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Abstract

In retail 85% of sales occur in physical stores. In the U.S. alone,
people spend roughly 37 billion hours each year waiting in line in physical
stores. This leads to 4.4 billion potential work productive hours lost or
comparatively 4.4 billion hours of leisure, rest or time with your loved
ones lost. Autonomous stores can remove customer waiting time by
providing a receipt without the need for scanning the items. Autonomous
stores in the grocery sector can further serve locations, so called 'food
deserts’, that would otherwise not have access to grocery stores. This is
done by reducing the physical size of these stores while still maintaining
the commercial opportunity through automation.

Understanding physical object ownership transfer is a key element of
physical commerce, and is central to the understanding of when and how
people grab products off of a store. For a machine to understand this
it not only needs to sense and identify individual objects in a constraint
physical space but also how their ownership changes over time. Humans
are often at the center of such transfers and detecting and character-
izing human object ownership over time opens the possibility for mul-
tiple applications to improve through automation. Applications such
as inventory counting, surveillance, supply chain management, inven-
tory management, and checkout-free retail all benefit from the ability
to understand human object ownership over time by allowing automatic
decisions to be made. In this thesis I will use the autonomous retail as
a guiding application to demonstrate the applicability of this approach.

Approaches such as using manual intervention (e.g. cashiers at a
supermarket), on-object sensing (e.g. RFID tags), contextual modeling
through vision only or combining computer vision with other sensors
can be used in applications that require the understanding of object
ownership transfer, these however require directly, or indirectly, a large
amount of human labor making it impractical to scale in real-world ap-

plications. Furthermore, the general low accuracy and throughput of
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these approaches further hinders their applicability in a broader real-
world context.

This work explores the automatic tracking of human object owner-
ship over time. In this thesis I propose a framework for detecting and
characterizing human object ownership and introduce a method where
physical context of the application is combined with the available sens-
ing modalities. By modeling the static physical context (e.g. location,
appearance, weight, volume), dynamic physical context (e.g. human
motion, temporal-spatial proximity) and the physical relations (e.g. his-
torical ownership, relative motion) between objects and people, sensing
data can be combined with such context to enhance the detection and
tracking of object ownership changes.

Resulting from the combination of physical context modeling with
the multiple sensing modalities, this approach significantly reduces the
computation requirements while maintaining high accuracies which in
turn enables the scale requirements of a real-world deployment. This
method is validated across several retail applications, which due to its
trading nature include a rich set of annotated ownership transactions.
In the context of inventory monitoring our tracking approach achieved
92.6% item identification accuracy, a 2x reduction in error compared to
the 86% accuracy reported for self-checkout stations. For autonomous
retail stores, we maintained an average of up to 96.4% receipt accuracy
over 1 year of operation, across over 65,000 transactions with a total of
1653 total different products being sold.
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Chapter 1
Introduction

Autonomous shopping systems, or more generally Autonomous Retail, refers to
technology where parts of the shopping experience are automated. These systems
are designed to make selling and buying consumer goods more efficiently. Brick-and-
mortar stores still represent more than 85% of shopping transactions and since the
pandemic-COVID-19- autonomous retail in physical stores has seen a bigger rate
of adoption (whether on payment, queuing, or delivery). Automation at this level
allows stores to operate in locations where it wasn’t previously commercially viable,
such as food deserts, or smaller locations closer to consumers, increasing consumers
access to food and fundamental goods. Other benefits stem from being able to save
people’s time from waiting lines. Americans spend 37 billion hours waiting in line

each year.

However, in order to achieve these benefits or level of automation a retail system
needs to understand the shoppers behavior, similar to how a cashier does. More
importantly the moments where ownership of the products is transferred between
the store and their shoppers, or more simply the system needs to understand when
a shopper grabs a product and leaves with it. Given how normally people behave
when interacting with objects Human Object Ownership Tracking is generally
challenging for single modal sensing systems to achieve. Single modal sensing sys-
tems are subject to occlusions and ambiguity, sensing noise present, or introduced,
in the system, or are simply not accurate enough to understand everything in a real-
world application. On the other hand multi-modal sensing systems perform better

by having devices collaborate to gain a better understanding of the surroundings,



these however still need to understand the physical context of the environment in
order to accurately operate in the real-world.

This raises the Human Object Ownership Tracking through Physical
Context Modeling using Multi-Modality Sensing problem: in order to rec-
ognize and track, in space and time, that a object has been transferred between
owners, multiple sensing devices need to share a common physical understanding
and context of the world to associate each sensed event to the correct object and
correct person.

This common physical context is typically done through data driven methods
that implicitly declare the relationship between two or more sensing features (e.g.
an image of a red basket close to a person with a blue jacket is defined as a employee
restocking products in a store, or an image with a person extending their hand is
linked to a pressure change sensed on a shelf to define that an object is being picked
up). While this can be highly efficient at defining very specific actions and scenar-
ios, it remains a challenge to solve a more general problem such as understanding a
transfer of ownership of a product, which can be done under a variety of conditions,
in under almost an uncountable number of ways. Defining every possible pair or con-
nection between different sensing modalities across large enough datasets is highly
labor intensive and has shown impractical for real-world applications. Therefore,
modeling the physical context and leveraging the physical properties and knowledge
of the environment, and objects, to define explicitly the relationship between people
and objects across different sensing modalities is extremely important as it enables
applications to operate in the real-world.

Different approaches have been proposed to solve the human object ownership
transfer. They can be broadly categorized into 2 independent axis: wnvasive vs.
noninvasive and supervised vs. unsupervised. Invasive approaches require direct
interference with the person interacting with the objects. For instance solutions
that require a person to carry a device and register every object picked (i.e. Scan &
Go), or that instead require that a final validation and recount of all objects picked
at the end (i.e. Self Checkout) are considered invasive, because they require the
person to change their behavior for the purpose of tracking their otherwise normal
interaction with objects. While these are generally easy to deploy they tend to be
inaccurate given the inconsistency of the person registering the objects’ interactions.

On the other hand, noninvasive approaches trade-in deployment ease and operation



labor for the lack of explicit behavioral interference, making them more accurate

and consequently more broadly adopted.

Supervised approaches require a human observer that does not participate in the
event to label the object transfer, this can be done either in-situ or remotely (i.e.
Amazon Go). Unsupervised solutions while less labor intensive are perceived less
accurate. Therefore finding better ways to improve accuracy under noninvasive and

unsupervised conditions is crucial to enable wide adoption of this technology.

1.1 Thesis Statement

The statement presented in this thesis is as follows: tracking of objects’ own-
ership through multi-modal sensing devices is enabled by modeling the
physical context of those objects’ and surrounding people. This work fo-
cuses in the retail environment, where sensors can be placed in the infrastructure,
such as cameras in the ceiling or sensors on the surfaces (e.g. floor, shelves, entrance,
etc.). Furthermore I explore the automatic tracking of human object ownership over
time and space. For example, when a shopper enters a grocery stores and picks a
drink from a shelf, this can be sensed by weight sensors on the shelf as well as seen
by cameras nearby. In this case, continuous time-series event detection equations
can be combined with motion estimation through both the sensor and camera to
understand this behavior. Due to the vast number of objects (products) and poten-
tial people present in the store, these systems require a common physical context
to be able to localize this event in order to attribute this ownership to the right
person. Similarly knowing the physical characteristics of the object (weight, vol-
ume, appearance) allows for the correct object to be accurately detected across its
close-by neighbours. Other context such as historical ownership transfer events or
relative human motion and proximity allow for further disambiguation of who, or
what is being interacted with by eliminating the non physically possible scenarios.

In order to enable the wide adoption of autonomous retail through physical con-
text modeling using multi-modality sensing, the approach needs to be noninvasive,
this means that the people are not required to change their behavior to register
their interactions, as this has shown impractical and inaccurate. In addition the

identification and tracking of the ownership transfer must be done without hu-



man intervention, as this leads to increased human labor impeding wider adoption.
Furthermore the system is required to provide an accurate result, such that retail

operations become successful.

1.2 Research Questions

Achieving accurate tracking of the transfer of objects’ ownership through informa-
tion collected by multiple sensing devices across an unconstrained set of human be-
havior comes with several challenges. These challenges can be grouped into 3 main
topics: shared multi-modal physical context definition (common physical environ-
ment definition), human object ownership interaction modeling (ownership transi-
tion state definition), human object spatial-temporal relationship modeling (human
to object ownership transfer matching). The following subsections detail each of

these challenges and describe each of research questions addressed in this thesis.

1.2.1 Multi-modal individual object ownership transfer

Multi-modal systems’ imply that sensing devices observe different physical represen-
tations of the same event. In order to combine information obtained by these sensing
devices it is necessary to model the physical context in which these devices operate.
Furthermore, an object ownership transfer is defined by a combination of multiple
pieces of information (who, what, where and when), it becomes important to cor-
rectly combine the partial information obtained by each modality. However, given
the unconstrained human behavior many times occlusion of individual modalities
can occur, and the object ownership information has to be inferred from the avail-
able sensing information. The main research questions that consider these issues
are the following:

¢ How to model the physical shared environment between different sensing modal-

ities?
¢ How to fuse partial information from each sensing device into a complete object

ownership transfer detection?

¢ How to leverage different modalities information under occlusion or ambiguous

estimates when combining multi-modal object ownership transfer predictions?

4



1.2.2 Object ownership transfers between humans

In order to correctly track object ownership transfers a system needs to understand
when and where such transitions occur. When the available set of sensing devices is
exposed to the human interaction leading to a object ownership transfer, it is possible
to model the trigger that defines such transition. However, many times there are
occlusions, or simply there is a lack of one sensing modality in a particular ownership
transfer and the event has to be inferred from combining contextual information.
Correctly predicting the object ownership transfer under these conditions involves

answering the following research questions:

¢ How to model the human object relationships that define an object ownership

transfer?

¢ How to account for partial lack of line of sigh when detecting a object owner-

ship transfer?

e How does a object ownership transfer detection impact historical object own-

ership transfer information?

1.2.3 Simultaneous object ownership transfers with multiple

humans

In most real-world shopping applications multiple humans are part of the equation.
Accurately tracking the history of object ownership changes requires to disambiguate
between several people and several objects that interact simultaneously withing the
same system. It becomes important to model the interactions between different ob-
jects and different people. Therefore, the research questions related to simultaneous

interactions with multiple humans are the following:

¢ How to model the physical interactions—e.g. relative motion, historical ownership—

between different objects and different people?

e How to disambiguate between multiple humans and multiple objects when

concurrent object ownership transfers are detected?



1.3 Contributions

This thesis presents a methodology where physical context of the environment is
combined with multiple sensing modalities in order to enhance the detection and
tracking of objects’ ownership changes over time. In this section I provide a summary

of the three main contributions of this work.

1.3.1 Using objects physical context to enable Multi-modal

individual object ownership transfer

The physical characteristics of the objects in the scene are great individual iden-
tifiers of the objects, allowing, in conjunction with the sensors, to make statistical
inferences about which objects are interacted with. The location, position and size
of the objects along with their sensed appearance —visual in case of cameras and
weight in case of weight sensors— enable an adaptive sensor fusion approach, where
similarities in the sensing domain (occlusions or similar weights) can be atoned by
the use of the model. i.e. a coca-cola and a coca-cola diet are being interacted with,
their location model quickly resolve any confusion between the objects.

Leveraging the explicit physical context (object and owner: location, appearance,
weight, volume) to detect individual object ownership transfers in our experiments
has achieved a 92.6% item identification accuracy in a noninvasive and unsupervised
manner. These experiments were done across 400 shopping events, including 85
items disposed to mimic a fixture of a 7-Eleven convenient store, instrumented with
weight sensors on the shelves and 4 cameras in the ceiling. The results were close to
2x reduction in error when compared to the 86% accuracy reported for self-checkout

stations.

1.3.2 Modeling human-object physical relationship to enable
ownership transition detection

Even with an explicit physical context of the objects present in the environment

defined, to correctly detect and identify the transfer of ownership of objects it is

important to understand when and where such transitions occur. Typically these

transitions, in stores, occur at the shelf (selling space) area, allowing for proper
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instrumentation of these locations to be done. However given the unconstrained
behavior of people, ownership transition can occur between people at any time and
place making partial sensor information (e.g. force sensor in shelf) irrelevant.

I tackle the detection of the transition moment between owners by focusing on
the human behavior through motion, which can be estimated through vision. Uti-
lizing prior knowledge of what a human looks like, traditional object detection and
tracking techniques can find the position of each human from vision. Furthermore,
by modeling the distances and relative motion of all people with each other and
objects of interest we can reduce the search space. Estimating joint velocity and
proximity with zones of interest allows for triggering such interactions even in the
absence, or occlusion, of direct sensing modalities.

Finally when faced with dynamic objects, objects that are in motion (carried
by someone) before the transition occurs, we are faced with an added challenge of
understanding when and where this transition has occurred. This can be simplified
by modeling the physical relationship between humans and objects. Understanding
how these two move together allows for indirect inference, this means, that we can
estimate the location of an object if we observe the motion of its carrier. i.e. We can
estimate the location of a bag of chips that sits on a cart, even if there are occlusions
by leveraging the knowledge that after the bag is placed in the cart, it will move
in the same trajectory as the cart (which is not occluded). This type of modeling
permits the transfer of object ownership and allows indirect sensing improving the

human object ownership interaction detection.

1.3.3 Matching multiple human object ownership transfers
by modeling spatial-temporal interactions between hu-

mans and objects

Similar to detecting the moment when a transition of ownership occurs, matching
the correct person to the transition in the presence of simultaneous interactions
with multiple people can benefit from the modeling of human motion. For instance,
inside a store, when a group of friends are deciding which product to buy, they
may interact closely to each other and with very close-by products. Exploiting the
physical dynamics of a human interacting with and object, and creating a model of

how humans interact with objects (i.e. A person picking a mug tends to use their
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hands to hold the wing of the mug.) can allow the correct matching between different
people and products’ ownership. In this case the typical location in the object as well
as the motion of the human when interacting with the object define this model. Such
model improves the spatial-temporal confusion that might occur when the system
is faced with multi-humans interacting simultaneously with multiple objects, each
person will interact slightly differently providing information about which object
they are interacting with.

This approach was evaluated in an live operating convenience store covering
800 square feet with 1653 distinct products, over 65,000 ownership transfer events
and more than 20,000 available items. Over the course of 13 months of operation
achieving a receipt daily accuracy of up to 96.4%. The multiple people matching
approach yielded over 2x error reduction in cases where more than 3 people were

interacting close-by (within a radius of 2 meters).

1.4 Thesis Organization

This thesis is organized as follows: Chapter 1 introduces the topic of "THuman Ob-
ject Ownership Tracking’ along with the challenges and research questions therein.
Next, Chapter 2 presents some background around the autonomous retail as well as
highlights limitations/gaps in existing approaches. Then, Chapter 3 describes the
proposed methodology and overall system architecture to tackle the human object
ownership transfers in autonomous retail. Chapter 5, concentrates on the model-
ing of the physical context of objects. Chapter 4, addresses the model of physical
relationships between humans and objects to enable the detection of ownership tran-
sitions, while Chapter 6 focuses on the modeling of physical interactions between
humans and objects to improve the matching of simultaneous ownership transfers
between multiple humans with multiple objects. Finally, Chapter 7 summarizes the

conclusions of this work.



Chapter 2
Background

Physical retail requires understanding of what the customer is intending to purchase
in order for a correct sale to occur. Traditionally this happens through a manual
cashier system. In other words, an employed person reviews every item for purchase
and registers each one manually into a system in order to subsequently charge the
customer the correct amount. While this approach works and is broadly adopted,
it creates a bottleneck in the physical sales process. This process is inherently slow
and generates queues. Furthermore, in order to sustain the economical viability of
the physical retail space, the profit of a store has to be sufficient to justify the labor
cost at the cashier. In grocery and convenience stores profit proportionally grows
with the number of products available for sale, which implies that larger physical
spaces unlock more cashiers. Leaving a gap either in smaller retail spaces, or in
spaces where the cost of operations surpasses the benefit of operating there. There
exists a wide range of prior works that have tackled this issue, and they can be

grouped into manual, on object-based sensing and infrastructure-based sensing.

Manual methods of registration of the products to be sold to a customer do not
rely on systems’ detecting individual object ownership transfers as they occur, but
instead require the person shopping to process each individual product through a
checkout stage before leaving, such as: giving the products to a cashier |74, 112] or
registering themselves the products with a retailer system (self-checkouts) [4]. While
these are the most used approaches, they are slow and labor intensive [71|. There
are other manual methods such as single queue management [112], which tackles this

issue by predicting the shoppers traffic patterns and allocating more cashiers when



needed. However this approach is limited by the availability and the on-boarding
and off-boarding speed of the cashiers— it is impractical to find a workforce available
to work unpredictably for an arbitrary amount of time and then go home. In order
to address this, others have used remote cashiers [82, 105]. However, this requires
cashiers with remote visibility access to the object ownership transfer occurring in
the store. This approach displaces the labor force into more cost effective locations,
but it creates a delay in the delivery of the receipt which shoppers who are more
budget conscious and that come with the mindset of how much they will spend
for their shopping reject. This is driven by the fact that in-store discounts and the
"smart-shopper feelings" towards pricing act as a major component of the emotional
response affecting shoppers’ behavior to favor in-store price confirmation [13, 62, 77].
We therefore need automated ways of tracking object ownership transfers.

On object-based sensing approaches, on the other hand, do not require the cus-
tomer to go through a labor intensive checkout process. These approaches identify
the objects to be purchase by ensuring that each object has a unique method of
identification, and that its ownership transfer can be tracked out of the sale space.
Such as using RFID tags [60, 84, 83, 125], or individual product slot location (i.e.
vending machine, hotel minibar) [64]. While these are highly accurate, they have
not shown to be practical in terms of cost, deployment (tagging every single item for
sale) or operations (having to position every product for sale in a single constrained
slot).

Finally, infrastructure-based systems instrument the physical space of a store
in order to keep track of the object ownership transfers in spite of the type and
number products in the store. This infrastructure instrumentation can vary from
vision only [25, 41, 50, 116, 119] which focuses mainly on the object recognition and
misses the objects’ motion or its owner, to vision with additional sensors. These
combined approaches use devices such as weight sensors [56, 60|, vibration sensors
for people detection and tracking [67, 68] and inertial wearable sensors [92]. Their
main limitation is that they lack a unified view of the physical context and dynamic
of the objects and people in the space. With regards to this limitation, this thesis
directly addresses this gap by presenting a framework to track object ownership
transfers through physical modeling of the context and dynamic of objects and

people, providing higher tracking accuracies.
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Chapter 3
Methodology

In this Chapter I describe the methodologies applied in this Thesis. The overall
methodology can be described as contextually enhanced multi-modal sens-
ing, which consists in explicitly describing the physical contextual characteristics
of the people, objects and structures of the underlying environment in order to
enhance the processing of the information gathered from the multi-modal sensing
devices. To demonstrate this methodology I focus on a representative application:
Autonomous retail. More specifically tracking objects ownership transfers within
a physical store, which benefits from contextually enhanced multi-modal sensing.
This methodology is applicable to all the elements in the physical environment of
systems that track automatically object ownership transfers. Elements such as, the
static physical context (e.g. location, appearance, weight, volume), the dynamic
physical context (e.g. human motion, temporal-spatial proximity) and the physi-
cal relations (e.g. historical ownership, relative motion) between objects, structures
and people. While this work may specifically target autonomous retail, the insights
and approaches obtained throughout this thesis can be applied for a broader set
of problems related to tracking objects being transferred between people and other

objects, in a instrumentable physical space (e.g. Warehouse inventory monitoring).

3.1 Terminology

In this section the terms used throughout this thesis are defined. Human-Object

Ownership refers to the relationship of ownership from objects to humans. The
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types of objects referred by this term are best demonstrated by Figures 3.1 and
3.2. The transfer of ownership occurs the moment the objects starts sharing higher
bounds (similar motion, velocity and location) with another owner. In this thesis
ownership has no relationship to the financial or legal ownership of objects, but
exclusively with its physical characteristics.

In Fig. 3.1 we can see an example of a human driving a forklift and delivering
boxes into a warehouse. This figure demonstrates the multiple elements that consti-
tute a Human-Object Ownership transfer. In this case we can see a Single Human

carrying a Single Object— multiple items of the same object (boxes).

Ownership Transfe

Figure 3.1: Representation of a warehouse with a single type of object (boxes) being
carried by a single person. Concepts of interest are highlighted in green: Human, Object
and Warehouse. The red arrow represents the Ownership Transfer that occurs when the
boxes are unloaded from the forklift and left inside the warehouse.

Figure 3.2 shows a scenario with multiple examples of Ownership Transfers inside
a store. Here we can see highlighted ownership transfers where a single person picks
up multiple different objects (in purple) and a second example where multiple people

pick up multiple different objects (in blue).
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Figure 3.2: Representation of a store scenario with multiple examples of ownership trans-
fers. Concepts of interest are highlighted in green: Human, Object and Store. Purple
highlights an Ownership Transfer where a single person picks up multiple different objects.
Blue highlights Ownership Transfers where multiple humans pick up simultaneously mul-
tiple different objects. The red arrow represents the Ownership Transfers that occurs in
theses two scenarios.
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3.2 ’'Human-Object Ownership Tracking’ Frame-

work

Tracking objects that are being transferred between people requires an understand-
ing of objects’ location relative to the people. This is traditionally done implicitly
and within a particular sensing modality. For example, when a camera is observ-
ing a scene and detects a person passing his friend a bottle of water it does so by
observing the pixel distance between the identified bottle and the detected people
present.

This however could be enhanced by the explicit knowledge of how big a bottle
of water is, that it needs to be supported by something (i.e hand) or even where the
camera in physically located. Without this information, perspective mistakes and
ambiguous results can be obtained. Figure 3.3 shows the ‘Human Object Ownership
Transfer’ framework used in this thesis to address these types of issues. The following
sections provide an overview of the framework’s components and provide insight into

what contextual information is used to define the models at each component.

3.3 Shared physical context definition

In attempting to track objects a key step to achieve accurate results is defining a
model of the objects in question. Typically that means either creating or generating
a dataset of those objects where they are exposed to the particular sensing modality
and labelled in that feature space. For example, in a visual dataset created for track-
ing apples you would see several images of several types of apples, taken from various
different angles with several different backgrounds. This is done in the attempt to
generalize and extract the meaningful features of what an apple is. However, the
apple’s physical context is mostly missed. In other words, this model would benefit
from understanding a typical apple volume in relationship to other objects, or that
apples cannot fly (without being thrown) and require a holding element (person,
floor, surface). Or even more specifically, that in a particular application such as a
grocery store, most of the time apple’s will either be in the fruit section, someone’s
hand or in their basket (object contextual location). With this information, better

more effective and accurate systems can be designed.
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In this framework the first stage focuses in defining an explicit shared physical
context across all sensing modality. The insight is that regardless of the modalities
in question there is a common physical reality that binds all sensors together, and
that modeling that bound allows for impossible hypotheses to be pruned out at
the moment of detection and tracking. In particular I propose to focus on the
people, physical structures (floor, columns, walls, etc.), and objects’ of interest
contextual location and ’appearance’ in the available sensing modalities (e.g. shape,
color, weight, vibration response, volume). This allows multi-modal systems’ to
combine sensing information an context for accurate tracking of objects [28, 89],
while reducing the required computation by focusing the attention into the areas
that make physical sense [91]. Chapter 5 explains in further detail this technique
and the process of designing each model and explicitly sharing it across sensing

modalities.

3.4 Multi-modal ownership transition detection

After defining an explicit shared physical context, sensing modalities can then have
a common context to collaborate when detecting objects and people. However a
successful object transfer relies not only on the ability to sense the objects and peo-
ple, but also on triggering when a tranfer occurs. Human ownership of an object
is defined as the moment when the motion features of an object directly, or indi-
rectly, reflect the motion features of a human. This means, that and object sharing
the same trajectory, relative motion and location with a person is owned by them.
Consequently a transfer of ownership occurs when these motion features similarities
switch between owners. This change is sensed differently between different modal-
ities (weight change event, hand acceleration towards object, RF signal strength
change). But similarly to the physical ’appearance”’, this transfer has an inherent
contextual behavior that can be modeled and shared.

By designing a system that can model the behavioral patterns of humans and
objects being transferred between one another, we enable the possibility for sensing
modalities to trigger one another to focus on a particular event (e.g. a load sensor
providing a higher confidence to a camera that an event is occurring in a partic-

ular location) (28, 29]. Furthermore, when individual modalities are partially, or
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completely, occluded this behavioral model is key in ensuring a correct ownership
transfer detection, by providing visibility into which sensing devices are providing
accurate information [89]. Details on how the methodology is applied and behav-
ioral models leveraged for multi-modal ownership transition detection are provided
in Chapter 4.

3.5 Spatial-Temporal Multi-Human-Object Match-
ing
As with any sensing system that operates in the real world, its performance is
affected by the breadth of possible interactions occurring. More simply, the system
accuracy and general performance is dependant on the complexity of the behavior of
its actors. For example, in a convenience store multiple people can simultaneously
perform several types of interactions, with typically several thousands of products
available. These interactions can increase the difficulty of a sensing system to detect
ownership, through occlusions or ambiguity in nearby object interactions.
Similarly to detecting when a transition occurs, to disambiguate who is interact-
ing with an object a system benefits from the modeling of human motion. However
in this case the defining aspects of motion are the characteristics that link the object
to the person rather than the general human behavior [29]. These characteristics
closely match a particular human to a type of object, such as the spatial proximity
of specific joints of a human, or the relative motion required to carry such object.
For example, a heavy large box might require two hands to carry while a single
cup does not, therefore when simultaneous people are interacting with these objects
and ambiguity arises this information allows to make a further distinction. These

interaction characteristics are further described and evaluated in Chapter 6.
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Chapter 4

Individual Object Ownership
Transfer by Modeling Objects’
Physical Context

In any sensing system tasked to identify the transfer of objects’ ownership, it is
necessary to identify the objects of interest, and to do so the first step is to extract the
features that define the object, in the sensing space of interest. This means mapping
raw sensing data, such as vibration signals or video footage, and map higher level
characteristics of this signal to the object in question. While these identity features,
or ownership transfer features, can be learned with enough training data, it is often
impractical if not impossible to collect and label enough instances when faced with

real-world deployments.

In this Chapter I focus on how to model the physical context of both the objects
(color, size, relative position, motion) and the scene (zones of ownership interest,
physical realism of location of objects) in order to provide higher accuracies and

reduce the number of labels required to deploy such a system.

The publication of large-scale object recognition datasets has enabled an un-
precedented use of camera-based systems using deep learning. While supervised
learning approaches have shown success in classification, detection, and segmen-
tation, these, however, fail to generalize well in the absence of large-scale labeled
datasets [97]. Particularly in inventory monitoring applications where a large num-

ber of specific objects — e.g. products in retail store, products flowing in and out of
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Figure 4.1: Typical warehouse setup with forklifts moving the pallets in and out. Di-
verse set of environmental factors are observed: motion specific to forklifts, camera angle
limitation, varying lighting conditions impacted by the weather.

a warehouse; and a vast diversity of task-specific environmental factors are present
(see Figure 4.1). Such applications require immense human labor to label data and

parameterize the model, making it impractical for real-world adoption.

In order to address this issue, recent techniques, such as domain adaptation tech-
niques [118|, data augmentation [100], incremental learning [124], few-shot learning
[81] and automatically labeling techniques [91], have appeared to reduce the amount
of human labor required in order to adapt the learned models to the domain and
data distribution of the specific application. Using the physical context in order to
generate synthetic data allows for the creation of large datasets out of a very small
amount of labels by varying characteristics of the original labeled sample and the
creation of a model of the object and the deployment. While this allows the trained
model to become robust to such variances, it will further over-fit to the patterns in

the augmentation itself.

In this Chapter, we present PIWIMS which explores different ways of generating
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Figure 4.2: PIWIMS consists of two steps: randomly sampling a background image and
a target crop, selecting the PIWIMS approach, and generating the dataset according to the
desired physical characteristics of the scene and the object. The generated dataset is used
to train the product appearance model that is fed to the Inventory Monitoring System.
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synthetic warehouse datasets by leveraging the physical context of the deployment
setup and objects through compositing augmentation to bind the generative parame-
ters closer to the physical reality with minimal human annotation. The contributions

are as follows:

1. We propose a new generative data-augmentation technique PIWIMS, which
leverages physical context —scene lighting, camera position and angle, and
object motion, size, and shape— to model the objects, and scene, and generate
datasets that more closely resemble the deployment data distributions with

minimum human annotation labor.

2. We present an analysis of a 4 month deployment of PIWIMS used in a real

world warehouse inventory monitoring system.

3. We demonstrate the ability of PIWIMS to generalize across camera deploy-

ments with varying position and angle.

The remaining chapter is as follows: Section 4.1 describes in detail the approach
use in PIWIMS. Section 4.2 presents the experimental results and analysis of PI-
WIMS in real-world warehouse setting. Section 4.3 shows previous works on data
augmentation techniques and learning with limited labeled data. Finally, we con-

clude this chapter in Section 4.4.

4.1 PIWIMS Overview

PIWIMS takes inspiration from the ability humans have to look at an image and
project different placements for objects of interest. To project an object to a different
place in an image, humans have to have a rough understanding of the physical layout
of the scene (where the floor is, natural orientation of the object, sources of light,
natural motion). This rough understanding of the physical context of a scene is
designed into our approach.

Like other compositing techniques [26, 110], PIWIMS requires as input a back-
ground image, b, and a target image crop, c. Our approach requires as well a linear
transformation function, 7', and a color correction function, M, and finally applies
an alpha blending technique [54| to compose the positive training case. The ap-
proach focuses on constraining the parameters of 7" and M closer to the bounds of

physical possibility, while still exploring a larger data distribution. In the simplest

22



case, the final training image is then computed by: ¢ = b @ M(T(c)) (where "@®"
corresponds to the alpha blending). However, we can consider multiple ¢’s and end

up with the following formulation:

1= b® My, (T, (1)) © Mo,y (T, (2))
@O M,, (T, (cn), VeeM\VyeT (41)

Note that each M, and T, are different color correction and linear transforma-

tions respectively.

4.1.1 Physically informed linear transformation

The linear transformation defined by 7" in Eq. 4.1 is further defined by the input
parameters (X,6,s). X represents the final location of the center of mass of the
cropped image (c¢) in R?. X can vary randomly to any point in the image. © however
is constrained by the maximum rotation that ¢ can see given the application-specific
setup. This is computed manually by placing ¢ in its original background b at
the highest/lowest rotation possible. By manually placing the crop ¢, PIWIMS is
bounding the space of possible rotations for c. We define the possible set of rotations
as V.

Similarly, the size S of the crop ¢ is equally computed by manually placing ¢
in the original background 0. In this case, the annotator will resize the crop to
the largest and smallest possible perceived size given the application-specific setup.
Once again, bounding the possible sizes of ¢ to the physically reasonable ones. The
size of ¢ is defined by the ratio of the area (number of pixels) of the crop ¢ and the
area of b, and its possible space is defined as S. Finally T € 7 where T = (), S).

4.1.2 Physically informed color correction

When bounding the possible synthetic images in the color space, we focused on light-
ing. This is formulated through the function M present in Eq. 4.1. M represents
the color space of the ¢ image in HSL (Hue, Saturation and Lightness) space. In
order to encode the lighting characteristics (origin, color, and intensity) easily intu-

ited by humans, PIWIMS requires the annotator to understand the lighting in the
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application-specific setup and place the cropped image ¢ in the original background
b, and, similarly to subsection 4.1.1, search for the maximum/minimum hue and
lightness value possible. The range computed between the maximum and minimum
values define the space M. Our approach ignores saturation based on the fact that
¢ is extracted from the same source that the model will operate in, which already
includes the data characteristics of the light sensor. This assumption can further be

alleviated to improve the model.

While this is a homogeneous color mapping transformation, we believe that it is

possible to enhance this model with a directed lighting source.

4.1.3 Target Motion

Even though the motion is associated with a continuous set of images (video), it can
still be perceived in a static image. Motion blur can be detected in a single image,
indicating a natural motion that creates a loss of detail due to the capture rate of
the camera’s sensor. The same principles applied in Section 4.1.1 and Section 4.1.2
can be applied here. Motion blur can be applied by a convolution between a kernel

k, defining the direction and intention of the motion, and the image c.

In cases where the ordered series of images is available, motion can further be
used through a pre-processing step of background subtraction [101]. PIWIMS trans-
forms the background image b using a synthetic background subtraction removal
function f. f randomly samples the coordinate space of b and converts that pixel
into a black pixel with probability p. In case one of its 8 neighboring pixels has been
converted to black its "turning black" probability doubles becoming (14 p)/2. This
is defined as such:

,Va,y where bj,_q|jy—1] # 0

p
P<b:c,y = 0‘p) = { (14p) (42)

=~ ,Va,y where bj;_1|y—1] =0

We have identified empirically that p = 0.53 has the best performance when re-
producing the effects of background subtraction. See 4.2¢). for an example of a

resulting background images with f(b,0.53).
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Figure 4.3: The top three images show the effect of random dataset generation that lies
outside the physical reality of the application. The bottom three images demonstrate the
generation process based on PIWIMS linear transformation, color correction and negative
sampling.

4.1.4 Occlusion and Negative Sampling

When blending the background, b, with the multiple target cropped images, ¢’s,
[110] has demonstrated that the artifacts created by composing the final image can
be identified by the training model, which leads to it expecting such artifacts in
the application-specific images. Therefore PIWIMS further adds similarly shaped,
to ¢, extra cropped images denoted as v with content from the different random
background, in order to create negative samples with the compositing artifacts. (See
Fig. 4.3). The last step of PIWIMS is to remove samples generated with extreme
occlusions by applying NMS (non-maximum suppression) with a threshold of 0.8 on

the generated c images.

4.2 Real-World Evaluation at an operating ware-

house

In this section, we present a component-wise analysis of the different stages of PI-
WIMS and the results of the deployment of PIWIMS in a real-world operating
warehouse monitoring system. In partnership with ThaiBev, we have deployed a

warehouse inventory monitoring system based on the data generated by PIWIMS.
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We analyze in this chapter 4-month of operation of this warehouse. And further eval-
uate each component of PIWIMS in Sections 4.1.1, 4.1.2 and 4.1.3 (See Fig. 4.2).

4.2.1 Warehouse camera deployment and dataset generation

We deployed two cameras at a ThaiBev’s warehouse for varying camera positions and
angles. The cameras’ placement is chosen in a way to capture the maximum activity
occurring at each door. The cameras operated at 15fps and recorded all activities
during the four months of the deployment. The deployment was coordinated to
record the 4 busiest months of the year. We have further obtained the inventory
count from a separate warehouse monitoring system (WMS) for comparison.

Ground truth was generated by manually annotating 35 hours of randomly
selected video frames from different days and cameras. We further evaluate the
effectiveness of our approach by comparing our visual inventory monitoring results
with ThaiBev’'s WMS results.

Dataset generation was achieved by extracting 32 cropped product images
of the highest selling item in the warehouse from each deployed camera, ¢,. We
have further leveraged the Indoor Scene Recognition Dataset [80] to generate our
backgrounds b for an increased variety of backgrounds which facilitates the gener-
alization process. By following the approach describe in Sec. 4.1, we create fully
synthetic datasets of 30,000 images out of the 32 cropped sampled images (with a
20:20:60::validation:testing:training dataset composition), for each component pro-
vided in Sec. 4.1 (See Fig. 4.2). We then train a FasterRCNN [85] model with the
synthetically generated datasets for the different steps in PTIWIMS.

4.2.2 Metrics for Product detection and Product flow count-
ing
Inventory Monitoring requires the vision systems to detect the products of interest
and track their flow over time. For this purpose, we have divided our analysis of the
results into Product detection accuracy and Product flow counting.
Product Detection is a localization and classification task, which we evaluate
using the Fl-score @ 0.8 IoU, that is GAPL 0.8, where GG is the ground truth

IGU P
bounding box and P is the predicted bounding box.
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Figure 4.4: Detection Accuracy results with IoU = 0.8, using fully synthetic datasets
generated using various data augmentation techniques. We show that PIWIMS with min-
imum human labor (only 32 manually labeled images) outperforms the other techniques
for both the deployments.

Product flow counting aims to estimate the locations of products in a video
sequence and yield their individual inflow/outflow count based on the entrance and
exit zone in the warehouse, which we evaluate using the F1 score. If the ground
truth states a product inflow/outflow at time ¢;, and the predicted time states a
product inflow/outflow at time t5, it is considered a true positive if |t; — t5| <= 50,
where we consider 50 frames (equivalent to 3.5 seconds) to accommodate for human

annotation errors.

4.2.3 PIWIMS data augmentation performance

In order to evaluate the performance of PIWIMS we have leveraged several data
augmentation techniques and used them for the warehouse inventory monitoring
deployment. We compare our model with Albumentations [9], and various tech-
niques from Keras Image Data Generator [16| on product detection and product flow
counting subtasks. The results show that all the components of PIWIMS perform
better or on-par with the baseline on respective tasks (See Fig. 4.4 and 4.5).
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Figure 4.5: Inventory Count Evaluation Results for different models, using synthetic
datasets generated with only 32 manually labeled images. Our approach, PIWIMS has an
8% performance increase compared to Albumentations [9] 31% error reduction as compared
to WMS (dotted line).

Product Detection: Following the apporach in Sec.4.1 we create detection
models from the synthetically generated datasets for PIWIMS, Albumentations [9]
and Keras Image Data Generator [16] methods. We demonstrate in figure 4.4 that
with a minimum amount of human labor (only 32 cropped samples), a combination
of all the components of PIWIMS achieves 99% F1-score @ 0.8 IoU.

Product Flow Counting: We detect the inventory by running our trained
models and then use SORT [123] to track the movement in 2D of the products
across time. We further define an entrance and exit zone in the image, determining
whether a moving product is considered inflow or outflow. Figure 4.5 shows that we
see an 8% improvement in Fl-score for the first camera and on-par performance for
the second camera as compared to other data augmentation techniques.

Furthermore, we compare our model with WMS data (See Figure 4.5), the 3rd
party warehouse industry average. The results demonstrated that our models re-

sulted in a 31% reduced error as compared to WMS.
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4.2.4 Generalization across different camera angle and posi-
tion

In order to demonstrate the ability of PIWIMS to generalize across different camera
installations, we deployed a second camera at the same warehouse (see Figure 4.1).
The second camera is deployed at the same height from the warehouse platform
as the first camera. As both cameras are deployed in the same warehouse, similar
physical information is extracted when generating the synthetic datasets.

In Table 4.1 we list the factors that impact the physical parameters used in
PIWIMS. As the second camera is deployed at the same height as the first camera,
the linear transformations S remain similar across cameras. However, the linear
transformations ) is adjusted according to the angle of the second camera. The
color space M for images collected from the second camera differs from the first
camera. This occurs since the first camera is installed close to the door with direct
sunlight access, but this is not the case for the second camera installation. Motion
blur and occlusion parameters are similar across camera installations as they are
specific to the warehouse, and the product of interest moves at similar speeds from
both perspectives.

Evaluation was done by running the same trained model produced for the first
camera on the second camera. We randomly selected 10 hours of video from the
second camera, from different days and times of the day of the four months of
the deployment. This data was annotated by manually looking at the video and
registering how many inflows and outflows of the desired product occurred during
this 10 hours period. Figure 4.4 and 4.5 demonstrate that PIWIMS generalizes well
across different camera installations without added human labor for annotation.
PIWIMS exhibited a 19% improvement on product detection subtask compared
to the other data augmentation techniques and on-par performance on product

counting subtask.

4.3 Related Work

There is a significant amount of work in synthetic data generation with the intent of
overcoming the burden of labeling large datasets for training neural networks. How-

ever, most of these works lack the optimization for the target application and focus
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’ Physically informed parameters ‘ Impacted by

Linear Transformations () Camera angle and position
Color Correction (M) Lighting angle and intensity
Motion Blur Warehouse product motion
Occlusion Parameters Camera position

Table 4.1: Analysis of physical realities that impact the paramters used for data gener-
ation in PIWIMS. Notice that, in general, linear transformations and color correction are
derived from camera placement motion blur and occlusion parameters are specific to the
warehouse characteristics.

on just slightly perturbing the available data distribution. These can be grouped

into learning-based image synthesis, photo-realistic mapping and contextual image
composition.

Learning-based image synthesis: In order to synthesize positive examples
for training object detection models prior works [6, 109, 127| leverage pre-existing
labeled datasets and vary its characteristics (i.e. saturation, brightness, orientation,
etc.) to augment the data distribution with the attempt at maintaining the patterns
that make such an example a positive one. These parameters can be learned by a
model to generate these synthetic images |14, 19] or generated through adversarial
examples [5, 78, 110]. ST-GAN [54] uses spatial composition to generate new images,
however, without the contextual understanding of the target application. These,
however, still require a large available labeled dataset to learn meaningful patterns
and generate image samples that improve the training performance.

Contextual image composition: Image composition refers to the technique
of cropping separate images and composing them in such a way that new images are
generated with, ideally, similar data distribution to the target context. While these
techniques |26, 27, 117] have shown an increase in performance through the random
placement of images crops on random backgrounds, they tend to generate unrealistic
datasets, limiting its ability to adapt to new domains [26]. To improve this, data
augmentation techniques have adopted a parameterized method to limit the distri-
bution of the composition [6]. However these parameters require a large amount
of human labor to fine-tune its performance for each composition. To address this,
prior works use heuristical [27] techniques or contextual cues [70] to improve the
realism of the composition.

Photo-realistic mapping: Photo-realistic 3D simulation engines, such as

game engines, have recently gained popularity for data augmentation purposes [42,
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86, 113]. These approaches provide a large degree of control over the possible trans-
formations done to available data and into the realism of the resulting dataset.
However, the significant downsides of this approach are the domain gap between
simulated images and the real application and the hidden need for human labor to

generate and ingest 3D data into the simulator.

4.4 Chapter Summary

We introduce PIWIMS, a physics-informed synthetic data generation technique for
real-world deployments. PIWIMS utilizes the physical constraints of the environ-
ment and the objects to generate realistic datasets. Our approach requires minimal
human annotation, and we demonstrate that with an empirical study of inventory
monitoring in a warehouse, where we achieve 87% accuracy in inventory tracking
with only 32 manually labeled images.

While these results show great promise in deploying a vision system with virtually
no available data and with minimal human labor, they are still preliminary. Future
work will involve evaluating this approach against an increasing variety of products
and an increase variety of deployments. In addition, further exploration is required
to understand the minimum required number of manually annotated samples are

required to perform well.
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Chapter 5

Ownership Transition Detection by
Modeling Physical Relationships

between Humans and Objects

In Chapter 4 I showed how to model the physical characteristics of the objects and
scene (structures) present in a deployment. While this showed significant improve-
ments in reducing the amount of required labels to track certain objects it focuses
on a limited subset of ownership transitions where the original, and final, location of
the object define its owner (i.e. moving a crate from outside an warehouse to inside).
However there are other scenarios where the location of the objects may change but
it does not define its ownership (e.g. moving a chocolate inside a store from a shelf
to another). In these cases we have to model the physical relationship between the
person and the object, to understand when ownership changes. Furthermore, an
understanding of the physical relationship between the people and objects, such as
the insight that people tend to grab objects with their hands, reduces the search
space required to track the objects in the first place. In this Chapter I will focus
on inventory tracking in a retail store setting, which is subject to several objects
and people behaviours that require the modeling of their relationships in order to

accurately track the objects’ ownership transfers.

Traditional retail stores face significant labor costs to monitor shelf inventory
regularly, often postponing this operation until off-peak hours. A delay in inventory

monitoring causes high sales losses when a particular item is gone from the shelf

33



/‘(2?3\:\'4 ' - ‘
@/ ’ Bin (width=3)

Fixture

Figure 5.1: FAIM scenario and real implementation. Through weight sensors and cam-
eras, the goal is to autonomously detect and identify what item(s) customers take.

though additional stock existed in the warehouse. An ordinary convenience store
faces out-of-shelf stockout rates of 5-10%, which results in a loss of up to 4% of
sales [39]. In North America alone, this accounts for approximately $93 billion

annual losses [52].

In order to address this issue, current approaches focus on three ways to monitor
shelf stock: manual, on-item tags, and vision-based sensing. Manual approaches
are the norm and mainly rely on visual inspection of the shelves to reorganize and
restock when needed. Employees bandwidth typically only allows for up to a few
checks a day, leading to high cost and minimal effectiveness especially in high traffic

stores.

Other approaches use sensors on every item (e.g. RFID tags) to monitor re-
maining stock of each product [8, 20]. However, the added cost of the tags together
with the labor cost of labeling every item make this approach impractical other
than for high-end goods, such as electronic consumer goods or apparel [20, 69].

More recently, cashier-less stores using a variety of sensors are being explored. Most
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approaches still require human operators for proper functioning and have highly
constrained stocking requirements. While some stores are already operational, such
as Amazon Go [1], their automated accuracy has not been revealed and several re-
ports point out that they heavily rely on employees watching the cameras to avoid

low receipt accuracy |82, 106].

In this chapter, we present an Autonomous Inventory Monitoring system, FAIM,
which tracks shelf-level stock in real-time as the customers pick up or return items.
Using weight sensors on each shelf, our system identifies the item being taken based
on the location and absolute weight change of an event, which is fused with vi-
sual object identification once the item is in the customer’s hand. FAIM leverages
physical knowledge about the customer—shelf interaction to focus the attention of
the visual classifier only on the item being interacted with. We fully implemented
FAIM on a 5 shelf setup with 4 cameras and 60 weight plates. To evaluate the sys-
tem in a real-world setting, we used 85 items from 33 unique products and mimicked

the item layout of a local 7-Eleven. Therefore, our contribution is three-fold:

e FAIM, the first fully autonomous shelf inventory monitoring system without
human-in-the-loop.

e An adaptive sensor aggregation algorithm to combine information from dif-
ferent sensing modalities, in particular shelf weight differential, visual in-hand

item recognition and prior knowledge of item layout (i.e. product location).

e A visual item recognition model training methodology that leverages tradi-
tional visual descriptors along with an implementation and evaluation in a
real-world market setup with 33 products replicating the layout of a 7-Eleven

store.

The rest of the chapter is organized as follows. First, Section 5.4 discusses related
works and background. Section 5.1 describes the design of the FAIM system. In
Section 5.2 we present the fusion algorithm that combines location, weight and
vision information. Next, Section 5.3 provides results and analysis of the real-world

evaluation in our store setup. Finally, we conclude in Section 6.7.
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5.1 System Design

To the best of our knowledge, FAIM is the first fully autonomous shelf inventory
monitoring system without human-in-the-loop. This section provides our system

design choices and assumptions.

5.1.1 System Overview

Figure 5.2 shows FAIM’s system framework. It utilizes multi-modal sensing to
improve item identification accuracy. In particular, I focus on three sources of in-
formation: item layout, weight and appearance. FAIM’s pipeline is triggered when
a change in the total weight of a shelf is detected. From that it extracts two fea-
tures: the absolute weight difference and the spatial distribution of the weight. The
weight change-based prediction computes the probability of each product class by
comparing the absolute weight difference to each product’s average weight. The
location-based prediction computes the probability of each product class by com-
bining the spatial distribution of the weight change on the shelf with prior knowledge
of item layout. The wvision-based prediction leverages human pose estimation and
background subtraction to focus the visual object classifier’s attention to identify
the object(s) in the customer’s hand. Finally, FAIM fuses all three predictions by

applying an adaptive weighted linear combination.

5.1.2 Assumptions

Handling all the intricacies and corner cases of a fully autonomous system for in-
ventory monitoring is a very challenging task. I limit the scope of this chapter in
order to fully address the problem defined: handling pick up and put back events
under normal shopping behavior. While I am aware that cultural, age, and other
factors impact what’s considered normal behavior, I observe some general trends
on customers shopping in convenience stores. I make the following assumptions in

order to scope this chapter:
1. At any given time, at most one customer is interacting with a partic-
ular shelf. Unlike big supermarkets, convenience stores observe a much lower

customer density albeit a higher foot traffic. In addition, most customers shop
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Figure 5.2: FAIM system overview. Top: Vision-based pipeline (yellow).
Location- and Weight change-based prediction pipeline (blue).
(green). Prior knowledge of item layout, weight and appearance (pink).

Bottom:

Right: Fusion algorithm

. Customers don’t place outside objects on shelves.

individually and respect other customers’ personal space —i.e., if someone is
picking an item from the same shelf they want an item from, they wait for the
other customer to get their items first. This assumption is particularly true
recently given the necessity of social distancing —due to COVID-19, people
remain 6 feet apart—. This physical separation and the typical size of a shelf

(3 to 4 feet) make this a reasonable assumption.

It is common for
customers to enter the store carrying certain objects, such as a purse or a drink,
but unless they are purposefully trying to fool the autonomous system, they
rarely leave anything on a shelf that wasn’t picked inside the store. Therefore,
while users are free to return items they do not want anymore, FAIM can

safely assume any put back event corresponds to items from the inventory.

Customers don’t alter items’ properties (weight or appearance) be-
fore putting something back. For instance, our system assumes that cus-
tomers won’t pick a bag of chips, eat half of them and put them back on a
shelf.
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4. Customers pick one item a time. When customers want multiple items
from the same shelf, it is uncommon to pick different items with each hand at
the same time —i.e., even if they use both hands, they usually pick a product
with one first, then the other, so FAIM would correctly flag them as two
separate events. Note that this assumption could be relaxed by considering
all combinations of up to N items being picked up, though N should be kept

small to limit computational complexity.

5.1.3 Hardware design decisions

There are many design choices involved in the instrumentation of smart retail stores
for inventory monitoring. In this section, I discuss some insights I gained by imple-
menting FAIM and working with actual retailers, as well as the impact and tradeoffs

of different hardware approaches.

Weight sensing

An interesting tradeoff to consider when instrumenting retail store fixtures with
weight load cells is the size of each weight-sensing plate, that is, the size of each
independent platform suspended over one or more weight sensors. On the one hand,
larger sensing areas —e.g., one per shelf or even one per fixture— means lower hard-
ware cost and processing, but also lower signal resolution (the load cells need to
support a larger maximum capacity) as well as lower spatial resolution (more items
per plate, which increases the chances of having multiple items with very similar
weights). In Section 5.3 T explore the impact of different plate sizes on FAIM’s
accuracy.

Furthermore, weight plate size and design can have a big repercussion on item
layout flexibility, an often desired demand by retailers. Product dimensions vary
in a wide range, and so does the stock offered at convenience stores and their item
layout. Therefore, limiting each product to a single sensing plate, while helping
weight sensing by isolating each product, would lead to a hard constraint on the
possible products on display, limiting its practical use.

Retailers’ profit margins are very low and maximizing item density is of utter

importance (see Figure 5.8 for an example of a typical fixture layout in a conve-
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nience store). I therefore adopted a flexible hardware design that can be easily
mass-produced to bring costs down, as shown in Figure 5.1. Our single-size design
consists of narrow weight plates (4" width, divisible by the standard 48" fixture
length) laid contiguous to each other. This design has the added advantage that
such small weight plates won’t have as much weight on top, allowing for lower maxi-
mum capacity load cells thus higher weight resolution (sub-gram) without requiring
expensive ADCs (Analog-to-Digital Converters). Moreover, Section 5.1.4 details
how FAIM handles cases where items span across multiple weight plates (the weight
difference in each individual plate does not correspond to the total weight of the
item, hence the product prediction has to cluster neighboring weight cells into a

single event for a correct item identification).

Vision sensing

There are also many design considerations related to installing cameras in retail
stores, from camera specifications, to camera placement and even number of cameras
to deploy. As vision processing improves, camera specification constraints can be
relaxed. From our initial experiments, camera resolution doesn’t play a huge role
(in fact most deep learning networks downsize the input image to about 300-720
pixels wide for training and computation efficiency purposes). As for frame rate,
I have empirically observed 25-30fps to be enough to get at least one good frame
of the item being picked. In addition, optimal lighting might help get sharper and
more consistent views of the products, but that is out of the scope of this chapter.

Camera quantity and placement pose trade-offs worth exploring more in depth in
future work. Overall, the intuition is that by having multiple cameras spread across
different viewing angles, the system can minimize the likelihood of visual occlusions.
While this is true, the added hardware, setup, power and computational cost can
dramatically impact the benefits of autonomous inventory monitoring. For instance,
the first Amazon Go [1] store in Seattle features hundreds of cameras ~hanging from
the ceiling, on top of each fixture and even below each shelf- and still relies on
a human-in-the-loop approach to resolve uncertainties [82, 106]. From our initial
experiments I empirically noticed weight sensors to be a much more robust —and
cheaper— predictor of what item was picked up or put back on a shelf. Therefore, I do

not consider shelf-mounted cameras in this chapter. Section 5.3.2 however analyzes
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Figure 5.3: Aggregated weight sensed by a shelf during the first 15 seconds of one of
our experiments (raw in light blue, filtered in dark blue), as well as the events detected by
FAIM (orange) and the annotated ground-truth (purple). Two products were picked up in
this section of the experiment.

the impact of any combination among four different camera placements —top-down,

sides and in front of each fixture— on FAIM’s accuracy.

5.1.4 Customer-shelf interaction detection

The first step in FAIM’s pipeline is to detect when an event took place (i.e., a
customer picked up or put back an item on a shelf). In our proposed system ar-
chitecture, displayed in Figure 5.2, the processing of every change in the inventory
starts with a weight change trigger. After carefully analyzing some initial experi-
ment data, I came to the conclusion that, even during normal shopping behavior
—i.e., customers not trying to fool the system—, visual occlusions from hands or the
body are highly likely (especially for smaller items), which makes vision much less
reliable than weight for triggering events. Unless someone purposefully drops an
object of similar weight as they pick an item from a shelf —which would break As-
sumption 2—, the weight difference on the load sensors is generally enough to detect
an event.

There are numerous prior works to detect events based on weight change on a
load sensed surface |73, 98]. In essence these approaches compute the mean and
variance of the weight values over a sliding window, and classify the state as either
stable —no interaction— or active —an interaction is taking place— by comparing the
moving variance to a threshold. Once the state is back at stable, the mean weight

before and after the active state is extracted and reported as the weight difference
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of the event, where the sign indicates whether it was a pick up or a put back.

Furthermore, inevitably —even with physical separation between the weight-
sensing plates— there might be cases where items lay on more than one plate. In
those scenarios, looking at the individual plate scale would yield erroneous weight
difference values. Instead, I aggregate all weight plates in each shelf and detect
events at the shelf level. This also makes the event detection more robust to light
items laying on more than one plate —which might go undetected at each individual
plate, but would still provide a big enough change on the aggregate moving variance
and mean. See Figure 5.3, which shows the shelf aggregated weight data along with

the weight moving variance, mean and the events detected.

Mathematically, let wy, define the weight on the p™" weight plate on shelf s at

discrete time n. I compute the shelf’s aggregated weight as:

wy = Zp w;"ﬁp (5.1)

Then, the shelf’s aggregated moving mean and variance are, respectively, 2 and

n.

vy

1 n+Ny
= : 5.2
b= N >l (5:2)

t=n—Ny

1 n+Ny
n t t|2

=— - 5.3
e I LR (53)

where N, is the sliding window half-length in samples, which corresponds to 0.5s in

our implementation (2N, + 1=61).

An event is detected according to Equations 5.4:

Event begins on shelf s: ! >¢,, Vt € [ny, ny+Ny) (5.4a)
Event ends on shelf s: v/ <¢,, Vte€ (n.—Ny, n. (5.4b)
Temporal consistency: mn, > ny, (5.4c)

where Nj, and N; correspond to the minimum length the weight variance has to
exceed or fall short of the threshold ¢, in order to detect the beginning and end

of an event. Based on some initial experiments I empirically set the values to
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N, =N;=30 (0.5s) and £,=0.01kg?. Once an event has been detected, the Weight
Change Event Detection module determines the event weight difference Ay and the

location —set of weight plates {p®}— according to Eq. 5.5:

Event weight difference: Ap = ple — pl® (5.5a)

Event location: L = {p® : |ugs — pit| > eu} (5.5b)

where ¢, indicates the minimum weight contribution of a single plate in order to
be included in the event, which I set to ¢, =5g. Once the event weight difference
Ay is determined, this module further computes the event weight distribution —set

of weight contributions {A,uZJp}— according to Eq. 5.6

Ne _ /M
Event weight distribution: D = {A,uzfp : Z| Hop — Hop } (5.6)

Ne _ ,,M
P’ | Hospr — s pr

I define Equations 5.5a, 5.5b and 5.6 as the output of the Weight Change Event
Detection block (as seen in Figure 5.2). I leverage these definitions in Weight change-
based item Prediction (Sec. 5.2.2) and Location-based Item Prediction (Sec. 5.2.1).

5.1.5 Vision event extraction

Understanding customer—item interactions and identifying the products picked from
or returned to a shelf from video streams is very computationally expensive (espe-
cially for higher camera densities). For this reason, FAIM only saves a small buffer
of recent history and uses the Weight Change Event Detection trigger from Section
5.1.4 to start analyzing the images. For put back events I directly analyze the buffer
as soon as an event is detected, whereas for pick up events I delay the vision anal-
ysis until the oldest frame in the buffer coincides with the event trigger, n. from
Equation 5.4b.

The Vision Event Extraction pipeline is divided in two sequential tasks: Vision
Event Preprocessing and Product Detections Spatial Selection. The former gathers

different sources of visual evidence and is composed of the Human Pose Estimation,
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Figure 5.4: Human pose estimation provides us an estimate of the location of the cus-
tomer’s hand, where the visual classifier will look for items (a). I also apply background
subtraction to the original image to remove detected items present around the hand (b),
such as the objects remaining on the shelf.

Background Subtraction and Product Detection & Classification modules. The lat-
ter then aggregates all the information and determines which object detections to
keep or reject based on the customer’s hand location (See Figure 5.4). As the out-
put of the Vision Event Extraction pipeline, those detections together with their
associated product probabilities, are fed into the Vision-based Item Identification

module (Sec. 5.2.3) which tries to determine what product was picked.

Vision Event Preprocessing

Ideally, this step should only be comprised of Product Detection & Classification.
However, visual object classifiers, such as [41, 85|, provide a set of (location, object
class) for anything found on an image (i.e., they would also detect all products on
the shelves). In order to focus just on the item that was picked, the Vision Event
Preprocessing takes additional steps, as shown in Figure 5.2. On the one hand,
it performs Human Pose Estimation, a popular research topic in the Computer
Vision literature which tries to localize the joints of each person. There are many
works in this domain such as [10, 12, 75, 120] which, through different approaches,
are all quite mature and robust to varying lighting conditions, clothing and even
substantial occlusion. On the other hand, leveraging the fact that cameras are
stationary, Background Subtraction techniques such as [40] can be used to "hide"

all the products that remain on the shelf and therefore focus the attention of the
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6 - Cling Wrap (=168, 75g —— 15 - Palmolive Ultra Strenght dish liquid (4=326.70g, o=1.00g) 24 - Sanitex Vinyl Gloves (s 33 - Liquid Plumr (4=1123.50g, =10.61g)

7 - Reynolds Wrap (= 16 - Glade scented Candel (4=344.10g, o- 25 - Fabric Febreeze (:=575.50g,
8 - Gallon Freezer (1« 193 g, =16.360) ——— 17 - Heavy Duty Aluminium Foil (u=378.25g, 7=8.920) 26 - Fabuloso Cleaner (:=684.50g, 9
9 - Premium paper towels (1=201.00g, 0=2.940) 18 - Large Drawstring Trash Bags (4=401.50g. 0=1.00g) 27 - Pine-sol Muti-surfaces (4=766.50g, o=1.00g)

s G

Figure 5.5: Weight distribution of each product used in our experiments.

visual classifier only on the moving foreground, where it can find the item being

taken or returned.

Product Detections Spatial Selection

From the skeleton of the customers, the location of their wrists represents a simple-
yet-effective attention mechanism: by ignoring any detections with centroids further
away from the hand than a given threshold, FAIM eliminates most detections of
the object classifier that do not correspond to the item the customer is picking
or putting back. I call this threshold Rf, for each camera ¢, and pick its value
empirically based on the camera—shelf distance. This spatial selection can be very
useful to complement Background Subtraction when there is more than one customer
moving in the scene or when the customer interacting with the shelf has products

on the other hand which they had previously picked.

5.1.6 Inventory prior knowledge

FAIM relies on three sources of information to produce an accurate estimate of what
item was returned or taken from a shelf by a customer. In order to do so, the system
needs to be informed about certain properties of each product. These models can be
categorized based on the source of information they provide: item layout (product

location), weight and appearance model.

Item layout model

Item layout is a mapping between each product and their —initial- location in the
store. The granularity or resolution of this layout could dramatically vary due to

different factors, such as store size, complexity of the layout or even time and cost
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associated with manual annotation. Let Z represent the set of products in the
inventory and ¢ € Z be any particular product (e.g., Scotch Brite sponge, Fabric
Febreeze, etc.). In a generic way, item layout can be defined as a function [ (-) —
{i € T} that returns the set of products expected to be found at any query location.
The resolution of the item layout can then be defined as the smallest change in
location which yields a different value of [. Given the narrow width of our weight
plates, the highest resolution considered in this chapter is the plate level: T constrain

the query location to a given shelf s and plate p such that [ (-) can be rewritten as:
lsp ={i € T | product i is stocked at plate p on shelf s} (5.7)

Where |l5,| is the total number of items at plate p on shelf s. This way, I can
simulate lower spatial resolutions by recording the item layout at virtual plates p/
that aggregate multiple real plates, e.g., a5y = @sp, U G5 p, U asp, (I call p’ a bin of
width 3). I evaluate the impact of three different levels of item layout granularity
—plate, half-shelf and shelf