Scaled Gradient Methods for Ill-conditioned Low-rank Matrix and

Tensor Estimation

Submitted in partial fulfillment of the requirements for
the degree of
Doctor of Philosophy
in

Electrical and Computer Engineering

Tian Tong

B.S., Electronic Engineering, Tsinghua University

Carnegie Mellon University

Pittsburgh, PA

February 2022



©Tian Tong, 2022

All Rights Reserved



Acknowledgments

It is the earnest love to mathematics and science that solidified my dedication to pursue the
truth. The journey is wonderful and memorable, brimming with plentiful guidance and supports.

First and foremost, I would like to express my deepest thanks to my advisor, Yuejie Chi, for
offering numerous brilliant ideas and lighting my road. She is enthusiastic about every work and
meticulous about every detail, as everything I aspire to be. I would like to thank my long-term
collaborator, Cong Ma, for enormous helpful suggestions and discussions. I would like to extend
my gratitude to my thesis committee (Yuejie Chi, Giulia Fanti, Sivaraman Balakrishnan, Yuxin
Chen) for shaping this work. I am grateful for generous supports from Office of Naval Research
(ONR), Army Research Office (ARO), Air Force Research Laboratory (AFRL), and National Science
Foundation (NSF).

In addition, I would like to acknowledge Yuejie’s group (Yuanxin Li, Maxime Ferreira Da
Costa, Harlin Lee, Vincent Monardo, Boyue Li, Laixi Shi, Shicong Cen, Diogo Cardoso, Pedro
Valdeira, Jiin Woo, Harry Dong, Lingjing Kong) for academic discussions and office camaraderie.
I would like to thank Yuwei Qin, Ruizhou Ding, Jiaqi Liu for extensive helps during my qualify-
ing exam and job search—the days we discussed mathematics and coding questions together are
unforgettable. I would like to highlight Laixi Shi, Shuhua Yu, Ran Xin, Yingsi Qin, Yuhang Yao,
Meiyi Li, Xiang Wang for accompanying me in Porter Hall and organizing outdoor activities such
as tennis, skiing, hiking, etc.—my life has become so beautiful since you came. I appreciate Yuxing
Zhang for being a great roommate and collaborating on course projects. I enjoy the time with my
tennis coach Mark Paull and my partner Yuting Bu. Finally, I would like to thank my parents for

their unconditional love.

TiAN TONG

iii



Abstract

Many problems encountered in machine learning and signal processing can be formulated as esti-
mating a low-rank object from incomplete, and possibly corrupted, linear measurements; prominent
examples include matrix completion and tensor completion. Through the lens of matrix and tensor
factorization, one of the most popular approaches is to employ simple iterative algorithms such
as gradient descent to recover the low-rank factors directly, which allow for small memory and
computation footprints. However, the convergence rate of gradient descent depends linearly, and
sometimes even quadratically, on the condition number of the low-rank object, and therefore, slows
down painstakingly when the problem is ill-conditioned. This thesis introduces a new algorithm:
scaled gradient descent (ScaledGD), which provably converges linearly at a constant rate indepen-
dent of the condition number of the low-rank object, while maintaining the low per-iteration cost
of gradient descent. In addition, a nonsmooth variant of ScaledGD provides further robustness to
corruptions by optimizing the least absolute deviation loss. In total, ScaledGD highlights the power
of appropriate preconditioning in accelerating nonconvex statistical estimation, where the iteration-
varying preconditioners promote desirable invariance properties of the trajectory with respect to

the symmetry in low-rank factorization.
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Chapter 1

Introduction

Most signal processing and machine learning tasks propose to solve a mathematical optimiza-
tion problem, for which gradient descent and its variants such as stochastic gradient descent and
momentum methods are the most popular algorithms. When the optimization problem is convex
and smooth, which is often the case in classical models, gradient descent is guaranteed to work
efficiently [Bec17]. On the other hand, modern machine learning models, like deep neural networks,
often require solving a nonconvex and nonsmooth problem. This leads to a rapid paradigm shift
in large-scale inference: heuristic nonconvex algorithms, instead of tractable convex approaches,
become increasingly more popular due to their superior efficiency and scalability. In general, non-
convex optimization problems cannot be solved efficiently. However, in practice, many important
nonconvex problems enjoy benign geometric landscape [ZQW20|, thus gradient descent and its
variants can solve them successfully. These competing facts indicate that often there are special
structures such that the optimization problems are not as hard as they seem. This thesis studies
a set of such problems categorized as follows, with specific questions called out to advance the

state-of-the-art.

e Many problems encountered in data science can be formulated as low-rank matriz estimation
[CLC19]. Examples include phase retrieval [SECT 15|, blind deconvolution [ARR14], robust prin-
cipal component analysis [CSPW11,CLMW11], low-rank matrix completion [CR09,DR16], and so
on. A common goal is to develop reliable, scalable, and robust algorithms to estimate a low-rank
matrix from highly incomplete, potentially corrupted and noisy observations. Broadly speaking,
one aims to recover a rank-r matrix X, € R™*"2 from a set of observations y = A(X,), where

the operator A(-) models the measurement process. It is natural to minimize the least-squares



loss function subject to a rank constraint:

minimize f(X) = 3| A(X) - yl3 s.t. rank(X) <, (1.1)
XERnlan

which is, however, computationally intractable in general due to the rank constraint. In the last
decades, convex relaxation approaches have been developed, where the basic idea is to replace the
rank constraint by a convex surrogate, e.g. a nuclear norm [CR09,DR16]. Such convex relaxation
approaches exhibit intriguing performance in many aspects, however, the parameter space is
often much larger than the target space. As the size of the matrix increases, the costs involved in
optimizing over the full matrix space (i.e. R™*"2) are prohibitive in terms of both memory and
computation. To cope with these challenges, one popular approach is to parametrize X = LR"
by two low-rank factors L € R™*" and R € R™*" that are more memory-efficient, and then to
optimize over the factors instead:

minimize L(L,R) = f(LR"). (1.2)
LER™ %7 RERm2 X"

Although this leads to a nonconvex optimization problem over the factors, recent breakthroughs
have shown that simple algorithms (e.g. gradient descent, alternating minimization), when prop-
erly initialized (e.g. via the spectral method), can provably converge to the true low-rank factors
under mild statistical assumptions. These benign convergence guarantees hold for a growing num-
ber of problems such as low-rank matrix sensing, matrix completion, robust principal component

analysis (robust PCA), phase synchronization, and so on.

However, upon closer examination, existing approaches such as gradient descent and alternating
minimization are still computationally expensive, especially for ill-conditioned matrices. Take
low-rank matrix sensing as an example: although the per-iteration cost is small, the iteration
complexity of gradient descent scales linearly with respect to the condition number of the low-rank
matrix X, [TBS™16]; on the other end, while the iteration complexity of alternating minimization
[JNS13] is independent of the condition number, each iteration requires inverting a linear system

whose size is proportional to the dimension of the matrix and thus the per-iteration cost is



prohibitive for large-scale problems. These together raise an important open question:

Can we design an algorithm with a comparable per-iteration cost as gradient descent, but con-
verges much faster at a rate that is independent of the condition number as alternating mini-

mization in a provable manner for a wide variety of low-rank matrixz estimation tasks?

In addition, due to the heavy-tailed nature of certain measurement operators, such as those
encountered in phase retrieval [CLS15] and quadratic sampling [SWW17], the least-squares for-
mulation mentioned above may suffer from a large smoothness parameter (and hence a large
condition number of the loss function) that scales at least linearly with respect to the ambi-
ent dimension, where the iteration complexity of gradient descent scales poorly both with the
dimension as well as the condition number of the low-rank matrix, leading to a conservative
choice of stepsizes and a high iteration complexity when the problem dimension is large. More-
over, the smooth formulation is not robust to corruptions. While there have been encouraging
activities [CCDT21, MWCC19, LMCC21, TMC21a] that try to alleviate these issues regarding
ill-conditioning, none of the existing first-order approaches are able to simultaneously remove
both sources of ill-conditioning and achieve fast convergence. In contrast, nonsmooth formula-
tions yield better conditioning in such problems and exhibit apparent benefits over their smooth

counterparts. This leads to the following important question:

Can we develop first-order methods for nonsmooth formulations that are guaranteed to converge
at a fast rate that is almost dimension-free and independent of the condition number, even in

the presence of corruptions?

Moving beyond matrix estimation, a natural higher-order generalization is tensors [KB09,SDLF*17],
which provide a powerful and flexible model for representing multi-attribute data and multi-way
interactions across various fields, play an indispensable role in modern data science with ubiqui-
tous applications in image inpainting [LMWY12|, hyperspectral imaging [DFL17], collaborative
filtering [XCH™10], topic modeling [AGH"14], network analysis [PFS16|, and many more. In
many problems across science and engineering, the central task is low-rank tensor estimation,

where the goal is to estimate a tensor X, € R™M*"2XX"K from its observations y € R™ given



by y ~ A(X,). Here, A(-) represents a certain linear map modeling the data collection process.
Examples include tensor completion [CLPC19, LM20] and tensor regression [HWZ20, ARB20].
There are intrinsic difficulties of estimating a tensor in many aspects, thus one hopes to answer

the question:

Can we develop a factored gradient-based algorithm that converges fast even for highly ill-
conditioned tensors with near-optimal sample complexities for tensor completion and tensor

regression?

1.1 Contributions and organization

In this thesis, we answer these questions affirmatively by proposing a nonconvex optimization
framework—scaled gradient methods, whose variants designed for various low-rank matrix and

tensor estimation tasks are described as follows.

e Low-rank matrix estimation. We set forth a competitive algorithmic approach dubbed Scaled
Gradient Descent (ScaledGD) which can be viewed as preconditioned or diagonally-scaled gradient
descent, where the preconditioners are adaptive and iteration-varying with a minimal computa-
tional overhead. We expect that the ScaledGD algorithm can accelerate the convergence for other
low-rank matrix estimation problems, as well as facilitate the design and analysis of other quasi-
Newton first-order algorithms. As a teaser, Figure 1.1 illustrates the relative error of completing
a 1000 x 1000 incoherent matrix of rank 10 with varying condition numbers from 20% of its
entries, using either ScaledGD or vanilla GD with spectral initialization. Even for moderately
ill-conditioned matrices, the convergence rate of vanilla GD slows down dramatically, while it is
evident that ScaledGD converges at a rate independent of the condition number and therefore is

much more efficient.

With tailored variants for low-rank matrix sensing, robust principal component analysis and
matrix completion, we theoretically show that ScaledGD achieves the best of both worlds: it
converges linearly at a rate independent of the condition number of the low-rank matrix similar

as alternating minimization, while maintaining the low per-iteration cost of gradient descent.
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Figure 1.1: Performance of ScaledGD and vanilla GD for completing a 1000 x 1000 incoherent
matrix of rank 10 with different condition numbers £ = 2,10,50, where each entry is observed
independently with probability 0.2. Here, both methods are initialized via the spectral method.
It can be seen that ScaledGD converges much faster than vanilla GD even for moderately large
condition numbers.
Our analysis is also applicable to general loss functions that are restricted strongly convex and
smooth over low-rank matrices. To the best of our knowledge, ScaledGD is the first algorithm that
provably has such properties over a wide range of low-rank matrix estimation tasks. At the core of
our analysis is the introduction of a new distance function that takes account of the preconditioners
when measuring the distance between the iterates and the ground truth. Numerical examples are
provided to demonstrate the effectiveness of ScaledGD in accelerating the convergence rate of ill-

conditioned low-rank matrix estimation in a wide number of applications. Details are presented

in Chapter 2, based on the paper [TMC21a).

¢ Robust low-rank matrix estimation. We propose scaled subgradient methods (ScaledSM) to
minimize a family of nonsmooth and nonconvex formulations—in particular, the residual sum
of absolute errors—which is guaranteed to converge at a fast rate that is almost dimension-free
and independent of the condition number, even in the presence of corruptions. We illustrate
the effectiveness of our approach when the observation operator satisfies certain mixed-norm
restricted isometry properties, and derive state-of-the-art performance guarantees for a variety of

problems such as robust low-rank matrix sensing and quadratic sampling. Details are presented



in Chapter 3, based on the paper [TMC21b].

e Low-rank Tensor estimation. We generalize ScaledGD to low-rank tensor estimation, and
show that it provably converges at a linear rate independent of the condition number of the
ground truth tensor for two canonical problems — tensor completion and tensor regression — as

3/2 jgnoring other parameter dependencies, where

soon as the sample size is above the order of n
n is the dimension of the tensor. This leads to an extremely scalable approach to low-rank tensor
estimation compared with prior art, which suffers from at least one of the following drawbacks:
extreme sensitivity to ill-conditioning, high per-iteration costs in terms of memory and computa-
tion, or poor sample complexity guarantees. To the best of our knowledge, ScaledGD is the first
algorithm that achieves near-optimal statistical and computational complexities simultaneously
for low-rank tensor completion with the Tucker decomposition. Our algorithm highlights the
power of appropriate preconditioning in accelerating nonconvex statistical estimation, where the
iteration-varying preconditioners promote desirable invariance properties of the trajectory with

respect to the underlying symmetry in low-rank tensor factorization. Details are presented in

Chapter 4, based on the paper [TMPB*21].

¢ Robust low-rank tensor estimation. We generalize ScaledSM to estimate the tensor fac-
tors by solving a nonsmooth and nonconvex composite optimization problem that minimizes the
least absolute deviation loss. The proposed algorithm—built on subgradient methods—harnesses
preconditioners that are designed to be equivariant w.r.t. the low-rank parameterization, and is
shown to achieve local linear convergence at a constant rate under the Gaussian design. Numeri-
cal experiments are provided to corroborate the superior performance of the proposed algorithm.

Details are presented in Chapter 5.

1.2 Notation

Before continuing, we introduce several notation used throughout the thesis. First of all, we use
boldfaced symbols (e.g. &) to denote vectors, boldface capitalized letters (e.g. X ) to denote matrices,

and boldface calligraphic letters (e.g. X') to denote tensors. For a vector v, we use ||v||o to denote



its £y counting norm, and ||v||2 to denote the o norm. For any matrix A, we use 0;(A) to denote
its i-th largest singular value, and omax(A) (resp. omin(A)) to denote its largest (resp. smallest)
nonzero singular value. Let A;. or A(i,:) (resp. A.; or A(:,j)) to denote its i-th row (resp. j-th
column). In addition, ||Al, [[Allr, [[All1,00 || All2,00, and || Al stand for the spectral norm (i.e. the
largest singular value), the Frobenius norm, the ¢; o norm (i.e. the largest ¢; norm of the rows), the
03 o norm (i.e. the largest ¢5 norm of the rows), and the entrywise {o, norm (the largest magnitude
of all entries) of a matrix A. Let Pgiag(A) denote the projection that keeps only the diagonal entries
of A, and Pofrdiag(A) = A — Pdiag(A), for a square matrix A. We denote

P.(A)= min ||A—A|? (1.3)
A:rank(A)<r

as the rank-r approximation of A, which is given by the top-r SVD of A by the Eckart-Young-
Mirsky theorem. We also use vec(A) to denote the vectorization of a matrix A. For matrices A, B
of the same size, we use (A, B) =}, A; ;B; j = tr(AT B) to denote their inner product. The set
of invertible matrices in R"*" is denoted by GL(r).

Let a Vb = max{a,b} and a A b = min{a,b}. Throughout, f(n) < g(n) or f(n) = O(g(n))
means |f(n)|/|g(n)] < C for some constant C' > 0, f(n) 2 g(n) means |f(n)|/|g(n)] > C for some
constant C' > 0, and f(n) < g(n) means C; < |f(n)|/|g(n)| < Cy for some constants C7,Cy > 0.
Additionally, f(n) < g(n) indicates |f(n)|/|g(n)| < ¢ for some sufficient small constant ¢ > 0,
and f(n) > g(n) indicates |f(n)|/|g(n)| > C for some sufficient large constant C' > 0. We use
C,C1,0C5,¢,c1,c0 ... to represent positive constants, whose values may differ from line to line. Last
but not least, we use the terminology “with overwhelming probability” to denote the event happens

Cc2

with probability at least 1 — cin™

1.3 Reproducible research

The simulations are performed in Matlab with a 3.6 GHz Intel Xeon Gold 6244 CPU. The codes

are available at

https://github.com/Titan-Tong/ScaledGD.


https://github.com/Titan-Tong/ScaledGD

Chapter 2

Low-rank Matrix Estimation

2.1 Introduction

Low-rank matrix estimation plays a critical role in fields such as machine learning, signal processing,
imaging science, and many others. The goal is to recover a rank-r matrix X, € R™*"2 from
a set of observations y = A(X,), where the operator A(-) models the measurement process. In
consideration of memory and computation efficiency, we parametrize X = LR by two low-rank
factors L € R™*" and R € R™*" that are more memory-efficient, and then optimize over the

factors:

minimize L(L,R) = f(LR"). (2.1)
LeR™ XT,RERTL? X7r

In this chapter, we introduce scaled gradient descent (ScaledGD) algorithm for low-rank matrix

estimation. Given an initialization (Lo, Ry), ScaledGD proceeds as follows

Livy =L —nViL(Ly, R) (R Ry, 2.9

Ry = Ry —nVRrL(Ly, R)(L{ L),
where 7 > 0 is the step size and V L(L¢, Ry) (resp. VRL(Ly, Ry)) is the gradient of the loss function
L with respect to the factor L; (resp. R;) at the ¢-th iteration. Comparing to vanilla gradient
descent, the search directions of the low-rank factors L;, R; in (2.2) are scaled by (R, R;)™' and
(L L)™' respectively. Intuitively, the scaling serves as a preconditioner as in quasi-Newton type
algorithms, with the hope of improving the quality of the search direction to allow larger step sizes.

Since the computation of the Hessian is extremely expensive, it is necessary to design preconditioners



that are both theoretically sound and practically cheap to compute. Such requirements are met by
ScaledGD, where the preconditioners are computed by inverting two r x r matrices, whose size is
much smaller than the dimension of matrix factors. Therefore, each iteration of ScaledGD adds
minimal overhead to the gradient computation and has the order-wise same per-iteration cost as
gradient descent. Moreover, the preconditioners are adaptive and iteration-varying. Another key
property of ScaledGD is that it ensures the iterates are covariant with respect to the parameterization
of low-rank factors up to invertible transforms.

While ScaledGD and its alternating variants have been proposed in [MAS12,MS16,TW16] for a
subset of the problems we studied, none of these prior art provides any theoretical validations to the
empirical success. In this work, we confirm theoretically that ScaledGD achieves linear convergence
at a rate independent of the condition number of the matrix when initialized properly, e.g. using the
standard spectral method, for several canonical problems: low-rank matrix sensing, robust PCA,
and matrix completion. Table 2.1 summarizes the performance guarantees of ScaledGD in terms
of both statistical and computational complexities with comparisons to prior algorithms using the

vanilla gradient method.

o Low-rank matriz sensing. As long as the measurement operator satisfies the standard restricted
isometry property (RIP) with an RIP constant d9, < 1/(y/7Tk), where k is the condition number
of X, ScaledGD reaches e-accuracy in O(log(1/e)) iterations when initialized by the spectral
method. This strictly improves the iteration complexity O(rklog(1/€)) of gradient descent in

[TBST16] under the same sample complexity requirement.

e Robust PCA. Under the deterministic corruption model [CSPW11], as long as the fraction « of
corruptions per row / column satisfies o < 1/ (,ur3/ 2k), where u is the incoherence parameter
of X, ScaledGD in conjunction with hard thresholding reaches e-accuracy in O(log(1/e¢)) itera-
tions when initialized by the spectral method. This strictly improves the iteration complexity of

projected gradient descent [YPCC16].

o Matriz completion. Under the random Bernoulli observation model, as long as the sample com-

plexity satisfies ninap > (ur? V logn)unr?k? with n = ny V ng, ScaledGD in conjunction with



H Matrix sensing H Robust PCA H Matrix completion

. sample iteration corruption iteration sample iteration
Algorithms . . . . . .
complexity | complexity fraction complexity complexity complexity
1
GD nr2r? Kk log % eIy K log % (p V log n)punr?k? Kk log %
ScaledGD 2 9 1 1 1 2 2 92 1
(this Chapter) nrek log < e log < (uk?* Vlogn)unrs log =

Table 2.1: Comparisons of ScaledGD with gradient descent (GD) when tailored to various problems
(with spectral initialization) [TBS*16, YPCC16,ZL16|, where they have comparable per-iteration
costs. Here, we say that the output X of an algorithm reaches e-accuracy, if it satisfies || X — X, ||[r <
eor(X,). Here, n := n; Vny = max{ni,n2}, £ and p are the condition number and incoherence
parameter of X,.

a properly designed projection operator reaches e-accuracy in O(log(1/€)) iterations when ini-
tialized by the spectral method. This improves the iteration complexity of projected gradient

descent [ZL16] at the expense of requiring a larger sample size.

In addition, ScaledGD does not require any explicit regularizations that balance the norms of two
low-rank factors as required in [TBST16, YPCC16, ZL16|, and removed the additional projection
that maintains the incoherence properties in robust PCA [YPCCI16|, thus unveiling the implicit
regularization property of ScaledGD. To the best of our knowledge, this is the first factored gradient
descent algorithm that achieves a fast convergence rate that is independent of the condition number
of the low-rank matrix at near-optimal sample complexities without increasing the per-iteration
computational cost. Our analysis is also applicable to general loss functions that are restricted
strongly convex and smooth over low-rank matrices.

At the core of our analysis, we introduce a new distance metric (i.e. Lyapunov function) that
accounts for the preconditioners, and carefully show the contraction of the ScaledGD iterates under

the new distance metric.

Remark 1 (ScaledGD for PSD matrices). When the low-rank matrix of interest is positive semi-
definite (PSD), we factorize the matrix X € R"*" as X = LL", with L € R"*". The update rule

of ScaledGD simplifies to

Ly =Ly — VL L(L)(L] L)~ (2.3)

10



We focus on the asymmetric case since the analysis is more involved with two factors. Our theory

applies to the PSD case without loss of generality.

2.1.1 Related work

Our work contributes to the growing literature of design and analysis of provable nonconvex op-
timization procedures for high-dimensional signal estimation; see e.g. [JK17,CC18, CLC19] for re-
cent overviews. A growing number of problems have been demonstrated to possess benign ge-
ometry that is amenable for optimization [MBM18]| either globally or locally under appropriate
statistical models. On one end, it is shown that there are no spurious local minima in the op-
timization landscape of matrix sensing and completion [GLM16, BNS16, PKCS17, GJZ17|, phase
retrieval [SQW18,DDP20], dictionary learning [SQW15], kernel PCA [CL19] and linear neural net-
works [BH89,Kaw16|. Such landscape analysis facilitates the adoption of generic saddle-point escap-
ing algorithms [NP06, GHJY15,JGN'17] to ensure global convergence. However, the resulting iter-
ation complexity is typically high. On the other end, local refinements with carefully-designed ini-
tializations often admit fast convergence, for example in phase retrieval [CLS15, MWCC19], matrix
sensing [JNS13,ZL15, WCCL16], matrix completion [SL16,CW15 MWCC19,CLL20,Z116,CCF*20],
blind deconvolution |[LLSW19, MWCC19|, and robust PCA [NNS*14, YPCC16,CFMY21]|, to name
a few.

Existing approaches for asymmetric low-rank matrix estimation often require additional regu-
larization terms to balance the two factors, either in the form of §||LTL—R" R||Z [TBS*16,PKCS17]
or 3| L||# + 3| R||# [ZLTW18, CCF*20, CFMY21|, which ease the theoretical analysis but are often
unnecessary for the practical success, as long as the initialization is balanced. Some recent work
studies the unregularized gradient descent for low-rank matrix factorization and sensing including
[CCD*21,DHL18, MLC21|. However, the iteration complexity of all these approaches scales at least
linearly with respect to the condition number x of the low-rank matrix, e.g. O(k log(1/¢€)), to reach
e-accuracy, therefore they converge slowly when the underlying matrix becomes ill-conditioned. In
contrast, ScaledGD enjoys a local convergence rate of O(log(1/¢)), therefore incurring a much smaller

computational footprint when  is large. Last but not least, alternating minimization [JNS13,HW14]

11



(which alternatively updates L; and R;) or singular value projection [NNS*14, JMD10| (which op-
erates in the matrix space) also converge at the rate O(log(1/¢)), but the per-iteration cost is much
higher than ScaledGD. Another notable algorithm is the Riemannian gradient descent algorithm
in [WCCL16|, which also converges at the rate O(log(1/€¢)) under the same sample complexity for
low-rank matrix sensing, but requires a higher memory complexity since it operates in the matrix
space rather than the factor space.

From an algorithmic perspective, our approach is closely related to the alternating steepest
descent (ASD) method in [TW16| for low-rank matrix completion, which performs the proposed
updates (2.2) for the low-rank factors in an alternating manner. Furthermore, the scaled gradient
updates were also introduced in [MAS12,MS16] for low-rank matrix completion from the perspective
of Riemannian optimization. However, none of [TW16, MAS12, MS16] offered any statistical nor
computational guarantees for global convergence. Our analysis of ScaledGD can be viewed as pro-
viding justifications to these precursors. Moreover, we have systematically extended the framework

of ScaledGD to work in a large number of low-rank matrix estimation tasks such as robust PCA.

2.1.2 Chapter organization

The rest of this chapter is organized as follows. Section 2.2 describes the proposed ScaledGD
method and details its application to low-rank matrix sensing, robust PCA and matrix completion
with theoretical guarantees in terms of both statistical and computational complexities, highlighting
the role of a new distance metric. The convergence guarantee of ScaledGD under the general loss
function is also presented. In Section 2.3, we outline the proof for our main results. Section 2.4
illustrates the excellent empirical performance of ScaledGD in a variety of low-rank matrix estimation

problems. Finally, we conclude in Section 2.5.

2.2 Scaled Gradient Descent for Low-Rank Matrix Estimation

This section is devoted to introducing ScaledGD and establishing its statistical and computational
guarantees for various low-rank matrix estimation problems. Before we instantiate tailored versions

of ScaledGD on concrete low-rank matrix estimation problems, we first pause to provide more

12



insights of the update rule of ScaledGD, by connecting it to the quasi-Newton method. Note that

the update rule (2.2) for ScaledGD can be equivalently written in a vectorization form as

(R/R) ' ® I, 0
vec(Fit1) = vec(Fy) —n vec(VEL(F))
0 (L{ L)~ ® In,
= vec(Fy) — nH; ' vec(VEL(F})), (2.4)

where we denote Fy, = [L], R/]T € R(M+72)x7 and by ® the Kronecker product. Here, the block

diagonal matrix H; is set to be

(R/Ry) ® I, 0
t =

0 (L] L) ® I,

The form (2.4) makes it apparent that ScaledGD can be interpreted as a quasi-Newton algorithm,

where the inverse of H; can be cheaply computed through inverting two rank-r matrices.

2.2.1 Assumptions and error metric

Denote by U, X, V., the compact singular value decomposition (SVD) of the rank-r matrix X, €
R™*"2  Here U, € R™*" and V, € R™*" are composed of r left and right singular vectors,
respectively, and 3, € R™*" is a diagonal matrix consisting of r singular values of X, organized in

a non-increasing order, i.e. 01(X,) > -+ > 0,(X,) > 0. Define
k= 01(Xy)/or(Xy) (2.5)
as the condition number of X,. Define the ground truth low-rank factors as

L* = U*E}(/2u and R* = ‘/;21/27 (26)

13



so that X, = L, R, . Correspondingly, denote the stacked factor matrix as

L,
F, = € R(mtn2)xr, (2.7)

R.
Next, we are in need of a right metric to measure the performance of the ScaledGD iterates
F, = [L],R]]". Obviously, the factored representation is not unique in that for any invertible
matrix @ € GL(r), one has LRT = (LQ)(RQ~T)". Therefore, the reconstruction error metric
needs to take into account this identifiability issue. More importantly, we need a diagonal scaling in
the distance error metric to properly account for the effect of preconditioning. To provide intuition,
note that the update rule (2.2) can be viewed as finding the best local quadratic approximation of

L(+) in the following sense:

(Lt+1, Rt+1) = arggin £(Lt, Rt) + <VL£<Lt, Rt), L — Lt> + <VR£(L¢, Rt), R — Rt>

*a, <H<L ~ LR R+ (R - Rt><LILt>”2Hi> |

where it is different from the common interpretation of gradient descent in the way the quadratic
approximation is taken by a scaled norm. When L; ~ L, and R; =~ R, are approaching the ground
truth, the additional scaling factors can be approximated by LtT L; =~ X, and RtT R; =~ 3, leading
to the following error metric

TN [ ISA=TE Y [ ST R

Correspondingly, we define the optimal alignment matrix @ between F' and Fj as

Q = argmin H(LQ - L*)zi/QH2 n H(RQ—T - &)21/2“2 , (2.9)
QeGL(r) F F

whenever the minimum is achieved.! It turns out that for the ScaledGD iterates { F}}, the optimal

alignment matrices {Q;} always exist (at least when properly initialized) and hence are well-defined.

'If there are multiple minimizers, we can arbitrarily take one to be Q.

14



The design and analysis of this new distance metric are of crucial importance in obtaining the im-
proved rate of ScaledGD; see Appendix A.1.1 for a collection of its properties. In comparison, the
previously studied distance metrics (proposed mainly for GD) either do not include the diagonal scal-
ing [MLC21,TBS™ 16|, or only consider the ambiguity class up to orthonormal transforms [TBS™*16],

which fail to unveil the benefit of ScaledGD.

2.2.2 Matrix sensing

Assume that we have collected a set of linear measurements about a rank-r matrix X, € R™1*"2,

given as
y = A(X,) eR™, (2.10)

where A(X) = {(Ag, X)}}2, : R"X"2 — R™ is the linear map modeling the measurement process.
The goal of low-rank matrix sensing is to recover X, from y, especially when the number of mea-
surements m < nine, by exploiting the low-rank property. This problem has wide applications in

medical imaging, signal processing, and data compression [CP11].

Algorithm. Writing X € R™*™ into a factored form X = LR', we consider the following
optimization problem:

1 2
minimize L(F):fHA(LRT)—yH . (2.11)
FcR(n1+n2)xr 2 2

Here as before, F' denotes the stacked factor matrix [LT, R"]T. We suggest running ScaledGD (2.2)
with the spectral initialization to solve (2.11), which performs the top-r SVD on A*(y), where A*(-)
is the adjoint operator of A(-). The full algorithm is stated in Algorithm 1. The low-rank matrix

can be estimated as X7 = LTR;E after running 7T iterations of ScaledGD.

Theoretical guarantees. To understand the performance of ScaledGD for low-rank matrix sens-
ing, we adopt a standard assumption on the sensing operator A(-), namely the Restricted Isometry

Property (RIP).

15



Algorithm 1 ScaledGD for low-rank matrix sensing with spectral initialization
Spectral initialization: Let UyXoV,' be the top-r SVD of A*(y), and set

Lo =UySt?, and Ry = Vx> (2.12)

Scaled gradient updates: for t =0,1,2,...,7 — 1 do

Lit1 = Ly — nA*(A(LR]) — y)R(R] Ry) !,

2.13
Riy1 = R, — nA*(A(LLR]) —y) "Ly(L] L)™' 219

Definition 1 (RIP [RFP10]). The linear map A(-) is said to obey the rank-r RIP with a constant

5, €10,1), if for all matrices M € R™*"2 of rank at most r, one has
(1=0)[IME < ADM)|5 < (1+6,)|| M|

It is well-known that many measurement ensembles satisfy the RIP property [RFP10,CP11].
For example, if the entries of A;’s are composed of i.i.d. Gaussian entries A/(0,1/m), then the RIP
is satisfied for a constant &, as long as m is on the order of (ny + ng)r/62. With the RIP condition
in place, the following theorem demonstrates that ScaledGD converges linearly — in terms of the
new distance metric (cf. (2.8)) — at a constant rate as long as the sensing operator A(-) has a

sufficiently small RIP constant.

Theorem 1. Suppose that A(-) obeys the 2r-RIP with 62, < 0.02/(y\/rk). If the step size obeys

0 <n<2/3, then for all t > 0, the iterates of the ScaledGD method in Algorithm 1 satisfy

dist(F}, F.) < (1 — 0.69)'0.10,(X,), and HLthT ~ X,

I (1 —0.6n)'0.150,(X,).

Theorem 1 establishes that the distance dist(F3, F}) contracts linearly at a constant rate,
as long as the sample size satisfies m = O(nr?x?) with Gaussian random measurements [RFP10],
where we recall that n = n; V ng. To reach e-accuracy, i.e. |L;R, — X,||F < €0.(X,), ScaledGD
takes at most 7' = O(log(1/e)) iterations, which is independent of the condition number s of X,.

In comparison, alternating minimization with spectral initialization (Al1tMinSense) converges in
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O(log(1/e)) iterations as long as m = O(nr3k*) [JNS13], where the per-iteration cost is much

higher.? On the other end, gradient descent with spectral initialization in [TBST16] converges in
O(klog(1/e)) iterations as long as m = O(nr2k?). Therefore, ScaledGD converges at a much faster
rate than GD at the same sample complexity while requiring a significantly lower per-iteration cost

than AltMinSense.

Remark 2. |TBST16] suggested that one can employ a more expensive initialization scheme,
e.g. performing multiple projected gradient descent steps over the low-rank matrix, to reduce
the sample complexity. By seeding ScaledGD with the output of updates of the form X,;; =
P (Xr — A*(A(X;) —y)) after Ty = log(y/rk) iterations, where P, (+) is defined in (1.3), ScaledGD

succeeds with the sample size O(nr) which is information theoretically optimal.

2.2.3 Robust PCA

Assume that we have observed the data matrix

Y =X, + S,

which is a superposition of a rank-r matrix X, modeling the clean data, and a sparse matrix S,
modeling the corruption or outliers. The goal of robust PCA [CLMW11, CSPW11] is to separate
the two matrices X, and Sy from their mixture Y. This problem finds numerous applications in
video surveillance, image processing, and so on.

Following |[CSPW11,NNS*14, YPCC16|, we consider a deterministic sparsity model for S,
in which S, contains at most a-fraction of nonzero entries per row and column for some « € [0,1),

i.e. S, € 8., where we denote

So = {8 e R"*"™ :||S; |lo < any for all 4, and ||S. ;[jo < an; for all j}. (2.14)

2The exact per-iteration complexity of AltMinSense depends on how the least-squares subproblems are solved
with m equations and nr unknowns; see [LHLZ20, Table 1] for detailed comparisons.
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Algorithm. Writing X € R™*™2 into the factored form X = LR, we consider the following
optimization problem:

1 2
minimize  L(F,S) = - HLRT +5- YH . (2.15)
FeR(n1+n2)X7',SESa 2 F

It is thus natural to alternatively update F = [LT,RT]T and S, where F' is updated via the
proposed ScaledGD algorithm, and S is updated by hard thresholding, which trims the small entries
of the residual matrix Y — LRT. More specifically, for some truncation level 0 < & < 1, we define

the sparsification operator that only keeps & fraction of largest entries in each row and column:

A;j, if|Alij > |Ali(any), and |Alij > |AlGn,),;
(TalAl)i; = : (2.16)
0, otherwise

where |Al; (1) (vesp. |A[) ;) denote the k-th largest element in magnitude in the i-th row (resp. j-th
column).

The ScaledGD algorithm with the spectral initialization for solving robust PCA is formally
stated in Algorithm 2. Note that, comparing with [YPCC16|, we do not require a balancing term
|LTL — RTR||2 in the loss function (2.15), nor the projection of the low-rank factors onto the £2

ball in each iteration.

Algorithm 2 ScaledGD for robust PCA with spectral initialization
Spectral initialization: Let UyXoV,' be the top-r SVD of Y — 7,[Y], and set

Lo=Ux)? and Ry=V;52 (2.17)

Scaled gradient updates: for t =0,1,2,...,7 — 1 do
Si = TaalY — LR/,
Liyi = Li—n(LiR[ + S, — Y)R(R/ R))™", (2.18)
Riy1 =Ry —n(LiR/ +S, - Y) Ly(L/L;)".
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Theoretical guarantee. Before stating our main result for robust PCA, we introduce the inco-

herence condition which is known to be crucial for reliable estimation of the low-rank matrix X, in

robust PCA [Chel5].

Definition 2 (Incoherence). A rank-r matrix X, € R™*"2 with compact SVD as X, = U*ZLJ/*T

is said to be p-incoherent if

T r
2o < AL UM = 25, and [Villaoo < \/THV*HF _ [
n ny 2 9

The following theorem establishes that ScaledGD converges linearly at a constant rate as long

1U

as the fraction « of corruptions is sufficiently small.

Theorem 2. Suppose that X, is p-incoherent and that the corruption fraction o obeys a <
c/(ur3/?k) for some sufficiently small constant ¢ > 0. If the step size obeys 0.1 < 1 < 2/3,

then for all t > 0, the iterates of ScaledGD in Algorithm 2 satisfy

dist(F, F.) < (1 — 0.67)'0.020,(X,), and HLthT ~ X,

. < (1 —0.61)'0.030,(X,).

Theorem 2 establishes that the distance dist(Fy, Fy) contracts linearly at a constant rate, as
long as the fraction of corruptions satisfies o < 1/(ur®/?k). To reach e-accuracy, ie. ||L;R/; —
X, ||F < €0, (X,), ScaledGD takes at most 7' = O(log(1/¢)) iterations, which is independent of k. In
comparison, the A1tProj algorithm?® with spectral initialization converges in O(log(1/¢)) iterations
as long as a < 1/(pur) [NNST14], where the per-iteration cost is much higher both in terms of
computation and memory as it requires the computation of the low-rank SVD of the full matrix.
On the other hand, projected gradient descent with spectral initialization in [YPCC16| converges
in O(klog(1/€)) iterations as long as o < 1/(ur®/2k%/2  urk?). Therefore, ScaledGD converges at
a much faster rate than GD while requesting a significantly lower per-iteration cost than AltProj.

In addition, our theory suggests that ScaledGD maintains the incoherence and balancedness of

the low-rank factors without imposing explicit regularizations, which is not captured in previous

3A1tProj employs a multi-stage strategy to remove the dependence on  in a, which we do not consider here. The
same strategy might also improve the dependence on x for ScaledGD, which we leave for future work.
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analysis [YPCC16].

2.2.4 Matrix completion

Assume that we have observed a subset € of entries of X, given as Pq(X,), where Pq : R"*"2
R™*"2 ig g projection such that

(Pa(X))i; = : (2.19)
0, otherwise

Here  is generated according to the Bernoulli model in the sense that each (7, j) € Q independent
with probability p. The goal of matrix completion is to recover the matrix X, from its partial obser-
vation Pqo(X,). This problem has many applications in recommendation systems, signal processing,

sensor network localization, and so on [CR09).

Algorithm. Again, writing X € R™*" into the factored form X = LR', we consider the

following optimization problem:

1 2
minimize £(F) = 5 HPQ(LRT -x)|. (2.20)

FcR(nr1t+ng)xr

Similarly to robust PCA, the underlying low-rank matrix X, needs to be incoherent (cf. Definition 2)
to avoid ill-posedness. One typical strategy to ensure the incoherence condition is to perform
projection after the gradient update, by projecting the iterates to maintain small f3 o, norms of the
factor matrices. However, the standard projection operator [CW15] is not covariant with respect to
invertible transforms, and consequently, needs to be modified when using scaled gradient updates.
To that end, we introduce the following new projection operator: for every F e Rmutn2)xr —

IR

Pu(F)= argmin | (L- i)(ﬁTﬁ)l/QHQ +r- ﬁ)(iTi)l/Quz
FeRm+n2)xr F F (2.21)

st. AT HL(szﬁz)l/QH2 Vs HR(ETE)WH2 _<B
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which finds a factored matrix that is closest to F and stays incoherent in a weighted sense. Luckily,

the solution to the above scaled projection admits a simple closed-form solution, as stated below.

Proposition 1. The solution to (2.21) is given by

~ L B ~
Pp(F) = , where L;. = (1 A m) L, 1<i<n,
n 7.
R V| Li. R |2 (2.22)
B ~
R, = |[1AN——=——|R,, 1<j<n,.
V| R; LT
Proof. See Appendix A.5.1. O

With the new projection operator in place, we propose the scaled projected gradient descent
(ScaledPGD) method with the spectral initialization for solving matrix completion, formally stated

in Algorithm 3.

Algorithm 3 ScaledPGD for matrix completion with spectral initialization
Spectral initialization: Let Uy3oV,' be the top-r SVD of %PQ(X*), and set

/2
Lo Uox,

—p . 2.23
|:R0:| B < %2(1)/2 ( )

Scaled projected gradient updates: for t =0,1,2,...,7 — 1 do

Lt+1:|
—P
[RtJrl B (

L, — IPo(LiR] — X,)Ry(R; R;)™"
R, — Po(LiR] — X,)TLy(L{ L;)™"

) . (2.24)

Theoretical guarantee. Consider a random observation model, where each index (7, j) belongs

to the index set 2 independently with probability 0 < p < 1. The following theorem establishes that
ScaledPGD converges linearly at a constant rate as long as the number of observations is sufficiently

large.

Theorem 3. Suppose that X, is p-incoherent, and that p satisfies p > C(ux?Vlog(niVng))ur?s?/(niA

ng) for some sufficiently large constant C. Set the projection radius as B = Cp./puroi(Xy) for
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some constant Cp > 1.02. If the step size obeys 0 < n < 2/3, then with probability at least

1 —ci1(ny Vng)~ 2, for all t > 0, the iterates of ScaledPGD in (2.24) satisfy

dist(Fy, F,) < (1 — 0.6)'0.020,(X,), and HLthT ~X,

. < (1 —0.61)"0.030,.(X,).

Here ci,co > 0 are two universal constants.

Theorem 3 establishes that the distance dist(F}, Fy) contracts linearly at a constant rate, as
long as the probability of observation satisfies p > (ux? V log(ni V no))ur?k2/(n1 Ang). To reach e-
accuracy, i.e. | LiR] — X,||F < e0,(X,), ScaledPGD takes at most T = O(log(1/¢)) iterations, which
is independent of k. In comparison, projected gradient descent |ZL16] with spectral initialization
converges in O(klog(1/¢)) iterations as long as p > (u V log(ny V n2))ur?k2/(n1 A ng). Therefore,
ScaledPGD achieves much faster convergence than its unscaled counterpart, at an expense of higher
sample complexity. We believe this higher sample complexity is an artifact of our proof techniques,

as numerically we do not observe a degradation in terms of sample complexity.

2.2.5 Optimizing general loss functions

Last but not least, we generalize our analysis of ScaledGD to minimize a general loss function in

the form of (2.1), where the update rule of ScaledGD is given by

Liyi =L —nVf(L:R )RR/ R;)™*,
(2.25)
Riy1 =R, — V(LR ) Ly(L{ L)

Two important properties of the loss function f : R"1*"2 — R play a key role in the analysis.

Definition 3 (Restricted smoothness). A differentiable function f : R™*"2 — R is said to be

rank-r restricted L-smooth for some L > 0 if
L
f(Xo) < f(Xq) +(Vf(X1), X2 — X1) + EHXz - X1,

for any X1, X9 € R™*"2 with rank at most 7.
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Definition 4 (Restricted strong convexity). A differentiable function f : R™*"2 — R is said to be

rank-r restricted p-strongly convex for some p > 0 if
F(X2) = F(X0) + (VAX1), Xo — X1) + 51 X0 — X |2

for any X1, X2 € R"*"2 with rank at most . When pu = 0, we simply say f(-) is rank-r restricted

convex.

Further, when p > 0, define the condition number of the loss function f(-) over rank-r matrices

as
kf=L/p. (2.26)

Encouragingly, many problems can be viewed as a special case of optimizing this general loss (2.25),

including but not limited to:

e low-rank matriz factorization, where the loss function f(X) = 3| X — X, || in (2.27) satisfies
kp=1;

e low-rank matriz sensing, where the loss function f(X) = [ A(X — X,)|3 in (2.11) satisfies

kf ~ 1 when A(-) obeys the rank-r RIP with a sufficiently small RIP constant;

e quadratic sampling, where the loss function f(X) = 33", [(a;a], X — X,.)|? satisfies restricted
strong convexity and smoothness when a;’s are i.i.d. Gaussian vectors for sufficiently large m

[SWW17,LMCC21];

e exponential-family PCA, where the loss function f(X) = —3_, ;log p(Y; ;| X ;), where p(Y; ;| X ;)
is the probability density function of Y;; conditional on X ;, following an exponential-family
distribution such as Bernoulli and Poisson distributions. The resulting loss function satisfies
restricted strong convexity and smoothness with a condition number x; > 1 depending on the

property of the specific distribution [GRG14, Laf15].
Indeed, the treatment of a general loss function brings the condition number of f(-) under the
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spotlight, since in our earlier case studies xy ~ 1. Our purpose is thus to understand the interplay
of two types of conditioning numbers in the convergence of first-order methods. For simplicity,
we assume that f(-) is minimized at the ground truth rank-r matrix X,.* The following theorem

establishes that as long as properly initialized, then ScaledGD converges linearly at a constant rate.

Theorem 4. Suppose that f(-) is rank-2r restricted L-smooth and p-strongly convex, of which X,
is a minimizer, and that the initialization Fy satisfies dist(Fo, Fy) < 0.10,.(X,)/\/Rf. If the step

size obeys 0 < n < 0.4/L, then for all t > 0, the iterates of ScaledGD in (2.25) satisfy

dist(Fy, F,) < (1 — 0.790)!0.10,(X,) /A7, and HLthT _ X,

< (1 —0.79p)"0.150,(X.,)/\/RF.

Theorem 4 establishes that the distance dist(Fy, Fy) contracts linearly at a constant rate, as
long as the initialization Fy is sufficiently close to F,. To reach e-accuracy, i.e. |LiR,] — X,||F <
eor(X,), ScaledGD takes at most T' = O(kslog(1/€)) iterations, which depends only on the condi-
tion number ¢ of f(-), but is independent of the condition number  of the matrix X,. In contrast,
prior theory of vanilla gradient descent [PKCS18,BKS16] requires O(k s log(1/€)) iterations, which

is worse than our rate by a factor of .

2.3 Proof Sketch

In this section, we sketch the proof of the main theorems, highlighting the role of the scaled distance
metric (cf. (2.8)) in these analyses.
2.3.1 A warm-up analysis: matrix factorization

Let us consider the problem of factorizing a matrix X, into two low-rank factors:

1 2
minimize L£(F) = HLRT - X (2.27)

FER("l +ng)Xr

“In practice, due to the presence of statistical noise, the minimizer of f(-) might be only approximately low-rank,
to which our analysis can be extended in a straightforward fashion.
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For this toy problem, the update rule of ScaledGD is given as

L1 =L;— U(LthT - X*)Rt(thTRt)A’
(2.28)

Ry =Ry — (LR} — X,) ' Ly(L{ Ly)™".
To shed light on why ScaledGD is robust to ill-conditioning, it is worthwhile to think of
ScaledGD as a quasi-Newton algorithm: the following proposition (proven in Appendix A.2.1) reveals
that ScaledGD is equivalent to approximating the Hessian of the loss function in (2.27) by only

keeping its diagonal blocks.

Proposition 2. For the matriz factorization problem (2.27), ScaledGD is equivalent to the following

update rule

-1

vec(Fyi1) = vec(Fy) — vec(VEL(F})).

0 Vi rL(F)

Here, ViLﬁ(Ff/) (resp. V%{’RE(Ft)) denotes the second order derivative w.r.t. L (resp. R) at Fy.

The following theorem, whose proof can be found in Appendix A.2.2, formally establishes that
as long as ScaledGD is initialized close to the ground truth, dist(F;, Fy) will contract at a constant

linear rate for the matrix factorization problem.

Theorem 5. Suppose that the initialization Fy satisfies dist(Fy, Fy) < 0.10,(Xy). If the step size

obeys 0 < n < 2/3, then for all t > 0, the iterates of the ScaledGD method in (2.28) satisfy

dist(F}, F,) < (1 — 0.79)'0.10,(X,), and HLthT ~ X,

< (1 —0.77)0.150,(X,).

Comparing to the rate of contraction (1 — 1/k) of gradient descent for matrix factorization
[MLC21, CLC19|, Theorem 5 demonstrates that the preconditioners indeed allow better search

directions in the local neighborhood of the ground truth, and hence a faster convergence rate.
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2.3.2 Proof outline for matrix sensing

It can be seen that the update rule (2.13) of ScaledGD in Algorithm 1 closely mimics (2.28) when
A(-) satisfies the RIP. Therefore, leveraging the RIP of A(-) and Theorem 5, we can establish the
following local convergence guarantee of Algorithm 1, which has a weaker requirement on Jg, than

the main theorem (cf. Theorem 1).

Lemma 1. Suppose that A(-) obeys the 2r-RIP with §3, < 0.02. If the t-th iterate satisfies
dist(F;, F,) < 0.10,(X,), then |L;R] — X.||[f < 1.5dist(F}, F\). In addition, if the step size

obeys 0 < n < 2/3, then the (t+1)-th iterate Fiy1 of the ScaledGD method in (2.13) of Algorithm 1

satisfies
dist(Fiy1, Fy) < (1 — 0.6n) dist(F}, F).
It then boils to down to finding a good initialization, for which we have the following lemma

on the quality of the spectral initialization.

Lemma 2. Suppose that A(-) obeys the 2r-RIP with a constant 6a,. Then the spectral initialization

in (2.12) for low-rank matriz sensing satisfies

diSt(F(), F*) S 5(5271\/;KUT(X*).

Therefore, as long as o, is small enough, say d9, < 0.02/(y/rk) as specified in Theorem 1, the
initial distance satisfies dist(Fp, Fy) < 0.10,(X,), allowing us to invoke Lemma 1 recursively. The

proof of Theorem 1 is then complete. The proofs of Lemmas 1-2 can be found in Appendix A.3.

2.3.3 Proof outline for robust PCA

As before, we begin with the following local convergence guarantee of Algorithm 2, which has a
weaker requirement on « than the main theorem (cf. Theorem 2). The difference with low-rank
matrix sensing is that local convergence for robust PCA requires a further incoherence condition on

the iterates (cf. (2.29)), where we recall from (2.9) that Q; is the optimal alignment matrix between
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F; and F,.

Lemma 3. Suppose that X, is p-incoherent and o < 1074/(ur). If the t-th iterate satisfies

dist(Fy, Fy) < 0.020,(X,) and the incoherence condition

Vi ||(Le@e - LB vy (BT - RO < Vo, (X). (229)

then | LR — X, ||F < 1.5dist(F, F,). In addition, if the step size obeys 0.1 < n < 2/3, then the

(t 4+ 1)-th iterate Fy4q of the ScaledGD method in (2.18) of Algorithm 2 satisfies
dist(Fyy1, F.) < (1 — 0.61) dist(F}, F,),

and the incoherence condition

Vi H(Lt+1Qt+1 - L*)Ei/QHQ,OO vV \/@H(RHIQ;TI _ R*>21/2H2700 < Jiron(X.).

As long as the initialization is close to the ground truth and satisfies the incoherence condition,
Lemma 3 ensures that the iterates of ScaledGD remain incoherent and converge linearly. This allows
us to remove the unnecessary projection step in [YPCC16|, whose main objective is to ensure the
incoherence of the iterates.

We are left with checking the initial conditions. The following lemma ensures that the spectral

initialization in (2.17) is close to the ground truth as long as « is sufficiently small.

Lemma 4. Suppose that X, is p-incoherent. Then the spectral initialization (2.17) for robust PCA

satisfies
dist (Fy, Fy) < 2001 % k0, (X,).

As a result, setting a < 1073/(ur®/?k), the spectral initialization satisfies dist(Fp, F,) <
0.020,(X,). In addition, we need to make sure that the spectral initialization satisfies the incoher-

ence condition, which is provided in the following lemma.
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Lemma 5. Suppose that X, is p-incoherent and a < 0.1/(purk), and that dist(Fo, Fy) < 0.020,(X,).

Then the spectral initialization (2.17) satisfies the incoherence condition

Vi (Lo - L)SE| vy |(Re@y T - ROBE| < oy (X).

Combining Lemmas 3-5 finishes the proof of Theorem 2. The proofs of the the three supporting

lemmas can be found in Section A .4.

2.3.4 Proof outline for matrix completion

A key property of the new projection operator. We start with the following lemma that
entails a key property of the scaled projection (2.22), which ensures the scaled projection satisfies

both non-expansiveness and incoherence under the scaled metric.
Lemma 6. Suppose that X, is p-incoherent, and dist(ﬁ,F*) < €0, (X)) for some e < 1. Set
B > (1 + €)/ro1(Xy), then Pp(F) satisfies the non-ezpansiveness

dist(Pg(F), F,) < dist(F, F,),

and the incoherence condition

\/77,1HLRTH27OO Vv \/TLQHRLTngo < B.

It is worth noting that the incoherence condition adopts a slightly different form than that
of robust PCA, which is more convenient for matrix completion. The next lemma guarantees the
fast local convergence of Algorithm 3 as long as the sample complexity is large enough and the

parameter B is set properly.

Lemma 7. Suppose that X, is p-incoherent, and p > C(urx* V log(ny V no))ur/(ny A ng) for
some sufficiently large constant C. Set the projection radius as B = Cp\/uro1(Xy) for some
constant Cg > 1.02. Under an event & which happens with overwhelming probability (i.e. at least

1 —c1(n1 V ng)=%), if the t-th iterate satisfies dist(Fy, Fy) < 0.020,(X,), and the incoherence
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condition

V| LeRY ||2.00 V v/t | ReL{ [l2,00 < B,

then ||LiR,; — X,||r < 1.5dist(F}, F.). In addition, if the step size obeys 0 < n < 2/3, then the

(t 4+ 1)-th iterate Fy4q of the ScaledPGD method in (2.24) of Algorithm 3 satisfies
dist(Fit1, Fi) < (1 — 0.6n) dist(F;, Fi),
and the incoherence condition

Vil L1 R ||2,00 V /2| Res1 Ly 2,00 < B

As long as we can find an initialization that is close to the ground truth and satisfies the
incoherence condition, Lemma 7 ensures that the iterates of ScaledPGD remain incoherent and
converge linearly. The follow lemma ensures that such an initialization can be ensured via the

spectral method.

Lemma 8. Suppose that X, is p-incoherent, then with overwhelming probability, the spectral ini-

1/2
_ |uem)
tialization before projection Fy := in (2.23) satisfies

Vosy?

- prlog(ny V ng) prlog(ny V ng)
dist(Fy, Fy) < C + 5vreos(Xy).
( 0 *) 0 ( » ’7711712 \/ p(m /\77,2) \[ ( *)

Therefore, as long as p > Cur?k?log(ni Vnz)/(n1 Ang) for some sufficiently large constant C,
the initial distance satisfies dist(Fp, F,) < 0.020,.(X,). One can then invoke Lemma 6 to see that
= PB(ﬁ’o) meets the requirements of Lemma 7 due to the non-expansiveness and incoherence
properties of the projection operator. The proofs of the the the supporting lemmas can be found in

Section A.5.

29



2.4 Numerical Experiments

In this section, we provide numerical experiments to corroborate our theoretical findings.

2.4.1 Comparison with vanilla GD

To begin, we compare the iteration complexity of ScaledGD with vanilla gradient descent (GD).

The update rule of vanilla GD for solving (2.1) is given as

Lty = Ly — nepViL(Le, Ry), (2.30)

Ri1 = R, —nooVRL(Ly, Ry),

where ngp = n/01(X,) stands for the step size for gradient descent. This choice is often recom-
mended by the theory of vanilla GD [TBS*16, YPCC16, MWCC19] and the scaling by o1(X,) is
needed for its convergence. For ease of comparison, we fix 7 = 0.5 for both ScaledGD and vanilla
GD (see Figure 2.3 for justifications). Both algorithms start from the same spectral initialization.
To avoid notational clutter, we work on square asymmetric matrices with ny = ny = n. We consider

four low-rank matrix estimation tasks:

o Low-rank matriz sensing. The problem formulation is detailed in Section 2.2.2. Here, we collect
m = bnr measurements in the form of yr = (Ay, X,)+wyg, in which the measurement matrices Ay
are generated with i.i.d. Gaussian entries with zero mean and variance 1/m, and wy, ~ N (0,02)

are 1.1.d. Gaussian noises.

e Robust PCA. The problem formulation is stated in Section 2.2.3. We generate the corruption with
a sparse matrix S, € S, with a = 0.1. More specifically, we generate a matrix with standard
Gaussian entries and pass it through 7,[-] to obtain S,. The observation is Y = X, + S, + W,

where W; ; ~ N(0,02) are i.i.d. Gaussian noises.

o Matriz completion. The problem formulation is stated in Section 2.2.4. We assume random
Bernoulli observations, where each entry of X, is observed with probability p = 0.2 independently.

The observation is Y = Pq(X,+W), where W; j ~ N(0,02) arei.i.d. Gaussian noises. Moreover,
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Figure 2.1: The relative errors of ScaledGD and vanilla GD with respect to the iteration count
under different condition numbers x = 1,5,10,20 for (a) matrix sensing, (b) robust PCA, (c)
matrix completion, and (d) Hankel matrix completion.

we perform the scaled gradient updates without projections.

e Hankel matrix completion. Briefly speaking, a Hankel matrix shares the same value along each
skew-diagonal, and we aim at recovering a low-rank Hankel matrix from observing a few skew-

diagonals [CC14,CWW18|. We assume random Bernoulli observations, where each skew-diagonal
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Figure 2.2: The relative errors of ScaledGD and vanilla GD with respect to the iteration count
under the condition number £ = 10 and signal-to-noise ratios SNR = 40, 60, 80dB for (a) matrix
sensing, (b) robust PCA, (c¢) matrix completion, and (d) Hankel matrix completion.

of X, is observed with probability p = 0.2 independently. The loss function is

where Z(-) denotes the identity operator, and the Hankel projection is defined as H(X)

2n—1
k=1

L(L,R) = ;p H’HQ(LRT - Y)H2

F

+s H(Z—H)(LRT)Hi, (2:31)

(Hy, X)H},, which maps X to its closest Hankel matrix. Here, the Hankel basis ma-
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trix Hj, is the n X n matrix with the entries in the k-th skew diagonal as \/%7, and all other

entries as 0, where wy, is the length of the k-th skew diagonal. Note that X is a Hankel matrix
if and only if (Z — H)(X) = 0. The Hankel projection on the observation index set € is defined
as Ho(X) = > 1cq(Hy, X)Hy. The observation is Y = Hq(X, + W), where W is a Hankel

matrix whose entries along each skew-diagonal are i.i.d. Gaussian noises A'(0,02).

For the first three problems, we generate the ground truth matrix X, € R™*" in the following
way. We first generate an n x r matrix with i.i.d. random signs, and take its r left singular vectors
as U,, and similarly for V. The singular values are set to be linearly distributed from 1 to 1/x.
The ground truth is then defined as X, = U,kE*V*—r which has the specified condition number

and rank r. For Hankel matrix completion, we generate X, as an n x n Hankel matrix with entries

given as
o
R t2m(iti=2)fe ;5 —
X = — J =1,...
( *)Zy] Z n € ) Wi 17 > 1,
(=1
where fy, £ = 1,...,r are randomly chosen from 1/n,2/n, ..., 1, and o, are linearly distributed from

1 to 1/k. The Vandermonde decomposition lemma tells that X, has rank r and singular values oy,
(=1,...,r.

We first illustrate the convergence performance under noise-free observations, i.e. o, = 0. We
plot the relative reconstruction error | X; — X, ||r/|| Xx||[F with respect to the iteration count ¢ in
Figure 2.1 for the four problems under different condition numbers x = 1,5,10,20. For all these
models, we can see that ScaledGD has a convergence rate independent of x, with all curves almost
overlay on each other. Under good conditioning x = 1, ScaledGD converges at the same rate as
vanilla GD; under ill conditioning, i.e. when « is large, ScaledGD converges much faster than vanilla
GD and leads to significant computational savings.

We next move to demonstrate that ScaledGD is robust to small additive noises. Denote

X2
n2o2,

the signal-to-noise ratio as SNR = 10log;

in dB. We plot the reconstruction error || X; —
X, |le/|| X || with respect to the iteration count ¢ in Figure 2.2 under the condition number x = 10

and various SNR = 40, 60,80dB. We can see that ScaledGD and vanilla GD achieve the same
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statistical error eventually, but ScaledGD converges much faster. In addition, the convergence
speeds are not influenced by the noise levels.

Careful readers might wonder how sensitivity our comparisons are with respect to the choice
of step sizes. To address this, we illustrate the convergence speeds of both ScaledGD and vanilla
GD under different step sizes n for matrix completion (under the same setting as Figure 2.1 (c)),
where similar plots can be obtained for other problems as well. We run both algorithms for at most
80 iterations, and terminate if the relative error exceeds 10? (which happens if the step size is too
large and the algorithm diverges). Figure 2.3 plots the relative error with respect to the step size 7
for both algorithms, where we can see that ScaledGD outperforms vanilla GD over a large range of
step sizes, even under optimized values for performance. Hence, our choice of n = 0.5 in previous

experiments renders a typical comparison between ScaledGD and vanilla GD.

S
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Figure 2.3: The relative errors of ScaledGD and vanilla GD after 80 iterations with respect to
different step sizes ) from 0.1 to 1.2, for matrix completion with n = 1000, = 10,p = 0.2.

2.4.2 Run time comparisons

We now compare the run time of ScaledGD with vanilla GD and alternating minimization (A1tMin)

[JNS13]. Specifically, for matrix sensing, alternating minimization (Al1tMinSense) updates the fac-
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Figure 2.4: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers x = 1,5, 20 for matrix sensing
with n = 200, and m = 5nr. (a, b): r = 10; (c, d): r = 20.

tors alternatively as

2
L,y = argmin HA(LRtT) - yH2,
L

2
R; 1 = argmin H.A(LtHRT) — sz’
R
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which corresponds to solving two least-squares problems. For matrix completion, the update rule

of alternating minimization proceeds as

;ScaledGD‘ k=1

——ScaledGD k =5
—=-ScaledGD & = 20 |3
! —VanillaGD k=1
s, |- VanillaGD k=5
5 VanillaGD & = 20
£ —=AltMin k =1 k
——AltMin k = 5 £
= AltMin £ = 20
0 2 6 8 10 12
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(d) run time with r = 50

2
Ly = argmin HPQ(LRtT - Y)HQ,
L

R, = argmin HPQ(LH_lR—r — Y)H ,
R
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which can be implemented more efficiently since each row of L (resp. R) can be updated indepen-
dently via solving a much smaller least-squares problem due to the decomposable structure of the
objective function. It is worth noting that, to the best of our knowledge, this most natural variant
of alternating minimization for matrix completion still eludes from a provable performance guar-
antee, nonetheless, we choose it to compare against due to its popularity and excellent empirical
performance.

Figure 2.4 plots the relative errors of ScaledGD, vanilla GD and alternating minimization
(A1tMin) with respect to the iteration count and run time (in seconds) under different condition
numbers k = 1,5, 20; and similarly, Figure 2.5 plots the corresponding results for matrix completion.
It can be seen that, both ScaledGD and AltMin admit a convergence rate that is independent of
the condition number, where the per-iteration complexity of A1tMin is much higher than that of
ScaledGD. As expected, the run time of ScaledGD only adds a minimal overhead to vanilla GD
while being much more robust to ill-conditioning. Noteworthily, A1tMin takes much more time and
becomes significantly slower than ScaledGD when the rank r is larger. Nonetheless, we emphasize
that since the run time is impacted by many factors in terms of problem parameters as well as
implementation details, our purpose is to demonstrate the competitive performance of ScaledGD

over alternatives, rather than claiming it as the state-of-the-art.

2.5 Conclusions

This chapter proposes scaled gradient descent (ScaledGD) for factored low-rank matrix estimation,
which maintains the low per-iteration computational complexity of vanilla gradient descent, but
offers significant speed-up in terms of the convergence rate with respect to the condition number
k of the low-rank matrix. In particular, we rigorously establish that for low-rank matrix sensing,
robust PCA, and matrix completion, to reach e-accuracy, ScaledGD only takes O(log(1/¢)) iterations
without the dependency on the condition number when initialized via the spectral method, under
standard assumptions. The key to our analysis is the introduction of a new distance metric that
takes into account the preconditioning and unbalancedness of the low-rank factors, and we have

developed new tools to analyze the trajectory of ScaledGD under this new metric. This work opens
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up many venues for future research, as we discuss below.

e Improved analysis. In this chapter, we have focused on establishing the fast local convergence
rate. It is interesting to study if the theory developed herein can be further strengthened in
terms of sample complexity and the size of basin of attraction. For matrix completion, it will be
interesting to see if a similar guarantee continues to hold in the absence of the projection, which
will generalize recent works [MWCC19, CLL20| that successfully removed these projections for

vanilla gradient descent.

o Other low-rank recovery problems. Besides the problems studied herein, there are many other
applications involving the recovery of an ill-conditioned low-rank matrix, such as robust PCA
with missing data, quadratic sampling, and so on. It is of interest to establish fast convergence
rates of ScaledGD that are independent of the condition number for these problems as well. In
addition, it is worthwhile to explore if a similar preconditioning trick can be useful to problems

beyond low-rank matrix estimation.

o Acceleration schemes? As it is evident from our analysis of the general loss case, ScaledGD may
still converge slowly when the loss function is ill-conditioned over low-rank matrices, i.e. rky is
large. In this case, it might be of interest to combine techniques such as momentum [KC12| from

the optimization literature to further accelerate the convergence.
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Chapter 3

Robust Low-rank Matrix Estimation

3.1 Introduction

Many problems in data science can be treated as estimating a low-rank matrix X, € R™*"2 from

highly incomplete, sometimes even corrupted, observations y = {y;}, given by
Y; N Ai(X*), 1 <71 <m. (3.1)

Here, A(-) = {A;(-)}%, : R™*"2 1 R™ is the observation operator that models the measurement
process. Instead of operating in the full matrix space, i.e. R™*™2 a memory-efficient approach is
to resort to low-rank matrix factorization, by writing X, = L*RI7 if the rank r of X, is known
a priori, where L, € R™*" and R, € R™*" are of a size that is proportional to the degrees of
freedom of the low-rank matrix. Furthermore, the low-rank factors can be found by optimizing a

smooth loss function, such as the residual sum of squares

m
2
minimize A(LRT) - ) , 3.2
peeinimze 3 (A(LRT) —y (3.2)
using first-order methods (e.g. gradient descent). While tremendous progress has been made in
recent years [CLC19], applying vanilla gradient descent to the above smooth formulation suffers from
ill-conditioning originated from both the measurement operator and the underlying low-rank matrix

X4, which preclude a desirable computational efficiency from classical optimization principles.
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3.1.1 Main contributions

In this chapter, we propose to minimize the following nonsmooth and nonconvex loss function known
as the least absolute deviations, which measures the residual sum of absolute errors

m
minimize f(LR") = Z ’Ai(LRT) - i, (3.3)
LeR™ XT,RERW‘QXT i1

via a scaled subgradient method:

Lt+1 = Lt — UtSth(R;rRt)_l, (3 4)

Rt+1 = Rt - T]tS;rLt(L:Lt)_l.

Here, S; € 9f(L:R]) is a subgradient of f(X) == >, [A:(X) — ;| at L;R/], and m > 0 is a
sequence of carefully-chosen stepsizes. Compared with vanilla subgradient methods, our new method
(3.4) scales or preconditions the search directions S;R; and S L; by (R R;)™" and (L, L;)™",
respectively.! As explained in Chapter 2 where a similar preconditioning trick was employed for
smooth formulations, the scaled subgradient enables better search directions and therefore larger

stepsizes. Our main results can be summarized as follows:

e Under general geometric assumptions on f(-) such as restricted rank-r Lipschitz continuity and
sharpness conditions, we demonstrate that the convergence rate of scaled subgradient methods
using both Polyak’s and geometrically decaying stepsizes is independent of the condition number

of X,.

e Instantiating our theory under the mixed-norm restricted isometry property (RIP) of the mea-
surement operator, we demonstrate state-of-the-art computational guarantees for low-rank matrix
sensing and quadratic sampling even when the observations are noisy and corrupted by outliers.
This leads to improvements over the computational complexity of scaled gradient methods in
Chapter 2 for heavy-tailed measurement ensembles, as well as of vanilla subgradient methods

in [CCD*21|. Table 3.1 provides a detailed comparison of the local iteration complexities of the

!Under appropriate conditions, the inverse matrices always exist; in practice, one can use the pseudo-inverse
matrices to avoid numerical instabilities.
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matrix sensing quadratic sampling
Algorithms without corruptions | with corruptions || without corruptions | with corruptions
GD 1 2,2 1
[TBS*16,LMCC21] wlog ¢ N/A T N/A
ScaledGD 1 1
(Chapter 2) log + N/A poly(n)log < N/A
SM 1 K 1 1 rK 1
[CCD*+21, LZMCSV20] wlog ¢ (=2p7 198 ¢ rrlog ¢ 27 108 <
ScaledSM 1 1 1 1 r 1
(this Chapter) log ¢ T2p)7 198 ¢ rlog ¢ =27 08

Table 3.1: Local iteration complexities of the proposed scaled subgradient method (ScaledSM) in
comparison with prior algorithms for matrix sensing and quadratic sampling. ScaledSM outperforms
the vanilla subgradient method (SM) by a factor of x in both problems, while outperforms scaled
gradient descent (ScaledGD), and GD with additional robustness guarantees. Here, n = max{ni,na},
r is the rank, « is the condition number of X, and 0 < ps; < 1/2 is the fraction of outliers. We say
that the output X of an algorithm reaches e-accuracy, if it satisfies || X — X,||f < eo,(Xy), where
or(X,) denotes the r-th largest singular value of X,.

proposed scaled subgradient method in comparison with these prior algorithms, highlighting its
robustness to heavy-tailed observations, outliers, as well as a large condition number of the true

matrix X,.

Our work leverages exciting advances in nonsmooth optimization [CCD*21| and scaled first-order
methods in Chapter 2 for low-rank matrix recovery. Our arguments are concise, which avoid the
need of sophisticated trajectory-dependent analysis as have been used in [MWCC19, LMCC21] to

achieve rapid and robust convergence guarantees.

3.1.2 Related work

Low-rank matrix recovery has been a target of intense interest in the last decade; we invite the
readers to [DR16,CC18,CLC19] for recent overviews, and limit our discussions to the most relevant

literature in the sequel.

Nonsmooth formulations for low-rank matrix recovery. Nonsmooth objective functions,
such as the least absolute deviations, have been adopted earlier in both convex and nonconvex for-
mulations of low-rank matrix recovery, including phase retrieval [Han17,DDP20,QZEW19,ZZLC17,
DR19], blind deconvolution [Dial9], quadratic sampling [LSC17, CL16, CCD*21, BL20], low-rank
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matrix sensing [CCD*21, Li1l3, WGMM13, LZMCSV20], robust synchronization [WS13], to name a
few. Our work is most closely related to and generalizes the vanilla subgradient method in [CCD™21],
by establishing novel performance guarantees of scaled subgradient methods for robust low-rank ma-

trix recovery.

Scaled first-order methods for low-rank matrix recovery. Variants of the scaled gradient
methods are proposed in [MAS12, TW16, TMC21a| for minimizing the least-squares formulation
(3.2), where strong statistical and computational complexities are first established in Chapter 2. To
the best of our knowledge, this is the first work that provides rigorous statistical and computational
guarantees for scaled subgradient methods for addressing nonsmooth formulations. When it comes
to problems with heavy-tail observations such as quadratic sampling, while it is possible to establish
faster convergence rates of vanilla gradient descent over the smooth least-squares loss function
through a tailored analysis [MWCC19,LMCC21] via leave-one-out arguments, it is unclear if similar
analyses are viable for scaled gradient methods (ScaledGD) in Chapter 2. Unfortunately, a direct
application of the performance guarantee of ScaledGD on minimizing the smooth least-squares loss
function leads to a much slower rate in terms of the problem dimension (see Table 3.1) for quadratic
sampling. In contrast, our analysis for scaled subgradient methods yields strong guarantees in a more
straightforward manner since the nonsmooth loss function has much better geometric properties

|cCD*21].

Robust low-rank matrix recovery via nonconvex optimization. A pleasant side benefit of
nonsmooth formulations is the added robustness to adversarial outliers under a simple algorithm
design — the low-rank factors are updated essentially in the same manner regardless of the presence
of outliers. In comparison, other nonconvex methods based on smooth formulations often need
to introduce some special treatments to mitigate outliers before updating the low-rank factors,

e.g. truncation or thresholding [ZCL16, LCZL20, LZMCSV20], which can be cumbersome to tune

properly.
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Condition number independent rate of convergence. It is well-known that first-order meth-
ods such as gradient descent exhibit poor scaling with respect to the condition number of the
low-rank matrix. Possible remedies include alternating least-squares in the factored space [JNS13,
HW14], or spectral methods over the matrix space [JMD10]. However, these approaches either
require the inversion of a large matrix or a higher memory footprint, compared with the scaled

first-order methods adopted herein.

3.1.3 Chapter organization

The rest of this chapter is organized as follows. Section 3.2 describes the proposed scaled subgradient
method and its connections to existing methods. Section 3.3 provides the theoretical guarantees
for the scaled subgradient method in terms of both statistical and computational complexities,
which are then instantiated to robust low-rank matrix sensing and quadratic sampling. Section 3.4
illustrates the superior empirical performance of the proposed method. Finally, we conclude in

Section 3.5. The proofs are deferred to the appendix.

3.2 Problem Formulation and Algorithms

In this section, we formulate the low-rank matrix recovery problem, followed by a detailed description

of the proposed scaled subgradient method.

3.2.1 Problem formulation

Let X, € R™*"™2 he the ground truth rank-r matrix, whose compact singular value decomposition

(SVD) is given by

X, =UXx,V,, (3.5)

where U, € R™*" and V, € R™*" are composed of r left and right singular vectors, respectively,
and X, € R"™" is a diagonal matrix consisting of r singular values of X, organized in a non-

increasing order, i.e. 01(X,) > -+ > 0,(X,) > 0. The condition number of X, is thus defined
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as
k= 01(X)/or(Xy). (3.6)
Without loss of generality, we define the ground truth low-rank factors as
L, =UXY? and R, =V,32/2 (3.7)
so that X, = L,kR;r . Moreover, we denote the ground truth stacked factor matrix as
F,=[L],R]]" € Rimtn2)xr, (3.8)
Assume that we have access to a number of observations y = {y;}", of X,, given as
yi = Ai(Xy) +w; + si, 1<i<m, (3.9)
or equivalently,

y=AX,) +w+ s, (3.10)

where A(X,) = {A:i(X,)}, is the measurement ensemble, w = {w;}"; denotes the bounded
noise, and s = {s;}!"; models arbitrary corruptions. The goal of low-rank matrix recovery is to
reconstruct X, from the noisy and corrupted observations y in a statistically and computationally

efficient manner.

3.2.2 Scaled subgradient method

Consider the following nonsmooth and nonconvex optimization problem over the factors

minimize L(L,R) = f(LR"), (3.11)
LcR™1 XT’RGR’RQ Xr
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where f(-) is a nonsmooth surrogate of the observation residuals. Of particular interest is the

residual sum of absolute errors, defined as

F(X) = [AX) =yl (3.12)

Correspondingly, the minimizer is called the least absolute deviations (LAD) solution.
Let us denote the stacked factor matrix in the ¢-th iterate as Fy := [LJ, R[]". Given an

initialization Fy = [L], RJ]", the proposed scaled subgradient method (ScaledSM) proceeds as

Lt+1 = Lt — ntSth(R;rRt>_l,
(3.13)
Ryy1 = Ry — S/ Ly(L{ L) ",

where S; € Of(LiR/) is a subgradient of f(-) at L;R; (and hence S;R; € OrL(L;, R;) and
S L; € OrL(Ly, Ry)), and 1; > 0 is some properly selected stepsize, which we discuss next.
Stepsize schedules. We consider the following two choices of stepsize schedules:

e If we know the optimal value f(X,), we can invoke the following Polyak’s stepsize, given by

" IS Ry(R] Ry) V2|2 +||S, Le(L) Ly) V2|2

where the denominator is the squared norm of the subgradient under a scaled metric concerted
with the preconditioners. This schedule is implementable, for example, when the observations are
noise-free, leading to f(X,) = 0. However, when the observations are noisy and corrupted, it is

not viable to know f(X,) beforehand.

e In general, we can apply the geometrically decaying stepsize originally introduced in [Gof77],

given by

08 = A
t = )
VIS R(R] R) =122 + | ST (L] L) ~/2]2

(3.15)
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where the denominator is similarly scaled as (3.14), and A > 0 and ¢ € (0,1) are some param-
eters to be specified. This choice is broadly applicable when dealing with noisy and corrupted

observations.

Compared with the vanilla subgradient method, which proceeds according to

Ly :=Li— SRy, (3.16)

Ry 1 = R, — S, Ly,

the update rule (3.13) scales the subgradient S;R; and S, L; by (R, R;)~! and (L, L;)~!, respec-
tively; see Chapter 2 for its counterpart in smooth problems. An important highlight of the scaled
subgradient method is that the update rule is covariant with respect to the ambiguity of low-rank

matrix factorization. To see this, imagine that we modify the t-th updates as
L,=L,Q, R =RQ" (3.17)

for some invertible matrix Q € GL(r). It is easy to check:

(i) both the Polyak’s stepsize (3.14) and the geometrically decaying stepsize (3.15) do not change,

since
|S:Re(R R;)~/?||2 = (S, S;Ry(R] R) 'R/ ) = (S, SiR«(R/ R,) 'R/) = | S, R«(R/ R,)"/?|I2,

which holds similarly for ||S," L;(L] L;)~1/2||2;

(i) The next (¢t + 1)-th iterate can be written as
o7 B pTpA-1_ Tpyv-1]l 0 —
Liyy =Ly —niSiRy(R; Ry)™ = [Lt —mSiRy(Ry Ry) ] Q=LQ,

and similarly _ﬁt+1 = Rt+1Q_T. Therefore, all the iterates are covariant with respect to the

invertible transform (3.17).
Remark 3 (Comparison with ScaledGD). Although not our focus, it is instructive to consider the
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resulting update rule using the nonsmooth #5-loss function f(X) = || A(X) — yl|2 (which has been

studied in [CCD™21]), whose subgradient is given by

where A*(-) is the adjoint operator of A(-), and r; := A(L;R,) — y is the residual using the ¢-th

iterate. Consequently, the scaled subgradient method follows the update rule

Ly =L - ||7ZtH2A*<rt>Rt<RZ R)Y,

Ry 1= Ry — H:t”2A*(Tt)TLt(LILt)_la
t

for some stepsize n;. Careful readers might realize that this coincides with the update rule of

ScaledGD in Chapter 2 when optimizing the smooth squared f5-loss function g(X) = 3[|A(X)—yl|3,

except with an adaptive stepsize ”;1’5”2. Under the same assumption on A(:) in Chapter 2, the

convergence behaviors of ScaledSM applied on f(X) match that of ScaledGD on g(X).

Remark 4 (ScaledSM for PSD matrices). When the low-rank matrix of interest is positive semi-
definite (PSD), we factorize the matrix X € R"*" as X = LL", with L € R"*". The update rule

of ScaledSM simplifies to

Liyy = Ly — S Ly(L) L) ™,

where S; € Of(L:L]) is a subgradient of f(-) at L;L,. Our theory applies to this PSD case in a
straightforward manner.
3.3 Theoretical Guarantees

In this section, we first provide the theoretical guarantees of the scaled subgradient method under
general geometric assumptions on f(-), and then instantiate them to concrete problems including

robust low-rank matrix sensing and quadratic sampling.
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3.3.1 Geometric assumptions

We start by introducing the following geometric properties of the loss function f(-), which play a
key role in the convergence analysis.

The first condition is similar to the usual Lipschitz property of a function.
Definition 5 (Restricted Lipschitz continuity). A function f : R™*"2 — R is said to be rank-r
restricted L-Lipschitz continuous for some quantity L > 0 if

If(X1) — f(X2)] < L|| X1 — Xollr

holds for any X7, X9 € R™*"2 guch that X; — X has rank at most 2r.

The second geometric condition is akin to the (one-point) strong convexity of a function, with
the key difference that strong convexity adopts the squared Euclidean norm whereas the following

one uses the plain Euclidean norm.

Definition 6 (Restricted sharpness). A function f : R™*"2 — R is said to be rank-r restricted

p-sharp w.r.t. X, for some p > 0 if

F(X) = f(X) = pl X — Xl

holds for any X € R™*"2 with rank at most r.

For notational simplicity, if a function f(-) is both restricted L-Lipschitz continuous and

p-sharp, we denote

x5 =L/p. (3.18)

In some cases, e.g. in the presence of noise, the loss function f(-) only satisfies an approximate

restricted sharpness property, which is detailed below.
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Definition 7 (Approximate restricted sharpness). A function f : R™*"2 — R is said to be &-

approximate rank-r restricted p-sharp for some p, & > 0 if
J(X) = (X)) > p|| X — Xil[fp =€

holds for any X € R™*"2 with rank at most r.

As shall be seen in Section 3.3.3, these conditions can be ensured for proper choices of the
loss function as long as the observation operator A(-) satisfies certain mixed-norm RIP, which holds

for a wide number of practical problems.

3.3.2 Main results

Motivated by Chapter 2, we measure the performance of F = [LT, RT]" using the following error
metric

T [ SA=TE Y Ly ST e

which takes into consideration both the representational ambiguity of the factorization up to invert-
ible transforms and the scaling effect of preconditioners. In comparison, the more standard distance

metric [MLC21] in the analysis of vanilla gradient methods reads as follows
dist2(F,F,) = inf |LQ — L%+ HRQ‘T—R*HQ
BT QedLr) *IF F’

which is inadequate to delineate the power of preconditioning. See Chapter 2 for more discussions.
We start with stating the linear convergence of the scaled subgradient method when f(-)
satisfies both the rank-r restricted L-Lipschitz continuity and p-sharpness. The proof is deferred to

Appendix B.1.

Theorem 6 (Scaled subgradient method with exact convergence). Suppose that f(X) : R™*"2 — R

is convez in X, and satisfies rank-r restricted L-Lipschitz continuity and p-sharpness (cf. Defini-
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tions 5 and 6). In addition, suppose that the initialization Fy satisfies
dist(Fo, Fy) < 0.020,(X,)/x¥, (3.20)

and the scaled subgradient method in (3.13) adopts either Polyak’s stepsizes in (3.14) or geometrically

decaying stepsizes in (3.15) with A = ‘/52_10.020T(X*)/X? and g = /1 — O.16/Xfc. Then for all
t > 0, the iterates satisfy

dist(F,, Fi) < (1 —0.16/x%)"/20.020,(X.)/xs, and

HLthT ~ X,

S< (- 0.16/x%)"/20.030,(X.) /x+-

Theorem 6 shows that the iterates of the scaled subgradient method converges at a linear rate;
to reach e-accuracy, i.e. |[LiR] — X.||F < e0,(X,), it takes at most O(X?c log 1) iterations, which,
importantly, is independent of the condition number x of X,. In addition, it is still possible to
ensure approximate reconstruction when only the approximate restricted sharpness property holds,

as shown in the next theorem. Again, we postpone the proof to Appendix B.2.

Theorem 7 (Scaled subgradient method with approximate convergence). Suppose that f : R™*"2
R is convex, and satisfies rank-r restricted L-Lipschitz continuity and &-approzimate p-sharpness
(cf. Definitions 5 and 7) for some & < 10730, (Xx)u/xf- Suppose that the initialization Fy satis-

fies dist(Fy, Fy) < 0.020,.(X.)/x¢, and the scaled subgradient method adopts geometrically decaying

stepsizes (3.15) with A = @O.O2JT(X*)/X§ and ¢ = /1 — 0.13/)(%. Then for all t > 0, the

iterates satisfy

dist(Fy, Fy) < max {(1 - ().13/X;)t/20.020T(X*)/Xf, 20§/u} , and

HLthT _ X,

_ < max {(1 —0.13/x2)"/0.030,(X.) /x+ 30§/u} .

Theorem 7 shows that as long as the relaxation parameter £ is sufficiently small, i.e. £ <
or(X,)/ Xy, then the scaled subgradient method with geometrically decaying stepsizes converges

at a linear rate until an error floor is hit. In particular, the iterates satisfy || L; R} — X, |F < 30¢/u
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after at most O(X?c) iterations up to logarithmic factors.

Remark 5. For simplicity of exposition, we have fixed the values of A and ¢ for the geometrically
decaying stepsizes in the above theorems. It is possible to allow a wider range of A and ¢ by slightly
modifying the arguments without sacrificing the linear convergence. In practice, these parameters

should be tuned in order to yield optimal performance.

3.3.3 A case study: robust low-rank matrix recovery

We now apply the above theorems to robust low-rank matrix recovery, which showcases the superior

performance of the scaled subgradient method.

Noise-free case. We start with the observation model (3.10) with clean measurements, i.e. w = 0
and s = 0. To proceed, we assume that the observation operator A(-) satisfies the following mixed-

norm RIP.

Definition 8 (mixed-norm RIP [RFP10,CCG15,CCD™21]). The linear map .A(-) is said to obey
the rank-2r mixed-norm RIP with constants d1, d9 if for all matrices M € R™*"2 of rank at most

2r, one has
o[Mllf < [AMM) |1 < b2 M||F.

The next proposition verifies that the loss function (3.12) satisfies restricted Lipschitz conti-

nuity and sharpness properties under the mixed-norm RIP.

Proposition 3. If A(-) satisfies rank-2r mized-norm RIP with constants (01,02), then f(X) =
|A(X) —yll1 = JAX — X,)|l1 in (3.12) satisfies the rank-r restricted L-Lipschitz continuity and

p-sharpness with
L=4§, and p=9.

Proof. See Appendix B.3. O
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With the geometric characterization of f(-) in place, we immediately have the following corol-
lary that captures the performance of the scaled subgradient method when A(-) satisfies the mixed-

norm RIP.

Corollary 1. If A(-) satisfies rank-2r mized-norm RIP with (§1,02), then the scaled subgradient
method over the loss function f(X) = || A(X) —yl||1 using either Polyak’s or geometrically decaying
stepsizes achieves HLtR;r — X*HF < eop(Xy) in O (% log %) iterations as long as the initialization

satisfies dist(Fp, Fy) < %O’T(X*).

Noisy and corrupted case. We now consider the observation model (3.10) where the noise
w is bounded with ||wl|; < o, and ||s|lo = psm, where ps, € [0,1/2) is the fraction of outliers.

Following [CCD™ 21|, we further introduce another important property of A(-).

Definition 9 (S-outlier bound [CCD™21]). The linear map A(-) is said to obey the rank-2r S-
outlier bound w.r.t. a set S with a constant 03 if for all matrices M € R™*"™2 of rank at most 2r,

one has
o3| Mg < | Ase(M)][1 — [[As(M)]|1,

where As(M) = {A;(M)}ies and Ase(M) = {A;(M)}iese.

The next proposition verifies that the loss function in (3.12) satisfies restricted Lipschitz
continuity and approximate sharpness properties under the mixed-norm RIP (cf. Definition 8) and

the S-outlier bound (cf. Definition 9).

Proposition 4 (Matrix sensing with outliers). Denote the support of the outlier s as S. Suppose
that A(-) satisfies rank-2r mized-norm RIP with (61,92) and S-outlier bound with 3, then f(X) in

(3.12) satisfies rank-r restricted L-Lipschitz continuity and &-approximate p-sharpness with
L= 52, n = (53, and f = 20’w. (3.21)

Proof. See Appendix B.4. O
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Similar to the previous noise-free case, this immediately leads to performance guarantees of
the scaled subgradient method when A(-) satisfies both the mixed-norm RIP and the S-outlier

bound.

Corollary 2. If A(-) satisfies rank-2r mized-norm RIP with (01,02) and S-outlier bound with
63, and |[wll1 < oy < 10730,.(X4)03/82, then the scaled subgradient method over the loss func-
tion f(X) = || A(X) — yll1 using the geometrically decaying stepsizes achieves ||L;R] — X*HF <
max {eo,(Xy),600,/03} in O (% log %) iterations as long as the initialization satisfies dist(Fy, Fy) <

4255,(X.).

We now instantiate the above general guarantee to the following two types of observation
operators. For simplicity, we assume there is no dense noise, i.e. o, = 0; see Table 3.1 for a

summary of the comparisons.

(A;, X,), where the

e matriz sensing: the measurement operator A;(-) is defined as A;(X,) = *
matrix A; is composed of i.i.d. Gaussian entries N'(0,1).? It is shown in [CCD*21] (see also

[LZMCSV20]) that A(-) satisfies the mixed-norm RIP and S-outlier bound with
61217 52§1a 5321_21)87

as long as m 2> ((’{1_323));“ log( 17121)5 ). Hence, the scaled subgradient method converges linearly to

e-accuracy in O ((1—2;10)2 log %) iterations provided that it is initialized properly, making it robust

simultaneously to ill-conditioning of the matrix X, and the presence of the outliers.

e quadratic sampling: the measurement operator A;(-) is defined as 4;(X,) = 2(a;a/, X.), where
X, € R is PSD and the vector a; is composed of i.i.d. Gaussian entries N'(0,1). It is shown

in [CCD™21] that A(-) satisfies the mixed-norm RIP and S-outlier bound with

51217 525\/;7 5321_2})87

2
as long as m 2 =% VT )

2 =202 10g(172ps . Hence, the scaled subgradient method converges linearly

2The same guarantee also holds for sub-Gaussian measurements.
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to e-accuracy in O (W log %) iterations, as long as it is seeded with a good initialization.
In comparison, the iteration complexity of the scaled gradient descent method over the least-
squares loss function depends polynomially with respect to n, due to the heavy-tailed nature of

the observation operator, let alone its sensitivity to the outliers.

Remark 6 (Initialization). The above discussions are limited to the local iteration complexity,
assuming a good initialization satisfying (3.20) is available. In the absence of outliers, a standard
spectral method can be used, as shown in Chapter 2. In the presence of outliers, a truncated spectral

method could be used; see e.g. [ZCL16, LCZL20].

3.4 Numerical Experiments

In this section, we conduct numerical experiments to corroborate our theory.

Comparisons of ScaledSM and VanillaSM. Since the vanilla subgradient method (VanillaSM)
has been extensively benchmarked against other methods and established as state-of-the-art in
[CCD*21], we focus on comparing the proposed scaled subgradient method (ScaledSM) to VanillaSM
in the sequel. In general, the geometrically decaying stepsize (3.15) is a more practical choice than
the Polyak’s stepsize (3.14), especially in the presence of noise and outliers. Nonetheless, using prop-
erly tuned geometrically decaying stepsizes essentially matches the performance of using Polyak’s
stepsizes, for both VanillaSM [LZMCSV20| and ScaledSM, the latter of which we shall illustrate
in the ensuing experiments. As such, we adopt Polyak’s stepsizes in the comparisons below, to
emulate the scenario where both methods are tuned to operate under its largest allowable stepsizes
and achieve the fastest convergence. In addition, both algorithms start from the same initialization.

We consider two low-rank matrix estimation tasks discussed in Section 3.3.3. Recall the

observation model in (3.10) and its entrywise version in (3.9), which we repeat below for convenience:
yi:Ai(X*)vai—Fsi, 1§Z§m
In both tasks, the noise entry w; is composed of i.i.d. entries uniformly drawn from [—%*
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The outlier s; = §;€); is a sparse vector where €); is a Bernoulli random variable with probability

ps € [0,1/2), and §; is drawn uniformly at random from [—10||A(X4)|0o, 10/ A(X4)||sc]. For ease

of presentation, we assume that X, € R™*" is a square matrix with rank as r. We collect m = 8nr

measurements using the following respective measurement models. The signal-to-noise ratio is

defined as SNR := 20log;, W in dB.

e Matriz sensing. Here, the measurement operator A;(-) is defined as A;(X,) = L(A;, X,.), where

the matrix A; is composed of i.i.d. Gaussian entries N'(0,1). The ground truth matrix X, is

generated via its compact SVD X, = U*E*V;T, where U, € R™" is generated as the orthonormal

basis vectors of an n X r matrix with i.i.d. Rademacher entries, ¥, is a diagonal matrix with the

diagonal entries linearly distributed from 1 to , and V, € R™*" is generated in a similar fashion

to U,.

e Quadratic sampling. Here, the measurement operator 4;(-) is defined as A;(Xy) = %(aiaj, X,

where a; is composed of i.i.d. Gaussian entries N'(0,1). The ground truth matrix X, is positive

semi-definite, and is generated via its compact SVD X, = U*E*U*T, where U, and X, are

generated in the same manner described above.
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Figure 3.1: Performance comparisons of ScaledSM and VanillaSM for matrix sensing without or with
outliers under different condition numbers x = 1,5, 10, 20, where n = 100, » = 10, and m = 8nr.
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Figure 3.2: Performance comparisons of ScaledSM and VanillaSM for quadratic sampling without
or with outliers under different condition numbers x = 1,5,10,20, where n = 100, r = 5, and
m = 8nr.

Denote the index set of the remaining measurements after discarding ps fraction with largest
amplitudes as T = {i : [yi| < |y[([p,m])}, Where |y|) denotes the kth largest amplitude of y.
The truncated spectral method in [ZCL16, LCZL20] is used for initialization, where we apply the
standard spectral method only on the subset Z of the measurements. For matrix sensing, it follows
the prescription in [LCZL20], and for quadratic sampling, it follows [LMCC21].

Fig. 3.1 shows the relative reconstruction error || X; — X,||r/|| X/ for matrix sensing without
outliers (in (a)) and with 20% outliers (i.e. ps = 0.2 in (b)) under different condition numbers
K, where Xy is the estimated low-rank matrix at the ¢-th iteration. Fig. 3.2 shows the relative
reconstruction error for quadratic sampling under the same setting. It can be seen that ScaledSM
is insensitive to x and converges as a fast rate that is independent with x, while the convergence
of VanillaSM slows down dramatically with the increase of k. In addition, both algorithms still
converge linearly in the presence of outliers, thanks to the robustness of the least absolute deviations.

Fig. 3.3 further examines the impact of the amount of outliers and noise on the convergence
speed in matrix sensing with a fixed condition number x = 10, where Fig. 3.3 (a) illustrates the
convergence speed at varying amounts of outliers ps = 0.1, 0.2, 0.3 respectively, and Fig. 3.3 (b) illus-

trates the convergence with p; = 0.1 and additional bounded noise with varying SNR = 40, 60, 80dB.
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Figure 3.3: Performance comparisons of ScaledSM and VanillaSM for matrix sensing under different
noise and outlier models, where n = 100, » = 10, m = 8nr, and x = 10.

Similarly, Fig. 3.4 shows the same plots for quadratic sampling under the same setting. It can be

seen that the convergence rate of ScaledSM slows down with the increase of outliers, which is again,

consistent with the theory. Furthermore, the reconstruction is robust in the presence of additional

bounded noise, where both ScaledSM and VanillaSM converge to the same accuracy that is propor-

tional to the noise level, with ScaledSM converging at a faster speed.
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Performance comparisons of ScaledSM and VanillaSM for quadratic sampling under

different noise and outlier models, where n = 100, r = 5, m = 8nr, and x = 10.
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Comparisons of stepsize schedules. We now compare the geometrically decaying stepsize with
the Polyak’s stepsize for ScaledSM, which essentially mirrors similar experiments conducted in [LZM-
CSV20] for VanillaSM. We run ScaledSM for at most 7" = 1000 iterations, and stop early if the
relative error achieves 10~ 2. Fig. 3.5 and Fig. 3.6 show the performance comparisons of ScaledSM
under various stepsize schedules for matrix sensing and quadratic sampling, respectively. For both
figures, (a) shows the final relative error of ScaledSM using geometrically decaying stepsizes under
various (), q), where we see that ScaledSM converges as long as A is not too large and ¢ is not too
small. We further plot the relative error versus the iteration count for ScaledSM using geometrically
decaying stepsizes with a fixed ¢ and various A in (b), and with a fixed A and various ¢ in (c),
where the performance using Polyak’s stepsizes is plotted for comparison. It can be seen that using
Polyak’s stepsizes yields the fastest convergence. Indeed, if properly tuned, geometrically decay-
ing stepsizes match Polyak’s stepsizes, as shown in (d). In general, we find that there is a wide
range of parameters for geometrically decaying stepsizes where ScaledSM converges in a fast speed

comparable to that of using Polyak’s stepsizes, as long as A is not too large and ¢ is not too small.

3.5 Discussions

This chapter proposes scaled subgradient methods to minimize a family of nonsmooth and nonconvex
formulations for low-rank matrix recovery—in particular, the residual sum of absolute errors—and
guarantees its convergence at a rate that is almost dimension-free and independent of the condition
number, even in the presence of corruptions. We illustrate the effectiveness of our approach by
providing state-of-the-art performance guarantees for robust low-rank matrix sensing and quadratic
sampling. In the future, it is of interest to study the performance of scaled subgradient methods
for other signal estimation and statistical inference tasks, such as training student-teacher neural

networks [DDKL20], as well as using random initializations [CCFM19].
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Figure 3.5: Performance comparisons of ScaledSM for matrix sensing using geometrically decaying
stepsizes with parameters (A, q) and Polyak’s stepsizes, where we fix n = 100, » = 10, m = 8nr,
x =10, and ps = 0.2: (a) the final relative error for various combinations of (A, ¢), (b) the relative
error versus iteration count for fixed ¢ = 0.91 and varying A, (c) the relative error versus iteration
count for fixed A = 5 and varying ¢, and (d) shows properly tuned geometrically decaying stepsizes

with A = 1.85 and ¢ = 0.91 essentially match Polyak’s stepsizes.
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Figure 3.6: Performance comparisons of ScaledSM for quadratic sampling using geometrically decay-
ing stepsizes with parameters (), ¢) and Polyak’s stepsizes, where we fix n = 100, »r = 5, m = 8nr,
x =10, and ps; = 0.2: (a) the final relative error for various combinations of (A, ¢), (b) the relative
error versus iteration count for fixed ¢ = 0.92 and varying A, (c) the relative error versus iteration
count for fixed A = 2 and varying ¢, and (d) shows properly tuned geometrically decaying stepsizes
with A = 1.36 and g = 0.88 essentially match Polyak’s stepsizes.
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Chapter 4

Low-rank Tensor Estimation

4.1 Introduction

In this chapter, we generalize ScaledGD to low-rank tensor estimation. In many problems across
science and engineering, the central task can be regarded as tensor estimation from highly incom-
plete measurements, where the goal is to estimate an order-3 tensor’ X, € R™X"2X"3 from its

observations y € R™ given by
y~AX,).

Here, A : R™M1*"2x73 5 R™ pepresents a certain linear map modeling the data collection process.
Importantly, the number m of observations is often much smaller than the ambient dimension
ningng of the tensor due to resource or physical constraints, necessitating the need of exploiting
low-dimensional structures to allow for meaningful recovery.

One of the most widely adopted low-dimensional structures—which is the focus of this chapter—
is the low-rank structure under the Tucker decomposition [Tuc66]|. Specifically, we assume that the

ground truth tensor X, admits the following Tucker decomposition?
X* - (U*7 V;n W*) * S*?

where &, € R™*"2%" jg the core tensor, and U, € R™*" V, € R™*™2 W, € R™*" are

'For ease of presentation, we focus on 3-way tensors; our algorithm and theory can be generalized to higher-order
tensors in a straightforward manner.

2QOther popular notation for Tucker decomposition in the literature includes [S,; Uy, Vi, W,] and S, x1 Uy X2
Vi x3 W,. In this work, we adopt the same notation (U, Vi, W) - S, as in [XY19] for convenience of our theoretical
developments.
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orthonormal matrices corresponding to the factors of each mode. The tensor X, is said to be low-
multilinear-rank, or simply low-rank, when its multilinear rank r = (r1, 79, r3) satisfies rp < ny, for
all k = 1,2,3. Compared with other tensor decompositions such as the CP decomposition [KB09|
and tensor-SVD [ZEAT14], the Tucker decomposition offers several advantages: it allows flexible
modeling of low-rank tensor factors with a small number of parameters, fully exploits the multi-
dimensional algebraic structure of a tensor, and admits efficient and stable computation without

suffering from degeneracy [Paa00].

Motivating examples. We point out two representative settings of tensor recovery that guide

our work.

e Tensor completion. A widely encountered problem is tensor completion, where one aims to
predict the entries in a tensor from only a small subset of its revealed entries. A celebrated
application is collaborative filtering, where one aims to predict the users’ evolving preferences from
partial observations of a tensor composed of ratings for any triplet of user, item, time [KABO10].

Mathematically, we are given entries
X (i1,12,13), (i1,142,13) € ,

in some index set €2, where (i1,142,73) € Q if and only if that entry is observed. The goal is then

to recover the low-rank tensor X, from the observed entries in €.

e Tensor regression. In machine learning and signal processing, one is often concerned with deter-
mining how the covariates relate to the response—a task known as regression. Due to advances
in data acquisition, there is no shortage of scenarios where the covariates are available in the
form of tensors, for example in medical imaging [ZLZ13]. Mathematically, the i-th response or

observation is given as

yi = (AL Xa) = Y Alin,ig, is) X (in,d2,43),  i=1,2,...,m,

11,12,13
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where \A; is the i-th covariate or measurement tensor. The goal is then to recover the low-rank

tensor X, from the responses y = {y;}7 .

4.1.1 A gradient descent approach?

Recent years remarkable successes have emerged in developing a plethora of provably efficient al-
gorithms for low-rank matriz estimation (i.e. the special case of order-2 tensors) via both convex
and nonconvex optimization. However, unique challenges arise when dealing with tensors, since
tensors have more sophisticated algebraic structures [Hac12|. For instance, while nuclear norm min-
imization achieves near-optimal statistical guarantees for low-rank matrix estimation [CT10| within
a polynomial run time, computing the nuclear norm of a tensor turns out to be NP-hard [FL18].
Therefore, there have been a number of efforts to develop polynomial-time algorithms for tensor
recovery, including but not limited to the sum-of-squares hierarchy [BM16, PS17|, nuclear norm
minimization with unfolding [GRY11, MHWG14], regularized gradient descent [HWZ20], to name a
few; see Section 4.1.3 for further discussions.

In view of the low-rank Tucker decomposition, a natural approach is to seek to recover the
factor quadruple F, := (U, Vi, W,, S,) directly by optimizing the unconstrained least-squares loss

function:
. 1
min  £(F) = L JA((U,V,W)-8) ~ g, (41)

where F := (U,V,W 8) consists of U € RM*" V¢ R"2*X"2 W € R"™*" and & € R *72x73,
Since the factors have a much lower complexity than the tensor itself due to the low-rank structure,
it is expected that manipulating the factors results in more scalable algorithms in terms of both
computation and storage. This optimization problem is however, highly nonconvex, since the factors
are not uniquely determined.® Nonetheless, one might be tempted to solve the problem (4.1) via

gradient descent (GD), which updates the factors according to

Ft+1 :E_UVE(E>7 t:Oala'--v (42)

3For any invertible matrices Qg € R™eXTk -k = 1,2,3, one has (U,V,W)-8 =
(UQ17 VQ27 WQ3) '((Ql_lv Q2_17 Q3_1) ‘ ‘S)
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where F; is the estimate at the ¢-th iteration, n > 0 is the step size or learning rate, and VL(F)
is the gradient of L(F') at F. Despite a flurry of activities for understanding factored gradient
descent in the matrix setting [CLC19|, this line of algorithmic thinkings has been severely under-
explored for the tensor setting, especially when it comes to provable guarantees for both sample
and computational complexities.

The closest existing theory that one comes across is [HWZ20] for tensor regression, which

adds regularization terms to promote the orthogonality of the factors U,V , W:
e
Lieg(F) = LF) + 7 (|UTU = 8L, [} + VTV = BLy|R + |WW = 8L, [}) . (43)

and perform GD on the regularized loss. Here, o, 8 > 0 are two parameters to be specified. While
encouraging, theoretical guarantees of this regularized GD algorithm [HWZ20] still fall short of
achieving computational efficiency. In truth, its convergence speed is rather slow: it takes an
order of k?log(1/¢) iterations to attain an e-accurate estimate of the ground truth tensor, where
K is a sort of condition number of X, to be defined momentarily. Therefore, the computational
efficacy of the regularized GD is severely hampered even when X, is moderately ill-conditioned,
a situation frequently encountered in practice. In addition, the regularization term introduces
additional parameters that may be difficult to tune optimally in practice.

Turning to tensor completion, the situation is even worse: to the best of our knowledge, there
is no provably linearly-convergent algorithm that accommodates low-rank tensor completion under

the Tucker decomposition.

4.1.2 A new algorithm: scaled gradient descent

We propose a novel algorithm—dubbed scaled gradient descent (ScaledGD)—to solve the tensor

recovery problem. More specifically, at the core it performs the following iterative updates® to

4The matrix inverses in ScaledGD always exist under the assumptions of our theory.

64



minimize the loss function (4.1):

U1 = U — ﬁvUﬁ(Ft)(thTﬁt)_la

Vipi =V — TIVVE(Ft)(‘VQTVt)_l,

(4.4)
M+1 = Wt — UVWﬁ(Ft)(WtTWt)_I,

Seer =S —n (U U™ (VW)L (W W)™ ) - VsL(R),

where VyL(F), Vy L(F), Vw L(F), and VgL(F') are the partial derivatives of L(F') with respect

to the corresponding variables, and

U, = My (I, Vi, W) - 8p) | = (W, @ Vi)M1(Sy) ",
‘V/i = MQ ((Ut7 ITQ, Wt) . St)T = (Wt ® Ut)MZ(St)Ta (45)

Wi = M; (U, Vi, I,) - S) " = (Vi@ U)Ms(Sy) "

Here, M(S8) is the matricization of the tensor S along the k-th mode (k = 1,2,3), and ® denotes
the Kronecker product. Inspired by its variant in the matrix setting in Chapter 2, the ScaledGD
algorithm (4.4) exploits the structures of Tucker decomposition and possesses many desirable prop-

erties:

e Low per-iteration cost: as a preconditioned GD or quasi-Newton algorithm, ScaledGD updates
the factors along the descent direction of a scaled gradient, where the preconditioners can be
viewed as the inverse of the diagonal blocks of the Hessian for the population loss (i.e. tensor
factorization). As the sizes of the preconditioners are proportional to the multilinear rank, the
matrix inverses are cheap to compute with a minimal overhead and the overall per-iteration cost

is still low and linear in the time it takes to read the input data.

e Equivariance to parameterization: one crucial property of ScaledGD is that if we reparameterize

the factors by some invertible transforms (i.e. replacing (U, Vi, W, 8;) by

(Uth, WQ27 WtQ37 (Qfla Q;lv Q;l) : St)
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Algorithms H Sample complexity \ Iteration complexity | Parameter space

Unfolding + nuclear norm min. 2, 1602 olvnomial tensor
[HMGW15] s Py
Tensor nuclear norm min. n3/271/2 1603/2 NP-hard tensor
[YZ16] 8
G ian GD
raSSIB?ilffigﬂiﬂ 0320724 ogT/2 n N/A factor
ScaledGD 3/2,.5/2,.3 3 1
(this Chapter) W R logTn o8 ¢ foctor

Table 4.1: Comparisons of ScaledGD with existing algorithms for tensor completion when the tensor
is incoherent and low-rank under the Tucker decomposition. Here, we say that the output X of an
algorithm reaches e-accuracy, if it satisfies || X — X, ||r < €0min(X«). Here, k and omin(X,) are the
condition number and the minimum singular value of X, (defined in Section 4.2.1). For simplicity,
we let n = maxg—1 2371, and r = maxy—123 7k, and assume r V kK K n? for some small constant &
to keep only terms with dominating orders of n.

for some invertible matrices {Qg}3_,), the entire trajectory will go through the same reparam-
eterization, leading to an invariant sequence of low-rank tensor updates X; = (Uy, Vi, Wy) - Sy

regardless of the parameterization being adopted.

e Implicit balancing: ScaledGD optimizes the natural loss function (4.1) in an unconstrained man-
ner without requiring additional regularizations or orthogonalizations used in prior literature
[HWZ20,FG20, KM16]|, and the factors stay balanced in an automatic manner—a feature some-

times referred to as implicit regularization [MLC21].

Theoretical guarantees. We investigate the theoretical properties of ScaledGD for both tensor
completion and tensor regression, which are notably more challenging than the matrix counterpart.
It is demonstrated that ScaledGD—when initialized properly using appropriate spectral methods —
achieves linear convergence at a rate independent of the condition number of the ground truth tensor
with near-optimal sample complexities. In other words, ScaledGD needs no more than O(log(1/¢))
iterations to reach e-accuracy; together with its low computational and memory costs by operating

in the factor space, this makes ScaledGD a highly scalable method for a wide range of low-rank tensor

5 |LZ21, Theorem 3| states the sample complexity n®/?\/rk2|| X ||2/02m (X)), where || X, ||2/02m(X,) has an
order of 7.
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Algorithms H Sample complexity | Iteration complexity | Parameter space

Unfolding + nuclear norm min. 9 .
IMHWG14] nr polynomial tensor
Priggsi 9?]) n’r k2 log % tensor
Regt[llglz;r\i]zze;o]GD n3/ 2yt k2 log % factor
( thsi:aClE:g?er) n3/2p3/2 2 log % factor

Table 4.2: Comparisons of ScaledGD with existing algorithms for tensor regression when the tensor is
low-rank under the Tucker decomposition. Here, we say that the output X of an algorithm reaches e-
accuracy, if it satisfies || X — X, ||r < e0min(X4). Here, k and omin (X4) are the condition number and
minimum singular value of X, (defined in Section 4.2.1). For simplicity, we let n = maxy—1 23 4,
and r = maxy—1237, and assume r V k < n? for some small constant § to keep only terms with
dominating orders of n.

estimation tasks. More specifically, we have the following guarantees (assume n = maxg—j 23Nk

and 7 = maxg—1237k):

e Tensor completion. Under the Bernoulli sampling model, ScaledGD (with an additional scaled
projection step) succeeds with high probability as long as the sample complexity is above the order
of n3/2r5/2153 log® n. Connected to some well-reckoned conjecture on computational barriers, it is
widely believed that no polynomial-time algorithm will be successful if the sample complexity is

less than the order of n3/2

for tensor completion [BM16], which suggests the near-optimality of the
sample complexity of ScaledGD. Compared with existing approaches (cf. Table 4.1), ScaledGD
provides the first computationally efficient algorithm with a near-linear run time at the near-

optimal sample complexity.

o Tensor regression. Under the Gaussian design, ScaledGD succeeds with high probability as long
as the sample complexity is above the order of n3/213/252. Our analysis of local convergence is
more general, based on the tensor restricted isometry property (TRIP) [RSS17|, and is there-
fore applicable to various measurement ensembles that satisfy TRIP. Compared with existing
approaches (cf. Table 4.2), ScaledGD achieves competitive performance guarantees in terms of

sample and iteration complexities with a low per-iteration cost in the factor space.
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Figure 4.1: The iteration complexities of ScaledGD (this thesis) and regularized GD to achieve
|X =X, |l < 1073|| X, || with respect to different condition numbers for low-rank tensor completion
with nqy = ne = ng = 100, r1 = r9 = r3 = 5, and the probability of observation p = 0.1.

Figure 4.1 illustrates the number of iterations needed to achieve a relative error | X — X, || <
1073|| &4 ||F for ScaledGD and regularized GD [HWZ20] under different condition numbers for tensor
completion under the Bernoulli sampling model (see Section 4.4 for experimental settings). Clearly,
the iteration complexity of GD deteriorates at a super linear rate with respect to the condition
number k, while ScaledGD enjoys an iteration complexity that is independent of k as predicted by
our theory. Indeed, with a seemingly small modification, ScaledGD takes merely 17 iterations to
achieve the desired accuracy over the entire range of x, while GD takes thousands of iterations even

with a moderate condition number!

4.1.3 Additional related works

Comparison with Chapter 2. While the proposed ScaledGD algorithm is inspired by its matrix
variant in Chapter 2 by utilizing the same principle of preconditioning, the exact form of precondi-
tioning for tensor factorization needs to be designed carefully and is not trivially obtainable. There
are many technical novelty in our analysis compared to Chapter 2. In the matrix case, the low-rank
matrix is factorized as LR', and only two factors are needed to be estimated. In contrast, in
the tensor case, the low-rank tensor is factorized as (U,V,W) .8, and four factors are needed

to be estimated, leading to a much more complicated nonconvex landscape than the matrix case.
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In fact, when specialized to matrix completion, our ScaledGD algorithm does not degenerate to
the same matrix variant in Chapter 2, due to overparamterization and estimating four factors at
once, but still maintains the near-optimal performance guarantees. In addition, the tensor algebra
possesses unique algebraic properties that requires much more delicate treatments in the analysis.
For the local convergence, we establish new concentration properties regarding tensors, which are
more challenging compared to the matrix counterparts; for spectral initialization, we establish the

effectiveness of a second-order spectral method in the Tucker setting for the first time.

Low-rank tensor estimation with Tucker decomposition. [FG20] analyzed the landscape of
Tucker decomposition for tensor factorization, and showed benign landscape properties with suitable
regularizations. [GRY11, MHWG14| developed convex relaxation algorithms based on minimizing
the nuclear norms of unfolded tensors for tensor regression, and similar approaches were developed
in [HMGW 15| for robust tensor completion. However, unfolding-based approaches typically result
in sub-optimal sample complexities since they do not fully exploit the tensor structure. [YZ16]
studied directly minimizing the nuclear norm of the tensor, which regrettably is not computa-
tionally tractable. [XY19] proposed a Grassmannian gradient descent algorithm over the factors
other than the core tensor for exact tensor completion, whose iteration complexity is not character-
ized. The statistical rates of tensor completion, together with a spectral method, were investigated
in [ZX18,XYZ21|, and uncertainty quantifications were recently dealt with in [XZZ20]. Besides
the entrywise i.i.d. observation models for tensor completion, [Zhal9, KS13| considered tailored or
adaptive observation patterns to improve the sample complexity. In addition, for low-rank ten-
sor regression, [RYC19] proposed a general convex optimization approach based on decomposable
regularizers, and |[RSS17| developed an iterative hard thresholding algorithm. [CRY19] proposed
projected gradient descent algorithms with respect to the tensors, which have larger computation
and memory footprints than the factored gradient descent approaches taken in this thesis. [ARB20]
proposed a tensor regression model where the tensor is simultaneously low-rank and sparse in the
Tucker decomposition. A concurrent work [LZ21] proposed a Riemannian Gauss-Newton algo-
rithm, and obtained an impressive quadratic convergence rate for tensor regression (see Table 4.2).

Compared with ScaledGD, this algorithm runs in the tensor space, and the update rule is more
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sophisticated with higher per-iteration cost by solving a least-squares problem and performing a
truncated HOSVD every iteration.

Last but not least, many scalable algorithms for low-rank tensor estimation have been pro-
posed in the literature of numerical optimization [XY13, GQ14|, where preconditioning has long
been recognized as a key idea to accelerate convergence [KM16, KSV14|. In particular, if we con-
strain U,V , W to be orthonormal, i.e. on the Grassmanian manifold, the preconditioners used
in ScaledGD degenerate to the ones investigated in [KM16], which was a Riemannian manifold
gradient algorithm under a scaled metric. On the other hand, ScaledGD does not assume or-
thonormality of the factors, therefore is conceptually simpler to understand and avoids complicated
manifold operations (e.g. geodesics, retraction). Furthermore, none of the prior algorithmic devel-
opments [KM16, KSV14| are endowed with the type of global performance guarantees with linear

convergence rate as developed herein.

Provable low-rank tensor estimation with other decompositions. Complementary to ours,
there have also been a growing number of algorithms proposed for estimating a low-rank ten-
sor adopting the CP decomposition. Examples include sum-of-squares hierarchy [BM16, PS17],
gradient descent [CLPC19, CPC20,HZC20], alternating minimization [JO14,LM20|, spectral meth-
ods [MS18,CCFM21,CLC*21], atomic norm minimization [LPST15,GPY19], to name a few. [GM20]
studied the optimization landscape of overcomplete CP tensor decomposition. Beyond the CP
decomposition, [ZA16] developed exact tensor completion algorithms under the so-called tensor-
SVD [ZEAT14], and [LAAW19, LFLY18]| studied low-tubal-rank tensor recovery. We will not elab-
orate further since these algorithms are not directly comparable to ours due to the difference in

models.

Nonconvex optimization for statistical estimation. Our work contributes to the recent
strand of works that develop provable nonconvex methods for statistical estimation, including
but not limited to low-rank matrix estimation [SL16,CW15, MWCC19, CCD*21, MLC21,PKCS17,
CLL20|, phase retrieval [CLS15, WGE18, CC17, ZZLC17, ZCL16, CCFM19|, quadratic sampling
[LMCC19], dictionary learning [SQW17a,SQW17b,BJS18|, neural network training [BGW20,FCL20,
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HV19], and blind deconvolution [LLSW19,MWCC19,SC21]; the readers are referred to the overviews
[CLC19,CC18,ZQW20] for further references.
4.1.4 A primer on tensor algebra and notation

We end this section with a primer on some useful tensor algebra; for a more detailed exposition,
see [KB09,SDLF'17]. We define the unfolding (i.e. flattening) operations of tensors and matrices

as following.

e The mode-1 matricization M;(X) € R™*(273) of a tensor X € R™*"2X"s is given by [M; (X)] (i1, i2+
(is — 1)ng) = X (i1, i2,i3), for 1 < i < ny, k =1,2,3; Ma(X) and M3(X) can be defined in a

similar manner.

e The vectorization vec(X) € R™"2" of a tensor X € R™*"2%"s g given by [vec(X)](i1 + (i2 —

Dny + (i3 — 1)ning) = X (i1, 42, i3) for 1 <ip < ng, k=1,2,3.

e The vectorization vec(M) € R™"2 of a matrix M € R™*"2 is given by [vec(M)](i1+(iz—1)n1) =

M(il,ig) for 1 S ’ik S ng, k= 1,2.

The vectorization of a tensor is related to the Kronecker product as
vee((U,V,W)-8) = vec (UMl(S)(W ® V)T) — (W VaU)ve(S). (4.68)
The inner product between two tensors is defined as

(X1, X)) = Y Xy(ir,in, i3) Xa(in, i, 43).

11,12,13

A useful relation is that
(X1, X9) = (Mp(X1), Mp(X2)), k=123, (4.6b)

which allows one to move between the tensor representation and the unfolded matrix representation.

The Frobenius norm of a tensor is defined as || X||g = \/(X,X). In addition, the following basic
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relations, which follow straightforwardly from analogous matrix relations after applying matriciza-

tions, will be proven useful:

(Ua V: W) ‘ ((Qh Q27 Q3) ° 8) = (UQh VQ27 WQ3) ‘ 87 (46C>
(U V., W)-8,2)=(s,U" .V .W).x), (4.6d)
1(Q1, Q2,Qs3) - Sl < [|Q1l[|Q2[l[|Qs]l[[S]F, (4.6e)

where Qp € R "™k = 1,2,3. Define the ¢o, norm of X as || X = max;, i, s | X (i1,12,13)].

With slight abuse of terminology, denote

Umax(X) = krznlzgfii Jmax(Mk(X))a and Umin(X) = kI:nll,IQI,?) Jmin(Mk(X))

as the maximum and minimum nonzero singular values of X'. In addition, define the spectral norm

of a tensor X as

x| = sup (X, (w1, ug,u3) - 1)].
wupER™k: ||uk||2§1

Note that ||X|| # omax(X) in general. For a tensor X of multilinear rank at most r = (r1,72,73),

its spectral norm is related to the Frobenius norm as [JYZ17,LNSU18|

r1rars3

| X|IF < X, where r = max 7y. (4.7)

T k=1,2,3

Higher-order SVD. For a general tensor X, define H,(X) as the top-r higher-order SVD
(HOSVD) of X with r» = (r1,72,73), given by

M, (X) = (U,V,W)-S, (4.82)

where U is the top-ry left singular vectors of M;(X), V is the top-r; left singular vectors of Ma(X),

W is the top-r3 left singular vectors of M3(X), and S = (UT, VT, W ). X is the core tensor.
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Equivalently, we denote
(U,V,W,S)=HOSVD,(X) (4.8b)

as the output to the HOSVD procedure described above with the multilinear rank 7. In contrast to
the matrix case, HOSVD is not guaranteed to yield the optimal rank-r approximation of X (which
is NP-hard [HL13| to find). Nevertheless, it yields a quasi-optimal approximation [Hacl2] in the
sense that

X = Ho(X)[f<VB_ inf XX (4.9)
X:rank(My (X)) <ry

There are many variants or alternatives of HOSVD in the literature, e.g. successive HOSVD, alter-
nating least squares (ALS), higher-order orthogonal iteration (HOOI) [DLDMV00a, DLDMVO00b],
etc. These methods compute truncated singular value decompositions in successive or alternat-
ing manners, to either reduce the computational costs or pursue a better (but still quasi-optimal)
approximation. We will not delve into the details of these variants; interested readers can con-

sult [Hac12].

4.2 Main Results

4.2.1 Models and assumptions

We assume the ground truth tensor X, = [X,(i1,1i2,13)] € R™"*"2%X" admits the following Tucker

decomposition

r Tre T3

X (i, ig,iz) = > > > Uylin, j1)Valiz, j2) Wilis, j3)8.(j1, j2, ja), 1< ik <mg,  (4.10)
J1=1j2=1j3=1

or more compactly,

X* - (U*,V)(,W*)'S*, (411)
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where S, = [84(j1,72,73)] € R™*7™2X"3 ig the core tensor of multilinear rank r = (71,72, 73), and
U, = [Us(i1,j1)] € RM™*" 0V, = [Vi(ie, j2)] € R™*™2 W, = [W, (i3, j3)] € R™*"3 are the factor

matrices of each mode. Let My (X,) be the mode-k matricization of X, we have

M(X,) = UM (S (W, @ V,)T, (4.12a)
Ma(X,) = ViMo(S,) (W, o U,) T, (4.12b)
M3(X,) = WMs(S,)(Vio Ul)'. (4.12¢)

It is straightforward to see that the Tucker decomposition is not uniquely specified: for any invertible

matrices Qp € R™*"™ k =1,2,3, one has

(Us, Vi, Wy) - 8y = (U,Q1, ViQ2, W, Q3) -((Q7, Q5 ,Q31) - S.).

We shall fix the ground truth factors such that Uy, V, and W are orthonormal matrices consisting
of left singular vectors in each mode. Furthermore, the core tensor Sy is related to the singular

values in each mode as
Mp(SOMR(S)T =22,  k=1,23, (4.13)

where X, ;= diaglo1(Mg(X4)),. .., 0n, (Mi(X,))] is a diagonal matrix where the diagonal el-
ements are composed of the nonzero singular values of My(X,) and r, = rank(My(X,)) for

k=1,2,3.
Key parameters. Of particular interest is a sort of condition number of &X’,, which plays an
important role in governing the computational efficiency of first-order algorithms.

Definition 10 (Condition number). The condition number of X, is defined as

L Umax(x*) _ maXg=123 UmaX(Mk(X*))
K= _ . (4.14)
Omin(Xy)  Ming=123 Omin(Mg(Xy))

Another parameter is the incoherence parameter, which plays an important role in governing
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the well-posedness of low-rank tensor completion.

Definition 11 (Incoherence). The incoherence parameter of X, is defined as

nq n2 n3
b max{nv*naoo, "2 rw*u%,oo}. (4.15)
1 ) r3

Roughly speaking, a small incoherence parameter ensures that the energy of the tensor is
evenly distributed across its entries, so that a small random subset of its elements still reveals

substantial information about the latent structure of the entire tensor.

4.2.2 ScaledGD for tensor completion

Assume that we have observed a subset of entries in X, given as Y = Pq(Xy), where Pq :

R71Xn2xns |y RUIXN2XN3 iy 4 projection such that

o X*(il,ig,ig), if (il,iQ,ig) S Q,
[Pa(X)](i1, 2, 13) = (4.16)

0, otherwise.

Here, €2 is generated according to the Bernoulli observation model in the sense that
(i1,42,1i3) € Q independently with probability p € (0, 1]. (4.17)

The goal of tensor completion is to recover the tensor X, from its partial observation Pq(X ),
which can be achieved by minimizing the loss function

. 1
pin, o) CF) = o |Pa((U,V,W)-8) - Y|?. (4.18)

Preparation: a scaled projection operator. To guarantee faithful recovery from partial ob-
servations, the underlying low-rank tensor X', needs to be incoherent (cf. Definition 11) to avoid
ill-posedness. One typical strategy, frequently employed in the matrix setting, to ensure the inco-
herence condition is to trim the rows of the factors [CW15] after the gradient update. For ScaledGD,

this needs to be done in a careful manner to preserve the equivariance with respect to invertible
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transforms. Motivated by Chapter 2, we introduce the scaled projection as follows,

(U,V,W,S) :PB(U+,V+,W+,S+), (419)

where B > 0 is the projection radius, and

B
U<Z.1’:): (1/\ R < ) U+(i17:)7 1321 Snl;
V|| Uy (ix, ) U |2
V(ia, ) (m B )V(i ), 1<is<n
2,0) = 5 > +(22,1), < 12 < no;
V||V (ig, ) V] I
B
W<i3’:) - (1 A . 5 > W (i3, :)7 1 <i3 < ng;
V| W (i, )W ||2
8 - S+.

Here, we recall Uy, Vi, W, are analogously defined in (4.5) using (U, Vi, W,,8.). As can be
seen, each row of U, (resp. V. and W) is scaled by a scalar based on the row ¢ norms of U+lvfl
(resp. V+V+T and W+WJI), which is the mode-1 (resp. mode-2 and mode-3) matricization of the
tensor (U, V4, W,)-S,. It is a straightforward observation that the projection can be computed

efficiently.

Algorithm description. With the scaled projection Ppg(-) defined in hand, we are in a position
to describe the details of the proposed ScaledGD algorithm, summarized in Algorithm 4. It consists
of two stages: spectral initialization followed by iterative refinements using the scaled projected
gradient updates in (4.20). It is worth emphasizing that all the factors are updated simultaneously,
which can be achieved in a parallel manner to accelerate computation run time.

For the spectral initialization, we take advantage of the subspace estimators proposed in
[CLCT21,XYZ21] for highly unbalanced matrices. Specifically, we estimate the subspace spanned by
U, by that spanned by top-r1 eigenvectors Uy of the diagonally-deleted Gram matrix of p~* M7 (),

denoted as

Pott-diag( (0 M1 (V)M (P)T),
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Algorithm 4 ScaledGD for low-rank tensor completion

Input parameters: step size 1, multilinear rank r = (71, r2,73), probability of observation p,
projection radius B.

Spectral initialization: Let U, be the top-r1 eigenvectors of Pofr_diag(p >M1(Y)M1(P)T),
and similarly for Vo, W,, and S8, = p‘l(UI,VJ,WI) -Y.  Set (Up, Vo, Wy, So) =
Pp(Us, Vi, Wy, 8y).

Scaled projected gradient updates: for t =0,1,2,...,7 — 1 do

Ut+ = Ut - an(gt)ﬁt (ﬁt—rﬁt)_lv
Vi = Vi nMa(G)Vi(V,' V) 7,

o e u (4.20)
Wiy = W, — nM3(Go) Wi (W, W) ",
Sir =8 -0 (U U)LY (W W) W) g,
where G, = %(P@((Ut,W,Wt)-St)—y), Ijt, ‘Vft, and W, are defined in (4.5).  Set

(Uis1, Vig1, Wi, Se41) = Pe(Ury, Vig, Wiy, Sty ).

and the other two factors V; and W, are estimated similarly. The core tensor is then estimated as
17T vT wT
S+:p (U+7V+7W+)'y7

which is consistent with its estimation in the HOSVD procedure. To ensure the initialization is

incoherent, we pass it through the scaled projection operator to obtain the final initial estimate:

(U07 ‘/07 WO, 80) - 7DB (U-i-u V+) W+7S+)‘

Theoretical guarantees. The following theorem establishes the performance guarantee of ScaledGD

for tensor completion, as soon as the sample size is sufficiently large.

Theorem 8 (ScaledGD for tensor completion). Suppose that X, is p-incoherent, ny 2 EaluT2/2ﬁ2

for k=1,2,3, and that p satisfies
pninagng 2 661\/711712713#3/2?”5/2/13 log®n + eaznu3r4/€6 log® n
for some small constant ey > 0. Set the projection radius as B = Cp\/uromax(Xy) for some
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constant Cg > (14 €g)3. If the step size obeys 0 < n < 2/5, then with probability at least 1 — cyn =2

for universal constants c1,co > 0, for allt > 0, the iterates of Algorithm 4 satisfy

(U Vi, W) - 81 — 2| < 3e0(1 — 0.67)!7anin (X))

Theorem 8 ensures that ScaledGD finds an e-accurate estimate, i.e. ||(Ug, Vi, Wy) « 8¢ — X || <
€0min(X4), in at most O(log(1/¢)) iterations, which is independent of the condition number of X,
as long as the sample complexity is large enough. Assuming that p = O(1) and 7V k < n® for some
small constant § to keep only terms with dominating orders of n, the sample complexity simplifies

to

pninang 2> n3/2p5/23 log® n,

which is near-optimal in view of the conjecture that no polynomial-time algorithm will be successful

if the sample complexity is less than the order of n3/2

for tensor completion [BM16]. Compared
with existing algorithms collected in Table 4.1, ScaledGD is the first algorithm that simultaneously
achieves a near-optimal sample complexity and a near-linear run time complexity in a provable
manner. In particular, while [YZ16,XY19] achieve a sample complexity comparable to ours, the
tensor nuclear norm minimization algorithm in [YZ16| is NP-hard to compute, and the Grassman-

nian GD in [XY19] does not offer an explicit iteration complexity, except that each iteration can be

computed in a polynomial time.

4.2.3 ScaledGD for tensor regression

Now we move on to another tensor recovery problem—tensor regression with Gaussian design.

Assume that we have access to a set of observations given as

yi = (A;, Xy), i=1,...,m, or concisely, y=A(X,), (4.21)
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Algorithm 5 ScaledGD for low-rank tensor regression

Input parameters: step size n, multilinear rank r» = (r1,7r9,73).
Spectral initialization: Let (Uy, Vo, Wy, Sp) = HOSVD,.(A*(y)) defined in (4.8b).
Scaled gradient updates: fort =0,1,2,..., 7 —1

U1 = Uy — pM1(G) U, (f]tTIjt)_17
Vi1 = Vi —iMa(G)V, (V' V),

L (4.23)
Wit1 = Wy — TIM3(gt)Wt (Wt Wt) )

R ] (AL A AN A AR AR AN O AR

where Gy = A*(A(Uy, Vi, W) - 8) — y), Uy, Vi, and W, are defined in (4.5).

where A; € R™M*"2%"3 ig the i-th measurement tensor composed of i.i.d. Gaussian entries drawn
from N (0,1/m), and A(X) = {(A;, X))}, is a linear map from R™*"2%"3 to R™, whose adjoint
operator is given by A*(y) = >.", i A;. The goal of tensor regression is to recover X, from y,
by leveraging the low-rank structure of Xs. This can be achieved by minimizing the following loss
function

- 1 . S) —yl?
W s) L(F) =5 AU, V., W)-8) —yl5. (4.22)

The proposed ScaledGD algorithm to minimize (4.22) is described in Algorithm 5, where the
algorithm is initialized by applying HOSVD to A*(y), followed by scaled gradient updates given in
(4.23).

Theoretical guarantees. Encouragingly, we can guarantee that ScaledGD provably recovers the
ground truth tensor as long as the sample size is sufficiently large, which is given in the following

theorem.

Theorem 9 (ScaledGD for tensor regression). For tensor regression with Gaussian design, suppose

that m satisfies

m 2 661\/7117127137“3/2:‘372 + €5 2 (nr?kt logn + r*K?)
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for some small constant ey > 0. If the step size obeys 0 < n < 2/5, then with probability at least

1 —c1n=% for universal constants c1,co > 0, for all t > 0, the iterates of Algorithm 5 satisfy
|(Us, Via Wi) - S — X < 3eo(1— 0.67) 0min(X,).

Theorem 9 ensures that ScaledGD finds an e-accurate estimate, i.e. ||(Ug, Vi, Wy) « 8¢ — Xl <
€0min(X4), in at most O(log(1/¢)) iterations, which is independent of the condition number of X,

as long as the sample complexity satisfies
m > n3/2r3/2/<52,

where again we keep only terms with dominating orders of n. Compared with the regularized
GD [HWZ20|, ScaledGD achieves a low computation complexity with robustness to ill-conditioning,

improving its iteration complexity by a factor of k2, and does not require any explicit regularization.

4.3 Analysis

In this section, we provide some intuitions and sketch the proof of our main theorems. Before

continuing, we highlight an important property of ScaledGD: if starting from an equivalent estimate
U =UQ1, Vi=ViQ:, W,=WQ; 8 =(Q.Q;'.Q5") 8

for some invertible matrices Qx € GL(rk) (i.e. replacing U; by U;Q1, and so on), by plugging the
above estimate in (4.4) it is easy to check that the next iterate of ScaledGD is covariant with respect

to invertible transforms, meaning

U1 =Ui1Q1, Vg1 = Vig1Qa, Wi = Wi1Qs, Sipi = Q7. Q3,Q5") - St
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In other words, ScaledGD produces an invariant sequence of low-rank tensor estimates
Xt = (Utv Wa Wt) ¢ St = (Utv Wa Wt) ¢ St

regardless of the representation of the tensor factors with respect to the underlying symmetry group.
This is one of the key reasons behind the insensitivity of ScaledGD to ill-conditioning and factor

imbalance.

A key scaled distance metric. To track the progress of ScaledGD throughout the entire tra-
jectory, one needs a distance metric that properly takes account of the factor ambiguity due to
invertible transforms, as well as the effect of scaling. To that end, we define the scaled distance

between factor quadruples F' = (U,V,W,S8) and F, = (U,, V,, W,,S,) as

dist?(F, F,) = o ei&{( : (UQ1 — Uil + [(VQ2 — Vi) Zaalf + [(WQs — W,)Z, 5|7
k Tk

+ Q1. Q1. Q5 ") -8 - S| (4.24)

The distance is closely related to the #5 distances between the corresponding tensors. In fact, it can
be shown that as long as F' and F, are not too far apart, i.e. dist(F, Fy) < 0.20min(Xy), it holds

that dist(F, Fy) < ||(U,V,W) -8 — X,||r in the sense that (see Appendix C.1.1 for proofs):
S0V, W) -8 = Xolp < dist(F, ) < (V2+1)°2 (U, V, W) -8 = X, .

4.3.1 A warm-up case: ScaledGD for tensor factorization

To shed light on the design insights as well as the proof techniques, we now introduce the ScaledGD

algorithm for the tensor factorization problem, which aims to minimize the following loss function:

1 1
LF)=5IU,V,W)-§ X = S IMe (U V. W)-S — X,) B k=123 (4.25)

81



where the last equality follows from (4.6b). Recalling the update rule (4.4), ScaledGD proceeds as

Ui = Uy — M,y (X, — X,) U, (ﬁtTﬁt)_lv
Vigr = Vi =Mz (X — X,) ‘uftT(‘vftT‘vft)_l, (4.26)
Wit = Wy — pMy (X, — X,) W, (W, W,) 7,

Sip1=8t—1 ((UtTUt>_lUtTa (VtTVt)_l‘/;T7 (WtTWt)_thT) : (Xt - X*) )
where X, = (U, Vi, Wy) - Sy, with l)}, ‘v/t, and W, defined in (4.5).

ScaledGD as a quasi-Newton algorithm. One way to think of ScaledGD is through the lens of

quasi-Newton methods, by equivalently rewriting the ScaledGD update (4.26) as
Vec(‘FH-l) = VeC(Ft) - nHt_lvvec(F)‘C(Ft)a (427)

— 2 2 2 2
where Hy = dlag [vvec(U),vec(U)‘C(E)’ vvec(V),vec(V)’C(E)’ vvec(W),vec(W)E(Ft)’ vVec(S),VeC(‘S)‘C(Irlt)] :
To see this, it is straightforward to check that the diagonal blocks of the Hessian of the loss function

(4.25) are given precisely as

V@) ween£(F) = (U Uy) @ Iy,

v\2zec(V),vec(V)‘C(F;f) = (‘“/t‘l"“/t) ® In,, (4.28)
v\216(:(W),vec(W)‘C('Ft) = (WtTWt) ® Ing,

& (S),vec(S)[’(Ft) = (WtTWt) ® (‘/;TW) ® (UtTUt)'

vec
Therefore, by vectorization of (4.26), ScaledGD can be regarded as a quasi-Newton method where

the preconditioner is designed as the inverse of the diagonal approximation of the Hessian.

Guarantees for tensor factorization. Fortunately, ScaledGD admits a k-independent conver-
gence rate for tensor factorization, as long as the initialization is not too far from the ground truth.

This is summarized in Theorem 10, whose proof can be found in Appendix C.2.
Theorem 10. For tensor factorization (4.25), suppose that the initialization satisfies dist(Fp, F) <
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€00min(Xx) for some small constant ¢y > 0, then for all t > 0, the iterates of ScaledGD in (4.26)

satisfy
dist(F}, Fy) < (1= 0.7)) €00min(X+), and ||(Up, Vi, Wi) - St — Xollg < 3e0(1 — 0.71) 0min (X ),

as long as the step size satisfies 0 < n < 2/5.

Intuition of the proof. Let us provide some intuitions to facilitate understanding by examining
a toy case, where all factors become scalars, and the loss function with respect to the factor f =

[u,v,w,s]T becomes

1 1
£(f> = §<’U/UQUS - U*U*w*s*)2 = i(UU’LUS — 3*)2’

where u, = v, = w, = 1, and the ground truth is f, = [1, 1, 1, s*]T. The gradient and the diagonal

entries of the Hessian are given respectively as

VL(f) = (vvws — s,)[vws, uws, uvs, uvw]T,

'Pd;ag(VQE(f)) = diag[(vws)Q, (uws)2, (uvs)Q, (uvw)z].
Moreover, the Hessian matrix at the ground truth is given by
VQ'C(f*) = [S4, S5 Sx; 1]T[S*7 Sy Sxy 1.

With these in mind, the ScaledGD update rule in (4.26) and the scaled distance in (4.24) reduce

respectively to

fre1 = fi — 1 Paiag "(VEL(£))VL(S),

dist(f, £.) = it |[Pas L@ - 1)

Q=diag[q1,92,93,(q19293) ~

.
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Consequently, we can bound the distance between f;11 and f, as

st (fier, £) 2 [Puisg (VL)) (@0 (e~ 1 Pass™ (VESNVER) — 1)
(i)

.

Paing /> (V2L(£2)) (Qifs — 1 Paing - (V2LIQF))VL(Q:Sf:) — )

;

NE

= ‘(I — 7711T) ’Pdiagl/g(v2£(f*))(Qtft - f*)

2

where (i) follows from replacing @ by the optimal alignment matrix Q; between f; and f,, (ii)
follows from the scaling invariance of the iterates, and (iii) holds approximately as long as Q¢ f; is
sufficiently close to f., which is made precise in the formal proof. The last line (iv) follows from

that the scaled Hessian matrix obeys
Paiag/2(V2LF))VZL(fx) Paing /2 (V2L(f,)) =117,

By the optimality condition for Q; (see Lemma 32), it follows that Pd;agl/Q(Vzﬁ(f*))(Qtft — f)
is approximately parallel to 1. Thus, dist(fi+1, fix) contracts at a constant rate as long as the step

size 7 is set as a small constant obeying 0 < n < 2/5.

4.3.2 Proof outline for tensor completion (Theorem 8)

Armed with the insights from the tensor factorization case, we now provide a proof outline of
our main theorems on tensor completion and tensor regression, both of which can be viewed as
perturbations of tensor factorization with incomplete measurements, combined with properly de-
signed initialization schemes. We start with the guarantee for the spectral initialization for tensor

completion.

Lemma 9 (Initialization for tensor completion). Suppose that X, is p-incoherent, ny = 661MT2/2I€2

for k=1,2,3, and that p satisfies
pninaong 2 661\/77,171277,3/1,3/27”5/2/432 log®n + 662nu27’4/€4 log® n
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for some small constant g > 0. Then with overwhelming probability (i.e. at least 1 — cin™2), the
spectral initialization before projection Fy = (Uy, Vi, Wi, 8,) for low-rank tensor completion in

Algorithm 4 satisfies
diSt(F+,F*) S EOO'm'm(X*).

Under a suitable sample size condition, Lemma 9 guarantees that dist(Fy, Fy) < €00min(X )
for some small constant ¢y. To proceed, we need to know what would happen for the spectral
estimate Fy = Pp (F+) after projection. In fact, the scaled projection is non-expansive w.r.t. the
scaled distance. More importantly, the output is guaranteed to be incoherent. Both properties are

stated in the following lemma.

Lemma 10 (Properties of scaled projection). Suppose that X, is p-incoherent, and dist(Fy, F,) <
€0min(Xy) for some € < 1. Set B = Cp\/iiromax(Xy) for some constant Cg > (1 + €)3, then

F=(U,V,W,S) :=Pp(F;) satisfies the non-expansiveness property
dist(F, F,) < dist(F, Fy),
and the incoherence condition
VI |UU 2,00 V /12| VV |20 V /0 [ WW T 2,00 < B. (4.29)

Now we are ready to state the following lemma that ensures the linear contraction of the

iterative refinements given by the ScaledGD updates.

Lemma 11 (Local refinements for tensor completion). Suppose that X, is p-incoherent, and that

p satisfies
pninang 2 \/nlngng;ﬁ/gr%g 10g3 n+ nu37“4/£6 log5 n.
Under an event € which happens with overwhelming probability, if the t-th iterate satisfies dist(Fy, Fy) <
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€0min(X ) for some small constant €, then ||(Uy, Vi, Wy) « St — X||r < 3dist(Fy, Fi). In addition,

if the t-th iterate satisfies the incoherence condition
V| UU 2,00 V V2 ViV, 2,00 V /3 |[Wi W 200 < B,

with B = Cp/iromax(X ) for some constant Cg > (1+€)3, then the (t+1)-th iterate of Algorithm /

satisfies
dist(Fiy1, Fy) < (1 — 0.6n) dist(F3, Fy),
and the incoherence condition

VU Ul 2,00 V V|| Vg1 Vida 2,00 V V3| Wit Wil |l2.00 < B.

By combining Lemma 9 and Lemma 10, we can ensure that the spectral initialization Fy =
Pp(F}) satisfies the conditions required in Lemma 11, which further enables us to repetitively apply
Lemma 11 to finish the proof of Theorem 8. The proofs of the above three lemmas are provided in

Appendix C.3.

4.3.3 Proof outline for tensor regression (Theorem 9)

Now we turn to the proof outline for tensor regression (cf. Theorem 9). To begin with, we show
that the local linear convergence of ScaledGD can be guaranteed more generally, as long as the
measurement operator A(-) satisfies the so-called tensor restricted isometry property (TRIP), which

is formally defined as follows.

Definition 12 (TRIP [RSS17]). The linear map A : R"1*"2*"3 1 R™ is said to obey the rank-r
TRIP with 6, € (0,1), if for all tensor X € R™*"2X"3 of multilinear rank at most r = (ry,79,73),

one has
(1= 61X < [AX)[E < (1 +6,)[1X 7.
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If A(-) satisfies rank-2r TRIP with d2, € (0, 1), then for any two tensors X1, Xy € R™*72x"3

of multilinear rank at most r = (71,72, 73), we have
(1= 0or) | X1 — Xo|E < [ AKX — X2)[|E < (1 + 620) | X1 — X[

In other words, the distance between any pair of rank-r tensors X'; and X5 is approximately
preserved after the linear map A(-). The TRIP has been investigated extensively, where [RSS17,
Theorem 2| stated that if A;’s are composed of i.i.d. sub-Gaussian entries, TRIP holds with high
probability provided that m > 6, 2(nr + r3). TRIP also holds for more structured measurement
ensembles such as the random Fourier mapping [RSS17]. With the TRIP of A(-) in hand, we have
the following theorem regarding the local linear convergence of ScaledGD as long as the iterates are

close to the ground truth.

Lemma 12 (Local refinements for tensor regression). Suppose that A(-) obeys the 2r-TRIP with a
small constant 6op < 1. If the t-th iterate satisfies dist(Fy, Fy) < €opmin(Xy) for some small constant

€, then ||[(Ug, Vi, W) - St — Xo||r < 3dist(F, Fy). In addition, if the step size obeys 0 < n < 2/5,

then the (t + 1)-th iterate of Algorithm 5 satisfies
dist(Fye1, F.) < (1 — 0.61) dist(E}, F.).

Therefore, ScaledGD converges linearly as long as the sample size m > nr 4+ r3 under the
Gaussian design, when initialized properly. Unfortunately, obtaining a desired initialization turns
out to be a major roadblock and requires a substantially higher sample size, which has been studied
extensively for tensor regression [LZ21, HWZ20,ZLRY20]. Under the Gaussian design, we have the

following guarantee for the spectral initialization scheme that invokes HOSVD in Algorithm 5.

Lemma 13 (Initialization for tensor regression). Suppose that {A;}", are composed of i.i.d. N'(0,1/m)

entries, and that m satisfies

m 2 651,/n1n2n37“3/2n2 + €5 2 (nr?kt logn + rtK?)
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for some small constant eg > 0. Then with overwhelming probability, the spectral initialization for

low-rank tensor regression in Algorithm 5 satisfies

diSt(Fo, F*) < 6OCTmin(*)(*)~

Combining Lemma 12 and Lemma 13 finishes the proof of Theorem 9. Their proofs can be

found in Appendix C.4.

4.4 Numerical Experiments

We illustrate the numerical performance of ScaledGD for tensor completion to corroborate our
findings, especially its computational advantage over the regularized GD algorithm [HWZ20] that is
closest to our design. Their algorithm was originally proposed for tenser regression, nevertheless, it
naturally applies to tensor completion and exhibits similar results. Since the scaled projection does
not visibly impact the performance, we implement ScaledGD without performing the projection.
Also, we empirically find that the regularization used in [HWZ20] has no visible benefits, hence
we implement GD without the regularization. For simplicity, we set ny = ng = n3 = n, and

r1 =19 =13 = r. Each entry of the tensor is observed i.i.d. with probability p € (0, 1].

Phase transition of ScaledGD. We construct the ground truth tensor X, = (U, Vi, W,) - S,
by generating U, Vi and W as random orthonormal matrices, and the core tensor S, composed of
i.i.d. standard Gaussian entries, i.e. 8,(j1,72,73) ~N(0,1) for 1 < ji <r, k =1,2,3. For each set
of parameters, we run 100 random tests and count the success rate, where the recovery is regarded
as successful if the recovered tensor has a relative error || X1 — X4||g/|| X[ < 1073, Figure 4.2
illustrates the success rate with respect to the (scaled) sample size for different tensor sizes n, which

implies that the recovery is successful when the sample size is moderately large.

Comparison with GD. We next compare the performance of ScaledGD with GD. For a fair

comparison, both ScaledGD and GD start from the same spectral initialization, and we use the
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Figure 4.2: The success rate of ScaledGD with respect to the scaled sample size for tensor completion
with » = 5, when the core tensor is composed of i.i.d. standard Gaussian entries, for various tensor
size n.

following update rule of GD as

Upr1 = Uy — 1ot (X )VUL(F),
Vigi =V, — nagﬁx(%)vvﬁ(ﬂ%
(4.30)
Wi = W, — o2 (X)VwL(F),

St+1 =8 — UVSE(Ft)-

Throughout the experiments, we used the ground truth value opax(Xy) in running (4.30), while
in practice, this parameter needs to estimated; to put it differently, the step size of GD is not
scale-invariant, whereas the step size of ScaledGD is.

To ensure the ground truth tensor X, = (Uy, Vi, W,) - S, has a prescribed condition number
K, we generate the core tensor S, € R™"*" according to 8, (j1,72,73) = 0j, /T if j1 +jo+j3 =0
(mod r) and 0 otherwise, where {0} }1<j,<, take values spaced equally from 1 to 1/k. It then
follows that opmax(X%) =1, omin(X«) = 1/k, and the condition number of X, is exactly k.

Figure 4.3 illustrates the convergence speed of ScaledGD and GD under different step sizes,
where we plot the relative error after at most 80 iterations (the algorithm is terminated if the relative

error exceeds 102 following an excessive step size). It can be seen that ScaledGD outperforms GD
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Figure 4.3: The relative errors of ScaledGD and GD after 80 iterations with respect to different step
sizes 1 from 0.1 to 0.9 for tensor completion with n = 100, r =5, p = 0.1.

quite significantly even when the step size of GD is optimized for its performance. Hence, we will fix

n = 0.3 for the rest of the comparisons for both ScaledGD and GD without hurting the conclusions.

10° 10°
102!
— - -4
S g "
- =
=) =
<) () 10
) )
= —~ScaledGD & =1 = ) —~-ScaledGD & =1
= —ScaledGD £ =2 |3 = 108 —ScaledGD k=2 |3
o) —+ScaledGD k =5 2 —+ScaledGD k =5
~ -=-ScaledGD & = 10[] o~ 101054 -=-ScaledGD & = 10|]
GD k=1 ) GD k=1
K= K=
GD k=10 GD k=10
‘ ‘ : 14 i ‘ ‘ : :
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(a) (b)

Figure 4.4: The relative errors of ScaledGD and GD with respect to (a) the iteration count and (b)
run time (in seconds) under different condition numbers k = 1,2, 5,10 for tensor completion with

n =100, r =5, and p =0.1.

Figure 4.4 compares the relative errors of ScaledGD and GD for tensor completion with respect
to the iteration count and run time (in seconds) under different condition numbers x = 1,2, 5, 10.

This experiment verifies that ScaledGD converges rapidly at a rate independent of the condition
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number, and matches the fastest rate of GD with perfect conditioning x = 1. In contrast, the
convergence rate of GD deteriorates quickly with the increase of k even at a moderate level. The
advantage of ScaledGD carries over to the run time as well, since the scaled gradient only adds a

negligible overhead to the gradient computation.

—-ScaledGD k =1
——ScaledGD k=2 [}
——ScaledGD k =5
-=-ScaledGD k = 10}
GD k=1
GD k=2
GD k=5
GD k=10

Relative error

500 1000 1500 2000
Iteration count

Figure 4.5: The relative errors of random-initialized ScaledGD and GD with respect to the iteration
count under different condition numbers k = 1,2,5,10 for tensor completion with n = 100, r = 5,
p=0.1.

We next examine the performance of ScaledGD and GD when randomly initialized. Here,
we initialize Uy, Vj, Wy composed of i.i.d. entries sampled from N(0,1/n), and Sy composed of
ii.d. entries sampled from N (0, [|Y|2/(pr®)). Figure 4.5 plots the relative errors of ScaledGD
and GD under different condition numbers x = 1,2,5,10, using the same random initialization.
Surprisingly, while GD gets stuck in a flat region before entering the phase of linear convergence,
ScaledGD seems to be quite insensitive to the choice of initialization, and converges almost in the
same fashion as the case with spectral initialization.

Finally, we examine the performance of ScaledGD when the observations are corrupted by
additive noise, where we assume the noisy observations are given by Y = Pq(X, + W), with

Wiy, ia,i3) ~ N(0,02) composed of i.i.d. Gaussian entries. Denote the signal-to-noise ratio as

[ «I7
n3c2,

SNR := 10log;, in dB. Figure 4.6 demonstrates the robustness of ScaledGD, by plotting the
relative errors with respect to the iteration count under SNR = 40,60,80dB. Here, the ground

truth tensor X, is constructed in the same manner as Figure 4.2, where its condition number is
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Figure 4.6: The relative errors of ScaledGD and GD with respect to the iteration count under
signal-to-noise ratios SNR = 40, 60, 80dB for tensor completion with n = 100, r =5, and p = 0.1.

approximately x = 2.6. It can been seen that ScaledGD reaches the same statistical error as GD,

but at a much faster rate. In addition, the convergence speeds are not impacted by the noise levels.

4.5 Discussions

This chapter develops ScaledGD algorithm over the factor space for low-rank tensor estimation
(i.e. completion and regression) with provable sample and computational guarantees, leading to
a highly scalable approach especially when the ground truth tensor is ill-conditioned and high-
dimensional. There are several future directions that are worth exploring, which we briefly discuss

below.

e Preconditioning for other tensor decompositions. The use of preconditioning will likely also accel-
erate vanilla gradient descent for low-rank tensor estimation using other decomposition models,

such as CP decomposition [CLPC19], which is worth investigating.

e Entrywise error control for tensor completion. In this chapter, we focused on controlling the /o
error of the reconstructed tensor in tensor completion, whereas another strong form of statistical
guarantees deals with the /o, error, as done in [MWCC19] for matrix completion and in [CLPC19]

for tensor completion with CP decomposition. It is hence of interest to develop similar strong
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entrywise error guarantees of ScaledGD for tensor completion with Tucker decomposition.

e Random initialization? As evident from the numerical experiment in Figure 4.5, ScaledGD works
remarkably well even from a random initialization, which requires us to go beyond the local ge-

ometry and pursue a further understanding of the global landscape of the optimization geometry.
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Chapter 5

Robust Low-rank Tensor Estimation

5.1 Introduction

The modern data deluge has created a growing number of applications involving multi-dimensional
or multi-attribute datasets, examples including video surveillance, hyperspectral imaging, neu-
roimaging, social network analysis, and so on. Tensors arise naturally as a suitable data structure
that captures the underlying multi-way interactions, offering advantages over the matrix counter-
part [KB09,SDLF"17|. An important problem, known as tensor regression, that arises frequently
across different applications is to recover a tensor from a small number of its linear measurements,

given by
y= A(X*)v

where X, € R™M*"2XX"K ig 5 K-way tensor, y € R is the collected measurements, and A(-) is a
linear map that models the data collection process. For ease of presentation, we consider the case
K = 3 throughout the paper, while our results hold for the general case without difficulty.

In practice, due to sensor failures and malicious attacks, it is common that the collected
measurements may suffer from undesirable and unknown corruptions, which are possibly adversarial.
Consequently, there is an imminent need to develop low-rank tensor recovery algorithms that are
provably robust and efficient, which are still lacking. To fill the gap, instead of minimizing the
smooth loss function in (5.3), which is known to be vulnerable to outliers, we resort to the least
absolute deviations (LAD) loss, which measures the residual sum of absolute errors:

i U,V,W)-C)—yl|,. 5.1
p @i, o AUV, W) -C) —ylly (5.1)
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Leveraging recent insights in preconditioning for ill-conditioned low-rank matrix and tensor estima-
tion |[TMC21a, TMC21b, TMPB™*21|, we propose an efficient algorithm for solving the nonconvex
composite optimization problem in (5.3), namely the scaled subgradient method (ScaledSM), which
incorporates carefully-designed preconditioners in the local updates to preserve the equivariance of
the low-rank parameterization. Under the Gaussian design, the proposed method provably finds
the ground truth at a constant linear rate that is independent of the condition number even under
a constant fraction of outliers, as long as it is initialized properly. The algorithm is much more
scalable than its counterpart without the preconditioners, especially when the ground truth tensor
is ill-conditioned. To the best of our knowledge, our work provides the first provable algorithm that
achieves robust low-rank tensor regression from corrupted measurements, together with a fast rate

of convergence independent of the condition number of the ground truth tensor.

5.1.1 Related works

Low-rank tensor recovery has attracted significant research interest in recent years, where many
algorithms have been developed with provable performance guarantees, e.g. [RYC19, HMGW15,
BM16,RSS17, CRY19, ZLRY 20, HWZ20, TMPB*21, CLPC19, LM20]. Moreover, spectral methods
[MS18, CLC*21, CCFM21] are often applied to provide a smart initialization from which iterative
algorithms refine locally to enable global convergence despite the presence of nonconvexity. However,
a majority of these algorithms are designed with respect to the smooth least-squares loss and
therefore their performance is very sensitive to the existence of outliers.

Motivated by the success of robust principal component analysis for the matrix setting
[CLMW11], convex relaxation approaches are proposed in [GQ14, HMGW15, LFC*16] via unfold-
ing the tensor of interest and invoking matrix-based algorithms. However, their computational
complexity is often prohibitive for large-scale problems. On the other end, the LAD loss is not
new to handle outliers, and has been adopted for high-dimensional signal recovery |[LSC17,DR19,
CDDD19,LZMCSV20, TMC21b, CCD*21,MF21|, where the subgradient method has been analyzed
in [DR19,CCD"21, MF21]. Another popular strategy is to adaptively truncate or prune outliers in

an iterative manner guided by quantile statistics, as done in [ZCL16,LCZL20,ZCL18,YPCC16].
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The preconditioner design in our approach is directly inspired by ScaledGD method to optimize
the smooth loss function (5.3) for low-rank tensor regression. In particular, the proposed subgradient
method can be viewed as the tensor counterpart of Chapter 3, which generalizes the preconditioner

designs to the nonsmooth setting.

5.1.2 Chapter organization

The rest of this chapter is organized as follows. Section 5.2 describes the problem formulation as
well as the proposed algorithms. Section 5.3 provides the theoretical guarantees in terms of both
statistical and computational complexities. Section 5.4 illustrates the performance of the proposed

algorithms through numerical examples. Finally, we conclude in Section 5.5.

5.2 Formulation and Proposed Algorithms

Let X, = [X,(i1,12,13)] € R™*"2X"3 he the ground truth tensor that satisfies the Tucker decompo-
sition in (4.10). Consider the robust low-rank tensor regression problem, in which the measurements
are corrupted by sparse outliers. Specifically, assume that we have access to a set of linear observa-

tions of X, where the measurement vector y = {y;};", is given as

y=A(X,) + s, (5.2)

where A(X,) = {(A;, X,)}", is the measurement operator, with A; € R™*"2*"3 denoting the
i-th sensing tensor, and s = {s;}/", corresponds to the outlier vector. We assume the outlier s is
a sparse vector obeying ||s|jo = psm for some 0 < ps < 1, which means that ||s||p is much smaller
than its ambient dimension m, so that only a small fraction ps of the measurements are corrupted.
However, the corrupted entries can take arbitrary or adversarial magnitudes. The goal is to recover
the low-rank tensor X', from y in a robust and scalable manner.

To cope with the outliers, it is natural to minimize the least absolute deviation (LAD) loss of
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the measurements, given by

FX) = [AX) =yl =D (AL X) —yil. (5.3)
=1

In addition, to take advantage of the low-rank structure and minimize complexity, we factorize the
tensor X = (U, V,W).C with U € R"*" V € R"2*"2 W € R™*" and C € R"*"2X"3 and

optimize the factors directly via the following unconstrained composite optimization problem:

F:(UI'I,I‘i/I,lW,C) ‘C(F) = f((Ua V7 W) : C), (54)

which is nonconvex and nonsmooth.
A natural idea to optimize (5.4) is via subgradient descent, which updates the factor quadruple

iteratively according to

U1 = Uy — M1 (G) Uy,
V{t+1 =V, - 77t/\/l2(gt)‘257
W1 = W, — M3 (G) Wi,

CtJrl =C;— ui (Ut—rv ‘/I;T7 WtT> -Gt

where 1, > 0 is the step size, Gy = A*(sgn(A(X}:)) —y) € Ox f(X;) is a subgradient of f(X) with
respect to X at Xy = (U, Vi, W) - Cy, and A*(-) is the adjoint operator of A(-). Furthermore, the

following short-hand notation is introduced:

U, = (W; @ Vi)M1(C) T, (5.6a)
V, = (W, @ U)My(Cy) T, (5.6b)
W, = (Vi @ U) M3(Cy)". (5.6¢)

While simple and straightforward, this approach tends to converge very slowly when the tensor is

ill-conditioned. Inspired by Chapter 4, we propose to update the iterate along a preconditioned or
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scaled direction of the subgradient, leading to the following scaled subgradient method (ScaledSM):

U1 = U — UtMl(gt)[yt(IuJ;rth)_la

‘/t—&-l tMQ(gt)‘/t(‘/t ‘/t) ’ (5 7)

Wi =W, — 77tM3(gt)Wt(WtTﬁft)fla

Corr = Co— (OO UL, (VT V)TV (W W) W) -6

Step size schedules. We still need to specify the choice of the step size 1, > 0, which needs to
be carefully scheduled in accordance with the scaled update. Specifically, we apply a geometrically
decaying learning rate schedule |Gof77| with proper scaling,

At

o (5.8)

Nt =

where ¢ € (0,1), A > 0 and

N7 = || My G T T2+ [ Mo VYTV |+ || Mstg w2

+H<(Ut At VANG AR A el NG 1 4 Wt)_l/QmT>'gtHF' (5.9)

In fact, IV; can be viewed as the norm of the subgradient under a scaled metric compatible with our
preconditioners. This choice is informed by our theory.

) f(X)

Remark 7. Ideally, one might be tempted to apply the Polyak’s step size, given by n; = 2
t

However, it is impractical due to the unknown optimal function value f(X,). As illustrated in Chap-
ter 3, geometric step size achieves the same performance as Polyak’s step size when parameters A, ¢

are tuned appropriately.

Equivariance to low-rank parameterization. A crucial property of ScaledSM is that the update
of the low-rank tensor X; is invariant w.r.t. the low-rank parameterization. Suppose that at the

t-th iteration, we reparameterize the factor F; = (U, Vi, Wy, Cy) by

F, = (UQ1,ViQ2, W;Q3, (Q71,Q51,Q3 1) - Cr)
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via any invertible matrices Qi € GL(7), k = 1,2, 3, where both F; and ﬁ’t correspond to the same
low-rank tensor X; = (Uy, Vi, W;) - C;. By checking (5.7) and (5.8), it is straightforward to verify

that the next iterate from F} follow the same change of parameterization, i.e.

ﬁs+1 = (U+1Q1, Vit1Q2, Wi11Q3, (Ql_la Q2_17 Qg_l) -Cit1),

which ensures the update rule of ScaledSM is insensitive to the imbalance of the factors in the
low-rank parameterization—a key property that is absent in the vanilla subgradient method and

contributes to the performance gain.

5.2.1 Truncated spectral initialization

Inspired by the median-truncated spectral initialization in [ZCL16, LCZL20,ZCL18|, we propose a
tensor counterpart that is tailored to our problem to initialize ScaledSM. Denote Yirunc as the vector
after discarding ps fraction of measurements with largest magnitudes:

132,57 if |y2| < |y|(|—p5m'\)

[ytrunc]i = R (5.10)
0, otherwise

where |y|(;) denotes the k-th largest amplitude of y. Let A*(-) be the adjoint operator of A(:). The

truncated spectral initialization Fy = (Up, Vy, Wy, Co) is then given by

(Uo, ‘/07 WO) : CO = H'r‘ (-A* (ytrunc))a (511)

i.e. the top-r higher-order SVD (HOSVD) of A*(ytrunc). More specifically, Uy (resp. Vj and Wy)
is the top-r; (resp. ro and r3) left singular vectors of My (A*(Ytrunc)) (resp. Ma(A* (Ytrunc)) and
M3(A*(Yirunc))), and Co = (Uy , V', W) - A*(Yirunc) is the core tensor. The full algorithm is

stated in Algorithm 6.
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Algorithm 6 ScaledSM for low-rank tensor recovery

Input parameters: parameters A, ¢, multilinear rank r» = (r1,r9,73), fraction of outlier pj.
Truncated spectral initialization: Let (Up, Vi, Wy) - Co = Hy (A* (Ytrunc)), With Yirunc defined
in (5.10).
Scaled subgradient updates: for t =0,1,2,...,7 — 1 do

Ups1 = Uy — M1 (G)UL(U, Up) 7,

Vi1 =V, — Mo (G)Vi(V, Vi) 2,

Wip1 = Wi — neMs(G) W (W, W)™,

Cor = Co—me (U] U)'U) (VT V)V, (W W)~ W) - 6

(5.12)

where G; = A*(sgn(A((Uy, Vi, Wy) - Cy) — y)), Uy, Vi, W, are defined in (5.6), and n; = A¢ /Ny
is defined in (5.8).

5.3 Theoretical Guarantees

We focus on presenting the local linear convergence of the proposed scaled subgradient method

while leaving a complete account of global convergence to the future work.

5.3.1 A general theory of local linear convergence

Our convergence guarantees are built on standard geometric assumptions [DR19,CCD*21, TMC21b]

on the loss function f(-) for the analysis of subgradient-type algorithms, which are defined as follows.

Definition 13 (Restricted Lipschitz continuity). A function f : R™*"2*"3 1 R is said to be rank-r

restricted L-Lipschitz continuous for some quantity L > 0 if

|f(X1) = f(X2)| < L[| X1 — X2F

holds for any &X', X9 € R™*™2X"38 guch that X7 — X9 has multilinear rank at most 2.

Definition 14 (Restricted sharpness). A function f : R *"2*"3 — R is said to be rank-r restricted

u-sharp w.r.t. X, for some p > 0 if

f(X) = (&) = pl| X — X[
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holds for any X € R™*"2X"3 with multilinear rank at most ».

The condition number of a function f(-) that is both restricted L-Lipschitz continuous and

p-sharp is then denoted by

x5 =L/p. (5.13)

To fully capture the performance progress of ScaledSM, we measure the performance of factor
quadruple F = (U,V, W, C) using the following error metric (4.24), which takes into consideration
both the representation ambiguity of the factorization up to invertible transforms and the scaling
of different factors due to the presence of preconditioners. With this metric in place, we state the
linear convergence of the scaled subgradient method when f(-) satisfies both the rank-r restricted

L-Lipschitz continuity and p-sharpness, as follows.

Theorem 11 (Scaled subgradient method with exact convergence). Suppose that f(X) : R™M>7"2X"3 —
R is convex in X, and satisfies rank-r restricted L-Lipschitz continuity and p-sharpness (cf. Defi-

nitions 13 and 14). In addition, suppose that the initialization Fy satisfies
dist(Fp, Fy) < 10 3 0min (X)) /X 1 (5.14)

and the scaled subgradient method adopts the geometrically decaying step sizes in (5.8) with A =

Mm_?’amm(k})/xfc and g = (1 — 0.016/)(%)1/2. Then for all t > 0, the iterates satisfy
dist(Fy, F,) < (1—0.016/x7)"*10 2 omin (X)) /Xy, and || Xy — X, |¢ < 3dist(F}, F.).

Theorem 11 shows that the iterates of the scaled subgradient method converges at a linear
rate; to reach e-accuracy, i.e. | Xy — X,||r < €0, (X,), it takes at most O(X? log 1) iterations, which,
importantly, is independent of the condition number k of X,. Finally, it is worth noting that the

choices of constants in Theorem 11 are pessimistic to simplify analysis.
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5.3.2 Case study: Gaussian design

It turns out that under the Gaussian design, where all the sensing tensors are composed of i.i.d. Gaus-
sian entries, the resulting loss function obeys the rank-r restricted L-Lipschitz continuity and p-

sharpness with high probability.

Proposition 5 (Gaussian designs). Let n = max{ni,ng,n3} and r = max{ry,rq,r3}. Suppose
that [A(X)]; = L(A;, X) with tensors Ay, ..., A, composed of i.i.d. standard Gaussian entries.
Then with probability exceeding 1 — cin™, the loss function f(X) = ||A(X) —y|l1 in (5.3) satisfies

the rank-r restricted L-Lipschitz continuity and p-sharpness with

L=08, pu=0.79(1-2p,), (5.15)

3 .
as long as m > %(ng;T)g) log (1—12;; ) Here, C,c1,co are some universal constants.
- s s

Combining Theorem 11 and Proposition 5, it is guaranteed that ScaledSM reaches e-accuracy
in at most O (m log %) iterations, as long as the sample size is sufficiently large. This amounts
to a near-optimal sample complexity O(nr 4 r3) and dimension-free iteration complexity O(log %)
even with a constant fraction of outliers.

Beyond the Gaussian design, similar guarantees can be established when the observation

operator satisfies the mixed-norm restricted isometry property; see Chapter 3.

5.4 Numerical Experiments

In this section, we provide numerical experiments to illustrate the performance of ScaledSM for
robust tensor regression, and highlight its advantage compared to the vanilla subgradient method
(SM). For simplicity, we set ny = ng = nzg = 30, and r; = r9 = r3 = 3, and collect m = 5000 mea-
surements according to (5.2). The ground truth tensor X, is generated as described in Section 4.4.
Each outlier is independently generated as s; = §;£2;, with €; drawn from a Bernoulli distribution
with parameter ps, and §; drawn from a uniform distribution in [—10]]A(X )]s, 10]]A(X)]|c0)-

Both ScaledSM and SM start from the same truncated spectral initialization (5.11), and for sim-
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Figure 5.1: Performance comparisons of ScaledSM and the vanilla subgradient method (SM). (a)
The reconstruction errors || X; — X, ||g/||X || w.r.t. the iteration count under different condition
numbers k = 1,2, 5,10 with p; = 0.2. (b) The iteration complexities w.r.t. the condition number for
achieving || Xy — X ||F < 1073|| X ||f with ps = 0.2. (c) The reconstruction errors w.r.t. the iteration
count under different amounts of outliers ps = 0.1,0.2,0.3,0.4 with k = 5. (d) The reconstruction
errors w.r.t. the iteration count under different signal-to-noise ratios SNR = 40, 60,80dB with
ps = 0.2.

plicity use the Polyak’s step size (which amounts to using optimally tuned geometrically decaying
step sizes).

Fig. 5.1 shows the detailed performance comparison of ScaledSM and SM under various set-
tings. Thanks to the robustness of the least absolute deviation loss, both algorithms converge

linearly in the presence of outliers. Noteworthily, ScaledSM converges as a fast rate that is indepen-
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dent with «, while SM slows down dramatically as x increases. Indeed, the iteration complexity of
SM grows super linearly with respect to condition number x, while ScaledSM takes a much smaller

number of iterations and therefore accelerates the convergence for ill-conditioned instances.

5.5 Conclusions

This chapter develops a scaled subgradient method for robust low-rank tensor regression from cor-
rupted measurements, by minimizing the a natural nonsmooth and nonconvex loss function based on
least absolute deviation. In addition, it is of interest to examine if it is possible to develop provably

efficient algorithms for the related problem called robust low-rank tensor completion [LFCT16].
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Appendix A

Proofs for Low-rank Matrix Estimation

A.1 Technical Lemmas

This section gathers several useful lemmas that will be used in the appendix. Throughout all lemmas,

we use X, to denote the ground truth low-rank matrix, with its compact SVD as X, = U, X, V,',

L, U,z
and the stacked factor matrix is defined as F, = =
R, |v=/

A.1.1 New distance metric

We begin with the investigation of the new distance metric (2.8), where the matrix @ that attains
the infimum, if exists, is called the optimal alignment matrix between F' and F; see (2.9). Notice
that (2.8) involves a minimization problem over an open set (the set of invertible matrices). Hence
the minimizer, i.e. the optimal alignment matrix between F' and F is not guaranteed to be attained.
Fortunately, a simple sufficient condition guarantees the existence of the minimizer; see the lemma

below.

L
Lemma 14. Fiz any factor matriz F = € Rm+m2)xr - Suppose that

dist(F, F,) = \/Qei(r}{(r) ‘(LQ ~ L, giﬂHi . H(RQJ “R)) Eiﬂ”i < o.(X,), (A1)

then the minimizer of the above minimization problem is attained at some Q € GL(r), i.e. the

optimal alignment matriz Q between F and F, exists.

Proof. In view of the condition (A.1) and the definition of infimum, one knows that there must exist
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a matrix Q € GL(r) such that

_ 2 _ 2
Jlaa-zom i mys <cotx,
for some € obeying 0 < € < 1. It further implies that

O KGR

Invoke Weyl’s inequality |o,(A) — 0,(B)| < ||A — B]|, and use that O'T(L*Z:l/Q) =o0,(U,) =1 to

obtain
o (LQE; V) > 0,(L 2,V - H (LQ - L,) 2;1/2H >1-e (A.2)
In addition, it is straightforward to verify that
o, o mme | (na ) o

QeGL(r)

i, e n s (e R

Indeed, if the minimizer of the second optimization problem (cf. (A.4)) is attained at some H, then
QH must be the minimizer of the first problem (A.3). Therefore, from now on, we focus on proving
that the minimizer of the second problem (A.4) is attained at some H. In view of (A.3) and (A.4),

one has

wdih o |(E@H = 2 2t (RO HT - R =

< H (LQ - L,) zl/Z'Hi + H (RQT-R.) 2}/2‘ ’

)

F

Clearly, for any QH to yield a smaller distance than @, H must obey

\/H (LQH - L,) 21/2Hi +|[(RQTH T - R.) Ei/QHi < cor(X,).
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It further implies that
i@ 5| (e w3 <

Invoke Weyl’s inequality |o1(A) — 01(B)| < ||A — B]|, and use that Ul(L*E*_l/Q) =01(Us) =1 to

obtain
A(LQHS,'?) < oy (L3,') +||(LQH - L.) 2;1/2H <l+te (A.5)

Combine (A.2) and (A.5), and use the relation o,(A)o1(B) < 01(AB) to obtain

51— - e 1
(L@ oy (B2 HS ) < oy (LQHS ) < -5,

(LQ=, ).

As a result, one has Ul(Ei/QHE*_l/Q) < %

Similarly, one can show that o1 (Sy/2H-TE;"%) < L equivalently, o, (S)/2HE; /?) >

%—IE. Combining the above two arguments reveals that the minimization problem (A.4) is equivalent

to the constrained problem:

winimize |(LQH - 1) 3|+ | (R TH T - R) 27

1 _ _ 1
€ < o (DPHSY?) < 0y (SV2HE?) < E

1.
° 1+e™ 1-—

M

Notice that this is a continuous optimization problem over a compact set. Apply the Weierstrass

extreme value theorem to finish the proof. O

With the existence of the optimal alignment matrix in place, the following lemma provides

the first-order necessary condition for the minimizer.

Lemma 15. For any factor matriz F = e Rmtn2)xr - qupnose that the optimal alignment
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matrix

@ = wemin (2@ - Ln[ ¢ meT - mym;
QeGL(r) F ]

between F and Fy exists, then Q obeys
(LQ)(IQ - L)%, ==, (RQ™ - R,)'RQ . (A.6)
Proof. Expand the squares in the definition of @ to obtain

Q = argmin tr ((LQ L) (LQ - L*)E*) +tr ((RQ—T ~R)T(RQ™T - R*)E*) .
QeGL(r)

Clearly, the first order necessary condition (i.e. the gradient is zero) yields
2L7(LQ - L)%, -2Q '=.(RQ™" - R.)'RQT =0,

which implies the optimal alignment criterion (A.6). O

Last but not least, we connect the newly proposed distance to the usual Frobenius norm
in Lemma 16, the proof of which is a slight modification to [TBST16, Lemma 5.4] and [GJZ17,

Lemma 41].

Lemma 16. For any factor matrizc F = e Rm+m2)x7 the distance between F and F, satisfies
R

1/2
dist(F, F,) < (\TH 1) ILR" — X,||F.

Proof. Suppose that X := LR has compact SVD as X = UXV . Without loss of generality, we
UEl/Q

can assume that F' = , since any factorization of LR yields the same distance. Introduce
V21/2
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_ | Uz _ U.s!? |
two auxiliary matrices F' := and F, = . Apply the dilation trick to obtain
—_yxi/2 R V0 S
0 X _ 0 X _
2 =FF' - FF", 2 | = F,F - F.F.
X" o X o

As a result, the squared Frobenius norm of X — X, is given by

_ _ 2
8| X — X, |2 = HFFT ~FFT - F.F] + FF]||

2 _ _ 2 _ _
- HFFT -FF]| + HFFT -EF]| -2t ((FFT _FF)(FFT - F*F*T)>

2 _ _
=2 |FFT - B | +2)F F|} +2|F F|?

)

2
>9 HFFT _F.F)

where we use the facts that HFFT — F*F*TH?: = HFFT — F*F*TH?: and FTF=FF,=0.
Let O = sgn(FTF,)! be the optimal orthonormal alignment matrix between F and F.
Denote A := FO—F,. Follow the same argument as [TBS™16, Lemma 5.14| and [GJZ17, Lemma 41]

to obtain

41X — X, >

+AF 4+ AATH

— tr <2F*TF*ATA +(ATARZ 4+ 2(FTA)? + 4FIAATA)

OFFATA + (ATA +V2FTA)? + (4 — 2\@)FJAATA)

tr (
tr (2 2 - D)FJFEATA+ (ATA +V2FTA)? + (4 2ﬂ)FjF0ATA>
(1

> tr (4(V2 - 1)S ATA>—4(\/§—1HF0 F,) 1/2H

where the last inequality follows from the facts that F,) F, = 23, and that F| FO is positive

TLet ASBT be the SVD of F' F,, then the matrix sign is sgn(F ' F,) = AB'.
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semi-definite. Therefore we obtain
1/2 1/2
H(FO ~F)x! HF < (f2+ 1) I1X — X, |-
This in conjunction with dist(F, F}) < ||[(FO — F*)Ei/ 2||F yields the claimed result. O

A.1.2 DMatrix perturbation bounds

Lemma 17. For any L € R™*" R € R"*" denote A, .= L — L, and Ar .= R — R,. Suppose
that ||AL§J:1/2H Y ||ARE:1/2|| < 1, then one has

1

HL(LTL)—lzi/2 < s (A.7a)
L aE?
HR(RTR)—lzl/2 < ! i (A.7b)
1= [lAarz
—1/2
HL(LTL)—lzi/2 | < Y2lALE "l (A.7¢)
T faz
~1/2
|RETR) 1=V -V < VAR, /2” . (A.7d)
1- HARE* H

Proof. We only prove claims (A.7a) and (A.7c) on the factor L, while the claims on the factor R

follow from a similar argument. We start to prove (A.7a). Notice that

1

e R e}

In addition, invoke Weyl’s inequality to obtain
—-1/2 -1/2 -1/2, _ —-1/2
or(LE, 7)) Z on(LhE 7)) — [ALE 7 =1 = [[ALE 7,

where we have used the fact that U, = L, X, 1/2 satisfies 0,.(U,) = 1. Combine the preceding two
relations to prove (A.7a).

We proceed to prove (A.7c). Combine L] U, = /% and (I,, —- L(L"L)"'LT)L = 0 to
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obtain the decomposition

LILTL)'sY? ~U, = -LILTL) AU, + (I, - LILTL)'LT)A, = V2
The fact that L(LTL)"'A] U, and (I,,, — L(LTL)_ILT)ALE*_I/2 are orthogonal implies
HL(LTL)—lzi/2 ~U,

2 2 2
< HL(LTL)_lAZU* + H(In1 - L(LTL)—lLT)Angl/QH

2 2
<o m s A e - pE A

a2

T - Az
2lap s )

T - agss

+lags)?

where we have used (A.7a) and the fact that ||I,,, — L(LTL)"'LT| <1 in the third line. O

Lemma 18. For any L € R™*" R € R™*" denote A;, .= L — Ly and Ar := R — R, then one

has

ILRT — X.|lr < |ALR]|lF + | L ARllr + AL AR

1 ~1/2 ~1/2 1/2 1/2
< (1 508 V1A 21 ) (1AL + 865 ).

Proof. In light of the decomposition LRT — X, = ApR] + L*AE + ALAE and the triangle

inequality, one has

ILR" — X,|F < [|ALR] |F + | L. AR|lF + |ALAR|F

1/2 1/2
= |ALS [k + | ARSY?|F + | ALATF,

where we have used the facts that

IALR] [F = ALV, (e = |ALSY Pk, and  [|LAL|F = [USALIF = AR
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This together with the simple upper bound

1 _ 1 —
|ALALE = SIALZ (AR e + Sl AL (AR e

IN

1 3 1 -
1AL e ARS ) + S 1ALz AREy e

IN

1 — _
SUALET IV IARE2)) (1802 e + [ ARDY )

finishes the proof. O

Lemma 19. For any L € R™*" R € R"™*" and any invertible matrices Q,Q € GL(r), suppose
that |(LQ — L)X | v [(RQ™T — R)SY?|| < 1, then one has

_ IR@T-@ =)

T 1-(RQT - ROEVA)
IL(Q - Q=)

1-(LQ - L)= 2|

=@ e - =,

=@ = -3 <
Proof. Insert RTR(RTR)™", and use the relation ||AB|| < ||A]|||B]| to obtain

|=*Q ez - =

—|I=2g 1 - Q—l)RTR(RTR)—lei/QH

<|lr@@ - QfT)Ei/QH HR(RTR)AQ;&/QH
- |r@ @ =2 |re T(RQ ) TRQT) 15
. IRQT-Q )=’

1-[[((RQ™T — R)Z, 2

where the last line uses Lemma 17.

Similarly, insert LT L(LT L)™', and use the relation ||AB|| < ||A]||B] to obtain

|=*QTe = - =

—|=2qT - QT)LTL(LTL)—lQ—Tzi/QH

<||t@-@=||raTn e TE|

- [z -@=t?| |raczar ey =t
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IL(@Q - Q=)
T XQ - L)

where the last line uses Lemma 17. O
A.1.3 Partial Frobenius norm

We introduce the partial Frobenius norm

X = (A8)

as the 5 norm of the vector composed of the top-r singular values of the matrix X, or equivalently
as the Frobenius norm of the rank-r approximation P, (X)) defined in (1.3). It is straightforward to
verify that || - ||r is a norm; see also [Maz16|. The following lemma provides several equivalent and

useful characterizations of this partial Frobenius norm.

Lemma 20. For any X € R™*™2  one has

IX[rr=_  max XV (A.9a)
VeR™2XmvTv=I,

= max (X, X)) (A.9b)
XeRm1%n2:|| X ||g<1l,rank(X)<r

= max_ | XR|F (A.9c)
ReR™2%™:|R|| <1
Proof. The first representation (A.9a) follows immediately from the extremal partial trace identity;

see [Maz16, Proposition 4.4], by noticing the following relation

T
E 03(X) = max tr (XTX | V) = max IX V2.
P VCR"2:dim(V)=r VeR™2 X" VTV=I,

Here the partial trace over a vector space V is defined as

T
(XX |V)=> 9 X' Xu,
=1
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where {v;}1<i<, is any orthonormal basis of V. The partial trace is invariant to the choice of
orthonormal basis and therefore well-defined.
To prove the second representation (A.9b), for any X € Ruxne obeying rank()? ) < r and

| X||F < 1, denoting X = UXV " as its compact SVD, one has

(X, X)| = (X, USV")| = (XV,US)| < | XV|e|UZ|F < | X]

F,rs

where the last inequality follows from (A.9a). In addition, the maximum in (A.9b) is attained at
X = P ()P (X)
To prove the third representation (A.9¢c), for any R € R"™*" obeying ||R|| < 1, combine the

variational representation of the Frobenius norm and (A.9b) to obtain

IXR||F=  max (XR,L)|
Lermixma||L||e<1

=_  max_ [(X,LRT)| < | X[le,,
Lermxm2:||L]e<1

where the last inequality follows from (A.9b). In addition, the maximum in (A.9¢) is attained at

R = V', where V' denotes the top-r right singular vectors of X. O

Remark 8. For self-completeness, we also provide a detailed proof of the first representation (A.9a).

This proof is inductive on . When r = 1, we have

o1(X) = [[Xwvilz = max || X,

BER"2:||B]|2=1

where v1 denotes the top right singular vector of X. Assume that the statement holds for || - ||f,—1.
Now consider || - ||f,. For any V € R™*" guch that VTV = I, we can first pick vo,...,v, as a
set of orthonormal vectors in the column space of V that are orthogonal to v1, and then pick v
via the Gram-Schmidt process, so that {v;}]_; provides an orthonormal basis of the column space

of V. Further, by the orthogonality of V., there exists an orthonormal matrix O such that

V =[o1,...,5,]0.
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Combining this formula with the induction hypothesis yields

IXVI[E = IX[o1,..., 0]
= X013 + [ X [0z, ..., . ]II7
= [ Xw1)3 + (X = Pu(X))[D2, ..., ][I

<ol (X) +1X = PuUX)IIE, s

Y (X)) = 1X 7,
i=1

where the first line holds since O is orthonormal, the third line holds since P;(X)[ve,...,v,] =0,
the fourth line follows from the induction hypothesis, and the last line follows from the definition
(A.8). In addition, the maximum in (A.9a) is attained at V = V', where V' denotes the top-r right

singular vectors of X. This finishes the proof.

Recall that P,(X) denotes the best rank-r approximation of X under the Frobenius norm.
It turns out that P,(X) is also the best rank-r approximation of X under the partial Frobenius

norm || - ||g. This claim is formally stated below; see also [Maz16, Theorem 4.21].

Lemma 21. Fiz any X € R"*™ and recall the definition of Pr(X) in (1.3). One has

Pr(X)=  argmin [ X — X[|g,.
X eRm*"2:rank(X)<r

Proof. For any X of rank at most r, invoke Weyl’s inequality to obtain o,4;(X) < 0;(X — X )+

ar+1(§(v) =0i(X —X), fori=1,...,r. Thus one has
IX = PuX)E, = D 07 (X)) < D ol(X - X) = [IX - X[z,
i=1 i=1

The proof is finished by observing that the rank of P,(X) is at most 7. O
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A.2 Proof for Low-Rank Matrix Factorization

A.2.1 Proof of Proposition 2

The gradients of £(F') in (2.27) with respect to L and R are given as
ViL(F)=(LR" — X,)R, VgL(F)=(LR" - X,)"L,

which can be used to compute the Hessian with respect to L and R. Writing for the vectorized

variables, the Hessians are given as
ViitL(F)=(R'R)®I,, VRgL(F)=(L'L)®I,,
Viewed in the vectorized form, the ScaledGD update in (2.2) can be rewritten as

vec(Lyy1) = vec(Ly) — n((R) Ry) ™' @ I,,) vec((L: R} — X,)Ry)
= vec(Ly) — (Vi L L(F)) ™ vee(VLL(F)),
vec(Ryi1) = vec(Ry) — n((L{ Ly) "' & I,,) vec((L: R — X,)" L)

= vec(Ry) — n(VéRE(F}))*l vec(VRL(FY)).

A.2.2 Proof of Theorem 5

The proof is inductive in nature. More specifically, we intend to show that for all t > 0,
1. dist(F}, F,) < (1 —0.7n)t dist(Fy, Fy) < 0.1(1 — 0.79)t0.(X4), and
2. the optimal alignment matrix Q; between F; and F exists.

For the base case, i.e. t = 0, the first induction hypothesis trivially holds, while the second also
holds true in view of Lemma 14 and the assumption that dist(Fp, Fy) < 0.10,(X,). We therefore
concentrate on the induction step. Suppose that the t-th iterate F; obeys the aforementioned

induction hypotheses. Our goal is to show that F;y1 continues to satisfy those.
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For notational convenience, denote L := L;Q;, R := RtQt_T, A =L—-L,, Ap =R—R,,

and € := 0.1. By the definition of dist(Fiy1, Fy), one has

2

2
dist?(Fii1, ) < ||(Benn@ — LoB|| 4 |[(Renn@r T - RIS (A.10)

where we recall that @Q; is the optimal alignment matrix between F; and Fj. Utilize the ScaledGD

update rule (2.28) and the decomposition LR" — X, = AR + L,A}, to obtain

(L1 Qi — L)SY? = (L (LR - X)R(R'R)" - L*) »l/2
_ (AL —n(ALRT + L*AIE)R(RTR)_1> »l/2

= (1-nASY? - gL ALR(R'R) s
As a result, one can expand the first square in (A.10) as

2
H(LtHQt _ LQEWHF —(1—n)2tr (ALZ*AI) — (1 — ) tr (L*A;R(RTR)*lz*AE)

M

2
4o HL*A;R(RTR)—lzi/QHF. (A.11)

Mo

The first term tr(A X, A] ) is closely related to dist(F;, F,), and hence our focus will be on relating
M and My to dist(Fy, Fy). We start with the term 9. Since L and R are aligned with L, and
R,, Lemma 15 tells that E*AIL = RTARE*. This together with L, = L — Ay, allows us to

rewrite 9y as

My = tr (R(RTR)*lz*A{L*A@

tr (R(RTR)*lz*A{LA;) Ctr (R(RTR)*lz*AZA LA})

tr (R(RTR)*RTA RE*A;) oty (R(RTR)*E*A{A LAE) .

Moving on to M9, we can utilize the fact LIL* = 3, and the decomposition 3, = R'R- (RTRf
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3,) to obtain

My = tr (R(RTR)_IE*(RTR)‘lRTA RE*A;)

— tr (R(RTR)—lRTARz*A;) “tr (R(RTR)—l(RTR ~S)(R'R'R"A Rz*A;) :
Putting 9t and 95 back to (A.11) yields

H(Lt+1Qt ~ L*)zi/QHi —(1—n)2tr (ALE*A{) — (2 3n) tr (R(RTR)*RTARE*A@

1
+onp(l —n)tr (R(RTR)—lz*AIALA;)

2
2 tr (R(RTR)—I(RTR - 2*)(RTR)—1RTARE:*A;> .

53

In what follows, we will control the three terms §1, §2 and §3 separately.

1. Notice that F; is the inner product of two positive semi-definite matrices R(RTR)"'R" and

AR, AL Consequently we have §; > 0.
R

2. To control F2, we need certain control on HALEIIﬂH and ||AR2:1/2H. The first induction

hypothesis

dist(F, o) = | ALST S, 2 + ARS8, |2 < con(X,)

together with the relation |AB||g > ||A||po,(B) tells that

VIAS P AR PR (X, < o (X2)
In light of the relation ||A| < ||A]|g, this further implies

IALS Y2V IARS ) < e (A.12)
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Invoke Lemma 17 to see

b <

With these consequences, one can bound |§F2| by

2| =

tr (2;1/ ALR(RTR)'S,.ATA,5Y 2) (

< HE;”QA;R(RTR)*lzi/?H tr (Baarnl?)

IN

(NS | HR(RTR)*lzi/QH tr (ALZ*AD

IN

© b (ALEJ*AD .
—€
3. Similarly, one can bound |§3| by

135 < HR(RTR)—l(RTR - E*)(RTR)_IRTH tr (ARE*A;)

2
< HR (R'R) —121/2H Hz;”z (R'R-3x,)5; Y 2H tr (ARS.AF)

tr (ARE AT)

JARTR- 303

<
-
Further notice that
H2:1/2(RTR -3 1/2H Hz Y2 RI AR+ ALR, + ALAR)S 1/2H
<2 ArS 4 AR
< 2¢ + €%
Take the preceding two bounds together to arrive at

2¢ + €2

(1—-¢)?

1F3| < (ARE AR)
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Combining the bounds for §1, §2, §3, one has

|Een@ - Lozt = |0 - mas? -, ATR<RTR)—121/2Hi
< ((1 - )+ %n(l — 77)) tr (ALE*A—D (216 i 6)217 tr (ARE AR) (A.13)

A similarly bound holds for the second square [[(Ri+1Q: — Rx)X 1/2||F in (A.10). Therefore we

obtain
|- 2032 + |(Ben @i - RISV < i) dist* (B, ),
where we identify
dist?(F;, F,) = tr(ALS,AL) + tr(AgS,Af) (A.14)

and the contraction rate p?(n;e€) is given by

p*(m€) = (1 —n)*+ &n(l —n)+

With € = 0.1 and 0 < 7 < 2/3, one has p(n;€) < 1—0.7n. Thus we conclude that

2 2
dist(Fy41, F; \/H (Li+1Q: — i/2HF + H(RtﬂQ;T - R*)E,l(/QHF
(1 —0.7n) dist(F}, Fy)

< (1 —0.79) dist(Fp, Fy) < (1 —0.79)70.10,.(X,).

This proves the first induction hypothesis. The existence of the optimal alignment matrix Q11
between Fiy1 and F is assured by Lemma 14, which finishes the proof for the second hypothesis.

So far, we have demonstrated the first conclusion in the theorem. The second conclusion is
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an easy consequence of Lemma 18 as

HLthT ~ X,

< (145) (1A= + 1 aRs )
< (1 n %) V2 dist(F,, F.) (A.15)

< 1.5dist(F}, F,).

Here, the second line follows from the elementary inequality a+b < /2(a? + b?) and the expression
of dist(Fy, Fy) in (A.14). The proof is now completed.

A.3 Proof for Low-Rank Matrix Sensing

We start by recording a useful lemma.

Lemma 22 ( [CP11]). Suppose that A(-) obeys the 2r-RIP with a constant da.. Then for any

X1, X9 € R™M*"2 of rank at most r, one has
[(A(X1), A(X2)) — (X1, Xo)| < 0o || X [[F [ X[,

which can be stated equivalently as

tr (A= T)(X0) X, )| < b1 X0 [ | X (A16)
As a simple corollary, one has that for any matrix R € R™"2*":
[(A"A = I)(X1)R||¢ < o2/ | X1 |[F[| R (A.17)
This is due to the fact that

|4 A= D)X Rl = _max ((A"a-1)(X1)RLT)

< _max o | Xi[[f|ZR" |
TATAS
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< Oor[| X [[[| R|-

Here, the first line follows from the variational representation of the Frobenius norm, the second

line follows from (A.16), and the last line follows from the relation ||AB|r < ||A|lg||B||-

A.3.1 Proof of Lemma 1

The proof mostly mirrors that in Section A.2.2. First, in view of the condition dist(F;, Fy) <
0.10,(X,) and Lemma 14, one knows that Q;, the optimal alignment matrix between F; and F,
exists. Therefore, for notational convenience, denote L = L:Q;, R = R.Q, T, A; =L-L,,

Aprp =R - R,, and € := 0.1. Similar to the derivation in (A.12), we have
IALS Y2 VIARE ) < e (A.18)

The conclusion ||L; R, — X,||r < 1.5dist(F}, F,) is a simple consequence of Lemma 18; see (A.15)
for a detailed argument. From now on, we focus on proving the distance contraction.

With these notations in place, we have by the definition of dist(F}41, Fy) that
2 2
dist*(Fpt1, Fy) < H(Lt+1Qt - L*)ZiﬂHF + H(Rt+1Qt_T - &)Zi/Q“F. (A.19)
Apply the update rule (2.13) and the decomposition LR" - X,=A.R" + L*AE to obtain

(Lis1Q; — L)SY? = (L —pA*A(LR" — X,)R(R'R)"! — L*> /2
_ (AL —p(LR" — X,)R(R"R)™" — y(A*A -~ I)(LR" — X*)R(RTR)‘1> »1/2

= (1-nALSY? — gL ALR(R'R)'SY? — n(A*"A—T)(LR" - X,)R(R"R)"'=/?,
This allows us to expand the first square in (A.19) as

2 2
H(LtﬂQt - L*)Ei/ZHF = H(l - U)ALEi/Q — UL*AﬁR(RTR)_lzi/QHF

&1

122



— (1 — ) tr ((A*A _I)(LR" - X*)R(RTR)‘IE*AD

So

2Pt ((A*A ~T)(LR" - X*)R(RTR)*l2*(RTR)*1RTARLI)

S3

7 H (A*A—T)(LR" — X,)R(R'R)"'5}/? Hi .

Sy

In what follows, we shall control the four terms separately, of which &4 is the main term, and &5, &3

and G4 are perturbation terms.

1. Notice that the main term &; has already been controlled in (A.13) under the condition (A.18).

It obeys

2¢ + €2

T 2|Aarsy 2.

2e
&< (- 2 -m) 1A +

2. For the second term &j, decompose LR" — X, = AL R] + L*A}T% + ALAE and apply the

triangle inequality to obtain

] = |tr (A"A—T)(ALR] + LAL + ALAL)R(RR)'S,A[) |

r ((A*A ~I)(ALR] >R<RTR>‘12*AZ) )

(A A= D)(LADRR R E.A) |

tr ((A*A - I)(ALAg)R(RTR)*lz*AD ‘
Invoke Lemma 22 to further obtain

3| < b, (IALR] e + | LAl + |ALAKe) | REETR) ' S.AL||

< by, (IALRlIe + | L. ARl + |1ALAR) [RIBTR)T'E| AL,

where the second line follows from the relation ||AB]||g < ||A||||B||e. Take the condition (A.18)
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and Lemmas 17 and 18 together to obtain

IN

R R <

JALR] e+ 1L AKlE + 1AL AR < (14 5) (|ALE e + | ARZY ).

These consequences further imply that

527~(2—|—6)
2(1—¢€)
52r(2+6)
- 2(1-¢

) < (1822l + AR lF) |ALEY e

(AL + 1AL el AR e)

1/2

For the term ||AL3, HFHAREi/QHF, we can apply the elementary inequality 2ab < a® + b? to

see
1 1
| AL el AR r < JIALE R + 1RSSR

The preceding two bounds taken collectively yield

dor(2 +€) 1/2 1 1/2
Sl < S LN RN

3. The third term &3 can be similarly bounded as

63| < 0oy (HALRT\|F+HL ALl +|ALAS HF) HR RTR)'S.(R"R)'RTAgL]|

< oo, (IR e + | L AT + AL ATl ) [RERTR) Y2 |AnL] e

dor(2 4 €) 1/2 12 12
< =~ 7
S 21 —ep (HALE IF + [ AR, ||F> IARE (¢
F2r (2
5 er <‘AL2” IF+ 3 HAREWHF)
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4. We are then left with the last term &4, for which we have

VEi=||(AA-T)(LRT - X)R(RTR) 7T
< [[ara- I)(ALRI)R(RTR)‘IEWHF
+|ra- D aprETR |
+|[a-yacahrRET RS

where once again we use the decomposition LR" — X, = AyR] + L A} + AL AL, Use (A.17)

to see that

Repeating the same argument in bounding &2 yields

dor (2 + €
VEi < 2D (1auslle + 1A

We can then take the squares of both sides and use (a + b)? < 2a® + 2b% to reach

1/2 1/2
< S (1A= + ans ).

Taking the bounds for &1, &9, S5, &4 collectively yields

2¢ + €2

2 1/2)2
ARY
(1_6)277 [ARE"|IF

2 2e
H(Lt+1Qt - L*)Zi/QHF < <(1 —n)? + :n(l - "7)) laLs/?)E +

527«(2—1—6) 3 1/9 1 1/2
+ 1 =) (SIALE R+ I ARE R
1 _ 2 SI|ALY, —|| AR,
T ! SIALSE + S AR IE
05,2 +¢)* » 1/2)2 1/2)12
+ 202" (||AL2* 12 + | AR, ||F) .

Similarly, we can expand the second square in (A.19) and obtain a similar bound. Combine both
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to obtain
2 2
H(LtHQt - L*)EipHF + H(RtHQ;T - R*)E}PHF < p*(n; €, 02, ) dist? (Fy, Fy),

where the contraction rate is given by

2€ + 9o, (4 + 2¢)
1—¢€

2€ + €% + 9, (4 + 2¢) + 03,.(2 + 6)2772

PP(nse,090) == (1 — )% + 1—¢)2

n(l—n)+

With e = 0.1, 2, < 0.02, and 0 < n < 2/3, one has p(n;€,09,) <1 — 0.6n. Thus we conclude that

2 2
dist(Fy41, F: \/H (Li+1Q: — i/QHF + H(RtﬂQ;T - R*)E}(/QHF

(1 —0.6n) dist(Fy, Fy).

A.3.2 Proof of Lemma 2

With the knowledge of partial Frobenius norm || - [|f ., we are ready to establish the claimed result.
Invoke Lemma 16 to relate dist(Fp, Fy) to ||[LoR) — X4||F, and use that LoRj — X, has rank at

most 2r to obtain

dist(Fy, F,) < \/ﬂ+1HLORJ—X* <y/2v2+ l)HLORg—X* i

Note that LOR(—)F is the best rank-r approximation of A*A(X,), and apply the triangle inequality

T

combined with Lemma 21 to obtain

HLORJ B X* F,r

< |4ax.) - LoR]

A = Xl

)

< 2(A"A = I)(X)lg, < 2000 | X [F-
Here, the last inequality follows from combining Lemma 20 and (A.17) as

A A-D)(X e, = max (A A-DX)E||_ < sl X
ReR™2*7:||R|| <1 F
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As a result, one has

dist(Fy, F,) < 21/2(V2 + 1)d0, | X || < 500rv/TRo(X).

A.4 Proof for Robust PCA

We first establish a useful property regarding the truncation operator 7Taq[:].

Lemma 23. Given S, € S, and S = Too[Xy + S, — LR'], one has
IS = Sl < 2|LRT — X, (A.20)

In addition, for any low-rank matric M = LMRIE € R™>"2 yith Ly € R™*", Ry € R™*", one

has

(S = S M)| < V3av (I(E = L)Y + (R~ RO ) [ M]le o

+ 2v/a (Vi | Lall2,00 | RatllF A vzl Dag||el| Rasl|2,00) ILRT — X.|F,

where v obeys

_ .
v 2 VI (LS 2+ 57 ) v Y22

i

(>

200+ IRE 200

Proof. Denote A;, =L —L,, Ap:=R—R,,and Ax :=LR" — X,. Let Q,Q, be the support of
S and S, respectively. As a result, S — S, is supported on QU €2,.

We start with proving the first claim, i.e. (A.20). For (i,7) € €, by the definition of T[],
we have (8 — 8,);; = (—Ax);;. For (i,5) € Q) \ Q, one necessarily has S; ; = 0 and therefore
(8 —8,)ij = (=S4)ij. Again by the definition of the operator Ta,[-|, we know |S, — Ax|;; is
either smaller than |Syx — Ax/|; (2an,) OF [Sx — Ax|(2an,),;- Furthermore, we know that S, contains

at most a-fraction nonzero entries per row and column. Consequently, one has |S, — Ax|;; <
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|AXi(ans) V [AX|(an,),;- Combining the two cases above, we conclude that

|Axij (i,7) €Q
1S — 8,]i; < . (A.22)

|Axlij+ (|1Axlians) V IAxl(any),) > (7)) € 2\ Q

This immediately implies the ¢o, norm bound (A.20).
Next, we prove the second claim (A.21). Recall that S — S, is supported on QUQ,. We then

have

(S =S, M) < > [S—8ijIMlij+ > 1SS Ml

(4,9)€Q (4,4)EQN\Q
< Z ‘AX‘i,j’M’i,j + Z (’AX’i,(anz) + ’AX‘(anl),j) ‘M‘i,ﬁ
(4,5) €U (4,5)EQN\Q

where the second line follows from (A.22). Let 5 > 0 be some positive number, whose value will be

determined later. Use 2ab < f~'a? + Bb? to further obtain

1
(S—S, M) < > |Axli;|Ml; Y > (\AX@,(W) + !AX!%am),j> +8 Y IM;.
(4,) EQU (4,4)€Q:\Q2 (4,4) €02\

A1 Ao 51’3

In regard to the three terms 241, 2 and %3, we have the following claims, whose proofs are deferred

to the end.

Claim 1. The first term 2y satisfies
W < V3ar (1AL + | AR ) IM]r.
Claim 2. The second term 2y satisfies

Ay < 2] AxlZ.
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Claim 3. The third term 23 satisfies
Az < o (11| Lar |13 oo | Rar |E A mol| Laal[F ] R 13 o) -
Combine the pieces to reach
V3 1/2 1/2
(S = S0, M)| < V3av (AL + | AR ) IM]|e

1A x|
B

+ + o (m | L [13 oo | R IE A 2l Las [ R |13 o) -

One can then choose 8 optimally to yield

(S = 8., M)| < Vaaw (| ALEY e + | ARSYr) |M]e

+ 2va (V1| Larllz00 [ R |IE A VP2l LarllFl| Rz l2,00) | A X -

This finishes the proof. O

Proof of Claim 1. Use the decomposition Ay = AR + L, AL, = ALR] + LAIT% to obtain

1Axlij < 1ALZY)i o RS 2 200 + 1L 25 2 |20l (AREY ). l2,  and

1Axlij < 1ALEY)i ol ReE: P 200 + ILE2 2 |20l (AREY)j 2.

Take the average to yield

v 1/2 1/2
Axls € Z=IALE )il + 2= NAREL ) 2

— |
V11
where we have used the assumption on v. With this upper bound on |A x|; j in place, we can further

control 2 as

. 1/2 v 1/2
< ALY oM ARSI M],
Qtl_(. ')EEM = I(ALE i o I,J+(H)§UQ e I(ART5) 1Ml
] * i.j N
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1/2 1/2
< SToArsY 3+ [>T ARS8/ | v M.
(,§) QU (1,4) QU

Regarding the first term, one has

ni
SToars 3= Y arsd?3

2
(4,5) EQUL i=1 j:(i,) QU

ni
< 3any Z H(ALE}(N)Z‘; [
i—1

= 3ams||AL Y2,

where the second line follows from the fact that € U Q, contains at most 3ang non-zero entries in

each row. Similarly, we can show that

ST ARS8 < 3am | ARE?|I2.
(4,5) EQUQ

In all, we arrive at
W < V3w (ALY le + 1R [e) [ M]r,

which is the desired claim. O

Proof of Claim 2. Recall that (AXx); (an,) denotes the (ang)-th largest entry in the i-th row of Ax.

(2 (omg) X 1,

As a result, we obtain

Y. 18Xy < D AKX (any)
('Lv])eﬂ*\g (ivj)eﬂ*
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<Z 3 AXZHQ

1=1 5:(4,5) €

< Z I(Ax)i. 3 = lax]E.
=1

where the last line follows from the fact that €2, contains at most ans nonzero entries in each row.

Similarly one can show that

> 1A, < AR
(3,7)EQN\Q

Combining the above two bounds with the definition of 25 completes the proof. O
Proof of Claim 5. By definition, M = L MRL, and hence one has
A= > (L) (R P < D 1(Lm)ie(BRu))
(Z,])GQ*\Q (ivj)eQ*
We can further upper bound 23 as

s < > 1(Zan)i 131 (Ran) . 113

(‘,j)eQ*

<Z Y T BRI o

1=1 5:(4,5) €Qu

ny
<> ang||(Lan)i IRy 13 00 = ana|| Lar|[E 1R |13 oo
i=1

where the last line follows from the fact that €2, contains at most ans non-zero entries in each row.

Similarly, one can obtain
2 2
Az < any || L[l o0 | R [,

which completes the proof. O
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A.4.1 Proof of Lemma 3

We begin with introducing several useful notations and facts. In view of the condition dist(F}, Fy) <
0.020,(X,) and Lemma 14, one knows that @y, the optimal alignment matrix between F; and F,
exists. Therefore, for notational convenience, denote L = L;Q;, R = R,Q; T AL, =L-L,,
Ar=R—-R,, S:=8; =T2,[X.+8,—LR"], and € := 0.02. Similar to the derivation in (A.12),

we have
IALS Y2 V[ARE ) < e (A.23)

Moreover, the incoherence condition

VALY 200 V VT2l AREY? 900 < ViiTor (X)) (A.24)
implies
VI ALS ! a0 Vel A RSP0, < Vit (A.25)

which combined with the triangle inequality further implies

VLS 200 V /A2 | RETY?||5.00 < 2/ (A.26)

The conclusion ||L;R] — X, |r < 1.5dist(F}, F,) is a simple consequence of Lemma 18; see (A.15)
for a detailed argument. In what follows, we shall prove the distance contraction and the incoherence

condition separately.

Distance contraction

By the definition of dist?(F},q, F,), one has

2 2
dist*(Fiis, ) < || (Benn@e - LOB|| + |[(Ren@r " - ROZY| (A.27)
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From now on, we focus on controlling the first square ||(Li+1Q: — L*)EimH%. In view of the update

rule (2.18), one has

(Lis1Q; — L)SY? = (L —p(LR" +S— X, S)R(R'R)" - L*) /2
_ (AL ~p(LRT — X,)R(R"R)™! — (S — s*)R(RTR)*l) »L/2
= (1-nALSY? —yLALR(R'R) 'SV — (S — S,)R(RTR)"'=L/*.

(A.28)

Here, we use the notation introduced above and the decomposition LR - X,=A;R" + L*AE.

Take the squared Frobenius norm of both sides of (A.28) to obtain

2 2
[(Eei@i- o2 = |a-nasy - pr.afrE R 2

R

(1 — )t ((s . S*)R(RTR)_lzl*Az)

NRa

+on?tr ((S - S*)R(RTR)_12*(RTR)_1RTARLI)

NR3

s smmrar s

R,
In the sequel, we shall bound the four terms separately, of which PR is the main term, and fRo, R3

and R4 are perturbation terms.

1. Notice that the main term 9R; has already been controlled in (A.13) under the condition (A.23).

It obeys

2¢ 1/2 2¢ + €2 1/2
s (-2 2o ) |ALE R+ 2| aRSY 2.

1 1-e2"

2. For the second term Ry, set M == A3, (RTR)"'RT with Ly, == ALE*(RTR)_lﬁi/Q, Ry =
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RE:l/Q, and then invoke Lemma 23 with v := 3,/ur/2 to see

3 _
9| < Sv/Bar (1AL le + | ARSe ) |ALS.(RTR)RT||
+2yam |[Ars(RTR) S| IRSC | LRT - X.le
3 _
< SVBaur (|ALS e + |ARS ) ALY e || R(RTR) 'SV

+2/ans| ALY H21/2(RTR)*121/2H IRS, |0 |ILRT — X, |r.
Take the condition (A.23) and Lemmas 17 and 18 together to obtain

R

Hzi/z(RTR)*lzi/QH - HR(RTR)*lzi”H2 < (116)2; (A.29)

€
ILRT — X, |Jr < (14 <) (|ALZY?|F + |ARSY || ) -
2

These consequences combined with the condition (A.26) yield

Rl <S55 (1ALEY e+ 465 )e) 142
+ LA+ ) (1ALE e + | AnzY )
< WW (lar= + 1A=y el Ars )
< WW <Z’||AL21/2|% + ;HARzi/QH%) ,

where the last inequality holds since 2ab < a? + b?.

3. The third term R3 can be controlled similarly. Set M = L,LALR(RTR)"'E,(R"TR)"'R" with
Ly = LX;"% and Ry = R(RTR)"'S,(R"R)'RTApX=!"? and invoke Lemma 23 with
v = 3,/ur/2 to arrive at

3 . .
9] < 5 /Bapr (1A= + 1 ar22 ) HL*A;R(RTR) s, (R'R) 1RTHF
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+2y/an| L2 Y a0 "R(RTR)—12*(RTR)—1RTAR21/2HF ILRT — X, ||
3 B 2
< Voo (1A= e+ 1ARSY ) |ARS) e [RETR) 2|

_ 2
+2y/an| L2 00 HR(RTR)_lz)imH IARSFILRT — X.|F.

Use the consequences (A.29) again to obtain
3/ 3aur
2(1 —¢)?

2. /aur €
G g ARSI+ ) (182 + AR

9] < (1AL e + | ARSY ) [AREY e

3V3+2(2+e

< varr 2L (s el Ans e + | ArSY )
3V3+2(2+¢) (1 12,2 . 3 1/2,2

- 3v3+2@2+¢ (1, \ EINS> .

< varr o O (DA it + lans R

4. For the last term 934, utilize the variational representation of the Frobenius norm to see
NG ((s - s*)R(RTR)—lzi/ZiT)

for some L € R™*" obeying |L|[f = 1. Setting M := iZ}/z(RTR)_lRT = Ly R}, with
Ly = INLE,{M(RTR)_lEi/Q and Ry = RE:UQ, we are ready to apply Lemma 23 again with

v = 3,/ur/2 to see

3 - .
VR < Sy/Bapr (1A= + 1ar5Y ) HLEW(RTR) 1RTHF
+2/an; ‘izi/z(RTR)*lzi/QHF IRS: 2|00 |[LRT — X, |IF

< 3viam (18212 + | an ) [ RORTR) ™51

+2./ams ‘zi/z(RTR)—lziﬂH IRS; 200 |ILRT — X, |F-

This combined with the consequences (A.29) and condition (A.26) yields

4(24€
3v3 + 12

Vi< varr =g (1805 e+ ars ).
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Take the square, and use the elementary inequality (a + b)? < 2a? + 2b? to reach

(

) 1/2 1/2
%, < apr (lar= 2 + | arm ).

2(1 - e)

Taking collectively the bounds for fR,Ra, Ry and Ry yields the control of ||(Liy1Q: — L*)Ei/ 2”,2:

as

2 26 2€+ 6
H(Lt+th - L*)Ei/QHF < <(1 —n)?+ 77](1 - )) HAL21/2|||: + rE 2||AR21/2||F
I = (1acs i + 5lans )
3V3+212+¢€) , (1 r 3 o
# Ve (Claml I+ Jlanmt R
(3\/>_|_ 2+6)) 12,12 122
rapr S (JAr I+ ArsR).

Similarly, we can obtain the control of ||(R;41Q; = — R*)Ei/ZH%. Combine them together and

212 4 | A2 to reach

identify dist?(F;, Fy) = | AL
2 2
|@e@e = LB+ |[(Ren@ T = RISV < 02 ) dist?(B, F),

where the contraction rate p?(n; e, aur) is given by

2¢ + \Jopr( )
02(77; €, alur) = (1 - 7])2 \/71 . 77(1 — 7])
N % + 2 + S (6v/3 + 4(2 + €)) + apr(3v/3 + A2 )2772'

(1—¢)?

With € = 0.02, aur < 1074, and 0 < 1 < 2/3, one has p(n;¢,aur) < 1 —0.6n. Thus we conclude

that

2 2
dist(Fyy1, F. \/H (Li+1Q: — 1/2HF + H(RtHQ{T — &)21/2“F

(1 — 0.6n) dist(Fy, Fy). (A.30)
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Incoherence condition

We start by controlling the term ||(Li+1Q¢ — L*)Ei/QHg,oo. We know from (A.28) that

(Li1Qi — LOE* = (1 —np)ALSY? — gL ALR(R'R) 'SV — (S — S,)R(RTR)"'=L/2.
Apply the triangle inequality to obtain

(Lis1Qi — LOEY?|| < (1 =) ALY 200 + 1| LALR(RTR) 'S,
2,00 2,00

-~

T
T py—1y11/2
+77H(S—S*)R(R Rzl H2 .

g

%o

The first term ||AL21/2||2,00 follows from the incoherence condition (A.24) as

.
1ALy < \/’ZJT(X*).
1

In the sequel, we shall bound the terms ¥T; and <,.

1. For the term %7, use the relation ||[AB|200 < ||Al/2,00||B]|, and combine the condition (A.23)

with the consequences (A.29) to obtain

T < |12 Y Hz,{/%gR(RTR)—lzi”H

IN

123 | ARSY?) | RRTR) 52

e [ur
< —o, (X
—1—e¢ nlar( *)’

2. For the term Ty, use the relation ||AB||2,00 < ||Al|2,00||B]| to obtain

T < |8 - Sl |[RRTR) 'S

We know from Lemma 23 that S — S, has at most 3ano non-zero entries in each row, and
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|8 — Silloo <2|ILRT — X,||co- Upper bound the £3 o, norm by the £,, norm as

IS — Sill2.00 < V3ana|S — Syl < 2v3anz||LR" — X, ||oo-
Split LR" — X, = A R" + L, A}, and take the conditions (A.24) and (A.26) to obtain

ILR" — Xulloo < |ALR [|oo + 1L+ A Rl

—-1/2 1/2

<ALz, /2||200HR2_1/2H200 + |2

< | ur /,ur | ur /,wr
ni 712
3 r
= M (Xy).

A /n1n2

This combined with the consequences (A.29) yields

6/ 3aur T
DVRAHT TET (X,

Ty <
2= 1—c¢ ny

Taking collectively the bounds for %1, % yields the control

€+ 6/ 3aur I
|-z < (1 —n+ 1_6”n> Voo (X, (A.31)

The last step is to switch the alignment matrix from Q; to Qu+1. (A.30) together with

Lemma 14 demonstrates the existence of Q¢1+1. Apply the triangle inequality to obtain

H(LtJrthJrl — L*)Ei/zu < H(LtJrth — L*)Ei/QH + HLt+1(Qt+1 - Qt)Ei/QH
2,00 2,00 2,00

<@ = LoB?|||  + L@ o 21207 Quarm? — 2

We deduct from (A.31) that

1L 1@y P la.00 < | L2012

_ € + 6+/3aur
H2oo+H Li1Q: — *1/2H2 §<2—77+ a )”m'
,00

1—c¢
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Regarding the alignment matrix term, invoke Lemma 19 to obtain

o R (@ T - @)=

T [(RenQ) — ROET
_RQ T — RS + (R Quy — RIS
} L= (R @i — RO

UT(X*)7

HEY%z*QH4232—2*

2¢
1—¢

IN

where we deduct from (A.30) that the distances using either Q; or Q41 are bounded by

[(Re1Q; T — ROZY?|| < eor(X,);
I(Rit1Q ) — ROZY?| < eon(X.);

I(Ri+1Qp — R)E, VP < e

Combine all pieces to reach

1+ + 6+/3aur 2 r
H(LtHQtH - 1/2H < ¢ <1 —n+ 51_€M77> + 6) K or(Xy).

1—¢ 1—c¢

With € = 0.02, apr < 107%, and 0.1 < n < 2/3, we get the desired incoherence condition

H(Lt—HQt—H — UZH \/>O'T(X*)

Similarly, we can prove the other part

_ T
|(ReQi - OB < Mo (X),

A.4.2 Proof of Lemma 4

We first record two lemmas from [YPCC16|, which are useful for studying the properties of the

initialization.
Lemma 24 ( [YPCCI6, Section 6.1]). Given S, € Sy, one has ||Sx — Ta[Xx + Sillloo < 2[| X ||oo-
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Lemma 25 ( [YPCCI16, Lemma 1|). For any matric M € S, one has ||M|| < ay/ning||M|| -

With these two lemmas in place, we are ready to establish the claimed result. Invoke Lemma 16

to obtain

dist(Fy, F,) < \/v2 + 1 HLOROT _ X,

< (VE+ 2 HLORJ ~ X,

where the last relation uses the fact that LORJ — X, has rank at most 2r. We can further apply

)

the triangle inequality to see

HLORJ ~ X,

<||¥ - Taly] - LoRY| + 1Y - TalY] - X,

<2|Y = Ta[Y] = Xufl = 2([8s = Ta[ X + SiIl -

Here the second inequality hinges on the fact that LORJ is the best rank-r approximation of
Y — 7,[Y], and the last identity arises from Y = X, + S,. Follow the same argument as [YPCCI6,

Section 6.1], combining Lemmas 24 and 25 to reach

||S* - ’Ta[X* + S*]H < 204\/ nina ||S* - 7-01[X* + S*]Hoo

<Aday/ning|| Xl < daprko,(Xy),

where the last inequality follows from the incoherence assumption

[ Xlloo < N[Ul2,00 12 [ [IVill2,00 <

kon(X,). (A.32)

Take the above inequalities together to arrive at

dist(Fp, F,) < 84/2(v2 + Dawr®? ko, (X,) < 200ur® ko, (X,).
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A.4.3 Proof of Lemma 5

In view of the condition dist(Fy, Fy) < 0.020,(X,) and Lemma 14, one knows that Qg, the optimal
alignment matrix between Fy and F, exists. Therefore, for notational convenience, denote L :=
LyQo, R = ROQaT, A, =L—-L,, Ap = R—R,, and € := 0.02. Our objective is then translated

to demonstrate

V| ALSY 2.0 V /| AREL

2,00 < vV HTUT(X*)-

From now on, we focus on bounding ”ALE}(/QHQ’OO. Since UpXoV,' is the top-r SVD of Y — T, [Y],

and recall that Y = X, + S, we have the relation
(X* + S* - %[X* + S*])‘/E) == U[)EO,

which further implies the following decomposition of A LE,{/ 2,

Claim 4. One has
ASY? = (S, -~ To| X, + S)R(R'R)'s/? — L,ALR(R"R)"'5/%.
Combining Claim 4 with the triangle inequality yields

|ALEY s < |LARRBTR) SV 4|8, - TalX. + SORETR) S|

~~ ~~

31 3’2
In what follows, we shall control J; and Js in turn.

1. For the term Jj, use the relation ||AB

2,00 < ||All2,00|| B]| to obtain

3 < B | AR | RO R) BV

—-1/2

The incoherence assumption tells ||L,3, ' |l2.00 = [|[Usll2,00 < y/pr/n1. In addition, the as-

sumption dist(Fp, Fy) < eo,(X,) entails the bound HAREi/QH < e0,(Xy). Finally, repeating the
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argument for obtaining (A.23) yields HARE:UQH <€, which together with Lemma 17 reveals
1
|r(RTR) 2| < —.
—€

In all, we arrive at

€ T
My (X).

1—€el m

I <

2,00 <

. Proceeding to the term Jz, use the relations ||ABll2.00 < ||All1,00]|Bll2,00 and [[AB

| All2,00 || B]| to obtain

3 < IS, — TalXe + Sl [ RRTR) 52

2,00

< IS, — Tal X, + S, R e |[ZVAHRTR) 2V
I,OO )

Regarding S, — 74X, + S,], Lemma 24 tells that S, — 7,[X« + Si] has at most 2any non-zero
entries in each row, and ||Sy — To[ X« + Sillloc < 2]|Xs||oo. Consequently, we can upper bound

the /1 o norm by the {4, norm as

1S, — Ta[ X\ + S.] < 2ana [|Sx — Ta[Xs + Silll o

||1,oo

< Adang|| Xy |loo

< 4amng ko (Xo).

ning

1/2

Here the last inequality follows from the incoherence assumption (A.32). For the term ||RX, /7|2,

one can apply the triangle inequality to see

1/2

- - — r ApY

| RX, 1/2\\2,00 < IR, 1/2112,00 + |ARES WHQm < B4 M_
72 or(Xy)
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Last but not least, repeat the argument for (A.29) to obtain

2 1
B LR .
—€
Taking together the above bounds yields
~ 4aum ur daurk 1/2
Ty —o(Xy) + HARE 12,00-

(1 —€e)2\ m (1 —€)?

Combine the bounds on J; and J9 to reach

daurk daurk

VATIALEY oo < (15 4 (0 ) VIO, () 4 s VT AR

Similarly, we have

daprk daprk

VAEIAREY o < (15 G20 ) VO () + e VTIALE

Taking the maximum and solving for w/n1||AL21/2H2,oo Vv 1/7”L2||AL21/2H2700 yield the relation

1 —¢€) +4daurk
VI ALSY2 e v i3] ALY g < Viro,(X,).
14 200V 182 2 < (1—6)2—404/1,7’/43 pror(X.)

With € = 0.02 and aurx < 0.1, we get the desired conclusion
VILIALE o0 V VRl ALY 200 < VT (X,
Proof of Claim /. Identify Uy (resp. V) with L0261/2 (resp. RoEal/Q) to yield
(Xs + S0 = Tl X + Su)Ro%g " = Lo,

which is equivalent to (Xi + Sy — To[ X, + S.])Ro(RJ Ro) ™! = L since £y = R] Ry. Multiply
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both sides by QOE}/2 to obtain
(X, + S, — To[X. + S))R(R"R)"'2}? = L=,

where we recall that L = LyQy and R = ROQET. In the end, subtract X*R(RTR)*lzi/2 from

both sides to reach

(Sy — Ta| X, + SHR(R'R)'=V* = Lx!? _ L,RIR(R"R)"'x}/?
=(L-L)SY?+L.(R-R,)"R(R'R)"'x\/?

=A S+ LALR(R' RS}

This finishes the proof. O

A.5 Proof for Matrix Completion

A.5.1 New projection operator
Proof of Proposition 1

First, notice that the optimization of L and R in (2.21) can be decomposed and done in parallel,

hence we focus on the optimization of L below:

L = argmin
LeRnlxr

(L - i)(ﬁTﬁ)WHi st. v [LETR)| <

By a change of variables as G := L(RT R)"/2 and G := L(R" R)"/2, we rewrite the above problem

equivalently as

G = argmin |G—G|Z st 1 ||Glly. < B,
GEeR1XT ’
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whose solution is given as [CW15]

B ~
Gi.=|(1AN———|Gi., 1<i<n.
Vil G ll2

By applying again the change of variable L = G(I~{T1~2)*1/2 and L = é(ﬁTﬁ)*l/Q, we obtain the

claimed solution.

Proof of Lemma 6

We begin with proving the non-expansiveness property. Denote the optimal alignment matrix be-
tween F and F, as Q, whose existence is guaranteed by Lemma 14. Denoting Pg(F) = [LT,R"]T,

by the definition of dist(Pg(F), F,), we know that

1, 5"

dist?(Pp(F) <ZHL QsY? (LY, Qs (R332 Hz (A.33)

Recall that the condition dist(F, F}) < eo(X,) implies

|EQ—zo=| v]ReT - mom <

1/2

which, together with R, X, '° = V,, further implies that

I, < |1 am] e s

<[ @), (i + i@ - mm ) < 0|, @,

In addition, the p-incoherence of X, yields

v [[(Z.2%)

io||, < VAT 2 ]l < VAoV (X
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where the last inequality follows from the choice of B. Take the above two relations collectively to

reach

B |@.=),
> 2
e [fa

We claim that performing the following projection yields a contraction on each row; see also [ZL16,

Lemma 11].

Claim 5. For vectors u,u, € R" and XA > ||u||2/||u||2, it holds that
[AAMN© = w2 < flu — w2

Apply Claim 5 with u = ii’.621/2, U, = (L*Eiﬂ)i,., and \ = B/(w/anEL.IN%THg) to
obtain

|Le@ey? - (L2, 2

) L,.Q=y? — (L,57%);.
2
’2 ’

Following a similar argument for R, and plugging them back to (A.33), we conclude that

2 B
2 Vi Ly RT |

2

~ LTS 2 2L 2 ~
dist*(Pp(F), F) <Y HL,,.QZi/2 — (L3, ‘2 +3 HRj,.cﬁzl/2 - (R*z;i/?)j,.H2 — dist?(F, F,).
i=1 j=1

We move on to the incoherence condition. For any 1 <4 < nq, one has

n n 2 2
T2 : 2 : B T. P.\2 B
ILi. RT3 =) (Li R;.)* =) (1 (Li, B;.)" | 1

A e A B
ot ot V|| Li BT |2 V|| R LT |2
(i) B 2 B SIS,
,/n1|]Li7.R ||2 j=1 ,/Tll”LL.R ||2
(i) B2
< 2
ny
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. B < .. B _ < B _ .
where (i) follows from 1 A NN 1, and (ii) follows from 1 A AL S LR

Similarly, one has ||R;.L"||3 < B%/ny. Combining these two bounds completes the proof.

Proof of Claim 5. When A > 1, the claim holds as an identity. Otherwise A < 1. Denote h(\) =
|Au — u,||3. Calculate its derivative to conclude that h()) is monotonically increasing when A >

A = (u,uy)/||u||3. Note that A > [Jul|2/|lul2 > s, thus h(X) < h(1), i.e. the claim holds. O

A.5.2 Proof of Lemma 7

We first record two useful lemmas regarding the projector Pq(-).

Lemma 26 ( [ZL16, Lemma 10]). Suppose that X, is p-incoherent, and p 2 urlog(ni V na)/(ni A

ny). With overwhelming probability, one has

(((07"Po ~ (LR} + LAR]), LR} + LgR] )|

rlog(ny Vn
< oy [Hriostm V) ot Ly RT | LR + LR e,
p(n1 Ang)

simultaneously for all Lo, Lg € R™*" and Ra, Rg € R™*", where C1 > 0 is some universal

constant.

Lemma 27 ( [CL19, Lemma 8|, [CLL20, Lemma 12|). Suppose that p 2 log(ni V n2)/(n1 A na).

With overwhelming probability, one has

(7' Pa ~T)(LaRY). LsR}))

ntvn
< Cyyf 1p 2 (ILAllENLBll2.00 A Lallzco | LBlE) (| RAJEI REl2,00 A || RA

2,00 |1 RBIIF)
simultaneously for all Ly, Ly € R™*" and R4, Rg € R™*", where Co > 0 is some universal
constant.

In view of the above two lemmas, define the event £ as the intersection of the events that the
bounds in Lemmas 26 and 27 hold, which happens with overwhelming probability. The rest of the

proof is then performed under the event that £ holds.
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By the condition dist(F3, Fy) < 0.020,(X,) and Lemma 14, one knows that Q;, the optimal
alignment matrix between F} and F), exists. Therefore, for notational convenience, we denote
L:=1L:Q;, R = RtQt_T, A =L—-L,, AR = R— R,, and ¢ := 0.02. In addition, denote ﬁ’t+1
as the update before projection as

= Ly Li —np~'Po(Li R} — X,)Ri(R/ R;)™!
Ry R —np~'Po(LiR] — X.)TLy(L{ Ly)™"
and therefore Fy, 1 = PB(ﬁ‘tH). Note that in view of Lemma 6, it suffices to prove the following

relation
dist(Fy41, F,) < (1 — 0.6n) dist(F}, Fy). (A.34)

The conclusion ||L;R] — X, ||r < 1.5dist(F}, F,) is a simple consequence of Lemma 18; see (A.15)
for a detailed argument. In what follows, we concentrate on proving (A.34).

To begin with, we list a few easy consequences under the assumed conditions.

Claim 6. Under conditions dist(Fy, Fy) < eo,(X,) and \/n1||LR"||2,00Vy/N2||RL" ||2.00 < Cpy/iiro1(Xy),

one has

1AL v AR Y| < ¢ (A.35a)
1
R(R'R *121/2(’ < A.35b
|rRETR) < (A.35D)
1/2, 5T py—1l1/2 1
Hz* (RTR)"'x! H < : (A.35¢)
(1—¢)?
C
VITILE a0 v v/l RE a0 < T2 /T01(XL); (A.35d)
_ _ Cgk
VL 200 V V2| RES 2 |2.00 < : £ RV (A.35¢)
C
VI ALSY 200 V V2| AREL 200 < (1 4 1_B€> Jiro(X,). (A.35f)

Now we are ready to embark on the proof of (A.34). By the definition of dist(Fy41, F,), one
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has

2

dist? (Fin, F) < [[(Bea Qi - L*)Ei/QHi R - RO (A.36)

where we recall that @Q; is the optimal alignment matrix between F; and F,. Plug in the update

rule (2.24) and the decomposition LR" — X, = A R" + L*AE to obtain

(Li1Q; — L)Y = (L —np "Po(LR" — X,)R(R"R)™' — L*> »./?
=AY (LR - X,)R(R"R)'=* — n(p~'Pq —I)(LR" - X,)R(R"R)"'x}/?

—(1-nALSY? — gL ALRR'R) 'SV — n(p~Po — T)(LR" — X,)R(R'R) %%
This allows us to expand the first square in (A.36) as

[Een@ - Los?)) =0 - mast? - yr.afrE RSV

P1
— (1 — ) tr ((p*% ~T)(LR" — X*)R(RTR)*E*AZ)

pLps
+ o2 tr ((p—17>Q ~I)(LRT - X*)R(RTR)_12*(RTR)_1RTARLI)

s
2
4o H(p_lpg _“I)LR - X*)R(RTR)_lzi/QHF .

Pa

In the sequel, we shall control the four terms separately, of which 3 is the main term, and 9, B3

and P, are perturbation terms.

1. Notice that the main term 37 has already been controlled in (A.13) under the condition (A.35a).

It obeys

2e

P < ((1 2t 2 n>) lALs2 4

2¢ + €2
1—c¢ —

2 1/2)12
ARX .
(1 6)277 H R&~% HF

2. For the second term Py, decompose LR" — X, = AL R/ —&—LAE and apply the triangle inequality
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to obtain

90| = ( tr ((p—lm ~T)(ALR] + LA;)R(RTR)—lz*A{) ‘

< 1u~ (@-% ~I)(ALR] >R*<RTR>‘12*A5) )

Ba,1
- ’tr (@71739 = I)(ALRI)AR(RTR)JE*AZ) ‘

Po,2

+ |t ((p—1739 - I)(LA;)R(RTR)—lz*AZ) ) .

P23

For the first term P9 1, under the event £, we can invoke Lemma 26 to obtain

rlog(ni Vn
P < Oy | LBV A T | Ay (R R)R]
p(n1 A ng) F

9

I \VJ
< ¢y, | Friog(m Vna) 1A S22 Hzi/Q(RTR)—lzi“‘
p(n1 A ng)

=

where the second line follows from the relation |AB||r < ||A||||B||r. Use the condition (A.35¢)

to obtain

o) prlog(ny V ng) 1/22
< ALY, .
Pa1 < (1— 6)2\/ p(ni Ang) AL ||F

Regarding the remaining terms B2 2 and ‘B2 3, our main hammer is Lemma 27. Invoking Lemma 27

under the event € with L4 == A X% Ry = R, S, L = A SY? and R = Ar(RTR)1xY?,

we arrive at

niVvn _
Poo < Coy [T ALEY ol AL | RS oco | A(RTR) S

VNS S H21/2(RTR)*121/2H .

n1Vn _
< O 1p ALY oo |ALEY?|F | R ES
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Similarly, with the help of Lemma 27, one has

n1 VvV no

Pos < Co\ [ LS oo | A LS | A RS | REC o |21 (RTR) TS|

Utilizing the consequences in Claim 6, we arrive at

Cok C r
Poo < : (1+ 1— : ) : 1ALS? || AREY
(1—¢)? € p(n1 A ng)

CoC% K> ur

1/2 1/2
ALY ARrRY .
=0 p(mAnQ)H LB R ARS r

Po,z <

We then combine the bounds for B 1, P22 and Po 3 to see

4 urlog(ny V ng) 1/22
< A,
P2 < (1— 6)2\/ p(n1 Ans) AL HF
Cor < Cg C%k > ur 1/2 1/2
+ 1+ + JAG I ARY,
(1—e)? l—€e (1—¢)? p(n1 Ang) 14z 7l Az IF

= 61|1AL2”2|1% + &l AL ARSIk

1/2 1/2
<6+ 2 >HAL2/HF+ Slars 2,

where we denote

1 2
5 m 4 i urlog(ng \/??,2)7 and Gy — Cak i <1 N Cpg N CBKJ2> ur .
(1—¢) p(n1 Ang) (1—¢) Il—e (1—¢ p(n1 A ns)

3. Following a similar argument for controlling B2 (i.e. repeatedly using Lemmas 26 and 27), we can

obtain the following bounds for B3 and P4, whose proof are deferred to the end of this section.

Claim 7. Under the event £, one has

m3<—||AL2”2||F + (642 >\|A321/2||F,

Pa < 61061 + )| AL S |[E + 62(51 + 62) | AREY 2.
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Taking the bounds for 1, Ba, Vs and P4 collectively yields

2¢ + €2

(1=
(1 —n) (200 +6)| ALY + 6ol ArD )

¥ 2 2¢
H(Lt+1Qt - L*)Ei/QHF < <(1 -+ 1—_677(1 — )) |ALSY 212 + Pl ARSY?|2
7 (Sl ALSY 7 + (260 + 8)| ARSY )

o (01000 + B ALEL P[] + 52001 + ) | ARTY ).

A similar upper bound holds for the second square in (A.36). As a result, we reach the conclusion

that
~ 2 ~ 2
|@eni@e = LB+ |(Ren@ T = ROSYH| < 02, 61,00) dist*(Fy, F),

where the contraction rate p?(n;e, d1,62) is given by

2¢ + €

PP €,01,02) = (1—n)* + (12_66 +2(01 + 52)> n(l—n)+ ((1_6)

201+ 02) + (61 + 52>2) ?

As long as p > C(urk* V log(ny V na))ur/(n1 A ng) for some sufficiently large constant C, one has
01+3d2 < 0.1 under the setting € = 0.02. When 0 < n < 2/3, one further has p(n; €, d1,02) < 1—0.61.

Thus we conclude that

2 _ 2
dist(Fyy 1, F, \/H (Lip1Q: — i/QHF + H(Rt—HQt_T - Rk)zi/?HF

(1 —0.6n) dist(F3, Fy),

which is exactly the upper bound we are after; see (A.34). This finishes the proof.

Proof of Claim 6. First, repeating the derivation for (A.12) obtains (A.35a). Second, take the con-

dition (A.35a) and Lemma 17 together to obtain (A.35b) and (A.35¢). Third, take the incoherence
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condition \/ny||LR" ||2,00 V y/n2|RLT

2.00 < Cpy/pro1(X,) together with the relations

ILR [l200 > 0 (RS )| LY 2,00
> (o (R — 18r3 ) ) 12 o
> (1= )| LEY?||2,00;

IRLT |00 > 0 (LE, /?) | REY?

2,00

> (or(Laz ) — AL ) RS 2o

> (16| REY?||200

to obtain (A.35d) and (A.35¢). Finally, apply the triangle inequality together with incoherence

assumption to obtain (A.35f). O

Proof of Claim 7. We start with the term B3, for which we have

Bl < |t (7' Po ~ T)(LARR(RTR) ' S.(RTR)'RTARL]) |

Ps,1
+ ‘tr (P~ T)(ALRT)R(RTR)'S.(RTR)'RTAL]) ’ .

P32

Invoke Lemma 26 to bound 93 as

prlog(ny V ny) T Tr(pT -1 Ty-1pT
< 2L Ee\ e Y T2
‘483,1_01\/ e A HL*ARHFHL*ARR(R R)'S,(R'R)"'R HF

rlog(ni Vn _ 2
p(n1 Ang)

The condition (A.35b) allows us to obtain a simplified bound

4 urlog(ng Vng) 1/2,2
< ArY, )
qB"””l—a—e)?\/ plm Amg) R lE

1/2

In regard to ‘B3 2, we apply Lemma 27 with L4 = ALEi/Q, Ry =RY, 7" Lg:= L*EII/Q, and
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Rp=R(R'R)"'S,(RTR)"'RTAr=Y? to sce

n1 VvV ng

Py < Oy |7 CRIRAL YN >l 0 A8 i

2.0l RE 2 2,00 HR RTR)‘lz*(RTR)—lRTARzi/QHF

V
< Coy [T AL LB e R [RORTR) S AR,

Again, use the consequences in Claim 6 to reach

niVn r Cpk r
Pao < Coy 2||AL2”2\| \/“ B ,/“ |ARzl/2||F

C2Cpk r
N (12—5)3 p(nlu AN )HALEJ*/QHFHARE}J IF
1 2

Combine the bounds of 31 and B3 2 to reach

o urlog(ng V ng) 1/2,2
< ApX,
P < (1— 6)2\/ p(n1 Ang) I AREIE

CyCpk ur
(1—¢)3 p(n1 Ang)

< 61| ARSI + 5zr\ALz”2|rF|rAaz”2HF

[P REENS >R

02 1/2 1/2
< ZIarlR + 6+ 2)|amnl R
Moving on to the term B4, we have

V= || 07 Po - DLRT - X)RRTR) 2|

tr (07" P~ I)(ALR))R(RTR)'EPLT) |

Pa,1
+ \ tr (P ~ T)(ALR])Ar(RTR) 'L \

Pa,2

+ ((p’lpg—I)(LAE)R(RTR)”Zl/ziT) ,

~—
PBa,3

where we have used the variational representation of the Frobenius norm for some L € Rmxr obeying
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|L||f = 1. Note that the decomposition of /Py is extremely similar to that of 9Bs. Therefore we

can follow a similar argument (i.e. applying Lemmas 26 and 27) to control these terms as

Cy prlog(ni V na) 1/2
< ApXy ;
Pag < 1= 5)2\/ (A na) [ALEF

CQKV ( CB > ur 1/2
< 1+ ARX ;
Ba,2 (1-— 6)2 1—¢ o(n1 A o) AR |IF

CyC% K2 wur

(L =e)* \/p(n1 Anz)

For conciseness, we omit the details for bounding each term. Combine them to reach

Pas < [PNRES

VB < SIALSY?F + 62 ARSL .

Finally take the square on both sides and use 2ab < a? + b? to obtain the upper bound

Pa < 61(01 + 52)||AL2>1~/2H|2: + 02(01 + 52)HAR21/2H%'

A.5.3 Proof of Lemma 8

We start by recording a useful lemma below.

Lemma 28 ( [Chel5, Lemma 2|, [CLL20, Lemma 4]). For any fivzed X € R™*"2 with overwhelming

probability, one has

log(ny V ng)
p

log(ni V ng)

[0~ P — I)(X)]| < Co 1 X [oo + Co (1X ll2.00 V11X T l2,00)

where Cy > 0 is some universal constant that does not depend on X.

In view of Lemma 16, one has

dist(Fy, F,) < \/ V2 +1 HUOEOVOT ~ X, , (A.37)

S22 HUOEOVOT ~X,
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where the last relation uses the fact that UOZUVE)T — X, has rank at most 2r. Applying the triangle

inequality, we obtain

HUOEOVOT _ X,

< [ Pa(X) - BV | + [ PalX) - X

<2||(p~"Pa - I)(X,)|| - (A.38)

Here the second inequality hinges on the fact that UOZOVOT is the best rank-r approximation to

P Pa(X,), ie.
o7 Pa(X.) ~ UsEo VT | < [lp7 Pa(X) - X
Combining (A.37) and (A.38) yields

dist(Fp, F.) < 24/ (V2 + 1)2r ||(p7 P — I)(X) || <57 |07 Pa — I)(X.)]| -

It then boils down to controlling Hp_ng (X,) — X*H, which is readily supplied by Lemma 28 as

log(nl V TLQ) log(n1 V ’I’Lg)

|(p~"Pa — I)(X,)|| < Co [ Xslloo + Co (1 X ill2,00 V11X 1 2,00)

which holds with overwhelming probability. The proof is finished by plugging the following bounds

from incoherence assumption of X,:

[ Xxlloo < 1UL]l2,00 12l Vill2,00 <

ni
:
2 IBIVAL < /7 R (X

wr
1% Ml2.00 < U ISllIVill2,00 < \ 1y 0K

ko (X4);

HX*HZ,OO < HU*

A.6 Proof for General Loss Functions

We first present a useful property of restricted smooth and convex functions.
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Lemma 29. Suppose that f : R™*" — R is rank-2r restricted L-smooth and rank-2r restricted

convex. Then for any X1, Xo € R™*™ of rank at most r, one has
1
(VI(X1) = V(X2), X1 — Xa) > £ |[Vf(X1) - V(X

Proof. Since f(-) is rank-2r restricted L-smooth and convex, it holds for any X € R™*"2 with rank

at most 2r that
SO0+ (VH(X2), X = X1) < J(X) < f(X) + (VF(Xa), X = Xa) + 51X - Xl
Reorganize the terms to yield
FOX0) + (VF(X0), X = X1) < f(Xa) + (VF(X) — V(X2), X = Xo) + 51X — Xl

Take X = Xy — +P-(Vf(X2) — Vf(X1)), whose rank is at most 2r, to see

1

7 IVF(X2) — VXD, < F(X2).

F(X0) +{(VF(X0), X = X0) + o7

We can further switch the roles of X7 and X5 to obtain
1
F(X2) +{Vf(X2), X1 = Xo) + o7 [V f(X2) — VXD, < F(X0).

Adding the above two inequalities yields the desired bound. O

A.6.1 Proof of Theorem 4

Suppose that the t-th iterate F; obeys the condition dist(Fy, Fy) < 0.10,.(X,)/\/Ff. In view of
Lemma 14, one knows that @, the optimal alignment matrix between F; and F} exists. Therefore,

for notational convenience, denote L = L;Q:, R := RtQt_T, A =L—-L,, A = R— R,, and
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€ :=0.1/,/ky. Similar to the derivation in (A.12), we have
IALS Y2 VIARS ) < e (A.39)

The conclusion ||L; R, — X,||r < 1.5dist(F}, F,) is a simple consequence of Lemma 18; see (A.15)
for a detailed argument. From now on, we focus on proving the distance contraction.

By the definition of dist(F;;1, Fy), one has
dist* (Fyi1, Fy) < ||(E12Q0 - L*)Ei/QHi +|[(RenQr T - R*>21/2Hi . (A.40)
Introduce an auxiliary function
JulX) = F(X) = D1 X — XL,

which is rank-2r restricted (L — p)-smooth and rank-2r restricted convex. Using the ScaledGD

update rule (2.25) and the decomposition LR" — X, = A R + L, A},, we obtain

(Lis1 Qi — L)SY? = <L —yVf(LRR(R"R)™ — L*) /2
= (L —nu(LR" - X,)R(R'R)™" =V f,(LR")R(R"R)™" — L*) =)/

(1 - A sy? — gL, ALR(R'R)'SY? - yVf,(LR")R(R"R)'S}/>.

As a result, one can expand the first square in (A.40) as

2 2
H(LHth _ L*)21/2HF _ H(1 ) ALSY? - nuL*AER(RTR)_IEiﬂHF

(5]

1
—2n(1 — nu) <VfM(LRT), A, (R'TR'R" - ALR] — ZALA;>

6o

1
—2n(1 —np) <Vfu(LRT), ALR] + 2ALAE>
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+ 272 (Vf,(LR"), LLAKR(R'R)'S.(R"R)'R")

63

+ 1 HVfu(LRT)R(RTR)AEyQHi ‘

&y

In the sequel, we shall bound the four terms separately.

1. Notice that the main term &; has already been controlled in (A.13) under the condition (A.39).

It obeys

2¢ + €2
(1—o2"

1/2
. W AR,

2e 2
01 < (= {2 (1 = o)) |ALE R +
as long as nu < 2/3.

2. For the second term &5, note that ALE*(RTR)ART — ALR*T — %ALAE has rank at most 7.

Hence we can invoke Lemma 20 to obtain

1
8] < [IVAu(LR) e, |ALZ(RTR)T'RT — ALR, — SALA

F

1 _
< |VALRT) e )| ALZY e (HR(RTR>—121/2 - V| + 51aRE; ”2||> ,

1/2
*

where the second line uses R, = V,X,’". Take the condition (A.39) and Lemma 17 together to

obtain
HR R'R) 121/2”

1—6‘
< \[6.
—€

HR(RTR)—lzi/2 -

These consequences further imply that

fe

€ 1/2
2] < (7 + DIVIELR) e AL e

159



3. As above, the third term &3 can be similarly bounded as

B3] < [|[VL(LRT)|Fs

L*A;R(RTR)—lz*(RTR)—lRTHF
2
< VAR e 1825 e | RIBT RSV

1 1/2
= m”vfu(LRT)”F,THARE*/ HF

4. For the last term &4, invoke Lemma 20 to obtain

&4 < |Vfu.(LRT)|E,

(RTR)SV < L IVAER,.

)

Taking collectively the bounds for &1, B2, &3 and &4 yields

2¢ 2¢ + €2
H(Lt+1Qt - WH < (1= np)* + (1 = W)) laLs?? + = )2772M2HA321/2HF
V2 €
+ 277(1 e + 5)(1 - UM)HVfu(LRT) I/QHF

1
—2n(1 —np) <VfM(LRT), ALR] + 2ALA;>
2

(1)

2%
+ S|V f(LRT)|F,

(1-e€)?

IF + SIVE(LRT)|E,.

Similarly, we can obtain the control of ||(R;1Q; = — R*)Ei/ 2H,Q: Combine them together to reach

H(LtHQt - L*)Ei/QHi + H(RtJrlQ;T - &)21/2“2

2¢ 2€ + €2 1/2 1/2
< ((1—nu)2+1enﬂ(1—nu)+ G ) (laLs? + ars?)

V2e
+ 2 ((1_ Wm0+ g | IV LR ey (JALZ e + ARy e)
T T T T 2 T2
—2n(1 —np) <Vfu(LR ), ALR, + LA+ ALAR> + m”vfu(LR ME
26 =+ 6 2 9

2e 1/2 1/2
< (= =+ TS ) (IALEY2 + arm! 1)
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V2 e 2 2
+2n<(6+2)(1—w)+ s NIV AR er (|ALS e + | AR )

1—
o (T ) IVAERDIR,

where the last line follows from Lemma 29 (notice that V f,(X,) = 0) as

(VI (LR"),ALR] + LA}, + ALA}) = (Vf,(LR"),LR" — X,) >

(LRT)|Z,.
Notice that €3 > 0 as long as 7 < (1 —¢)?/L. Maximizing the quadratic function of |V f,(LR") |k,
yields

@ 2
VLR e (A2 e + 18521 ) @I VAERDIE, < g (1A + | 2r2 )

¢? 1/2 1/2
< o, (1AL + apm ).

where the last inequality holds since (a + b)? < 2(a? + b?). Identify dist?(F}, F,) = HALEI/2H2
HAREiﬂH,Q: to obtain

2 2
H(Lt+1Qt — L*)ZiﬂHF + H(Rt+1Qt_T — R*)EimHF < ,02(77; e, L) distQ(E, F,),

where the contraction rate is given by

2
2¢ € Uiz
% 2 + ¢ (G2 + 90 =) + 725)
p*(nye,p, L) = (1 —nu)® + ———nu(l —np) + S + — n(L — p).
1—e¢ (I—¢) 1_7W_7E(1_)MQ)

With e =0.1/,/Ff and 0 <7 < 0.4/L, one has p(n;€, 1, L) <1 —0.7nu. Thus we conclude that

2 2
dist(Fiy1, F; \/H (L41Q: — i/QHF + H(RtJrlQ;T — R*)Ei/ZHF

(1 = 0.7Tnu) dist(Fy, Fy),
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which is the desired claim.

Remark 9. We provide numerical details for the contraction rate. For simplicity, we shall prove
p(n;€,u, L) < 1 —0.7nu under a stricter condition € = 0.02/\/@. The stronger result under the
condition € = 0.1/, /Ky can be verified through a subtler analysis.

With € = 0.02/,/ky and 0 < n < 0.4/L, one can bound the terms in p*(n; e, p, L) as

9 2€ 2¢ + €2 9 9 9 9
(L =np)” + T—nu(l —npu) + T <1 - 1.959nu + 1.002n"p"; (A.41)
V2 | €y(1 _ )2 0.0016 2,92
(3= +5) (0 —np) + 752 B0 +0.078nu + 1.0050° 1
W) L —p < 2L nk
1—np— (oo 1—-1.042n
0.001677% + 0.4 x (0.078nu + 1.0057%12)
<
= 1—0.4 x 1.042
< 0.057nu + 0.697% 42, (A.42)

where the last line uses the definition (2.26) of x;. Putting (A.41) and (A.42) together further

implies

PP (s €, L) <1 —1.9nu+ 1707 < (1= 0.7np)?,

as long as 0 < nu < 0.4.
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Appendix B

Proofs for Robust Low-rank Matrix

Estimation

Lemma 30. Suppose that f(-) : R™*"2 — R is convex and rank-r restricted L-Lipschitz continuous

(cf. Definition 5). Then for any subgradient S € 0f(X), one has ||S||f, < L.

Proof. Fix any subgradient S € 0f(X). By the definition of a subgradient, for any X € R xn2

one has
f(X) = f(X)+ (5, X - X).
In particular, taking X = X + P,(S) arrives at
(X +Pp(8)) > f(X) + (S, P:(S)) = f(X) + [ISIE,, (B.1)

where the last equality follows from the definition (A.8). Note that P,.(S) has rank at most r. By

the rank-r restricted L-Lipschitz continuity of f(-), we have
F(X +Pr(8)) = F(X) < LIP(S)lr = LISIF.-

Combining the above inequality with (B.1), we conclude ||S||f, < L. O
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B.1 Proof of Theorem 6

Suppose that the t-th iterate F; obeys the condition

dist(F}, F,) < 0.020,(X.)/x;. (B.2)

Lemma 14 ensures that Q;, the optimal alignment matrix between F; and F), exists. For notational
convenience, we denote L = L,Q;, R = RtQ;T, Ap =L—-L,Ap=R—-R,, S =S5 and
€ := 0.02/xy. By the definition

dist(F, F) = /A, SY22 1 | A2 (B.3)
and the relation |AB||f > ||A|fo.(B) > ||Allo(B), we have
max{[| A3 ), | AR YA} < e (B.4)

We start by relating ||[LR" — X, ||f to dist(F}, Fy) given (B.4). Applying the triangle inequality to
the basic relation LR" — X, = LR} — X, = ALR] + LA}, + AL A}, we have

ILR" — X, | < |ALR] ||F + | L. AR|lF + | AL AR

1 - 1 _
< ALR]r + 1L ARlF + SIALS AR le + S I ALS?[F|ARE)

1 _ _
< (14 jmacla=T 21 18637 21 ) (1ALEY 2 + 14021 e)

< (14 ) VR 1AL + ARSI < L5 dist(R, F), (B.5)

where the last line uses the basic inequality ||AL21/2||F + HAREi/QHF < V/2dist(F;, Fy) and (B.4).
From now on, we focus on proving the distance contraction. By the definition of dist(F}11, Fy),

one has

2 2
dist?(Fy41, Fy) < H(LtJrth - L*)zi/QHF + H(RtHQ[T - R*)Ei/QHF- (B.6)
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We expand the first square in (B.6) as

w1
= A2~ 20 (S ALSL(RTR)RT) 4 HSR(RTR)—lzi/QHi

1 2
— |ALSY?|2 2, <s, ALR] + QALA£> i HSR(RTR)—lzi”HF

(GF1

1
— 2, <S, A, (RTR'R" — ALR] — 2ALA;>, (B.7)

Sa

where in the first line, we used the fact that the update rule (3.13) is covariant with respect to Qy,

implying that
Li1Qi=L-nSR(R'R)™L.
We proceed to bound &; and G5. The term &; can be bounded by

v Jomamr am|

< s R

where the second line follows from the condition (B.4) and Lemma 17 (cf. (A.7b)):
s s <
—€

For the term &, note that
1 1 _
ALS(RTR)'RT — ALR] - JALA = A zY? <R(RTR)—121/2 ~ Vi SARY; 1/2>

has rank at most r. Hence we can invoke Lemma 20 (cf. (A.9b)) to obtain

1
1Ga| < ||S|lFr |ALZ(R"TR)'R" — ALR] — 5ALAg

F
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< ISl ll AL e <H REETR)-? v,

fe
( 5 | 1ALS e,

where the second line follows from the triangle inequality, and the third line follows from || S||f, < L

1 _
+5lans)

(cf. Lemma 30), (B.4), and

V2e

<
—1—c¢

HR(RTR)—121/2 A

from Lemma 17 (cf. (A.7d)).

Plugging collectively the bounds for &; and &3 into (B.7) yields

2 1
H(LHth - L*)zi/QHF < |ALzY?)2 — 2, <S, ALR] + QALA,E> +

\fe
+77tL< TR VN RS

e [sRETR,

Similarly, we can obtain the control of ||(Ry41Q; ' — R*)Eipﬂg. Combine them together to reach

distQ(FtH, F) < |ALSY?2 + |ARSY?)2 - o, <s, ALR] + L.AL+ ALA;>

+ (HSR (R'R WH +HSTL (LTL) WH >+nL< 2v2e e) (HALEi/zHFJr||AREi/2||F>.

(1—6

Using the subgradient optimality of S, we obtain
(S,ALR] + L.AL + AL AR) = (S.LRT — X.) > [(LRT) - (X.),

together with (B.3), which further implies that

distz(FtH, F,) < dist?(F,, F,) — 2n, (f(LRT) - f(X*))

+ <HSR (R'R )—WHi + HSTL(LTL)_WHD + L < + \fe> dist(F,, F,), (B.8)

(1—6 1—e€
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where the last term uses the basic inequality HALEiﬂHF + ||AR§]1/2||F < V2dist(F;, Fy).
Before proceeding to different cases of stepsize schedules, we record two useful properties.

First, by the restricted u-sharpness of f(-) together with Lemma 16, we have

F(LRT) = f(X,) > pl|LRT — X, [|F > py/ V2 — 1 dist(F}, F.). (B.9)
On the other end, by Lemma 20 (cf. (A.9¢c)), we have

ISR(RTR)™V2|2 +ISTL(LTL) 22 < |SIE, (IR(RTR)™2| + | L(LTL)~/2)?)

<2I7 (B.10)
where the second line follows from ||S||f, < L (cf. Lemma 30) and
IRRTR)?|> = |[R(RTR)'RT|| =1, |LL'L)'?)P=||LL'L)'LT| = 1.

B.1.1 Convergence with Polyak’s stepsizes

Let n; = i} be the Polyak’s stepsize in (3.14), which is

_ F(LR]) — f(X)
IS:R(R; R;)~/2||2 + ||S] Ly(L/) Ly)~1/2||}
S(LR") — f(X,)

= B.11
[SRRTR) V2|2 + S LLTL) P (B.11)

Mt

where the second line follows since Ly R, = LR", Ly(L; L) 'L} = L(L"L)"'L" and Ry(R] R;) 'R/ =
R(R"R)"'R". Plugging (B.11) into (B.8), we have

_
(1—¢)?

< dist?(Fy, F) — ( V2 -1 (2 - (1_16)2> —Xf <14_€6 + \/§6>> dist(Fy, F,),

dist?(Fyy1, Fy) < dist?(Fy, F,) — (2 — ) (f(LRT) — f(X*)) +mL <14€€ + Jie> dist(F}, F,)

(B.12)
where the second line follows from (B.9) and x¢ = L/p.
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To continue, combining (B.9) and (B.10), we can lower bound the Polyak’s stepsize (B.11) as

VV2 — 1 dist(Fy, Fy)
ne = )
212

This, combined with (B.12), leads to
dist?(Fyy1, Fy) < p(e, x7) dist?(Fy, F,),

where the contraction rate p(e, xr) is

ple, xr) ::1—\64( \/5—1<2—(1_16)2)—xf <14_66+\/§e>>. (B.13)

2Xf

Under the condition € = 0.02/x s, we calculate (1 — p(e, Xf))x?c as

T (V1o ) - (e
> 0.32 <0.64 x (2 - 09182> —0.02 <(;198 + ﬂ)) > 0.16,

thus p(e, xr) <1 — 0.16/)(?(. We conclude that
dist?(Fiq1, Fy) < (1 —0.16/x7) dist*(Fy, Fy),
which is the desired claim.

B.1.2 Convergence with geometrically decaying stepsizes

Let 7; = n° be the geometrically decaying stepsize in (3.15), which is

At
m = .
VIISRRTR)=V2|[? + ||STL(LTL)-1/2|)?
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Plugging the above into (B.8), we have

2 2t

4
dist*(Fy1, Fy) < dist®(Fy, F,) — nopt (2\/ﬁ - Xf (1 —+ ﬂe)) dist(Fi, Fu) + —qe)2

)\qt de )\2q2t
< dist*(F,, F,) — ——— (2 V2 -1 — — V2 ist(Fy, F,
< dist*(Fy, Fy) \/§Xf< V2 Xf<1_6+\f€>>d1$t( b, *)+(1—e)2’

At
V2L

where the first line follows from (B.9) and x5 = L/p, and the second line follows from n; >

due to (B.10). We now aim to show that
dist(Fy, F.) < (1 —0.16/x%)"%0.020,(X.) /Xy

in an inductive manner. Assume the above induction hypothesis holds at the t-iteration. By the

setting of parameters, i.e.

V2 -1
2

A = (1-0.16/x%)20.020,(X.) /X3,

we have
dist?(Fi1, Fy) < p(e, x7) (1 = 0.16/x3)(0.020(X) /x )%,

where the contraction rate p(e, x¢) matches exactly (B.13). Therefore, under the condition e =

0.02/x ¢, we have p(e, x5) <1 — 0.16/Xfc, thus we conclude that
dist(Fry1, Fy) < (1-0.16/x%) % 0.020,(X.) /x5,

which is the desired claim.
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B.2 Proof of Theorem 7

We start by introducing the short-hand notation d; := (1 — 0.13/)(;)'5/20.0207« (X,)/xf- The param-

eters are set as

Va1
A=\ (1= 0.13/x7)720.020,(X.) /X =

Therefore, the geometric stepsize

g
77t == )
VISRRTR-12|? + |STLLTL)-/2||}

in view of (B.10), satisfies

)\qt _ \/\@—1 dy

Ny > = . B.14

Follow the same derivations as the proof of Theorem 6 until (B.8). Plugging the stepsize

(B.14) into (B.8), together with the approximate restricted sharpness property

f(LRT) - f(Xy) > NHLRT -~ XillF—€2> V V2 - Lpdist(Fy, Fy) — &,

we have

2.2t

. . / 4 . A
dlStQ(E+1, F*) < dlSt2(Ft, F*) — M <2 \/i —1- <1€ + \/i) 6Xf> dlSt(Ft, F*) + (1 7q€)2 + 27’],55

Under the conditions x > 1 and € = 0.02/x; < 0.02, the above relation can be simplified to

0.216
dist?(Fyy1, Fy) < dist?(Fy, Fy) — 1177y pdist(Fy, F) + ——5—d; + 2n,€. (B.15)
X

!

We next prove the theorem by induction, where the base case is established trivially by the initial
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condition. By the induction hypothesis, the distance at the ¢-th iterate is bounded by
dist(Fy, Fy) < max {d, 20§/} .

To obtain the control of dist(F}41, Fy), we split the discussion in two cases.

1. If dy > 20& /1, or equivalently, & < 0.05ud, in view of (B.15), we have

(i) 0.2
diStQ(FtJrl, F, ) d — 1. 17777,5,&(175 + d2 + 0. 17]t,udt
X

f
0.216
= d? — 1.07Typd; + ———d?
Xf
(i) 34 21
i df—0326d,?+0 26d?
Xy Xy

— (1-0.13/x3)d}.

where (i) uses £ < 0.05ud;, and (ii) uses the condition (B.14). We conclude that dist(Fiy1, Fy) <

(1—0.13/x%)"%d;.

2. If 0 < d; < 20&/u, we have

206\ ? 2 21
dist?(Fy1, Fy) < (06> 0, 0216 §+2mE

H Xf
B (205)2 , 206 | 0216

H Xf
<<205>2 LOTTVV2 -1 | 20¢ 4 0216
S\ M 2Xf ,u Xf

206\ > 2
< <0€> _Olgdtiﬁ

7!

(%)
7!

where the third line uses the condition (B.14), and the last line holds since d; > 0.
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In sum, we conclude
dist(Fyi1, F.) < max {(1 —0.13/x2) % 0.020,(X,) /x s, 205/#} ,
which is the desired claim.
B.3 Proof of Proposition 3
For X7 and X5 where X7 — X5 has rank at most 2r, we have

1f(X1) — f(Xo)| = [[A(X1 = X [1 — [[A(X2 = X))l

< A(XT — X2) |1 < 62| X1 — Xoa|F,s

where the second line follows from the inverse triangle inequality and the assumed rank-2r mixed-

norm RIP (cf. Definition 8) of A(-). As a result, we have L = 3. On the other end, we note
F(X) = [(X0) = AKX = X1 = 01| X = Xiullr,

where the first equality uses f(X,) = 0 and the second inequality follows from the rank-2r mixed-

norm RIP; thus pu = 4;.

B.4 Proof of Proposition 4

For X and X with rank(X; — X9) < 2r, we have

If(X1) — f(X2)| = | A(X1 — X)) —w — s8] — |A(X2 — X,) —w — s|);

< JA(X1 — X2) |1 < 02| X1 — Xa|F,
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where the second line follows from the inverse triangle inequality and the rank-2r mixed-norm RIP;

hence L = §o. For approximate restricted sharpness, note that

F(X) = (X)) = AKX = X)) —w = s]ly — lw + 5|1
> [ AX = Xy) = slly = [Jwlls = [s]lx = [lwll
= [Ase(X = X, )l + | As (X — X) — s[l1 — [|s[[s — 2[|w]lx
> [[Ase(X = X[l = [[As(X = X[l — 2wl
> 03] X — XullF = 2f|wllx

> 53||X - X*”F — 20,

where the second and the fourth lines follow from the triangle inequality, the third line follows from
the definition of S, and the last line follows from the definition of the S-outlier bound and the noise

upper bound ||lw|; < . Therefore, we have y = d3 and & = 20y,
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Appendix C

Proofs for Low-rank Tensor Estimation

C.1 Preliminaries

This section gathers several technical lemmas that will be used later in the proof. More specifically,
Section C.1.1 is devoted to understanding the scaled distance defined in the equation (4.24), and
in Section C.1.2, we derive several useful perturbation bounds related to the tensor factors and the

tensor itself. All the proofs are collected in the end of each subsection.

C.1.1 Understanding the scaled distance

To begin, recall the scaled distance between F = (U,V,W,S8) and F, = (U,, V,, W,,8,):

dist*(F, F,) = o eiélﬁ( : IUQ1 —U)ZEuillf +I(VQ2 — Vi) Zsallf + [(WQs — W)Bs]
k Tk

+@ Q. QsY) -8 - Sufp (C.1)

where we call the matrices {Qj}r=123 (if exist) that attain the infimum the optimal alignment
matrices between F' and F; in particular, F' and F} are said to be aligned if the optimal alignment
matrices are identity matrices.

In what follows, we provide several useful lemmas whose proof can be found at the end
of this subsection. We start with a lemma that ensures the attainability of the infimum in the

definition (C.1) as long as dist(F, Fy) is sufficiently small.

Lemma 31. Fiz any factor quadruple F = (U, V., W S8). Suppose that dist(F, F,) < omin(Xx),
then the infimum of (C.1) is attained at some Qi € GL(ry), i.e. the alignment matrices between F

and F, exist.

174



Proof. This proof mimics that of Lemma 14 in Chapter 2. The high level idea is to translate the
optimization problem (C.1) into an equivalent continuous optimization problem over a compact
set. Then an application of the Weierstrass extreme value theorem ensures the existence of the
minimizer.

Under the condition dist(F, F,) < omin(Xs), one knows that there exist matrices Qy €

GL(rk) such that

(H(Uézl— D2 (V@ — Vi) Zaa|2 + |[(WQs — W) S, 52

L 2\ 1/2
+H(Qllanlanl)'S_S*HF> SEUmin(X*)a
for some € obeying 0 < € < 1. The above relation further implies that

|UQ: —U.|| v |VQ:— Vi V |[WQs — Wi v H(le ®QyHYMiI(S) QT E 1 — Mi(8,)T, ]

‘SG.

Invoke Weyl’s inequality, and use the fact that Uy, Vi, Wy, M1 (S*)TEIE have orthonormal columns

to obtain
Umin(UQ_l) A Umin(VQ2) A Umin(WQ_3) A Omin ((Q_?Tl & Qg_l)Ml(S)TQITE,:i> 2 1—e (02>

In addition, it is straightforward to see that the minimization problem on the right hand side of

(C.1) is equivalent to

inf (U@ H: — US| +|[(VQ2Hz — Vo) Ea||2 + |(WQs Hs — W), 5|2
H; eGL(rg)

+(HT'QTY Hy Q7 Hy'Q3Y) - S - 8.7 (C.3)

Therefore, it suffices to establish the infimum is attainable for the above problem instead. By the

optimality of QHj, over Qy, to yield a smaller distance than Qj,, Hj, must obey

(1OQH: ~ U)Bus[f +[[(VQoH: — Vi) S.af + [[(WQs Hs — W) Z. 47
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L L L 2\ 1/2
+ H (H1 1Q1 1, H2 1Q2 1a H3 1Q3 1) ‘S - S*H,:) < €Umin(X*)-
Follow similar reasoning and invoke Weyl’s inequality again to obtain

Jmax(UQ1H1) V Umax(VQQHZ) \ Umax(WQSHZS)

V Omax ((Hg1 ® Hy')(Q3' ® Q;l)Ml(S)TQfTHfTZ*‘j) <l+e

Use the relation opmin(A)omax(B) < 0max(AB), combined with (C.2), to further obtain

1
Umax(Hk:) < 1 T 67 k= 1,2,3,
CTw— _ _ 1+e€
Omax (2*,1H1 Tz*&) Umax(HQ 1)Umax(H3 1) < 1—e
1—¢

=> Omin (2*,1H12;%> Omin(H2)omin (H3) > 5 e

As a result, the minimization problem (C.3) is equivalent to the constrained problem:

min  [(UQiHy — US|z + |(VQ2Hs — VO)E.o|7 + |(WQs Hs — WS, 5|7
H;eGL(rg)

+(H O H Qy  H Q5 Y) -5 - S

1
St Oma(Hi) < 7 te

k=1,23.

_ 1—c¢
»  Omin (2*,1H1Z*j) Omin(H2)omin (H3z) > e

— €

Since this is a continuous optimization problem over a compact set, applying the Weierstrass extreme

value theorem finishes the proof.

With the existence of the optimal alignment matrices in place, the following lemma delineates

the optimality conditions they need to satisfy.

Lemma 32. The optimal alignment matrices {Qy}r=123 between F and F, if exist, must satisfy

UQ)(UQI-U)T2, = M (@1, Q5%,Q5Y)-8 - S) M (Q4Q;,@;1)-8) ',

(V@) (VQs - V)2, = My (Q14Q5,Q31) -8 —8.) Ms (Q71,Q,1,.Q31)-8) ',
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(WQs)T(WQs — W)R2, = Ms (@1, Q51,Q5Y)-8 - 8) M3 (Q7,Q;,Q5)-8) .

Proof. Set the gradient of the expression on the right hand side of (C.1) with respect to Q1 as zero

to see
UT(UQ: —U T2, — Q7 "M (Q7,Q;1,Q:1)-8—8) My (@11, Q;4,Q5Y)-8)" =o.

We conclude the proof by similarly setting the gradient with respect to Q2 or Q3 to zero. O

The next lemma relates the scaled distance between the factors to the Euclidean distance

between the tensors.

Lemma 33. For any factor quadruple F = (U, V , W S8), the scaled distance (C.1) satisfies
dist(F, ) < (V2 + 12 (U, V, W) -5 — X,

Proof. We begin by applying the mode-1 matricization (see (4.12)), and invoking Lemma 16 with
L=UR=WaV)M(S), X, :=UM(S8,)(W,2V,)T" to arrive at

2
(U, V. W)+ 8 = X, = [[UMUS)W & V)T~ UM(S)W, 0 V)T

2 2
> (V2o nt (UQE US|+ (W e vimis) QTR - (We Vimi(s)T||
2
—(V2-1)_inf  [(UQ - U Sl + (W e VIMi($)TQrT - (W e VMi(S.)T |
Q1€GL(r1) F
. _ 2
= (\/5 - 1) Q1€1é1£(7'1) ”(UQl - U*)E*,lulzr + H(Ql 17 VJ W) -S - (IT17‘/:)(7 W*) 'S*HF )

where we have applied a change-of-variable as Q1 = QE:&/ % in the third line, and converted back to
the tensor space in the last line. Continue in a similar manner, by applying the mode-2 matricization
to the second term (see (4.12)), and invoke Lemma 16 with L := V, R == (W ® Q; )Ma(S)T,
X, = V,My(8,) (W, ®1I,,)" to arrive at

2
(@ V. W)+ 8 = (1, Vi, W) - Sufp = [VM(S)W © Q7T = ViMa( SO W 0 L)

177



2

2
> (V2-1) inf ‘Vle/z ViSio ‘ N H(W 5 QrMAS) QTS (W o ITl)MQ(S*)TH
QeGL(r2) F F
= 2 - 1 3 f — * * , , Ir ,I»,- ,W* S
(\/> )QzelélL(rg) ||(VQ2 V QHF + H Q1 Q2 ) ( 1 2 HF

where we have applied a change-of-variable as Q2 = QE:’é/ % as well as tensorization in the last
line. Repeating the same argument by applying the mode-3 matricization to the second term, we

obtain

[@ @5 W)+ 8 — (I, Ty, W) -84 = [WMs(8)(@5 0 Q)T - WaMs(s,)|

>((/2-1) inf [(WQ3—-W,)Z
Q3€GL(7‘3)

Fll@rt Qs -5- 5S¢

Finally, combine these results to conclude

(O.V.W)-5 - X2 > inf (V2= 1) |UQ)~ U)Bulf + (V2 17 (Vs — Vi) Baal?
k Tk

+ (V2 1P (WQs - Wo a2 + (V2 - 1)@ Q1. Q51 - 8 — 8.|7

> (V2 —1)3dist®(F, F,),

where the last relation uses the definition of dist?(F, Fy). O

C.1.2 Several perturbation bounds

We now collect several perturbation bounds that will be used repeatedly in the proof. Without loss
of generality, assume that F = (U,V,W,S8) and F, = (U,, V,, W,, 8,) are aligned, and introduce

the following notation that will be used repeatedly:

Ay =U - U,, Ay =V -V, Ay =W — W,, As=8-8,,
U:=WeV)M(S)T, Vi=WeU)MyS)T, W =(VaoUM;S)',
U, = (W, ® V)M (S.), Vii= (W oU)Ma(S,)T,  Wii= (Vi@ U)Ms(S,)T,
(C.4)
Tv=(U/Ay, I, I,) - Ss, Tv =L, V, Ay, L,)- 8., Tw =, L, W, Ay)-S,,
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Dy = U'U)VUTApE, 1, Dy = (V'V)V2VTAyS, 5, Dy =W W) 2WTApE, 5.

Now we are ready to state the lemma on perturbation bounds.

Lemma 34. Suppose F = (U,V,W.S) and F, = (U,,V,,W,,8,) are aligned and satisfy
dist(F, F,) < eomin(Xyx) for some € < 1. Then the following bounds hold regarding the spectral

norm:

AUl VAV V[ Aw] VM As) TG <6 k=123 (C.5a)
lv@wo)y i <t-o9h (C.5Db)
2
HU(UTU)*1 A S ;fe : (C.5¢)
—€
H(UTU)—1 <(1-e72 (C.5d)
(U - lvf*)E*_% < 3e+ 3% + € (C.5¢e)
UUTU) 'S <(1-e7% (C.5¢)
oL . . 2 2 3
jo@wTo) s, - Uz < \f(?’(‘? 36)3+ <, (C.5g)
: —€
Hz*71(rorJ*)*1z*71 <(1-e7% (C.5h)
HE*J(fITfI)‘lMl(S) <(1—¢)5. (C.50)
By symmetry, a corresponding set of bounds holds for V, V and W, w.
In addition, the following bounds hold regarding the Frobenius norm:
3 5 €
1T, V. W):S =Xl < 1+ get e+ ) ([Avaallr + [AvEe|r + [[AwEs sl + [|Asle);
(C.6a)
2
€
IOV, W) S = Xillp < (1 + e+ 5) ([AvEsalle + |AvEallr + [AwEse) (C.6b)
2
R €
U-U,|_ < (1+e+ §) (|AVE.2llF + [AwZ.sllF + || AslF) - (C.6c¢)
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As a straightforward consequence of (C.6a), the following important relation holds when € < 0.2:

3 3
(U V. W)-8—X[p <201+ e+ + %) dist(F, F,) < 3dist(F, F,). (C.7)

Hence, the scaled distance serves as a metric to gauge the quality of the tensor recovery.

Proof of spectral norm perturbation bounds. To begin, recalling the notation in (C.4),

(C.5a) follows directly from the definition

dist(Fy, Fy) = \/HAUE*JH;% HAvElf + [[AwS.slE + |As]E < eomin(Xy)

together with the relation ||AB||g > || AlFomin(B).

For (C.5b), Weyl’s inequality tells omin(U) > omin(Uy) — ||Ay|| > 1 — ¢, and use that

1 1
<

UUuU *1H - .
H ( ) omin(U) — 1 —¢€

For (C.5¢), decompose
UUTU) —U, = -UUTU)'AJU, + (Im - U(UTU)_lUT) Ay,

and use that the two terms are orthogonal to obtain
HU(UTU)—1 —U,

2 2 2
< HU(UTU)‘lAEU* n H (Im - U(UTU)—lUT> AUH

<lu@'u)ElAv)? + lAv]?

<((1- )2+ 1) €.

It follows from € < 1 that

2€

< .
—1—c¢

HU(UTU)*1 A
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For (C.5d), recognizing that

1
O =wunyHUUYT = OO = VOO < g
where the last inequality follows from (C.5Db).
For (C.5¢), we first expand the expression as
U-U,=WaV)M(8)" — (W, V)M (S8,)"
=WV -W,2VIM(S) + W VIM(S) — (W V)M(S,)"
= WAy + Ay @ VOM(S)T + (W e VIM;(As)". (C.8)

Apply the triangle inequality to obtain

|0 - U= < | o Ay + Aw @ VoM (S.) 1]

|+ | W e virmias) T

< (WA + [Aw VA IMi(S) T+ IWIHIVIHIM (As) T, ]l

<(1+e)ete+ (14 €)% =3e+3e® + ¢,

where we have used (C.5a) and the fact ||M1(S*)T2;&|| =1 (see (4.13)) in the last line.

(C.5f) follows from combining

1 1

e = < .
‘ O'min(Uz,:%) (- 6)3

and Hrj(t“ﬂff)*lz*,l

With regard to (C.5g), repeat the same proof as (C.5¢), decompose

v 9 v v 9

OO0, - U = U0 TU) (U -U,) TS + (Inm - U(U‘Tf])”UT> (U - U,z
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and use that the two terms are orthogonal to obtain

VIRV o 2 VIRV o o o
jowTo) s, - sl < [owTo) - )0

< UOT0) 'S PI0 - U)E 1P + (U - U2 5

< ((1 — e)_6 + 1) (3¢ + 32 + (—:3)2.

It follows from e < 1 that

’ < V2(3e + 3€2 + €3)

T —1 o 51
lowTo) s, - vz p—

The relation (C.5h) follows from (C.5f) and the relation:

v

o o o o 2
‘ - Hz:*,l(UTU)—lUTU(UTU)—lz*,1 ‘

‘ - Hﬁ(ﬁTﬁ)—lz*,l

With regard to (C.51), we have

HE*J(IJ‘T(?)‘lMl(S)H - Hz*,l(fﬂtj)—lt“ﬂ (W(WTW)—1 ® V(VTV)—l) H

< HU(I?’TIVJ)*E*J

[[wovtwy| v

<(1-97,
where the first line follows from
Ul =M (S)WaV) =  M(S)=U" (W(WTW)—1 ® V(VTV)—l) . (C.9)
and the last inequality uses (C.5¢) and (C.5f).

Proof of Frobenius norm perturbation bounds. We proceed to prove the perturbation

bounds regarding the Frobenius norm. For (C.6a), we begin with the following decomposition

U,V,W).S—X,=(U,V,W)-8— (U, V., W,)- S,
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= (U, Vv, W) -Ag + (AU, Vv, W) .S, + (U*, Ay, W) .S, + (U*, Vi, Aw) .S,.
(C.l())

Apply the triangle inequality, together with the invariance of the Frobenius norm to matricization,

to obtain

UV, W)-§ = Xl < (U V. W) Aslle + [ AvMiS)W 2 V)T||
+|avmasaw o U+ |awvmssavie )T
< JUNIVIIW I Asle + [ AvMi(S)lE WV
Ay Mo(S) WU + | Aw Ms(S) | ValIT.]

<1+ AsllF+ 1+ ) |ArSsallr + (14 6)|Ay Sy o

F+[AwX, 3

F

where the second inequality follows from (4.6e), and the last inequality follows from (4.13) and
(C.5a). By symmetry, one can permute the occurrence of Ay, Ay, Ay, Ag in the decomposition

(C.10). For example, invoking another viable decomposition of (U,V,W)-8 — X, as

U, v,w).8§-X,=U,Ay,W)-S§+(U,V,,Ay)-S+ (U,V,,W,)-As + (Ay, V., W,) - S,
leads to the perturbation bound

UV, W)-8 =X < 1+’ |AvEialr + (L + ) [AwZaslr + (L + &) Asr + A llr-

To complete the proof of (C.6a), we take an average of all viable bounds from 4! = 24 permutations

to balance their coefficients as

3 1
((1+6)3+(1+6)2+(1—|—6)—|—1):1—}—564—62—{—163,

|
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thus we obtain
3 1
U, V.W)-8 = Xuflp < (1+ je+ e+ 163)(IIAUE*,1IIF + AV llF + [AwZasllF + [ As]lF).

The relation (C.6b) can be proved in a similar fashion; for the sake of brevity, we omit its proof.

Turning to (C.6¢), apply the triangle inequality to (C.8) to obtain

1T = Tille < |7 0 AnMS)T|_+[|[(Aw @ ViMS)T|_+ 1w @ V)M (As) e

(C.11)

To bound the first term, change the mode of matricization (see (4.12)) to arrive at

| e anmE)T| =@ av. w)-S.l = [armas) W o 1,)7|

< Ay Ma(S) W] < (1+ e)[| Ay Ma(S.)||F,
where the last inequality uses (C.5a). Similarly, the last two terms in (C.11) can be bounded as
[(aw e VoMIS)T|| < IAwMs(Slr, and (W & VIMi(As)]r < (1497 Asr.
Plugging the above bounds back to (C.11), we have
IU = Ul < A+ O Ay Ma(S)lle + | Aw Ms(S.)llF + (1 + €)*| As]r.

Using a similar symmetrization trick as earlier, by permuting the occurrences of Ay, Ay, Ag in

the decomposition (C.8), we arrive at the final advertised bound (C.6¢).

C.2 Proof for Tensor Factorization (Theorem 10)

We prove Theorem 10 via induction. Suppose that for some ¢ > 0, one has dist(Fy, Fy) < €opmin(Xy)
for some sufficiently small € whose size will be specified later in the proof. Our goal is to bound the

scaled distance from the ground truth to the next iterate, i.e. dist(Fy41, F).
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Since dist(Fi, Fy) < €omin(X4), Lemma 31 ensures that the optimal alignment matrices
{Q¢ 1} k=123 between F; and F, exist. Therefore, in view of the definition of dist(F;11, Fy), one

has

dist?(Fig1, F) < [|(Ur1Qi1 — U) Bt [l + 1 (Vie1Qr2 — Vi) Zallf + |(Wia Qs — W) sz
2
+ @it @id Qi) - S - 8| (C.12)

To avoid notational clutter, we denote F := (U,V,W,S8) with
U = UtQt,lv V= ViQt,Qa W = WtQt,3a S = (Q;lla Q;Qla Q;?}) ° St7 (C]-S)

and adopt the set of notation defined in (C.4) for the rest of the proof. Clearly, F' is aligned with

F,. With these notation, we can rephrase the consequences of Lemma 32 as:

UTAyE2, = Mi(As)Mi(S) ',
VIAyE2,) = Ma(As)M2(S)T, (C.14)

WTAWEEB = Mg(As)Mg(S)T.

We aim to establish the following bounds for the four terms in (C.12) as long as n < 1:

2
F

[(Ut41Qe1 = Ui |f < (1= )| AuEas]
— 2L =) (To, Tu+Tv+Tw)+0* [ Tv+Tv+ Twl?
+ 2n(1 — n)Credist?(F}, F,) 4+ n°Cyedist?(Fy, F,); (C.15a)

(1= P AvS,

|(Vit1Qr2 — Vi) Xs 2 ,2: < 2

— (=) (Tv, To+Tv+Tw)+7* 1 Tv+Tv+Twli
+ 2n(1 — n)Credist?(Fy, F,) 4+ n*Cae dist?(Fy, Fy); (C.15b)
(1—n)?|AwX, 3|

— 2L =) (Tw, To+Tv+Tw)+0*|Tv +Tv +Twli

[(Wi1Qi3 — Wi) 3y 3 i <
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+ 2n(1 — n)Credist?(Fy, F,) 4+ n*Coe dist?(Fy, Fy); (C.15¢)

2
(@i @3, @) - See = 5. < (1= )2aslE = n@ = 50) (I Dol + DV + 1 Dwl?)

+ 2n(1 — n)Credist?(Fy, F,) 4+ n?Coe dist?(Fy, Fy), (C.15d)

where C7,Cy > 1 are two universal constants. Suppose for the moment that the four bounds (C.15)

hold. We can then combine them all to deduce

dist?(Fyy1, ) < (1= )2 (| AuSatlf + [AvEas |} + 1AwS.s)} + 1 As]?)
=02 =50) 1 Tw + Tv + TwlE = (2 = 50) (IDullf + 1DV + | Dw )

+ 2n(1 — n)Cedist?(Fy, F,) + n*Cedist*(Fy, F,). (C.16)
Here C :=4(C1 V C3). As long as n <2/5 and € < 0.2/C, one has
dist®(Fyr1, Fy) < ((1—n)* + 2n(1 = n)Ce + nCe) dist*(F, F,) < (1 - 0.7n)? dist*(Fy, F),

and therefore we arrive at the conclusion that dist(Fi11, Fy) < (1 — 0.7n) dist(F}, Fy). In addition,
the relation (C.7) in Lemma 34 guarantees that ||(U, Vi, W}) - 8¢ — X ||r < 3dist(Fy, Fy).

It then boils down to demonstrating the four bounds (C.15). Due to the symmetry among
U,V and W, we will focus on proving the bounds (C.15a) and (C.15d), omitting the proofs for the

other two.

Proof of (C.15a). Utilize the ScaledGD update rule (4.26) to write

= (1-nApZ, — U (U -U)"UUTU) %, , (C.17)
where we use the decomposition of the mode-1 matricization
M (U, V,W)-8 - X,) =UM(S)(Wa V) —UM(S) (W, V)"

186



= AUMIS)W & V)T + T, (MUS)W & V)| - Mi(S)(W, & Vi)T)

A UT+U(U-U,)".
Take the squared norm of both sides of the identity (C.17) to obtain

[(Ur1Qe1 — U Zaa | = (1 — 02| AuZailE — 20(1 — ) (AvS, 1, U (U - U,) ' UU'U) 'S, 1)

=4l

+? |ULU -0 OUT0) 12,

=y

The following two claims bound the two terms ; and s, whose proofs can be found in

Appendix C.2.1 and Appendix C.2.2, respectively.
Claim 8. 8 > (Ty, Ty +Tv + Tw) — Credist?(F;, F,).
Claim 9. b < | T + Tv + Twli + Caedist?(F;, F,).

We can combine the above two claims to obtain that

[(Ui1Qe1 — Ua)Zaallf < (1 =) |AuSanlf —20(1 =) (To, To+Tv + Tw)

+ 72| To + Tv + Twlig + 2n(1 — n)Credist?(Fy, F,) + n*Cye dist?(F;, F),

as long as 7 < 1. This proves the bound (C.15a).

Proof of (C.15d). Again, we use the ScaledGD update rule (4.26) and the decomposition & =

Ag + S, to obtain

(@1, Qi2,Qy3) - Sti1 — Ss
=8—1 ((UTU)‘lUT, v'iv)“ v (WTW)—le) (U, Vv,W)-8-Xx,) -8,
—(1=nAs -7 (UL (VIV)IVLWTW)TWT) - (U V,W)- S, - X.),
(C.18)
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where we used (4.6¢) in the last line. Expand the squared norm of both sides to reach

2
|@. Qi Qi) - S = 8= (1= n)?As?

— (1 —n) <A3, ((UTU)—lUT, VTv)vT, (WTW)—le) (U,V,W)-S, — x*)>

=6,

+n? H ((UTU)—lUﬂ (VTV)—lvT7 (WTW)—le) (U, V,W)-8, - X,) i

=69

We collect the bounds of the two relevant terms &1 and &5 in the following two claims, whose

proofs can be found in Appendix C.2.3 and Appendix C.2.4, respectively.
Claim 10. &1 > HDUH?: + HDvH?: + ”Dle% — Cre diSt2(Ft,F*).
Claim 11. &, < 3 (|Dyl|# + | Dv | + |Dw||E) + Cocdist®(Fy, F).

Take the bounds on &1 and &, collectively to reach

2
|(@1.Qi3.@id) - Sevi = S| < (1= 0| As|E = w2~ 50) (IDu |2 + | Dv |2 + | Dw?)

+ 2n(1 — n)Credist?(F}, Fy) + n°Che dist? (Fy, F)
as long as n < 1. This recovers the bound (C.15d).

C.2.1 Proof of Claim 8

Use the relation (C.8) to decompose 4l; as

$h = (UTAyZ,1,(U-U,)'UU'U) 'S, 1)

=(U/AyZ, 1, Mi(S,) (W@ Ay + Ay @ V) TUUTU) ', 1)

=il 1

+(UTAYS, 1, Mi(Ag)(W o V)TUUTU)'S,,).

=iy 2

In what follows, we bound & 1 and ;2 separately.
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Step 1: tackling ; ;. We can further decompose &l ; into the following four terms

fhyg = <UjAUz*,1, My(S)(W, © Ay + Ay & V*)Trj;z:;j>

=iy,

+ <U*TAU2*,1,M1(S*)(W* @ Ay)" ((j(lef])ﬂzﬂ _ [7.*2*_%)>
]

+ (U7 AUE. Mi(S)(Aw o V)T (DOT0) 2. - 0.51))

+ (U] ApS,0, M8 (Aw © AV)TTWET0)'S,0),

_.(P:3
—-u1,1

where 4", denotes the main term and the remaining ones are perturbation terms.

Utilizing the definition of U, in (C.4) and the relation (4.12), the main term Uy can be

rewritten as an inner product in the tensor space:

v = (UT AUM(8.), Mi(S.) (T, © AL V; + AW, 0 1,,) )

=(Tv,Tv+Tw).

To control the other three perturbation terms, Lemma 34 turns out to be extremely useful. For

instance, the perturbation term ] is bounded by

\F HMl(S*)(W* ® AV)THF Hfj(fﬂff)—lz*,1 - U3

by < HU*TAUE*J

V2(3e + 3€% + €)
= (1 e AU allFl|AvEsz|F

Here in the last inequality, we used the upper bound (C.5g) and changed the matricization mode

to obtain

[MisaWee AT =1 Ay, W) - Sulle = [AvMaS) W 2 1) < AV S
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Similarly, the remaining two perturbation terms Llﬁ”f and illf’f obey

V2(3e + 362 + €3)
(1-¢)

€
< |AyS.,
€

(1-¢)

,2
|47y

<

[PANGRINRT[[PAN T I

|F>

3
‘111,1

[Fl[AvE2l|F-
Step 2: tackling ;5. Now we move on to il 2, which can be decomposed as

tho = (U] AUS.1, Mi(As)Mi(S) TS )

+(UTAUS. 0, Mi(As) W, @ V)T (UOT0) 'S - UL 1))

=40

=g
[Cp

+ <UIAU2*,1, Mi(AS)W @V - W, o V) TUUU)'s, 1>

—(P>
_,LLL

NN

*,

= (U] AU, Mi(A)M(S) TS 1) — (UT AuSan, Mi(As)Mi(As) S11) +403 + 493

::Lq):g
= <U*TAUE*,1, UTAUZ*,1> + ulf:% + ulf:g + ullj:g

= |1 Tullf +15 + 563 + 85 + (U] AuZ. 1, AFAUE...),

e
_'u1,2

where in the penultimate identity we have applied the identity (C.14) to replace M1(Ag)M1(S)T.

Again, by Lemma 34, the perturbation term L[If:% is bounded by

4P| < HU*TAUE*J

| [Miasw e v)T|| [owTo) . - 0|

< V2(3e + 3€2 + €3)
B (1—¢)?

[AUZ.allrlAsllF
In addition, 4’3 is bounded by

b < HU*TAUE*J

| M)W eV - W, o V| [U0T0) 'S

2¢ + €2
< WHAUE*JHFHASHE
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where we have used

IWoV -W,V,| <||Aw @ Vi|| + [|[Wi @ Ay + |Aw @ Ay ||

<llaw] +Aav] +[Av]lAw]| < 2¢ + €.
Following similar arguments (i.e. repeatedly using Lemma 34), we can bound illi’g and 1111):;1 as

by < HU*TAUE*,I

| IMi(As) e [Mi(as) T

| <elavE.

IF||As||F;

03] < [UT AvEaa|_IAvlAUS.alle < clAuS.al?

;

Step 3: putting the bound together. Combine these results on &l; 1 and & 2 to see
h=Tuv,Tv+Tv+Tw) +il§,

where the perturbation term 4 := Z?:l ilrf’i + 221:1 L(lfé obeys

14+ v2(3 + 3¢ + €2) V2(3 + 3¢ + €2)
7] < GHAUE*JHF(HAUZ*JHF + TE Ay zllF + e [Aw X, 3]
24 €4+ V2(3 + 3¢ + €2
+ (14 2Dy A ).

Using the Cauchy—Schwarz inequality, we can further simplify it as [U| < Cye dist?(F}, F) for some

universal constant C7 > 1.

C.2.2 Proof of Claim 9

Note that

o = ||(U-U)TUUTO) 2,47

< || - )T [El2an @ TO) B[

< |0 -0)TUS R - o7 (C.19)
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where the last relation arises from the bound (C.5h) in Lemma 34. We can then use the decompo-

sition (C.8) to obtain

|0 = O)TOS e = [[(MiSHW @ Ay + Aw @ V)T + Mi(As)(W & V)T (W & VIM(S) =0

;

< [MiS) (L0 ATV, + AW @ L) Mi(8)TECL + Mi(As)Mi(8) T3]

:

=45

+[Mis) (WTW e ATV - L, o ATV Mu(S) TS|

Y I
=yb

+|Mus) (AW e VIV - AW e L) Mi(s) TS|

_.(P:2
=y

M) (WTW 2 ALV + ALW @ VTV My(As) 1]

:

_.((P3
=L

+ [Mi(as) (WTW oVIV I, ® Im) M(8)Ts]!

‘F'

)
=4y

Here, 4" is the main term while the remaining four are perturbation terms. Use the relation (C.14)

again to replace M1(Ag)M1(S)" in the main term U and see

3= | (MUSIT @ ATVL + AL W, @ 1) + U] ApMi(8.) ) Mi(S.) TS

;

< [MiUS Ty @ ATV, + AR W, & 1) + UT AuMi(S.)

M) TR

=Tv+Tv+Twle,

where the last equality uses H./\/ll(S*)TE;M = 1. The perturbation terms are bounded by

B < (140 = DI AvE.s|F

7 < (1462 = 1) AwS.sllr;
5% < e(1+ €| AvSapfle + (14 )| AwS. 5

B < ((L+ ' =11+ As]r.
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They follow from similar calculations as those in bounding {; with the aid of Lemma 34; hence we

omit the details for brevity. Combine these results to see
H(l? — IVJ*)TID'EZ%HF <|\Tv+Tv+Twle +5Jg,
with (5 .= S ng’i obeying

U < (14 = DI AvEazllr + (1 +6)° = DI AwSeslle + (1+6)* = 1)(1 +€) | Asllr

,S G(HA\/E*,Q

F+[AwX,3

F+ |As|F) S edist(F, F).
Next take the square to obtain

O - < 1T+ Tv + TwlE + 245 [ Tu + Tv + Twlle + (45)°.
Finally plug this back into (C.19) to conclude

U <A—e) T+ Tv+Twli+201— 2 [ Tu +Tv + Twle + (1 — ¢ 2(45)?
<|Tv+Tv+Twli+ (1= =1) (|AvZaallr + [AvElF + |AwZ.s)F)?
+2(1— &) U (JAuZaalle + [|[AvSislle + [AwSaslle) + (1 — )2 (U5)?

<|Tv+Tv+ Twli + Coedist?(F;, F,),

for some universal constant Co > 1. Here in the second inequality, we use the fact that ||T||g <

|AUSalle [[Tvie < [[AvEc2lr, and [|[Tw|g < [|Aw X, 3]/. This finishes the proof of the claim.

C.2.3 Proof of Claim 10

Use the decomposition

(U, V,W)-8 — X, = (Ay,V,W)-S, + (U, Ay, W) - S, + (Up, Vi, Aw) - S, (C.20)
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to rewrite &1 as

&1 = (As, (UTU) U Ap Ly, Iy) - 8.) + (As (UTU) UL, (VIV) VT AV L) - S, )

=61, =612

+{As. (UTU) WU, (VTV) VTV, (WTW) W T AY) - S, ).

=613

Step 1: tackling &; ;. Translating the inner product from the tensor space to the matrix space

via the mode-1 matricization yields

6171 = <M1(A5), (UTU)flUTAUMl(S*)>

- <M1(A5), (UTU)*lUTAUM1(8)> _ <M1(A5), (UTU)’lUTAUMl(A5)> .

—.&m .
=61, =P,

l_”c<

Again, the identity (C.14) is helpful in characterizing the main term &7:
m o= <UTAU23’1, (UTU)—lUTAU> — |UTU)VPUT AGE, |2
The perturbation term (‘511)’1 is bounded by
0] < IMi(As)lle [U@TO) |l AvlMiAs)le < el - o As]E,
which follows directly from Lemma 34.

Step 2: tackling &15. Following the same recipe as above, we can apply the mode-2 matricization

to &1,2 to see

Gip= <M2(AS)7 (VIV) VT AyMy(S,) (IT‘"’ © UIU(UTU)_1)>

= (Mx(85).(VIV) VT AV Ms(S) ) — (Ma(A5).(VTV) VT AvMs(As) )

—Gm __.@&p,1
1,2 =67
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+ <M2(A5), VTV VT Ay Ma(S,) (Irs o UJUWUTU) - Irl))> .

_.aP:2
*61,2

In view of the relation (C.14), we can rewrite the main term &Y'y as
2
’F '

In addition, for the perturbation terms, Lemma 34 allows us to obtain

n= vV vTA s,

031 < IMo(A8) e [VIVTV) [ Av I Me(As) e < (1~ )7 [ As]E.
Moreover, we can write Ul U(U'U)™! — I,, = —AJUUU)™!, and bound 6113:5 as

&3] < [Ma(AS)IFIV(VTV) Ay Ma(Sa)lIF| AvlIIU @ TU) |

< e(1— )| Asllrl|AvE.z|F

Step 3: tackling G; 3. Similar to before, we rewrite &4 3 by applying the mode-3 matricization

as

Gy3 = <M3(AS), (WTW) "W T Ay Ms(S,) (VJV(VTV)—1 ® UIU(UTU)—1)>

= (Ms(As), (WTW) W AwMs(S)) = (Ms(As),(WTW) W T A Ms(As))

=Gm _.ap.1
1,3 =63

+ <M3(A3), (WTW) "W T A Ms(S,) (VJV(VTV)—1 QU UUTU) ' ~ I, ® I,.1>> .

—.aP
_,61

Wi

The main term obeys (thanks again to the identity (C.14))

n= |(WTW) V2w T ARS, 512
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As the same time, the perturbation term 611’:; can be bounded by
Sh31 < IMs(As) e [W W W) | [ Aw | Ms(As)lF < (1 — )7 [ As]E,
Similarly, we have

8731 < IMs(As) e[ W (W W) | AwMs(S e [V VIVTV) e UTU@TU) - I o 8,

2¢ + €2
< WHASHFHAWE*BHH

where we use the decomposition
V. VIVIV)y U UUTU) " - L, 0L, = (V,oU, - VaU)' (V(VTV)’I ® U(UTU)*l)
and its immediate consequence

|

vivivivyileuluuv'u)y ' -1,91I,

<V.ou.-veu| |[vivv)!| luwTo)|

2¢ + €2
(1—e)?

<
Step 4: putting all pieces together. Combine results of &1 1,812, &1 3 to see
& = [[(UTO) VU TAuS L+ |[(VTV) V2V T AU S| + [[(WTW) V2WT A S, 52 + 61y,
where the aggregated perturbation term &} obeys
87| < ellAsllr (1= )2 [AvEaallr + 2+ )1 — ) [AwZasllr +3(1 — )7 [ As]) -

It is straightforward to check that |G| < Ciedist?(F;, F,) for some absolute constant C; > 1.
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C.2.4 Proof of Claim 11

Reuse the decomposition (C.20) and the elementary inequality (a + b+ ¢)? < 3(a® + b? + ¢?) to

obtain

2

2
&y < 3H((UTU)—lUTAU,Im,I,S)-s* F+3H((UTU)_IUTU*,(VTV)_lVTAV,Irg)-S* i

=621 =622

2
+3 H((UTU)*UTU*, VTV VTV, (WTW) "W Ay)- S,

=623

Apply the mode-1 matricization and Lemma 34 to &21 to see

2
Got = H(UTU)’lUTAUMl(S*) i

< |wTo) WU PUT ApMU(S) |I;

<(1-072UTU)PUT A |}
Similarly, apply the mode-2 (resp. mode-3) matricization to Go o (resp. G2 3) to see

2
Gos = H(VTV)_IVTAVMQ(S*) <Ir3 ® UIU(UTU)—l) HF
< (VT (VTV) 2V T Ay M (S| ZIU @ TO) 2

<A- Y (VTV)2VTALE, |7,

and

Gos = H(WTW)_leAWMg(S*) (VJV(VTV)-1 ® UIU(UTU)—l) Hi
< [WTW) (W W)W T A My (S [HIU@TU) PV (VTV) P

< W)W A
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Combine the bounds on G2 1,822,523 to write &2 as

Gy < 3(1— e)_2H(UTU)_WUTAUE*JHi +3(1 — e)—4||(VTV)—l/ZVTAVz*,QHi

+3(1— ) 5| (WTW) 2w T Ay, 52

By symmetry, one can permute Ay, Ay, Ay, and take the average to balance their coefficients

and reach the conclusion that
G, <3 (H(UTU)’l/QUTAUZ*,lHi H[(VTV) 2V T AYS, of 2 + H(WTW)*1/2WTAW2*,3Hi) + 68,
where the perturbation term &) obeys

SE< (-2 +(1-a "+ (1= =3) (lAvZsalf + [AvE 2| + [AwS.s7) -

A bit simplification yields &5 < Cyedist®(F;, F,).

C.3 Proof for Tensor Completion

This section is devoted to the proofs of claims related to tensor completion. To begin with, we state

several bounds regarding the ¢ o, norm that will be repeatedly used throughout this section.

Lemma 35. Suppose that X, is p-incoherent, and that F = (U,V W 8) satisfies dist(F, F,) <
€0min(Xy) for € < 1 and the incoherence condition (4.29). Then one has the following bounds

regarding the {9 o norm:

VATIUM(8) 200 < (1~ € > Cliy/[F 0 max(X.); (C.21a)
VATIUM(E.) 200 = VAT IUS |20 < (1 )~ Cp/AT0man (X.); (C.21b)
VLU 2.0 < (1= €)3Cpry/r. (C.21c)

By symmetry, a corresponding set of bounds hold for V', V and W, W.
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Proof. For (C.21a), we have

[UM(S)l|z00 = [[UTT(W(W W) @ V(VTV)T,
U oo [Ww W) vV TV

<NUU T |200(1 - )72,

where the first line uses (C.9), the second line follows from [[AB||2 00 < ||All2,00||B||, and the last
inequality uses (C.5¢). This combined with condition (4.29) leads to the declared bound.

Similarly for (C.21b), we have

||UE*,1||2,00 = HUI}TIV]((VJTIVJ)_IE*JHZOO

< UUT e [[OOTO) 5.

|

<NUUT[lz00(1 =€),

where the last line follows from (C.5f).

Finally, observe that
1UZs1]l2,00 2 [1U]|2,000min(Za1) 2 [U]|2,000min (X)-
Combining the above inequality with (C.21b), we reach the bound (C.21c). O

C.3.1 Proof of Lemma 10

A crucial operation, which aims to preserve the desirable incoherence property with respect to

the scaled distance, is the scaled projection F' = Pp(Fy) defined in (4.19). For the purpose of
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understanding, it is instructive to view F' as the solution to the following optimization problems:

U= arglljnin H(U - U+)Ij+TH|2: s.t. \/ﬁ”UﬁIHQOO < B,

V = argmln H (V-V,) VI s.t. \/n2||Vf/_:||2,oo < B, (C.22)

e

W = argmm (W — W)W,/ st /| WW, |20 < B.

e

The remaining proof follows similar arguments as Chapter 2. To begin, we collect a useful

claim as follows.

Claim 12 (Claim 5 in Chapter 2). For vectors u,u, € R™ and A > ||u||2/||u||2, it holds that
[AAN© = w2 < flu— 2.

Proof of the non-expansive property. We begin with proving the non-expansive property.
Denote the optimal alignment matrices between F and Fy, as {Q; k}r=123, Whose existence is
guaranteed by Lemma 31. Assume for now (which shall be established at the end of the proof) that

for any 1 < i3 < nj, we have

B “U*(ilai)z*,l“Q

; = = - . (C.23)
U (i, UL, ~ U0, 9 Qe 1 Za ]
This taken together with Claim 12 immediately implies
(U (i1, ) Q4 1Zu1 — Uslin, )Bsa ||y < ||Ur(in, )Q4 1301 — Unlin, ) S 1 <ip <y,

= [UQ+1 ~U)Buallp < [|U+Q1 = Un) Bt -

Repeating similar arguments for the other two factors, we obtain

[(VQi2— V)Tl < [[(ViQi2 — Vi) T2l [(WQ4i3—W)Ss||p < [(WiQ 3 — W)Z, 3
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Combining the above bounds, we have

dist*(F, Fy) < [(UQ4,1 — U)=

;2: +(VQ4 2 — ‘/*)2*,2|||2?
+I(WQ+ 5 — W)

2 —1 —1 —1 2 s 12
F =+ H(Q+717Q+72,Q+’3) 'S - 8* . = dist (F+,F*).

Proof of the incoherence condition. Turning to the incoherence condition, it follows that for

any 1 <11 < ny,

na2  n3

UG )O3 =30 3 (U iy, ) Mi(S), W (iz,2) ® V (ia, )
io=113=1
no N3 2 2
) z 7 19, : 2 B B
= 2 2 (U ) MUS), Wil & Vi) (1 " mumag,:)v“vluz) (1 " \/772\|V+<i2,:>VJ||2>
< Z Z (i1, )M (S), Wi (i3,2) © Vi (i2, )’

2
E b i1, : fa.: io. 2
= z; —~ (1 A NAAGE )UIH2> (Uq (i, ) M1(84), Wi (i3, ) @ Vi (i, 1))

B ’ 2 (V) B2
1A L) ooy
VRLl|Uq (i1, )UL |2 1

Here, (i) and (iii) follow from the definition of the scaled projection (4.19), (ii) and (iv) follow from

the basic relations a Ab < a and a A b < b. By symmetry, one has

VALlUU 200 V /2 |[VV o0 V /03[ WW T 200 < B.
The proof is then finished once we prove inequality (C.23).

Proof of (C.23). Under the condition dist(Fy, Fy) < €omin(X ), invoke (C.5a) in Lemma 34 on

the factor quadruple (U+Q+,1, ViQio, WiQy s, (Q:4, Q75 Q1Y) -s+) to see

:
IViQall VW3 Q-] v HM (@abhal-s.) =1 <1+4e
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which further implies that

1U+Q7 =1 < IViQu 2 <(1+¢)?

W1 Q3

.
H/\/h (@71 @7k Q7 84) =0

(C.24)

For any 1 < i1 < nq, one has

[T (i, YU |, < U (i1, Q1 Bl U4 Q7 1314

< ||U+(i17 :)Q+,12*71H2 (1 + 6)3,

where the second line follows from the bound (C.24). In addition, the incoherence assumption of

X, (4.15) implies that

\/EHU*(Z'L:)E*JHQ < \/TTIHU*(ily 3)H2H2*,1H < \/Wo'max(x*) < B(]- + 6)_3’

where the last inequality follows from the choice of B. Take the above two relations collectively to

reach the advertised bound (C.23).

C.3.2 Concentration inequalities

We gather several useful concentration inequalities regarding the partial observation operator Pgq(+)

for the Bernoulli observation model (4.17).

Lemma 36. Suppose that X, is p-incoherent, and that pninans > nu’r?logn. With overwhelming

probability, one has

nu2r?logn

{((p™'"Pa—I)(X4),XB)| < Cr X allel| X BlF

pninang

simultaneously for all tensors X o, X g € R™*"2X"3 4n the form of

XA=Ua Vi, W,)-8Sa1+ (Ui, Va, W) - Sap+ (Ui, Vi, Wy) - Sas,
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XB — (U37 ‘/*7 W*) * SB,I + (U*7 V37 W*) ¢ SB,Q + (U*7 ‘/*7 WB) * 83,37

where UA7UB € Ranrl; VAva € Rn2xr2; WAaWB S RnSXTB; and SA,kvsB,k € RT1XT2XT3 are

arbitrary factors, and Cp > 0 is some universal constant.

Lemma 37 ( [CLPC19, Lemma D.2|). For any fized X € R™*"2X"3 with overwhelming probability,

one has

P = D)) < Cy (7 tog* ll Xl + /o~ og" e [Mu() ).

where Cy > 0 is some universal constant.

Lemma 38. With overwhelming probability, one has

‘<(p71779 —D)((Ua,Va,Wy)-84), Up, Vg, Wp) - SB>’ < Cy <p1 log®n + \/p~1nlog® n> n,

stmultaneously for all tensors (Ua,Va,Wy)+-84 and (Up,Vp,Wpg)-Sp, where the quantity N

obeys

N <(JUAM1(S ) [|2,00 [UBM1(SB)IF A [UAM1(S4) IF[UBM1(SB)l|2,00)

)

(IVallz0 I VIl A Vallel

).

By symmetry, the above bound continues to hold if permuting the occurrences of U, V', and W .

Lemma 39 ( [CCFM21, Lemma 3.24], [CLC"21, Lemma 1]|). For any fived X € R™*"2X"3,

k=1,2,3, with overwhelming probability, one has

Poft-diag (p_QMk(PQ(X))Mk(PQ( ))) M (X H
< Car (17! V108 1l M) 20| ML() 200 + VP 108 70 G (M () [MR() T 2

+ Cuyy ( -1 logn”XHoo + \/TgnHMk ’2 oo) logn =+ HMk(X)”%,ow

where Cypy > 0 is some universal constant.
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Proof of Lemma 36

This lemma is essentially [YZ16, Lemma 5] under the Bernoulli observation model. Here, we provide
a simpler proof based on the matrix Bernstein inequality. Let &;, ;,:, be the tensor with only
the (i1,12,73)-th entry as 1 and all the other entries as 0, and let d;, i, 4, ~ Bernoulli(p) be an

i.i.d. Bernoulli random variable for 1 < i < ng, k = 1,2,3. Define an operator Pp : RM*n2*n3

Rannzxng as
Pr(X) = (I,,,V,.V,), W.W,)- X + (UU], V..V, W.W]).- X +(UU/ V.V, W, W/ ). X,

where V, |, W, | denote the orthogonal complements of V,, W,. It is straightforward to verify that

Pr(-) defines a projection, and that

XA - (UAa ‘/*7 W*) * SA,l + (U*7 VA7 W*) ¢ SA,Q + (U*7 ‘/*7 WA) * SA,3
=Pr((Ua, Vi, Wy)-Sa1) + Pr((Us, Va,W,) - Sa2) + Pr((Us, Vi, Wa) - Sa3)

=Pr(Xa) = Z (PT(XA)vgil,iz,i3>£i1,i2,i3 = Z <XA7PT(£i1,i2,i3)>gi1,i27i3'

11,12,13 11,82,83
A similar expression holds for X' 5. Hence, we have
{((p™'"Pa —I)(X4),Xp)| = Z (P 001 insis — 1) (X 4, Pr(Eiinis)) (X B, Pr(Eiyiniis))
11,82,93

= [(vee(®a), D (0 iinis — 1) vee (Pr(Eiia i) vee (Pr(Eiini)) | vee(X p) )

11,12,13

IN

XAl XBlE|| D (0 Giizis — 1) vee (Pr(Eiinis)) vee (Pr(Eiy insis)) |

11,12,13
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Therefore it suffices to bound the last term in the above inequality, which we resort to the matrix

Bernstein inequality: with overwhelming probability, one has

2,2 2.2
1 T nu°r<logn nu“r*logn
5o 1 Pr(E: . Pr(E: . <
i1§i3(p 1,023 )vec( T( z1,lz,za))vec( T( 11,12,13)) N< PN +\/panng)
(C.25)
< nu2r?logn
~ pningng

where the second line holds as long as pninans > nu?r?logn. Plugging the above bound (which

will be proved at the end) in the previous one, we immediately arrive at the desired result:

np2r?logn

‘<(pilpﬂ ~Dxa), XBM < pnineng

X allel| X BllF-

Proof of (C.25). By standard matrix Bernstein inequality, we have

D (0 iy — 1) vee (Pr(Eiy inyis)) vee (Pr(Eiyinis)) || S Llogn + oy/logn,

11,12,13
where
L = max (P~ 0y iais — 1) vee (Pr(Eiyinis)) vee (Pr(Eiyiais)) ||
1,522,113

o = Y B0y inis — 1)7 vee (Pr(Eiyisiz)) vee (Pr(Eiy inis)) | vee (Pr(Eiyin.is)) vee (Pr(Eiyisis)) |

11,12,13

e Here, L obeys

L = max
11,22,13

(0 00120 — 1) vee (Pr(Eigizia)) vee (Pr(Eiyinia)) || < 271 mas [Pr(Eiinic)IF

11,12,13

where the last inequality uses |(p™18; 455 — 1)] < p~!. To proceed, first notice that the three
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terms in Pr(&E;, 4,,i;) are mutually orthogonal, which allows

2 2
||PT(£il,i2,i3)|||2: - H(In17 ‘/*‘/*T, W*W*T) iy inis F + H(U*UI’ Vi *Ia W*W*T) *Eininis F
2
+ H(U*U:a ‘/*‘/*T’ W*J_W*—S_) * gil;i2:i3 B

Since Uy, Vi, Wy have orthonormal columns, it is straightforward to see

2

| T VoV W W) i Vi (i, )V,

2 . 2 2 . T
= i) 3 N ACSIA

2

<Vl oo Wil3 o

2 2 2 2

|wul Vv wow) - | = [On 0] | |[Vestia VL[ Wit w |
<UL o0 Wil [3 oo

2 2 2 2

H(U*U*T,V*V*T,W*LWL) iy inis e = HU*(ily HU,! ) ‘ Vi(ia, )V, ’2 HW*L(Z'?,, W, ’2

< NU3 o0 Va3 -

Finally use the definition of incoherence (cf. Definition 11) to conclude

_ 3npu’r?
L <p ! (VA o Will3 o0 + 1O o Will3 00 + 103 oI Vil o) <~

pninans

e In addition, o2 obeys
2 1 2 T 3np*r?
o <p Zgi}; ||PT(gi1,i2,i3)|||: Z vec (PT(gi17i27i3)) vec (PT(gilﬂ'Q,is)) > Ma
11,12,23
where we have used the variational representation to conclude

> vec(Pr(Eiyinis)) vee (Pr(Eivinis) || = sup > (X, Pr(Eiinis))’

11,4213 X X< 4y io is

= sup |[Pr(X)[F <1
X X<
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Plugging the expressions of L and o leads to the advertised bound (C.25).

Proof of Lemma 38

This lemma generalizes [CL19, Lemma 8| to the tensor setting, which is a powerful tool in the
analysis of matrix completion [CLL20, TMC21a|. We begin by decomposing (U4, V4, Wa)- -S4

into a sum of rors rank-1 tensors:

o 3

(UAa VAa WA) 'SA = Z Z (uag,asyvazawag,) * 17

az=1a3z=1

where we denote the column vectors wg, 5 = [UaM1(S4)](:, (r3 —1)az +as3), va, = Va(:, az2), and

W, = WA(:,a3) for notational convenience. Similarly, we can decompose (Up, Vg, Wg)-Sp as

T2 3

(U, Vi, W5)-8p=> > (Usy by, Uy Wh,) - 1,
bo=1bs=1

with up, p,, Vs, and wy, defined analogously. We further denote J € R™*"2*"3 as the tensor with

all-one entries, i.e. J (i1,12,13) = 1 for all 1 < i < nyg, k =1,2,3. With these preparation in hand,

by the triangle inequality we have

{((p™'Pq — T)(Ua, Va,Wa)-Sa), Up, Vg, Wg) - Sp)|

T2 T3
< Z Z ‘<(pillpﬂ - I)((ua2,a37 Vay, wa:s) : 1)7 (ubz,bg,v vb27wb3) . 1>‘

a2,ba=1as,b3=1

72 r3
= Z Z [{((p™"Pa — I)(T), (Vas,a5 ® Wby bgs Vay © Vpy, Way O Wp,) + 1)

az,bo=1as3,bz3=1

IN

T2 T3
oD N Pa =T thas,as © Wby s l2]|vay © s, 2] way © wi |12

a2,ba=1as,b3=1

= [(~"Pa —D)(T)IIN,
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where ® denotes the Hadamard (entrywise) product, and

72 73

N = Z Z Han,as © ub2,b3||2||v112 © Vb, [|2]|wa; © wpyl|2.

a2,ba=1as,bz3=1
Therefore, it boils down to controlling ||(p~1Pq — Z)(J)|| and N.

e Regarding ||(p~'Pq —TI)(J)|, Lemma 37 tells that, with overwhelming probability, it is bounded
by

10~ Pa — T)(T)] < Cy <p1 log*n + /o7 log? n) |

where we use the fact | J || = 1 and maxj—123 [|Mk(T) " ||2.00 < V7.

e Turning to N, applying the Cauchy-Schwarz inequality we have

T2 T3 T2 T3
N< | D D e ©unpsl3,| D ve Ovnld Y way © w3
ag,bo=1asz,bz3=1 ag,bo=1 asz,bz3=1
ni
= D UG, M8 ) BITUB(i, )M (SB)|3

i1=1
n9 n3
> IValia, )31V iz, )3, | D 1Walis, ) 131Wa (s, )13
io=1 iz=1

IN

(IUsAM1(S 22,00 [lUBM1 (S B)|IF A [UAM (S 4)F[UB M1 (S B)||2,00)

(IVall200IVBIIE AIVAllEIVBl2,00) ([ Wall2,00 |WaBIE A [WallE|Wa

2,00) :

The proof is complete by combining the above two bounds.

C.3.3 Proof of spectral initialization (Lemma 9)

In view of Lemma 33, we start by relating dist(F., Fy) to ||(Uy, Vi, W) -S4 — X,||F as

dist(Fy, Fy) < (V2+ 12 ||(U, Vi, W) -S4 — Xolg -
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With this bound in mind, it suffices to control ||(Uy, V4, W4) -S4 — X,||g. To proceed, define
Py = U+UI as the projection matrix onto the column space of Uy, Py, = I, — Py as its

orthogonal complement, and define Py, Py , Py, Py, analogously. We have the decomposition
X* - (PU7PV7PW)'X*+ (PUJ_7PV7PW).X*+ (In17PVJ_7PW)'X*+ (ITLlJInz?PWJ_).X*'
Expand the following squared norm and use that the four terms are mutually orthogonal to see

(U, Vi, W) - Sy — X2 = ||(Pu, Py, Pw)-(0™'Y) — X}
= [|(Py, Pv, Pw)-(p™'Y = X.) = (Pu,, Py, Pw) - X\ — (In,, Py, , P) - X — (I, Iy, P, - X, |7
= |(P, Py, Pu) - (07" — X2 + (Pu,, Pr, Pur) - X2 + | (Ls, Py, Pi) - X |12
| (Lug s Ty Povr,) - X7

_ 2
< ||(Py, Pv, Pw) -(p7'Y — X.)||p + | Po, Mi(X2)|IE + || Py, Ma (X2 + || Po, Ms(X.)][7
(C.26)

We next control the terms in (C.26) one by one.

Bounding ||(Py, Py, Pw) (Y — X4)||g- For the first term in (C.26), since (Py, Py, Pw) -(p~ 'Y —

X,) has a multilinear rank of at most r, applying the relation (4.7) leads to
|(Py, Py, Pw) -(p7'Y = X,)||¢ <7 ||(Po, Py, Pw)-(p7'Y — XJ)|| <r /(7' Pa—T)(X,)] -

Therefore, it comes down to control H (p~1Pq —I)(X,) H Lemma 37 tells with overwhelming prob-

ability that

6740 = HE S (7 g nl2 e+ o e M4 )

1321321063 n N npu2r2log® n

<
~ Py/M1N2n3 pningns

Umax<X*)7
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where the second line follows from the following relations in view of the incoherence property of X,

(cf. Definition 11):

37-3
HX*HOO < Umax(x*)HU* ‘2,00”%”2,00”‘/‘/* 2,00 < Umax(x*) o 5
ninaons
T p2r?
[IM1(X) " 2,00 S NUMUSOWill2,00 | Vill2,00 < max(Xx) m——
(C.27)
T p2r?
HMZ(X*) 2,00 S ||‘/*M2(S*)H HW*H2,OO||U* 2,00 S Umax(X*)\/:na;
T p2r?
[ M3(X4)  |l2,00 < WM (S| IVall2,00[1Uxll2,00 < Omax(X«) e
In total, the first term in (C.26) is bounded by
_ 3/2p:3/219g3 nu2r2log® n
[Py, Py, Pw) (0~ Y — X)) S | & S0 R T i (X

py/n1nang pningng
Bounding ||Py, Mi(X,)|[g. For the second term in (C.26), first bound it by

VT

[Py, Ma(Xo) g < o (22

)

’PULMl(X*)Ml(X*)T‘

where we use the facts that Py M;(X,) has rank at most 1 and |AB|| > ||A|/omin(B). For

notation simplicity, we abbreviate
G = Pofidiog(p "Mi(P)Mi(P)T),  and Gy = My (X )M(X,) "
Invoke Lemma 39 together with incoherence conditions (C.27) as well as

ur
MU 20 < U0 | M1 (S (Wi @ V)T | < (X0, /5
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to conclude with overwhelming probability that

3/24:3/2, flog n nur?logn 3p3log®n nu?r?log®n r
”G — G*H S K & + K & + M2 & + a g + E Ulznax(x*)'
py/Mningng pninang p ningng pninang ni

/2

Under the conditions n; 2 € ! w“f x? and

—1 —2
pninans 2 €, «/n1n2n3/1,3/27‘5/2/12 log®n + € nplrtst log® n

2

for some small constant g > 0, we have |G — G.|| < €0y, (X), which implies that G is positive

semi-definite, and therefore | Py, G|| = o,,+1(G). By the triangle inequality, we obtain

1Pu, Gill < |1Py, (G = Gl + | Pr Gl <[|G = G| + 07141 (G)

<G = Gl + 0741 (Go) + |G = Gil| = 2||G = G4,

where the second line follows from Weyl’s inequality and that G, has rank r1. In total, the second

term of (C.26) is bounded by

2,/71
|| UJ_M]'( *)”F — 1n(X*)|| *H

1322\ /logn npr3logn  pr2logdn nur®/?log?n m‘i’m 9
S + +— + - K2 O min (X4
Py/Minang pnina2ng pTninan3 pnin2ng ni

Completing the proof. The third and fourth terms in (C.26) can be bounded similarly. In all,

we conclude that
dist(Fy, F.) < (V24 1) | (Us, Vi, Wa) - 81 — Xolp < comin(X.):

C.3.4 Proof of local convergence (Lemma 11)

Define the event £ as the intersection of the events that Lemmas 36 and 38 hold, which happens
with overwhelming probability. The rest of the proof is then performed under the event that £
holds.
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Given that dist(F}, Fy) < €omin(X4), the conclusion ||(Uy, Vi, We) - St — X ||p < 3dist(F3, Fy)
follows from the relation (C.7) in Lemma 34. As in the proof of Theorem 10, we reuse the notations
in (C.4) and (C.13). By the definition of dist(F;, F}), where F;, is the update before projection,

one has

dist*(Fi+, F) < (Ui Qut = U)Bullf + [ (Vis Quz — Vi) Bazllf + (Wit Qus — W) Eisl7

101 oN.5. -8
+ (Qt717Qt72aQt,3) t+ * £

. (C.28)

In the sequel, we shall bound each square on the right hand side of equation (C.28) separately. After

a long journey of computation, the final result is

dist?(Fry, F) < (1= )% (JAUZaf + 1AvSeal} + |AwS.slf + | Asl)

—n(2—5n)

[T+ Ty + Twl2 0@ —5n) (|Du| + Dy + | Dw )

+2n(1 —n)C(e + 6 + 6%) dist?*(Fy, F.) + n*C(e + § + 6°) dist*(F, Fy), (C.29)

where C' > 1 is some universal constant, and ¢ is defined as

2,2 ] 3,4
§ = C’T\/m—i- Cy <p1 log®n 4 \/p~1nlog® n) il C3r3. (C.30)
pninang ningng

Under the condition

pningns 2 \/nlngngu?’/gr%g log® n + nprtk8log’ n,

J is a sufficiently small constant. As long as 7 < 2/5 and € is small, one has dist(F;4, Fy) < (1 —
0.6n) dist(F3, Fy). Finally Lemma 10 implies dist(Fyi1, Fy) < dist(Fi4, Fy) < (1—0.6n) dist(F3, Fy)
and the incoherence condition.

It then boils down to expanding and bounding the four terms in (C.28). As before, we omit

the control of the terms pertaining to V' and W.
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Bounding the term related to U

The first term in (C.28) is related to

v

(Ui+Qui ~ U1 = (U =M1 (p7 Pa((U V. W) -§ - 2,) UUTU) ™ ~ U, )=,
= (1-nAyZ, — U (U -U,) ' UU'U) %,

— My ((p7'Po —I)((U,V,W)-S - X)) UU'U)'%, ;.
Take the squared norm of both sides to reach

(U1 Q1 — U)X

2= - nAS., UL - G TOWTD) S,

:Vng}

+on? <U*(fJ ~U)TOWUTU) 'S0, My (07 P — T)((U,V, W) -8 - X,)) t?(tﬁt“f)—lz*,1>

o Ty 2
0 My (07 Pa ~ DU,V W) S - 2)) UOTO) 'S

—_.mPs3
=P

As before, the main term ‘Bf; has been handled in the tensor factorization problem in Section C.2;

see (C.17) and the bound (C.15a). Hence we shall focus on the perturbation terms.

Step 1: bounding m%l. First, rewrite ‘BI[’]’I as the inner product in the tensor space:
= (A2, 070) LV, W) S, (07 P~ DUV, W) S - X))

Apply the decomposition

(UaVaW)'S_X* = (UaAV7W)'8+(U>‘/*7AW)'S+(U7‘/;aw*)'8_(U*"/*7W*)'8*
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= (U,Av,W)-S—F(U,V;,Aw)-S—}— (U,‘/;,W*)-As—}—(AU,‘/*,W*)-S*
(C.31)

to further expand ‘13%1 as

P = ((Arsh OO L VL WL) -8, (07 Pa — T) (U, Vi, Wa) - As + (Au, Vi, Wi) - S.))

~
_.mp;1,1
=pP;

< (AUzz,l(fJTﬁ)*l,Av, W) .S+ (AUZEJ(IJ'TIVJ)”, v, AW> .S,
_|_
(™o~ 1) (U, V.. W) - S = (U, Vi, W) S.) )

_.;p,1,2
=P

n <(AU2371(UTU)*1, v, W) .S, (0" Pq —T) (U, Ay, W)-S + (U, Vi, Ay) - 5)> .

::mpl},l.ﬁ
We shall bound each term in the sequel.

e For the first term mg’l’l, we resort to Lemma 36, which leads to

nu?r?logn o T
Py < Oy PR (ApS2 (UT0) T Ve Wa) - S| UL Vi, W) - As + (A, Vi, W) - Sl
pningng F

Further use (C.51) to bound that

|(avz2, @70y vew.) 8| = |avs, @ o) s WL e V)T
< NAUS e [ @O M(S)|

< |ApZsallp(1 —€)75,
and that

(U, Vi, Wa) - Asllr < [UMi(As)[lF < (1 + €)[|As]lF;

H(AU7 ‘/:\'7 W*) - S*HF S HAUE*JHF'
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Combine the preceding bounds to see

2
11 nplr?logn || AuX. |
R 1< Cry P (1_2) (lAvZaallr+ (L +e)As]F) -

1,2 . . D
e For the second term ‘}35’ ' our main hammer is Lemma 38, which implies

P12 ~11403 ~15, loo® HA 2 )1 H
R < Oy (5t o n o tnton?n ) [A032, @70 s

(HUMl(S)HZ,oo + HU*M1(5*)HQ,OO) ([AvIEIW e + [ Villrl[Awle) Vi

Use results in Lemma 35, together with the bounds

”AVE* QHF HA\/E HAWE*?)HF
A < : < : : A < = RO,
IAVIFS @) = oun(X) lAwle < e,
IWe < Vr3l|W| < /r3(1 +€); IVillr = /ra;
r = -
0. M1 (S < I IM1 SN < B2 Vel <[5 (Wl < (5

to arrive at the conclusion that

AN ur

< Cy (pl log®n + 1/p~'nlog’ n> H(lU_:;HF (1-o2Cp+1) /2 ay Omax(X)

|AyX Ay 3||F> [ur [ur

——/r(l+e€

< Umin(X*) \/>( ) f mm n2 y n3
_ 4 (1-— E)_QCB +1
_ 11003 ~15 1005 pirt (
Cy <p og’n + 1/ p~inlog°n p— TE K

).

1,2
B

(1+e)

e Repeat similar arguments, we can obtain the bound on ‘Bg’l’?’:

B < Oy (o n o tntog? n ) [ 8032, (U7 0) A(S) | IUAMS)

Il AwllF)

215



_ / Ay, il Cp ur
< 11 3 —Inl 5 ” v 1 — Omax (X«
= CY <p 0g”n +1\/p~nlog n) (1 — 6)5 (1 _ 6)2 n1 o ( )
Cpk [pr Cpk  [ur [(||AvE.a|F |AwZ.slF
= = ’ 1 d
(1 — 6)3 no (1 — 6)3 ns Umin(x*) \/;( * 6) + \/; O'min(X*)
3,4 03 ﬁ3
< 11903 ~15 1005 wuer B
<Cy <p og”n+\/p~inlog n) ”nmzng 0o

[ATZ e (1 + )| AvZEes|lr + [|Aw S s]lF) -

In total, we have

B < B+ IBY B S ddist? (B, ),
where we recall the definition of § in (C.30).
Step 2: bounding ‘}35’2. We begin by rewriting 5’2 as

PP = <(U*(l? ~U) OO 2,00V, W) .S, (p"Pa —T)(U,V,W)-S — x*>> .

Compared to 2}3p’1, the only difference is that the leading term AyX, 1 in the first argument of the
inner product is replaced by U, (U — U,)'U(U TU)~'%, ;. Note that

|v.@ - t)To@TO) || < |0 -0 [o@To) s
L+e+ 22
= (1_76)3}) ([AvZiolr + |AwZEasllF + [[AsllF) -

. . . . . p,l
Omitting the somewhat tedious details, we can go through the same argument as bounding B;;

and arrive at

2,.2 1.2
2 npr?lognl+e+ ze
B < Cry | piamans (1= 6)38 (lAvE. | + [AwZsllr + |Aslle) ([AvZEallF + (1 + )| AslF)

[ 3rt (14+e+i)((1—e)20p +1)
~17..3 -1 5 pwirt ( 3 B

1 \/ 1

+Cy <p og”n +1\/p 'nlog n) P L K

([AVZEs2llF + |AwZEslle + [|AsllE) (1 + o)Ay Zez2|lF + [Aw X, 3]F)
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3pd (1 + e+ 1.2 C3 K3
+Cy ([ p~tlog®n+ y/p~inlog’n pirt (1+e+ e 1)6 B
ninang (1—¢)

(A X, 2]

F+ Ay, s

F+1As]F) (T +)[AyE, ol + [Aw Sy 3]lF)

< o dist?(Fy, F).
Step 3: bounding ‘,]353 Use the variational representation of the Frobenius norm to write
VI = (020 @T0) LV, W) 8,071 Po ~ T)(U V. W) S - X.))

for some U € R™*" obeying HI~J||F = 1. Repeat the same argument as bounding &BPI}’I with proper

modifications to yield

np2r?logn _
VB < O[5 (- 7 (1A Sl + (4 o) As]le)

[ s 3t (1—e)2Cp+1
+ Cy p_llog3n+ p~inlog®n pirt J B+ E((1+¢€)||AyE,i2
ninans (1 — 6)5 ’
3pd C3K3
+Cy (p ' log’n+\/p~inlog’n a Eee (L4 )| AvEaallr + [[Aw S 3llF)
ninang (1 — €)

< 5 dist(F}, F.,).

F+[[Aw33

F)

Then take the square of both sides to see
PP < 62 dist?(Fy, Fy).

Bounding the term related to S

The last term of (C.28) is related to

Qi1 Q3. Qid) - Siy — S,
=S (T, (VTV)ITVLWTW) W) TP (UL V, W) S - X,) - S,

—(1—1)As -7 ((UTU)—lUT, Vv vT, (WTW)—le) (U, V,W)-8, — X,)
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_ ((UTU)—lUT, VTV vT, (WTW)—le) (p~Pq —T)((U,V,W)-8S — X,).
Expand its squared norm to obtain

-1 -1 -1 2
H(Qt,l ' Qi2, Q) St — 8. -

- H(l —)As -7 ((UTU)*UT, Vv vT, (WTW)*WT) (U, V,W)-8, — X,) i

=
— (1 —n) <A3, ((UTU)—lUT, VTv) v, (WTW)—le) (pPo —T)(U,V,W)-8 — X*)>

_.mps1
_,‘BS

< ((UTU)‘lUT, VTV v, (WTW)‘1WT) (U, V,W)-8, — X,),
+ 27]2
((UTU)*UT, (Viv)y7tvT, (WTW)*lWT> (p'Po-T)(U,V,W)-S — x*>

o
2
| (0TO) T (V) VT W TW) W) (T P - T(U, V. W) - S - )

-

_.;P:3
_,5;38

Recall that the main term B¢ has been controlled in Section C.2; see (C.18) and the bound (C.15d).

We therefore concentrate on the remaining perturbation terms.
Step 1: bounding ‘Bg’l. Write ‘,Bg’l as

P = <(U(UTU)*1, vivTv), W(WTW)*l) As, (p" P~ T)(U,V,W)-S — X*)> :
Use the decomposition (C.31) to further obtain

PRt = <(U(UTU)_1, Vi (VTV) L, W*(WTW)_l) As, (0" Po —I) (U, V., W,) - As + (Ay, Vi, W,) -s*)>

—_.mpbs1,1
=Pg

< (U(UTU)‘l,Av(VTV)‘l,W(WTW)‘l) ‘As + (U(UTU)—l,V*(VTV)—l,AW(WTW)—l) A,
+
(™o~ 1) (U, V., W) -§ — (U, Vi, W,) - S.) )

~~
::(BI;,LQ
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+ <(U(UTU)‘1, viviv)L W(WTW)—1> cAs, (pPa—1) (U, Ay, W) -8+ (U, V,, Ay) - 5)> .

mp 1,3
We then bound each term in sequel.

e Regarding the first term P 8’1’1, we can apply Lemma 36 to see

nu?r?logn

pninang

DUSHEYS VIV LW W) A

H(U7 Vi, W*) -As + (AU7 Vi, W*) : S*HF .
In addition, notice that

J(womwr v wowwr)-ad, < oo o Jovw i,

< (1)’ As]lF

which further implies

|§Bp’171

nu2r2logn _
Cry [ "5 (10— 7 As e (JAUSaale + (1 + )| As]e)
pninans

e Now we turn to the second term ‘Bp’ 12 , for which Lemma 38 yields

052 < Oy (5t o n o tntor? ) [T 0) M), (I0MS) o + 10 M(S. )

(v [wovTmn = + o

7 e fawov T )i

The results in Lemma 35 together with the bounds

[AyX, ol
(1 — 6)20min(x*),

HAV(VTV)—l - < [|[Avy]F H(VT‘/)—IH <(1-2|Ay|r <

[wowTwy < v HW<WTW>—1H < Vrl-9h

VvV < vl | (vTV) | < v - 973
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| Aw Xy,
(1 — 5)2Umin(X*)7

|aw T w)7|| < awe | TW) | < Al - o7 <

allow us to continue the bound

3rd (1 — 2c 1
pogdn +fp-inlogin ) | Lo L= CoH L A
n1Nan3 (1—¢)?

(I =llAvE, 2l + [[Aw S 3]lF) -

Bt <

e A similar strategy bounds ‘Bp’l 3

5 < Oy (5 o n o nlog? n ) [UT0) M A IUM S,

vy, wovTwy | davieiw e = vilelaw ).

Further combine (C.21¢) and (C.5d) to see

HV(VTV)”HQ < |yV||QOOH vTv)- H <(1-e7°Cs ,/Z’" :
,00 2

< IW e[| TW) || < (1= )2 /200

[wowTw)
n3

,O0

These taken collectively with the results in Lemma 35 yield

3.4 3.3
1,3 —1 3 _ 5 uer C
PR < Oy <p ogn 1 /p—tnlog n)\/nmng A Aslle (14 O AvEealle + | AwEsle)-

In the end, we conclude that

B < B+ IBE Y+ IR S 6 dist®(F, ),
where we recall the definition of § in (C.30).

Step 2: bounding ‘Bg’Q. Write ‘,BS as
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;ng _ < (U(UTU)—2UT’ VIVTV)2vT, W(WTW)—2WT> (U, V,W)-8, — X,),

(=P~ T)(U,V,W)-S — x*)>.

Compared to ‘Bg’l, the only difference is that the quantity Ag in the first argument of the inner

product is replaced by
(o)W, (V)T WTW) W) (U, V, W) S, - X,
whose Frobenius norm can be bounded by

H ((UTU)—lUT, Vv v, (WTW)—le) (U V. W)-8. -2,

<vwroy| vvvi| wovw) | iwvow)-s. - 2
1+e+ie?
§W(HAUEHHHLHAvE*QHFH\AWE*gHF

We can then repeat the same argument as bounding ‘Bg’l to obtain
P2 < 0 dist?(F, Fl).
For the sake of space, we omit the details.

Step 3: bounding mg’?’. Use the variational representation of the Frobenius norm to write

Ve = (v vV L WW W) .8, (07 P - T)(U,V, W) -§ - X))

for some & € R™M*n2Xn3 gheving Hg'HF = 1. Repeating the same argument as bounding ‘Bg’l with

proper modifications to yield the bound
Pr* < 62 dist?(Fy, Fy)

then complete the proof.
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C.4 Proof for Tensor Regression

Before embarking on the proof, we state a useful lemma regarding TRIP (cf. Definition 12).

Lemma 40 ( [HWZ20, Lemma E.7]). Suppose that A(-) obeys the 2r-TRIP with a constant 0.

Then for all X1, X9 € RMX"2X" of multilinear rank at most v, one has
[(A(X1), A(X2)) — (X1, X2)| < dor|| X1 |[FI| X2]|F,
or equivalently,
(A" A= I)(X1), X2)| < Gar | X [lF[| X2]lF-

C.4.1 Proof of local convergence (Lemma 12)

Given that dist(Fy, Fy) < €omin(Xy), the conclusion |[(Uy, Vi, W})-8; — X,|lg < 3dist(Fy, Fy)
directly follows from the relation (C.7) in Lemma 34. Hence we will focus on controlling dist(F}, F).
As in the proof of Theorem 10, we reuse the notations in (C.4) and (C.13), and the definition

of dist(Fiy1, Fy) to obtain

‘ 2
E

(C.32)

dist*(Fyi1, FY) < [[(Up1Qe1 — U)Zaa[lp + | (Vis1Qr2 — Vi) Zsalf + (Wit 1Qr s — W) B, 3

2
+||@it @it Qi) - Se - .|

We shall bound each square in the right hand side of the bound (C.32) separately. The final result

is

dist*(Fiy1, Fy) < (1 —1n)? (IIAUE*,lHﬁ + | AV ollf + 1AW, 3

E | As]?)
(2= 5n) | Tv + Tv + TwlE = n(2 = ) (IDulE + IDv I + | Dw i)

+ 2n(1 — n)C (€ + oy + 03,.) dist?(F}, F,) + n*Cl(e + 0oy + 63,.) dist?(Fy, F),
(C.33)
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where C' > 1 is some universal constant. As long as n < 2/5, and €, dy, are sufficiently small
constants, one reaches the desired conclusion dist(Fiy1, Fy) < (1 — 0.6n) dist(Fy, Fy).

In the following subsections, we provide bounds on the four terms in the right hand side of
(C.32). In a nutshell, the bounds that are sought after are reminiscent of those established in (C.15),
with additional perturbation terms introduced due to incomplete measurements, manifested via the
TRIP parameter da,.. Once established, the claimed bound (C.33) easily follows. In light of the

symmetry among U, V', and W, we omit the control of the terms pertaining to V and W.

Bounding the term pertaining to U

The first term in (C.32) is given by

(Ui1Qu1 = U T = (U = nMy (A AU,V W) -8 = X)) UUTU) ™ ~ U, ) %,
=(1-nAyZ. — U U -U,) UUU) 'S,

)

- an ((’A*A - I)((Uv v, W) -S - X*)) ﬁ'(f]Tfj)ilz*Ja

where we separate the population term from the perturbation term. Take the squared norm of both

sides to see

9

[(U+1Q¢,1 — U*)E*,le = H(l — Ay, —nU(U -U,) UUU) 'S,

=Ry

— (1 — ) <AU2*,1, M (A A - T) (U, V,W)-8 — X)) UUU)'x, 1>

—_.mb,1
=Ry

9

+on? <U*(I? —U)UWUU) 'S, My (A A - T)((U,V,W)-S — X,)) t“J(t)*TfJ)—lz*Q

::9%%’2
o v o 2
+ 2 HM1 (A A-T)(U,V,W)-8 - X)) UUTU)'x,, ]F

_.pDb;3
=Ry

The main term PR} has been handled in Section C.2; see (C.17) and the bound (C.15a). In the

sequel, we shall bound the three perturbation terms.
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Step 1: bounding 9%%’1. Use the definition of Ij, we can translate the inner product in the

matrix space to that in the tensor space

R = ((AvS2,(0TO) L VW) S (A A-T)((U, V. W)-8 - X.))

- < A2 (UTT) LV, W) LS, (AA-T)((U,V,W)- A3)>

where the second relation uses the decomposition (C.10). Apply Lemma 40 to each of the four

terms to obtain

‘9{%1’ < dar

(AUzil(fﬂff)—l, V,W) ~SHF

(U, V,W)-As)llg + (A, V., W) - Sl + [|(Us, Av, W) - S)llg + [|(Us, Vs, Aw) - S lg) -
For the prefactor, we have

l(somor v w) s <[z oo o)

< |AvS.ale [O@TO) S,

|

< | AuSaalr(l—o~,
where the last step arises from Lemma 34. In addition, the same argument as in (C.6a) yields

U, V. W)-As)llg + [(Av, V. W) - S)lle + [[(Us, Ay, W) - S le + [|[(Us, Vi, Aw) - 84l

3 1
<A+ ge+t €+ 163) (lAvZEaille + [[AvZEcalle + [[Aw . sllr + [[AsllF) -
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Take the previous two bounds collectively to arrive at

1+ 3e+e?+ 13
(1—€)?
< oy dist?(Fy, FY),

IRy p1] < o

||AUE*,1

F[AUZEllr +[AvEcllF + [[Aw S s]lF + | AsllF)

with the proviso that e is small enough.

Step 2: bounding 9%%2. Rewrite the inner product in the tensor space to see
2 = (.U - U)OUTO)'22, U707V, W) -8, (A A-T)(UV,W)-§ - X.)).
Similar to the control of 9{1(’]’1, we have

2
Ry

S 527‘

U (U — I“J*)Trj(roﬁ)—lzz,l(ffoJ)—lffTHF

3 1
(1+ S+ e+ 7€) (|AuBal

F+|AVvEa|le + [[Aw . sllF + [AsllF) -

For the prefactor, we can use (C.5f) and (C.6c) to obtain

o o o v o o o o o o o o o 2
HU*(U - U*)TU(UTU)’lzzJ(UTU)’lUTHF < |U - U, HU(UTU)*lz*,1 ‘
1+e+ e
= ﬁ (AvE.llF + [AwD.sllF + [[As]lF)

which further implies

(I+3e++13)(1+e+ie?)
(1—¢)°
F+ |AvEaz|lr + [[Aw . sllF + [[AslF)

2
Ry

< 527‘

([[AvEcollr + [Aw sl + [[As]lF)

(lAuX.

< 0y, dist?(Fy, FY),

as long as e is sufficiently small.
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Step 3: bounding 9‘%5’3. The last perturbation term needs special care. We first use the varia-

tional representation of the Frobenius norm to write
\/RES = <(l72*,1(t7Tt“J)—1, v, W) S, (AA-T)((U,V.W)-S — X*)>

for some U € R™*" obeying |U||f = 1. Repeat the same argument as used in controlling 9%%1 to

see

N e 3 1
R < by [OUB A (OTO) 07| (14 e+ @+ 56 (1A anlle + [ AvBaalle + |Aw sl + [ Asle)

2 4

1+ 3e+6+ 168
< 2(1 o = ([AvZaille + 1AVEelle + [AwEslle + |As]F)

where the last line uses the bound (C.5f) in Lemma 34. Then take the square on both sides to
conclude

(1+ %e +e2+ %63)2

A= op (AU illF + 1AV allr + | AwZSas]e + [As]F)?

p,3 2
9%U < 621‘

< 62, dist?(F,, F,)
as long as € is sufficiently small.

Bounding the term pertaining to S

The last term of (C.32) can be rewritten as

(Qt]l, Q;,zl, ny}) +Spr1— Sy
— 5y ((UTU)*lUT, VTV v, (WTW)*1WT) CAA(U,V,W)-S — X,) - S,
= (1=nas—n(UTO)UL(VIV)VL (WIW)TWT) (U V,W)- S, - X.)

- <(UTU)‘1UT, Vv VT, (WTW)—1WT> (A A-T) (U, V,W)-8 - X,),
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which further gives

-1 -1 -1 2
H(Qt’l ) Qt,QaQt,g) Sty — Ss .

- H(1 —)Ag — 1 ((UTU)—lUT, VIV lvT, (WTW)—le) (U, V. w8, — 20|

F

=g

— 21 —1n) <A3, ((UTU)‘lUT, VTV) v, (WTW)—le) (AA-T)((U,V,W)-S — x*)>

_.pPsl
,,{)%S

) < ((UTU)—lUT, VTV vT, (WTW)—le) (U, V,W)-8, — X,),
+ 27
((UTU)—lUT, Vv vT, (WTW)—le) (A A-T) (U, V,W)-S — x*)>

__.pP:2
=Ry

2| (T U TV YT W TW) W) (4 A - T V. W) -8 - )|

-

—_.pP:3
=R

Note that the main term RS has already been characterized in Section C.2; see (C.18) and the

bound (C.15d). Therefore we concentrate on the remaining perturbation terms.

Step 1: bounding iﬁg’l. Use the property (4.6d) to write 9{2’1 as
RYL = <(U(UTU)—1, vivTv)—L W(WTW)—l) Ag, (AA-T)((U,V,W)-8 — x*)> :
We can use the decomposition (C.10) and Lemma 40 to derive

|9{g’1 < oy

(vwTu) vV ww W) A

3 1
(L+Se+ 4+ 76%) (|AUZ. 4]

F+|AyE, 2

F+[[AwZslr + |AsllF) -
In addition, Lemma 34 tells us that

H (U(UTU)_l, vivTv), W(WTW)—l) -ASHF

<|lvw oy vVt [wovTw) T laste < (- 97 Aslr.

227



Combine the above two bounds to reach

1+3e+e+ 13
(1—¢)?
< 8y dist?(Fy, Fy)

|£Rg’1‘ S 627'

[As]lF (lArE.i]

F+|AyE, 2

F+|AwZe 3

F+lAs|F)

as long as € is a sufficiently small constant.

Step 2: bounding Eﬁg’z. Similarly, we can bound E}ig’z by

,2
R

< 527‘

(U(UTU)—QUT, VIVTV)2vT, W(WTW)_QWT> (ARSI S

3 1
(1+ 56 +e2+ 163) (| AyXEsa]

(14 e+ 351+ 3e+ €2+ 1€%)
(1—¢)°

(AvZaalle + [[AvZEcallr + [[Aw i slle + [[AsllF)

F+ [[Ay3, o

F+[AwXE, 3

F+ AsllF)

S 527'

([[AUZs1llr + [AvEe2llr + [Aw X, s3]F)

< gy dist?(Fy, FY).
Step 3: bounding Eﬁg’?’. Apply the variational representation of the Frobenius norm to write
\/@ - <(U(UTU)—1, vivTv), W(WTW)‘1> S (AA-T)((U,V,W)-S — X*)>
for some 8 € R"*"2%7s obeying ||S||f = 1. Repeat the same argument as in bounding 9{%’3 to see

m%3 < 527‘

vy viviv)yTLwwTw) ) .8
.

3 1
I+ 5e+ &+ 7€) (1AvSaillr + [|AvEallr + | AwS.sllr + |As]F)

4
1+3e+e+ 36
(1-¢)?

< 521’

(I[AUZs1llF + [AvE.2llr + [[AwSss]lF + [[As]lF) -

Then take the square on both sides to conclude

(14 3e+ e+ 1e%)?

p3 < 52
Rs™ < Oy (1 —¢)S

(AU illF + 1AV allr + | AwSes]e + [As]F)?
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< 03, dist?(Fy, Fy).

C.4.2 Proof of spectral initialization (Lemma 13)

In view of Lemma 33, we can relate dist(Fp, Fy) to ||[(Up, Vo, Wy) - So — X ||k as
dist(Fy, Fy,) < (V24 1)%2 (U, Vo, Wo) - So — Xl -

To proceed, we need to control ||(Uy, Vo, Wy) - So — X ||, where (Up, Vp, Wy) - 8o is the output of
HOSVD. Similar results have been established in [LZ21, HWZ20, ZLRY20|, which involve sophisti-
cated subspace perturbation bounds. For conciseness and completeness, we provide an alternative
proof directly tackling the distance.

Define Py = UOUDT as the projection matrix onto the column space of Uy, Py, = I, — Py as
the projection onto its orthogonal complement, and define Py, Py, , Py, Py, analogously. Similar

to (C.26), we have the decomposition

1(Uo, Vo, W) - So — X, |12

< ||(Pu, Py, Pw) (¥ = XW)|F + [Py, Mu(XL)I[E + ([ Py, Ma(X)|7 + | P, Ma(XL)|I7 -
(C.34)

Below we bound the terms on the right hand side of (C.34) in order.

Bounding ||(Py, Py, Pw) (Y — X.)||g. For the first term in the upper bound (C.34), apply the

variational representation of the Frobenius norm to write
|(Pu, Py, Pi) (¥ = Xl = { (Pu, Py, Pir) (¥ = X.), T ) = (A" A= D)X, (P, Py, P) - T ).,

for some T~ € R™X"3%n3 oheying H’%HF = 1, where the last equality follows from (4.6d). Under

the Gaussian design, we know from [RSS17, Theorem 2| that A(-) obeys 2r-TRIP with a constant
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Oop < "TTJ”’?’ Therefore we can apply Lemma 40 to obtain

I(Py, Py, Pw) (Y — X.)|l¢ < Sor | Xlle||(Pr, Py, Pu) - T | ¢ < 02| Xl

nr + r3 nr? 4 rt
N
m m

Bounding [Py, M1(X,)|[g. For the second term in (C.34), first bound it by

\/Tl
L S—
||PU¢M1(‘X*)HF = (X0

I

‘PULMl(X*)Ml(X*)T‘

where we use the facts that Py, M;(X,) has rank at most r; and |AB|| > ||A|/omin(B). For

notation simplicity, we abbreviate

(nonsg —r1)I,,, and G, := Ml(X*)Ml(X*)T.

G = Mi(A ) Mi(A () - 1Y

We claim for the moment that with overwhelming probability that

v/ninans +nlogn nlogn
16— G| & B R R [ R X o (), (C:35)

whose proof is deferred to Appendix C.4.2. Under the sample size condition

m 2 eglmrg/ZKQ + 60_2(’07‘2/{',4 logn + T‘4Ii2)

2

for some small constant €y, we have |G — G.|| < €yo;;,(X«), which implies that G is positive

semi-definite. Therefore, the top-r1 eigenvectors of G coincide with Uy, the top-ry left singular

vectors of M1 (A*(y)), which implies | Py, G| = 0,,+1(G). By the triangle inequality, we obtain

1Pr, Gyl < [Py, (G =Gyl + [Py, Gl < |G = Gi| + 07, 11(G)

<SG = Gl + 0r41(GH) + |G = Go|| =2|G = G4,
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where the second line follows from Weyl’s inequality and that G, has rank r;. In total, the second

term of (C.34) is bounded by

2./T ningns + nlogn)r3/2 nr2logn
1P, Mi(E ] <~ G - Gl < <(V et *logn)r T JIIEN ),

O'min(x*)
Completing the proof. The third and fourth terms of (C.34) can be bounded similarly. In all,
we conclude that
dist(Fo, F2) < (V24 1) |(Uo, Vo, Wo) - So — X[ < eoomin(X)

under the assumed sample size.

Proof of (C.35)

We start with stating a few useful concentration inequalities.

Lemma 41. Suppose that A; € R™*"2 has i.i.d. N'(0,1/m) entries, and y; = (A;, X) for a fized
X ¢ RmXm2 4 =1,...,m. Further suppose that B € R"*"2 has i.i.d. N'(0,02) entries. Then there
exists a universal constant C > 0 such that for any t > 0, the following concentration inequalities

hold:

1. Gaussian ensemble [ZLRY20, Lemma 4/:

i 1 t 1 t
P(HZ%‘—XH > X ey 72 (% BTy T )) < exp(-).
=1

m m
(C.36)
2. Chi-square upper tail [LMO0O, Lemma 1]:
m+2vmt + 2t
P (Il > X2 < onp-) (©37)
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3. Gaussian covariance [CHZ20, Theorem 5/:

P (HBBT - IE[BBT]H > (o ((\/ﬁ+ V2 + /log(ny Ang) + vVE)? — n2>) < exp(—t).
(C.38)

We now proceed to prove (C.35). In what follows, we take ¢ < logn, and assume m 2 logn
to keep only the dominant terms when invoking the concentration inequalities in Lemma 41.
Let M;1(X,) = U*E*JRI be its rank-r; SVD, with R, € R™2"™3*" containing right singular

vectors. Denote R, as the orthogonal complement of R,. We have the following decomposition
M (A (y))Mi(A*(y)) T = M (A (9)) R R My (A (y) | + My(A*(y)) Rer R M (A*(y))
By the triangle inequality, we bound

|G = G.ll < | Mi(A (1) BRI M (A ()T = Mi(X )M (X.)T |

2
+ M@y r LA ) - 1

(nons —r1)Ip,

=y

< [|Mi(A* () Re = UuZsa||° +2 | M1 (A" () Re = UsB 1| Omax(X) + 2. (C.39)

:(Q[l )2 ::Q[l

Here, the second line follows by applying the triangle inequality to the relation

My (A*(y)) R.R M1(A*(y)) | — My(X )My (X)) = Mi(A*(y)) R.R My (A (y))" — U2, U/
= (My(A*(Y) Ry — U, B 1) (M1 (A* () Ry — U,y 1) " + U S (M (A" (y)) Ry — U S, 1)

+ (Mi(A"(y)) Re — U )) (US0)

We proceed to bound the terms in (C.39) separately.
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For the first term 2y, we can expand

Mi(A*(Y) R, =) yiMi(A)R.,

i=1
where M1 (A;)R, € R"*" has i.i.d. N(0,1/m) entries, and

yi = (Mi(A) R, UsSa) ~ N (0, | X[ /m).

Apply inequality (C.36) in Lemma 41 to obtain with overwhelming probability that

nlogn

™Ay = S 12+l (C.40)

m

Z yiMl (Aa)R* - U*E*,l
=1

Regarding the second term 2o, one has
My(A*(y))Re = Z yiMi1(A)R, .
i=1

By construction, y; is independent of M1 (A;) R, . Therefore, conditioned on y, M;(A*(y))R.. €
R7%(n273=71) ig 3 random matrix with 1.i.d. A(0, ||y||3/m) entries. We can apply inequality (C.38)

in Lemma 41 to obtain with overwhelming probability that

2
2 5 B (i + i =1 + e/ogm)? — (nams — 1))
2 (g + n/logn)

m

< 3
[ N1\

< |

Inequality (C.37) in Lemma 41 tells that ||y||3 < || X2 with overwhelming probability, which

~

implies

v/ V1
oy g YIS TIVIER 2. (Ca1)
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Finally, plug the bounds (C.40) and (C.41) into (C.39) to conclude

/ninong + nlogn nlogn
IG-G.| S - 121 + ) o | X o ().
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Appendix D

Proofs for Robust Low-rank Tensor

Estimation

Lemma 42. Suppose that f : R">*"2X™ s R 4s convex and rank-r restricted L-Lipschitz continuous
(cf. Definition 13). Then for any subgradient G € Jf(X) and any X € RMXm2Xns with multilinear

rank at most 2r, one has
(G, X)| < L[| X||F.

Remark 10. When f(-) satisfies the usual L-Lipschitz continuity, i.e. without the rank restriction,

the statement degenerates into ||G||r < L.

Proof. Fix any subgradient G € 9f(X’). By the definition of a subgradient, for any X e R Xn2xns

one has
F(X+2X)> f(X)+(G,X), (D.1)

By the rank-r restricted L-Lipschitz continuity of f(-), when X has multilinear rank at most 27,

one has
F(X+X) = [(X) < L| X

This proof is complete by combining the above inequality with (D.1). O]

235



D.1 Proof of Theorem 11

We prove the theorem by induction, where the base case is established trivially by the initial

condition. Suppose that the t-th iterate F} obeys the condition
dist(Fy, F,) < (1= 0.016/x3)"*10 2 0mmin (X)) /X < 10 3 00min (X) /X - (D.2)

Lemma 31 ensures that the optimal alignment matrices {Q;  }r=1,23 between F; and F exists. For

notational convenience, we denote € :== 1073/,
U = UtQt,17 V= WQtQ’ W = WtQt,37 C = (Q;117 Q;217 Qt_731) ¢ Ct7 g = gt;

and adopt the notations in (C.4). The relation [|X; — X,||g < 3dist(F}, Fy) follows from (C.7).
From now on, we focus on proving the distance contraction. By the definition of dist(F;;1, Fy), one

has

dist?(Fyi1, Fy) < [[(Ui1Qr1 — U)Zat 2 + [(Vie1Quo — Vi) B2 + (Wi 1Qrz — W) Z, 5|2

1 -1 -1 2
+ (Qt,l 9 Qt72 ) Qt,?)) * Ct+1 — C* .

(D.3)

We expand the first square in (D.3) as

|(Ui1Qu1 — U )Z1 |2 = H (U —nM(GUUTU) ! - U*) )N ‘i
= | ArE.i - 200 (Av, MG ) + 7 [ M @UWTT) 5.
Uy
=2 (AuT.0, My(Q) (UOT0) '8, - U1, (D.4)

15}
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where in the first line, we used the fact that the update rule (5.7) is covariant with respect to {Q: 1},

implying that

9]

Ui1Qi1 =U — ntM1(g)(v](UTlvf)_1.
We proceed to bound ; and Us. For $;, use Lemma 34 (C.5f) to obtain

VIR o 2
s < |[Mu@ U@ To) 2 ‘

V) 2
(UTU)71/22*71 ‘

E
2

S

=||MugU@TO)

IR o 2
UUTU) s, ‘

MU O

IN
c

For Us, note that
Sy = <g, (ArZ} , UUU) "V, W)-C— (Ay, Vi, W,) -c*>,

is the inner product of the subgradient G and a tensor with multiliear rank at most 27, thus

combining Lemmas 34 (C.5g) and 42 one has

Y| < LI(AyZ2,UUTU)™, V,W)-C - (Ay, Vi, W,)-C,
1

|

< LIAUS e |[U0T0) 'S, - U]

V2(3€ + 3¢2 + €3)
SNCEEE

< L|ApX, 1

Plugging collectively the bounds for 4l; and iy into (D.4) yields

2
(U 1Qus = U Bl < A0Sl = 200G, (A, Vi, W) -0 2 [Mi@U@T0) 712

V2(3e + 3€2 + €3)

2m, L
+ Mt (1—6)3

[PANGRINEY [
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Similarly, other terms in (D.3) can be expanded and bounded as

[(Vir1Qr2 — Vi) Zallf < |AvE.2|f — 20 (G, (U, Ay, W,) -C.)

V2(3e + 3e2 + €3)
(1-¢)?

s @y o

[(Wi1Qu3 — W) Zes|l2 < [|[AwZesllE — 20 (G, (Us, Vi, Awy) - Cy)

AV 2|lF;

V2(3e + 362 4 €3)
(1—e)?

s e o

2
F < ||ACH|2: — 2n <ga (U*a Vi, W*) : AC>

| Aw X, 3]F;

H(Q;11¢ Q;217 Q;{il) : Ct+1 - c*

+ (1 itze)ﬁ H <(UtTUt)_1/2U1;Ta ;') 2V T, (WtTWt)_I/QWtT> . gtHi

V2(3e + 3% + €)

(1—6)3 ||AC||F

+ 27’]tL

In addition, we claim that

<g, (Ay, Vi, W,)-Cy + (Uy, Ay, W) - Co + (Uy, Vi, Awy) - Co + (U, Vi, W) - Ac>
>

3 1
(G, Xy — X) — L(e + €+ 163) (lAvZaallr + [[AvEczlr + [AwZ.slle + |Aclle) . (D.5)

Combine them together to reach that

niN?

dist*(Fii1, Fy) < [[AuZaal + [AvSaalf + [AwS.slf + | Acllf — 20 (G, X — X)) + A—cp

2v/2(3¢ + 362 + €3
_H?tL(\f(ﬁ—i— € +e€)

1
(1—¢)3 +3e 426 + 263> (IAUZallr + [AvE.2|lr + [AwZ.sllF + [|AcllF)

in which N? is defined in (5.9). Using the subgradient optimality of G, we obtain
<g7Xt - X*) > f(Xt) - f(X*)7

which further implies that

77t2Nt2
(1—¢)f

dist?(Fyy1, Fy) < dist?(Fy, F,) — 2 (f(X4) — f(&XL)) + + neLe(e) dist(Fy, Fy),  (D.6)
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where the last term uses the basic inequality
AU allF + [|AvEczllr + [[Aw e sllr + [[AcllF < 2dist(Fy, Fy),

and for conciseness we abbreviate

4v2(36 + 32 + €3)

c(e) = TEPE + 6e + 4€? + €3 (D.7)

Also, we claim that
Ny < 2L. (D.8)

Convergence with Polyak’s stepsizes. Let 1, = (f(X;) — f(X,))/N? be the Polyak’s stepsize.

Plugging it into (D.6), we have

dist?(Fyy1, Fy) < dist?(F, F,) — (2 — (1_16)6> (f(X:) — f(XL)) + neLe(e) dist(Fy, Fy)

< dist?(F}, F,) — nep ((\/i —1)3/2 <2 - 6)6> — Xfc(e)> dist(F}, F,), (D.9)

(1-

where the second inequality follows from (D.10) and xy = L/pu.

The restricted p-sharpness of f(-) together with Lemma 33 yields
F(X0) = F(X) = pl| X — Xille > p(vV2 = 1) dist(F, Fy). (D.10)

To continue, combining (D.10) and (D.8), we can lower bound the Polyak’s stepsize as

(V2 — 1)3/2u dist(F}, F)
412 '

Nt >

This, combined with (D.9), leads to

1)3/2
diSt2(Ft+17F*) < (1 a (\/?b(%) <(\/§_ 1)3/2 (2 o (1 _1 6)6) - Xfc(€)>> diStQ(Ft7F*)a
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Under the condition € = 1073 /x ¢, we calculate that

W (e (2 ) - et

_1)3/2
> (ﬂéll) ((\/5 —1)3? (2 - (1_1103)6) - c(10‘3)> > 0.016,

thus we conclude that
dist®(Fyy1, Fy) < (1 - 0.016/x7) dist*(Fy, F.),
which is the desired claim.

Convergence with geometrically decaying stepsizes. Let 1; = A\¢'/N; be the geometrically

decaying stepsize in (5.8). Plugging it into (D.6), we have

)\2 2t
dist?(Fyy1, Fy) < dist®(Fy, Fy) — mp (2(\@ —1)%2 - XfC(E)) dist(Fy, F,) + a 4 o
—€
. At . )\2 2t
< dlStQ(Ft,F*) - 2)§f (2(\/5 - 1)3/2 _ Xfc(e)) dist(Fy, Fy) + q _(]6)67
where the first line follows from (D.10) and xy = L/p, and the second line follows from 7, > é—(g

due to (D.8). The induction hypothesis at the t-iteration
dist(Fy, Fy,) < (1 —0.016/x%)"/210 2 omin (X4) /X,

combined with the setting of parameters, i.e.

\/i -1 3/2 B
A = (2)(1 — 0.016/x7)"*10 2 omin (X.) /X7

implies that

_1)3/2
dist?(Fyy1, Fy) < (1 _ V2P ((\/§ —1)*? <2 - (1_16)6> - XfC(e))>

4)@
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(1 - 0.016/x3) (103 0min (X.) /x5)?,

where the contraction rate matches exactly as that using Polyak’s stepsize. Therefore, under the

condition € = 1073 /x s, we conclude that
. o tEL . 3
dist(Fiy1, Fy) < (1 — 0.016/Xf) 2 10 omin(X4) /X7,
which is the desired claim.

Proof of (D.5). To prove (D.5), we use the decomposition

(Ua Vv W) C—-X, = (AU7 Vka W*) -Cy + (U*>AV7 W*) -Gy + (U*7 ‘/*7AW) -Gy + (U*7 ‘/*7 W*) : AC
+ (AUa AV, W*) 'C* + (AUa ‘/*a AW) 'c* + (U7 AVa AW) 'C*

+(Ay, Vi, W) - Ac+ (U, Ay, W,)-Ac+ (U,V,Ay) - Ac, (D.11)
and then invoke Lemma 42 to see

<gtaxt - X, - (AUv‘/:hW*) -Cy — (U*aAV7W*) -Cy — (U*7‘/;7AW) -Cy — (U*,V*,W*) 'AC>
< L( [(Av, Av, Wo) - Cille + [(Av, Vi, Aw) - Cu[[g + [[(U, Av, Aw) - Cu|¢
I(Av, Vi, W)+ Acle + (U, Av, W) - Acle + (U, V, Aw) - Aclle )

< L(e]|AvE, .

F+ (26 + ) AW sllp + (3e + 32+ €°) || Acllr)
where the details in the last inequality are:

[(Ay, Ay, Wy) - Cullp < JAy Mo (COlIEIIWill[|Av | < €| Ay 3y 2]lF;
(AU, Vi, Aw ) - Cillg < [[AWwMs(CHlFI VAl Avl < €| Aw s s]lF;
(U, Ay, Aw) - Cillg < [[AWMs(COHIEIAVIU] < (1 + e)el| Aw Xy 3]|F;

1(Av, Vi, Wa) - Aclle < AU VAWl AcllF < el AcllF;
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U, Av, W) - Aclle < [U[[[Av[[IWL[[Acllr < (1 + e)el AcllF;

1T, V,Aw) - Aclle < [UIIVIAw[AclF < (1+ €)%l Ac]lr-

Finally use decomposition other than (D.11), and take an average to balance the coefficients of

factors Ay, 1, Ay, o, A3, 3 and A¢ as

<gt7 Xt - X* - (AU7 .Vka W*) 'C* - (U*J AV? W*) 'C* - (U*7 Vk? AW) 'C* - (U*7 .Vka W*) ° AC>

3 1
< L(gf +e8+ 163) ([AvZEallF + |[AvEc2|lF + [[Aw s sllF + [AcllF) -

Proof of (D.8). The proof is established by repeatedly applying Lemma 42 to each term in (5.9).

For example, the first term in (5.9) can be written in the variational form as
|Mugo@To) 2| = (g. @@ o) v w)-c),

for some U € R™*" with |U||f = 1. Since (U(UTU)"Y/2,V,W)-C has multilinear rank at most

7, Lemma 42 tells that

bisrow oy, < oo ywd]

<L Ht”f(fﬂfj)—l/2” ~ I,
where the last equality follows from

@O =W =1.

242



D.2 Proof of Proposition 5

We shall prove a more detailed statement: for all tensor X € R"™*"2X"3 with multilinear rank at

most r, with probability exceeding 1 — p, one has:

2 2 2
(ﬁﬂs) 1 < A < <\/;+5> 1X|lF, forany 0<6< \ﬁ; (D.12)

[ Ase ()] = [ As(X)]ls = ((1—2%)\/3 —5) ||, for any o<5<<1_2p5>\/f, (D.13)

as long as

. (3nr +1r3)log(120/6) + log(2/p)
- co? ’

where ¢ > 0 is some constant. A key ingredient is the following result on covering number of the

set of unit Frobenius norm low-rank tensors.

Lemma 43 ( [RSS17, Lemma 2|). Denote the set of unit Frobenius norm rank-r tensors as
Sp = {X € R"X™XM : rank(X) < r, || X|[g = 1}.
The e-covering number of S, with respect to the Frobenius norm is bounded by

<

niri+ngra+ngra+rirars
12
‘Sr,e 7

9

where Sy . denotes the e-net of Sy.

The proof to (D.12) essentially repeats [LZMCSV20, Proposition 1|. First fix any X € S,.
Since \A; has i.i.d. standard Gaussian entries, (A;, X’) obeys standard Gaussian. E|(A;, X)| = \/g,

and |(A;, X)| — \/% is sub-Gaussian. Hoeffding inequality for sub-Gaussian random variables tells

P(‘;me—\@

=1

that

< g) > 1 — 2exp(—cmd?),
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for some constant ¢ > 0.
Next apply the covering argument. For any X € S,, there exists a X € S, . such that

|X — X||r < €. Invoke the triangle inequality to see

|HA(X)H1 2 <[han - 2

Since X — X has multilinear rank at most 27, we can split it into 8 rank-r tensors: X —X = Z§:1 D,

+IIAX = X))

with each D; orthogonal to each other.! We can further require that | D;||r < €¢/+/8. It holds that

‘HA(X)HI—ﬂ <[l -2 ®lhi-y2

Take supreme on both sides to see

+ZHA i)l <

+V8e sup [ A(X)]|r.
XES,

2 = 2
sup [[|A(X >u1—\f < sup [JA)1 — /2] + VEe sup A
€Sr ™ XeSr . ™ XeS,
JA)| \/5 _ sz, [l -
= s —1/=
Xlépr ! T 1 — /8¢

Take the union bound over S, to conclude

3nr+4r3
P <;1€11§)r LA 1 — \/E ‘WHE/\F) > (12) exp(—emd?).  (D.14)

T 1—/8e €
Set € = 0.16 to achieve

3nr4rd 3
PENVE 5 g () sexplcemnit) < it s SIS0/ lg(2))
— 6

€

The proof of (D.12) is then finished.

'Write the rank-2r HOSVD as X — X
then Dy = (UL U , ViV, WiW," ) -(X —

- (U V,W)-C, and split U = [Uy,Us], V = [V1, V3], W = [Wy, W),
X) DS - (U2U2T7‘/2‘/2T5W2W2T) '(X - X)
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To prove (D.13), introduce independent sub-Gaussian random variables
(A5 )+ /2,
(A X) =2, i¢s

Hoeffding inequality for sub-Gaussian random variables tells that

( ZX JAse( >||1||As<x>||1<12ps>\/zz§)21exp<cm52>.

Next apply the covering argument. For any X € S,., there exists a X € S, such that ||X —X||f <.

Invoke the triangle inequality to see

[Ase(X) 11 > [ Ase(X)[l1 = [Ase(X = X)[l1,  [Ms(X)|h < [As(X)]l1 + [s(X — X)[x
= [[Ase(X)ll = [As(X)]1 > [[Mse(X)|h — [ As(X)]l1 — [IAX — X)]1.

Follow the same argument above to split X — X into 8 rank-r tensors and obtain

Anf (Ase(X)lh = [As(X) ) = inf (JAse(X)]h — | 4s (X)) - VBe sup [|A(X)].
SIS XeSy

€

Take the union bound over S, ¢ together with (D.14) to conclude

. 2 9 2 /24 4e/\m
P (%gr(MSC(X)Hl — [[As(X)[[1) = (1 - 2208)\/;_ 9 V/8e (\/;"‘ 1_\/5»;6))

12 3nr4rd
>1- <> 2 exp(—cmd?).

€

Set € = 0.16 again to achieve

2 /244 12 3+
V/8e (\/;4— 5/1t \;{) g and (e) 2 exp(—cmd?) < p.

The proof of (D.13) is then finished.
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