
Enabling Collaborative Use of Data for

Mobile Devices under Physical and

Privacy Constraints

Submitted in partial fulfillment of the requirements for
the degreee of

Doctor of Philosophy
in

Electrical & Computer Engineering

Yichen Ruan
B.S., Civil Engineering, Tsinghua University

M.S., Civil & Environmental Engineering, University of California, Berkeley

Carnegie Mellon University
Pittsburgh, PA

Mar 2022



© Yichen Ruan, 2022

All Rights Reserved



Abstract
In the mobile Internet era, data has become the essential ingredient

for numerous mobile services such as video streaming, GPS navigation,
and on-device intelligence. Nevertheless, the resource-restricted nature of
mobile devices often obstructs them from collecting and processing all the
data as needed individually. Enabling the collaborative use of data among
mobile devices hence greatly extends the potential reach of mobile users
for external datasets and computation resources, allowing both public and
private data to be more efficiently delivered to and processed by various
mobile applications. Implementing this collaboration in the real-world
however faces both the physical capacity limits and the privacy protection
requirements. Fortunately, the state-of-the-art edge computing framework
empowered by 5G-based heterogeneous networks and the recent advances
in privacy-preserving federated learning algorithms provide powerful tools
based on which innovative systems and algorithms can be developed to
address these constraints.

This thesis aims to enable the collaborative use of data for mobile
devices through five approaches that fall into two categories: the direct
sharing of public or desensitized data, and variants of privacy-preserving
federated learning algorithms that are optimized for the mobile environ-
ment. For the first category, this thesis proposes to empower the direct
data sharing by 1) temporal- and spatial-adaptive mobile caching and 2)
topology-aware device-to-device data offloading. For the second category,
this thesis improves the existing federated learning implementations by 3)
the optimal client recruitment that balances both accuracy and efficiency
metrics, 4) innovative extensions to federated training algorithms that
incorporate flexible device participation patterns, and 5) soft clustered
federated learning that also learns personalized models for clients that
collect samples from multiple data distributions.
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Chapter 1

Introduction

1.1 Background

The increased user demands for smooth and intelligent mobile Internet services have
brought higher requirements for today’s mobile applications to utilize their data more
efficiently. The forms of data utilization include not only the acquisition of desired
content through the wireless network, but also the processing of internally generated
and externally fetched data to provide corresponding services. For example, the
video streaming applications and GPS navigation services need to speedily download
requested video frames and the latest road condition information respectively from
the Internet to support seamless user experience. Similarly, state-of-the-art mobile
services such as augmented reality and on-device intelligence entail massive data
processing and consequent computation to be conducted promptly to generate real-
time reactions to user behaviors. However, given the common usage scenarios and
hardware specifications of the resource-constrained mobile devices, it is difficult to
expect a single user device to acquire and process such a huge amount of data in
a reasonable time on its own. Fortunately, modern mobile devices are connected
with rich external data sources and computation resources that can possibly be
accessed with low communication cost through the ever-evolving mobile network
infrastructure. These data and computation resources, which can reside in either
publicly available locations or private devices of other users, pave the way for the
collaborative use of data among distributed user devices.

Mobile users may benefit from the collaborative use of data when one data item
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attracts common interest from multiple users. In fact, the Internet data traffic has
been found to be heavily skewed with popular content being requested much more
frequently than the majority of data published on the Internet [2]. For example,
trending YouTube videos generally attract much more viewers compared to less
noticed uploads [18]. Thus, significant network traffic can possibly be saved by
smartly co-using popular data so that all users experience reduced waiting time and
communication expenditure.

In recent years, the emerging on-device machine learning (ML) technology features
thriving user demands for intensive data collection and processing capacities. Mobile
applications equipped with this function, such as voice assistants and recommendation
systems, entail massive input data to guarantee the accuracy of their prediction
results. While a single device can hardly generate all the required data points,
it may benefit from the data collected by other devices that have similar user
profiles. Moreover, fitting machine learning models with the training data, also
known as model training, consumes tremendous computation resources, which is
rarely affordable for ordinary user devices. With the collaboration of mobile users,
this training burden can be split by distributing the workload to multiple devices.
Empowering the collaborative collection and processing of training data thus greatly
extends the reach of common users for more high-quality training samples and relieves
the computation burden of individual devices, which guarantees the production of
accurate and timely machine learning outcomes to fulfill the user needs.

Enabling the collaborative data utilization requires innovative design in both
network systems and software algorithms. On the one hand, supporting infrastructure
and communication protocols are needed to facilitate the fast exchange of data and
intermediate computation results, which may however produce unwanted interference
with existing communication devices without careful management of the network
resources. On the other hand, it is the algorithm in the mobile applications that
eventually drives the data flow and coordinates all user devices, which determines
the effectiveness and efficiency of this distributed working paradigm. The algorithm
development is especially important for machine learning tasks since the quality of
their final output is largely determined by the way user clients cooperate as we will
see in Chapters 4 to 6.

This thesis studies methods that enable the collaborative use of data from both
the system and algorithmic dimensions. The application scenarios we will discuss
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cover both regular data consumption cases and the training of machine learning
models, but with an emphasis on the latter since it faces more challenging data
sharing requirements as will be discussed in Section 1.2.

1.2 Physical and Privacy Constraints

Despite the potential advantages discussed in Section 1.1, realizing the collaborative
use of data in the real world entails overcoming constraints from both the physical
and privacy aspects:

• Physical Constraint. The speed and throughput of today’s network infras-
tructure degrade when the transmission distance increases. In reality, two user
clients that collaboratively use shared data may be far apart physically, which
can yield long latency for intensive data exchange tasks. In addition, general
mobile devices, including smart phones or tablets, have limited hardware re-
sources such as CPU, memory, storage, battery etc., and are thus incapable
of processing complex tasks. Moreover, the unreliable working environment
of portable devices also makes mobile devices prone to unexpected failures
(e.g., due to low battery or unstable network connectivity). The wireless trans-
mission of data items and computation results may therefore be interrupted
occasionally, which may block the running of the whole application without
good countermeasures. Designing systems and algorithms under the physi-
cal constraint requires innovative optimization of the network topology and
prominent improvement in the underlying distributed computing algorithms.

• Privacy Constraint. The sharing and reusing of information is the key
component and the most direct way of collaborative data use. For example, we
may share information to train machine learning models and reuse information
to retrieve content as discussed in Section 1.1. However, general data in mobile
devices, especially that collected by the users, is usually privacy-sensitive and
may not be simply disclosed. Allowing the direct sharing of raw user data,
either through a central server or in an device to device manner, brings the risk
of privacy leakage and is likely to violate the ever strict government regulations
such as the European General Data Protection Regulation (GDPR) [96]. The
privacy constraint is particularly crucial for machine learning applications that
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heavily rely on user-generated data to create personalized products that best
fit the preference of the device owner. To enable the collaborative use of data
under the privacy constraint, an innovative framework is needed to guarantee
the privacy-preserving information exchange among users. Such a framework
should protect the safety of the raw user data, without incurring overwhelming
communication overhead to mobile devices. System and algorithm development
are also needed to keep such a framework robust and efficient.

The form of collaborative data use discussed in this thesis is always assumed to
be restricted by the physical constraint. In words, we assume the network resources
are sparse and user devices have much weaker hardware specifications compared
to common cloud servers. Regarding the privacy aspect, we consider both privacy
insensitive data (e.g. publicly downloadable data on the Internet, or other forms of
user information made shareable with appropriate user consent) and privacy sensitive
data (e.g. user generated texts, photos, videos etc. that are meant to be kept secret).
Thus, the privacy constraint may or may not be active depending on the application
scenarios we will discuss. This differentiation is useful because privacy sensitive data
needs additional treatment to prevent the information leakage, which will inevitably
reduce our approaches’ overall performance measured by resource usage, user utility,
accuracy of trained models etc. Taking data as privacy insensitive on the other
hand allows us to develop more efficient systems and algorithms to better handle the
physical constraint.

1.3 Existing Tools

This section introduces two tools based on which we will build our systems and
algorithms to empower the collaborative use of data: edge computing and federated
learning. The two tools can be respectively applied to solve the physical and privacy
constraints as discussed in Section 1.2. However, they both have disadvantages and
need further improvement to be applicable in the real world. This thesis helps to
provide such improvements through five approaches as we will see in Section 1.4.
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1.3.1 Tool 1: Edge Computing

The traditional cloud paradigm, in which applications utilize servers in a remote data
center, may not meet new performance requirements in the Internet of Things (IoT),
5G, artificial intelligence, and other emerging technologies. For instance, homeowners
may use surveillance cameras to remotely track movement in their backyards in
real time. Constantly streaming camera footage to the cloud, from which it can be
viewed on homeowners’ apps, requires significant amounts of network bandwidth.
In another example, running data analytics algorithms on the cloud incurs latency
due to the need to transfer data from local devices to cloud servers. Real-time
analytics, e.g. analyzing heartbeat patterns collected by a smartwatch to detect
medical emergencies, may not be able to tolerate this latency.

Edge computing [81] aims to meet these new performance requirements by
distributing some application functionality to edge devices, instead of running them
solely in remote datacenters. Thus, instead of applications only utilizing resources
at a client and server, they can leverage computing devices that lie across the
cloud-to-things (C2T) continuum. For instance, instead of sending data to a cloud
server to be analyzed, a smartwatch might send data to a nearby smartphone.
Devices’ placement on the C2T continuum can be roughly determined by their
computational capabilities, e.g. devices like low-power sensors would lie at one
extreme, with powerful yet battery-constrained smartphones, connected vehicles,
laptops, local servers, and finally remote servers lying close to the edge of the network
[84]. Figure 1.1 illustrates this hierarchy of devices. Each device may contribute
computing, storage, and communication capabilities; and the devices are generally
connected to each other over the Internet. Cloudlets and points-of-presence may
be located at the edge of the network, e.g. colocated with mobile base stations.
Edge computing is predicted to be the next multi-billion-dollar business [9]. It is
a computing architecture that locates functionalities (e.g. storage, computation,
communication, and management) at two or more types of devices along the C2T
continuum. Edge computing thus represents a generalization of traditional cloud
computing, in which application functionality resides at a local device and a remote
cloud server.

While edge computing shows promise for addressing applications’ bandwidth and
latency challenges, it also raises new research challenges. Typically, edge devices
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Figure 1.1: Illustration of devices on the cloud-to-things continuum

are equipped with limited processing power and storage capacity compared to the
powerful servers in the cloud setting, and the bandwidth and spectrum resources are
also sparse. The form of collaborative data use we will discuss is assumed to happen
in such an edge computing setting where the network and computation resources are
always constrained.

1.3.2 Tool 2: Federated Learning

Federated learning (FL) is a cutting-edge privacy-preserving learning framework that
allows distributed devices to train a shared machine learning model cooperatively
with their own data. During the training process, the user data will never leave
the user device, thus protecting the user privacy. Recently, federated learning has
exhibited remarkable performance in many applications such as next word suggestion,
fault detection, and learning on private medical data [51].

Traditional federated learning involves a coordinator and a collection of devices
(also known as clients). Depending on the type of the devices, federated learning
can be classified into cross-device federated learning and cross-silo federated learning
[45]. The devices in cross-silo federated learning are usually powerful servers, and are
thus out of the scope of our discussion. This thesis focuses mostly on cross-device
federated learning, where participating devices are the ordinary mobile devices such
as smart phones, tablets and laptops. The coordinators are typically companies
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or organizations that hope to train machine learning models using user data in a
privacy-preserving way. The coordinator is responsible for initiating the training
and synchronizing all participating clients through a central server. Clients and
the server communicate through the wireless network to exchange some necessary
information periodically. The training procedure usually consists of multiple rounds,
where each round includes the following four steps:

• Client selection: The coordinator selects a random subset of clients to
participate in the training for this round

• Synchronization: the coordinator synchronizes the latest global model with
all selected devices

• Local updates: each selected device trains a local model for a few local
epochs, using samples from its local dataset

• Aggregation: the coordinator aggregates local models from selected clients
to produce the next global model

Federated learning was first introduced with the FedAvg algorithm [61]. Many
experiments since then have shown that FedAvg can indeed produce accurate
machine learning models (e.g. [105]). The convergence of FedAvg has been proved
for strongly convex and Lipschitz continuous objectives [53, 99]. These works also
prove that the non-IID distribution of local datasets can greatly obstruct convergence.
Recently, several variants of FedAvg are proposed to enhance the power of federated
learning. For example, FedProx [52] allows clients to use different local solvers, and
to upload partially finished models for aggregation, increasing the robustness of the
system. [89] on the other hand proposes a multi-task learning framework that allows
individual clients to train their own models. Some other papers also incorporate
system characteristics. For example, [99] proposes an adaptive control algorithm
that jointly considers the accuracy and the cost of training. [15] considers federated
learning over wireless networks, incorporating wireless communication and energy
consumption.

Federated learning enables clients to collaboratively use their data while protecting
the privacy of participating clients. It is also a typical edge computing system where
most computation (i.e. local updates) are conducted on user devices instead of
powerful cloud servers. However, traditional federated learning suffers from both
the physical restrictions of participating devices and the non-IID (not independently
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and identically distributed) distribution pattern of user data [89] . In this thesis,
we will design more efficient federated learning implementations to better serve
the demands of the mobile devices while keeping the promise of privacy protection.
Specifically, our approaches aim to tackle both the resource limitations and the
statistical challenges imposed by the non-IID effect.

1.4 Overview of Our Approaches

Depending on the privacy characteristics of the user data, mobile applications can
be classified into two types. For both types, we develop innovative systems and
algorithms to enable the collaborative data use in the mobile environment and
conduct extensive analysis and simulations to verify the effectiveness of our methods.

Type 1: The direct sharing of public or desensitized data. For applications of this
type, e.g. GPS navigation services that use public road information, we neglect
the privacy constraint and assume all data can be freely exchanged among users
and shared with trusted third parties. Our approaches thus focus on improving the
efficiency of the data movement with restricted resources in the edge environment.
We propose two approaches for Type 1:

• Mobile caching [77]: We propose to use mobile (i.e., moving) devices to
supplement existing network infrastructure according to users’ data needs at
different times and locations. For instance, vehicles can be used as communi-
cation relays or computation points. However, it is unclear how much value
these devices add relative to their deployment costs: they may, for instance,
interfere with existing network infrastructure, limiting the potential benefits.
We take the first step towards quantifying the value of this supplemental
infrastructure by examining the use case of mobile caches. We consider a
network operator using both mobile (e.g., vehicular) and stationary (small cell)
caches, and find the optimal amount of both types of caches under time- and
location-varying user demands, as a function of the cache prices. In doing so,
we account for interference between users’ connections to the different caches,
which requires solving a non-convex optimization problem. We show that
there exists a threshold price above which no vehicular caches are purchased.
Moreover, as the network operator’s budget increases, vehicular caching yields
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little additional value beyond that provided by small cell caches. These results
may help network operators and cache providers find conditions under which
vehicles add value to existing networks.

• Topology-aware data offloading [93]: We develop a network-aware dis-
tributed learning optimization methodology where devices process data for
a task locally and send their learned parameters to a server for aggregation
at certain time intervals. Unlike traditional federated learning frameworks,
our method enables devices to offload their data processing tasks, with these
decisions determined through a convex data transfer optimization problem that
trades off costs associated with devices processing, offloading, and discarding
data points. We analytically characterize the optimal data transfer solution
for different edge network topologies, showing for example that the value of
allowing device offloading is approximately linear in the range of computing
costs in the network. Our subsequent experiments on both synthetic and
real-world datasets we collect confirm that our algorithms are able to improve
network resource utilization substantially without sacrificing the accuracy of
the learned model.

Type 2: Innovative variants of federated learning that are optimized for the realistic
edge environment. For applications of this type, we assume the data is highly sensitive
and may not be disclosed to anyone under any circumstance, e.g. private user photos,
texts etc. Our approaches extend the existing federated learning algorithms to
increase the learning efficiency in the resource-constrained edge environment and
overcome the difficulty in convergence imposed by the non-IID problem, while sticking
to the promise of privacy protection. We propose three approaches for Type 2:

• Optimal client recruitment [79]: In federated learning, an operator recruits
user devices (i.e., clients) to occasionally perform local iterations of the learning
algorithm on their data. We propose the first approach to theoretically analyze
the resulting performance tradeoffs in deciding which clients to recruit for
federated learning, complementing other works on the selection of recruited
clients in each iteration. Specifically, we define and optimize the tradeoffs
between both accuracy (training and testing) and efficiency (completion time
and cost) metrics. We provide efficient solutions to this NP-Hard optimization
problem, and verify the value of client recruitment in experiments on synthetic
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and real-world data. Our results can serve as guidelines for the real-world
deployment of federated learning and an initial investigation of the client
recruitment problem.

• Flexible device participation in federated learning [80]: Traditional
federated learning algorithms impose strict requirements on the participation
rates of devices, which limit the potential reach of federated learning. This
approach extends the current learning paradigm to include devices that may
become inactive, compute incomplete updates, and depart or arrive in the
middle of training. We derive analytical results to illustrate how allowing more
flexible device participation can affect the learning convergence when data is
non-IID. We then propose a new federated aggregation scheme that converges
even when devices may be inactive or return incomplete updates. We also
study how the learning process can adapt to early departures or late arrivals,
and analyze their impacts on the convergence.

• Soft clustered federated learning [78]: Traditionally, clustered federated
learning groups clients with the same data distribution into a cluster, so that
every client is uniquely associated with one data distribution and helps train a
model for this distribution. We relax this hard association assumption to soft
clustered federated learning, which allows every local dataset to follow a mixture
of multiple source distributions. We propose FedSoft, which trains both locally
personalized models and high-quality cluster models in this setting. FedSoft
limits client workload by using proximal updates to require the completion of
only one optimization task from a subset of clients in every communication
round. We show, analytically and empirically, that FedSoft effectively exploits
similarities between the source distributions to learn personalized and cluster
models that perform well.

1.5 Structure of the Thesis

In this chapter, we introduce the motivation and background for enabling the
collaborative data use in the mobile environment. We highlight the physical and
privacy challenges associated with this problem, and give an overview of our five
approaches that leverage the state-of-the-art edge computing and federated learning
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tools. Chapters 2 to 6 respectively elaborate these five approaches following the
order they are presented in Section 1.4. We finally conclude the thesis in Chapter 7
and discuss possible future directions.
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Chapter 2

Data Co-use via Mobile Caching

2.1 Introduction

In recent years, network operators have made efforts to move 5G network functional-
ities to the network edge [6], e.g., caching popular contents on small cells or user
devices. These contents can then be retrieved directly from the network edge, without
passing through the network core. Such practices have yielded concrete benefits for
network operators, e.g., caching in small cells can reduce backhaul traffic by over
45% [91]. Despite these benefits, relying on edge infrastructure also has drawbacks.
Small cells have limited range, requiring dense deployments, and cannot adapt to
changes in user demand over time [116]. For instance, user demands in a business
region of a city are generally much larger during the day than at night, making small
cells stay idle for almost half a day. Network infrastructure with more temporal
flexibility could then yield further benefits to network operators by adapting to
changes in user demands.

Some recent work [27, 63, 65, 86, 95, 109] has proposed to deploy mobile devices
such as drones and vehicles as relay nodes and cache carriers in wireless networks.
The physical mobility of these devices allows them to respond to temporal variations
in user demands and network conditions at different locations. However, it is not clear
whether the benefits of this flexibility outweigh the costs. Using vehicles or other
mobile devices, for instance, may be more expensive than simply over-provisioning
stationary devices to handle peak user demands at each location, particularly if user
demands do not vary enough over time. Users’ communication with such devices may
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also interfere with connectivity to existing network infrastructure. Yet it is hard to
say exactly what constitutes “too expensive” or “not varied enough.” In this chapter,
we quantify the value of mobile caching as a first step towards assessing the
value of using vehicles or other mobile devices in network infrastructure. Our results
can guide network operators in determining whether and to what extent they should
incorporate such devices into their networks.

Mobile devices like vehicles and drones can perform a number of network functions,
ranging from caching content [109] to serving as relays [65] to collecting data in
urban crowdsensing [74]. We focus on vehicular caching due to caching’s known
benefits in mobile networks, and vehicles’ naturally high density compared to small
cells or other infrastructure in an urban environment. One might, for instance, pay
public buses, private car owners, or other mobility-as-a-service providers to carry
cache servers; some bus systems already carry WiFi access points [33]. Our economic
model, however, is general enough to cover any type of cache provider that charges
the network operator that uses the caches.

Most prior works on wireless caching focus on finding the optimal caching policies,
with little attempt at analyzing the competition between, and relative value of,
mobile vehicular caches and other types of caching. We thus encounter several new
research challenges in doing so. These involve both finding the right model to quantify
the value of vehicular caching and solving the resulting optimization problems, which
we show are in general non-convex. We solve these challenges to make three key
research contributions:

Our first contribution lies in modeling interactions between caching tiers:
Vehicular caching must compete economically with existing caching products, such
as small cells. The relative costs of these different types of caching will then influence
the additional value that vehicular caching brings. We quantify this effect by jointly
optimizing the caching purchased from each tier. Vehicular points may also experience
physical interference from small cells and other network traffic, which affects their
ability to serve users and thus their value. Quantifying the effect of such interference
between caching tiers is itself a challenging problem, and we use stochastic geometry
theories to do so.

Our second research contribution is to develop a unified framework for differ-
ent network operator objectives given the above system model. These include
the rate of cache hits and the delivery rate, which quantifies the spectral efficiency
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of users’ connections to different caching tiers. We formulate tractable optimization
problems for both objectives in a general framework (Theorems 2.1-2.3).

Our third major research contribution lies in solving these optimization problems
to concretely quantify the value of vehicular caching. This value depends on
the distribution of user needs over time and space, which is itself hard to quantify
given the many variables involved. We show that it also depends on solving for the
optimal cache provisioning and provide solutions for this (non-convex) optimization
problem (Theorems 2.4-2.5). In particular, we will evaluate the value of vehicular
caching by answering three questions:

• Demand functions: We solve for network operators’ optimal caching demands
(Theorems 2.4 and 2.5), and quantify the dependence of vehicle demands at
each time on the prices and user needs at other times (Corollary 2.1);

• Economic viability of vehicular caching: We quantify the maximum price
under which operators would wish to purchase vehicular caching capacities,
i.e., under which the value added by vehicular caching exceeds its cost relative
to other caching methods (Corollary 2.2);

• Gain from competition: We show that as the network operator’s budget
increases, vehicular caching yields little marginal value above small cell caching
(Corollary 2.3), but that the optimal amounts of both vehicular and small cell
caching increase linearly with the budget (Corollary 2.4).

2.2 Related Work

Many existing works on network caching consider a fixed caching capacity that the
network operator can sell to different content providers (CPs) in order to reduce
the latency of delivering content to these CPs’ users. Economic techniques such as
contract theory [37], auction theory [41], and game theory [115] can be used to find
the optimal or equilibrium outcomes. Unlike these works, in this chapter, we focus
on network operators purchasing cache devices, whose capacity may later be sold to
CPs.

Many works on wireless caching attempt to design optimal content placement
schemes. Popular methods include small cell caching [25, 68], device-to-device (D2D)
cache sharing [44, 98], mobility-aware caching [98], and content sharing in vehicular
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ad hoc networks [111]. Comparing these methods reveals that caching in different
locations of the wireless network can result in different levels of economic gains [11],
but these benefits are not rigorously analyzed. To do so here, we make use of the
content placement, device mobility, and wireless connectivity models introduced in
these works.

Early works on vehicular caching view vehicles as moving relay nodes that connect
user devices to base stations [5, 107]. Later works have considered optimizing user
connectivity to vehicles that host caches themselves [39, 109, 112]. In [86, 95], the
optimal content placement policy is studied for a 2-tier network with cache-enabled
vehicular points and macro cells. Similar models are studied for specific applications,
such as the delivery of delay-tolerant contents [63], and video streaming [95]. These
works focus only on vehicles and do not consider the existence of other caching
methods, e.g., small cells. In contrast, we will explore how vehicular, and more
generally mobile, caching adds value to the existing caching methods.

2.3 System Model

We first show the overall system (Figure 2.1) and our user and vehicle mobility
model in Section 2.3.1, and then describe our models for the content allocation policy
(Section 2.3.2) and users’ connectivity to the caching devices (Section 2.3.3).

Figure 2.1: Overview of the heterogeneous network composed of three caching tiers
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2.3.1 Content Caching Market

We consider a network operator, e.g., an Internet service providers (ISP) or content
delivery network (CDN) provider, that wishes to utilize caching capacity from a
variety of cache providers. We consider two tiers of caching products: small cell
caching (which has fixed locations) and vehicular caching. These products can come
from different providers. For example, equipment manufacturers may sell cache
capacity at small cells, while ride-sharing networks can sell caching capacity in their
vehicles. The network operator subscribes to a combination of these two products
to maximize its profit, i.e., the benefit from caching, less the payment to the cache
providers. To focus on the value that vehicular caching adds to mobile networks
and not on the price competition between the small cell and vehicular providers, we
assume the prices that the network operator pays for each type of caching are given.
For simplicity, we do not consider D2D caching as it is not yet widely deployed.
However, our framework can be easily extended to include more caching tiers.

We assume that network operators purchase caching capacity in terms of the
expected number of devices in a unit area, i.e., they decide the intensity of small
cells Ls and vehicles Lv to be deployed in each region of their networks. We use a
stochastic model for the number of vehicles and small cells available in each region
and time interval to abstract away from individual device mobility. Indeed, these
devices may not be fully controlled by network operators: for instance, taxi vehicles
may follow varied mobility patterns. Small cell caches may become inaccessible due
to network congestion or other demands. We also assume an existing macro cell tier
with fixed, exogenous intensity Lm, leading to a 3-tier heterogeneous network as in [3].
The macro cell can access all content through the network backhaul. Devices of the
same tier share the same configuration, i.e., they have the same transmit power pk,
cache capacity Nk and price Pk, where k ∈ N = {v, s,m} represents vehicles, small
cells and macro cells respectively. This price represents the amount that operators
need to pay vehicle or small cell owners to cache content for them and may vary
with time and location.

To address temporal and spatial dynamics, we divide the decision space into T

time slots and D regions. Inside each (t, d) ∈ [T ] × [D], we assume the locations
of all caching points and users follow a homogeneous Poisson point process with
constant intensity Lk(t, d), k ∈ N ∪ {u(users)} [7, 98]. Since macro cells and small
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cells are stationary, their intensity matrices are fixed over time, i.e. ∀t1, t2, Lk(t1, d) =

Lk(t2, d), k ∈ {m, s}. The intensity of users Lu(t, d) at each time t and location d

is exogenous, and we assume that it is not affected by the cache intensities. The
(exogenous) prices Pk(t, d) can also vary with the time t and region d. The mobility
of mobile users and vehicles is reflected in the change of intensities across time and
space.

2.3.2 Content Placement Policies

The value of vehicular caching depends on how content is cached at both the vehcles
and small cells. Contents are assumed to be cached as chunks with the same size
[95]. Each chunk is associated with an exogenous preference (probability of being
requested) fi, i = 1, 2, . . . , N , where N is the size of the content catalog. Without
loss of generality, we assume f1 ≥ f2 ≥ . . . ≥ fN following a power-law distribution
as in [2]. Chunks from the same content source may have different preferences, e.g.,
some segments of a video may be more popular than others [95]. The preference,
and thus the indices i, can also depend on (t, d), e.g., news videos might be more
popular in the morning. For clarity, we generally omit the dependence on (t, d) in
our notation.

The content placement policy is modeled in terms of the caching probability. In
tier k, the content i is cached with probability Hk,i(t, d). All chunks are accessible
to the macro cell tier, i.e. Nm = N and Hm,i(t, d) ≡ 1. By choosing the values of H,
we can model different placement policies, provided that the cache does not exceed
its capacity, i.e.,

∑N
i=1Hk,i ≤ Nk. We will consider policies of the form

Hk,i(t, d) =

uk
∆
= Nk

µkN
, 1 ≤ i ≤ µkN

0, otherwise
(2.1)

where µk is an exogenous parameter satisfying Nk

N
≤ µk ≤ 1. A larger µk means that

less popular content (with higher index i) is more likely to be cached. We make the
reasonable assumption that Nv ≤ Ns and µv ≤ µs, i.e., vehicles cache fewer chunks
than small cells, since they have less space to install storage units. When µk takes
its extreme values, we obtain two easily interpretable policies:
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• Greedy placement policy (µk = Nk/N, uk = 1). Devices in each tier cache
chunks in descending order of preferences until they reach their capacity Nk.

• Uniform placement policy (µk = 1, uk = Nk/N). For each tier, all chunks
are cached with the same probability.

We assume that content is replaced when its popularity changes. Since content
popularity changes infrequently compared to user requests, we do not include it in
our model.

2.3.3 Network Interference and Connectivity

We next characterize the network connectivity of each caching tier in order to quantify
its benefits to the network operator in the next section. We consider the standard
power law propagation model and Rayleigh fading for all tiers [85], i.e., a receiver
with distance r from the transmitter receives p · h · r−α of signal power, where p

is the transmit power, h ∼ exp (1) represents the fading effect, and α > 2 is the
path-loss coefficient. Communication inside a region d is assumed to only interfere
with devices within that region. Different tiers may or may not interfere with each
other, depending on the spectrum allocation scheme. We will consider spectrum
sharing, in which all tiers share the same spectrum and may interfere with each
other; and an orthogonal partition in which different tiers use different spectrum
bands, e.g., cellular connectivity to small cells and WiFi connectivity to vehicles.

Clients can retrieve contents from a caching point only if the requested content
is cached and the signal-to-interference ratio (SIR) is greater than some threshold τk,
which we assume is the same for all tiers (τk ≡ τ). We assume that user requests
are always directed to the point with the highest SIR among all points that have
the requested content, regardless of its tier. This assumption guarantees that users
always benefit from caching, and can be easily relaxed by assigning to each tier a
user association preference [54].

2.4 Problem Formulation

We propose to use our system model to answer three specific questions regarding the
value of vehicular caches:
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• Demand functions. How do the optimal demands for vehicular and small
cell caches change with respect to the time, region, prices, and user intensities?

• Economic viability. Can operators make money by subscribing to vehicular
caching? How much value does vehicular caching add to existing caching
products?

• Value of competition. Compared to using only small cells or vehicles, how
much gain in utility, or reduction in cost, can the operator obtain when both
are available?

The first two questions can be answered by solving the operator’s profit maxi-
mization problem to find the optimal intensities L∗

v, L
∗
s to which it should subscribe.

Problem 2.1 (Profit Maximization).

maximize
Lv ,Ls∈RT×D

γU(Lv, Ls)− tr(P T
v Lv)− tr(P T

s Ls)

subject to Lv(t, d) ≥ 0, Ls(t1, d) = Ls(t2, d) ≥ 0

Here U(Lv, Ls) is a utility function, to be defined in Section 2.5, quantifying the
benefits of different caching intensities Lv and Ls for the operator, and γ is a scaling
coefficient. The remaining terms represent the cost of using each type of cache.

To quantify the added value of vehicular compared to small cell caches, we solve
a variant of Problem 2.1:

Problem 2.2 (Utility Maximization).

maximize
Lv ,Ls∈RT×D

U(Lv, Ls)

subject to tr(P T
v Lv) + tr(P T

s Ls) ≤ P0

Lv(t, d) ≥ 0, Ls(t1, d) = Ls(t2, d) ≥ 0

This problem quantifies the maximum attainable utility subject to a fixed budget
constraint. The value of competition is thus the difference of the achieved utilities
for the competitive market and single-product markets (i.e., when only vehicular or
small cell caches are available). In reality, vehicular and small cell caching providers
may decrease their prices in order to better compete with each other, leading to
higher utility for the network operator; thus, the solution given by Problem 2.2 can
be interpreted as a lower bound of the real utility gain.
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We will solve these optimization problems to answer our research questions
analytically and numerically in Sections 2.6 and 2.7. First, we define the utility
function U(Lv, Ls).

2.5 Defining Operator Utilities

The utility function measures the benefits that an operator obtains from caching.
Different types of operators may then have different metrics for utility. We first define
a general network operator utility model and then discuss three special cases that
are particularly realistic models for operators that are CDN providers that sell cache
capacity to CPs or ISPs who use caching to improve their users’ quality-of-service.

General utility model. All of our utility models can be written in terms of
the probability that users can connect to each caching tier. Thus, we define Ck as
an indicator variable of whether a user chooses tier k and connects to it. Formally,
Ck = 1(SIRk > τ, Sel = k), where Sel is a random variable denoting the tier
selected for serving a typical request. We then write the general utility functions

U0 = E[a(Cv + Cs) + bCm] (2.2)

where a and b are scalar weights; we use specific values of a and b to define three
cases of particular interest below. We also write Seli as the tier selected to provide
content i. We can now solve for the tier k connectivity, defined as probability that
users can access tier k, E[Ck]:

Theorem 2.1 (Expected Tier Connectivity).

E[Ck] =
1

∥Lu∥1
∑
t,d

Lu(t, d)
N∑
i=1

fi(t, d)E[Ck,i(t, d)] (2.3)

where Ck,i(t, d) = 1(SIR > τ, Seli = k|t, d) indicates if a typical request for content
i is served by tier k at (t, d), and ∥·∥1 is the ℓ1 norm. For a typical user, let Xk,i be
the distance to the nearest tier-k point that has content i cached and Rk = mini Xk,i.

20



If Rk|Seli = Xk,i|Seli,∀i, then

E[Ck,i(t, d)] =
Hk,i(t, d)p

2
α
k Lk(t, d)∑

j∈N
(ρ+Hj,i(t, d))p

2
α
j Lj(t, d)

(2.4)

E[Ck,i(t, d)] =
Hk,i(t, d)p

2
α
k Lk(t, d)

ρp
2
α
k Lk(t, d) +

∑
j∈N

Hj,i(t, d)p
2
α
j Lj(t, d)

(2.5)

for the sharing and orthogonal spectrum schemes respectively, with ρ = τ 2/α
∫∞
τ−

2
α
(1 +

u
α
2 )−1du a function of τ and α.

Proof sketch. For any (t, d), we use the probability density functions (PDFs) of Rk

and Xk,i and the approximation Rk|Seli = Xk,i|Seli to find the joint probability
P(Rk > r, Seli = k), as well as the PDF of Rk|Seli. Then we use the law of total
probability to find P(SIR > τ |Seli = k), which we simplify by using the Laplace
transform of the interference. Reorganizing, we find E[Ck,i(t, d)] as in (2.4), (2.5),
and we use the law of total expectation to derive (2.3).

The approximation Rk|Seli = Xk,i|Seli in Theorem 2.1, i.e., that content i is
served by the closest physical point with that content, holds when all points in the
same tier in each region cache the same items, as for the greedy placement policy. In
general, it is close to reality if the requested content is cached with a high probability,
i.e., when Hk,i is close to 1. For less popular contents i, the approximation has
limited influence on E[Ck] in (2.3) since the corresponding preferences fi are small.

Utility from cache connectivity. Our first utility model can apply to network
operators that are ISPs or CDN providers. Since CDN providers are typically
paid for the amount of data directed to their devices, we can model their utility
as the probability that a typical request is served by the cache, i.e., the rate of
successful cache connectivity, which we define as the sum of the vehicle and small
cell connectivity:

U1 = E[Cv + Cs] (2.6)

where we have set a = 1, b = 0 in (2.2). The γ coefficient in Problem 2.1’s objective
then denotes the marginal value of cache connection, which is proportional to the
per-byte monetary payoff to the CDN service. Similarly, an ISP might also receive a
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payoff proportional to the cache connectivity, as each cache connection reduces the
operating cost of serving the user’s request through the core network.

When the network coverage is good and interference can be ignored, we can assume
the SIR threshold τ = 0. In this case the cache connectivity (Cv + Cs = 1(SIR >

τ, Seli = s, v|t, d)) simply becomes the cache hit rate since we have SIRk > τ = 0.
We thus define the cache hit utility, U2:

Ak
∆
= 1(SIRk > 0, Sel = k) = 1(Sel = k) (2.7)

U2 = E[Av + As]. (2.8)

By assuming no interference, U2 represents an optimistic approximation of the cache
connectivity; while U1 can be viewed as the worst-case estimation of cache connectivity
as the derivation of Ck in Theorem 2.1 assumes all stations are transmitting at all
time, which is unlikely to happen in reality. The gap between U1 and U2 gets larger as
we increase the SIR threshold τ . With U2, we are able to get closed-form solutions for
Problems 2.1 and 2.2 in the next section. We first derive U2 and prove its concavity.

Theorem 2.2 (Expected Cache Hit Rate). E[Ak] is given by

E[Ak] =
1

∥Lu∥1
∑
t,d

Lu(t, d)
N∑
i=1

fi(t, d)E[Ak,i(t, d)] (2.9)

where Ak,i = 1(Seli = k), and

E[Ak,i(t, d)] =
Hk,i(t, d)p

2
α
k Lk(t, d)∑

j∈N
Hj,i(t, d)p

2
α
j Lj(t, d)

(2.10)

Proof. The proof is analogous to the proof of Theorem 2.1.

Since the interference has been removed, (2.9) and (2.10) are independent of
the spectrum allocation scheme, and Theorem 2.2 does not require that Xk,i|Seli =
Rk|Seli as in Theorem 2.1. In fact, (2.10) is a special case of (2.4) and (2.5) when
τ = 0. We find that the cache hit utility U2 is a concave function:

Theorem 2.3 (Concavity of Cache Hit Utilities). The utility function (2.8) is
concave with respect to Lv and Ls.
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Proof. Plugging (2.9) and (2.10) into (2.8), the utility function is

U2 =
∑
t,d,i

Lu(t, d)fi(t, d)

∥Lu∥1
(1− E[Am,i(t, d)]) (2.11)

From (2.10), E[Am,i(t, d)] is a convex function. Thus (1−E[Am,i(t, d)]) is concave,
as is U2 in (2.11).

We finally define a third type of utility function, which is again a special case of
the general utility (2.2).

Delivery rate utility. If the network operator is an ISP, caching can not only
reduce its cost, as discussed above, but also improve user QoS and attract new users.
ISPs might then wish to maximize the downlink delivery rate [7], which characterizes
the throughput experienced by a typical user and thus the spectrum efficiency. The
marginal value of this utility (i.e. the value of γ in Problem 2.1) can be determined
using tools like the discrete choice model [24].

For the utility function to represent the delivery rate, we set a = log(1 + τ), b =

rb < log(1 + τ) in the utility expression (2.2). That is, the typical user is served
with constant rate log(1 + τ) if she is in coverage and served by cache tiers. If she
is in coverage yet served by macro cells, the latency is controlled by the processing
and queuing rate of the backhaul; thus the user is served with a lower delivery rate
rb < log(1+τ). The value of rb is jointly determined by factors such as the maximum
bandwidth of the backhaul, the distribution of macro cells, etc.; we treat it as a
known constant. As a result, we can write the delivery rate utility, U3, from (2.2)
as

U3 = E[log(1 + τ)(Cv + Cs) + rbCm] (2.12)

2.6 Optimal Caching Intensities

In this section, we will answer Section 2.4’s research questions on the caching
demand functions and economic viability by solving Problem 2.1, and on the value
of competition by solving Problem 2.2, with Section 2.5’s utility functions. With
the cache hit utility U2 in (2.8), both problems are convex, and can be solved in
closed-form. However, the cache connectivity and delivery rate utilities U1 and U3

in (2.6) and (2.12) are not concave. We design an efficient fractional programming
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algorithm to find the optimal solution in these cases.

2.6.1 Solutions for Profit Maximization (Problem 2.1)

We first consider the cache hit utility (2.8) before giving an algorithm to solve
Problem 2.1 with more general objectives.

Theorem 2.4 (Demand Functions under Cache Hit Utilities). Under the general
placement policy (2.1), assume µv ≤ µs. With utility function (2.8), the solution to
Problem 2.1 is:

L∗
s(·, d) = −

1

us

FmsLm(·, d) +√
γFmsLm(·, d)

∑
t(Qs(t, d)−δv(t, d)Qv(t, d))Lu(t, d)

∥Lu∥1 us

∑
t Ps(t, d)− δv(t, d)

us

uv
FsvPv(t, d)

(2.13)

L∗
v(t, d) =

√
γFmvLm(·, d)Qv(t, d)Lu(t, d)

∥Lu∥1 uvPv(t, d)

− δs(t, d)
us

uv

FsvL
∗
s(·, d)−

1

uv

FmvLm(·, d)
(2.14)

Here Qk(t, d) =
∑µkN

i=1 fi(t, d), δk(t, d) = 1(L∗
k(t, d) > 0), Fkj = (pk/pj)

2/α. If the
term inside the square root of (2.13) is negative, or if (2.13) or (2.14) is negative,
we set the corresponding intensity to zero.

Proof. The result follows from the KKT (Karush-Kuhn-Tucker) optimality conditions.

Demand functions. Theorem 2.4 allows us to quantify how the optimal
demands L∗

s and L∗
v vary with the user intensities Lu. Surprisingly, we observe that

the caching intensity L∗
k for k ∈ {s, v} is a square root function of Lu/ ∥Lu∥1, and thus

increases at a slower rate than the tier connectivity, which is linear in Lu(t, d)/ ∥Lu∥1
(Theorem 2.1), as user requests become more concentrated in a single time and region
(t, d) (Lu(t, d)/ ∥Lu∥1 increases). The optimal small cell demand L∗

s(t, d) depends
on the aggregated user intensity

∑
t Lu(t, d), as we would expect given small cells’

lack of mobility, while the vehicle demand L∗
v(t, d) only depends on the users at

other times through the small cell demand L∗
s(t, d). In fact, small cells substitute

for vehicles: as L∗
s(t, d) increases, the vehicular demand L∗

v(t, d) decreases linearly.
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The marginal rate of substitution, δs(t, d)us

uv
Fsv, is independent of Lu(t, d)/ ∥Lu∥1

but depends on the ratios of the small cell and vehicle transmit powers ps/pv and
cache capacities us/uv.

We next investigate the dependence on the prices Pk. The optimal demand L∗
k

decays on the order of
√
Pk for both tiers k ∈ {s, v}. As with the user intensity, the

optimal small cell demand L∗
s(·, d) is a function of the aggregated price

∑
t Ps(t, d)

at each location d. However, the optimal vehicle demand L∗
v(t, d) is only affected by

the prices Pv at other times through the small cell demand L∗
s(t, d). We can thus

find the cross-time price sensitivity of this demand:

Corollary 2.1 (Cross-Time Sensitivity for Vehicles’ Prices). For cache hit utilities,
if the price Pv(t1, d) increases for some t1, the optimal demands of vehicles in other
time slots L∗

v(t2, d) : t2 ̸= t1 either decrease or stay unchanged.

Intuitively, if Pv(t1, d) increases, small cells become more attractive than vehicles
in region d. Thus, L∗

s(t1, d) either increases or stays the same. Since small cells are
fixed over time, the number of small cells at (t2, d) also increases or stays the same,
prompting a decrease in L∗

v(t2, d).

Economic viability. We next use Theorem 4 to find conditions under which
vehicular caching is viable, i.e., there is positive demand for some time slots and
regions.

Corollary 2.2 (Economic Viability of Vehicular Caching). Assume µv ≤ µs. If at
the optimal point all intensities L∗

v and L∗
s are positive, the following relation holds

∑
t

Ps(t, d) >
us

uv

(
ps
pv

) 2
α ∑

t

Pv(t, d) (2.15)

In words, the region-accumulative price
∑

t Ps(t, d) of small cells is lower bounded
by that of vehicles, scaled by the ratio of transmit power and caching capacities.
We can thus interpret (2.15) as a lower bound on the small cell prices for which
all intensities are positive, i.e., the operator uses both vehicles and small cells. If
the small cells are sufficiently less expensive or have sufficiently higher capacity
(us ≫ uv), the operator will not utilize the vehicular caches at all.

Profit maximization with general utility functions. We now turn to the
general utility function U0. In this case, we solve Problem 2.1 with a quadratic
transform [85] as it does not have a closed-form solution. From Theorem 2.1, we can
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write
E[Ck,i(t, d)] =

Wk,i(t, d)

Zk,i(t, d)
(2.16)

where Wk,i and Zk,i are affine functions of Lv and Ls.
Thus, defining αv = αs = a, αm = b, (2.2) can be written as

U0 =
∑
t,d,i,k

αk
Lu(t, d)

∥Lu∥1
fi(t, d)

Wk,i(t, d)

Zk,i(t, d)
(2.17)

We then introduce the auxiliary utility function (2.17):

V (y, Lv, Ls) =
∑
t,d,i,k

αk
Lu(t, d)

∥Lu∥1
fi(t, d)×(

2yk,i(t, d)
√
Wk,i(t, d)− y2k,i(t, d)Zk,i(t, d)

)
,

(2.18)

Substituting (2.17) with (2.18) in Problem 2.1, we find the equivalent optimization
problem:

Problem 2.3 (Transformed Profit Maximization).

maximize
y,Lv ,Ls

γV (y, Lv, Ls)− tr(P T
v Lv)− tr(P T

s Ls)

subject to Lv(t, d) ≥ 0, Ls(t1, d) = Ls(t2, d) ≥ 0

For general content placement policies, the dimension of y is in the order of
Θ(TDN). However, if the value of Hk,i is fixed for most contents (e.g. the general
placement policy (2.1)), the summation over i can be greatly simplified, and the
number of auxiliary variables y can be reduced to Θ(TD).

Theorem 2.5 (Equivalence of Problems 2.1 and 2.3). The variable (L∗
v, L

∗
s) maxi-

mizes Problem 2.1 if and only if (L∗
v, L

∗
s) together with some y∗ maximizes Problem

2.3. Furthermore, Problems 2.1 and 2.3 have the same objective value at the optimal
point.

Proof. See Appendix A of [85].

The transformed Problem 2.3 is not necessarily a convex problem. However, it is
easy to see that this problem is convex with respect to (Lv, Ls) when the value of y
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is fixed. On the other hand, given (Lv, Ls), the optimal y can be written as

yk,i(t, d) =
√

Wk,i(t, d)
/
Zk,i(t, d) (2.19)

This useful property allows the use of a block coordinate ascent algorithm to find
the optimum by iteratively solving for the optimal (Lv, Ls) given y and the optimal
y given (Lv, Ls). The convergence of this procedure to optimality follows from that
of the block coordinate ascent method [92].

2.6.2 Solutions for Utility Maximization (Problem 2.2)

As in Theorem 2.4, we can also derive a closed-form solution to Problem 2.2 for the
cache hit utility (2.8). Based on that we can conclude Corollary 2.3 and 2.4 below.

Given a limited budget, the maximum utility in the competitive market is bound
to be no worse than that of single-product markets as the latter are special cases of
the two-product optimization. We first consider the value of competition with
infinite budgets, when the prices of the small cells and vehicles do not matter:

Corollary 2.3 (Upper Bound of Cache Hit Utilities). With infinite budget, the
maximum utility for the vehicle only and the small cell only market using utility (2.8)
can not exceed

U ≤
∑
t,d

Lu(t, d)

∥Lu∥1
Qk(t, d), k ∈ {v, s} (2.20)

Here Qk(t, d) is given in Theorem 2.4, and the upper bound for the competitive market
is the same as the small cell market, as we assume µv ≤ µs in the definition of Qk.

Corollary 2.3 suggests that as the network operator’s budget increases, the value
of competition approaches zero: the utilities under the competitive and small cell
only markets have the same upper bounds. With infinite budget, either vehicles
or small cells can achieve their optimal utilities as their costs are insignificant. We
verify this result in Section 2.7: as the budget increases, the competitive market
achieves nearly the same utility as the small cell only market. Corollary 2.3 also
implies that the value of the competitive market is bounded away from 1, i.e., perfect
cache hits, due to the limited capacities of the caches. However, despite this lack of
competition, both products are purchased at large budgets:

Corollary 2.4 (Linear Increase of Optimal Demands). Under cache hit utilities
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(2.8), for a sufficiently large value of the budget P0 ≫ 0, the optimal intensities L∗
v

and L∗
s increase linearly with respect to P0 at every (t, d).

Thus, for sufficiently large budgets, there is effectively no change in the competi-
tion between vehicles and small cells: a budget increase yields constant marginal
increases in the demands for both types of caching. This result is consistent with
the linear substitution of small cells for vehicles from Theorem 2.4. Together with
Corollary 2.3, it implies that the marginal value of additional caching intensities is
eventually zero, which we verify in Section 2.7.

To solve Problem 2.2 for general utility functions, we can still apply the quadratic
transform (2.18) and update rule (2.19) as for Problem 2.1. We can then use a block
coordinate ascent algorithm to find the optimal solution.

2.7 Numerical Simulations

We next verify Section 2.6’s results numerically. We first consider the optimal
demands in Section 2.7.1 and the value of competition in Section 2.7.2. We then
investigate the impact of variations in the system model in Section 2.7.3.

We use the SF311 database [22] to simulate the temporal and spatial dynamics
of user requests. The database records the location and time for each mobile 311
service request in San Francisco, California. Figure 2.2 shows the hourly distribution
of user requests for the 30 most popular neighborhoods, averaged over all weekdays
in 2017. To facilitate the visualization of our results, we focus on two representative
regions: the business/office region Financial District (referred to as R1), and the
residential/leisure region Showplace Square (R2). Both regions have about 5000
daily requests and similar land area. We scale their distributions such that the
highest hourly intensity equals 50 per squared kilometer (Figure 2.2). We define
the business hour (T1) as 10:00 to 16:00, and the off hour (T2) as 18:00 to 24:00.
For both regions, we average the intensities within each time slot, thus yielding four
intensity bins (km−2): 39.5 (T1+R1), 11.8 (T1+R2), 27.4 (T2+R1), 25.0 (T2+R2).
For both regions, the intensity of macro cells is 0.3 km−2. Unless otherwise noted,
we set Ps ≡ 18, Pv(1, ·) = 2, Pv(2, ·) = 5.

We set the transmit power (Watt) as pm = 40, ps = 6.3, and pv = 1.0 [28]. We
let the SIR threshold τ = 1(0 dB), and the path-loss coefficient α = 4. We consider
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Figure 2.2: The distribution of user requests in a typical day for the top 30 neighborhoods
and the typical “business” and “residential” regions

a content catalog with a total of N = 10000 chunks, and let Nv = 30, Ns = 100. For
simplicity, we assume users’ preferences for content chunks do not change for different
time slots and regions, and follow the Zipf distribution with shape coefficient equal
to 1.2 [17]. For the delivery rate model, let rb = 0.5 log(1 + τ), i.e. the delivery rate
when the cache is missed is half that for the cache hit rate. The marginal utility
value (i.e. γ) is set to be 500 for the connectivity utility U1 in (2.6) and the cache
hit utility U2 in (2.8), and 1000 for the delivery rate utility U3 in (2.12).

2.7.1 Demands of Caching

Hourly demand of vehicular caching. An advantage of vehicular caching over
small cells is its ability to better respond to the change of user intensities: at any
time, more vehicles may be dispatched to regions that currently have higher user
intensities. Thus, the hourly dynamics of the optimal vehicle demands are expected
to match the patterns of user requests shown in Figure 2.2.

In Figure 2.3, we show a heat map of the optimal vehicle intensities for the top
30 neighborhoods under the cache hit utility U2. In Figure 2.4, we compare the
vehicle intensities in the business and residential regions (R1 and R2) for all three
utilities U1, U2 and U3. Comparing Figures 2.2 and 2.3, more vehicles are used in the
daytime due to higher request intensities, and the vehicle intensity also adapts to
variation over different locations. Under all utility functions, the temporal patterns
of vehicle demands in R1 and R2 (Figure 2.4) closely track those of the user requests

29



(Figure 2.2).
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Figure 2.3: Heat map of the optimal vehicle demands with the cache hit utility U2

Viability and accumulative demand. The accumulative demand for each
caching tier is the sum of the temporally averaged demands across regions. In
our setting, it reflects the operators’ daily demands for both caching tiers. Thus,
vehicular caching is economically viable only if its accumulative demand is positive.
We consider the economic viability for two time slots (T1, T2) and two regions (R1,
R2) for ease of visualization. For clarity we assume the prices do not change over
time and regions (we explore price variation below), and set Ps ≡ 18. We then vary
the price of vehicles Pv, and find the corresponding demands as per Theorems 2.4
and 2.5.

Figure 2.5 shows the accumulative demand curves for the three utility functions
using the greedy content placement policy and the spectrum sharing scheme. In-
tensities are aggregated over regions and averaged across time. Vehicles exhibit
zero demand when the price exceeds a certain threshold. The dash-dot line at 7.17
represents the lower bound of this threshold given by Corollary 2.2. The accumulative
demand for vehicles decreases with a diminishing elasticity as the price goes up
at approximately a rate of (

√
Pk)

−1, as expected from Theorem 2.4. Each of the
three utility functions considered exhibit qualitatively similar demand curves. For
all three utility functions, the accumulative demand for vehicles drops to zero above
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Figure 2.4: The optimal vehicle demands over 24 hours in the business region (R1) and
the residential region (R2)

a threshold price around 8: vehicular caching is economically viable only if its price
is below this threshold. Corollary 2.2 gives an lower bound of 7.17 on this threshold
price, which is very close to the actual threshold.

Spillover effects on time and region. The demands of vehicles and small cells
at different times are highly correlated. From Corollary 2.1, if the price of vehicles
increases in some (t1, d1), operators will decrease their demands for vehicles Lv(t1, d1)

and subscribe to more small cells, increasing Ls(t1, d1). Since the small cell intensities
are fixed over time, Ls(t2, d1) also increases, and the operators subscribe to fewer
vehicles Lv(t2, d1). To reveal this spillover effect, we fix Ps ≡ 18, Pv(2, ·) = 5, and
vary vehicles’ price in business hours Pv(1, ·), assuming prices do not change across
regions. Figure 2.6 shows the resulting change of demands with greedy placement
and spectrum sharing. X-axes are intensities, Y-axes are price of vehicular caching
in business hours Pv(1, ·). As Pv(1, ·) increases, demand for vehicles (small cells)
decreases (increases) at all time slots and regions. The change of vehicle demand in
off hours is consistent with Corollary 2.1: it first decreases, then stays unchanged.
However, the decrease is most pronounced during business hours (T1), when the
price itself changes.

Effect of user intensities. The dynamics of users’ requests can significantly
affect the economic performance of vehicular caching. Intuitively, vehicles are more
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Figure 2.5: Accumulative demand curves for vehicular caching as the vehicle price Pv(·, ·)
varies

attractive if user intensities are more divergent across time and regions. To illustrate
this effect, we set the user intensities as Lu(1, 1) = Lu(2, 2) = 30 + du, Lu(1, 2) =

Lu(2, 1) = 30 − du. As du grows higher, the distribution of users becomes more
uneven. We use the cache hit utility U2.

Figure 2.7 shows our results. The X axes represent du (user divergence), and
Y axes represent caching demands. For both regions, as Lu diverges, L∗

s(·, d) first
remains constant, then decreases. This is consistent with Theorem 2.4: since∑

t Lu(t, d) ≡ 60 in our setting, L∗
s changes only when some vehicle demands L∗

v

become zero. On the other hand, L∗
v changes significantly at a rate of

√
du. When

du = 30, i.e., there are no users in the business (residential) region during off
(business) hours, L∗

v(1, 2) = L∗
v(2, 1) = 0. When du = 0 and the user intensities are

uniform, vehicle demand is still positive due to the lower prices Pv compared to small
cell prices Ps.

2.7.2 Value of Competition

As discussed in Section 2.3, we evaluate the value of competition by comparing the
solutions to Problem 2.2 for the competitive and single-product markets.

Figure 2.8 shows our achieved utilities with greedy placement policy and spectrum
sharing. The X-axes represent budgets, and Y-axes represent utilities. Both plots
follow the same pattern. At first, when the budget is small, vehicular caching obtains
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Figure 2.6: Spillover effect caused by change of vehicles’ prices

a higher utility level than small cells, and the optimal choice in the competitive
market is to subscribe only to vehicles. In this phase, the competitive curve overlaps
with the vehicle curve; the value of competition is thus zero. As the budget increases,
we start to observe a positive value of competition - the competitive market achieves
a higher utility level than both single-product markets. When the budget is large
enough, small cells start to outperform vehicles, and the vehicle curve and the small
cell curves intersect. In the meantime, the utility gain from competition continues to
rise. Finally, when the budget goes to infinity, the competitive curve converges to
the small cell curve, i.e., the value of competition gradually drops to zero. For the
cache hit utility, the utility bounds can be calculated by Corollary 2.3, which states
that the curves will eventually converge at Qv = 0.639 for the vehicle only market
and Qs = 0.751 for both the competitive market and the small cell only market.

These phase transitions can be explained as follows. When the budget is small,
few caching points are deployed in the network. Thus, even requests for popular
content chunks can not be served by the cache. In this situation, cached chunks in
vehicles can be better utilized due to their mobility, making vehicular caching more
valuable. When the budget increases, however, the increase of utility is constrained
by the finite vehicle capacity Nv. As a result, the total utility is driven by the larger
capacity Ns of the small cells.
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Figure 2.7: Evolution of caching demands as user intensities diverge
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2.7.3 Variations in the System Model

We finally test the robustness of our results to inaccuracies in our cache intensity
models. To do so, we add bias to the optimal intensities L∗

k, k ∈ {v, s}, and re-
calculate the resulting operator profit. The bias is drawn from a Gaussian distribution
with zero mean, and the standard deviation equals L∗

k× σ for some σ. In the case an
intensity value is negative, we set it to zero. We run a total of 500 trials, gradually
increasing σ from 0 to 0.3. In Figure 2.9, the grey lines represent results of 500 trials.
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The black lines are envelopes, showing little variation in the achieved profit. The
profit drops by at most 10 (5.8%) for σ < 0.2, implying our model is robust to small
intensity deviations.

Figure 2.9: The change of profits under U2 when the optimal intensity is offset by a zero
mean bias term

2.8 Summary

In this chapter, we have proposed a framework to evaluate the economic value of
vehicular caching. A system model is developed to capture the economic and physical
dynamics of caching tiers. We then use this model to derive the utility functions for
different network operators, including both CPs and ISPs. The value of vehicular
caching is quantified through its viability, demands, and the gain of competition.
These research questions are answered by solving two optimization problems, for
which we have provided both analytical and algorithmic solutions. We find that
vehicular caching does not add value if its price exceeds a finite threshold or the
operator has infinite budget. Simulation results verify the economic value of vehicular
caching, and illustrate the dynamics of the system.
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Chapter 3

Topology-Aware Offloading of
Machine Learning Data

3.1 Introduction

Initial efforts in decentralizing ML have focused on decomposing model parameter
updates over several nodes, typically managed by a centralized serving entity [61, 69].
Most of these methods, however, implicitly assume idealized network topologies
where node and link properties are homogeneous. Edge environments, by contrast,
are characterized by devices’ heterogeneity both in available compute resources and
in connectivity with each other, e.g., due to power constraints or mobility.

Figure 3.1 illustrates two example edge topologies. In the hierarchical case, less
powerful devices are connected to more powerful ones, while for the social network,
connections are denser and devices tend to be similar. A central question that arises,
then, in adapting ML methodologies to these environments is: How should each
edge device contribute to the ML training and inference? We answer this question
by developing a methodology for optimizing the distribution of processing across a
network of edge devices.

3.1.1 Machine Learning in Edge Environments

ML models are generally trained by iterating over a dataset to estimate parameter
values (e.g., weights in a neural network) that best “fit” the empirical data. We face
two major challenges in adapting such training to edge environments: (i) heterogeneity
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(a) Hierarchical (b) Social network

Figure 3.1: Cartoon illustrations of two example topologies for edge computing

in devices’ compute resources and (ii) constraints on devices’ abilities to communicate
with each other. We outline these characteristics in some key applications below:

Internet-connected vehicles can collaboratively learn about their environ-
ment [21], e.g., by combining their data with that of road sensors to infer current road
or traffic conditions. Since sensors have less computing capabilities than vehicles,
they will likely offload their data to vehicles or roadside units for processing. This
offloading must adapt as vehicles move and their connectivity with (stationary)
sensors changes.

Augmented reality (AR) uses ML algorithms for e.g., image recognition [14] to
overlay digital content onto users’ views of an environment. A network of AR-enabled
devices can distributedly train ML models, but may exhibit significant heterogeneity:
they can range from generic smartphones to AR-specific headsets, with different
battery levels. As the users move, connectivity between devices will also change.

Industrial IoT. 5G networks will allow sensors that power control loops within
factory production lines to communicate across the factory floor [4, 21], in turn
enabling distributed ML algorithms to use this data for, e.g., predicting production
delays. Our approach can determine which controllers should process data from
which sensors: this depends on sensor-controller connectivities, which may vary with
factory activity.

3.1.2 Outline and Summary of Contributions

We first differentiate our approach from related literature in Section 3.2. To the best
of our knowledge, we are the first to optimize the distribution of ML data processing

37



(i.e., training) tasks across edge nodes, leading to several contributions:

Formulating the task distribution problem (Section 3.3). In deciding which
devices should process which datapoints, our formulation accounts for resource
limitations and model accuracy. While ideally more of the data would be processed
at devices with more computing resources, sending data samples to such devices may
overburden the network. Moreover, processing too many data samples can incur
large processing costs relative to the gain in model accuracy. We derive new bounds
(Theorem 3.1) on the model accuracy when data can be moved between devices,
and show that the optimal task distribution problem can be formulated as a convex
optimization that can be solved rapidly even for large networks.

Characterizing the optimal task distribution (Section 3.4). Solving the
optimization problem formulated in Section 3.3 requires specifying parameters that
may not be known in advance, e.g., the number of datapoints that each device
can process in a single timeslot. We analyze the expected deviations from our
assumptions in Section 3.3 to derive guidelines on how these parameters should be
set (Theorem 3.2). We then derive the optimal task distributions for typical edge
network topologies (Theorems 3.3 and 3.4) and use them to estimate the value (i.e.,
reduction in processing costs) of allowing devices to move processing tasks to other
devices (Theorems 3.5 and 3.6).

Experimental validation (Section 3.5). We train classification models on the
MNIST dataset to validate our algorithms. We use data traces from a Raspberry PI
testbed to emulate network delays and compute resource availability. Our proposed
algorithm nearly halves the computing overhead yet achieves an accuracy comparable
to centralized model training.

3.2 Related Work

We contextualize our approach within prior results on (i) federated learning algo-
rithms and (ii) methods for offloading ML tasks from mobile devices to edge servers.
In classical distributed learning, multiple “workers” each compute a gradient or
parameter value on their own local data. These results are aggregated at a central
server, and updated parameter values are sent back to the workers to begin another
round of local computations. In the federated learning framework, devices instead
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perform a series of local updates between aggregations [31, 46, 61]. Such a frame-
work preserves user privacy by keeping data at local devices [87] and reduces the
communication between devices and the central server. However, these works do not
optimally distribute parameter computations between devices, and do not consider
the compute-communication tradeoffs inherent in edge scenarios.

Offloading computations from constrained mobile devices to nearby edge servers
when there is a high-bandwidth connection between them will intuitively improve
system performance, and has been shown to significantly accelerate training of a
linear regression model [13] and inference on a neural network model [71]. Other
works have considered splitting deep neural network layers between edge devices
and an edge server for faster inference [40, 90]. We instead consider generic ML
frameworks, and additionally provide theoretical performance bounds not found in
these prior works.

3.3 Model and Optimization Formulation

In this section, we define models for edge networks (Section 3.3.1) and ML training
(Section 3.3.2), and then formulate the ML task distribution optimization problem
(Section 3.3.3).

3.3.1 Edge Computing System Model

Edge computing nodes. We consider a set V of n devices, an aggregation server
s, and discrete time intervals t = 1, . . . , T . Each device, e.g., a sensor or smartphone,
can both collect data and process it to contribute to an ML task. The server s

aggregates the results of each device’s local analysis, as will be explained in Section
3.3.2. Both the length and number of time intervals may depend on the specific ML
application. In each interval t, we suppose a subset of devices V (t), indexed by i, is
active (i.e., available to collect and/or process data). For simplicity of notation, we
omit i’s dependence on t.

Data collection and processing. We use Di(t) to denote the set of data
collected by device i ∈ V (t) at time t; d ∈ Di(t) denotes each datapoint. (We may
have Di(t) = 0 if a device does not collect data.) Gi(t), by contrast, denotes the set of
datapoints processed by each device at time t; our optimization in Section 3.3.3 relates

39



Device 1 Device n

…

Parameter 
Server

wn(t) wn(t� 1)

� ⌘rLn (wn(t� 1)|Gn(t))
<latexit sha1_base64="3Psp+kdik92ivBvE38mQFCC9SPg="></latexit>

w (k + 1)
<latexit sha1_base64="zrnasFKhM6isuI3Konr75xPwosE=">AAACBXicbVBNS8NAEN3Ur1q/oh71sFiEilASFfRY9OKxgv2AJpTNdtMu3WzC7kQpoRcv/hUvHhTx6n/w5r9x2+ag1QcDj/dmmJkXJIJrcJwvq7CwuLS8Ulwtra1vbG7Z2ztNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHwauK37pjSPJa3MEqYH5G+5CGnBIzUtfe9iMAgCLP7sSdYCJUhPsaup3h/AEddu+xUnSnwX+LmpIxy1Lv2p9eLaRoxCVQQrTuuk4CfEQWcCjYuealmCaFD0mcdQyWJmPaz6RdjfGiUHg5jZUoCnqo/JzISaT2KAtM5uVnPexPxP6+TQnjhZ1wmKTBJZ4vCVGCI8SQS3OOKURAjQwhV3NyK6YAoQsEEVzIhuPMv/yXNk6p7WnVuzsq1yzyOItpDB6iCXHSOauga1VEDUfSAntALerUerWfrzXqftRasfGYX/YL18Q1sZpfb</latexit>

t = k⌧ + 1, . . . , k⌧ + ⌧
<latexit sha1_base64="jliK0qTxndMs1GcQz78HRmzonvI=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4sgWEqigm6EohuXFewDmlAmk0k7dPJg5kYopXs3/oobF4q49Qfc+TdO2iDaeuByD+fcy8w9XiK4Asv6MgpLyyura8X10sbm1vaOubvXUnEqKWvSWMSy4xHFBI9YEzgI1kkkI6EnWNsbXmd++55JxePoDkYJc0PSj3jAKQEt9cwy4Es8dICk+BjbVUf4Majqj5K1nlmxatYUeJHYOamgHI2e+en4MU1DFgEVRKmubSXgjokETgWblJxUsYTQIemzrqYRCZlyx9NbJvhQKz4OYqkrAjxVf2+MSajUKPT0ZEhgoOa9TPzP66YQXLhjHiUpsIjOHgpSgSHGWTDY55JRECNNCJVc/xXTAZGEgo6vpEOw509eJK2Tmn1as27PKvWrPI4iOkBldIRsdI7q6AY1UBNR9ICe0At6NR6NZ+PNeJ+NFox8Zx/9gfHxDV5cmLs=</latexit>

wn ((k + 1)⌧)
<latexit sha1_base64="+F2AVcs1KSfBypwayTZ0WhS9TIE=">AAACDXicbVBNS8NAEN3Ur1q/qh69LFahRSiJCnosevFYwX5AE8pmu2mXbjZhd6KU0D/gxb/ixYMiXr1789+4bXPQ1gcDj/dmmJnnx4JrsO1vK7e0vLK6ll8vbGxube8Ud/eaOkoUZQ0aiUi1faKZ4JI1gINg7VgxEvqCtfzh9cRv3TOleSTvYBQzLyR9yQNOCRipWzxyQwIDP0gfxl3pChZAuTzEJ9ipuEASV/H+ACrdYsmu2lPgReJkpIQy1LvFL7cX0SRkEqggWnccOwYvJQo4FWxccBPNYkKHpM86hkoSMu2l02/G+NgoPRxEypQEPFV/T6Qk1HoU+qZzcrue9ybif14ngeDSS7mME2CSzhYFicAQ4Uk0uMcVoyBGhhCquLkV0wFRhIIJsGBCcOZfXiTN06pzVrVvz0u1qyyOPDpAh6iMHHSBaugG1VEDUfSIntErerOerBfr3fqYteasbGYf/YH1+QMh3prv</latexit>

w (k + 1)
<latexit sha1_base64="zrnasFKhM6isuI3Konr75xPwosE=">AAACBXicbVBNS8NAEN3Ur1q/oh71sFiEilASFfRY9OKxgv2AJpTNdtMu3WzC7kQpoRcv/hUvHhTx6n/w5r9x2+ag1QcDj/dmmJkXJIJrcJwvq7CwuLS8Ulwtra1vbG7Z2ztNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHwauK37pjSPJa3MEqYH5G+5CGnBIzUtfe9iMAgCLP7sSdYCJUhPsaup3h/AEddu+xUnSnwX+LmpIxy1Lv2p9eLaRoxCVQQrTuuk4CfEQWcCjYuealmCaFD0mcdQyWJmPaz6RdjfGiUHg5jZUoCnqo/JzISaT2KAtM5uVnPexPxP6+TQnjhZ1wmKTBJZ4vCVGCI8SQS3OOKURAjQwhV3NyK6YAoQsEEVzIhuPMv/yXNk6p7WnVuzsq1yzyOItpDB6iCXHSOauga1VEDUfSAntALerUerWfrzXqftRasfGYX/YL18Q1sZpfb</latexit>

Offload

Discard

Process

Figure 3.2: Federated learning updates between aggregations k and k + 1

Gi(t) to the datasets Di(t). In conventional learning frameworks, Di(t) = Gi(t),
as all devices process the data they collect [99]; separating these variables is one
of our main contributions. We suppose that each device i can process up to Ci(t)

datapoints at each time t, incurring a cost of ci(t) for each point. This cost and
capacity may for instance represent the battery level; devices with low battery will
have lower capacities Ci(t) and higher costs ci(t).

Edge network connectivity. The devices V are connected to each other via
a set E of directed links, with (i, j) ∈ E denoting a link from device i to j, and
E(t) ⊆ E denoting the set of functioning links at time t. The overall system then
can be described as a directed graph ({s, V } , E) with vertices V representing the
devices and edges E the links between them. We suppose that ({s, V (t)} , E(t)) is
fully connected at each time t and that links between devices are single-hop, i.e.,
devices do not use each other as relays except possibly to the server. Note that
the scenarios outlined in Section 3.1.1 each possess such an architecture: in smart
factories, for example, a subset of the floor sensors connect to each controller. Each
link (i, j) ∈ E(t) is characterized by a capacity Cij(t), i.e., the maximum datapoints
it can transfer, and a “cost of connectivity” cij(t). This cost may reflect network
conditions (e.g., signal strengths, congestion) or a desire for privacy, and will be
higher if sending from i to j is less desirable at t.

Data structure. Each datapoint d can be represented as (xd, yd), where xd is
an attribute/feature vector and yd is an associated label for model learning. We use
DV = ∪i,tDi(t) to denote the full set of datapoints collected by all devices over all
time. For simplicity, we follow prior work [104, 113] and model the data collection
at device i as points being selected uniformly at random from a (usually unknown)
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distribution Di. In practice the Di can evolve over time, but we assume this evolution
is slow compared to the horizon T . We use D = ∪iDi to denote the global distribution
induced by these Di. Note this assumption implies the relationship between xd and yd

is temporally invariant, which is common in ML applications, e.g., image recognition
from cameras at fixed locations or AR users with random mobility patterns. We will
use such an image dataset for evaluation in Section 3.5.

3.3.2 Machine Learning Model

Our goal is to learn a parameterized model that outputs yd given the input feature
vector xd. We use the vector w to denote the set of model parameters, whose values
are chosen so as to minimize a loss function L(w|D) that depends on the ML model
(e.g., squared error for linear regression, cross-entropy loss for multi-class classifiers
[64]). Since the overall distributions Di are unknown, instead of minimizing L(w|D)
we minimize the empirical loss function, as commonly done:

minimize
w

L(w|DV ) =

∑T
t=1

∑
i∈V (t)

∑
d∈Gi(t)

l(w, xd, yd)

|DV |
(3.1)

where l(w, xd, yd) is the error for datapoint d, and |DV | is the number of datapoints.
Note that the function l may include regularization terms that aim to prevent model
overfitting [61].

Edge computing allows (3.1) to be solved distributedly: instead of computing
the solution at the server s, we can use computations at each device i. Below, we
follow the commonly used federated averaging framework [99] in specifying these
local computations and global aggregation, illustrated by device n in Figure 3.2.
Device 1 discards all of its data or offloads it to device n, which computes τ gradient
updates on its local data. The final parameter values are averaged at the parameter
server, with the result sent back to the devices to begin a new iteration. To avoid
excessive re-optimization at each device, we suppose that they execute the same local
updating algorithm regardless of Gi(t). We adjust the server averaging to account
for the amount of data each device processes.

Local loss minimization. In order to solve (3.1) in a distributed manner, we
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first decompose the empirical loss function into a weighted sum of local loss functions

Li(wi|Gi) =

∑T
t=1

∑
d∈Gi(t)

l(w, xd, yd)

|Gi|
(3.2)

where Gi ≡ ∪t≤TGi(t) denotes the set of datapoints processed by device i over all
times. The global loss in (3.1) is then equal to L(w|DV ) =

∑
i Li(w|Gi) |Gi| / |DV |

if ∪iGi = DV , i.e., if all datapoints d ∈ DV are eventually processed at some device.
Due to the inherent complexity of most ML models, loss functions such as (3.2)

are typically minimized using gradient descent techniques [61]. Specifically, the
devices update their local parameter estimates at t according to

wi(t) = wi(t− 1)− η(t)∇Li(wi(t− 1)|Gi(t)) (3.3)

where η(t) > 0 is the step size, which often decreases with t, and ∇Li(wi(t −
1)|Gi(t)) =

∑
d∈Gi(t)

∇l(wi(t − 1), xd, yd)/|Gi(t)| is the gradient with respect to w

of the average loss of points in the current dataset Gi(t) at the parameter value
wi(t− 1). We define the loss only on the current dataset Gi(t) since future data in
Gi has not yet been revealed; since we assume each node’s data is IID over time,
we can view Li(wi(t− 1)|Gi(t)) as approximating the local loss Li(wi|Gi). One can
then interpret the computational cost ci(t) of processing datapoint d as the cost of
computing the gradient ∇l(wi(t− 1), xd, yd). If the local data distributions Di are
all the same, then all datapoints across devices are IID samples of this distribution,
and this process is similar to stochastic gradient descent with batch size |Gi(t)|.

Aggregation and synchronization. The aggregation server s will periodically
average the local estimates wi(t) from the devices and synchronize the devices with
a global update. Formally, the kth aggregation is computed as

w(k) =

∑
i Hi(kτ) · wi(kτ)∑

i Hi(kτ)
(3.4)

where τ is the fixed aggregation period and Hi(kτ) =
∑kτ

t=(k−1)τ+1 |Gi(t)| is the
number of datapoints node i processed since the last aggregation. Thus, the update is
a weighted average factoring in the sample size Hi on which each wi(t) is based. Once
this is computed, each device’s local estimate is synchronized, i.e., wi(t)← w(t/τ).
A lower value of τ will result in faster convergence of w, while a higher value requires
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less network resources. Prior work [99] has considered how to optimize τ , so we
assume it is pre-determined in our formulation, analyzing its effect experimentally in
Section 3.5.

3.3.3 Optimization Model for Data Processing Tasks

We now consider the choice of Gi(t), which implicitly defines the ML tasks to be
executed by device i at time t, i.e., processing all datapoints in Gi(t). There are
two possible reasons Gi(t) ̸= Di(t): first, device i may offload some of its collected
data to another device j or vice versa, e.g., if i does not have enough capacity
(Di(t) ≥ Ci(t)) or possibly if j has lower computing costs (cj(t) ≤ ci(t)). Second,
device i may discard data if processing it does not reduce the empirical loss (3.1)
by much. In Figure 3.2, device 1 offloads or discards all of its data. We collectively
refer to discarding and offloading as data movement. We do not include the cost of
communicating parameter updates to/from the server in our model; unless a device
processes no data, the number of updates stays constant.

Data movement model. We define sij(t) ∈ [0, 1] as the fraction of data
collected at device i that is offloaded to device j ̸= i at time t. Thus, at time t,
device i offloads Di(t)sij(t) amount of data to j.1 Similarly, sii(t) will denote the
fraction of data collected at time t that device i also processes at time t. We suppose
that as long as Di(t)sij(t) ≤ Cij(t), the capacity of the link between i and j ̸= i, then
all offloaded data will reach j within one time interval and be processed at device j

in time interval t+ 1. Since devices must have a link between them to offload data,
sij(t) = 0 if (i, j) /∈ E(t). We also define ri(t) ∈ [0, 1] as the fraction of data collected
by device i at time t that will be discarded. In doing so, we assume that device j

will not discard data that has been offloaded to it by others, since that has already
incurred an offloading cost Di(t)sij(t)cij(t). The amount of data collected by device
i at time t and discarded is then Di(t)ri(t), and the amount of data processed by
each device i at time t is

Gi(t) = sii(t)Di(t) +
∑
j ̸=i

sji(t− 1)Dj(t− 1).

1For notational convenience, Di(t) here refers to the length |Di(t)|, and similarly for Gi(t) in
this section. The context makes the distinction clear.
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In defining the variables sij(t) and ri(t), we have implicitly specified the constraint
ri(t)+

∑
j sij(t) = 1: all data collected by device i at time t must either be processed

by device i at this time, offloaded to another device j, or discarded. We assume
that devices will not store data for future processing, which would add another cost
component to the model.

Data movement optimization. We formulate the following cost minimization
problem for determining the data movement variables sij(t) and ri(t) over the time
period:

minimize
sij(t),ri(t)

T∑
t=1

(∑
i

Gi(t)ci(t) +
∑

(i,j)∈E(t)

Di(t)sij(t)cij(t)

+
∑
i

fi(t)L (wi(t)|DV )

)
(3.5)

subject to Gi(t) = sii(t)Di(t) +
∑
j ̸=i

sji(t− 1)Dj(t− 1) (3.6)

sij(t) = 0, (i, j) /∈ E(t), j ̸= i (3.7)

ri(t) +
∑
j

sij(t) = 1, sij(t), ri(t) ≥ 0 (3.8)

Gi(t) ≤ Ci(t), sij(t)Di(t) ≤ Cij(t) (3.9)

Constraints (3.6–3.8) were introduced above and ensure that the solution is feasible.
The capacity constraints in (3.9) ensure that the amounts of data transferred and
processed are within link and node capacities, respectively. The three terms in the
objective (3.5) correspond to the processing, offloading, and error costs, respectively,
as we detail below.

(i) Processing, Gi(t)ci(t): This is the computing cost associated with processing
Gi(t) of data at node i at time t.

(ii) Offloading, Di(t)sij(t)cij(t): This is the communication cost incurred from
node i offloading data to j.

(iii) Error, fi(t)L (wi(t)|DV ): This cost quantifies the impact of the data
movement on the error of the model at each device i; note that since wi(t) is
computed as in (3.3), it is an implicit function of Gi(t), the data processed at device
i. We include the error from each device i’s local model at each time t, instead of
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simply considering the error of the final model, since devices may need to make use
of their local models as they are updated (e.g., if aggregations are infrequent due
to resource constraints [99]). Discarding data clearly increases the loss, since less
data is used to train the ML model; offloading may also skew the local model if it is
updated over a small number of samples Gi(t). We can, however, upper bound the
loss function L(wi(t)) regardless of the data movement:

Theorem 3.1 (Upper bound on the local loss). If Li(w) is convex, ρ-Lipschitz,
and β-smooth, if η ≤ 1

β
, and if L(w(T ))− L(w⋆) ≥ ϵ for some ϵ > 0, then after K

aggregations with a period τ and defining the constant δi ≥ ||∇Li(w)−∇L(w)||,

L(wi(t))− L(w⋆) ≤ ϵ0 + ρgi(t−Kτ), (3.10)

where gi(x) =
δi
β
((ηβ + 1)x − 1) implying gi(t −Kτ) is decreasing in K, and ϵ0 is

given by
1

tωη(2− βη)
+

√
1

t2ω2η2(2− βη)2
+

Kh(τ) + gi(t−Kτ)

tωη(1− βη/2)
.

Proof. Define vk(t) for t ∈ {(k − 1)τ, ..., kτ} as the parameters under centralized
gradient descent updates, θk(t) = L(vk(t))−L(w⋆), K = ⌊t/τ⌋, and assume θk(kτ ) ≥
ϵ [99]. After lower-bounding 1

θK+1(t)
− 1

θ1(0)
and 1

L(wi(t))−L(w⋆)
− 1

θK+1(t)
, we can upper-

bound L(wi(t))− L(w⋆) as(
tωη
(
1− βη

2

)
− ρ

ϵ2
(
Kh(τ) + gi(t−Kτ)

))−1

= y(ϵ).

Let ϵ0 be the positive root of y(ϵ) = ϵ, which is easy to check exists. The result
follows since either min

k≤K
L(vk(kτ))−L(w⋆) ≤ ϵ0 or L(wi(t))−L(w⋆) ≤ ϵ0; both imply

(3.10).

In Section 3.4, we will consider how to use Theorem 3.1’s result to find tractable
forms of the loss expression that allow us to solve (3.5–3.9) efficiently and accurately.
Indeed, without perfect information on the device costs, capacities, and error statis-
tics over the time period T , it is not possible to solve (3.5–3.9) exactly. We will
experimentally validate our proposed methods for estimating these parameters in
Section 3.5.
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3.4 Optimization Model Analysis

We turn now to a theoretical analysis of the data movement optimization problem
(3.5–3.9). We discuss the choice of error and capacity parameters under various
assumptions (Section 3.4.1), and then characterize the optimal solution for the ML
use cases outlined in Section 3.1 (Section 3.4.2).

3.4.1 Choosing Cost Parameters and Capacities

We may not be able to reliably estimate the cost parameters cij(t), ci(t), and fi(t) or
capacities Ci(t) and Cij(t) in real time. Mis-estimations are likely in highly dynamic
scenarios of mobile devices, since the costs cij(t) of offloading data depend on network
conditions at the current device locations. Mobile devices are also prone to occasional
processing delays called “straggler effects” [66], which can be modeled as variations
in their capacities. The error cost, on the other hand, will change over time as
the model parameters move towards convergence. Here, we propose and analyze
parameter selection methods.

Choosing capacities. Over-estimating the device processing capacities will
force some data processing to be deferred until future time periods, which may cause
a cascade of processing delays. Under- or over-estimations of the link capacities
will have similar effects. Here, we formalize guidelines for choosing the capacities
in (3.9)’s constraints so as to limit delays due to over-estimation. As commonly
done [32], we assume that processing times on device stragglers follow an exponential
distribution exp(µ) for parameter µ.

For device capacities, we obtain the following result:

Theorem 3.2 (Data processing time with compute stragglers). Suppose that the
service time of processing a datapoint at node i follows exp(µi), and that cij(t), ci(t),
Ci(t) are time invariant. We can ensure the average waiting time of a datapoint to be
processed is lower than a given threshold σ by setting the device capacity parameter Ci

such that ϕ(Ci) = σµi/(1 + σµi), where ϕ(Ci) is the smallest solution to the equation
ϕ = exp (−µi(1− ϕ)/Ci), which is an increasing function of Ci.

Proof. The processing at node i follows a D/M/1 queue with an arrival rate Gi(t) ≤
Ci, and the result follows from the average waiting time in such a queue.
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For instance, σ = 1 guarantees an average processing time of less than one time
slot, as assumed in Section 3.3’s model. Thus, Theorem 3.2 shows that we can still
(probabilistically) bound the data processing time when stragglers are present.

Network link congestion in transferring data may also delay its processing. Such
delays can be handled by carefully choosing the network capacity analogously to
Theorem 3.2’s method.

Choosing error expressions. As shown in Theorem 3.1, we can bound the local
loss at time t in terms of a gradient divergence constant δi ≥ ∥∇Li(w)−∇L(w)∥.
The following in turn provides an upper bound for δi in terms of Gi(t):

Lemma 3.1 (IID error convergence). Suppose that the distributions Di are identical
so that Di = D, and that D has finite second and third moments. Then there exists
a constant γ > 0 that does not depend on the value of Gi(t) such that

δi ≡ ∥∇Li (w|Gi(t))−∇L(w)∥ ≤
γ√
Gi(t)

(3.11)

Proof. The result follows immediately from the central limit theorem upon viewing
each ∇l(w, xd, yd) as a sample from the distribution induced by ∇l(w|D).

Assuming IID data distributions is reasonable for many ML applications: for
instance, AR users might follow statistically similar mobility patterns through-
out an area, and sensors on a factory floor might monitor machines with similar
failure patterns. Combining the result in Lemma 3.1 with Theorem 3.1, we find
that L(wi(t)) − L(w⋆) ∝

√
Gi(t)−1. Thus, it is possible to take the error cost

fi(t)L(wi(t)|DV ) in (3.5) as fi(t)
√
Gi(t)−1 with fi(t) scaling the error importance;

fi(t) may decrease over time as the model approaches convergence.
Since

√
Gi(t)−1 is a convex function of Gi(t), with this choice of error cost,

(3.5–3.9) becomes a convex optimization problem and can be solved relatively easily
in theory. When the number of variables is large, however – e.g., if the number of
devices n > 100 with T > 100 time periods – standard interior point solvers will be
prohibitively slow [100]. In such cases, we may wish to approximate the error term
with a linear function and leverage faster linear optimization techniques, i.e., to take
the error cost as fi(t)Gi(t) but with fi(t) < 0 since the error decreases when Gi(t)

increases. If we neglect the offloaded data sij(t) for j ̸= i, we can rewrite this cost as
fi(t)Di(t)[1− ri(t)], which is equivalent to minimizing −fi(t)ri(t). The error costs
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from the offloaded data can then be folded into the communication costs cij(t), and
we can approximate the error cost as −fi(t)Di(t)ri(t). Intuitively, discarding data
implies a less accurate model.

3.4.2 Optimal Task Distributions

Given a set of cost and capacity parameters for the optimization (3.5–3.9), we now
characterize the optimal solutions in a range of practical cases. In particular, when
we consider a linear error term fi(t)ri(t)Di(t), we have the following result:

Theorem 3.3 (Unconstrained resource solution). Suppose that Ci(t) ≥ Di(t) +∑
j∈Ni(t−1)Dj(t− 1) for each device i, i.e., its compute capacity always exceeds the

data it collects as well as any data offloaded to it by its neighbors Ni(t− 1) = {j :
(j, i) ∈ E(t− 1)}. Then if the error cost is linearly approximated as fi(t)Di(t)ri(t),
the optimal s∗ij(t) and r∗i (t) will each be 0 or 1, with the conditions for 1 at node i

being: 
s∗ik(t) = 1 if cik(t) + ck(t+ 1) ≤ min {fi(t), ci(t)}
s∗ii(t) = 1 if ci(t) ≤ min {fi(t), cik(t) + ck(t+ 1)}
r∗i (t) = 1 if fi(t) ≤ min {ci(t), cik(t) + ck(t+ 1)}

(3.12)

where k = argmin
j ̸=i,(i,j)∈E(t)

{cij(t) + cj(t+ 1)}.

Proof. Since ri(t)+
∑

j sij(t) = 1 in (3.8), each datapoint in Di(t) is either discarded,
offloaded, or processed at i. It is optimal to choose the option with least marginal
cost.

This theorem implies that in the absence of resource constraints, all data a device
generates will either be processed, offloaded to the lowest cost neighbor, or discarded.
Below, we examine implications of this result for typical edge topologies.

Edge use cases. Table 3.1 summarizes the topologies of the edge applications
from Section 3.1. Networks in smart factories have fairly static topologies, since
they are deployed in controlled indoor settings. They also exhibit a hierarchical
structure, with less powerful devices connected to more powerful ones in a tree-
like manner, as shown in Figure 3.1. Connected vehicles have a similar hierarchical
structure, with sensors and vehicles connected to more powerful edge servers, but their
architectures are more dynamic as vehicles are moving. Similarly, AR applications
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Table 3.1: Dominant characteristics of the four use cases

Use case Topology Dynamics

Smart factories [21] Hierarchical Fairly static
Connected vehicles [21] Hierarchical Rapid changes

Augmented reality [14]
Hierarchical, Rapid changes
heterogeneous possible

Privacy-sensitive [66, 73] Social network Fairly static

feature (possibly heterogeneous) mobile AR headsets connected to powerful edge
servers. Applications that involve privacy-sensitive data may have very different,
non-hierarchical topologies as the links between devices are based on trust, i.e.,
comfort in sharing private information. Since social relationships generally change
slowly compared to ML model training, these topologies are relatively static.

Hierarchical topologies. In hierarchical scenarios, more powerful edge servers
will likely always have sufficient capacity Ci(t) to handle all offloaded data (satisfying
the assumptions in Theorem 3.3), and they will likely experience lower computing
costs ci(t) as well compared to other devices. Theorem 3.3 indicates that, with a
linear error cost, sensors would then offload their data to the edge servers, unless the
costs of offloading the data exceed the difference in computing costs. In Section 3.5,
we will see on our Raspberry PI testbed that the network cost does indeed sometimes
exceed the gain in computing cost from offloading to more powerful devices.

When the cost of discarding data is nonlinear, the optimal solution is less intuitive:
it may be optimal to discard fractions of data if the reduction in error is not worth
the additional cost of processing. Formally, in the case of a hierarchical topology, we
have the following result:

Theorem 3.4 (Data movement with nonlinear error costs). Suppose that n devices
with identical, constant processing costs cj(t) = c and data generation rates Dj(t) = D

can offload their data to a single edge server, indexed as n+ 1. Further assume that
there are no resource constraints, c > cn+1, the costs cij(t) = ct of transmitting to
the server are identical and constant, and the discard cost is given by fi(t)L(wi(t)) =

γ/
√

Gi(t) as in Lemma 3.1. Then, letting s denote the fraction of data offloaded,
for D sufficiently large, the optimal amount of data discarded as a function of s is

r∗(s) = 1− 1

D

( γ

2c

) 2
3 − s. (3.13)
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Given the optimal r∗, the optimal s∗ is given by

s∗ =
1

nD

(
γ

2(cn+1 + ct)

) 2
3

(3.14)

Proof. In the hierarchical scenario, the cost objective (3.5) can be rewritten as

n(1− r − s)Dc+ nsD(cn+1 + ct) +
nγ√

(1− r − s)D
+

γ√
snD

.

Taking the partial derivatives with respect to r and s, and noting that a large D

forces r, s ∈ [0, 1] gives the result.

Intuitively, increases in the costs cn+1, ct, data D, or devices n should cause the
amount of data offloaded to decrease and the amount discarded to increase. D has
the strongest effect: with more data at each node, the fraction needed for processing
at the server and devices to manage the discard cost decreases inversely. The only
cost that impacts r but not s is c, as it is a device parameter that does not involve
the network.

Social network topologies. When device networks are larger and have more
complex topologies, we can extrapolate from Theorem 3.3’s characterization of
individual device behavior to understand data movement in the network as a whole.
Consider, for instance, a social network of users in which edges are defined by
willingness to share data (Figure 3.1b). We can find the probability that a given
device offloads data, which allows us to determine the cost savings from offloading:

Theorem 3.5 (Value of offloading). Suppose the fraction of devices with k neighbors
equals N(k), e.g., in a scale-free network N(k) = Γk1−γ for some constant Γ and
γ ∈ (2, 3). Suppose ci ∼ U(0, C) and cij = 0, where U(a, b) is the uniform distribution
between a and b, with no discarding. Then the average cost savings, compared to no
offloading, equals

n∑
k=1

N(k)

(
C

2
− C(−1)k

k + 2
−

k−1∑
l=0

(
k

l

)
C(−1)l(k + 3)

(l + 2)(l + 3)

)
. (3.15)

The processing cost model may for instance represent device battery levels drawn
uniformly at random from 0 (full charge) to C (low charge). This result establishes
that the reduction in cost from enabling device offloading in such scenarios is
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approximately linear in C: as the range of computing costs increases in a scale-free
topology, there is greater benefit from offloading, since devices are more likely to
find a neighbor with lower cost. The expected reduction, however, may be less than
the average computing cost C/2 even in the absence of link costs, as offloading data
to another device does not entirely eliminate the computing cost.

We finally consider the case in which resource constraints are present, e.g., for
less powerful edge devices. We can find the expected number of devices with tight
resource constraints:

Theorem 3.6 (Probability of resource constraint violation). Let N(k) be the number
of devices with k neighbors, and for each device i with k neighbors, let pk(n) be the
probability that its neighbor j has n neighbors. Also let C̃ denote the distribution of
resource capacities, assumed to be IID across devices, and let Di(t) = D be constant.
Then if devices offload as in Theorem 3.3, the expected number of devices whose
capacity constraints are violated is

∫
C̃(x)

(
N∑
k=1

N(k)P

[
1− Po(k) + k

N∑
n=1

(
Po(n)pk(n)

n

)
≥ x

D

])
, (3.16)

with Po(k) defined as the probability a device with k neighbors offloads its data.

Proof. This follows from Theorem 3.3 and determining the expected amount of data
that will be processed at a node with k neighbors when offloading is enabled.

Theorem 3.6 allows us to quantify the complexity of solving the data movement
optimization problem when resource constraints are in effect. We observe that
it depends on not just the resource constraints, but also on the distribution of
computing costs (through Po(k)), since these costs influence the probability devices
will want to offload in the first place.

3.5 Experimental Evaluation

In this section, we experimentally evaluate our methodology in several scenarios. We
discuss the general setup in Section 3.5.1, and present our results in Sections 3.5.2
to 3.5.4.
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Table 3.2: Our method, centralized learning, and federated learning show comparable
accuracies on the test dataset

Method MLP CNN
Centralized learning 92.58% 98.39%
Federated learning 90.33% 96.81%

Network-aware learning 90.34% 96.49%

3.5.1 Experimental Setup

Data samples and ML models. We consider the MNIST dataset [49], which
contains 70K images of hand-written digits. We use 60K of them as the training
dataset DV , and the remainder as our test set. Each node i is randomly allocated
|Di(t)| ∼ U(0, |DV |/(nT )) datapoints from DV , without replacement. We train a
multilayer perceptron (MLP) and a convolutional neural network (CNN) for image
recognition on MNIST, with cross entropy loss [47] as the loss function L(w|DV ),
and constant learning rate η(t) = 0.01 in (3.3). Unless otherwise stated, results are
reported for CNN, an aggregation period τ = 10 in (3.4), and T = 100 time intervals.

Figure 3.3: Training loss over time for each device observed with our method

Cost and capacity parameters. In the default case, we simulate n = 10

edge devices and one server. When imposed, the capacity constraints Ci(t) and
Cij(t) are drawn from U(0, 4maxDi(t)) and U(0, 4maxDi(t)/n) respectively. Due
to randomization, results are averaged over several iterations.

We consider both real and synthetic cost parameters. For the synthetic parameters,
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Table 3.3: Network costs and model accuracies obtained in four different settings

Setting Accuracy
Cost

Process Transfer Discard Total Unit
A 82.89% 2078 0 0 2078 0.48
B 90.24% 367 620 166 1153 0.26
C 89.24% 326 606 67 999 0.23
D 82.10% 225 835 14 1074 0.24

cij(t) ∼ U(0, 1/n) and ci(t) ∼ U(0, 1). The real-world measurements come from our
testbed consisting of six Raspberry PIs using AWS DynamoDB as a cloud-based
parameter server. Three PIs each collect data and transmit it over bluetooth to
another “gateway” PI. The three gateway nodes receive this data and can either
perform a local gradient update (processing time recorded as ci(t)) or upload the
data to DynamoDB (communication time recorded as cij(t)) to be processed there.
We collect 100 sets of processing and communication measurements while training a
two-layer fully connected neural network, with devices communicating over 2.4 GHz
WiFi or LTE cellular.

Centralized and federated learning. To see whether our method compromises
learning accuracy in considering network costs as additional objectives, we compare
against a baseline of centralized ML training where all data is processed at a single
device (server). Additionally, we consider the standard implementation of federated
learning where there is no data offloading or discarding (i.e., Gi(t) = Di(t)) and
aggregations occur after every time interval (i.e., τ = 1) [99].

Perfect information vs. estimation. As discussed in Section 3.4.1, solving
(3.5-3.9) in practice requires estimating the cost and capacity parameters over the
time horizon T . To do this, we divide T into L intervals T1, ..., TL, and in each
interval l, we use the time-averaged observations of Di(t), pi(t), cij(t), and Ci(t) over
Tl−1 to compute the optimal data movement. The resulting s⋆ij(t) and r⋆i (t) for t ∈ Tl

are then be used by device i to transfer data in Tl. This “imperfect information”
scheme will be compared with the ideal case of perfect information.

3.5.2 Efficacy of Network-Aware Learning

Our first experiments seek to establish the overall efficacy of our method. Here, we use
the synthetic cost parameters with a fully connected topology E(t) = {(i, j) : i ̸= j};
qualitatively similar results were observed with other configurations.
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Model accuracy. Table 3.2 compares the average accuracy on the testing
datasets obtained by the MLP and CNN models trained with centralized, federated,
and network-aware learning, where the centralized and federated cases are run until
convergence. Our method does well: it matches federated learning’s accuracy, and
does only 2% worse than centralized learning. We also plot the training loss Li(wi(t))

across devices over time in Figure 3.3, confirming that while some devices have higher
local losses, all tend to decrease over time.

Cost reduction with imperfect information. Table 3.3 compares the costs
incurred and model accuracy for four settings: (A) offloading and discarding disabled,
(B) network-aware learning with perfect information and no capacity constraints,
(C) network-aware learning with imperfect information and no capacity constraints,
and (D) network-aware learning with imperfect information and capacity constraints.
Each cost is aggregated over nodes/links and time periods. The unit cost normalizes
the total cost over the amount of data generated in that setting, to account for the
Di(t) varying randomly.

Comparing (A) and (B), we see that allowing data transfers substantially reduces
the unit cost– by 46%. Surprisingly, the accuracy also improves from (A) to (B) de-
spite some datapoints being discarded: when offloading without capacity constraints,
nodes with lower processing costs tend to receive significantly more data, giving them
a larger sample size Gi(t) for gradient updates, and thus more accurate parameter
estimates that are more heavily weighted in the aggregations. Even with imperfect
information on the parameters in (C), we observe only minor changes in cost or
accuracy, highlighting the robustness of the model to estimation errors similar to our
observations from the analytics results in Section 3.4.1. The result for (D) furthers
the point on solution accuracy: when devices have strict capacity constraints, their
gradient updates are based on fewer samples, and each node’s Li(wi(t)) will tend to
have larger errors. However, the total cost of (D) is still significantly lower than (A)
with a comparable accuracy.

3.5.3 Effect of Network System Parameters

Our next experiments on synthetic cost data assess the impact of n, the number
of nodes, and the aggregation period, τ , on a fully connected topology. Then, we
consider the effect of connectivity when nodes are connected in a random graph with
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Figure 3.4: Impact of the number of nodes n on (a) the average offloading rate and (b)
the different cost components

Figure 3.5: Impact of the global aggregation period τ on (a) the cost components and (b)
the learning accuracy

probability ρ, i.e., P [(i, j) ∈ E(t), j ̸= i] = ρ.

Varying number of nodes n. Figure 3.4 shows the (a) offloading rate and (b)
unit costs as the network size changes. Overall, we see that our method scales well
with the number of nodes, as the unit (i.e., per datapoint) cost steadily decreases with
n. The transferring (i.e., offloading) cost drives this improvement, as the processing
and discarding costs actually increase: with more nodes, the network leverages lower
cost opportunities for offloading – hence the increase in offloading rate to over 80%
when n = 50 – as long as it is less than any increase in processing cost, consistent
with Theorem 3.3. The learning accuracy increases slightly from 88 to 92% as n

increases.
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Varying aggregation period τ . Figure 3.5 shows the (a) unit costs and (b)
learning accuracy as the period of global aggregation is varied. A larger value of
τ yields smaller total unit cost, but only improves learning accuracy until roughly
τ = 20: below this, the nodes are not processing enough datapoints in-between
aggregations for the local parameters to become steady, and above it, the local models
are not synchronized frequently enough. We also note that the cost breakdown
exhibits a different trend than in Figure 3.4, as the transmission cost stays relatively
constant while the processing and discarding costs decrease: with a longer τ , data
can be discarded with a lower cost towards the end of each period.

Figure 3.6: Impact of the network connectivity ρ on data movement and costs in network-
aware learning

Varying network connectivity ρ. In Figure 3.6, we plot the (a) fraction
of processed data, (b) offloading rate, (c) costs, and (d) learning accuracy as the
network connectivity changes. We see that our network-aware learning methodology
is reasonably robust to ρ in terms of cost (for ρ > 0.1): when connectivity drops,
there are less low-cost opportunities for offloading, so nodes do not transfer as much
data. The learning accuracy, by contrast, tends to benefit from higher connectivity
(for ρ > 0.5), since low cost nodes can process more of the data, similar to setting
(B) in Table 3.3. Interestingly, while the percentage of data discarded increases
slightly with lower ρ, the discard cost has the opposite trend: when nodes do not
have the option of low cost transfers, their Gi(t) become larger for smaller t, causing
the discard cost to drop more rapidly as in Lemma 3.1.

3.5.4 Effect of Edge Topology

Finally, we evaluate our network-aware learning methodology on different edge
computing topologies. We consider three different graph structures: hierarchical and
social network topologies as studied in Section 3.4.2, and a fully connected topology
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Figure 3.7: Cost components for different topologies running network-aware learning on
(a) LTE and (b) WiFi network media

for completeness. The social network is generated as a Watts-Strogatz small world
graph [19] with each node connected to n/5 of its neighbors, and the hierarchical
network connects each of the n/3 nodes with lowest processing costs to two of the
2n/3 remaining nodes as leaves. We use the cost parameters collected from our
Raspberry PI testbed, which provides two different wireless network media: LTE
and WiFi.

The resulting costs are shown in Figure 3.7. For LTE, we see that processing
dominates the cost distribution for all three topologies, while for WiFi, the transfer
costs are the largest: WiFi has less interference mitigation techniques than cellular,
so in the presence of several devices we expect its links to exhibit larger delays. This
is also likely the reason why the total cost is substantially higher under WiFi, since
devices have less lower cost options for offloading. This point is further consistent
with the fact that in the case of LTE, the social and hierarchical topologies exhibit
virtually the same costs: despite guaranteed connections to higher powered nodes
up the hierarchy, the social network likely contains low cost links to these nodes
anyway. In the case of WiFi, by contrast, the hierarchical topology has a noticeably
higher offloading cost, and lower discarding cost, than the social topology, since the
transmissions to high-power nodes occurs over high cost links.
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3.6 Summary

We consider distributing ML training tasks over devices in a edge computing network.
We develop a framework to optimize the distribution of training tasks, taking into
account both physical computing and communication costs and the error achieved
by the models at each device. We derive new error bounds when devices can transfer
their local data processing to each other, and theoretically bound the impact of these
transfers on the cost and accuracy of the model training. Through experimentation
with a popular machine learning task, we show that our network-aware scheme
significantly reduces the cost of model training while achieving comparable accuracy.

Our framework and analysis point to several possible extensions. First, while we
do not observe significant heterogeneity in compute times on our wireless testbed, in
general edge devices may experience compute straggling and failures, which might
benefit from more sophisticated offloading mechanisms. Second, predicting devices’
mobility patterns and the resulting network connectivity can likely further optimize
the data offloading. Finally, for some applications, one might wish to learn individual
models for each device, which would introduce new performance tradeoffs in offloading
data processing.
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Chapter 4

Enhancing Federated Learning with
Intelligent Client Recruitment

4.1 Introduction

Federated learning allows users to contribute the power of their data to train machine
learning models without sharing any raw records. However, ensuring the good
performance of federated learning requires overcoming additional challenges that
do not present in centralized learning. Specifically, the challenges originate in the
heterogeneous distributions of data at different users (statistical challenge), and in
the resource-constrained nature of the edge computing system (system challenge)
[89]. Much recent work aims to address them by optimizing the learning algorithm
given a set of participating clients, i.e., clients that use their data to contribute model
updates to the training process. However, these works neglect a complementary
question: Before running the federated learning algorithm, how should the operator
recruit participating clients so as to optimize the performance of its federated learning
algorithm? In this chapter, we show that a good client recruitment is essential to
overcoming federated learning’s statistical and system challenges, complementing
algorithmic innovations like carefully selecting or scheduling model updates from a
given set of clients.

Client recruitment formalizes the relationship between the two market players in
typical commercial applications of federated learning: the operators and the users.
Operators are typically companies who hope to create or improve their AI products
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utilizing their users’ data. For example, Google has utilized data from Android users
to train a query suggestion model for their keyboard application [105]. Federated
learning operators are responsible for setting up a coordinator that collects iterative
updates from the participating clients. However, most federated learning algorithms
require upfront commitments from users to compute local updates, which may
consume limited battery, and send them to the coordinator, which may reveal private
information, to the training on demand. Such upfront commitments are generally
required to ensure convergence of the training algorithm [61]. To compensate for these
commitments, recruited users may need incentives from the operator to participate
in the training, as proposed in [50] to compensate privacy losses. Such compensation,
however, introduces a new challenge not commonly considered in federated learning:
limiting the recruitment cost.

We define client recruitment as the preliminary step of federated learning, in
which the coordinator determines the set of candidate clients with which it will train
a model. When the recruitment is finalized, we will have determined the quality
and quantity of the training data, the number and types of local devices, and the
associated cost of compensating users. A good client recruitment is fundamental to
the successful execution of federated learning and complements the more commonly
considered client selection [67], in which the coordinator chooses which of the
recruited clients will be asked to provide updates in each training iteration. Since
federated learning requires upfront client commitments as discussed, recruiting clients
is necessary to ensure the success of subsequent client selection. Indeed, careful
recruitment will reduce the number of clients required to make training commitments
(by almost 5x in our experiments), improving federated learning’s overall efficiency
and impact on user privacy. However, client recruitment raises new challenges
compared to client selection: unlike client selection algorithms that utilize information
revealed during the training, we must base recruitment decisions on information
known before training begins, which requires more detailed statistical analysis of the
anticipated learning accuracy. Complicating this problem further, client recruitment
additionally decides the model’s generalizability and representativeness, which client
selection cannot control.

Our contributions are: 1) We construct a comprehensive system model to
quantify the quality measures of federated learning, including not only the training
loss, but also the model’s generalizability, the reliability and completion time of
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training, and the operating expense (Section 4.4); 2) We formulate an optimization
framework to capture the complex tradeoffs in client recruitment (Section 4.5); 3)
We introduce approximation methods for our quality metrics that can be computed
in practice even when clients’ data distributions are unknown (Section 4.5.1); 4)
We exploit the structure of this NP-hard optimization problem to provide a prov-
ably optimal, tractable solution (Section 4.6); and finally, 5) We demonstrate our
approach’s practical feasibility by learning models with higher accuracy and fewer
clients compared to heuristic recruitment methods, on synthetic and real datasets
(Section 4.7).

4.2 Related Work

To the best of our knowledge, we are the first to study the client recruitment problem
for federated learning. Yet there exists a fairly similar concept named client selection,
which studies the scheduling of client participation in each global round of federated
learning. E.g., [67] proposes an adaptive selection algorithm to maximize the number
of participating clients in each round while subject to resource restrictions. Similar
topics are discussed in [103], which assumes clients follow a specific scheduling policy
for global aggregations. Client recruitment complements these selection policies by
ensuring that a suitable group of clients is available to be selected in the first place:
without a good recruitment, generic client selection algorithms cannot guarantee the
convergence of federated learning to a globally optimal solution [20]. Client selection
also requires all clients to stay active and ready to be summoned anytime, even if
they are not always selected, which without a good recruitment process is unrealistic
due to the system challenges to be discussed in Section 4.3.

In practical settings, client recruitment can thus limit the cost of federated
learning since it pre-excludes disqualified clients before any training steps are taken
or incentives offered, while client selection still requires the operator to pay recruited
clients, who have committed to being available for training even if they are never
ultimately selected. The client recruitment method discussed in this chapter is
independent of the remaining training details, and can thus be coupled with any
learning algorithm and selection strategies.
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4.3 Federated Learning Background And Notations

Federated learning trains a single model by attempting to minimize the model’s
empirical risk, i.e., the training loss, over data from multiple clients. Let U denote
the set of K candidate clients, each with a dataset Dk = {(ui, vi)}i, where ui, vi are
a feature vector and the corresponding label. Let l(w;u, v) be a loss function with
weight vector w and a data record (u, v). The local empirical risk of client k is:

R̃k(w;Dk) =
1

|Dk|
∑

i
l(w;ui, vi) (4.1)

The ultimate goal of training is thus to find w that minimizes the empirical risk over
the global dataset Dx = ∪kDk:

min
w

R̃x(w;Dx) =
∑K

k=1

nk

nx

R̃k(w;Dk) (4.2)

Here nk = |Dk|, and nx =
∑

k nk, representing the total samples of all recruited
clients determined by the recruitment decision x, which we formally define in Section
4.4. To minimize R̃x, the distributed stochastic gradient descent (SGD) paradigm is
utilized. A central coordinator maintains a global weight w, and each client maintains
a local weight wk. The training repeats the following 3 steps for t = 1, ..., T .

1) Synchronization: The coordinator broadcasts the latest global weight wτt to
the clients through the network. Clients then update their local weights wτt

k with
wτt.

2) Local optimization: Each client k runs SGD in parallel for τ steps to minimize
its local risk R̃k, getting w

(t+1)τ
k .

3) Aggregation: The coordinator aggregates clients’ local weights {w(t+1)τ
k }k by

setting the next global weight as their weighted average: w(t+1)τ =
∑

k
nk

nx
w

(t+1)τ
k .

Client selection chooses which clients perform these steps in each iteration, while
client recruitment chooses the set of eligible clients Ux. This chapter assumes all
algorithm parameters are given, including τ and T . Our results are thus robust to
different algorithm settings and complement optimizations of these parameters. The
challenges of federated learning are:

Statistical Challenge: Non-IID datasets. Unlike in the data center where
data is assumed to be identically and independently distributed among workers,
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clients’ data distributions in federated learning may well be non-IID. Thus, we
suppose that the samples in every local dataset Dk are independently drawn from
a distinct distribution Pk. Non-IID data can greatly decelerate the training. The
training loss can be bounded by a monotonically increasing function of the average
difference in local and global distributions |P̃k − P̃x| [99]:

training loss ∝
∑

k

nk

nx

|P̃k − P̃x| (4.3)

System Challenge: Stragglers and failures. User devices have relatively
constrained computation resources (e.g. CPU, memory), which furthermore must be
shared among many apps. These make stragglers (devices that take a long time to
run local iterations) and even occasional device failures, e.g., due to lost power or
network connectivity, more likely to appear in federated learning. These must be
treated carefully to ensure the success of the learning algorithm.

In this chapter our analysis is largely based on the vanilla FedAvg algorithm.
Incorporating client recruitment with other variant algorithms such as asynchronous
federated learning, model personalization, and dynamic client selection will be an
interesting future research direction.

4.4 System Modeling

Formally speaking, given a list of candidate clients U = {uk}k, the goal of client
recruitment is to choose the optimal subset of clients Ux ⊆ U that will run the
learning algorithm to optimize the overall performance of federated learning. In this
section, we first model the local/global/population data distributions, which we then
use to propose formal performance metrics for both the learning accuracy and the
efficiency.

4.4.1 Data Distributions

Since federated learning trains one model for all clients, we assume all data is
generated in an IID manner from a population distribution P. On the other hand,
each client’s data individually forms a local distribution Pk, which can differ from
other local distributions and from P. When we compare two local datasets, we
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assume the data is not identically distributed between them. In contrast, when we
discuss the union of all local datasets, we treat each sample as IID distributed in
P . E.g., suppose we are training a model to predict temperature from features such
as the amount of sunlight and rainfall. Then P represents the joint distribution
of world-wide temperature with these features. Since a client can only collect
temperature data in a small region, its local distribution Pk only reflects the regional
climate characteristics. As a result, clients in different regions possess divergent
local distributions. In the meanwhile, all these data points are essentially generated
within the same Earth climate system. Thus when forged together, they do follow
the world-wide distribution P in an IID manner.

A local dataset Dk may not describe its local distribution Pk well if insufficient
data points were collected. In practice, the operator estimates Pk by indirectly
evaluating its empirical distribution P̃k, which converges to the real Pk when Dk

grows larger. Similarly, we define the global dataset Dx = ∪kDk as the union of all
recruited datasets. Data in Dx forms the global empirical distribution P̃x. Likewise,
P̃x is a weighted average of local empirical distributions: P̃x =

∑
k

nk

nx
P̃k. Since all

data in Dx is independently drawn from P, P̃x can be regarded as an empirical
estimation of P when a reasonably large number of clients are recruited. In the
climate data example, if we have recruited clients from all climatic zones in the world,
the union of this data P̃x becomes a good representative of the whole Earth climate
system P .

We suppose the operator can estimate P with a small benchmark dataset (e.g.,
as in [94]) D̃ ∼ P, and we denote its empirical distribution by P̃ . Since D̃ is small
in size, it cannot be directly used for training. Instead, this educated guess of the
population allows the operator to gauge the clients’ quality and representativeness.
E.g., the operator may estimate the distribution of rainfall from historical climate
data. We show how to estimate data quality with P̃ in Sections 4.5 and 4.7.

4.4.2 Performance Metrics

We will consider two categories of performance measures. The first category is the
accuracy of the output model for the distribution P, which includes not only the
training loss, but also the model’s generalizability and its representativeness. The
second measures the training efficiency, which includes the time to complete the
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training, and the cost incurred.

Reduce training loss with high-quality data: A dataset Dk is considered
of good quality if its distribution P̃k resembles the population P . From (4.3), if P̃x

resembles P (see “representativeness” below), the quality of the local datasets directly
determines the training loss. A dataset Dk with a small distribution divergence
|P̃k − P| yields small training loss.

Reduce generalization error with more data: Given a loss function l and
dataset D, the generalization error |R̃−R| is the divergence between the empirical
risk R̃(w;D) = (

∑
l(w;u, v))/|D| and the real risk R(w) = EP [l] =

∫
l(w;u, v)dP.

While the training loss gauges the model’s performance on the training data, the
generalization error reflects its accuracy when applied to new samples drawn from the
recruited distributions. If a client has insufficient data, its local empirical distribution
P̃k may poorly approximate Pk, which implies a large generalization error. Existing
works generally omit the generalization error as they take the training data as given.
For us, however, client recruitment determines the size of the dataset, affecting the
generalization error.

Choose for population representativeness: For the trained model to be
applicable to unrecruited datasets, the recruited clients, when forged together, must
be representative of the population P . Indeed, if the clients do not cover portions of
the population space, we will perform poorly in those areas. E.g., including polar
region data complicates the training of models that predict worldwide temperatures,
but failing to do so can degrade the model’s performance in this region.

Control the completion time: Federated learning is useless if the training
process does not complete in reasonable time. We define the completion time as the
expected time for the coordinator to finish all T rounds of aggregations.

Control the cost: Since the size of an individual local dataset is usually small,
a typical execution of federated learning may need thousands of recruited clients.
The operator should thus make sure the resulting expense is affordable.

4.5 Problem Formulation

We formulate client recruitment as the following optimization problem: Given a
set of candidate clients U = {Uk}Kk=1, let x ∈ {0, 1}K be a binary vector denoting
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the recruitment decision for each client. The operator picks an optimal subset
Ux = {Uj|xj = 1} to minimize an objective function f , subject to a given maximum
completion time It and cost Ic.

Problem 4.1. Client Recruitment

min
x∈{0,1}K

f(x) = γtlftl(x) + γgefge(x) + γrpfrp(x)

s.t. gt(x) ≤ It, gc(x) ≤ Ic

Here f consists of 3 terms that determine the accuracy of the trained model:
ftl, fge, frp, which respectively upper bound the training loss, the average general-
izability, and the representativeness. f(x) determines the goodness of the trained
model when applied to existing or future data points generated by both recruited and
unrecruited clients. The coefficients γtl, γge, γrp determine the relative importance of
these terms, and gt, gc are respectively the completion time and cost.

4.5.1 Quantifying Accuracy Metrics

We first consider the training loss. From (4.3), the training loss is determined
by the divergence between local and global empirical distributions

∑
k

nk

n
|P̃k − P̃x|.

However, since the global distribution can only be determined after the recruitment
process, it is hard to optimize the divergence directly. We thus use the fact that P̃x

resembles P (Lemma 4.2) to define:

ftl(x) =
∑

k

xknk

nx

|P̃k − P̃| (4.4)

Sharing this metric preserves user privacy since it does not actually require the
individual empirical distributions P̃k’s. Instead, the required information from the
clients |P̃k − P̃| only encodes the distance of local distributions to the population.
Below we provide tractable methods and formula to approximate ftl, without the
need to know P̃k or Pk. We verify the effectiveness of these methods in Section
4.7.

• Counting classes: Consider a classification problem with L classes, and
suppose P̃k and P̃ have densities p̃k and p̃. We can write |P̃k − P̃| =∫
|p̃k(u, v) − p̃(u, v)|dudv =

∑
i∈[L]

∫
|p̃k(u|v)p̃k(v = i) − p̃(u|v)p̃(v = i)|du.
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Assume p̃k(u|v) = p̃(u|v), i.e., local features have the same distribution as the
population given the label. Thus,

∫
|p̃k − p̃| ∝ ∑i∈[L] |p̃k(v = i) − p̃(v = i)|,

where p̃ is known a prior. Denoting by Ck
i the number of data points with label

i in Dk, p̃k(v = i) = Ck
i /
∑L

i=1C
k
i . Thus, the whole

∑ |p̃k(v = i) − p̃(v = i)|
can be easily computed by simply counting the number of labels each client
sees. Estimating P̃ from D̃ entails the same simple counting process.

• Gaussian graphic model approximation: For general supervised learning with
continuous labels, we can formulate the features and the label as a Gaussian
graphic model. A local empirical distribution is then fully specified by the mean
and covariance (µ̃k, Σ̃k). The quality measure then becomes the divergence
between two Gaussian distributions, which can be quantified by the Kull-
back–Leibler divergence: |P̃k − P̃| ∝ DKL

(
N (µ̃k, Σ̃k),N (µ̃, Σ̃)

)
. Estimating

P̃ from D̃ entails computing µ̃, Σ̃ and inferring the graph connectivity (e.g.
from the covariance), which is tractable.

Next, we model the average generalizability. Since the training objective
of federated learning R̃x is an average of local empirical risks as in (4.2), we similarly
quantify the average generalization error of local datasets by

∑
k

xknk

nx
|R̃k −Rk|. To

formulate it, we rely on Lemma 4.1 as follows:

Lemma 4.1. There exists a class of convex learning problems (e.g. linear regression),
for which we can obtain the following generalization error bound for all clients k:

|R̃k −Rk| = O
(
n−0.5
k

)
(4.5)

For example, [72] proves this bound for the linear regression model. A tighter
convergence bound taking the form O(n−β

k ) with β > 0.5 is also possible using more
sophisticated statistical tools. For simplification and to accommodate non-convex
models that may have looser risk generalization bounds, we assume a relatively big
β = 0.5. However, our analysis can be easily extended to any β < 1. We thus define:

fge(x) =
∑

k

xknk

nx

n−0.5
k (4.6)

We then model the representativeness. To make sure the chosen distributions
can represent basic characteristics of the population distribution, we seek to minimize
the divergence between P̃x and P . As is discussed in Section 4.4.1 where we assume
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P̃x is an empirical distribution of P, and using the central limit theorem, we have
the following uniform bound:

Lemma 4.2. P̃x − P converges in distribution to the Gaussian distribution with 0
mean at the rate of O(n−0.5

x ).

Therefore, statistically, when nx grows larger, P̃x becomes a more accurate
representative of P . We thus define:

frp(x) = n−0.5
x (4.7)

Combining (4.4), (4.6), and (4.7), the objective f can be expressed as in (4.8).
Since the coefficient γrp is a positive constant independent of x, we normalize it to 1.
The sk value here is a weighted sum of the client’s quality representation |P̃k − P̃|
and quantity representation n−0.5

k . It thus enables us to quantify the quality-quantity
tradeoff when choosing user datasets.

f(x) = γrp

(∑
xknksk
nx

+ n−0.5
x

)
sk =

γtl
γrp
|P̃k − P̃|+

γge
γrp

n−0.5
k

(4.8)

4.5.2 Quantifying System Metrics

Now we analyze the completion time. We assume for each round of the training,
the coordinator will wait up to a predetermined duration E0. The global weight will
then be calculated based on the weights received before the deadline.

We model the client failure as a Markov chain. An active client crashes with
probability qf , and a failed client recovers with probability qr. Here qr, qf > 0.
Suppose there are m recruited clients. Letting At be the number of active clients at
iteration t, which has the following properties.

Proposition 4.1. At is an ergodic Markov chain. In the steady state, the probability
that there are i active clients equals

πi
∆
= P(A∞ = i) =

(
m
i

)
(qr/qf )

i

(1 + qr/qf )m
(4.9)
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Proof. The transition probability is given by

Pij = P(At+1 = j|At = i)

=
∑
k

(
i

k

)
(1− qf )

kqi−k
f

(
m− i

j − k

)
qj−k
r (1− qr)

m−i−j+k
(4.10)

Here the summation is taken from k = max{0, i+ j −m} to k = min{i, j}. This
conditional probability Pij does not depend on t, so At is a homogeneous Markov
chain. Furthermore, it is easy to check that max{0, i + j −m} ≤ min{i, j} given
that 0 ≤ i, j ≤ m. Therefore, At is positive recurrent since Pij > 0 for all pairs of
states (i, j). In addition, At is aperiodic since there is a self-loop for every state i:
Pii > 0. As a result, At is ergodic.

Besides, it is easy to verify that for all (i, j), we have

Pij

Pji

=
Pi0P0j

Pj0P0i

(4.11)

Let π = {P(A∞ = i)}i be the steady state vector, and P = [Pij ]ij be the transition
matrix. It can be shown that with (4.11), the solution of the steady state equations
πP = π satisfies:

πi =
P0i

Pi0

π0 (4.12)

Combing (4.10,4.12), and using the condition that
∑m

i=0 πi = 1, we can get
(4.9).

Since ergodic Markov chains converge exponentially fast, we only consider the
steady state. The probability that no clients fail is thus ( qr

qf+qr
)m. To model the

system heterogeneity of clients, we partition clients into N groups according to their
devices, network qualities, battery levels etc. Suppose each group has mz clients for
z = 1, ..., N , and all the clients inside a group z have the same failure rate qzf and
recovery rate qzr . Since clients are running independently, the probability that all
clients in all groups are active is then

∏N
z=1(

qzr
qzf+qzr

)mz .

If a client k in group z is active, we model its per-iteration runtime as a random
variable Y z

k ∼ exp(λz). The expected full iteration runtime when all clients are active
is: Γ(m1, ...mN) = E[min{maxz maxk Y

z
k , E0}]. The completion time is as follows,
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where mz depends on the recruitment.

gt(x) = gt(m1, ...,mN)

=T

(
Γ

N∏
z=1

(
qzr

qzf + qzr
)mz + E0(1−

N∏
z=1

(
qzr

qzf + qzr
)mz)

)
(4.13)

Intuitively, the completion time increases when we recruit more clients. This is
summarized in Proposition 4.2.

Proposition 4.2. The completion time gt(m1, ...mN) increases when any mz, z =

1, ..., N increases.

Proof. Let Y = min{maxz maxk Y
z
k , E0}. The cumulative distribution function of Y

is

FY (Y ≤ y) = 1y≤E0

N∏
z=1

(1− e−λzy)mz + 1y>E0 (4.14)

Since Y ≥ 0, we have

Γ(m1, ...,mN) = E[Y ] =

∫ ∞

0

1− Fy(y)dy

=

∫ E0

0

1−
N∏
z=1

(1− e−λzy)mzdy

(4.15)

Because Fy is continuous w.r.t. (y,m1, ...,mN), we get

∂Γ

∂mz

= −
∫ E0

0

log(1− e−λzy)
N∏
z=1

(1− e−λzy)mzdy > 0 (4.16)

Thus,

∂gt
T∂mz

=
∂Γ

∂mz

N∏
z=1

(
qzr

qzf + qzr
)mz+

(Γ− E0)
N∏
z=1

(
qzr

qzf + qzr
)mz log(

qzr
qzf + qzr

) > 0

(4.17)

Therefore, gt increases when any mz increases.

Finally, we consider the cost. The cost depends on specific payment mecha-
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nisms (e.g. [50]) adopted. Here we assume a generic case where each client k has an
exogenous price ck:

gc(x) =
∑K

k
xkck ≤ Ic (4.18)

4.6 The Optimal Client Recruitment

From Section 4.5, each client Uk ∈ U , k = 1, .., K can be characterized by a tuple
( ˜|Pk − P̃|, nk,Z(k), ck), representing respectively the distribution divergence, the
local dataset size, the group number, and the ask price. Clients in a group z have
failure rate qzf , recovery rate qzr and processing rate λz. As discussed above, the client
can readily compute this information and send it to the operator without significant
privacy loss at the start of the recruitment.

Combining (4.8), (4.13), and (4.18), Problem 4.1 becomes:

Problem 4.2. Client Recruitment

min
x∈{0,1}K

f(x) =
1

nx

∑
k

xknksk + n−0.5
x

s.t. gt(x) = (Γ− E0)
N∏
z=1

(
qzr

qzf + qzr

)mz

+ E0 ≤
It
T

gc(x) =
∑K

k
xkck ≤ Ic

Proposition 4.3. Problem 4.2 is NP-Hard.

Proof. Let It = ∞, sk = 0, then min f ⇔ maxnx. We thus reduce Problem 4.2 to
the NP-Hard Knapsack problem.

4.6.1 Unconstrained Optimization

We first consider the unconstrained version of Problem 4.2, i.e., when all the limits
It, Ic approach infinity. This is useful when the operator has gained complete right
of usage of the clients (so that they can be used for free without time limit). This
unconstrained optimization can be solved in polynomial time using the following
proposition:

Proposition 4.4. (Unconstrained Client Recruitment) Suppose clients are sorted
by their s values, i.e. s1 ≤ ... ≤ sK. The solution to problem Problem 4.2 without
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constraints must be of the form: x∗ = (1, 1, ..., 1, 0, 0, ...0), i.e., if a client j is recruited,
all the clients k < j must also be recruited.

Proposition 4.4 indicates that recruiting more clients does not always help improve
the accuracy. Intuitively, when more client participate, the overall dataset grows
larger and the representativeness should thus improve. However, a chosen dataset
Dk itself may be small in size, making its data biased from Pk. This will enlarge
its generalization error. Worse still, if Pk is also biased from the population P , the
training loss will increase as well due to the increased divergences in local distributions.
Based on the proposition, we can solve the unconstrained client recruitment problem
by simply sorting the devices by their s values, then comparing the objective values
for all the K possible choices of x∗. The time complexity is dominated by the
sorting step, which is O(K logK).

To prove the proposition, we use the following lemma.

Lemma 4.3. Consider two recruitments x0 and xj that contain the same set of clients,
except that the latter includes client j while the former does not. If f(xj) ≤ f(x0),
then f(xj) decreases as we increase nj, the number of data points in j.

Proof. For convenience we rewrite f(xj) = f j(nj). Note that

f j(nj) =

∑
k x

0
knksk + njsj∑
k x

0
knk + nj

+
(∑

k

x0
knk + nj

)−0.5 (4.19)

df j

dnj

=

∑
k x

0
knk(sj − sk)

(
∑

k x
0
knk + nj)2

− 0.5

(
∑

k x
0
knk + nj)1.5

(4.20)

As nj increases, (4.20) is either i) strictly negative, or ii) first positive then
negative. Thus, (4.19) will either i) strictly decrease, or ii) first increase then
decrease. Using the condition f j(nj) = f(xj) ≤ f(x0) = f j(0), the value of nj must
fall into the decreasing interval. Therefore, further increasing nj will only cause the
objective f to decrease.

We then prove Proposition 4.4:

Proof. (Proposition 4.4) We prove by contradiction. Assume the clients are already
sorted by the s value. Suppose the optimal recruitment x∗ = xj, where client j is
the last recruited client, and there exists at least one unrecruited client Ui, such that
i < j, xj

i = 0. Denote by f(x|U(s, n)) the objective value for recruiting clients in x,
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plus an additional client U who has parameters s and n. Let x0 be a copy of xj,
except that client j is not recruited. We thus have f(x∗) = f(xj) ≤ f(x0), and:

f(xj|U(si, ni)) ≤ f(xj|U(sj, ni))

=f(x0|U(sj, ni + nj)) < f(x0|U(sj, nj)) = f(xj)
(4.21)

The first inequality is due to the condition si ≤ sj. The second follows from
Lemma 4.3 with the fact that f(xj) ≤ f(x0). Therefore, adding the unchosen client i
to the recruitment xj results in a smaller objective value f(xj|U(si, ni)), contradicting
that x∗ = xj.

4.6.2 Constrained Optimization

As we would expect from our NP-hardness result (Proposition 4.3), Proposition
4.4 does not hold when incorporating the constraints. To solve the constrained
optimization Problem 4.2, we first relax the completion time constraint gt ≤ It by N

linear constraints Gt(m1, ...,mN) = {mz ≤M z
t }Nz=1 on mz.

M z
t = min

{∑K

k=1
1(Z(k) = z),

argmaxmz
{gt(0, ..., 0,mz, 0, ..., 0) ≤ It}

} (4.22)

According to Proposition 4.2, if (m1, ...,mN ) satisfies the original completion time
constraint gt(m1, ...mN) ≤ It, it also satisfies the relaxed constraint Gt(m1, ...,mN).
We then construct a new optimization Problem 4.3. Here we define s′k = nksk, Is =∑K

k s′k. Problem 4.3 maximizes a linear objective, subject to N +2 linear constraints.
This is a multi-dimensional Knapsack problem, and can be solved by the dynamic
programming (DP) algorithm [60].

Problem 4.3. Data Quantity Maximization

max
x∈{0,1}K

nx =
∑

k
xknk

s.t. mz =
∑

k
1(Z(k) = z)xk ≤M z

t , z = 1, ..., N

gc(x) =
∑

k
xkck ≤ Ic, gs(x) =

∑
k
xks

′
k ≤ Is
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As in conventional DP procedures, we construct a N + 3 dimensional table
ϕ(k,m1, ...,mN , c, s) to keep track of the algorithm states. ϕ(k,m1, ...,mN , c, s)

represents the maximum value of nx we can get, under the conditions that: 1) we
only pick from the first k clients (the order of clients does not matter); 2) we recruit
at most mz clients for each group z; 3) the cost is less than or equal to c; and 4) the
sum

∑
s′k ≤ s. Conditions 2) to 4) correspond to the three constraints in Problem

4.3. The DP algorithm gradually increments the recruitment boundary k. For each
k, the following recursive relation guarantees the consistency of ϕ:

ϕ(k,m1, ...,mN , c, s) = max{ϕ(k − 1, ...,mZ(k) − 1,

..., c− ck, s− s′k) + nk, ϕ(k − 1,m1, ...,mN , c, s)}
(4.23)

In practice, c and s may be float numbers, but we can easily normalize them
to integers. The correctness of the algorithm is obvious by induction. The time
complexity is bounded by the size of the DP table, which is O(KIcIs

∏N
z=1 M

z
t ).

Algorithm 4.1 DP and Revisit. Solving Problem 4.2.
1: procedure Optimize
2: ϕ← (solve Problem 4.3 with DP), f∗ ←∞
3: if ϕ(K,M t

1, ...,M
t
N , Ic, Is) ≤ 0 then

4: // Infeasible
5: return ∞
6: for s = 0 to Is do
7: for m1 = 0 to M1

t do
......

8: for mN = 0 to MN
t do

9: if gt(m1, ...,mN ) ≤ It then
f∗ ← min(f∗, Equation (4.24))

10: return f∗

Now we go back to the original Problem 4.2. We can observe that when the value
of s is fixed, minimizing the objective f is equivalent to maximizing the number of
samples nx. Since the ϕ table records a one to one mapping of s to the maximum
nx, we can utilize ϕ to reconstruct the original objective f .
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Formally speaking, given (m1, ...,mN , s), we define

f ′ =
s

ϕ(K,m1, ...,mN , Ic, s)

+ (ϕ(K,m1, ...,mN , Ic, s))
−0.5

(4.24)

Intuitively, for a solver x∗ of Problem 4.2, if its corresponding s∗ and m∗
z are

recorded during the DP iteration, then f ′ should be “related” to the optimal ob-
jective value f(x∗). We thus propose Algorithm 4.1 to solve the constrained client
recruitment. Its correctness is shown below. The time complexity is dominated by
the DP step as O(KIcIs

∏N
z=1 M

z
t ).

Proposition 4.5. Algorithm 4.1 solves Problem 4.2.

Proof. Let x∗ be a solver of Problem 4.2, with n∗
x =

∑
xknk, s

∗ =
∑

x∗
knksk,m

∗
z =∑

1(Z(k) = z)x∗
k, then

ϕ(K,m∗
1, ...,m

∗
N , Ic, s

∗) = n∗
x (4.25)

Otherwise, if the left hand side is smaller, the DP algorithm yields a smaller
objective n0

x for some recruitment x0. Both x0 and x∗ satisfy the four conditions
in the definition of ϕ at (K,m∗

1, ...,m
∗
N , Ic, s

∗). But replacing x0 with x∗ yields a
greater objective n∗

x > n0
x. This contradicts the correctness of DP. In addition,

if the left hand side is greater, the DP algorithm finds a recruitment x0 that has
s0 =

∑
x0
knksk ≤ s∗, n0

x =
∑

x0
knk > n∗, and satisfies all the constraints in Problem

4.2. Thus, by recruiting x0, we have f(x0) = s0

n0
x
+ (n0

x)
−0.5 < s∗

n∗
x
+ (n∗

x)
−0.5 = f(x∗).

This shows x0 is a better recruitment than x∗, which contradicts the assumption
that x∗ is an optimal. Thus, since Algorithm 4.1 iterates through all the feasible
elements, we must at some point visit (K,m∗

1, ...,m
∗
N , Ic, s

∗).

4.7 Performance Evaluation

We finally evaluate the performance of our client recruitment strategy with a clas-
sification problem and a regression problem. We set the aggregation deadline
E0 = 30. Unless otherwise noted, we assume clients have the default specification:
Group I = (q1f = 0.001, q1r = 0.6, λ1 = 0.1). If a client fails upon the aggregation,
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we replace its wtτ
k with the previous global weight wtτ . Throughout this section, we

uniformly at random set the cost of each client in the range of 1 to 9. We consider
three baseline recruitment strategies:

• All participation: recruiting all clients. Comparisons with this baseline show
the value of intelligent client recruitment.

• Greedy recruiting by quantity: greedily choosing clients with the most
data samples until any constraint is active.

• Greedy recruiting by quality: greedily choosing clients with best quality
until any constraint is active.

In the case of unconstrained optimization, we force the greedy baselines to choose
the same number of clients as the optimal recruitment. By comparing to the latter
two baselines, we present the value of considering both quantity and quality of the
data. Since we take the training parameters as fixed as discussed in Section 4.3, we
will not fine-tune them in the simulation. We pick these values such that all model
training in all experiments are fully converged. We then only need to determine the
relative weights of the training accuracy (γtl) and generalizability (γge). In practice,
they can be tuned by optimizing the unconstrained recruitment through grid search.

4.7.1 Image Classification

We first consider the MNIST digit recognition problem. We use the same 2NN model
as [61]. All clients are equipped with the Adam optimizer and use the same set
of training parameters. We use a batch size of 10 for local iterations. The initial
learning rate is set to 3e-4, and decays by half every 200 steps. The local epochs
τ = 30 and global epochs T = 50.

Dataset and clients. To construct the non-IID distributions of local datasets,
we assign each client a set of class labels (digits). Clients then randomly sample
training images corresponding to the assigned labels. We limit each client to sample
10 to 40 images. For j from 1 to 10, we assign j label(s) to 30 new clients, resulting
in total 300 candidate clients. The default MNIST test dataset is used.

Approximation of divergence. We use the “counting classes” method described
in Section 4.5.1 to approximate the probability divergence. Here we have L = 10

classes, thus
∫
|p̃k− p̃| =∑9

i=0 |p̃k(v = i)− p̃(v = i)|. For the population distribution,
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all classes appear with the same probability, so p̃(v = i) ≡ 0.1. If a client k has j

labels, p̃k(v = i) = 1/j if label i was assigned, or p̃k(v = i) = 0 otherwise. Thus,∑ |p̃k(v = i)− p̃(v = i)| = j(1
j
− 1

10
) + (1− j) 1

10
, which clients can easily compute

knowing only the number of labels that they see. By tuning the unconstrained
recruitment, we choose γtl = 0.015, γge = 1 for all experiments.

Unconstrained recruitment. The left plot of Figure 4.1 shows the convergence
progress of the four recruitment strategies. The left plot is the classification problem.
The X axis is global epochs, and the Y axis is test accuracy. The optimal strategy’s
model yields higher test accuracy than other baselines after 10 epochs. The right
plot is the regression problem. The X axis is global epochs, and the Y axis is the
normalized MSE on the test dataset. The untrained model has MSE=1, and the
closed-form solution has MSE=0. 64 clients are recruited by the optimal strategy. The
optimal recruitment converges the fastest and obtains the highest test accuracy on
the fully trained models. Notably, the optimal strategy can increase the test accuracy
by 5.0% compared to simply recruiting all clients, which is a big improvement for
most classification problems. Figure 4.2 shows the distribution of recruited clients
w.r.t. the number of classes assigned to them. The left plot is the counts of recruited
clients. The right plot is the sizes of local datasets for recruited clients, where each
point represents a client. Compared to the greedy-by-quantity strategy, the optimal
recruitment chooses fewer low-quality datasets, but more high-quality ones. Also,
most clients recruited by the optimal strategy contain more than 30 samples, but
the greedy-by-quality recruitment includes lots of small-sized datasets.

Figure 4.1: Convergence curves for the unconstrained recruitments

Constrained recruitment. The left plot of Figure 4.3 shows the change of test
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Figure 4.2: The distribution of recruited clients w.r.t. the number of assigned classes

Figure 4.3: Test accuracy when varying the budget Ic and the per round completion time
It/T

accuracy when we increase the budget Ic from 20 to 60 and take It to be infinity.
The optimal strategy obtains the highest accuracy for all the budgets Ic. In the
right plot of Figure 4.3 we drop the Ic constraints and vary the completion time
constraint It from 15T to 25T . Apart from Group I, we also create a relatively
lower-end specification Group II = (q2f = 0.01, q2r = 0.5, λ2 = 0.05). We randomly
pick one third of the clients and assign them to Group II. When It/T is down to
around half of E0 = 30, only 1 or 2 clients are recruited, so the models do not appear
to be trained at all. The optimal strategy exhibits the best performance when It is
reasonably large, improving the accuracy by 10% to 20%.

78



4.7.2 Climate Data Regression

We now evaluate client recruitment with a 5-dimensional linear regression model,
simulating a climate prediction task. All clients use the Adam optimizer with the
initial learning rate set to 1e-3, and decay by 0.8 every 200 steps. We set the batch
size as 20, τ = 10, and T = 40.

Dataset and clients. We use the U.S. Historical Climatology Network (HCN)
dataset [62], which contains climate records for climate stations in the 48 contiguous
United States. The local datasets of these stations are by their nature non-IID,
allowing us to evaluate how well our recruitment algorithm performs on realistic
data distributions. For simplicity, we only use the data on the first day of December
from 1960 to 2019, and we randomly pick 1-3 stations from each state, resulting in
117 stations. Each record contains 5 features: station latitude, station longitude,
lowest temperature of the day, highest temperature of the day, and precipitation of
the day. Our goal is to predict the snowfall of the day. To reflect the uneven sizes of
local datasets, we randomly drop some data so that each client has 30 to 69 samples.
We test the learned models on a holdout dataset, which is generated by randomly
picking 2 unused stations from each state.

Approximation of divergence. We use the second approximation method
described in Section 4.5.1 by assuming the 5 features and the snowfall form a fully
connected Gaussian graphic model N (µ,Σ). Thus, each local distribution can be
parameterized by the sample mean and the sample covariance N (µ̃k, Σ̃k). Similarly,
we approximate the population distribution N (µ̃, Σ̃) utilizing the unused (neither
training nor testing) data. Thus, we only need to compute the divergence between
the local Gaussian N (µ̃k, Σ̃k) and population Gaussian N (µ̃, Σ̃). We normalize the
divergences to the range of 0 and 10, and we choose the coefficients γtl = 0.01,
γge = 1.

Unconstrained recruitment. The right plot in Figure 4.1 shows the mean-
squared error (MSE) on the holdout dataset, which includes 1-2 stations from each
state, for different strategies. 37 clients are chosen by the optimal recruitment,
allowing us to drop most clients as in Section 5.1. Since linear regression is a convex
problem, we can easily calculate the closed-form optimal model over the full dataset.
For ease of comparison, we normalize the MSE values so that the untrained model
has MSE equal 1, and the closed-form solution has MSE equal 0. As in Figure 4.1,
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the optimal recruitment yields a lower MSE even than the closed-form solution,
which illustrates the value of incorporating generalizability and representativeness
metrics. Compared to other strategies, the optimal recruitment can decrease the
MSE up to 10%.

Similar to Figure 4.2, Figure 4.4 shows the distribution of recruited clients. Here
we divide the clients based on their local-population distribution divergences into 10
bins. The X axes are quantile ranges. Left bins correspond to small divergence (i.e.
good quality).

Figure 4.4: The distribution (left: client count; right: dataset size per client) of recruited
clients w.r.t. the distribution divergence

Figure 4.5: Left: Test MSE when varying the budget Ic and It/T

Constrained recruitment. Figure 4.5 shows the change of MSE when varying
the cost and time limits, on the same setup as in Section 4.7.1. The optimal
recruitment obtains the lowest MSE and much smaller variance in most cases.

80



4.8 Summary

This chapter studies the client recruitment problem in federated learning. We first
introduce and quantify five performance metrics that cover both the model’s accuracy
(training loss, generalization error, representativeness) and the training efficiency
(completion time, cost). We then formulate the client recruitment as an NP-Hard
optimization problem, and provide an optimal solution algorithm. Finally, we verify
our theoretical results with experiments using both synthetic and real-world data.
Our results show that recruiting more clients does not always improve the model,
and intelligent client recruitment can greatly improve the accuracy of the trained
model in constrained execution environments.
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Chapter 5

Enabling Flexible Device
Participation in Federated Learning

5.1 Introduction

In Chapter 4 we have illustrated how the recruitment strategy can affect the accuracy
and efficiency of federated learning. In this chapter, we will show the forms of client
partition can also have prominent impact on the learning process. Participating
entities of federated learning are mostly mobile devices such as smart phones and
tablets. These devices generally have limited computing and communication resources,
e.g., due to battery limitations, and have different training data distributions, i.e.,
data is not independently and identically distributed (non-IID) among devices [53].
To relieve the computation and communication burden, in the last step of the training
procedure, the federated learning coordinator may only aggregate a subset of local
models. However, only a few device selection policies ensure convergence in the
non-IID setting, and the selection must be independent of the hardware status of
devices [53]. In other words, for the training to converge successfully, all selected
devices must be able to train their local models and upload the results whenever
they are selected. This is why the traditional federated learning paradigm requires
participating devices to be dedicated to the training during the entire federated
learning period, e.g., the popular FedAvg algorithm assumes mobile users will
participate only when their phones are currently plugged-in, and have unlimited
WiFi access [61].
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Considering that federated learning typically takes thousands of communication
rounds to converge, it is difficult to ensure that all devices will be available during
the entire training in practice. Moreover, there are typically multiple apps running
simultaneously on user devices, competing for already highly constrained hardware
resources. As such, it cannot be guaranteed that devices will complete their assigned
training tasks in every training round as expected. A similar challenge also arises in
cloud based distributed learning due to the increasingly popular usage of preemptive
cloud services, where the user process can be interrupted unexpectedly [110].

While many methods have been proposed to mitigate the workload of individual
devices, such as weight compression and federated dropout [12][46], they cannot
completely remove the possibility that devices are unable to fulfill their training
responsibilities, e.g., due to poor wireless connectivity. Thus, in large scale federated
learning, many resource-constrained devices have to be excluded from joining feder-
ated learning in the first place, which restricts the potential availability of training
datasets, and weakens the applicability of federated learning. Furthermore, existing
work does not specify how to react when confronting unexpected device behaviors,
and also does not analyze the (negative) effects of such behaviors on the training
progress.

In this chapter, we relax these restrictions and allow devices to follow more flexible
participation patterns. Specifically, the chapter incorporates four situations that are
not yet well discussed in the literature: 1) In-completeness: devices might submit
only partially completed work in a round. 2) Inactivity : furthermore, devices might
not complete any updates, or respond to the coordinator at all. 3) Early departures :
in the extreme case, existing devices might quit the training without finishing all
training rounds. 4) Late arrivals: apart from existing devices, new devices might
join after the training has already started.

The difference between inactivity and departure is that inactive devices will
temporarily disconnect with the coordinator, but are expected to come back in the
near future. In contrast, departing devices will inform the coordinator that they
do not plan to rejoin the training. For example, if a user quits the app running
federated learning, a message can be sent to the coordinator; the coordinator thus
knows who is departing. In the meanwhile, although devices’ arriving and departing
seem symmetric, they affect the model training differently, and thus require distinct
treatments. The key difference is that arriving devices offer extra information about
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the data distribution, which can be utilized to accelerate the training, while departing
devices reduce our available knowledge, thus degrading the applicability of the trained
model.

Our approach to improve the flexibility of device participation comprises the
following components that supplement the existing FedAvg algorithm and handle
the challenges brought by flexible device participation.

• Debiasing for partial model updates. FedAvg aggregates device updates
as a weighted sum, with weights that are proportional to the sizes of the local
datasets. This choice of aggregation coefficients yields an unbiased gradient
as in the centralized setting only when all data points from all devices are
equally likely to join the learning [53]. However, it in general fails to guarantee
convergence to the globally optimal point in the presence of partial aggregation
from incomplete and inactive devices. We show that by adapting the aggregation
coefficients, the bias can be reduced and the convergence to a global optimum
can still be established. Furthermore, our analysis shows the bias originates
from the heterogeneity in device participation, as well as from the degree to
which local datasets are not IID.

• Fast-rebooting for device arrivals. Arriving devices interrupt the training
by forcing the model to re-orient to the new device’s data, thus slowing
the convergence process. In this chapter, we propose to rapidly reboot the
training in the case of device arrivals by applying extra updates from the new
devices. Intuitively, since an arriving device misses all previous epochs, the
model training should emphasize more on its updates to compensate. We
will rigorously prove this method indeed expedites learning convergence under
certain conditions.

• Redefining model applicability for device departures. A model success-
fully trained by federated learning is expected to be applicable to the data
from all participating devices. However, when a device withdraws itself from
the learning, due to the lack of its future updates, we may no longer require
the trained model to perform well on its data. It is then important to redefine
the model’s applicability. Namely, one can either keep the departing device
as a part of the global learning objective, or exclude it to focus only on the
remaining devices. The decision depends on which definition yields smaller

84



training loss. We will show the key to this determination lies in the remaining
training time.

In Section 5.2, we review relevant literature. In Section 5.3, we give a convergence
analysis that incorporates flexible device participation. Based on this analysis, we
detail our contributions, as outlined above, in Section 5.4, and we experimentally
verify our theoretical results in Section 5.5. Finally we conclude in Section 5.6. The
proof of theorems and collieries is shown in Section 5.7.

5.2 Related Work

The FedAvg algorithm with non-IID data across devices has been modified in
specific edge computing scenarios to reduce the communication overhead [55][83][8]
or maintain a good training convergence under a resource budget constraint [99].
However, these works do not consider the possibility that the edge devices can be
unavailable during the training process or join at different times, which are the
main challenges that we will solve. An online learning framework [16][38][26] is a
possible way to enable flexible device participation in the federated learning scenario.
For instance, [16] proposes an asynchronous federated learning algorithm to handle
unbalanced data that arrives in an online fashion onto different devices. Although
the asynchronous aggregation in their proposed algorithm can be naturally applied
to randomly inactive devices, the authors do not analyze how their algorithm’s
convergence is affected by the device inactivity or incompleteness and the data
heterogeneity.

In recent years, some attempts have been made to relax the strict training require-
ments on the participating devices. For example, [102] incorporates heterogeneity of
devices into the design of the learning systems; [67] proposes a client selection policy
that adapts to the change of devices’ hardware status. However, these works do not
show how the variations in the devices could affect the convergence of training, nor
do they incorporate the heterogeneity of user data into the algorithm design.

In [76] and [97], the authors reveal that incomplete devices can block the con-
vergence, but they consider neither other dynamic participation patterns such as
inactivity, arrivals and departures, nor probabilistic models for uncertain device
participation. To relieve the impact of incomplete devices, these works propose
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similar strategies as our method by reweighting the contribution of local models.
However, they focus mostly on removing the additional bias term originating from
heterogeneous device updates, without looking into how this bias is related to the
participation frequency of devices and the divergence among them. They also do
not compare the proposed methods with alternative extensions of FedAvg. In this
chapter, we model the device participation as random variables and incorporate
them into the convergence analysis, and we compare the convergence rates for three
reasonable aggregation schemes.

5.3 Convergence Analysis

In this section, we establish a convergence bound for federated learning with flexible
device participation patterns. Our analysis generalizes the standard FedAvg to
incorporate arbitrary aggregation coefficients. In the aggregation step, all devices are
counted even if they cannot finish all local epochs. The analysis considers a non-IID
data distribution and heterogeneous devices, i.e., some devices can be more stable
than the others. We first derive the convergence bound with incomplete and inactive
devices in Sections 5.3.1 to 5.3.2, and then discuss arrivals and departures in Section
5.3.3.

5.3.1 Algorithm Description

Suppose there are N devices, where each device k defines a local objective function
Fk(w). Here w represents the parameters of the machine learning model to be
optimized, and Fk(w) may be defined as the average empirical loss over all data points
at device k, as in typical federated learning frameworks [61]. The global objective is
to minimize F (w) =

∑N
k=1 p

kFk(w), where pk = nk

n
, nk is the number of data points

device k owns, and n =
∑N

k=1 nk. Let w∗ be the minimizer of F , and denote by F ∗
k

the minimum value of Fk. We quantify the degree to which data at each device k is
distributed differently than that at other devices as Γk = Fk(w

∗)− F ∗
k to capture

that data distributions at different devices are non-IID, and let Γ =
∑N

k=1 p
kΓk as in

[53].
We consider discrete time steps t = 0, 1, . . . . Model weights are synchronized

when t is a multiple of E, i.e., each round consists of E time steps. Assume there
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are at most T rounds. For each round (say the τth round), the following three steps
are executed:

• Synchronization: the coordinator broadcasts the latest global weight wG
τE to

all devices. Each device updates its local weight so that: wk
τE = wG

τE

• Local updates: each device runs stochastic gradient descent (SGD) on Fk for
i = 0, . . . , skτ − 1:1

wk
τE+i+1 = wk

τE+i − ητg
k
τE+i (5.1)

Here ητ is a staircase learning rate that decays with τ , 0 ≤ skτ ≤ E represents the
number of local updates this device completes in this round, gkt = ∇Fk(w

k
t , ξ

k
t )

is the stochastic gradient at device k, and ξkt is a mini-batch sampled from
device k’s local dataset. We also define ḡkt = ∇Fk(w

k
t ) as the full batch gradient

at device k, hence ḡkt = Eξkt
[gkt ].

• Aggregation: the coordinator aggregates the gradients and generates the next
global weight as

wG
(τ+1)E = wG

τE +
∑N

k=1
pkτ (wτE+skτ

− wG
τE)

= wG
τE −

∑N

k=1
pkτ
∑skτ

i=0
ητg

k
τE+i

(5.2)

We define that a device k is inactive in round τ if skτ = 0 (i.e., it completes no
local updates), and say it is incomplete if 0 < skτ < E. We treat each skτ as a random
variable that can follow an arbitrary distribution. Devices are heterogeneous if they
have different distributions of skτ , and otherwise they are homogeneous. We allow the
aggregation coefficients pkτ to vary with τ . In Section 5.4, we will discuss different
schemes of choosing pkτ and their impacts on the convergence.

As a special case, traditional FedAvg assumes all selected devices can complete
all E local epochs, so that skτ ≡ E. Also, FedAvg with full device participation uses
fixed aggregation coefficients pkτ ≡ pk, so that the right hand side of (5.2) can be
written as

∑N
k=1 p

kwk
τE, i.e., aggregating gradients is equivalent to aggregating the

model parameters directly.

1While some papers define local epochs and local updates separately, we use them interchangeably
in this chapter. Both refer to the times (5.1) is conducted in a global round.
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5.3.2 General Convergence Bound

The analysis relies on the following five assumptions. The first four are standard
[53]. The last assumption ensures bounded aggregation coefficients and is satisfied
by all schemes discussed in Section 5.4. In Section 5.5, we experimentally show that
our proposed learning algorithm performs well even when some assumptions (like
strong convexity) are violated.

Assumption 5.1. F1, . . . , FN are all L-smooth, so that F is also L-smooth.

Assumption 5.2. F1, . . . , FN are all µ-strongly convex, so that F is also µ-strongly
convex.

Assumption 5.3. The variance of the stochastic gradients is bounded: Eξ∥gkt−ḡkt ∥2 ≤
σ2
k, ∀k, t.

Assumption 5.4. The expected squared norm of the stochastic gradients at each
local device is uniformly bounded: Eξ∥gkt ∥2 ≤ G2 for all k and t.

Assumption 5.5. There exists an upper bound θ > 0 for the aggregation coefficient:
pkτ/p

k ≤ θ, ∀k.
Assume the following expectations exist and do not vary with time: E[pkτ ], E[pkτskτ ],

E[(pkτ )2skτ ], E[(
∑N

k=1 p
k
τ − 2)+(

∑N
k=1 p

k
τs

k
τ )] for all rounds τ and devices k, and assume

E[
∑N

k=1 p
k
τs

k
τ ] ̸= 0. Intuitively, this last assumption ensures that some updates are

aggregated in each round, otherwise this round can be simply omitted. Generally,
pkτ ’s are functions of skτ , and these expectations can be estimated from device histories.
Let zτ ∈ {0, 1} indicate the event that the ratio E[pkτskτ ]/pk does not take the same
value for all k. We can obtain the following convergence bound for general pkτ :

Theorem 5.1. By choosing the learning rate ητ = 16E

µE[
∑N

k=1 p
k
τ s

k
τ ]

1
τE+γ

, we can obtain

E∥wG
τE − w∗∥2 ≤ MτD + V

τE + γ
(5.3)

Here we define γ = max
{

32E(1+θ)L

µE[
∑N

k=1 p
k
τ s

k
τ ]
, 4E2θ

E[
∑N

k=1 p
k
τ s

k
τ ]

}
, Mτ =

∑τ−1
t=0 E[zt], D =

64E
∑N

k=1 E[pkτ skτ ]Γk

µE[
∑N

k=1 p
k
τ s

k
τ ]

, V = max

{
γ2E∥wG

0 − w∗∥2,
(

16E

µE[
∑N

k=1 p
k
τ s

k
τ ]

)2 E[Bτ ]
E

}
, Bτ = 2(2 +

θ)L
∑N

k=1 p
k
τs

k
τΓk+

(
2 + µ

2(1+θ)L

)
E(E−1)G2

(∑N
k=1 p

k
τs

k
τ + θ(

∑N
k=1 p

k
τ − 2)+

∑N
k=1 p

k
τs

k
τ

)
+

2EG2
∑N

k=1
(pkτ )

2

pk
skτ +

∑N
k=1(p

k
τ )

2skτσ
2
k

Theorem 5.1 shows that the convergence rate is affected by the aggregation
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coefficients pkτ ’s as they determine Mτ , D, and V . From (5.3), wG
τE will eventually

converge to a globally optimal solution only if Mτ increases sub-linearly with τ . In
the original full-participation FedAvg, pkτskτ ≡ pkE, so zτ ≡ 0 and Mτ ≡ 0 as per
the definitions. Thus, full-participation FedAvg converges according to (5.3), which
is consistent with [53]. However, when considering flexible device participation, Mτ

may increase with τ , which can cause FedAvg to converge to an arbitrary suboptimal
point. The magnitude of Mτ is determined by the degree of heterogeneity in the
device participation, and D is bounded by the non-IID metric Γk of local datasets. If
Mτ increases linearly with τ (e.g., due to device departures), the model will converge
to a suboptimal point with the loss bounded by D

E
. As we will see in Section 5.4.1, by

smartly choosing the aggregation coefficients pkτ , the increase of Mτ can be controlled
and a convergence to the global optimum can still be established.

While we only show results for skτ whose distributions are static with time,
Theorem 5.1 can be easily extended to time-varying distributed skτ by replacing the
corresponding expectations of pkτskτ and (pkτ )

2skτ with their minimum or maximum
expectations over τ .

5.3.3 Shifts in the Global Objective

Recall the global objective is F (w) =
∑

k∈C p
kFk(w), i.e., an average of local objectives

for participating devices C. A well trained model w∗ is expected to perform well
on all data points generated by devices in C. In the presence of departing and
arriving devices, C may shrink or expand dynamically during the training. The
global objective thus varies accordingly. For example, after admitting an incoming
device l with nl data points: C̃ ← C + {l}, the global objective becomes F̃ (w) =

p̃lFl(w) +
∑

k∈C p̃
kFk(w), where p̃k = nk

nC+nl
. The model w̃∗ fully trained with this

objective is then applicable to the new data from device l. We formally define
objective shift as the process of changing the global objective, and the applicability
of the trained model, by adding or removing devices from C.

The following theorem bounds the offset between the global optima due to the
objective shift. As we can intuitively expect, the difference reduces when the data
becomes more IID (Γl → 0), and when the departing/arriving device owns fewer
data points (nl → 0):

Theorem 5.2. Suppose a device l arrives/departs, and let n be the total number

89



of data points originally. Consider the objective shift F → F̃ , w∗ → w̃∗. Let
Γ̃k = Fk(w̃

∗)− F ∗
k quantify the degree of non-IID with respect to the new objective.

Then in the arrival case

∥w∗ − w̃∗∥ ≤ 2
√
2L

µ

nl

n+ nl

√
Γl (5.4)

and in the departure case

∥w∗ − w̃∗∥ ≤ 2
√
2L

µ

nl

n

√
Γ̃l (5.5)

Objective shift is mandatory when a new device (say device l) arrives: Unless
Fl ≡ F (which is highly unlikely), incorporating updates from l will always move F (w)

away from F ∗. The best strategy without objective shift is then not to aggregate
updates from l, and thus not to admit l into the learning process in the first place.
In contrast, objective shift is optional when devices depart: we can keep the original
objective F even if we will no longer receive updates from a departing device, if
doing so yields smaller training loss.

Suppose an objective shift occurs at τ0. The remainder of the training is then
equivalent to starting over from wG

τ0E
but converging towards the new objective w̃∗.

Combining Theorems 5.1 and 5.2, we can obtain the following convergence bound
after the objective shifts:

Corollary 5.1. Assume the objective shifts at τ0 with E∥wG
τ0E
− w∗∥2 ≤ ∆τ0. By

increasing the learning rate back to ητ = 16E

µE[
∑N

k=1 p
k
τ s

k
τ ]

1
(τ−τ0)E+γ

for τ > τ0, the
convergence to the new objective can be bounded by

E∥wG
τE − w̃∗∥2 ≤ M̃τD̃ + Ṽ

(τ − τ0)E + γ̃
(5.6)

Here M̃τ , D̃, Ṽ , γ̃ are defined analogously to Mτ , D, V , γ but they respectively
include/exclude the arriving/departing device. The first term in Ṽ equals γ̃2(

√
∆τ0 +

∥w∗ − w̃∗∥)2 = O
(

V
τ0E+γ

+ Γl

)
.

The increase of the learning rate after the objective shift is necessary. Intuitively,
if the shift happens at a large time τ0 when wG

τ0E
is close to the old optimal w∗ and

ητ0 is close to zero, the learning rate used in Theorem 5.1 will be too small to steer
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the model to the new optimum, since ∥wG
τ0E
− w̃∗∥ ≈ ∥w∗ − w̃∗∥.

Comparing (5.3) and (5.6), an objective shift yields an one-time increase in the
loss, which forces us to take actions when confronting departures and arrivals. In
the case of device departure, it is possible that retaining the old objective can result
in a smaller training loss compared to doing a shift. In this situation, the trained
model is still applicable to data of the departing device. In the arrival case, though
objective shift is mandatory, we can still accelerate the training by a “fast-reboot”,
applying extra gradient updates from the arriving device.

We will discuss in Section 5.4.2 the fast-reboot method for the arrival case, and
in Section 5.4.3 the decision of model applicability for the departure case.

5.4 Main Results

Based on the convergence analysis in Section 5.3, in this section, we present corollaries
that can guide operators in reacting to flexible device participation.

5.4.1 Debiasing on Incomplete Aggregation

According to Theorem 5.1, the convergence bound is controlled by the expectation
of pkτ and its functions. Below we discuss three plausible schemes of choosing pkτ , and
compare their convergence rates in Table 5.1. The bound for Scheme A assumes
there is at least one complete device (Kτ ̸= 0), and those for Schemes B, C assume skτ

is not trivially zero (E[skτ ] ̸= 0). While the three schemes have similar performance in
the homogeneous setting, Schemes A and B fail to converge to the global optimum
even assuming all devices are active. Scheme C works if inactive devices do not occur
in every round (

∑
t It < O(τ)).

• Scheme A: Only aggregate parameters from devices that complete all E local
epochs, with aggregation coefficient pkτ = Npk

Kτ
qkτ , where Kτ is the number of

complete devices, qkτ ∈ {0, 1} denotes if client k is complete. If Kτ = 0, this
round is discarded.

• Scheme B: Allow clients to upload incomplete work (with skτ < E updates),
with fixed aggregation coefficient pkτ = pk.
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• Scheme C: Accept incomplete works as in Scheme B, with adaptive pkτ = E
skτ
pk,

or pkτ = 0 if skτ = 0.

Schemes A and B are natural extensions of FedAvg. Scheme C assigns a greater
aggregation coefficient to devices that complete fewer local epochs. Though this idea
seems counter-intuitive, as fewer local updates might lead to less optimal parameters
(cf. Table 5.1), it turns out to be the only scheme that guarantees convergence when
device participation is heterogeneous.

Corollary 5.2. Let Kτ be the number of devices that run all E epochs, Iτ indicate
the appearance of any inactive devices in round τ , and write σ̄2

N ≡
∑N

k (p
kσk)

2. Table
5.1 gives the convergence rates of Schemes A, B, C when device updates may be
incomplete and inactive.

Table 5.1: Convergence rates with incomplete and inactive devices

Homogeneous Heterogeneous

A O

(
E[N

2

Kτ
]+σ̄2

N+Γ

τ

)
≤ D

E

B O
(

σ̄2
N+Γ

τE[sτ ]

)
≤ D

E

C O
(

σ̄2
N+Γ

τ(E[1/sτ ])−1

)
O

 τ−1∑
t=0

ItD+
N∑
k

(pkσk)
2E

[
1

skτ

]
+Γ

τ


The reason for enlarging the aggregation coefficients in Scheme C can be un-

derstood by observing from (5.2) that increasing pkτ is equivalent to increasing the
learning rate of device k. Thus, by assigning devices that run fewer epochs a greater
aggregation coefficient, these devices effectively run further in each local step, com-
pensating for the additional epochs other devices completed. Figure 5.1 is a snapshot
of a typical aggregation round. The bottom two devices completed all E = 5 local
epochs, while the top two completed only 3 and 4 epochs. Scheme C enlarges the
incomplete gradients by respectively 5/3 and 5/4 and produces unbiased aggregation
results. Scheme C ensures an unbiased gradient after aggregation, while Schemes A
and B will favor devices that run more epochs. Ideally, allowing devices to adapt
learning rates by themselves would effectively lead to the same result. However,
when a device is running local updates, it may not yet know or be able to estimate
the number of local epochs it will complete. In contrast, centralized intervention can
make accurate adjustments a posterior.
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Figure 5.1: Snapshot of one aggregation round

Table 5.1 also reveals how the following system and statistical factors affect the
convergence asymptotically:

• The non-IID metric Γ is the major obstacle of convergence in the homogeneous
case. In the heterogeneous setting, the D term (which grows with Γ) dominates
the training loss. It controls the maximum non-diminishing loss D/E of Scheme
A and B, and decelerates the training of Scheme C in the presence of inactive
devices.

• Devices’ activeness skτ and Kτ contribute inversely to the training loss: The
more devices participate, the faster the loss decays. When inactivity occurs
frequently, Scheme C cannot converge either. E.g., if a device never responds
to the coordinator (so It ≡ 1), its training loss can never converge to zero.

• The variance σ̄N , σk in the stochastic gradient descent algorithm slows down
the training as expected.

5.4.2 Fast-rebooting on Arrivals

Intuitively, when a device l arrives, w̃∗ will be “dragged” towards its local optimum
w∗

l . The gradients from device l may thus encode more information about the
new optimum w̃∗ compared to those from the other devices. Thus, by adding an
extra update −δl∇Fl(w

G), δl > 0 to the gradient aggregation, it is likely that w can
move closer to w̃∗, allowing the training to fast-reboot from the point of arrivals.
However, as shown in Figure 5.2, this intuition may not hold: it is also possible that
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−δl∇Fl(w
G) ends up driving wG away from w̃∗. In fact, the success of this method

is determined by the distance to the old optimum b = ∥wG − w∗∥. When b is small,
applying an extra update to wG following the direction −∇Fl(w

G) moves it closer to
w̃∗ (d2 < d1). However, for a large b, the extra update may on the contrary enlarge
this distance (d2 > d1). We formalize this statement in Corollary 5.3.

Figure 5.2: The effect of an extra update on the trained model

Corollary 5.3. Assume ∇F (w) is continuous, and 0 < ∥∇F (w)∥2, ∥∇2F (w)∥2 ≤ W

for any w (The latter is the induced l2 norm for matrices). Let w′ = w − δl∇Fl(w),
then there exists a δl > 0 such that ∥w′ − w̃∗∥ < ∥w − w̃∗∥ if w satisfies

∥w − w∗∥ < F̃ (w∗)− F̃ (w̃∗)(
2
√
2L
µ

p̃l
√
Γl + 1

)
p̃lW

(5.7)

(5.7) defines a sphere around the original global optimum w∗ within which the
extra update helps fast-reboot. The radius of the sphere depends on the divergence
between the new (arriving) and old data points. Generally, the longer the training
has elapsed, the closer the global model is to w∗. Thus, the extra updating works
best for devices that arrive late in the training.

When applied in practice, the extra updating can be conducted on-the-fly, by
augmenting the aggregation coefficient of the arriving device so that plτ = pl + δl.
Furthermore, the distance b can be estimated by the gradient norm with respect to
the original objective.

As the name suggests, fast-reboot only accelerates the training for a certain
duration after the device arrives. In fact, if there are no future interrupts, models
with or without fast-rebooting eventually converge to the same global optimum. Nev-
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ertheless, fast-reboot is still beneficial if there is insufficient training time remaining
(e.g., a device arrives near the end of the training).

5.4.3 Redefining Applicability on Departures

As is discussed in Section 5.3.3, when a device leaves, we need to redefine the
applicability of the trained model. Namely, one can decide to either exclude this
departing device and shift the objective, or keep including it and stick to the old
objective. The decision depends on the time at which the device leaves. When
including the device as a part of the global objective, from (5.3), since Mτ = τ − τ0

from then on, the training loss will always exceed a structural bias D/E. In contrast,
if the device is excluded and the model is trained with a shifted global objective,
there will be an immediate increase in the convergence bound as in Theorem 5.2.
But afterwards, the bound will decrease and eventually the parameters will converge
to the new global optimum.

Assume a device leaves at τ0 < T and there are no subsequent arrivals/departures.
Let f0(τ) be the convergence bound if we include the device, and f1(τ) be the bound
if it is excluded. We can obtain f0(τ) =

(τ−τ0)D+V
τE+γ

, f1(τ) =
Ṽ

(τ−τ0)E+γ̃
. Here M̃τ , Ṽτ , γ̃

are defined analogously to Mτ , Vτ , γ but they exclude the departing device. A device
is excluded if by doing so, a smaller training loss can be obtained at the deadline T ,
which is summarized in the following corollary:

Corollary 5.4. Excluding a device that departs at τ0 leads to smaller training loss if

min
τ≥τ0

f0(τ) ≥ f1(T ) (5.8)

Further assume γ̃ = γ, and Ṽ is dominated by its first term so that Ṽ = V
τ0E+γ

+ Γl.
(5.8) then becomes

T − τ0 ≥ O
(√

Γlτ0

)
(5.9)

From (5.9), when the remaining training time T−τ0 is at least O(
√
Γlτ0), applying

the trained model to the departing device becomes less promising. It is thus better
to exclude it and shift the objective. As we can expect, the bound grows with Γl,
since the non-IID contribution from the departing device increases the initial Ṽ . As
τ0 increases, the learning rate without shift gets smaller, mitigating the increase of
the training loss from departing devices.
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5.5 Experiments

In this section, we experimentally evaluate Section 5.4’s results. Due to the limitations
on hardware resources, the training process is performed in computer simulations.
To ensure the simulation is consistent with the real learning environment, we use
real-world traces to represent the participation patterns of simulated devices. We
present our experiment setup in Section 5.5.1, and verify our theory results in Sections
5.5.2 - 5.5.4.

5.5.1 Experiment Setup

We create various data traces to represent the heterogeneous participation patterns of
local devices. We set up a simple federated learning experiment with five Raspberry
PIs as workers, and a desktop server as the coordinator. Each PI has a training process
that runs the original FedAvg algorithm, and a competitor process doing CPU-
intensive work simultaneously. We manually tune the workload of the competitor
process so that it takes up 0%, 30%, 50%, 70%, 90% of the PI’s CPU resources,
simulating different device configurations in federated learning. Under the five
settings, for each round, we record the percentage of required epochs the PI ends
up submitting before a preset, fixed deadline. Due to the default load-balancing
behavior of the operating system’s CPU scheduler, these traces do not contain zero
epochs (i.e. inactive cases). To generate inactive device participation patterns, we
create another set of three traces with respectively low, medium and high bandwidth.
Devices can thus be inactive due to weak transmission. Table 5.2 shows the mean
and standard deviation of the percentage of epochs completed for each trace. The
first five traces do not contain inactive cases. In the following experiments, each
simulated device is randomly assigned a trace. For each aggregation round τ , it
randomly samples from its trace to obtain the number of local epochs skτ .

Table 5.2: The means and standard deviations for the percentage of required local epochs
actually submitted to the coordinator during the training

Name T0 T30 T50 T70 T90 Thi Tmi Tlo
Mean 100 75.3 67.2 57.2 56.3 82.5 74.1 51.2
Stdev 0 14.8 11.3 11.7 14.8 23.3 22.3 18.3
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Three datasets are used in the experiments: MNIST [48], EMNIST [23] and
SYNTHETIC(α, β) [52]. We build a two-layer MLP model and a two-convolution-
layer CNN model respectively for MNIST and EMNIST, both models are defined
by [61]. For SYNTHETIC(α, β), we use an ordinary logistic regression model. All
models use the vanilla SGD as local optimizers, with batch sizes of 10 for MNIST
and EMNIST, and 20 for SYNTHETIC. When generating non-IID data, we sort the
MNIST and EMNIST data by labels so that each device is assigned data from one
label chosen uniformly at random. For SYNTHETIC(α, β), we vary the parameters
α, β from 0 to 1. The larger α, β are, the less IID the dataset becomes. We use
the staircase learning rate ητ = η0/τ as adopted in our convergence analysis. The
initial η0 is 2e-3 for MNIST, 5e-4 for EMNIST, and 1 for SYNTHETIC(α, β). Unless
otherwise noted, the number of samples at each device follows the Type-I Pareto
distribution with the Pareto index of 0.5.

5.5.2 Comparison of Aggregation Schemes

We first examine the effects of the device heterogeneity and the non-IID data
distributions on the convergence for each aggregation scheme. We conduct eight sets
of experiments where we incrementally increase the number of participation traces
to reflect the increasing heterogeneity in device participation. For SYNTHETIC,
we use α = β = 0 for the IID case, and α = β = 1 for the non-IID case. We train
on 100 devices for MNIST, 62 devices for EMNIST (by merge), and 50 devices for
SYNTHETIC(α, β). Table 5.3 records the differences in the test accuracies between
different aggregation schemes after 200 global epochs, where |T | = j represents
using the first j traces in Table 5.2. The typical convergence process is depicted in
Figure 5.3. Plots from left to right correspond to |T | = 1, 3, 5, 8. (increasing device
heterogeneity)

As we can see, Scheme C yields the best test accuracy on average. Compared to
Schemes A and B, it achieves higher accuracy when devices get more heterogeneous
and less IID. This is consistent with our loss bounds in Table 5.1, since Schemes A
and B fail to converge to the global optimum in the heterogeneous case with non-IID
data. On the other hand, Scheme A performs extremely badly with large |T |. This is
because the last few traces contain very few complete rounds, significantly increasing
E[1/Kτ ]. Noteworthily, Scheme C is no different from, or even worse than Scheme B
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Figure 5.3: Test accuracy for non-IID EMNIST

in more homogeneous settings, this is consistent with Table 5.1 since 1
E[sτ ] ≤ E[ 1

sτ
].

When the traces contain inactive devices (|T | ≥ 6), Scheme C becomes less stable
due to the variance introduced by It in Corollary 5.2.

5.5.3 Effectiveness of Fast-Reboot

We now investigate the effectiveness of the fast-reboot method described in Section
5.4.2. The experiments involve N − 1 existing devices, and the arriving device
joins at τ0. As is discussed in Section 5.4.2, the method makes no difference when
data distribution is IID. We thus only consider non-IID cases. We set N = 10 for
MNIST and EMNIST (balanced) and N = 30 for SYNTHETIC(1, 1). To avoid the
interference brought by inactive devices, for this experiment we only use the first five
traces in Table 5.2, and we adopt Scheme C as the aggregation method. All devices
are given the same number of samples for fair comparison.

When the device arrives, we increase the learning rate to η0/(τ − τ0). The
aggregation coefficient of the arriving device l is boosted to plτ = 3pl initially, and
decays to pl by O(τ−2). Table 5.4 records the number of global epochs it takes to
recover to the accuracy level before the arrival. The left cells are for fast reboot and
the right for vanilla reboot. Fast-reboot consistently achieves faster rebound, and
works better for late arrivals as we expect. EMNIST-CNN enjoys less improvement
from fast-reboot because CNN models converge more slowly than MLP and logistic
regression models. Thus, at the moment new devices arrive, EMNIST models have
not fully converged to the old optima, degrading the effectiveness of fast-reboot
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Table 5.3: The % improvement in the test accuracies of Scheme B w.r.t. Schemes A(left
numbers) and Scheme C w.r.t. Scheme B (right numbers)

(a) MNIST Data

|T | 1 2 3 4
IID -0.6 | 0.3 1.9 | 0.1 5.6 | 0.1 8.3 | 0.7

NIID 0.2 |-0.3 9.5 | 1.8 19.3 | 1.6 33.8 | 3.3
|T | 5 6 7 8
IID 10.4 | 2.6 14.0 | 2.2 5.8 | 1.9 11.8 | 2.4

NIID 33.2 | 3.2 28.7 | 6.2 36.0 | 3.6 43.4 | 6.9

(b) EMNIST Data
|T | 1 2 3 4
IID 0.7 |-0.6 0.9 | 0.1 4.2 | 0.7 4.8 | 1.0

NIID -0.1 |-0.7 17.0 |-2.0 34.2 | 1.8 37.9 | 4.8
|T | 5 6 7 8
IID 6.9 | 1.1 6.6 | 1.2 4.0 | 1.5 7.6 | 1.2

NIID 30.2 | 2.5 22.5 | 3.0 25.3 | 2.2 18.6 | 1.8

(c) SYNTHETIC Data
|T | 1 2 3 4
IID -0.6 | 0.5 2.1 | 0.1 6.6 | 0.0 9.0 | 0.7

NIID 0.1 |-0.4 9.6 | 1.5 22.2 | 1.8 38.2 | 3.2
|T | 5 6 7 8
IID 11.6 | 3.0 16.4 | 2.5 6.3 | 1.9 14.4 | 2.8

NIID 33.3 | 3.9 30.5 | 7.9 37.9 | 4.5 41.6 | 8.0

as per Corollary 5.3. The typical fast-reboot process is shown in Figure 5.4. The
dashed vertical lines indicate the arriving (departing) time τ0. After τ0, except for
the “include” option, models are tested with new datasets that include (exclude)
holdout data from the arriving (departing) device.

Next we study the situation when multiple devices arrive in a row. Figure 5.5
shows the training process for MNIST data. The test dataset is updated every time
a new device arrives to include its holdout data. The vertical dashed lines indicate
the time the device arrives. Every time a device arrives, we increase the learning
rate as per Corollary 5.1. Initially, seven devices are in the training. After 100 global
epochs, the remaining three devices arrive at 50 epoch intervals, without waiting for
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Figure 5.4: Evolution of the test accuracy (left) and loss (right) under device arrival (left,
MNIST) and departure (right, SYNTHETIC) cases

Figure 5.5: Test accuracy with and without fast-reboot for multiple arrivals for non-IID
MNIST

the model to fully converge. From Figure 5.5, the fast-reboot trick accelerates the
convergence for every device arrival.

5.5.4 Model Applicability upon Departures

The right plot in Figure 5.4 shows the typical change of the test loss after the device
departs. We use the same setting as in Section 5.5.3. As is predicted in Section 5.4.3,
an objective shift (‘exclude’) initially increases the test loss. But eventually, the two
curves cross and excluding the device becomes more beneficial.

Table 5.5 summarizes the number of global epochs it takes for the curves to cross
with SYNTHETIC(α, β). The rows correspond to three choices of parameters (α, β).
As we can see, the values increase with τ0 and the non-IID metric (α, β), confirming
Corollary 5.4.

100



Table 5.4: The number of global epochs after the arriving time τ0 until the test accuracy
bounces back to that at τ0 − 1

τ0 10 30 50 70
MNIST 4 | 4 22 |27 55 |63 59 |66
EMNIST 4 | 3 11 |12 14 |19 21 |24

SYNTHETIC 1 | 1 4 | 6 7 |12 3 | 8

Table 5.5: The number of global epochs after the departing time τ0 until the test losses
coincide for including and excluding options

τ0 10 15 20 25 30 35 40 45 50
(.1, .1) 2 5 3 3 9 3 10 26 40
(.5, .5) 1 3 9 14 13 7 12 36 34
(1., 1.) 10 9 27 18 34 17 28 62 77

5.6 Summary

This chapter extends the federated learning paradigm to incorporate more flexible
device participation. The analysis shows that incomplete local device updates can be
utilized by scaling the corresponding aggregation coefficients, and a mild degree of
device inactivity will not impact the convergence. Further investigation reveals how
the convergence relates to heterogeneity in both the data and the device participation.
The chapter also proposes techniques to fast-reboot the training after new devices
arrive, and provides an analytical criterion on when to exclude a departing device.
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5.7 Proof of Theorems and Corollaries

5.7.1 Proof of Theorem 5.1

Equivalent View

For ease of the analysis, we introduce for each client k and each global round τ a
sequence of virtual variables αk

τE, α
k
τE+1, . . . , α

k
(τ+1)E−1. Here each αk

t ∈ {0, 1} and∑E
i=0 α

k
τE+i = skτ . Since skτ is a random variable, αk

t ’s are also random variables,
and the distributions of αk

t ’s determine the distribution of skτ . For example, if
αk
t

iid∼ Bernoulli(p), then skτ ∼ Bin(E, p). In general, we do not make any assumption
on the distributions and correlations of αk

t ’s. Our results are thus valid for any
realization of skτ .

With the definition of αk
t ’s, we can rewrite (5.1)(5.2) as:

wk
τE+i+1 = wk

τE+i − ητg
k
τE+iα

k
τE+i (5.10)

wG
(τ+1)E = wG

τE −
N∑
k=1

pkτ

E∑
i=0

ητg
k
τE+iα

k
τE+i (5.11)

Note that wG
t is visible only when t is a multiple of E. To generalize it to arbitrary

t, we define w̄t such that w̄0 = wG
0 , and

w̄τE+i+1 = w̄τE+i − ητ

N∑
k=1

pkτg
k
τE+iα

k
τE+i (5.12)

Note that w̄τE+i =
∑N

k=1 p
k
τw

k
τE+i only if

∑N
k=1 p

k
τ = 1, which generally does not

hold.

Lemma 5.1. For any τ , w̄τE = wG
τE.

Proof. We will prove by induction. By definition, w̄0 = wG
0 . Suppose w̄τE = wG

τE,
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then

w̄(τ+1)E = w̄(τ+1)E−1 − ητ

N∑
k=1

pkτg
k
(τ+1)E−1α

k
(τ+1)E−1

= · · · = w̄τE −
E−1∑
i=0

ητ

N∑
k=1

pkτg
k
τE+iα

k
τE+i

= wG
τE −

N∑
k=1

pkτ

E−1∑
i=0

ητg
k
τE+iα

k
τE+i = wG

(τ+1)E

(5.13)

Thus, in the following analysis we will just use w̄t to denote the global weight.

Key Lemmas

We first present a couple of important lemmas:

Lemma 5.2.

Eξ∥
N∑
k=1

pkτ (g
k
t − ḡkt )∥2 ≤

N∑
k=1

(pkτ )
2σ2

k (5.14)

Proof.

∥
N∑
k=1

pkτ (g
k
t − ḡkt )∥2 =

N∑
k=1

∥pkτ (gkt − ḡkt )∥2 +
∑
j ̸=k

pkτp
j
τ ⟨gkt − ḡkt , g

j
t − ḡjt ⟩ (5.15)

Since each client is running independently, the covariance

Eξ⟨gkt − ḡkt , g
j
t − ḡjt ⟩ = 0 (5.16)

Thus,

Eξ∥
N∑
k=1

pkτ (g
k
t − ḡkt )∥2 =

N∑
k=1

Eξ∥pkτ (gkt − ḡkt )∥2 ≤
N∑
k=1

(pkτ )
2σ2

k (5.17)
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Lemma 5.3. For i = 0, · · · , E − 1 and all τ, k

Eξ[
N∑
k=1

pkτ∥w̄τE+i − wk
τE+i∥2]

≤(E − 1)G2η2τ

( N∑
k=1

pkτs
k
τ + (

N∑
k=1

pkτ − 2)+

N∑
k=1

(pkτ )
2

pk
skτ

) (5.18)

Proof. Note that wk
τE = w̄τE for all k.

∥w̄τE+i − wk
τE+i∥2 = ∥(w̄τE+i − w̄τE)− (wk

τE+i − w̄τE)∥2

=∥w̄τE+i − w̄τE∥2 − 2⟨w̄τE+i − w̄τE, w
k
τE+i − w̄τE⟩+ ∥wk

τE+i − w̄τE∥2
(5.19)

From (5.10)(5.12),

N∑
k=1

pkτw
k
τE+i =

N∑
k=1

pkτw
k
τE+i−1 − ητ

N∑
k=1

pkτg
k
τE+i−1α

k
τE+i−1

=
N∑
k=1

pkτw
k
τE+i−1 + w̄τE+i − w̄τE+i−1

= · · · =
N∑
k=1

pkτw
k
τE + w̄τE+i − w̄τE

(5.20)

Thus,

− 2
N∑
k=1

pkτ ⟨w̄τE+i − w̄τE, w
k
τE+i − w̄τE⟩

=− 2⟨w̄τE+i − w̄τE,
N∑
k=1

pkτw
k
τE + w̄τE+i − w̄τE −

N∑
k=1

pkτ w̄τE⟩

=− 2∥w̄τE+i − w̄τE∥2

(5.21)

N∑
k=1

pkτ∥w̄τE+i−wk
τE+i∥2 = (

N∑
k=1

pkτ−2)∥w̄τE+i−w̄τE∥2+
N∑
k=1

pkτ∥wk
τE+i−w̄τE∥2 (5.22)
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∥w̄τE+i − w̄τE∥2 = ∥
i−1∑
j=0

ητ

N∑
k=1

pkτg
k
τE+jα

k
τE+j∥2

=∥ητ
N∑
k=1

pkτ

( i−1∑
j=0

gkτE+jα
k
τE+j

)
∥2 = η2τ∥

N∑
k=1

pk
(pkτ
pk

i−1∑
j=0

gkτE+jα
k
τE+j

)
∥2

≤η2τ
N∑
k=1

(pkτ )
2

pk
∥

i−1∑
j=0

gkτE+jα
k
τE+j∥2

(5.23)

Here

∥
i−1∑
j=0

gkτE+jα
k
τE+j∥2

=
i−1∑
j=0

∥gkτE+jα
k
τE+j∥2 + 2

∑
p<q

⟨gkτE+pα
k
τE+p, g

k
τE+qα

k
τE+q⟩

≤
i−1∑
j=0

∥gkτE+jα
k
τE+j∥2 + 2

∑
p<q

∥gkτE+pα
k
τE+p∥∥gkτE+qα

k
τE+q∥

≤
i−1∑
j=0

∥gkτE+jα
k
τE+j∥2 +

∑
p<q

(
∥gkτE+pα

k
τE+p∥2 + ∥gkτE+qα

k
τE+q∥2

)
=i

i−1∑
j=0

∥gkτE+jα
k
τE+j∥2

(5.24)

So

Eξ∥
i−1∑
j=0

gkτE+jα
k
τE+j∥2 ≤ iG2

i−1∑
j=0

αk
τE+j ≤ (E − 1)G2skτ (5.25)

Plug (5.25) to (5.23) we have

Eξ∥w̄τE+i − w̄τE∥2 ≤ (E − 1)G2η2τ

N∑
k=1

(pkτ )
2

pk
skτ (5.26)
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Similarly

Eξ

N∑
k=1

pkτ∥wk
τE+i − w̄τE∥2 =Eξ

N∑
k=1

pkτ∥ητ
i−1∑
j=0

gkτE+jα
k
τE+j∥2

≤(E − 1)G2η2τ

N∑
k=1

pkτs
k
τ

(5.27)

Plug (5.26)(5.27) to (5.22) we have

Eξ[
N∑
k=1

pkτ∥w̄τE+i − wk
τE+i∥2]

≤(E − 1)G2η2τ

( N∑
k=1

pkτs
k
τ + (

N∑
k=1

pkτ − 2)+

N∑
k=1

(pkτ )
2

pk
skτ

) (5.28)

Bounding ∥w̄τE+i+1 − w∗∥2

∥w̄τE+i+1 − w∗∥2

=∥w̄τE+i − ητ

N∑
k=1

pkτα
k
τE+ig

k
τE+i − w∗

−ητ
N∑
k=1

pkτα
k
τE+iḡ

k
τE+i + ητ

N∑
k=1

pkτα
k
τE+iḡ

k
τE+i∥2

= ∥w̄τE+i − w∗ − ητ

N∑
k=1

pkτα
k
τE+iḡ

k
τE+i∥2︸ ︷︷ ︸

A1

+η2τ∥
N∑
k=1

pkτα
k
τE+i(ḡ

k
τE+i − gkτE+i)∥2

+2ητ ⟨w̄τE+i − w∗ − ητ

N∑
k=1

pkτα
k
τE+iḡ

k
τE+i,

N∑
k=1

pkτα
k
τE+i(ḡ

k
τE+i − gkτE+i)⟩︸ ︷︷ ︸

A2

(5.29)
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Since Eξ[g
k
τE+i] = ḡkτE+i, we have Eξ[A2] = 0. We then bound A1.

A1 = ∥w̄τE+i − w∗ − ητ

N∑
k=1

pkτα
k
τE+iḡ

k
τE+i∥2

=∥w̄τE+i − w∗∥2−2ητ ⟨w̄τE+i − w∗,
N∑
k=1

pkτα
k
τE+iḡ

k
τE+i⟩︸ ︷︷ ︸

B1

+ η2τ∥
N∑
k=1

pkτα
k
τE+iḡ

k
τE+i∥2︸ ︷︷ ︸

B2

(5.30)

Since Fk is L-smooth,

∥αk
τE+iḡ

k
τE+i∥2 ≤ 2L(Fk(w

k
τE+i)− F ∗

k )α
k
τE+i (5.31)

By the convexity of l2 norm

B2 = η2τ∥
N∑
k=1

pkτα
k
τE+iḡ

k
τE+i∥2 = η2τ∥

N∑
k=1

pk(
pkτ
pk

αk
τE+iḡ

k
τE+i)∥2

≤ η2τ

N∑
k=1

(pkτ )
2

pk
∥αk

τE+iḡ
k
τE+i∥2 ≤ 2Lθη2τ

N∑
k=1

pkτ (Fk(w
k
τE+i)− F ∗

k )α
k
τE+i

(5.32)

B1 = −2ητ ⟨w̄τE+i − w∗,
N∑
k=1

pkτα
k
τE+iḡ

k
τE+i⟩

= −2ητ
N∑
k=1

pkτ ⟨w̄τE+i − w∗, αk
τE+iḡ

k
τE+i⟩

= −2ητ
N∑
k=1

pkτ ⟨w̄τE+i − wk
τE+i, α

k
τE+iḡ

k
τE+i⟩

− 2ητ

N∑
k=1

pk⟨wk
τE+i − w∗, αk

τE+iḡ
k
τE+i⟩

(5.33)
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Here

− 2⟨w̄τE+i − wk
τE+i, α

k
τE+iḡ

k
τE+i⟩

≤2|⟨w̄τE+i − wk
τE+i, α

k
τE+iḡ

k
τE+i⟩|

≤2αk
τE+i∥w̄τE+i − wk

τE+i∥∥ḡkτE+i∥

≤
( 1

ητ
∥w̄τE+i − wk

τE+i∥2 + ητ∥ḡkτE+i∥2
)
αk
τE+i

(5.34)

Since Fk is µ-strongly convex

⟨wk
τE+i−w∗, αk

τE+iḡ
k
τE+i⟩ ≥

(
(Fk(w

k
τE+i)−Fk(w

∗))+
µ

2
∥wk

τE+i−w∗∥2
)
αk
τE+i (5.35)

Plug (5.34)(5.35) to (5.33)

B1 ≤
N∑
k=1

pkτα
k
τE+i

(
∥w̄τE+i − wk

τE+i∥2 + η2τ∥ḡkτE+i∥2

− 2ητ
(
(Fk(w

k
τE+i)− Fk(w

∗)) +
µ

2
∥wk

τE+i − w∗∥2
)) (5.36)

Plug (5.32)(5.36) to (5.30)

A1 ≤ ∥w̄τE+i − w∗∥2 + 2Lθη2τ

N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− F ∗

k )

+
N∑
k=1

pkτα
k
τE+i

(
∥w̄τE+i − wk

τE+i∥2 + η2τ∥ḡkτE+i∥2︸ ︷︷ ︸
≤2η2τL(Fk(w

k
τE+i)−F ∗

k )

−2ητ
(
(Fk(w

k
τE+i)− Fk(w

∗)) +
µ

2
∥wk

τE+i − w∗∥2
))

≤∥w̄τE+i − w∗∥2 − µητ

N∑
k=1

pkτα
k
τE+i∥wk

τE+i − w∗∥2

+
N∑
k=1

pkτα
k
τE+i∥w̄τE+i − wk

τE+i∥2 + C

(5.37)
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where

C
∆
=2(1 + θ)Lη2τ

N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− F ∗

k )

−2ητ
N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− Fk(w

∗))

(5.38)

∥wk
τE+i − w∗∥2 = ∥wk

τE+i − w̄τE+i + w̄τE+i − w∗∥2

=∥wk
τE+i − w̄τE+i∥2 + ∥w̄τE+i − w∗∥2 + 2⟨wk

τE+i − w̄τE+i, w̄τE+i − w∗⟩
≥∥wk

τE+i − w̄τE+i∥2 + ∥w̄τE+i − w∗∥2 − 2∥wk
τE+i − w̄τE+i∥∥w̄τE+i − w∗∥

≥∥wk
τE+i − w̄τE+i∥2 + ∥w̄τE+i − w∗∥2

−(2∥wk
τE+i − w̄τE+i∥2 +

1

2
∥w̄τE+i − w∗∥2)

=
1

2
∥w̄τE+i − w∗∥2 − ∥wk

τE+i − w̄τE+i∥2

(5.39)

Thus,

A1 ≤(1−
1

2
µητ

N∑
k=1

pkτα
k
τE+i)∥w̄τE+i − w∗∥2

+(1 + µητ )
N∑
k=1

pkτα
k
τE+i∥w̄τE+i − wk

τE+i∥2 + C

(5.40)
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Let γτ = 2ητ (1− (1 + θ)Lητ ). Assume ητ ≤ 1
2(1+θ)L

, hence ητ ≤ γτ ≤ 2ητ .

C = −2ητ (1− (1 + θ)Lητ )
N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− F ∗

k )

+ 2ητ

N∑
k=1

pkτα
k
τE+i(Fk(w

∗)− F ∗
k )

= −γτ
N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− F ∗

k + Fk(w
∗)− Fk(w

∗))

+ 2ητ

N∑
k=1

pkτα
k
τE+i(Fk(w

∗)− F ∗
k )

= −γτ
N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− Fk(w

∗))

+ (2ητ − γτ )
N∑
k=1

pkτα
k
τE+i(Fk(w

∗)− F ∗
k )

≤ −γτ
N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− Fk(w

∗))︸ ︷︷ ︸
D

+2(1 + θ)Lη2τ

N∑
k=1

pkτα
k
τE+iΓk

(5.41)
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Next we bound D

N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− Fk(w

∗))

=
N∑
k=1

pkτα
k
τE+i(Fk(w

k
τE+i)− Fk(w̄τE+i))

+
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

≥
N∑
k=1

pkτα
k
τE+i⟨∇Fk(w̄τE+i), w

k
τE+i − w̄τE+i⟩

+
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

≥ −
N∑
k=1

pkτα
k
τE+i∥∇Fk(w̄τE+i)∥∥wk

τE+i − w̄τE+i∥

+
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

≥ −1

2

N∑
k=1

pkτα
k
τE+i(ητ ∥∇Fk(w̄τE+i)∥2︸ ︷︷ ︸

≤2L(Fk(w̄τE+i)−F ∗
k )

+
1

ητ
∥wk

τE+i − w̄τE+i∥2)

+
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

≥ −
N∑
k=1

pkτα
k
τE+i

(
ητL(Fk(w̄τE+i)− F ∗

k ) +
1

2ητ
∥wk

τE+i − w̄τE+i∥2
)

+
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

(5.42)

111



Thus,

C ≤ γτ

N∑
k=1

pkτα
k
τE+i(ητL (Fk(w̄τE+i)− F ∗

k )︸ ︷︷ ︸
Fk(w̄τE+i)−Fk(w∗)+Fk(w∗)−F ∗

k

+
1

2ητ
∥wk

τE+i − w̄τE+i∥2)

− γτ

N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗)) + 2(1 + θ)Lη2τ

N∑
k=1

pkτατE+iΓk

= γτ (ητL− 1)
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

+
γτ
2ητ︸︷︷︸
≤1

N∑
k=1

pkτα
k
τE+i∥wk

τE+i − w̄τE+i∥2

+ 2(1 + θ)Lη2τ

N∑
k=1

pkτατE+iΓk + γτ︸︷︷︸
≤2ητ

ητL
N∑
k=1

pkτα
k
τE+iΓk

≤ γτ (ητL− 1)
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

+
N∑
k=1

pkτα
k
τE+i∥wk

τE+i − w̄τE+i∥2 + 2(2 + θ)Lη2τ

N∑
k=1

pkτα
k
τE+iΓk

(5.43)

Plug (5.43) to (5.40) we have

A1 ≤ ∥w̄τE+i − w∗∥2 − µητ

N∑
k=1

pkτα
k
τE+i∥wk

τE+i − w∗∥2

+ 2
N∑
k=1

pkτα
k
τE+i∥w̄τE+i − wk

τE+i∥2

+ 2(2 + θ)Lη2τ

N∑
k=1

pkτα
k
τE+iΓk

+ γτ (ητL− 1)
N∑
k=1

pkτα
k
τE+i(Fk(w̄τE+i)− Fk(w

∗))

(5.44)
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Plug (5.44) to (5.29),

∥w̄τE+i+1 − w∗∥2 ≤(1− 1

2
µητ

N∑
k=1

pkτα
k
τE+i)∥w̄τE+i − w∗∥2

+η2τ∥
N∑
k=1

pkτα
k
τE+i(ḡ

k
τE+i − gkτE+i)∥2

+(2 + µητ )︸ ︷︷ ︸
≤2+ µ

2(1+θ)L

N∑
k=1

pkτα
k
τE+i∥w̄τE+i − wk

τE+i∥2

+2(2 + θ)Lη2τ

N∑
k=1

pkτα
k
τE+iΓk

+ γτ (1− ητL)︸ ︷︷ ︸
≤2ητ

N∑
k=1

pkτα
k
τE+i(Fk(w

∗)− Fk(w̄τE+i))

(5.45)

Define

CτE+i = (2 +
µ

2(1 + θ)L
)

N∑
k=1

pkτα
k
τE+i∥w̄τE+i − wk

τE+i∥2

+ ∥
N∑
k=1

pkτα
k
τE+i(ḡ

k
τE+i − gkτE+i)∥2

+ 2(2 + θ)L
N∑
k=1

pkτα
k
τE+iΓk

(5.46)

Thus,

∥w̄τE+i+1 − w∗∥2 ≤ (1− 1

2
µητ

N∑
k=1

pkτα
k
τE+i)∥w̄τE+i − w∗∥2 + η2τBτE+i

+2ητ

N∑
k=1

pkτα
k
τE+i(Fk(w

∗)− Fk(w̄τE+i))

(5.47)
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Apply the lemmas we have

Eξ[CτE+i] ≤
N∑
k=1

(pkτ )
2αk

τE+iσ
2
k + 2(2 + θ)L

N∑
k=1

pkτα
k
τE+iΓk

+ (2 +
µ

2(1 + θ)L
)(E − 1)G2

( N∑
k=1

pkτs
k
τ + (

N∑
k=1

pkτ − 2)+

N∑
k=1

(pkτ )
2

pk
skτ

) (5.48)

For convenience we write ∆τE+i = ∥w̄τE+i−w∗∥2, and ∆̄τE+i = E[∆τE+i], where the
expectation is taken over all random variables up to τE + i.

Bounding ∥w̄τE − w∗∥

Summing from τE to (τ + 1)E we have

E∑
i=1

∆τE+i ≤
E−1∑
i=0

(1− 1

2
µητ

N∑
k=1

pkτα
k
τE+i)∆τE+i

+η2τCτ + 2ητ

N∑
k=1

pkτs
k
τ (Fk(w

∗)− Fk(w̄τE+l))

(5.49)

where Cτ =
∑E−1

i=0 CτE+i, and w̄τE+l = argminw̄τE+i

∑N
k=1 p

k
τα

k
τE+iFk(w̄τE+i). Reor-

ganize it we can get

∆(τ+1)E ≤ ∆τE −
1

2
µητ

E−1∑
i=0

N∑
k=1

pkτα
k
τE+i∆τE+i

+ η2τCτ + 2ητ

N∑
k=1

pkτs
k
τ (Fk(w

∗)− Fk(w̄τE+l))

(5.50)

We then seek to find a lower bound for ∆τE+i.√
∆τE+i+1 = ∥w̄τE+i+1 − w∗∥ = ∥w̄τE+i+1 − w̄τE+i + w̄τE+i − w∗∥

≤ ∥w̄τE+i+1 − w̄τE+i∥+
√

∆τE+i

= ∥ητ
N∑
k=1

pkτα
k
τE+ig

k
τE+i∥+

√
∆τE+i

(5.51)
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Define hτE+i = ∥
∑N

k=1 p
k
τα

k
τE+ig

k
τE+i∥. Thus,√

∆(τ+1)E ≤
√
∆(τ+1)E−1 + ητh(τ+1)E−1

≤ · · · ≤
√

∆τE+i +
E−1∑
j=i

ητhτE+j

(5.52)

∆(τ+1)E ≤ ∆τE+i + 2
√
∆τE+i(

E−1∑
j=i

ητhτE+j) + (
E−1∑
j=i

ητhτE+j)
2

≤ 2∆τE+i + 2(
E−1∑
j=i

ητhτE+j)
2

(5.53)

∆τE+i ≥
1

2
∆(τ+1)E − (

E−1∑
j=i

ητhτE+j)
2 ≥ 1

2
∆(τ+1)E − (

E−1∑
j=0

ητhτE+j)
2 (5.54)

Plug (5.54) to (5.50) we can get

(1 +
1

4
µητ

N∑
k=1

pkτs
k
τ )∆(τ+1)E ≤ ∆τE +

1

2
µη3τ

N∑
k=1

pkτs
k
τ (

E−1∑
i=0

hτE+i)
2 + η2τCτ

+ 2ητ

N∑
k=1

pkτs
k
τ (Fk(w

∗)− Fk(w̄τE+l))

(5.55)

Define Hτ = (
∑E−1

i=0 hτE+i)
2. Apply Lemma 5.2, Lemma 5.3 and Assumption 5.4, we

have

Eξ[h
2
τE+i] = Eξ∥

N∑
k=1

pkτα
k
τE+ig

k
τE+i∥2

≤
N∑
k=1

(pkτ )
2

pk
Eξ∥αk

τE+ig
k
τE+i∥2 ≤

N∑
k=1

(pkτ )
2

pk
G2αk

τE+i

(5.56)

Eξ[Hτ ] = Eξ[(
E−1∑
i=0

hτE+i)
2] ≤ Eξ[E

E−1∑
i=0

h2
τE+i] ≤ EG2

N∑
k=1

(pkτ )
2

pk
skτ (5.57)
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Eξ[Cτ ] =
E−1∑
i=0

Eξ[CτE+i] =
N∑
k=1

(pkτ )
2skτσ

2
k + 2(2 + θ)L

N∑
k=1

pkτs
k
τΓk

+ (2 +
µ

2(1 + θ)L
)E(E − 1)G2

( N∑
k=1

pkτs
k
τ + θ(

N∑
k=1

pkτ − 2)+

N∑
k=1

pkτs
k
τ

) (5.58)

Write ∆̄τE+i = Eξ[∆τE+i],C̄τ = Eξ[Cτ ], H̄τ = Eξ[(
∑E−1

i=0 hτE+i)
2], then

(1 +
1

4
µητ

N∑
k=1

pkτs
k
τ )∆̄(τ+1)E ≤ ∆̄τE +

1

2
µη3τ

N∑
k=1

pkτs
k
τH̄τ + η2τ C̄τ

+ 2ητEξ

N∑
k=1

pkτs
k
τ (Fk(w

∗)− Fk(w̄τE+l))

(5.59)

Let zτ = 0 indicate the event that for all k, E[pkτskτ ] = cτp
k for come constant

cτ that does not depend on k, otherwise zkτ = 1. Note that if zτ = 0, then∑N
k=1 p

k
τs

k
τ (Fk(w

∗)− Fk(w̄τE+l)) = cτ (F (w∗)− F (w̄τE+l)) ≤ 0. Otherwise, we have

N∑
k=1

pkτs
k
τ (Fk(w

∗)− Fk(w̄τE+l)) =
N∑
k=1

pkτs
k
τ (Fk(w

∗)− F ∗
k︸ ︷︷ ︸

Γk

+F ∗
k − Fk(w̄τE+l︸ ︷︷ ︸

≤0

))

≤
N∑
k=1

pkτs
k
τΓk

(5.60)

Put it together

N∑
k=1

pkτs
k
τ (Fk(w

∗)− Fk(w̄τE+l)) ≤ zτ

N∑
k=1

pkτs
k
τΓk (5.61)
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Assume ητ ≤ 4
µEθ
≤ 4

µ
∑N

k=1 p
k
τ s

k
τ
, divide both sides with 1 + 1

4
µητ

∑N
k=1 p

k
τs

k
τ in (5.59)

we can get

∆̄(τ+1)E ≤
(
1−

1
4
µητ

∑N
k=1 p

k
τs

k
τ

1 + 1
4
µητ

∑N
k=1 p

k
τs

k
τ

)
∆̄τE + 2η2τH̄τ + η2τ C̄τ

+ 2ητzτ

N∑
k=1

pkτs
k
τΓk

≤
(
1− 1

8
µητ

N∑
k=1

pkτs
k
τ

)
∆̄τE + η2τBτ + 2ητzτ

N∑
k=1

pkτs
k
τΓk

(5.62)

Note that pkτ , skτ are independent with ∆̄τE. Taking expectation over pkτ and skτ we
get

E[∆̄(τ+1)E] ≤
(
1− 1

8
µητE[

N∑
k=1

pkτs
k
τ ]
)
∆̄τE + η2τE[Bτ ] + 2ητzτ

N∑
k=1

E[pkτskτ ]Γk (5.63)

5.7.2 Proof of Theorem 5.1

When the distributions of skτ do not change with time, we have Bτ = B. We prove
the convergence by induction. Let ητ = 8

µE[
∑N

k=1 p
k
τ s

k
τ ]

2E
τE+γ

. Initially, V0

γ2 ≥ E[∆̄0].

Suppose E[∆̄τE] ≤ MτD+V
τE+γ

, then

E[∆̄(τ+1)E] ≤
τE + γ − 2E

τE + γ

MτD + V

τE + γ

+

(
16E

µE[
∑N

k=1 p
k
τs

k
τ ]

)2
B

(τE + γ)2
+

1
2
zτD

τE + γ

≤τE + γ − E

(τE + γ)2
(MτD + V ) +

1
2
zτD

τE + γ

+

(
16E

µE[
∑N

k=1 p
k
τs

k
τ ]

)2
B

(τE + γ)2
− E(MτD + V )

(τE + γ)2︸ ︷︷ ︸
≤0

≤ MτD + V

(τ + 1)E + γ
+

1
2
τE+γ+E
τE+γ

zτD

(τ + 1)E + γ
≤ Mτ+1D + V

(τ + 1)E + γ

(5.64)

Thus ∆̄(τ+1)E ≤ Mτ+1D+V
(τ+1)E+γ

.
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We can check it satisfies the previous assumptions regarding ητ :

ητ ≤ η0 =
16E/(µE[

∑N
k=1 p

k
τs

k
τ ])

E + γ

≤ 16E/(µE[
∑N

k=1 p
k
τs

k
τ ])

32E(1 + θ)L/(µE[
∑N

k=1 p
k
τs

k
τ ])

=
1

2(1 + θ)L

(5.65)

ητ ≤ η0 =
16E/(µE[

∑N
k=1 p

k
τs

k
τ ])

E + γ
≤ 16E/(µE[

∑N
k=1 p

k
τs

k
τ ])

4E2θ/(E[
∑N

k=1 p
k
τs

k
τ ])

=
4

µEθ
(5.66)

Extension to Time-Varying Distributions

When the distribution of skτ vary with time, we can still establish a convergence with
slightly different definitions. Redefine γ = max

{
32E(1+θ)L

µminτ E[
∑N

k=1 p
k
τ s

k
τ ]
, 4E2θ

minτ E[
∑N

k=1 p
k
τ s

k
τ ]

}
,

Vτ = max

{
γ2E∥wG

0 − w∗∥2,
(

16E
µ

)2∑τ−1
t=0

E[Bt]

(E[
∑N

k=1 p
k
t s

k
t ])

2

}
We now prove by induction that with this definition, we can obtain

E[∆̄τE] ≤
MτD

τE + γ
+

Vτ

(τE + γ)2
(5.67)

Let ητ = 8

µE[
∑N

k=1 p
k
τ s

k
τ ]

2E
(τ+1)E+γ

. Initially, V0

γ2 ≥ E[∆̄0]. Suppose E[∆̄τE] ≤ MτD
τE+γ

+
Vτ

(τE+γ)2
, then

E[∆̄(τ+1)E] ≤
τE + γ − E

(τ + 1)E + γ

(
MτD

τE + γ
+

Vτ

(τE + γ)2

)
+

(16E)2E[B̄τ + 2H̄τ ]

(µE[
∑N

k=1 p
k
τs

k
τ ])

2 ((τ + 1)E + γ)2
+

zτD

(τ + 1)E + γ

≤(τE + γ − E)MτD

(τE + γ)2 − E2
+

τE + γ − E

(τE + γ)2 − E2

Vτ

(τ + 1)E + γ

+
(16E)2E[B̄τ + 2H̄τ ]

(µE[
∑N

k=1 p
k
τs

k
τ ])

2 ((τ + 1)E + γ)2
+

zτD

(τ + 1)E + γ

≤ MτD

(τ + 1)E + γ
+

Vτ

((τ + 1)E + γ)2

+
(16E)2E[B̄τ + 2H̄τ ]

(µE[
∑N

k=1 p
k
τs

k
τ ])

2 ((τ + 1)E + γ)2
+

zτD

(τ + 1)E + γ

=
Mτ+1D

(τ + 1)E + γ
+

Vτ+1

((τ + 1)E + γ)2

(5.68)
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Thus ∆̄(τ+1)E ≤ Mτ+1D
(τ+1)E+γ

+ Vτ+1

((τ+1)E+γ)2
.

Easy to check previous assumptions regarding ητ are all satisfied.

5.7.3 Proof of Theorem 5.2

• Departure Case: ñ = n− nl

∥w̃∗ − w∗∥ ≤ 2

µ
∥∇F (w̃∗)∥ = 2

µ

∥∥∥∥∥∥∇F (w̃∗)−∇F̃ (w̃∗)︸ ︷︷ ︸
=0

∥∥∥∥∥∥
=
2

µ

∥∥∥∥∥∑
k ̸=l

(pk − p̃k)∇Fk(w̃
∗) + pl∇Fl(w̃

∗)

∥∥∥∥∥
=
2

µ

∥∥∥∥∥∑
k ̸=l

(
nk

n
− nk

n− nl

)
∇Fk(w̃

∗) + pl∇Fl(w̃
∗)

∥∥∥∥∥
=
2

µ

∥∥∥∥∥−∑
k ̸=l

(
nlnk

n(n− nl)

)
∇Fk(w̃

∗) + pl∇Fl(w̃
∗)

∥∥∥∥∥
=
2

µ

∥∥∥∥∥∥∥∥∥∥∥
−pl

∑
k ̸=l

p̃k∇Fk(w̃
∗)︸ ︷︷ ︸

=∇F̃ (w̃∗)=0

+pl∇Fl(w̃
∗)

∥∥∥∥∥∥∥∥∥∥∥
=
2pl

µ
∥∇Fl(w̃

∗)∥ ≤ 2pl

µ

√
2L (Fl(w̃∗)− F ∗

l ) =
2
√
2L

µ
pl
√

Γ̃l

• Arrival Case: ñ = n+ nl

∥w̃∗ − w∗∥ = ∥w∗ − w̃∗∥ ≤ 2

µ
∥∇F̃ (w∗)∥ = 2

µ

∥∥∥∥∥∥∇F̃ (w∗)−∇F (w∗)︸ ︷︷ ︸
=0

∥∥∥∥∥∥
= · · · = 2

µ

∥∥∥∥∥∥∥∥∥∥∥
−p̃l

∑
k ̸=l

pk∇Fk(w
∗)︸ ︷︷ ︸

=∇F (w∗)=0

+p̃l∇Fl(w
∗)

∥∥∥∥∥∥∥∥∥∥∥
=
2p̃l

µ
∥∇Fl(w

∗)∥ = 2
√
2L

µ
p̃l
√

Γl

119



5.7.4 Proof of Corollary 5.2

Scheme A

In Scheme A, we only consider devices whose skτ = E. Let qkτ be an indicator denoting
if client k is complete in round τ . Thus, Kτ =

∑N
k=1 q

k
τ .

Homogeneous participation. Obviously qkτ ’s are homogeneous when skτ ’s
are homogeneous. Thus, E[qkτ ] = qτ , where qτ = P(sτ = E). We then have
P(Kτ = 0) = (1 − qτ )

N . When choosing pkτ = Npk

Kτ
qkτ , θ = N . Note that by the

definition of qkτ , we have qkτ s
k
τ = Eqkτ , so E[pkτskτ ] = EE[pkτ ]. Similarly, we can replace

all skτ terms with E. Next we calculate E[pkτ ]:

Eq[p
k
τ |Kτ ̸= 0] = NpkEq

[ qkτ∑N
i=1 q

i
τ

∣∣∣Kτ ̸= 0]

=Npk
N−1∑
i=0

1

1 + i

(
N − 1

i

)
(qτ )

i(1− qτ )
N−1−iqτ

1− (1− qτ )N

=Npk
N∑
i=1

1

i

(
N − 1

i− 1

)
(qτ )

i(1− qτ )
N−i

1− (1− qτ )N

=Npk
N∑
i=1

1

i

(N − 1)!

(i− 1)!(N − i)!

(qτ )
i(1− qτ )

N−i

1− (1− qτ )N

=pk
N∑
i=1

(
N

i

)
(qτ )

i(1− qτ )
N−i

1− (1− qτ )N
= pk

1−
(
N
0

)
(qτ )

0(1− qτ )
N

1− (1− qτ )N
= pk

(5.69)

Similarly,

Eq[(p
k
τ )

2|Kτ ̸= 0] = (Npk)2Eq

[ qkτ

(
∑N

i=1 q
i
τ )

2

∣∣∣Kτ ̸= 0]

=(Npk)2
N−1∑
i=0

1

(1 + i)2

(
N − 1

i

)
(qτ )

i(1− qτ )
N−1−iqτ

1− (1− qτ )N

=(Npk)2
N∑
i=1

1

i2

(
N − 1

i− 1

)
(qτ )

i(1− qτ )
N−i

1− (1− qτ )N

=N(pk)2
N∑
i=1

1

i

(
N

i

)
(qτ )

i(1− qτ )
N−i

1− (1− qτ )N

=N(pk)2E
[ 1

Kτ

|Kτ ̸= 0
]

(5.70)

120



It is possible that
∑N

k=1 p
k
τ > 2, so we need to calculate E[pkτplτ |Kτ ̸= 0]

Eq[p
k
τp

l
τ |Kτ ̸= 0] = N2pkplE

[ qkτ q
l
τ

(
∑N

i=1 q
i
τ )

2
|Kτ ̸= 0

]
=N2pkpl

N−2∑
i=0

1

(2 + i)2

(
N − 2

i

)
(qτ )

i(1− qτ )
N−2−i(qτ )

2

1− (1− qτ )N

=
N

N − 1
pkpl

N∑
i=2

i− 1

i

(
N

i

)
(qτ )

i(1− qτ )
N−i

1− (1− qτ )N

=
N

N − 1
pkplE

[
1− 1

Kτ

|Kτ ̸= 0
]

(5.71)

For all k and τ , E[pkτskτ |Kτ ̸= 0] = Epk, thus zτ = 0,Mτ = 0 for all k, τ .

Therefore, E[B] = O(N2E[ 1
Kτ
|Kτ ̸= 0] +

∑N
k=1(p

kσk)
2 + Γ), γ = O(N), hence

V = O(N2E[ 1
Kτ
|Kτ ̸= 0] +

∑N
k=1(p

kσk)
2 + Γ). Plug them into Theorem 5.1, we can

get an asymptotic rate of O
(

E[N
2

Kτ
]+σ̄2

N+Γ

τ

)
.

Heterogeneous Participation. When skτ ’s (i.e., qkτ ’s) are heterogeneous, gen-
erally E[pkτ ] ̸= pk, furthermore, we may have zτ = 1 for all τ . To see this, consider
an example where a device k0 has qk0τ = 1, i.e. P(skτ = E) = 1, whereas all the rest
devices have E[qkτ ] = qτ , then we can show that

Eq[p
k0
τ |Kτ ̸= 0] = Eq[p

k0
τ ] = Npk0Eq

[ qk0τ

(
∑N

i=1 q
i
τ )

2

]
= pk0

1− (1− qτ )
N

qτ
(5.72)

and for k ̸= k0

Eq[p
k
τ |Kτ ̸= 0] = Eq[p

k
τ ] = NpkEq

[ qkτ

(
∑N

i=1 q
i
τ )

2

]
=

pk

(N − 1)qτ

N∑
i=2

(i− 1)

(
N

i

)
(qτ )

i(1− qτ )
N−i

=
pk

(N − 1)qτ

(
Nqτ −Nqτ (1− qτ )

N−1 − (1− (1− qτ )
N −Nqτ (1− qτ )

N−1)
)

=pk
Nqτ + (1− qτ )

N − 1

(N − 1)qτ

(5.73)

Thus, different k will have different ratio of E[pkτskτ/pk] = EE[pkτ/pk], which indicates
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zτ = 1. Since this is true for all τ , we have Mτ = τ . Thus according to Theorem
5.1, the learning will not converge to the global optimal, and the remainder loss is
bounded by D/E.

Scheme B

In Scheme B, pkτ = pk is a fixed number, so we only need to take expectation over skτ ,
and cp = 1. Since

∑N
k=1 p

k = 1 < 2, we can bound E[(
∑N

k=1 p
k
τ−2)+(

∑N
k=1 p

k
τs

k
τ )] < 0.

Homogeneous Participation. When skτ ’s are homogeneous, i.e. skτ
iid∼ sτ , then

E[pkτskτ ]/pk = E[sτ ]. This is the same for all k, thus zτ = 0 and Mτ = 0. Moreover,
we have E[B] = O(E[sτ ](σ̄2

N + Γ)), γ = O(1/E[sτ ]), V = O
(
(σ̄2

N + Γ) 1
E[sτ ]

)
, which

yields an asymptotic convergence rate of O
(

σ̄2
N+Γ

τE[sτ ]

)
.

Heterogeneous Participation. When skτ ’s are heterogeneous, E[pkτskτ ]/pk =

E[skτ ] varies with k. Thus, zτ = 1 and Mτ = τ . Therefore, the algorithm will not
converge to the global optimum according to Theorem 5.1.

Scheme C

In Scheme C, pkτ = Epk

skτ
, so θ = E. It is possible that

∑K
k=1 p

k
τ > 2, so we need to

calculate E
[
(
∑N

k=1 p
k
τ )(
∑N

k=1 p
k
τs

k
τ )
]
.

Homogeneous Participation. When skτ ’s are homogeneous, E[pkτskτ ]/pk = E

for all k. Thus, zτ = 0,Mτ = 0.

Moreover, we have

E[
N∑
k=1

pkτ ] = EE
[ 1
sτ

]
(5.74)

E[
N∑
k=1

(pkτ )
2] =

(
EE
[ 1
sτ

])2 N∑
k=1

(pk)2 (5.75)

E[
N∑
k=1

(pkτ )
2skτ ] = E2E

[ 1
sτ

] N∑
k=1

(pk)2 (5.76)

E
[
(

N∑
k=1

pkτ )(
N∑
k=1

pkτs
k
τ )
]
= E2E

[ 1
sτ

]
(5.77)
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Therefore, we have E[B] = O
(
E
[

1
sτ

]
(σ̄N + Γ)

)
= V , which yields a convergence

rate of O
(

σ̄2
N+Γ

τ(E[1/sτ ])−1

)
.

Heterogeneous Participation. Even when skτ ’s are heterogeneous, we still have
E[pkτskτ ]/pk = E for active all k. Thus, zτ = 0 only if Iτ = 1. Thus, Mτ =

∑τ−1
t=0 It.

Moreover,

E[
N∑
k=1

pkτ ] = E

N∑
k=1

pkE
[ 1
skτ

]
(5.78)

E[
N∑
k=1

(pkτ )
2] = E2

N∑
k=1

(
pkE

[ 1
skτ

])2
(5.79)

E[
N∑
k=1

(pkτ )
2skτ ] = E2

N∑
k=1

(pk)2E
[ 1
skτ

]
(5.80)

E
[
(

N∑
k=1

pkτ )(
N∑
k=1

pkτs
k
τ )
]
= E2

N∑
k=1

pkE
[ 1
skτ

]
(5.81)

Thus, E[B] = O
(∑N

k=1(p
kσk)

2E
[

1
skτ

]
+ Γ

)
= V , and the convergence rate is

O

 τ−1∑
t=0

ItD+
N∑
k

(pkσk)
2E

[
1

skτ

]
+Γ

τ



5.7.5 Proof of Corollary 5.3

We first introduce the following lemma:

Lemma 5.4. Suppose device l arrives, then for any w, we have

Fl(w) =
1

p̃l

(
F̃ (w)− n

ñ
F (w)

)
(5.82)

Proof. We expand the right hand side expression and show it equals Fl(w):

1

p̃l

(
F̃ (w)− n

ñ
F (w)

)
=

1

p̃l

(
N∑
k=1

p̃kFk(w) + p̃lFl(w)−
N∑
k=1

n

ñ
pkFk(w)

)

=
1

p̃l

(
N∑
k=1

p̃kFk(w) + p̃lFl(w)−
N∑
k=1

p̃kFk(w)

)
= Fl(w)

(5.83)
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Next we investigate the effect of applying additional update from l. Suppose the
current global weight is wG

τE = w, and assume we perform full batch gradient for the
additional update. After the update, it becomes

w′ = w − ητδ
l∇Fl(w) (5.84)

We are interested in the distance between w′ and the new global optimum w̃∗:

∥w′ − w̃∗∥2 = ∥w − ητδ
l∇Fl(w)− w̃∗∥2

= ∥w − w̃∗∥2−2ητδl⟨w − w̃∗,∇Fl(w)⟩+
(
ητδ

l
)2 ∥∇Fl(w)∥2︸ ︷︷ ︸

A(w,δl)

(5.85)

Obviously, the additional update helps fast-reboot if A(w, δl) < 0.
Applying Lemma 5.4 we can get

A(w, δl) = −2ητδ
l

p̃l
⟨w − w̃∗,∇F̃ (w)− n

ñ
∇F (w)⟩+

(
ητδ

l
)2 ∥∇Fl(w)∥2 (5.86)

Write b = w − w∗, and use the mean value theorem we have

−⟨w − w̃∗,∇Fl(w)⟩ = −⟨b+ w∗ − w̃∗,∇Fl(w
∗) +∇2Fl(ξ)b⟩

= −⟨w∗ − w̃∗,∇Fl(w
∗)⟩ − ⟨w∗ − w̃∗,∇2Fl(ξ)b⟩ − ⟨b,∇Fl(w)⟩

≤ −⟨w∗ − w̃∗,∇Fl(w
∗)⟩+ ∥w∗ − w̃∗∥∥∇2Fl(ξ)∥2∥b∥+ ∥∇Fl(w)∥∥b∥

≤ −⟨w∗ − w̃∗,∇Fl(w
∗)⟩+ (∥w∗ − w̃∗∥+ 1)W∥b∥

≤ − 1

p̃l
⟨w∗ − w̃∗,∇F̃ (w∗)− n

ñ
∇F (w∗)︸ ︷︷ ︸

=0

⟩+
(
2
√
2L

µ
p̃l
√

Γl + 1

)
W∥b∥

≤ − 1

p̃l

(
F̃ (w∗)− F̃ (w̃∗)

)
+

(
2
√
2L

µ
p̃l
√

Γl + 1

)
W∥b∥

(5.87)

Therefore,

A(w, δl) ≤2ητδ
l

p̃l

((
2
√
2L

µ
p̃l
√

Γl + 1

)
W∥b∥ −

(
F̃ (w∗)− F̃ (w̃∗)

))
+(ητδ

l)2W 2

(5.88)
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For δl > 0, the right hand side can be negative if and only if ∥b∥ < F̃ (w∗)−F̃ (w̃∗)(
2
√
2L
µ

p̃l
√
Γl+1

)
p̃lW

.

5.7.6 Proof of Corollary 5.4

The loss bound without objective shift is f0(τ) =
(τ−τ0)D+V

τE+γ
, and the bound with

shift is f1(τ) =
V

τ0E+γ
+Γl

(τ−τ0)E+γ
. Note that f0(τ) is a monotonic function. When it is

increasing, we just need f0(τ0) = f1(τ), which yields

τ − τ0 =
1− γ

E
+

Γl(τ0E + γ)

EV
= O

(
Γlτ0
V

)
(5.89)

Now we consider monotonically decreasing f0(τ), which is more commonly observed
in experiments. Let C1 = DE,C2 = γD + V E − EΓl, C3 = V (γ − 1), the only
possible root for the quadratic equation f0(τ) = f1(τ) is

τ − τ0 =
EV

τ0E + γ
− C2

+

√
4C1Γl(τ0E + γ) +

(
EV

τ0E + γ

)2

− 2C2EV

τ0E + γ
+ (C2

2 − 4C1C3)

= O(
√

τ0Γl)

(5.90)
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Chapter 6

Soft Clustered Federated Learning

6.1 Introduction

Federated learning (FL) is known to suffer from the notorious non-IID (non- indepen-
dently and identically distributed) data issue, in the sense that the model training is
significantly slackened when clients’ local data distributions are heterogeneous. In
response to this challenge, some recent works propose to bypass data heterogeneity by
performing local model personalization. Instead of pursuing one universally applicable
model shared by all clients, these algorithms’ training objective is to create one model
for each client that fits its local data. Personalization methods include local fine
tuning [88], model interpolation [58], and multi-task learning [89]. In this chapter,
we focus on an alternative approach: clustered federated learning, which we generalize
to train both cluster and personalized models on realistic distributions of client data.

Clustered FL relaxes the assumption of FL that each client has an unique data
distribution; instead, it allows different clients to share one data distribution, with
fewer source data distributions than clients. The objective of clustered FL is to
train one model for every distribution. In traditional clustered FL, a client can only
be associated with one data distribution. We thus call this method hard clustered
federated learning. Under the hard association assumption, the non-IID problem
can be easily resolved: simply group clients with the same data distribution into
one cluster, then conduct conventional FL on each cluster, within which the data
distribution is now IID among clients. Unlike other personalization methods, clustered
FL thus produces centrally available models that can be selectively migrated to new
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users that are unwilling, or unable, to engage in the subsequent local adaptation
process (e.g. fine tuning) due to privacy concerns or resource limitations. This
convenience in model adoption is particularly valuable for the current training-
testing-deployment lifecycle of FL where deployment, rather than the training itself,
is the end goal [45].

However, hard clustered FL faces two fundamental problems in practice. First,
multiple clients may be unlikely to possess identical data distributions. In fact, the
real-world user data is more likely to follow a mixture of multiple distributions
[59]. E.g., if each client is a mobile phone and we wish to model its user’s content
preferences, we might expect the clients to be clustered into adults and children.
However, adult users may occasionally view children’s content, and devices owned
by teenagers (or shared by parents and children) may possess large fractions of
data from both distributions. Similarly, content can be naturally grouped by users’
interests (e.g., genres of movies), each of which may have a distinct distribution.
Data from users with multiple interests then reflects a mixture of these distributions.
Since the mixture ratios can vary for different clients, they may have different overall
distributions even though the source distributions are identical. Clustering algorithms
like the Gaussian mixture model [75] use a similar rationale. Clients may then require
models personalized to their distributions to make accurate predictions on their data,
in addition to the cluster models used for new users.

Hard clustered FL’s second challenge is that it cannot effectively exploit similarities
between different clusters. Though FL clients may have non-IID data distributions,
two different distributions may still exhibit some similarity, as commonly assumed in
personalization works [89]. For example, young people may have more online slang
terms in their chatting data, but all users (generally) follow the same basic grammar
rules. Thus, the knowledge distilled through the training on one distribution could
be transferred to accelerate the training of others. However, in most hard clustered
FL algorithms, different cluster models are trained independently, making it difficult
to leverage the potential structural likeness among distributions. Note that unlike
in other personalization methods where the discussion of similarity is restricted
to similarities between individual clients, here we focus on the broader similarities
between source cluster distributions. Thus, we can gain better insight into the general
data relationship rather than just the relationships between participating clients.

To overcome clustered FL’s first challenge of the hard association assumption,
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in this chapter, we utilize soft clustered federated learning. In soft clustered FL,
we suppose that the data of each client follows a mixture of multiple distributions.
However, training cluster models using clients with mixed data raises two new
challenges. First, the workload of clients can explode. When all the data of a client
comes from the same distribution, as in hard clustered FL, it ideally only needs to
contribute towards one training task: training that distribution’s model. However,
in soft clustered FL, a client has multiple data sources. A natural extension of hard
clustered FL is for the client to help train all cluster models whose distributions
are included in its mixture [59]. However, the workload of participating clients then
grows linearly with the number of clusters, which can be large (though typically
much smaller than the number of clients) for some applications. This multiplying
of client workload can make soft clustered FL infeasible, considering the resource
restrictions on typical FL user devices and the long convergence time for many FL
models [61]. Second, the training of cluster models and the local personalization are
distinct. In hard clustered FL, client models are the same as cluster models since
a client is uniquely bound to one cluster. In soft clustered FL, local distributions
differ from individual cluster distributions, and thus training cluster models does
not directly help the local personalization. Complicating things further, these local
distributions and their exact relationships to the cluster models are unknown a priori.
Combining the training of cluster and personalized models is then challenging.

To solve these two challenges, and handle the second disadvantage of hard
clustered FL discussed above, we utilize the proximal local updating trick, which
is originally developed in FedProx [52] to grant clients the use of different local
solvers in FL. During the course of proximal local updating, instead of working on
fitting the local model to the local dataset, each client optimizes a proximal local
objective function that both carries local information and encodes knowledge from
all cluster models. We name this proposed algorithm FedSoft.

In FedSoft, since the fingerprints of all clusters are integrated into one optimiza-
tion objective, clients only need to solve one single optimization problem, for which
the workload is almost the same as in conventional FL. In addition, by combining
local data with cluster models in the local objective, clients can perform local per-
sonalization on the fly. Eventually, the server obtains collaboratively trained cluster
models that can be readily applied to new users, and each participating client gets
one personalized model as a byproduct. Proximal local updating allows a cluster to
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utilize the knowledge of similar distributions, overcoming the second disadvantage of
the hard clustered FL. Intuitively, with all clusters present in the proximal objective,
a client can take as reference training targets any cluster models whose distributions
take up non-trivial fractions of its data. These component distributions, co-existing in
the same dataset, are similar by nature. Thus, a personalized local model integrating
all its component distributions can in turn be utilized by the component clusters to
exploit their similarities.

Our contributions are: We design the FedSoft algorithm for efficient soft clustered
FL. We establish a convergence guarantee that relates the algorithm’s performance to
the divergence of different distributions, and validate the effectiveness of the learned
cluster and personalized models in experiments under various mixture patterns. Our
results show the training of cluster models converges linearly to a remaining error
determined by the cluster heterogeneity, and that FedSoft can outperform existing
FL implementations in both global cluster models for future users and personalized
local models for participating clients.

6.2 Related Works

The training objective of hard clustered FL is to simultaneously identify the cluster
partitions and train a model for each cluster. Existing works generally adopt an
Expectation-Maximization (EM) like algorithm, which iteratively alternates between
the cluster identification and model training. Based on how the partition structure
is discovered, these algorithms can be classified into four types:

The first type leverages the distance between model parameters, e.g., [101]
proposes to determine client association based on the distances between client models
and server models. Similarly, [10] suggests to apply a distance-based hierarchical
clustering algorithm directly on client models. The second type determines the
partition structure based on the gradient information, e.g., the CFL [82] algorithm
splits clients into bi-partitions based on the cosine similarity of the client gradients,
and then checks whether a partition is congruent (i.e., contains IID data) by examining
the norm of gradients on its clients. Likewise, the FedGroup [30] algorithm
quantifies the similarity among client gradients with the so-called Euclidean distance
of decomposed cosine similarity metric, which decomposes the gradient into multiple
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directions using singular value decomposition. The third type utilizes the training
loss, e.g., in HyperCluster [58], each client is greedily assigned to the cluster whose
model yields the lowest loss on its local data. A generalization guarantee is provided
for this algorithm. [34] proposes a similar algorithm named IFCA, for which a
convergence bound is established under the assumption of good initialization and all
clients having the same amount of data. The fourth type uses exogenous information
about the data, e.g., [42] and [70] group patients into clusters respectively based
on their electronic medical records and imaging modality. This information usually
entails direct access to the user data and thus cannot be applied in the general case.

Recently, [59] proposes a multi-task learning framework similar to soft clustered
FL that allows client data to follow a mixture of distributions. Their proposed
FedEM algorithm adopts an EM algorithm and estimates the mixture coefficients
based on the training loss. However, FedEM requires every client to perform a local
update for each cluster in each round, which entails significantly more training time
than conventional FedAvg. Their analysis moreover assumes a special form of the
loss function with all distributions having the same marginal distribution, which is
unrealistic. In contrast, FedSoft requires only a subset of clients to return gradients
for only one optimization task in each round. Moreover, we show its convergence for
generic data distributions and loss functions.

The proximal local updating procedure that we adopt incorporates a regular-
ization term in the local objective, which is also used for model personalization
outside clustered settings. Typical algorithms include FedAMP [43], which adds
an attention-inducing function to the local objective, and pFedMe [29], which
formulates the regularization as Moreau envelopes.

6.3 Formulation and Algorithm

Mixture of distributions. Assume that each data point at each client is drawn from
one of the S distinct data distributions P1, · · · ,PS. Similar to general clustering
problems, we take S as a hyperparameter determined a priori. Data points from all
clients that follow the same distribution form a cluster. In soft clustered FL, a client
may possess data from multiple clusters. Given a loss function l(w;x, y), the (real)
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cluster risk Fs(w) is the expected loss for data following Ps:

Fs(w)
∆
= E(x,y)∼Ps [l(w;x, y)] (6.1)

We then wish to find S cluster models c∗1 · · · c∗S such that all cluster objectives
are minimized simultaneously. These cluster models will be co-trained by all clients
through coordination at the central server:

c∗s = argminwFs(w), s = 1, · · · , S (6.2)

Suppose a client k ∈ [N ] with local dataset Dk has |Dk| = nk data points, among
which nks data points are sampled from distribution Ps. The real risk of a client can
thus be written as an average of the cluster risks:

fk(wk)
∆
=

1

nk

E

 S∑
s=1

∑
(xi

k,y
i
k)∼Ps

l(wk;x
i
k, y

i
k)


=

1

nk

∑S

s=1
nksFs(wk) =

∑S

s=1
uksFs(wk)

(6.3)

Here we define uks
∆
= nks/nk ∈ [0, 1] as the importance weight of cluster s to client

k. In general, uks’s are unknown in advance and the learning algorithm attempts to
estimate their values during the learning iterations. It is worth noting that while we
directly work on real risks, our formulation and analysis can be easily extended to
empirical risks by introducing local-global divergences as in [52].

Proximal local updating. Since fk is a mixture of cluster risks, minimizing
(6.3) alone does not help solve (6.2). Thus, we propose each client instead optimize
a proximal form of (6.3):

hk(wk; c
t, ut)

∆
= fk(wk) +

λ

2

∑S

s=1
ut
ks∥wk − cts∥2 (6.4)

Here λ is a hyperparameter and ut
ks denotes the estimation of uks at time t. In

the local updating step, every client searches for the optimal local model w∗
k that

minimizes hk given the current global estimation of cluster models {cts}. As in [52],
clients may use any local solver to optimize hk. This design of the proximal objective
entails cluster models {cts} be shared among all clients through the server, as is usual
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in clustered FL [34]. We thus alternatively call {cts} the centers.

The regularization term λ
2

∑S
s=1 u

t
ks∥wk − cts∥2 in the proximal objective serves

as a reference point for the local model training. It allows clients to work on their
own specific dataset while taking advantage of and being guided by the globally
shared knowledge of the centers. The regularization is weighted by the importance
weights uks, so that a client will pay more attention to distributions that have
higher shares in its data. To see why compounded regularization helps identify
individual centers, assume we have a perfect guess of ut

ks ≡ uks. The minimization
of (6.4) can then be decoupled as a series of sub- optimization problems hk(wk; c

t) =∑S
s=1 uks

(
Fs(wk) +

λ
2
∥wk − cts∥2

)
. Thus, after hk is minimized, the sub-problems

corresponding to large uks will also be approximately solved. We can hence utilize
the output local model wt

k
∗ to update these centers with large uks. Moreover, wt

k
∗

trained in this manner forges all its component distributions {Ds|ut
ks ̸= 0}, which

may share some common knowledge. Thus, the training of these clusters are bonded
through the training of their common clients, exploiting similarities between the
clusters.

The output model wt
k
∗ is itself a well personalized model that leverages both

local client knowledge and the global cluster information. [59] shows that under
certain conditions, the optimal client model for soft clustered FL is a mixture of the
optimal cluster models. The same implication can also be captured by our proximal
updating formulation. When

∑
s u

t
ks = 1, the gradient ∇hk is

∇wk
hk = ∇fk(wk) + λ

(
wk −

∑S

s=1
ut
ksc

t
s

)
(6.5)

which implies that w∗
k should be centered on

∑
s uksc

∗
s. As a result, through the

optimization of all hk, not only will the server obtain the trained cluster models, but
also each client will obtain a sufficiently personalized local model.

Algorithm design. We formally present FedSoft in Algorithm 6.1. The first
step of the algorithm is to estimate the importance weights {ut

ks} for each client
k (lines 3-14). The algorithm obtains them by finding the center that yields the
smallest loss value for every data point belonging to that client, and counting the
number of points {nt

ks} matched to every cluster s. If a client k has no samples
matched to s (nt

ks = 0), the algorithm sets ut
ks = σ, where 0 < σ ≪ 1 is a pre-defined

smoothing parameter.
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Algorithm 6.1 FedSoft
1: Input: Global epoch T , importance weights estimation interval τ , number of

clients N , client selection size K, counter smoother σ
2: for t = 0, · · · , T − 1 do
3: if t mod τ = 0 then
4: Server sends centers {cts} to all clients
5: for each client k do
6: for each data point (xi

k, y
i
k) do

7: j = argminsl(c
t
s;x

i
k, y

i
k)

8: nt
kj = nt

kj + 1

9: Send ut
ks = max{n

t
ks

nk
, σ} to server

10: else
11: Set ut

ks = ut−1
ks

12: Server computes vtsk as in (6.6)
13: Server selects S sets of clients Selts ⊂ [N ] at random for each cluster, where
|Selts| = K, and each client gets selected with probability vtsk

14: Selected clients download {cts}, then compute and report wt+1
k =

argminwk
hk(wk; c

t, ut)
15: Server aggregates ct+1

s = 1
K

∑
k∈Selts

wt+1
k

Once the server receives the importance weights {ut
ks}, it computes the aggregation

weights vtsk as follows (line 15):

vtsk =
ut
ksnk∑

k′∈Selts
ut
k′snk′

(6.6)

i.e., a client that has higher importance weight on cluster s will be given higher
aggregation weight, and vice versa. The introduction of the smoother σ avoids the
situation where

∑
k u

t
ks = 0 for some cluster, which could happen in the very beginning

of the training when the center does not exhibit strength on any distributions. In
that case, vtsk = 1

N
, i.e., the cluster will be updated in a manner that treats all clients

equally. Otherwise, since σ is very small, a client with ut
ks = σ will be assigned a

vtsk ≈ 0, and the aggregation weights of other clients will not be affected.

Though calculating and reporting {ut
ks} is computationally trivial compared to

the actual training procedure, sending centers to all clients may introduce large
communication costs. FedSoft thus allows the estimations of uks to be used for up
to τ ≥ 1 iterations (line 3). In practice, a client can start computing ut

ks for a cluster
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before it receives all other centers, the delay of transmission is thus tolerable.
Next, relevant clients run proximal local updates to find the minimizer wt+1

k for
the proximal objective ht

k, which entails solving only one optimization problem (line
17). In the case when all clients participate, the cluster models are produced by
aggregating all client models: ct+1

s =
∑N

k=1 v
t
skw

t+1
k . However, requiring full client

participation is impractical in the federated setting. We thus use the client selection
trick [61] to reduce the training cost (lines 16). For each cluster s, the algorithm
randomly selects a small subset of clients Selts to participate in the local updating at
time t, where |Selts| = K < N .

Clustered FL generally entails more clients to be selected compared to conventional
FL, to ensure the convergence of all cluster models. Since FedSoft clients can
contribute to multiple centers, however, we select only | ∪s Selts| clients instead of∑

s |Selts| = SK clients in the usual clustered FL. For example, if each distribution
has the same share in every client, then in expectation only N

(
1−

(
1− K

N

)S)
clients will be selected. This number equals 2K − K2

N
when S = 2, i.e., K2

N
clients

are selected by both clusters.
Once the server receives the local models {wt+1

k } for selected clients, it produces
the next centers by simply averaging them (line 18). After completion, the algorithm
yields trained cluster models {cTs } as outputs, and each client obtains a personalized
local model wT

k as a byproduct.

6.4 Convergence Analysis

In this section, we provide a convergence guarantee for FedSoft. First, note that we
can rewrite (6.4) as follows:

hk(wk; c
t) =

∑
s,uks ̸=0

ukshks(wk; c
t
s) (6.7)

hks(wk; c
t
s)

∆
= Fs(wk) +

λ

2

ut
ks

uks

∥wk − cts∥2 (6.8)

Here hks is only defined for uks ̸= 0, and we call optimizing each hks a sub-problem
for client k.

Our analysis relies on the following assumptions:
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Assumption 6.1. (γ0-inexact solution) Each client produces a γ0-inexact solution
wt+1

k for the local minimization of (6.4):

∥∇hk(w
t+1
k ; ct)∥ ≤ γ0min

s
∥∇Fs(c

t
s)∥ (6.9)

Assumption 6.2. (β-similarity of sub-problems) The sub-problems hks of each client
k have similar optimal points:∑

s′

uks′∥∇hks′(w
∗
ks; c

t
s)∥2 ≤ β∥∇hks(c

t
s; c

t
s)∥2,∀s (6.10)

for some β > 0, where w∗
ks = argminwks

hks(wks; c
t
s).

Assumption 6.3. (Strong convexity and smoothness) Cluster risks are µF strongly
convex and LF smooth.

Assumption 6.4. (Bounded initial error) At a certain time of the training, all
centers have bounded distance from their optimal points. We begin our analysis at
that point:

∥c0s − c∗s∥ ≤ (0.5− α0)
√
µF/LF δ, ∀s (6.11)

where 0 < α0 ≤ 0.5.

Assumption 6.1 assumes significant progress is made on the proximal minimization
of hk, which is a natural extension from assumptions in FedProx [52]. Assumption 6.2
ensures the effectiveness of the joint optimization of hk, i.e., solving one sub-problem
can help identify the optimal points of others. Intuitively, if the sub-problems are
highly divergent, we would not expect that solving them together would yield a
universally good solution. This assumption quantifies our previous reasoning that
different distributions co-existing in one local dataset have some similarities, which
is the prerequisite for local models to converge and cluster models to be able to learn
from each other. Assumption 6.3 is standard [34], and Assumption 6.4 is introduced
by [34] in order to bound the estimation error of ut

ks (Lemma 6.1). Note that with
Assumption 6.3, each sub-problem hks is also µλ strongly convex and Lλ smooth,
where µλ ≥ µF , Lλ ≥ LF , and the subscript λ indicates they increase with λ.

To measure the distance of different clusters, we quantify

δ ≤ ∥c∗s − c∗s′∥ ≤ ∆,∀s ̸= s′ (6.12)
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As we will see later, soft clustered FL performs best when δ and ∆ are close.
Intuitively, a very small δ indicates two clusters are almost identical, and thus might
be better combined into one distribution. On the other hand, a very large ∆ implies
that two clusters are too divergent, making it hard for one model to acquire useful
knowledge from the other.

Next, we bound E[ut
ks] with respect to the true uks, for which we reply on the

following lemma [34]:

Lemma 6.1. Suppose Assumptions 6.3 and 6.4 hold. Denoting by E j,j′t the event
that a data point (xj, yj) ∼ Pj is incorrectly classified into cluster j′ ̸= j at t, there
exists a cϵ such that

P(E j,j′t ) ≤ pϵ
∆
=

cϵ
α2
0δ

4
(6.13)

Based on Lemma 6.1, we can bound E[ut
ks] as follows

Theorem 6.1. (Bounded estimation errors) The expectation of ut
ks is bounded as

E[ut
ks] ≤ (1− pϵ)uks + p′ϵ (6.14)

Here p′ϵ = pϵ + σ, and the expectation is taken over the randomness of samples.

Next, we seek to characterize each sub-problem hks at the γ0-inexact solution
wt+1

k that approximately minimizes hk. Intuitively, wt+1
k should perform better for

sub-problems with larger uks. On the other hand, if uks = 0, we generally cannot
expect that wt+1

k will be close to c∗s. We summarize this intuition in Theorems 6.2
and 6.3.

Theorem 6.2. (Inexact solutions of sub-problems) If uks > 0, and Assumptions 6.1
to 6.3 hold, then

∥∇hks(w
t
k; c

t
s)∥ ≤

γ√
uks

∥∇Fs(c
t
s)∥ (6.15)

where γ =
√

(γ2
0 + β)Lλ/µλ.

Theorem 6.3. (Divergence of local model to centers) If Assumptions 6.1, 6.3, and
6.4 hold, we have

∥wt+1
k − cts∥ ≤ r∆,∀s (6.16)

where r = γS+1
4

√
LF

µF
+ 1

2

√
µF

LF
+ 1.

Theorem 6.2 indicates that if the hk is solved with high quality wt+1
k (small

γ0), and the sub-problems are sufficiently similar (small β), then sub-problems with
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uks > 0 can also be well solved by wt+1
k . It also justifies using vtsk ∝ ut

ks as aggregation
weights in (6.6). In the case uks = 0, according to Theorem 6.3 (which holds for any
uks), approaching cts with wt

k will introduce an error of at most O(∆).

Finally, we show the convergence of Fs(c
t
s).

Theorem 6.4. (Convergence of centers) Suppose Assumptions 6.1 to 6.4 hold,
and define the quantities: n

∆
=
∑

k nk, ns
∆
=
∑

k uksnk,ms
∆
=
∑

k,uks ̸=0 nk, m̄s
∆
=∑

k,uks=0 nk, m̂s
∆
= (1 − pϵ)ms + p′ϵ

∑
k,uks ̸=0

nk

uks
. Suppose λ is chosen such that

ρ
∆
= ns−γms

λ
− (γ+1)LFms

µλλ
− p′ϵm̄s

2µλ
− LF (γ+1)2m̂s

2µ2
λ

− 4LF (γ+1)2m̂s

µ2
λ

√
K

− (γ+1)2m̂s+(1−pϵ)ns+p′ϵn

µλ

√
2K

> 0

and denote R
∆
= 1

2
(µλ + LF ) m̄sr

2 + (4LF+µλ)m̄sr2√
K

. Then we have

E[Fs(c
t+1
s )]− Fs(c

t
s)

≤− ρ∥∇Fs(c
t
s)∥2

(1− pϵ)ns + p′ϵn
+

p′ϵR∆2

(1− pϵ)ns − p′ϵ(S − 2)n

(6.17)

at any time t, where the expectation is taken over the selection of clients and all
{ut

ks}.
Corollary 6.1. Suppose Fs(c

0
s)− F ∗

s = Bs. After T iterations,

T∑
t=1

ρE∥∇Fs(c
t
s)∥2

(1− pϵ)ns + p′ϵn
≤ Bs

T
+O(pϵ∆

2) (6.18)

The choices of λ to make ρ > 0 is discussed in [52]. From Corollary 6.1, the
gradient norm converges to a remaining error controlled by pϵ. Intuitively, when
cts = c∗s, further updating cts with misclassified models will inevitably move cts away
from c∗s. This bias cannot be removed unless we have a perfect guess of uks. Recall
that pϵ = O( 1

δ4
), and thus the remaining term is O(∆

2

δ4
), which decreases as ∆

approaches δ. Thus, FedSoft performs better when the divergences between clusters
are more homogeneous. Note that Corollary 6.1 seems to imply the remaining
error will explode if δ → 0, but Lemma 6.1 is only valid when pϵ < 1. Thus when
δ is very small, i.e., there exist two distributions that are extremely similar, the
remaining error is determined by the maximum divergence of the other distributions.
Furthermore, the divergence ∆ determines the degree of non-IID of a local dataset
(not among clients), which also implicitly affects the accuracy of local solutions γ0.
Intuitively, a larger ∆ implies it is more difficult to exactly solve a local problem
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involving multiple distributions, resulting in a greater γ0.

To see the role of cluster heterogeneity, suppose ∥c∗1 − c∗2∥ is closer than the
distance of all other centers to c1, then the misclassified samples for cluster 1 are
more likely to be matched to cluster 2. Thus, cluster 2 gets more updates from data
that it does not own, producing greater remaining training error that drags its center
towards cluster 1. On the other hand, if the cluster divergence is homogeneous,
then the effect of mis-classification is amortized among all clusters, resulting in a
universally smaller remaining error.

Theorem 6.4 shows the convergence of cluster models {cs} in terms of the cluster
risks {Fs}. For the local models {wk}, we focus on how clients integrate global
knowledge into their local personalizations, which cannot be captured only with the
original client risk functions {fk(w)}. Thus, we are interested in the convergence
performance of {wk} with respect to the proximal objective {hk}. Note that under
Assumption 6.3, FedSoft is effectively a cyclic block coordinate descent algorithm
on a jointly convex objective function of {wk} and {cs}, for which the convergence
is guaranteed:

Theorem 6.5. (Joint convergence of cluster and client models) For fixed impor-
tance weights ũ, let w∗, c∗ = argmin

∑N
k=1 hk(wk; c, ũk), and wT , cT be the outputs of

FedSoft. Then wT → w∗, cT → c∗ linearly with T .

The impact of τ on the convergence. Note that τ only affects the accuracy
of the importance weight estimations ut

ks, which determines the estimation error pϵ.

To incorporate τ into the analysis, we first generalize Assumption 6.4 as follows
[34]

∥cts − c∗s∥ ≤ (0.5− αt)
√

µF/LF δ, ∀s (6.19)

where 0 < αt ≤ 0.5 for all t.

If the algorithm works correctly, the distance between cts and c∗s should decrease
over time, thus αt will gradually increase from α0 to 0.5. Then we can change the
definition of pϵ in Lemma 6.1:

P(E j,j′t ) ≤ pt,τϵ
∆
=

cϵ
α2
τ⌊t/τ⌋δ

4
(6.20)

Here we replace α0 with ατ⌊t/τ⌋, which takes the same value within each estimation
interval. Since we expect αt to be increasing, we have ατ⌊t/τ⌋ ≤ αt. Thus, the
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estimation error pt,τϵ increases when we choose a larger interval τ . Plugging this new
definition of pt,τϵ to Corollary 6.1 we have

T∑
t=1

ρt,τE∥∇Fs(c
t
s)∥2

(1− pt,τϵ )ns + (pt,τϵ )′n
≤ Bs

T
+O(p0,τϵ ∆2) (6.21)

where ρt,τ is defined by replacing all pϵ with pt,τϵ . This gives us the same asymptotic
convergence rate with time as in Corollary 6.1, except for small differences in constant
terms.

6.5 Experiments

In this section, we verify the effectiveness of FedSoft with two base datasets under
various mixture patterns.

6.5.1 Experiment Settings

For all experiments, we use N = 100 clients, and the number of samples in each
client nk is chosen uniformly at random from 100 to 200. For ease of demonstration,
for every base dataset, we first investigate the mixture of S = 2 distributions and
then increase S. In the case with two distributions, suppose the cluster distributions
are named DA and DB. We evaluate the following partition patterns:

• 10:90 partition: 50 clients have a mixture of 10% DA and 90% DB, and 50
have 10% DB and 90% DA.

• 30:70 partition: Same as above except the ratio is 30:70.

• Linear partition: Client k has (0.5 + k)% data from DA and (99.5− k)% data
from DB, k = 0, · · · , 99.

We further introduce the random partition, where each client has a random
mixture vector generated by dividing the [0, 1] range into S segments with S − 1

points drawn from Uniform(0, 1). We use all four partitions for S = 2, and only use
the random partition when S > 2 for simplification. Each partition produces non-IID
local distributions, i.e., clients have different local data distributions. Specifically, the
10:90 and 30:70 partitions yield 2 local distributions, while the linear and random
partitions yield 100. Unless otherwise noted, we choose FedSoft’s estimation interval

139



τ = 2, client selection size K = 60, counter smoother σ = 1e-4, and all experiments
are run until both cluster and client models have fully converged. All models are
randomly initialized with the Xavier normal [35] initializer without pre-training,
so that the association among clients, centers, and cluster distributions is built
automatically during the training process.

We compare FedSoft with two baselines: IFCA [34] and FedEM [59]. Both
baseline algorithms produce one center for each cluster, but they do not explicitly
generate local models as in FedSoft. Nevertheless, they also estimate the importance
weights for each client, and we thus use the center corresponding to the largest
importance weight as a client’s local model. Since we expect cluster models will be
deployed to new users, we evaluate their test accuracy/error on holdout datasets
sampled from the corresponding cluster distributions. For local models, they are
expected to fit the local data of participating clients, we hence evaluate their
accuracy/error on local training datasets. Throughout this section, we use c̄ and
w̄ to represent the average accuracy/error of the cluster and client models, not the
accuracy/error of the averaged models.

We use two base datasets to generate the various cluster distributions. A different
model is adopted for each dataset.

• Synthetic Data. We generate synthetic datasets according to yi = ⟨xi, θs⟩+ ϵi

where θs ∼ N (0, σ2
0I10), xi ∼ N (0, I10), ϵi ∼ N (0, 1) [34]. Unless otherwise

noted, we use σ0 = 10. We use a conventional linear regression model without
the intercept term. All clients use Adam as the local solver. The number
of local epochs equals 10, batch size equals 10, and the initial learning rate
equals 5e-3. The same solver is used for both FedSoft and the baselines. The
regularization weight λ = 1.0 for FedSoft.

• EMNIST Letters. We use the handwritten images of English letters in the
EMNIST dataset to create 2 distributions for the lower and uppercase letters
[36], each with 26 classes. Then we rotate these images counterclockwise by 90°
[56], resulting in 4 total distributions. In the S = 2 setting we compare the two
0° distributions. A rotation variant CNN model is used for this dataset. We
use a CNN model comprising two convolutional layers with kernel size equal to
5 and padding equal to 2, each followed by the max-pooling with kernel size
equal to 2, then connected to a fully-connected layer with 512 hidden neurons
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followed by ReLU. All clients use Adam as the local solver, with the number
of local epochs equal to 5, batch size equal to 5, and initial learning rate equal
to 1e-5. The same solver is used for both FedSoft and the baselines. The
regularization weight λ = 0.1 for FedSoft.

In general, the letter distributions share more similarities with each other, while
the synthetic distributions are more divergent, e.g., letters like “O” have very similar
upper and lowercase shapes and are invariant to rotations. On the other hand, data
generated from y = x and y = −x can be easily distinguished. We thus expect
the mixture of synthetic data to benefit more from the personalization ability of
FedSoft.

6.5.2 Performance Evaluation

The typical convergence process of FedSoft is shown in Figure 6.1 for the mixture
of two synthetic distributions under the 10:90 partition. The left/right columns
represent the first/second distributions. Center indices are assigned randomly in
the beginning. The importance weight estimations ūt

a:b are averaged on clients with
the mixture coefficients a : b (i.e., they have the same local distribution). In this
example of the synthetic data, FedSoft is able to automatically distinguish the two
cluster distributions. After around 5 global epochs, center 1 starts to exhibit strength
on the first cluster distribution, and center 0 concentrates on the other, which
implies a correct association between centers and cluster distributions. Similarly, the
importance weight estimations ut

ks, which are initially around 50:50, soon converge
to the real mixture ratio 10:90.

Table 6.1 lists the mean squared error (MSE) or accuracy of the output cluster
models. Each row represents the distribution of a test dataset. The center with the
smallest error or highest accuracy is underlined for each test distribution. FedSoft
produces high quality centers under all mixture patterns. In particular, each center
exhibits strength on one distribution, which indicates that FedSoft builds correct
associations for the centers and cluster distributions. The performance gap between
two distributions using the same center is larger for the synthetic data. This is because
the letter distributions have smaller divergence than the synthetic distributions. Thus,
letter models can more easily transfer the knowledge of one distribution to another,
and a center focusing on one distribution can perform well on the other. Notably,
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Figure 6.1: Evolution of the test mean squared error of centers (top) and the importance
weight estimation of clients (bottom) over time

Figure 6.2: The clients’ estimation of importance weights on the first cluster (uTk0)

the 30:70 mixture has the worst performance for both datasets, which is due to
the degrading of local solvers when neither distribution dominates. Thus, the local
problems under this partition are solved less accurately, resulting in poor local models
and a large value of γ in Theorem 6.2, which then produces high training loss on
cluster models according to Theorem 6.4.

Table 6.2 compares FedSoft with the baselines. Here c∗lo/c∗up represents the
accuracy of the center that performs best on the lower/upper distribution, and the
number in the parenthesis indicates the index of that center. w̄ is the accuracy of
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Table 6.1: MSE or accuracy of cluster models for the mixture of two distributions

Synthetic data: mean squared error
10:90 30:70 Linear Random

c0 c1 c0 c1 c0 c1 c0 c1
θ0 68.4 29.5 44.2 49.6 38.2 59.1 42.2 60.6
θ1 21.8 58.6 41.3 36.3 47.1 27.8 42.7 27.0

EMNIST letters: accuracy (%)
10:90 30:70 Linear Random
c0 c1 c0 c1 c0 c1 c0 c1

Lower 68.9 70.3 65.9 65.8 71.8 71.7 72.0 72.5
Upper 74.6 73.3 70.1 70.4 73.9 74.1 77.7 77.2

Table 6.2: Comparison between FedSoft and baselines on the letters data

10:90 Linear
c∗lo c∗up w̄ c∗lo c∗up w̄

FedSoft 70.3(1) 74.6(0) 90.9 71.8(0) 74.1(1) 86.5
IFCA 58.5(0) 61.3(1) 65.2 55.4(0) 57.2(0) 62.9

FedEM 67.4(1) 69.8(1) 63.6 65.9(0) 69.0(0) 62.4

local models averaged over all clients. Not only does FedSoft produce more accurate
cluster and local models, but it also achieves better balance between the two trained
centers. Similarly, Figure 6.2 shows the importance estimation of clients for the first
cluster. FedSoft and IFCA are able to build the correct association (though the
latter is a hard partition), while FedEM appears to be biased to the other center by
putting less weights (< 0.5) on the first one.

Next, we evaluate the algorithm with the random partition for the mixture of
more distributions. Tables 6.3 and 6.4 show the MSE or accuracy of cluster models
for the mixture of 8 and 4 distributions on synthetic and letters data, where we
still observe high-quality outcomes and good association between centers and cluster
distributions.

6.5.3 Impact of Regularization Weight

In previous experiments on the letters dataset, we choose λ = 0.1, which is selected
through grid search. We show in Table 6.5 the accuracy of cluster and client models
for different choices of λ on the linear partition of letters dataset, while all other
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Table 6.3: Test MSE of centers for the mixture of 8 synthetic distributions with randomly
generated weights θ0 · · · θ7

c0 c1 c2 c3 c4 c5 c6 c7
θ0 62.2 62.7 64.0 63.2 61.4 57.6 63.7 61.9
θ1 65.0 67.8 69.4 65.8 64.3 67.1 64.2 64.5
θ2 60.1 59.9 57.8 58.6 62.6 63.2 60.0 59.9
θ3 96.8 95.4 96.8 98.8 93.2 93.8 95.3 96.8
θ4 86.1 89.8 91.8 87.3 85.4 86.6 85.6 84.9
θ5 161.2 160.3 156.0 160.0 164.7 167.3 162.0 163.6
θ6 110.2 106.7 104.8 109.0 111.0 107.8 111.5 110.1
θ7 34.5 33.8 34.8 33.9 34.2 34.1 34.4 35.0

Table 6.4: Test accuracy (%) of centers for the mixture of 4 distributions with original
and 90°-rotated letter images

c0 c1 c2 c3
0° 90° 0° 90° 0° 90° 0° 90°

Lower 71.5 67.6 71.3 67.3 71.3 67.6 72.3 67.3
Upper 70.2 71.7 70.8 71.3 70.3 71.9 70.3 71.0

parameters are kept unchanged. As we can see, when λ = 0, no global knowledge is
passed to clients, thus the local training is done separately without any cooperation,
resulting in poorly trained models. On the other hand, when λ is increased to 1,
the local updating is dominated by fitting the local model to the average of global
models, and the local knowledge is less emphasized, which also reduces the algorithm
performance.

Table 6.5: Accuracy of cluster and client models for different choices of λ

λ = 0 λ = 0.1 λ = 1
c0 c1 w̄ c0 c1 w̄ c0 c1 w̄

Lower 48.4 50.1 - 71.8 71.7 - 55.1 55.2 -
Upper 47.7 47.5 - 73.9 74.1 - 58.7 58.6 -
Local - - 72.7 - - 86.5 - - 63.6

6.5.4 Impact of Divergence in Distributions

Finally, we show how the divergence among different distributions ∆ affects the
performance of FedSoft. For this experiment we use the mixture of two synthetic
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distributions under the random partition, and we control the divergence by choosing
different values of σ0 (i.e. ∆ increases with σ0). As we can see, the MSE significantly
increases as the divergence between distributions gets larger, which validates Theorem
6.4.

Table 6.6: MSE of cluster and client models for different choices of σ0

σ0 = 1 σ0 = 10 σ0 = 50 σ0 = 100
c0 c1 w̄ c0 c1 w̄ c0 c1 w̄ c0 c1 w̄

θ0 5.9 4.2 - 42.2 60.6 - 225.3 89.9 - 782.4 454.4 -
θ1 3.2 4.6 - 42.7 27.0 - 117.6 89.9 - 432.8 812.0 -

Local - - 0.6 - - 4.96 - - 18.8 - - 78.3

6.6 Summary

This chapter proposes FedSoft, an efficient algorithm generalizing traditional clus-
tered federated learning approaches to allow clients to sample data from a mixture
of distributions. By incorporating proximal local updating, FedSoft enables simul-
taneous training of cluster models for future users, and personalized local models for
participating clients, which is achieved without increasing the workload of clients.
Theoretical analysis shows the convergence of FedSoft for both cluster and client
models, and the algorithm exhibits good performance in experiments with various
mixture patterns.
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6.7 Proof of Theorems

6.7.1 Proof of Theorem 6.1

Let Gki, i = 1, 2 · · · be some virtual group of client k’s data points that follow the
same distribution. Thus,

Proof.

E[ut
ks] ≤

1

nk

( ∑
Gki∼Ps

P (argmins′Fs′(Gki) = s) |Gki|

+
∑

Gki ̸∼Ps

P

(
argmins′Fs′(Gki) = s

)
|Gki|

)
+ σ

≤ 1

nk

(
nks +

∑
Gki ̸∼Ps

pϵ|Gki|
)

=
1

nk

(nks + pϵ(nk − nks)) + σ

=(1− pϵ)uks + p′ϵ

(6.22)

6.7.2 Proof of Theorem 6.2

Proof. For simplification we drop the dependency of cts in hk and hks. Take w∗
ks =

argminwks
hks(wks), we have
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(6.23)

Thus,
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µλ

Lλ

uks∥∇hks(w
t
k)∥2 ≤

(
γ2
0 + β

)
∥∇Fs(c

t
s)∥2 (6.24)

Reorganizing, we have

∥∇hks(w
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6.7.3 Proof of Theorem 6.3

Proof. Let s′ = argmaxsuks, we have uks′ ≥ 1
S
, thus
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(6.26)

6.7.4 Proof of Theorem 6.4

We first introduce the following lemma:

Lemma 6.2. E
[

ut
ksnk∑

k′ u
t
k′snk′

]
≤ E[ut

ksnk]E
[

1∑
k′ u

t
k′snk′

]
, where the expectation is taken

over {ut
ks}.

Proof. Let rt =
∑

k′ ̸=k u
t
k′snk′ , and note that ut

ks ⊥ rt since each client estimates its
ut
ks independently. Thus,
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We then formally prove Theorem 6.4:

Proof. For uks ̸= 0, define
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∆
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using Theorem 6.2, we have
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Next we bound ∥wt+1
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Therefore,
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Using the smoothness of Fs, we have
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Taking expectations over {ut
ks}, and applying Lemma 6.2, we have
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Next we incorporate the client selection.
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t+1
s,l , where ĉt+1
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Thus, we only need to bound E[Qt
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Note that Evts [w
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ĉt+1
s,l − c̄t+1

s

)∥∥∥∥∥
2


≤ 2

K2

K∑
l=1

ESelts,l

[∥∥ĉt+1
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Combining with (6.33), we can obtain
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hence,
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Combining (6.40), (6.43), and (6.48) we have
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Let λ be chosen such that ρ0 − 4LF (γ+1)2m̂s
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6.7.5 Proof of Theorem 6.5

Note that under Assumption 6.3, the sum of proximal objectives h(w1 · · ·wN , c1 · · · cS) =∑N
k=1 hk(wk; c, ũk) is jointly convex on (w1 · · ·wN , c1 · · · cS) for fixed ũk, and the train-

ing process of FedSoft can be regarded as a cyclic block coordinate descent algorithm
that sequentially updates w1 · · ·wN , c1 · · · cS while other blocks are fixed. This type
of algorithm is know to converge at least linearly to a stationary point [57].

To see why the averaging of centers correspond to the minimization of them,
simply set the gradients to zero

∇csh =
N∑
k=1

ũks (cs − wk) = 0 (6.51)

This implies the optimal c∗s equals

c∗s =
∑
k

ũkswk∑
k ũks

(6.52)

which is exactly the updating rule of FedSoft.
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Chapter 7

Conclusion and Future Directions

7.1 Conclusion

The objective of this thesis is to propose efficient frameworks and algorithms to
enable the collaborative use of data for mobile users in the presence of real-world
physical limitations and privacy protection requirements. Based on the privacy
characteristics of user data, we consider two types of mobile applications, and we
propose various approaches for each of them.

Chapters 2 and 3 focus on the first type of applications, where the data is assumed
to be publicly available or privacy insensitive and thus can be freely shared by all
users. Specifically, Chapter 2 investigates the possibility for users to co-use public
data through mobile caching, and we reveal the potential economic value of this
innovative caching system under the competition from existing caching tools. In
Chapter 3, we propose that user devices offload their training data in a device-to-
device manner to accelerate the training of machine learning models. We design an
offloading algorithm that optimally adapts to the network typologies.

Chapters 4 to 6 on the other hand concentrate on enhancing the cutting-edge
federated learning framework so as to facilitate the collaborative use of privacy-
sensitive user data. In Chapter 4, we introduce the client recruitment problem, and
show how our proposed recruitment strategy can prominently improve the accuracy
and efficiency of federated learning, leading to high quality training results within
reasonable time and budget limitations. In Chapter 5, we further consider how
to utilize updates from the recruited clients with more flexibility. We relax the
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traditional requirements for dedicated participation on federated learning devices,
and design new algorithms to incorporate more flexible device participation patterns
including incompleteness, inactivity, early departures and late arrivals. In Chapter
6, we discuss how to better leverage similarities between data at different clients.
We propose soft clustered federated learning, which allows each client to sample
data from multiple data distributions. We design efficient algorithms to relieve the
training burden of user devices, parallelize the training of cluster models and local
personalization, and enable different cluster models to exploit their similarities.

7.2 Future Directions

The theories and technologies revealed in this thesis may also facilitate future
investigation of other research directions.

Specifically, one may further combine the caching technology and federated learning
to tackle the physical constraint. In Chapter 2 we have discussed the sharing of
public data through mobile caching. Such a caching system may well be utilized in
federated learning for the storage of intermediate computation results (e.g. global
models). Furthermore, the caching technology can be naturally integrated into the
hierarchical federated learning system [1], which entails fine-grained modeling of the
network heterogeneity by partitioning the training process into multiple tiers. It
will be interesting to see how the placement of caching nodes interacts with this
edge architecture, and whether caching can help reduce the resource consumption
of federated learning. Likewise, combining flexible federated learning with FedSoft
(Chapters 5 and 6) can be an interesting direction to further improve the efficiency
of federated learning when the number of data distributions grows large.

The encrypted data exchange and machine learning technology can also be utilized
to tackle the privacy constraint. Cutting-edge cryptography tools provide strong
privacy guarantees for the exchange of user information. For example, protocols
built on top of the secure multi-party computation preemptive have been widely
adopted for generic data exchange tasks [114]. However, most secured communication
algorithms are resource consuming, involving multiple encryption and decryption
processes. Incorporating these tools in the resource restricted mobile environment
is an interesting challenge. Finally, directly purchasing the ownership of data from
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common users remains the most straightforward way of data co-use. The pricing
of user data therefore helps solve the privacy constraint with economic tools. The
price of user data reflects both the data suppliers’ value of their privacy, and
the consumers’ ability to gain profits from the data, e.g., through advanced data
engineering technology. Our client recruitment approach as depicted in Chapter 4 can
serve as a starting point for data pricing in the federated learning scenario. Recent
works on the design of incentive mechanisms to encourage the user participation in
federated learning [106, 108] may also be helpful.
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