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Abstract 
 Pulmonary arterial hypertension (PAH) remains a deadly and rare disorder of the 

pulmonary vasculature. A combination of vasoconstriction and cellular proliferation of 

the pulmonary arterial lumen results in increased mean pulmonary arterial pressure, 

straining the right heart and eventually causing heart failure. Despite the development of 

a wide range of pharmaceutical treatments for PAH, median survival of this condition 

remains a paltry seven years. Treatment guidance for PAH depends significantly on a 

clinician’s ability to assess their patient’s risk of mortality, but all risk assessment 

methods remain limited in their accuracy and usability. 

 This dissertation examines the ways in which risk assessment can be used to 

improve clinical decision science related to pulmonary arterial hypertension, then 

explores new modeling methodologies to improve upon current risk assessment 

standards. Chapter 1 discusses the background of challenges related to clinical 

decision science, specific to pulmonary arterial hypertension. Chapter 2 examines how 

risk assessment tools can be used to improve the efficiency of clinical trials for 

pharmaceutical treatments of PAH. Chapter 3 explores how improved risk stratification 

can reveal differences in treatment response between low and high-risk patients. 

Chapter 4 examines how novel machine learning methodologies can be employed to 

improve PAH risk assessment tools. Finally, Chapter 5 studies the potential use of a 

novel physiological model of right ventricular energetics as a means of improving clinical 

understanding of right heart failure.  
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Chapter 1 - Background 

Need for Improvements in Clinical Decision Science 
In 2000, the landmark publication To Err is Human: Building a Safer Health 

System, made two things abundantly clear: 1) even the best clinician is no better than 

the healthcare system they must function within, 2) bad systems lead to bad 

outcomes.(1) Although To Err is Human was published more than 20 years ago, the 

lessons from that report could not be more relevant. A recent meta-analysis determined 

that medical errors result in 22,165 preventable deaths per year.(2)   

While medical errors are often thought of as obvious, egregious mistakes such 

as improper medication dosing or performing surgery on the wrong limb, the definition of 

a medical error allows for several shades of nuance. A medical error is deemed any 

preventable adverse effect of medical care.(2) A clinician may make what they believe 

is a reasonable decision for a patient that is ultimately poor because the severity of the 

patient’s disease cannot be readily assessed. Further, in a clinical environment where 

time is of the essence, inconvenient clinical tests can contribute to poor decision-

making. The cost of poor clinical decisions extends even to the design of clinical trials, 

as 50% of drugs fail their Phase 3 clinical trial, at enormous costs to pharmaceutical 

companies and the patients that depend on new treatment development.(3) 

As the book Improving Outcomes with Clinical Decision Support: An 

Implementer’s Guide astutely proposes, clinical decision support is all about “getting the 

right information to the right person at the right point in workflow in the right intervention 
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format through the right channel”.(4) This dissertation specifically focuses on one aspect 

of this process, which is the right information. To take this concept a step further, this 

dissertation proposes that automated and validated interpretations of data derived from 

computational models are necessary to obtaining the “right information” and for 

improving the clinical decision-making process in the 21st century. 

The need for an automated interpretation of clinical data is obvious: the 

availability of medical data continues to grow exponentially while a clinician’s available 

time continues to shrink. Current estimates for the rate of growth of healthcare data is in 

the range of pentabytes (i.e. 1015 bytes) per year, while clinicians surveyed between 

2013-2016 spent, on average, 15-25 minutes face-to-face with their patients.(5; 6) 

Simply put, no clinician has the time to synthesize important findings from millions of 

patients across thousands of variables in the short time they have available for 

assessments. 

Currently, there exist two schools of thought in terms of how to interpret data 

through modeling systems: 1) using models for knowledge discovery and hypothesis 

generation, and 2) using models to test hypotheses in a simulated fashion. The former 

is the goal of machine learning models, which ultimately attempt to develop a function-

approximate view of the world by, at their core, leveraging the shared information 

between a predictor and the outcome of interest.(7; 8) The latter is the goal of 

mechanistic models, which are built on a solid prior understanding of how the world, or 

in this case human body, functions to study how an outcome will change when a system 

is perturbed.(9) While often viewed as separate, this dissertation proposes novel 
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methods of both modeling paradigms applied to difficult clinical questions, specifically in 

examples of pulmonary arterial hypertension. 

 

Background: Pulmonary Arterial Hypertension 
Pulmonary arterial hypertension (PAH) is a debilitating disorder of the pulmonary 

vasculature.(10) It falls under a subcategory of pulmonary hypertensive disorders (Group 

1 of five different groups), the rest of which have unique diagnoses and are outside the 

scope of this dissertation, but are described briefly in Table 1.1.  

Epidemiological Group Description 
1 • Primary to pulmonary artery 

• Includes idiopathic, heritable, drug-induced etiologies, or 
those associated with connective tissue disorder or 
congenital heart disease 

2 • Caused by left heart disease, resulting in elevations in mean 
pulmonary arterial pressure or pulmonary capillary wedge 
pressure or both 

3 • Caused by lung disease or hypoxemia 
4 • Caused by chronic pulmonary thromboembolism (CTEPH) 

Table 1.1: Epidemiological Descriptions for Types of Pulmonary Hypertension. 
Specifically, Group 1 PAH is diagnosed as hypertension that is isolated to the 

pulmonary arteries (precapillary) and requires the following hemodynamic measures 

(made through right heart catheterization): 1) a mean pulmonary arterial pressure of > 25 

mmHg (although, diagnosis can be made at pressures as low as 20 mmHg, but this 

remains in contention), 2) a pulmonary capillary wedge pressure of < 15 mmHg, and 3) 

pulmonary vascular resistance of > 3 mmHg/(L/min)).(10) Progressive narrowing of the 

pulmonary artery due to both cellular proliferation and vasoconstriction leads to increased 
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afterload on the right ventricle of the heart, causing the right ventricle to hypertrophy and 

eventually fail. There is no known cure for this condition.(10) 

Current conservative estimates of global prevalence of PAH are 15 cases per 

million, with an incidence of 15-50 million people in the United States and Europe, giving 

it the unique status of being a “rare” or “orphan” disease. Within the classification of Group 

1 PAH, idiopathic and heritable etiologies are the most common, followed by multiple 

associated forms related to drug use, human immunodeficiency virus (HIV), and 

connective tissue disorders.(10) 

The cellular pathophysiology of PAH is an incomplete but complex and active area 

of research, involving genetics, epigenetics, and environmental triggers that lead to 

pulmonary vascular remodeling.(11) Multiple cells of the pulmonary vasculature (e.g. 

fibroblasts, smooth muscle cells, myofibroblasts, etc.) are implicated in the progression 

of vascular remodeling, but much of the therapeutic focus has been on pulmonary 

endothelial cells. Three major cellular pathways specific to pulmonary endothelial cells 

become dysfunctional throughout the course of the disease: 1) endothelin, a peptide 

family of vasoconstrictors, 2) nitric-oxide-cyclic GMP (NO-cGMP), a signaling cascade 

that affects smooth muscle relaxation and vasodilation, and 3) prostacyclin, a signaling 

molecule that inhibits smooth muscle cell proliferation and fibroblast growth, as well as 

enhancing vasodilation. The disruption of these pathways results in imbalanced 

endothelial factor release that causes pulmonary arterial vasoconstriction and cellular 

proliferation. All three pathways are currently targeted by pharmaceutical treatments.(10; 

11) 
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Treatment Guidelines and Clinical Management of PAH 
Currently, most clinical treatment options specific to PAH focus on pharmaceutical 

vasodilation of the pulmonary artery and/or reduction of cell proliferation to slow vascular 

luminal thickening. Over 14 pharmaceutical treatments specific to the treatment of PAH 

have been approved by the U.S. Food and Drug Administration (FDA) since 1995, yet the 

growing number of treatment options has not conferred a dramatic improvement in 

prognosis.(12) With modern treatment strategies, current estimates of survival are nearly 

double what they were 20 years ago but remain devastating – median survival is now 7 

years versus 3 years in 1991.(13)  

All PAH medications have significant tradeoffs between efficacy and side effects; 

further, nearly half of these medications are approved based only on their ability to 

improve exercise capacity in patients.(10; 12) More recent PAH drug efficacy clinical trials 

have focused on therapeutic improvements in delaying time to clinical worsening, a 

composite endpoint with varying definitions that typically includes time to first (all-cause) 

death, hospitalization due to worsening PAH, or disease progression (measured as an 

increase in right heart failure symptoms and a reduction in exercise capacity).(12) 

Although the clinical relevance of such a composite endpoint is clear, there remains 

significant debate around how best to define clinical worsening and its relevance to the 

patients’ desires for medications that not only delay their death, but also improve their 

quality of life. Indeed, side effects of certain medications can result in a significant 

reduction in mortality but reduce quality of life drastically. 

Understanding each drug class and its risk-benefit tradeoffs is important for 

providing further context to the challenges of clinical decision science for PAH. As stated, 
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currently three major pathways are targeted by PAH medications: endothelin, NO-cGMP, 

and prostacyclin. 

Targeting of the endothelin pathway is accomplished with endothelin receptor 

antagonists (ERAs), which may target one or both receptor types (A and/or B). 

Ambrisentan, Bosentan, and Macitentan are all oral ERAs approved specifically for the 

treatment of PAH, and all have demonstrated an improvement in time to clinical 

worsening and exercise capacity in randomized, placebo-controlled clinical trials.(14-16) 

Depending on the location of clinical care, treatment with Ambrisentan and Bosentan 

require or strongly recommend regular liver function testing due to increased risk of liver 

damage. Macitentan can cause significant reductions in blood hemoglobin, so clinical 

monitoring of red blood cell count is required.(10) 

Targeting of the nitric oxide cyclic-GMP (NO-cGMP) pathway is accomplished with 

phosphodiesterase type 5 inhibitors (PDE-5i) or soluble guanylate-cyclase (sGC) 

stimulators.(11) Sildenafil, Tadalafil, and Vardenafil, are all oral PDE-5is approved 

specifically for the treatment of PAH, with significant pulmonary vasodilation effects.(17-

19) Riociguat is the only sGC currently approved for PAH.(20) Clinical trials for these 

medications have been short (12-16 weeks) and primarily focused on improvements in 

exercise capacity, with some favorable results shown for time to clinical worsening during 

these short-term trials, but no statistical significance.(17-19; 21) However, vasodilatory 

effects of these medications are short-lived and medications must be taken two or three 

times a day. Side effects, including syncope, flushing and epistaxis (i.e. nosebleeds), are 

largely mild to moderate, though hypotension is a significant concern at high dosages. 
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Further, although combination therapy is desirable for synergistic effects, the combination 

of sGCs and PDE-5i is contraindicated due to the risk of significant hypotension.(10; 22) 

Finally, the prostacyclin pathway is targeted through stable analogues of the 

prostacyclin compound (i.e. prostanoids) as well as through prostacyclin receptor 

agonists.(11) These medications come in a wide variety of delivery routes, including oral, 

subcutaneous, intravenous, and inhaled aerosols.  

Intravenous prostacyclin analogues include epoprostenol, the first medication 

indicated for PAH, and Iloprost.(23; 24) Epoprostenol is considered the most effective 

PAH treatment and is still the only monotherapy (i.e. single treatment) to demonstrate a 

significant reduction in mortality.(10; 23; 25) However, epoprostenol requires continuous 

infusion, a permanently tunneled central venous catheter, and continuous cooling. 

Intravenous Iloprost is more shelf-stable at room temperature and appears to be equally 

as effective but this has not been demonstrated in a randomized controlled trial.(26-28) 

All intravenous, continuous infusion prostanoids come with significant risk of infection 

(including sepsis), catheter obstruction, significant reductions in patient quality of life, and 

substantially higher financial cost.(29; 30) Further, pump malfunctions that result in abrupt 

interruption of infusion can result in pulmonary hypertension rebound, with a significant 

risk of sudden RV failure and mortality.(10) Therefore, treatment with intravenous 

epoprostenol is typically reserved for the most severe cases of PAH. More recently, PAH 

centers in Japan have shown significant survival benefits with early i.v. epoprostenol 

treatment, regardless of disease severity, but this patient population is small.(31) 

Subcutaneous delivery of the prostanoid Treprostinil is available, allowing for a 

substantial reduction in risk of systemic infections, but has not been determined to be as 
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effective as intravenous treatment. Further, subcutaneous injection still comes with 

significant local injection site pain (patients describe this as an intolerable burning 

sensation) and reductions in patient quality of life.(30; 32) Oral delivery of prostanoids 

(Treprostinil and Beraprost) are effective primarily for improvements in exercise capacity 

but poorly tolerated, and commonly results in headaches, diarrhea, flushing, and jaw 

pain.(33; 34) Aerosol administration of prostanoids is also available and better tolerated, 

but requires 6-9 inhalations per day.(24; 35; 36) The only oral medication of prostacyclin 

receptor agonist, Selexipag, is a relatively well-tolerated treatment that has demonstrated 

significant improvements in time to clinical worsening in a randomized controlled trial, but 

still has not been shown to significantly reduce mortality.(37) 

Overall, no pharmaceutical treatment for PAH can fully reverse or halt vascular 

remodeling or disease progression. Combination therapies are an attractive strategy for 

targeting multiple disrupted vasoconstrictive and mitogenic pathways, but come with 

increased risk of drug intolerance/sensitivity and other more severe side effects.(10) 

Further, studies of upfront combination therapy with epoprostenol have not shown 

significant benefits in time to clinical worsening.(38; 39) There is evidence to suggest a 

significant benefit in exercise capacity and quality of life using sequential add-on of oral, 

intravenous, or inhaled therapies(35; 36; 40; 41), but only one randomized controlled 

clinical trial has demonstrated a benefit in using combination oral therapy upfront (i.e. for 

treatment-naïve patients).(42) A preliminary pilot study demonstrated significant 

improvements in exercise capacity, hemodynamics, and symptoms of right heart failure 

for severe patients on upfront triple combination therapy, but these results have not yet 

been demonstrated in a randomized clinical trial.(43)  
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Other strategies for clinical management of PAH progression and symptoms 

include the use of diuretics to reduce venous congestion resulting from progressive RV 

failure and oxygen administration.(10) Calcium channel blockers (CCB) are also 

prescribed, but only for idiopathic PAH patients deemed “vasoreactive”, meaning the 

patients have a significant, acute reduction in mean pulmonary arterial pressure during 

inhaled administration of nitric oxide. This constitutes only an estimated 10% of IPAH 

patients, roughly 0.5% of Group I PAH patients overall, but these patients do remarkably 

well on CCB therapy.(44; 45) Other commonly used off-label treatment strategies, such 

as oral anticoagulant therapy, do not have clear evidence of improving clinical 

outcomes.(10) Finally, there is still a significant degree of interpatient variation in disease 

progression, despite modern-day clinical management strategies. Seemingly stable PAH 

patients can rapidly decompensate for reasons unknown to clinicians.(46)  

Causes of rapid decompensation in PAH patients are not well understood but have 

been linked to ischemia in the left and/or right heart, especially caused by compression 

of arteries by enlarged pulmonary arteries, as well as ventricular and supraventricular 

arrhythmias.(47) Despite this, a general strategy of treating with antiarrhythmics, has not 

shown improvements in PAH clinical outcomes, though targeted therapies for patients 

with arrhythmias as a comorbidity is recommended. Further, an estimated 50-60% of PAH 

patients die from other systemic causes that are related to or worsened by their pulmonary 

hypertension, including acute renal failure (can be brought on by right ventricular 

dysfunction, which causes renal hypoperfusion and venous backflow), sepsis (in some 

cases, caused by the very intravenous treatment intended to manage the patient’s PAH), 

or respiratory diseases such as interstitial lung disease or pneumonia.(48) Therefore, to 
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improve clinical outcomes, there is a critical need to identify patients who are most 

vulnerable to acute stressors, such as infection and physical exertion, allowing for timely 

intervention and treatment elevation.  

Current Methods for PAH Prognosis and Risk Estimation 
 

As knowledge of the mechanisms that lead to early death are currently limited, 

optimization of a PAH treatment plan cannot yet be assessed on a causal basis. Due to 

this knowledge gap, treatment guidance through risk assessment is considered the best 

clinical strategy at this time.(10) The 2015 European Respiratory Society guidelines 

provide loose recommendations for risk assessment, based on a number of clinical 

variables, which is reproduced in Table 1.2. 
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Determinants of prognosis 
(estimated 1-year mortality) 

Low Risk 
(<5%) 

Intermediate Risk 
(5-10%) 

High Risk 
(<10%) 

Clinical signs of right heart failure Absent Absent Present 
Progression of symptoms None Slow Rapid 

WHO Functional Class I,II III IV 
Six Minute Walk Distance (m) > 440 165-440 < 165 

Cardiopulmonary exercise testing 
Peak VO2 (mL/min/kg) 

(or % predicted) 
> 15 (>65%) 11-15 (35-65%) < 11 (<35%) 

VE/VCO2 slope < 36 36-44.9 >45 
Circulating Biomarkers 

Plasma Brain Natriuretic Peptide (ng/L) <50 50-300 >300 
Plasma NT-proB-type Natriuretic Peptide 

(ng/L) 
<300 300-1400 > 1400 

Imaging (Echocardiography) 
Right atrial area (cm2) < 18 18-26 26 

Presence of pericardial effusion None None or Minimal Present 
Hemodynamics 

Right atrial pressure (mmHg) < 8 8-14 > 14 
Cardiac Index (L/min/m2) > 2.5 2.0 – 2.4 < 2.0 

Mixed venous oxygen saturation (%) > 65 60-65 <60 
Table 1.2: 2015 European Respiratory Society Guidelines for Pulmonary Arterial Hypertension 

Risk Assessment. 
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Briefly, ERS risk assessment depends on echocardiographic, hemodynamic, and 

circulating biomarkers, as well as functional metrics of the patient’s symptoms and 

exercise capacity. Within the echocardiographic parameters, right atrial area is a predictor 

of mortality, as increases in area demonstrate increased venous congestion and 

worsening right heart failure.(49). Pericardial effusion, or fluid within the pericardium, is 

associated with increased mortality in PAH, but the causal link is not well understood.(50) 

Within hemodynamic parameters, cardiac index, which is cardiac output normalized by 

body surface area, indicates right heart function in terms of perfusion, while right atrial 

pressure indicates right heart function in terms of venous congestion. Mixed venous 

oxygen saturation indicates when cardiac index is insufficient, as it demonstrates a 

reduced capacity to meet tissue oxygenation requirements and may be more informative 

than cardiac index itself.(51) With regards to circulating biomarkers, brain natriuretic 

peptide (BNP) is a cardiac neurohormone that indicates heart stress and increased 

pressure, resulting in a series of physiological effects that attempt to reduce heart strain 

via the renal, adrenal, vascular and cardiac systems. BNP’s prohormone form, N-terminal 

pro brain natriuretic peptide (NTproBNP), while inactive, can also be used to indicate 

strain on the heart.(52)  

Finally, both maximal and submaximal tests of exercise capacity, including the six-

minute walk test and cardiopulmonary exercise test (CPET), are used as predictors of 

mortality and further indicate heart function. The six-minute walk test is extremely 

convenient to administer, requiring only for a patient to walk a 3-meter track repeatedly 

for the six-minute time period. However, it is somewhat contentious in its clinical 

relevance due to its submaximal nature – a patient’s effort level can vary, and some 
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patients require oxygen to complete the test at all, leaving interpretation of the distance 

unclear. CPET, a maximal exercise test, is less convenient to administer, but provides 

two predictive values of mortality: peak oxygen uptake (VO2), which is lower in higher risk 

PAH patients due to lower cardiac output, and minute ventilation to carbon dioxide 

production (VE/VCO2), which is higher in higher risk patients, due to alveolar 

hypoperfusion.(53)  

Generally, no single measure from these recommended variables is considered 

perfect and the guidelines recommend measuring multiple clinical variables to assess risk 

but give no indication of how many or which variables are the most crucial. Further, there 

is a severe lack of consistency for which clinical variables are monitored, given their 

relative expense and convenience. Cardiopulmonary exercise testing and 

echocardiography are rarely used for routine assessment due to expense and 

inconvenience, and hemodynamics are measured on long time scales due to their 

invasive nature. 

These recommendations are meant to guide clinicians in identifying if their patient 

is a low, intermediate, or high risk of mortality within the next year. Then, given an 

identified risk level, clinicians are meant to follow the treatment guidance flowchart, shown 

in Figure 1.1.(10)  There are no specific recommendations for how to treat PAH patients 

with one or more comorbidities, which is common, and there is evidence to suggest that 

risk assessment tools are less reliable in these patients.(54)
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Figure 1.1: 2015 European Respiratory Society Treatment Algorithm.
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While the guidelines maintain that a comprehensive assessment of multiple clinical 

measures is required for accurate risk estimation, the recommendations overall do not 

recommend a more specific or quantitative strategy and they specify that risk estimation 

is still largely up to the clinician’s expert opinion. In fact, many clinicians eschew 

multivariate risk assessment altogether and rely on their own individual clinical 

experiences or entirely on a qualitative assessment of the patient’s heart failure 

symptoms, known as their New York Heart Association (NYHA) Class (Table 1.3).(55)  

New York Heart Association Class Patient’s signs and symptoms 
I No limitation of physical activity. Ordinary 

activity does not cause undue fatigue, 
palpitation, or dyspnea (shortness of 

breath). 
II Slight limitation of physical activity. 

Comfortable at rest. Ordinary physical 
activity results in fatigue, palpitation, 

dyspnea (shortness of breath). 
III Marked limitation of physical activity. 

Comfortable at rest. Less than ordinary 
physical activity causes fatigue, 

palpitation, or dyspnea. 
IV Unable to carry on any physical activity 

without discomfort. Symptoms of heart 
failure at rest. if any physical activity 
undertaken, discomfort increases. 

Table 1.3: New York Heart Association Functional Classification. 
 

NYHA class is defined on a very simple scale of I to IV, where NYHA class I 

patients are considered the least severe (with greatest functional and exercise capacity) 

and class IV are considered the most severe (with extremely poor functional and exercise 

capacity). However, it has been demonstrated in several studies that NYHA class alone 

is too broad to determine treatment strategies, and as a result, patients in class II and III 

are likely to be both undertreated and overtreated.(56; 57)  
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Further, the treatment guidance flowchart, as reproduced in Figure 1, is 

nonspecific about upfront treatment strategies for low and intermediate risk patients 

(suggesting either oral combination therapy or monotherapy, as the clinician sees fit). In 

2018, Frost et al determined through a retrospective analysis that patients of all risk levels 

equally benefit from upfront oral combination therapy, but used a risk tool (REVEAL [1.0], 

described in detail below) that is now considered outdated.(58) Ideally, risk assessment 

would be conducted in a quantitative, serial fashion to determine if treatment response is 

adequate, but the guidelines are also nonspecific on what constitutes an adequate clinical 

response to treatment.  

In lieu of a standardized quantitative risk assessment, several international 

researchers have developed risk tools based on the ERS guidelines to create “risk 

calculators”. These calculators aim to stratify patients into a more accurate low-, 

intermediate-, or high-risk group based on an estimated probability of mortality within the 

next year. Current popular tools include three risk calculators developed based on registry 

data: Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary 

Hypertension (COMPERA)(59), the French pulmonary hypertension registry score 

(French)(60), and the United States Registry to Evaluate Early and Long-Term PAH 

Disease Management (REVEAL [1.0] and REVEAL 2.0)(61; 62). Each calculator is 

described in detail below. A comparison of each calculator in terms of variables used, 

clinical values to determine effect on predicted risk (improves/lowers risk, 

worsens/increases risk, or greatly worsens/greatly increases risk) is shown in Table 1.4. 

Generally, the cut-offs for these values are very similar across risk calculators and have 
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been derived subjectively, not optimized with a more objective or quantitative 

methodology.



 18  

 

Table 1.4: Comparison of Contemporary Pulmonary Arterial Hypertension Risk Scores. 

Clinical Variable Effect on Predicted 
Risk 

COMPERA French REVEAL REVEAL 2.0 

mRAP (mmHg) Improves <8 < 8 - - 
Worsens 8-14 - ≥20 ≥20 

Greatly Worsens >14 - - - 
WHO Functional Class Improves I/II I/II I* I 

Worsens III - III III 
Greatly Worsens IV - IV IV 

Six Minute  
Walk Distance (m) 

Improves >440 >440 ≥440 ≥320* 
Worsens 165-440 - < 165 < 165 

Greatly Worsens <165 - - - 
NTproBNP (ng/L) Improves <300 <300 - <300* 

Worsens 300-1400 - - - 
Greatly Worsens >1400 - - ≥ 1100 

BNP (ng/L) Improves <50 <50 < 50 < 50* 
Worsens 50-300 - > 180 ≥ 200-800 

Greatly Worsens >300 - - ≥800 
Cardiac Index 

(L/min/m2) 
Improves ≥ 2.5 ≥ 2.5 - - 
Worsens 2.0-2.4 - - - 

Greatly Worsens <2.0 - - - 
Mixed Venous 

Oxygen Saturation 
(%) 

Improves >65 >65 - - 
Worsens 60-65 - - - 

Greatly Worsens <60 - - - 
Pericardial Effusion Worsens -  Present Present 

PVR 
(Wood units) 

Improves - - - < 5 
Greatly Worsens - - > 32 - 

(Sitting) Heart Rate 
(bpm) 

Worsens - - >92  >96  

Systolic 
 Blood Pressure 

(mmHg) 

Worsens - - <110 mmHg <110 mmHg 

eGFR 
(mL/min/1.73 m2 or 
renal insufficiency) 

Worsens - - Insufficiency 
present 

< 60 or 
Insufficiency 

present 
% predicted DLCO Improves - - ≥ 80 - 

Worsens - - ≤ 32 < 40 
All-cause 

hospitalization 
Worsens - - - In last 6 months 

Age + Gender Greatly Worsens - - Male and 
> 60 yrs 

Male and 
> 60 yrs 

PAH Etiology Worsens   Associated with 
Connective 

Tissue Disorder 

 

Greatly Worsens   Portal or Heritable 
Pulmonary 

Hypertension 

Portal† or 
Heritable 

Pulmonary 
Hypertension 
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COMPERA was developed in 2017, using data from the Comparative, Prospective 

Registry of Newly Initiated Therapies for Pulmonary Hypertension registry.(59) The score 

uses six variables: cardiac index, New York Heart Association functional class, mean right 

atrial pressure, N-terminus pro brain natriuretic peptide (NTproBNP) or its active hormone 

product, brain natriuretic peptide (BNP), mixed venous oxygen saturation, and six-minute 

walk distance. For each variable, patients are given a score of one (1), two (2), or three 

(3), where three indicates the highest risk for that variable and one indicates the lowest 

risk for that variable. The average, rounded score (round-up at >= 0.5, round-down at < 

0.5) across all variables is then taken for the overall score. Therefore, patients can have 

an overall COMPERA risk score of one (low risk), two (intermediate risk), or three (high 

risk). In its original publication, the score was validated using Kaplan-Meier curves and a 

log-rank test to determine statistically significant differences between low, intermediate, 

and high risk. Further, COMPERA has been validated in the United States Registry to 

Evaluate Early and Long-Term PAH Disease Management observational study (i.e. 

REVEAL registry), with a reported c-statistic of 0.62 (N = 2529).(61) 

The French score was developed in 2017, using data from the French pulmonary 

hypertension registry.(60) The score uses four variables: cardiac index, mean right atrial 

pressure, New York Heart Association Class, and six-minute walk distance. Patients are 

ranked on a scale from zero (0) to four (4), with one-point increments, where the highest 

score indicates the least risk (i.e. greatest number of low-risk features) and lowest score 

indicates the most risk (i.e. fewest number of low-risk features). The original publication 

of the score does not specifically recommend a simplified grouping for low, intermediate, 

and high risk, but suggests that survival between those with a score of three and score of 
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four may not have significant differences in survival. Original validation of the score 

demonstrated that it was a significant predictor of transplant-free survival in a Cox 

proportional hazards model both at time of PAH diagnosis (N = 1591, p < 0.001) and at 

first evaluation within one year (N = 1017, p < 0.001). The model has been notably 

validated in the following retrospective studies: 1) REVEAL registry, as a predictor of one-

year mortality (c-statistic = 0.64, N = 2529),(61) 3) the Assessing the Spectrum of 

Pulmonary Hypertension Identified at a Referral Center MRI database (ASPIRE) as a 

predictor of one-year mortality (c-statistic = 0.697, N = 219).(63) The model has been 

extended to use an optional fifth variable, mixed venous oxygen saturation, and has been 

converted to a non-invasive form that uses no hemodynamics, but instead uses the 

following three variables: NTproBNP, NYHA functional class, and six minute walk 

distance. However, for the sake of comparing scores within this dissertation, only the 

original French score, which has been validated more thoroughly, will be used. 

REVEAL [1.0] was developed in 2015, using data from the United States Registry 

to Evaluate Early and Long-Term PAH Disease Management observational study.(62) A 

depiction of the calculator is shown in Figure 1.2.  
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Figure 1.2: REVEAL [1.0] Risk Calculator for Pulmonary Arterial Hypertension. Courtesy of 
Raina and Humbert 66(62) 
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It was developed by fitting a multivariate Cox proportional hazards regression to 

one-year survival data and then converting the exponential of the hazard ratio into a 

linear, additive equation (see Equation 1 in section Risk Modeling Methodology for further 

details). Cut-points for each variable are identified to either add or subtract a specific 

number of points from the overall risk score, based on the exponential value of the hazard 

ratio. REVEAL [1.0] uses 13 clinical variables: sex, age, clinically identified “renal 

insufficiency”, New York Heart Association functional class, systolic blood pressure 

(mmHg), sitting heart rate, six-minute walk distance, NTproBNP or BNP, presence of 

pericardial effusion, percent predicted diffusing lung capacity for carbon monoxide (DLCO), 

mean right atrial pressure and pulmonary vascular resistance. Using REVEAL [1.0], 

patients can receive a risk score of zero (0) to eighteen (18), with one-point increments, 

where a score of 0 indicates the lowest risk of death within the next year, and a score of 

18 indicates the highest risk of death within the next year. According to the original 

publication, it’s appropriate to use REVEAL [1.0] to more simply group patients as low 

risk (REVEAL [1.0] <= 6), intermediate risk (REVEAL [1.0] 7-8) or high risk (REVEAL [1.0] 

> 8). 

REVEAL 2.0 was developed in 2019, also using data from the United States 

Registry to Evaluate Early and Long-Term PAH Disease Management observational 

study.(61) It is an update on the previously published REVEAL [1.0] calculator. A 

graphical depiction of the REVEAL 2.0 calculator is shown in Figure 1.3.  

 



 23  

 

 

Figure 1.3: REVEAL 2.0 Risk Calculator for Pulmonary Arterial Hypertension. Courtesy of 
Benza et al 61 
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Specifically, REVEAL 2.0 uses the same 13 clinical variables as REVEAL [1.0], 

but with slight differences in the cut-points used and the addition of a fourteenth variable: 

recent hospitalizations from any cause in the last 6 months. Using REVEAL 2.0, patients 

can receive a risk score of zero (0) to twenty-three (23), with one-point increments, where 

a score of 0 indicates the lowest risk of death within the next year, and a score of 23 

indicates the highest risk of death within the next year. REVEAL 2.0 is one of the most 

accurate PAH risk calculators currently used, with a strong ability to discriminate survival 

differences: patients with a REVEAL 2.0 score of zero have a one-year survival estimate 

of greater than 95%, while those with scores of more than 13 have a less than 50% 

chance of survival. One-year and five-year survival curves for each risk value (from a 

REVEAL 2.0 score of zero to a score of >13) are shown in Figure 1.4.   
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Figure 1.4:  Survival Curves (One-year and Five-Year) by REVEAL 2.0 Risk Score. Courtesy of 

Benza et al 61 
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According to the original publication, it’s appropriate to use REVEAL 2.0 to more 

simply group patients as low risk (REVEAL 2.0 <= 6), intermediate risk (REVEAL 2.0 7-

8) or high risk (REVEAL 2.0 > 8). REVEAL 2.0 has been validated in the REVEAL registry, 

with a c-statistic of 0.76 (N = 2529) and in the Pulmonary Hypertension Society of 

Australia and New Zealand (PHSANZ) registry, with a c-statistic of 0.74 (N = 1011).(64) 

The Pulmonary Hypertension Outcomes Risk Assessment (PHORA) model was 

published in 2019 and was the first attempt to design a machine-learning model for PAH 

risk stratification. The variables and cut-points were taken directly from REVEAL 2.0, and 

data from the REVEAL registry was used to learn a tree-augmented naïve Bayesian 

network, which is described in more detail later in the chapter. Briefly, it is a machine-

learning model that learns an acyclic directed graph, modeling the impact of both discrete 

variables in the prediction of the outcome but also the interaction of variables. The 

network is shown in Figure 1.5.  
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Figure 1.5: Pulmonary Hypertension Outcomes Risk Assessment (PHORA) Tree-Augmented 
Naive Bayesian Network.  
 

PHORA’s cross-validated performance in the REVEAL registry was reported as a 

c-statistic of 0.80 (versus REVEAL 2.0’s c-statistic of 0.76), and it has been validated in 

the COMPERA registry (c-statistic = 0.74) and Pulmonary Hypertension Society of 

Australia and New Zealand (PHSANZ) registry (c-statistic = 0.80).(65) To date, there has 

been no further exploration of optimizing the variables used in the model (especially, 

reducing required number of variables), optimizing cut-points, or optimizing network 

structure. Further, there’s been no exploration on using the PHORA model for hypothesis 

generation for novel insight regarding physiological and/or demographic interactions.  
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Overall, each calculator uses a combination of hemodynamics, demographics, 

and/or laboratory values to assign a risk level to a patient based on predicted mortality, 

and is generally calibrated such that low risk reflects less than 5% one-year mortality rate, 

intermediate risk reflects 5-10% one-year mortality rate, and high risk reflects greater than 

10% one-year mortality rate.(59-61) However, there is currently no single, agreed-upon 

tool to determine risk and all common clinical risk tools based on registry data have 

limitations in their accuracy (as determined through c-statistic and receiver operator curve 

analysis) and levels of validation.  

Adoption of risk tools, instead of clinical gestalt or NYHA class, is slow for a number 

of reasons: ambiguity in which tool to use among multiple published tools, low confidence 

in the (lack of) sophistication of the tool, and an inability to measure all required variables 

in a timely manner.(66) While a risk tool that considers a large number of variables may 

be more accurate than most other calculators, time is of the essence for clinicians and 

tools must be convenient and intuitive to use, yet not overly simplistic. Risk scores that 

require additional patient testing beyond the standard routine measures are time-

consuming, costly, and not always available. Therefore, future risk tools should attempt 

to reduce barriers to entry by relying on as few variables as possible, more intelligently 

handling missing variables and improving upon sophistication while avoiding purely 

“black-box” solutions. Further, to ensure clinical adoption, risk tools should reflect an 

accurate physiological understanding of PAH mortality and allow for explainable 

interpretations as to why a patient is scored in one way or another. 
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Novel Applications of PAH Risk Scoring 
 

In addition to improving treatment strategies, a more accurate risk assessment 

could be applied to improve many other aspects of PAH clinical science.  

 First, PAH clinical trials designed to demonstrate drug efficacy have become 

increasingly burdensome, as so-called “event-driven” trials are required to demonstrate 

that a drug significantly reduces the progression of the disease.(12) These event-driven 

trials observe patients over a long period of time (averaging three years or more), waiting 

for a patient to display worsening symptoms of their PAH, and are statistically powered 

by the number of events observed overall. To achieve enough events to adequately 

power a study, upwards of 500 patients must be enrolled. However, there is evidence that 

suggests enrolling patients based on their risk of clinical worsening would allow more 

events to be observed in a shorter time frame, improving trial efficiency, and reducing 

ethical concerns of long-term treatment with placebo.(67) This strategy is referred to as 

by the U.S. Food and Drug Administration (FDA) as “prognostic enrichment”. 

Demonstrating the feasibility of this will be the focus of Chapter 2. 

Second, as stated in the section, Treatment Guidelines and Clinical Management 

of PAH, it is not well-understood whether PAH patients who have never received a PAH 

specific therapy (i.e. treatment-naïve) should begin on a regimen of multiple oral drugs 

that target different cellular proliferation/vasoconstriction pathways (i.e. combination 

therapy) or would still be well-served on a single oral medication. This question could be 

answered by a more accurate risk stratified method, as there is a potential benefit-risk 

tradeoff in using multiple medications to slow the progression of PAH versus 
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overtreatment and increased exposure to drug side effects. Demonstrating this possibility 

will be the focus of Chapter 3. 

 As there are many aspects of PAH clinical decision science that would benefit from 

an improved prognostic score, this dissertation will now discuss in detail novel methods 

for improving on PAH risk modeling methodology, comparing and contrasting machine 

learning techniques versus more traditional statistical risk models that are currently used. 

Improvement of risk stratification tools with machine learning techniques will be the focus 

of Chapter 4. 

 Finally, novel techniques for physiological modeling can also play a role in 

improving understanding the causal mechanisms by which PAH patients experience 

disease worsening and higher risk of mortality. This will be the focus of Chapter 5. 

Risk Modeling Methodology 
 
 As discussed above, there is a clear need for improved prognostic tools for 

patients with pulmonary arterial hypertension. In this section, current statistical methods 

(i.e. Cox proportional hazards regression models) will be reviewed and compared to 

well-established, but newly applied, machine learning methods. Weaknesses and 

strengths of both are discussed. Specific focus is given to the Bayesian network model 

using discrete variables, as well as the various methods by which variables are selected 

to optimize such a model. All of the discussed methods for Bayesian network modeling 

and feature selection are applied in Chapter 4. 
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Cox Proportional Hazards Regression Models 
 
 Death is an event with obvious time-dependent importance. Predicting if a patient 

will die in a static, pre-specified timeframe (e.g. six months, one-year, five-years, etc) can 

be considered a binary event. However, further context can be included in a dynamic time 

frame by representing the event as a data “tuple” of presence or absence of event and 

time under observation. Survival analysis is the collection of statistical methods that 

estimate time-to-event and determine the confidence of the estimation or significant 

differences between two or more groups in their estimated probability of survival.(68) 

 Cox proportional hazards regression is a semiparametric method of survival 

analysis that determines whether a hazard (!) is a significant predictor of the time-to-

event, and its effect size is estimated as a coefficient in the following equation: 

"($|&!) = 	 ""($) *+,-!#&!# +⋯+	!$&!$0, ( 1 ) 
 for subject i at time t , ""	is the baseline hazard rate, covariate vector (i.e. vector 

of clinical variables) Xi and covariates 1 through N. (69) 

 Cox proportional hazards models can therefore be univariate (modeling a single 

clinical variable) or multivariate (modeling multiple clinical variables). For the purposes of 

risk modeling, a variable is said to be an “independent predictor” of the event (i.e. death) 

if it maintains its statistical significance in a multivariate model among other predictors. 

However, this is something of a misnomer, as some variables are only significant 

predictors when present in a model that considers another specific predictor or group of 

predictors. Therefore, there is no guarantee that a predictor that is significant in a 

multivariate model is also significant in a univariate model, or vice versa. This is the first 
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of many limitations in Cox proportional hazards regression, as it is not immediately clear 

what the true relationships between predictor variables may be.(68)  

 That said, there are significant benefits in using a parameterized model with such 

strict assumptions when sample sizes are small. Determining the statistical significance 

of an interaction requires an estimated 4-10x the sample size required to detect statistical 

significance of main independent effects, depending on the effect size of the 

interaction.(70; 71) Cox proportional hazards models are therefore less prone to 

overfitting in small sample size situations, provide clear intuitive interpretations of the 

variables that contribute to risk of event, and can make use of censored data. 

Bayesian Network Modeling 
 
 Bayesian networks are probabilistic, graphical models based on Bayes’ theorem, 

which states that the conditional probability of observing event A given event B (i.e. 

posterior probability) is equal to the joint probability of observing event A and B, divided 

by the probability of observing event B(72): 

1(2|3) = %('∩))
%()) = %()|')×%(')

%())  ( 2 ) 

 A Bayesian network therefore uses observed data to estimate the joint probability 

of events A and B and the marginal probability of observing event B to then later predict 

the probability of observing event A given the known status of event B. Clinically, this 

allows a Bayesian network to predict a binary event (i.e. event A), such as death in the 

next year, based on an observed value of a clinical variable (i.e. event B). Of course, 

event B itself can represent the joint probability of observing multiple events, as in, 



 33  

 

accounting for multiple clinical variables. This is considered a multivariate Bayesian 

network versus a univariate Bayesian network. 

A key design element that must be chosen when learning a Bayesian network is 

accurately and efficiently modeling the joint probability of survival and the observed 

clinical variables. If the clinical variables are all assumed to be conditionally 

independent given the survival event, the simplest Bayesian network can be developed: 

the naïve Bayesian network. Graphically, a naïve Bayesian network is depicted as 

shown in Figure 1.6. 

 

Figure 1.6: Depiction of Naive Bayesian Network.  

 In Figure 1.6, the node labeled “C” indicates the parent node of the network. Within 

the context of a clinical prediction model, node C would indicate the predicted outcome 

of interest, such as mortality within the next year. Nodes labeled “A1 “through “An” indicate 

variables used to predict the outcome, which are considered conditionally independent of 

one another based on the parent node C. In other words, a naïve Bayesian network 

assumes that the observation of any variable is based entirely on the outcome, and 

C

A1 A2 An
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variables do not affect one another otherwise. This can also be described mathematically 

by applying Bayes’ theorem, as shown in Equation 3: 

1(4|2#…2-) =
%(.)∏ %02!142!

"#$
%('"…'!)

, ( 3 ) 

where C is again, the outcome of interest, Ai is the ith observed clinical variable, 

P(4|2#…2-) is the conditional (posterior) probability of the outcome given observed 

clinical variables, P(Ai|C) are the conditionally independent probabilities of Ai given the 

outcome C, P(Ai..An) is the marginal probability of all observed clinical variables, and 

P(C) is the prior probability of the outcome.  

Given that clinical variables reflect physiological phenomena and the existence of 

several interdependencies between organ systems, a naïve Bayesian network is likely a 

poor choice for risk modeling assuming an adequate sample size. In fact, a clinically 

relevant example of the weakness of a naïve Bayesian network is provided in the original 

publication on augmented naïve Bayesian structures, Friedman et al, in which a classifier 

for the diagnosis of diabetes is discussed.(72) Assume that the probability of a patient 

having diabetes is high if their glucose levels are high and their insulin levels are low. 

However, in rare instances, a patient may have diabetes but have a normal glucose level 

and a normal insulin level. In this situation, the naïve Bayesian network will greatly 

underestimate the probability of a diabetes diagnosis, as it assumes that two independent 

and unlikely observations given a diabetes diagnosis have been made. In actuality, insulin 

levels and glucose levels are linked. It is not that two independent unlikely observations 

have been made: it is more akin to saying that one unlikely observation given a diabetes 

diagnosis has been made. Allowing for connectivity between these two variables, glucose 

and insulin, will avoid this underestimation. Therefore, the use of more sophisticated 
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versions of Bayesian networks provides a significant opportunity to improve clinical 

modeling of physiological systems.  

Augmented naïve Bayesian networks can learn relationships between clinical 

variables based on observed data, rather than manual implementations of interactions 

(such as those required in Cox proportional hazards models). The differences then lie in 

the tuning of hyperparameters (such as the number of interactions one variable may have 

with other variables) and the algorithm used for learning the interactions. Though there 

are many more versions of Bayesian networks, the focus here now will be on two types 

that are classically used for the task of prediction: tree-augmented Naive Bayesian 

networks, and unrestricted augmented Naive Bayesian networks. Further, two additional 

Bayesian network structure learning methods used for the task of feature selection will be 

briefly discussed: Greedy Thick-Thinning Bayesian Networks and PC Bayesian 

Networks. 

Augmented Naive Bayesian Networks 
Augmented naïve Bayesian networks (ANBNs) are automated extensions of the 

naïve Bayesian network model that aim to learn interactions between variables.(72) There 

are multiple versions of ANBNs, including tree-augmented and unrestricted augmented 

Bayesian networks, each with different means of learning variable interactions and 

specific restrictions for the number of interactions each variable can have. Learning 

variable interactions can increase both the accuracy and knowledge discovery value of a 

naïve Bayesian network, but they come at a cost of potentially overfitting training data 

and consequently, performing poorly on unseen data. Therefore, efforts should be taken 
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to minimize the number of interactions needed to improve model accuracy by choosing 

the “sparsest” model (i.e. fewest connections) that performs best in cross-validation.  

Tree-augmented naïve (TAN) Bayesian networks are a specific extension of naïve 

Bayesian networks that automate the process of learning interdependencies through the 

Chow-Liu algorithm, which initially finds the maximum spanning tree to link together all 

independent variables (i.e. features) prior to learning their relationship with the dependent 

variable (i.e. label or clinical outcome). A maximum spanning tree is a graphical structure 

(depicted in  

Figure 1.7, in red) composed of a root, edges, and nodes, in which the edges are 

chosen to maximize their sum and create an undirected structure where each node has 

exactly one parent.  

 
Figure 1.7: Example of a Maximum Spanning Tree. 

Once the maximum spanning tree is learned, one variable is chosen at random to 

be the root node, by which all directed connections now point away, to ensure an acyclic 

graph. The conditional probability relationships between the predicted outcome and the 
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variables are now learned, by which variables that are not connected via the maximum 

spanning tree are independent conditioning on the outcome. 

TAN Bayesian networks are somewhat inflexible in learning interactions, as they 

require that each variable have at least two parents (except the root node), regardless of 

the relative strength of the interactions. Therefore, to improve model generalizability, 

Bayesian search can instead be used to augment a Naïve Bayesian network. This method 

introduces connections between variables based on improvement of the minimum 

description length (MDL), a score which links variables with high mutual information but 

also penalizes high connectivity (Equation 4).  

789(3|8) = 456$
7 	 |3| −	∑ <=>-1)(?!)0$

!8# , ( 4 ) 
where B is a Bayesian network, |B| is the number of parameters of the Bayesian 

network, D is the training set of N observations of covariate vectors u = <u1…uN>, PB is 

the probability of the network B given the dataset. Therefore, Equation 4 is minimized 

when the likelihood of the network is maximized while the number of parameters (i.e. 

number of connections between nodes) needed to describe the network is minimized. 

This method doesn’t enforce the two-parent rule, as instead the maximum number of 

parents is set as a hyperparameter by the model developer. This increased flexibility in 

connectivity can allow for both sparser models (at most two parents, but not requiring two 

parents) or much more connected models (at most any N parents). In situations where 

unrestricted ANBNs are used as classifiers, links between all variables and the target or 

class variable are forced. However, in learning the structure through the minimum 

description length, structure learning can be its own feature selection process, as links 

between target variables and independent variables are learned (through minimizing 
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MDL) rather than forced. This requires complete case data (i.e. no missing values), which 

is a significant limitation with clinical data.  

Overall, learning an augmented Bayesian network allows for modeling of 

multiplicative effects, such as an increased likelihood of death if both cardiac output and 

mean pulmonary arterial pressure are low in a patient, versus high mean pulmonary 

arterial pressure and high cardiac output, which is more typical in early stages of the 

disease.(10) Lastly, the usability and accuracy of classic statistical methods tools are 

called into question when specific measurements are missing from patients and cannot 

be reasonably imputed.(73) This is a common problem with clinical data where a 

clinician’s time and resources can be very limited. Whereas traditional PAH risk scores 

do not have a clear means of handling missing data, BNs can substitute the most likely 

variable given all others. A further advantage of BNs is their representation with a 

graphical structure. This increases user confidence as the model is not a “black box” and 

interactions between variables, the outcome, and the strength of the relationship can be 

visualized. An example of a TAN Bayesian network is shown earlier in the PHORA model, 

Figure 1.5. 
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Structure Learning Methods for Feature Learning (Greedy Thick Thinning and PC) 
 
 Greedy Thick Thinning (GTT) is a means of both structure development and 

feature learning for a Bayesian network.(74) By using a three-phase sequence (i.e. 

“thickening” and “thinning” phase, proceeded by a “drafting” phase) to learn 

relationships between variables, in which the “thickening” phase establishes 

connections to maximize the joint probability of the structure, and the “thinning” phase 

removes connections to arrive at a minimal independence map. GTT is thought to 

approximate causal inference. Variables that might be correlated through a third, causal 

variable are not connected directly in a GTT structure, but rather connected through the 

third causal variable. This is depicted in 

 

Figure 1.8. 
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Figure 1.8. Greedy Thick Thinning Structure Learning. Reproduced with permission of authors 74 

In 
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Figure 1.8(a), the true causal map is shown. 

 

Figure 1.8(b) shows the graph that would be derived from the Chow-Liu 

algorithm, based on the maximum spanning tree, solved during the “drafting” phase of 

GTT. In this phase, node B and E are strongly correlated, and therefore linked, but this 

first phase cannot determine that nodes B and E are linked causally through node D. 
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Figure 1.8(c) shows the fully connected graph, found during the “thickening” 

phase of GTT, as node E is still dependent on node D given node B. 

 

Figure 1.8(d) shows the final graph derived after the “thinning” phase of GTT, 

which determines that node E is not dependent on node B given node D. Through this 

three-step process, the true causal map is determined. This structure can then be used 

to determine which variables have direct influence on a target variable (i.e. one-year 

survival), by searching the structure for the target’s Markov blanket. The Markov blanket 

of a variable, within a graphical structure, are the variable’s parent nodes (nodes 

pointing to the variable), child nodes (nodes pointing away from the variable), and the 

variable’s co-parents (nodes that also point to the variable’s child  s).(75) For example, 
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the Markov blanket of Node C, as shown in 

 

Figure 1.8, is Node B (its parent), Node E (its child), and Node D (its coparent). 

The target is conditionally independent of all other variables given its Markov blanket.  

 GTT structures are limited in that they must learn from complete case (no 

missing) data. This is a significant limitation especially for medical data, where data is 

both financially costly to collect and invasive to access, so missingness is very common. 

Therefore, while GTT structures have been shown to learn perfect mappings of true, 

underlying structures, they poorly approximate structures in situations where sample 

sizes are limited by data missingness.  

The PC algorithm (named after its authors, Peter Spirtes and Clark Glymour) can 

also be used to learn a structure for a Bayesian network or for feature learning.(76) The 

algorithm depends on a series of statistical independence tests to determine structure 

connectivity. After the structure is learned, the Markov blanket of the target variable can 
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be located to identify the features that are most relevant. Again, however, this algorithm 

depends on complete case data. 

Novel Methods of Feature Selection and Learning for Bayesian Networks 
 

Development of any machine learning model is a question of efficient search 

optimization methods. This includes efficient search of “learned” model parameters and 

“tuned” hyperparameters. In the Bayesian Network Modeling section, the means of 

learning model parameters as well as tuning network structure has been discussed. 

Further, examples are given for how the structure learning process itself can be used to 

learn features. However, there are techniques external to the structure learning process 

that can be used to preprocess and choose the right features for the network. In this 

regard, feature selection and preprocessing are hyperparameters that can also be tuned 

to improve model performance. 

The following discussed methods are agnostic in that they can be generalized to 

any (discrete) machine learning model and they will be explored in the context of 

creating an improved prognostic tool for PAH. Specifically, these methods will be 

discussed in the framework of optimizing a (non-naïve) Bayesian network that depends 

on discrete features to predict a binary outcome, as such was the intended application 

for this dissertation. All of the following methods are applied in Chapter 4. 

Differential Evolution 
  Differential evolution (DE) is a method for efficient global search given a specific 

minimization task for non-convex objective functions.(77) Its goal is to obtain or 

approximate a solution that ideally globally minimizes the objective function. It is more 
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robust against getting “stuck” at local minima compared to gradient-based or other 

stepwise search methods. 

 In essence, differential evolution accomplishes the minimization task by 

generating an initial random population of candidate solutions, combining candidates 

into a new candidate through “mutation”, and then mixing parameters to move towards 

a trial vector that is the current best guess, referred to as “crossover”. This is repeated 

for a set number of iterations, determined by the user, or until the solution does not 

change significantly over the next iteration, a threshold that can also set by the user. 

The initial population can be set to any size, but it is best to choose a size that 

adequately represents the full parameter space. Specific methods have been developed 

solely for the purpose of choosing a well-represented initial population, such as Latin 

Hypercube sampling, in which the coverage of the available parameter space is 

maximized by only sampling once from a designated “hypercube” area. This is depicted 

in Figure 1.9 (b), where each “x” designates a sample in the parameter space of A and 

B, but does not sample from a value of “X1” twice nor a value of “X2” twice. This is 

contrasted with purely random sampling as depicted in Figure 1.9 (a), where two 

samples have very different “X1” values, but extremely similar “X2” values, by pure 

chance. A method that is slightly more restrictive of Latin Hypercube is orthogonal 

sampling, as depicted in Figure 1.9 (c), where each parameter space is partitioned into 

areas of equal probability and sampled simultaneously such that each subspace is 

sampled with the same density. While orthogonal sampling slightly improves upon 

ensuring the full variability of the parameter space is covered, it is also more 

computationally expensive.(78) 
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Figure 1.9: Illustration of Random Sampling, Latin Hypercube Sampling, and Orthogonal 
Sampling. 

 

Next, mutation is achieved through taking the weighted difference between two 

randomly chosen population vectors and adding this difference to a third randomly 

chosen vector in the population. The weight of that difference can be specified by the 

mutation constant. The mutation constant can be chosen at random at mutation time, in 

a process known as “dithering”. This allows for faster convergence to a solution. 
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Generally, there are three methods for applying differential evolution for feature 

selection for machine learning: 1) “filter” (i.e. unsupervised) based methods, where the 

goal is to minimize the number of features without knowing the predicted target or label, 

by choosing the group of features that maximizes some underlying representation of the 

data, 2) “wrapper” based methods, where the label and model are known, generating 

multiple candidate models with different feature sets and evolving them towards a 

globally optimized model with a unique feature set, 3) hybrid “filter-wrapper” methods, 

where the predictive power of each feature is known, and the goal is to maximize 

estimated predictive power and the underlying representation of the data with as few 

features as possible.(79; 80) Computationally, wrapper-based methods are very 

expensive, as they require model generation and parameter learning for each candidate 

in the population. There’s also a greater propensity to overfit the model on training data, 

unless caution is used to ensure that performance for each candidate model represents 

generalized performance (such as cross-validated performance). Even then, as cross-

validated performance tends to overestimate test performance, overfitting is still 

possible. While less computationally expensive, filter-based methods can bias models 

towards feature that represent much of the underlying data pattern while neglecting 

features that might significantly increase performance when taken into account with all 

other features, but represent a small degree of the overall variance. Hybrid based 

methods, therefore, constitute a sort of “best of both worlds”, though by not taking into 

account the structure of the model, may not guarantee that predictive power is fully 

realized.  
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Decision Trees 
 

Decision trees are, of themselves, machine learning models that learn a series of 

if-else statements to make a final prediction on a label. However, they’ve increasingly 

been used as a means of both feature selection and feature learning discretization.(81) 

While there are many versions of decision trees, specific focus is given to Classification 

and Regression Trees (CART), as they are capable of learning if-else statements for 

mixed data type features (both continuous and discrete).(82) 

Decision trees can learn features by identifying an if-else statement for the feature 

that can reduce the Shannon entropy (shown in Equation 5) of the class label data, when 

that class is discrete or binary.  

@(&) = −∑ 1(+!) <=>7 1(+!)-
!8# ,	( 5 ) 

where H(X) is the Shannon entropy of the vector X (measured in bits of 

information), X is the vector of class observations for n classes = <x1,…,xn>, P(xi) is the 

probability of the observation of the class.(82) With a binary class label, when the 

probability of either class is perfectly split 50/50, Shannon entropy is maximized (1 bit of 

information). Entropy of the class label is reduced when a decision tree learns how to 

increase the probability of one label by sorting datapoints on a feature or set of features. 

For example, assume a dataset is shown where 50% of all patients have a diabetes 

diagnosis. However, if you selected patients only with a fasted blood glucose level greater 

than 125 mg/dL, perhaps 80% of those patients have a diabetes diagnosis. Thereby, the 

entropy of the data set is reduced (0.72 bits), as long the fasted blood glucose level of 

each patient is known. The decision tree has learned that its useful to know the fasted 

blood glucose level when making a diabetes diagnosis.  
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 By reducing entropy, the class labels come closer to being “sorted”, allowing the 

decision tree to create an approximate mapping of features to the observed probability of 

a specific label in training data. If a decision tree is able to learn a perfect classification of 

the data, it has ensured that the probability of observing a label given specific if-else 

conditions is 100% (i.e. the entropy of the training data partitioned is now zero). If a feature 

cannot reduce the entropy of the class label, or cannot reduce it a reproducible way (i.e. 

consistent cross-validation performance), it can be deemed to be insufficiently predictive 

of the label and discarded.  

Alternatively, decision trees can also learn if-else statements by optimizing other 

scoring systems, such as the negative Brier score, show in Equation 6. 

A*>B$CD*	3EC*E	FG=E* = 	− #
$∑ -H(C) − =(C)07	$

!8# , ( 6 ) 
where N is total number of forecasted events, f(i) is the forecasted probability of 

event i, o(i) is the true outcome of i (either i = 1 if the event did occur, or i = 0 if the event 

did not occur). The use of this scoring system is preferred when the calibrated accuracy 

of the model matters more than the dichotomized prediction. This is true especially when 

modeling clinical outcomes such as survival, as determining if a patient is at a “high risk” 

for a mortality event is typically more relevant than attempting to determine a 

nondeterministic (i.e. somewhat random) outcome. Other decision trees can maximize 

the significance of statistical tests, which is the task its applied to with “survival trees”, a 

technique applied in Chapter 1.(83) These decision trees maximize the estimated survival 

difference between populations by identifying a “cut-point” for a variable or score, based 

on statistical significance testing. A cut-point is the value of the inequality statement 

learned by a decision tree. 
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Decision trees are unique from many commonly used forms of traditional statistical 

methods or machine learning models because they are capable of learning non-linear 

relationships between the label and the features. For example, as earlier stated, if patients 

with both a low value of a predictor (such as low BMI, or underweight status) and a high 

value of that same predictor (such as high BMI, or obese status), both conferred a higher 

risk of death, while having a normal to slightly overweight BMI conferred a reduced risk 

of death, a decision tree could learn this phenomenon. 

A major weakness of decision trees is that they can tend to learn spurious cut-

points that, by chance, reduce the entropy of the label, but are not reproducible. This is 

another example of model overfitting. For this reason, controlling the number of cut-points 

learned can reduce the chances of learning spurious relationships. This can be achieved 

by setting certain restrictions on the decision tree, such as the maximum depth (i.e. 

number of splits) it can achieve, or enforcing that splitting cannot continue if the number 

of samples left to split on is low. Further, decision trees can be “pruned”, in that a cut-

point learned can be tested, typically with a statistical test, to determine if the cut-point 

identifies truly significantly different groups. If the significance test is not satisfied, the cut-

point is “pruned” from the tree and the two groups are re-merged.(84)  

Physiological Modeling of Right Heart Failure 
 As proposed by Sarma and Reinersten, physiology should be the “lingua franca” 

(i.e. common language) of both machine learning decision support systems and 

clinicians.(8) Indeed, most graphical structure models imitate influence diagrams used 

to show relationships between different biomarkers. Both the careful design of features 
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(known in the machine learning scientific community as “feature engineering”) and the 

design of a model itself can be driven by physiological understanding of a disease. 

Therefore, improved physiological understanding of right ventricular failure is beneficial, 

in and of itself, for improving treatment strategies for PAH, and should also lead to 

better machine learning models to further optimize treatment strategies or predict 

patient outcomes. 

Specifically, right ventricular energetics has been poorly studied in the setting of 

pulmonary arterial hypertension. Although clinicians recognize decreases in cardiac 

output as a clear sign of disease progression, there is little discussion of how this creates 

a negative feedback loop by which reduced flow to the right coronary artery prevents the 

right ventricle from producing the power needed to overcome a high mean pulmonary 

arterial pressure. This would result in progressively lower cardiac output and further 

worsening of the patient’s condition. While there are autonomic compensatory 

mechanisms to combat this, including dilation of the right coronary artery, myocardial 

angiogenesis, etc., understanding the total energetic strain on the right ventricle could 

provide greater clinical insight as to which patients are most vulnerable to acute stressors 

(infection, physical exertion, coronary artery disease, or other comorbidities). Hence, the 

most common, Suga-Sugawa model of ventricular energetics is reviewed, and its 

limitations are discussed. 

Suga Sugawa model of Ventricular Energetics 
 

The study of myocardial energetic needs is considered crucial to the treatment of 

left ventricular heart failure. Current clinical practice employs the use of the Suga-Sugawa 
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Pressure Volume Area (PVA) model to estimate total ventricular work demands from 

pressure-volume loops.(85) The PVA model of myocardial energetics is based on the 

assumption that there are two main types of work performed by the ventricle: 1) stroke 

work (W) during the ejection phase, 2) work that is stored as “potential energy” (U) from 

myocardial stretching during diastole (shown in Error! Reference source not 

found.).(85) These two forms of work compose the entire pressure-volume area. 

 

Figure 1.10. Suga-Sugawa Model of Ventricular Energetics. 

Stroke work is calculated as the total area under the pressure-volume loop starting 

from the opening of the tricuspid valve, diastolic filling of the right ventricle, to tricuspid 

valve closure, isovolumic contraction, pulmonic valve opening, right ventricular ejection, 

pulmonic valve closing, and right ventricular relaxation. The “work” conducted during the 

diastolic phase is calculated as the remaining area under a (typically) linear end-systolic 
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pressure volume relationship (ESPVR) curve, shown in Figure 1.10  as the line from point 

O to point A. This potential energy can defined mathematically by Equation 7.(85)  

1=$*I$CB<	JI*E>K = ∫ 1(D)9:;
;% , ( 7 ) 

where EDV is the ventricular end-diastolic volume, V0 is a hypothetical “dead” 

volume in the ventricle, defined by the x-intercept of the ESPVR curve, P(v) is the 

instantaneous pressure at volume v of the ESPVR curve. Multiple pressure-volume loops 

with different preload amounts are required to calculate the ESPVR curve and the 

corresponding area, which is achieved through manual venous manipulation. This 

method is considered too invasive to be considered for routine clinical practice. There is 

also some debate as to whether the ESPVR curve should be linear or nonlinear, though 

the differences in calculation of potential energy are typically negligible.  Single-beat 

methods with a single preload have been proposed but are considered less accurate.(86) 

Overall, while the pressure-volume area is strongly correlated with myocardial 

oxygen consumption, it reflects only 40% of total oxygen consumed (i.e. the empirical 

slope is smaller than it should be, by roughly a factor of 2).(87) Further limitations of the 

Suga-Sugawa method are that it does not follow physiological or thermodynamic 

principles. In addition, the determination of V0 (as shown in Equation 6) can be negative 

and does not reflect any sort of physiological or anatomical purpose. Lastly, the method 

does not consider the energy required to raise the ventricular end-diastolic volume to the 

initial ejection pressure during systole, a form of “isovolumic work”. This work more 

accurately portrays the stored “potential energy” conducted by the right ventricle, what 

Elbeery et al in 1995 described as an “internal index of heat”.(87) Alas, the myth of the 
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PVA model of ventricular energetics has only very recently been dispelled as inconsistent 

with thermodynamics.(88) 

The pressure-volume area of energetics, likely due to its inaccuracy, has not been 

shown in the literature to be a useful means of study right ventricular failure. Yet it’s very 

likely that right ventricular energetics play a significant role in understanding right heart 

failure, including due to PAH. Therefore, the derivation of a more accurate model is 

required to further understand the role of RV energetics in PAH disease severity. 

Summary of Study 
This dissertation proposes a multi-pronged computational approach to improving 

clinical decision science specific to PAH, which could also be more widely applied to other 

multi-faceted rare diseases: 

1) Application of risk algorithms for the enrichment of clinical trials through 

retrospective simulated optimization of selection of a high-risk patient cohort 

(Chapter 2) 

2) Application of risk algorithms for the retrospective study of treatment 

optimization (Chapter 3) 

3) Improvement of risk algorithms with bottom-up machine-learning 

development (Chapter 4) 

4) Establishing new metrics of right ventricular function through novel 

energetic modeling (Chapter 5)
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Chapter 2 : Risk Enriched Clinical Trial Design 

Introduction  
Pulmonary arterial hypertension (PAH) is a collection of rare and progressive 

disorders of the pulmonary vasculature with no known cure. Clinical trial endpoints used 

to demonstrate drug efficacy efficiently and effectively in PAH trials are either 

insufficient or inefficient at demonstrating clinical benefit.(89; 90) Early-era PAH trials 

were primarily required to show a statistically significant increase in six-minute walk 

distance (6MWD) for demonstrating drug efficacy. However, it is now known that 

improvement in 6MWD is only weakly associated with reductions in clinical events. 

Moreover, demonstrated improvements in 6MWD are typically small (average 30 m 

increase on an average baseline of 350 m), with debatable clinical relevance.(12) 

Contemporary PAH clinical trials switched their focus to complex determinants of 

therapeutic efficacy, such as time to clinical worsening, which is a composite endpoint 

of death, hospitalization, and other measures of disease progression. Although such 

event-driven endpoints demonstrate a benefit with clear clinical relevance to patients, 

clinical worsening is relatively infrequent. Hence, successful PAH trials end up requiring 

large-scale patient enrollment for lengthy durations, with substantial economic 

expenditure.(12) 

Existing, validated risk-prediction algorithms derived from PAH registry data 

could be used to identify patients at intermediate- and high-risk of clinical worsening 
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using baseline clinical trial data. The goals of this chapter are to demonstrate that these 

algorithms are prognostic of a clinical worsening event and, in simulated scenarios, a 

patient cohort enriched with higher risk patients (as identified by risk algorithms) can 

demonstrate a significant treatment benefit with a substantially smaller sample size 

compared to other, more simplistic measures such as six-minute walk distance. 

Methods  
Three contemporary PAH risk-prediction algorithms were used to stratify patient 

risk of clinical worsening at baseline: Comparative, Prospective Registry of Newly 

Initiated Therapies for Pulmonary Hypertension (COMPERA)(59), the French pulmonary 

hypertension registry score (French)(60), and the United States Registry to Evaluate 

Early and Long-Term PAH Disease Management (REVEAL 2.0)(61). A description of 

the design of all these scores, including inclusion and exclusion criteria, is provided in 

Chapter 1. Three contemporary PAH trials, A Study of First-Line Ambrisentan and 

Tadalafil Combination Therapy in Subjects With Pulmonary Arterial Hypertension 

(AMBITION)(42), Selexipag in Pulmonary Arterial Hypertension (GRIPHON)(37), and 

Study of Macitentan on Morbidity and Mortality in Patients With Symptomatic Pulmonary 

Arterial Hypertension (SERAPHIN)(16) were chosen for analysis since they measured 

time to clinical worsening as their primary endpoint. Definitions of clinical worsening for 

each trial are provided in Table 2.1. 
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Table 2.1: Definitions of Clinical Worsening in Pulmonary Arterial Hypertension Clinical Trials

Clinical Trial Definition of Clinical Worsening 

AMBITION Any one or more of the following events: 
• All-cause death 
• Hospitalization for worsening PAH (includes lung, heart-lung transplant, atrial 
septostomy, initiation of parenteral prostanoid therapy) 
• Decrease of more than 15% from baseline in 6-minute walk distance (6MWD) combined 
with WHO functional class (FC) III or IV symptoms at two consecutive visits separated by 
at least 14 days 
• Any decrease from baseline in 6MWD separated by at least 14 days, WHO FC III 
symptoms assessed at two visits separated by at least 6 months 

SERAPHIN Any one or more of the following events: 
• All-cause death 
• Initiation of parenteral prostanoid therapy 
• Lung transplantation 
• Atrial septostomy 
• Decrease of at least 15% from baseline in 6MWD at two visits within 2 weeks, combined 
with worsening symptoms (change from baseline of WHO FC, or no improvement for FC 
IV patients at baseline, or the appearance or worsening of right heart failure symptoms 
that did not improve with oral diuretic treatment), and the need for additional treatment for 
PAH 

GRIPHON Any one or more of the following events: 
• All-cause death 
• Hospitalization for worsening PAH 
• Initiation of parenteral prostanoid therapy or long-term oxygen therapy 
• Need for lung transplantation or balloon atrial septostomy 
• Decrease of at least 15% from baseline in 6MWD at two visits on different days, 
combined with change from baseline of WHO FC for FC II or III patients at baseline or the 
need for additional treatment for PAH for FC III or IV patients at baseline 
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Data across trials were unified and standardized, in terms of their units for clinical 

measures and demographic encoding, for testing the investigational risk algorithms. The 

variables used in each algorithm and cut-points used to determine risk are shown in 

Chapter 1, Table 1.4.  

All risk algorithms were applied as intended in the original publication except for 

COMPERA, which was left as a continuous variable and not rounded to the nearest 

integer after averaging. The following variables were unavailable across all clinical trials: 

diffusing lung capacity and hospitalization six months prior to randomization for 

REVEAL 2.0 and mixed venous oxygen saturation for COMPERA. Estimated glomerular 

filtration rate for REVEAL 2.0 was calculated using the Levey et al equation, which 

considers race, age, and sex.(91) 

For statistical analysis, receiver-operating characteristic (ROC) curves were 

generated for each algorithm to determine their ability to predict clinical worsening as 

defined by the trial’s original primary endpoint. Briefly, an ROC curve provides a 

quantitative assessment of overall predictive performance by plotting the value of 

sensitivity and specificity at each potential threshold of the risk score. Highly predictive 

scores will have an area under the ROC curve near one (1), poorly predictive scores will 

have an area under the ROC curve near one-half (0.5), which indicates that the score is 

no better than guessing at random.(92) Algorithms were benchmarked against a 

traditional clinical means of patient risk stratification (New York Heart Association 

[NYHA] Functional Class used in isolation) via nonparametric statistical analysis (i.e., 

bootstrapping) to determine statistical significance of the difference in the AUCs. The 

predictive value of each algorithm was compared to univariate biomarkers (6MWD, NT-
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proBNP, mean right atrial pressure, cardiac index, and pulmonary vascular resistance) 

to determine if they could provide the same degree of predictive performance as a multi-

variable risk score. Patients who were censored early from the primary endpoint were 

imputed as event-free and a sensitivity analysis was conducted to determine the impact 

of this assumption. To avoid confounding baseline risk and treatment effects, only the 

placebo populations in each trial were used for ROC analysis.  

As both COMPERA and REVEAL 2.0 generate risk scores on a near continuous 

scale, a consistent means was required to define cut points that allowed for simplified 

patient groupings for enrichment: low- versus intermediate- versus high-risk, with the 

possibility for very-low and/or very-high depending on algorithm precision. Further, cut 

points were optimized such that the high-risk patients not only had more clinical 

worsening events, but also a faster time to clinical worsening. To that end, a survival 

tree analysis was applied to the pooled placebo population to determine such cut points 

for each algorithm (applied via rpart R package, v4.1-15, 2019).(83; 93) Survival trees 

identify cutpoints for each algorithm by identifying groups with a statistically significant 

difference in time to clinical worsening. The optimal number of cutpoints is determined 

by multiple rounds of data splits and tests to ensure each group has a statistically 

significant difference in survival. Each survival tree was optimized to find the largest 

number of cut points such that each group had a statistically significantly different 

survival curve (per exponential regression) using a 10-fold cross-validation. Using the 

largest number of cut points allows for identification of an optimally high-risk patient 

group from each algorithm that could be recommended for prognostic enrichment 

without a trial sponsor conducting their own analysis.  
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Identified cut points were applied to the pooled treatment population to determine 

whether each simplified risk group saw a benefit in treatment, as determined by Cox 

Proportional Hazards. This analysis was necessary to support the goals of prognostic 

enrichment as a means to establish drug efficacy in high risk groups but still prescribe 

later in lower risk patient populations. P < 0.05 was used to determine a statistical 

significance. Incidence rate of clinical worsening for each group and each treatment arm 

was calculated as events per 100 patient-years.  

Sample size estimates to demonstrate drug efficacy in each clinical trial were 

recalculated by resampling from patients with no missing algorithm data and employing 

the method originally proposed by Freedman in 1982, which uses pilot data to estimate 

probability of clinically worsening event in each treatment arm (applied via the 

powerSurvEpi R package, v 0.1.0, 2018) and then calculates final sample size needed 

based on expected value and variance of event rates.(94; 95) Resampling was 

conducted to reflect multiple enrichment strategies: 1) selecting only intermediate- and 

high-risk patients (intermediate-high strategy); 2) selecting 50% of patients from high-

risk only and 50% from all other risk groups (high-other strategy); and 3) selecting 100% 

of patients from high-risk only (high-risk strategy). A nonparametric bootstrap analysis 

was used to generate 95% confidence intervals for each estimated sample size 

determined from an event-driven power analysis. The parameters of the power analysis, 

namely confidence level, anticipated effect size (i.e. hazard ratio of clinical worsening, 

where smaller values indicate greater treatment benefit), and power to detect the 

hypothesized treatment effect were kept as published in the original trial’s statistical 
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design (see Table 2.2). Discussion of the implications of differences in statistical design 

are included in the Limitations section. 

Trial Power Confidence 
Level 

Estimated Effect Size 
(Hazard Ratio) 

AMBITION 97% 5% 0.47 
GRIPHON 90% 1% 0.65 
SERAPHIN 90% 0.5% 0.55 

Table 2.2: Statistical Analysis Design Per Original Clinical Trial 
The procedure for the nonparametric method of sample size estimation was as 

follows: 

1) Identify the patient population in the original trial that meets the risk level 

required. 

2) Using bootstrapping, resample an equal number of patients from both the 

placebo and treatment arm to simulate pilot data. 

3) Using the powerSurvEpi function “ssizeCT” to calculate the estimated sample 

size using the established pilot data and parameters as defined by the clinical trial’s 

original statistical plan (see Table 2.2). 

4) Repeat this procedure 1000 times to capture variance in estimates due to 

random resampling, providing a 95% confidence interval and the average treatment 

time of patients. 

While no attrition rate is specified in this analysis, resampling from the original 

trial populations allowed results to reflect sample size estimations in the presence of 

early withdrawals. Mean times in trial (i.e., treatment time) were also calculated for each 

enrichment strategy per algorithm. Sample size and time in trial from simulations are 

presented as a percent reduction from simulations using the non-enriched 
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subpopulation, where higher reduction indicates lower sample size, shorter treatment 

time, and therefore improved trial efficiency.  

Clinical trial enrichment can potentially enable smaller clinical trials and thus cost 

savings. However, the patient screening necessary for trial enrichment can be 

burdensome and costly. Thus, the likelihood of finding a patient fitting each algorithm’s 

risk groupings was determined by calculating the ratio of total patients screened to total 

patients enrolled per risk category in the pooled trial dataset. Ratios are presented as 

the number of patients that must be screened to enroll 100 patients, where a higher 

ratio is indicative of higher screening numbers, lesser screening efficiency, and greater 

cost.  

Finally, a hypothetical cost-savings exercise was conducted with the GRIPHON 

trial to demonstrate the benefit of enrichment in balancing the increased cost of 

screening by reducing the cost of treating enrolled patients (i.e., research costs) and to 

determine the optimal enrichment strategy for balancing these costs. Minimum 

estimated costs per patient were based on figures reported by Ryan and colleagues and 

other clinical procedure price estimations.(89),(96),(97) Costs of treatment are provided in 

Table 2.3. 
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Table 2.3: Cost Analysis per Pulmonary Arterial Hypertension Clinical Trial 
.

Study 
Element 

Baseline 
Cost 

($ USD) 

Iterations per Study 
Per ITT Patient 

REVEAL 2.0 
Screening 

COMPERA 
Screening 

French 
Screening 

Non-Enrichment 
Screening 

Informed 
Consent 

Processing 
150 0 1 1 1 1 

History and 
Physical 

Examination 
500 0+ 1 1 1 1 

Vital sign 
assessment 50 3+ 1 1 1 1 

Right Heart 
Catheterization 3500 0+ 1 1 1 1 

6-Minute Walk 
Test 550 3+ 1 1 1 1 

NT-proBNP 140 0+ 1 1 - - 
Lung Capacity 

Test 500 - 1 - - - 

Mixed Venous 
O2 Saturation 200 - 1 1 - - 

Creatinine 50 0+ 1 - - - 
IRB Fees 4,000 1 - - - - 

Study Drugs 12,100 1 - - - - 

Total 
$13,900+ per treated 
patient; $1,800+ per 

placebo patient 

$5,640 per 
patient 

$5,090 per 
patient 

$4,750 per 
patient 

$4,750 per 
patient 
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The mean time to clinical worsening or censor, as calculated from power 

simulations, was used in the cost analysis as the average treatment time per patient 

receiving the study drug. For this analysis, it’s assumed that every patient, regardless of 

risk algorithm, required a right heart catheterization procedure in screening to confirm 

PAH Group I diagnosis. Although this study used fewer variables to stratify patients, 

final estimated screening cost for each algorithm reflected the cost of collecting all data 

required for each algorithm. To account for the worst-case of screened patients failing 

due to selection criteria outside of the matching risk level (such as very low 6MWD or 

prostacyclin analogue background therapy), the number of patients required for 

screening was calculated using the following equation: 

!"#$%&#' (%%)%) *+, -.,%%&$&/ = !"#$%&#' (%%)%) *+, 0&,+112%&# × 
(-.,%%&˗#+˗0&,+112%&# 3"#$+ +* 435!67() × (-.,%%&˗#+˗0&,+112%&# 3"#$+ *+, 

0&,$.ℎ%) !+9:1"#$+&), ( 8 ) 
Percent cost saving was calculated as the percent difference between total cost 

for the given enrichment strategy and the estimated cost with no enrichment.  

Results  
From a total of 1,769 patients, N=976 (55%) and N=793 (45%) patients were 

identified with all required variables from the treatment and placebo groups, 

respectively. As shown in Figure 2.1 all algorithms performed similarly in their ability to 

predict clinical worsening (COMPERA AUC 0.70, 95% CI: 0.66-0.73; French Score AUC 

0.66, 95% CI: 0.63-0.70, REVEAL 2.0 AUC 0.70, 95% CI 0.66-0.73). 
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Figure 2.1: Receiver-Operating Curves (ROCs) for Each Investigational Algorithm. 
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COMPERA 
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Each investigational algorithm outperformed NYHA functional class (AUC 0.61, 

95% CI: 0.57-0.64) at predicting clinical worsening prognosis (COMPERA p-value = 

2.26×10-6, French p-value = 6.5×10-4, REVEAL p-value = 1.63×10-6). Further, all risk 

algorithms had better performance in absolute AUC value for predicting clinical 

worsening than singular clinical variables (Table 2.4).  

Clinical Variable ROC-AUC  
[Confidence Interval] 

Six Minute Walk Distance 0.65 [0.61-0.69] 
NTproBNP 0.65 [0.61-0.69] 

Mean Right Atrial Pressure 0.62 [0.58-0.66] 
Cardiac Index 0.60 [0.56-0.64] 

Pulmonary Vascular Resistance 0.63 [0.59-0.67] 
Table 2.4. Prediction of Clinical Trial Endpoint by Single Clinical Variables in Isolation. 

In sensitivity analyses to test the assumption that early censored patients were 

event-free, all algorithms perform worse if patients with a censor time of less than 3 

years are removed from analysis, though excluding patients censored before one year 

largely did not change the AUC of each algorithm (see Appendix). 
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It’s worth noting that REVEAL 2.0 was, however, the most robust against this 

assumption and largely maintained its prognostic performance.  

Application of survival tree analysis to identify risk groups  
Each investigational algorithm identified at least three unique risk groups with 

statistically significantly different time to clinical worsening rates, using survival tree 

analysis. Cut-points and incidence rates, as number of events per 100-patient-years, for 

each risk group are shown in Table 2.5. 
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Algorithm Risk Group 

Pooled Placebo Incidence 
Rate of Clinical 

Worsening 
(Events per 100-pt-yrs) 

Pooled Treatment Incidence 
Rate of Clinical Worsening 

(Events per 100-pt-yrs) 

Hazard Ratio for 
Reduction of Clinical 

Worsening Rate 
[95% Confidence Interval] 

French 
Low (2-3) 17.10 10.47 0.61 [0.46-0.81] 

Intermediate (1) 29.75 18.19 0.60 [0.46-0.79] 
High (0) 51.44 25.08 0.50 [0.38-0.67] 

COMPERA 

Low (≤ 1.7) 13.90 8.27 0.59 [0.42-0.85] 

Intermediate (>1.7-2.1) 27.37 16.36 0.59 [0.46-0.76] 

High (> 2.1) 52.52 24.81 0.48 [0.37-0.62] 

REVEAL 
2.0 

Very Low (≤ 5) 11.00 6.61 0.60 [0.36-0.99] 
Low (6-8) 21.19 11.97 0.56 [0.42-0.74] 

Intermediate (9-10) 36.90 23.07 0.63 [0.48-0.83] 
High (>10) 72.32 34.52 0.48 [0.34-0.67] 

NYHA 
Low (≤ II) 16.69 9.79 0.58 [0.43-0.78] 

Intermediate (> II) 35.02 20.95 0.60 [0.50-0.73] 
Table 2.5: Incidence Rate and Treatment Effect per Risk Group as Defined by Different Risk Algorithms 

 



 69  

 

REVEAL 2.0 was the most precise and identified four statistically significantly different 

ranked groups for clinical worsening (p <2×10-16; its full survival tree is shown as an 

example in Figure 2.2), specifically identifying an additional very low-risk group and its 

high-risk group had a much higher incidence rate than COMPERA’s or French score’s. 

Only three different groups were identified using either COMPERA (p < 2×10-16) or the 

French score (p = 8.98×10-16).
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Figure 2.2: Survival Tree Analysis Applied with REVEAL 2.0 Risk Stratification. 



 71  

 

When used in isolation, NYHA Functional Class identified only two statistically 

significantly different ranked groups (p = 1.18×10-9).  

Hazard ratios between the pooled treatment and pooled placebo groups for 

reduction in clinical worsening rate were statistically significant for all risk groups 

identified, irrespective of risk algorithm used (all p-values < 0.05), demonstrating that 

even lower risk patients saw a treatment benefit and that bridging efficacy to these 

groups would be appropriate. Treatment effects were not significantly different between 

groups (i.e., there were no interactive effects between baseline risk and placebo versus 

treatment), but this retrospective study is not powered to determine interactive effects.  

Impact on sample size and treatment time  
Shown in Figure 2.3 are the results for sample size reduction (bar graph, y-axis 

left) and average treatment time reduction (superimposed line graph, y-axis right) for 

multiple enrichment strategies. 
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Figure 2.3: Estimated Sample Size and Treatment Time Reduction. 
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REVEAL 2.0 performed best for both reducing the total number of patients 

needed for enrollment and the average treatment time for all enrichment methods in 

AMBITION and GRIPHON. However, the French score, on average, outperformed both 

COMPERA and REVEAL 2.0 for all enrichment methods in SERAPHIN trial. This 

discrepancy is likely due to the use of a non-standard assay for measuring NT-proBNP 

in the SERAPHIN trial, which would compromise the accuracy of both COMPERA and 

REVEAL 2.0 for risk stratification in this trial, but not for the French score, as it does not 

use NT-proBNP to estimate risk. Table 2.6 provides the estimated screen-to-enroll 

ratios of each risk group per algorithm, as determined by the pooled dataset. 
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Enrichment Method 
Risk  

Algorithm 
Number Screened to Enroll 100  

Patients 

Intermediate and High 
Risk 

COMPERA 170 

French 127 

REVEAL 263 

50% High Risk/ 
50% All Other 

COMPERA 214 

French 259 

REVEAL 417 

High Risk Only 

COMPERA 427 

French 518 

REVEAL 833 

None 
(Average of Original Trials) 124 

Table 2.6: Screen to Enrollment Ratios per Enrichment Method.



 75  

 

REVEAL’s screen-to-enroll ratio was highest (i.e., worst screening efficiency) for 

all enrichment methods. The French score using an intermediate-high enrichment 

strategy could achieve a comparable screen-to-enroll ratio to those of the original trials.  

Impact on cost savings  
Figure 2.4 shows the potential cost savings that GRIPHON may have benefited 

from if enrichment strategies had been used, as well as the ratio of screening cost to 

research (treatment) costs per enrichment strategy. 
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Figure 2.4: Cost Analysis for Applying Enrichment to GRIPHON.
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Although all enrichment strategies reduced cost on average, the high-other 

strategy provided minimal net savings. Intermediate-high strategy provided the greatest 

financial benefit under REVEAL 2.0 (by reducing the total trial cost by 40%), and the 

high-risk only strategy reduced overall cost, but substantially increased screening costs.  

Discussion  
Clinical trial design in PAH has evolved into large, placebo-controlled studies 

focusing on a composite endpoint of clinical outcomes to determine therapeutic efficacy. 

However, such approaches are cumbersome and costly, and trial durations extend over 

many years in hopes of achieving the desired statistical power. The FDA supports using 

clinical trial enrichment, advocating the prospective use of patient characteristics to 

select a study population in which detection of a drug effect (benefit, or lack thereof) is 

more likely than in a broad patient population.(67) For any given desired power in an 

event-based study, the appropriate sample size depends on effect size and the event 

rate in the control group. Prognostic enrichment strategies are encouraged, not to affect 

the relative risk reduction but to increase the proportion of patients likely to experience a 

disease related endpoint, allowing for a higher number of events in a shorter time 

period, hence reducing overall sample size requirements.  

In this analysis, all risk algorithms met the guidance criteria for prognostic 

enrichment: 1) they were shown to be prognostic of clinical worsening by ROC analysis, 

and 2) when applied using multiple enrichment strategies, they reduced the average 

estimated sample size compared with estimations made with the non-enriched 

population. Further, all risk groups were determined to have similar proportional pooled 
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treatment benefit after enrichment, supporting the FDA’s statement that relative risk 

reduction is not affected with a prognostic enrichment strategy. As the FDA enrichment 

document cites, this concept has been demonstrated in multiple heart failure enrichment 

studies.(67) 

As shown in Figure 2.3, REVEAL 2.0 outperformed COMPERA and the French 

score in two of the three clinical trials for all enrichment methods in reduction of relative 

sample size and trial length, but appeared less useful in SERAPHIN. One possible 

explanation for this variation is that REVEAL 2.0 and COMPERA were both optimized 

for a different NT-pro BNP analytical assay from the one used in the SERAPHIN 

trial.(52) Specifically, the SERAPHIN NT-pro BNP measurements were determined from 

an enzyme immunoassay rather than a chemiluminescence immunoassay, meaning its 

range and scale do not translate to the cut-points used in COMPERA and REVEAL 2.0. 

This leads to all SERAPHIN patients assessed appearing to have a “high-risk” NT-pro 

BNP level per these two algorithms. By comparison, the invasive French score does not 

consider NT-pro BNP for its algorithm and therefore could not be skewed by this value, 

which may be why it performed better than both COMPERA and REVEAL 2.0 at 

reducing sample size in simulations for SERAPHIN. This demonstrates the need for 

standardization of choice of biomarker tested and its range of values in risk assessment 

tools.  

This result also leads into an important discussion about ease of use and data 

collection for risk-driven screening at trial baseline. REVEAL 2.0 requires 14 clinical 

variables (with a minimum of seven), while COMPERA requires five, and the French 

score requires four. Although the number of variables for each algorithm differs, the 
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overall cost of each algorithm as a screening tool was similar since right heart 

catheterization was the biggest contributing factor to cost. Further investigations are 

warranted to explore whether REVEAL Lite(98) or the French noninvasive score(60) 

can identify the intermediate-high and/or high-risk only group with considerably fewer 

variables and no hemodynamic variables. While the ideal enrichment strategy is a 

single, inexpensive biomarker, as shown in additional analyses, hemodynamic 

variables, six-minute walk distance, and NT-proBNP used in isolation were not as 

predictive as any of the three multivariable risk algorithms. Use of these singular 

biomarkers were unlikely to substantially reduce costs versus REVEAL 2.0, as 

confirmation of PAH diagnosis by right heart catheterization would still be required. 

Further, although results demonstrate that REVEAL 2.0 performed best in terms of cost-

savings and precise prediction, if all variables considered in this analysis cannot be 

measured, it’s recommended to use the risk algorithm that best fits the available data to 

avoid inaccurate prognosis of screened patients.  

The cost-savings exercise conducted with GRIPHON data showed that 

intermediate-high risk enrollment as determined by a REVEAL score of ≥8 provides the 

greatest financial gain. This enrichment strategy had the triple benefit of (a) reducing the 

total number of enrolled patients, (b) reducing the average treatment time per enrolled 

patient, and (c) keeping the screening costs modest. For this analysis, most of the cost 

per enrolled patient stemmed from distributing study drugs over a long period of time. 

This estimation of other research costs was conservative, as it did not account, for 

example, for regularly scheduled lab tests, multiple right heart catheterizations, and the 

cost of personnel, all of which can vary considerably per trial and geographic 
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location.(99) For a comparison of scale, this economic analysis estimates an average 

cost of $17,000 USD per enrolled patient for 26 weeks of treatment, whereas current 

estimations for costs per enrolled patient in international trials with a median trial time of 

26 weeks were $31,802 per patient as a low estimate.(100) This further illustrates the 

importance of keeping trial sizes small and treatment time short, even when requiring a 

more involved screening process. PAH clinical trials tend to be international, multi-site 

endeavors to reach necessary sample sizes. Economic research cited by the FDA 

established that international trials can benefit from lower cost of clinical procedures 

found abroad, although benefits in terms of the cost of study drugs is uncertain.(99) The 

estimates of the studied drug (Selexipag) used for analysis are based on previously 

published literature specific to its 2017 market price submitted by the manufacturer in 

the United States and Canada.(97) Specific Selexipag cost data in countries where 

costs of clinical trials are far lower, such as China and Russia, could not be found. While 

these estimates may not be entirely reflective of total clinical trial cost, especially for 

sites outside the United States, the analysis illustrates a proportional reduction in cost 

that would translate to international sites due to a reduction in treated patients and 

treatment time.  

Currently, the FDA has no pharmacological concerns with bridging treatment 

efficacy established in a higher risk PAH group to treat lower risk PAH patients. The 

current understanding of PAH disease state and pathophysiology points to maintenance 

of a treatment effect regardless of a patient’s individual risk of morbidity or mortality. 

However, it is unclear, though likely, that risk itself determines the level of treatment 

response. While prognostic enrichment is defined as selecting a patient population more 
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likely to experience a clinical event or endpoint, predictive enrichment seeks to 

specifically select patients who are more likely to be treatment responders. However, as 

stated in the FDA guidance document for trial enrichment, there is no absolute 

guarantee that prognostic enrichment and predictive enrichment are mutually exclusive. 

Further, when bridging treatment to lower risk patients, clinicians should consider risk-

benefit tradeoffs, especially regarding how side effects may reduce quality of life, even 

when alleviating symptoms.  

It’s possible that risk-based prognostic enrichment also accomplishes the goal of 

predictive enrichment, by selecting for a patient population that experiences an effect 

that would not be present in an unselected population. Such a result was not supported 

by this analysis but cannot be ruled out for PAH drugs of differing mechanisms, as all 

investigated trials tested vasodilators. Further, an enriched patient cohort could 

experience a reduced rather than greater treatment response. This is possible 

specifically when a treatment cannot have a therapeutic effect quickly enough to slow 

the deterioration of a high-risk patient. Many cardiovascular drugs not expected to 

rapidly improve heart function still achieved approval by demonstrating efficacy in very 

ill patients with rapid deterioration and high mortality.(101) Therefore, it is not clear 

when it is too late to clinically intervene, especially with the limited pilot data that 

precedes a Phase III trial, and prognostic trial enrichment should still be considered.  

The rarity of algorithm-identified risk groups is a serious challenge for 

enrichment. While a high-risk-only strategy provides the biggest reduction in sample 

size, the rarity of these patients makes screening prohibitive, not only financially but 

also in sheer number of available patients to screen. This analysis found that screen-to-
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enrollment ratios were reflective of the real-world, as they matched the availability of an 

enriched population in the REVEAL registry, although rounding of the COMPERA score 

affected the apparent availability of its high-risk population.(61) These estimates are 

primarily meant to illustrate the relative difficulty of identifying a subpopulation within an 

already rare disease population (global prevalence of PAH are estimated at 15 cases 

per million). As stated above, PAH clinical trials typically require multiple sites across 

several countries to achieve adequate sample sizes and this is expected to still be 

necessary with an enrichment strategy. At this time, the need for additional sites to 

increase screening numbers is not expected with an intermediate-high risk strategy, but 

the possibility should be considered. Feasibility surveys should, therefore, be 

considered to determine the availability of intermediate and high-risk patients prior to 

site recruitment to mitigate costs.  

This analysis assumed no pre-screening for estimation of screen-to-enrollment 

ratios. Pre-screening via electronic health records may allow a high-risk-only enrichment 

strategy to become more viable.(100) The feasibility of a high-risk-only enrichment 

strategy will become increasingly important as the sophistication and treatment costs of 

PAH (upwards of $10,000 USD per a 12 week period) clinical trials are increasing.(12) 

Trials with particularly high costs per enrolled patient, such as those studying dual or 

triple combination therapies, will substantially benefit from a high-risk-only enrichment 

strategy, specifically using REVEAL 2.0, which provided the greatest sample size and 

treatment time reductions with appropriate inputs.  

Finally, the overall availability of intermediate- and high-risk patients to be 

enrolled per year also contributes to overall trial length. While PAH trials typically expect 
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to enroll roughly 200 to 350 patients per year, intermediate- and high-risk patients only 

compose an estimated 35-50% of the total current registry population.(61) Therefore, 

enrollment efforts are likely to slow, not entirely offset by the reduction in the total 

number of patients needed for enrollment. However, an enriched study will still stand to 

benefit from more primary endpoint events occurring at a quicker pace, as shown in this 

analysis with reduced treatment time. Therefore, trials may still benefit from a reduction 

in needed patient-treatment years. Future studies will investigate how to identify an 

enrichment strategy more precisely based on clinical trial simulations that account for 

availability of patients.  

These findings address the limitations of current PAH clinical trials by 

demonstrating the benefit of risk stratification of patients with validated scales in PAH at 

baseline for optimizing enrollment. These data demonstrate for the first time the efficacy 

of established PAH risk prediction algorithms in selecting patients most likely to 

experience clinical events. When applied retrospectively to contemporary PAH clinical 

trials, this patient enrichment strategy reduced the enrolled/Intent-to-Treat population 

size required to detect a statistically significant treatment effect. Thus, results from this 

study establish that a priori risk stratification maximizes the likelihood of observing a 

statistically significant treatment effect with a smaller study population and should be 

considered in future study designs. Accordingly, the application of this approach to 

clinical study design is, in turn, expected to increase efficiency of successful PAH 

randomized clinical trials.  
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Limitations 
This study had several limitations. Due to missing clinical variables at baseline, 

COMPERA and REVEAL 2.0 were not evaluated with all recommended variables. 

Further, all risk algorithms were optimized for predicting 1-year mortality rather than 

clinical worsening. COMPERA was applied without employing the rounding methods 

used with the algorithm applied to clinical risk stratification. Overall, not rounding has 

little effect on the overall functionality of the algorithm, as all inputs and calculations are 

the same. However, rounding could profoundly affect COMPERA’s prognostic 

performance, as ranking accuracy almost always suffers when scales become less 

precise.  

Relative algorithm accuracy was determined based on a pooled placebo group 

with differing definitions for clinical worsening. Given the nature of event adjudication, 

namely the lack of available source data surrounding worsening symptoms, it is 

infeasible to create a common clinical worsening endpoint to be used in all trials. This 

limitation motivates the understanding of how different risk algorithms perform for 

different definitions of clinical worsening, given all the proper inputs for calculations, 

which were not available for this study.  

While sampling from a trial population with early withdrawal, power simulations 

did not force a specific attrition rate. Sample size reduction estimates were therefore 

controlled by comparing with a non-enriched population without attrition, rather than the 

original trial’s study size. We expect the percentage change to be similar overall. 

Random drop-out, drug intolerability, or lack of satisfactory clinical progress (but not an 

explicit adjudicated event) can all contribute to an underestimation of drug effect, which 
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could substantially increase the required sample sizes. However, use of a high-risk 

enrichment strategy is less likely to be affected by attrition rates, as events occur earlier 

in the trial. It may, in fact, increase the likelihood of patients experiencing a clinically 

worsening endpoint before any other factor leading to an early withdrawal. In addition, 

by assuming that all patients with early withdrawal were event-free and thereby 

reducing the estimated event-rate in each risk group, estimations of sample size 

reduction may be conservative. The sensitivity analysis of the receiver-operating curves 

demonstrates that this assumption produces a modest bias in the performance of each 

algorithm. However, underestimating sample size reduction is desirable for providing 

appropriate recommendations versus providing inflated estimations that later prove to 

provide no significant reduction in sample size.  

Differences in the statistical design of each study make it difficult to compare 

reductions in number of patients required across trials. Its promising that a significant 

reduction in relative sample size was shown for all trials, and overall the relative 

reduction in sample size was very similar across trials within a specific enrichment 

strategy (such as enrolling high risk only patients). However, these values may not 

translate directly for different statistical designs. It is difficult to speculate on the exact 

sample size savings for any given trial as this can depend on multiple factors, such as 

background therapy and other selection criterion. 

In terms of bridging treatment efficacy, given the broad range of etiologies even 

for WHO Group I PAH, it is important to balance a trial’s patient cohort appropriately 

such that it is representative of the intended drug indication. Our analysis demonstrated 

a treatment effect in all REVEAL risk populations, even though etiology contributed to 
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risk stratification, providing preliminary evidence that there are no concerns about 

bridging efficacy between risk groups of different etiological proportion. However, this 

concept warrants further investigation.  

There are two major limitations to our economic analysis. First, increase in 

clinical trial costs due to the need for additional sites for screening was not considered. 

Next, all costs were based on estimates of clinical procedures and cost of the study 

drug (Selexipag) in the United States. While a proportional reduction in cost is still 

expected in other countries, it is speculative and likely not as large as estimated here.  

Lastly, the studied population may not be representative of the risk in the entire 

trial population. Missing clinical variables for baseline risk assessment are assumed to 

be missing at random, but there may be some underlying cause.  

Conclusion  
Use of risk prediction algorithms as a prognostic enrichment tool must be 

validated in prospective clinical trials. This preliminary retrospective study demonstrates 

that such enrichment would reduce needed enrollment size and the duration of 

treatment and observation. This has many significant patient benefits, such as reducing 

the duration of treatment with placebo and improving time-to-market for potentially life-

saving medications. Further, the financial burden of future PAH clinical trials can be 

reduced by improving trial efficiency, allowing drug developers to re-invest savings into 

research and drug innovation. 
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Chapter 3 : Risk-Benefit Tradeoff of Combination 
Therapy in Low-Risk PAH Patients 
 

Introduction 
 
 As stated in Chapter 1, treatment strategies for pulmonary arterial hypertension 

are based on risk stratification at the time of initiation therapy and along the course of 

the disease.(10) The Ambrisentan and Tadalafil in Patients with Pulmonary Arterial 

Hypertension (AMBITION) clinical trial showed that initial combination therapy was 

associated with a 50% reduction in the risk of clinical failure vs pooled monotherapy in 

PAH patients.(42) This treatment effect was detected in both patients of low and 

moderate-to-high disease severity as defined by their New York Heart Association 

(NYHA) functional class. Prior to the results of this trial, it was unclear to clinicians 

whether low-risk PAH patients should be treated with upfront oral combination or 

monotherapy. This trial impacts a significant percentage of PAH patients given that 

about 15-30% of registry populations are deemed “low-risk” (<5% risk of 1-year 

mortality) at start of PAH therapy.(61) 

As discussed in Chapter 2, risk scores are a viable tool for clinical trial enrichment, 

as they can precisely delineate low from intermediate or high-risk patients. Use of 

machine-learning methods shows promise in further improving the accuracy of risk 

stratifying PAH patients.(65) Frost et al initially published application of risk stratification 

to the AMBITION clinical trial data using the REVEAL [1.0] score, and concluded that 
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patients of all risk levels benefited from combination therapy, with no additional safety 

concerns across risk levels.(58) However, REVEAL [1.0] is now considered outdated, and 

more accurate risk stratification could reveal a significantly different risk-benefit tradeoff 

for low risk patients. Specifically, due to the increased risk of side effects caused by 

polypharmacy, as well as increased costs of combination therapy, ideally low-risk PAH 

patients would not need upfront combination therapy. As discussed in Chapter 2, risk 

scores are a viable tool for clinical trial enrichment, as they can precisely delineate low 

from intermediate or high-risk patients. Use of machine-learning methods shows promise 

in further improving the accuracy of risk stratifying PAH patients.(65) Frost et al initially 

published application of risk stratification to the AMBITION clinical trial data using 

REVEAL [1.0] score, and concluded that patients of all risk levels benefited from 

combination therapy, with no additional safety concerns across risk levels.(58) However, 

REVEAL [1.0] is now considered outdated and it is of significant interest to determine if 

improved risk stratification methods would draw the same conclusion.  

This analysis assess the validity a published Bayesian network model (Pulmonary 

Hypertension Outcomes Risk Assessment or PHORA) within the AMBITION clinical 

trial.(65) This study assesses both the benefit of upfront mono- versus combination 

therapy as well as potential risk tradeoff in low-risk patients compared to those of higher 

risk.  It was hypothesized that although some benefit with upfront combination therapy 

over monotherapy may exist for low-risk patients, increased risk of side effects (i.e. 

adverse events or AEs directly attributable to the experimental drug) on combination 

therapy versus monotherapy makes this treatment strategy less tenable. 
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Methods 
The AMBITION clinical trial dataset was used for this analysis, the details of 

which have been previously published.(42) Briefly, this was a randomized, double-blind 

event-driven study whereby treatment naïve PAH patients were assigned to either 

combination therapy (Ambrisentan plus Tadalafil) or Ambrisentan monotherapy or 

Tadalafil monotherapy at a ratio of 2:1:1, respectively. The primary endpoint was time to 

first adjudicated clinical failure event, defined as: death, hospitalization due to 

worsening PAH (including initiation of parenteral prostanoid therapy, lung or heart and 

lung transplantation, or atrial septostomy), disease progression (a decrease of more 

than 15% from baseline in 6-minute walk distance (6MWD) or 6MWD combined with 

WHO FC III or IV symptoms) or unsatisfactory long-term clinical response (any 

decrease from baseline in 6MWD at two consecutive visits separated by 2 weeks and 

WHO FC III symptoms at two consecutive visits separated by 6 months). Lastly, 

adverse drug events were analyzed for drug safety. 

The original AMBITION clinical trial data was analyzed through direct 

collaboration with the U.S. Food and Drug Administration (FDA). Patients analyzed (N = 

500) included only those specified in the modified intention-to-treat population per the 

original trial publication, excluding patients with evidence of left heart disease that did 

not meet the amended entry criteria.(42) As a previous retrospective analysis used 

REVEAL [1.0] to detect a low-risk population, the current study aimed to demonstrate 

the improved stratification of PHORA to reclassify patients into low-risk versus 

intermediate-high risk, as well as determine if differences in treatment response exist 

between risk groups. A description of the design of these two scores, including inclusion 
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and exclusion criteria, has been published previously.(62; 65) Briefly, REVEAL [1.0] is a 

risk-score based on a Cox proportional hazards model of one-year survival, while 

PHORA is a tree-augmented naïve Bayesian network that estimates a probability of 

survival in one-year. Of note, PHORA employs the same variables and cut-off values as 

the contemporary REVEAL 2.0 risk score.  

The AMBITION dataset used the following variables to calculate risk in both 

REVEAL [1.0] and PHORA: age, gender, etiology of PAH, (resting) heart rate, systolic 

blood pressure, NYHA functional class, 6MWD, estimated glomerular filtration rate 

(eGFR), NT-proBNP, mean right atrial pressure (mRAP), and pulmonary vascular 

resistance (PVR). Missing variables at baseline included diffusing lung capacity and 

hospitalization six months prior to randomization. Presence of pericardial effusion was 

derived from patients’ medical histories at baseline, imputed as “Yes” if present in 

medical history, but left as missing if not mentioned. Estimated glomerular filtration rate 

at both baseline and 16-week reassessment were calculated from serum creatinine 

levels per the Levey et al equation.(91)  

For comparison to the Frost et al article, which first explored risk stratification for 

combination therapy in PAH, risk groups were formed as defined by that publication for 

the REVEAL score (< 6 low-risk, ≥ 6 intermediate-high risk).(58) PHORA risk groups 

were formed per the ERS/ECS guidelines (<5% predicted 1-year mortality was low-risk, 

≥ 5-10% intermediate-high risk).(10)  

Receiver-operator curves (ROC) and area under the curve analysis is used to 

compare the performance of the two risk scores (REVEAL [1.0] and PHORA). To 

ensure treatment is not a confounding factor of mortality and baseline risk, only patients 
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in the placebo arm are used for ROC analysis. Net reclassification index (NRI), defined 

by Equation 9, was calculated to determine if PHORA had an improved ability to 

discriminate between low-risk and intermediate-high risk patients, again only using 

placebo arm patients.(102) 

!"# = %&!!"#!	%&	'&('()(*+, − %&!'&(	%&	!"#!'()(*+, + %&!!"#!	%&	'&('*/*()(*+) +
%(!'&(	%&	!"#!|	*/*()(*+),( 9 ) 

where P is the probability or percentage, Nhigh to low indicates the number of 

patients who are reclassified from intermediate-high risk to low risk, Nlow to high indicates 

the number of patients who are reclassified from low risk to intermediate-high risk, event 

indicates death within one-year, nonevent indicates no death within one year. 

In the AMBITION clinical trial, the primary endpoint, time to clinical failure, 

differed from other PAH event-driven trials (e.g. GRIPHON and SERAPHIN). 

AMBITION’s primary endpoint included an event for “unsatisfactory clinical response”, 

which is an event with limited and unclear clinical relevance, as it specifies that any 

decrease in six-minute walk distance and persistence of NYHA class III symptoms after 

6 months constituted a treatment failure. Therefore, for this study’s primary analysis, 

time to clinical worsening (which includes only death, hospitalizations for worsening 

PAH, and disease progression) was analyzed for each risk group (censored at one-year 

and at final assessment visit).(16) Mortality (all-cause death) censored at one-year and 

follow-up was a secondary analysis. Placebo patients who switched to combination 

therapy prior to the primary endpoint were censored at the day of start of combination 

therapy. Kaplan-Meier curves were generated for time to clinical worsening per risk 

group and treatment arm as well as time to death. Cox proportional hazards were used 
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to determine differences between combination and monotherapy within each risk group, 

using a 5% alpha (α) level to define statistical significance. Additionally, time to clinical 

failure (i.e. time to clinical worsening plus unsatisfactory clinical response) was analyzed 

per risk group at one-year and follow-up as a supplementary analysis.  

To examine the risk of upfront combination therapy, the proportion of PHORA 

low-risk patients experiencing significant treatment-emergent adverse events (AEs) 

were analyzed. Treatment-emergent significant AEs were defined as those that lead to 

the withdrawal of the investigational product (i.e. combination therapy or monotherapy) 

and were determined by the investigator to be related to the investigational product. 

This also included events that had the potential for liver injury, defined by an elevation 

of liver aminotransferases of 5 x upper limit of normal (ULN).(42) AEs as determined by 

these criteria were reviewed by PAH clinical experts to determine their clinical relevance 

and broadly categorize event types. The proportion of patients experiencing these 

events in each treatment arm (Ambrisentan monotherapy, Tadalafil monotherapy, and 

combination therapy) are reported. Barnard’s (one-sided) exact test was used to 

determine if a significantly smaller proportion of low-risk patients on monotherapy 

experienced adverse events versus patients on combination therapy. 

Finally, risk-benefit tradeoff was examined using Cox proportional hazards to 

determine differences in time to either first AE or first clinical worsening event between 

combination and monotherapy within each risk group, using a 5% alpha (α) level to 

define statistical significance.  
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Results 
 Table 3.1 provides a summary of total patients classified as low and 

intermediate-high risk by both REVEAL [1.0] and PHORA at baseline and 16-week 

reassessment. Both PHORA and REVEAL 1.0 were prognostic for one-year (PHORA 

AUC = 0.73 and REVEAL 1.0 AUC = 0.73; Figure 3.1).  Net reclassification tables for 

one-year mortality events are shown in Table 3.2. 

Algorithm Time Period Low Risk  
(N, %) 

Intermediate-High 
Risk (N, %) 

REVEAL 1.0 Baseline 75 (15.0%) 425 (85.0%) 
PHORA Baseline 216 (43.2%) 284 (56.8%) 

Table 3.1: Risk Populations at Baseline. 

 
Figure 3.1: Receiver-operator curve for REVEAL [1.0] versus PHORA at Baseline. 
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REVEAL 1.0 

   
Intermediate-High Low-Risk 

PHORA Intermediate-High With Death 9 0 

W/o Death 127 0 

Low-Risk With Death 2 0 

W/o Death 34 75 

Total 172 75 

Reclassification For Events -0.0116 (-2/172)  

Reclassification for Non-events  0.453 (34/75) 

Net Reclassification Index 0.441 

 
Table 3.2: Net Reclassification Analysis Between PHORA 1.0 and REVEAL 1.0 
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Although the ROC-AUC were nearly equivalent between the models, the overall 

net reclassification index for PHORA was positive (NRI = 0.441), indicating improved 

discrimination between low versus intermediate-high risk compared to REVEAL 1.0. 

See discussion for further comment. 

 Kaplan-Meier curves for time to clinical worsening per risk group and treatment 

arm is shown in Figure 3.2. 
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Figure 3.2: Combination versus Monotherapy for Time to Clinical Worsening in Low-Risk and Intermediate-High Risk Patients.

1- yr 
p = 0.62 

Final Visit 
p = 0.59 

1- yr 
p = 0.0012 Final Visit 

p = 0.0017 
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PHORA’s low risk group did not have a significant delay in clinical worsening 

when comparing upfront combination therapy to monotherapy, censored at one-year 

(HR = 0.75, p = 0.62), nor at final assessment (HR = 0.80, p = 0.59). This contrasts with 

the results of Frost et al, by which REVEAL’s low risk group was concluded to have a 

significant benefit on combination therapy. However, PHORA’s (>5% predicted risk of 

mortality) intermediate-high risk group saw significant treatment benefits when censored 

at one-year (HR = 0.34, p = 0.0012) and final assessment visit (HR = 0.45, p = 0.0017). 

Using the original trial primary endpoint, time to clinical failure, PHORA’s low-risk 

combination therapy group still did not experience a significant difference (HR = 0.67, p 

= 0.22; see Appendix). No risk groups (as determined by PHORA) saw a significant 

treatment benefit (all p-values > 0.20) for mortality when censored at one-year nor at 

follow-up (Figure 3.3). Table 3.3 summarizes the first AEs leading to product withdrawal 

experienced in the low-risk groups for PHORA.



 98  

 

Figure 3.3: Mortality Events for Combination Therapy vs Monotherapy, Separated By Low, Intermediate, and High Risk 
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Table 3.3: PHORA Low-Risk Patients First Adverse Event Leading to Treatment Withdrawal.

Adverse Event Type  Ambrisentan Monotherapy  
(N = 58) 

Tadalafil Monotherapy 
(N = 53) 

Combination Therapy 
(N = 105) 

Pulmonary Edema 1.7% (1) 0.0% (0) 0.0% (0) 
Potential for Liver 

Injury 
0.0% (0) 1.9% (1) 1.0% (3) 

Hypersensitivity 0.0% (0) 0.0% (0) 1.9% (2) 
Peripheral Edema 3.4% (2) 1.9% (1) 2.86% (3) 
Myopathy/Myalgia 0.0% (0) 1.9% (1) 1.0% (1) 

Renal Failure 1.7% (1) 0.0% (0) 0.0% (0) 
Hypoxia 0.0% (0) 0.0% (0) 1.0% (1) 

Nasal Congestion 0.0% (0) 0.0% (0) 1.0% (1) 
Multiple AEs  

(general intolerance) 
0.0% (0) 1.9% (1) 3.8% (4) 

Total Percentage 
Experiencing Adverse 
Events Leading to IP 

Withdrawal 

6.9% (4)  7.5% (4) 14.2% (15) 

Total Percentage 
Experiencing Adverse 
Events Leading to IP 

Withdrawal 
(Monotherapy vs 

Combination Therapy) 

7.2% (8) 14.2% (15) 

p-value (Barnard’s 
Exact Test, one-sided) 

0.056 
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The proportion of patients experiencing an adverse event in the combination 

therapy group was twice as high compared to that of monotherapy (14.2% versus 7.2%, 

respectively; p = 0.056). Table 3.4 summarizes the first clinical worsening events 

experienced in the low-risk groups for PHORA low-risk.  

 

Table 3.4. PHORA Low-Risk Patients First Clinical Worsening Events. 
Low-risk patients on combination therapy experienced death more often as their 

first clinical worsening event, while patients on monotherapy experienced hospitalization 

or disease progression more often, but these differences were not statistically 

significant. 

When adverse events and clinical worsening were combined in time-to-event 

analyses, PHORA low-risk patients did not see a significant difference between 

combination therapy and monotherapy when censored at final assessment visit (HR = 

1.20, p = 0.56). PHORA intermediate-high risk patients, in contrast, still saw a significant 

treatment benefit even in the presence of AEs at final assessment visit (HR = 0.56, p = 

0.010). Kaplan-Meier curves for this time to event analysis are shown in Figure 3.4. 

Clinical Worsening 
Event Type 

Ambrisentan 
Monotherapy  

(N = 58) 

Tadalafil 
Monotherapy 

(N = 53) 

Combination 
Therapy 
(N = 105) 

Death (all-cause) 2 0 5 
Hospitalizations due 
to worsening PAH 

5 1 2 

Disease Progression 4 2 4 
Total Events 11 3 11 
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Figure 3.4: Combination versus Monotherapy for Time to Clinical Worsening or Adverse Drug Event in Low-Risk and Intermediate-
High Risk Patients

Final Visit 
p = 0.01 

AEs + CW 

CW Only 

Final Visit 
p = 0.56 

AEs + CW 

CW Only 
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All AEs leading to product withdrawal in the low-risk groups occurred on or 

before 288 days of treatment (median = 21 days for PHORA low-risk) and were largely 

categorized as general drug intolerance and/or hypersensitivity. For intermediate-high 

risk, all AEs occurred on or before 372 days (median = 28 days for PHORA 

intermediate-high risk).  

Discussion 
 
 Contemporary PAH risk stratification tools allow for a more accurate study of the 

benefit of upfront combination therapy on low-risk patients. PHORA demonstrated a net 

positive reclassification index versus REVEAL [1.0]. This demonstrates the improved 

discriminatory power of Bayesian networks versus traditional risk calculators and 

allowed us to analyze treatment heterogeneity more accurately among treatment-naïve 

patients with pulmonary arterial hypertension. In this analysis, the number of patients 

identified as low-risk with PHORA is greater than the number identified with REVEAL 

1.0. While REVEAL cut-offs use a score of < 6 and > 6 for low and intermediate-high, 

PHORA considers patients in risk categories per the ERS/ ESC guidelines. Of note, 

REVEAL 1.0 is a simple additive equation, whereby any patient with a single "higher 

risk" variable and no protective variables will automatically become intermediate risk. 

PHORA, on the other hand, weights variables by their interactions by virtue of its 

methodology. This allowed PHORA to identify significant more truly low-risk patients.  

The results of the original AMBITION trial and retrospective analysis with 

REVEAL 1.0, supported the notion that all patients benefitted from upfront combination 

therapy.(58) However, improvements in PAH risk stratification using the PHORA 
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classification system demonstrates that this benefit is not necessarily clear for PAH 

patients characterized as low-risk. As stratified by PHORA, low-risk PAH patients did 

not have a significant delay in clinical worsening nor clinical failure with combination 

therapy. These results would not necessarily suggest that clinicians should no longer 

treat low-risk patients with upfront combination therapy, as PAH remains a progressive 

and deadly disorder even for this group. Since the mechanism of drug efficacy is 

maintained in the low-risk population (i.e. targeting multiple disrupted pathways that 

contribute to pulmonary vasoconstriction and cellular proliferation), given a sufficiently 

statistically powered study, low-risk treatment naïve patients with pulmonary arterial 

hypertension would likely significantly benefit from combination therapy. However, it’s 

clear from the risk-benefit analysis that these reductions in clinical worsening do not 

outweigh the increased risk of intolerable side effects. Further, the substantial increase 

in financial cost of oral combination therapy makes this strategy less attractive for low 

risk patients. In financial analyses of healthcare burden on PAH patients, reduction of 

inpatient hospitalizations is key to offset the increased costs of pharmaceuticals. 

However, as low-risk patients are far less likely to experience hospitalizations in the first 

place, it is unlikely that the additional cost of upfront combination therapy versus 

monotherapy (e.g. $8,750 for 6 weeks of treatment, versus $6,050 for ERA 

monotherapy and $2,700 for PDE5 inhibitor monotherapy) outweighs the minimal gains 

in clinical worsening.(89)  

While Chapter 2 asserted that establishing treatment efficacy initially in a higher 

risk population should not interfere with prescribing medications to lower risk groups, 

Chapter 2 also maintained that increased risk of side effects may outweigh benefits of 
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combination treatment for certain groups. Clinicians should consider the multiple facets 

of their patients’ lives when choosing a treatment plan, including potential for adverse 

side effects and how these side effects reduce quality of life. While most adverse effects 

observed in this study were not as harmful as PAH disease progression, if the side 

effect led the investigator to the discontinue the medication, it is likely due to the wishes 

of the patient. Therefore, the AEs identified in this study, which are adjudicated by the 

investigator to be directly caused by the drug and lead to discontinuation, are the most 

important events to consider right after the clinical worsening events themselves. 

Specifically, no significant benefit nor harm was found for the low-risk PAH patients, but 

the point-estimate of the hazard ratio indicated a greater propensity for harm (i.e. HR = 

1.2). This is contrasted with results for intermediate-high risk patients where the hazard 

ratio was statistically significant and demonstrated reduction of overall harm, from either 

clinical worsening or adverse events (HR = 0.56). 

Side effects from combination therapy should be mitigated as much as possible 

to improve treatment compliance. According to a public meeting held by the U.S. Food 

and Drug Administration in 2013, in which approximately 85 patients with PAH or their 

representatives attended, many patients commented that they frequently found they had 

to discontinue a specific medication due to side effects or frequently tested “one drug at 

a time” in order to identify which therapies gave the greatest alleviation of PAH 

symptoms with the fewest side effects. The FDA stated in their concluding remarks of 

the meeting that: “Drug treatments that slow the progression of the disease are 

available for PAH patients; however, efficacy varies from patient to patient, and 
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significant side effects can limit benefits or preclude use of these medications.” 

Therefore, it’s clear that significant side effects impact patients’ medical compliance. 

This analysis found that the first year of combination therapy treatment is an 

important window for monitoring for adverse drug effects. Proportion of patients 

experiencing AEs in the low-risk combination therapy group were still relatively rare 

compared to monotherapy but occurred almost twice as frequently (14% versus 7%, p = 

0.056). Appropriate alternatives to upfront combination therapy, including sequential 

add-on therapy or slow titration with regular monitoring could be a potential viable 

strategy for mitigating adverse side effects. In terms of choosing a first initial 

monotherapy, clinicians should weigh the risks of the drug with comorbidities (such as 

liver dysfunction or altered drug metabolism), hinderance on quality of life, and financial 

affordability in countries without universal health care.   

 In determining treatment efficacy, especially between different risk groups, the 

clinical trial endpoint should be relevant to all patients and well-defined. From a patient 

perspective, it is not meaningful for a drug to demonstrate efficacy on a primary 

endpoint that they are unlikely to experience in the first place. Further, composite 

endpoints essentially weigh all events, including mortality, equally, and prioritize the first 

event, obscuring which elements of the composite a treatment truly effects. For low-risk 

patients, this typically means that events like disease progression or failure to improve 

are over-emphasized, albeit infrequent. The infrequency of such events for low-risk 

patients makes the clinical worsening endpoint less relevant to them. Ideally, an 

endpoint for low-risk PAH patients would focus more on alleviation of symptoms, 

especially breathlessness, clinical maintenance of low-risk status, and no significant 
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increases in side effects that preclude treatment. Prognostic enrichment, therefore, be 

used in event-driven PAH clinical trials to determine treatment efficacy in an 

intermediate-high risk group and then later establishing efficacy in a low-risk population 

through a different set of endpoints.  

 Finally, this study does validate the crucial need for upfront combination therapy 

for intermediate and high-risk patients. As shown in the risk-benefit analysis, even with 

an increased risk of side effects, there is a clear clinical benefit for this higher risk group 

in reducing clinical worsening events. Interestingly, high risk patients did not confer a 

significant benefit in the delay or reduction of mortality events. This suggests that 

upfront oral combination therapy may not be sufficient for increasing lifespan in high-risk 

PAH patients, and that triple oral combination therapy or intravenous epoprostenol 

treatment is warranted. This agrees with the 2015 ERS treatment guidelines and further 

underscores the crucial need for accurate risk stratification to protect against the 

undertreatment or overtreatment of PAH patients. 

Limitations  
There are several limitations within this work. First, in the absence of a standard 

definition of a clinical worsening, elements of composite endpoints that have been used 

in other PAH clinical trials were chosen to allow for more comparable results, but the 

adjudication conducted in other PAH trials could not be exactly reproduced. Specifically, 

in the original trial, PAH clinical experts reviewed suspected clinical worsening events 

and determined if their symptoms warranted the definition of NYHA Class III to meet the 

criteria for clinical failure, although the patient may never have fully achieved this 
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classification such that they were recorded as such during follow-up visits. Second, not 

all patients had all variables required for risk stratification and the effects of missing data 

on algorithm accuracy have not yet been directly studied. All patients did, however, 

have the requisite seven of thirteen variables recommended for use in PHORA. Third, 

categorizing and combining AEs is ambiguous under the current MedDRA system and 

our investigation does not reflect an exhaustive analysis of the types of events. For this 

reason, no statistical analyses were performed on specific event types and only 

investigated the collective impact on time to clinical worsening or drug discontinuation.  

Clinical practice would strongly benefit if a cut-off for a “very low risk” PAH group 

could be determined and used to study further differences in treatment response, but 

low sample size made this infeasible for this study. As evidence by the Net 

Reclassification, this more sophisticated algorithm could identify more ‘truly low risk’ 

patients that won't have a mortality event at the end of the year. Although PHORA is not 

yet the perfect risk stratification algorithm, this study demonstrates that improvements in 

risk stratification technology are crucial to improving understanding of PAH clinical 

treatment strategy. Advances in risk stratification, the focus of the next chapter, will 

allow for more focused analysis of low-risk patients in the future. 

This is a retrospective analysis that is not powered sufficiently to claim a 

complete lack of treatment benefit in the low-risk group. Further investigations with real-

world data are warranted to achieve an adequate number of events and statistical 

power to reduce chances of a false negative treatment benefit.  
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Conclusions 
In summary, the overall safety of a drug, healthcare costs, potential for a 

treatment benefit, and patient reported outcomes must all be considered when choosing 

a treatment strategy. These results demonstrate that the overall benefit-risk tradeoff for 

low-risk PAH patients does not favor upfront oral combination therapy. This finding 

provides an opportunity for clinical practice to be re-evaluated, limiting treatment costs 

and drug side effects for 15-30% of the PAH patient population. Further, the need for 

more aggressive treatment for high-risk PAH patients in the form of triple combination or 

intravenous prostanoid therapy is strongly supported by this study.  

Overall, this study demonstrates the clear importance of accurate risk 

stratification for PAH treatment strategy and the use of more sophisticated risk tools 

would allow providers to more accurately communicate the potential benefits and risks 

associated with PAH medications and tailor individual therapies.  A larger sample of 

low-risk patients should be leveraged to further investigate concerns regarding the risk-

benefit tradeoff of upfront combination therapy versus sequential add-on therapy or 

strategic dosing in low-risk WHO Group I PAH patients. 
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Chapter 4 : Beyond the Risk Calculator - Improving 
PAH prognosis with machine learning 

Introduction 
As stated in Chapter 1, risk calculators are considered the best clinical strategy at 

this time for guiding pulmonary arterial hypertension treatment and avoiding sudden 

clinical worsening. These risk calculators aim to sort patients from low to high risk based 

on clinical markers.(66) Current commonly used tools include three risk calculators 

developed based on registry data: COMPERA(59), French (FPHR)(60), and REVEAL 

2.0(61). Each calculator uses a combination of hemodynamics, demographics, and/or 

laboratory values to assign a risk level to a patient based on predicted mortality: low risk, 

with a less than 5% one-year mortality rate, intermediate risk, with a 5-10% one-year 

mortality rate, and high risk, with a greater than 10% one-year mortality rate. However, 

there is currently no single, agreed-upon tool to determine risk and all common clinical 

risk tools based on registry data are at best fair-to-good (c-statistic 0.65-0.75) in their 

performance.(10; 61)  

Further, most risk calculators specifically focus on metrics of right ventricular 

function or severity of symptoms but ignore other systemic biomarkers of right heart 

function. Right heart failure causes several negative downstream effects on the kidneys, 

liver, gut, immune system, many of which have been linked to worsening clinical 

outcomes and mortality.(103) Clinical guidelines recommend the use of liver and kidney 

metabolic panels for PAH patient assessment, but these laboratory values have yet to be 
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incorporated into a risk calculator.(10) Further, conditions such as hyponatremia and 

hyperbilirubinemia are recommended criteria for placement on the lung transplantation 

waiting list, yet these serum values are also not considered in PAH risk calculators.(104) 

Biomarkers from these organ systems may enhance prognostic power of clinical risk tools 

by highlighting patients with poor right heart adaptation specific to their individual organ 

needs rather than using “one-size-fits-all” ideal values for RV hemodynamics. 

In 2019, the first Tree-Augmented Naïve (TAN) Bayesian network, based on the 

REVEAL 2.0 calculator, was validated in multiple PAH registry datasets (shown in 

Chapter 1).(65) Its performance for prediction of one-year mortality improved 

incrementally upon REVEAL 2.0, but it did not consider how an expanded feature set 

could improve prognostic performance. 

In addition to improvements in performance, there are many other advantages to 

the use of Bayesian network modeling for clinical prognosis, which were reviewed in 

Chapter 1. Briefly, Bayesian networks allow the user to map clinical variables to a 

probability of an event, rather than giving a relative, ordinal risk level, which is less 

precise. Bayesian networks have several significant advantages over parameterized 

statistical methods, which must force certain assumptions about how clinical variables 

translate to risk, such as proportional hazards.(69) Lastly, the usability and accuracy of 

classic statistical tools become less reliable when specific measurements are missing 

from patients and cannot be reasonably imputed.(73; 105) This is a common problem 

with clinical data where a clinician’s time and resources can be very limited, or the cost 

of repeated invasive testing is prohibitive. Whereas a traditional risk score does not have 

a clear means of handling missing data, Augmented Bayesian Networks can substitute 
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the most likely variable given all others observed and expectation-maximization can be 

used when training the network with non-complete case data.(106) Lastly, Bayesian 

Networks can be represented with a graphical structure. This increases user confidence 

as the model is not a “black box” and interactions between variables, the outcome, and 

the strength of the relationship can be visualized.(107) 

The goal of this study was therefore to consider an expanded set of clinical 

variables and develop a new Bayesian network from “the ground-up” rather than basing 

it entirely on another risk calculator. The goal of developing this new network was to 

improve upon performance of published risk calculators while reducing the number of 

needed variables, integrate use of common laboratory values into risk assessment, and 

improve upon the understanding of the interplay between clinical variables and short-term 

mortality outcomes in PAH. 

Methods 
Modeling methodology and use of data is summarized in Figure 4.1. Further 

details on each step of model development are described below.
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Figure 4.1: Methodology for Bayesian Network Model Learning. 
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Harmonizing Multiple Clinical Trial Datasets 
To obtain enough training dataset for a machine learning model, we collaborated 

directly with the U.S. Food and Drug Administration to create a hi-fidelity harmonized 

dataset using multiple clinical trials conducted on pulmonary arterial hypertension patients 

since 2004. This source of data provides a rich set of clinical variables for individual-level 

patients at baseline as well as their clinical outcomes, as well as international 

representation from multiple clinical sites. This harmonized dataset was comprised of six 

clinical trials conducted from 2004-2019 individual patient level data:  A Study of First-

Line Ambrisentan and Tadalafil Combination Therapy in Subjects With Pulmonary Arterial 

Hypertension (AMBITION)(42), Ambrisentan in Patients With Moderate to Severe 

Pulmonary Arterial Hypertension with its open-label extension (ARIES-1/2/E)(14; 108), 

Phase III Clinical Worsening Study of UT-15C in Subjects With PAH Receiving 

Background Oral Monotherapy (FREEDOM-EV)(109), Selexipag in Pulmonary Arterial 

Hypertension (GRIPHON)(37), A Study to Evaluate Efficacy and Safety of Oral BAY63-

2521 in Patients With Pulmonary Arterial Hypertension with its open-label extension 

(PATENT-1/2)(21; 110), and Study of Macitentan on Morbidity and Mortality in Patients 

With Symptomatic Pulmonary Arterial Hypertension (SERAPHIN)(16). All clinical trials 

were published previously. Only patients with known vital status at the end of one year 

from baseline (dead or censor day >= 365) were included in the training dataset. 

Meta-analysis and Initial Feature Selection 
 Studies have shown that initial feature selection for statistical and machine learning 

models conducted in a unique dataset can avoid overfitting and increase effective sample 
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size.(111; 112) Clinical variables were assessed in a distinct group of clinical trials: 

Bosentan therapy for pulmonary arterial hypertension (BREATHE-1)(15), A Study to 

Evaluate Efficacy and Safety of Oral BAY63-2521 in Patients With Chronic 

Thromboembolic Pulmonary Hypertension (CHEST)(113), An Open-Label Extension 

Trial of UT-15C Sustained-release (SR) in Subjects With Pulmonary Arterial Hypertension 

(FREEDOM-EXT)(114), Continuous subcutaneous infusion of treprostinil, a prostacyclin 

analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, 

placebo-controlled trial (SIMMONEAU)(32), and Clinical Investigation Into Inhaled 

Treprostinil Sodium in Patients With Severe Pulmonary Arterial Hypertension 

(TRIUMPH)(36). PATENT-1/2 and SERAPHIN were also included in the meta-analysis 

to provide additional data on hemodynamics and NTproBNP/BNP, which were not 

measured in any other trial in the meta-analysis. Hence, neither SERAPHIN nor PATENT 

are used in the hold-out dataset, to prevent “memory-leakage” between feature selection 

and final hold-out testing (i.e. training and validating on the same subjects).  

Using a two-step method, univariate Cox proportional hazards were first measured 

in each respective trial for prediction of one-year survival, then Stouffer’s method was 

applied for p-value aggregation from each individual trial to determine a final relative 

variable importance. Due to the increased chances in finding clinical variables with a 

significant p-value in univariate analyses, Bonferroni’s correction was applied to control 

the family-wise error rate of univariate analysis on multiple clinical variables (FWER) to 

be < 0.05. Only variables with an adjusted p-value of < 0.05 were considered candidates 

for the model, unless PAH clinical experts recommended their candidacy based on 
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literature review and significance was limited by data availability. All aggregated p-values, 

adjusted p-values, and data availability for features in meta-analysis are reported.  

 As many variables are strongly correlated, a correlation heatmap was produced 

and variables with Pearson’s correlations > 0.6 were down-selected, favoring the better 

predictor of survival (lower p-value from the meta-analysis). For example, if stroke volume 

and stroke volume index had a correlation of 0.9, but stroke volume index had a smaller 

p-value in the meta-analysis, stroke volume index was chosen over stroke volume. 

Univariate Decision Tree Discretization 
Classification and Regression Trees (CART) decision trees were used to select 

and pre-process features for the discrete Augmented Naïve Bayesian network. The 

benefit of using one machine learning model to inform another is that the initial method 

allowed for a data-driven process for discretizing continuous variables (a necessary pre-

processing step for discrete Bayesian networks) by pre-learning their relationship with the 

outcome to be used in the network. Multiple publications have demonstrated that 

discretization of variables can improve generalization and performance of machine 

learning models by preventing overfitting of variables with threshold effects on the 

predicted outcome.(81; 115) For example, there is a suspected saturation limit to 

NTproBNP (in excess of 3000 pg/mL) where higher values are no longer informative. 

Specifically, CART decision trees were chosen to optimize (i.e. minimize) the negative 

Brier score, in which is considered a proper scoring method, as discussed in Chapter 1. 

These univariate decision trees were then 10-fold cross-validated within the training 

dataset to determine the optimal number of cut-points for a single variable, while reducing 
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overfitting, optimizing the negative Brier score. Once the number of cut-points was 

established, decision trees were refit to all training data to produce final cut-points. 

Groups separated by a cut-point that did not have a significant difference in survival rate, 

as determined from a two-sided Barnard’s exact test, were re-merged, a technique 

referred to as “pruning”.(116)  

Advanced Feature Selection with Differential Evolution versus GeNiE 
methods 
 A novel method for determining candidate feature groups was developed, using a 

hybrid “filter” and “wrapper” method with differential evolution. Differential evolution is 

meta-heuristic approach to obtain a globally optimized solution for non-convex objective 

functions.(77) The objective function was defined with two specific goals: 1) to maximize 

the information obtained from features after discretization, 2) reduce redundancy between 

features.  

 The first goal could be satisfied simply by accounting for all variables. However, a 

greater number of features also increases propensity for model overfitting. Therefore, the 

use of the smallest feature set that still maximizes performance is desired. The pairwise 

redundancy of features was determined through Kendall’s tau for agreement in ranked 

outcomes (i.e. concordance). Discretized features that ranked patients identically would 

have a Kendall’s tau of one or 100% concordance; conversely, discretized features that 

ranked patients in the exact opposite manner would have a Kendall’s tau of negative one 

or -100% concordance. As features were discretized on a univariate basis, it’s 

advantageous to include in pairs of features that encode different types of information 

regarding clinical outcomes. For example, if men are found to be at higher risk of one-
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year mortality than women, but so are patients with connective tissue disease, which 

disproportionately affects women, its advantageous to consider both features. 

Conversely, for features that have very similar agreement in ranking patients, the features 

likely demonstrate a correlative physiological effect, and only the one that best ranks the 

patients with the true outcome (also determined by Kendall’s tau) should be prioritized. 

For example, if six-minute walk distance ranks patients nearly the same as their New York 

Heart Association Functional Class, which is partially causally based on six-minute walk 

distance, but six-minute walk distance betters agrees with the true outcome, NYHA 

should be dropped in favor of six minute walk distance. 

 Finding a group of features that optimizes this balance is conducted with 

differential evolution, which creates an initial “population” of feature groups, finds the 

groups with the best “fitness” for the objective function (i.e. sum of concordance between 

each feature and the outcome), and then “evolves” these groups towards a final feature 

set. Multiple rounds of differential evolution were conducted with different rates of 

“penalization” of feature redundancy (i.e. sum of concordance between how each feature 

pair ranks patients, where features that rank patients more similarly give a greater penalty 

and are likely to be dropped). Higher penalization results in groups with fewer features, 

lower penalization results in groups with more features. Lastly, the objective function 

included a term to penalize fractional values to drive the optimization towards choosing 

or dropping features, rather than finding solutions with partial feature consideration.  

 Figure 4.2 shows the final pseudocode for differential evolution feature selection.  
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Figure 4.2: Pseudocode for Differential Evolution Feature Selection. 
 

The method is compared, using cross-validation, to multiple other feature selection 

methods for Bayesian networks: 1) selection of top ten features with maximal mutual 

information with the outcome, 2) selection of features based on causal modeling (aka 

greedy thick-thinning conducted in GeNiE), 3) selection of features using GeNiE PC, 4) 

selection of features using the GeNiE structure learning method for augmented Naïve 

Bayes. 
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Augmented Naïve Bayesian Network 
The harmonized clinical trial dataset described above was used to build an 

augmented naïve Bayesian network. Bayesian networks aim to maximize the joint 

probability of a structure by learning probabilistic relationships between “parent” and 

“child” nodes. All nodes that are not linked are conditionally independent of all others 

given the outcome. Augmented naïve Bayesian networks are more flexible than both 

Tree-Augmented Naïve (TAN) Bayesian networks, in that they allow for interactions 

between variables but do not force assumptions about the number of “parents”, whereas 

TAN requires that every node has at least one parent beyond the outcome, regardless of 

strength of linkage. As the differential evolution feature selection method specifically aims 

to remove redundant variables, fewer nodes will have a strong “parent” node, allowing for 

the “naïve” assumption of conditional independence among variables to better hold. 

GeNie modeling software was used to build multiple network classifiers with 

different numbers of variables, based on the outputs of the differential evolution feature 

selection with increasing penalty. Only a subset of the training data is used for the training 

process (20%), as it requires complete records to learn interactions. Parameters of the 

model were then improved by using expectation-maximization, which iteratively improves 

the likelihood of the parameters using the full training dataset, including patients with 

missing variables. Ten-fold cross validation on each candidate model was used to test 

different subsets of the candidate variables, repeated ten times with a different random 

seed to determine folds.  The best final model was determined by choosing the model 

with the fewest variables but no significant drop in performance (i.e. cross-validation AUC) 

compared to the model with the most variables. Differences in AUC were determined with 
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a nonparametric Kruskal-Wallis test, with a post hoc Dunn test for multiple comparisons, 

and p < 0.05 was used to determine significance. Final model performance was measured 

on the hold-out validation set and compared to several other published PAH risk 

calculators, including COMPERA(59), French (FPHR)(60), REVEAL 2.0(61) and PHORA 

[1.0](65). 

Results 

Patient Population Summary 
Summary statistics for the harmonized clinical trial dataset is provided in Table 

4.1. This reflects the population with no early censored patients (i.e. all patients with no 

death event were observed for at least a year from baseline). Overall, the harmonized 

dataset reflected the common demographics of Group I PAH – majority female (78.5%), 

non-Hispanic white (63.6%), idiopathic PAH (57.3%) or PAH associated with connective 

tissue disease (29.78%), with an average age of 48 years and an “overweight” BMI 

(average 26.4 kg/m2). Patients were also most commonly NYHA Class II or III (47.70% 

and 50.08%, respectively) and were on one or more PAH medications prior to 

randomization to treatment (63.70%).
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Harmonized Clinical Trial Dataset 

 AMBITION SERAPHIN GRIPHON PATENT-1/2 ARIES-1/2 FREEDOM-EV Total 
Total Patients  N = 443 N = 720 N = 1060 N = 237 N = 113 N = 584 3157 
Placebo/Treatment 223/ 220 480/240 518/542 178/59 89/24 284/300 1385 P/1772 T 
Gender 342/101 551/169 848/212 192/45 88/25 458/126 2479 F/678 M 
Age 54 ± 14 46 ± 16 48 ± 15 49 ± 16 52 ± 15 45 ±15 48 ± 16 
Race 

White (Non-Hispanic) 
Black or African American 

Asian 
Other 

  
395 
31 
10 
6 

  
389 
19 
203 
109 

   
685 
25 
232 
118 

  
141 
2 
89 
5 

  
87 
5 
3 
18 

  
311 
14 
256 
3 

   
2008 
96 
793 
259 

Body Mass Index 27.8 ± 6.5 25.5 ± 5.9 26.7 ± 6.2 26.0 ± 5.7 26.5 ± 5.4 26.0 ± 6.0 26.4 ± 6.1 
NYHA 

I 
II 
III 
IV 

  
0 

132 
311 
0 

  
1 

379 
326 
14 

  
7 

485 
557 
11 

  
5 

100 
130 
2 

  
2 
42 
61 
8 

  
19 
368 
196 
1 

  
34 

1506 
1581 
36 

Six Minute Walk Distance 350.5 360.2 352.8 366.7 343.3 397.0 363.1± 90.9 
Etiology of PAH 

Connective Tissue 
Congenital Heart Disease 

IPAH 
Familial PAH 

HIV 
Toxin 
Portal 

  
167 
6 

238 
11 
8 
13 
0 

  
217 
60 
399 
13 
10 
21 
0 

  
308 
103 
598 
22 
7 
22 
0 

  
56 
19 
144 
6 
0 
2 
10 

  
38 
0 
69 
0 
5 
1 
0 

  
154 
37 
361 
9 
7 
16 
0 

  
940 
225 
1809 
61 
37 
75 
10 

Treatment Naive 443 258 210 122 94 0 1127/2011 
Deaths in One-Year  18 49 95 16 21 32 231 (7.3%) 

Table 4.1: Summary Statistics for Harmonized Clinical Trial Dataset 
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Feature Selection Meta-Analysis 
Results from meta-analysis for variables determined to be significant (adjusted p-

value < 0.05) are shown in Table 4.2. Variables are ranked in order of lowest p-value 

(first) to highest p-value (last).  Table 4.3 includes all other variables that were not 

significant (adjusted p-value > 0.05).
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Table 4.2: Results of Meta-
Analysis for Significant 
Variables. 
 

Variable Total N Aggregated 
p-value 

Bonferroni 
Correction 

Total Bilirubin 2539 3.91E-10 3.55E-08 
Six Minute 

Walk Distance 1430 1.09E-08 9.89E-07 
NYHA FC II 1852 1.16E-08 1.06E-06 

Mixed Venous Oxygen 
Saturation 1739 1.50E-08 1.37E-06 

Stroke Volume Index 1937 2.07E-08 1.89E-06 
Sex: Female 1435 2.84E-08 2.59E-06 
Heart Rate 1769 4.23E-08 3.85E-06 

Left Heart Stroke Work 1827 6.37E-08 5.79E-06 
Pulmonary Arterial Elastance 1649 1.14E-07 1.04E-05 

Cardiac Power Output 2753 1.36E-07 1.24E-05 
Stroke Volume 1546 3.42E-07 3.11E-05 

Race: Asian 2048 9.16E-07 8.34E-05 
Body Surface Area 1397 1.01E-06 9.21E-05 

Total Peripheral Resistance 1891 2.11E-06 1.92E-04 
Alkaline Phosphatase 2492 4.93E-06 4.48E-04 

NYHA FC IV 992 5.20E-06 4.73E-04 
Cardiac Output 2003 5.65E-06 5.14E-04 

Creatinine 1560 8.08E-06 7.36E-04 
Cardiac Efficiency 1622 8.72E-06 7.94E-04 

Aspartate Aminotransferase 1539 1.11E-05 1.01E-03 
Pulmonary Vascular Resistance 1654 1.38E-05 1.26E-03 

Use of Diuretics 992 2.14E-05 1.95E-03 
PAH Medication (Treatment 

Naïve) 2038 2.58E-05 2.35E-03 
Neutrophil 422 3.12E-05 2.84E-03 

Blood Urea Nitrogen 1946 3.14E-05 2.86E-03 
Body Mass Index 1780 4.78E-05 4.35E-03 

Lactate Dehydrogenase 1492 5.33E-05 4.85E-03 
Cardiac Index 1060 5.64E-05 5.14E-03 

Sodium 1791 5.66E-05 5.15E-03 
Albumin 1710 7.58E-05 6.90E-03 
Chloride 1793 8.87E-05 8.10E-03 

History: Right 
Heart Failure 1734 9.46E-05 8.61E-03 
NYHA FC III 860 1.00E-04 9.10E-03 
Neutrophil: 
Lymphocyte 211 1.00E-04 9.10E-03 

Right Atrial Pressure 1501 3.41E-04 3.10E-02 
Right Ventricular Stroke Work 1534 4.16E-04 3.78E-02 
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Variable Total N Aggregated 
p-value 

Bonferroni 
Correction 

Diastolic Pulmonary Arterial 
Pressure 

1514 7.35E-04 6.69E-02 

Right Ventricular Stroke Work 
Index 

1529 1.02E-03 9.30E-02 

Hematocrit 2214 1.09E-03 9.95E-02 
Age 2414 1.21E-03 1.10E-01 

Leukocyte 211 1.40E-03 1.27E-01 
Respiration Rate 994 2.14E-03 1.94E-01 

Systolic Blood Pressure 1342 2.31E-03 2.10E-01 
Race: Hispanic 860 2.40E-03 2.18E-01 

Urate 105 3.00E-03 2.73E-01 
Race: Caucasian 860 3.40E-03 3.09E-01 

Chronic Thromboembolism 
Pulmonary Hypertension 

155 4.00E-03 3.64E-01 

Pulmonary Vascular Resistance 
Index 

616 4.20E-03 3.82E-01 

BORG (Perceived Exertion 
during Six Minute Walk) 

1766 4.40E-03 4.00E-01 

NT-Pro BNP 146 5.00E-03 4.55E-01 
Platelet 1909 5.08E-03 4.62E-01 
Aspirin 992 6.63E-03 6.03E-01 

Creatinine Clearance 382 7.32E-03 6.66E-01 
Right Ventricular Cardiac Work 865 7.89E-03 7.18E-01 

Mean Pulmonary Arterial 
Pressure 

1519 8.29E-03 7.55E-01 

Race: Native American 819 8.30E-03 7.55E-01 
Gamma Glutamyl Transferase 251 8.55E-03 7.78E-01 

Time since PAH 821 1.01E-02 9.19E-01 
Right Atrial to Pulmonary 

Capillary Wedge Pressure 
621 1.35E-02 1.23E+00 

Estimated glomerular Filtration 
Rate 

942 1.35E-02 1.23E+00 

Bilirubin Direct 730 1.51E-02 1.37E+00 
Triacylglycerol Lipase 423 1.67E-02 1.52E+00 

Lymphocyte 211 1.76E-02 1.60E+00 
History: Raynaud 287 1.90E-02 1.73E+00 

Use of Statin 109 1.90E-02 1.73E+00 
Pseudocholinesterase 146 2.70E-02 2.46E+00 

Right Ventricular Cardiac Work 
Index 

860 2.82E-02 2.57E+00 

Pulmonary Arterial Compliance 642 2.84E-02 2.58E+00 
Etiology: Congenital Heart 

Disease 
954 3.07E-02 2.80E+00 

Red Blood Cell Count 809 3.23E-02 2.94E+00 
Monocyte 211 3.54E-02 3.22E+00 

Diastolic Blood Pressure 1141 3.97E-02 3.62E+00 
Systolic Pulmonary Arterial 

Pressure 
849 4.28E-02 3.89E+00 

Oxygen Supplement 109 4.70E-02 4.28E+00 
Erythrocyte 704 5.18E-02 4.71E+00 

Urea 146 5.60E-02 5.10E+00 
Etiology: CTD 954 5.67E-02 5.16E+00 

Pulmonary Artery Pulsatile Index 653 5.78E-02 5.26E+00 
EQ-5 (Quality of Life Score) 285 5.90E-02 5.37E+00 

Etiology: Idiopathic Pulmonary 
Hypertension 

109 6.70E-02 6.10E+00 

Hemoglobin 211 7.41E-02 6.74E+00 
Acute Hemodynamic Index 205 7.82E-02 7.12E+00 

Creatine Kinase 146 8.00E-02 7.28E+00 
Use of Digoxin 109 8.30E-02 7.55E+00 

Pulmonary Capillary Wedge 
Pressure 

1642 9.18E-02 8.36E+00 

Ratio Monocyte To Leukocyte 146 9.70E-02 8.83E+00 
Ratio Pulmonary Vascular 

Resistance to Systemic Vascular 
Resistance 

596 1.68E-01 1.53E+01 
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Table 4.3: Results of Meta-
Analysis for Insignificant 

Variables

Pulmonary Hemodynamic Index 653 2.46E-01 2.23E+01 
Mean Arterial Pressure 210 3.79E-01 3.45E+01 
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As determined from the correlation heatmap, features were assessed for high 

collinearity. The full correlation heatmap is shown in Figure 4.3.  
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Figure 4.3: Correlation Heatmap of Clinical Variables
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Specifically, left stroke work, stroke volume, cardiac power output, total 

pulmonary resistance, cardiac output, cardiac efficiency, pulmonary vascular resistance, 

cardiac index and right ventricular stroke work were downselected due to high 

correlations with stroke volume index. BMI was downselected due to high correlation 

with body surface area.  

The following variables were not available in the validation dataset and were 

dropped from feature candidacy: mixed venous oxygen saturation, pulmonary arterial 

elastance, lactate dehydrogenase, serum chloride, history of right heart failure, ratio of 

neutrophil to lymphocyte, neutrophil cell count. From expert opinion and literature 

review, age, NTproBNP/BNP, ratio of right atrial pressure to pulmonary capillary wedge 

pressure, and presence of connective tissue disorder were additionally considered for 

feature candidacy despite non-significant p-values in the meta-analysis. The final 

feature selection prior to model training is shown in Table 4.4.
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Variables Included from Meta-analysis Variables Included from Expert Opinion 

Total Bilirubin Age 

Six Minute Walk Distance NTproBNP/BNP 

NYHA Functional Class Right Atrial Pressure to PCWP 

Stroke Volume Index Presence Connective Tissue Disorder 

Sex (Male/Female)  

Heart Rate (Sitting) 

Body Surface Area 

Alkaline Phosphatase 

Creatinine 

Aspartate Aminotransferase 

Use of diuretics 

PAH Medication (Treatment Naïve) 

Sodium (Serum) 

Albumin 

Mean Right Atrial Pressure 

Blood Urea Nitrogen 

Table 4.4. Candidate Features Following Meta-Analysis and Expert Opinion 

CART Decision Tree Pre-processing and Significance Testing 
 All continuous features shown in Table 4.4 were assessed for discretization using 

univariate CART decision trees. An example of a learned tree is shown in Figure 4.4, for 

the variable total bilirubin.  
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Figure 4.4. Example of Univariate Decision Tree to Discretize Continuous Clinical Variables (ex. 
Serum Total Bilirubin) 

A table of all learned cut-points for all candidate features is shown in Table 4.5, 

including the estimated survival for each group above or below the threshold and p-

values of the Barnard’s exact test between groups, with corrections for multiple 

comparisons. 
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Variable Identified Cut-points Effect on Prognosis Estimated  
Survival Rate 

p-value (Barnard’s Exact 
Test) 

Total Bilirubin (µmol/L) Very Low <= 8.3 
8.3 < Low <= 13 

13 < Intermediate <= 32.5 
High > 32.5 

Improves 
Neutral 

Worsens 
Significantly Worsens 

96.9%  
94.1% 
90.5% 
82.6% 

Very Low vs Low: 0.044 
Low vs Intermediate: 0.044 
Intermediate vs High: 0.044 

Six Minute Walk 
Distance (m) 

High > 346.5 
244.5 < Intermediate <= 346.5 

Low <= 244.5 

Improves 
Worsens 

Significantly Worsens 

96.6% 
90.3% 
78.1% 

Low vs Intermediate: 0.0002 
Intermediate vs High: 0.0008 

Albumin (U/L) High > 43.5 
36.5 < Intermediate <= 43.5 

Low <= 36.5 

Improves 
Worsens 

Significantly Worsens 

95.8% 
91.7%  
84.1% 

Low vs Intermediate: 0.037 
Intermediate vs High: 0.008 

Stroke Volume Index 
(mL) 

High > 3.6 
Low <= 3.6 

Improves 
Worsens 

98.5%  
90.1%  

Low vs High: 0.00013725 

Heart Rate (bpm) Low <= 83.5 
83.5 < Intermediate <= 89.5 

High > 89.5 

Improves 
Worsens 

Significantly Worsens 

95.1%  
92.2%  
85.2% 

Low vs Intermediate: 0.026 
Intermediate vs High: 0.012 

RAP:PCWP Low <= 1.087 
High > 1.087 

Improves 
Significantly Worsens 

95.0%  
89.4%  

Low vs High: 0.00161055 

NTproBNP (ng/L) Low <= 533.5 
533.5 < Intermediate <= 1834 

High > 1834 

Improves 
Neutral 

Significantly Worsens 

98.0%  
94.8% 
81.0% 

Low vs Intermediate: 0.028 
Intermediate vs High: 3.31e-

6 
Alkaline Phosphatase 

(U/L) 
Low <= 122.5 
High > 122.5 

Neutral 
Significantly Worsens 

94.1%  
86.0%   

Low vs High: 0.00037799 

Creatinine (µmol/L) Low <= 77.05 
Intermediate <= 107.85 

High > 107.85 

Improves 
Neutral 

Significantly Worsens 

95.4%  
92.1% 
83.7%   

Low vs Intermediate: 0.024 
Intermediate vs High: 0.006 

Aspartate 
Aminotransferase (U/L) 

Low <= 22.5 
High > 22.5 

Improves 
Worsens 

95.2%  
90.9%  

Low vs High: 0.0018 

Sodium (mmol/L) Low <= 137.5 
High > 137.5 

Neutral 
Significantly Worsens 

93.8%  
89.8% 

Low vs High: 0.029 
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Age (yrs) Low <= 27.5 
27.5 < Intermediate <= 64.5 

High > 64.5 

Significantly Worsens 
Neutral 

Significantly Worsens 

89% 
94.2% 
90% 

Low vs Intermediate: 0.027 
Intermediate vs High: 0.027 

Body Surface Area (m2) High > 1.82 
1.74 < Intermediate <= 1.82 

1.6 < Low <= 1.74 
Very Low <= 1.6 

Improves 
Significantly Worsens 

Neutral 
Significantly Worsens 

95.1% 
88.4% 
94.7% 
90.7%  

Very Low vs Low: 0.032 
Low vs Intermediate: 0.032 
Intermediate vs High: 0.013 

BUN (mmol/L) Low <= 7.755 
High > 7.755 

Neutral 
Significantly Worsens 

94.5% 
87.6% 

Low vs High: 0.0017 

Connective Tissue 
Disorder 

Y 
N 

Worsens 
Neutral 

 Yes vs No: 0.02 

NYHA FC I/II 
III 
IV 

Improves 
Worsens 

Significantly Worsens 

 I vs II: p = 0.37 
II vs III: p = 4.53×10-3 

     III vs IV: p = 6.46×10-3 
Use of Diuretics Y 

N 
Worsens 
Neutral 

 Yes vs No: 0.028 

Sex M 
F 

Worsens 
Neutral 

 Male vs Female: 0.0018 

Table 4.5. Results of Univariate Decision Tree Analysis.
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No cut-points could be identified using mean right atrial pressure that would 

create groups with significant differences in one-year survival rate. Results of Barnard’s 

exact testing for discrete variables is shown in Table 4.5, with correction for multiple 

comparisons. 

Results of Differential Evolution Feature Selection 
 Figure 4.5 shows the concordance of patient ranking (from low to high risk based 

on estimated probability of survival) between each variable, using Kendall’s tau.  
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Figure 4.5. Kendall's tau (concordance) of outcome prediction by clinical variables 
Variables with highest concordance with the outcome are strong univariate 

predictors of survival. The top three variables with highest concordance are six-minute 

walk distance (20.9%), NTproBNP/BNP (23.3%), and stroke volume index (15.4%).  
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Other highly positive relationships between variables demonstrate a potentially 

significant degree of redundancy in how they rank patients. For example, total bilirubin 

and NTproBNP/BNP have a concordance of 32.0%, meaning that patients with low 

survival predicted by a “high” NTproBNP also tend to have “high” total bilirubin. The top 

three highest concordances (i.e. greatest redundancy) were seen between serum 

creatinine and blood urea nitrogen, six-minute walk distance and NYHA functional class, 

and male sex and serum creatinine. 

Conversely, negatively concordant variables rank patients in opposite directions. 

For example, patients with low survival predicted by connective tissue disorder are less 

likely to be male, but males are predicted to have worse survival than females 

(concordance -19.8%). The lowest concordances (i.e. least redundancy) were seen 

between male sex and body surface area, male sex and presence of connective tissue 

disorder, and total bilirubin and presence of connective tissue disorder. Interestingly, 

connective tissue disorder had a negative or low concordance with nearly all clinical 

variables, suggesting that most connective tissue disorder patients, despite having a 

higher risk of mortality, do not typically also have other high-risk features.  

 Results from the differential evolution feature analysis are shown in Table 4.6
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Model 

Number 
Penalty  

Size 
6MWD HR Age BSA Sex CTD ALB AP BILI BUN SVI BNP NA Di Cr AST FC R:P 

1 0 ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü 
2 0.05 ü ü ü ü ü ü ü ü ü ü ü ü  ü ü ü ü  
3 0.075 ü ü ü ü ü ü ü ü ü ü ü ü ü    ü ü 
4 0.10 ü ü ü ü ü ü ü ü ü ü ü ü ü      
5 0.15 ü ü ü ü ü ü ü ü ü ü ü  ü      
6 0.175 ü ü ü ü ü ü ü ü ü ü ü        
7 0.2 ü ü ü ü ü ü ü     ü ü ü     

Table 4.6: Differential Evolution Feature Selection 
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Penalty size decreases the number of features selected, but also affected the 

variables chosen, based on the degree of redundancy with other variables that may be 

present. 

Bayesian Networks and Final Model Performance 
Figure 4.6  shows the cross-validation results for all models using a group of 

features identified by differential evolution, as well as the GeNiE selection methods. 
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Figure 4.6: Comparison of Model Performance for Different Feature Selection Methods  

*	

*	

*	
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. 
As shown, all models using differential evolution feature selection outperformed 

the GeNiE selection methods, although the differences were only significant down to a 

penalty size of 0.10 (13 variables). Of the GeNiE feature selection methods, PC 

performed the best, identifying a model that only required 8 variables. Feature selection 

through greedy thick-thinning and augmented naïve Bayesian feature selection both 

only identified three variables for prediction: NTproBNP, alkaline phosphatase, and 

albumin. The classifier built with these three variables was significantly worse than all 

differential evolution models, but not significantly worse than the models built with PC 

nor top 10 independent variable feature selection. Differential evolution Model #4 (13 

variables) had the highest average cross-validation AUC, but the drop in performance 

was not significantly different between Model #4 and Model #6 (11 variables). 

Therefore, Model 6 was chosen as the final model for validation in the holdout set, 

shown in Figure 4.7.  
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Figure 4.7: Final Network for PHORA 2.0, Using Differential Evolution Feature Selection (Model 
#6) 
 Figure 4.8 shows the receiver-operator curve for the final chosen model versus 

published PAH risk calculators. The model was statistically significantly better than the 

next best AUC (REVEAL 2.0).
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Figure 4.8: Validation on Hold-Out Set for New Model (PHORA 2.0) versus All Risk Calculators. 

Discussion 
 This study demonstrates the potential power of machine learning for improving 

prognostic tools for pulmonary arterial hypertension. It has generated the first machine 

learning model built with data-driven techniques to generate excellent performance 

(AUC > 0.80) on hold-out data. Further, it has allowed for new hypothesis generation 
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into the pathophysiology of PAH, specifically regarding systemic consequences of right 

heart failure and integration of novel biomarkers. 

 Risk stratification is one of the most critical clinical tools for the treatment and 

clinical study of pulmonary arterial hypertension. As patients’ treatment strategy 

depends on accurate clinical risk assessment, improving prognostic tools is paramount 

to improving PAH clinical decision science. As shown in Chapters 2 and 3, PAH clinical 

decision science can go much further with more accurate prognostic tools, allowing for 

both clinical trial enrichment and risk-benefit assessment in treatment strategy. 

 The modeling methodology conducted in this chapter highlights many significant 

clinical takeaways about PAH risk stratification in general. Based on the meta-analysis, 

stroke volume index was the most important hemodynamic value for assessing survival. 

These results contrast to some degree with current 2015 European Respiratory Society 

guidelines to use cardiac index as the primary measure of systemic perfusion. This 

highlights that there may be a difference in cardiac index achieved through high 

sympathetic nervous activation (i.e. high resting heart rate) versus a cardiac index 

achieved through greater RV ejected volume. As demonstrated from the meta-analysis 

and decision tree analysis, a higher resting heart rate confers worse survival. Thus, 

clinicians should consider decoupling cardiac index to stroke volume and heart rate 

when evaluating right heart function in patients with PAH. 

 Although discretizing features can lead to a loss of information between the 

predictor variables and the outcome, it is still a highly preferred method in clinical 

decision science, significantly easing the model learning process, and can prevent 

overfitting in some cases. Effective cut-point analysis requires a cross-validated means 
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of choosing hyperparameters, such as the number of cut-points to identify, to further 

ensure against overfitting, as well as pruning methods. Of clinical interest, decision tree 

analysis for NTproBNP identified cutpoints (low risk <= 533.5, 533.5 < intermediate risk 

<= 1834, high > 1834) within 25% of the values chosen for the 2015 ERS guidelines 

(low risk <= 400, 400 < intermediate risk < 1400, high > 1400). In contrast, cut-points for 

six minute walk distance (low risk > 346, 346 >= intermediate risk > 244.5, high risk <= 

244.5) were less similar, within 48% of the value chosen for the ERS guidelines (low 

risk > 440, 165 < intermediate risk <= 440, high risk < 165). Cut-points used in this novel 

model for six-minute walk distance were less extreme in value than those used in the 

guidelines, yet were still able to confer significant differences in one-year survival rate 

between all groups. This suggests that the guidelines are too extreme in their low and 

high values for six-minute walk distance. 

Significance testing did not demonstrate a significant difference in survival rate 

between NYHA Functional Class I and Class II patients, yet there was a significant 

difference between Class III and IV. Interestingly, however, Class I and Class IV were 

roughly just as frequent in the dataset. Therefore, this difference is not explained by 

sample size alone. Although the Class I designation may predict other significant clinical 

outcomes, such as quality of life, it does not appear to be a significant predictor of 

mortality outcomes. This supports the ERS guidelines, which specifies that both Class I 

and II are given the same risk level designation. 

 The 2015 ERS guidelines recommends regular laboratory workups for PAH 

patients that includes total bilirubin, liver aminotransferases (though specifies alanine 

aminotransferase only for patients on ERA therapy), creatinine, and serum sodium for 
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patients with PAH every 3-6 months.(10) However, there is no mention in the guidelines 

on how to determine what values in each of these labs are signs of clinical worsening. 

Hyperbilirubinemia (defined as a total serum bilirubin of > 20.5 µmol/L) and 

hyponatremia (defined as serum sodium <137 mmol/L) are considered additional 

evidence in evaluation for placement on the lung transplant waiting list, yet no current 

risk model accounts for either clinical value. This model is the first means of risk 

stratification to account for these systemic consequences of right heart failure. Decision 

tree analysis for serum sodium agreed almost exactly (high risk serum sodium < 137.5 

mmol/L) with the definition of hyponatremia. Decision tree analysis for total bilirubin 

demonstrated that the variable is more informative than a single value, identifying three 

groups with significantly different survival rates, and showing a significant decrease in 

chances of survival for total bilirubin values as low as 13 µmol/L. 

A recent review article has discussed the importance and effect of right 

ventricular failure on organ systems. In the kidneys, venous congestion and 

hypoperfusion cause chronic congestive nephropathy and low perfusion renal injury, 

respectively.(103) The consequences of chronic congestive nephropathy are renal 

edema, increased interstitial pressures, and tubular compression, all of which act to 

reduce glomerular filtration. Further, the activation of inflammatory mediators caused by 

backflow results in glomerular and interstitial damage, fibrosis, and reduced kidney 

function, resulting in salt and water retention and proteinuria. This results in elevated 

creatinine and blood urea nitrogen levels.  Low perfusion renal injury results in tissue 

fibrosis, cell necrosis, and impaired cell signaling. As the kidneys play a key role in 

blood pressure and fluid homeostasis, their dysfunction can cause a vicious cycle that 
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further strains the right ventricle, pushing it closer to failure. Increased circulating 

inflammatory factors caused by kidney injury also can worsen pulmonary hypertension 

directly. Patients with repeated subclinical kidney injuries are at risk for developing 

chronic kidney disease.(103) In the liver, again, venous congestion and hypoperfusion 

cause chronic congestive injury (hepatopathy) and ischemic injury (hepatitis). These 

both result in a loss of function for the liver, decreasing its synthetic function (reduced 

albumin), increasing hepatocellular injury, and result in liver fibrosis. While ischemic 

hepatitis is rare and has clear, severe symptoms, assessing which patients are at 

greater risk for developing such a condition is crucial to prevention. Chronic congestive 

hepatopathy can remain subclinical and is believed to be a significant risk factor of later 

developing ischemic hepatitis. Despite the clear clinical understanding of these issues, 

current risk stratification methods largely overlook kidney and liver biomarkers. In 

reality, these two organs may serve as the “canaries in the coalmine”, especially as 

hemodynamics alone have been repeatedly shown to be insufficient in risk stratifying 

patients. This machine learning model is the first guidance to identify optimized cut-

points for identifying patients at higher risk based on blood urea nitrogen, serum 

sodium, total bilirubin, alkaline phosphatase, and aspartate aminotransferase, as well as 

show the interactions between variables.  

 While the harmonization of clinical trials allowed for a large enough dataset to 

develop a more accurate machine learning model, there remains a crucial need for 

large, opensource data to both validate and improve upon PAH risk stratification. Data 

access and privacy remains a major challenge for all machine learning applications to 

clinical data. Though some researchers have begun to recognize this need and create 
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publicly funded data registries for PAH (namely, the Pulmonary Hypertension 

Association Registry or PHAR), these registries require greater resources for consistent 

data collection of crucial biomarkers, hemodynamics, and imaging.(117) Further, as 

genetics, epigenetics, and proteomics become further implicated in the pathophysiology 

of PAH, bigger data still will be required to make the necessary discoveries into PAH 

genotypes and phenotypes to finally arrive at curative treatments. 

 Overall, machine learning has proven itself as a successful tool for knowledge 

discovery and succinct synthesis of large datasets, in addition to a means of more 

accurately risk stratifying PAH patients. Lessons from this model demonstrated the clear 

importance of overlooked liver and kidney biomarkers, as well as the importance of 

inclusion of connective tissue etiology to reduce underestimation of risk within this PAH 

subpopulation. 

Limitations 
 This study had a few limitations. External validation of the machine learning 

model in a contemporary (2019 or later) dataset would be ideal. While there are many 

registry datasets currently used in international PAH research, access to these datasets 

is extremely limited. This remains a major limitation in clinical decision support research 

in general.  

 The training dataset used is now considered sub-contemporary, as it includes 

patient baseline data from as early as 2004. Clinical practice and management of PAH 

has changed significantly since that time period, which can affect baseline rates of one-

year mortality as well as the relevance of certain clinical variables.  
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Interactions between systemic consequences of right heart failure, such as 

subclinical liver injury, and pharmaceutical treatment, could be crucial to understanding 

PAH mortality. Specifically, with the increased clinical use of double or triple oral 

therapies, it’s unclear if a potentially compromised liver can metabolize an increasing 

number of medications. Another possibility is that patients compromised liver function 

are more susceptible to drug-induced liver injury that results in medication withdrawal, 

and subsequent clinical worsening.  

 Modeling treatment interactions, biomarkers, and functional capacity (symptoms 

and exercise capacity) is likely necessary to achieving higher performance of PAH risk 

models. This increasing number of variables will likely require more complex and 

sophisticated modeling paradigms (deep neural networks) as well as even larger 

datasets. Probably and Approximately Correct Model theory maintains that these 

sample sizes can be estimated by the VC dimension of a model, by which a deep neural 

network has a VC dimensions several times larger than an augmented naïve Bayesian 

network (depending on hyperparameters). However, empirical studies have shown 

there is something of a paradox in that deep neural networks can still generalize well to 

unseen data with significantly fewer examples than required by PAC theory. Further still, 

the use of embedded domain knowledge may significantly reduce required sample sizes 

for machine learning models by restricting the number of learned relationships and 

parameters required. As will be discussed in the last chapter of this dissertation, novel 

physiological models of PAH that demonstrate how perfusion and congestion reduce 

right ventricular work capacity may be the key to creating more accurate PAH risk 

models.  
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Conclusion 
 In this chapter, Bayesian network modeling, first introduced with the development 

of the PHORA model, has been further optimized using differential evolution feature 

selection, allowing for significant gains in risk prediction accuracy. Further, the 

application of this machine learning technique has further supported the importance of 

liver and kidney biomarkers, as well as incorporation of demographics and etiology such 

as sex, age, and presence of connective tissue disorder in the assessment of risk. 

External validation of these models in large datasets is required before implementation 

into clinical practice but allows for well-specified hypothesis generation into further 

studying the systemic consequences of right ventricular failure. 
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Chapter 5 : Energetic Model of Right Ventricular 
Failure 

Introduction 
 
 Right ventricular (RV) function is the primary determinant of survival in patients 

with pulmonary arterial hypertension (PAH). (103) Abnormal increases in right ventricular 

afterload lead to eventual decreases in cardiac output and increased venous congestion, 

a vicious cycle that further strains the right ventricle and ends in right ventricular failure. 

Per the 2015 European Respiratory Society guidelines, clinicians are instructed to 

focus directly on metrics of RV output (RV ejection fraction, cardiac output, stroke volume, 

etc) as markers of disease severity and RV adaptation.(10) These metrics are crucial; 

however, less consideration is given to how RV output is a direct function of RV metabolic 

substrate delivery, particularly the oxygen required to power ATP production to fuel RV 

contraction.(118) As PAH progresses, multiple factors can limit right coronary perfusion 

including increased RV systolic pressure that drastically reduces right coronary systolic 

flow and reduction in cardiac output that reduces the driving pressure for coronary 

perfusion. (119) Further, the estimated prevalence of coronary artery disease in PAH 

patients is 28%, a condition that further limits coronary perfusion.(120) The culmination of 

these factors leads to a reduction in total oxygen delivered to the right ventricle, and 

reduced right coronary perfusion reserve has been observed in PAH patients.(121) Once 

right ventricular oxygen extraction and coronary flow reserves are exhausted, patients will 
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be less capable of tolerating a new insult or demand upon their cardiovascular system, 

such as physical exertion.  

The RV requires high oxygen delivery to overcome the high afterload, but it must 

also be able to use this oxygen efficiently. Myocardial external efficiency, the observed 

ratio of stroke work to RV myocardial oxygen consumption, has been shown to be higher 

in PAH patients of New York Heart Association Class II (NYHA II) versus Class III/IV, 

linking inefficient oxygen use to disease severity.(122) However, it is unclear if this 

inefficiency reflects higher RV load, a preferential switch to aerobic glycolysis over 

oxidative phosphorylation, or one of the other possible causes that have been identified, 

including but not limited to septal bowing, neurohumoral metabolism, and increased heart 

rate. A statistical model published in 2011 by Wong et al. suggested that the main 

predictors of RV myocardial oxygen consumption (MVO2) in patients with PAH were heart 

rate and systolic pulmonary arterial pressure but did not provide the specific physiological 

mechanism by which these values determine MVO2. (123) As discussed in Chapter 1, 

pressure-volume area (PVA) models of ventricular energetics have been applied to other 

heart failure modalities but only represent a fraction of oxygen consumption (roughly 

40%), are difficult to measure reliably, and are more invasive as they require manual 

manipulation of venous return.(87; 124) Further, they do not reflect true thermodynamic 

first principles of energy expenditure under isovolumic contraction.(87) Although 

pressure-volume loops are not currently used to assess PAH patients, a more accurate 

energetic model of the RV under high afterload could prove valuable to assessment of 
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PAH RV dysfunction and guiding optimization of extracorporeal membrane oxygenation, 

which can be used as a bridge-to-transplant (10),. 

 In order to improve understanding of how right ventricular oxygen demand and 

efficiency changes due to PAH, a novel right ventricular work model is proposed that 

builds upon the earlier work of Elbeery et al on the left ventricle.(87) The underlying premise 

of this model is that (1) ventricular total work capacity is dictated primarily by its oxygen 

supply and that (2) energy wasted due to high “isovolumic” work demands results in less 

energy available to produce a sufficient cardiac output. Here, the model is modified to 

more accurately portray the relationship between right ventricular hemodynamics and 

oxygen consumption, resulting in the first model to use thermodynamic first principles to 

calculate right ventricular power output specific to PAH. The accuracy of the original and 

adjusted models was then examined using data from clinical studies of patients with 

idiopathic PAH and from large animal models that underwent a combination of acute 

pulmonary hypertension with or without hypoxia. Finally, the clinical relevance of this 

model for improving assessment of RV function is discussed.  

Methods 

Clinical versus Animal Study Model Differences 
 
 The metabolic model of RV function relies on a variety of hemodynamic and 

blood oxygenation data. Due to discrepancies in available instrumentation and 

avoidance of invasive measures in clinical studies, some modeling approaches differ 
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between animal study data and clinical study data. A summary of differences is 

provided in Table 5.1 and discussed in more detail in the section below. 

 

 CLinical studies 
(N= 15) 

Animal Studies  
(N=6) 

cause of increased pulmonary impedance Idiopathic Pulmonary Arterial Banding 

Right coronary Flow measurement PET Imaging Ultrasonic flow probe 

pulmonary arterial flow measurement 
Estimated with invented flow 

profile Ultrasonic flow probe 

right ventricular oxygen extraction fraction 
measurement PET Imaging Estimated from literature 

values 

Table 5.1: Summary of Differences Between Modeling Approach for Clinical and Animal Studies 

Metabolic Right Ventricular Function Model 
 

The model presented here builds upon the model of Elbeery et al, originally designed 

and validated in canine left ventricles. (87) Changes are made to make the model more 

appropriate for PAH pathophysiology, RV function, and human clinical studies.  

 In a normal adult human heart, oxidative phosphorylation is responsible for almost all 

ATP generation in myocardial tissue (95%), with glycolysis providing the remaining 

percentage.(125) While typically the work demands on the RV are low and oxygen supply is 

abundant, in situations of high afterload, there is significant evidence that RV work is limited by 

RV oxygen supply, similar to that of a healthy left ventricle.(121; 123) This model, therefore, 

uses this assumption to couple RV oxygen consumption directly to its energy expenditure via 

the following equation: 

!"#$%	'()ℎ$+,)$%	-+(./0	(2) = 	20.2	 × 9!	:"+;<=>#,"+,  ( 10 ) 
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where O2 Consumption is in mL per heartbeat and the constant factor is based on the 

theoretical efficiency of oxidative phosphorylation with mixed substrates (i.e. 20.2 joules per mL 

of oxygen).(125) The units for Equation 10 are joules (J) per heartbeat. In this equation, the 

small contribution of anaerobic energy sources (glycolysis) are considered to be negligible (see 

Discussion for further comment). where O2 Consumption is in mL per heartbeat and the 

constant factor is based on the theoretical efficiency of oxidative phosphorylation with mixed 

substrates (i.e. 20.2 joules per mL of oxygen).(125)  

The rate of oxygen consumption can, therefore, be coupled to the power output of the 

RV, or work per unit time.  

20.2	 × 9!	:"+;<=>#,"+	?$#(	 @
"

#$%A = 	!"#$%	'()ℎ$+,)$%	-+(./0 × B?,      ( 11 ) 
where HR is heart rate (beats/min) and O2 Consumption Rate is in volume per min (mL/min). 

The units for Equation 11 are joules per minute (J/min) 

The rate of O2 delivery to the right ventricle free wall is determined primarily by right 

coronary flow in humans.(126) In sheep, there is anatomical evidence that the left anterior 

descending branch of the left coronary artery also supplies blood to the upper region of the right 

ventricle, but its contribution has not been quantified, and this model assumes its effect on right 

ventricular oxygen supply to be negligible.(127) This relationship is modeled as: 

	9!	C(%,D(.0	?$#(	 @
#&
#$%A = 	1.34 × 9-H × I'() × J* × :+, ,																																										( 12 ) 

where Sa is arterial oxygen saturation (%), OEF is RV oxygen extraction fraction, QRCA is 

right coronary flow (mL/min), Chb is the concentration of hemoglobin (g/mL), and the constant 

(1.34) is the hemoglobin oxygen carrying capacity (1.34 mL of O2 per gram of hemoglobin).(128) 

The units for Equation 12 are milliliters per minute (mL/min). To avoid invasively measuring 

arteriovenous differences in oxygen saturation during acute sheep studies, RV OEF was not 

directly measured, but instead estimated to be 50% in normoxic and 60% in hypoxic conditions 
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based on previous studies.(129; 130) RV OEF for clinical studies, however, was determined 

directly through PET imaging.(122),(128),(131) 

According to the Elbeery et al model, total mechanical energy (TME), in joules (J), is 

dictated by both an internal index of heat (referred to here as isovolumic work) and stroke 

work(87): 

!'-	(2) = L;"D"%<=,)	M".N + J#."N(	M".N,                                  ( 13 ) 
The units for Equation 13 are joules (J). RV total power output (TPO), in joules per 

minute (J/min), is therefore the sum of isovolumic work and stroke work over a cardiac cycle: 

!P9	 @ "
#$%A = 	B?	 × (L;"D"%<=,)	M".N + J#."N(	M".N),                ( 14 ) 

The units for Equation 14 are joules per minute (J/min). 

In the Elbeery et al model, isovolumic power is estimated via: 

L;"D"%<=,)	P"Q(.	(2/=,+) = 	B? ×=?S-. × (?S-/0 	− 	S1) × (1.33 × 1023),							( 15 ) 
where mRVEP  is the mean right ventricular ejection pressure (mmHg) and RVEDV is right 

ventricular end-diastolic volume during systole.(87) The units for Equation 15 are joules per 

minute (J/min). The constant (1.33×10-4) is the conversion factor from mmHg-mL to joules, and 

V0, the dead volume that is determined by the ventricular end-systolic pressure-volume 

relationship, is considered to be negligible.(87)  

Ventricular stroke work is calculated as: 

Stroke Work (J/min) = ∫ P.)I.)
4
1  ,             ( 16 ) 

where PPA and QPA are the instantaneous pulmonary arterial pressure and flow 

measurements, respectively, and T is the period of RV ejection. The units for Equation 16 are 

joules per minute (J/min). 

Although QPA could be directly measured in the acute sheep studies via flow probe, this 

cannot be done for clinical patients and pulmonary arterial flow was instead approximated using 

an invented flow profile.(132) Although QPA could be directly measured in the acute sheep 
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studies via flow probe, this cannot be done for clinical patients and pulmonary arterial flow was 

instead approximated using an invented flow profile.(132) The invented flow profile was based 

on the following piecewise function: 

I$ 	(=V/=,+) = 	

⎩
⎨

⎧Z(JS) ([>(−3#) ;,+ @
56
6!"
A 																																				0 < # < #78 + 0.02

I$(#78 + 0.02) ]1 −
626!"21.1!

1.1! ^											#78 + 0.02 < # < #78 + 0.04
0																																																					#78 + 0.04 < # < #7:

                      ( 17 

) 
Where A is an amplitude proportionality factor, SV is the stroke volume in mL, tes is the 

time at which RV ejection ends in seconds, ted is the time at which RV diastole ends in seconds, 

and 0.04s is assumed to be the duration of pulmonary valve regurgitation.(132) The units for 

Equation 17 are milliliters per minute (mL/min). The value of the amplitude proportionality factor 

A was calibrated such that mean Qi(t) was equivalent to each patient’s respective cardiac 

output. Finally, the invented flow (Qi(t)) and discrete pulmonary arterial pressure data were 

integrated for the first 5 sequential heartbeats during the period of ejection using the trapezoidal 

method to calculate stroke work. The stroke work for each heartbeat was divided by the period 

of ejection (T) to obtain stroke power.  

Stroke Power (J/min) = ;4 ∫ P.) × I.)
4
1                                    ( 18 ) 

The units for Equation 18 are joules per minute (J/min). Stroke power is averaged over 

five heartbeats to get a steady-state measurement at rest. Details on how the period of ejection 

was determined in the RV pressure waveform can be found in the Appendix. 

The following adjusted model was compared to the Elbeery et al model(87): 

1) Assume that isovolumic work is proportional to raising the RV end-systolic volume 

(RVESV) to the mean ejection pressure, rather than the end-diastolic volume (RVEDV). 

This provides a lower bound for total RV work, by assuming that the majority of work is 

performed in raising the entire end-diastolic volume to the mean ejection pressure and 

that stroke volume ejection is a passive consequence of the resulting pressure gradient 
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between the RV and distal PA. Mathematically, this can be demonstrated by 

decomposing RVEDV into two components for Equation 15 (recall that V0 is considered 

negligible): 

L;"D"%<=,)	P"Q(.	(2/=,+) = 	B? ×=?S-. × (?S-<0 	− 	JS) × (1.33 × 1023),							( 19 ) 
Then, the assumption is made that ejecting the stroke volume is negligible to isovolumic 

power: 

L;"D"%<=,)	P"Q(.	(2/=,+) = 	B? ×=?S-. × (?S-<0 	) × (1.33 × 1023),							( 20 ) 
2) Assume that isovolumic work is proportional to the difference between mean ejection 

pressure (mRVEP) and end-diastolic pressure (RVEDP), rather than mean ejection 

pressure alone. Arguably, initially raising the right ventricle to its end-diastolic pressure is 

work performed by the left ventricle. In patients with PAH, RVEDP  can be significantly 

raised due to venous congestion, making this change crucial to model accuracy.  

With the modifications above, the adjusted model changes Equation 15 to be: 

L;"D"%<=,)	P"Q(.	(2/=,+) = 	B? × (=?S-. 	− 	?S-/.) × (?S-<0) × (1.33 × 1023)			( 21 ) 
 The units for Equation 21 are joules per minute (J/min). 

3) In humans, zeroth harmonic stroke power (the product of mean pulmonary arterial 

pressure and cardiac output) can be calculated directly. Out of necessity, the non-zeroth 

harmonic stroke power is estimated using the method of Sauoti et al.(133), by which 

oscillatory work is estimated to be proportional to pulmonary arterial pulse pressure. 

Stroke work is therefore estimated in the adjusted model by: 

J#."N(	P"Q(.	(2/=,+) = 	B? × (=PZP) × (JS) × (1.33 × 1023) 		+ (0.156 × PP)						( 22 ) 
The units for Equation 22 are joules per min (J/min). 

The most accurate means for calculating stroke work is provided in Equation 18 and 

used when applying the adjusted model to animal data. Equation 22 is only used as a stopgap 

to estimate pulsatile work without the ability to measure QPA in humans. 

Total power output for the Elbeery et al model is then: 
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!P9	 @ "
#$%A = 	B? ×=?S-. × (?S-/0 	− 	S1) × (1.33 × 1023) +	

;
4 ∫ P.) ∗ I.)

4
1 ,        ( 23 ) 

which is the sum of Equation 15 and Equation 16.(87) The units for Equation 23 are 

joules per minute (J/min) 

This is contrasted with total power output for the adjusted model: 

!P9	(2/=,+) = 	B? × (=?S-. 	− 	?S-/.) × (?S-<0) × (1.33 × 1023) + B? × (=PZP) × (JS) ×
(1.33 × 1023) + 	0.156 × PP,  ( 24 ) 

which is the sum of Equation 21 and Equation 22. The units for Equation 24 are joules 

per minute (J/min).                       

The final RV efficiency metric is then: 

?S	-bb,),(+)0	(%) = =87>?@	<6BCD7	.CE7B
	4C6*@	.CE7B	F?6G?6 ,                                 ( 25 ) 

where Useful Stroke Power (J/min) is defined as non-pulsatile stroke power, in order to 

differentiate between stroke power that represents forward flow into the pulmonary artery versus 

stroke power loss to pulsatile effects that does not generate forward blood flow. 

d;(b<%	J#."N(	P"Q(.	(2/=,+) = =PZP	 × 	:9,                                 ( 26 ) 
and total power output is defined by either Equation 23 for the Elbeery et al model or Eq. 

24 for the adjusted model. The units for Eq. 26 are joules per minute (J/min). 

Animal Studies 

Surgical Methods and Instrumentation 

The validity of the model was tested first using acute studies with adult, Dorset breed 

male sheep (Ovis aries) (N=6, 60 ± 3 kg).  All sheep received humane care in compliance with 

the “Guide for the Care and Use of Laboratory Animals” and all methods were approved by the 

University of Michigan Committee for the Use and Care of Animals. Anesthesia was induced 

with 6-9 mL/kg of propofol and maintained with 1-3% inhaled isoflurane (Abbot Laboratories, 

Chicago, IL). Sheep were mechanically ventilated at all times with 100% oxygen set to a tidal 

volume of 10 mL/kg. The respiratory rate was adjusted to maintain an arterial PCO2 (PaCO2) 
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between 35 and 45 mmHg.  Lastly, a carotid arterial line and left jugular venous line were 

placed and then connected to fluid coupled pressure transducers (ICU Medical, Inc., San 

Clemente, CA) for animal management. 

A left thoracotomy was performed, and a 24 mm perivascular flow probe (24AX, 

Transonic Systems, Inc., Ithaca, NY) was placed around the main pulmonary artery to measure 

cardiac output (CO) continuously with a T400 Flowmeter (Transonic Systems; Ithaca, NY). 

Umbilical tape was passed around the main pulmonary artery and a Rummel tourniquet was 

used to increase pulmonary resistance when needed. Right coronary artery dissection was then 

performed by retracting the right atrium laterally to expose the atrio-ventricular groove. Blunt 

dissection with electrocauterization was performed to isolate a small section of the right 

coronary artery and place a 4-mm perivascular flow probe (4AX, Transonic Systems, Inc., 

Ithaca, NY) to measure right coronary artery flow rate continuously (T400 Flowmeter, Transonic 

Systems; Ithaca, NY). 

Proximal PA and RV pressures were measured continuously via 14G angiocatheters 

(Becton, Dickinson and Company, Franklin Lakes, NJ) connected to fluid coupled pressure 

transducers (ICU Medical, Inc., San Clemente, CA). Lastly, an 8F pulmonary artery catheter 

(model 777F8, Edwards Lifesciences, Irvine, CA) was introduced into the right jugular vein and 

its tip placed in the pulmonary artery distal to the flow probe and umbilical tape. An ECG lead 

was placed on each of the sheep's legs and attached to a patient monitor (Marquette Solar, 

Marquette, WI). The monitor was then interfaced with the Vigilance CEDV monitor (Edwards 

Lifesciences, Irvine CA) to measure heart rate (HR), right ventricular ejection fraction (EF) and 

end diastolic volume (RVEDV). 

Animal Experimental Methods 
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A baseline data set was taken after completing instrumentation. Proximal PA, RV, and 

central venous pressures and PA flow rate were acquired digitally at 250 Hz for seven seconds 

using LabVIEW (National Instruments, Austin, TX). All other data, specifically HR, RV end 

diastolic volume, arterial saturation and hemoglobin concentration (measured with Radiometer 

Blood Gas Analyzer, Brea, CA), were hand recorded. Thereafter, RV afterload and oxygen 

saturation to the RV were varied. A hypoxic condition was induced by lowering the inspired 

oxygen fraction, FIO2, and thus arterial oxyhemoglobin saturation (Sa). The afterload was 

increased by adjusting the pulmonary blood flow zeroth harmonic impedance modulus, Z0, using 

a Rummel tourniquet on the main PA. This index has been a preferred index for afterload by 

some physiologists because, unlike mPAP alone, it continues to rise as pulmonary vascular 

resistance (PVR) is increased to very high levels and, unlike PVR, it includes the load placed on 

the RV by left atrial pressure. Experimental groups were defined by the change in Z0 applied 

over baseline values, ΔZ0, and Sa. The following four groups were thus examined; (i) Normal 

afterload, normoxia (n=5): ΔZ0 = 0  mmHg/(L/min), Sa = 100%;  (ii) High afterload, normoxia 

(n=6): ΔZ0 = 4 mmHg/(L/min), Sa = 100%; (iii) Normal afterload, hypoxia (n=6): ΔZ0 = 0 

mmHg/(L/min), Sa = 75%; and (iv) High afterload, hypoxia (n=6): ΔZ0 = 4 mmHg/(L/min), Sa = 

75%. Each condition was maintained for four hours. All data were taken every 40 minutes as at 

baseline. Both Sa and Z0 were assessed every 20 minutes and adjusted as needed to maintain 

their target values. After four hours, the sheep were euthanized with 90-150 mg/kg of IV 

pentobarbital (Fatal-Plus, Vortech Pharmaceuticals, Dearborn, MI).  

Clinical Studies 
 

Through collaboration with the Pulmonary Hypertension Group at the Vrije Universiteit 

(VU) University Medical Center in Amsterdam, Netherlands, RV hemodynamic and metabolic 
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data for 15 idiopathic pulmonary artery hypertension (IPAH) patients were analyzed. Of the 15 

patients (aged 26-71 years), 14 were female and 1 was male. The protocol was approved by the 

Medical Ethics Review Committee of VU University Medical Center. Each patient gave written 

informed consent before the study. Each patient was grouped according to the New York Heart 

Association Classification (NYHA). RV hemodynamic data was obtained through cardiac 

Magnetic Resonance Imaging (MRI), cardiac Positron Emission Tomography (PET), and right 

heart catheterization. Details on calculation of oxygen extraction fraction are provided in Wong 

et al.(122)two-minute mark from a total five-minute acquisition time. (122) Briefly, the entire 

acquisition time for PET imaging was 10 minutes, using 40 frames. Oxygen extraction fractions 

were determined from volume-weighted average time-activity curves of the identified right 

ventricular wall region, identified through standard methods of a C15O-PET image and cardiac 

MRI.  Pulmonary arterial pressure, right ventricular pressure, and ECG data was recorded 

simultaneously for most patients (n=11) and asynchronously for those remaining (n=4) during 

baseline in a supine position at a sampling rate of 1 kHz for a period of 5 minutes. Values are 

ensemble averaged per heartbeat over five heartbeats. For hemodynamics values and volumes, 

ensemble averages were calculated over five heartbeats, extracted starting from the A summary 

of all provided measurements are given in Results section. Further details of the full clinical 

study can be found in Wong et al. (122)  

Statistical Analysis 
 To validate both models (Elbeery et al’s model and the adjusted model), the coefficient 

of determination (R2) was measured between the RV O2 consumption and RV total power 

output for all clinical data; for sheep, data was analyzed at baseline and after 4-hours (when 

hemodynamics were considered stable). Statistical significance (p-value) of each model’s 

coefficient of determination and the 95% confidence intervals were calculated. The 95% 
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confidence interval for each regression coefficient and y-intercept term were also determined. 

The regression coefficient is expected to reflect the theoretical efficiency of oxidative 

phosphorylation (20.2 J/mL O2) and the y-intercept term is expected to be non-significant, 

reflecting the negligible contribution of anaerobic sources to total power (i.e. power output in the 

absence of oxygen).    

 To examine the relationship between RV efficiency is related to oxygen consumption 

rate, the coefficient of determination between these two variables and its statistical significance 

are measured. RV efficiency is hypothesized to be negatively related to oxygen consumption 

rate (i.e. high RV efficiency allows for low RV oxygen consumption and vice versa). 

To examine the relationship between RV oxygen consumption and percentage of type of 

work, average and standard error of the mean of percent contribution of isovolumic power, 

useful stroke power, and pulsatile stroke work to total work are reported by class for NYHA 

Class II and Class III/IV patients.  

Finally, to examine the relationship between RV efficiency, oxygen consumption, and 

symptoms of right heart failure, a MANOVA analysis was used to show statistically significant 

differences between NYHA Class II and III/IV patients in RV efficiency from both the Elbeery et 

al and the adjusted model as well as significant differences in oxygen consumption rate. NYHA 

Class III and IV patients were combined to ensure sufficient statistical power. In terms of 

disease severity, both NYHA Class III and IV are considered to have significant limitations in 

functional capacity versus NYHA Class II, making the grouping appropriate.(55) Given a null 

hypothesis of no difference in these three metrics between low and high NYHA class, the 

alternative hypothesis is that higher NYHA class (more severe disease state) would have lower 

RV efficiency as calculated by either model and higher RV oxygen consumption rates.  Post hoc 

analyses with Bonferroni correction were used to determine specifically which dependent 
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variables (mechanical efficiency from the Elbeery et al model, mechanical efficiency from the 

adjusted model, and/or oxygen consumption rate) were significantly different between Class II 

and III/IV.
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Results 
 

Table 5.2 shows the summary of hemodynamics and demographics for the clinical 

studies. Briefly, patients were evenly split between low (NYHA Class II) and high (NYHA Class 

III and IV) disease severity.  

 

 NYHA II (n=8) NYHA III (n=4) NYHA IV (n=3) 

Mean PA Pressure 
(mmHg) 
mPAP 

47.4±11.7 58.8±13.3 65.3±22.9 

Cardiac Output (L/min) 
CO 

5.6±0.9 
  

4.2±1.1 3.5±1.4 

Ejection Fraction 
EF 

46±13.3 
  

31±3.5 
  

19±4.4 
  

Right Coronary Mean 
Blood Flow (mL/min) 

Rc MBF 

47.5±15.5 
  

64.6±20.8 
  

55.2±12.6 
  

Oxygen Extraction 
Fraction 

OEF 

0.6±0.15 0.7±0.16 0.9±0.08 

RV Free Wall End 
Diastolic Mass (g) 

72.5±22.7 85.1±19.7 88.1±12.9 

Age 43.6±14.2 48.3±16.8 42.0±10.8 

Sex (Female/Male) 7/1 4/0 3/0 

Table 5.2. Summary of Hemodynamics and Demographics for Clinical Studies. 
Average values for hemodynamics worsened with disease severity (higher afterload and 

reduced cardiac output and RV ejection fraction), but there was significant overlap between all 

values across disease severity. Interestingly, average right coronary mean blood flow was larger 
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for NYHA Class III than Class II but was lower for NYHA Class IV than Class III. This 

demonstrates compensation in Class III, but decompensation in Class IV due to the effect of 

reduced cardiac output on coronary perfusion and RV oxygen delivery. 

Figure 5.1 shows the linear relationship between O2 consumption (mL/min) and right 

ventricular total power output (J/min) for clinical studies using both the Elbeery et al model 

(Figure 5.1a) and the newly proposed model (Figure 5.1b). 
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Figure 5.1: Total Right Ventricular Power Output versus Right Myocardial Oxygen Consumption for the Elbeery et al Model (a) and 
Adjusted Model (b) 
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As shown in Figure 5.1, the adjusted model had a higher coefficient of determination 

(Elbeery et al model R2 = 0.66 versus adjusted model R2 = 0.78). The slope for the adjusted 

model (20.0 J/mL O2) was slightly closer to the theoretical ratio of oxygen to energy output (20.2 

J/mL O2) than the Elbeery et al model (22.66 J/mL O2). The y-intercept for both models, a 

measurement of power output in the absence of O2, was not significantly different from zero in 

either model, but was markedly reduced in the adjusted model (Elbeery et al model y-intercept = 

52.02, p = 0.09 versus adjusted model y-intercept = 7.48, p = 0.70). Overall, these estimates 

account for, on average, 27.7% of total right ventricular power estimated as derived from 

anaerobic sources in the Elbeery et al model versus 6.4% in the adjusted model, respectively. 

Figure 5.2 shows the linear relationship between O2 Consumption and right ventricular 

total power output for the animal studies using Elbeery et al ’s model (Figure 5.2a) and the 

adjusted model (Figure 5.2b).  
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Figure 5.2: Total Right Ventricular Power Output vs Right Myocardial Oxygen Consumption for Elbeery et al (a) and Adjusted Model 
(b)
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The adjusted model showed a slightly higher coefficient of determination than the 

Elbeery et al model (Elbeery et al model R2 = 0.82 versus adjusted model R2 = 0.85). Again, the 

slope for the adjusted model (19.00 J/mL O2) is closer to the theoretical ratio of oxygen to 

energy output (20.2 J/mL O2) than the Elbeery et al model (29.45 J/mL O2). Both models did not 

have a significant y-intercept when applied to the animal study data and again the adjusted 

model provided a smaller estimate of the y-intercept (Elbeery et al model y-intercept = 7.83, p = 

0.19 versus adjusted model y-intercept = 2.48, p = 0.47). 

Figure 5.3 shows the correlation between RV efficiency (%) and oxygen consumption 

rate. 



   

171 

Figure 5.3: Right Myocardium Oxygen Consumption vs Right Ventricular Mechanical Efficiency for Elbeery et al Model (a) and 
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Adjusted Model (b)
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The correlation between RV efficiency and oxygen consumption rate was significant for 

both models (p < 0.001). Patients of NYHA Class II were relatively clustered towards having 

high RV efficiency and low RV oxygen consumption rates, while NYHA Class III/IV were 

clustered towards having low RV efficiency and high RV oxygen consumption rates.  

The average values and 95% confidence intervals for the percent contribution of 

isovolumic power, useful stroke power, and pulsatile stroke power are provided for NYHA II and 

III/IV are given in Table 5.3.  

 

Model Type of Power NYHA II (n=8) NYHA III/IV (n=7) 

adjusted Model ISOVOLUMIC POWER  52.70±5.51 % 70.68±2.68 % 

PULSATILE STROKE POWER 7.81±1.26 % 

  

7.03±0.81% 

USEFUL STROKE POWER 37.10±3.88 % 

  

20.8±1.48 % 

  

Elbeery Model ISOVOLUMIC POWER  68.00±2.18 % 78.60±1.77 % 

PULSATILE STROKE POWER 9.78±1.27 % 

  

6.22±1.15 % 

USEFUL STROKE POWER 21.68±1.45% 

  

15.19±0.96 % 

  

Table 5.3: Relative Contributions of Different Energy Demands to Total Right Ventricular Power. 

Under the Elbeery et al model, differences in isovolumic work between NYHA II and 

III/IV compose the largest difference (78.6 vs 68.0%), with a slight difference as well in pulsatile 

stroke work. However, in the adjusted model, the differences in pulsatile stroke work are 

negligible and the differences in isovolumic work are even more substantial (70.6 vs 52.7%). 

Differences between the estimated useful stroke power is also substantial between NYHA II and 

NYHA III/IV patients in the adjusted model, but not in the Elbeery et al model. 
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 The MANOVA analysis, with Bonferroni correction for multiple comparisons, revealed 

that the RV efficiency as calculated by the adjusted model and Elbeery et al model, and RV 

oxygen consumption rate all differed significantly between NYHA II versus NYHA III/IV patients 

(p = 0.013, Figure 5.4).



   

175 Figure 5.4: Right Ventricular Mechanical Efficiency and Right Myocardial Oxygen Consumption Differences by NYHA Class (II vs III/IV) 

D 16.35%, p-adjusted = 0.007D 6.48%, p-adjusted = 0.009

D 3.21 mL/min, p-adjusted = 0.013
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Discussion 
 

Two cardiac energetic models are presented that directly couple right ventricular power 

output and right ventricular myocardial oxygen consumption rate. Both models are novel in their 

application to the right ventricle under high afterload (i.e. pulmonary arterial hypertension). 

Adjustments made to the original model published in Elbeery et al (1995) improved correlation 

strength of this coupling when applied to both sheep and human RV data, while also bringing 

the slope relating RV power and oxygen consumption closer to its theoretical value (20.2 joule 

per mL O2). Both models demonstrated that the estimations of total power explain 66-78% of the 

variance, based on R2, in oxygen consumption for clinical studies, and 82-85% of the variance 

in oxygen consumption for animal studies. The first publication on RV energetic inefficiency 

related to PAH, Wong et al(122), initially cited four other explanations for RV energetic 

inefficiency, including “tricuspid regurgitation, septal bowing, asynchronous activation, and/or 

diastolic dysfunction”, but did not identify a large, significant correlation between these effects 

and overall RV oxygen consumption. Our model demonstrates that, in fact, the majority of right 

ventricular energetic inefficiency can be explained by hemodynamics and ventricular volumes, 

while these other explanations might compose a smaller percentage of the variance 

(approximately 20%). Both models had nonsignificant y-intercept terms, with the adjusted model 

reducing the value further (down to 6.4%, versus 27.7% in the Elbeery et al model), agreeing 

more closely with the relatively small contribution of anaerobic energy production (< 5%) seen in 

typical human or sheep myocardial tissue. 

Right ventricular efficiency, as shown by the results of the MANOVA, has a clear 

relationship with disease severity, with more severe right heart failure symptoms corresponding 

with lower RV efficiency and higher myocardial oxygen consumption. The more energy that is 
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required to raise the end-diastolic volume to the pulmonary arterial pressure, i.e. right ventricular 

isovolumic work, the less efficient the RV becomes. The percentage of total power expended 

towards pulsatile stroke work was roughly equal for patients of low (NYHA Class II) and high 

disease (NYHA Class III/IV) severity, but the percentage of total power expended towards 

isovolumic work was much lower for low severity patients versus high severity patients (adjusted 

model estimates 52% versus 75%, respectively). As raising the end-diastolic volume to the 

mean PA pressure is a necessary precursor to RV ejection, this initial energy consumption limits 

the total energy available for stroke work and makes it more difficult for the RV to achieve 

sufficient stroke volume or cardiac output. Alternatively, using the assumptions made by the 

adjusted model, if all right ventricular work can be estimated primarily by raising the RV end-

diastolic volume to the mean RV ejection pressure, higher RV end-diastolic volume translates to 

lower possible pressures that can be achieved by the RV. Treatment goals should, therefore, 

focus on reducing isovolumic power output. Specifically, reduction of right ventricular end-

diastolic volume and mean right ventricular ejection pressure should be therapeutic targets for 

improving RV efficiency and decreasing required oxygen consumption. Further, patients with 

high isovolumic demands will be less capable of tolerating mild hypoxemia and may be good 

candidates for oxygen therapy(10),. 

The 2015 European Respiratory Society guidelines on treatment of PAH provide simple 

risk levels for single hemodynamics such as cardiac index, mean right atrial pressure, and 

mixed venous oxygen saturation(10). However, the guidelines do not provide a comprehensive 

assessment of how the relationships between these variables translate to risk or how to 

combine them into a single quantitative risk score. While there have been multiple attempts to 

develop risk scores that depend on both hemodynamics and other clinical variables, the most 

commonly used and often cited scores (REVEAL, French Score, COMPERA) have significant 
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limitations in their accuracy, as determined by receiver-operator curve analysis(61; 134). 

Further, all risk scores are based on statistical associations of risk, rather than a deeper 

physiological understanding of why, for example, a high cardiac index (“low risk”) coupled with a 

high mean right atrial pressure (“high risk”) should translate to a specific total risk measure.  

By contrast, the results of this energetic model show a physiologic justification for 

combining hemodynamic into comprehensive values that can demonstrate overall RV function 

(RV efficiency and oxygen consumption). This preliminary study demonstrated a significant 

association between disease severity and RV oxygen consumption and RV isovolumic work 

demands. As these values reflect a physiologically-driven combination of crucial 

hemodynamics, they could potentially provide improvements to risk stratification. By expanding 

physiological knowledge of the behavior of the right ventricle under the progression of PAH, this 

model provides insights into the causal mechanisms of increased oxygen extraction and how 

high isovolumic power reduces energy available for stroke power, thereby reducing cardiac 

output. Evidence of the importance of improving physiological domain knowledge for 

development of statistical or machine learning clinical risk models is well-documented(8; 135).  

As there is a clear causal mechanism between limited right ventricular oxygen reserve 

and right heart failure and reduced exercise capacity, it’s extremely likely that these variables 

would be beneficial to any PAH risk score. Sudden cardiac death remains a frequent cause of 

death (35-50%) for patients with PAH, which could be explained by right ventricular oxygen 

reserve finally crossing a threshold, though it may have been at subclinical levels for months or 

years before that time.(47) Given an adequate patient sample, a Greedy Thick Thinning 

Bayesian network would be a useful means of studying the causality between exercise capacity 

(i.e. six minute walk distance), right ventricular oxygen reserve, hemodynamics and mortality.  



   

179 

In the search for novel PAH treatment, right ventricular energetics must be considered. 

Failure to consider them can have disastrous consequences. For example, efforts to improve 

RV contractility for PAH patients through certain inotropic drugs such as dobutamine have failed 

specifically because they increase heart rate while not reducing preload or afterload, thereby 

reducing oxygen extraction reserve further and metabolically straining cardiomyocytes.(136) In 

contrast, calcium channel blockers, such as diltiazem, slow cardiac conduction and contractility 

in vasoreactive patients, reducing RV work demands and providing improved oxygen 

consumption reserve.(10) Further, diuretics reduce RV end-diastolic volume, allowing for 

energetically favorable improvements in isovolumic power. An analysis of how pharmaceutical 

treatments prescribed for PAH may, in isolation or in tandem, reduce RV energetic strain could 

help explain observed improvements in clinical outcomes that cannot be explained by any single 

hemodynamic variable alone.  

Novel proposed treatments for severe PAH, such as extracorporeal membrane 

oxygenation (ECMO), also must consider how to optimize RV oxygen delivery and avoid 

increasing RV work demands(137; 138). Given the number of different attachment modes for 

ECMO, optimization of the circuit is crucial for providing the greatest therapeutic benefit, 

especially in situations for the use of ECMO as a bridge-to-lung transplant. Restorative rest for 

the right ventricle and improving systemic perfusion will improve transplant outcomes and have 

further potential for bridge-to-recovery(10; 120). This improved energetic model will provide a 

more accurate quantification of RV offloading than the pressure-volume area models that are 

currently used(139; 140). 

This model further underscores the tenuous circumstance of living with PAH and 

coronary artery disease. As stated, an estimated 28% of PAH patients also suffer from coronary 

artery disease.(120) PAH patients are dependent on higher RV oxygen consumption when 
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afterload is advanced, and in severe PAH, maximal dilation of the right coronary is likely 

required to achieve the oxygen delivery necessary to maintain sufficient cardiac output. 

Coronary blockage could prevent patients with CAD from achieving adequate right coronary 

flow and will result in reduced cardiac output compared to patients with higher coronary flow, 

even given a similar afterload. For these patients, adequate monitoring and management of 

blockage is especially crucial. Angiography may be appropriate to explain low cardiac output in 

situations where neither RV EDV nor RV ejection pressure is exceedingly high. Further, given 

the greater energetic demands of the RV, these patients may require a lower threshold for 

percent blockage of the right coronary to become candidates for coronary artery bypass. 

Ultimately, for all PAH patients with progression in afterload, the compensatory increase 

in oxygen consumption will eventually hit a ceiling, as the right coronary artery can only dilate so 

far and deliver so much oxygen. This is especially true due to limitations in right coronary 

dilatation and flow caused by increased RV wall tension and increased right atrial pressure. 

Further increases in mean RV ejection pressure, venous congestion, and decreases in arterial 

oxygen saturation would thus eventually lead to RV failure. The ability to quantify RV oxygen 

consumption reserve (difference between maximal RV oxygen consumption and minimal RV 

oxygen consumption at rest) could provide a means of predicting how close a patient is to 

entering right heart failure. As oxygen consumption and RV efficiency are related, 

measurements of peak RV mechanical efficiency during exercise could also provide insight on 

how well a patient will be able to tolerate physical stress. Future work on this model will, 

therefore, include investigating if RV oxygen consumption reserve or mechanical efficiency 

reserve are indicative of survival or a patient’s functional capacity (i.e. six-minute walk distance). 

Finally, this model demonstrated that anaerobic energy sources for the RV myocardium 

of PAH patients were negligible, which disagrees somewhat with current thinking on this 
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topic.(118) There is evidence that a metabolic switch occurs in hypertrophied myocardial tissue 

where anaerobic energy sources become more heavily favored, but the relative degree to which 

it contributes to the overall RV energy supply has not been thoroughly studied. The adjusted 

model determined that this component of RV metabolism is negligible, but the Elbeery et al 

model instead suggests that anaerobic contributions are significant (~27%). At this point, it’s 

unclear if this reflects a significant error in the Elbeery et al model, which appears to 

overestimate total RV power output overall, or if this reflects a physiological phenomenon. In 

this model, it would be expected that more severe patients would experience higher levels of 

aerobic glycolysis, translating to a lower total power output than expected given the relative 

inefficiency of glycolysis versus oxidative phosphorylation. However, as shown in Wong et al’s 

original publication, there was no significant difference in RV myocardial glucose consumption 

rate between NYHA II and NYHA III patients.(122) This suggests that inefficient oxygen use in 

NYHA III/IV patients is not primarily due to a greater utilization of aerobic glycolysis. Recent 

results of treatment of PAH with dichloroacetate intended to reduce mitochondrial decoupling 

and rate of aerobic glycolysis have demonstrated significant results only in patients with genetic 

susceptibility.(141) Therefore, patients with a significant metabolic switch likely represent a 

much smaller percentage of the overall PAH population, while the models discussed here are 

more widely applicable. 

Limitations 
Both Elbeery et al’s model and the adjusted model have the following limitations: 

1) Neither model accounts for stroke work that does not contribute to flow 

into the pulmonary artery due to tricuspid valve regurgitation. As a common comorbidity 

of PAH, this additional stroke work may be a key component to gaining a more accurate 
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representation of total right ventricular power output.(10; 122) Particular to our study, a 

third 

of all patients had moderate or severe valve regurgitation (NYHA II: n = 1, NYHA III: n = 

4). This would lead to a small but systematic underestimation of total power output that, 

while not significant on average (roughly 0.3% of total work), could be more significant 

on an individual basis (up to 30% of total work). This could potentially be a significant 

contributor to the high residual for one patient in particular (NYHA Class III), whose O2 

consumption rate overestimated RV total power output in the adjusted model by 

approximately 45%. However, it is also possible that such outliers are due to isolated 

measurement error in myocardial oxygen consumption via PET imaging. 

2) Neither model accounts explicitly for post-systolic isovolumic contraction, a common 

phenomenon in PAH that is believed to further contribute to RV energetic 

inefficiency.(142) 

Specifically, this occurs when the RV continues to contract after the pulmonic valve as 

closed, prolonging the period prior to tricuspid valve opening. As echocardiography data 

was not available in either study, it’s infeasible to more finely delineate between 

pulmonic valve closure and RV relaxation (i.e. period immediately following RV peak 

shortening). The model here inferred that RV end-systole occurs during the trough of the 

first derivative of the RV pressure waveform, and this corresponded strongly with the 

end of the T-wave in the simultaneously measured ECG. Therefore, the models likely 

capture the full period of RV contraction and would account for post-systolic isovolumic 

contraction, but this remains speculative. Regardless, post-systolic isovolumic 

contraction does not appear to contribute significantly to the error in total RV power 

output, as RV total power output still explains the majority of the variance in RV oxygen 
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consumption.  

3) Due to the infeasibility of PET imaging for animal studies, two values are used for 

estimation of oxygen extraction fraction (OEF). These two values were defined in the 

literature and did not produce significant error in the model, though a more precise 

model of OEF under different hypoxic conditions would be ideal. However, this ultimately 

had a negligible effect on the empirical estimation of the efficiency of oxidative 

phosphorylation (19.0 J/mL in the adjusted model versus 20.2 for the theoretical 

value).(125)3) Due to the infeasibility of PET imaging for animal studies, two values are 

used for estimation of oxygen extraction fraction (OEF). These two values were defined 

in the literature and did not produce significant error in the model, though a more precise 

model of OEF under different hypoxic conditions would be ideal. However, this ultimately 

had a negligible effect on the empirical estimation of the efficiency of oxidative 

phosphorylation (19.0 J/mL in the adjusted model versus 20.2 for the theoretical 

value).(125) 

Conclusion 
 

In conclusion, both models comprehensively describe right ventricular function under 

high afterload, in a fashion that is physiologically rigorous. We found assumptions made for the 

second model allowed for greater simplicity in calculation of total RV power output, while 

maintaining accuracy in measured oxidative phosphorylation efficiency and marginally 

improving correlation strength between power output and RV oxygen consumption. Both models 

combine multiple measurements of hemodynamics and right ventricular volumes to create 

hypothesis-driven biomarkers of disease severity (RV efficiency and RV isovolumic work). In 

translation to the clinic, RV efficiency could be an important indicator of treatment efficacy, as 
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both models demonstrate that increases in RV efficiency allow for a decreased requirement for 

myocardial oxygen consumption at rest. Further studies are required to determine if RV 

efficiency and/or RV isovolumic work are predictors of clinical outcomes.
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Chapter 6 : Conclusion 
 This dissertation examined the numerous ways in which accurate risk 

stratification can significantly improve clinical decision support, specifically for 

pulmonary arterial hypertension (PAH). After providing background on the clinical 

challenges of both drug efficacy trial design and treatment strategies for PAH in Chapter 

1, Chapter 2 examined how current risk stratification tools could be applied to reduce 

the costs, length, and patient burden of PAH clinical trials. Chapter 3 then examined 

how cutting-edge risk stratification tools via the recently published Pulmonary 

Hypertension Outcomes Risk Assessment (PHORA) machine learning model could be 

employed to examine the risk-benefit tradeoff of multiple oral therapies. After motivating 

the power of these risk stratification tools, Chapter 4 examined how more objective and 

quantitative approaches using machine learning enhanced by differential evolution 

could create a more accurate machine learning tool than PHORA. Finally, Chapter 5 

examined a physiological model to enhance clinical understanding of the mechanisms 

and warning signs of right heart failure via energetic modeling. 

6.2 Risk Enrichment for Pulmonary Arterial Hypertension Clinical 
Trials 

• Phase III clinical trials for pulmonary arterial hypertension treatments increasingly 

employ the use of time to clinical worsening as a primary endpoint, but event-

driven trials are lengthy and require large patient enrollments (N > 500) to 

statistically power. The use of previously published clinical PAH risk assessment 
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tools as a means of “prognostic enrichment” (which is the practice of enrolling 

patients more likely to experience an endpoint, i.e. “high risk”) was analyzed. 

• Commonly used PAH risk stratification tools (COMPERA, French score, and 

REVEAL 2.0) were determined to be predictive of clinical worsening events, and 

therefore can be employed for prognostic enrichment of PAH trials 

• REVEAL 2.0 was found to be the most precise in its prediction of clinical 

worsening, allowing it to significantly reduce required sample sizes in simulated 

scenarios for two out of three retrospective clinical trials, but lacked accurate 

inputs for the third trial 

• A strategy of enrolling patients who are intermediate to high risk allows for a 

reduction in required sample sizes and trial length while also keeping screening 

costs low 

• Prognostic enrichment of PAH clinical trials is recommended to reduce time-to-

market for lifesaving drugs, reduce time for patients spent on placebo, and 

decrease drug development costs 

 

6.3 Risk-Benefit Tradeoff of Upfront Combination Therapy for 

Monotherapy for PAH patients 

• Although a single previous clinical trial (AMBITION) demonstrated the potential 

benefit of treating patients with PAH using oral combination therapy versus 

monotherapy, it remains unclear if low-risk PAH patients truly benefit from such 
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aggressive treatment at the cost of experiencing more likely experiencing drug 

side effects. This hypothesis was examined with a new PAH risk stratification 

tool, Pulmonary Hypertension Outcomes Risk Assessment (PHORA), the first 

published and validated machine learning model for PAH risk prediction. 

• PHORA was compared to REVEAL [1.0], as a previous publication had 

suggested that even low risk patients stratified by REVEAL experienced a 

significant benefit from upfront combination therapy, but REVEAL 1.0 is now 

considered outdated. 

• PHORA was found to be a better predictor of low risk via Net Reclassification 

Indices, identifying a larger population of low-risk patients when applied 

retrospectively in the AMBITION clinical trial. 

• When separated into low and intermediate-high risk, the AMBITION patient 

population demonstrated significant treatment heterogeneity, where low risk 

patients experienced no benefit in delay of clinical worsening and saw a greater 

likelihood of experiencing an adverse drug effect (p = 0.056). Conversely, 

intermediate, and high-risk patients saw a significant delay in clinical worsening 

and no significant increased risk of side effects. 

• Further, no risk group experienced a benefit in significant delay of mortality on 

upfront combination therapy versus monotherapy. 

• This analysis demonstrates that, when accurately identified, low risk patients may 

experience a greater propensity for harm than benefit on double combination oral 
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therapy, and that high-risk patients may benefit more significantly from triple oral 

therapy or intravenous therapies. 

6.3 Improving PAH Risk Stratification with Machine Learning 

• A bottom-up approach for developing a novel machine learning model 

(augmented naïve Bayesian network) for PAH risk assessment was conducted. 

• Feature selection for the machine learning model was conducted through a 

thorough process of 1) meta-analyses, 2) decision tree analysis, 3) differential 

evolution. 

• The final model was found to outperform PHORA as well as all other currently 

used PAH clinical risk assessment tools (AUC = 0.84). 

• The feature selection process revealed several novel biomarkers for PAH 

mortality risk, including multiple markers of kidney and liver function 

• Bayesian networks provide significant promise for improving clinical 

understanding and knowledge discovery of the systemic consequences of right 

heart failure caused by PAH. 

6.4 Energetic Model of Right Ventricular Failure 

• More than 50% of PAH patients die from right heart failure, but predicting when 

this will occur continues to elude clinicians and researchers. Therefore, an 

energetic model of the right ventricle, based on the 1995 Elbeery et al model, 

was examined to determine its validity and usefulness in prediction of right heart 

failure symptoms due to PAH. 
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• The Elbeery et al model was adjusted to increase its clinical relevance to PAH 

and ease of use. 

• Both the Elbeery et al model and the adjusted model were found to be highly 

predictive of RV total power output, as determined by their strong liner 

relationship with RV myocardial oxygen consumption rate.  

• The adjusted model was determined to be more accurate than the Elbeery et al 

model, as its empirical measurement of the efficiency of oxidative 

phosphorylation. 

• Patients with a high degree of right heart failure symptoms (New York Heart 

Association Functional Class III/IV) were found to have significantly higher right 

ventricular myocardial oxygen consumption and reduced right ventricular work 

efficiency. 

• Overall, clinical monitoring of right ventricular oxygen reserve and work demands 

could serve as an early warning sign of right heart failure for patients with PAH.  
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Figure A- 1. Time to Clinical Failure for Combination Therapy versus Monotherapy for PAH patients stratified by PHORA. 
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Python Code for Feature Preprocessing and Differential Evolution 
 
 

[1]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[10]: 
 

[10]: RACE ASIAN BLACK OR AFRICAN AMERICAN HISPANIC MIXED OTHER WHITE 

 trial          
 AMBITION 10    31 0 3 3 395 

 ARIES 3    5 17 0 1 87 

 FREEDOM 256    14 0 0 3 311 

 GRIPHON 232    25 102 0 16 685 

 PATENT 89    2 5 0 0 141 

 SERAPHIN 203    19 107 0 2 389 

[11]: 
 
 

[11]: DIAG_CD APAH-CHD APAH-CVCTD APAH-HIV APAH-TOX FPAH IPAH PORTAL 

 trial        
 AMBITION 6 167 8 13 11 238 0 

 ARIES 0 38 5 1 0 69 0 

      

 
      

 

 
import numpy as np 
import     pickle 
import pandas as pd 
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FREEDOM 37 154 7 16 9 361 0 

GRIPHON 103 308 7 22 22 598 0 

PATENT 19 56 0 2 6 144 10 

SERAPHIN 60 217 10 21 13 399 0 

 

[15]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[15]:  test train 

 USUBJID 0.000000 0.000000 

 BILI_T 0.013636 0.032439 

 REVEAL_BNP 0.028788 0.125350 

 SURVIVAL_1YR 0.000000 0.000000 

 SURVIVAL_1YRDY 0.000000 0.000000 

 DEATHFL_1_0 0.000000 0.000000 

 DEATHDY_FU 0.000000 0.000000 

 DEATHFL_FU 0.000000 0.000000 

 SIXMWT_D 0.000000 0.000000 

 CI 0.266667 0.161794 

 HR 0.000000 0.001602 

 MPAP 0.248485 0.146175 

 CO 0.266667 0.161794 

 PVR 0.266667 0.167401 

 PLT 0.072727 0.088506 

 SEX 0.000000 0.000000 

 FC 0.000000 0.000000 

 LEU 0.009091 0.058470 

 AST 0.007576 0.031237 

 ALK_PHOS 0.004545 0.030036 

 diuretic_bi 0.000000 0.000400 

 BLAGE 0.000000 0.000000 

 ACTARM 0.000000 0.000000 

 
 
 

 

 
X_test_match = X_test[match_columns] 

 
      sum()  

 
  sum()  
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 MRAP 0.304545 0.196636 

 PLACEBO 0.000000 0.000000 
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trial 0.000000 0.000000 

diuretic_bi.1 0.000000 0.000400 

HCT 0.007576 0.051662 

HGB 0.006061 0.051662 

RACE 0.000000 0.000400 

DIAG_CD 0.000000 0.000000 

REVEAL_CREAT 0.006061 0.029235 

HEIGHT_CM 0.000000 0.000400 

WEIGHT_KG 0.001515 0.001201 

UREAN_N 0.031818 0.328394 

NA. 0.004545 0.029235 

SYSBP 0.000000 0.001201 

DIABP 0.000000 0.001201 

RAYNAUD 0.012121 0.004405 

DIAG_DY 0.042424 0.056868 

RBC 0.006061 0.051662 

PCWP 0.278788 0.174610 

RHC_HR 0.650000 0.496996 

SIXMWT_BORG 0.001515 0.000400 

TRT_NAIVE 0.012121 0.004405 

era_bi 0.000000 0.000400 

epoprostenol_bi 0.000000 0.000400 

pde5_bi 0.000000 0.000400 

pca_bi 0.000000 0.000400 

riociguat_bi 0.000000 0.000400 

NTPROBNP 0.080303 0.354425 

BNP_ARIES 0.948485 0.971966 

BNP_SERAPHIN 1.000000 0.798959 

BSA 0.001515 0.001602 

SV 0.653030 0.500601 

SVI 0.653030 0.500601 

stroke_work 0.653030 0.501001 

stroke_work_index 0.653030 0.501001 

Left_stroke_work 0.653030 0.501001 

PVRI 0.268182 0.169003 

RA_Wedge 0.331818 0.221466 

TPR 0.266667 0.162195 

CPO 0.266667 0.162195 

Left_CPO 0.266667 0.162996 

CPO_Index 0.268182 0.163797 

CEFF 0.653030 0.501001 

EGFR 0.006061 0.029636 

ALBUMIN 0.004545 0.029636 

ALBUMIN_UNIT 0.004545 0.029636 

BMI 0.001515 0.001602 
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BUN_CREAT 0.033333 0.328394 

RA_Wedge_Norm 0.331818 0.221466 
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[17]: vars_only  =  X_train_continuous.drop(columns  =  
'SURVIVAL_1YR') from sklearn.preprocessing import StandardScaler 
scaled_features = StandardScaler().fit_transform(vars_only) #standardized␣ 
'→dataset 

scaled_features_df  =  pd.DataFrame(scaled_features)  #changing dataset from array␣ 
'→to dataframe 

import seaborn as sns #this is the library needed for the heat map 
corr = scaled_features_df.corr() #computing the pearson correlation matrix for␣ 
'→your data 

corr.columns = vars_only.columns 
corr = corr.rename(index = lambda x: vars_only.columns[x]) 
# #if you need other correlation metrics, I'd suggest looking at the pandas␣ 
'→'DataFrame.corr' documentation 

 
# # Generate a mask for the upper triangle 
# #mask = np.triu(np.ones_like(corr, dtype=np.bool)) 
mask=  np.triu(np.ones([len(corr),len(corr)]))  #makes for a simplified figure 
np.fill_diagonal(mask,0) 

 
# # Set up the matplotlib figure 
f,  ax  =  plt.subplots(figsize=(25,  25)) 

 
# Generate a custom diverging colormap 
cmap  =  sns.diverging_palette(220,  10,  as_cmap=True) 

 
# Draw the heatmap with the mask and correct aspect ratio 
sns_plot  =  sns.heatmap(corr,  mask=mask,  cmap=cmap,  vmax=1,  center=0, 

square=True,  linewidths=.5,  cbar_kws={"shrink":  .5},annot=True,fmt='. 
'→2f') 

plt.show() 
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[18]:                
 

 
 

 
    max_leaf_no        

range  
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[109]: 
 
 

[116]:  array([0,  0,  0,  ...,  0,  1,  0]) 
 

[114]: def significance_cutpoints(X,y) -> DecisionTreeClassifier: 
max_leaf = 5 

 
while  max_leaf  >  2: 

# if max_leaf < 2: 
# return cv_trees 

print(max_leaf) 
cv_trees = treeCV(X,y,max_leaf) 
variable_tree = cv_trees.best_estimator_ 
variable_threshold  =  np.sort(variable_tree.tree_.threshold) 
variable_threshold = variable_threshold[~(variable_threshold == -2)] 
if  len(variable_threshold)  ==  0: 

print('No  cutpoints  found.') 
return None 

X_cut = copy.deepcopy(X).flatten() 
max_val_train  =  np.max(X) 
label_names  =  np.linspace(1,len(variable_threshold)+1,num  =␣ 

'→len(variable_threshold)+1,  dtype  =  int) 

bins  =  [0,*variable_threshold,max_val_train] 
# print(X_cut) 

X_cut  =  pd.cut(X_cut,bins,  right  =  True,  labels  =  label_names) 
# all_combinations = list(combinations(label_names, 2)) 
# print(all_combinations) 

all_combinations = [] 
for i in label_names: #test p-value only for adjacent pairs 

if i + 1 in label_names: 
all_combinations.append((i,i+1)) 

 
dummies  =  pd.get_dummies(X_cut,  drop_first  =  True) 
all_p = [] 

# print(dummies) 
for pair in all_combinations: 

# print(series) 
print(pair) 
c_xy  =  pd.crosstab(X_cut[(X_cut==pair[0])  |␣ 

'→(X_cut==pair[1])],y[(X_cut==pair[0])  |  (X_cut==pair[1])]) 
# print(c_xy) 

barnard_result  =  stats.barnard_exact(c_xy) 
# chi, p, _, _ = chi2_contingency(c_xy, correction = True) 
# print(chi,p) 

all_p.append(barnard_result.pvalue) 
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[120]: best_trees = [] 
downselected_vars  =  ['stroke_work',  'TPR',  'CO',  'Left_CPO','PVR','PVRI','CI', 

'CEFF',  'Left_stroke_work',␣ 
'→'stroke_work_index','SV','BNP_ARIES','BMI'] 

# downselected_vars = ['BNP_ARIES'] 
# all_train_continuous = all_train_continuous.merge(all_train[['USUBJID',␣ 
'→'SURVIVAL_1YR']], on = 'USUBJID', how = 'left') 

dummy_vars  =  ['SEX_F', 
'SEX_M',  'TRT_NAIVE_N',  'TRT_NAIVE_Y',  'DIAG_CD_APAH-CHD', 
'DIAG_CD_APAH-CVCTD',  'DIAG_CD_APAH-HIV',  'DIAG_CD_APAH-TOX', 
'DIAG_CD_FPAH',  'DIAG_CD_IPAH',␣ 

'→'DIAG_CD_PORTAL','diuretic_bi','RACE_ASIAN','RACE_HISPANIC', 
'RACE_MIXED',  'RACE_OTHER',  'RACE_WHITE'] 

 
relevant_vars = [] 
for i in 

X_train_continuous.columns: 
print(i) 
if i in downselected_vars: 

print('removes') 
continue 

elif i in dummy_vars: 
continue 

elif  i  ==  'SURVIVAL_1YR': 
continue 

else: 
# print(i) 
 

match_cols  =  X_train_continuous[[i,'SURVIVAL_1YR']] 
match_cols_valid  =  match_cols[~match_cols.isin([np.nan,  np.inf,  -np. 

 

       
 

print(any(corrected_p_vals > 0.05)) 
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'→inf]
).any
(1)] 
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BILI_T 
5 
(1, 2) 
(2, 3) 
(3, 4) 
[0.04378097 0.04378097 0.04378097] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=4, 

min_samples_leaf=100) 
SIXMWT_D 
5 
(1, 2) 
(2, 3) 
(3, 4) 
[0.00109132 0.10012836 0.00109132] 
Chi-squared failed, reducing leaf node  max 
4 
4 
(1, 2) 
(2, 3) 
[0.0001678 0.00079087] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=3, 

min_samples_leaf=250) 
SVI 
5 
(1, 2) 
[0.00013725] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=100) 
SV 
removes 
Left_stroke_work 
removes 

         
 

# print(predictor) 
        

 
       

 
# break 
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HR 
5 
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(1, 2) 
(2, 3) 
(3, 4) 
[0.14052476 0.13040457 0.01872935] 
Chi-squared failed, reducing leaf node  max 
4 
4 
(1, 2) 
(2, 3) 
[0.02552041 0.01248623] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=3, 

min_samples_leaf=100) 
FC 
5 
(1, 2) 
[0.00040427] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=100) 
TPR 
removes 
CO 
removes 
Left_CPO 
removes 
CEFF 
removes 
PVR 
removes 
stroke_work 
removes 
diuretic_bi 
RA_Wedge_Norm 
5 
(1, 2) 
[0.00161055] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=100) 
BUN_CREAT 
5 
No cutpoints found. 
ALBUMIN 
5 
(1, 2) 
(2, 3) 
(3, 4) 
[0.05618457 0.01247092 0.06025532] 
Chi-squared failed, reducing leaf node  max 
4 
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4 
(1, 2) 
(2, 3) 
[0.03745638 0.00845337] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=3, 

min_samples_leaf=100) 
SURVIVAL_1YR 
NTPROBNP 
5 
(1, 2) 
(2, 3) 
[2.79975282e-02 3.31483690e-06] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=3, 

min_samples_leaf=300) 
BNP_ARIES 
removes 
ALK_PHOS 
5 
(1, 2) 
[0.00037799] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=250) 
REVEAL_CREAT 
5 
(1, 2) 
(2, 3) 
[0.02382547 0.00627313] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=3, 

min_samples_leaf=200) 
MRAP 
5 
No cutpoints found. 
AST 
5 
(1, 2) 
(2, 3) 
[0.05241477 0.02869787] 
Chi-squared failed, reducing leaf node  max 
4 
4 
(1, 2) 
(2, 3) 
[0.05241477 0.02869787] 
Chi-squared failed, reducing leaf node  max 
3 
3 
(1, 2) 
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[0.00177808] 
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DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 
min_samples_leaf=100) 

UREAN_N 
5 
(1, 2) 
[0.00171293] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=300) 
NA. 
5 
(1, 2) 
(2, 3) 
[0.05445118 0.07607703] 
Chi-squared failed, reducing leaf node  max 
4 
4 
(1, 2) 
(2, 3) 
[0.05445118 0.07607703] 
Chi-squared failed, reducing leaf node  max 
3 
3 
(1, 2) 
[0.02853548] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=200) 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=2, 

min_samples_leaf=200) 
True 
BMI 
removes 
CI 
removes 
BLAGE 
5 
(1, 2) 
(2, 3) 
[0.02673295 0.02673295] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=3, 

min_samples_leaf=300) 
BSA 
5 
(1, 2) 
(2, 3) 
(3, 4) 
[0.03195425 0.03195425 0.01304759] 
DecisionTreeClassifier(criterion='entropy',  max_leaf_nodes=4, 
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min_samples_leaf=300) 
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SEX_F 
SEX_M 
TRT_NAIVE_N 
TRT_NAIVE_Y 
DIAG_CD_APAH-CHD 
DIAG_CD_APAH-CVCTD 
DIAG_CD_APAH-HIV 
DIAG_CD_APAH-TOX 
DIAG_CD_FPAH 
DIAG_CD_IPAH 
DIAG_CD_PORTAL 
RACE_ASIAN 
RACE_BLACK OR AFRICAN AMERICAN 
5 
No cutpoints found. 
RACE_HISPANIC 
RACE_MIXED 
RACE_OTHER 
RACE_WHITE 

 
 

 
 
 
 
 

[121]: 
 

[122]: 
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[123]: X_train_discretize = copy.deepcopy(X_train_continuous) 
X_test_discretize = copy.deepcopy(X_test) 

 
X_test_discretize  =  pd.get_dummies(X_test_discretize,  columns  =  discrete_vars) 
# print(all_test_discretize) 
dummy_vars  =  ['SEX_M',  'DIAG_CD_APAH-CVCTD',  'DIAG_CD_APAH-HIV',␣ 
'→'DIAG_CD_APAH-TOX',  'DIAG_CD_FPAH', 

'DIAG_CD_IPAH',  'DIAG_CD_PORTAL','DIAG_CD_UNKNOWN','TRT_NAIVE_Y',␣ 
'→'diuretic_bi','RACE_ASIAN'] 

 
for  idx,i  in  enumerate(relevant_vars  +  ['BNP_ARIES']): 

print(i) 
if i in dummy_vars: 

continue 
max_val_train  =  np.max(X_train_continuous[i]) 
max_val_test  =  np.max(X_test[i]) 
max_val  =  np.max((max_val_train,max_val_test)) 
if  i  ==  'BNP_ARIES': 

print(max_val) 
label_names  =  [1,2,3] 
bins  =  [0,49,180,  max_val] 

elif  i  ==  'FC': 
continue 

else: 
# print(i) 
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BILI_T 
SIXMWT_D 
SVI 
HR 
FC 
RA_Wedge_Norm 
ALBUMIN 
NTPROBNP 
ALK_PHOS 
REVEAL_CREAT 
AST 
UREAN_N 
NA. 
BLAGE 
BSA 
BNP_ARIES 
2343.0 

 

[123]:  BILI_T SIXMWT_D SVI SV Left_stroke_work HR FC TPR CO \ 

 0 3 3 NaN NaN NaN 1 3 NaN NaN  
 1 3 3 NaN NaN NaN 1 2 NaN NaN  
 2 1 3 2 0.056579 3.998246 2 3 8.604651 4.30  
 3 2 3 NaN NaN NaN 1 2 5.625000 8.00  
 4 3 1 NaN NaN NaN 1 2 NaN NaN  
 ... ... ... ... ... ... .. .. ... ...  
 2492 NaN 3 NaN NaN NaN 2 3 7.121136 4.40  
 2493 NaN 3 NaN NaN NaN 1 2 7.111111 4.50  
 2494 NaN 3 NaN NaN NaN 1 3 13.495854 4.10  
 2495 NaN 3 NaN NaN NaN 3 3 15.092736 4.13  
 2496 NaN 3 NaN NaN NaN 1 3 13.671670 4.73  
 

Left_CPO ... DIAG_CD_APAH-TOX DIAG_CD_FPAH DIAG_CD_IPAH \ 

0 NaN ... 0 0 1 

1 NaN ... 0 0 0 

2 0.673762 ... 0 0 0 

 
    

label_names       
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3 1.300813 ... 0 0 1 

4 NaN ... 0 0 1 

... ... ... ... ... ... 

2492 0.773984 ... 0 0 0 

2493 0.831486 ... 0 0 1 

2494 0.787879 ... 0 0 1 

2495 0.805854 ... 0 0 1 

2496 0.873984 ... 0 0 1 

 
DIAG_CD_PORTAL RACE_ASIAN RACE_BLACK OR AFRICAN AMERICAN RACE_HISPANIC \ 

0 0 0    0 0  
1 0 1    0 0  
2 0 1    0 0  
3 0 0    0 1  
4 

... 

2492 

0 

... 

0 

1 

... 

0 

   0 

... 

0 

0 

... 

0 

 

2493 0 0    0 0  
2494 0 0    0 0  
2495 0 1    0 0  
2496 0 0    0 0  
 

RACE_MIXED RACE_OTHER RACE_WHITE 

0 0 0 1 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

... ... ... ... 

2492 0 0 1 

2493 0 0 1 

2494 0 0 1 

2495 0 0 0 

2496 0 0 1 

 

[2497 rows x 47 columns] 

[124]:  
    

nansum([X_t     
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[167]: stats_outcomes = [] 
 
untested_vars  =  ['SEX_F', 

'SEX_M',  'TRT_NAIVE_N',  'TRT_NAIVE_Y',  'DIAG_CD_APAH-CHD', 
'DIAG_CD_APAH-CVCTD',  'DIAG_CD_APAH-HIV',  'DIAG_CD_APAH-TOX', 
'DIAG_CD_FPAH',  'DIAG_CD_IPAH',␣ 

'→'DIAG_CD_PORTAL','RACE_ASIAN','diuretic_bi']  +  ['BNP_Combined','FC'] 
relevant_vars2 = [] 

 
for var in untested_vars: 

if  var  ==  'DIAG_CD_UNKNOWN': 
continue 

label_names  =  np.unique(X_train_discretize[var])[~np.isnan(np. 
'→unique(X_train_discretize[var]))] 

# print(label_names) 
# if var == 'BNP_Combined': 
# continue 

all_combinations = list(combinations(label_names, 2)) 
all_p = [] 
X_var = X_train_discretize[var] 
y  =  X_train_discretize['SURVIVAL_1YR'] 

# print(all_combinations) 
for pair in all_combinations: 

print(pair) 
c_xy  =  pd.crosstab(X_var[(X_var==pair[0])  |  (X_var==pair[1])], 

y[(X_var==pair[0]) | (X_var==pair[1])]) 
barnard_result  =  stats.barnard_exact(c_xy) 

# chi, p, _, _ = chi2_contingency(c_xy, correction = True) 
# print(chi,p) 
# chi, p, _, _ = chi2_contingency(c_xy, correction = True) 
 

all_p.append(barnard_result.pvalue) 
_,corrected_p_vals,_,_  =  multipletests(all_p,  method='fdr_bh') 

print(var) 
print(corrected_p_vals) 
if all(corrected_p_vals < 

0.05): 
relevant_vars2.append(var) 

 

(0, 1) 
SEX_F 
[0.00183837] 
(0, 1) 
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SEX_M 
[0.00183837] 
(0, 1) 
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TRT_NAIVE_N 
[0.28855421] 
(0, 1) 
TRT_NAIVE_Y 
[0.58980431] 
(0, 1) 
DIAG_CD_APAH-CHD 
[0.89163578] 
(0, 1) DIAG_CD_APAH-
CVCTD [0.01982959] 
(0, 1) 
DIAG_CD_APAH-
HIV [1.] 
(0, 1) 
DIAG_CD_APAH-TOX 
[0.98132765] 
(0, 1) 
DIAG_CD_FPAH 
[0.0571313] 
(0, 1) 
DIAG_CD_IPAH 
[0.10571307] 
(0, 1) 
DIAG_CD_PORTAL 
[0.74023087] 
(0, 1) 
RACE_ASIAN 
[0.4019599] 
(0.0, 1.0) 
diuretic_bi 
[0.0288797] 
(1.0, 2.0) 

(1.0, 3.0) 

(2.0, 3.0) 

BNP_Combined 
[1.33253675e-02 4.72625163e-12 1.89990876e-06] 
(1, 2) 

(1, 3) 

(1, 4) 

(2, 3) 

(2, 4) 

(3, 4) 

FC  
[3.65565962e-01 1.41417412e-01 1.46906170e-02 4.52966266e-03 
2.55401071e-04 6.45939971e-03] 



   

32 

[ ]: 
 
 
 

[133]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[135]: 
 

 
Index(['BILI_T',  'SIXMWT_D',  'SVI',  'HR',  'RA_Wedge_Norm',  'ALBUMIN', 

'ALK_PHOS',  'REVEAL_CREAT',  'AST',  'UREAN_N',  'NA.',  'BLAGE',  'BSA', 

  

 
 

 

 
 

n = len(x.columns) 
       

 
 

       
 

       
 

 
 

 

 
ix_name   =  x.columns[ix] 
jx_name   =  x.columns[jx] 
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ined', 'SURVIVAL_1YR',  'FC_discrete'], 
dtype='object') 
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[136]: import matplotlib.pyplot as plt 

import seaborn as sns 

#mask= np.triu(np.ones([len(matMI),len(matMI)])) #makes for a simplified figure 
#np.fill_diagonal(mask,0) 
#np.fill_diagonal(matMI,1) 
 
# i_lower = np.tril_indices(len(matMI), -1) 
# i_upper = np.triu_indices(len(matMI), 1) 
# matMI = np.rot90(np.fliplr(matMI)) 
# matMI_new[i_lower] = matMI_new[i_upper] 
 
mask=  np.triu(np.ones([len(x.columns),len(x.columns)]))  #makes for a simplified␣ 
'→figure 

np.fill_diagonal(mask,0) 
 
# Set up the matplotlib figure 
f,  ax  =  plt.subplots(figsize=(20,  20)) 

 
# Generate a custom diverging colormap 
cmap  =  sns.diverging_palette(220,  10,  as_cmap=True) 
matMIdf  =  pd.DataFrame(matMI,  columns  =  x.columns,  index  =  x.columns) 
matMIdf  =  matMIdf.multiply(100) 
# print(matMIdf.max()) 
# all_but_survival = matMIdf.columns 
 
matMIdf  =  matMIdf.reindex(['BILI_T',  'SIXMWT_D',  'SVI',  'HR',  'RA_Wedge_Norm',␣ 
'→'ALBUMIN', 

'ALK_PHOS',  'REVEAL_CREAT',  'AST',  'UREAN_N',  'NA.',  'BLAGE',  'BSA', 
'SEX_M',  'DIAG_CD_APAH-CVCTD',  'diuretic_bi',␣ 

'→'BNP_Combined','FC_discrete','SURVIVAL_1YR']) 
 
matMIdf  =  matMIdf[['BILI_T',  'SIXMWT_D',  'SVI',  'HR',  'RA_Wedge_Norm',  'ALBUMIN', 

'ALK_PHOS',  'REVEAL_CREAT',  'AST',  'UREAN_N',  'NA.',  'BLAGE',  'BSA', 
'SEX_M',  'DIAG_CD_APAH-CVCTD',  'diuretic_bi',␣ 

'→'BNP_Combined','FC_discrete','SURVIVAL_1YR']] 
 
# Draw the heatmap with the mask and correct aspect ratio 
sns.heatmap(matMIdf,cmap  =  cmap,mask  =  mask,  vmax=matMIdf.max().max(),  vmin  =␣ 
'→matMIdf.min().min(),  center=20, 

square=True,  linewidths=.5,  cbar_kws={"shrink":  .5},annot=True,fmt='. 

 
[136]: 

'→1f') 

<AxesSubplot:> 
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[ ]: 

 

[77]: 
 
 
 

[137]: 

 

 
['BILI_T',  'SIXMWT_D',  'SVI',  'HR',  'RA_Wedge_Norm',  'ALBUMIN',  'ALK_PHOS', 
'REVEAL_CREAT',  'AST',  'UREAN_N',  'NA.',  'BLAGE',  'BSA',  'SEX_M',  'DIAG_CD_APAH- 
CVCTD',  'diuretic_bi',  'BNP_Combined',  'FC_discrete'] 

  

          

              max()  
       

square        
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[ ]:  
 

 

 

 
 

 
 

'→transform('mean') 
 

 
'→apply(lambda r: r/r.sum(), axis=0) 
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[ ]: 
 
 
 
 
 
 
 
 
 
 

[49]: 
 
 
 
 
 
 

[138]: 
 
 

[138]: BILI_T SIXMWT_D SVI HR \ 

BILI_T 100.000000 7.968168 20.003820 6.779069  
SIXMWT_D 7.968168 100.000000 8.812329 12.717755  
SVI 20.003820 8.812329 100.000000 15.937344  
HR 6.779069 12.717755 15.937344 100.000000  
RA_Wedge_Norm 23.382964 11.139013 22.119216 6.998191  
ALBUMIN -8.029553 9.505406 -0.855073 2.117831  
ALK_PHOS 13.292643 9.462048 8.811028 9.032969  
REVEAL_CREAT 14.549133 15.408418 10.827471 4.160649  
AST 16.906554 1.437547 14.068678 6.271946  
UREAN_N 2.561807 19.311811 8.111584 0.260839  
NA. 3.176001 3.082257 8.062001 6.150500  
BLAGE -0.353484 9.125273 -0.687853 0.375215  
BSA 4.579512 -1.297607 0.260830 2.353979  
SEX_M 17.386909 -2.739707 8.119954 3.393224  
DIAG_CD_APAH-CVCTD -18.993636 4.132805 -7.275227 7.328279  
diuretic_bi 15.272347 12.423012 16.343821 4.630243  
BNP_Combined 31.994075 22.266733 28.842747 16.932158  
FC_discrete 6.033015 34.531383 14.347559 9.026346  
SURVIVAL_1YR 12.547893 20.853530 15.386871 13.314821  

 
 RA_Wedge_Norm ALBUMIN ALK_PHOS REVEAL_CREAT \ 

BILI_T 23.382964 -8.029553 13.292643 14.549133  
SIXMWT_D 11.139013 9.505406 9.462048 15.408418  
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SVI 22.119216 -0.855073 8.811028 10.827471  
HR 6.998191 2.117831 9.032969 4.160649  
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RA_Wedge_Norm 100.000000 6.502008 12.913613 7.973676 

ALBUMIN 6.502008 100.000000 4.130201 -3.670102 

ALK_PHOS 12.913613 4.130201 100.000000 8.527164 

REVEAL_CREAT 7.973676 -3.670102 8.527164 100.000000 

AST 7.509010 3.532014 16.705813 8.034594 

UREAN_N 5.625924 -1.862814 10.412028 45.666147 

NA. 3.345667 4.417395 8.973972 2.356711 

BLAGE -6.628649 -3.185189 -3.307052 7.173845 

BSA -0.562273 6.521738 -0.300068 -17.667333 

SEX_M 3.262483 -7.007197 7.759431 32.376757 

DIAG_CD_APAH-CVCTD -7.142383 19.378947 -3.537096 -4.518575 

diuretic_bi 13.213647 -4.029151 10.025348 12.571538 

BNP_Combined 31.622157 10.395713 15.915001 23.562772 

FC_discrete 11.694638 2.441245 6.919575 17.638118 

SURVIVAL_1YR 10.060549 10.924882 10.805899 11.709720 

 
 AST UREAN_N NA. BLAGE \ 

BILI_T 16.906554 2.561807 3.176001 -0.353484  
SIXMWT_D 1.437547 19.311811 3.082257 9.125273  
SVI 14.068678 8.111584 8.062001 -0.687853  
HR 6.271946 0.260839 6.150500 0.375215  
RA_Wedge_Norm 7.509010 5.625924 3.345667 -6.628649  
ALBUMIN 3.532014 -1.862814 4.417395 -3.185189  
ALK_PHOS 16.705813 10.412028 8.973972 -3.307052  
REVEAL_CREAT 8.034594 45.666147 2.356711 7.173845  
AST 100.000000 4.577600 2.922265 -0.496184  
UREAN_N 4.577600 100.000000 8.987598 8.271393  
NA. 2.922265 8.987598 100.000000 -2.786529  
BLAGE -0.496184 8.271393 -2.786529 100.000000  
BSA 6.092459 -6.027063 2.239173 5.612340  
SEX_M 8.351029 7.756380 2.771861 9.636594  
DIAG_CD_APAH-CVCTD -0.575176 8.174267 -2.719585 -0.298636  
diuretic_bi 2.286591 17.161302 6.704359 -4.189029  
BNP_Combined 19.338226 18.460565 3.849490 2.560485  
FC_discrete 2.781397 18.674704 5.410779 4.405832  
SURVIVAL_1YR 8.492104 11.131505 6.257469 7.851861  
 

BSA SEX_M DIAG_CD_APAH-CVCTD diuretic_bi \ 

BILI_T 4.579512 17.386909 -18.993636 15.272347  
SIXMWT_D -1.297607 -2.739707 4.132805 12.423012  
SVI 0.260830 8.119954 -7.275227 16.343821  
HR 2.353979 3.393224 7.328279 4.630243  
RA_Wedge_Norm -0.562273 3.262483 -7.142383 13.213647  
ALBUMIN 6.521738 -7.007197 19.378947 -4.029151  
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ALK_PHOS -0.300068 7.759431 -3.537096 10.025348  
REVEAL_CREAT -17.667333 32.376757 -4.518575 12.571538  
AST 6.092459 8.351029 -0.575176 2.286591  
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UREAN_N -6.027063 7.756380 8.174267 17.161302 

NA. 2.239173 2.771861 -2.719585 6.704359 

BLAGE 5.612340 9.636594 -0.298636 -4.189029 

BSA 100.000000 -23.148732 10.991939 -5.491742 

SEX_M -23.148732 100.000000 -19.845163 -2.732984 

DIAG_CD_APAH-CVCTD 10.991939 -19.845163 100.000000 -7.080097 

diuretic_bi -5.491742 -2.732984 -7.080097 100.000000 

BNP_Combined 5.478652 4.277415 5.670104 14.717802 

FC_discrete -7.504986 -1.180403 0.895353 19.861399 

SURVIVAL_1YR 8.821842 8.372487 4.664692 6.369760 

 
BNP_Combined FC_discrete 

BILI_T 31.994075 6.033015 

SIXMWT_D 22.266733 34.531383 

SVI 28.842747 14.347559 

HR 16.932158 9.026346 

RA_Wedge_Norm 31.622157 11.694638 

ALBUMIN 10.395713 2.441245 

ALK_PHOS 15.915001 6.919575 

REVEAL_CREAT 23.562772 17.638118 

AST 19.338226 2.781397 

UREAN_N 18.460565 18.674704 

NA. 3.849490 5.410779 

BLAGE 2.560485 4.405832 

BSA 5.478652 -7.504986 

SEX_M 4.277415 -1.180403 

DIAG_CD_APAH-CVCTD 5.670104 0.895353 

diuretic_bi 14.717802 19.861399 

BNP_Combined 100.000000 21.295909 

FC_discrete 21.295909 100.000000 

SURVIVAL_1YR 23.308811 11.332621 

 

[51]: 
 
 

[177]: 

 
           

 
        

'→are contributing 
 

 
 

    
 

 
total_negative = 0 

 



   

42 

 
[178]: 

 
 
 
 

[0.9691162 0.97250292 0.93131277 0.90383983 0.84147106 0.96600705 

0.9380102 0.15643325 0.89854685 0.11849082 0.99695734 0.98533046 

0.91341792 0.93372354 0.97112605 0.00470437 0.95193661 0.7984779 ] 
 

[179]: 
 
 

[180]: 

    
    

 
        

 
 

   

 
 

 
 

# if i == 1: 
#  
# elif i == 2: 
#  
# elif i == 16: 
#  
# else: 
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[164]: 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  'NA.'  'BLAGE'  'BSA' 
'SEX_M'  'DIAG_CD_APAH-CVCTD'  'BNP_Combined'] 

 
 
 
 
 
 
 

[168]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[83]: 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  'REVEAL_CREAT'  'AST' 
'UREAN_N'  'BLAGE'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'  'diuretic_bi' 
'BNP_Combined'  'FC_discrete'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'RA_Wedge_Norm'  'ALBUMIN'  'ALK_PHOS' 
'UREAN_N'  'NA.'  'BLAGE'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'  'BNP_Combined' 
'FC_discrete'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  'UREAN_N'  'NA.' 
'BLAGE'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'  'BNP_Combined'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  'UREAN_N'  'NA.' 
'BLAGE'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  'UREAN_N'  'BLAGE' 
'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'] 

['SIXMWT_D'  'HR'  'ALBUMIN'  'NA.'  'BLAGE'  'BSA'  'SEX_M' 
'DIAG_CD_APAH-CVCTD'  'diuretic_bi'  'BNP_Combined'] 
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[69]: 
 
 
 
 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  
'UREAN_N'  'NA.' 'BLAGE'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'  
'BNP_Combined'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'ALK_PHOS'  'REVEAL_CREAT'  
'NA.' 'BLAGE'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'  'BNP_Combined'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'HR'  'ALBUMIN'  'NA.'  'BLAGE'  
'BSA'  'SEX_M' 'DIAG_CD_APAH-CVCTD'] 

['BILI_T'  'SIXMWT_D'  'SVI'  'ALBUMIN'  'NA.'  'BLAGE'  
'BSA'  'SEX_M' 'DIAG_CD_APAH-CVCTD'] 

['SIXMWT_D'  'SVI'  'ALK_PHOS'  'BSA'  'SEX_M'  'DIAG_CD_APAH-CVCTD'] 
 
 

 


