the frontend node which needs a global

view over the data stored at the worker nodes. At the end of the epoch, the frontend

node periodically collects all Hydra-sketch instances from the worker nodes and

merges them into one Hydra-sketch instance which is then used to estimate the

desired statistics. Queries can either be one-time or continuous (i.e., repeated every

epoch).

3.3 Hydra: Detailed Design

In this section, we focus on Hydra-sketch, the sketching primitive that reduces Hydra’s

space complexity to sub-linear in the number of subpopulations and makes it independent

to the number of statistics. We first provide background on sketching to set up the intuition

for Hydra-sketch. We then introduce the basic Hydra-sketch algorithm, formally prove
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Notation Definition

w Number of sketches per 2D-sketch row

r Number of rows in 2D-sketch

(ε, δ) 0 < ε < 1 as additive error and δ is the probability that

the result error is not bounded by ε (failure probability)

wUS Number of counters per universal sketch row

rUS Number of universal sketch rows

(εUS , δUS) 0 < εUS < 1 as additive error in universal sketch and δUS is the failure

probability

L Number of universal sketch layers

k Number of keys in universal sketch heavy hitter heaps

Table 3.2: Hydra notation. The upper subsection of the table introduces notation specific

to the sketch-of-sketches and the lower on universal sketches.

its error bounds, and devise Hydra-sketch configuration strategies. Table 3.2 summarizes

the notation we use in this section.

3.3.1 Background on Sketching

Let Sm,n denote a data stream with length m and n distinct keys. Suppose we want to

estimate a summary statistic based on the frequencies of the keys (e.g., entropy, cardinality,

frequency moments, etc.). The natural design is to maintain a key-value counter data

structure, where we track the frequency per key and, later, use this structure to estimate

the desired statistic. For instance, for frequency estimation, we maintain and increment

one counter per key. While correct, this approach’s space complexity is linear in n and,

thus, not space efficient (Figure 3.4).

Hash-based mappings for space efficiency To ensure sub-linear (in n) space complexity,

sketching algorithms do not maintain per-key state but, instead, map more than one keys in
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Figure 3.4: Maintaining per-key state is not space efficient

the same counters through hashing. For instance, a simple sketch for frequency estimation

consists of w integer counters, where w � n. Based on the hash of the key, an element

gets mapped to a counter, which is then incremented to maintain an estimate of that

key’s frequency. Naturally, colliding multiple keys in the same counters introduces some

estimation error (Figure 3.5).

Input Stream
3 5 5 973
m: length of stream
n : distinct keys

w
O(w) sub-linear 

ingestion memory
Hash-based 

mapping

Input Stream
3 5 5 973

m: length of stream
n : distinct keys

w
O(w) sub-linear 

ingestion memory

Hash-based 
mapping

3, 5 7 9

Figure 3.5: Hashing enables sub-linear memory complexity

Multiple independent updates for tighter error bounds As defined, this basic mech-

anism offers weak accuracy guarantees, i.e., it only provides a small probability that the

estimation error will lie within a desirable range of error values [40]. To overcome this,

sketches use independent instances (e.g., r arrays) of the counter structure of length w.

Each vector of length w has its own hash function and the w hash functions are pairwise

independent. Thus, ingesting a stream element now translates to r update operations (e.g.,

incrementing r integer counters instead of one). For each key, this sketch produces r dif-

ferent estimates of the statistic of interest. Depending on the algorithm the final estimate

will be some function summarizing r estimates (i.e., min, median etc.) (Figure 3.6) [72].
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This amplifies the probability that the estimation error lies within the desired range.

Input Stream
3 5 5 973

m: length of stream
n : distinct keys

w

O(wr) sub-linear 
ingestion memory

r
h1

h2

hr

Hash-based mapping
Redundant counters

Figure 3.6: Independent hashing and counters improve accuracy guarantees

3.3.2 Tackling the Combinatorial Explosion of Data Subpopulations

For now, let us make the simplifying assumption (which we relax later) that our system

only needs to estimate one summary statistic (e.g., entropy) per data subpopulation.

Similar to Figure 3.4, a starting point for our design would be to maintain per-subpopulation

state, i.e., allocate one sketch instance for each of the O(2D ×V ) distinct subpopulations.

However, this approach is not scalable as it requires as many sketches as the exponentially

many possible data subpopulations.

To avoid keeping per-subpopulation state, we borrow from the first intuition that we saw

in the sketch construction in the background (fig. 3.5). The basic sketch construction

avoids maintaining per-key state by allowing multiple keys to explicitly collide in a hashed

key-value store whose size is less than the number of unique elements.

Extending this intuition to our setting is a bit tricky; the basic sketch is maintaining a

single counter per array entry but we want to able to estimate some statistical summary of

an subpopulation instead. Instead of keeping a single counter per array entry, we maintain

a sketch-per-entry. This brings us to the following construction (Figure 3.7). We consider

a single array of w (e.g., w � 2D × V ) sketches. For each (Qj, mi) pair, we hash the Qj

and map it to one of the w sketches, thus colliding multiple subpopulations to the same
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sketch. Then, we update the sketch with mi and at query time, we estimate the statistic

for Qj.

𝑉:   Length of stream
2!: Aggregations per datapoint
𝑂 2!×𝑉 : Aggregations in stream

Multidimensional Stream

{𝑥! = 𝑑",! , 𝑑$,! , … , 𝑑%,! , 𝑚! , 𝑑&,!∈ 𝐷&}

w
Q1 Q2 Q3 Qi Qj …

Hash-based mapping to sketches
O(w) ingestion memory

Figure 3.7: Hash-based mapping of subpopulations to a vector of sketches.

Analogous to the basic sketch from the background, by mapping multiple subpopulations

to one sketch this baseline construction will have some estimation error. To control this,

we extend the idea of using redundant counter vectors and pairwise-independent hashes

shown in Figure 3.6. That is, we use r arrays of w sketches and use r pairwise-independent

hash functions to map each subpopulation to one sketch per row (Figure 3.8). At query

time, we return the median of the r estimates.

𝑉:   Length of stream
2!: Aggregations per datapoint
𝑂 2!×𝑉 : Aggregations in stream

w

r

Multidimensional Stream

{𝑥! = 𝑑",! , 𝑑$,! , … , 𝑑%,! , 𝑚! , 𝑑&,!∈ 𝐷&}
Q1 Q2 Q3 Qi Qj …

𝑂 𝑤×𝑟 ingestion memory

h1

h2

hr

Figure 3.8: Redundant sketch vectors and pairwise-independent hashes for tighter error

bounds.

In summary, we see that this analogous to the 2D array of counters in a simple sketch, our

sketch-of-sketch construction maintains a 2D array of sketches to track multiple subpopu-

37



lation. This approach can reduce the memory cost of ingestion to O(w× r) i.e., sub-linear

in subpopulations. In §3.3.5, we formally prove theoretically rigorous memory-accuracy

tradeoffs for this construction.

3.3.3 Ensuring Generality Across Statistics

The above discussion is based on the simplifying assumption that we need to only estimate

one summary statistic. Sketching algorithms are generally designed to estimate one (or

few) statistical properties of the data stream. Thus, to support O(S) different summary

statistics, we need to create O(S) sketch-of-sketches instances. This raises two natural

concerns. First, the total memory cost of this solution becomes O(w × r × S), i.e., linear

to the number of summary statistics of interest. Second, the framework cannot offer

generality as it cannot estimate summary statistics that are not already allocated; e.g.,

some future analysis might require estimating the entropy of a metric but the framework

has not instantiated an entropy-specific sketch-of-sketch instance.

Our insight is that the sketch of sketches structure can be combined with universal sketch-

ing [118] to achieve the desired generality across summary statistics. A universal sketch is

a sketching primitive that enables the simultaneous estimation of multiple different, apriori

unknown, statistics with one sketch instance. To ensure generality across statistics, instead

of deploying a sketch-of-sketches per statistic, we can deploy only one sketch of universal

sketches. We formally demonstrate the feasibility of this insight in §3.3.5 and, thus, show

that Hydra’s ingestion cost drops to O(w × r).

Background on universal sketches A universal sketch can estimate any summary statis-

tic that belongs to a broad class of functions, known as Stream-PolyLog [57, 58, 118]. We

denote each function in Stream-PolyLog, as G-sum = ∑ g(fi), where fi is the frequency of

the i-th unique element in the input stream S and g is a function defined over fi . If g is

monotonically increasing and upper bounded by O(fi2), then G-sum can be computed by

a single universal sketch with polylogarithmic memory.
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The basic building block of universal sketches are L2-Heavy Hitter (HH) sketches e.g.,

Count-sketch [122]. Each count-sketch maintains rCS arrays of wCS counters each, rCS

pairwise-independent hash functions and a max-heap keeping track of the top-k Heavy

Hitters in the sketch; When updating each count-sketch with a new data item, the sketch

updates a randomly located counter in every row based on the corresponding hash index

to keep track of that data item’s frequency. The top-k HH heap is subsequently updated

to reflect the addition of the new item. A universal sketch consists of L layers of count-

sketches. Each count sketch applies an independent 0-1 hash function hl∈[0, L) to the input

data stream to sub-sample at every layer (from the previous layer). These layers then track

the heavy hitters, i.e., the important contributors to the G-sum.

The intuition here is that the layered structure of universal sketch is designed for sampling

representative elements with diverse frequencies and these elements can be used to esti-

mate G-sum with bounded errors. If only one layer of heavy hitter sketch were used, the

estimations would lack representatives from less frequent elements. The heavy-hitters at

each layer are processed iteratively from the bottom layer to the top and the recursively

aggregated result is used to compute the desired statistic. This is an unbiased estimator

of G-sum with bounded additive errors (Theorem 1).

Theorem 1 ([58, 118]). Given a stream S of length m with n distinct keys, let us

consider a Universal Sketch US with L = O(log n) layers. If each layer of US provides

an (εUS , δUS)-L2 error guarantee, then US can estimate any G-sum function G ∈

Stream-Polylog to within a (1 ± εUS) factor with probability 1 − δUS . Satisfying a

(εUS , δUS)-L2 error guarantee requires O(logn) Count-Sketch instances with wCS =

O(ε−2
US) columns and rCS = O(log δ−1

US) rows.

3.3.4 The Hydra-sketch Algorithm

Combining these ideas gives us the Hydra-sketch algorithm as shown in Algorithm 1.
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1. Updating Hydra-sketch: Updating Hydra-sketch with a data record,

xi = 〈d1,i , d2,i , . . . , dD,i,, mi〉

is a three-step process. At the first, “fan-out” stage, we compute the O(2D) aggrega-

tions {Q1, . . . ,Q2D} that xi belongs in. Then, we map each Qj to r universal sketches

instances using r pairwise-independent hash functions hk∈[0,r) : Qj → [0,w). For the

kth row, the index of the universal sketch to update US k is the hash of Qj using hash

function hk . Last, we update each US k with the metric value mi.

2. Querying Hydra-sketch: The querying algorithm for Hydra-sketch takes as input

a statistic g and an aggregation Qj i.e., the aggregation to estimate g on. Querying

consists of 2 steps. The first involves identifying the set of r universal sketch instances

{US k} that Qj maps to. Then g is estimated from each US k , and the median value

of these estimations is returned.

3.3.5 Accuracy Guarantees

Theorem 2 formally states the accuracy bounds of Hydra-sketch.

Theorem 2. Let us assume that each Universal Sketch US can approximate the G-sum,

for a monotone function g within a (1 + εUS)-factor with probability 1 − δUS > 1/2.

Further, let G(S) be the G-sum when applied to the entire stream S and Gi when

applied to the target subpopulation Qi. Then Hydra-sketch with w = O(ε−1) columns

and r = O(log δ−1) rows, for user defined parameters ε, δ, provides an estimate Ĝi

that with probability 1− δ satisfies:

Gi(1− εUS) ≤ Ĝi ≤ Gi(1 + εUS) + ε ·G(S) (3.1)

Proof. To bound the error of our algorithm, we analyze the frequency vector fj of the

stream of elements mapped to each Universal Sketch instance US j = hj(Qi), where Qi

40



Algorithm 1: Hydra-sketch Algorithm

1 Generate r pairwise independent hash functions: h1 . . . hr : [n]→ [0, w)

2 function Update(Data point 〈d1, d2, . . . , dD, mi〉, Hydra-sketch HS)

3 r ← HS.r; w ← HS.w; s← HS.sketch

4 {Q1, . . . ,Q2D} ← Fanout(〈 d1, d2, . . . , dD〉)

5 for each Qj do

6 for k ← 0 to r − 1, in parallel do

7 USk ← s[k][hk(Qj)]

8 USk.Update(mi)

9 function Query(HS, Qj, g)

10 r ← HS.r; w ← HS.w; s← HS.sketch

11 estimates ← [ ]

12 for k ← 0 to r − 1, in parallel do

13 USk ← s[k][hk(Qj)]

14 estimates[k]← USk.Estimate(Qj, g)

15 final ←Median(estimates)

16 return final

is the queried subpopulation. The frequencies of all mi ∈ Qi are guaranteed to appear

in fj, since the Update algorithm of §3.3.4 maps them to US j.

Let Q = {Q1, . . .} denote all groups in the input stream S, and let

Qj = {Qk ∈ Q | hj(Qk) = hj(Qi)}

denote the set of groups mapped to US j. That is, G(S) = ∑
Qk∈Q

∑
mk∈Qk

g(fmk
).

The target quantity, which we wish to estimate, is Gi := ∑
x∈Qi

g(fm), i.e., the g-sum of
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the group Qi, while the US j processes all groups in Qj and thus approximates

∑
Qk∈Qj

∑
mk∈Qk

g(fmk
) = Gi +

∑
Qk∈Qj\{Qi}

∑
mk∈Qk

g(fmk
).

For all j ∈ {0, . . . , r − 1}, denote by Ĝi,j the estimate of US j, and denote the noise

added by the other groups as

Nj =
∑

Qk∈Qj\{Qi}

∑
mk∈Qk

g(fmk
).

Notice that, since any group in Q \ {Qi} has a probability of 1/w of being in Qj, its

expectation satisfies that:

E[Nj] =
∑

Qk∈Q\{Qi}
∑

mk∈Qk
g(fmk

)
w ≤ G(S)

w .

Therefore, according to Markov’s inequality, for any c ∈ R+, Pr[Nj ≥ c · G(S)
w ] ≤ 1/c.

Next, by the correctness of the universal sketch, we have that,

Pr[Ĝi,j /∈ [(Gi +Nj)(1− εUS), (Gi +Nj)(1 + εUS)]] ≤ δUS .

Since g is part of G-sum ∈ Stream-PolyLog, it must be monotone, and thus Nj ≥ 0. This

means that with probability of at least 1 − δUS − 1/c both Ĝi,j ∈ [Gi(1 − εUS), (Gi +

Nj)(1 + εUS)] and Nj < c · G(S)
w holds, and thus

Gi(1− εUS) ≤ Ĝi,j ≤ Gi(1 + εUS) + c

w (1 + εUS)G(S). (3.2)

Therefore, we pick w = c · (1 + εUS) · ε−1 and a c value such that 1 − δUS − 1/c > 1/2,

to get that

Pr
[
Gi(1− εUS) ≤ Ĝi,j ≤ Gi(1 + εUS) + ε ·G(S)

]
> 1/2.

Recall that the algorithm’s query sets Ĝi = mediancĜi,j and that the r rows are i.i.d.

and thus a standard Chernoff bound yields that

Pr
[
Gi(1− εUS) ≤ Ĝi ≤ Gi(1 + εUS) + ε ·G(S)

]
≥ 1− δ.

42



3.3.6 Hydra-sketch Configuration

The structure of Hydra-sketch (Figure 3.9) depends on 6 parameters: 2 parameters deter-

mining the structure of the array of sketches (i.e., r and w) and 4 for the Universal Sketches

(i.e., L, wCS , rCS , k). The configuration parameters of Hydra-sketch determine its em-

pirical accuracy and its practical memory footprint. For instance, larger values of w and r

while they ensure better estimation accuracy, they also result in a larger Hydra-sketch.

HydraSketch Universal Sketch

r

Count Sketch Array       Count Sketch     HH Heap 

𝐿

Wcs

rcs
k

W

Figure 3.9: Hydra-sketch structure and configuration parameters.

To achieve a good tradeoff between empirical accuracy and performance, we follow a two-

step approach that leverages Theorems 1 and 2. First, we control the impact of the ε ·G(S)

factor in Eq. (3.1) by appropriately configuring w and r . Then, we focus on the estimation

error of each Universal Sketch instance, εUS .

Controlling ε ·G(S) The ε ·G(S) additive error factor can be seen as Hydra’s estimation

bias. To control the bias through the configuration of the array of sketches, we need to

answer two questions; First, what are acceptable values for ε and second, how to translate

ε to a practical Hydra-sketch configuration (i.e., r and w values)?

However, from Eq. (3.1), we observe that ε controls the magnitude of the estimation bias

and, thus, determines the level of accuracy Hydra-sketch can offer to subpopulations of

different G-sum values. To see why, consider the following example: For a subpopulation

Qi, assume Gi = 0.01 ·G(S). If ε = 1� 0.01, then from Eq. (3.1), Ĝi is dominated by the

G(S) factor and we cannot have any confidence to Hydra-sketch’s estimation of Qi. On
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the other hand, if ε = 0.0001� 0.01, then the bias is negligible compared to Gi. Therefore,

to ensure narrow error bounds, the smaller each subpopulation is (in terms of G-sum), ε

needs to be set at smaller values.

From the proof of Eq. (3.2), we see that w = c · (1 + εUS) · ε−1 where c is chosen such that

1 − δUS − 1/c > 1/2. We observe that w is inversely proportional to ε, which means that

to ensure narrow error bounds for small data subpopulations, w (and, thus, the memory

footprint of Hydra-sketch) can become very large. To that end, if we want Hydra-sketch

to have practical memory footprint, we need to set a “threshold” with respect to the size

of subpopulations we can provide accuracy guarantees. Therefore, we set ε = Gmin/G(S),

where Gmin is the G-sum of the smallest aggregation for which we want to provide accuracy

guarantees. For example for ε = 0.001, δUS = 0.1, εUS = 0.05 (we discuss these universal

sketch parameters later), we get that w ≥ 300.

From Theorem 2, we see that r = O(log δ−1). For (3.1) to hold with 90% probability, we

set δ = 0.1. This, in turn, translates to r ≈ 3. For a 95% probability, r ≈ 5.

Controlling universal sketch error To configure rCS , we note that for error probabilities

at 90 and 95%, rCS becomes 3 and 5 respectively. To estimate wCS , from Theorem 1 we

can observe that for εUS = 0.05 i.e., for 95% accuracy, we can set wCS to O(1/0.052) ≈ 400.

Last, we configure the number of levels (L) maintained in each universal sketch instance

and the number of heavy keys (k) needed to store at each level’s heavy hitter heap. From

Theorem 1, L needs to be O(log n), where n is related to the average number of distinct

subpopulations summarized at each universal sketch. The value of k is empirically set to

k = O(1/εUS) ≈ 20.

In §3.5, we show that these rules indeed provide us with the configuration that achieves

the optimal tradeoff for empirical accuracy and memory cost across different datasets.
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3.4 Implementation and Optimizations

This section discusses practical challenges we tackled to optimize the Hydra prototype.

First, we present our baseline system implementation and introduce an accuracy-improving

heuristic for Hydra-sketch. Then, we discuss potential system bottlenecks and introduce

practical optimizations to mitigate them.

3.4.1 Baseline Implementation and Workflow

We implement Hydra’s workflow (discussed in §3.2.2) as an Apache Spark plugin [166].

The choice of Spark is a practical one, as the framework’s extensibility allowed us to pro-

totype design alternatives easily. However, Hydra’s workflow can easily fit into different

analytics frameworks e.g., Druid [161].

In our distributed implementation, worker nodes perform data ingestion and the frontend

node performs sketch collection, merging, and query estimation. As we make no assump-

tions about what subsets of the input stream are processed by each worker node, centralized

query estimation is a natural choice to ensure a global view of the data (instead of enforcing

a policy where all data records of a given subpopulation are ingested at the same worker

node).

At the worker nodes, Spark first splits input data into multiple partitions of ≈ 64MB

and allocates one Hydra-sketch instance for each partition before it is updated by that

partition of data. Both the input partition and the Hydra-sketch instances are treated as

Spark RDDs. When a failure happens during execution, spark will automatically restart

the job and re-ingest. Once a data partition is fully ingested, the corresponding Hydra-

sketch instance is serialized and sent over TCP to the frontend node.

After receiving several Hydra-sketch instances from worker nodes, the frontend node

deserializes them and merges them into a global Hydra-sketch instance. Note that merging

is executed continuously at the frontend node and in parallel with ingestion at the worker
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nodes. The operator interacts with the frontend node’s query API to estimate the desired

summary statistics from the merged Hydra-sketch instance and return query results to

the operator.

3.4.2 An Accuracy-improving Heuristic

Recall from Algorithm 1 (line 8) that after Qj is mapped to a universal sketch, that sketch

instance only stores the frequencies of metric values mi. This design, however, does not keep

track of which subpopulation Qj each mi maps to. As a result,a universal sketch will return

the same estimations for all subpopulations whose data it stores. Our heuristic is simple:

Instead of updating each universal sketch with mi, we can use a more fine-grained key, i.e.,

the concatenation of the metric value and its corresponding subpopulation. Algorithm 2

(line 8) highlights this change in the corresponding sketch method. This way, heavy hitter

heaps will maintain heavy counts for each (Qj, mi) pair and will be able to differentiate

between them at query time.

Algorithm 2: Hydra-sketch Algorithm with Heuristic

1 Generate r pairwise independent hash functions: h1 . . . hr : [n]→ [0, w)

2 function UpdateHeuristic(Data point 〈d1, d2, . . . , dD, mi〉, HydraSketch

HS)

3 r ← HS.r; w ← HS.w; s← HS.sketch

4 {Q1, . . . ,Q2D} ← Fanout(〈d1, d2, . . . , dD〉)

5 for each Qj do

6 for k ← 0 to r − 1, in parallel do

7 USk ← s[k][hk(Qj)]

8 USk.update(Qj,mi)
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3.4.3 Reducing Runtime Bottlenecks

To illustrate Hydra’s bottlenecks, we run our system prototype using a real-world CAIDA

trace (which is also used in §3.5). We configure Hydra-sketch using the strategies from

§3.3.6 and measure the CPU time of different Hydra operations. Table 3.3 summarizes

our observations.

Worker Nodes Frontend Node

Operation CPU time Operation CPU Time

Heap Updates 34% Sketch Merging 24%

Hashing 29% Deserialization 23%

Read Stream 15% Communication 12%

Table 3.3: Analysis of Hydra’s bottlenecks.

1. Worker Nodes. During data ingestion, we observe that approximately 15% of CPU

time is dedicated to data reading and fan-out and approximately 75% is spent

on sketch updates. The remaining time is spent on framework-specific operations.

Breaking down sketch-update time further, we observe that hashing consumes 29%

of this time, and the remaining 34% is spent on updating the top-k heavy hitter

heaps. These numbers are are consistent with our expectation. For every data point,

Hydra-sketch runs O(r × L) hashing and heap update operations, both of which

are CPU-heavy.

2. Frontend Node. At the frontend node, ∼60% of CPU cycles is spent on sketch merg-

ing, deserialization and communication. In particular, we see that the communication

channels from the frontend to the worker nodes take up approximately 12% of CPU

time. Data deserialization and sketch merging take up 50% of CPU time.

The above analysis highlights that to fully extract Hydra’s potential, we need to address

non-trivial compute and communication bottlenecks. Below, we look at mitigating their
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impact on Hydra’s end-to-end performance though several practical optimizations.

3.4.4 Implementation Optimizations

Reducing overheads at worker nodes Reducing compute overheads in Hydra’s worker

nodes boils down to reducing hash computations and heap updates. To that end, we

introduce two optimizations to Hydra-sketch’s design:

1. One large hash per (Qj, mi) Pair: Updating Hydra-sketch with a (Qj, mi) pair

requires O(r × L) hash computations, r to identify the universal sketches to up-

date and up to L per universal sketch. In Hydra, we reduce the number of hash

operations to O(1) by computing one large 128-bit hash and breaking it down into

substrings of variable lengths and we treat each substring as a separate hash. Prior

analysis [81, 109] shows that different substrings from the same long hash provide

sufficient independence.

2. One layer update: In prior universal sketching implementations, the algorithm keeps

a heap to track frequent keys per layer. For each datapoint update, the universal

sketching needs to update one or more of its layers (two layers on average). In

Hydra-sketch, we follow the paradigm of [162] and observe that only the lowest

sampled layer is required to update per datapoint. This technique reduces the number

of layers updated from two to one per datapoint, while providing an algorithmically

equivalent implementation. In §3.5, we show that this optimization improves total

Hydra runtime by 10%.

Reducing overheads at frontend node To accurately estimate queries, Hydra’s fron-

tend node fetches the Hydra-sketch instances, merges them into a global Hydra-sketch

and uses that to estimate the desired metrics. For instance, if a Hydra cluster consists of

N worker nodes and one frontend and within one data epoch, there are Q subpopulations
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to query, the total query time is:

tQuery = tFetch + (N − 1)tMerge + Q

α
tEstimate (3.3)

Eq. 3.3 assumes that N Hydra-sketch instances are simultaneously fetched and estimation

is parallelized by a factor of α. Therefore, minimizing overheads at the frontend node,

involves minimizing each of the three terms in Eq. 3.3. tFetch can be minimized with

appropriate compression and we apply the two optimization techniques we used at the

worker nodes for tEstimate. Below, we discuss our approach for reducing tMerge.

Merging two Hydra-sketch instances involves summing up corresponding counters, re-

computing the heavy elements, and re-populating the heavy hitter heaps. However, our

analysis shows that we can focus on merging only the heavy hitters in the heaps instead

of merging all the sketch counters. This incurrs negligible accuracy loss while improving

system runtime by 8%.

3.5 Evaluation

We evaluate Hydra’s end-to-end performance using both real-world and synthetic datasets.

We also provide a sensitivity analysis of Hydra’s design and evaluate our configuration

strategies, and performance optimizations. Our key findings are:

1. Hydra offers guaranteed estimation accuracy that is comparable to that of tradi-

tional, exact analytics engines (e.g., >95% accuracy with 90% probablity) for a broad

set of summary statistics at 1/10 of their $ cost.

2. Hydra’s memory usage scales sub-linearly with both dataset size and data subpop-

ulations. Further, Hydra’s query latency is 7-20× smaller than existing analytics

engines.

3. Hydra’s sketch configuration strategies ensure high estimation accuracy and low

memory footprint, often up to two orders of magnitude lower than that of an unop-

timized configuration.
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4. Hydra’s performance optimizations improve end-to-end system runtime by 30%

compared to a deployment that uses the basic Hydra-sketch design.

3.5.1 Experimental Methodology

Hydra testbed We run Hydra on a 20-node cluster on m5.4xlarge AWS servers [20].

For the end-to-end performance evaluation, we deploy optimally configured Hydra-sketch

instances to ensure 95% estimation accuracy with at least 90% probability for data sub-

populations for which G(Qj)/G(S) >= 0.001. We also use the performance optimizations

mentioned in §3.4. The input data consists of CSV files that are ingested from AWS S3.

Datasets We evaluate Hydra using two large real-world datasets and a synthetic trace.

Each dataset maps to a different usecase that can benefit from efficient multidimensional

analytics. First, we use CAIDA flow traces [3] collected at a backbone link of a Tier1

US-based ISP. The total trace is up to 130GB in size and flow data can be clustered in up

to approximately 5.6M subpopulations. Second, we use a real-world trace of video session

summaries corresponding to one major US-based streaming-video provider. The size of

the video-QoE trace is approximate 5GB, with data that we cluster in up to 700k sub-

populations. Third, we generate synthetic traces following Zipf distribution with varying

skewness (e.g., 0.7 to 0.99).

Summary statistics We evaluate Hydra’s accuracy using a set of 4 summary statistics,

including Cardinality, Entropy, L1 and L2 Norms. For each subpopulation, we compute

the precise value of each statistic as ground truth and then estimate the relative error with

respect to Hydra’s accuracy.

Evaluation baselines For our experiments, we compare Hydra against the following

baselines: (1) Spark-SQL: This is a traditional SQL implementation where incoming data

record is stored as a row in one (logical) data table; (2) Spark-KV: In this custom baseline,

we transform incoming data at ingestion time and maintain a Key-Value store where the

50



0.01 0.02 0.03 0.04 0.05
Subpopulation Size (G(Qi)/G(S))

0

1

2

3

4

5

Er
ro

r (
%

)

(a) L2-Norm.

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Subpopulation Size (G(Qi)/G(S))

2
4
6
8

10
12
14
16

Er
ro

r (
%

)

(b) Entropy.

0.002 0.004 0.006 0.008 0.010
Subpopulation Size (G(Qi)/G(S))

5

10

15

20

25

Er
ro

r (
%

)

(c) L1-Norm.

Figure 3.10: Error distribution for different data subpopulations per statistic. Red line

indicates 5% acceptable error threshold.

keys are distinct 〈Qj , mi〉 tuples and the values are their respective frequency counts; (3)

Uniform Sampling: We implement 10% uniform sampling at ingestion time and then apply

the Spark-KV approach to the sub-sampled data; (4) Druid: This is similar to Spark-KV

but uses Druid’s built-in capabilities (i.e., data roll-up) to generate the key-value store; (5)

One Universal Sketch per subpopulation: We implement a simple sketch-based approach

by allocating one universal sketch per subpopulation.

3.5.2 End-to-End Evaluation of Hydra

To evaluate Hydra end-to-end we investigate whether the system meets operators’ re-

quirements. To that end, we ask three key questions; (1) Does Hydra enable scalable

coverage across data subpopulations at a reasonable cost to the operator? (2) Does Hy-

dra provide high fidelity estimations across a broad set of summary statistics? (3) Does

Hydra offer interactive query latencies? We answer these questions below.
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Scalable coverage across subpopulations To estimate Hydra’s operational cost, we

estimate the $ cost of querying 4 summary statistics for the CAIDA dataset (100GB

size, 5.6M subpopulations) on our 20-node AWS cluster. Specifically, we measure the

ingestion and query times for Hydra and baselines and compute their normalized $ cost.

Figure 3.11 depicts Hydra’s cost-accuracy tradeoff. Hydra’s cost is approximately two

orders of magnitude smaller than Spark-SQL and one order of magnitude smaller than a

Druid baseline that leverages the framework’s built-in data roll-up feature. We observe

that Hydra’s operational cost is on par with a sampling approach that uniformly samples

1% of all data but whose error can be very large. In the case of the smaller video-QoE

dataset, Hydra is only 3× cheaper than the Spark-SQL baseline and approximately as

costly as Spark-KV. We attribute this smaller gap to the smaller size of the dataset.

Better

Figure 3.11: End-to-end cost analytics. The green-shaded region indicates the ideal oper-

ating regime for Hydra.

Generality and fidelity across summary statistics To evaluate Hydra’s ability to ensure

generality and high fidelity estimations across statistics, we estimate four different sets of

summary statistics. In Figure 3.12 we depict for each statistic its mean error and standard
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deviation. For all application sets Hydra operates under the same resource budget and

configuration as described previously. Indeed, we find that estimating multiple summary

statistics does not incur accuracy reduction compared to when individual statistics are

estimated, thus highlighting Hydra’s generality and high fidelity. This is because the

information maintained in the universal sketches is statistic-agnostic and is equally used

for any (one or more) statistics of interest. We observe the same behavior for the video-QoE

dataset with a mean error across statistics of ∼6%.

AppSet 1 AppSet 2 AppSet 3 AppSet 45

0

5

10

15

20

25

30

Er
ro

r (
%

)

L2 Norm
Entropy
L1 Norm
Cardinality

Figure 3.12: HYDRA’s estimation error for the CAIDA dataset.

Figure 3.10 depicts the distribution of estimation error values for 3 summary statistics as

a function of the subpopulation’s normalized G-sum i.e., G(Qi)/G(S). Recall that the

ε value of Hydra-sketch determines the lowest threshold (in terms of G-sum) for which

Hydra offers accuracy guarantees. In our experiments, we configure Hydra-sketch to en-

sure 95% accuracy with 90% probability with ε = 0.001 and observe that our prototype’s

empirical accuracy meets the expected accuracy guarantees with the majority of subpop-

ulations. A larger ε would constrain the analysis to larger subpopulations. A smaller ε

would result in the opposite behavior.

Interactive estimation latencies Figure 3.13 illustrates Hydra’s runtime (ingestion and

query time) as a function of the dataset size and the number of data subpopulations

for the CAIDA dataset. We can see that Hydra’s query time is <10sec for 5.6 million
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Figure 3.13: Runtime for CAIDA dataset

data subpopulations, almost one order of magnitude (7×) smaller than that of Spark-KV.

Note that we do not report Spark-SQL results for dataset sizes larger than 25GB because

execution was always prematurely terminated by the framework. We encountered the same

issue for Druid and for dataset sizes larger than 60GB. However, even for a small input, the

querying latency of Spark SQL is 2 orders of magnitude larger than that of Hydra. Indeed

the small memory footprint of Hydra-sketch which often enables for a cache-resident data

structure offers the desired low estimation latency.

3.5.3 Detailed Analysis of Hydra-sketch

We evaluate Hydra-sketch across three axis. First, we compare Hydra-sketch’s mem-

ory footprint to that of our baselines. Second, we show that our configuration strategies

converge to a near optimal configuration for Hydra-sketch with respect to memory and

runtime. Last, we show that our performance optimizations reduce Hydra’s runtime by

27%.
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Memory footprint vs. subpopulations Figure 3.14 shows Hydra’s memory footprint

(and that of baselines) as a function of the number of subpopulations monitored for the

CAIDA dataset. Hydra is consistent with the theoretical sub-linear memory scaling as

both the dataset size and data subpopulations increase. Indeed, while we observe that

for smaller datasets, a Spark-KV implementation might be preferable in terms of memory

footprint (as the size of the sketch instances might even exceed that of the input), this

trend is very quickly reversed, turning Hydra into the better approach. Indeed, this is

an observation that is confirmed in the case of the video-QoE dataset where the optimal

memory footprint of Hydra-sketch is approximately the same to Spark-KV.
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Figure 3.14: Memory footprint given dataset size and subpopulations.

Configuration heuristics Figure 3.15 depicts the relationship between the memory foot-

print of Hydra-sketch and the resulting estimation error for different configurations. The

estimation error of the figure corresponds to the estimation of the L1-Norm of the CAIDA

dataset. Naturally, the optimal configurations are those that simultaneously minimize the

estimation error and Hydra-sketch memory footprint (encircled in graph and marked with

red stars). The orange diamond configuration is the suggested configuration based on the
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configuration strategies discussed in §3.3. We can see that our configuration strategies

result in a sketch configuration that lies within the set of optimal configurations. This

observation holds across all summary statistics and datasets.

Figure 3.15: Hydra’s configuration strategies ensure a configuration within the set of

optimal configurations

In addition, we investigate how sensitive Hydra-sketch is to changes in the properties

of the data stream. Specifically, we check whether Hydra-sketch needs to be frequently

reconfigured in order to adapt to the changing input data stream. For our experiment,

we initially configure Hydra-sketch optimally and, every 10 epochs, we estimate its error

gap, i.e., the difference between the latest estimation error and that of the initial, optimal,

configuration. Figure 3.16 shows the error gap as a function of the data epoch. We observe

that for the CAIDA dataset, the maximum absolute error gap across statistics is ∼3%

and argue that it is ultimately up to the operator to determine the frequency at which

Hydra-sketch needs to be reconfigured based on the accuracy objectives they set.

Analysis of performance optimizations Figure 3.17 depicts the cumulative improvement

in Hydra’s performance after applying the performance optimizations discussed in §3.4.
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Figure 3.16: Sensitivity of Hydra-sketch configuration to changing data epochs for CAIDA

dataset.

Each datapoint corresponds to a different Hydra-sketch configuration (the Pareto frontier

of Figure 3.15) and we run each configuration twice, once for the basic Hydra-sketch design

and once with the performance optimizations. We can clearly see that the performance

optimizations further reduce the memory footprint of Hydra-sketch and also the total

system runtime i.e., the sum of ingestion and query time.

Table 3.4 captures Hydra’s runtime reduction after each performance optimization. The

baseline is Hydra without optimizations and, overall, we see a total performance improve-

ment of 27%.

Baseline Heap-only Merge One Hash One Layer Update

100% 92% 81% 73%

Table 3.4: Runtime improvements with performance optimizations

Skewness of dataset Figure 3.18 highlights the difference in estimation accuracy for two

synthetic datasets generated with a zipfian distribution. The subpopulations are samples

from a zipfian distribution with parameters α = 0.7 and α = 0.99 respectively (a value of

α = 0 indicates a perfectly uniform distribution). Our experiment confirms our intuition
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Figure 3.17: Comparison of the Pareto frontiers of basic and the optimized Hydra-sketch

implementation for the same configurations.

that the more skewed dataset ensures a better (memory, error) tradeoff. In practice, many

real-world datasets are skewed and thus can benefit from being analyzed by Hydra.

3.6 Related Work

MapReduce-based analytics frameworks Starting with Apache Hadoop, there are vari-

ous frameworks for large-scale data analysis that are based on the MapReduce paradigm [87,

141]. Dryad [100] introduced the concept of user-defined functions in general DAG-based

workflows and SCOPE [61] provided a language and an SQL-query optimizer. Apache

Drill and Impala [111] in a similar fashion limit their operations to SQL variants. Apache

Spark [166] is a data-processing framework that leverages a DAG-based execution engine,

provides SQL optimizers and treats unbounded computation as micro-batches. Apache

Flink [60] builds on these ideas to enable pipelined streaming execution for batched and

streaming data, offers exactly-one semantics through checkpointing and supports out-of-

order processing. Similar to Spark, Apache Flink could be used as an alternative base

framework for Hydra.
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Figure 3.18: Impact of data skewness on Hydra’s memory footprint and runtime. We

use a synthetic dataset where subpopulation sizes are sampled from a Zipfian distribution

with parameter α.

Stream processing frameworks There are multiple stream processing systems both

commercial and academic. This line of research focuses on the architecture of stream

processing systems, attempting to answer questions about out-of-order management of

data in streams, fault tolerance, high-availability, load management, elasticity and more

[13, 14, 28, 38, 42, 48, 60, 98, 108, 124]. Many of these systems do not scale computa-

tion horizontally on clusters of commodity servers. Apache Storm [99] enables horizontal

scalability and compositional workflow but with weaker state consistency guarantees i.e.,

at-least-once processing. Fragkoulis et al. in their comprehensive survey outline past re-

search findings analyze the state of the art of stream processing engines [82]. The work on

stream processing engines is complementary to ours, as ideally such engines could serve as

a engine Hydra can be deployed on top of.

Data aggregations Aggregation-based queries appear in multiple existing streaming data

systems [35, 46, 56, 73, 91, 137, 161]. These systems can estimate statistics across var-

ious data subpopulations and motivate Hydra. Many of the above frameworks enable

approximate analytics but do not fully satisfy operators’ requirements. Hydra improves

the state of the art in multidimensional telemetry.

59



Sampling-based approaches There are multiple analytics frameworks that use sampling

to provide approximate estimations [30, 62, 129, 152]. BlinkDB [35] builds a couple of

stratified samples on the original data and executes the queries on the samples to reduce

query execution time. The number and sizes of the stratified samples are limited by the

storage budget specified when importing the data. STRAT [65] also uses stratified sampling

but instead builds a single sample. SciBORQ [142] builds biased samples based on past

query results and cannot provide any guarantees on its error margin.

Online aggregation Online Aggregation frameworks [93, 116, 133] proposed the idea of

continuously refining approximate answers at runtime. In these frameworks, it is up to

the user to determine when the acceptable level of accuracy is reached and to terminate

estimation. Naturally, this approach is unsuitable for multidimensional telemetry that

needs to estimate multiple statistics simultaneously across data subpopulations.

Data summaries Data “synopses” (e.g., wavelets, histograms, sketches, etc.) have been

extensively used for data analytics [34, 59, 71, 88, 101, 118, 151, 154]. These data sum-

maries can either be lossless or lossy and they aim at providing efficiency, especially for

multidimensional analytics. A key drawback of these approaches is that they are heavily

tailored to a very narrow set of estimation tasks and are not general. Gan et al. develop a

compact and efficiently mergeable quantile sketch for multidimensional data [84]. Ting et

al. with a similar motivation focus on cardinality estimation [148]. Also, few prior works

have also considered the idea of nested sketches to account for the combinatorial explosion

of data subpopulations [70, 147, 148]. However, these approaches do not offer neither high

fidelity estimations nor generality to statistics.

3.7 Conclusions

Today’s large-scale services and infrastructures require real-time estimations of a diverse set

of summary statistics across multiple subpopulations of their multidimensional datasets.
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However, the combinatorial explosion of data subpopulations due to increases in data

volumes and dimensionality makes it hard to offer multidimensional analytics at a reason-

able cost to the operator. Hydra is a sketch-based analytics framework that leverages

Hydra-sketch, a sketch-of-universal sketches that summarizes data streams in sub-linear

memory to the number of subpopulations. We show that Hydra is an order of magni-

tude more efficient in than existing analytics engines while ensuring interactive estimation

times. While Hydra is a general-purpose analytics framework, since viewership counts is a

summary statistic that Hydra can estimate, its applicability in video viewership analytics

is straightforward.
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Chapter 4

Proteas: A Real-Time Alerting

Framework for Video Viewership

Anomalies

As discussed previously, to sustain viewer engagement and maintain ad- and subscription-

driven revenue streams [75, 113, 117], Internet video providers monitor their infrastructure

to detect and diagnose incidents (e.g., ISP outages, buggy players) [6, 26], and to inform

mitigation efforts [102, 104].

Our conversations with analysts working in this domain highlight the need for viewership-

based analytics, to complement existing monitoring workflows and proactively identify

anomalies that would be missed otherwise (e.g., based on monitoring QoE metrics like

buffering time or startup latency [102, 104]). To see why, consider the following real-world

incidents: AV encoding errors can cause pixelation or missing audio, resulting in viewers

dropping out. Similarly, a platform failure, such as a provider’s authentication system

crash may result in viewers getting disconnected and viewership dropping. However, in

both cases delivery will not be impacted, available QoE metrics will continue to look normal

and the incident will go undetected. In addition, only considering QoE-based monitoring

may not always provide actionable insights to operators. For example, increases in buffer-

ing time during live events can either be due to technical issues (e.g., a buggy player device)
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or due to a flash crowd that stresses the available CDN resources. However, it is hard to

disambiguate these two scenarios just by looking at QoE metrics. In this case, flagging an

unexpected viewership surge could alert operators for upcoming QoE issues.

To this end, we envision a real-time alerting framework that detects and diagnoses such

viewership anomalies. However, as we noted in Chapter 1, realizing such a framework is

challenging given (i) the contextuality of anomalies and the non-stationarity of viewership

and (ii) the need for compact and actionable alerts. In this chapter, we discuss how we

address these challenges and present Proteas, an alerting framework for video viewership

anomalies. Our design builds on the following structural insights:

1. Shape persistence for anomaly detection: Despite the non-stationarity of viewer-

ship, we find that its underlying shape1 remains invariant over longer periods of time,

and can thus be leveraged as a basis for detection. By modeling this key structural

invariant using custom Gaussian Processes [139], we enable accurate, timely and

robust anomaly detection of viewership anomalies across multiple viewership groups.

2. Hierarchical group dependencies and spatiotemporal anomaly signatures for

diagnosis: A single logical event propagates predictably across viewership groups.

Using practical heuristics, we extract the set of candidate groups that best explain

an anomalous incident. Moreover, while viewership anomalies might be the result of

many different root causes, we observe that anomalies resulting from similar incidents

share common spatiotemporal features, allowing us to compile a library of anomaly

signatures. This enables associating each viewership incident to a small set of possible

root causes for further investigation.

We evaluate Proteas using real viewership data from 3 major content providers operat-

ing in Europe and USA. Our dataset spans a 13-week period (January-March 2020) and

also includes the onset of the COVID-19 outbreak in these continents. Obtaining ground

truth at this scale is a fundamental challenge and to this end, we corroborate our analysis

1By shape (§4.2), we refer to the structural form of the viewership timeseries after eliminating magnitude

variations.
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through (1) manual verification of anomalies by experts of a large video analytics firm,

(2) sentiment analysis of viewer behavior from Twitter, (3) cross-evaluation of detected

viewership anomalies with alerts on video-QoE metrics, (4) public holiday calendars and

(5) public databases providing information on content providers’ uptime.

The precision/recall analysis of our pilot study (§3.5) shows that under normal operating

conditions Proteas issues a practical (for the analyst) number of alerts with low false

positives (precision >86%) and practically no false negatives. Proteas outperforms the

closest state-of-the art alternatives by Twitter [95] and Netflix [25] both quantitatively in

terms of precision and qualitatively in terms of trust shown by expert analysts to Pro-

teas’s alerts over those issued by prior work (>95%). Our synthetic analysis shows that

the summarization component prunes out more than 99% of redundant anomalies and ac-

curately identifies the root-cause viewership group by classifying anomalies in 4 broad but

representative classes of events.

Proteas identified 3 large-scale technical outages that affected up to 50% of the content

provider’s viewers and were not caught by the existing alerting workflows of a major video

analytics provider. Proteas tracked flash crowds during popular live events (e.g., sports

games) before the corresponding QoE alerts were raised, thus exposing the need for resource

re-provisioning. Last, Proteas uncovered qualitative insights into the pervasive changes

in viewership caused by COVID-19.

4.1 Challenges of Viewership Analytics

While anomaly detection and diagnosis are not new problems, video viewership raises

several challenges that make it difficult to directly apply techniques from prior work.

Dataset To highlight these challenges, we use a real-world dataset consisting of 13 weeks

of viewership data from 3 major content providers CP{1,2,3}, two being US-based and one

national TV provider in northern Europe. For each content provider, our dataset contains
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Attributes Description

ISP ISP viewers receive their traffic from.

Site Content provider of requested video content.

City City where the viewer is located.

CDN CDN viewers receive their content from.

Player App/Web portal to access content.

Device e.g., iOS, AppleTv, RokuTV, HTML5 etc.

Protocol Bitrate streaming protocol (e.g., DASH).

Live Binary indicator of Live vs. VoD content.

Channel Channel in the content provider’s network.

Table 4.1: Video session attributes.

∼350 million individual video sessions which are grouped into viewership groups based on

the session attributes shown in Table 4.1. Overall, the dataset spans 6 large CDNs, 180

ISPs, 60 different cities, and 170 TV channels. §4.6 provides more details on our dataset

and discusses ethical considerations.

Detection challenges

Viewership exhibits two key properties that raise important detection challenges and com-

plicate the use of well-known timeseries anomaly detection techniques:

Contextual anomalies Viewership anomalies need to be seen in context. That is, in

addition to detecting a statistically unexpected rise/fall in the signal, the analyst also needs

to consider when that change appears in time i.e., its temporal context. To illustrate this,

Figure 4.1 shows two 30-min episodes of the same popular weekly TV show. At the start

and end of each episode, viewership exhibits sharp change points (marked in the top figure).

As such, these changes are expected events and should not be flagged as anomalous. On the

other hand, any other sharp drop/rise (as the one marked in the lower figure) should likely
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Figure 4.1: Example of viewership anomaly. Real viewership values not shown.

be flagged as an anomaly. More generally, the contextual nature of viewership anomalies

renders model-free anomaly detection techniques that only rely on short history windows

for detection ineffective.

Lack of stationarity The contextual nature of anomalies hints towardmodel-based anomaly

detection techniques that model what expected viewership looks like and use that knowl-

edge as a detection baseline. However, many model-based approaches rely on a stationarity

assumption [126]. That is, they assume that the statistical properties of the signal do not

change over time and, thus, historical data can be used as predictors of the future.

Indeed, our experiments using stationarity tests e.g., the Augmented Dickey Fuller test [83]

showed that viewership is non-stationary due to its large temporal magnitude variability.

For the same weekday, viewership values fluctuate greatly from week to week as the result

of exogenous factors, such as content popularity, weather, competing shows etc. with

differences in its magnitude being as high as 30%. Model-based techniques that assume

stationarity in the underlying signal would naturally try to capture this variability thus

resulting in inaccurate viewership baselines and false positives.
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Diagnosis challenges

Anomaly summarization The same anomalous incident can redundantly manifest itself

across overlapping viewership groups. To see why, consider the following real-world exam-

ple where a major content provider rolled out a buggy firmware update for its RokuTV

player which resulted in viewers on RokuTV (irrespective of geography) not being able to

access any content. While the event should only raise an alert for the 〈RokuTV〉 view-

ership group, anomalies were detected at multiple other viewership groups including (i)

finer partitions of the root-cause group (e.g., 〈RokuTV, NYC〉, 〈RokuTV, Comcast〉, etc.)

and (ii) broader viewership groups such as 〈ALL_viewers〉 (given that RokuTV is a major

player among streaming devices). Naively alerting on all such detected anomalies for all

viewership groups is clearly impractical as it unnecessarily increases analysts’ efforts to

diagnose the incident. Therefore, how do we efficiently summarize these alerts and identify

the viewership group that best describes the incident? In §4.4.1, we discuss why seemingly

intuitive approached proposed in prior work for other domains (e.g., ad-systems [53]) are

not a natural fit for viewership.

Root-cause attribution Ideally, an insightful alert should contain pointers to the inci-

dent’s potential root causes to help analysts investigate the event. However, associating

a viewership alert to candidate underlying events is not straightforward, e.g., how can we

disambiguate between a viewership drop that was the result of an outage or an encoding

error? The complexity of the streaming ecosystem, the possible external factors that can

trigger an anomaly and the lack of direct feedback from viewers as to why they stopped

streaming complicates the task of root-cause attribution.

4.2 System Overview

To fill this missing piece in the video analytics toolkit, Proteas’ design focuses on detect-

ing and diagnosing viewership anomalies at scale. Figure 4.2 depicts a high-level overview
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Figure 4.2: A conceptual view of Proteas and its components.

of Proteas and its two key components. The detection component leverages structural

insights about viewership to build models for real-time detection at a viewership group

granularity. The diagnosis component collects group-specific anomalies, summarizes them,

and produces candidate diagnoses to inform further investigation.

Inputs Proteas every minute receives batches of raw video sessions. Consistent with

the definitions of Chapter 2, a video session represents a user consuming one piece of

content, describes the content across a number of attributes (Table 4.1) and contains real-

time measurements of video QoE. as input. It groups video sessions by all combinations

of session attributes (Table 4.1) and for every resulting group it computes viewership as

the count of the group’s sessions. For each group, Proteas maintains a short timeseries

of recent viewership history (∼1 hour) that the new observation gets appended to.

Detection component (§4.3) The detection component tracks viewership across groups

and consists of two submodules. The offline submodule leverages a key structural invariant

regarding the shape of the viewership curve to learn a shape-based detection model per

viewership group. Each model is trained using summaries of the group’s historical view-

ership data and is fed into the real-time module that determines in near real-time (<10

minutes) whether a new observation is anomalous. To ensure that expected changes in
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viewership patterns are accounted for (e.g., due to content changes) and that viewership

baselines are always up-to-date, the offline component re-trains its models weekly. This

module outputs a list of potentially anomalous viewership groups per minute.

Diagnosis component (§4.4) The diagnosis component consists of two sub-modules,

summarization and root-cause attribution. Their goal is to provide the human analyst

with actionable anomaly alerts consisting of the most informative summary of detection’s

output. Given the list of anomalous groups from the detection step, Proteas’s summa-

rization uses a set of heuristics that model the propagation paths of a single anomalous

incident across groups to prune out redundant anomalies. The group that best explains the

event is read by root-cause attribution whose goal is to identify likely root-causes. To that

end, root-cause attribution relies on a library of anomaly signatures, (that is periodically

updated as more signatures are identified) and matches the observed new event to one or

more of these signatures.

4.3 Shape-Based Anomaly Detection

We now introduce the domain-specific observations about viewership that drive Proteas’s

detection mechanism.

4.3.1 High-level Insight: Shape Invariance

Our insight to tackle the contextual and non-stationary nature of viewership modeling is

that the shape of the viewership curve (formally defined below) is consistent over multiple

weeks. Figures 4.1 and 4.3 visually suggest that despite the variability in magnitude for

two viewership groups, the shape of each group is consistent across weeks.

While this visual result is appealing, a natural question is whether this observation holds

more generally across groups, weekdays, and content providers. To this end, we compute

the pairwise structural similarity of the viewership timeseries for all (group, weekday) tuples
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Figure 4.3: Intuition on the invariability of shape of viewership.

through their cosine distance. The cosine distance of two vectors quantifies structural

similarity through their angular difference. A value of 0 indicates a perfect match [9].

Figure 4.4 shows these results for two content providers and a testing period of 3 months.

Indeed, we see that (i) when the two curves are from the same group and weekday, the

cosine distance is both low and minimal and (ii) this observation does not necessarily hold

for any random choice of groups.

Problem formulation The above observation leads to a shape-based detection workflow

described below (Figure 4.5).

Let g indicate a viewership group and vd
g,w be its timeseries of viewership on weekday w

(e.g., Monday) and date d (e.g., March 23). Let T be the set of all timestamps in one day

and D the set of all dates. sd
g,w is a timeseries of the shape of viewership derived from vd

g,w

after eliminating magnitude variability for that day:

sd
g,w (t) = Zd(vd

g,w (t)) =
vd

g,w (t)−µd
g,w

σd
g,w

(4.1)

LetMg,w denote our prediction model trained using summaries of historical observations

of sd
g,w, ∀ d ∈ D (Figure 4.5). Mg,w takes as input a timestamp t and outputs the corre-

sponding estimate ŝg,w (t) along with a confidence bound ûg,w (t) as shown in (4.2):

Mg,w (t) = 〈ŝg,w (t), ûg,w (t)〉, ∀t ∈ T . (4.2)

71



0.0 0.2 0.4 0.6 0.8 1.0
Cosine Distance - CP1

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Split by (group, weekday)
Split by group
Unrelated Groups

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Distance - CP2

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Split by (group, weekday)
Split by group
Unrelated Groups

Figure 4.4: Viewership curves of the same group and weekday exhibit high structural

similarity, unlike unrelated pairs of viewership curves.

HavingMg,w, we can determine whether viewership vd
g,w (t′) is anomalous. First, we com-

pute sd
g,w (t′) using (4.1). In an offline setup where vd

g,w is apriori known, computing sd
g,w (t′)

is straightforward because µd
g,w and σd

g,w are known. However, in the online scenario where

µd
g,w and σd

g,w are unknown, they need to be approximated (§4.3.4). Ultimately, sd
g,w (t′) is

marked as anomalous if it doesn’t lie within the interval defined by ŝg,w (t′) ± c · ûg,w (t′),

where c is a parameter determining the width of the confidence bound [5].

Given this formulation, ideallyMg,w should be: (1) General to model a large (and a priori

unknown) number of shapes; (2) Automated and require minimal manual tuning to handle

100k+ viewership groups; (3) Robust to outliers in historical data and (4) Compact in

terms of space/time efficiency of storing and using models.

4.3.2 A Case for Using Gaussian Processes

Unfortunately, meeting all of these requirements is challenging (Table 4.2). To see why,

consider two candidate solutions. One class of work uses basis functions (e.g., polynomi-

als [54], wavelets [39], redundant dictionaries [37]) or PCA (as done by Netflix’s Surus [25])

to decompose and compactly model traffic timeseries using a few coefficients. However,
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Figure 4.5: Shape, training observations andMg,w.

General Automated Robust Compact

Decomposition N N Y Y

Pointwise Estimation Y Y N N

Vanilla GP ? Y ? Y

Proteas GP Y Y Y Y

Table 4.2: Strawman solutions vs. Proteas’s detection approach.

it is intractable to manually identify and tune the basis set for a large number of diverse

groups. On the other hand, we can use historical traces to compute an empirical point-wise

mean-variance for each (d,w, t) combination. Unfortunately, this is not resilient to outliers

as a single surge or missing data observation can skew our model. Furthermore, main-

taining these point estimates for a large number of groups is not compact. For instance,

ARIMA models are not robust to outliers and are not compact as they require long history

windows [167]. The same compactness argument applies to LSTM neural networks and

other deep learning-based approaches [86, 159].
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Why Gaussian Processes Rather than look for a universal basis function, we revisit the

idea of stochastic Gaussian Processes [89, 139]. Conceptually, a Gaussian Process (GP)

is a probability distribution over all possible shape functions. Due to this non-parametric

nature, GPs can model any shape with minimal apriori structural assumptions. GPs enable

simple, robust, and automated learning procedures that eliminate the need for manual

tuning [139].

Primer on GP Figure 4.5 visualizes a GP-based detection model to learn Mg,w from

history. The GP models both the underlying shape and the uncertainty such that, for any

unknown timestamp t′, we can produce (through interpolation) an ŝg,w (t) and appropriate

error bounds. We refer readers to [89, 139] for more details beyond this high-level primer.

The key assumption behind GPs is that each observation sd
g,w (t) is a sample drawn from

a normally distributed random variable Sg,w (t). Making a normality assumption is not

unreasonable. Recent work suggests using a student distribution but the performance

benefits are marginal [160]. Then, the entire timeseries sd
g,w then can be seen as a sample

drawn from the joint (Gaussian) distribution of the set of random variables Sg,w(T) :=

{Sg,w (t)}t, ∀ t∈T.

Let X ⊆ T be the set of all timestamps where viewership is observed and Y the set of

timestamps where viewership is unknown. We let Sg,w(X) and Sg,w(Y) be the vectors of

all random variables that correspond to timestamps in X and Y respectively. The joint

distribution Sg,w(T) then becomes:

Sg,w(T) :=

Sg,w(X)

Sg,w(Y)

 ∼ N (µ,Σ), where (4.3)

µ is the mean vector of the distribution and Σ its covariance matrix. For simplicity, µ is

commonly set to 0.

Given (4.3), making point estimates about ŝg,w (t′), t′ ∈ Y reduces to computing the

conditional expectation E[Sg,w(Y) | Sg,w(X), X, Y] at t′ ∈ Y . Then, ûg,w (t′) becomes the

variance of the conditional distribution at t′.
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4.3.3 Using Gaussian Processes in Proteas

Given this background on GP, two questions remain:

1. Modeling Sg,w with time-dependent noise: Traditional GP assumes that their

output is either noise-free or the noise is time-independent. In viewership, however,

noise levels depend on the time of day, which needs to be considered when modeling

Sg,w, without breaking the theoretical guarantees of GPs.

2. Modeling covariance Σ: The covariance matrix Σ is at the heart of a GP as it en-

codes the impact that neighboring observations have on viewership estimates at time

t′ [139]. To learn Σ, GPs commonly use appropriate kernels κ(t, t′, θ) i.e., covariance

functions that take as input a set of hyperparameters θ, timestamps t, t′ and return

the corresponding covariance between Sg,w (t), Sg,w (t′). Thus, modelingMg,w boils

down to a suitable choice of kernel(s) and optimizing their hyperparameters θ.

We discuss how we address these two key issues in Proteas.

Extending GP to support time-dependent variance We incorporate noise in our model

using the intuitive definition of the shape of viewership. We define Sg,w as follows:

Sg,w (t) := S̄g,w (t) + ε̄g,w(t) ∀ t ∈ T, where (4.4)

S̄g,w (t) ∼ N ( 1
|D|

∑
i

sdi
g,w (t), 0) and ε̄g,w(t) ∼ N (0, σ2

t )

Specifically, each latent random variable Sg,w (t), t ∈ X has a normal distribution whose

mean is the mean of historical shape observations at time t and a noise component σ2
t

equal to the standard deviation of sd
g,w (t), ∀ d ∈ D.

To extract the desired objectives ŝg,w (t′), t′ ∈ Y and ûg,w (t′), we first model the joint

Gaussian distribution of Sg,w(X) and Sg,w(Y). We use the notation KXY to refer to the

covariance matrix of Sg,w(X) and Sg,w(X) (and apply the same notational logic to all four

possible combinations of Sg,w sets). Formally:
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Sg,w(X)

Sg,w(Y)

 ∼ N (0,Σ), where (4.5)

Σ :=

KX +σ2
g,w(X)I KXY

KXY KY Y

.
Note that according to GP theory, the mean of the joint distribution can be safely set for

notational simplicity to 0. Using (4.3), the formulas for ŝg,w(t′) and ûg,w(t′) become:

ŝg,w(t′) = E[Sg,w(Y) | Sg,w(X), X, Y]

= KT
XY [KX +σ2

g,w(X)I]−1E[Sg,w(X)] (4.6)

ûg,w(t′) = V [Sg,w(Y) | Sg,w(X), X, Y]

= KY −KT
XY [KX +σ2

g,w(X)I]−1 KXY (4.7)

Choice of covariance kernel Kernels intuitively represent families of functions (e.g.,

periodic, differentiable etc.) and allow us to incorporate prior knowledge on the shape of

viewership. Note that the choice of kernel is a much less restrictive process in terms of prior

assumptions compared to strawman solutions [77]. We identify the following structural

characteristics that κ(t, t′,θ) should account for; (1) Decaying periodicity: Viewership often

exhibits a periodic structure with values dropping in early morning in order to rise again

during prime time hours; (2) Lack of smoothness: Viewership exhibits sharp change points

(e.g., at the beginning or end of a show) that need to be included; and (3) Time-dependent

noise. To address (1), we combine a periodic and a squared exponential kernel [18, 23]. To

capture (2), we add non-smoothness with a Matérn kernel [16]. Finally, for (3) we use a

white-noise kernel, tweaked to account for time-dependent noise [17]. Our choice of kernels

is as follows:
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κperiodic(t, t′) = α2 exp
(
−2 sin2(π| t− t′ |/p)

`2

)
(4.8)

κsqExp(t, t′) = γ2 exp
(
−(t, t′)2

2`2

)
(4.9)

κMatern(t, t′) = β2

Γ(ν)2ν−1 (
√

2ν(t, t′)
l

)νBν(
√

2ν(t, t′)
l

) (4.10)

κwNoise(t, t′) = σ2
g,w(X)I (4.11)

Proof of validity for noise kernel Typically, when defining a valid noise kernel the

resulting covariance matrix needs to be positive semidefinite. Below we prove that the

modified noise kernel above (where σ2
g,w(X)I is a function of the training timestamp) is

positive semidefinite. We now argue that the matrix inverse above is legitimate. First, it is

well-known that a covariance matrix is always a positive semidefinite matrix [139]. Second,

since σ > 0, σ2I is a positive definite matrix. As the sum of a positive semidefinite matrix

with a positive definite matrix is positive definite, XYZ is positive definite and therefore

invertible.

Final kernel version Kernels can be combined together through addition or multiplica-

tion [139] and the final version of our kernel is as shown below. After a choice of kernel

has bee made by the analyst, a fully automated fitting process is carried out to optimize

its hyperparameters θ [139].

κMg,w = κperiodic ∗ κsqExp + κMatérn + κwNoise (4.12)

4.3.4 Online Detection

Having learnt Mg,w, the next step is to use (4.1) to detect in real-time whether a newly

observed viewership value is anomalous or not. However, recall that the standardization

operator Zd is date-dependent, i.e., it requires knowledge of the (unknown) mean µdg,w and

the standard deviation σdg,w for the current date d, thus raising our next challenge.
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Figure 4.6: Lattice of session groups

To address this issue, we resort to a simple iterative algorithm for approximating Zd
g,w

for the current date. Our approach relies on the intuition that we can begin with an

approximation of µdg,w and σdg,w estimated with historical data of the most recent past

observation for that weekday (e.g., data from the past week) and refine these estimates

as new observations of the current date arrive. More specifically, we maintain a very

sparse representation of historical observations of raw viewership (e.g., sampled every 30

minutes for a total of 48 samples). Every 30 minutes we replace one stale observation with

the corresponding most recent viewership observation of the current date. This heuristic

enables us to compute an estimate of Zd that quickly converges to the optimal value.

4.4 Generating Actionable Alerts

Next, we present the Proteas’s diagnosis module. This module takes as inputs the set

of group-specific viewership anomalies and provides: (1) a summarized alert consisting of

the top-k viewership groups that best explain the incident and (2) a small set of likely root

causes.
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4.4.1 Summarizing Viewership Anomalies

An anomalous incident often manifests itself redundantly across multiple viewership groups.

Naively issuing an alert for every such anomaly increases the analysts’ workload for diag-

nosis and degrades the overall usability of the framework. For instance, in the case of the

buggy firmware update for RokuTV discussed in Chapter 2, the resulting outage (that was

only caught though viewership) manifested at more than 100 different viewership groups.

Naively raising 100 redundant alerts would compromise Proteas’s usability. Thus, we

need a mechanism that identifies the critical viewership group(s) that can best summarize

the detection anomalies. To see why this is challenging, consider two strategies from prior

work [53, 102, 104].

1. Summarize by group succinctness [102] Jiang et al. in their work on video QoE

suggest that an anomaly is best explained by the most succinct (i.e., in terms of

number of attributes) session group whose anomalous sessions, when removed, result

in the remaining groups becoming “healthy” (i.e., fraction of anomalous sessions

drops below a threshold). Quantifying a group’s “health” through its fraction of

anomalous sessions means we can freely remove subsets of sessions and measure the

resulting changes in that group’s health. In Proteas, however, such an approach

would alter the baseline shape of a group and would introduce additional complexity.

2. Summarize by “surprise” [53] Prior work by Bhagwan et al. in summarizing anoma-

lies in ad-systems argues that succinctness alone is insufficient and reports “surpris-

ing” data partitions that exhibit the greatest relative change with respect to its

expected value. This is built upon a domain-specific observation about ad systems,

that anomalies typically appear in coarse one-dimensional groups (e.g., at ISP or

CDN level). However, this does not hold in our scenario as anomalies can originate

both in coarser (e.g., viewership in SF drops) and in finer groups (e.g., NYC-based

viewers on Comcast using RokuTV have an outage).

While these strawman solutions do not directly apply in our context, we can learn from

them. From Jiang et al. we observe that video incidents manifest in a natural hierar-
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chical structure across the space of session attributes, which also applies to viewership

(Figure 4.6). From Bhagwan et al. we can build on the insight of finding a small/sparse

set of root causes that have most explanatory power. Yet, it is not clear how to define

the explanatory power of a group in our context. To that end, we build on the following

two observations: First, it is rare for multiple independent anomalous incidents to occur

simultaneously. That is, the set of underlying root-causes is sparse. This intuitively sug-

gests that most (if not all) anomalous events can be traced back to a few critical groups.

Second, anomaly propagation follows two natural structural rules:

1. Propagation to descending nodes. For each group g, each of its descendants ac-

counts for a fixed share of g’s viewership. When an anomalous incident originates at

g, each descendant will experience a viewership change proportional to their share

of g’s viewership. By the same token, the change propagates recursively to all de-

scendants in the hierarchy. In the 〈RokuTV〉 case, the anomaly also appeared at

〈RokuTV, Comcast〉, 〈RokuTV, Verizon〉, and all members of the finer 〈Player, ISP〉

set.

2. Propagation to parent nodes. The viewership of g’s parent is the sum of g’s view-

ership plus that of the parent’s other descendants with whom g shares the same

attributes2. As a result, when an anomalous incident originates at g, the parent

node experiences a change in viewership nominally equal to g’s. That changer, how-

ever, will be less pronounced as the relative change of viewership is smaller in the

larger group. By the same token, the change will propagate recursively up until the

root.

Using the above rules, our strategy for summarization boils down to quantifying for each

anomalous group g its Explanatory Power (EPg), a score that quantifies how well group g

explains the manifestation of the incident in the remaining anomalous groups. We use the

following heuristics to estimate EPg;

2If we partition the direct descendants of each node by session attributes, the sum of viewership within

each resulting partition equals the viewership of the node.
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1. Range of impact. If g explains the anomalous incident, the incident should (i)

simultaneously manifest in g’s direct descendants and (ii) the cumulative change

in traffic of the anomalous descendants, grouped by combination of attributes AC ,

is approximately equal to the change in g’s viewership. Intuitively, given the first

propagation rule, the fewer anomalous descendants g has, the lower its explanatory

power should be. We quantify this quantity as follows:

Hg,1 = min{#anomDescendants
#allDescendants }AC (4.13)

2. Surprise. If g explains the anomalous incident, its change in viewership i.e., the

difference between the predicted viewership value and the observed one, relative to

other anomalous groups should be large. This is inspired by the notion of “surprise”

introduced in prior work [53]. We quantify this measure of change as:

Hg,2 =
|V̂g − V obs

g |
max{|V̂g′ − V obs

g′ |}
(4.14)

Given these heuristics, we formally define the EPg as EPg = Hg,1 × Hg,2, where a higher

value of EPg indicates a better ability to explain the anomaly. Our heuristic computes

this for all groups and outputs the top-k groups. Since our goal is to identify a suitable

starting point for further investigation, we believe that releasing the top-k groups is a more

realistic approach than releasing only the top group. As we will see in §4.6, in practice,

the true answer lies within a small k (< 3).

4.4.2 Root Cause Suggestions

The final step is to annotate the summarized incident with candidate root causes. Since

many factors are invisible to Proteas (e.g., ISP upgrades), our goal in practice is not

exact root-cause attribution but to reduce the analyst’s overhead by providing a set of

candidates for further investigation.

Our high-level intuition is that each anomalous event can be associated with a set of

anomaly signatures. Consequently, we can match a new anomaly against a library of
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signatures learned from history to determine (in real time) a set of candidate root-causes.

For instance, in the RokuTV example, the intrinsic properties of the anomaly (e.g., its

shape, duration, start time, the critical viewership group etc.) potentially indicate that

the underlying root-cause is an outage. Based on our data-driven insights, we see that

this signature has two facets: (1) a spatial dimension capturing the groups that have been

impacted by the anomaly and their relationships in the group hierarchy; and (ii) a temporal

dimension such as its duration or its views-per-time pattern.

Spatial dimension of anomaly signatures An intuitive way to capture the spatial com-

ponent is to to enumerate the anomalous viewership groups. For instance, for our RokuTV

outage, we identify all the related anomalous groups. However, this approach cannot gen-

eralize to other occurrences of similar events; e.g., if FireTV manifested the same anomaly,

we cannot match the signature. Thus, we extend this basic idea and represent the spatial

characteristics of an anomaly signature at an attribute-level granularity (i.e., Device and

descendants), rather than specific groups (i.e., RokuTV). To this end, we create a hier-

archy of attribute groups and mark the nodes that contain anomalous groups. Matching

a new anomaly to an anomaly signature is a simple comparison of the fraction of shared

nodes.

Temporal dimension of signatures In practice, we find that the shape of the anomaly

remains largely consistent across affected groups. This has two implications with respect

to the anomaly’s temporal signature. First, to isolate a signature’s temporal component,

it suffices to characterize one of the affected groups. Second, matching an anomaly to our

library, requires a timeseries similarity metric.

However, there are two challenges. The detection time of an anomaly does not necessarily

coincide with the incident’s start time as viewership might have been anomalous for a while

before we flag it. Thus, to extract the temporal pattern of the anomaly, we also include a

short window of viewership history (empirically set to 15 mins) to ensure the onset of he

incident is not missed. Second, two similar events with the same temporal manifestation
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may still differ in duration, suggesting the use of Dynamic Time Warping (DTW) [52] for

comparisons.

Building a library of signatures Given this approach, we explain the workflow for boot-

strapping and maintaining a library for associating anomalous events with their respective

signatures. To bootstrap the library, we first generate “raw” signatures as described above

corresponding to different anomalies. Then, we systematically group together possibly

similar signatures, and ultimately determine whether there is a representative pattern that

can be associated with an anomalous event. To this end, we apply DTW across all pairs

of “raw” signatures and then apply a clustering algorithm on the resulting distances. Up-

dating the library, however, requires some analyst intervention. For every new event that

does not map to a known signature from our library, we defer to the analyst’s forensics

investigation to diagnose the event and add its signature to the library.

Our signature library consists of 4 broad categories of incidents; (1) Technical issues for

alerts warranting technical intervention; (2) Flash crowds, encompassing short-lasting view-

ership surges, scoped by the duration of the piece of content they manifest in; (3) Model

Drift for changes in viewership being the result of change in offered content or viewing

habits; (4) Measurement errors, which included short lasting drops due to the potential

loss of session batches or system updates etc.

4.5 Implementation

We implement Proteas on Apache Spark [166]. Proteas receives batches of raw video

sessions every minute which are then grouped by combinations of session attributes.

Detection There are two practical issues. First, with detection running every minute for

tens of thousands of groups per cluster node, we need compact models to ensure minimal

storing and fetching cost. Second, to capture model drift, Proteas needs to periodically

retrain models.
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Given our GP-based approach (§4.3), there is natural tradeoff between model fidelity and

the temporal granularity (i.e., size of the set of observed timestamps X). Intuitively if

X incorporates more prior observations, the higher the model fidelity. However, larger X

implies higher overhead to store necessary parameters. Empirically, we achieve a reasonable

tradeoff when timestamps in X are sampled at 5-minute intervals (∼ 5KB per group).

Any learning approach in practice has to tackle model drift; e.g., content popularity, or

viewership habits change over time. To that end, Proteas performs an offline retraining

of viewership models daily (of the subset of models corresponding to that weekday). Specif-

ically, for each timestamp in X, we recompute its summary statistics to incorporate the

most recent observations of the shape of viewership. To prioritize recent observations over

older ones, we estimate summary statistics using exponentially weighted moving averages

and standard deviations and observe that re-training is lightweight (<20 sec per group).

Diagnosis The diagnosis process begins the moment an anomaly is first detected. We

iteratively compare the current anomaly with entries in the library. For some events, our

confidence increases as the anomaly progresses over time. For other abrupt events (e.g.,

ISP outage), the onset of the anomaly is often sufficient in order for Proteas to reach

an accurate diagnosis soon (e.g., within 10 minutes of the onset). When we do not find

a reasonable match in the library, Proteas informs the operator of the need to start a

manual root-cause attribution analysis.

4.6 Evaluation

In this section, we show that Proteas is: (1) accurate with a mean True Positive Rate

(TPR)>86% in the common case; (2) adds value to operators, with≈50% of its alerts being

distinct from alerts by other QoE-tracking tools; (3) provides useful alerts, within minutes

after the incident’s onset; and (4) is usable as it produces a manageable volume of daily

alerts (up to 3 alerts per incident), thus preventing alert fatigue. We compare Proteas

with the two closest state-of-the-art alerting frameworks; (1) Twitter’s offline statistical
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anomaly detector [95] and (2) PCA-based Surus by Netflix [25] and show that Proteas is

more accurate than prior work and that analysts in a blind survey trust Proteas’s alerts

over those of prior work ≈93% of the time.

4.6.1 Methodology

We begin with a real-world study to assess the system’s overall value (§4.6.2) and comple-

ment it with synthetic, trace-driven sensitivity analysis of Proteas and its components

(§4.6.4).

Setup Table 4.3 summarizes key features of our real-world dataset. Our dataset comes

from three content providers offering different types of service; CP1 mostly offers VoD

content across three channels. CP2 is a Linear TV provider i.e., it combines scheduled

content and scheduled live transmissions under one channel. Finally, CP3 combines VoD,

scheduled content and live transmissions under 164 (regional and US-wide) channels.

Feature CP1 CP2 CP3

Dataset January - March 2020

Duration of Pilot March 2020 (4 weeks)

Geography USA EU USA

Session Attributes 7 7 9

Viewership Groups (Average) 3000 650 5500

Channels 3 1 164

Live/VoD ratio (Average) 0 0.2 10

Table 4.3: Proteas’s real-world dataset

Ethical considerations To the extent that the dataset tracks actual viewer behavior, our

dataset does concern real Internet users. All viewership data used in this work are covered

by NDAs prohibiting any re-sharing with 3rd parties even for research purposes. Further,
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raw viewership data have been reviewed and validated by the operator with respect to

GPDR compliance (e.g., no identifier can be associated to person), and data processing

only looks at viewership counts per combination of session dimension values. No personal

and/or contact information was available in the viewership data used for this study. The

data for the ground truth collection (e.g., Twitter) also entail user data but they are in

the public domain. We do not use user/poster names, only the contents relevant to the

incidents under evaluation.

Ground truth A key challenge in this domain is the lack of ground truth for real-world

anomalies. This challenge is not unique to our work and prior works attempt to address

this issue through manual data labelling [53, 95, 160]. For Proteas, in addition to expert

analysis, we leverage complementary sources of ground truth to augment this standard

approach and to reduce potential biases. Specifically:

1. Twitter-based sentiment analysis: During an outage, viewers often resort to Twitter

to express annoyance or to reach out to operators. We run a simple sentiment analysis

to expose viewer reactions that allow us to correlate a viewership alert with its ground

truth [132]. To reduce the risk of diluting our analysis with unrelated tweets (e.g.,

personal opinions about quality of show etc.), we, limit this analysis to providers’

public help-desk Twitter profiles. We do acknowledge the potential bias toward users

who are more active on Twitter.

2. Public downtime records: We collect uptime reports for Internet services from public

databases [10]. Given that video outages can result from many other related services

(ISPs, CDNs, content provider portals etc.), we collect downtime reports for all of

these services.

3. Video QoE alerts: Our third source of ground truth consists of video QoE alerts

that the analytics provider runs already. Given that some QoE issues can lead to

viewership drops (as viewers quit their sessions due to poor experience), this can help

validate some viewership alerts.
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4. Calendar of holidays and major events: Days like Thanksgiving are singular events

and tracking these enables interpreting Proteas’s alerts accordingly.

5. Blind review by expert: Finally, we leverage the expertise of 4 video analysts to

confirm the presence of an anomaly. To minimize biases in the labeling process, we

set up a 2-phase survey. First, the analyst is presented with the unlabeled timeseries

of the date of interest as well as recent timeseries corresponding to the same weekday

and is asked to identify anomalous segments (if any). Then, the analyst is presented

with the alerts issued by Proteas and the prior works we compare against (§4.6.2)

on that timeseries and is asked to mark the outputs they agree with (again, if any).

The events of the second phase of the survey were chosen and presented randomly

to ensure there was no association with the data of the first phase.

Labelling strategy We compile the ground truth as the union set of incidents from the

above sources and check whether a detected anomaly matches with any of the anomalies

in this set. If yes, we mark it as a True Positive (TP). Otherwise, we conservatively mark

it as a False Positive (FP). For anomalies in the ground truth set that do not match with

any of Proteas’s anomalies, we manually confirm the presence of a False Negative (FN).

This is because an anomaly in a different context (e.g., QoE metrics) might not necessarily

translate to a viewership anomaly. Naturally, we acknowledge that our labelling strategy

does not provide us with the perfect ground truth, but only with a subset of it.

Evaluation with synthetic trace To complement the pilot study, we also evaluate Pro-

teas with synthetic viewership data. Specifically, we leverage our understanding of view-

ership anomalies from the real-world dataset and build an anomaly generator that enables

injecting custom anomaly signatures on healthy segments of the original viewership trace.

This allows us to run a synthetic analysis with perfect knowledge of ground truth.

Accuracy metrics To evaluate the accuracy of Proteas (and of the baselines), we

measure its TP, FP and FN counts. In addition, we also compute the frameworks’
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precision (TP/(TP+FP)). For our synthetic analysis in §4.6.4, we also measure recall

(TP/(TP+FN)) and F-score [12, 19].

4.6.2 Pilot Study: End-to-End Evaluation

Metric W1 W2 W3 W4

Alerts 8 10 136 138

CP1 False Positives 1 1 22 50

Precision (%) 87.5% 90.9% 85.5% 73.4%

Alerts 25 23 63 59

CP2 False Positives 3 4 18 13

Precision (%) 89.2% 85.1% 77.9% 81.9%

Alerts 85 92 165 211

CP3 False Positives 17 15 42 85

Precision 83.3% 85.9% 79.7% 71.2%

Table 4.4: Proteas’s key accuracy metrics.

Table 4.4 summarizes Proteas’s key accuracy metrics per testing week (Wx) and content

provider (CPy). W1 and W2 reflect Proteas’s expected operational scenario. W3 and W4

correspond to onset of the shelter-in-place period due to COVID-19 in USA, thus a period

of fundamentally altered viewership patterns. Table 4.4 shows that in the common case,

the number of weekly alerts issued by Proteas is low. CP1 is a big VoD provider with

persistent viewership patterns and incurs the fewest alerts (<10 per week). CP2 and CP3

raise higher numbers of alerts in the common case. This is due to their higher percentage of

live content offered (which can be more unpredictable in terms of viewership). In addition,

in the case of CP3, alerts are often traced back to the provider’s many channels which are

not grouped together during summarization. Nevertheless, across all content providers,

we can say that the number of alerts raised results in a manageable workload for human

analysts.
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Figure 4.7: Comparison of end-to-end precision analysis.

We also observe that Proteas’s precision is consistently >85% in the expected operational

region indicating that Proteas incurs few false positives. During the pandemic period,

however, we see precision dropping slightly as a result of pervasive changes in viewership

behaviors. Regarding FN, we find that Proteas does not miss any major incidents.

Comparison with prior work We compare Proteas with (1) Twitter’s offline statistical

anomaly detector [95] and (2) PCA-based Surus by Netflix [25]. These prior works only

perform anomaly detection, so we combine their outputs with Proteas’s summarization

routine. Figure 4.7 shows the distribution of their daily precision values and shows that

Proteas consistently outperforms prior work. In the cases of CP1 and CP2 Proteas’s

median precision is 88% and 90% respectively whereas for CP3 it is 79%. On the other

hand, Twitter’s median precision for the three providers equals to 68.5%, 78% and 65%

respectively, and for Netflix’s Surus these values become 61%, 71% and 59%. Further

investigation of these precision gaps indicates that while prior work exhibits similar true

positives as Proteas, it produces higher numbers of false positives (all frameworks have

the same nominal sensitivity).

89



W1 W2 W3 W4
CP1

0.00

0.25

0.50

0.75

1.00

W1 W2 W3 W4
CP2

W1 W2 W3 W4
CP3

Sh
ar

e 
of

 T
P

Twitter QoE UpTimeDB Analyst

Figure 4.8: Breakdown of true positives by source of ground truth.

Trust in Proteas’s alerts In addition to precision, we measure the “trust” our 4 experts

show to each framework’s alerts. Recall that as part of ground truth extraction (§4.6.1),

experts were asked to choose between three different, anonymized outputs per incident (one

per framework examined), the ones that subjectively capture best each incident. Among

a sample of 30 different incidents, experts chose Proteas’s output ≈93% of the time and

also indicated that they would also agree with a competing framework for ≈45% of the

samples.

Value to content providers To quantify Proteas’s added value to an operator’s tool-

box, we measure what percentage of its true positives coincide with alerts issued by existing

QoE-tracking tools [102, 104]. Figure 4.8 illustrates the weekly breakdown of Proteas’s

true positives by source of ground truth. Indeed, we observe that in CP1’s case, over 50%

of viewership alerts were not caught by QoE tracking tools, whereas for CP2 and CP3

this percentage was approximately equal to 35%. This shows that Proteas substantially

complements QoE-based alerting workflows.

4.6.3 Anatomy of Anomalies

Table 4.5 analyzes Proteas’s True Positives. We look at viewership surges and drops

and examine the mean duration of each type of alert. Overall, we do not observe strong
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patterns in favor of surges or drops across the three content providers. In the case of

CP3, however, we note that the number of drops is generally comparable to the number of

surges. We attribute that to the fact that CP3 is the largest content provider of the three

with 164 different channels.

Dimension W1 W2 W3 W4

CP 1

Surges 72% 10% 94% 60%

Drops 28% 90% 6% 40%

Drop Duration (min) 58 20 23 38

Surge Duration (min) 36 10 50 88

CP 2

Surges 81% 11% 51% 71%

Drops 19% 89% 49% 29%

Drop Duration (min) 38 54 40 55

Surge Duration (min) 21 24 26 30

CP 3

Surges 53% 52% 65% 71%

Drops 47% 48% 35% 29%

Drop Duration (min) 38 54 40 55

Surge Duration (min) 21 24 26 30

Table 4.5: Characteristics of true positives

Figure 4.9 shows a breakdown by group dimensions of Proteas’s issued alerts and Fig-

ure 4.10 depicts a breakdown by anomaly signature. For CP1,W1 was marked by a number

of surge alerts during the airing of a popular show’s season finale. These alerts were raised

as geographically-localized flash crowds. Also, during W1, CP1 experienced a major de-

vice failure which resulted in device-related drop alerts. In W2, CP1’s viewership patterns

changed due to changes in offered content. This manifested as drops that were correctly

classified as model drifts. During W3 and W4, the newly-imposed, geographically-diverse

shelter-in-place orders in the US triggered large surges and pervasive changes in viewership

patterns (e.g., viewership surges during business hours and in devices generally used in the
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Figure 4.9: Breakdown of true positives by session attributes.

home). Proteas, categorized these surges both as model drift and flash crowds.

The alerts of CP2 and CP3 tell us a different story given their frequent live content trans-

missions. CP2 airs live shows at fixed time-slots during the day (e.g., daily news, sports).

During W1, Proteas raised multiple flash crowd alerts during the transmission of Cham-

pion’s League soccer games. On the other hand, the high numbers of drop alerts during

W2, were attributed to the cancellations of multiple live transmissions due to COVID-19.

Note thet CP2 is based in Europe and measures were taken earlier than in USA. Similar

to CP1, we also observe shifts in the use of devices, generally found in the home (e.g.,

AppleTV, Chromecast etc.). W3 and W4 are marked by sudden flash crowds when CP2

aired its evening news. Similarly, the key observation about CP3 is the rise in surges during

W3 and W4 due to flash crowds in specific channels dedicated to daily news, stock market

etc.

Analysis of anomaly signatures In the case of CP1, Proteas correctly classified surges

during W1 as flash crowds. In addition, Proteas correctly diagnosed all technical failures

CP1 experienced during the pilot (one device failure and one high-impact platform failure).

During the pandemic, Proteas classified smooth, persistent viewership surges as cases of

model drift whereas sharper surges (especially during the prime time zone) were classified

as flash crowds. In either case, analysts agreed that either diagnosis would be sufficient for
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Figure 4.10: Breakdown of true positives by anomaly signature.

content providers to re-provision resources as and when needed. Regarding CP2, >90% of

the surges of W1 were correctly associated with flash crowds during sports events whereas

in W2, drops were almost exclusively marked as model drift due to the cancellation of

live transmissions. Overall, our manual verification of Proteas’s root-cause attribution

showed that Proteas gave an acceptable diagnosis for ≈90% of all true positive alerts

and mis-classified the remaining 10%.

Analysis of false positives Perhaps unsurprisingly, Proteas’s false positives rose sig-

nificantly during W3 and W4 across all three content providers. Manual investigation of

these alerts showed that >85% of false positives could be traced back to the same cause.

Recall that during online detection (§4.3.4), we estimate the shape of viewership at a new

timestamp t′ using summary statistics of past weeks. In the common operating scenario,

this provides sufficiently accurate estimates but that hypothesis did not always hold during

W3 and W4. Due to the shelter-in-place order, total viewership showed a sharp increase by

40% which degraded the quality of online estimates for the shape of viewership.

Impact of COVID-19 on viewership The COVID-19 pandemic caused massive changes

in viewership [55, 80, 120]. Proteas detected large viewership surges during business

hours. These surges rolled out gradually across the US, first in Seattle, California, NY
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and finally elsewhere, thus tracking not only the progression of the pandemic but also the

political response. Second, we observed swift changes in content preferences, with multiple

flash crowd and model-drift alerts being traced back to news channels. Unsurprisingly,

we also saw a shift to home-centric players and devices (i.e., AppleTV, FireTV etc.),

unlike other types of players (mobile devices or custom-players for hotel entertainment

systems [11]).

4.6.4 Component-wise Sensitivity Analysis

To complement the pilot, we manually injected anomalies onto viewership. Specifically,

we generate a synthetic dataset by means of a custom anomaly generator that reproduces

anomaly signatures observed in the wild and superimposes them to healthy segments of

the original trace as follows:

Synthetic anomaly generation The synthetic anomaly generator that we use for our eval-

uation configures both the temporal and the spatial dimension of each generated anomaly.

Temporal dimension: With respect to the temporal dimension our generator has the

following configurable parameters:

1. Start time: The start time of the anomaly.

2. Duration: To configure the duration of the anomaly, we use a Markovian model where

we define the probability of remaining in an anomalous state for the next timestamp.

3. Directionality: This parameter determines whether the anomaly is going to be a

surge, drop or oscillate over time.

4. Change in magnitude: This parameter determines how far the viewership deviates

from the expected normalized w.r.t. the standard deviation.

5. Gradient: to simulate how sharp or smooth is the onset/recovery of the anomaly.

Spatial dimension: Once we generate the temporal signature, we leverage the propagation

mechanism discussed in §4.4.1 to spatially propagate the change to other viewership groups
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in the hierarchy.

Detection accuracy Figure 4.11 compares Proteas with several additional baselines:

Holt-Winters [64], ARIMA [167], regression using Fourier, Wavelet basis functions as well

as combinations thereof [37]. For Holt-Winters and ARIMA we used Python’s StatsModels

package [24]. Regarding Fourier and Wavelet (Debauchies and Haar) transforms we chose

the smallest set of coefficients that collectively accounted for 98% of the original signal’s

energy [39, 49]. We set the confidence bounds to 3 standard deviations from the mean

value. Figure 4.11 shows the resulting F-score (combining precision/recall [12]) and also

the precision and recall of the simulation.
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Figure 4.11: Detection accuracy using synthetic traces

Model accuracy vs. compactness As discussed in §4.3 there is a trade-off between the

size of the detection model and accuracy. Indeed, our experiments (shown in Table 4.6)
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indicate that accuracy drops sharply when the distance between two observations exceeds

5 minutes, making that the optimal sampling candidate for timestamps in X in terms of

accuracy and compactness.

Sampling period (min) 1 5 10 30 60

F-score 0.88 0.86 0.67 0.39 0.38

Table 4.6: Accuracy vs. compactness tradeoff

Summarization accuracy Table 4.7 shows accuracy of the summarization heuristics as a

function of k, the number of critical groups Proteas issues alerts for. These results repre-

sent 500 randomized tests across providers where the critical group was chosen at random

and an anomaly was injected and propagated as discussed in §4.4.1. In Table 4.7, we com-

pare our results with two competing approaches: (1) output the group that exhibits the

highest nominal change in viewership value (Naive Summarization) and (2) Adtributor [53].

Number of Top-k Groups 1 2 3 4 5

Proteas 0.5 0.92 0.98 1.0 1.0

Adtributor [53] 0.23 0.67 0.8 0.91 0.93

Naive Summarization 0.22 0.29 0.41 0.66 0.71

Table 4.7: Comparison of summarization accuracy results

Indeed, when k = 3, Proteas is almost guaranteed to identify the critical group. We

attribute the jump from k = 1 to k = 2 to the fact that the generator often picks a group

with only one descendant. That descendant (whose viewership is equal to that of its critical

parent) was the top choice as our heuristics would favor it over the parent. In these cases,

the critical parent node had the second highest EP score.
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4.7 Related Work

To the best of our knowledge, there is no prior work on real-time alerting workflows specif-

ically for anomalies on the time series of viewership. Nevertheless, below, we provide a

high-level overview of mechanisms for time-series anomaly detection and diagnosis.

Time-Series anomaly detection Anomaly detection, especially in timeseries is a classical

problem that has been extensively studied in many diverse domains and there are several

detailed surveys on this topic (e.g., [36, 62, 92, 96, 130]). Techniques like spectral pro-

cessing or wavelets, have been used in the field of signal processing and for internet traffic

patterns [39, 49, 97]. Other techniques e.g., Kalman filtering and PCA have also been pro-

posed as candidates for anomaly detection [25, 127]. Twitter, Facebook, Snapchat recently

released their own statistical technique for timeseries anomaly detection [21, 95, 153].

Anomaly summarization and root-cause analysis Previous research has also focused on

extensively analyzing root-causing in systems and networks [33, 45, 50, 106, 110, 131]. The

types of data and problems these focus on is orthogonal to our focus. More closely related

to our work is prior work on root-cause attribution and anomalies summarization in the

context of ad platforms [53]. Our notion of anomaly signatures and generating compact

summaries builds from this literature but customizes it for video viewership.

Internet video alerting workflows In the context of video streaming, other efforts have

focused on QoE. CFA leverages domain specific insights that enable accurate prediction of

video quality [104]. Other prior work has shown correlations between video quality metrics

and user engagement [47, 144]. There is also large literature in measuring video quality

in the wild [136, 163], quality issues [102], server selection [149] as well as techniques to

improve user experience [103, 164].
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4.8 Conclusions

Accurate detection and diagnosis of viewership anomalies can complement existing man-

agement tasks for Internet video providers, as it can provide unique insights that QoE

measurements cannot capture. However, the complex spatiotemporal relationships in video

viewership make this problem challenging, preventing the use of many conventional tech-

niques. Proteas identifies key structural insights about viewership to enable accurate

and real-time detection and diagnosis. Our evaluation and pilot studies with operators

suggest that Proteas outperforms many existing solutions.
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Chapter 5

End-to-End System Integration

In the previous chapters, we looked at each component of a multidimensional analytics

framework individually: In Chapter 3, we introduced Hydra, a sketch-based design for

provably accurate, multidimensional analytics. However, in designing Hydra, we did

not explore how well its approximate analytics combine with downstream tasks, such as

anomaly detection. In Chapter 4, we presented Proteas, an alerting workflow for video

viewership anomalies. Yet, since Proteas’s inputs were already pre-aggregated, precisely

estimated viewership counts, we did not investigate the impact of multidimensionality in

estimating viewership counts.

In this chapter, we are interested in determining to what extent the use of approximate,

albeit provably accurate, analytics can negatively impact the accuracy of downstream

anomaly detection. To that end, we prototype Integr, an end-to-end multidimensional

telemetry framework for timeseries anomaly detection that combines key design insights

of Hydra and Proteas. We demonstrate the feasibility of implementing accurate and

efficient end-to-end anomaly detection workflows using approximate analytics estimations.

5.1 System Overview

Integr implements approximate analytics estimation and anomaly detection, as shown in
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Figure 5.1: Integr design overview

Figure 5.1.

Inputs and outputs Integr ingests batches of multidimensional data streams on a per-

epoch basis. Every epoch, Integr implements analytics estimation as well as timeseries

anomaly detection workflows and outputs any data subpopulations that might be exhibiting

anomalous behavior.

Analytics estimation We implement Integr’s analytics component using Hydra. For

every data epoch, the component ingests a batch of multidimensional incoming data which

are then summarized across instances of Hydra-sketch. Then, given a set of analytical

queries (that it also receives as input from the operator), it estimates the corresponding

summary statistics of interest per subpopulation. An example of such a statistic can be

viewership counts. In addition to Hydra’s workflow, the estimation component imple-

ments two additional functions at the end of every epoch. First, it stores the merged

Hydra-sketch instance in case the user needs to retrieve data from that epoch in the fu-

ture. Second, it filters subpopulations and outputs estimates only for the ones it can offer

robust accuracy guarantees (i.e., the ones whose G − sum is greater than a user-defined

threshold).
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Anomaly detection This components implements various timeseries anomaly detection

algorithms using the system design principles as discussed in Proteas. In particular, it

processes the approximate estimations of the various per-subpopulation statistics from the

estimation component and uses model-based anomaly detection to detect the presence of

anomalies in each data subpopulation.

5.2 Implementation

Subpopulations {Q} 
Statistics   {g}

User API
Configure

Sketch
Merge

Summarize
Estimate

Training
Detection

Summarize
Estimate

Training
Detection

…

Timeseries 
Aggregation Output Alerts

53

Primary node

Worker node Worker node

Figure 5.2: Implementation of Integr

Analytics estimation In our implementation of the analytics estimation component, sim-

ilar to Hydra’s implementation, worker nodes implement data ingestion and query estima-

tion, whereas the frontend node is responsible for sketch merging as well as for estimating

per-subpopulation statistics. At the end of each epoch, after estimation results are re-

turned to the frontend node, Integr persists the corresponding merged Hydra-sketch

instance to storage in Amazon S3. This is to facilitate cases where the framework might
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need to re-create timeseries of the various per-subpopulation estimations, run historical

data analysis etc. Second, the frontend node filters the subpopulations for which it can

offer robust accuracy guarantees. To achieve that, the analytics component maintains one

additional instance of universal sketch that estimates the G-sum of the entire datastream.

Then, the frontend node compares each subpopulation’s G-sum against the datastream’s

in order to filter out subpopulations for which the system cannot offer robust accuracy

guarantees. Last, the frontend node maintains a dataframe that contains a window of

recent estimations per data subpopulation of interest. This dataframe is used by anomaly

detection module for model training.

Anomaly detection Given anomaly detection is a highly parallelizable task, we imple-

ment it at the worker nodes. Building on Proteas’ implementation, we focus on building

compact, per-subpopulation models to ensure minimal storing and fetching cost. To train

the anomaly detection models, our prototype uses the dataframe of per-subpopulation

timeseries data, that is populated by the estimation component. Then for each epoch, the

estimated values are checked against the anomaly detection model to detect the presence of

an anomaly. In our prototype, unlike Proteas, we focused on the generic implementation

of multiple different state-of-the-art timeseries anomaly detection workflows, instead of the

shape-based alerting workflow for video viewership.

5.3 Evaluation

We evaluate Integr’s end-to-end performance using two real-world datasets. Our key

findings are:

1. Integr offers similar resource and cost benefits as Hydra. In particular, Integr’s

memory usage per epoch is approximately an order of magnitude smaller than tra-

ditional Spark-based approaches and query latency is 8× smaller.

2. The use of provably accurate, approximate analytics does not result in noticeable de-
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Figure 5.3: Integr evaluation plan

terioration in Integr’s anomaly detection accuracy. Indeed, compared to a baseline

telemetry system that runs anomaly detection on precise analytics, an instance of

Integr that is configured to ensure 95% accuracy offers negligible deterioration in

anomaly detection accuracy (both precision and recall >0.97).

5.3.1 Experimental Methodology

Integr testbed Similar to Hydra, we run Integr on a 20-node cluster on m5.xlarge

AWS servers [20]. For the end-to-end performance evaluation, we deploy optimally con-

figured Hydra-sketch instances to ensure 95% estimation accuracy with at least 90%

probability for data subpopulations for which G(Qj)/G(S) >= 0.001. The input data

consists of CSV files that are ingested from AWS S3, once per data epoch.

Datasets We evaluate Integr using two large real-world datasets. First, we use CAIDA

flow traces [3] collected at a backbone link of a Tier1 US-based ISP. The total trace is 130GB

in size and flow data can be clustered in up to approximately 5.6M subpopulations. We

break down this dataset into 30 epochs of ∼4.5GB per epoch. Second, we use a real-world

trace of video session summaries corresponding to one major US-based streaming-video

provider. The size of the video-QoE trace is approximate 5GB, with data that we cluster

in up to 700k subpopulations and break down into 5 epochs of 1GB each.
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Experimental setup For our evaluation, we use as baseline a two-step telemetry workflow

that uses a traditional Spark-based workflow for analytics estimation. This component

ingests the same multidimensional stream, pre-aggregates them across subpopulations and

estimates the same per-subpopulation summary statistics. For the anomaly detection

component, we implement the following anomaly detection workflows:1

1. Rolling window anomaly detection. For this method, we are using a rolling window

of length 5 epochs to estimate the rolling mean and standard deviation of each

subpopulation’s timeseries. We set an anomaly threshold at 3 standard deviations

from the rolling mean.

2. One-Class SVM. One-class SVM is a variation of the regular SVM that can be used in

an unsupervised setting for anomaly detection. This technique first maps input data

into a higher-dimensional feature space, then obtains the optimal separating hyper-

plane in the feature space. The decision boundary is determined by support vectors

rather than the whole training sample, and thus is extremely robust to outliers.

3. K-means clustering. This method looks at the data points of the timeseries and

groups them into a predefined number of clusters K. Using Euclidean distances, we

add a threshold value to detect anomalies: if the distance between a data point and

its nearest centroid is greater than the threshold value, then it is an anomaly.

4. Twitter anomaly detection. This is an automatic timeseries anomaly detection algo-

rithm developed by Twitter that employs statistical learning to detect anomalies in

timeseries that contain inherent seasonal and trend components [95].

Evaluation metrics For each of the above techniques, we measure the precision (False

positives) and recall (False Negatives) of Integr when compared to the Spark-based base-

line. More specifically, we classify an anomaly as a false positive when it was marked as

anomalous by Integr but not by the baseline. Similarly, we classify an anomaly of the

baseline that was not captured by Integr is a false negative.
1Due to limitations with respect to reusing Proteas’s source code and data, we do not re-use Proteas’

workflow and scope our exploration to more generic timeseries anomaly detection.
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5.3.2 End-to-End Evaluation

Accuracy Figure 5.4 shows how the two frameworks compare across precision and recall

when running anomaly detection on the timeseries of L1-norm and entropy respectively.

Note that Integr’s analytics estimation has been configured to ensure at least 95% ac-

curacy. Our key observation is that for both datasets, accuracy values for both precision

and recall are on average >90%. This is a strong indicator that approximate estimations

of the estimated statistics have a negligible impact on the accuracy of anomaly detection,

despite their (bounded) estimation error.

Resource utilization Table 5.1 illustrates key performance and resource utilization num-

bers for Integr’s run with the CAIDA dataset. We observe that Integr’s memory

utilization is approximately 14% of the baseline whereas both the ingestion and the query

time are approximately 1/3 of the baseline. Note that given the relatively small size of each

data batch (5GB), Hydra’s benefits are not fully illustrated. Nevertheless, the observed

results are fully consistent with the resource utilization results of Chapter 3.

Baseline Integr

Memory Utilization ∼ 1.5GB 200MB

Ingestion Time ∼30 sec ∼11 sec

Query Time ∼12 sec ∼3 sec

Table 5.1: Comparison of resource utilization estimates (per data epoch).

5.4 Summary

In prior chapters, we focused on the design and development of each component of an

analytics framework separately. Integr showcases the benefits and shortcomings of an

end-to-end telemetry framework that builds anomaly detection workflows using approxi-

mate estimations. There are two key takeaways from this prototype. The first, is that

105



0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 M
et

ric Precision
Recall

Rolling Mean Twitter kMeans SVM0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 M
et

ric Precision
Recall

(a) L1-Norm.

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 M
et

ric Precision
Recall

Rolling Mean Twitter kMeans SVM0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 M
et

ric Precision
Recall

(b) Entropy.

Figure 5.4: Precision and recall compared to anomaly detection with precise estimations
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the use of a Hydra-inspired analytics estimation component ensure clear resource, per-

formance, and cost benefits to the end-to-end system. Second, the use of approximate

analytics does not translate to reduced anomaly detection accuracy. Indeed, the error of

Hydra’s estimations has a marginal impact on the accuracy of the downstream anomaly

detection task.
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Chapter 6

Reflections, Limitations and Future

Work

In this chapter, we first summarize the lessons learned from the design and implementa-

tion of the thesis contributions (Section 6.1) and then discuss limitations of our solutions

(Section 6.2). Last, we conclude this dissertation by identifying future research directions

(Section 6.3).

6.1 Lessons Learnt

Reflection #1: The increasing dimensionality of data streams dictates the need for

new telemetry paradigms.

The key motivation of this dissertation was the observation that existing telemetry frame-

works cannot cope with the combinatorial explosion of data subpopulations that result

from increases in data dimensionality. Existing telemetry either offers linear scaling capa-

bilities to data subpopulations, which is unsustainable from a cost perspective or, when

it resorts to approximations, cannot offer robust accuracy guarantees and/or generality

across statistics. This raises the need for newer designs for telemetry systems.
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Reflection #2: Sketch-based telemetry enables scalable designs with a good tradeoff

between accuracy, generality and efficiency

While sketching has been a known approach for approximate telemetry, it was not clear

how a sketch-based design could enable scalability in a multidimensional context. Our

sketch-of-sketches design that shows that we can achieve provable accuracy with sub-linear

(to the number of subpopulations) sketching primitives can be a starting point for further

improvements in sketch-based analytics.

Reflection #3: Full coverage across data subpopulations may not always be necessary

Operators see multidimensional analytics as a golden opportunity to ensure fine-grained

visibility in their data, ideally across all subpopulations thereof. In hindsight, we believe it

is worth investigating further whether full coverage is a strong requirement of telemetry. In

this thesis (and through the design of Hydra), we paraphrase a common systems design

principle "Optimize for the common case" and design a system that focuses on the most

important data subpopulations. In other words, we argue in favor of sacrificing accuracy

guarantees for a (non-deterministic) subset of subpopulations to maximize scalability and

efficiency benefits. In Hydra, these subpopulations are those exhibiting small G-sum

values.

Reflection #4: Effective alerting workflows require multiple complementary views of

the data

The motivation behind designing Proteas was the need to address the blind spots of

existing video-QoE workflows. Our analysis showed that viewership is indeed a valuable

indicator of anomalies. That is because it captures the reaction of viewers to an anomalous

incident and also because it quantifies the change in viewer engagement—one of the most

important performance indicators for content providers.
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Reflection #5: Shape-based detection workflows may be transferable to other do-

mains

A key challenge in detecting viewership anomalies is their contextual nature and the sig-

nal’s lack of stationarity. Ultimately, the shape persistence of the timeseries of viewership

enabled us to extract “blueprints” of expected viewership behavior and compare them with

new observations in order to detect anomalies. We speculate that such a property is not

limited to viewership but can be found in other domains as well e.g., anomaly detection in

electric power systems.

6.2 Limitations of this thesis

Limitation #1: The resource benefits of sketch-based analytics can depend on data

properties

While Hydra-sketch’s accuracy guarantees are data-agnostic, in practice we observe that

properties of the incoming data stream can have a direct impact on Hydra-sketch’s re-

source footprint. The best-case scenario for Hydra is when the distribution of subpopula-

tion sizes is skewed. In the case of a dataset with more uniformly distributed subpopulation

sizes, Hydra would deliver modest gains because it would require a substantially larger

amount of resources. Fortunately, we believe that most real-world datasets exhibit this

desirable skewness.

Limitation #2: The complex configuration space of Hydra-sketch.

Hydra-sketch is a data structure whose empirical performance depends critically on 6

configuration parameters. As a result, despite the configuration strategies that we pro-

vide and evaluate, we acknowledge that configuring Hydra-sketch can potentially be a

complicated and error-prone process, especially for cases where the framework might need

periodic re-calibration.
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Limitation #3: Operators show limited trust in approximate telemetry

While approximate analytics engines are not a newly introduced concept, research has

shown that user trust issues have stymied broader adoption [107]. While Hydra offers

robust accuracy guarantees in terms of analytics estimation, our end-to-end prototype

highlighted that sacrifices in accuracy cascade to downstream tasks and have the potential

to result in false positives or negatives in terms of service alerts. Ultimately, a practical

question to be answered is whether the cost of a false positive to the operator can erase

the benefits in terms of operating cost of an approximate analytics framework.

Limitation #4: The need to maintain one anomaly detection model per viewership

group

A key observation of Proteas was that the shape of the viewership was an intrinsic

property of each viewership group. Having established our GP-based anomaly detection

technique [139], a design decision behind the system was to train one model per subpopu-

lation. While Proteas’ detection models are compact, the number of models the system

needs to maintain scales linearly to the number of viewership groups. This can be prob-

lematic given the scalability challenge induced by multidimensionality. We hypothesize

that there is room to reduce the number of models needed, since viewership groups that

are close in the group hierarchy might exhibit similar viewership patterns.

Limitation #5: Root-Cause diagnosis

In Proteas, we observe that it is unlikely for more than one logical event to occur simul-

taneously. Based on this observation, we developed a classification module that associates

an anomaly signature with potential root causes. While we believe that such a process can

speed up and the diagnosis process and hint at possible root causes, root-cause attribution

is still an elusive and complicated task.
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Limitation #6: Cascading errors

In the end-to-end implementation of the telemetry framework, we observe that the ap-

proximate analytics estimations, while bounded in error, might cascade in the downstream

detection workflows. As discussed below, a possible direction for future work would involve

designing detection techniques that take the possibility of estimation error into account in

their workflow.

6.3 Suggestions for Future Work

Our overarching goal for multidimensional telemetry is to provide operators with accurate,

actionable, and affordable insights about their infrastructures. Our work in this dissertation

has laid some steps towards achieving that goal. To this end, we now identify the following

broad research directions:

1. Given the importance of efficient and provably accurate telemetry workflows, we

need to enhance analytics estimation techniques to further enable these capabilities

(Section 6.3.1).

2. The video streaming ecosystem is a complex one. While this dissertations introduces

a suite of tools and design proposals for video viewership analytics, we argue that

we still need to enhance our understanding of anomalies and information sources in

order to unlock more monitoring capabilities and facilitate diagnosis (Section 6.3.2).

6.3.1 Enhancing Analytics Estimation Techniques

Online adaptation of sketching primitives As we saw in Chapter 3, the empirical accu-

racy of Hydra-sketch, depends on its configuration which, in turn, depends on properties

of the data. As properties of the incoming data streams change over time, the configura-

tion of the respective sketching primitives needs to change accordingly. As future work, we

envision an adaptive sketch-based telemetry framework that tracks changes in properties
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of the input data stream and reconfigures sketching primitives on the fly.

Recent prior work by Aamand et al. [27] and Eden et al. [78] explore, at a theoretical

level, learning-based approaches and algorithms for automatic sketch configuration and

adaptation. These works show that it is possible to enable online adaptation of a sketching

primitive while maintaining formal estimation bounds. We believe that these theoretical

findings have the potential of being leveraged in a Hydra-like systems context in order to

enable the framework’s ability to adapt to stream changes.

Measure the impact of approximate analytics on downstream tasks While sketch-

based primitives offer robust accuracy guarantees on their estimations, the impact of the

approximation on downstream tasks (e.g., anomaly detection) remains an open question.

As future work, we believe it would be interesting to quantify and/or bound more formally

the resulting end-to-end accuracy of a telemetry framework that consists of different mod-

ules when one or more of these modules leverage approximate analytics. In other words,

in the presence of analytics modules that can introduce cascading errors, can we formally

reason about the end-to-end accuracy of the system?

Applicability of sketch-based telemetry in different domains In our work, we touted

that Hydra is a general-purpose framework for multidimensional telemetry. Given the

abundance of domains that can benefit of multidimensional telemetry (e.g., in-band net-

work monitoring [118, 119], low-power sensor deployments [162], edge computing etc.),

we believe it would be an exciting future direction to explore the potential benefits and

challenges of deploying Hydra in these domains. We provide some detailed examples

below:

1. In-band network telemetryWith network elements becoming increasingly programmable

and efficient in-network computation becoming a pragmatic and feasible target, we

see an important opportunity in exploring the possibility of deploying distributed

Hydra-like deployments for in-band, in-network telemetry. The goal of such de-

ployments would be to provide the necessary data to enable smarter routing, traffic
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engineering, network security or forensics. Yet, as prior work has shown [32, 125],

this can be a challenging vision given the heterogeneity and the different capabilities

in terms of programmability of network elements.

2. Low-power sensor deployments Wireless sensors have enabled several key appli-

cations. Due to their energy constraints, today’s sensor deployments communicate

occasional short samples or pre-determined summary statistics of the data they col-

lect. This means that computing every additional statistic at high fidelity incurs

additional communication, energy, and resource overhead. Given that sensor deploy-

ments could benefit from multidimensional telemetry, we believe it would be exciting

to explore how Hydra-sketch or similar primitives would behave in an environment

that is constrained in terms of available resources and energy but, still, needs to

produce efficient and general multidimensional analytics.

6.3.2 Enhancing Our Understanding of the Video Streaming Ecosys-

tem

In-depth classification of session attributes that cause anomalies The video streaming

ecosystem is a large and complex one [102, 104]. We argue that to improve our ability

to diagnose viewership anomalies (and more), it is worth further investigating anomaly

signatures to identify most common and/or important anomalous events and how they

manifest in terms of session attributes.

Automate the process of labeling anomalies and extracting ground-truth extraction

One of the most time consuming and arduous tasks in the development of Proteas was

identifying the ground truth to evaluate anomaly detection. Indeed, our process for iden-

tifying ground truth involved cross-checking many different metadata sources for every

detected anomaly. We believe that a tool that automates the labelling process would be a

practical and useful addition in an video operator’s toolbox.
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Extend viewership analysis to different types of video streams In Proteas, we in-

vestigated viewership anomalies from the perspective of content providers for TV. In par-

ticular, we focused on providers of Video-on-Demand content, as well as linear TV chan-

nels (where content is transmitted according to relatively fixed schedules). Nevertheless,

streaming video is not only limited to streaming TV; instead, some of the larger streaming

video providers are social media platforms as well as platforms like Twitch, YouTube etc.

To that end, it would be interesting to explore viewership patterns for such platforms and

whether our TV-related insights extend to these content outlets.

Faster adaptation to model drift While viewership patterns change slowly over time,

Proteas needed to periodically retrain its detection models in order to account for model

drift. Nevertheless, given in our implementation, detection models are trained with one

sample per week, adapting to model drift can be a long process. A possible avenue for

future work could involve exploring avenues for faster adaptation to model drift.

Collaborative workflows to consolidate information from different metrics Providing

operators with actionable insights alerts requires telemetry infrastructures that offer visi-

bility into the data from different angles. In video streaming, as we saw, this translates to

estimating and looking for anomalies in parallel across many different metrics and types of

data. Nevertheless, we observe that often these workflows operate independently of each

other. This is not surprising; telemetry infrastructures are often built incrementally, and

capabilities are being added based on what types of events or information are of interest to

operators. We believe that a possible avenue for future work would be to develop collabora-

tive workflows that combine information from existing, currently, independent, workflows

and, thus, simplify the information that arrives to the operators [74, 112, 157, 158].
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