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Abstract

Nowadays many important applications such as hiring, university admissions, and scientific peer review rely
on the collective efforts of a large number of individuals. These applications often operate at an extremely
large scale which creates both opportunities and challenges. On the opportunity side, the large amount
of data generated in these applications enables a novel data science perspective on the classical problem
of decision-making. On the challenge side, in many of these applications, human decision-makers need to
interact with various interfaces and algorithms, and follow various policies. When not carefully designed, such
interfaces, algorithms, and policies may lead to unintended consequences. Identifying and overcoming such
unintended consequences is an important research problem. In this thesis, we explore these opportunities and
tackle these challenges with a general goal of understanding and improving distributed human decision-making
in a principled manner.

One application where the need for improvement is especially strong is scientific peer review. On the one hand,
peer review is the backbone of academia, and scientific community agrees on the importance of improvement
of the system. On the other hand, peer review is a microcosm of distributed decision-making that features
a complex interplay between noise, bias, and incentives. Thus, insights learned from this specific domain
apply to many other areas where similar problems arise. All in all, in this thesis, we aim at developing a
principled approach towards scientific peer review—an important prerequisite for fair, equitable, and efficient
progression of science.

The three broad challenges that arise in peer review are noise, bias, and incentives. In this thesis, we work on
each of these challenges:

e Noise and reviewer assignment. A suitable choice of reviewers is a cornerstone of peer review: poor
assignment of reviewers to submissions may result in a large amount of noise in decisions. Nowadays,
the scale of many publication venues makes it infeasible to manually assign reviewers to submissions.
Thus, stakeholders rely on algorithmic support to automate this task. Our work demonstrates that
when such algorithmic support is not designed with application-specific constraints in mind, it can result
in unintended consequences, compromising fairness and accuracy of the process. More importantly, we
make progress in developing better algorithms by (i) designing an assignment algorithm with strong
theoretical guarantees and reliable practical performance, and (ii) collecting a dataset that enables other
researchers to develop better algorithms for estimating expertise of reviewers in reviewing submissions.

e Bias and policies. Human decision-making is susceptible to various biases, including identity-related
biases (e.g., race and gender) and policy-related biases (e.g., primacy effect). To counteract these biases
in peer review, it is crucial to design peer-review policies in an evidence-based manner. With this
motivation, we conduct a series of real-world experiments to collect evidence that informs stakeholders
in their policy decisions. Our work reveals that while some of the commonplace biases (e.g., herding)
are not present in peer review, there are other application-specific biases (e.g., resubmission bias) that
significantly impact decisions. Additionally, we demonstrate that reliable testing for biases in peer
review often requires novel statistical tools as off-the-shelf techniques may result in false conclusions.

e Incentives and reviewing. Honesty is a core value of science and peer review is built on the
assumption of honesty of everyone involved in the process. However, fierce competition in the academic
job market and the large power a single reviewer has over an outcome of a submission create incentives
for reviewers to consciously or subconsciously deviate from honest behavior. Our work offers (i) tools to
test for such deviations, (ii) empirical evidence of the presence of wrong incentives, and (iii) potential
solutions on how to incentivize reviewers to put more effort in writing high-quality reviews.
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Chapter 1

Introduction

The life of an individual is determined by decisions and judgements made by the individual themselves and
by other people. A long line of work in psychology (Asch, (1951} [ Tversky and Kahneman| (1974; [Shafir et al.
1993; |Gilovich et all 2002), economics (Friedman and Savage, [1948; |Keeney and Raiffal |[1976; [Kahneman and
Tversky, [1979; Bertrand and Mullainathan| |2004), and philosophy (where the studies of decision-making date
back to Aristotle) scrutinizes the principles of individual human judgement and decision-making.

More recently, intensification of various processes—increased number of job-seeking applicants, growth in
popularity of higher education, huge demand for carefully-annotated data—has resulted in an increased burden
on decision-makers. Indeed, it is no longer possible for a single recruiter to evaluate all candidates, a single
university admission officer cannot handle thousands of applications, and a single human cannot annotate
even a moderately sized dataset. Therefore, nowadays in many real-life applications the decision-making is
distributed across a large group of individuals who collectively work towards the common goal. Examples
of such distributed decision-making include crowdsourcing, admission and hiring committees, and scholarly
peer-review systems.

The amount of data generated in these distributed systems is often much larger than that generated
when a single individual is responsible for all the decisions. Hence, the prevalence of such systems allows
to tackle the problem of human decision-making from the perspective of data science, and, more generally,
computer science. On the other hand, the process of collective decision-making depends crucially on the
design of the system used to implement the process. In other words, decision-makers need to interact with
various interfaces and algorithms, and the design of these interfaces and algorithms may have a direct impact
on the quality of the final decisions. Thus, it is instrumental to use the arsenal of computer science to not
only understand the properties of distributed decision-making systems but also to design these systems in
a principled evidence-based manner. Thus, in this thesis we aim at pursuing the following broad research
direction:

Understanding and principled design of distributed human decision-making systems

Scientific Peer Review

One of the most important applications that rely on distributed decision-making is scientific peer review—the
backbone of academia (Smith| |2006; Price and Flachl 2017). Peer review is used to assess research work for
competence, significance and originality, and employs experts working in the same field to conduct these
evaluations (Brownl 2004; |Bornmann, |2011). Across many fields of science, peer review is regarded as
a tool to ensure high standards of published research (Mulligan et al., |2013|) and improve the quality of
research articles (Taylor and Francis groupl |2015). Overall, most scientists agree that peer review is a crucial
mechanism for scientific communications (Ware, 2016)).

Beyond the scientific community, publication in a peer-reviewed venue is also interpreted as a quality-
assurance sign by the media and general public (Smith, 2006]). For instance, a single research article



published in a prestigious journal that claimed that vaccines may predispose to behavioral regression in
children (Wakefield et al.| [1998]) received strong media coverage and resulted in a drop in acceptance of
vaccination (DeStefano and Chen| [1999). Although the findings of that article were quickly refuted by the
scientific community and the study was eventually retracted (Rao and Andrade, 2011)), the claims made
therein were causing vaccination fears for a long time (Larson et al. |2011). Thus, an important role of peer
review is to ensure that research findings are not misinterpreted by society.

Finally, in addition to being the cornerstone for the dissemination of completed research, peer review
nowadays plays a crucial role in shaping the directions of future research: it is used by funding bodies around
the world (including US agencies NSF and NIH, and European Research Council) to distribute multi-billion
dollar budgets through grants and awards. Thus, the review process should be able to identify the most
promising research directions in order to spend taxpayers’ money in the most effective way.

With all the roles peer review plays in the progression of science, it is extremely important to ensure that
the peer-review process constitutes a “mechanism for rational, fair, and objective decision-making” (Jefferson,

2002). However, an observation made by (2016)) in his Nature commentary indicates that there

is a large gap between the current and ideal states of peer review:

“Peer review [...] is a human system. Fverybody involved brings prejudices, misunderstand-
ings, and gaps in knowledge, so no one should be surprised that peer review is often biased
and inefficient. It is occasionally corrupt, sometimes a charade, an open temptation to plagia-
rists. FEven with the best of intentions, how and whether peer review identifies high-quality science
is unknown. It is, in short, unscientific.”

The opinion of Rennie is supported by anecdotal and empirical evidence that identifies various shortcomings
of the review system: gender bias (Bernstein, 2015; Tomkins et al., |2017)), strategic behavior (Anderson!
let al., 2007} |Langford, [2008; |Akst, 2010), wrong incentives (COPEL 2018; Van Noorden, 2020), and many
others (see overview by M@ . Importantly, in addition to the short-term impact on the outcome of a
particular paper or a grant proposal (Thurner and Hanell [2011]), these shortcomings may have far-reaching
consequences on the career trajectories of researchers due to the widespread prevalence of the rich-get-richer
effect in academia (Merton, 1968; Triggle and Trigglel |2007; [Squazzoni and Gandelli, 2012} |Thorngate and)|
|Chowdhuryl, [2014).

Overall, peer review is an application that is very important to improve. Simultaneously, it features
various challenging problems related to distributed decision-making, and insights learned from this specific
domain apply to many other areas where similar problems arise. With this motivation, we aim at developing
a principled approach towards scientific peer review—an important prerequisite for fair, equitable, and efficient
progression of science. Specifically, we focus on three broad challenges that arise in peer review: noise, bias,
and incentives.

Conference peer review The aforementioned problems with peer review are universal across various
fields of science. However, peer review in computer science has been put under additional strain due to
the nearly-exponential growth in the number of submissions received by leading venues (Figure . As a
result, computer science conferences faced the urgent need for algorithmic support. Thus, for concreteness, in
this thesis, we focus the discussion on computer science conferences which are considered to be at least as
prestigious as top journals in the area and are frequently the terminal venue of publication. That said, we
underscore that most of the tools, techniques, and insights we develop also apply to journal peer review.

Noise and Reviewer Assignment

Handling noise is one of the key challenges in learning from people (Shah) 2017; [Kahneman et al., 2021). In
peer review, noise manifests in erroneous evaluations of submissions under review. To minimize this noise,
it is of utmost importance to assign papers to the right reviewers (Black et al.,[1998; Thurner and Hanel,
[2011} Bianchi and Squazzoni, [2015)). Even a small fraction of incorrect reviews can have significant adverse
effects on the quality of the published scientific standard (Thurner and Hanel, 2011) and dominate the
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Figure 1: Number of submissions to two flagship computer science conferences. The figure is adapted from

the survey by [Shall

benefits yielded by the peer-review process that may have high standards otherwise (Squazzoni and Gandelli
2012). Thus, the importance of the assignment stage of the peer-review process cannot be overestimated;
quoting Rodriguez et al.| (2007):

“One of the first and potentially most important stage is the one that attempts to distribute
submitted manuscripts to competent referees.”

Historically, the allocation of papers to reviewers was manually conducted by journal editors or conference
program chairs. However, given the massive scale of many conferences such as NeurIPS and AAAI, these
assignments are largely performed in an automated manner. For instance, NeurIPS 2016 assigned 5 out of 6
reviewers per paper using an automated process (Shah et al.,[2018]). This problem of automated reviewer
assignment in conferences forms the focus of the first part of this thesis.

Conceptually, the assignment problem consists of two stages:

o Similarity computation The key component of the assignment are similarities: for each (submission,
reviewer) pair, a quantity that captures the competence of the reviewer in reviewing the submission
needs to be defined in order to formalize the notion of the assignment quality.

e Constrained optimization Having similarities computed, the goal is to assign papers to referees, optimizing
some notion of the assignment quality subject to certain load constraints.

Our work aims at developing a holistic approach towards the assignment stage. In that, Part [[| presents two
contributions towards this broad goal that we now discuss in more detail.

Similarity computation In Chapter 2] we focus on the problem of similarity computation. While there
are several algorithms developed for this problem (Charlin and Zemel, 2013; |(OpenReview, 2022)), these
algorithms have not been juxtaposed in a principled comparison. Consequently, three flagship computer
science conferences—ICML, NeurIPS, and ACL—rely on three different algorithms to compute similarities.
The key challenge towards comparing the existing algorithms is the lack of ground truth data and we address
this challenge by collecting a novel dataset of reviewers’ expertise. Our dataset comprises 58 computer science
researchers, ranging from graduate students to senior professors, each of whom self-reported expertise in
reviewing 5-10 papers they have read previously. We release the collected dataset and encourage researchers
in natural language processing (NLP) and other areas to use this data and design more accurate algorithms
for similarity computation. We also use this data to compare several popular algorithms currently used in
practice and come up with evidence-based recommendations for stakeholders. This chapter is based on joint
work with John Wieting, Graham Neubig, and Nihar Shah (forthcoming).

Constrained optimization In Chapter 3| we consider the problem of automated assignment of papers to
reviewers when similarities are given. Specifically, we focus on a dual objective of fairness and statistical
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accuracy. Our fairness objective is to maximize the review quality of the most disadvantaged paper, in
contrast to the commonly used objective of maximizing the total quality over all papers. We design an
assignment algorithm based on an incremental max-flow procedure that we prove is near-optimally fair. Our
statistical accuracy objective is to ensure correct recovery of the papers that should be accepted. We provide
a sharp minimax analysis of the accuracy of the peer-review process for a popular objective-score model as
well as for a novel subjective-score model that we propose. Our analysis proves that our proposed assignment
algorithm also leads to a near-optimal statistical accuracy. Finally, we design a novel experiment that allows
for an objective comparison of various assignment algorithms, and overcomes the inherent difficulty posed
by the absence of a ground truth in experiments on peer-review. The results of this experiment as well as
of other experiments on synthetic and real data corroborate the theoretical guarantees of our algorithm.
The algorithm we developed in this chapter was used in the assignment stage of the ICML 2020 conference
and significantly outperformed the conventional algorithm in terms of our fairness objective while being
competitive in terms of the objective of the conventional algorithm. This chapter is based on joint work with
Nihar Shah, and Aarti Singh (Stelmakh et al., 2021a).

Bias and Policies

Bias is another characteristic of human thinking that can compromise the fairness and accuracy of deci-
sions (Kahneman, [2011)). To alleviate the impact of biases, it is extremely important to design policies and
procedures of the peer-review process in a principled manner. As is the case for any scientific system, an
essential mechanism for principled development of peer review is the feedback loodﬂ However, in peer review,
policies established by the organizers are rarely evaluated in experiments due to logistical costs and other
difficulties. Hence, the feedback loop in peer review is broken, resulting in the process being designed in an
unscientific manner.

In Part [[] of this thesis, we describe a series of theoretical and experimental works that quantitatively
investigate the presence of several biases in peer review and inform stakeholders in making policy decisions.
In that, we focus on two types of biases:

o Identity-related biases ( Chapters and@ Gender, race, age and other identity-related biases are prevalent
in human decisions (Bendick et al.| |1996} Bertrand and Mullainathan|, 2004; Bendick and Nunes), |2011}
Quillian et al., |2017)). Several policies have been proposed to alleviate these biases in peer review,
including hiding author identities from reviewers (double-blind peer review) and banning authors from
posting their preprints online. Our work aims at helping organizers to estimate the efficacy of these
policies in order to make informed decisions.

e Policy-related biases (Chapters @ and @ Throughout the review process, reviewers need to complete
various tasks, interacting with different interfaces, framings, and policies. Research in psychology has
demonstrated the importance of careful design of such interfaces, framings, and policies as otherwise
they can bias human decisions (Tversky and Kahneman, (1974} |1981}; |Gilovich et al., [2002). Thus, we
conduct real-world experiments to guide the principled design of the review process with policy-related
biases in mind.

Let us now discuss the content of Part [Tl in more detail.

Identity-related biases In Chapter [4) we contribute to a long-standing debate on whether exposing
author identities to reviewers induces biases against certain groups, and our focus is on designing tests to
detect the presence of such biases. Our starting point is a remarkable work by Tomkins, Zhang and Heavlin
which conducted a controlled, large-scale experiment to investigate existence of biases in the peer reviewing
of the WSDM conference. We present two sets of results: the first set of results is negative, and pertains to
the statistical tests and the experimental setup used in the work of Tomkins et al. We show that the test
employed therein does not guarantee control over false alarm probability and under correlations between
relevant variables coupled with any of the following conditions, with high probability, can declare a presence of

IFeedback loop is the process of testing new ideas and adjusting them based on the outcome of the test.
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bias when it is in fact absent: (a) measurement error, (b) model mismatch, (c) reviewer calibration. Moreover,
we show that the setup of their experiment may itself inflate false alarm probability if (d) bidding is performed
in non-blind manner or (e) popular reviewer assignment procedure is employed. Our second set of results is
positive and is built around a novel approach to testing for biases that we propose. We present a general
framework for testing for biases in (single vs. double blind) peer review. We then design hypothesis tests
that under minimal assumptions guarantee control over false alarm probability and non-trivial power even
under conditions (a)—(c) as well as propose an alternative experimental setup which mitigates issues (d) and
(e). Finally, we show that no statistical test can improve over the non-parametric tests we consider in terms
of the assumptions required to control for the false alarm probability. This chapter is based on joint work
with Nihar Shah and Aarti Singh (Stelmakh et al., 2019).

While single-blind conferences debate whether they should switch to the double-blind mode or not,
double-blind conferences have engaged in debates over whether to allow authors to post their papers online
on arXiv or elsewhere during the review process. Independently, some authors of research papers face the
dilemma of whether to put their papers on arXiv due to its pros and cons. In Chapter [5] we report the
results of the study that substantiates this debate and dilemma via quantitative measurements. Specifically,
we conducted surveys of reviewers in two top-tier double-blind computer science conferences—ICML 2021
(5361 submissions and 4699 reviewers) and EC 2021 (498 submissions and 190 reviewers). Our two main
findings are as follows. First, more than a third of the reviewers self-report searching online for a paper
they are assigned to review. Second, outside the review process, we find that preprints from better-ranked
affiliations see a weakly higher visibility, with a correlation of 0.06 in ICML and 0.05 in EC. In particular,
papers associated with the top-10-ranked affiliations had a visibility of approximately 11% in ICML and 22%
in EC, whereas the remaining papers had a visibility of 7% and 18% respectively. This chapter is based on
joint work with Charvi Rastogi, Xinwei Shen, Marina Meila, Federico Echenique, Shuchi Chawla, and Nihar
Shah (Rastogi et al., 2022b)).

Policy-related biases Moving to the policy-related biases, Chapter [f] is motivated by an observation
that modern machine learning and computer science conferences are experiencing a surge in the number
of submissions that challenges the quality of peer review as the number of competent reviewers is growing
at a much slower rate. To curb this trend and reduce the burden on reviewers, several conferences have
started encouraging or even requiring authors to declare the previous submission history of their papers.
Such initiatives have been met with skepticism among authors, who raise the concern about a potential bias
in reviewers’ recommendations induced by this information. In this chapter, we investigate whether reviewers
exhibit a bias caused by the knowledge that the submission under review was previously rejected at a similar
venue, focusing on a population of novice reviewers who constitute a large fraction of the reviewer pool in
leading machine learning and computer science conferences. We design and conduct a randomized controlled
trial closely replicating the relevant components of the peer-review pipeline with 133 reviewers (master’s, junior
PhD students, and recent graduates of top US universities) writing reviews for 19 papers. The analysis reveals
that reviewers indeed become negatively biased when they receive a signal about paper being a resubmission,
giving almost 1 point lower overall score on a 10-point Likert item (A = —0.78, 95% CI = [—1.30, —0.24])
than reviewers who do not receive such a signal. Looking at specific criteria scores (originality, quality, clarity
and significance), we observe that novice reviewers tend to underrate quality the most. This chapter is based
on joint work with Nihar Shah, Aarti Singh, and Hal Daumé III (Stelmakh et al.| [2021d).

Finally, in Chapter [7| we focus on the dynamics of discussions between reviewers and investigate the
presence of herding behaviour therein. Specifically, we aim to understand whether reviewers and discussion
chairs get disproportionately influenced by the first argument presented in the discussion when (in case of
reviewers) they form an independent opinion about the paper before discussing it with others. In conjunction
with the review process of ICML 2020, we design and execute a randomized controlled trial that involves
1,544 papers and 2,797 reviewers with the goal of testing for the conditional causal effect of the discussion
initiator’s opinion on the outcome of a paper. Our experiment reveals no evidence of herding in peer-review
discussions. This observation is in contrast with past work that has documented an undue influence of the
first piece of information on the final decision (e.g., anchoring effect) and analyzed herding behaviour in
other applications (e.g., financial markets). Regarding policy implications, the absence of the herding effect



suggests that the current status quo of the absence of a unified policy towards discussion initiation does not
result in an increased arbitrariness of the resulting decisions. This chapter is based on joint work with Charvi
Rastogi, Nihar Shah, Aarti Singh, and Hal Daumé III (Stelmakh et al., [2020).

Incentives and Reviewing

Even when the process is optimally designed to handle noise and bias, the overall quality of decisions is
contingent upon reviewers being honest and motivated to write high-quality reviews. While there is no
doubt that most reviewers honestly invest their time and effort to advance science, large workloads (McCookl,
2006]) and strong competition in the academic job market (Alberts et al.l |2014) may create wrong incentives
for reviewers, leading to superficial reviewing (Teixeira da Silva and Al-Khatib, 2017) or even strategic
behavior (Resnik et all 2008; [Langford), |2012a).

In Part [[TI] of the thesis, we focus on the problem of incentives and motivation of reviewers, considering
two aspects:

e Deviations from honest behavior (Chapters @ and @ Empirical evidence documents various cases in
which reviewers deviate from honest behavior to achieve personal benefits (Resnik et al.l |2008; Fong
and Wilhite, 2017; |COPE; [2018]). To help venue organizers in making informed decisions on what
interventions need to be taken to minimize the impact of strategic behavior, we design tools and conduct
real-world studies to quantify the presence of strategic behavior in peer review.

e Quality of reviews ( C’hapter@) To keep up with the growth in the number of submissions (Figure , it
is necessary to enlarge the pool of reviewers. The key challenge on this way is to not sacrifice the quality
of reviews and our work investigates an interplay between motivation and review quality.

Let us now discuss the content of Part [Tl in more detail.

Deviations from honest behavior In Chapter |8, we consider the issue of strategic behaviour in com-
petitive peer review (e.g., when the number of accepted papers is predetermined and the sets of authors
and reviewers coincide). In this setting, reviewers may be incentivized to misreport evaluations in order to
improve their own final standing. Our focus is on designing methods for detection of such manipulations.
Specifically, we consider a setting in which reviewers evaluate a subset of papers submitted to a conference
and output rankings that are later aggregated to form a final ordering. In that, we investigate a statistical
framework for this problem and design principled tests for detecting strategic behaviour. We prove that our
tests have strong false alarm guarantees and evaluate their detection ability in practical settings. For this,
we design and conduct an experiment that elicits strategic behaviour from subjects and release a dataset of
patterns of strategic behaviour that may be of independent interest. We use the collected data to perform a
series of real and semi-synthetic evaluations that reveal a strong detection power of our tests. This chapter is
based on joint work with Nihar Shah and Aarti Singh (Stelmakh et al., 2021b).

In Chapter [9] we investigate incentives that are not related to the outcome of submissions authored by
the reviewer. For this, we observe that citations play an important role in researchers’ careers as a key factor
in evaluation of scientific impact. Many anecdotes advice authors to exploit this fact and cite prospective
reviewers to try obtaining a more positive evaluation for their submission. In this chapter, we investigate
if such a citation bias actually exists: Does the citation of a reviewer’s own work in a submission cause
them to be positively biased towards the submission? In conjunction with the review process of two flagship
conferences in machine learning and algorithmic economics, we execute an observational study to test for
citation bias in peer review. In our analysis, we carefully account for various confounding factors such as paper
quality and reviewer expertise, and apply different modeling techniques to alleviate concerns regarding the
model mismatch. Overall, our analysis involves 1,314 papers and 1,717 reviewers and detects citation bias in
both venues we consider. In terms of the effect size, by citing a reviewer’s work, a submission has a non-trivial
chance of getting a higher score from the reviewer: an expected increase in the score is approximately 0.23
on a 5-point Likert item. For reference, a one-point increase of a score by a single reviewer improves the
position of a submission by 11% on average. This chapter is based on joint work with Charvi Rastogi, Ryan
Liu, Shuchi Chawla, Federico Echenique, and Nihar Shah (Stelmakh et al.| [2022).
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Quality of reviews Chapter [10]is dedicated to reviewer recruiting with a focus on the scarcity of qualified
reviewers in large conferences. Specifically, we design a procedure for (i) recruiting highly-motivated reviewers
from the population not typically covered by major conferences and (ii) guiding them through the reviewing
pipeline. In conjunction with ICML 2020 we recruit a small set of reviewers through our procedure and
compare their performance with the general population of ICML reviewers. Our experiment reveals that a
combination of the recruiting and guiding mechanisms allows for a principled enhancement of the reviewer
pool and results in reviews of superior quality compared to the conventional pool of reviews as evaluated by
senior members of the program committee (meta-reviewers). This chapter is based on joint work with Nihar
Shah, Aarti Singh, and Hal Daumé IIT (Stelmakh et al.| [2021c)).

The discussion in this thesis is focused on peer review, but we note that the high-level insights and
intuitions are also applicable to many other areas, including hiring, university admissions, and crowdsourcing.
Three parts that follow below and chapters within these parts are written in a mostly independent fashion,
allowing the reader to choose any order of reading them or to skip any of them without a significant loss in
context.



Part 1

Noise and Reviewer Assignment



Chapter 2

A Gold Standard Dataset for the
Reviewer Assignment Problem

1 Introduction

Assignment stage is the most automated stage of the peer-review process. The key component of existing
approaches to the submission-reviewer assignment is the notion of the assignment scoreﬂ a quantity that
captures the expertise of the reviewer in reviewing the submission for each (submission, reviewer) pair. Several
algorithms for computing assignment scores have been already proposed and used in practice. These algorithms
rely on (i) textual content of submissions and reviewers’ past papers, (ii) subject areas of submissions and
reviewers, and (iii) other sources of information to estimate expertise of reviewers in reviewing submissions
(we review these algorithms in Sections [2| and . However, the development of expertise-estimation algorithms
has not been following the standard scientific path of iteratively improving the algorithms based on their
practical performance. Instead, different existing algorithms are developed independently and are used in
parallel without a clear notion of their relative performance: for example, three flagship machine learning
conferences—ICML, NeurIPS, and ACL—rely on three different expertise-estimation algorithms.

The main hurdle towards the principled comparison of the expertise-estimation algorithms, and, more
generally, towards the development of better algorithms is the absence of gold standard data. Indeed, the
practical performance of any machine learning model depends heavily on the quality of data it is trained
and evaluated on (Garbage in, garbage out, [Babbagel 1864]). However, there is no high-quality dataset of
reviewers’ expertise in reviewing submissions that is openly available to researchers. Moreover, peculiarities of
the review process make it challenging to collect such a dataset: while data from actual review processes often
contains self-reported evaluations (both ex-ante and ex-post) of expertise in reviewing submissions (Stelmakh
et al.l [2021c} 2022)), this data (i) usually cannot be released without compromising the privacy of reviewers,
and (ii) may be biased or noisy (see additional discussion in Section [2)).

In this chapter, we address this challenge and collect a dataset of reviewers’ expertise that can facilitate
the progress in the reviewer assignment problem. Specifically, we conduct a survey of 58 computer science
researchers whose experience level ranges from graduate students to senior professors. In the survey, we ask
participants to report their expertise in reviewing 5-10 computer science papers they read over the last year.

Contributions Overall, our contributions are threefold:

e Fist, we collect and release a high-quality dataset of reviewers’ expertise that can be used for training
and/or evaluation of expertise estimation algorithms.

e Second, we use the collected dataset to compare existing expertise-estimation algorithms and inform
organizers in making a principled choice for their venue.

'n this section, we use terms assignment score and similarity interchangeably.
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e Third and finally, we conduct an exploratory analysis that highlights areas of improvement for existing
algorithms and our insights can be used to develop better algorithms to improve peer review.

Let us now make two important remarks. First, while our dataset focuses on computer science, other
communities may also use it to evaluate existing or develop new expertise-estimation algorithms. Indeed, to
evaluate an algorithm from another domain on our data, it is sufficient to fine-tune the algorithm on profiles
of computer science researchers crawled from semantic scholar and then evaluate it on our dataset.

Second, we underscore that the dataset we release is not set in stone. Instead, we release an initial version
and encourage readers of this thesis to participate in our survey and contribute their data to the dataset.
By collecting more samples, we enable more fine-grained comparisons and also improve the diversity of the
dataset in terms of both population of participants and subject areas of papers. The survey is available at:

https://forms.gle/rUV8hikwDRXZ3BTNA

and we will be updating the released version regularly.

2 Related literature

In this section, we discuss relevant past studies. We begin with an overview of works that report comparisons
of different expertise-estimation algorithms. We then provide a brief discussion of the procedure used in
modern computer science conferences to compute assignment scores that are eventually used to allocate
reviewers to submissions. Finally, we conclude with a list of works that design algorithms to automate other
aspects of the reviewer assignment.

Evaluation of expertise-estimation algorithms OpenReview team (OpenReview, |[2022) uses a heuristic
approach to evaluate algorithms. In that, they consider papers authored by a number of researchers, remove
one of these papers from the corpus, and predict expertise of each researcher in reviewing the selected paper.
The performance of an algorithm then is measured as a fraction of times the author of the selected paper is
predicted to be among the top reviewers for this paper. This heuristic, however, may lead to noisy results as
algorithms that accurately predict the authorship relationship (and hence do well according to this approach)
are not guaranteed to accurately estimate expertise in reviewing submissions authored by other researchers.

Rodriguez and Bollen| (2008)) and |Anjum et al.| (2019)) rely on a different approach of querying expertise
evaluations from reviewers and comparing predictions of the algorithms against these evaluations. In that,
Rodriguez and Bollen! (2008)) rely on ez-ante bids—preferences of reviewers in reviewing submissions made
in advance of reviewing. In contrast, Anjum et al.| (2019) rely on ex-post evaluations of expertise made by
reviewers after reviewing the submissions. Both of these works conduct small-scale evaluations to compare
algorithms (Rodriguez and Bollen| (2008) employ 102 papers and 69 reviewers, [Anjum et al.|(2019) employ
20 papers and 33 reviewers). However, both works use sensitive data that cannot be released without
compromising the privacy of reviewers. Additionally, ex-ante evaluations of [Rodriguez and Bollen| (2008)
may be not very accurate as (i) bids may contaminate expertise judgments with willingness to review
submissions and (ii) bids are based on a very brief acquaintance with papers. On the other hand, ez-post
data by |Anjum et al.| (2019) is collected for papers assigned to reviewers using a specific expertise-estimation
algorithm. Thus, while collected evaluations have high precision, they may also have low recall if the employed
expertise-estimation algorithm erroneously assigned low expertise scores to some (paper, reviewer) pairs as
evaluations of expertise for such papers were not observed.

Mimno and McCallum| (2007)) use a clever idea to collect a dataset that can be released publicly. For
this, they use 148 papers accepted to the NeurIPS 2006 conference and 364 reviewers from the NeurIPS
2005 conference and ask human annotators (independent established researchers) to evaluate expertise for a
selected subset of 650 (paper, reviewer) pairs. While this approach results in a publicly available dataset, we
note that external expertise judgments may also be noisy as judges may have incomplete information about
the expertise of reviewers.
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In this work, we aim at collecting a novel dataset of reviewer expertise that (i) can be released publicly
and (ii) contains accurate self-evaluations of expertise that are based on a deep understanding of the paper
and are not biased towards any existing expertise-estimation algorithm.

Assignment scores in conferences In modern conferences, assignment scores are typically computed by
combining two types of input:

e [Initial automated estimates First, an expertise-estimation algorithm is used to compute initial estimates.
Many algorithms have been proposed for this task (Mimno and McCallum, [2007; [Rodriguez and Bollen),
2008; |(Charlin and Zemel, 2013} [Liu et al., 2014; [Tran et al., 2017; [Anjum et al.l |2019; (OpenReview,
2022) and we provide more details on several algorithms used in flagship computer science conferences in
Section

e Human corrections Second, automated estimates are corrected by reviewers who can read abstracts of
submissions and report bids—preferences in reviewing the submissions. A number of works focus on the
bidding stage and (i) explore the optimal strategy to assist reviewers in navigating the pool of thousands
submissions (Fiez et al., [2020) or (ii) protect the system from strategic bids made by colluding reviewers
willing to get assigned to each other’s paper (Jecmen et al., [2020; [Wu et al.| |2021; |Jecmen et al.| 2022]).

Combining these two types of input in a principled manner is a non-trivial task. As a result, different
conferences use different strategies (Shahj 2022) and there is a lack of empirical or theoretical evidence that
would guide venue organizers in their decisions.

Automation of the assignment stage At high level, automated assignment stage consists of two steps:
first, assignment scores are computed; second, reviewers are allocated to submissions such that some notion of
assignment quality (formulated in terms of the assignment scores) is maximized. In this chapter, we focus on
the first step of the process. However, for completeness, we now mention several works that design algorithms
for the second step.

A popular notion of assignment quality is the cumulative assignment score, that is, the sum of the
assignment scores across all assigned reviewers and papers. An algorithm pursuing such an objective is
implemented in the widely employed TPMS assignment algorithm (Charlin and Zemel, 2013) and similar
ideas are explored in many papers (Goldsmith and Sloan, |2007; Tang et al.l |2010; |Long et al.l 2013]). While
the cumulative objective is a natural choice, it has been observed that it can discriminate some submissions
by assigning all irrelevant reviewers to a subset of submissions when a more balanced assignment exists (Garg
et al.l 12010). Thus, a number of works has explored the idea of assignment fairness, aiming at producing
more balanced assignments (Kobren et al. 2019; [Stelmakh et al., [2021a). Finally, other works explore the
ideas of envy-freeness (Tan et al., |2021; |Payan) 2022)) and diversity (Li et al.l [2015]).

3 Data collection pipeline

In this section, we describe the process of data collection. Before we delve into details, we note that in
this work we target computer science as the primary application area and tailor our data-collection process
accordingly. We reiterate, however, that other communities may also use our dataset by fine-tuning their
existing algorithms on profiles of computer science researchers and applying them to our dataset. In addition,
we note that the data collection and release was performed under the approval of an institutional review
board, with appropriate consent by the participants.

Gold standard We begin with a discussion of the gold standard data for computation of assignment scores.
The gold standard dataset should satisfy two desiderata. First, it should comprise accurate evaluations of
expertise of researchers in reviewing papers. In this work, we rely of self-evaluations of expertise. Thus, to
collect high quality of data, it is important to ensure that researchers are familiar with papers for which they
evaluate their expertise. Additionally, the dataset should be constructed such that it can be released publicly
without disclosing any sensitive information.

11



Let us now discuss our approach to recruiting participants and obtaining accurate estimates of their
expertise in reviewing papers included in the dataset.

Participant recruiting We recruited participants using a combination of several channels that are typically
employed to recruit reviewers for computer science conferences:

e Mailing lists First, we sent recruiting emails to relevant mailing lists of several universities and research
departments of companies.

e Social media Second, two authors of this work posted a call for participation on their Twitter accounts.

e Personal communication Third, we sent personal invites to researchers from the network of authors of
this work.

To ensure that the pool of participants is limited to computer science researchers, we introduced a
screening criterion requiring that prospective participants have at least one paper published in the broad
area of computer science.

Overall, for the initial version of the dataset we release in this work, we managed to recruit 58 participants,
all of whom passed the screening. Among the aforementioned three channels, personal communication ended
up being the most successful and most of the participants joined the data-collection process after receiving
the personalized request.

Expertise evaluations The key idea of our approach to expertise evaluation is to ask participants to
evaluate their expertise in reviewing papers they read in the past. Indeed, after reading a paper, a researcher
is at the best possible position to evaluate whether they have the right background—both in terms of the
techniques used in the paper and in terms of the broader research area of the paper—to judge the quality of
the paper. With this motivation, participants of the survey were asked to:

Recall 5-10 papers in their broad research area that they read to a reasonable extent in the last
year and tell us their expertise in reviewing these papers.

In more detail, the choice of papers was constrained by two minor conditions:

e The papers reported by a participant should not be authored by them
e The papers reported by a participant should be freely available online

In addition to these constraints, we gave several recommendations to the participants in order to make
the dataset more diverse and useful for the research purposes:

e First, we asked participants to choose papers that cover the whole spectrum of their expertise with some
papers being well-separated (e.g., very high expertise and very low expertise) and some papers being
nearly-tied (e.g., two medium-expertise papers).

e Second, we recommended participants to avoid ties in their evaluations. To help participants comply
with this recommendation, we implemented evaluation on a 1 to 5 scale with a 0.25 step size. Thus,
participants were able to report papers with small differences in expertise.

e Third, we asked participants to come up with papers that they think may be tricky for existing expertise
estimation algorithms. In that, we relied on the commonsense understandings and did not instruct
participants on the inner-workings of these algorithms.

Overall, the time needed for participants to contribute to the dataset is estimated to be 5-10 minutes (one
minute per paper). The interface of the survey is available at https://forms.gle/rUV8hikwDRXZ3BTNA.

Data release Following the procedure outlined above, we collected responses from 58 researchers. These
responses constitute an initial version of the dataset that we release in this work. Each entry in the dataset
corresponds to a participant and comprises evaluations of their expertise in reviewing papers of their choice.
For each paper and each participant, we provide representations that are sufficient to start working on our
dataset:
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TOTAL NUMBER OF PARTICIPANTS: 58

CHARACTERISTIC ~ QUANTITY VALUE
GENDER % MALES 78
% CARNEGIE MELLON 40
AFFILIATION
% GOOGLE 7
COUNTRY % USA 74
% PHD STUDENT 45
POSITION % FacuLTy 28
% PosT-PHD (NON-FACULTY) 12
MIN # PUBLICATIONS 2
EXPERIENCE MAX # PUBLICATIONS 492
MEAN # PUBLICATIONS 54

Table 1: Demography of participants. For the first four characteristics, quantities represent percentages of the
one or more most popular classes in the dataset. Note that classification is done manually based on publicly
available information and may not be errorless. For the last characteristic, quantities are computed based on
Semantic Scholar profiles.

e Participant Each participant is represented by their Semantic Scholar ID, name, and complete bibliography
crawled from Semantic Scholar on May 1, 2022.

e Paper Each paper, including papers from participants’ bibliographies, is represented by its Semantic
Scholar ID, title, abstract, list of authors, publication year, and arXiv identifier. Additionally, papers
from participants’ responses are supplied with links to publicly available PDFs.

4 Data exploration

In this section we explore the collected data and present various characteristics of the dataset. The next
sections will then detail the results of using this data to benchmark various popular algorithms.

4.1 Participants

We begin with a discussion of the pool of the survey participants and Table [1| displays its key characteristics.
First, we note that all participants work in the broad area of computer science and have a rich publication
profile (at least two papers published, with the mean of 54 papers). In many subareas of computer science,
including machine learning and artificial intelligence, having two papers is usually sufficient to join the
reviewer pool of flagship conferences. Given that approximately 85% of participants either have PhD or are
in the process of getting the degree, we conclude that most of the researchers who contributed to our dataset
are eligible to review for computer science conferences.

Second, we caveat that most of the participants are male researchers affiliated with US-based organizations,
with about 40% of all participants being affiliated with Carnegie Mellon University. Hence, the population of
participants is not necessarily representative of the general population of the machine learning and computer
science communities. We encourage researchers to be aware of this limitation when using our dataset. That
said, we note that the data collection process does not finish with the publication of this work and we will
be updating the dataset as new responses come. We also encourage readers to contribute 5-10 minutes
of their time to fill out the survey https://forms.gle/rUV8hikwDRXZ3BTNAl and make the dataset more
representative.
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TOTAL NUMBER OF PAPERS: 463

CHARACTERISTIC QUANTITY VALUE
# LISTED ON SEMANTIC SCHOLAR 462
OPEN ACCESS # LISTED ON ARXIV 411
# PDF AVAILABLE PUBLICLY 457
RESEARCH AREAS # COMPUTER SCIENCE 459
PUBLICATION YEAR 7 BEFORE 2020 25
% ON OR AFTER 2020 75

Table 2: Characteristics of the papers in the released dataset. Most of the papers are available online and
belong to the broad area of computer science.

4.2 Papers

Next, we describe the set of papers that constitute our dataset. Overall, participants evaluated their expertise
in reviewing 463 unique papers. A total of 12 papers appeared in reports of two participants, 1 paper was
mentioned by three participants, and the remaining papers were mentioned by one participant each.

Table 2| presents several characteristics of the pool of papers included to our dataset. First, we note
that all but one of the papers are listed on Semantic Scholar, enabling expertise-estimation algorithms
developed on the dataset to query additional information about the papers from the Semantic Scholar
database. Additionally, most of the papers (99%) have their PDFs publicly available, thereby allowing
algorithms to use full texts of papers to compute similarities.

Semantic Scholar has a built-in tool to identify research areas of the papers (Wade, [2022). According
to this tool, 99% of the papers included to our dataset belong to the broad area of Computer Science—the
target area for our data-collection procedure. The remaining four papers belong to the neighboring fields of
mathematics, philosophy, and the computational branch of biology. To conclude, we note that approximately
75% of all papers in our dataset are published on or after 2020, ensuring that our dataset contains recent
papers that expertise-estimation algorithms encounter in practice.

4.3 Evaluations of expertise

Finally, we proceed to the key aspect of our dataset—evaluations of expertise in reviewing the papers reported
by participants. All but one participant reported expertise in reviewing at least 5 papers with the mean
number of papers per participant being 8.2 and the total number of expertise evaluations being 477.

Figure [1| provides visualization of expertise evaluations made by participants. First, Figure [1a| displays the
histogram of expertise values. Observe that while a large fraction of reported papers belong to the expertise
area of participants (expertise score larger than 3), about a third of evaluations are made for papers that
reviewers are not competent in (expertise score 3 or lower).

Second, Figure shows the distributions of pairwise differences in expertise evaluations made by the
same reviewer. To build this figure, for each participant we considered all pairs of papers in their report.
Next, we pooled the absolute values of the pairwise differences in expertise across participants. We then
plotted the histogram of these differences in the figure. Observe that the distribution in Figure [Lb]is heavy
tailed, suggesting that our dataset is suitable for evaluating the accuracy of expertise-estimation methods
both at a coarse level (large differences between the values of expertise) and fine level (small differences
between the values of expertise).

5 Experimental setup

In this section we describe the setup of experiments on our dataset.
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Figure 1: Distribution of expertise scores reported by participants.

5.1 Metric

We begin with defining a metric that we use in this work to evaluate performance of the algorithms. For this,
we rely on the Kendall’s Tau distance that is closely related to the widely used Kendall’s Tau rank correlation
coefficient [1938).

Specifically, consider any algorithm A that produces predictions s of reviewers’ expertise in reviewing
a given set of papersEl Each participant of our study r reported their expertise ¢ € {1,1.25,1.5,...,5} in
reviewing m,. papers: P. = {p1,p2,...,Pm,.}. The values of expertise &, = {e1,€2,...,em, } induce a partial
ordering over the set of papers P,.. Similarly, predictions of expertise of participant r in reviewing papers P,
produced by the algorithm S = {s1, S2,. .., Sm,.} induce another partial ordering over P,. Using these two
partial orderings, we define the unnormalized loss of algorithm A with respect to participant r as follows:

My

1
Le(A) = Y [ T{(si — ;) x (e — ;) <0} x|ei — 5] + T{(si —s;) x (e —&;) =0} ><§|Ez‘ —&il |-
Z;]<:]1 disagreement tie

In words, for each pair of papers (i, j) reported by participant r, the algorithm is not penalized when the
ordering of papers induced by the predicted expertise {s;,s;} agrees with the ground truth expertise-based
ordering {e;,¢;}. When two orderings disagree, the algorithm is penalized by the difference of expertise
reported by the participant (|e; — ¢;|). Finally, when scores computed by the algorithm indicate a tie while
expertise scores are different, the algorithm is penalized by half the difference in expertise (1/2]e; — ¢;]).

Having the unnormalized loss with respect to a participant defined, we now define the overall loss L € [0, 1]
of the algorithm as follows:

> L
> i1|5i—6j\

T =
1<J

L(A) . (2.1)

In words, we take the sum of unnormalized losses and normalize this sum by the loss achieved by the
adversarial algorithm that reverses the ground-truth ordering of expertise (that is, sets s = —¢). Overall, our
loss L takes values from 0 to 1 with lower values indicating better performance.

20ur metric is agnostic to the range of predicted values of expertise s as long as larger values indicate larger predicted
expertise.
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5.2 Algorithms

In this work, we evaluate several algorithms that we now discuss. All of these algorithms operate with (i) the
list of submissions for which assignment scores need to be computed and (ii) reviewers’ profiles that include
past publications of reviewers. Conceptually, all algorithms predict reviewers’ expertise by evaluating textual
overlap between each submission and papers in each reviewer’s publication profile. Let us now provide more
detail on how this idea is implemented in each of the algorithms under consideration.

Trivial baseline First, we consider a trivial baseline that ignores the content of submissions and reviewers’
profiles when computing the assignment scores: for each (participant, paper) pair, the TRIVIAL algorithm
predicts the score s to be 1.

Toronto Paper Matching System (TPMS) The TPMS algorithm (Charlin and Zemell [2013) is widely
used by flagship conferences such as ICML and AAAI and is based on the TF-IDF similarities. While exact
implementation is not publicly available, in our experiments we use an open-source implementation by [Xu
et al.| (2019)) which implements the basic TF-IDF logic of TPMS.

OpenReview algorithms OpenReview (https://www.openreview.net) is a conference-management
system used by NeurIPS, ICLR, and many other machine learning conferences. It offers a family of algorithms
for measuring expertise of reviewers in reviewing submissions. In this work, we evaluate the following
algorithms:

e ELMo. This algorithm relies on general-purpose Embeddings from Language Models (Peters et al.,
2018)) to compute textual similarities between submissions and reviewers’ past papers.

e SPECTER. This algorithm employs more specialized document-level embeddings of scientific docu-
ments (Cohan et al.l |2020). Specifically, SPECTER explores the citation graph to construct embeddings
that are useful for a variety downstream tasks, including similarity computation that we focus on in
this work.

e SPECTER+MFR. Finally, SPECTER+MFR further enhances SPECTER. Instead of constructing a single
embedding of each paper, it construct multiple embeddings that correspond to different facets of the
paper. These embeddings are then used to compute the assignment scores.

We use implementations of these methods that are available on the OpenReview GitHub pageEI and
execute them with default parameters (configuration files are available in supplementary materials).

6 Results

In this section, we report the results of evaluation of algorithms described in Section [5.2} First, we juxtapose
all algorithms on our data (Section [6.1]). Second, we use the TPMS algorithm to explore various aspects of
the expertise-estimation problem (Section [6.2]).

6.1 Comparison of the algorithms

Our first set of results compares the performance of the existing expertise-estimation algorithms. To run these
algorithms on our data, we need to make some modeling choices faced by conference organizers in practice:

e Paper representation. First, in their inner-workings, expertise-estimation algorithms operate with some
representation of the paper content. Possible choices of representations include: (i) title of the paper, (ii)
title and abstract, and (iii) full text of the paper. We choose option (ii) as this option is often used in
real conferences and is supported by all algorithms we consider in this work. Thus, to predict expertise,

Shttps://github.com/openreview/openreview-expertise
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ALGORITHM Loss 95% CI ror Loss \ A witH TPMS 95% CI FOR A

TRIVIAL 0.50 — | — —
TPMS 0.28 [0.23,0.33] | — —
ELMo 0.34 [0.29,0.40] +0.06 [0.00,0.13]
SPECTER 0.27 [0.21,0.34] —0.01 [—0.06,0.04]
SPECTER+MFR  0.24 [0.18,0.30] —0.04 [~0.09,0.01]

Table 3: Comparison of expertise-estimation algorithms on the collected data. All algorithms operate with
reviewer profiles consisting of the 20 most recent papers and use titles and abstracts of papers. Lower values
of loss are better. A positive (respectively, negative) value of A indicates that the algorithm performs worse
(respectively, better) than TPMS.

algorithms are provided with the title and abstract of each paper (papers reported by participants and
papers in their publication profiles).

e Reviewer profiles. The second important parameter is the choice of papers to include in reviewers’
profiles. In real conferences, this choice is often left to reviewers who can manually select the papers they
find representative of their expertise. In our experiments, we construct reviewer profiles automatically
by using the 20 most recent papers from their Semantic Scholar profiles. If a reviewer has less than
20 papers published, we include all of them in their profile. Our choice of the reviewer profile size is
governed by the observation that the mean length of the reviewer profile in NeurIPS 2022 is 16.5 papers.
By setting the maximum number of papers to 20, we achieve the mean profile length of 14.8, thereby
operating with the amount of information close to that available to algorithms in real conferences.

Statistical aspects To build reviewer profiles, we use publication years to order papers by recency, where
we break ties uniformly at random. Thus, the content of reviewer profiles depends on randomness. To average
this randomness out, we repeat the procedure of profile construction and similarity prediction 10 times,
and report the mean loss over these iterations. That said, we note that the observed variability due to the
randomness in the construction of reviewer profiles is negligible (standard deviation over all iterations is less
than 0.005).

The pointwise performance estimates obtained by the procedure above depend on the selection of
participants who contributed to our dataset. To quantify the associated level of uncertainty, we now compute
95% confidence intervals as follows. For 1,000 iterations, we create a new reviewer pool by sampling participants
with replacement and recomputing the loss of each algorithm on the bootstrapped set of reviewers. To save
computation time, we do not reconstruct reviewer profiles for each of these iterations as the uncertainty
associated with the construction of reviewer profiles is small. Instead, we reuse profiles constructed to obtain
pointwise estimates.

Finally, we build additional confidence intervals for the difference in the performance of the algorithms.
Indeed, even when the losses of the algorithms fluctuate with the choice of the reviewer pool, the relative
difference in performance of a pair of algorithms may be stable. To verify this intuition, we use the procedure
above to build confidence intervals for the difference in performance between the TPMS algorithm and each
of the OpenReview algorithms. TPMS is chosen as a baseline for this comparison due to its simplicity.

Results of the comparison Table [3| displays results of the comparison. The first pair of columns presents
the loss of each algorithm on our dataset and the associated confidence intervals. The third and the forth
columns investigate the relative difference in performance between the non-trivial algorithms. In that, the
table displays the differences in performance between TPMS and each of the OpenReview algorithms together
with the associated confidence intervals.
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First, we note that all algorithms we consider in this work considerably outperform the TRIVIAL baseline,
confirming that texts of papers are indeed useful in evaluating the expertise of researchers.

Second, comparing three algorithms from the OpenReview toolkit, we note that SPECTER+MFR and
SPECTER outperform ELMo. The former two algorithms rely on domain-specific embeddings while ELMo
uses general-purpose embeddings. Thus, the nature of the text similarity computation task in the academic
context may be sufficiently different from that in other domains.

The third observation is the most surprising. TPMS algorithm is much simpler than other non-trivial
algorithms: in contrast to ELMoO, SPECTER, and SPECTER+MFR, it does not rely on carefully learned
embeddings and can be efficiently executed on CPU. However, TPMS is competitive against complex
SPECTER and SPECTER+MFR and even outperforms ELMo. While the performance of SPECTER and
SPECTER+MFR algorithms could, in principle, be improved if these algorithms were additionally fine-tuned
in a dataset-specific manner, the off-the-shelf performance of these algorithms is only marginally better than
that of a much simpler TPMS algorithm.

To conclude the discussion of the results, we note that the confidence intervals for the performance of the
algorithms, as well as for the relative differences, are wide. Thus, the observations we make in this section
regarding the differences between TPMS, SPECTER, and SPECTER+MFR may not be statistically significant.
It is, therefore, crucial to increase the size of our dataset to enable more principled comparison and identify
more fine-grained differences between the algorithms.

6.2 The role of modeling choices

In the beginning of Section we made two modeling choices pertaining to (i) representations of the papers
provided to expertise-estimation algorithms and (ii) the size of reviewers’ profiles used by these algorithms.
In this section, we investigate these two questions in more detail.

e Question 1 (paper representation). Some expertise-estimation algorithms are designed to work with
titles and/or abstracts of papers (e.g., SPECTER) while others can also incorporate the full texts of the
manuscripts (e.g., TPMS). Consequently, there is a potential trade-off between accuracy and computation
time. Indeed, richer representations are envisaged to result in higher accuracy, but are also associated
with an increased demand for computational power. As with the choice of the algorithm itself, there is
no guidance on what amount of information should be supplied to the algorithm as the gains from using
more information are not quantified. With this motivation, our first question is:

What are the benefits of providing richer representations of papers to expertise-estimation
algorithms?

e Question 2 (reviewer profile). The second important choice is the size of reviewers’ profiles. On the one
hand, by including only very recent papers in reviewers’ profiles, conference organizers are at risk of
not using enough data to obtain accurate values of expertise. On the other hand, old papers may not
accurately represent the current expertise of researchers and hence may result in noise when used to
compute expertise. Thus, our second question is:

What is the optimal number of the most recent papers to include in the profiles of reviewers?

To investigate these questions, we choose the TPMS algorithm as the workhorse to perform additional
evaluations. We make this choice for two reasons. First, TPMS can work with all possible choices of the
paper representation: title only, title and abstract, and full text of the paper. In contrast, other methods
do not support the full-text mode. Second, TPMS is fast to execute, enabling us to compute expertise for
hundreds of parameter configurations in a reasonable time.

Having the algorithm chosen, we vary the number of papers included in the reviewers’ profiles from 1 to
20. For each value of the profile length, we consider three representations of the paper content: (i) title, (ii)
titletabstract, and (iii) full text of the paper. Overall, for each combination of parameters, we construct
reviewer profiles and predict similarities using the approach introduced in Section [6.1} The only exception is
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PAPER REPRESENTATION Loss 95% CI For Loss \ A WITH TITLE+ABSTRACT 95% CI FOR A

TITLE 0.34 0.29,0.41] +0.07 [0.03,0.12]
TITLE+ABSTRACT 0.27 [0.22,0.33] — —
FuLL TEXT 0.24 [0.18,0.30] ~0.03 [—0.09, 0.03]

Table 4: Performance of the TPMS algorithm with 10 most recent papers included in reviewers’ profiles and
with different choices of the paper representation. Lower values of loss are better. A positive (respectively,
negative) value of A indicates that the corresponding choice of the paper representation leads to a weaker
(respectively, stronger) performance.

that we repeat the procedure for averaging out the randomness in the profile creation 5 times (instead of 10)
to save the computation time.

Papers and reviewer profiles Before presenting the results, we note that in this section, we conduct all
evaluations focusing on papers that have PDFs publicly available. In that, we remove 6 papers from the
dataset as they are not available online (see Table . Similarly, we limit reviewer profiles to papers whose
semantic scholar profiles contain links to arXiv. One of the participants did not have any such papers and we
also exclude them from the dataset.

Results of the additional evaluations Figure [2] and Table [] display the results of the additional
evaluations. In that, Figure[2]displays the pointwise loss of the TPMS algorithm for each choice of parameters.
To save computation time, we do not build confidence intervals for each combination of parameters. Instead,
Table {4 sets the number of papers in reviewers’ profiles to 10 and presents confidence intervals for losses
incurred by the algorithm under different choices of paper representations. Let us now make two observations.

First, paper abstracts are very useful in improving the quality of expertise prediction as compared to titles
alone. That said, adding full texts of the papers does not result in a strong increase in performance. Overall,
the choice of title and abstract to represent the content of a paper may be sufficient in practice, balancing
accuracy with computational efficiency as handling the full texts of submissions may require significant
additional resources with only a marginal gain in accuracy.

Second, the loss curves plateau once reviewer profiles include 8 or more of their most recent papers.
Additional increase of the profile length does not impact the quality of predictions. Thus, in practice, reviewers
may be instructed to include 10 representative papers to their profile which for most of the active researchers
amounts to the number of papers published in 1-3 years.

7 Discussion

In this work, we collect a novel dataset of reviewers’ expertise in reviewing papers. In contrast to datasets
collected in previous works, our dataset (i) can be released publicly, and (ii) contains evaluations of expertise
made by scientists who have actually read the papers for their own research purposes. We use this dataset to
juxtapose several existing expertise-estimation algorithms and help venue organizers in choosing an algorithm
in an evidence-based manner.

We emphasize again that the dataset we release in this work is just an initial version and we keep the
data-collection process open to increase the sample size of the dataset and make it more representative. Thus,
we encourage readers of this thesis to contribute 5—10 minutes of their time and report their expertise in
reviewing papers:

https://forms.gle/rUV8hikwDRXZ3BTNA

Second, we note that the difference in performance between the simple TPMS algorithm and more
advanced SPECTER and SPECTER+MFR algorithms is quite small. An important continuation of the present
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intervals are not shown (see Table .

work would be to investigate this phenomenon and evaluate whether the performance of SPECTER and
SPECTER+MFR significantly improves if these algorithms are fine-tuned on our dataset.

Finally, our dataset can be used to develop new expertise-estimation algorithms. Thus, we encourage
researchers from the natural language processing and other communities to use our data in order to improve

peer review.
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Chapter 3

Fair and Accurate Reviewer
Assignment

1 Introduction

In this chapter, we consider a problem of assigning papers to reviewers when similarities between reviewers
and papers are given. Specifically, we study this problem with a dual goal of fairness and accuracy in mind.
By fairness, we specifically consider the notion of max-min fairness which is studied in various branches of
science and engineering (Rawls, 1971} [Lenstra et al., {1990; Hahne| 1991} [Lavi et al.l 2003; [Bonald et al., 2006;
Asadpour and Saberi 2010). In our context of reviewer assignments, max-min fairness posits maximizing the
review-quality of the paper with the least qualified reviewers. The max-min fair assignment guarantees that
no paper is discriminated against in favor of more lucky counterparts. That is, even the most ambivalent
paper with a small number of reviewers being competent enough to evaluate its merits will receive as good
treatment as possible. The max-min fair assignment also ensures that in any other assignment there exists at
least one paper with the fate at least as bad as the fate of the most disadvantaged paper in the aforementioned
fair assignment.

Alongside, we also consider the requirement of statistical accuracy. One of the main goals of the conference
peer-review process is to select the set of “top” papers for acceptance. Two key challenges towards this goal
are to handle the noise in the reviews and subjective opinions of the reviewers; we accommodate these aspects
in terms of existing (Ge et al., [2013; [McGlohon et al 2010} [Dai et al., |2012) and novel statistical models of
reviewer behavior. Prior works on the reviewer assignment problem (Long et all 2013} |Garg et al.| 2010;
Karimzadehgan et al., 2008; Tang et al., 2010)) offer a variety of algorithms that optimize the assignment for
certain deterministic objectives, but do not study their assignments from the lens of statistical accuracy. In
contrast, our goal is to design an assignment algorithm that can simultaneously achieve both the desired
objectives of fairness and statistical accuracy.

We make several contributions towards this problem. We first present a novel algorithm, which we call
PEERREVIEW4ALL, for assigning reviewers to papers. Our algorithm is based on a construction of multiple
candidate assignments, each of which is obtained via an incremental execution of max-flow algorithm on a
carefully designed flow network. These assignments cater to different structural properties of the similarities
and a judicious choice between them provides the algorithm appealing properties.

Our second contribution is an analysis of the fairness objective that our PEERREVIEW4ALL algorithm
can achieve. We show that our algorithm is optimal, up to a constant factor, in terms of the max-min
fairness objective. Furthermore, our algorithm can adapt to the underlying structure of the given similarity
data between reviewers and papers and in various cases yield better guarantees including the exact optimal
solution in certain scenarios. Finally, after optimizing the outcome for the most worst-off paper and fixing
the assignment for that paper, our algorithm aims at finding the most fair assignment for the next worst-off
paper and proceeds in this manner until the assignment for each paper is fixed.
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As a third contribution, we show that our PEERREVIEW4ALL algorithm results in strong statistical
guarantees in terms of correctly identifying the top papers that should be accepted. We consider a popular
statistical model (Ge et al., |2013; [McGlohon et al., 2010; [Dai et al., [2012) which assumes existence of some
true objective score for every paper. We provide a sharp analysis of the minimax risk in terms of “incorrect”
accept/reject decisions, and show that our PEERREVIEW4ALL algorithm leads to a near-optimal solution.

Fourth, noting that paper evaluations are typically subjective (Kerr et al.,[1977; Mahoney, |1977; |[Ernst and
Reschl [1994; [Bakanic et al.| |1987; Lamont, [2009), we propose a novel statistical model capturing subjective
opinions of reviewers, which may be of independent interest. We provide a sharp minimax analysis under this
subjective setting and prove that our assignment algorithm PEERREVIEW4ALL is also near-optimal for this
subjective-score setting.

Our fifth and final contribution comprises empirical evaluations. We designed and conducted an experiment
on the Amazon Mechanical Turk crowdsourcing platform to objectively compare the performance of different
reviewer-assignment algorithms. The design of the experiment is done carefully to circumvent the challenge
posed by the absence of a ground truth in peer review settings, so that we can evaluate accuracy objectively.
In addition to the MTurk experiment, we provide an extensive evaluation of our algorithm on synthetic data,
provide an evaluation on a reconstructed similarity matrix from the ICLR 2018 conference, and report the
results of the experiment on real conference data conducted by [Kobren et al.| (2019). The results of these
experiments highlight the promise of PEERREVIEW4ALL in practice, in addition to the theoretical benefits
discussed elsewhere in the paper. The dataset pertaining to the MTurk experiment, as well as the code for
our PEERREVIEW4ALL algorithm, are available on the website of the author of this thesis.

The remainder of this chapter is organized as follows. We discuss related literature in Section In
Section [3] we present the problem setting formally with a focus on the objective of fairness. In Section [4]
we present our PEERREVIEW4ALL algorithm. We establish deterministic approximation guarantees on the
fairness of our PEERREVIEW4ALL algorithm in Section[5] We analyze the accuracy of our PEERREVIEW4ALL
algorithm under an objective-score model in Section [6} and introduce and analyze a subjective score model in
Section [7]] We empirically evaluate the algorithm in Section [§] using synthetic and real-world experiments.
We then provide the proofs of all the results in Section [0} We conclude the chapter with a discussion in
Section

2 Related literature

The reviewer assignment process consists of two steps. First, a “similarity” between every (paper, reviewer)
pair that captures the competence of the reviewer for that paper is computed. These similarities are computed
based on various factors such as the text of the submitted paper, previous papers authored by reviewers,
reviewers’ bids and other features. Second, given the notion of good assignment, specified by the program
chairs, papers are allocated to reviewers, subject to constraints on paper/reviewer loads. This work focuses
on the second step (assignment), assuming the first step of computing similarities as a black box. In this
section, we give a brief overview of the past literature on both of the steps of the reviewer-assignment process.

Computing similarities. The problem of identifying similarities between papers and reviewers is well-
studied in data mining community. For example, [Mimno and McCallum| (2007) introduce a novel topic model
to predict reviewers’ expertise. |Liu et al|(2014) use the random walk with restarts model to incorporate
both expertise of reviewers and their authority in the final similarities. Co-authorship graphs (Rodriguez and
Bollen, 2008) and more general bibliographic graph-based data models (Tran et all 2017)) give appealing
methods which do not require a set of reviewers to be pre-determined by conference chair. Instead, these
methods recommend reviewers to be recruited, which might be particularly useful for journal editors.

One of the most widely used automated assignment algorithms today is the Toronto Paper Matching System
or TPMS ((Charlin and Zemell |2013|) which also computes estimations of similarities between submitted papers
and available reviewers using techniques in natural language processing. These scores might be enhanced
with reviewers’ self-accessed expertise adaptively queried from them in an automatic manner.

Our work uses these similarities as an input for our assignment algorithm, and considers the computation
of these similarity values as a given black box.
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Cumulative goal functions. With the given similarities, much of past work on reviewer assignments
develop algorithms to maximize the cumulative similarity, that is, the sum of the similarities across all assigned
reviewers and all papers. Such an objective is pursued by the organizers of SIGKDD conference (Flach et al.l
2010) and by the widely employed TPMS assignment algorithm (Charlin and Zemel, |2013)). Various other
popular conference management systems such as EasyChair (easychair.org) and HotCRP (hotcrp.com)
and several other papers (see Long et al.|2013} |Charlin et al.[2012; |Goldsmith and Sloan [2007; [Tang et al.
2010 and references therein) also aim to maximize various cumulative functionals in their automated reviewer
assignment procedures. In the sequel, we argue however that optimizing such cumulative objectives is not fair
— in order to maximize them, these algorithms may discriminate against some subset of papers. Moreover, it
is the non-mainstream submissions that are most likely to be discriminated against. With this motivation,
we consider a notion of fairness instead.

Fairness. In order to ensure that no papers are discriminated against, we aim at finding a fair assignment
— an assignment that ensures that the most disadvantaged paper gets as competent reviewers as possible.
The issue of fairness is partially tackled by Hartvigsen et al| (1999)), where they necessitate every paper to
have at least one reviewer with expertise higher than certain threshold, and then maximize the value of that
threshold. However, this improvement only partially solves the issue of discrimination of some papers: having
assigned one strong reviewer to each paper, the algorithm may still discriminate against some papers while
assigning remaining reviewers. Given that nowadays large conferences such as NeurIPS and ICML assign 4-6
reviewers to each paper, a careful assessment of the paper by one strong reviewer might be lost in the noise
induced by the remaining weak reviews. In the present study, we measure the quality of assignment with
respect to any particular paper as sum similarity over reviewers assigned to that paper. Thus, the fairness of
assignment is the minimum sum similarity across all papers; we call an assignment fair if it maximizes the
fairness. We note that assignment computed by our PEERREVIEW4ALL algorithm is guaranteed to have at
least as large max-min fairness as that proposed by Hartvigsen et al.| (1999).

Benferhat and Lang| (2001) discuss different approaches to selection of the “optimal” reviewer assignment.
Together with considering a cumulative objective, they also note that one may define the optimal assignment
as an assignment that minimizes a disutility of the most disadvantaged reviewer (paper). This approach
resembles the notion of max-min fairness we study in this chapter, but Benferhat and Lang] (2001)) do not
propose any algorithm for computing the fair assignment.

The notion of max-min fairness was formally studied in context of peer-review by (Garg et al.| (2010).
While studying a similar objective, our work develops both conceptual and theoretical novelties which we
highlight here. First, Garg et al. (2010) measure the fairness in terms of reviewers’ bids — for every reviewer
they compute a value of papers assigned to that reviewer based on her/his bids and maximize the minimum
value across all reviewers. While satisfying reviewers is a useful practice, we consider fairness towards the
papers in their review to be of utmost importance. During a bidding process reviewers have limited time
resources and/or limited access to papers’ content to evaluate their relevance, and hence reviewers’ bids alone
are not a good proxy towards the measure of fairness. In contrast, in this work we consider similarities —
scores that are designed to represent a competence of reviewer in assessing a paper. Besides reviewers’ bids,
similarities are computed based on the full text of the submissions and papers authored by reviewer and can
additionally incorporate various factors such as quality of previous reviews, experience of reviewer and other
features that cannot be self-assessed by reviewers.

The assignment algorithm proposed in |Garg et al.| (2010]) works in two steps. In the first step, the problem
is set up as an integer programming problem and a linear programming relaxation is solved. The second
step involves a carefully designed rounding procedure that returns a valid assignment. The algorithm is
guaranteed to recover an assignment whose fairness is within a certain additive factor from the best possible
assignment. However, the fairness guarantees provided in |Garg et al| (2010)) turn out to be vacuous for
various similarity matrices. As we discuss later in the paper, this is a drawback of the algorithm itself and
not an artifact of their guarantees. In contrast, we design an algorithm with multiplicative approximation
factor that is guaranteed to always provide a non-trivial approximation which is at most constant factor away
from the optimal.

Next, |Garg et al.|(2010) consider fairness of the assignment as an eventual metric of the assignment quality.
However, we note that the main goal of the conference paper reviewing process is an accurate acceptance of
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the best papers. Thus, in the present work we both theoretically and empirically study the impact of the
fairness of the assignment on the quality of the acceptance procedure.

Finally, although |Garg et al.| (2010]) present their algorithm for the case of discrete reviewer’s bids, we note
that this assumption can be relaxed to allow real-valued similarities with a continuous range as in our setting.
In this work we refer to the corresponding extension of their algorithm as the Integer Linear Programming
Relaxation (ILPR) algorithm.

Fair division. A direction of research that is relevant to our work studies the problem of fair division where
max-min fairness is extensively developed. The seminal work of [Lenstra et al.|(1990) provides a constant
factor approximation to the minimum makespan scheduling problem where the goal is to assign a number of
jobs to the unrelated parallel machines such that the maximal running time is minimized. Recently |Asadpour
and Saberi (2010); Bansal and Sviridenko| (2006) proposed approximation algorithms for the problem of
assigning a number of indivisible goods to several people such that the least happy person is as happy as
possible. However, we note that techniques developed in these papers cannot be directly applied for reviewer
assignments problem in peer review due to the various idiosyncratic constraints of this problem. In contrast
to the classical formulation studied in these works, our problem setting requires each paper to be reviewed by
a fixed number of reviewers and additionally has constraints on reviewers’ loads. Such constraints allow us to
achieve an approximation guarantee that is independent of the total number of papers and reviewers, and

depends only on A, the number of reviewers required per paper, as % In contrast, the approximation factor

of |Asadpour and Saberi| (2010) gets worse at a rate of m, where m is a number of persons (papers in

our setting).

Statistical aspects. Different statistical aspects related to conference peer-review have been studied in the
literature. McGlohon et al.| (2010) and Dai et al.| (2012) studied aggregation of consumers ratings to generate
a ranking of restaurants or merchants. They come up with objective score model of reviewer which we also
use in this work. |Ge et al.| (2013)) also use similar model of reviewer and propose a Bayesian approach to
calibrating reviewer’ scores, which allows to incorporate different biases in context of conference peer-review.
Sajjadi et al.| (2016]) empirically compare different methods of score aggregation for peer grading of homeworks.
Peer grading is a related problem to conference peer review, with the key difference that the questions and
answers (“papers”) are more closed-ended and objective. They conclude that although more sophisticated
methods are praised in the literature, the simple averaging algorithm demonstrates better performance in
their experiment. Another interesting observation they make is an edge of cardinal grades over ordinal in
their setup. In this work we also consider the conferences with cardinal grading scheme of submissions.

To the best of our knowledge, no prior works on conference peer-review has studied the entire pipeline —
from assignment to acceptance — from a statistical point of view. In this work we take the first steps to
close this gap and provide a strong minimax analysis of naive yet interesting procedure of determining top
k papers. Our findings suggest that higher fairness of the assignment leads to better quality of acceptance
procedure. We consider both the objective score model (Ge et al., [2013; McGlohon et al.l 2010; Dai et al.,
2012)) and a novel subjective-score model that we propose in the present work.

Coverage and Diversity. For completeness, we also discuss several related works that study reviewer
assignment problem.

Li et al.| (2015) present a greedy algorithm that tries to avoid assigning a group of stringent reviewers or a
group of lenient reviewers to a submission, thus maintaining diversity of the assignment in terms of having
different combinations of reviewers assigned to different papers.

Another way to ensure diversity of the assignment is proposed by [Liu et al.| (2014). Instead of designing
the special assignment algorithm, they try to incentivize the diversity by special construction of similarities.
Besides incorporating expertise and authority of reviewers in similarities, they add an additional term to the
optimization problem which balances similarities by increasing scores for reviewers from different research
areas.

Karimzadehgan et al.| (2008) consider topic coverage as an objective and propose several approaches to
maintain broad coverage, requiring reviewers assigned to paper being expert in different subtopics covered by
the paper. They empirically verify that given a paper and a set of reviewers, their algorithms lead to better
coverage of paper’s topics as compared to baseline technique that assigns reviewers based on some measure of
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similarity between text of submission and papers authored by reviewers, but does not do topic matching.

A similar goal is formally studied by |Long et al.| (2013). They measure the coverage of the assignment in
terms of the total number of distinct topics of papers covered by the assigned reviewers. They propose a
constant factor approximation algorithm that benefits from a sub-modular nature of the objective. As we
show in Appendix the techniques of |[Long et al.| (2013]) can be combined with our proposed algorithm to
obtain an assignment which maintains not only fairness, but also a broad topic coverage.

Research on peer review. The explosion in the number of submissions in many conferences has spurred
research in computer science on improving peer review. In addition to problems of fairness and accuracy of
the reviewer-paper assignment process, there are a number of challenges in peer review which are addressed
in the literature to various extents. These include problems of bias (Tomkins et al.l [2017; |Stelmakh
et al.l 2019)), miscalibration (Ge et al., [2013; [Roos et al. 2011} [Flach et al.l 2010; Wang and Shahl [2019),
subjectivity (Noothigattu et al., [2020), strategic behavior (Balietti et all [2016; Xu et all |2019), and
others (Lawrence and Cortes, 2014; |Gao et al., |2019). Of particular interest is the work by [Fiez et al.
(2020) which optimizes the process by which reviewers can bid on which papers they prefer to review. In
most automated reviewer-paper assignment systems, the bids and the text-matching similarities are then
combined (Shah et al., |2018) to form the similarities used to compute the assignment. The bidding and
the reviewer-paper assignments are executed separately in current systems, and given the intrinsic relations
between the two, it is of interest to jointly design the two systems in the future.

3 Problem setting

In this section we present the problem setting formally with a focus on the objective of fairness. (We introduce
the statistical models we consider in Sections |§| and m)

3.1 Preliminaries and notation

Given a collection of m > 2 papers, suppose that there exists a true, unknown total ranking of the papers.
The goal of the program chair (PC) of the conference is to recover top k papers, for some pre-specified value
k < m. In order to achieve this goal, the PC recruits n > 2 reviewers and asks each of them to read and
evaluate some subset of the papers. Each reviewer can review a limited number of papers. We let u denote
the maximum number of papers that any reviewer is willing to review. Each paper must be reviewed by A
distinct reviewers. In order to ensure this setting is feasible, we assume that ny > mA. In practice, A is
typically small (2 to 6) and hence should conceptually be thought of as a constant.

The PC has access to a similarity matrix S = {s;;} € [0,1]"*™, where s;; denotes the similarity between
any reviewer i € [n] and any paper j € [m][T] These similarities are representative of the envisaged quality of
the respective reviews: a higher similarity between any reviewer and paper is assumed to indicate a higher
competence of that reviewer in reviewing that paper (this assumption is formalized later). We do not discuss
the design of such similarities, but often they are provided by existing systems (Charlin and Zemel| 2013;
Mimno and McCallum), 2007} [Liu et al., [2014; [Rodriguez and Bollen| 2008; Tran et al., [2017]).

Our focus is on the assignment of papers to reviewers. We represent any assignment by a matrix
A €{0,1}™ whose (i, ) entry is 1 if reviewer i is assigned paper j and 0 otherwise. We denote the set of
reviewers who review paper j under an assignment A as R4 (7). We call an assignment feasible if it respects
the (u, A) conditions on the reviewer and paper loads. We denote the set of all feasible assignments as A:

A= {A €01} | Y Ay =AVjelm], Yy Ay <pvic [n]}.

i€[n) J€[m]

Our goal is to design a reviewer-assignment algorithm with a two-fold objective: (i) fairness to all papers,
(ii) strong statistical guarantees in terms of recovering the top papers.

1Here, we adopt the standard notation [v] = {1,2,...,v} for any positive integer v.
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From a statistical perspective, we assume that when any reviewer ¢ is asked to evaluate any paper j, then
she/he returns score y;; € R. The end goal of the PC is to accept or reject each paper. In this work we
consider a simplified yet indicative setup. We assume that the PC wishes to accept the & “top” papers from
the set of m submitted papers. We denote the “true” set of top k papers as 7. While the PC’s decisions in
practice would rely on several additional factors including the text comments by reviewers and the discussions
between them, in order to quantify the quality of any assignment we assume that the top k papers are chosen
through some estimator 6 that operates on the scores provided by the reviewers. Such an estimator can be
used in practice to serve as a guide to the program committee in order to help reduce their load. These

acceptance decisions can be described by the chosen assignment and estimator (A, 5) We denote the set of

accepted papers under an assignment A and estimator 0 as Te = Tx (A, 5) The PC then wishes to maximize

the probability of recovering the set 7" of top k papers.

Although the goal of exact recovering of top k papers is appealing, given the large number of papers
submitted to a conference such as ICML and NeurIPS; this goal might be too optimistic. Another alternative
is to recover top k papers allowing for a certain Hamming error tolerance t € {0,...,k — 1}. For any two
subsets My, My of [m], we define their Hamming distance to be the number of items that belong to exactly
one of the two sets — that is

Dy (Ml,Mg) =Card({M1UM2}\{M1ﬁM2}). (3.1)

The goal of PC under this scenario is to choose a pair (A, é\) such that for the given error tolerance parameter

t, the probability P{Dy (Tx, T.*) > 2t} is minimized. We return to more details on the statistical aspects
later in the paper.

3.2 Fairness objective

An assignment objective that is popular in past papers (Charlin and Zemel, 2013} |Charlin et al. |2012; Taylor)
2008) is to maximize the cumulative similarity over all papers. Formally, these works choose an assignment
A € A which maximizes the quantity

GI(A) =" > s (3.2)
)

J=lieRA(j

An assignment algorithm that optimizes this objective is implemented in the widely used Toronto Paper
Matching System (Charlin and Zemel, 2013). We will refer to the feasible assignment that maximizes the
objective as ATPMS and denote the algorithm which computes ATPMS as TPMS.

We argue that the objective does not necessarily lead to a fair assignment. The optimal assignment
can discriminate some papers in order to maximize the cumulative objective. To see this issue, consider the
following example.

Consider a toy problem with n =m = 3 and = A = 1, with a similarity matrix shown in Table[I] In
this example, paper c is easy to evaluate, having non-zero similarities with all the reviewers, while papers a
and b are more specific and weak reviewer 2 has no expertise in reviewing them. Reviewer 1 is an expert
and is able to assess all three papers. Maximizing total sum of similarities , the TPMS algorithm will
assign reviewers 1, 2, and 3 to papers a, b, and ¢ respectively. Observe that under this assignment, paper b is
assigned a reviewer who has insufficient expertise to evaluate the paper. On the other hand, the alternative
assignment which assigns reviewers 1, 2, and 3 to papers a, ¢, and b respectively ensures that every paper has
a reviewer with similarity at least 1/5. This “fair” assignment does not discriminate against papers a and b
for improving the review quality of the already benefitting paper c.

With this motivation, we now formally describe the notion of fairness that we aim to optimize in this
work. Inspired by the notion of max-min fairness in a variety of other fields (Rawls, [1971; [Lenstra et al., [1990;
Hahnel, |1991; |Lavi et al., 2003; Bonald et al., 2006} |Asadpour and Saberi, |2010), we aim to find a feasible
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PAPER @ PAPER b PAPER ¢

REVIEWER 1 1 1 1
REVIEWER 2 0 0 1/5
REVIEWER 3 1/4 1/4 1/2

Table 1: Example similarity.

assignment A € A to maximize the following objective I'® for given similarity matrix S:

I (A) = min] Z Sij. (3.3)

j€tm 1€R A (F)

The assignment optimal for maximizes the minimum sum similarity across all the papers. In other words,
for every other assignment there exists some paper which has the same or lower sum similarity. Returning to
our example, the objective is maximized when reviewers 1, 2, and 3 are assigned to papers a, ¢, and b
respectively.

Our reviewer assignment algorithm presented subsequently guarantees the aforementioned fair assignment.
Importantly, while aiming at optimizing , our algorithm does even more — having the assignment for
the worst-off paper fixed, it finds an assignment that satisfies the second worst-off paper, then the next one
and so on until all papers are assigned.

It is important to note that similarities s;; obtained by different techniques (Charlin and Zemel, |2013;
Mimno and McCallum, 2007; Rodriguez and Bollen, 2008} [Tran et al., [2017)) all have different meanings.
Therefore, the PC might be interested to consider a slightly more general formulation and aim to maximize

IF(A)=min Y f(si), (3.4)

Je€lm] .

1€RA(J)
for some reasonable choice of monotonically increasing function f : [0,1] — [0, OO]E| While the same effect
might be achieved by redefining sj; = f(s;;) for all i € [n], j € [m], this formulation underscores the
fact that assignment procedure is not tied to any particular method of obtaining similarities. Different
choices of f represent the different views on the meaning of similarities. As a short example, let us consider
f(sij) = T{si; > ¢} for some ¢ > 0E| This choice stratifies reviewers for each paper into strong (similarity
higher than ¢) and weak. The fair assignment would be such that the most disadvantaged paper is assigned
to as many strong reviewers as possible. We discuss other variants of f later when we come to the statistical
properties of our algorithm. In what follows we refer to the problem of finding reviewer assignment that

maximizes the term as the fair assignment problem.

Unfortunately, the assignment optimal for is hard to compute for any reasonable choices of function
f. |Garg et al.| (2010) showed that finding a fair assignment is an NP-hard problem even if f(s) € {1,2,3}
and \ = 2.

With this motivation, in the next section we design a reviewer assignment algorithm that seeks to optimize
the objective and provide associated approximation guarantees. We will refer to a feasible assignment
that exactly maximizes F? (A) as A]}IARD and denote the algorithm that computes AI}ARD as HARD. When
the function f is clear from context, we drop the subscript f and denote the HARD assignment as AHARD for
brevity.

Finally we note that for our running example (Table [1| above), the ILPR algorithm (Garg et al., |2010)),
despite trying to optimize fairness of the assignment, also returns an unfair assignment AR which coincides
with ATPMS_ The reason for this behavior lies in the inner-working of the ILPR algorithm: a linear

2We allow f(sij) = co. When reviewer with similarity oo is assigned to paper, she/he is able to perfectly access the quality
of the paper.
3We use I to denote the indicator function, that is, [ {x} = 1 if x is true and I{z} = 0 otherwise.
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programming relaxation splits reviewers 1 and 2 in two and makes them review both paper a and paper b.
During the rounding stage, reviewer 1 is assigned to either paper a or paper b, ensuring that the remaining
paper will be reviewed by reviewer 2. Given that reviewer 2 has zero similarity with both papers a and b, the
fairness of the resulting assignment will be 0. Such an issue arises more generally in the ILPR algorithm and
is discussed in more detail subsequently in Section [5.3] and in Appendix[AT.]]

4 Reviewer assignment algorithm

In this section we first describe our PEERREVIEW4ALL algorithm followed by an illustrative example.

4.1 Algorithm

A high level idea of the algorithm is the following. For every integer x € [A], we try to assign each paper to k
reviewers with maximum possible similarities while respecting constraints on reviewer loads. We do so via a
carefully designed “subroutine” that is explained below. Continuing for that value of x, we complement this
assignment with (A — k) additional reviewers for each paper. Repeating the procedure for each value of k € [A],
we obtain A\ candidate assignments each with A reviewers assigned to each paper, and then choose the one with
the highest fairness. The assignment at this point ensures guarantees of worst-case fairness . We then
also optimize for the second worst-off paper, then the third worst-off paper and so on in the following manner.
In the assignment at this point, we find the most disadvantaged papers and permanently fix corresponding
reviewers to these papers. Next, we repeat the procedure described above to find the most fair assignment
among the remaining papers, and so on. By doing so, we ensure that our final assignment is not susceptible
to bottlenecks which may be caused by irrelevant papers with small average similarities.

The higher-level idea behind the aforementioned subroutine to obtain the candidate assignment for any
value of k € [A] is as follows. The subroutine constructs a layered flow network graph with one layer for
reviewers and one layer for papers, that captures the similarities and the constraints on the paper/reviewer
loads. Then the subroutine incrementally adds edges between (reviewer, paper) pairs in decreasing order of
similarity and stops when the paper load constraints are met (each paper can be assigned to k reviewers
using only edges added at this point). This iterative procedure ensures that the papers are assigned reviewers
with approximately the highest possible similarities.

We formally present our main algorithm as Algorithm [1] and the subroutine as Subroutine [I} In what
follows, we walk the reader through the steps in the subroutine and the algorithm in more detail.
Subroutine. A key component of our algorithm is a construction of a flow network in a sequential manner
in Subroutine [I] The subroutine takes as input, among other arguments, the set M of papers that are not yet
assigned and the required number of reviewers per paper x < A. The goal of the subroutine is to assign each
paper in M with k reviewers, respecting the reviewer load constraints, in a way that minimum similarity
across all paper-reviewer pairs in resulting assignment is maximized.

The output of the subroutine is an assignment (represented by variable A) which is initially set as empty
(Step [1). The subroutine begins (Step [2) with a construction of a directed acyclic graph (a “flow network”)
comprising 4 layers in the following order: a source, all reviewers, all papers in M, and a sink. An edge may
exist only between consecutive layers. The edges between the first two layers control the reviewers’ workloads
and edges between the last two layers represent the number of reviews required by the papers. Finally, costs
of the all edges in this initial construction are set to 0. Note that in subsequent steps, the edges are added
only between the second and third layers. Thus, the maximum flow in the network is at most | M|x.

The crux of the subroutine is to incrementally add edges one at a time between the layers, representing
the reviewers and papers, in a carefully designed manner (Steps |3| and . The edges are added in order of
decreasing similarities. These edges control a reviewer-paper relationship: they have a unit capacity to ensure
that any reviewer can review any paper at most once and their costs are equal to the similarity between the
corresponding (reviewer, paper) pair.

After adding each edge, the subroutine (Step 5] tests whether a max-flow of size |[M|x is feasible. Note
that a feasible flow of size |[M|k corresponds to a feasible assignment: by construction of the flow network
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Subroutine 1 PEERREVIEW4ALL Subroutine

Input: x € [A]: number of reviewers required per paper
M: set of papers to be assigned
S € ({—oo} U0, 1])"*™M!: similarity matrix

(M, ... uM™) € [u]™: reviewers’ maximum loads
Output: Reviewer assignment A
Algorithm:

1. Initialize A to an empty assignment
2. Initialize the flow network:

e Layer 1: one vertex (source)

e Layer 2: one vertex for every reviewer i € [n], and directed edges of capacity p(?) and cost 0 from
the source to every reviewer

e Layer 3: one vertex for every paper j € M

e Layer 4: one vertex (sink), and directed edges of capacity « and cost 0 from each paper to the
sink

3. Find (reviewer, paper) pair (7, j) such that the following two conditions are satisfied:
e the corresponding vertices ¢ and j are not connected in the flow network
e the similarity s;; is maximal among the pairs which are not connected (ties are broken arbitrarily)

and call this pair (i, j")

4. Add a directed edge of capacity 1 and cost s;/j» between nodes ¢’ and j’

5. Compute the max-flow from source to sink, if the size of the flow is strictly smaller than | M|k, then go
to Step

6. If there are multiple possible max-flows, choose any one arbitrarily (or use any heuristic such as max-flow
with max cost)

7. For every edge (i,7) between layers 2 (reviewers) and 3 (papers) which carries a unit of flow in the
selected max-flow, assign reviewer i to paper j in the assignment A

described earlier, we know that the reviewer and paper load constraints are satisfied. The capacity of each
edge in our flow network is a non-negative integer, thereby guaranteeing that the max-flow is an integer,
that it can be found in polynomial time, and that the flow in every edge is a non-negative integer under the
max-flow. Once the max-flow of size | M|k is reached, the subroutine stops adding edges. At this point, it is
ensured that the value of the lowest similarity in the resulting assignment is maximized.

Finally, the subroutine assigns each paper to x reviewers, using only the “high similarity” edges added to
the network so far (Steps |§| and . The existence of the corresponding assignment is guaranteed by max-flow
in the network being equal to |M|k. There may be more than one feasible assignments that attain the
max-flow. While any of these assignments would suffice from the standpoint of optimizing the worst-case
fairness objective , the PC may wish to make a specific choice for additional benefits and specify the
heuristic to pick the max-flow in Step [6] of the subroutine. For example, if the max-flow with the maximum
cost is selected, then the resulting assignment nicely combines fairness with the high average quality of the
assignment. Another choice, discussed in Appendix helps with broad topic coverage of the assignment.
Importantly, the approximation guarantees established in Theorem [1| and Corollary |1} as well as statistical
guarantees from Sections [6] and [7] hold for any max-flow assignment chosen in Steps [6] and [7}

For comparison, we note that the TPMS algorithm can equivalently be interpreted in this framework
as follows. The TPMS algorithm would first connect all reviewers to all papers in layers 2 and 3 of the
flow graph. It will then compute a max-flow with max cost in this fully connected flow network and make
reviewer-paper assignments corresponding to the edges with unit flow between layers 2 and 3. In contrast,
our sequential construction of the flow graph prevents papers from being assigned to weak reviewers and is
crucial towards ensuring the fairness objective.
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Algorithm 1 PEERREVIEW4ALL Algorithm

Input: A € [n]: number of reviewers required per paper
S € [0, 1]™*™: similarity matrix
w € [m]: reviewers’ maximum load
f+ transformation of similarities
Output: Reviewer assignment AI;MA
Algorithm:
1. Initialize @ = (g, ..., p) € [p]™
AI;R4A, Ap : empty assignments
M = [m]: set of papers to be assigned
2. Fork =1to A

(a) Set u'™P =, S =S

(b) Assign k reviewers to every paper using subroutine: Al = Subroutine(x, M, St™P, 7tmP)

(c) Decrease i*™P for every reviewer by the number of papers she/he is assigned in AL, set corresponding
similarities in S*™P to —oco

(d) Run subroutine with adjusted *™P and S*™P to assign remaining A — k reviewers to every paper:
A% = Subroutine(\ — x, M, StmP 7t™mP)

(e) Create assignment A, such that for every pair (i, j) of reviewer ¢ € [n] and paper j € M, reviewer
i is assigned to paper j if she/he is assigned to this paper in either Al or A2

3. Choose A € arg max F‘? (A,) with ties broken arbitrarily
rE[A]U{0}

4. For every paper j € J* :=arg min ) f(sy), assign all reviewers R 37(j) to paper j in A?MA
LEM  ieR L(0)

For every reviewer i € [n], decrease p(¥) by the number of papers in J* assigned to i

Delete columns corresponding to the papers J* from S and g, update M = M\ T*

Set Ao = 12(

If M is not empty, go to Step

XN o

Algorithm. The algorithm calls the subroutine iteratively and uses the outputs of these iterates in a carefully
designed manner. Initially, all papers belong to a set M which represents papers that are not yet assigned.
The algorithm repeats Steps [2| to [7| until all papers are assigned. In every iteration, for every value of k € [A],
the algorithm first calls the subroutine to assign x reviewers to each paper from M (Step , and then
adjusts reviewers’ capacities and the similarity matrix (Step to prevent any reviewer being assigned to
the same paper twice. Next, the subroutine is called again (Step to assign another (A — k) reviewers
to each paper. As a result, after completion of Step [2] )\ feasible candidate assignments A;,..., Ay are
constructed. Each assignment Ay, k € [A], is guaranteed (through the Step to maximize the minimum
similarity across pairs (i, ) where j € M and reviewer 4 is among k strongest reviewers assigned to paper j
in A,; and (through the Steps and to have each paper assigned with exactly A reviewers.

In Step [3] the algorithm chooses the assignment with the highest fairness (3.4) among the A\ candidate
assignments and the assignment Ag from the previous iteration (empty in the first iteration). Note that since
Ap is also included in the maximizer, the fairness cannot decrease in subsequent iterations.

In the chosen assignment, the algorithm identifies the papers that are most disadvantaged, and fixes the
assignment for these papers (Step [4]). The assignment for these papers will not be changed in any subsequent
step. The next steps (Steps [5| and [6) update the auxiliary variables to account for this assignment that is
fixed — decreasing the corresponding reviewer capacities and removing these assigned papers from the set
M. Step El then keeps a track of the present assignment A for use in subsequent iterations, ensuring that
fairness cannot decrease as the algorithm proceeds.

Remarks. We make a few additional remarks regarding the PEERREVIEW4ALL algorithm.
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1. Computational cost: A naive implementation of the PEERREVIEW4ALL algorithm has a computational

complexity o ()\(m + n)m2n). We give more details on implementation and computational aspects in

Appendix [A2]

2. Variable reviewer or paper loads: More generally, the PEERREVIEW4ALL algorithm allows for specifying
different loads for different reviewers and/or papers. For general paper loads, we consider £ < max;e ] @)
and define the capacity of edge between node corresponding to any paper j and sink as min{x, Y )}.

8. Incorporating conflicts of interest: One can easily incorporate any conflict of interest between any
reviewer and paper by setting the corresponding similarity to —oo.

4. Topic coverage: The techniques developed in [Long et al| (2013) can be employed to modify our
algorithm in a way that it first ensures fairness and then, among all approximately fair assignments, picks one
that approximately maximizes the number of distinct topics of papers covered. We discuss this modification

in Appendix

4.2 Example

To provide additional intuition behind the design of the algorithm, we now present an example that we also
use in the next section to explain our approximation guarantees.

Let for a moment assume that f(s) = s and let { be a constant close to 1. Consider the following two
scenarios:

(S1) The optimal assignment AHARD is such that all the papers are assigned to reviewers with high similarity:

min 855 > (¢ Vi € [m]. (3.5)

1€R 4HARD (J)
(S2) The optimal assignment ATARD is such that there are some “critical” papers which have 7 < \ assigned
reviewers with similarities higher than ¢ and the remaining assigned reviewers with small similarities.

All other papers are assigned to A reviewers with similarity higher than (.

Intuitively, the first scenario corresponds to an ideal situation since there exists an assignment such that
each paper has A competent reviewers (with similarity ¢ ~ 1). In contrast, in the second scenario, even in
the fair assignment, some papers lack expert reviewers. Such a scenario may occur, for example, if some
non-mainstream papers were submitted to a conference. This case entails identifying and treating these
disadvantaged papers as well as possible. To be able to find the fair assignment in both scenarios, the
assignment algorithm should distinguish between them and adapt its behavior to the structure of similarity
matrix. Let us track the inner-workings of PEERREVIEW4ALL algorithm to demonstrate this behaviour.

We note that by construction, the fairness of the resulting assignment APR44 is determined in the first
iteration of Steps[2] to[7] of Algorithm I} so we restrict our attention to M = [m]. First, consider scenario [(ST)|
The subroutine called with parameter x = A will add edges to the flow network until the maximal flow of size
mA is reached. Since the optimal assignment AHARP is such that the lowest similarity is higher than ¢, the
last edge added to the flow network will have similarity at least ¢, implying that the fairness of the candidate
assignment Ay, which is a lower bound for the fairness of resulting assignment, will be at least A{. Given
that ( is close to one, we conclude that in this case algorithm is able to recover an assignment which is at
least very close to optimal.

Now, let us consider scenario In this scenario, the subroutine called with kK = A may return a poor
assignment. Indeed, since there is a lack of competent reviewers for critical papers, there is no way to assign
each paper with A reviewers having a high minimum similarity in the assignment. However, the subroutine
called with parameter x = n will find 7 strong reviewers for each paper (including the critical papers), thereby
leading to a fairness I'® (APR4A) > n¢. The obtained lower bound guarantees that the assignment recovered
by the PEERREVIEW4ALL algorithm is also close to the optimal, because in the fair assignment ATARD some
papers have only 7 strong reviewers.

This example thus illustrates how the PEERREVIEW4ALL algorithm can adapt to the structure of the
similarity matrix in order to guarantee fairness, as well as other guarantees that are discussed subsequently
in the paper.
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5 Approximation guarantees

In this section we provide guarantees on the fairness of the reviewer-assignment by our algorithm. We first
establish guarantees on the max-min fairness objective introduced earlier (Section. We subsequently show
that our algorithm optimizes not only the worst-off paper but recursively optimizes all papers (Section [5.2)).
We then conclude this section on deterministic approximation guarantees with a comparison to past literature

(Section [5.3)).

5.1 Max-min fairness

We begin with some notation that will help state our main approximation guarantees. For each value of
k € [A], consider the reviewer-assignment problem but where each paper requires x (instead of \) reviews
(each reviewer still can review up to p papers). Let us denote the family of all feasible assignments for this
problem as A,. Now define the quantities

sp = max min min _s;;, (3.6)
A€A, jEm]i€R A(5)

s = max max s;;, and
i€[n] j€[m]

oo = 10 iy B
Intuitively, for every assignment from the family A, the quantity s}, upper bounds the minimum similarity
for any assigned (reviewer, paper) pair. It also means that the value s¥ is achievable by some assignment in
A. The value s§ captures the value of the largest entry in the similarity matrix S and gives a trivial upper
bound I‘? (A) < Af(s}) for every feasible assignment A € A. Likewise, the value s’ captures the smallest
entry in the similarity matrix S and yields a lower bound F? (A) > Mf(s%,) for every feasible assignment
Ac A

We are now ready to present the main result on the approximation guarantees for the PEERREVIEW4ALL

algorithm as compared to the optimal assignment AHARD,

Theorem 1. Consider any feasible values of (n,m,\, u), any monotonically increasing function f :[0,1] —
[0,00], and any similarity matriz S. The assignment AfRM given by the PEERREVIEW4ALL algorithm
guarantees the following lower bound on the fairness objective (3.4)):

ry (apm) max (. (52) + (A = #) f(53))

> — (3.7a)
rs (AJI;’ARD) min (v —1)f(s5) + (A= +1) f(s3))

> 1/ (3.7b)

Remarks. The numerator of is a lower bound on the fairness of the assignment returned by our
algorithm. It is important to note that if A = 1, that is, if we only need to assign one reviewer for each paper,
then our PEERREVIEW4ALL Algorithm finds exact solution for the problem, recovering the classical results
of (Garfinkel| (1971) as a special case.

In practice, the number of reviewers A required per paper is a small constant (typically set as 3), and
in that case, our algorithm guarantees a constant factor approximation. Note that the fraction in the right
hand side of can become 0/0 or co/oco0, and in both cases it should be read as 1.

The bound (3.7a)) can be significantly tighter than 1/\, as we illustrate in the following example.

Example. Consider two scenarios [(S1)| and |(S2)| from Section and consider f(s) = s. One can see that
under scenario we have s} > (. Setting x = A in the numerator and x = 1 in the denominator of the
bound ({3.7a]), and recalling that ¢ = 1, we obtain:

T'S (APR4A)
['S (AHARD)

~1

>

)

<
s1
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where we have also used the fact that s7 < 1. Let us now consider the second scenario in the example of
Section In this scenario, since each paper can be assigned to n strong reviewers with similarity higher than
¢, we have sj = ( &~ 1. We then also have sj < 1. Moreover, there are some papers which have only 7 strong
reviewers in optimal assignment ATARP and hence we have s, < sj. Setting £ =7 in the numerator and
x =mn 4+ 1 in the denominator of the bound , some algebraic simplifications yield the bound

DY (AT sy A =m)sse sy A=) s

IS (AHARD) = nss + (A =n)siiq — 85 noos

We now briefly provide more intuition on the bound by interpreting it in terms of specific steps in the
algorithm. Setting f(s) = s, let us consider the first iteration of the algorithm. Recalling the definition
of s}, the PEERREVIEW4ALL subroutine called with parameter x on Step [2b] finds an assignment such that
all the similarities are at least s%. This guarantee in turn implies that the fairness of the corresponding
assignment A, is at least kst + (A — K)sl,, thereby giving rise to the numerator of . The denominator
is an upper bound of the fairness of the optimal assignment AHARD  The expression for any value of x is
obtained by simply appealing to the definition of s} which is defined in terms of the optimal assignment.
By definition of s%, for every feasible assignment A exists at least one paper such that at most k — 1
of the assigned reviewers are of similarity larger than s}. Thus, the fairness of the optimal assignment is
upper-bounded by the sum similarity of the paper that has k — 1 reviewers with similarity s§ (the highest
possible similarity), and A — k + 1 reviewers with similarity s%.

Finally, one may wonder whether optimizing the objective as done by prior works (Charlin and
Zemel, 2013} |Charlin et all |2012) can also guarantee fairness. It turns out that this is not the case (see
the example in Table [1] for intuition), and optimizing the objective (3.2)) is not a suitable proxy towards
the fairness objective In Appendix @ we show that in general the fairness objective value of
the TPMS algorithm which optimizes @ may be arbitrarily bad as compared to that attained by our
PEERREVIEW4ALL algorithm.

In Appendix we show that the analysis of the approximation factor of our algorithm is tight in
a sense that there exists a similarity matrix for which the bound is met with equality. That said,
the approximation factor of our PEERREVIEW4ALL algorithm can be much better than % for various other
similarity matrices, as demonstrated in examples and

5.2 Beyond worst case

The previous section established guarantees for the PEERREVIEW4ALL algorithm on the fairness of the
assignment in terms of the worst-off paper. In this section we formally show that the algorithm does more:
having the assignment for the worst-off paper fixed, the algorithm then satisfies the second worst-off paper,
and so on.

Recall that Algorithm [I]iteratively repeats Steps [2]to[7} In fact, the first time that Step [3|is executed, the
resulting intermediate assignment A achieves the max-min guarantees of Theorem |1, However, the algorithm
does not terminate at this point. Instead, it finds the most disadvantaged papers in the selected assignment
and fixes them in the final output A?MA (Step , attributing these papers to reviewers according to A.
Then it repeats the entire procedure (Steps [2|to[7)) again to identify and fix the assignment for the most
disadvantaged papers among the remaining papers and so on until the all papers are assigned in A?MA. We
denote the total number of iterations of Steps [2[to [7]in Algorithm [1|as p (< m). For any iteration r € [p],
we let 7, be the set of papers which the algorithm, in this iteration, fixes in the resulting assignment. We
also let A,.,r € [p], denote the assignment selected in Step |3| of the r* iteration. Note that eventually all the
papers are fixed in the final assignment A?MA, and hence we must have |J J, = [m].

r€lp]

Once papers are fixed in the final output A?MA, the assignment for these papers are not changed any
more. Thus, at the end of each iteration r € [p] of Steps[2|to[7} the algorithm deletes (Step @ the columns of
similarity matrix that correspond to the papers fixed in this iteration. For example, at the end of the first
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iteration, columns which correspond to J; are deleted from S. For each iteration r € [p], we let S, denote
the similarity matrix at the beginning of the iteration. Thus, we have S; = S, because at the beginning of
the first iteration, no papers are fixed in the final assignment AI;MA.

Moving forward, we are going to show that for every iteration r € [p], the sum similarity of the worst-off
papers J, (which coincides with the fairness of /L) is close to the best possible, given the assignment for

the all papers fixed in the previous iterations. As in Theorem we will compare the fairness F;? (ZT)

with the fairness of the optimal assignment that HARD algorithm would return if called at the beginning of

P
the r*® iteration. We stress that for every r € [p], the HARD algorithm assigns papers |J J; and respects
l=r
r—1
the constraints on reviewers’ loads, adjusted for the assignment of papers |J J; in AJF;R“A. We denote the
li

=1
corresponding assignment as A?ARD(j{T:p}). Note that A?ARD(J{LP}) = AI}?ARD. The following corollary
summarizes the main result of this section:

Corollary 1. For any integer r € [p], the assignment ZT., selected by the PEERREVIEW4ALL algorithm in
Step @ of the v iteration, guarantees the following lower bound on the fairness objective (3.4):

S(A * \— *
() myeereoone) e
s (A]I;IARD(j{T:p})) — min (5 = Df(s5) + A= w4+ 1) f(s2)) —
where values s¥, k € {0,..., A} U{oo}, are defined with respect to the similarity matriz S, and constraints on

r—1
reviewers’ loads adjusted for the assignment of papers |J J; in A}DRM.
1=1

The corollary guarantees that each time the algorithm fixes the assignment for some papers j € M
in A?MA, the sum similarity for these papers (which is smallest among papers from M) is close to the
optimal fairness, where optimal fairness is conditioned on the previously assigned papers. In case r = 1,
the bound coincides with the bound from Theorem |1} Hence, once the assignment for the most
worst-off papers is fixed, the PEERREVIEW4ALL algorithm adjusts maximum reviewers’ loads and looks for
the most fair assignnment of the remaining papers.

5.3 Comparison to past literature

In this section we discuss how the approximation results established in previous sections relate to the past
literature.

First, we note that the assignment A;, computed in Step [2] in the first iteration of Steps [2] to [7] of
Algorithm [I} recovers the assignment of [Hartvigsen et al| (1999)), thus ensuring that our algorithm is at least
as fair as theirs. Second, if the goal is to assign only one reviewer (A = 1) to each of the papers, then our
PEERREVIEW4ALL algorithm finds the optimally fair assignment and recovers the classical result of [Garfinkel
(1971)).

In the remainder of this section, we provide a comparison between the guarantees of the PEERREVIEW4ALL
algorithm established in Theorem [1| and the guarantees of the ILPR algorithm (Garg et al., 2010)). Rewriting
the results of |(Garg et al.| (2010) in our notation, we have the bound:

0 (AFFR) | TF (AF) (60~ ) ) - s )
rs (AIf{ARD) = rs (A?ARD) T rs (AI;ARD) ’ '

Note that our bound (3.7)) for our PEERREVIEW4ALL algorithm is multiplicative and bound for the ILPR
algorithm is additive which makes them incomparable in a sense that neither one dominates another. However,
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we stress the following differences. First, if we assume f to be upper-bounded by one, then assignment AMPR

satisfies the bound
I (AIFR) > 1§ (AAR0) 1 .10)

This bound gives a nice additive approximation factor — for a large value of the optimal fairness
I‘]Sc (A?ARD>, the constant additive factor is negligible. However, if the optimal fairness is small, which can

happen if some papers do not have a sufficient number of high-expertise reviewers, then the lower bound
on the fairness of the ILPR assignment becomes negative, making the guarantees vacuous as any
arbitrary assignment will achieve a non-negative fairness. Note that this issue is not an artifact of the analysis
but is inherent in the ILPR algorithm itself, as we demonstrate in the example presented in Table[I] and in
Appendix In contrast, our algorithm in the worst case has a multiplicative approximation factor 1/\
ensuring that it always returns a non-trivial assignment.

This discrepancy becomes more pronounced if the function f is allowed to be unbounded, and the
similarities are significantly heterogeneous. Suppose there is some reviewer i € [n] and paper j € [m] such
that f(s;;) > F? (AHARD) " Then the bound for the ILPR algorithm again becomes vacuous, while the
bound for the PEERREVIEW4ALL algorithm continues to provide a non-trivial approximation guarantee.

Finally, we note that the bound is also extended by |Garg et al|(2010) to obtain guarantees on the
fairness for the second worst-off paper and so on.

6 Objective-score model

We now turn to establishing statistical guarantees for our PEERREVIEW4ALL algorithm from Section [4f We
begin by considering an “objective” score model which we borrow from past works.

6.1 Model setup

The objective-score model assumes that each paper j € [m] has a true, unknown quality 0> € R and each
reviewer i € [n] assigned to paper j gives her/his estimate y;; of 7. The eventual goal is to estimate top k
papers according to true qualities 6%, € [m]. Following the line of works by |Ge et al.| (2013); McGlohon
et al| (2010); [Dai et al.| (2012); [Sajjadi et al.| (2016), we assume the score y;; given by any reviewer ¢ € [n] to
any paper j € [m] to be independently and normally distributed around the true paper qualities:

yij ~ N (67,07 - (3.11)

Note that McGlohon et al.| (2010); |Dai et al.| (2012)) and |Sajjadi et al.| (2016]) consider the restricted setting
with 0;; = o; for all (4, ) € [n] x [m], which implies that the variance of the reviewers’ scores depends only
on the reviewer, but not on the paper reviewed. We claim that this assumption is not appropriate for our
peer-review problem: conferences today (such as ICML and NeurIPS) cover a wide spectrum of research
areas and it is not reasonable to expect the reviewer to be equally competent in all of the areas.

In our analysis, we assume that the noise variances are some function of the underlying computed
similaritiesﬂ We assume that for any ¢ € [n] and j € [m], the noise variance

o7 = h(sij),

for some monotonically decreasing function h : [0,1] — [0, 00). We assume that this function h is known; this
assumption is reasonable as the function can, in principle, be learned from the data from the past conferences.

We note that the model does not consider reviewers’ biases. However, some reviewers might be
more stringent while others are more lenient. This difference results in score of any reviewer i for any paper
J being centered not at 67, but at (9; +b;). A common approach to reduce biases in reviewers’ scores is a

4Recall that the similarities can capture not only affinity in research areas but may also incorporate the bids or preferences
of reviewers, past history of review quality, etc.
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post-processing. For example, |Ge et al.| (2013) compared different statistical models of reviewers in attempt
to calibrate the biases; the techniques developed in that work may be extended to the reviewer model (3.11)).
Thus, we leave that bias term out for simplicity.

6.2 Estimator

Given a valid assignment A € A, the goal of an estimator is to recover the top k papers. A natural way to do
so is to compute the estimates of true paper scores ¢ and return top k papers with respect to these estimated
scores. The described estimation procedure is a significantly simplified version of what is happening in the
real-world conferences. Nevertheless, this fully-automated procedure may serve as a guideline for area chairs,
providing a first-order estimate of the total ranking of submitted papers. In what follows, we refer to any
estimator as § and to the estimated score of any paper j as 6;. Specifically, we consider the following two
estimators:

e Maximum likelihood estimator (MLE) gMLE

: 1
O = Z yj” NG —~=—=1 |- (3.12)

- 2.

. g
05 1ERA(J ieRAG) T

-

1€RA( j)

Under the model (3.11)), @}/ILE is known to have minimal variance across all linear unbiased estimations.

The choice of M follows a paradigm that more experienced reviewers should have higher weight in
decision making.

e Mean score estimator (MEAN) gMEAN

AMEAN * 2
0 Z yij ~ N 93’)\2 S oo (3.13)

ZGRA(j) ’LERA(j)

The mean score estimator is convenient in practice because it is not tied to the assumed statistical model,
and in the past has been found to be predictive of final acceptance decisions in peer-review settings such
as National Science Foundation grant proposals (Cole et all [1981) and homework grading (Sajjadi et al.,
2016)). This observation is supported by the program chair of ICML 2012 John Langford, who notices
in his blog (Langford}, 2012b) that in ICML 2012 the decisions on the acceptance were “surprisingly
uniform as a function of average score in reviews”.

6.3 Analysis

@MEAN

Here we present statistical guarantees for both PMLE and estimators and for both exact top k recovery

and recovery under a Hamming error tolerance.

6.3.1 Exact top k recovery

Let us use (k) and (k + 1) to denote the indices of the papers that are respectively ranked k** and (k + 1)th
according to their true qualities. Similar to the past work by |Shah and Wainwright| (2015 on top k item
recovery, a central quantity in our analysis is a k-separation threshold Ay defined as:

A= 00y — sy > 0. (3.14)

Intuitively, if the difference between k™ and (k + 1)th papers is large enough, it should be easy to recover
top k papers. To formalize this intuition, for any value of a parameter § > 0, consider a family Fj of papers’
scores

Fi(6) := {(91, e O) €R™|O — 01 > 5} . (3.15)
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For the first half of this section, we assume that function h is bounded, that is, h : [0,1] — [0, 1]E| This
assumption implicitly assumes that every reviewer ¢ € [n] can provide a minimum level of expertise while
reviewing any paper j € [m] even if she/he has zero similarity s;; = 0 with that paper.

In addition to the gap Ay, the hardness of the problem also depends on the similarities between reviewers
and papers. For instance, if all reviewers have near-zero similarity with all the papers, then recovery is
impossible unless the gap is extremely large. In order to quantify the tractability of the problem in terms
of the similarities we introduce the following set S of families of similarity matrices parameterized by a
non-negative value g¢:

S(a) == {8 € [0,1"| 5L, (AIARP) = g (3.16)

In words, if similarity matrix S belongs to S(g), then the fairness of the optimally fair (with respect to
f =1—h) assignment is at least g.
Finally, we define a quantity 7, that captures the quality of approximation provided by PEERREVIEW4ALL:

s PR4A
Tq = In —Féfh (Aé;gD) . (3.17)
ses(q) 7, (ATARP)
Note that Theorem [l gives lower bounds on the value of 7.
Having defined all the necessary notation, we are ready to present the first result of this section on
recovering the set of top k papers 7;".

Theorem 2. (a) For any e € (0,1/4), ¢ € [\ (1 — h(0)), A] and any monotonically decreasing h : [0,1] — [0,1],
if 6 > 2—‘){51 /(A —q7y) In %, then for (A,g) € {(Aff}fA,é\MEAN) , (A}}jﬁfA,gMLE)}

(9{,...,2;*31))e]:k(5)P {n (A’ §> a 77:} e (3.18)
S€5(q)

(b) Conversely, for any continuous strictly monotonically decreasing h : [0,1] — [0,1] and any q €

[A(1 = h(0)),N], there exists a universal constant ¢ > 0 such that if m > 6 and 6§ < $/(A—q)lnm,
then

. ~ 1

sup _inf sup IP’{’77C (A,H) * 77:} > -

SeS(q) (0,AcA) (05,05, ) EFR(5) 2

Remarks. 1. The PEERREVIEW4ALL assignment algorithm thus leads to a strong minimax guarantee on the
recovery of the top k papers: the upper and lower bounds differ by at most a 7, > % term in the requirement
on § and constant pre-factor. Also note that as discussed in Section approximation factor 7, of the
PEERREVIEW4ALL algorithm can be much better than 1/X for various similarity matrices.

2. In addition to quantifying the performance of PEERREVIEW4ALL, an important contribution of
Theorem [2] is a sharp minimax analysis of the performance of every assignment algorithm. Indeed, the
approximation ratio 7, can be defined for any assignment algorithm, by substituting corresponding
assignment instead of Alf_Rﬁ A, For example, if one has access to the optimal assignment AHARD (e.g.. by using
PEERREVIEW4ALL if A = 1) then we will have corresponding approximation ratio 7, = 1 thereby yielding
bounds that are sharp up to constant pre-factors.

3. While on one hand the estimator OMLE is preferred over OMEAN when model is correct, on the
other hand, if h(s) € [0, 1], then the estimator GMEAN i more robust to model mismatches.

4. The technical assumption ¢ € [A (1 — h(0)), \] is made without loss of any generality, because values
of ¢ outside this range are vacuous. In more detail, for any similarity matrix S € [0,1]"*™, it must be

5More generally, we could consider bounded function h with range [0, c] for some ¢ > 0. Without loss of generality, we set
¢ = 1 which can always be achieved by appropriate scaling.
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that 'Y, (A{{_A}L)‘D) > A (1 — h(0)). Moreover, the co-domain of function h comprises only non-negative real
values, implying that Ty, (A{Ifflt)”D) < A for any similarity matrix S € [0, 1]™*™.

5. The upper bound of the theorem holds for a slightly more general model of reviewers — reviewers with
sub-Gaussian noise. Formally, in addition to the Gaussian noise model , the proof of Theorem (a) also
holds for the following class of distributions of the score ;;:

yij = 035 + sG (h(si;)) (3.19)

where sG (02) is an arbitrary mean zero sub-Gaussian random variable with scale parameter o2.

The conditions of Theorem [2| require function h to be bounded. We now relax our earlier boundedness
assumption on h and consider h : [0,1] — [0, 00).

In what follows we restrict our attention to MLE estimator OMLE which represents the paradigm that
reviewers with higher similarity should have more weight in the final decision. In order to demonstrate that
our PEERREVIEW4ALL algorithm is able to adapt to different structures of similarity matrices — from hard
cases when optimal assignment provides only one strong reviewer for some of the papers, to ideal cases when
there are A strong reviewers for every paper — let us consider the following set S, of families of similarity

matrices parametrized by a non-negative value v and integer parameter k € [\]:

Sp(v) == {s e [0, 1)

55> v} . (3.20)

Here s, is as defined in (3.6)).

In words, the parameter v defines the notion of strong reviewer while parameter x denotes the maximum
number of strong (with similarity higher than v) reviewers that can be assigned to each paper without
violating the (u, A) conditions.

Then the following adaptive analogue of Theorem [2] holds:

Corollary 2. (a) For any € € (0 1/4), v € [0,1], k € [A] and any monotonically decreasing h : [0,1] — [0, 00),
h(v)h(0)

sup P{ﬁ(Afﬁ'{‘A,gMLE) #+ 7;*} <e
(9f7~--79fn)€-7"k(5)
SeS,(v)

(b) Conversely, for any continuous strictly monotonically decreasing h : [0,1] — [0,00), any v € [0,1], and

any k € [N, there exists a universal constant ¢ > 0 such that if m > 6 and § < c\/% Inm, then

sup inf Sup {7%(14 0) # Ty } %

5€8.(v) (B,A€A) (67,....5)€Fu(5)

Remarks. 1. Observe that there is no approximation factor in the upper bound. Thus, the PEERREVIEW4ALL
algorithm together with OMLE are simultaneously minimax optimal up to a constant pre-factor in classes of
similarity matrices S, (v) for all k € [A], v € [0, 1].

2. Corollary a) remains valid for generalized sub-Gaussian model of reviewer .

3. Corollary [2] together with Theorem [2] show that our PEERREVIEW4ALL algorithm produces the
assignment AEB{*A which is simultaneously minimax (near-)optimal for various classes of similarity matrices.
We thus see that our PEERREVIEW4ALL algorithm is able to adapt to the underlying structure of similarity
matrix S in order to construct an assignment in which even the most disadvantaged paper gets reviewers
with sufficient expertise to estimate the true quality of the paper.
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6.3.2 Approximate recovery under Hamming error

Although our ultimate goal is to recover set 7" of top k papers exactly, we note that often scores of boundary
papers are close to each other so it may be impossible to distinguish between the £ and (k + 1)*" papers in
the total ranking. Thus, a more realistic goal would be to try to accept papers such that the set of accepted
papers is in some sense “close” to the set 7,°. In this work we consider the standard notion of Hamming
distance as a measure of closeness. We are interested in minimizing the quantity:

]P{DH (7; (A,§> Tk) > Qt}

for some user-defined value of ¢ € [k — 1].
Similar to the exact recovery setup, the key role in the analysis is played by generalized separation

threshold (compare with equation [3.14)):
Apy = ezﬁk—t) - o?k-&-t-&-l)’

where (k —t) and (k + ¢ + 1) are indices of papers that take (k —¢)'" and (k 4t + 1)*® positions respectively
in the underlying total ranking. For any value of § > 0 we consider the following generalization of the set

Fi(0) defined in (3.15)):
Frt(0) == {(91, cosOm) € Rm’g(k—t) = Oktt+1) = 5}-

Also recall the family of matrices S(¢) from (3.16) and the approximation factor 7, from (3.17)) for any
parameter ¢q. With this notation in place, we now present the analogue of Theorem [2|in case of approximate
recovery under the Hamming error.

Theorem 3. (a) For any € € (0,1/4), ¢ € [A\(1 —h(0)),A], t € [k — 1], and any monotonically decreasing
he[0,1] = [0,1], if 6 > 22 [(X—qr) In 2, then for (A 9) e {(Aff}fA,éMEAN) , (A5514A,§MLE)}

(GI,U.,OS;?)E}‘,C)t(a)P{DH (776 (A7§> 777:) > 2t} <e

SeS(q)

(b) Conversely, for any continuous strictly monotonically decreasing h : [0,1] — [0, 1], any g € [A (1 — h(0)), A,
and any 0 < t < k, there exists a universal constant c > 0 such that for given constants v1 € (0;1) and

vy € (0,1) if 2t < 1+V min {ml “ik,m — k} and § < £/ (A —q) vrivelnm, then for m larger than some
(v1,v2)-dependent constant,
~ 1
sup _inf sup P{DH (ﬁ (A, 0) ,77:) > Zt} 7

S€S(q) (0,A€A) (05,...,03, )€ Fi 1 (8)

Remarks. This theorem provides a strong minimax characterization of the PEERREVIEW4ALL algorithm
for approximate recovery. Note that upper and lower bounds differ by the approximation factor 74, which is
at most %, and a pre-factor which depends only on the constants 17 and vs.

To conclude the section, we state the result for the family S, (v) of similarity matrices defined in (3.20) for
any parameter v, showing that adaptive behavior of PEERREVIEW4ALL algorithm (Corollary [2)) also carries
over to the Hamming error metric.

Corollary 3. (a) For any e € (0,1/4), v € [0,1], k € [A], t € [k — 1], and any monotonically decreasing
h:[0,1] — [0,00), zf5>2f\/%ln , then

sup ]P’{DH (77¢ (A,ff‘fA,@MLE) ,77:) > Qt} <e
(07,...,07, ) EFk,(0)
SES (v)
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(b) Conversely, for any continuous strictly monotonically decreasing h : [0,1] — [0,00), any v € [0,1], k € [A]
and any t € [k — 1], there exists a universal constant ¢ > 0 such that for given constants v1 € (0;1) and

vy € (0,1) if 2t < ﬁmin {ml”’l,k,m - k} and § < c\/%ml/g Inm, then for m larger than

some (v1,9)-dependent constant,

sup inf sup ]P’{DH (77C (A,é\) ,77:) > 2t} > %

S€S.(v) (0,A€A) (07,03, ) € Fic 1 (5)

The results established in this section thus show that our PEERREVIEW4ALL algorithm produces an
assignment which is minimax (near-)optimal for both exact and approximate recovery of the top k papers.

7 Subjective-score model

In the previous section, we analyzed the performance of our PEERREVIEW4ALL assignment algorithm under
a model with objective scores. Indeed, various past works on peer-review (as well as various other domains of
machine learning) assume existence of some “true” objective scores or ranking of the underlying items (papers).
However, in practice, reviewers’ opinions on the quality of any paper are typically highly subjective (Kerr
et al.l 1977 [Mahoneyl |1977; [Ernst and Resch) (1994; Bakanic et al., [1987; |Lamont), |2009). Even two highly
experienced researchers with vast experience and expertise may have considerably differing opinions about
the contributions of a paper. Following this intuition, we wish to move away from the assumption of some
true objective scores {67} ;e of the paper.

With this motivation, in this section we develop a novel model to capture such subjective opinions and
present a statistical analysis of our assignment algorithm under this subjective-score model.

7.1 Model

The key idea behind our subjective score model is to separate out the subjective part in any reviewer’s
opinion from the noise inherent in it. Our model is best described by first considering a hypothetical situation
where every reviewer spends an infinite time and effort on reviewing every paper, gaining a perfect expertise
in the field of that paper and a perfect understanding of the paper’s content. We let 0;; € R denote the score
that this fully competent version of reviewer i € [n] would provide to paper j € [m], and denote the matrix

of reviewers subjective scores as 0= {51 el Continuing momentarily in this hypothetical world,
i€[n],jelm
when all the reviewers are fully competent in evaluating all the papers, every feasible reviewer-assignment is

of the same quality since there is no noise in the reviewers’ scores. Since all reviewers have an equal, full
competence, a natural choice of scoring any paper j € [m] is to take the mean score provided by the fully
competent reviewers who review that paper:

0% (A) = 0:;. (3.21)

Let us now exit our hypothetical world and return to reality. In a real conference peer-review setting the
reviews will be noisy. Following the previous noise assumptions, we assume that score of any reviewer i € [n]
for any paper j € [m] that she/he reviews is distributed as

yij ~ N (0i5, h(si7)),

for some known continuous strictly monotonically decreasing function h : [0,1] — [0, 1]. Under this model,
the higher the similarity s;;, the better the score y;; represents the subjective score @j which reviewer i € [n]
would give to paper j € [m] if she/he had infinite expertise.

The goal under this model is to assign reviewers to papers such that reviewers are of enough ability to

convey their opinions @j from the hypothetical full-competence world to the real world with scores y;;. In
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other words, the goal of the assignment is to ensure the recovery of the top & papers in terms of the mean
full-competence subjective scores {07} jc{m]-

7.2 Analysis

@\/IEAN

In this section we present statistical guarantees for in context of subjective-score model.

7.2.1 Exact top k recovery

Since the true scores for any reviewer-paper pair are subjective, and since we are interested in mean full-

competence subjective scores, a natural choice for estimating {93‘} from the actual provided scores {y;;} is

gMEAN @J-\/IEAN =+ > i Having
1€RA(F)

defined the model and estimator, we now provide a sharp minimax analysis for the subjective-score model.

In order to state our main result, we recall the family of similarity matrices S(q) defined earlier in and

the approximation ratio 7, defined in (3.17), both parameterized by some non-negative value g.

Note that the notion of the k-separation threshold does not carry over directly from the objective
score model to the subjective score model. The reason is that the ranking now is induced by the assignment
and changes as we change the assignment. Consequently, we introduce the following family of papers’ scores
that are governed by the assignment A and parametrized by a positive real value §:

Fi(A,0) = {é € R ™G (A) = 07y, 1) (A) = 5} . (3.22)

Since in this section we consider only mean score estimator @V[EAN, we omit index 1 — A from AE‘,‘%A, but
always imply that assignment APR4A is built with respect to the function 1 — h. For every feasible assignment
A, we augment the notation 7. with 7.* (A, 0* (A)) to highlight that the set of the top k papers is induced
by the assignment A. Let us now present the main result of this section.

Theorem 4. (a) For anye € (0,1/4), g € [\ (1 — h(0)), \] and any monotonically decreasing h : [0,1] — [0, 1],
if 6 > QT*@ (A—gqrg)In %, then

the averaging estimator which for every paper j € [m] estimates 5]* as

sup P {n(APIMA’ é\MEAN)#IE: (APR4A, 5*(APR4A>)} <e.
O€eF, (AP4A 5)
SeS(q)

(b) Conversely, for any continuous strictly monotonically decreasing h : [0,1] — [0,1] and any q €
[A(1 = h(0)),N], there ewists a universal constant ¢ > 0 such that if m > 6 and § < $/(A—q)Ilnm,
then

~ ~ 1

sup _inf  sup P {ﬁ(A, 0) £ T (A, o*(A))} >

Ses(q) (B.A€A) Ber,(A,6) 2

We thus see that our assignment algorithm PEERREVIEW4ALL not only leads to the strong guarantees

under the objective-score model but simultaneously also under the setting where the opinions of reviewers
may be subjective.

7.2.2 Approximate recovery under Hamming error

We now present guarantees for approximate recovering under the Hamming error for the PEERREVIEW4ALL
algorithm. We generalize the family of score matrices , for which we consider any integer error tolerance
parameter ¢ € {0,...,k — 1} and any any feasible assignment A. Then we define the following family of
subjective papers’ scores, parameterized by non-negative value §:

(i (A4) = Gy (4) 2 3}
Observe that the class Fy ¢(A, §) coincides with the class Fy(d) from (3.22)) when ¢ = 0.

Fre(A,6) = {é € R™X™
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Theorem 5. (a) For anye € (0,1/4), g € [0, \], t € [k—1], and any monotonically decreasing h : [0,1] — [0,1],
if 6> 22 J(\ = gqry) In 2, then

sup P {DH (Tk (APR4A, 5) T (APR4A, 5*(APR4A))) > zt} <e
OEFy, (AT 5)
SesS(q)

Conversely, for any continuous strictly monotonically decreasing h : [0,1] — [0,1], any g € [A (1 — h(0)), A],

and any 0 < t < k, there exists a universal constant ¢ > 0 such that for given constants v; € (0,1) and

vy € (0,1) if 2t < ﬁ min {ml_”l,kz,m - k} and § < $\/(X—q)vivolnm, then for m larger than some
(v1, v9)-dependent constant,

sup _inf sup ]P’{DH ('E (A, 5) STy (A,@(A))) > 2t} > 1

SeS(q) (0.A€A) BeF, ,(A,5) 2

Similar to Theorem [d] Theorem [f] shows that PEERREVIEW4ALL algorithm is minimax optimal up to a
constant pre-factor and approximation factor given that reviewers’ subjective scores © belong to the class

Frt(A4,0).

8 Experiments

In this section we conduct empirical evaluations of the PEERREVIEW4ALL algorithm and compare it with
the TPMS (Charlin and Zemel, [2013)), ILPR (Garg et al., [2010) and HARD algorithms. Our implementation
of the PEERREVIEW4ALL algorithm picks max-flow with maximum cost in Step [6] of Subroutine [I]

Previous work on the conference paper assignment problem (Garg et al., [2010; |Long et al., 2013 |[Karimzade;
hgan et al. 2008; [Tang et al.l 2010) conducted evaluations of the proposed algorithms in terms of various
objective functions that measure the quality of the assignment. For example, |Garg et al.| (2010) compared
fairness from reviewers’ perspective using the number of satisfied bids as a criteria. While these evaluations
allow to compare algorithms in terms of particular objective, we note that the main goal of the peer-review
system is to accept the best papers. It is not straightforward whether an improvement of some other objective
will lead to the improvement of the quality of the paper acceptance process.

In contrast to the prior works, in this section we not only consider the fairness objective (Subsections
and , but also design experiments (Subsections and to directly evaluate the accuracy resulting
from the assignment procedures.

8.1 Synthetic simulations

We begin with synthetic simulations. We consider the instance of the reviewer assignment problem with
m =n = 100 and A = p = 4. We select the moderate values of m and n to keep track of the optimal
assignment AHARD which we find as a solution of the corresponding integer linear programming problem. For
every real-valued constant ¢, we denote the matrix with all entries being equal to ¢ as c. Similarly, we denote
the matrix with entries independently sampled from a Beta distribution with parameters («, 3) as B («, 3).

We consider the objective-score model of reviewers with h(s) = 1 — s together with estimator GMLE,

Thus, assignments APR4A - AILPR and AHARD aim to optimize Ffl—s)*l (A) while assignment ATFMS aims to

maximize the cumulative sum of similarities G (A) as defined in (3.2).
In what follows we simulate the following problem instances:

(C1) Non-mainstream papers. There are m; = 80 conventional papers for which there exist n; = 80
expert reviewers with high similarity, and mo = 20 non-mainstream papers for which all the reviewers

have similarity smaller than or equal to 0.5. There are also no = 20 weak reviewers who have moderate
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FAIRNESS T, _,) 1 (A) SUM OF SIMILIARITIES G (A)

CASE1l Case2 Case3 Case4 CAsEb Casel Case2 Case3 Case4 CASEH

ATPMS 4.7 5.1 13.3 4.0 10.9 300 168 295 296 311
AHARD 8.0 13.1 26.6 14.0 10.9 296 162 232 234 175
AILPR 8.0 5.0 4.0 14.0 10.9 296 165 188 293 296
APRAA 8.0 13.1 22.0 6.5 10.9 296 166 239 290 309

Table 2: Comparison of assignment produced by PEERREVIEW4ALL, HARD, ILPR and TPMS algorithms
in terms of the fairness and the sum of similarities (higher values are better).

(C3)

similarities with papers from the first group and low similarities with papers from the second group.
The similarities are given by the block matrix:

g = [0.9 0.5 }}80

05 | 0.15 |}20
80 20

Many weak reviewers. In this scenario there are n; = 25 strong reviewers with high similarity with
every paper and ny = 75 weak reviewers with small similarity with every paper:

g _ [08+02xB(L3)]}25
27 01+02xB(1,3) |}75

100

Few super-strong reviewers. The following example tests the algorithms in scenario when some
small number of the reviewers are much stronger than the others. Similarities for this scenario are given
by the block matrix:

098] 09 7110
Sy = 0 |07 |1}50
09 | 09 |}40
~—
60 40

Adverse case. Having analyzed the inner working of our PEERREVIEW4ALL algorithm, we construct
a similarity matrix which is hard for the algorithm to compute the fair assignmentﬁ

Sparse similarities. Each entry of similarity matrix S5 is zero with probability 0.8 or otherwise is
drawn independently and uniformly at random from [0.1,0.9].

8.1.1 Fairness

In this section we analyze the quality of assignments produced by PEERREVIEW4ALL, HARD, ILPR and
TPMS algorithms and for all the five cases described above. The results are summarized in Table [2| where
we compute the measures of fairness Fa_s),l (A) and the conventional sum of similarities G° (A) for each of
the assignments.

The results in Table 2 show that in all five cases PEERREVIEW4ALL algorithm finds an assignment APR4A
with at least as much fairness as ATPMS At the same time, the max cost heuristic that we use in Step |§| of
Subroutine [1| helps the average quality (total sum similarity) of the assignment APR44 to be either close to or
larger than average quality of both A“PR and AHARD

5We do not give an explicit expression of the matrix Sy for this case, due to its complicated structure.
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Figure 1: Fraction of papers incorrectly accepted by OMLE hased on assignments produced by PEERRE-

VIEW4ALL, HARD, ILPR and TPMS for different values of the separation threshold.

In Case the TPMS algorithm sacrifices the quality of reviewers for non-mainstream papers,
assigning them to weak reviewers. In contrast, all other algorithms assign four best possible reviewers to
these unconventional papers in order to maintain fairness. In Case the PEERREVIEW4ALL and HARD
algorithms assign one strong reviewer for each paper while TPMS, in attempt to maximize the value of
its goal function, assigns strong reviewers according to their highest similarities which leads to an unfair
assignment. The ILPR algorithm fails to find a fair assignment in Cases and the poor performance
of ILPR algorithm is caused by the fact that some of the reviewers in our examples have similarities close to
maximal, making the value of f(s) = %S large, which, in turn, makes the approximation guarantee (3.9)
of ILPR algorithm weak. In Case the PEERREVIEW4ALL algorithm was unable to recover the fair
assignment. Instead, the assignment within approximation ratio 1/3, which is a bit better than the worst
case 1/\ = 1/4 approximation, was discovered. Finally, in Case the all algorithms managed to recover
fair assignment. However, we note that the total sum similarity of the AFARD assignment is low as compared
to other algorithms. The reason is that the corresponding solution of the integer linear programming problem
in the HARD algorithm is optimized for the fairness towards the worst-off paper and does not try to continue
optimization, once the assignment for that paper is fixed. In contrast, both PEERREVIEW4ALL and ILPR
algorithms try to maximize the fate of the second worst-off paper, when the assignment for the most worst-off
paper is fixed.

8.1.2 Statistical accuracy

As we have pointed out, the main goal of the assignment procedure is to ensure the acceptance of the k best
papers 7. While in real conferences the acceptance process is complicated and involves discussions between
reviewers and/or authors, here we consider a simplified scenario. Namely, we assume an objective-score model

defined in Section [6] and reviewer model (3.11)) with h(s) =1 — s.
The experiment executes 1,000 iterations of the following procedure. We randomly choose k& = 20 indices
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Figure 2: Sum similarity for the 50 most worst-off papers in assignments produced by PEERREVIEW4ALL,
HarD, ILPR and TPMS.

of the “true best” papers T = {j1,...,jx} C [m]. Each of these papers j € 7,* is assigned score 07 =1, while
for each of the remaining papers j € [m]\7;" we set 07 =1 — Ay, where Ay, € (0,2]. Next, given the similarity
matrix S, we compute assignments APRAA W AHARD = AILPR 5 q ATPMS = For each of these assignments we
compute the estimations of the set of top k papers using the OMLE estimator and calculate the fraction of
wrongly accepted papers.

For every similarity matrix S,,r € [5], and for every value of Ay € {0.1k |k € [20]}, we compute the
mean of the obtained values over the 1,000 iterations. Figure [I] summarizes the dependence of the fraction of
incorrectly accepted papers on the value of separation threshold Ay for all five cases |(C1)]

The obtained results suggest that the increase in fairness of the assignment leads to an increase in the
accuracy of the acceptance procedure, provided that the average sum similarity of the assignment does not
decrease dramatically. The PEERREVIEW4ALL algorithm significantly outperforms TPMS both in terms of
fairness and in terms of fraction of incorrectly accepted papers for the first four cases. The low fairness of
assignments computed by ILPR in Cases and lead to the large fraction of errors in the acceptance
procedure. As we noted earlier, the ILPR algorithm has weak approximation guarantees when the function
f is allowed to be unbounded. In section we will consider the mean score estimator (f(s) = s) which is
more suitable scenario for ILPR algorithm.

Interestingly, in Case the PEERREVIEW4ALL algorithm recovers sub-optimal assignment in terms of
fairness, but still performs well in terms of the accuracy of the acceptance procedure. To understand this
effect, for each of the assignments ATPMS AHARD “AILPR 514 APRAA we compute the sum similarity for all
papers in the assignments and plot these values for 50 the most worst-off papers in each of the assignment in
Figure[2] Despite the inability of PEERREVIEW4ALL to find the fair assignment for the most worst-off paper,
Corollary [I] guarantees that sum similarities for the remaining papers will not be too far from the optimal,
and we see this aspect in Figure [§(C4)l As one can see, the sum similarity for all but tiny fraction of papers
in APR4A i5 large enough, thus ensuring the low fraction of incorrectly accepted papers.

Finally, note that in Case the HARD algorithm, while having optimal fairness, has a lower accuracy
as compared to other algorithms. As Figure demonstrates, the HARD algorithm does not optimize for
the second worst off paper and recovers sub-optimal assignment for all but the most disadvantaged paper. In
contrast, as Figure [2| suggests, the ILPR and PEERREVIEW4ALL algorithms do not stop their work after the
most disadvantaged paper is satisfied, but instead continue to optimize the assignment for the remaining
papers and eventually ensure not only fairness, but also high average quality of the assignment.

8.2 Experiment on the approximation of ICLR similarity matrix

In absence of publicly available similarity matrices from conferences, we are unable to compare the assignment
computed by the PEERREVIEW4ALL algorithm to the actual conference assignment. To circumvent this
issue, we use an approximate version of the similarity matrix from the International Conference on Learning
Representations (ICLR’18) that was constructed by Xu et al.| (2019) and compare the performance of the
PEERREVIEW4ALL and TPMS assignment algorithms on this matrix.
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ALGORITHM FAIRNESS T'® (A)  MEAN SUM OF sIM. G* (A)

ATPMS 0.12 0.413
AVB4A (ONE ITERATION)  0.15 (+25%) 0.408 (—1%)
APRIA (puLL) 0.15 (+25%) 0.406 (—2%)

Table 3: Results of the experiment on the approximation of ICLR’18 similarity matrix. Values in brackets
represent relative changes as compared to the TPMS assignment.

8.2.1 Matrix construction

The similarity matrix we use for comparison was constructed by [ Xu et al.| (2019)) as follows. OpenReview
(openreview.net|) — increasingly popular conference management system — maintains a public database of all
papers (with author identities being visible) submitted to the ICLR’18 conference, thereby giving access to the
pool of submissions. Next, it was assumed that all authors of submissions are simultaneously reviewers and that
there are no additional reviewers. The publication profiles of reviewers were constructed by scraping the data
from databases of scientific publications. Finally, the open-source code (bitbucket.org/lcharlin/tpms/)
and the material of the original paper (Charlin and Zemel, [2013]) were used to compute the similarity matrix
according to the TPMS procedure.

The process outlined above resulted in the similarity matrix .S that has n = 2435 reviewers and m = 911
papers. Additionally, it was assumed that any reviewer has a conflict of interests with the submitted papers
that she/he has authored; these conflicts are represented by a binary matrix C' whose (i, j)'* entry equals 1 if
and only if reviewer ¢ has a conflict with paper j. Similarity matrix .S possesses a considerable heterogeneity
as demonstrated by some papers having mean similarity with non-conflicting reviewers almost four times
larger than others.

The large size of the similarity matrix makes computation of the optimally fair assignment infeasible, and
hence in this section we do not compute the HARD assignment. Additionally, our implementation of the
ILPR assignment algorithms was computationally inefficient and in absence of the publicly available source
code we also exclude this algorithm from comparison.

8.2.2 Evaluation

Having defined the similarity matrix and matrix of conflicts, we compute assignments of papers to reviewers
with A = 4 (each paper is assigned to 4 reviewers) and u = 2 (each reviewer is allocated at most 2 papers)
using the TPMS and PEERREVIEW4ALL assignment algorithms with the identity transformation function
f(s) = s. In addition to the standard load constraints, we require that no paper is assigned to a conflicting
reviewer. Finally, as pointed out in Section the fairness guarantees of Theorem [1| are achieved after the
first iteration of Steps [2] to[7] of Algorithm [I} Hence, we include the corresponding assignment for comparison
and denote it as APRIA,

Table [3| summarizes the results of the experiment, comparing the resulting assignments in terms of
fairness (3.3) and cumulative similarity . We see that the fairness of the assignment computed by
the PEERREVIEW4ALL algorithm is significantly higher than the fairness of the TPMS algorithm. Similar to
the case of synthetic simulations, the max cost heuristic used in Step [6] of Subroutine [I] helps our algorithm
to maintain a high value of cumulative similarity, which is only marginally below the optimal value.

The large size of the similarity matrix at hands makes evaluation of the optimal fairness achieved by
AHARD computationally prohibitive. However, we can still find an upper bound on I'® (AHARD) by dropping
reviewer load constraints and allowing all reviewers to review unlimited number of papers. The resulting
bound allows us to compute a lower bound on the approximation ratio of the PEERREVIEW4ALL algorithm:

FS (APR4A)
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Figure 3: Comparison on the approximation of ICLR’18 similarity matrix.

which shows that in practice the approximation factor of the PEERREVIEW4ALL algorithm can be much
better than the worst-case approximation factor % guaranteed by Theorem

Continuing the analysis, for each of the assignments ATPMS = APRAA a5q we compute the sum
similarity for all papers in the assignments and plot these values for 100 the most worst-off papers in each
of the assignment in Figure [3a] This figure demonstrates that while the fairness guarantees of Theorem [I]
can be achieved by a single iteration of Steps |2[to [7] subsequent iterations help to improve the assignment
for the second worst-off paper and so on. Finally, for each of the assignments ATPMS and APR4A we sort
papers in order of increasing sum similarity of assigned reviewers and plot the ratios (PEERREVIEW4ALL to
TPMS) of these sums in Figure Figure |3b| shows that the PEERREVIEW4ALL algorithm indeed balances
the assignment by improving the quality for the worst-off papers at the expense of decreasing the quality for
the most benefiting papers.

APR4A

8.3 Experiment on MIDL and CVPR similarity matrices

Subsequent to the publication of the first version of this work, a follow-up paper by Kobren et al.| (2019)
has been published. There authors propose two novel assignment algorithms that also aim at ensuring the
fairness of the assignment. In that work, the PEERREVIEW4ALL algorithm with the identity transformation
function (f(s) = s) was compared with other assignment algorithms on similarity matrices from three real
conferences: Medical Imaging and Deep Learning Conference (MIDL), and two editions of the Conference
on Computer Vision and Pattern Recognition (CVPR’17 and CVPR’18). With the kind permission of Ari
Kobren, we describe the results of their experiments in which our algorithm was evaluated.

8.3.1 Brief discussion of the algorithms by Kobren et al.

We begin with a brief theoretical comparison of the PEERREVIEW4ALL algorithm with the algorithms
proposed by [Kobren et al|(2019). Recall that the PEERREVIEW4ALL algorithm aims at optimizing fairness
of the assignment and does not directly optimize for the total sum similarity. However, when in its
inner workings the algorithm faces a choice between different suitable similarity matrices (Step |§| of the
Subroutine (1)), it can heuristically optimize for the total sum similarity by using the max cost heuristic. In
contrast, [Kobren et al.| (2019) consider a problem of optimizing for the total sum similarity of the assignment
with an additional constraint of each paper having the sum similarity larger than some threshold T, which can
be specified by user or found by the binary search. They design two novel algorithms which we refer to as
FAIRIR and FAIRFLOW.

Given a feasible instance of the reviewer assignment problem, the FAIRIR algorithm is able to compute
the assignment with the optimal value of the total sum similarity, violating the fairness constraints by an
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CONFERENCE ~PARAMETERS AvcoriTHM  TIME (s) FAIRNESS I'° (A)  MEAN SUM OF siM. G¥ (A)

ATPMS 0.1 0.90 1.71
n=177, m =118 APRAA 293.8 0.92 1.67
MIDL A=3, p=4 AFARIR 1.6 0.93 1.71
AFARFLOW 1.2 0.94 1.68
ATPMS 47 0 2.08
, n=1373, m =2623 ATRA 3251 0.77 1.96
CVPRIT A=3, u=6 AF 595 0.27 2.05
ATFARELOW 225 0.77 1.69
ATPMS 257 1.37 22.23
n = 2840, m = 5062 ATRA 8684 12.68 21.48

PR’1 ’
CVPRI8 A=3, p=9 AFAmRIR 3786 7.19 22.18
AFAmRELOW 910 11.12 17.98

Table 4: Results of the experiment conducted by Kobren et al. on similarity matrices from real conferences.
On large instances only a single iteration of the PEERREVIEW4ALL algorithm was computed and the
corresponding assignment is denoted ATR4A,

additive factor which is upper bounded by the maximum entry of the similarity matrix. In that, fairness
guarantees of FAIRIR are equivalent to those of ILPR (and hence may become vacuous when similarity matrix
is significantly heterogeneous), but additionally the FAIRIR algorithm achieves the highest possible value of
sum similaritym The FAIRFLOW algorithm is a heuristic which does not have theoretical guarantees, but in
return has much lower computational complexity.

Another difference between PEERREVIEW4ALL and the algorithms proposed by [Kobren et al.| (2019) is
that both FAIRIR and FAIRFLOW allow to specify a lower bound on reviewer load, thereby ensuring that
each reviewer reviews at least some number of papers. In our work, we do not study such constraints and
PEERREVIEW4ALL does not support such constraints as is. Hence, below we report only those comparisons
in which our algorithm was evaluated by [Kobren et al.| (2019)), that is, the comparisons in which the lower
bound on reviewer load was not enforced.

Overall, the FAIRIR and FAIRFLOW algorithms aim at balancing the fairness and the total sum similarity
of the assignment. By choosing an appropriate heuristic in Step [6] of the Subroutine [T} one can ensure
that PEERREVIEW4ALL also heuristically optimizes for the total sum similarity. Let us now report the
experimental results of [Kobren et al.| (2019)) that allows to compare the algorithms on both objectives of
fairness and total sum similarity.

8.3.2 Summary of the experiments

The key summary statics of the [Kobren et al,| (2019)) experiments are represented in Table For each
similarity matrix, the assignments respecting the corresponding paper and reviewer load constraints were
computed by the TPMS, PEERREVIEW4ALL, FAIRIR and FAIRFLOW algorithms. These assignments were
then compared based on (a) running time of the algorithm, (b) fairness of the assignment and (c¢) mean
sum similarity of the assignment. First, we notice that our naive implementation of the PEERREVIEW4ALL
algorithm is significantly slower than all other algorithms, and for large instances only a single iteration of
the algorithm can be computed in a reasonable time (recall that even one iteration is sufficient to satisfy the
fairness guarantees of Theorem . Nonetheless, even on the largest instance with more than 5,000 papers
the running time of the first iteration of our algorithm took less than three hours which is still feasible given

7Observe that this value is lower than those achieved by TPMS as FAIRIR has additional constraint on the fairness of the
assignment.
8We omit some statistics which are not of direct interest (for example, max sum similarity in the assignment).
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Figure 4: Visualization of comparison of the algorithms based on fairness and total sum similarity.

that the full assignment procedure needs to be run only once in the conference timeline.

The remaining two dimensions of comparison represent two notions of quality of the assignment: fairness
and total sum similarity. Ideally, we would like to have an algorithm which simultaneously optimizes both of
these notions. Figure [4] visualizes the comparison of the algorithms and is constructed as follows. For each of
the three experiments, we compute the maximum value of fairness achieved by any of the algorithms. Using
this value, for each algorithm we compute its “competetiveness” as the fairness achieved by that algorithm
divided by the maximum fairness. We then repeat the same for the total sum similarity. As a result, in each
experiment the performance of each algorithm can be represented as a data point in two-dimensional space
where x-axis represents the competitiveness in terms of fairness and y-axis represents the competitiveness in
terms of the total sum similarity.

Figure {4 demonstrates that in each of the three experiments the PEERREVIEW4ALL algorithm (even
with one iteration) was able to achieve maximum or close-to-maximum values of both fairness and total sum
similarity. In contrast, each of the other algorithms under consideration achieved considerably lower value of
either fairness or total sum similarity in two out of three experiments.

Overall, we conclude that while being considerably (but not prohibitively) slower than other algorithms,
PEERREVIEW4ALL managed to achieve the best balance of fairness and total sum similarity, despite optimizing
the latter objective only heuristically.

8.4 Experiment on Amazon Mechanical Turk

Even if peer-review data from conferences was available to us, it would not allow for an objective evaluation
of any assignment algorithm with respect to accuracy of the acceptance procedure. There are two reasons
for this hinderance: (a) No ground truth ranking is available; and (b) The data contains only reviews that
correspond to one particular assignment and has missing reviews for other assignments.

In this section we present an experiment which we carefully design to overcome the fundamental issues
with objective empirical evaluations of reviewer assignments. Our experiment allows us to directly measure
the accuracy of final decisions to evaluate any assignment. We execute our experiment on the Amazon
Mechanical Turk (mturk.com) crowdsourcing platform.

8.4.1 Design of experiment

We designed the experiment in a manner that allows us to objectively evaluate the performance of any
assignment algorithm. Specifically, the experiment should provide us access to some similarities between
reviewers and papers, execute any assignment algorithm, and eventually objectively evaluate the final outcome.
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Figure 5: Question interface

The experiment considers crowdsourcing workers as reviewers and a number of general knowledge questions
as papers. Specifically, 80 workers were recruited and presented with a list of 60 flags of different countries.
The workers were asked to determine the country of each flag, choosing one of five options for each question.
The interface of the task is represented in Figure 5} Unknown to the worker, the 60 countries comprised 10
countries each from 6 different geographic regions. Three participants did not attempt some of the questions
and their responses were discarded from the dataset. The dataset is available on the website of the author of
this thesis.

8.4.2 Evaluation

After obtaining the data from Amazon Mechanical Turk, we executed the following procedure for 1,000
iterations. In each of the 6 regions, we first split the 10 questions into two sets: a “gold standard” set of 8
questions chosen uniformly at random and an “unresolved” set comprising the 2 remaining questions. The
set of all 12 unresolved questions are analogous to papers in the peer-review setting (m = 12). We computed
the similarity of any worker to any paper (question) as the fraction of questions that the worker answered
correctly among the 8 gold standard questions for the region corresponding to that paper (question). Having
computed the similarities, we selected n = 40 of the workers uniformly at random and created five assignments
ATPMS - APRAA & AILPR = AHARD a1 q ARAND ' with identity transformation function f(s) = s, where ARAND g
a random feasible assignment. In each of these assignments, every question was answered by A = 3 workers
and every worker answered at most p = 2 questions. Finally, for each assignment, we computed the answers
for the remaining m = 12 questions by taking a majority vote of the responses from workers assigned to each
question. Ties are also considered as mistakes.

At the end of all iterations, we computed the fraction of questions whose final answers are estimated
incorrectly under the five assignments as well as the mean fairness I' (A) and conventional sum of similarities
G® (A). We summarize the results in Table |51 We see that all non-trivial algorithms significantly outperform
random assignment. However, ATPMS incurs about 8% increased error as compared to APR4A,

Similar to Case of synthetic experiments, the optimally fair assignment AHARD turns out to incur
larger fraction of errors as compared to approximations APR4A and A™FPR The reason is that the assignment
AHARD maximizes the quality of the assignment with respect to the most “disadvantaged” question, but in
contrast to APR4A and AMPRdoes not care about the fate of remaining questions.

We also see that APR4A slightly outperforms AP in terms of the fraction of errors while having slightly
smaller average fairness. One reason for this is that in parallel with T'% (APR4A) being close to optimal,
PEERREVIEW4ALL algorithm managed to achieve the high value of conventional sum of similarities, thus
maintaining a balance between the fairness I'¥ (A) and the global objective G (A).

We find these observations to be of notable interest for the actual conference peer-review scenarios. The
task of identifying flags in the experiment involved a rather homogeneous set of similarities (in the sense that
each worker either knew many or only few flags) where optimizing or would yield similar results.
In contrast, the significantly higher heterogeneity in peer-review, the presence of many non-mainstream
papers as well as both very strong and very weak reviewers, is expected to further amplify the observed
improvements offered by the PEERREVIEW4ALL algorithm as compared to TPMS and ILPR.
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ALGORITHM  ERROR FRACTION ~ERROR INCREASE ~ MEAN FAIRNESS ' (4)  MEAN SUM OF SiM. G° (A)

ARAND 0.394 +275% 6.4 171.1
ATPMS 0.113 +8% 20.8 274.6
AHARD 0.110 +5% 21.9 269.8
AILPR 0.108 +3% 21.7 270.4
APRAA 0.105 — 21.6 272.9

Table 5: Results of the experiment on Amazon Mechanical Turk.

9 Proofs

We now present the proofs of our main results.

9.1 Proof of Theorem [1]

We prove the result in three steps. First, we establish a lower bound on the fairness of the PEERREVIEW4ALL
algorithm. Then we establish an upper bound on the fairness of the optimal assignment. Finally, we combine
these bounds to obtain the result (3.7]).

Lower bound for the PeerReview4All algorithm. _
We show a lower bound for the intermediate assignment A at Step [3| during the first iteration of Steps [2| to El
We denote this particular assignment as A;. Note that in Step [4] we fix the assignment for A;’s worst-off

papers into the final output, and hence we have I‘? (ﬁl) > I‘? (A?R‘LA). On the other hand, by keeping track

of Ay (Step , we ensure that in all of the subsequent iterations of Steps [2| to |7} the temporary assignment A
will be at least as fair as ;11, which implies I‘? Zl) = 1"? (A?MA).

Getting back to the first iteration of Steps [2| to |7} we note that when Step [2]is completed, we have A
assignments Aj, ..., Ay as candidates. Notice that for every x € [)], assignment A, is constructed with a
two-step procedure by joining the outputs AL and A2 of Subroutine [1l Recalling the definition (3.6)) of s*,
we now show that for every value of s € [)\], the assignment Al satisfies:

*

min  min s;; = s;.

JElm]ieR 41 (5)

Consider any value of k € [\]. The definition of s¥ ensures that there exist an assignment, say A*, which
assigns k reviewers to each paper in a way that minimum similarity in this assignment equals s},. Now note
that Subroutine |1} called in Step [2b| of the algorithm, adds edges to the flow network in order of decreasing
similarities. Thus, at the time all edges with similarity higher or equal to s}, are added, we have that no
edges with similarity smaller that s}, are added, and that all edges which correspond to the assignment A* are
also added to the network. Thus, a maximum flow of size mk is achieved and hence each assigned (reviewer,
paper) pair has similarity at least s7.

Recalling that s} is the lowest similarity in similarity matrix S, one can deduce that F‘? (Ag) >
kf(st) + (A — k) f(sh,) due to the monotonicity of f. Consequently, we have

L7 (AFH%) 2 TF (Ae) = 5 f(57) + (A= K) f(s5), (3.23)

oo

for all k € [A]. Taking a maximum over all values of x € [A] concludes the proof.
Upper bound for the optimal assignment AMARD,

Consider any value of x € [A]. By definition (3.6 of s%, for any feasible assignment A € A, there exists
some paper j’ € [m] for which at most (k — 1) reviewers have similarity strictly greater than s¥. Let us now
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consider assignment and corresponding paper j*. This paper is assigned to at most (k — 1) reviewers
with similarity greater than s¥ and to at least (A — k + 1) reviewers with similarity smaller or equal to s¥.
Recalling that s§ is the largest possible similarity, we conclude that due to monotonicity of f, the following
upper bound holds:

HARD
Af

r{ (AFARP) = min Z f(si) < Z f(sijz) < (6 =1) f(s5) + (A=K +1) fs). (3.24)

zERAI;ARD ) iGRAIf—IARD 3z

Taking a minimum over all values of x € [A], then yields an upper bound on the fairness of AIJ;IARD.

Putting it together.
To conclude the argument, it remains to plug in the obtained bounds and (| into ratlo

( PR4A)

F}? (Al;RALA) R }133;{1 (Hf( N+ (A= k) f(s*oo)>

T (AFARP) 7 min ((x = D) (s5) + A= r+1) f(s2))

KE[A]

Setting k¥ = 1 in both numerator and denominator and recalling that f(s) > 0 Vs € [0, 1], we obtain a
S APR4A
worst-case approximation in terms of required paper load: FS(TARD)) > 1 3

9.2 Proof of Corollary

Let us pause the PEERREVIEW4ALL algorithm at the beginning of the " iteration of Steps [2| to [7| and
inspect its state.

e The set M consists of papers that are not yet assigned:

(Us)

e The vector of reviewers’ loads T is adjusted with respect to assigned papers. For every reviewer i € [n],
we have:

; = p— card ({j S O ._7[‘2 S RAlfDR4A(j)}> .

=1

e The similarity matrix S, consists of columns of the initial similarity matrix .S which correspond to
papers in M.

The only thing that connects the algorithm with the previous iterations is the assignment A, computed in
Step [7] of the previous iteration. However, we note that the sum similarity for the worst-off papers, determined
in Step |4 of the current iteration (in other words, fairness of A, ), is lower-bounded by the largest fairness of
the candidate assignments Aq, ..., Ay, which are computed in Step

We now repeat the proof of Theorem [I] with the following changes. Instead of the similarity matrix S, we
use the updated matrix S,; instead of considering all papers m we consider only papers from M; instead
of assuming that each reviewer i € [n] can review at most p papers, we allow reviewer i € [n] to review at
most 11; papers. Hence, we arrive to the bound (| . on the fairness of AT7 where AHARD ghould be read as
AHARD (Af) = AHARD (j{ p}) and values s%,k € {0,...,A} U {oco} are computed for similarity matrix S,
and constraints on reviewers’ loads fi. Thus, we obtain and conclude the proof of the corollary.
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9.3 Proof of Theorem [2

Before we prove the theorem, let us formulate an auxiliary lemma which will help us show the claimed upper
bound. We give the proof of this lemma subsequently in Section [9.3.3

. Then for every

Lemma 1. Consider any valid assignment A € A and any estimator g e {éMLE, gMEAN}

0 > 0, the error incurred by 9 is upper bounded as

sup IP’{E (A,§> #E*}gk(mfk)exp <6A)2 ,

(07,....05, ) EFR(5)

where

-1
max > gl2> if § = GMLE

52(A,0) = {7 \ierai) 7Y
max | 55 o if § = GMEAN,
j€[m] i€RA(J)

9.3.1 Proof of upper bound

First, recall from the distribution of @JV[EAN, j € [m]. Then the PEERREVIEW4ALL algorithm called
with f = 1 — h simultaneously tries to maximize the fairness of the assignment with respect to f and minimize
the maximum variance of the estimated scores @J»\/IEAN, j € [m]. Similarly, the choice of f = h™! ensures that
together with optimizing the corresponding fairness, the algorithm also minimizes the maximum variance of
@j\/ILE, j € [m], defined in . Thus, the choice of the estimator defines the choice of the transformation
function f which minimizes the maximum variance of the estimated scores. To maintain brevity, we denote
Anpan = ATRIA Ayie = APRIA ) Avpan(§) = Raypan (7) and Ayie(f) = Ry (7)-

Let now S € S(q). We begin with the pair of assignment and estimator (AMEAN, WEAN). Notice that

for arbitrary feasible assignment A € A and estimator gMEAN
~ 1 1
2(A, GMEAN) = max | 13 Y. ooh) = N2 max > 1= (1—h(sy))
J i€RAG) J i€RA()

Now we can write

e, (A
sup 5°(Aupan, MEAN) = L ()\ —q inf 1—h(MEAN)>

SeS(q) X e !
Iy, (A
< % A—q inf %
Y ses(q) I'y_,, (A1—h )
_ A—qry
=



Using Lemma [I} we conclude the proof for the mean score estimator:

1)
sup PJ7Te AMEAN,@V[EAN £TFs<k(m—k)exp{ — —
(671,00, ) EFk (9) { ( ) : } ( ) 2 sup o(Ampan, MPAN)
SeS(q) SeS(q)
(3.25)
)\262 2
< m?exp {—4()\(17(1)} < m?exp {—lnn:} <e. (3.26)
Let us now consider the pair (AMLE, @\/ILE> It suffices to show that

sup ’52 (AMLE7 éMLE) S sup 52 (AMEAN7 é\MEAN). (327)

SeS(q) SeS(q)

Let us consider S € S(g). Recall from the proof of Theorem [1| that the fairness of the resulting assignment is
determined in the first iteration of Steps[2]to[7} After completion of Step [2] we have A candidate assignments
Ay, ..., Ax. Observe that Subroutine [I] in Step [6] uses the same heuristic for both Aypan and Ayvpg. Hence,
the A candidate assignments yielded when PEERREVIEW4ALL constructs Aygan coincide with the candidate
assignments yielded when PEERREVIEW4ALL constructs Aypg. Depending on the choice of f, in Step [3] the
algorithm picks one assignment that maximizes fairness with respect to f. Thus,

Ff—h (AMEAN) = gé&[t))j Ff—h (AK) and FSA (AMLE) = ’E%E[L;\(] stl (An) . (3'28)
Hence, we have
-1
72 (AvLE éMLE) = max Z 1 = max .t
’ JE[m] A ) Ui2j J€[m] Z h(sl,»‘)
1€AMLE (J i€ AmLe () 7
1 1

C Y (Awee) T T7 (Auean)

where the last ineqaulity is due to (3.28]). Recalling the definition of the fairness (3.4]) and using Jensen’s
inequality, we continue:

1 )‘_,AZ (1= h(sij))
52(AMLE,@\/ILE) < max Z h(sij) — max i€ Amean(J)

” N2 ; 2
jelm] \ A i A () j€lm] A

~A-T7 , (Augan)

2 é\MEAN)'

= 52 (AMEAN,

Taking a supremum over all S € §(q), we obtain (3.27) which together with Lemma [l| and the first part of
the statement concludes the proof.

9.3.2 Proof of lower bound

Proof of our lower bound is based on Fano’s inequality (Cover and Thomas, [2005) which provides a lower
bound for probability of error in L-ary hypothesis testing problems.

Without loss of generality we assume that k < %m Otherwise, the result will hold by symmetry of the
problems.
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We first claim that there exists a value s € [0,1] such that h(s) = 1 — {. Indeed, by assumptions of the
theorem, h is continuous strictly monotonically decreasing function and ¢ > 1 — h(0). Thus, h(0) > 1 — {.
On the other hand, if A(1) > 1 — {, then for every similarity matrix S we have

DY, (A) S AL - h(1)) < g
The last inequality contradicts with the definition (3.16]) of S(g¢), verifying that

h0)>1-2 > n1).

X =
Given that h is continuous strictly monotonically decreasing function, we conclude that these exists s =
A=t (1— %) €0,1].

Consider the similarity matrix S = {h_1 (1 — %)}nxm. Observe that S € S(q), since every feasible
assignment A € A has fairness

M) =i 3 (0 -ew) = 3 {1-n (7 (1))} =e

Thus, in any feasible assignment each paper j € [m] receives \ reviewers with similarity exactly h~! (1 — %)
To apply Fano’s inequality, we need to reduce our problem to a hypothesis testing problem. To do so, let
us introduce the set P of (m — k 4+ 1) instances of the paper accepting/rejecting problem: every problem
instance in this set has the same similarity matrix S , but differs in the set of top k papers 7. We now
consider the problem of distinguishing between these problem instances, which is equivalent to the problem
of correctly recovering the top k papers. More concretely, we denote the (m — k 4+ 1) problem instances as,
P ={1,2,...,m— k+ 1}, where for any problem ¢ € P the set of top k papers is denoted as 7,;*(¢) and set
as {1,2,...,k — 1} U{k — 1+ ¢}. The true quality of any paper j € [m] in any problem instance ¢ € P is

9:(0) = {6 it jeT(0)

J 0 otherwise,

thereby ensuring that (65(¢),...,0%,(£)) € Fr(0), for every instance £ € P.

Let P denote a random variable which is uniformly distributed over elements of P. Then given P = {, we
denote a random matrix of reviewers’ scores as Y'(¥) € R**™ whose (r, j)'" entry is a score given by reviewer
ir,r € [A], assigned to paper j and

v o {N(d, 1-%) i JETO) (320)
" N(0,1—4%) otherwise.
We denote the distribution of random matrix Y © as P(©). Note that Y(©) does not depend on the selected
assignment A € A. Indeed, recall from , that assignment A affects only variances of observed scores.
On the other hand, for any reviewer i € [n] and for any paper j € [m], the score y;; has variance 1 — {. Thus,
for any feasible assignment A and any ¢ € P, the distribution of random matrix Y¢ has the form .
Now let us consider the problem of determining the index P = ¢ € P, given the observation Y ®)
following the distribution P(). Fano’s inequality provides a lower bound for probability of error of ev-

ery estimator ¢ : R**™ — P in terms of Kullback-Leibler divergence between distributions P(1) and
P(t2) (51 75 by, l1,05 € [m —k+ 1])

max KL [P ||P(2)] + log 2
L1 #L2€P

P{o(Y)# P} >1- (3.30)

log (card(P)) ’

where card(P) denotes the cardinality of P and equals (m — k + 1) for our construction.
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Let us now derive an upper bound on the quantity

max KL [IP’“”HIP(‘Z?)} . (3.31)
L1 #L2€P

First, note that for each ¢ € [m — k + 1], entries of Y¥) are independent. Second, for arbitrary ¢; # /5, the
distributions of Y “) and Y (¢2) differ only in two columns. Thus,

KL [P [p0)] = 3 {KL [N (5,1 - %) IV (0.1~ %)] +KL | (0,1 %) I (8.1 - %ﬂ b

Some simple algebraic manipulations yield:

g a\] _ 4 AN B
KL [N (571 A) % (0,1 A)} — KL [N (0,1 A) % (5,1 A)} T (3.32)
Finally, substituting (3.32) in (3.30]), for m > 6 and for a sufficiently small constant ¢, we have
A%5°
5=, +1og2 2] 1 1
Plo(Y)#P >1— >4 °7 _cmmt+l L
log(m —k+1) log (% +1) ~ 2
This lower bound implies
~ 1
sup inf sup IP’{’E (A,H) #+ 77:} > 3

SeS(q) (@AEA) (01,05, ) EFR(5)

9.3.3 Proof of Lemma Il

First, let § = OMEAN . Then given a valid assignment A, the estimates @J-\/IEAN, j € [m], are distributed as

PUEAN N e;,% Yo ol | =N(0;,57),

J ij R
i€ERA(JF)

where we have defined c_rj2- = % > a?j. Now let us consider two papers ji, j2 such that j; belongs to the
1€RA(>F)

top k papers T and jo ¢ 7,°. The probability that paper jo receives higher score than paper j; is upper

bounded as

P {@\/{EAN < @j\dEAN} _p { (é\MEAN _ é‘lj\/[EAN) _E {éMEAN _ @‘MEAN} <_E {éMEAN _ @MEAN}}

J1 J1 J1 J2 J1 J2
2
2
(2 (IE { é\%IEAN _ @;{EAN}) (Z) 5
S exp — — — S exp — T N oo 5
2(03, +07,) 25(A, MEAN)

where inequality (i) is due to Hoeffding’s inequality, and inequality (i) holds because E {@fEAN — @;{EAN} =

0z, —0;, > 0 and a2 (A, @V[EAN) = max 5]2. The estimator makes a mistake if and only if at least one paper
j€lm]
from 7, receives lower score than at least one paper from [m]|\7;. A union bound across every paper from
T, paired with (m — k) papers from [m]\7;, yields our claimed result.
Let us now consider # = OMLE. Then it is not hard to see that

-1

* 1 * =
S N D D =N (67,5)

J
o°.
i€ERA(G) Y

T Niera) M
estimator yields the claimed result.

-1
where we denoted 52 = ( o5 > . Proceeding in a manner similar to the proof for the averaging

56



9.4 Proof of Corollary

The proof of Corollary [2] follows along similar lines as the proof of Theorem [2]

9.4.1 Proof of upper bound

Let us consider some « € [A] and S € S, (v). We apply Lemma [1| to proof the upper bound and in order to

do so, we need to derive an upper bound on 5(A,P:,Rfm, éMLE)
~1 -1
1
EZ(AE_RfLA,aMLE) = max Z — = | min Z h™t(sif)
setm] i€R yrran (d) st 1ER PR (7)
< 1 B h(v)h(0)
= K A—k .
ORI kh(0) + (A — K)h(v)
Thus,
~2( APR4A 7JMLE h(v)h(0)
sup o~ (A5, 0 < . 3.33
sSb, TSI S G (= ) (3:33)

It remains to apply Lemma |l to complete our proof, and we do so by applying the chain of arguments (3.25)

and (3.26) to the bound (3.33)), where the pair (ATRIA, éMEAN) in (3.25) and (3.26) is substituted with the
pair (AE,RfLA,éMLE).

9.4.2 Proof of lower bound

To prove the lower bound, we use the Fano’s ineqaulity in the same way as we did when proved Theorem b).
However, we now need to be more careful with construction of working similarity matrix S € S (v).

As in the proof of Theorem (b), we assume k < . If the converse holds, than the result holds by
symmetry of the problem. Next, consider arbitrary feasible assignment Ac A,. Recall, that A, consists of
assignments which assign each paper j € [m] to  instead of A reviewers such that each reviewer reviews at
most 1 papers. ~

Now we define a similarity matrix S as follows:

e R(q
sy=q. o '€ i) (3.34)
0 otherwise.

Thus, for each paper j € [m] there exist exactly k reviewers with non-zero similarity v and in every feasible
assignment A € A each paper j € [m] is assigned to at most x reviewers with non-zero similarity. Note that
S e S (v).

Now let us consider the set of (m — k + 1) problem instances P defined in Section For every feasible

assignment A € A, if Y49 is a matrix of observed reviewers’ scores for instance ¢ € P, then (r, )" entry of
Y (49 follows the distribution
y (A0 _ N6 xI{j € TE (O} h(v) if Ai ;=1 (3.35)
" N xI{jeTr (0}, h0) if A;;=0,

where i,,r € [\] is reviewer assigned to paper j in assignment A.

We denote the distribution of random matrix Y (44 as P49 Note that in contrast to the proof of
Theorem [2, here Y49 does depend on the selected assignment A € A. Thus, instead of , we need to
derive an upper bound on the quantity

sup max KL [p(A,fl)H]p(A,ez) )
AcAliFl2€P
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First, note that for each ¢ € [m — k + 1] and for each feasible assignment A € A, the entries of Y (49
are independent. Second, for arbitrary ¢; # fo, the distributions of Y (44 and Y(4:¢2) differ only in two
columns. Thus, for any feasible assignment A € A, we have

KL P(A’EI)HIP’(A’Z?)} < e, KL [N (8, 2(0)) IV (0, (0)) ] + (A = 72, ) KL [NV (6, 2(0)) [V (0, h(0))]

+ 76 KL [N (0, A(0)) [V (8, ()] + (A = 7e,) KL [N(0, h(0)) [N (6, (0))]  (3.36)

52 52
= (7@1 + 7@2) T(’U) + (2>\ — Y0 — ’Wz) T(O)a (337)

where 7y, is the number of reviewers with similarity v assigned to paper (k — 14 ¢1) in A and ~,, is the
number of reviewers with similarity v assigned to paper (k — 1 + £5). By construction of similarity matrix
S, for each ¢ € [m — k + 1] and for each A € A, we have 7, < k. Note that two summands in (3.37))
52 52
(

shy A4 55y

are proportional to a convex combination of Moreover, by monotonicity of h, we have

52 52
T(’U) Z T(O)7 and hence

0 s K62 (A — k)62 B kh(0) + (A — k) h(v)
SUD B, KL [P ] < OB O < h(0)h(0) >

Applying Fano’s ineqaulity (3.30]), we conclude that for all feasible assignments A € A, if m > 6 and
universal constant c is sufficiently small, then
mh(O)-i-()\—n)h(v)) +log?2

Alnm+1 1

h(v)R(0) > L

52(
PleM 2P 21— e 2 gm0

This bound thus implies

DN =

sup _inf sup ]P’{ﬁ (A, 5) ” 7;} >
S€S.(v) (,A€A) (07,....05, ) €F1(8)

9.5 Proof of Theorem [3

Before we prove the theorem, we state an auxiliary proposition which will help us to prove a lower bound.

Lemma 2 (Shah and Wainwright| |2015). Let t > 0 be an integer such that 2t < ﬁ min {ml_”l, k,m — k‘}
for some constants vy, vs € (0;1) and m is larger than some (v1,ve)-dependent constant. Then there exist a

set of binary strings {bl, b2, ..., bL} C {o, l}m/2 with cardinality L > exp {%Vl Vot log m} such that
Dy (bel,om/2) = 2(1 + I/Q)t and Dy (bzl,b&) >4t Vi # by € [L]

The proof of Lemma [2| relies on a coding-theoretic result due to [Levenshtein| (1971)) which gives a lower
bound on the number of codewords of fixed length m and Hamming weights ¢; with Hamming distance
between each pair of codewords higher than c,.

9.5.1 Proof of upper bound

Without loss of generality we assume that the true underlying ranking of the papersis 1,2,...,k,...,m. We
prove the claim for pair (Alff{,‘fA, @VIEAN> below, and proof for (AEB{*A, @\/ILE) follows from the proof of the
corresponding part of Theorem a).
From the proof of Lemma [I] and Section [9.3.1] we know that under conditions of the theorem, for every
paper j; < k —t and for every paper jo > k+1t+ 1,
2

]

2 sup o(APRIA tz)\MEAN)
SeS(q)

(3.38)

sup P{@;/IIEAN _é‘%{EAN < O} <expd —
SeS(q)
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where
sup 52(A113E{;,LLA’9MEAN) < A— qu.

(3.39)
5€S(q) A?

Taking a union bound across every paper from the top (k — t) papers, paired with the bottom (m — k — t)
papers, we obtain

2252
sup P{Hjl <k-—t,jo>k+t+1 such that é}vaAN < é}fEAN} < m?exp {—} <e
5eS(q) 4(A = 749)

In other words, for every similarity matrix S € S(q), with probability at least (1 — €), the top (k — t) papers

will receive higher score than bottom (m — k — t) papers. Thus, among accepted papers T, (Alff{,‘fA @\/IEAN>

) )

at most ¢ papers will not belong to 7,*, thereby ensuring that
Dt (Ti (AT, GMPAN) T ) < 20
with probability at least 1 — e.

9.5.2 Proof of lower bound

To prove the lower bound, we follow similar path as we used when we derived a lower bound in Theorem
However, we now need more advanced technique to construct necessary set of instances.

As in the proof of Theorem b), we assume that k& < 3. If the converse holds, than the result holds by the
symmetry of the problem. Next, consider similarity matrix S = { ht (1 — %) }nxm € S(q). To apply Fano’s
inequality, it remains to construct a set P = {1,2,..., L} of suitable instances of paper accepting/rejecting
problem: every problem instance in this set has the same similarity matrix S , but differs in the set of top k
papers 7. . We note that in contrast to the proof of Theorem b), it is not enough to create (m — k + 1)
instances where the sets of top k papers differ only in a single paper. As we will see below, it suffices to
construct instances such that for every £, ¢ € P, the sets of top k papers satisfy Dy (77 (¢1), T (¢2)) > 4t.

Note that requirements of Lemma [2| are satisfied by the conditions of Theorem |3| Let {bl, B, ..., bL} be
the corresponding binary strings. For every problem ¢ € P, consider the following binary string:

m/2
b =1,1,...,1,0,0,...,0,b{,b5, ..., b, /o (3.40)

k72(1+l/2)t

First, note that 2t < ﬁk‘, and hence k — 2(1 + )t > 0, thereby ensuring that the construction ([3.40)

is not vacuous. Now let 7.%(¢) be the set of indices such that their corresponding elements in string b equal
1. By construction, the cardinality of 7,(¢) is k so it is a valid set of top k papers. Finally, we need to set
the scores of papers. Let for every paper j € [m]:

s if =1
0% (0) = J
i L)ﬁ bl =0,

which ensures that for every ¢ € P, (05(£),05(¢),...,0%,(0)) € Fr C Fi.s.

The strategy for the remaining part of the proof is the following. We first show that the problem instances
defined above are well-separated in a sense that for any two of them, the corresponding sets of the top k
papers differ in sufficiently many elements. We then assume that there exists an (assignment algorithm,
estimator) pair which for every similarity matrix S € S(q) recovers the set of top k papers with at most ¢
errors with high probability. Then this pair must be able to determine with high probability the problem

59



instance ¢, sampled uniformly at random from P, by observing corresponding reviewers’ scores. We then
apply Fano’s inequality to show the impossibility of the last implication.
Following the plan described above, we note that for every two distinct instances ¢1, ¢ € P, we have

Du (T (4), T (2)) > 4t.

Consequently, for every set 7% of k papers, Dy (T, T (¢)) < 2t for at most one instance £ € P. Now assume
for the sake of contradiction that for every similarity matrix S € S(g), there exists an assignment A = A (S)
and estimator § = 6 (S) such that for arbitrarily large value of m

(e;,...,szl)oefk((;)P{DH (7 (4.8) . 7) > 21} < % (3.41)

o~ ~

This assumption implies that estimator (S) might be used to determine the problem P = ¢ sampled uniformly
at random from P correctly with probability greater than 1/2. Indeed, notice that similarity matrix S was
constructed in a way that T (/Nl, 5) does not depend on assignment A.

Given P = /¢, let Y be the random matrix of reviewers’ scores. The distribution P%) of components

of Y is defined in (3.29). To apply Fano’s inequality (3.30), it remains to derive an upper bound on the
quantity , r;leax79 KL [Pl ||]}D(52)]
17£62€

First, note that entries of Y(¥) are independent. Second, note that for every pair ¢; # 5 € P and for
every j € [m/2], the distribution of the j*" column of Y (A1) is identical to the distribution of the 5*" column
of Y(4£) " Among the last m/2 columns, the distributions of at most 4(1 4 1)t columns of Y (441) differ
from the distributions of the corresponding columns in Y (4¢2)| Thus, for arbitrary ¢, # ¢y € P

KL [PV ] < 200 v {0 [ (5.1 =TI (0.1 = ) K1 (00= ) v (61 - T}

Recalling (3.32)), we deduce that
KL[IP’1 P2]<41+ A =2(1 + o)t
llm;é;;}ép I (1+v2) 2(A—q) (1+22) A—gq

Finally, Fano’s inequality together with Lemma [2] ensures that for every estimator ¢ : Y — P

< 4y vt Inm.

4ctvivat ] log 2 40 , 1 1 1
P{p(Y)£P}>1— -cArtnmzos? .y Honm 51
Eylygtlogm 9  logm Eylygtlogm 2

for m larger than some (v1, v2)-dependent constant and small enough universal constant c¢. This leads to a
contradiction with (3.41]), thus proving the theorem.

9.6 Proof of Corollary

The proof of the Corollary [3]is based on the ideas of the proofs of Theorem [3| and Corollary [2| and repeats
them with minor changes.

9.6.1 Proof of upper bound

To show the required upper bound, we repeat the proof of Theorem a) from Section with the following
changes. Equation ([3.38)) should be substituted with:

2
)

2 sup o(APRIA, gMLE)
S€eS,(v)

sup P {@j\fLE — @JfLE < 0} <exp{ —
SES.(v)
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Equation (3.39)) should be substituted with:

U 52 PR4A JHMLE h(v)h(O)
o AT S G0 T - mh()”

In the remaining part of the proof, pair (APRIA, GMEAN) should be substituted with the pair (APRIA GMLE)

9.6.2 Proof of lower bound

To prove the lower bound, we use the set of problems P constructed in Section and the similarity matrix
S as defined in .

Given P =/ and any feasible assignment A € A, let Y (4 be the random matrix of reviewers’ scores.
The distribution P4 of components of Y (49 is defined in ([3.35)). Since the distribution of reviewers’ scores
now depends on the assignment, to apply Fano’s inequality , we need to derive an upper bound on the

quantity sup max KL [P(44)||P(AE)],
AcAli#b2€P

First, note that entries of Y (4¥) are mutually independent. Second, note that for every pair ¢, # {y € P
and for every j € [m/2], the distribution of the 5" column of Y41 is identical to the distribution of
the 7' column of Y(4#2). Among the last m/2 columns, the distributions of at most 4(1 + v,)t columns
of Y(A:4) differ from the distributions of the corresponding columns in Y (4¢2) Next, consider arbitrary

") r € [2(1 + 12)t], denote the number of strong reviewers (with similarity

v) assigned in A to paper _] ) e s (61) where paper _]( ") corresponds to the the second part of the string
b?r defined in . Recall now that there are at most 4(1 + v5)t papers that belong to exactly one of the
sets T (¢1) and 7;*(62). Hence, the equation for upper bound of the Kullback-Leibler divergence between
P(A4) and P(A+42) is obtained by assuming that all the papers that belong to the T (¢1) and correspond to
the second half of the string bt do not belong to 7" (¢2) and vice versa. Thus, similar to —, for
arbitrary ¢1 # f5 € P and for arbitrary feasible assignment A € A, we have

feasible assignment A € A. Let Ve,

2(14v2)t
KL {P(A*Zl)H}P’(A’ZZ)] < Z {%E?KL [N (8, h(0)) IV (0, h(v))] + (Aﬂg)) KL [N(a,h(O))||N(o,h(0))}}
2(14wvo)t
+ 30 DKL VO M@)INE )] + (3= KL V(0. AO)IN (. 20)]
2(14wva)t 52 2(14wv9)t 52
- Z (47 +482) TR R > (8 +4) )

r=1 r=1

Noting that > 2}‘:20), we obtain

52
2h(v)

2 )82
sup max KL [IP’(A ) ||]P’Ae2)] <2(1+wo)t (né + (A=r)o )

AcALliF£LEP h(v) h(0)
B o5 [ kh(0) + (A — k) h(v)
=2(1+wo)td < B(0)h(0) )

< 4y vt Inm.

Applying Fano’s inequality (3.30), we obtain the desired lower bound.

9.7 Proof of Theorem [4

Note that Theorem [ is similar in nature with Theorem [2] the only difference is that now we are trying to
recover a ranking which is induced by the assignment.
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9.7.1 Proof of upper bound

Given any feasible assignment A, the “ground truth” ranking that we try to recover is given by

5;@4):% S G (3.42)

i€RA(F)

Then the estimates @/IEAN, J € [m], are distributed as

NN (1 By O oh | =N (B4),02), (3.43)

iE€ERA(F) i€ERA(F)

where 67 = 35 Y. 07 Now observe that Lemma with 7,* (A, 6* (A)) substituted for 7;*, also holds
i€RA(F)

for the subjective score model and the averaging estimator GMEAN Thus, repeating the proof of the upper

bound for averaging estimator in Theorem a) and substituting 7,* with 7.* (APR‘LA7 9*(APR4A)> in ((3.25)),

yields the claimed result.

9.7.2 Proof of lower bound

The lower bound directly follows from Theorem b). To see this, consider the following matrix of reviewers’

subjective scores: © = {5”} il where gij = 07. Under this assumption, the total ranking induced by
i€[n],jelm

assignment A does not depend on the assignment: 5;(14) = 07. Now we can conclude that such choice of 5)
brings us to the objective model setup in which true underlying ranking exists and does not depend on the
assignment. Thus, the lower bound of Theorem b) transfers to the subjective score model.

9.8 Proof of Theorem [5

The proof of the Theorem [f]is based on the ideas of the proofs of Theorem [3] and Theorem [4 and repeats
them with minor changes.

9.8.1 Proof of upper bound

Having equations (3.42)) and (3.43)), we note that the goal now mimics the goal we achieved when proved an
upper bound for averaging estimator in Theorem [3]

9.8.2 Proof of lower bound

The argument from Section [9.7.2] ensures that the lower bound established in Theorem [3| directly transfers to
the to the subjective score model.

10 Discussion

Researchers submit papers to conferences expecting a fair outcome from the peer-review process. This
expectation is often not met, as is illustrated by the difficulties that non-mainstream or inter-disciplinary
research faces in present peer-review systems. We design a reviewer-assignment algorithm PEERREVIEW4ALL
to address the crucial issues of fairness and accuracy. Our guarantees impart promise for deploying the
algorithm in conference peer-reviews.

There are number of open problems suggested by our work. The first direction is associated with
approximation algorithms and corresponding guarantees established in this work. One goal is to determine
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whether there exists a polynomial-time algorithm with worst case approximation guarantees better than 1/
established in this work . It would also be useful to obtain a deeper understanding of the adaptive
behavior of our algorithm with bounds more nuanced than . Finally, we leave the task of improving the
computational efficiency of our PEERREVIEW4ALL algorithm out of the scope of this work. However, we
suggest that optimal implementation of Subroutine [I] should not be based on the general max-flow algorithm
and instead should rely on algorithms specifically designed to work fast on layered graphs.

The second direction is related to the statistical part of our work. In this chapter, we provide a minimax
characterization of the simplified version of the paper acceptance problem. This simplified procedure may
be considered as an initial estimate that can be used as a guideline for the final decisions. However, there
remain a number of other factors, such as self-reported confidence of reviewers or inter-reviewer discussions,
that may additionally be included in the model.

Finally, an important related problem is to improve the assessment of similarities between reviewers and
papers. It will be interesting to see whether the problems of assessing similarities and assigning reviewers can
be addressed jointly in an active manner possibly incorporating feedback from the previous iterations of the
conference

Appendix

We provide supplementary materials and additional discussion.

A1 Discussion of approximation results

In this section we discuss the approximation-related results. In what follows we consider function f(s) = s
and for any value ¢ € R, we denote the matrix all of whose entries are ¢ as c.

A1l.1 Example for ILPR algorithm.

We begin by construction a series of similarity matrices for various A such that I'Y (AILPR) = 0 while
assignments APR4A and AHARD have non-trivial fairness.

Proposition 1. For every positive integer A, there exists a similarity matriz S such that T'*° (AILPR) =0
and T'S (APRAAY) > LS (AHARD) - g

Proof. Given any positive integer A € N, consider an instance of reviewer assignment problem with m = n,
© = X and similarities given by the block matrix

1 1 0 tny
S = 0 0 G-o) 1 |}ne (3.44)
(s—¢e)-1|(s—¢)-1 5-1 tns
mi mi mi

Here s = =1, the value ¢ > 0 is some small constant strictly smaller than s, and n, = m, > 0 for

every r € {1,2, ?’)} We also require nsg > A and

No = ()\ — 1) ni + 1. (345)

We refer to the first my papers and n; reviewers as belonging to the first group, the second ms papers and
ng reviewers as belonging to the second group, and so on.
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A=1 A=2 A=3 A=4

I (AR 0 0 0 0
IS (AARDY 049 065 072 0.76
o (A4 049 065 072 0.76

Table 6: Fairness of various assignment algorithms for the class of similarity matrices (3.44).

The ILPR algorithm involves two steps. The first step consists of solving a linear programming relaxation
and finding the most fair fractional assignment. The second step then performs a rounding procedure in
order to obtain integer assignments. Let us first see the output of the first step of the ILPR algorithm — the
fractional assignment with the highest fairness — on the similarity matrix (3.44)). Observe that for each of the
mg papers in the third group, the sum of the similarities of any A reviewers is at most \s, and furthermore,
that this value is achieved with equality if and only if they are reviewed by A reviewers from the third group.
Next, the n; reviewers from the first group can together review An, papers. Dividing this amount equally
over the my + my papers in the first two groups (in any arbitrary manner) and complementing the assignment
with reviewers from the second group, we see that each paper from the first and the second groups receives a
sum similarity A—22— = Xs. It is not hard to see that any deviation from the assignment introduced above

: myFms )
will lead to a strict decrease of the fairness.

The second step of the ILPR algorithm is a rounding procedure that constructs a feasible assignment
from the fractional assignment (solution of linear programming relaxation) obtained in the previous step.
The rounding procedure is guaranteed to assign A reviewers to each paper, respecting the following condition:
any reviewer assigned to any paper j € [m] in the resulting feasible assignment must have a non-zero fraction
allocated to that paper in the fractional assignment.

Now notice that aforementioned condition ensures that all papers from the third group must be assigned
to reviewers from the third group. Next, recall that on one hand, reviewers from the first group can together
review at most An; different papers. On the other hand, in each optimally fair fractional assignment, the first
m1 +mgo papers are assigned to reviewers from the first two groups. Thus, in the resulting integral assignment
these papers also must be assigned to reviewers from the first two groups. These two facts together with the
inequality Ani < my + mo that we obtain from ensure that at least one paper in the resulting integral
assignment will be reviewed by A reviewers with zero similarity. Hence, the assignment computed by the
ILPR algorithm has zero fairness I'® (AILPR) =0.

On the other hand, it is not hard to see that I'® (AHARD) > 5 —e. Indeed, let us assign one reviewer to
each paper by the following procedure: the m; papers from the first group and some msy — 1 papers from
the second group are all assigned one arbitrary reviewer each from the first group of reviewers. Such an
assignment is possible since An; = my + mo — 1 due to . The remaining paper from the second group is
assigned one arbitrary reviewer from the third group. At this point, there are ms3 papers (in the third group)
which are not yet assigned to any reviewer, and ns + ne — 1 > mg reviewers who have not been assigned any
paper and have similarity higher than s — € with these mg papers in the third group. Assigning one reviewer
each from this set to each of these mg3 papers, we obtain an assignment in which each paper is allocated to
one reviewer with similarity at least s —e. Completing the remaining assignments in an arbitrary fashion, we
conclude that I'® (APR4A) > %FS (AHARD) > 5 — e > 0 where first inequality is due to Theorem O

The results of simulations for A € {1,2,3,4}, parameters n; = 1,n2 = A\,ng = A+ 1, = 0.01 and
similarity matrices S defined in are depicted in Table @ Interestingly, for these choices of parameters,
our PEERREVIEW4ALL algorithm is not only superior to ILPR , but is also able to exactly recover the fair
assignment.
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PAPER @ PAPER b PAPER ¢ PAPER d

REVIEWER 1 0.3+¢ 1 1 0
REVIEWER 2 0.3—¢ 0 1 1
REVIEWER 3 0 0.1 0 0.3
REVIEWER 4 0 0.1 0 0.3

Table 7: An example of similarities that yield 1/A approximation factor of the PEERREVIEW4ALL algorithm.

A1l.2 Sub-optimality of TPMS

In this section we show that assignment obtained from optimizing the objective (3.2]) can be highly sub-optimal
with respect to the criterion (3.4) even when f is the identity function.

Proposition 2. For any A > 1, there exists a similarity matriz S such that TS (APR4A) =rs (AHARD) > %
and T'S (ATPMS) =0.

Proof. Consider an instance of the problem with m = n = 2\, and similarities given by the block matrix

5= [ﬁ‘%} {i (3.46)

~— |~
A A

Then ATPMS assigns the first A reviewers to the first A papers (in some arbitrary manner) and the remaining
reviewers to the remaining papers, obtaining

Z Z 55 = A% and

j€[m]i€R 4TPMs (4)
IS (ATPMS) —

In contrast, assignments APR4A and AHARD agsion the first %n reviewers to the second group of papers

and the remaining reviewers to the remaining papers. This assignment yields
Z Z Sij = Z Z Sij = 0.8)\2 and
je[m] iG’RApRzlA (]) jE[m] iGRAHARD (])

FS (APR4A) _ FS (AHARD) = 0.4\ Z

| >

This concludes the proof. O

A1.3 Example of 1/)\ approximation factor for APR4A

Let us consider an instance of fair assignment problem with m = n =4, A = yu = 2 and similarities represented
in Table [7

First, note that I'% (AHARD) < 0.6. This is because in every feasible assignment A € A paper 1 in the
best case is assigned to reviewers 1 and 2. Moreover, there exists a feasible assignment represented as AHARD
in Table |8 which achieves a max-min fairness of 0.6 and hence we have I'® (AHARD ) =0.6.

Let us now analyze the performance of PEERREVIEW4ALL algorithm. Again, the fairness of the resulting
assignment is determined in the first iteration of Step [2] to [7] of Algorithm [1] so we restrict our attention
to that part of the algorithm. It is not hard to see that after Step [2]is executed, we have two candidates
assignments, A; and Aj, represented in Table [§] (up to not important randomness in braking ties). Computing
the fairness of these assignments, we obtain

¥ (A;)=03+¢ and T9(4y)=0.2.
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AHARD Al AQ

1°" REVIEWER 2" REVIEWER 1°" REVIEWER 2" REVIEWER 1°" REVIEWER 2“° REVIEWER

PAPER a 1 2 1 3 1 2
PAPER b 1 3 1 3 3 4
PAPER ¢ 2 4 2 4 1 2
PAPER d 3 4 2 4 3 4

Table 8: The optimal assignment as well as and PEERREVIEW4ALL ’s intermediate assignments for the
similarities in Table m

which implies that
IS (APRIA)  max {TS (4,), TS (4))

1 €
'S (AHARD) — 'S (AHARD) 2 + 0.6

Setting € small enough, we can see that the approximation factor is very close to 1/2 = 1/A.

A2 Computational aspects

A naive implementation of the PEERREVIEW4ALL algorithm has a polynomial computational complexity
(under either an arbitrary choice or one computable in polynomial-time in Step @ and requires O ()\m2n)
iterations of the max-flow algorithm. There are a number of additional ways that the algorithm may be
optimized for improved computational complexity while retaining all the approximation and statistical
guarantees.

One may use Orlin’s method (Orlin) 2013; [King et al., |1992)) to compute the max-flow which yields a
computational complexity of the entire algorithm at most O ()\(m + n)m3n2). Instead of adding edges is
Step 3 of the subroutine one by one, a binary search may be implemented, reducing the number of max-flow
iterations to O (Amlogmn) and the total complexity to O (A(m + n)m?n).

Finally, note that the max-min approximation guarantees (Theorem ' as well as statistical results
(Theorems [2] to 5| and corresponding corollaries) remain valid even for the assignment A computed in Step [3| of
Algorithm [1] during the first iteration of the algorithm. The algorithm may thus be stopped at any time after
the first iteration if there is a strict time-deadline to be met. However, the results of Corollary [I] on optimizing
the assignment for papers beyond the most worst-off will not hold any moreﬂ The computational complexity
of each of the iterations is at most O (A(m + n)mn), and stopping the algorithm after a constant number of
iterations makes it comparable to the complexity of TPMS algorithm which is successfully implemented in
many large scale conferences.

Let us now briefly compare the computational cost of PEERREVIEW4ALL and ILPR algorithms. The full
version of ILPR algorithm requires O(m?) solutions of linear programming problems. Given that finding
a max-flow in a graph constructed by our subroutine can be casted as linear programming problem (with
constraints similar to those in |Garg et al.|[2010), we conclude that slightly optimized implementation of our
algorithm results in O(Am logmn) solutions of linear programming problems, which is asymptotically better.
To be fair, the ILPR algorithm also can be terminated in an earlier stage with theoretical guarantees satisfied,
which brings both algorithms on a similar footing with respect to the computational complexity.

A3 Topic coverage

In this section we discuss an additional benefit of “topic coverage” that can be gained from the special choice
of heuristic in Step [6] of Subroutine [I] of our PEERREVIEW4ALL algorithm.

91f the algorithm is terminated after p’ iterations, then bound (3.8)) from Corollary [1| holds for € [p'].
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Research is now increasingly inter-disciplinary and consequently many papers submitted to modern
conferences make contributions to multiple research fields and cannot be clearly attributed to any single
research area. For instance, computer scientists often work in collaboration with physicists or medical
researchers resulting in papers spanning different areas of research. Thus, it is important to maintain a broad
topic coverage, that is, to ensure that such multidisciplinary papers are assigned to reviewers who not only
have high similarities with the paper, but also represent the different research areas related to the paper. For
example, if a paper proposes an algorithm to detect new particles in the CERN collider, then that paper
should ideally be evaluated by competent physicists, computer scientists, and statisticians.

There are prior works both in peer-review (Long et all|2013) and in text mining (Lin and Bilmes, [2011])
which propose a submodular objective function to incentivize topic coverage. According to Long et al.| (2013),
the appropriate measure of coverage is a number of distinct topics of the paper covered, summed across the
all papers. Let us introduce a piece of notation to formally describe the underlying optimization problem.

For every paper j € [m], let T(j) = {tgj), e ,t%)} be related research topics and for every reviewer ¢ € [n],
let T'(i) = {tgl), e ,ts-li)} be the topics of expertise of reviewer i. For every assignment A, we define w(A) to

be the total number of distinct topics of all papers covered by the assigned reviewers:

wA) =Y card | | (T(j)ﬂT(i)) , (3.47)
jEIM

] i€ERA(J)

where card(C) denotes the number of elements in the set C. The goal in [Long et al. (2013) is to find an
assignment that maximizes w(A) and respects the constraints on the paper/reviewer load. However, instead
of the requirement that each paper is assigned to A reviewers as in our work, [Long et al.| (2013) consider a
relaxed version and require each paper to be reviewed by at most A reviewers.

Using the submodular nature of the objective , Long et al.| (2013) propose a greedy algorithm that is
guaranteed to achieve a constant-factor approximation of the optimal coverage (3.47). This greedy algorithm,
however, has the following two important drawbacks:

(i) Like the TPMS algorithm, the greedy algorithm aims at optimizing the global functional, and conse-
quently may fare poorly in terms of fairness. Indeed, in order to optimize the global objective , the
greedy algorithm may sacrifice the topic coverage for some of the papers, assigning relevant reviewers
to other papers.

(ii) While guaranteed to achieve a constant factor approximation of the objective (3.47), the greedy
algorithm may yield an assignment in which papers are reviewed by (much) less than A reviewers. It is
not even guaranteed that in the resulting assignment each paper has at least one reviewer.

Nevertheless, both the PEERREVIEW4ALL algorithm and the algorithm of [Long et al.| (2013) can benefit
from each other if the latter is used as a heuristic to choose a feasible assignment in Step [6] of the subroutine
of the former. In what follows we detail the procedure to combine the two algorithms. The greedy algorithm
of Long et al.| (2013) picks (reviewer, paper) pairs one-by-one and adds them to the assignment. At each
step, it picks the pair that yields the largest incremental gain to while still meeting the paper/reviewer
load constraints. In Step [6] of the subroutine of PEERREVIEW4ALL, we may use the greedy algorithm,
restricted to the (reviewer, paper) pairs added to the network in the previous steps, to find an assignment
that approximately maximizes . Next, for every (reviewer, paper) pair that belongs to this assignment,
we set the cost of the corresponding edge in the flow network to 1 and the costs of the remaining edges to
0. Finally, we compute the maximum flow with maximum cost in the resulting network and fix (reviewer,
paper) pairs that correspond to edges employed in that flow in the final output of the subroutine.

Let us now discuss the benefits of this approach. First, in PEERREVIEW4ALL we modify only the
procedure of tie-breaking among max-flows, and hence all the guarantees established in the paper continue to
hold. Second, the introduced procedure allows to overcome the issue because the max-flow guarantees
that each paper is assigned with exactly requested number of reviewers. Third, by setting the cost of selected
edges to 1, we encourage the topic coverage (although the pproximation guarantee of the greedy algorithm no
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longer holds). Finally, we do not allow the algorithm of [Long et al.| (2013) to sacrifice some papers in order
to maximize the global coverage (3.47]), because the subroutine ensures that in the resulting assignment all
the papers are assigned to pre-selected reviewers with high similarity, thereby overcoming
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Part 11

Bias and Policies
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Chapter 4

Identity-Related Biases in
Single-Blind Peer Review

1 Introduction

Past research in social sciences indicates that humans display various biases including gender, race and
age biases in many critical domains such as hiring (Bertrand and Mullainathan, |2004)), university admis-
sion (Thornhill, 2018)), bail decisions (Arnold et al., 2018) and many others. This chapter considers the problem
of identity-related biases in scientific peer review. Specifically, we follow the long-standing debate (Blankl
1991} [Seeber and Bacchelli, 2017 |[Snodgrass| 2006; [Largent and Snodgrass|, 2016} |Okike et al., [2016; |Budden
et al.| 2008} (Webb et al.l 2008} Hill and J. Provost} 2003}, and references therein) on whether the authors’
identities should be hidden from reviewers or not. In that, we focus on designing statistical tests to detect
the presence of identity-related biases in single-blind peer review.

In a remarkable piece of work, Tomkins et al.| (2017) conducted a large scale (semi-) randomized controlled
trial during the peer review for the ACM International Conference on Web Search and Data Mining (WSDM)
2017. In their experiment, the entire pool of reviewers was partitioned uniformly at random into two equal
groups — single blind and double blind — and each paper was assigned to two reviewers from each of the
groups. In this manner, the peer-review data contained both single-blind and double-blind reviews for each
paper. The experiment allowed them to conduct a causal inference to test for biases, and conclude that
the single-blind system induces a bias in favor of papers authored by (i) researchers from top-universities,
(ii) researchers from top companies and (iii) famous authors. Interestingly, no bias against female-authored
submissions was detected by their test, though a meta-analysis confirmed the presence of such bias. The
conclusions of this experiment have had a significant impact. For instance, the WSDM conference itself
completely switched to double-blind peer review starting 2018.

Testing for the presence of hypothesized phenomena is a common task in various branches of science
including the biological, social, and physical sciences. The general approach therein is to impose a hard
constraint on the probability of false alarm (claiming existence of the phenomenon when there is none; also
called Type-I error) to some predefined threshold called significance level typically set as 0.05 or 0.01. The
test would then aim to maximize the probability of detecting the phenomenon when it is actually present,
while not violating the aforementioned hard constraint. The present work also follows this general approach,
for the specific setting of testing for biases using single versus double blind reviewing.

Contributions. In this chapter, we study the problem of detecting bias in peer review, and present two
sets of results.

(1) Detailed investigation into methodology of past work (Section [3) We first analyze the testing
procedure used by [Tomkins et al. (2017), and show that under plausible conditions the statistical test
employed therein does not control for false alarm probability. In other words, we show that under reasonable
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Figure 1: Synthetic simulations evaluating performance of the test in Tomkins et al| (2017) (“previous work”)
and the test proposed in this work (“DISAGREEMENT test”). Subfigures (a) and (b) are in presence of
correlations and noisy estimates of true scores by double-blind reviewers; subfigure (c) has zero correlations
and perfect estimate of true scores by double-blind reviewers. Details of the simulation setup are provided in
Section [3| The error bars are too small to be visible.

conditions, the test used by|Tomkins et al.| (2017) can, with probability as large as 0.5 or higher, declare the
presence of a bias when the bias is in fact absent (even when the test is tuned to have a false alarm error
rate below 0.05). Specifically, we show that in presence of correlations that are reasonable to expect, any of
the following factors breaks their false alarm probability guarantees: (a) measurement error caused by noise
or subjectivity of reviewers, (b) model mismatch caused by violation of strong parametric assumptions on
reviewers’ behavior and (c) reviewer’s calibration if she/he reviews more than one paper. Figures |lal and
illustrate the effect of measurement error on the false alarm probability and probability of detection of the
test used by Tomkins et al. The issues we identify suggest that their test is at risk of committing Type-I
error in declaring biases in their analysis.

Moving beyond the specific test used in [Tomkins et al.[(2017)), we also study the effect of their experimental
design, which is simply the standard peer-review procedure with an additional random partition of reviewers
into single and double blind groups. We show that two factors — (d) asymmetrical bidding procedure and (e)
non-random assignment of papers to referees — as is common in peer-review procedures today may introduce
spurious correlations in the data, breaking some key independence assumptions and thereby violating the
requisite guarantees on testing.

(2) Novel approach to testing for biases (Sections [4]- @ We propose a general framework for the design
of statistical tests to detect biases in this problem setting, that overcomes the aforementioned limitations.
Specifically, our framework does not assume objectivity of reviewers and does not make any parametric
assumptions on reviewers’ behaviour. Conceptually, we propose to think of this problem as an instance of
a two-sample testing problem where single-blind and double-blind reviews form two samples and the test
operates on these samples. (In contrast, Tomkins et al.| (2017)) study the problem under one-sample testing
paradigm, operating on reviews of single-blind reviewers and using double-blind reviews to estimate some
parameters in their parametric model).

We then design computationally-efficient hypothesis testing procedures that under minimal assumptions
guarantee a provable control over the false alarm probability under various conditions, including aforementioned
conditions (a) - (¢). We supplement these tests with an alternative design of the experimental setup which
coupled with our tests mitigates issues (d) - (e) while not restricting the choice of assignment algorithm.

Our tests also have non-trivial power in that they have considerably higher probability of detection in hard
cases where test used by Tomkins et al. fails, and a power comparable to that of Tomkins et al. when their
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assumptions are exactly met. The performance of one of these tests is illustrated in Figure [l Additionally,
we show that assumptions required by our tests to control for the Type-I error rate are essentially minimal in
that they cannot be further relaxed without making reliable testing impossible.

We note that while the discussion in this chapter focuses on testing for biases with respect to protected
attributes, our experimental setup and statistical tests are not restricted to that alone. Instead of comparing
the single versus double blind settings, our work can be used to test for effects of aspects of a submission
exogenous to the manuscript’s content, for instance, the effects of the reviewer questionnaire or that of asking
authors to provide extraneous information (such as prior submission history). Our work enables conducting
such semi-randomized controlled trials while retaining the no-bias and veracity conditions (Tomkins et al.,
2017), not requiring additional reviews, and having rigorous guarantees on the tests.

Related work The problem of identifying biases in human decisions is commonly studied in social science
and there are many works that design and conduct randomized field experiments in various settings, including
resume screening (Bertrand and Mullainathan) [2004), hiring in academia (Moss-Racusin et al., [2012), and
peer review (Blank] 1991} |Okike et al., [2016). However, the conference peer review setup we consider in this
work does not comprise a fully randomized control trial (i.e., the reviewers are not assigned to submissions at
random) and past approaches fail due to idiosyncrasies of the peer-review process. For example, a popular
approach (Bertrand and Mullainathan| |2004; Moss-Racusin et al., |2012) is to assign author identities to
(fabricated) documents (resumes, application packages or papers) uniformly at random and compare the
outcomes for different categories of authors. In our setup, random assignment of author identities to real
(i.e., non-fabricated) submissions is problematic due to various logistical and ethical issues such as reviewers
guessing actual authors thereby causing biases, and requrements of getting authors to agree to have their
paper/name modified. Another approach (Okike et al., |2016) is to submit the same paper to multiple
reviewers in both single-blind and double-blind conditions and test for the difference in the acceptance rates
between conditions. However, such an approach necessitates a considerable additional reviewing load. Other
approaches include observational studies, and we refer the interested readers to Tomkins et al.| (2017) for a
more in-depth literature review.

It is important to note that in this work, we do not aim to prove or disprove the existence of biases declared
in the experiment by [Tomkins et al.| (2017)). Instead, our focus is on the theoretical validity of the statistical
procedures used to conduct such experiments and more generally on principled statistical approach towards
designing such experiments.

Finally, the results and tests we discuss in this work are also applicable beyond peer review, and can be
used to test for biases in other domains such as admissions and hiring.

The remainder of this chapter is organized as follows. In Section [2| we present the problem setting formally
and describe the experimental setup of [Tomkins et al.| (2017)). In Section [3| we uncover issues (a) - (e) with
their test and setup and illustrate the detrimental effect of such issues through simulations. Next, in Sections
and [b| we present a novel non-parametric approach to testing for biases and corresponding statistical tests as
well as the alternative design of the experimental procedure. The detailed analysis is given in Section [} We
conclude the chapter with a discussion in Section [7}

2 Preliminaries

The general peer-review setup we study for testing biases using single and double blind review is as considered
in Tomkins et al.| (2017)). We study a conference peer-review setup where n papers are submitted at once and
m independent reviewers are available to review submissions, where m is assumed to be an even number.
With a goal to test whether single-blind reviewing induces a bias against or in favor of some groups of authors,
we consider some pre-defined set of k binary mutually non-exclusive properties pertaining to the author(s) of
any paper to be tested for bias. For example, a property could be “the first author is female” or “majority of

authors are from the USA”. Each paper j € [n] is then associated with k indicator variables w(.l), . ,w§k),

J
where wy) = 1 if paper j satisfies property ¢ and wj@ = —1 otherwise. For each ¢ € [k] we let J; C [n] denote

72



the set of papers that satisfy property £ and J, = [n]\J; denote its Complementﬂ

For each property ¢ € [k] we are interested in whether single-blind peer review setup induces a bias against
or in favor of papers that satisfy this property. For example, if we consider property “the first author is
female”, then we aim at testing for the bias against or in favor of papers with female first author. Note
that with respect to the properties, the study is observational in that we cannot assign author identities to
papers at random. Hence, the effect of confounding is unavoidable and utmost care must be taken to address
presence of confounding factors.

For brevity, in the main text we consider the case of a single property of interest (k = 1) which captures
the complexity of our problem. For ease of notation we drop index ¢ from w® and 7;. In Appendix we
generalize the results to k& > 1. Let us now give details of the testing procedure used by [Tomkins et al.| (2017).

Experimental setup of Tomkins et al. The peer review process in their experiment is organized as
follows. Reviewers are uniformly at random divided into two groups of equal sizes, corresponding to two
conditions: (i) Double-Blind condition (DB) in which reviewers do not observe identities of papers’ authors;
and (ii) Single-Blind condition (SB) in which reviewers observe identities of the papers’ authors. Next, each
paper is assigned to A reviewers from the SB group and A reviewers from the DB group such that each
reviewer reviews at most p submissions, where A and p are predefined constants. In both conditions, if any
reviewer ¢ € [m] is assigned to any paper j € [n], then she/he returns a binary accept/reject recommendation
and possibly a numeric score that estimates a quality of the paper as perceived by reviewer, accompanied by
a textual review.

Model and test used by Tomkins et al. We begin by introducing an idealized version of their model.
They assume a parametric, logistic model for the binary decisions made by SB reviewers. Specifically, for each
paper j € [n], let Y7;,...,Y); denote the binary accept/reject decisions given by the A reviewers assigned
to paper j in the SB setup. It is assumed that {Y}},c[y are independent draws from a Bernoulli random
variable with an expectation m; satisfying

T *
log 1 Jﬂl = Bo + p1q; + Bawy, (4.1)

J

where ¢} is a “true” underlying score of paper j, w; is an indicator of property satisfaction and {Bo, b1, B2}
are unknown coefficients. In words, the model says that if there is a positive (respectively negative) bias
with respect to a property of interest, then the fact that paper satisfies the property increases (respectively
decreases) the log-odds of the probability of recommending acceptance by 235 as compared to the case if the
same paper does not satisfy the property. The main difficulty with this model in the peer review setting lies
in the fact that true scores {q;‘, Jj € [n]} are unknown and hence standard tests for logistic regression model
are not readily applicable.

In order to overcome the unavailability of true scores {¢}, j € [n]} in the model (.1, [Tomkins et al | (2017)
use a plug-in estimate: they replace ¢j with the mean g; of scores given by the DB reviewers to paper j, for
every j € [n]. Under this approximation and using ¢i, ..., ¢, they obtain maximum likelihood estimates of
coefficients {30, 31, B\g} and then use the standard Wald test (Weisberg, [2005) to test for significance of the
coefficient 3. A bias is declared present if the coefficient 33 is found significant; the direction of the bias is
determined as the sign of fs.

3 Problems with the past approach

In this section we identify several issues that should be taken into account when testing for biases in the
setup we consider. Noting that the issues themselves are general, we motivate and discuss them in context
of the prior work by [Tomkins et al.| (2017) and investigate possible consequences of these issues through
synthetic simulations. In the simulations to follow, we juxtapose algorithm by [Tomkins et al.| (2017)) to
our DISAGREEMENT test introduced later in the paper. Complete details of all simulations are given in

Appendix

1Here, we adopt the standard notation [v] = {1,2,...,v} for any positive integer v.
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Figure 2: Type-I error of the test from previous work (Tomkins et al.|[2017)) blows up under three different
setups: bias is absent in all simulations and the tests are designed to limit the Type-I error to at most 0.05.
In contrast, our DISAGREEMENT test is robust to violations of modelling assumptions. Error bars are too
small to be visible.

3.1 Testing procedure

We begin from the issues that are pertinent to the testing procedure used by Tomkins et al.| (2017). To this
end, recall that with respect to the property of interest the experiment is observational. Hence we cannot
assume independence between the indicator of property satisfaction w and the true score ¢*. Moreover, a
non-trivial amount of correlation between some properties is plausible. Consider for example a property
“paper has author from top univeristy”. For this property a non-trivial correlation between true scores and
indicator of property satisfaction is natural to expect. While correlation itself does not cause issues, we
identify three conditions which coupled with correlation can be significantly harmful.

(a) Measurement error [Tomkins et al.| (2017) report low interreviewer agreement between DB reviewers
which means that the estimates ¢, . . ., ¢, of the true scores by the DB reviewers are noisy. It is known (Stefan-
ski and Carroll, |1985; [Brunner and Austin) [2009) that noisy covariate measurement coupled with correlation
between some covariates may inflate the Type-I error rate of the Wald test for logistic regression. We now
investigate the impact of measurement error on the Type-I error rate of the Tomkins et al. test through
simulations. We consider absence of any bias, and assume that model with S = 0 is correct for both
DB and SB reviewers. We consider DB reviewers to report noisy estimates of true scores ¢j, and vary
the correlation between ¢* and w. The level of noise was selected to keep correlation between the two DB
reviewers assigned to each paper at the level of 0.6, which is much better than the actual interreviewer
agreement observed by [Tomkins et al.| (2017) (correlation 0.37). We plot the Type-I error rates in Figure
for the test in |Tomkins et al.| (2017) and our proposed test, both tests are designed to restrict the Type-I
error rate to 0.05.

Figure [2al indicates a strong detrimental effect of measurement error on the validity of the test by [Tomkins
et al.| (2017). Given that interreviewer agreement in the actual WSDM conference experiment was low,
the fact that some properties considered by Tomkins et al. may lead to correlations between ¢* and w is
concerning, because it could potentially undermine the validity of their findings.

The simulations in Section [I] follow the setup presented here: Figures [Ta] and [Ib] consider measurement
error with correlation fixed at 0.4 (Figure and 0.6 (Figure and show that (a) the negative effect of
measurement error on the Type-I error rate exacerbates as sample size grows and (b) measurement error may
also hinder the power of the test. Figure [Ld has zero correlation and no measurement error, satisfying all the
assumptions of the test by Tomkins et al.

(b) Model mismatch Model (4.1)) assumes a specific parametric relationship, which may not hold in practice.
In order to check the effect of model mismatches, we consider a violation of the model (4.1)) and suppose that
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Figure 3: The experimental setup from previous work (Tomkins et al.|[2017) violates Type-I error guarantees
of testing procedures. Bias is absent in all simulations and the tests are designed to limit the Type-I error
to at most 0.05. Note that the issues which pertain to the experimental setup rather than the modelling
break guarantees of both tests (leftmost columns). In contrast, our proposed setup with fully blind bidding
procedure and careful management of assignment ensures Type-I error guarantees for both tests (rightmost
columns). Error bars are too small to be visible.

the correct model for both SB and DB reviewers is

5 3
10g1 I— = Bo+ b1 (q])" + Bawj,
—

that is, instead of expected linear input, true scores of papers appear in the model raised to the power 3. To
isolate the effect of model mismatch, we assume that true scores ¢, j € [n], are known exactly to the test
of Tomkins et al. and hence abstract out the impact of the measurement error. We again consider an absence
of any bias and set f2 = 0 for both SB and DB reviewers. We then perform simulations similar to those in
item (a). Figure [2b| shows the results of the simulations.

(c) Reviewer calibration The test employed by Tomkins et al.| (2017)) treats reviews given by the same
reviewer as independent. In practice this assumption may be violated due to correlations introduced by
reviewer’s calibration (Wang and Shah| [2019). While some easy calibrations such as harshness/leniency can
be captured by simple parametric extensions of model , more subtle patterns are beyond the scope of
this model. Suppose for example that the strength of reviewers’ input depends on paper’s clarity — the
better the paper is written, the lower the contribution due to reviewers’ calibration. Assume also that we
are given a set of papers such that true score of each paper is proportional to the clarity of the paper (we
formalize construction in Appendix . Coupled with the correlation between ¢* and w, this pattern
is sufficient to break Type-I error guarantees of the test of Tomkins et al. Again, to isolate the impact of
reviewers’ calibration, we assume that (i) true scores g}, j € [n], are known to the test by Tomkins et al. and
(ii) model is marginally correct for each reviewer, that is, each reviewer follows model for each
paper she/he reviews, but her/his decisions for different papers are correlated in a specific way.

Figure [2c| shows a result of simulations in which we vary the number of papers per reviewer, keeping
correlation between ¢* and w fixed at 0.75 and the total number of papers fixed at n = 1000. We simulate a
wide range of reviewer load p including small to medium loads of 5-15 papers typical in machine learning
conferences like NeurIPS and larger loads of 40 or higher found in other smaller conferences.

3.2 Experimental setup

The issues discussed above pertain to the testing procedure and modelling assumptions made by [Tomkins
et al.| (2017)). We now issue a commentary regarding the experimental setup considered in their work which
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comprises a random partition of reviewers into SB and DB groups within a standard peer review procedure.
In particular, we show that the setup itself may create problems in controlling the Type-I error.

(d) Non-blind bidding In the experiment by Tomkins et al. papers are allocated to reviewers based on
preferences (“bids”) declared by reviewers (reviewers could indicate that they want to review some papers
and do not want to review others). Importantly, the reviewers in the SB setup also get to see author identities
in the bidding stage, which may act as a confounding factor in tests for bias in the acceptance/rejection of
papers. This is indeed pointed out as a caveat by [Tomkins et al.| (2017) in their paper.

To illustrate the possible effect, consider a property of interest “paper has a famous author” and suppose
that among all reviewers there is a subset of lenient reviewers who additionally want to read papers from top
authors with the hope of reading better papers. Then in DB setup such reviewers cannot use author identity
information and hence make their bidding decisions based on title and abstract only; in contrast, in SB setup
these reviewers tend to bid on papers authored by top authors. Given that reviewers who preferentially bid
on papers with top authors in SB condition are by coincidence lenient, the difference in bidding behavior may
result in structurally different evaluations between conditions even when reviewers’ evaluations are unbiased,
leading to a blow-up of the Type-I error rate of any reasonable test. Figure [3aj shows a result of simulations
(formal setup is in Appendix in which we compare non-blind and blind bidding conditions for SB
reviewers and indicates a possible detrimental effect of non-blind bidding.

(e) Reviewer assignment One might imagine that a natural requirement to conduct the bidding in a
double blind fashion for both DB and SB reviewers would fix the issues with the setup of Tomkins et al.
However, perhaps surprisingly, we show that even if both groups bid in a double blind fashion (or even
if the bidding process is eliminated entirely), and even if the reviewers are assigned to DB or SB groups
uniformly at random, the non-random assignment using algorithms such as TPMS (Charlin and Zemel, 2013)
that assigns reviewers to papers maximizing some notion of “similarities” can still lead to a violation of
the Type-I error guarantees. We give a formal construction in Appendix [A5.1.5} the intuition is as follows.
Quoting [Lamont| (2009), “evaluators often define excellence as jjwhat speaks to me; which is akin to jjwhat
is most like mej;”, that is, a similarity between a paper and a reviewer may influence the decision. That
said, we construct these similarities in a careful manner: our choice ensures that despite reviewers being
allocated to DB or SB conditions at random, the popular TPMS assignment algorithm with high probability
constructs assignments that are in some sense structurally different between SB and DB conditions, which
in turn leads to structurally different evaluations. Our construction, along with correlation between ¢* and
w, introduces spurious correlations in the data, thereby violating some key independence assumptions and
leading to the inflation of Type-I error.

Figure [3b|shows a result of simulations in which we compare the setup of ‘Tomkins et al.| (2017)) with our
proposed experimental setup introduced in Section Notably, under the setup of Tomkins et al. even the
DISAGREEMENT test which is robust to various issues discussed in Section [3.1]is unable to control for the
Type-I error. In contrast, observe that under our proposed experimental setup, both the DISAGREEMENT test
and the test by Tomkins et al. control for the Type-I error rate at the desired level.

Importantly, we underscore that while our experimental procedure mitigates the issues with the experi-
mental setup of Tomkins et al., their test is still susceptible to the issues we discussed in Section even
under our experimental setup. Finally, under the setup of Tomkins et al. the phenomenon of the Type-I
guarantee violation is not restricted to the TPMS assignment and can occur in a much broader class of
reviewer assignment algorithms.

4 Novel framework to test for biases

In Section [3| we identified five key limitations of the approach taken by Tomkins et al.| (2017). Three of these
limitations pertain to the testing procedure and the two limitations relate to the design of the experiment
itself. In the next sections we design a set of tests and experimental setup with strong guarantees, and which
overcome the aforementioned limitations. In this section we begin from principled definition of a bias testing
problem that generalizes one made by Tomkins et al. and does not make any restrictive assumptions.
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At a high level, our approach to testing for biases is different from those proposed by Tomkins et al. in two
ways. First, we relax two strict modelling assumptions: (i) instead of assuming existence of true qualities of
submissions, we allow subjectivity in reviewer evaluations (Kerr et al., [1977; |[Ernst and Reschl |1994} Bakanic
et al. [1987; Mahoney, [1977; |[Lamont, |2009; Noothigattu et al., [2020), and (ii) we do not assume any specific
form of the relationship between a paper and its probability of acceptance by a reviewer. Instead, we allow
these probabilities to be completely arbitrary and define the bias in terms of these probabilities. Second,
we treat this problem conceptually differently from the work of Tomkins et al. The test therein treats the
problem as that of one-sample testing and uses DB scores as a plugin estimate of true scores in SB model. In
contrast, we approach this problem through the lenses of two-sample testing, where SB and DB reviews form
the two samples, and the goal is to test whether they belong to the same distribution. This perspective helps
us to avoid a number of issues discussed in Section [3l

Formally, let T4 € [0,1]™*™ be a matrix whose (i, j)'" entry, denoted as 7T§;1b), represents a probability
that reviewer ¢ would recommend acceptance of paper j if that paper is assigned to that reviewer in DB
setup. Similarly, let matrix IT® € [0,1]™*™ be an analogous matrix in SB setup, and denote its (i, j)'" entry
as ngb).

Let Rgp be the set of reviewers allocated to the SB condition. Moreover, for each i € Rgg, let Psp (i)
denote the set of papers assigned to reviewer ¢ and let Y;; € {0,1} denote the accept/reject decision given
by reviewer i for paper j € Psg(i). We similarly define set of DB reviewers Rpp and their decisions
{Xij 11 € Rpg,Jj € Pps(i)} . We are interested in testing for biases with respect to a property of interest.
To this end, recall our notation J C [n] for the set of papers that satisfy a property of interest, and J as its
complement.

With this notation in place, we now define two formulations of the bias testing problem — “absolute”
and “relative”: The relative bias setting is strictly more general than the absolute bias setting, but also leads
to more restrictive resultsﬂ Importantly, the tests we will introduce in Section are applicable to both
formulations without additional modifications.

4.1 Absolute bias problem

In the absence of bias, the knowledge of authors’ identities does not induce any difference in reviewers’
behaviour. In the biased hypothesis, there is a positive bias in favor of papers that satisfy a property of
interest: reviewers in SB condition are more lenient towards papers from J and more harsh towards papers
from J than they would be in DB condition. The following problem formalizes this intuition.

Problem 1 (Absolute bias problem). Given significance level « € (0,1) and decisions of SB and DB reviewers,
the goal is to test the following hypotheses:

(sb) _ _(db)
i = T
(sb) (db) .o .
. . Ty 2T ifjeJ
Hy:Vie[m] Vi€ Wy thy ..
Tij Sﬂij ifjeJ,

Hy:Yiem]Vjien] «

(4.2)

where at least one inequality in the alternative hypothesis (4.2) is strict.

Note that one can define an alternative that represents a bias against papers from J simply by exchanging
the sets J and J in (4.2). Our goal is to design a testing procedure that controls for Type-I error and has
non-trivial power for any pair of matrices II?, [T that fall under definition of Problem

Non-trivial power. Informally, we say that the test has non-trivial power if for choices of II** and II" for
which the presence of bias is “obvious”, the test is able to detect the bias with probability that goes to 1 as
number of papers in both J and J grows to infinity. Formally, we say that matrices II*® and 119" satisfy
alternative hypothesis (4.2]) with margin 4, if all inequalities in equation are satisfied with margin § > 0,

that is, |7r§;b) - 7ri(‘,ib)

5 | >06 ¥ (i,7) € [m] x [n]. Then we say that the testing procedure has non-trivial power

2 An equivalent definition of the problem from the perspective of causal inference can be found in Appendix

77



if for any ¢ > 0 and for any § > 0 there exists ng = ng(s, §) such that if min{|7|,|J|} > no, then for any IIs"
and 19" that satisfy alternative hypothesis ([.2)) with margin §, the power of testing procedure is at least
1—e.

For instance, if the logistic model is correct for both SB and DB reviewers for some BéSb) = (()db) = Bo,
ﬁ:ESb) = %db =0, >0, ﬂ(db =0 and | BéSb)| > 0, then the requirement of non-trivial power ensures that
for any choice of true scores bounded in absolute value by a universal constant and any choice of property
satisfaction indicators, the test has power growing to 1 as min{|7|, |7 |} goes to infinity.

4.2 Relative bias problem

In Problem [If we assumed that SB (or DB) condition itself does not cause any change in reviewers’ behaviour.
We now consider a generalization of Problem [I| which accommodates an additional confounding factor — a
bias in the reviewer simply due to her/his assignment in the SB or the DB group (and independent of the
paper or its characteristics). For example, reviewers may not have any bias with respect to the property
of interest, but just being placed in the SB condition may induce more harsh opinions than the reviewers

in DB. Formally, recall the null hypothesis W(;b) = qldP) V(i,4) € [m] x [n] in Problem Instead, under

ij
the null, we now allow 7TZ-(jb) = fo(ﬂ'g;i )), for some non-decreasing function fj : [0,1] — [0,1]. Of course, one
may not know the function fy and the goal of this general problem is to design a test that is guaranteed to
control over Type-I error and has non-trivial power uniformly for all functions f; that belong to some set of

non-decreasing functions F.

Problem 2 (Relative bias problem). Given significance level o € (0,1), class of functions F and decisions of
SB and DB reviewers, the goal is to test the following hypotheses:

Ho: Vi€ [m] ¥j € [n] 8™ = fo(x(@)

" > fo(m”) e

sb)<f( db)) ifjgéj’ (4.3)

H, :Yi € [m]VYj € [n] {

where fj is some unknown function from F and at least one inequality in the alternative hypothesis (4.3)) is
strict.

For example, if the logistic model is correct for both SB and DB reviewers (with Bédb) =0), but
intercepts 3y in SB and in DB conditions are allowed to be different, then the corresponding matrices IT5P
and 119 do not fall under the definition of Problem |1} but can be captured by Problem [2| with specific choice
of F as we will discuss in Section |6

The definition of non- tr1v1al power transfers to the relative bias problem with the exception that all W(db)

are substituted by fo( ) for fo € F. Our goal is to design a testing procedure that controls for Type-I

error and has non—tr1v1al power for any pair of matrices II?, I1 that fall under definition of Problem (2} I for
any function fy € F. Ideally, we would like to achieve this goal for a set of functions F that contains all
non-decreasing functions f : [0,1] — [0, 1].

5 Proposed solution

We now introduce the proposed experimental setup as well as statistical tests we study in this work. We
subsequently analyze them in the context of Problems [I] and [2] in Section [6]

5.1 Testing procedures

In order to avoid correlations introduced by reviews given by the same reviewer, our tests use at most one
decision per reviewer. As we discuss in Section we do so by first matching reviewers into pairs, consisting
of one SB and one DB reviewer who review a common paper. For the moment, assume that we are given a
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set of tuples T, where each tuple t € T consists of a paper j; € [n], decision of a SB reviewer for this paper
Yj,, decision of a DB reviewer for this paper X;, and indicator of property satisfaction w;,, with a constraint
that each reviewer contributes her/his decision to at most one tuple. With this notation, we now present two
tests we consider in this work. As we show subsequently, either of these tests would suffice for the absolute
bias problem, but for the relative bias problem they cater to different models of reviewers’ behaviour with
non-intersecting areas of applicability. To provide intuition behind the tests, we define them in context of the
absolute bias problem (Problem [I]) and discuss their applicability to the relative bias problem later.

Disagreement-based test A high-level idea of the test is as follows. Consider a pair of SB and DB reviewers
who disagree in their decisions for some paper. Then under the null hypothesis, the events “SB accepts and
DB rejects” and “SB rejects and DB accepts” are equally likely. In contrast, if the null hypothesis is violated,
then depending on the property satisfaction and the direction of the bias, SB reviewer is more (or less) likely
to vote for acceptance than her/his DB counterpart.

Test 1 DISAGREEMENT
Input: Significance level a € (0,1)
Set of tuples T, where each t € T is of the form (j;,Yj,, Xj,, wj,) for some paper j € [n].

1. Initialize U and V to be empty arrays.

U if’Lthzl

2. For each tuple t € T, if Y, # X,, append Y}, to .
P je # Xjo append Xy {v if wj, = —1

3. Run a permutation test (Fisher} [1935) at the level « to test if entries of U and V' are exchangeable random
variables, using the test statistic:

1 1
sz Z UT.—W Z V.

re[|U]] re[|V]]

4. Reject the null if and only if the permutation test rejects the null. (If either of the arrays V and U is
empty, the test keeps the null.)

We now formally present the DISAGREEMENT test as Test Il In Step [1| two empty arrays U and V are
initialized. Next, in Step [2| we focus on pairs of SB and DB reviewers disagreeing in their decisions for a
paper they both review. For each of the corresponding tuples, we add the decision of SB reviewer to the
array U if a paper satisfies the property of interest and to V' otherwise. Finally, in Step [3] we define a test
statistic 7. According to the aforementioned intuition, under the null hypothesis 7 should be close to 0, but
under the alternative it should be large in absolute value. Hence, to make a decision we run a permutation
test and reject the null in Step [3|if this test suggests that |7] is too large for a given significance level a.

Counting-based test The test is built on a simple intuition. Assume for the moment that SB setup induces
a bias against papers from J and a bias in favor of papers from 7. Then it is likely that papers from J will
receive less number of positive recommendations in SB setup as compared to DB setup. Symmetrically, for
papers from J we expect reviewers in SB to be more lenient than their DB counterparts. In contrast, if there
is no bias at all, then we expect the aforementioned differences to be small.

We now formally present the COUNTING test as Test 2| In Step [l two empty arrays U and V are created
which in Step [2 are populated with differences between decisions of SB and DB reviewers for papers from
J and J respectively. Importantly, in contrast to the DISAGREEMENT test, in the COUNTING test we do
not condition on disagreeing pairs of reviewers. Noticing that mean value of entries of U (respectively V)
measures the change of attitude towards papers from J (respectively J) between SB and DB conditions,
in Step |3| we compute a test statistic v which compares these changes. According to the aforementioned
intuition, under correct null hypothesis the test statistic should be close to 0. Finally, in Step [l we make a
decision using concentration properties of the test statistic.
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Test 2 COUNTING
Input: Significance level a € (0, 1)
Set of tuples T, where each ¢ € T is of the form (j;,Yj,, Xj,, wj,) for some paper j € [n].

1. Initialize U and V to be empty arrays.

U ifw; =1
2. For each tuple t € T, append (Y}, — X},) to 1 Wit .
Vo ifw;, =-1

3. If either of the arrays V and U is empty, keep the null and terminate. Otherwise, set the test statistic v
as follows:

1 1
WZWZUT—WZW (4.4)

re(|U]] re[|V]]

4. Reject the null hypothesis if and only if

vl > V2(UI7E + [V]71) log Y.

Effect size In Section [6] we will establish theoretical guarantees on Type-I error control for both DISAGREE-
MENT and COUNTING tests. In addition to these guarantees, both tests provide a natural measure of the
effect size:

e COUNTING. The test statistic v of the COUNTING test compares the within-subject differences in acceptance
rates for papers from J and J. Indeed, the first term in equation measures the difference between
acceptance rates in SB and DB setups for papers from J. Similarly, the second term measures the same
difference for papers from J. A positive value of the test statistics then indicates that papers from J
benefit from SB review more than papers from 7.

e DISAGREEMENT. Slightly informally, the test statistic 7 of the DISAGREEMENT test measures the difference
in acceptance rates of “borderline” papers from J and J in the SB setup. Indeed, by conditioning on
pairs of disagreeing reviewers in Step |2 of Test |1} the test rules out “clear accept” and “clear reject” papers
thus considering only the papers for which reviewers disagree (i.e., borderline papers).

Overall, absolute values of the test statistics 7 and -y are reasonable estimates of the effect size and are in a
similar vein to Cohen’s d and other popular effect size measures (Cohen, {1992).

5.2 Setup of the experiment

We now propose the setup of the experiment to overcome the issues highlighted in Section [3:2] and discuss
a construction of the set 7 used by the tests introduced above. At a higher level, the proposed setup has
two main differences from one considered by [Tomkins et al.| (2017)). First, bidding is performed in blind
manner by both SB and DB reviewers (Step [I| below). Second and more importantly, to avoid issues caused
by non-random reviewers’ assignment, we perform paper assignment and reviewer allocation to conditions
jointly in a carefully selected manner (Steps below).
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Procedure 1 Design of the experiment
Input: Paper load A > 1
Reviewer load p > 1
Assignment algorithm .4

1. Reviewers bid on papers in blind manner

2. Depending on the relationship between number of papers (n) and reviewers (m):

(a) If m > 2n, select 2n reviewers uniformly at random and use algorithm A4 to assign each paper to 2
reviewers from the selected pool such that each reviewer is assigned to one paper

(b) If m < 2n, select m/2 papers such that proportions of papers from J and J are as close to each other
as possible. Use algorithm A to assign each selected paper to 2 reviewers such that each reviewer is
assigned to one paper

(¢) If m = 2n, use algorithms A to assign each paper to 2 reviewers such that each reviewer is assigned to
one paper

Denote the corresponding assignment as A*

3. For each paper in assignment A*, allocate one assigned reviewer to DB condition and another assigned
reviewer to SB condition uniformly at random. If at this point there are reviewers who are not allocated
to conditions, allocate half of them to SB and half to DB uniformly at random

4. Using algorithm A, complement assignment A* such that each paper is assigned to A SB and A DB
reviewers and each reviewer reviews at most p papers. Denote the corresponding assignment as A and
begin review process according to this assignment

5. When the review process is finished, construct a set 7 as follows. For every paper j from the assignment
A* and corresponding pair (i1,42) of SB and DB reviewer, add tuple (4,Y;,;, Xi,;,w;) to the set T

6. Run statistical test on the set T

We now formally present the experimental procedure as Procedure|l] It takes as input parameters of paper
and reviewer loads together with any assignment algorithm that operates on similarities and/or bids. In Step
reviewers bid on the papers in blind manner, that is, using only title and abstract of submissions. Notice that
in contrast to the Tomkins et al. setup, bidding happens even before the reviewers are allocated to SB or DB
conditions. In Step [2| we find a partial assignment of papers to reviewers which satisfies (A = 2, u = 1)-load
constraints. Depending on the relationship between n and m, we may include only a subset of papers or
reviewers in this assignment. For example, in case we do not have enough reviewers to respect the one
paper per reviewer constraint and hence we select subset of papers of appropriate size such that it includes
approximately equal number of papers from 7 and J and find the assignment for selected papers only. The
constraint on the number of papers from 7 and J is to ensure that the resulting set 7 is balanced which is
necessary for non-trivial power. The corresponding assignment A* is a building block for our tests which
will use the reviews from this assignment only. Next, in Step |3| reviewers are allocated to conditions in a
specific manner which is crucial for our statistical guarantees. In Step [4] we find a full assignment A that is a
completion of the partial assignment A*, meaning that if reviewer i was assigned to paper j in assignment
A*, she/he is also assigned to this paper in A. Finally, in Step [5| we construct a set of tuples 7 that is used
by the DISAGREEMENT and COUNTING algorithms in Step [6] Importantly, by construction we ensure that
each reviewer contributes at most one decision to the set T.

As we show below, the experimental Procedure [I] overcomes the issues with the experimental setup
we discussed in Section [3.2] and leads to provable control over Type-I error for our DISAGREEMENT and
COUNTING algorithms. We underscore that (i) DISAGREEMENT and COUNTING tests are not tied to particular
experimental procedure we introduce and can be applied under the setup of [Tomkins et al.| (2017)) with
caveats discussed in Section For instance, in simulations (a)-(d) of Section [3| the DISAGREEMENT test was
applied under the setup of Tomkins et al. More details on this remark are provided in Appendix (ii) as
requested by the DISAGREEMENT and COUNTING tests, the set of tuples 7 constructed in Step [ contains at
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most one decision of each reviewer. This requirement allows our tests to be agnostic to reviewer calibration
which may otherwise undermine Type-I error guarantees as demonstrated in Section [3.1} However, if one
treats reviews given by the same reviewer as independent, thereby ignoring issues with reviewer calibration,
then in Step [f] of Procedure [T one can construct a larger set 7 by using full assignment A and allowing each
reviewer to contribute multiple decisions to the set 7.

Finally, in addition to facilitating the experiment, in the interest of fairness in the review (Tomkins et al.
2017) the experimental procedure should ensure that in the eventual assignment each paper is reviewed
by equal number of SB and DB reviewers. By construction, Procedure [I] satisfies this requirement: Step [4]
ensures that in the final assignment A each paper is assigned to A SB reviewers and A\ DB reviewers.

6 Analysis

We now present the analysis of the COUNTING and DISAGREEMENT tests in context of absolute and relative
bias problems.

6.1 Absolute bias problem

We begin our analysis from the absolute bias problem and first formulate the main theorem of this section.

Theorem 1. For any significance level a € (0,1), under the setup of the absolute bias problem (Problem ,
let the experiment be organized according to Procedure[l Then the DISAGREEMENT and COUNTING lests are
guaranteed to control for Type-1 error at the level o, and also satisfy the requirement of non-trivial power.

Remark. 1. As demonstrated in Figure [4], In practice, the DISAGREEMENT test has a higher power as
compared to the COUNTING test and should be employed under conditions of the absolute bias problem.

2. Notice that the outcomes of the DISAGREEMENT and COUNTING tests depend on a set T provided
to the tests as input. That is, for two different sets 7; and T2 (that for example correspond to different
assignments A} and A3 constructed in Step [2] of Procedure[I), the outcomes of the tests might be different.
Hence, one should fix a set 7 before observing reviewers’ decisions to avoid chasing statistical significance.

3. Finally, the DISAGREEMENT and COUNTING tests are also applicable to the experimental procedure
used by Tomkins et al.| (2017)) and are guaranteed to be robust to issues (a)-(c) from Section The formal
statement is given in Appendix

We now discuss the issues (a)-(e) considered in Section [3|in the context of our DISAGREEMENT and
COUNTING tests.

e Noise The DISAGREEMENT and COUNTING tests do not rely on any estimation of papers’ qualities made
by reviewers. Moreover, we do not even assume that there exists some objective quantity that can be
estimated. Hence, our tests do not suffer from issues caused by noisy estimates of scores given by DB
reviewers as illustrated by Figure [2a] in case of the DISAGREEMENT test.

e Model mismatch The only assumption we make is that under correct null hypothesis there is no difference
in behavior of SB and DB reviewers. Hence, Theorem [I| guarantees that our tests are robust to violations
of specific parametric model (4.1]) as illustrated by Figure

e Reviewer calibration We circumvent the detrimental effect of correlations introduced by reviewers’
calibration by requiring that each reviewer contributes at most one review to the test. See Figure [2¢| for an
illustration. Of course, such robustness comes at the cost of some power, but we notice that our matching
procedures guarantee the use of at least a constant fraction of available data, thereby limiting reduction in
the power.

e Non-blind bidding The issue with bidding is straightforwardly resolved by requesting blind bidding from
both SB and DB reviewers. As illustrated by Figure we abstract out possible confoundings due to
difference in bidding behaviour and ensure that the observed difference in decisions (if any) is due to bias
in evaluations and not in bidding.
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Figure 4: Synthetic simulations evaluating performance of the test in Tomkins et al| (2017) (“previous work”)
and the tests introduced in this section (“DISAGREEMENT and COUNTING tests”) in presence of bias when
logistic model of reviewers is correct. Larger values are better. Details of the simulation setup are
provided in Appendix Error bars are too small to be visible.

¢ Reviewer assignment The experimental design proposed in Procedure[1|allows to execute any assignment
algorithm without breaking the guarantees of the tests as demonstrated in case of TPMS assignment by
Figure The key part of the procedure that ensures such robustness are Steps [2] and [3| where we first
find triples of two reviewers and a paper they review and then randomly allocate one reviewer from each
triple to SB and one to DB. In this manner, we ensure that parts of the final assignment A that are used
for testing do not exhibit any structural difference caused by non-random assignment.

We conclude the section with brief discussion of the power of the tests we introduced in this section. To
provide fair comparison of tests, the simulations are performed under the setup of the experiment by [Tomkins
et al.| (2017) and the input to the DISAGREEMENT and COUNTING tests is computed according to procedure
described in Appendix Figure M| contrasts the powers of the tests under the logistic model in
two cases. In Figure DB reviewers estimate the true scores of the papers with some noise, which in
presence of correlation dramatically decreases the power of the test by Tomkins et al. As discussed above, the
DISAGREEMENT and COUNTING tests are robust to issues caused by measurement error, as seen in Figure [{a]

In contrast, Figure considers the case when DB reviewers estimate true scores without noise, that is,
true scores are known to the Tomkins et al. test. Although in this case their test has the highest power
among 3 tests under consideration, we notice that the margin between their test and the DISAGREEMENT
test is not as large as in Figure [{a] Notice also that the test by Tomkins et al. gains power by overfitting to
the strict model which leads to higher power when the model is correct, but at the cost of not being
able to control over Type-I error rate under reasonable violations of the modelling assumptions as discussed
in Section Bl

Finally, notice that the COUNTING test relies on the sub-Gaussian approximation to define a threshold
and consequently has lower power than the DISAGREEMENT test in both cases. While this suggests that
for absolute bias problem the DISAGREEMENT test dominates the COUNTING test, we will show in the next
section that under the relative bias problem these tests are incomparable.

6.2 Relative bias problem

In Section [6.1] we showed that if under the absence of bias the behaviour of reviewers in SB and DB conditions
is the same, then the DISAGREEMENT and COUNTING tests control for Type-I error and have non-trivial
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power thus leading to a reliable testing procedure. In this section we relax that assumption and consider a
relative bias problem with two specific choices of F that correspond to popular linear and logistic models.
We first show that for each of these choices either the DISAGREEMENT or the COUNTING test leads to reliable
testing. We then conclude the analysis with a negative result saying that no test can control for Type-I error
and have non-trivial power over both choices of F.

Let us now introduce these two choices of F that we consider throughout the remaining part of this
section. To this end, for each j € [n] we let ¢; € R denote an unknown “representation” of the paper j, where
by representation we imply any function of a paper’s content that defines reviewers’ perception of a paper.
For example, it could be that g; = ¢}, where ¢ is a true score as defined by Tomkins et al.

Generalized linear model Under the generalized linear model, the SB condition itself induces a change in
reviewers’ evaluations, making them more harsh (or lenient). Moreover, under absence of bias the change in
behaviour between SB and DB conditions is described by a constant shift in probability of acceptance for all
papers, irrespective of whether they satisfy a property of interest or not. Formally, consider a fixed constant
A € (0,0.5). The generalized linear model assumes that (i) for every j € [n] a corresponding representation
g; belongs to the interval (A, 1 — A) and (ii) under absence of bias for every (i,j) € [m] x [n] the behavior of
reviewer 7 if she/he reviews paper j is described by the following parametric equations:

DB: (" = g (4.5a)
SB: 75” = v+ g;, (4.5b)

for some unknown constant v € (—A,A). Provided that matrix IT% was generated according to the
model (4.5a)) of DB reviewers, the generalized linear model corresponds to an instance of a relative bias
problem with a set of functions Fa associated to a fixed constant A and defined as

Fa={m(t): (A1-8)>[0,1] | ve(-a,0)}, (4.6)

where
h(t)=t+v, te(A1-A). (4.7)
Indeed, observe that if for any (¢,7) € [n] x [m] the probability of acceptance w(db) was generated according

to the model (4.5a), then W(Sb) defined as W(Sb) hy ( ) satisfies model -

Generalized logistic model Similar to the generahzed linear model, under the generalized logistic model
the SB condition also induces a change in reviewers’ evaluations, but the change now is described as a constant
shift in space of log-odds of the acceptance probabilities. Formally, consider a fixed constant A > 0. The
generalized logistic model assumes that (i) for every j € [n] a corresponding representation ¢; belongs to the
interval (—A, A) and (ii) under absence of bias for every (i,5) € [m] x [n] behaviour of reviewer i if she/he
reviews paper j is described by the following parametric equations:

7T(db)
ij
7r(Sb)
SB:log ﬁ = B0+ v+ g, (4.8b)
1—m,

ij

for some unknown constant v € (—ﬁ, 8)7 where unknown coefficients 5y and B; are also bounded in absolute

value by A and B1 > 0. Provided that matrix I19" is generated according to the model ([4.8a)) of DB reviewers,
one can verify that the generalized logistic model corresponds to an instance of a relatlve bias problem with a
set of functions ]-' ~ associated to a fixed constant A and defined as

Fi={&®:0,1-01]|7e (-4 1)}, (4.9)
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where

te”
()= —"C___ telo1l 4.10
Bll) = e ] (1.10)
Indeed, observe that if for some (i, ) € [n] x [m] the probability that reviewer ¢ accepts paper j in DB setup

74P g generated according to the model | E then setting 7T(Sb) = gl,( (db )) we ensure that ﬂl-(js-b)

1]
model -
The models we defined follow an objective parametric approach assumed by [Tomkins et al.| (2017) with
two differences: (i) we do not assume that ¢; has a known meaning or that it can be measured (for instance,
it may be that ¢; = ¢J, or that ¢; = (q;-‘)?’, or ¢; may be a complex function of the content of the paper) and
(ii) we do not assume that the bias is described by a linear shift in space of probabilities or log-odds, and
instead consider a non-parametric definition of the bias as specified in the alternative hypothesis .

satisfies

6.2.1 Positive results

We now show that the COUNTING and DISAGREEMENT tests lead to reliable testing under the generalized
linear and generalized logistic models respectively. Before we formulate the main result of this section, let us
provide some intuition behind the models and the corresponding tests.

Generalized linear model A natural strategy to test for biases under the generalized linear model is to
estimate the shift in reviewers’ behaviour on papers that belong to J and to J separately and then compare
the estimates. In fact, the COUNTING testing procedure introduced above as Test [2] follows this strategy and,
as guaranteed by Theorem [2| leads to reliable testing under the generalized linear model.

Generalized logistic model Intuitively, estimating a constant shift in reviewers’ behavior as done by the
COUNTING test may not be the optimal strategy under the generalized logistic model, as under absence of
bias the change of behaviour between SB and DB conditions is given by a constant shift in log-odds space
and not in probability space. However, it turns out that the DISAGREEMENT test is able to capture the
constant shift in log-odds space and hence we still can perform reliable testing under this model, using the
DISAGREEMENT algorithm.

Theorem 2. For any significance level o € (0, 1), let the experiment be organized according to Procedure ,
Then

(a) Under the generalized linear model with any A € (0,0.5), the COUNTING test is guaranteed to control
for Type-I error at the level o, and also satisfies the requirement of non-trivial power.

(b) Under the generalized logistic model with any A> 0, the DISAGREEMENT test is guaranteed to control
for Type-1 error at the level o, and also satisfies the requirement of non-trivial power.

Remark. 1. Result of Theorem (a) holds even for a subjective version of the generalized linear model
in which for each (,7) € [n] x [m] we substitute g; with g;; (that is, different values across reviewers) in
equations ([4.5a)) and @ thereby accounting for subjectivity of reviewers.

2. If the loglstlc model (| assumed by Tomkins et al. is correct for both SB and DB reviewers with
possibly different intercepts, then Theorem b) ensures that the DISAGREEMENT test provably controls for
the Type-I error and can detect a bias with probability that goes to 1 as sample size grows, without requiring
knowledge (neither exact nor approximate) of papers’ scores g, ..., q..

3. Notice that the COUNTING and DISAGREEMENT tests do not require the knowledge of A and A
parameters to control for Type-I error and satisfy the requirement of non-trivial power.

Figure [5] compares the performance of the DISAGREEMENT and COUNTING tests under specific instances
of the generalized linear and logistic models, illustrating the results of Theorem [2| Figure shows that
the COUNTING test controls for Type-I error and has a non-trivial power under the generalized linear
model. Notice that the DISAGREEMENT test does not control for Type-I error in this instance, implying that
Theorem (b) cannot be extended to guarantee the Type-I error control under the generalized linear model
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Figure 5: Synthetic simulations evaluating performance of the DISAGREEMENT and COUNTING tests under
setup of the relative bias problem when generalized linear (Figure or generalized logistic (Figure
models is correct. For each model presence and absence of bias are simulated. Details of the simulation setup
are provided in Appendix Error bars are too small to be visible.

as well. Symmetrically, Figure shows that while the DISAGREEMENT test leads to reliable testing under
the generalized logistic model, the COUNTING test is unable to control for Type-I error under this model.
Hence, we conclude that under the setup of the relative bias problem, none of the tests dominates another,
each leading to reliable testing under the corresponding model.

We see in Figure ] that neither the DISAGREEMENT nor the COUNTING test is suitable for both generalized
linear and logistic models. In the next section we show that this is not a drawback of these specific tests, but
rather a manifestation of a more general impossibility result.

6.2.2 Negative result

We conclude our analysis with a negative result that limits the complexity of the class F for which reliable
testing in the relative bias problem is possible. Let us first state the main result of this section.

Theorem 3. Suppose that there exist two functions g,h € F and some 0 < x7 < xy < 1 such that
g(x1) < h(z1) and g(x2) > h(xs). Suppose also that there exists a testing procedure v operating on decisions
of SB and DB reviewers that for any given o € (0,1) keeps Type-I error below o for all matrices T1°°, T1%
that satisfy the null hypothesis of Problem[3 specified by some function fo € F. Then the testing procedure 1
cannot satisfy the requirement of non-trivial power.

The intuition behind Theorem [3]is as follows. If the class F contains “too many” functions, then some
matrices II°? and I satisfy the null hypothesis of Problem [2| defined by fy € F and simultaneously satisfy
the alternative hypothesis defined by some other function f} € F with margin 6 > 0. Hence, any testing
procedure must either have high Type-I error rate or sacrifice the non-trivial power requirement over the
class of functions F, implying that reliable testing is impossible.

Using Theorem [3| we can deduce that one can hope to control for the Type-I error rate and simultaneously
have a non-trivial power only when functions contained in F are pointwise totally ordered, that is, for any
two functions f,¢g € F it must be the case that either f(z) > g(z) for all x € [0,1] or f(z) < g(x) for all
z € 10,1].

Let us now illustrate the consequences of Theorem [3] for the generalized linear and logistic models.

Corollary 1. For any significance level a € (0,1), let 11 and 1y be any testing procedures which operate on
decisions of SB and DB reviewers. Suppose that under the generalized linear model with any A € (0,0.5),
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procedure 11 controls for the Type-I error at the level o and satisfies the mon-trivial power requirement.
Suppose also that under the generalized logistic model with any A > 0, procedure 1o controls for the Type-I
error at the level a and satisfies the non-trivial power requirement. Then

(a) Under the generalized logistic model with any A> 0, procedure 1 incurs a Type-I error rate strictly
greater than a.

(b) Under the generalized linear model with any A € (0,0.5), procedure 1o incurs a Type-I error rate strictly
greater than o.

Corollary [1| shows that there does not exist a testing procedure that controls over Type-I error and has
non-trivial power under both generalized linear and generalized logistic models. As a result, one needs to
design different procedures for these models as we did with the DISAGREEMENT and COUNTING tests. In
case of the DISAGREEMENT and COUNTING tests, Corollary [1]is illustrated by Figure

In Appendix [A3] we discuss another application of Theorem [3]in context of the generalized logistic model
that also suggests that generality of the DISAGREEMENT test cannot be further increased.

7 Discussion

Peer review is the backbone of academia but faces a number of challenges of unfairness, biases, and inefficiency.
This work contributes to the growing literature (Shah et al.l |2018; [Kang et all, 2018} |Gao et al.l [2019; [Wang
and Shahl 2019} [Stelmakh et al.| 2021a; [Kobren et al.l |2019; Noothigattu et al.l 2020; [Balietti et al.l 2016
Xu et all 2019; [Fiez et al., |2020) in the domain of addressing these challenges in peer review, by designing
a principled method to test for biases. We show that under various conditions the approach used by the
prior work of Tomkins et al. does not control the Type-I error rate. We underscore that we do not aim
at confirming or disproving the presence of biases found in that work, but our focus is on the validity of
testing methods. With this goal in mind, we propose a principled approach to testing for biases and design
two statistical procedures that coupled with our novel experimental setup provably control for the Type-I
error rate. Additionally, these procedures have non-trivial power under essentially a single assumption of
no difference in the behavior of SB and DB reviewers when the bias is absent. We then show that this
assumption cannot be relaxed in general and that to accommodate the aforementioned difference in behavior
one needs to make some modelling assumptions, as we demonstrated with our tests and generalizations of
popular linear and logistic models.

We presented the DISAGREEMENT and COUNTING tests in the context of peer review. However, we
underscore that one can adapt our experimental setup (Procedure|l)) to use our testing procedures (Test
and Test |2)) in other applications. These applications include peer grading, university admission, and hiring
where some protected attributes might be available to reviewers.

There are several open problems suggested by our work. The first direction is associated with the statistical
power of the testing procedures we propose. In this work, we show that our tests have power that going to
one under certain conditions on the alternative. It is of interest to establish a bound on the statistical power
of our tests in a finite sample setting and compare it with an upper bound on the maximum power that can
be achieved by any computationally-efficient testing procedure.

The second direction is related to the design of the experimental procedure. To accommodate tests for
biases, one needs to deviate from the standard peer-review pipeline, thus introducing a trade-off between the
quality of the peer-review process and the accuracy of the testing. Quantification of such a trade-off may
help to design a better setup and understand the cost of the experiment in terms of the peer-review quality.
In this work, we designed a procedure that leads to the desired accuracy, but is suboptimal in terms of the
TPMS objective. In contrast, the optimal TPMS assignment would not allow to perform reliable testing.
Hence, an open problem is to design an experimental procedure that accommodates our statistical tests and
subject to this maximizes the quality of the assignment in terms of the TPMS objective.
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Appendix

We provide supplementary materials and additional discussion.

A1l More than one property of interest

Throughout the main body of the paper, we considered the case of a single property of interest. We now
generalize some of the results to the case of more than one property of interest. First of all, we recall
some notation. Let k be the total number of properties, then for each paper j € [n], we let variables

) 2)7 . ,wj(-k) indicate whether or not the paper satisfies the corresponding property. For each property

¢, the set Jy C [n] contains papers that satisfy a property £ with J, being its complement.

We argue that when k > 1, one needs to think about the bias testing problem as of an instance of the
relative bias problem as defined in Section [f.2] Indeed, consider for example the case of two properties of
interest (kK = 2) and assume that we are interested in testing for biases with respect to the first property.
Then even if there is no bias with respect to this property, the behavior of reviewers between SB and DB
conditions might be different due to possible biases with respect to the second property.

The negative result of Theorem [3| we established in Section also applies to the case of multiple
properties, implying that reliable testing is possible only under some restrictions on the difference in reviewers’
behavior between SB and DB conditions under the absence of bias. Following the relative bias problem
defined as Problem [2] we now generalize it for & > 1. To this end, we consider a problem of testing for biases
with respect to the property ¢ € [k] and introduce an additional piece of notation. For each paper j € [n], let
w; denote a vector of indicators of property satisfaction: w; = (w(-l), w](-Q), . ,w§-k)) and let W](-%) denote

J
(-0 _ w1 D)y

the same vector but with £*! component omitted, that is, w; = (w<1), W ; ;

Following the definition of the relative bias problem (Problem , the set Fy contains functions that
under the absence of bias with respect to the property ¢, specify the difference in behavior between DB
and SB conditions. In case of a single property of interest, F was a subset of all non-decreasing functions
f:[0,1] — [0,1]. However, when k > 1, even under the absence of the bias with respect to the property ¢,
the change in reviewers’ behavior between DB and SB conditions may be influenced by whether the paper
satisfies properties other than ¢, due to possible biases with respect to these properties. Hence, under the
absence of bias with respect to the property ¢, the change of behavior between SB and DB conditions is
described as follows:

V(i,j) € [n] x [m] : wf;b) — fo(ﬁz(;ib)7w§fz)),

where function fy € Fy is non-decreasing in its first argument. Thus, the set Fy is a subset of all functions
with domain [0, 1] x {0,1}*~! which are non-decreasing in their first argument, that is,

Fi C {f :[0,1] x {0,1}*=* — [0,1]|f is non-decreasing in its first argument} .
Having defined the necessary notation, we are ready to introduce the relative bias problem in case of multiple
properties of interest.

Problem 3 (Relative bias problem for multiple properties.). Given significance level a € (0,1), the property
of interest ¢, the class of functions F, and decisions of SB and DB reviewers, the goal is to test the following
hypotheses:

Hy:Vie[m]Vjen 5" = folxl™ wi™®)

(sb) (db) (—£) ip .
, , w0 > folmy ,we ) ifje T
Y] < fO(’/Tij » Wi ) if j ¢ N/

for some unknown fy € Fy, and where at least one inequality in the alternative hypothesis (4.11)) is strict.
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Intuitively, under the null hypothesis of absence of bias with respect to the property ¢, the change of
reviewers’ behaviour between SB and DB conditions is determined by (i) bias introduced by SB condition itself
which is independent of papers’ authorship information and (ii) bias with respect to properties other than
the property ¢. The generalized linear and logistic models can be formulated in case of multiple properties of
interest as follows.

Generalized linear model. Given a fixed constant A € (0,0.5), we follow the case of a single property
and assume that each paper j € [n] has some unknown representation ¢; € (A,1 — A). The generalized
linear model assumes that for each (7, 7) € [m] x [n], the behaviour of reviewer 7 if she/he reviews paper j is
described by the following parametric equations:

DB: 7" = ¢; (4.12a)

s s s 0
SB: mis” = g5 + 85 + > B, (4.12b)
Le (k]

k
where unknown coefficients are such that | BéSb)\ + >0 5§Sb)| < A. Under the generalized linear model, a bias
i=

with respect to the property ¢ is present whenever ﬁéSb) # 0.

Generalized logistic model. Given a fixed constant A> 0, the generalized logistic model assumes that
(i) for every j € [n], a corresponding representation g; belongs to the interval (—A, A) and (ii) for each
(i,7) € [m] x [n], the behaviour of reviewer i if she/he reviews paper j is described by the following parametric
equations:

(db)
T
DB: log % = ﬁédb) + 514, (4.13a)
1-— 5
) (sb) (sb)  (£)
1, S S
SB: log —rps = 5™ + gy + ) B wys (4.13b)
— Tij L€k

where all coefficients are bounded in absolute value by A and B1 > 0. Under the generalized logistic model, a
bias with respect to the property ¢ is present whenever ,Béifl) #0.

Remark. 1. First, provided that matrix II9" is generated according to the one of the introduced models,
one can define a set of functions F, that puts the corresponding model in the context of the relative bias
problem for multiple properties of interest defined as Problem

2. The goal under each of the models introduced above is to test the significance of the coefficient in
equation describing the behavior of SB reviewer that corresponds to the indicator of the property of interest.
For example, if we are interested in testing for biases with respect to the property ¢ under the generalized
logistic model, then we want to test the significance of the coefficient ﬁéfl) in equation .

3. Notice that in case of multiple properties, the models we introduced above describe reviewers’ behaviour
both under the absence of bias and under the presence of bias. In this way they allow simultaneous testing
for biases with respect to many properties of interest.

Observe that the relationships that describe the behaviour of SB reviewers in models (4.12bf) and (4.13b))
are reminiscent of the linear regression and logistic regression models respectively. As mentioned above, one
cannot fit decisions of SB reviewers to these models using existing methods, because one of the covariates
(paper representation ¢) is unknown. In their work, Tomkins et al. employed DB reviewers to estimate this
unknown covariate and used these estimates to fit the logistic model. As we discussed in Section [3] this
approach leads to an unreliable testing procedure under various realistic conditions.

We now show that using ideas of the DISAGREEMENT and COUNTING tests, one can use decisions of both
SB and DB reviewers to eliminate the unknown covariate from the model, thereby enabling standard tools
without the need to estimate any covariate.
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Proposition 1. Let reviewers i and i’ be assigned to paper j in SB and DB setups correspondingly, then

(a) Under the generalized linear model the expectation of the quantity Y;; — Xy, follows the linear

model (4.12b)) with q; = 0:

E[Yi; — Xij] = 857 + 3 8wl (4.14a)
Le k]

b) Under the generalized logistic model the expectation of the quantity Y;;| (Y;; # Xi;) follows the logistic
g gl Xij J 9

model (4.13b)) with g; = 0:

E Y| (Yij # Xirj)] (sb), (©)
log J 2% J = By + By {ws”, 4.14b
L-E[Yyl (Y, # Xo)] " Em e .

where By = ﬁ(ng) — Bo(db).

Proposition [1| provides a mean to eliminate the unknown covariate from the models of SB decisions
and using decisions of DB reviewers. For example, in case of the generalized logistic model it relies
on the core idea of the DISAGREEMENT test and suggests conditioning on pairs (SB reviewer, DB reviewer)
such that reviewers disagree in their decisions for some paper. After conditioning, decisions of SB reviewers
follow model with all covariates known and hence standard test for logistic regression can be applied
to evaluate significance of coefficients.

Proposition [1] also allows to avoid using noisy measurements and hence any test for significance of the
coefficients applied to the models (4.14a)) and (4.14b]) will not be susceptible to issues caused by the use of
noisy measurements and misspecification of the meaning of ¢ (issues (a) and (b) from Section [3)). If one
restricts each reviewer to input at most one decision to the testing procedure, then issue (c¢) will also be
mitigated.

A2 Our tests under the setup of Tomkins et al.

In this section we give additional comments on the applicability of our testing procedures to the setup
of [Tomkins et al.| (2017). To this end, recall that our tests take as input the set of tuples 7 such that (i) each
tuple t € T is of the form ¢t = (j,Yj,, X, , w;,), where j; is a corresponding paper, Yj,, X;, are decisions of SB
and DB reviewers for this paper and wj;, equals 1 if j; € J and —1 otherwise; (ii) each reviewer contributes
at most one decision to the set 7. Potentially our tests can be coupled with any experimental procedure
as long as this procedure enables a construction of such a set 7. However, one needs to understand that
while Procedure [I] is robust to issues we discussed in Section [3.2] other experimental setups may lead to an
inflation of the Type-I error.

In the experiment conducted by [Tomkins et al. (2017)), reviewers were split into two groups (SB and DB)
uniformly at random at the very beginning of the experiment. Then two assignments Agp and App were
computed separately for each group of reviewers. As discussed in Section [3.2} even if both groups of reviewers
bid in a blind manner, the design of Tomkins et al. may lead to inflated Type-I error. Nonetheless, we now
show that even under the setup of Tomkins et al., one can employ the DISAGREEMENT and COUNTING tests
to fix issues (a)-(c) with the testing procedure discussed in Section

A2.1 Matching algorithms

Let us first introduce two matching procedures that construct an input for our tests under the setup of{Tomkins
et al.| (2017). Given assignment of papers to reviewers in both SB and DB conditions, we discuss two choices
of matching algorithms depending on the relationship between parameters A (required number of reviewers
per paper in each condition) and g (maximum number of papers per reviewer). Notice that our goal is not to
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maximize the size of T, but instead to maximize the minimum of the number of papers from J included in
the set 7 and the number of papers from J included in the set 7. This is because our statistical tests need
decisions for papers from both J and J to maximize their power. Depending on the relationship between A
and p we can solve this problem either exactly or approximately.

Case 1 (A > ). In this case, each paper can be matched to 1 SB reviewer and 1 DB reviewer by finding two
separate maximum matchings (papers to SB reviewers and papers to DB reviewers) using the Hungarian
matching algorithm. We formally present the matching procedure as Algorithm

Algorithm 1 Exact matching algorithm

Input: Assignments Agg, App of SB and DB reviewers to papers, respectively.

1. Construct a graph G that consists of 3 layers:

e Layer 1. One node for each SB reviewer
e Layer 2. One node for each paper
e Layer 3. One node for each DB reviewer

and add edges between reviewers and papers according to assignments Agg and Apg. Set 7 = ().

2. Using the Hungarian matching algorithm with uniform tie-breaking find matchings Mgg and Mpg where
Mg (respectively Mpg) is a maximum 1-1 matching between SB (respectively DB) reviewers and papers
(each reviewer is matched to at most 1 paper and each paper is matched to at most 1 reviewer).

3. Leave in graph G only those edges that correspond to matched pairs in Mgg and Mpg.

4. For any triple of (SB reviewer i1, paper j, DB reviewer i5) such that there is a path from a node that
corresponds to reviewer i to a node that corresponds to reviewer is through a node that corresponds to
paper .j7 add t = (.]a )/lljanj?w]) to T

5. Return 7.

Lemma 1. For any assignments of SB and DB referees to papers that satisfy (A, p)-load constraints with
A > p, the matching procedure in Algorithm[1] is guaranteed to construct a set of tuples T such that for each
paper j € [n] there is one tuple that corresponds to this paper.

Case 2 (A < ). In this case we cannot use the above idea, because there does not exist a matching such that
each paper is matched to one SB and one DB reviewer, subject to a constraint that each reviewer is matched
with at most one paper. While solving the exact optimization problem in this case might be hard, a simple
greedy procedure constructs a sufficiently large matching for the DISAGREEMENT and COUNTING tests to
satisfy the non-trivial power requirement. The iterative greedy procedure in each iteration matches one paper
from J and one paper from J to 1 SB and 1 DB reviewer and removes those reviewers from subsequent
interations to maintain the constraint that each reviewer contributes at most one decision to the set 7. We
formally introduce the greedy procedure as Algorithm

Lemma 2. For any assignments of SB and DB referees to papers that satisfy (A, p)-load constraints, the match-
ing procedure in Algorithm@ is guaranteed to construct a set of tuples T that for large enough min{|J|, ||}
contains at least cmin{|J|,|J|} tuples corresponding to papers from J and at least cmin{|J|,|T|} tuples
corresponding to papers from J, where c is a constant that may depend only on X and .

Remark. 1. If the set 7 constructed by the Algorithm [I]is such that there exist reviewers who do not
contribute any of their decisions to this set, then one can run Algorithm [2] on assignments of these reviewers
to papers and obtain the set 7’. Next, consider the updated set 7* = 7 U 7" and observe that each reviewer
contributes at most one decision to this set.

2. By construction both matching algorithms introduced in this section include at most one decision per
reviewer in a set of tuples 7.
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Algorithm 2 Greedy matching algorithm

Input: Assignments Agp, App of SB and DB reviewers to papers, respectively.

1. Construct a graph G that cosists of 3 layers:

e Layer 1. One node for each SB reviewer
e Layer 2. One node for each paper
e Layer 3. One node for each DB reviewer

and add edges between reviewers and papers according to assignments Agg and Apg. Set T = (.

2. Find a triple (SB reviewer i, paper j € J, DB reviewer i) such that there is a path in graph G from a
node corresponding to SB reviewer to a node corresponding to DB reviewer through a node corresponding
to a paper. If there are many such triples, break ties uniformly at random. If such a triple exists, define
t1 = (4,Yi,j, Xipj, wj), otherwise set t1 = 0.

3. Find a triple (SB reviewer i} # i1, paper j' € J, DB reviewer i}, # i) such that there is a path in graph
G from a node corresponding to the SB reviewer to a node corresponding to the DB reviewer through a
node corresponding to the paper. If there are many such triples, break ties uniformly at random. If such a
triple exists, define to = (j', Y j+, X,z s, wjr), otherwise set to = 0.

I 2

4. Update T = T U {t1,ta}. If both t; and ¢y are empty, return 7. Otherwise delete reviewers i1, 4}, iz, i)
from the graph G together with the corresponding edges and go to Step

Overall, let A denote a procedure that takes assignments Agg and App as input and depending on the
relationship between A\ and u calls Algorithm [I] or Algorithm [2 to construct the set 7.

A2.2 Guarantees

Having defined a procedure to construct input for the DISAGREEMENT and COUNTING tests, we are now
ready to formulate corresponding theoretical guarantees. Recalling that the experimental setup of Tomkins et
al. itself breaks the Type-I error guarantees, we abstract out these issues by assuming that instead of TPMS
assignment algorithm or any other algorithm that computes assignments of papers to SB and DB reviewers,
the assignment is selected uniformly at random from the set of all assignments satisfying (A, i) —constraints.
For brevity, we only show the result for the absolute bias problem, but analogue of Theorem [2] also holds.

Proposition 2. For any given significance level o € (0,1), under the setup of the absolute bias problem
(Problem , let experiment be organized according to the procedure of Tomkins et al. with random assignment.
Then the DISAGREEMENT and COUNTING tests coupled with procedure A (Algorithm |1 and Algorithm @) are
guaranteed to control for the Type-I error rate at the level o and also satisfy the requirement of non-trivial
power.

Remark. 1. From theoretical standpoint, the requirement of random assignment can be substituted with
the following conditions, under which any assignment algorithm can be used: (i) reviewers in both conditions
bid blindly and (ii) reviewers’ evaluations are independent of similarities. That is, rows of matrices IT*" and
119 are assigned to reviewers uniformly at random after the assignment is computed.

2. Proposition [2 ensures that the COUNTING and DISAGREEMENT tests, coupled with matching algorithms
we introduced above, are robust to issues (a)-(c) discussed in Section However, in practice even our
robust tests may still be susceptible to issues caused by the experimental setup of Tomkins et al.

A3 Additional impossibility result for the generalized logistic model

In this section we formulate an additional impossibility result that highlights the generality of the DISAGREE-
MENT test.
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As we demonstrated in Theorem [2] the DISAGREEMENT test leads to reliable testing under the generalized
logistic model. Recalling the definition of papers representations g;,j € [n], let us now consider an extended
version of the generalized logistic model which is given by the following parametric equations describing the
behaviour of DB and SB reviewers under the absence of bias

(db)
T .
DB: log — = BlP) 4 gl (4.15)
1-— T
" (sb) | p(sb)
SB: log ﬁ =6y + B4, (4.15b)
s

where parameters ,BéSb)7 ﬁng) > 0, ﬁédb), B§db) > 0 as well as papers’ scores ¢;,j € [n], are bounded in absolute
value but otherwise are allowed to be arbitrary. This extended version specializes to the standard generalized
logistic model if ﬁng) = ;db). In words, under the extended version, the reviewers in SB and DB conditions
under the absence of bias may have not only different intercepts, but also different coefficients in front of
q. The presence of bias is then defined as a violation of model where the direction of violation is
different for papers from J and J.

Unfortunately, as we show in Corollary [2] reliable testing under this extension of the generalized logistic
model is not possible.

Corollary 2. For any significance level a € (0, 1), consider the extension of the generalized logistic model
given by equations (4.15a)) and (4.15b). Then no test operating on decisions of SB and DB reviewers can
control for the Type-I error rate at the level o and simultaneously satisfy the non-trivial power requirement.

The negative result of Corollary [2] applies to the DISAGREEMENT test, implying that even our testing
procedure which is robust to various issues discussed in Section [3]cannot handle the extension of the generalized

logistic model specified by equations (4.15a)) and (4.15b)).

A4 Causal inference viewpoint

When testing for biases in peer review, we aim at discovering a causal relationship between paper’s authorship
information and reviewers’ perception of the paper. In this section, we describe a causal model under which
we approach the problem, and provide an equivalent formulation of the problem from the causal inference
viewpoint.

Recall that a decision of reviewer i for paper j if this reviewer is assigned to this paper in SB setup is
denoted as Y;; and is a Bernoulli random variable with expectation Tl(;b). Our ultimate goal is to evaluate
whether the indicator variable w; € {—1,1} which encodes the property satisfaction has causal impact on the

decisions of SB reviewers. To this end, we assume that for each reviewer i € [m] and for each paper j € [n],
(sb)

probability m;;" can be expressed as:

sb
for some unknown function £ with co-domain [0, 1], where ¢; is an anonymized content of a paper and r; is
an arbitrary complex representation of a reviewer. That is, we assume that decisions of SB reviewers are
determined by the paper content, reviewer identity and, possibly, authorship information.
In this notation, we can state a canonical formulation of the bias testing problem:

T

Problem 1’ (Canonical formulation of the bias testing problem). Given significance level « € (0,1), and
decisions of SB reviewers that are distributed according to equation (4.16[), the goal is to test the following
hypotheses:

H() Vi e [m] Vj S [’I’L] f(?’i7qj‘, ].) = 5(7’1‘7(]]', —1)
Hy Vi€ [m]Vjeln] §(riq,1) > E&(ri,q5,—1) (4.17)
where at least for one pair (7, ) € [m] x [n] the inequality in the alternative hypothesis (4.17) is strict.
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Unfortunately, the formulation of Problem [1'|is too challenging and cannot be tested without further
assumptions in the peer-review setup for the following reasons:
1. Fully randomized controlled experiments cannot be performed in peer-review settings, because we
cannot randomize indicators w;, j € [n], that is, we cannot randomize authors of the papers
2. To facilitate an observational study without further assumptions on function £, we need to have many
papers with the same content but with different authors which is also impossible
Tomkins et al.| (2017 attempted to circumvent the aforementioned challenges by making the following
assumptions: (i) for each paper j € [n], representation g; is simply a true score of a paper ¢; € R; (ii) function
¢ follows logistic model (£.1)); (iii) function ¢ is independent of reviewer identity r; and (iv) double blind
reviewers can estimate true scores of submissions with reasonable accuracy. As we discussed in Section
even if assumptions (i)—(iv) are satisfied, the test used by Tomkins et al.| (2017)) is at risk of violating its
Type-I error guarantees unless DB reviewers estimate true scores of submissions without any noise (which is
not the case in conference settings). Of course, further violations of the assumptions exacerbate the issues.

In contrast, in our work we attempt the problem making fundamentally different assumptions. Without
loss of generality, we denote the probability of reviewer ¢ recommending acceptance for paper j in DB
condition as:

db
where the last argument of the function £ is censored, indicating that DB reviewers do not have access to the
authorship information. In this notation, our assumption is formulated as follows:

Assumption 1. Under absence of a bias, the behaviour of reviewers does not change between SB and DB
conditions, that is, for any reviewer representation r, for any paper representation ¢ and for any value of the
indicator w € {—1,1}, we have

£(r,q,w) = &(r, q,0).

Under Assumption [I| the presence of bias is defined as a deviation of reviewers in SB condition from
their behavior in DB condition such that the direction of the deviation is determined by the value of the
indicator w. Given that, the canonical formulation of the bias testing problem (Problem corresponds to
the absolute bias problem (Problem .

Observe that Assumption [If does not restrict the generality of representations ¢ and r and also does not
make strong parametric assumptions about function £. Instead, it essentially postulates that the condition in
which a reviewer is put does not serve as a confounder, that is, under the absence of bias, the probability
that reviewer ¢ votes to accept paper j is independent of whether reviewer i reviews paper j in the SB or DB
condition.

To accommodate an additional confounding factor — a distributional shift due to assignment of a reviewer
in the SB or DB condition which is independent of papers’ characteristics — we substitute Assumption
with its less restrictive version.

Assumption 2. Under the absence of bias, the behaviour of any reviewer ¢ in SB condition is connected
to the behaviour of that reviewer in DB condition through a linking function fy, that is, for any reviewer
representation r, for any paper representation ¢ and for any value of the indicator w € {—1,1}, we have

f(?‘,q,w) = fo(f(rvqao))a (419)
where fo is an (unknown) member of a (known) family F of monotonic functions acting from [0, 1] to [0, 1].

First, observe that if we restrict F to be a singleton containing only the identity function, then Assumption[2]
reduces to Assumption However, richer choices of family F allow to incorporate various models of
confoundings due to the setup. Second, if we again define the presence of bias as a deviation from ,
where the direction of the deviation is determined by indicator w, then the canonical formulation of the bias
testing problem (Problem [I') reduces to the relative bias problem (Problem [2).
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In this section we have formulated two assumptions that allow us to perform causal inference and lead to
the absolute and relative bias testing problems defined in Section [} With this formulation, in Section [5] we
introduce two statistical procedures to test for biases in the peer-review setup and provide their theoretical
analysis in Section [6]

A5 Setup for simulations

In this section we describe setup for simulations we conducted in this work. Notice that in contrast to the
test of [Tomkins et al.|(2017) which operates on accept/reject decisions of SB reviewers and scores provided
by DB reviewers, the tests we introduce in this work operate on decisions of both SB and DB reviewers.
Hence, to compare tests we need to specify (i) models of DB/SB reviewers’ decisions and (ii) models of DB
reviewers’ scores. All simulations are run for 5000 iterations.

A5.1 Simulations in Section [3

We now provide necessary details for the simulations in Section

A5.1.1 Measurement error (Figure

For this simulation we consider the following model of SB and DB reviewers:

(db)
T
. J _ *
DB: IOg 1_ 7r<db) - 60 + quj (4203)
J
7P
SB:  log % = Bo + B1qj + Pawj, (4.20b)
-7

ij
that is, model is correct and reviews given by the same reviewer for different papers are independent.
Notice that under this model all reviewers are identical and hence issues with the setup do not manifest in
this case.

We set m = 2n = 1000 and p = A = 2. At each iteration we independently sample true scores of papers
q.J € [n], from uniform distribution U[—2, 2] and assume that mean scores by two DB reviewers assigned
to a paper j € [n] estimates true score ¢ with some Gaussian noise (¢ = 0.7). We then sample values of
wj,j € [n], such that correlation between ¢* and w equals ¢ for values of ¢ between 0 and 0.5. To this end,
we let each paper j € [n] with the score ¢; <0 have w; = 1 with probability 0.5 — v and w; = —1 otherwise.
Similarly, each paper j € [n] with the score q; > 0 has w; = 1 with probability 0.5+~ and w; = —1 otherwise.
We then vary the value of v € (0,0.5) to achieve the necessary correlation. Finally, using models
and with By =1, 81 = 2 and B2 = 0 (no bias condition) we sample decisions of SB and DB reviewers
and run the DISAGREEMENT test and the test used by [Tomkins et al.|(2017)), setting the significance level to
be a = 0.05. We then compute a Type-I error as a fraction of iterations in which the null hypothesis (52 = 0)
was rejected.

A5.1.2 Model mismatch (Figure

For this simulation we consider a violation of model (4.1)) and the following model of SB and DB reviewers
with B3 = 0 (no-bias condition):

(db)
DB: log ﬁ =B+ 51((1;)3

J
P f
SB: IOg % = 50 + /Bl (q;()j —+ ng]
1—m,

ij
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To abstract out the effect of measurement error, in this section we assume that the true scores q;,J € [n],
are known, but the test used by [Tomkins et al.|(2017) fits the model defined by equation (4.20b)). Besides
the change of correct model and availability of true scores {q;, j € [n]}, the simulations follow scenario we

described in Appendix [A5.11]

A5.1.3 Reviewer calibration (Figure

In this simulation we model the effect of correlations introduced by reviewer calibration. More concretely,
we construct a model of reviewer calibration under which the test by Tomkins et al.| (2017) fails to control
for the Type-I error rate. In this section we assume that true scores of submissions are proportional to the
clarity of the writing. We then sample clarity scores (j,j € [n], from uniform distribution ¢/[—1, 1] and define
qj = (; for each j € [n]. Eventually, we consider the following model of reviewer. For each i € [m] and for
each j € [n]:

DB: " =al™ 4 xI[¢; < 0.5]

SB: " =7l 40 X 1[¢; < 0.5],

ij
where /¢; is reviewers’ leniency which equals 0.4 with probability 0.5 and —0.4 otherwise and 7rj(-db), ﬂj(-Sb) are
defined by equations (4.20al) and with By =0, 81 = 0.25 and 3 = 0 (no bias condition). Parameters
are selected to ensure that 0 < 71'1(](-11)), ﬂgjb) <1

In words, the above model says that for papers with high quality of writing (¢ > 0.5) reviewers understand
their content well and follow models and exactly, but for papers with lower writing quality
their leniency parameter influences their decision. Notice that under this model it is natural to expect that
estimates of the true scores provided by DB reviewers are also influenced by their leniency and hence are
noisy. However, to isolate the effect of reviewer identity we assume that the test used by [Tomkins et al.
(2017) knows true scores ¢;, j € [n], exactly. Additionally, notice that marginally each reviewer follows the
model defined by equations and , and hence when p = 1, the test by [Tomkins et al.|(2017) has
control over the Type-I error for any correlation between ¢* and w.

In this section we consider an extreme pattern of correlations between ¢* and w. Concretely, we assume
that for any paper j € [n], we have w; = 1 if and only if q; > 0.5 and w; = —1 otherwise. Notice that in
practice such strong dependence is unlikely to happen, but we underscore that in practice the test by [Tomkins
et al.| (2017)) also does not have access to noiseless true scores which will cause measurement errors and hence
will exacerbate the issue.

We then perform simulations as discussed above having n = 1000 and A = 1 fixed and varying the number
of papers per reviewer and using the modification of the Wald test with factor variable for each reviewer
added (reviewer-depedent intercept).

A5.1.4 Non-blind bidding (Figure

Formalizing the intuition we mentioned in Section we consider a setting with n = 1000, m = 2000, A =
1 =1 and consider a property of interest “paper has a famous author”. Suppose that during the bidding
procedure each reviewer i € [m] gives a score b;; € {—1,0,1} to each paper j € [n], where b;; = 1 means
that reviewer wants to review the paper, b;; = —1 means that reviewer does not want to review the paper
and b;; = 0 is an intermediate between b;; = 1 and b;; = —1. Given the bids, the assignment is computed
maximizing the total sum of the bids. Namely, for all (¢, j) € [m] x [n] let a binary indicator A;; equal 1 if
reviewer ¢ is assigned to paper j and 0 otherwise and let Rgg C [m] be the set of reviewers allocated to SB
condition. Then the assignment of SB reviewers to papers is computed maximizing the following objective
subject to the standard (A, p)-load constraints.

Z Z Aijbij-

1€RsB jE[n]
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The same objective is used to assign DB reviewers to papers. Next, we suppose that for each paper j € [n]
there is a true score ¢; € [0,0.9] and that all reviewers belong to one of the following personality types:

e Type A: Lenient reviewers who accept each paper j € [n] assigned to them with probability q; +0.1 and
want to read papers from top authors. If bidding is blind, they do not have any information about author
identity and bid 0 on each paper, but if bidding is non-blind, then for each paper j € J reviewer ¢ of type
A places a bid b;; = 1 and for each paper j € J she/he places a bid by = —1.

e Type B: Accurate reviewers who accept each paper j € [n] assigned to them with probability ¢q; and do
not mind reviewing any paper. Independent of whether bidding is blind or not, reviewer 7 of type B places
a bid b;; = 0 on each paper j € [n].

Notice that evaluations of reviewers of both types are unbiased — the probability of acceptance is not
determined by author identities. The type of each reviewer is determined independently: reviewer ¢ € [m] is
of type A with probability 0.3 and of type B with probability 0.7. Independently, each paper j € [n] belongs
to J with probability 0.3 and to J with probability 0.7.

Having defined the setup, in each iteration we independently sample true scores of submissions from
U[0,0.9] (no correlation with indicator w) and compute two bidding matrices: (i) when SB reviewers observe
author identities during bidding and (ii) when bidding is blind for both SB and DB reviewers. For each
bidding matrix we compute assignments of SB and DB reviewers to papers and pass observed decisions to the
DISAGREEMENT test and the test used by [Tomkins et al.| (2017)). For the test of Tomkins et al., we assume
that true scores g7, j € [n], are known exactly.

A5.1.5 Non-random assignment (Figure

In this section we construct a similarity matrix S and formalize the dependence of reviewer’s perception of
a paper on similarity between paper and reviewer that leads to the effect demonstrated in Figure [3b] We
notice that the construction we provide here is artificial and serves as a proof of concept for our claim that
non-random assignment may violate some key independence assumptions of statistical tests even if it is not
based on reviewers’ bids. While in practice we do not expect to observe such specific similarity matrices, we
can still observe some more subtle manifestations of issues caused by non-randomness of the assignment.

First, in this section we assume that assignment is performed using the TPMS algorithms (Charlin and
Zemell 2013)), that is, given similarity matrix S between reviewers and papers, each paper is assigned to A
reviewers in a way that each reviewer is assigned to at most p papers such that total sum similarity of the
assignment is maximized.

Second, consider a similarity matrix S, defined as follows. For each reviewer ¢ € [m] and for each paper
j € [nl:

Sij:(m+172‘)><(n+1*j). (421)

Given that reviewers are allocated to conditions at random, similarity matrices Ssp (SB condition) and Spp
(DB condition) are constructed by random division of rows of S into two groups of equal size and stacking
them into Ssp and Spp correspondingly.

Third, we assume that each reviewer i € [m] has some value of threshold z; such that if reviewer i is
assigned to paper j € [n] in either of setups, reviewer accepts the paper with probability m;; given by:

09 if S >z
mp={ . 9= (4.22)
q i Sy <z,

where ¢; € [0,0.9] is a true score of paper j. We also assume that reviewer ¢ in DB condition returns m;; as
an estimate of ¢;.
Fourth, for every reviewer ¢ we set a value of threshold as follows:

5= (m+1—1) x (n— [(-D)2)), (4.23)
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where [z] is the integral part of x.

Fifth and finally, we assume that true scores ¢* are independently sampled from U[0,0.9] and sample
indicators w such that they are correlated with ¢*, fixing the value of correlation ¢ = 0.45. We also set
©w=X=1and m=2n = 1000. Now we allocate half of reviewers to SB condition and half to DB condition
uniformly at random. We then compare the performance of the DISAGREEMENT test and the test by Tomkins
et al. under (i) experimental setup of Tomkins et al. and (ii) our experimental setup.

The intuition behind our construction of matrix S in equation is that for any square submatrix of
S, the TPMS algorithm with parameters u = A = 1 will compute an assignment that corresponds to the
diagonal of this submatrix. Coupled with specific choice of thresholds (4.23]), probabilities of acceptance
and correlation between ¢* and w at the level of 0.45, this choice of similarity matrix ensures that under the
setup of Tomkins et al., with non-zero probability most of SB reviewers will receive papers with similarities
above the corresponding threshold and most of DB reviewers will receive papers with similarities below
the corresponding threshold or vice versa. Hence, the assignments will be structurally different and, as
demonstrated by Figure this difference will be confused with bias by both [Tomkins et al.| (2017) and
DISAGREEMENT tests. In contrast, under our proposed setup the assignments of SB and DB reviewers to
papers do not exhibit any structural difference and hence do not break the Type-I error guarantees of the
tests.

A5.2 Simulations in Section [1] and Section [6.1]

The simulations in Section (1] and Section were performed under the model of reviewers in
and following the setup described in Appendix with small differences. Instead of varying the
value of correlation ¢ between ¢* and w, we fix the value of ¢ and vary the number of papers n. Moreover,
we independently assign papers to the sets J and J as follows: each paper j such that q; < 0 belongs to
the set J with probability 0.5 — v and otherwise belongs to the set 7, similarly, each paper j with q >0
belongs to the set J with probability 0.5 + v and otherwise belongs to the set 7. The value of « is selected
to achieve the required level of correlation ¢ between ¢* and w.

e For Figure [la] we set ¢ = 0.4 and perform simulations under Sy = 1,8 = 2,82 =0 (no bias), A=2,u =1,
where true scores are sampled from U[—1, 1]. We see that for the test used by |Tomkins et al.| (2017) a violation
of Type-I error guarantees caused by measurement error coupled with correlations (see Appendix
for details) exacerbates as sample size grows.

e For Figure we set ¢ = 0.6 and perform simulations under 5y = 1,51 = 2,82 = —0.35 (bias against
papers that satisfy the property), A = 2, u = 1, where true scores are sampled from U[—0.5,0.5]. We see
that in this case measurement error has strong harmful impact on the power of the test used by |Tomkins
et al.| (2017).

e For Figure|ld we set ¢ = 0 and additionally assume that DB reviewers estimate true scores with no noise.
In this case all parametric assumptions made by [Tomkins et al.| (2017)) are satisfied. We then perform
simulations under 8y = 1, 81 = 2, 82 = 0.35 (bias in favour of papers that satisfy the property), A = 2, u =1,
where true scores are sampled from U[—1,1].

e Simulations in Section [6.1] follow the simulations in Figure [[b] and Figure [[d with the exception that the
COUNTING test is added for comparison.

A5.3 Simulations in Section [6.2]

In this section we illustrate that the COUNTING test designed to control for Type-I error under the generalized
linear model does not lead to reliable testing under the generalized logistic model under which the DISAGREE-
MENT test is suitable, and vice versa. To this end, we design two instances of the relative bias problem under
the generalized linear model — instance (i) with presence of bias and instance (i) with absence of bias. Our
construction ensures that the resulting matrices II°* and I simultaneously also fall in the relative bias
problem under the generalized logistic model with the exception that instance (i) corresponds to absence of
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bias under the generalized logistic model and instance (ii) corresponds to the presence of bias under this
model.

Instance (i) Under the generalized linear model, for each paper j € J let q; = 0.7 and for each paper j € J

let g7 = 0.5. Additionally, let v = 0.175. This choice of parameters defines matrices II;* and II{" that are
generated according to the equations (4.5a)) and (4.5b]) and fall under the null hypothesis of no bias.

Instance (ii) Under the generalized linear model, for each paper j € J let q; = 0.65 and for each paper j € J

let ¢; = 0.25. Now let matrix 14> be defined according to the model (4.5a) and matrix II$" be defined as
follows:

‘ ; if w; =1
D) _ {% T 1w, , (4.24)

K g+ ifw;=-1

where we carefully select 5 > 11 as explained below. This choice of parameters leads to a correct alternative
hypothesis of presence of bias against papers that satisfy the property of interest.

We now simulate reviewers decisions with A = 2, u = 1, n = 1000, m = 4000, independently allocating each
paper to J with probability 0.5 and to J otherwise. We then apply the COUNTING and DISAGREEMENT
tests for each of these instances, and present the results in Figure Instance (i) allows to compare Type-I
error rates, and instance (ii) allows to compare powers of the tests under the generalized linear model.

One can verify that the instances we constructed above under the generalized linear model also fall
under the generalized logistic model for some specific choice of parameters. Indeed, consider an instance
of the generalized logistic model specified by parameters 5y = —2.5log7/3, 81 = 5log7/3 and v = 1. Then
a straightforward verification shows that matrix II{® satisfies equation which specifies the behavior
of DB reviewers under the generalized logistic model. Next, observe that for each reviewer i € [m] and for
each paper j € J the corresponding entry of the matrix II5P is larger than prescribed by the model of SB
reviewers under the absence of bias . Similarly, for each paper j € J the corresponding entry of the
matrix II5? is smaller than it should be if the bias is absent . Hence, the pair of matrices 1", TT5P
satisfies the alternative hypothesis under the generalized logistic model.

Conversely, consider an instance of the generalized logistic model specified by parameters 5y = log /3 —
0.6251og 39/7, 31 = 2.5log 39/7 and ¥ = 1.5. Then a straightforward verification shows that matrix TP satisfies
equation which specifies the behavior of DB reviewer under the generalized logistic model. Recall that
at this point we didn’t specify how we selected values vy, v, in equation ([4.24). In fact, we selected these
values such that entries of the matrix ITS® satisfy equation which specifies the behavior of SB reviewers
under the generalized logistic model when the bias is absent. Namely, we set

vy =—0.65+ (1 +exp{—fy — ¥ — 0.656,}) "
—0.25+ (1 +exp{—fo — ¥ — 0.253,}) "

1)

As a result, the pair of matrices TISP, TI5P satisfies the null hypothesis under the generalized logistic model.

Finally, the power of the COUNTING test in Figure [ba] becomes the Type-I error rate under the instance
of the generalized logistic model with 5y = log /3 — 0.6251og 39/7, 1 = 2.510g39/7 and ¥ = 1. Similarly, the
Type-I error of the COUNTING test in Figure [5a] becomes its power under the instance of the generalized
logistic model with Sy = —2.5log7/3, 81 = 5log 7/3 and ¥ = 1. The same applies to the DISAGREEMENT test
and eventually we obtain Figure [5b| by simply exchanging the bars in Figure

A6 Proofs of main results
In this section we give proofs of our main results.
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A6.1 Proof of Theorem [1]

We prove Theorem [1|in two steps. First, we show the result for the DISAGREEMENT test and then for the
COUNTING test. Before we delve into proofs, let us make two observations that we use in this section.

Observations:

A For every paper j € [n], if in assignment A* (Step [2| of Procedure [1)) paper j is attributed to reviewers i,
and 79, then the events “reviewer i; is allocated to SB and reviewer i5 is allocated to DB” and “reviewer i,
is allocated to DB and reviewer is is allocated to SB” are mutually exclusive and happen with probability
0.5 each. This is ensured by Step [3] of Procedure [I] where reviewers are allocated to conditions.

B By construction of Procedure |1, at least cmin{|J|,|7|} papers each from sets J and J appear in
assignment A* for some constant ¢ that depends only on parameters A and p. Indeed, in cases (a) and (c)
of Step [2] all papers are included into assignment A* and hence our claim holds with ¢ = 1. In case (b)

7> %n > 2% min{|J|,| 7|} papers are selected and hence our claim holds with ¢ = %

A6.1.1 Proof for DISAGREEMENT test

The proof of Theorem (1| for the DISAGREEMENT test consists of two parts. First, we show that under the
null hypothesis defined in Problem |1} for any matrices 1% and IT*"(= T19) and for any assignment A*
constructed by Procedure [1| in Step |2 the test rejects the null with probability at most «. Second, we show
that if the number of papers in both 7 and J is large enough, then the DISAGREEMENT test satisfies the
requirement of non-trivial power.

We prove both parts conditioned on the assignment A*. The unconditional statement of the theorem
then follows from the law of total probability.

Control over Type-I error

Let 119 and IT*P(= I19") be arbitrary matrices that fall under the definition of null hypothesis in Problem
Consider arrays U and V constructed in Step |2 of the DISAGREEMENT test from the set of tuples 7 passed
to the test by Procedure [I} If any of them is empty, the test keeps the null and hence does not commit the
Type-I error. Now without loss of generality assume that both U and V' are non-empty.

The idea of the proof is to show that under the null hypothesis, entries of arrays U and V are mutually
independent and identically distributed. Assume for the moment that it is indeed the case. Then entries of
arrays U and V are exchangeable random variables and hence the permutation test with statistic 7 defined
in Step [3] of Test [1] is guaranteed to provide control over the Type-I error rate for any given significance level
a € (0,1) and hence the result for Type-I error control follows.

Consider any entry u of array U. Then u is a decision of SB reviewer for some paper j; € J, where t
is a tuple that corresponds to u. Corresponding SB and DB reviewers disagree in their decisions, that is,
Y;, # X,,. Recalling Observation @ we deduce that conditioned on assignment A*, the symmetry of the null
hypothesis guarantees that

Y;,| (Y;, # X;,) ~ Bernoulli(0.5). (4.25)
Indeed, given that both Y}, and X, are Bernoulli random variables, one can verify that
P[Y?t = 17th = O] :P[Y;f = O7Xjf, = 1];

which coupled with the definition of condition probability implies .

Hence, entries of array U are Bernoulli random variables with expectation 0.5. Provided that each reviewer
contributes at most one decision to 7, entries of U are also independent. The same argument applies to
entries of array V' and hence we have shown that under the null hypothesis entries of U and V" are independent
Bernoulli random variables with probability of success 0.5 and thus are exchangeable.

Non-trivial power
Consider any fixed choice of § > 0 and € > 0 in the definition of non-trivial power. The goal now is to
show that there exists ng = ng(e,§) such that if min{|J|,|J|} > no, then for any matrices 1% and II*"
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that satisfy the alternative hypothesis in Problem [I| with margin §, the DISAGREEMENT test coupled with
Procedure [1} is guaranteed to reject the null hypothesis with probability at least 1 — e. Throughout the proof
we use ¢ to denote a universal constant and allow its value to change from line to line due to multiplications
by some other universal constants. Recall that problem parameters A, u and « are treated as constants. For
concreteness, throughout the proof we assume that the bias is in favor of papers from 7. The same argument
can be repeated in case of bias against papers from 7.

Step 1. Cardinality of U and V.

Let us first show that arrays U and V will with high probability contain order ng elements. To this end,
recall that for tuple t € 7 we add Y}, to U if (i) w;, =1 and (ii) Y}, # X,,. Observation |B|ensures that 7
will contain at least cng tuples that correspond to papers from J. Consider any such tuple, and let (ji,41,1i2)
be a corresponding paper and two reviewers assigned to this paper in assignment A*. Then conditioned on
assignment A*, P[Y}, # X,,] is lower bounded by:

L/ (b db db sb 1/ (b db db b
P(Y;, # X5 = 5 (i (1= i) + w1 =) + 5 (w1 = w3 + w0 = 232

1 (sb) (1 _ (db) L/ (sb) (db)

> 5 <7r11]t Tisje )) + 5 (With (1 T Tivge ))

@1

Sl ey =
2

where inequality (i) follows from the fact that for any reviewer ¢ € [m] and for any paper j € [n] we have

0 < Wijs»b) <land 0< ngb) <1 — 6 by the definition of non-trivial power requirement.
The same argument applies to tuples ¢ € T that correspond to papers from 7. Hence, we conclude that
for any tuple ¢ € T we are guaranteed that Y}, # X, with probability at least §2.

Now notice that |U| = > Iy, # th] and hence E [|U|] > cnod?. Applying Hoeffding’s inequality,
teT: wj, =1
we can also derive that for large enough no with probability at least 1 — § we have

|U| > engd®.
The same argument applies to V' and hence we conclude that with probability at least 1 — 5 we have
|U| > cnod? and |V] > cngd®. (4.26)

Step 2. Distribution.

Now we describe the distribution of components of U and V. By construction, the entries of these arrays
are independent, so it suffices to study a single component. Consider an entry u of array U and let (j, i1, i2)
be a corresponding paper and two reviewers assigned to this paper in assignment A*. For brevity, denote
p= 7'('1(?;)) € (6,1, g = wl(djb) €0,1-0),"1=p— wl(f]b) and v, = 7r(s ) q, where v1 > § and 2 > § by
definition of non-trivial power requirement. Then, we can derive the followmg chain of bounds:

WPlu=1]—1=2P[Y; =1]Y; # X;] —
_ p(1 —4q) L+ (¢+72)d—p+mn) 1
pPl—q)+ql—p) (g+7)A-—p+7)+E-1)1-q—72)
@ p(1—q) (g+d)(1—p+9) 1

pi—q) +ql—p)  @+o)d-p+0)+(@-0)1—q—0)

:1( p—q p—q—20 )
2\p+q—2pg p+q—2pg+26(0+q—p)

where inequality (7) holds due to monotonicity of the expression over 7, and v2 and lower bounds v; > 4,
Yo > 4.
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Optimizing the last expression over p € (4,1] and ¢ € [0,1 — §), we obtain

62
= — >7
2P [u = 1] 1_52“175)2,

and hence P [u = 1] > %—i—%ﬁ = 1 +7. Similarly, we can show that P [v = 1] < %_%6%(5%5)2 =1-7,
where v > 0 is a constant that depends on 4.

Step 3. Permutation.

At this point we are guaranteed that vectors V and U constructed in Step [2] of the DISAGREEMENT test,
with probability 1 — 5, contain at least cnoé? elements and their entries are independent Bernoulli random
variables. Moreover, the entries of U have expectations larger than 1/2 + v and entries of V have expectations
smaller than /2 — «, where v is independent of ng.

Conditioned on min{|V|, |U|} > cngd?, notice that as ng grows, the permutation test for exchangeablility
of entries of V and U has power growing to 1. Hence, there exists n§ such that if ng > ng, then the
permutation test rejects the null with probability at least 1 — 5.

Finally, taking union bound over (i) probability that either of U and V has cardinality smaller than cngd?
and (ii) probability that the permutation test fails to reject the null given min{|V|, |U|} > cngd?, we deduce
that conditioned on A*, the requirement of non-trivial power is satisfied. It now remains to notice that the
established fact holds for any A* that is constructed by Procedure |1| and hence Theorem a) holds.

A6.1.2 Proof for COUNTING test

Similar to the proof for theDISAGREEMENT test, the proof for the COUNTING test consists of two parts —
control over Type-I error and non-trivial power. As in the proof for the DISAGREEMENT test, we prove both
parts conditioned on the assignment A* computed in Step [2] of Procedure [I] The unconditional statement of
the theorem then follows from the law of total probability.

Control over Type-I error

Let 14" and II°"(= TI9P) be arbitrary matrices that fall under the definition of the null hypothesis in
Problem [I] Consider arrays U and V constructed in Step [2] of the COUNTING test. If any of them is empty,
the test keeps the null and hence does not commit the Type-I error. Now without loss of generality assume
that both U and V are non-empty. By construction, conditioned on the assignment A*, entries of arrays U
and V are mutually independent and bounded by 1 in absolute value. Moreover, conditioned on A* the size
of arrays U and V is fixed and is not a random variable. Next, we can show that expectation of any entry
of arrays U and V is zero. Indeed, consider any arbitrary entry uw € U and let (j,41,42) be a corresponding
paper and reviewers assigned to this paper in assignment A*. Then:

B[y = 1 (F(sm _ 7T(db)) L <W<sb> _ 7r<db>> _o,

i1J 2] 2 i2] 1]

where two terms correspond to two equiprobable allocations of reviewers iy and is to conditions and the
last equality follows from the fact that under the null hypothesis II" = I14°. Hence, we conclude that the
expectation of test statistic v equals 0. Independence and boundedness of entries of arrays V and U ensure
that the test statistic v is sub-Gaussian random variable with noise parameter o given by

o = U+ V|7

Finally, applying Hoeffding’s inequality we deduce that

P 1yl > VZQUT T + VT 1) log¥a) < 2exp{—2 W+ V- )log%} _a,

20171+ [vI7Y

which concludes the proof.
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Non-trivial power

Consider any fixed choice of § > 0 and € > 0 in the definition of non-trivial power. The goal now is to show
that there exists ng > 0 such that if min{|7|, |7|} > no, then for any matrices II%" and I1*® that satisfy the
alternative hypothesis in Problem [T] with margin ¢, the COUNTING test coupled with Procedure [I] rejects the
null hypothesis with probability at least 1 — . Throughout the proof we use ¢ to denote a universal constant
and allow its value to change from line to line due to multiplications by some other universal constants.
Recall that problem parameters A\, u and a are treated as constants. For concreteness, suppose that there is
a bias in favor of papers that satisfy the property of interest.

We now consider an arbitrary instance of the bias testing problem with matrices II* and 9" that
fall under the definition of non-trivial power. First, Observation [B] ensures that the set 7 passed to the
COUNTING algorithm is such that the resulting vectors U and V contain at least cng elements each. Next, let
Y= Wl\ ZUu and vy = ﬁ ZVU, in this notation the test statistic is defined as v = ;1 — 2. Conditioned

ue ve

on the assignment A*, we have:
E [1] E[u
= 77 2,2

Indeed, for any arbitrary entry u of array U let (j,141,42) be corresponding paper and reviewers assigned to
this paper in assignment A*. Then requirement of non-trivial power guarantees that

Blul = 1 () )+ 1 (e ) 3 5 L (0 _ ) L (i

2 1] 2] 2] 1] 1] 2] 2] 1]
Similarly,
Ele] = g7 2 El
|V| veV
Applying Hoeffding’s inequality we obtain:

52
Plyi — v <] <Py —y2 <E[y1 — 2] — 9] <exp (2(|V|—1 n |U|—1)> < exp (7652710) .

On the other hand, the threshold for rejecting the null is such that

1
V2(UIE 4 V) log 2o < ey | —.
ng

Finally, setting ng = 01°§;/57 we ensure that if min{|J|,|7|} > no, then the COUNTING algorithm with

probability at least 1 — ¢ rejects the null for any matrices IT?, TI9P that satisfy alternative hypothesis with
margin 6.

A6.2 Proof of Theorem (2l

We prove Theorem [2] separately for the DISAGREEMENT test and for the COUNTING tests.

A6.2.1 Proof for DISAGREEMENT test

Again, the proof is presented in two parts: control over Type-I error and non-trivial power. The conceptual
difference from the proof of the corresponding result for absolute bias problem is that now the parametric
relationships (4.8al) and (4.8b)) allow us to avoid conditioning on the assignment A*.

Control over Type-I error
Let 119 and II*® be arbitrary matrices generated from the generalized logistic model under the absence of
bias. Consider arrays U and V constructed in Step [2] of the DISAGREEMENT test from the set of tuples
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T passed to the test by Procedure [} If any of them is empty, the test keeps the null and hence does not
commit the Type-I error. Now without loss of generality assume that both arrays U and V are non-empty.
Following the idea of the proof of Theorem |1} we need to show that entries of arrays U and V' are exchangeable
random variables. First, the mutual independence follows from construction of the set 7. Second, using
equations and , we deduce that for any paper j € [n] and for any reviewer i € [m]:

(sb) (db)
(sb) 1 _ gl
o8 oy =
Tij (1- T4 )
Noticing that wgsb) and Fl(?b) under the generalized logistic model are independent of reviewer’s identity, we

drop index i from the above equation. Now we consider any entry w of array U together with a corresponding
tuple t = (j,Y;,, X;,, wj,) and conclude that:

Plu=1]=P[Y;, = 1Y), # Xj,]
761 _ (D))

_ Jt Jt
- sb db db sb
(1 = m ) + w1 - )
1

7_((_dh)(1_ﬂ_(_sb))
1 + T(E%b)(l_ﬂ_gfb))
1
= —. 4.27
1+e” ( )

Importantly, the value of the paper representation g; does not appear in equation , implying that
entries of array U are identically distributed. Applying the same argument to entries of array V' we deduce
that entries of arrays U and V are exchangeable random variables and hence the permutation test with the
test statistic 7 defined in Step [3] of Test [I] is guaranteed to control for the Type-I error rate at any given
significance level o € (0,1) which concludes the proof.

Non-trivial power

Consider any fixed choice of > 0 and € > 0 in the definition of non-trivial power. The goal now is to show
that there exists ng = ng(e, d) such that if min{| 7|, |7|} > no, then for any matrices II* and II** generated
from the generalized logistic model that satisfy the alternative hypothesis in Problem [2] with margin §, the
DISAGREEMENT test coupled with Procedure [1}is guaranteed to reject the null hypothesis with probability at
least 1 — . Throughout the proof we use ¢ to denote a universal constant and allow its value to change from
line to line due to multiplications by some other universal constants. Recall that problem parameters A, u
and « are treated as constants. For concreteness, throughout the proof we assume that the bias is in favor of
papers from J. The same argument can be repeated in case of bias against papers from 7.

Step 1. Cardinality of U and V.

Consider any matrices IT*? and 119 generated from the generalized logistic model that satisfy the alternative
hypothesis in Problem [2| with margin ¢. First, we notice that scores ¢;, j € [n], and coefficients Sy, 31 are
bounded in absolute value by some constant A, and hence using equation (4.8a)) we conclude that for all
(i,4) € [n] x [m]

mP e (b)) Ve n), (4.28)
where 0 < £ < b < 1 and values of £ and b are determined by A. Now consider any tuple ¢ = (Gt Yir g, s Xinjy» w5,)
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from the set of tuples 7. Then

P[Y;, # X;.] = miy (L= mis)) + miy) (L= 75)

ll]t 127t lzjt 11]1

> mln{ﬂ_(db 1_ db)}( (sb) 11— (sb))

127t 0 12]t hjt ZlJt
_ (db) (D)
= min{m;,;’, 1 —m,;,'}
> min{¢, 1 — b},

where the last inequality follows from equation (4.28]). Applying Hoeffding’s inequality in the same way as
we did in the proof of Theorem [I| to get the bound (4.26]), we deduce that with probability at least 1 — 5,

cardinalities of arrays U and V are at least cng for some constant ¢ that may depend on ¢ and A.

Step 2. Distribution
By definition of non-trivial power requirement, it must be the case that for all (i,j) € [m] x [n] we have

|7r(5b) fo (Wﬁ?b))\ > §, where function fy belongs to class ]?Z defined in (4.9) and for all (4,7) € [m] x [n]
satlsﬁesz
for"” _
log % = PBo+ v+ Big; (4.29a)
1- f()(ﬂ—ij )
(db)

ij

for some value of v € (—ﬁ, 5) Observe that values Sy, 7, 51, ¢; in the RHS of equation (4.29a)) are bounded
in absolute value by constant A. Next, recall that the definition of the non-trivial power requirement ensures
that for each reviewer ¢ € [m] it must be the case that (a) for each paper j € J we have fo(m (db)) <1-9¢

and (b) for each paper j € J we have fo(wf;ib)) > 4. Finally, we are guaranteed that for any pair of reviewer
i € [m] and paper j € [n] we have

@, (@ min{t,1-06}) ifjeT
Jolmi; ™) € {(max{e/,a},b/) ifj e,

Notice that constants ¢/ and b’ are such that 0 < ¢/ < b < 1 and may be different from ¢ and b, because in
equation (4.29a)) we have additional term 7 which is absent in (4.8a)).

Let us now define two quantities dy; and ds as

t+90 t
dy = inf log——— —log —— 4.30
! te(z/,milr?{b/,ké}) ( 8 1—(t+9) o8 1-— t) ( 2)
t t—20
doy = inf 1 —1 . 4.30b
2 tE(ma)lc?l’,é},b’) < o8 11—t 8 1-— (t — 5)) ( )

Notice that both quantities d; and dy are some functions of § and A and are strictly positive, because function
log +%- is strictly increasing on the interval (0, 1) with its derivative being lower bounded by ¢ > 0, where ¢
is independent of problem parameters.

Putting together equations - , we now show that for each reviewer i € [m] the definition of
non-trivial power requirement ensures that for each paper j € J

7 (P) 7T(db)
ij
log o 2 > log @) +v+d, (4.31)
l] l]

105



and for each paper j € J

(P r(db)
log ; z o < ! @y TV de (4.32)
- 1— T

Consider any arbitrary entry u of array U and the corresponding tuple (j¢, Y, j,, Xi,j5,, wj,). Then,

P[u = 1] = P[tht = 1|}/i1jt 7& Xizjt}
(sb) (db)
_ 7Tiljt (1 B Trith )

o 71.(Sb)(l _ 7T(db)) + ﬂ.(dl_))(l _ 7T(S‘D))

117t 127t 127t 117t

1
= (db) (sb)
14 7T’i2jt(1_ﬂ—i1jt)
2 0) (] (b))
i1Jt i2Jt
1
= g

where the last inequality follows from (4.31)). Similarly, using (4.32)) we show that for each entry v of array V'
1
Plo=1]<

T 14 e vtde’

Step 3. Permutation.

At this point we are guaranteed that vectors V and U constructed in Step [2] of the DISAGREEMENT test, with
probability 1 — §, contain at least cng elements and their entries are independent Bernoulli random variables.

Moreover, the entries of U have expectations larger than ; é; + 7 and entries of V have expectations smaller
than ﬁ — ~, where « is independent of ng, but depends on § and A.

Conditioned on min{|V'|, |U|} > ¢ng, notice that as ng grows, the permutation test for exchangeablility of
entries of V' and U has power growing to 1. Hence, there exists ng such that if ng > ng, then the permutation
test rejects the null with probability at least 1 — 5.

Finally, taking union bound over (i) probability that either of U and V has cardinality smaller than cng
and (ii) probability that the permutation test fails to reject the null given min{|V|, |U|} > ¢ng, we deduce
that the requirement of non-trivial power is satisfied.

A6.2.2 Proof for COUNTING test

We give a proof for an extended version of the generalized linear model in which for each (i, ) € [n] x [m] we
substitute ¢; with g¢;;, thus allowing subjectivity of reviewers. In the proof we will be using two observations
we made in the beginning of Appendix As in the proof of Theorem [I} we prove the result conditioned
on the assignment A* constructed in Step [2] of Procedure [I} The unconditional statement of the theorem
then follows from the law of total probability.

Control over Type-I error

Let 119 and II* be arbitrary matrices generated under the generalized linear model that fall under the null
hypothesis in Problem [2] Consider arrays U and V constructed in Step [2] of the COUNTING test. If any
of them is empty, the test keeps the null and hence does not commit the Type-I error. Now without loss
of generality assume that both U and V are non-empty. By construction, conditioned on the assignment
A*, entries of arrays U and V are mutually independent and bounded by 1 in absolute value. Moreover,
conditioned on A* the size of arrays U and V is fixed and is not a random variable. Next, for any arbitrary
entry u € U let (j,141,42) be a corresponding paper and reviewers assigned to this paper in assignment A*.
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Then,

1
(i -et) o3

i1] i2]

(sb) _ 7r(dp))

i2] i1]

1
(Ginj TV — Ging) + 3 (@inj +V — i)

1
2
1
2
=

Similarly, it follows that for any arbitrary entry v € V:
Ev] =v.

Hence, we conclude that the expectation of the test statistic v equals 0. Independence and boundedness
of entries of arrays V and U ensure that the test statistic v is sub-Gaussian random variable with noise
parameter o given by

o> =|UI" + V|7

Finally, applying Hoeffding’s inequality we deduce that

2(JU7 4+ |V|71) log %/a Y
207+ VI T

P [l > V2O + V) log7a) < 2exp{—

which concludes the proof.

Non-trivial power
Consider any fixed choice of § > 0 and € > 0 in the definition of non-trivial power. The goal now is to show
that there exists ng > 0 such that if min{|7|,|7|} > no, then for any matrices 11" and II*" generated under
the generalized linear model that satisfy the alternative hypothesis in Problem [2| with margin §, the COUNTING
test coupled with Procedure |1 rejects the null hypothesis with probability at least 1 —e. Throughout the proof
we use ¢ to denote a universal constant and allow its value to change from line to line due to multiplications
by some other universal constants. Recall that problem parameters A, u and « are treated as constants. For
concreteness, suppose that there is a bias in favor of papers that satisfy the property of interest.

We now consider an arbitrary instance of the bias testing problem with matrices II** and IT1 that fall
under the definition of non-trivial power. First, Observation [B]ensures that the set 7 passed to the COUNTING

algorithm is such that resulting vectors U and V contain at least cng elements each. Next, let v1 = ﬁ Su
uclU

and yp = ﬁ > v, in this notation the test statistic is defined as v = 41 — . Conditioned on the assignment
veV
A*, we have:

E[%]ZﬁZE[u]Zu—i—&

uelU

Indeed, for any arbitrary entry u of array U let (j,141,42) be corresponding paper and reviewers assigned to
this paper in assignment A*. Then the definition of the non-trivial power guarantees that

L s 1
Elul = (W(Sb»') - w(d‘?)) + = (HSF’) _ 7T(dl;>))

2 17 127 2 127 1]

1 1
> 5(%‘13'+V+5*Qi2j)+§(Qz‘2j+’/+5*%‘1j)
=v+9.

Similarly,

E[72]=|‘1/|2‘:/E[U]SV—5-
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Applying Hoeffding’s inequality we obtain:

52
(VI=t+ U=

Plyi—7% < <Py —v% <E[y — 7] -9 <exp (—2 ) Sexp(—c(SQnO).

On the other hand, the threshold for acceptance is such that

1
V2(IUIPL+ V[T log %a < ¢y —
0

Finally, setting ng = 01°§;/57 we ensure that if min{|J|,|7|} > no, then the COUNTING algorithm with

probability at least 1 — ¢ rejects the null for any matrices II?, TI9P that satisfy the alternative hypothesis
with margin 4.

A6.3 Proof of Theorem [3l

Assume that the premises of Theorem [3] are satisfied, that is, there exist functions g,h € F and values
0 <1 < xg <1 such that g(z1) < h(zr1) and g(x2) > h(xz).

The high-level idea of the proof is to construct matrices II% and IT*® which simultaneously satisfy the
null hypothesis of Problem [2| specified by some function fy € F and the alternative hypothesis of Problem
specified by another function f} € F with margin § > 0. If such matrices exist, then there exist two instances
of a bias testing problem — one with presence of bias and the other with absence of bias — such that the
distributions of the reviewers’ decisions for these two instances coincide. Hence, any test that uniformly
controls for the Type-I error rate at the level « for every fo € F must under the second instance have power
upper bounded by « and thus violate the requirement of non-trivial power over the class of functions F.

We begin with building a matrix 1. For any reviewer i € [m] and for any paper j € [n] we let

ﬂ_@b) _ T if wj; = 1
t To if wj; = —1.

Next, we define IT*P as follows. For any reviewer i € [m] and for any paper j € [n]

(0) — b (D).

7T74J )

By construction matrices II*P and I satisfy the null hypothesis specified by function A € F. On the
other hand, notice that for each paper j € J we have

() _py (db)

my = h(z1) > g(21) = g(m; "),

and for each paper j € J we have

mi” = hlea) < glas) = g(mf;™).

Hence, matrices 119 and IT*P also satisfy the alternative hypothesis specified by function g. Moreover,
9 and II%" satisfy this alternative with margin § = min{|h(z1) — g(z1)|,|h(z2) — g(z2)|} > 0. We now
conclude the proof by noting that our construction holds for any choice of parameters A, 1, n, m and hence
the requirement of non-trivial power must be violated by any testing algorithm that controls for Type-I error
at the level « € (0,1).

A6.4 Proof of Corollary

To prove Corollary |1} we consider any choice of parameters A € (0,0.5) and A > 0 and construct two
functions fy and fp together with two numbers 0 < 7 < x5 < 1 such that
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(i) Functions fy and fo describe the behavior of reviewers under the absence of bias under the generalized
linear and generalized logistic models respectively, that is, fo € Fa, fo € Fx, where class Fa is defined

by equation (4.6) and class .7?5 is specified in equation (4.9)
(ii) Values z1 and z are such that:

(a) One can select parameters ¢, j € [n], that fall under the definition of the generalized linear model
such that matrix [T generated according to the equation (4.5a)) satisfies the following equation:

if j €
pa _ Jo ifje (4.33)
J xy ifj€J.
(b) One can select parameters g}, j € [n], and o, 81 that fall under the definition of the generalized
logistic model such that matrix II9 generated according to the equation (4.8a]) satisfies the

equation (4.33)).

(iii) Functions fo and fo are such that
sign (fo(xl) - fo(ﬂﬁl)) X sign (f0(332) - ﬁ)(ﬂﬁz)) = -1,

where sign(-) is the sign function. That is, at 7 the function fy is strictly larger than fo and at x5 the
function fy is strictly smaller than fy, or vice versa.

Assume for the moment that conditions (i)-(iii) are satisfied and consider the matrix 114" whose entries
are given by equation . Then one can select values of papers’ representations g;,j € [n], such that 114"
satisfies the model of DB reviewers in the generalized linear model . Similarly, there exists another
choice of papers’ representations q;-, j € [n], and parameters By, 31, such that the same matrix IT19" satisfies
the model of DB reviewers in the generalized logistic model . Now define matrix IT> whose entries for
each (,j) € [m] x [n] are given by:

n = fo(mi™)

i ij
and matrix IT5? whose entries for each (i, ) € [m] x [n] are given by:
mi? = Do),

Matrices TT19, TISP satisfy the null hypothesis under the generalized linear model specified by the function
fo. Moreover, condition (iii) ensures that they simultaneously satisfy the alternative hypothesis under the
generalized logistic model specified by the function fu with margin & = min{|fo(z1)— fo(z1)|, |fo(z2)— fo(z2)|}.
Hence, if the testing procedure 1o (which has a non-trivial power under the generalized logistic model) is
given decisions of SB and DB reviewers sampled according to the pair of matrices I14", TI5?, then it will reject
the null hypothesis with probability that goes to 1 as the minimum of | 7| and |J| grows. Finally, given that
matrices 1197 and II*P solely determine the distribution of observed reviewers’ decisions, our construction
implies that under the generalized linear model procedure ¥y does not control for the Type-I error rate at
any level a < 1.

A similar argument applies to the pair of matrices 19, TI?, and it follows that under the generalized
logistic model the procedure ; does not control for the Type-I error rate at any level o < 1.

To conclude the proof it remains to find x1, x2, fo, fo that satisfy aforementioned conditions (i)-(iii). To
this end, let us define quantities 1, v2:

71 = max {A, (1 +exp{A + &2})1}

Y2 = min {1 — A, (1+exp{-A - 52})_1} .
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Notice that the value of v, is by definition smaller than 0.5. Moreover, for each pair (,j) € [m] x [n] it gives
(db)

ij
and generalized logistic (with parameter A) models. Likewise, the value of 7, is at least 0.5 and gives the
corresponding upper bound. Hence, any values of 1, zo such that y1 < x1 < o < 7 satisfy the condition (ii).

Next, find values v € (0,A) and 7 € (0,A) such that for functions h, € Fa and g, € ]?5 defined in
equations and respectively the following equality holds:

hy(0.5) = g5(0.5).

a lower bound on the value 7;; ’ that can be generated from both the generalized linear (with parameter A)

Observe that such values must exist because h, and g are continuous functions of v and v respectively and

lim h,(0.5) = lim g5(0.5) = 0.5.
vr——+0

v——+0

Consider now two possible cases:
Case 1. Functions h, and g are such that there exist two points y € (71,0.5) and z € (0.5,v2) for which the
following equation holds:

sign (hu (v) — 5(y) ) x sign (hu(2) = 85(2)) = —L, (4.34)

Observe that in this case conditions (i)-(iii) are satisfied by the choice fo = h,, ﬁ) =g, =Yy,x2 = z and
hence the result of the theorem follows.

Case 2. Functions h, and g5 are such that h, is a tangent line to g5 at 0.5. This case reduces to the Case 1
by setting v/ = v — ¢ for a sufficiently small ¢ € (0,v). Indeed, if ¢ is sufficiently small, then due to strict
concavity and differentiability of the function g, by shifting the tangent line down we ensure that there exist
points y = 0.5 and z € (0.5,72) such that

sign (hw(y) - ga(y)) X sign (hw(Z) - ga(Z)) =-1

Hence, we can satisfy conditions (i)-(iii) by setting fo = h,/, fo= gy x1 = 0.5, 20 = 2.

To conclude the proof, we notice that Cases 1 and 2 are complementary, because function g is differentiable
and strictly concave on the interval (0, 1) and function h, is a linear function.

A6.5 Proofs of auxiliary results

In this section we give proofs for auxiliary results stated in appendix.

A6.5.1 Proof of Proposition [I]

We prove Lemma 1] I by stralghtforward verification. First, let Y;; be generated from model ( and X/
be generated from model (| . Then

E [Yi; — Xij] —qﬁﬂ“b + 3 B — g =AY+ Y A
LE[K] telk]
Similarly, let Y;; be generated from model (4.13b]) and X;/; be generated from model (4.13a)). Then

(Sb)(l . (db))
Z J

E[Yi;|Yi; # Xirs] =

sb db db sb
P (1~ LUM@M )
r (db) (sb)
— 1 + 'L j (1 - ’/TZ] )
(5h) (db)
1,] (1 (Y 5 )
- -1
— [1epd — [+ 3 BEPw® — ,
L Le (k]
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and hence

[ Yi;l (Yi; # Xirj)] (5b) _ glab) (sb)
I =
BT[] (v # X)) P

A6.5.2 Proof of Lemma Il

Consider any assignment of papers to SB reviewers that satisfy (A, u)—constraint with A > p. Then pick any
subset of papers P C [n] and denote a set of SB reviewers who are assigned to at least one paper from P as
Rsp. Then one can notice that

A
|Rsp| > ZD > |Pl,

and hence by Hall’s theorem there exists a matching that maps each paper to one reviewer such that each
reviewer is matched to at most one paper. This matching is computed in Step [2] of Algorithm [T}

The same argument applies to DB reviewers and hence, joining these two matchings, the algorithm in
Step 4| constructs a set of tuples 7 where for each paper j € [n] there exists a tuple that corresponds to this

paper.

A6.5.3 Proof of Lemma [2]

Consider any assignments of papers to SB and DB reviewers that satisfy (A, u)—constranints. Let v be a
maximum integer that satisfies inequality
s <o {211
dp’ 4p

Without loss of generality, assume that v > 1. Given that p and A are treated as constants and that we
only need to proof the result for large enough min{|7|, | 7|}, we ignore the cases when min{|7|, 7|} is small.

Consider a graph G before the first iteration of Steps[2]- [4 of Algorithm [2] Each paper in this graph is
connected to A SB and A DB reviewers such that each reviewer is connected to at most p papers.

Now let (i1,7,42) and (i},7’,i) be triples found in the first iteration of the algorithm. These triples
exists provided that v > 1. Then in Step 4| we remove reviewers i1, i}, 42, i, and corresponding edges from
graph G. One can see that these reviewers are connected to at most 4u papers in total and hence before
the second iteration of Steps [2]- I 4| graph G will have at least |J| — 4u > 4u(y — 1) papers from J and
| 7| — 4p > 4u(y — 1) papers from J that are connected to A SB and A DB remaining reviewers and each of
the remaining reviewers (there must be at least 8A\(y — 1) SB and 8\(y — 1) DB reviewers) will be connected
to at most p papers.

By induction we can show that in the first v iterations of Steps [2|- [4] the greedy algorithm will be able to
find non-empty triples in Steps [2| and [3] Hence the resulting set of tuples 7 will contain at least - tuples that
correspond to papers from 7 and at least vy tuples that correspond to papers from 7. We then conclude the
proof noticing that v = cmin{|J|,|J|}, where c is a constant that depends only on p.

A6.5.4 Proof of Proposition

The proof of Proposition [2] follows the idea of the proof of Theorem [l| with some changes which we now
discuss. Consider any set of triples C such that (i) each triple ¢ € C is of the form (j,41,i2) (one paper
and two reviewers) and (ii) each reviewer ¢ € [m] appears in at most one triple. Let C denote a collection
of all such sets of triples. Then any set of tuples 7 passed to the DISAGREEMENT or COUNTING tests as
input corresponds to one member of C which is constructed as follows: for each ¢ € T let (jy,14s,i}) be a

corresponding paper, SB reviewer and DB reviewer assigned to this paper, then C = |J (j¢, it,4;). Conversely,
teT

each member C € C gives rise to a family of sets of tuples T(C) which contains 2/°l elements and each element
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corresponds to a different allocation of reviewers in each triple (j,41,42) € C to SB and DB conditions. For
example, let C = {(j,141,12), (j',4),45)}, then the family T(C) consists of four sets of tuples:

’Tl - {( 17> szij ?Xlzj”wj
= {(J, Yioj» Xirj, w;
75 = {4, Yiyj, Xinj> wj

(J, Y

Ta={

)

b

b

— — — —
/\/\/\/-\

7Y )}
Klj’inzj”wj’)}
./ »Yigjrs Xigjr,w )}
Yzz] » Xiyjr, w )}

i27> 11j7wj y

Next, for concreteness assume that A > p, that is, Algorithm [I] is used to construct a set 7. Then
conditioned on the fact that the set of tuples T constructed by the algorithm belongs to T(C), the randomness
of the allocation of reviewers to conditions, the random assignment procedure used to assign reviewers
to papers in each condition and randomness in the tie-breaking in the matching algorithm ensure that
T € U[T(C)], that is, all elements of T(C) are equally likely to be constructed and no other set of tuples can
be constructed.

For each member C € C, let P [C] be probability that Algorithm [I| constructs a set of tuples that belongs
to T(C). Notice that for some C € C we have P [C] = 0 which happens for example when |C| < n, because
Lemma |l ensures that | 7| = n. Now, conditioning on any set C with P[C] > 0 (instead of conditioning on A*)
and using Lemma [1] (instead of Observation [B]), we repeat the proof of Theorem [I] for both DISAGREEMENT
and COUNTING tests. The unconditional result then follows from the law of total probability. The same
argument applies to the case when A\ < p and hence we conclude the proof.

A6.5.5 Proof of Corollary

The high-level idea of the proof is to construct matrices 14" and TI*" that simultaneously (for different choices

of ,6’(()Sb) nd B(Sb coefficients) satisfy the null and the alternative hypotheses under the extended model given
by equations (4.15a) and (4.15b]).
We begin our construction from specifying values of ¢;, j € [n]. For each paper j € [n], let

1wy =1
Qj:{ L

0 if w; =-1.

Then T19 is generated from model (4.15a)) with ﬁ(()db) =0 and Bidb) = 1. In this way, for any reviewer i € [m]

and for any paper j € [n], probability of acceprance Wi;-ib satisfies:

ey

MO : log S — (db) = q]
1-— i

That is, for any reviewer i € [m] and for any paper j € [n] we have

(db) ﬁ if w; = 1
K 0.5 ifw;=—1.

We now consider two different choices of coefficients for SB reviewers which result into two different
models of behaviour of SB reviewers under the absence of bias:

(sb)
S S 7TZ
My (B = 1,88 =1): log —Ls =14,
— T
(sb) (sb) 5 _3
sb) sb) . ij ]
M,y (BF® =32, 88" =2) : log — 3 +2¢;

U
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Consider a matrix II*" whose components for each i € [m] and j € [n] are defined as follows:

by )05 ifw; =1

T e ifwy =1,

it is not hard to see that (i) entries of matrix II* satisfy the model M; and (ii) for each paper j € J
corresponding entries of matrix II*" are larger than prescribed by model Ms by § > 0 and for each paper
j € J corresponding entries are smaller than those prescribed by My by § > 0, where J is some universal
constant. Hence, depending on which model of SB reviewer under the absence of bias (M; or Ms) is correct,
pair of matrices (I14", TI*®) corresponds to the absence or presence of bias.

Given that matrices II% and II*® solely determine a distribution of reviewers’ decisions, we have shown
that reviewers’ decisions are identically distributed under both null and alternative hypotheses under the
extended version of the generalized logistic model. Hence, we conclude the proof by declaring that any
algorithm that operates on reviewers’ decision and keeps Type-I error below o must have power at most «
under the alternative specified by models My, My and matrices IT?, TI4" for all values of min{|J|,[J|} and
hence violates the non-trivial power requirement.
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Chapter 5

Identity-Related Biases in
Double-Blind Peer Review

1 Introduction

While some venues still show author identities to reviewers and debate whether they should move to the
double-blind review process or not, many venues have already implemented this change. Ideally, in a double-
blind review process, neither the authors nor the reviewers of any papers are aware of each others’ identity.
However, a challenge for ensuring that reviews are truly double-blind is the exponential growth in the trend
of posting papers online before review (Xie et al.} 2021)). Increasingly, authors post their preprints on online
publishing websites such as arXiv and SSRN and publicize their work on social media platforms such as
Twitter. The conventional publication route via peer review is infamously long and time-consuming. On the
other hand, online preprint-publishing venues provide a platform for sharing research with the community
usually without delays. Not only does this help science move ahead faster, but it also helps researchers avoid
being “scooped”. However, the increase in popularity of making papers publicly available—with author
identities—before or during the review process, has led to the dilution of double-blinding in peer review. For
instance, the American Economic Association, the flagship journal in economics, dropped double-blinding in
their reviewing process citing its limited effectiveness in maintaining anonymity. The availability of preprints
online presents a challenge in double-blind reviewing, which could lead to biased evaluations for papers based
on their authors’ identities, similar to single-blind reviewing.

This dilution has led several double-blind peer-review venues to debate whether authors should be allowed
to post their submissions on the Internet, before or during the review process. For instance, top-tier machine
learning conferences such as NeurIPS and ICML do not prohibit posting online. On the other hand, the
Association of Computational Linguistics (ACL) recently introduced a policy for its conferences in which
authors are prohibited from posting their papers on the Internet starting a month before the paper submission
deadline till the end of the review process. The Conference on Computer Vision and Pattern Recognition
(CVPR) has banned the advertisement of submissions on social media platforms for such a time period. Some
venues are stricter, for example, the IEEE Communication Letters and IEEE International Conference on
Computer Communications (INFOCOMM) disallows posting preprints to online publishing venues before
acceptance.

Independently, authors who perceive they may be at a disadvantage in the review process if their identity
is revealed face a dilemma regarding posting their work online. They stand to either hurt their paper’s
chances of acceptance by revealing their identity online or lose out on publicity for their paper by refraining
from posting.

It is thus important to quantify the consequences of posting preprints online to (i) enable an evidence-based
debate over conference policies, and (ii) help authors make informed decisions about posting preprints online.
In this chapter, we conduct a large-scale survey-based study in conjunction with the review process of two
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top-tier publication venues in computer science that have double-blind reviewing: the 2021 International
Conference on Machine Learning (ICML 2021) and the 2021 ACM Conference on Economics and Computation
(EC 2021)E| Specifically, we design and conduct experiments aimed at answering the following research
questions:

(Q1) What fraction of reviewers, who had not seen the paper they were reviewing before the review process,
deliberately search for the paper on the Internet during the review process?

(Q2) What is the relation between the rank of the authors’ affiliations and the visibility of a preprint to its
target audience?

By addressing these research questions, we aim to measure some of the effects of posting preprints online,
and help quantify their associated risks and benefits for authors from different institutions.

2 Related work

Surveys of reviewers. Several studies survey reviewers to obtain insights into reviewer perceptions and
practices. [Nobarany et al.| (2016)) surveyed reviewers in the field of human-computer interaction to gain a
better understanding of their motivations for reviewing. They found that encouraging high-quality research,
giving back to the research community, and finding out about new research were the top general motivations
for reviewing. Along similar lines, [Tite and Schroter| (2007) surveyed reviewers in biomedical journals to
understand why peer reviewers decline to review. Among the respondents, they found the most important
factor to be conflict with other workload.

Resnik et al.| (2008) conducted an anonymous survey of researchers at a government research institution
concerning their perceptions about ethical problems with journal peer review. They found that the most
common ethical problem experienced by the respondents was incompetent review. Additionally, 6.8%
respondents mentioned that a reviewer breached the confidentiality of their article without permission. This
survey focused on the respondents’ perception, and not on the actual frequency of breach of confidentiality.
In another survey, by Martinson et al.| (2005)), 4.7% authors self-reported publishing the same data or results
in more than one publication. [Fanelli (2009) provides a systematic review and meta analysis of surveys on
scientific misconduct including falsification and fabrication of data and other questionable research practices.

Goues et al.| (2018) surveyed reviewers in three double-blind conferences to investigate the effectiveness of
anonymization of submitted papers. In their experiment, reviewers were asked to guess the authors of the
papers assigned to them. Out of all reviews, 70%-86% of the reviews did not have any author guess. Here,
absence of a guess could imply that the reviewer did not have a guess or they did not wish to answer the
question. Among the reviews containing guesses, 72%-85% guessed at least one author correctly.

Analyzing papers posted versus not posted on arXiv. |Bharadhwaj et al.|(2020) aim to analyse the risk of
selective de-anonymization through an observational study based on open review data from the International
Conference on Learning Representations (ICLR). The analysis quantifies the risk of de-anonymization by
computing the correlation between papers’ acceptance rates and their authors’ reputations separately for
papers posted and not posted online during the review process. This approach however is hindered by the
confounder that the outcomes of the analysis may not necessarily be due to de-anonymization of papers
posted on arXiv, but could be a result of higher quality papers being selectively posted on arXiv by famous
authors. Moreover, it is not clear how the paper draws conclusions based on the analysis presented therein.
Our supporting analysis overlaps with the investigation of Bharadhwaj et al.| (2020): we also investigate the
correlation between papers’ acceptance rates and their authors’ associated ranking in order to support our
main analysis and to account for confounding by selective posting by higher-ranked authors.

Aman| (2014) also investigate possible benefits of publishing preprints on arXiv in Quantitative Biology,
wherein they measure and compare the citations received by papers posted on arXiv and those received by

1In Computer Science, conferences are typically the terminal publication venue and are typically ranked at par or higher
than journals. Full papers are reviewed in CS conferences, and their publication has archival value.
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papers not posted on arXiv. A similar confounder arises here that a positive result could be a false alarm due
to higher quality papers being selectively posted on arXiv by authors.

In our work, we quantify the risk of de-anonymization by directly studying reviewer behaviour regarding
searching online for their assigned papers. We quantify the effects of publishing preprints online by measuring
their visibility using a survey-based experiment querying reviewers whether they had seen a paper before.

Studies on peer review in computer science. Our study is conducted in two top-tier computer science
conferences and contributes to a growing list of studies on peer review in computer science. Lawrence and
Cortes| (2014); Beygelzimer et al| (2021)) quantify the (in)consistencies of acceptance decisions on papers.
Several studies (Madden and DeWitt, 2006; 'Tung, 2006; ' Tomkins et al.l [2017; [Manzoor and Shah| 2020) study
biases due to single-blind reviewing. [Shah et al.| (2018) study several aspects of the NeurIPS 2016 peer-review
process. (Stelmakh et al| (2021d)) study biases arising if reviewers know that a paper was previously rejected.
Stelmakh et al.| (2021c) study a pipeline for getting new reviewers into the review pool. [Stelmakh et al.| (2020)
study herding in discussions. A number of recent works (Charlin and Zemel, |2013; |Stelmakh et al.l 2021a;
Kobren et all 2019; |Jecmen et al., [2020; Noothigattu et al., [2020) have designed algorithms that are used in
the peer-review process of various computer science conferences. See [Shah| (2022)) for an overview of such
studies and computational tools to improve peer review.

3 Methods

We now outline the design of the experiment that we conducted to investigate the research questions in this
work. First, in Section we introduce the two computer science conferences ICML 2021 and EC 2021 that
formed the venues for our investigation, and describe research questions Q1 and Q2 in the context of these
two conferences. Second, in Section [3.2] we describe the experimental procedure. Finally, in Section [3.3] we
provide the details of our analysis methods.

3.1 Preliminaries

Experiment setting The study was conducted in the peer-review process of two conferences:

e ICML 2021 International Conference on Machine Learning is a flagship machine learning conference.
ICML is a large conference with 5361 submissions and 4699 reviewers in its 2021 edition.

e EC 2021 ACM Conference on Economics and Computation is the top conference at the intersection of
Computer Science and Economics. EC is a relatively smaller conference with 498 submissions and 190
reviewers in its 2021 edition.

Importantly, the peer-review process in both conferences, ICML and EC, is organized in a double-blind
manner, defined as follows. In a double-blind peer-review process, the identity of all the authors is
removed from the submitted papers. No part of the authors’ identity, including their names, affiliations, and
seniority, is available to the reviewers through the review process. At the same time, no part of the reviewers’
identity is made available to the authors through the review process.

We now formally define some terminology used in the research questions Q1 and Q2. The first research
question, Q1, focuses on the fraction of reviewers who deliberately search for their assigned paper on the
Internet. The second research question, QQ2, focuses on the correlation between the visibility to a target
audience of papers available on the Internet before the review process, and the rank of the authors’ affiliations.
In what follows, we explicitly define the terms used in Q2 in the context of our experiments—target audience,
visibility, preprint, and rank associated with a paper.

Paper’s target audience For any paper, we define its target audience as members of the research
community that share similar research interests as that of the paper. In each conference, a ‘similarity score’
is computed between each paper-reviewer pair, which is then used to assign papers to reviewers. We used
the same similarity score to determine the target audience of a paper (among the set of reviewers in the
conference). We provide more details in Appendix
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Paper’s visibility We define the visibility of a paper to a member of its target audience as a binary
variable which is 1 if that person has seen this paper outside of reviewing contexts, and 0 otherwise. Visibility,
as defined here, includes reviewers becoming aware of a paper through preprint servers or other platforms such
as social media, research seminars and workshops. On the other hand, visibility does not include reviewers
finding a paper during the review process (e.g., visibility does not include a reviewer discovering an assigned
paper by deliberate search or accidentally while searching for references).

Preprint To study the visibility of papers released on the Internet before publication, we checked whether
each of the papers submitted to the conference was available online. Specifically, for EC, we manually searched
for all submitted papers to establish their presence online. On the other hand, for ICML, owing to its large
size, we checked whether a submitted paper was available on arXiv (arxiv.org). ArXiv is the predominant
platform for pre-prints in machine learning; hence we used availability on arXiv as a proxy indicator of a
paper’s availability on the Internet.

Rank associated with a paper In this work, the rank of an author’s affiliation is a measure of author’s
prestige that, in turn, is transferred to the author’s paper. We determine the rank of affiliations in ICML and
EC based on widely available rankings of institutions in the respective research communities. Specifically, in
ICML, we rank (with ties) each institution based on the number of papers published in the ICML conference
in the preceding year (2020) with at least one author from that institution (Ivanov} 2020)). On the other hand,
since EC is at the intersection of two fields, economics and computation, we merge three rankings—the QS
ranking for computer science (QS, [2021a), the QS ranking for economics and econometrics (QS} [2021b)), and
the CS ranking for economics and computation (CSRankings| 2021)—by taking the best available rank for
each institution to get our ranking of institutions submitting to EC. By convention, better ranks, representing
more renowned institutions, are represented by lower numbers; the top-ranked institution for each conference
has rank 1. Finally, we define the rank of a paper as the rank of the best-ranked affiliation among the authors
of that paper. Due to ties in rankings, we have 37 unique rank values across all the papers in ICML 2021,
and 66 unique rank values across all the papers in EC 2021.

3.2 Experiment design
To address Q1 and Q2, we designed survey-based experiments for EC 2021 and ICML 2021, described next.

Design for Q1 To find the fraction of reviewers that deliberately search for their assigned paper on
the Internet, we surveyed the reviewers. Importantly, as reviewers may not be comfortable answering
questions about deliberately breaking the double-blindness of the review process, we designed the survey to
be anonymous. We used the Condorcet Internet Voting Service (CIVS) (Myers| 2003)), a widely used service
to conduct secure and anonymous surveys. Further, we took some steps to prevent our survey from spurious
responses (e.g., multiple responses from the same reviewer). For this, in EC, we generated a unique link for
each reviewer that accepted only one response. In ICML we generated a link that allowed only one response
per IP address and shared it with reviewers asking them to avoid sharing this link with anyoneEI The survey
form was sent out to the reviewers via CIVS after the initial reviews were submitted. In the e-mail, the
reviewers were invited to participate in a one-question survey on the consequences of publishing preprints
online. The survey form contained the following question:

“During the review process, did you search for any of your assigned papers on the Internet?”

with two possible options: Yes and No. The respondents had to choose exactly one of the two options. To
ensure that the survey focused on reviewers deliberately searching for their assigned papers, right after the
question text, we provided additional text: “Accidental discovery of a paper on the Internet (e.g., through

2The difference in procedures between EC and ICML is due to a change in the CIVS policy that was implemented between
the two surveys.
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arxiv.org

searching for related works) does not count as a positive case for this question. Answer Yes only if you tried
to find an assigned paper itself on the Internet.”

Following the conclusion of the survey, CIVS combined the individual responses, while maintaining
anonymity, and provided the total number of Yes and No responses received.

Design for Q2 Recall that for Q2 we want to find the correlation between preprints’ visibility to a target
audience and its associated rank. Following the definitions provided in Section we designed a survey-based
experiment as follows. We conducted a survey to query reviewers about some papers for which they are
considered a target audience. Specifically, we asked reviewers if they had seen these papers before outside of
reviewing contexts. We provide more details about the survey, including the phrasing of the survey question,
in Appendix We queried multiple reviewers about each paper, and depending on their response, we
considered the corresponding visibility to be 1 if the reviewer said they had seen the paper before outside of
reviewing contexts and 0 otherwise. We note that in ICML reviewers were queried about the papers they
were assigned to review using the reviewer response form, in which a response to the question of visibility
was required. Meanwhile, in EC, reviewers were queried about a set of papers that they were not assigned
to review, using a separate optional survey form that was emailed to them by the program chairs after the
rebuttal phase and before the announcement of paper decisions. The survey designed for Q2 had a response
rate of 100% in ICML, while EC had a response rate of 55.78%.

3.3 Analysis

We now describe the analysis for the data collected to address Q1 and Q2. Importantly, our analysis is the
same for the data collected from ICML 2021 and EC 2021. For Q1, we directly report the numbers obtained
from CIVS regarding the fraction of reviewers who searched for their assigned papers online in the respective
conference. In this section, we describe our analysis for Q2, where we want to analyse the effect of papers’
ranking on visibility. Recall that for Q2, we collected survey responses and observational data about which
papers submitted to ICML or EC were posted online before the corresponding review process. Since the
latter data is observational, we describe two possible confounding factors in our setting.

3.3.1 Confounding factors

For a paper posted online, the amount of time for which it has been available on the Internet can affect the
visibility of the paper. For instance, papers posted online well before the deadline may have higher visibility
as compared to papers posted near the deadline. Moreover, the time of posting a paper online could vary
across institutions ranked differently. Thus, time of posting can be a confounding factor. In order to control
for this factor, for the papers that were posted online before the review process, we incorporate the time
gap between posting of the papers and submission of reviews in our analysis, which is described next in
Section

Second, one should ideally study the visibility of all papers submitted to the conference. However, in
our experiment, we are naturally limited to studying the visibility of the papers that were released on the
internet before the conclusion of the review process. The choice of posting online before or after the review
process could vary depending on the quality of the paper as well as on the rank of the authors’ affiliations.
This can form a confounding factor in our analysis. To understand whether papers posted online before the
review process had significantly different quality and rank profile from papers not posted online, we provide
supporting analysis in Section [3.3.3]

3.3.2 Analysis procedure

We now describe our analysis to compute the relation between a paper’s visibility and associated rank. In
the following analysis procedure, we consider each response obtained in the survey for Q2 as one unit. Each
response corresponds to a paper-reviewer pair, wherein the reviewer was queried about seeing the considered
paper. In case of no response from reviewer, we do not consider the corresponding paper-reviewer pairs in
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our data. We thus have two variables associated to each response: the visibility of the paper to the reviewer
(in {0,1}), and the rank associated with the paper. Recall that we define the rank of a paper as the rank of
the best-ranked affiliation associated with that paper.

We first describe the approach to control for confounding due to time of posting. There is ample variation
in the time of posting papers online within the papers submitted to ICML and EC: some papers were posted
right before the review process began while some papers were posted two years prior. To account for the
causal effect of time of posting on visibility, we divide the responses into bins based on the number of days
between the paper being posted online and the deadline for submitting responses to the Q2 survey. Since
similar conference deadlines arrive every three months roughly and the same conference appears every one
year, we binned the responses accordingly into three bins. Specifically, if the number of days between the
paper being posted online and the survey response is less than 90, it is assigned to the first bin, if the number
of days is between 90 and 365, the response is assigned to the second bin, and otherwise, the response is
assigned to the third bin. Following this binning, we assume that time of posting does not affect the visibility
of papers within the same bin. Consequently, we analyse the correlation between papers’ visibility and
associated rank separately within each bin and then combine them to get the overall effect in two steps:

Step 1. We compute the correlation coefficient between papers’ visibility and associated rank within
each bin. For this we use Kendall’s Tau-b statistic, which is closely related to the widely used Kendall’s Tau
rank correlation coefficient (Kendalll [1938]). Kendall’s Tau statistic provides a measure of the strength and
direction of association between two variables measured on an ordinal scale. It is a non-parametric measure
that does not make any assumptions about the data. However, it does not account for ties and our data has a
considerable number of ties, since visibility is a binary variable and the rankings used contain ties. Therefore,
we use a variant of the statistic, Kendall’s Tau-b statistic, that accounts for ties in the data.

Within each bin we consider all the responses obtained and their corresponding visibility and rank value,
and compute Kendall’s Tau-b correlation coefficient between visibility and rank. The procedure for computing
Kendall’s Tau-b correlation coefficient between two real-valued vectors (of the same length) is described in
Appendix We now make a brief remark of a notational convention we use in this chapter, in order to
address ambiguity between the terminology “high-rank institutions” as well as “rank 1, 2,...institutions”,
both of which colloquially refers to better-rank institutions. It is intuitive to interpret a positive correlation
between visibility and rank as the visibility increasing with an improvement in the rank. Consequently, we
flip the sign of all correlation coefficients computed with respect to the rank variable.

Step 2. With the correlation computed within each bin, we compute the overall correlation using a
sample-weighted average (Corey et al., [1998]). Formally, let N1, Ny and N3 denote the number of responses
obtained in the first, second and third bin respectively. Denote Kendall’s Tau-b correlation coefficients within
the three bins as 71, 7o and 73. Then the correlation T between papers’ visibility and rank over all the time
bins is computed as

_ Ni71+ Namp+ N373

T
N1+ No + N3

(5.1)

The statistic T gives us the effect size for our research question Q2. Finally, to analyse the statistical
significance of the effect, we conduct a permutation test, wherein we permute our data within each bin and
recompute the test statistic 7' to obtain a p-value for our test. We provide the complete algorithm for the
permutation test in Appendix [A2:2]

3.3.3 Supporting analysis

As mentioned earlier in Section [3:3.1] we have to account for the papers not posted online before the survey
for Q2 was conducted, to have a complete understanding of the effect of rank on paper visibility. We are
unable to measure the visibility of these papers, as they were not posted online yet. Thus, we investigate
whether the pool of papers posted online before the review process is significantly different, in terms of their
rank profile, from the rest of the papers submitted to the conference. In the following analysis, we consider
all papers submitted to the conference, and we consider each submitted paper as one unit of analysis.
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EC 2021 ICML 2021

1 # REVIEWERS 190 4699
2 4 SURVEY RESPONDENTS 97 753
3  # SURVEY RESPONDENTS WHO SAID THEY SEARCHED FOR THEIR ASSIGNED PAPER ONLINE 41 269
4 % SURVEY RESPONDENTS WHO SAID THEY SEARCHED FOR THEIR ASSIGNED PAPER ONLINE 42% 36%

Table 1: Outcome of survey for research question Q1.

First, we analyse the relationship between a binary value indicating whether a submitted paper was
posted online before the Q2 survey, and the paper’s associated rank. For this, we compute Kendall’s Tau-b
statistic between the two values for all papers submitted to the conference, and flip the sign of the statistic
with respect to the rank variable.

Second, we investigate whether there is a significant difference between the papers posted and not posted
online before the review process, in terms of their quality and rank profile. Here we measure the quality of
a paper as a binary variable based on its final decision in the conference (accept or reject). We give an
example to understand the motivation for this supporting analysis. Suppose the double-blind process works
perfectly, and assume that among the papers with better-ranked affiliations, only the high-quality papers are
posted online, while there is no quality-based selection among other papers. Then, for better-ranked papers,
the difference in acceptance rates for papers posted and those not posted online would be higher than the
difference for the other papers. Suppose there is no causal effect of ranking on papers’ visibility. Assuming
higher-quality papers would enjoy higher visibility, such self-selection could lead to false discovery of effect.

We conduct this analysis by computing three statistics. First, for all papers posted online before the Q2
survey, we compute Kendall’s Tau-b statistic between their rank and their final decision. Second, for all
papers not posted online, we compute Kendall’s Tau-b statistic between their rank and their final decision.
Third, for each unique rank value, for the corresponding papers with that rank, we compute the difference
between the average acceptance rate for papers posted online and those not posted online. Then, we compute
Kendall’s Tau-b statistic between the rankings and the difference in acceptance rate. Finally, we flip the sign
of all correlation coefficients computed with respect to the rank variable. Hence, a positive correlation would
imply that the (difference in) acceptance rate increases as the rank improves.

4 Main results

We now discuss the results from the experiments conducted in ICML 2021 and EC 2021.

4.1 Q1 results

Table [I] provides the results of the survey for research question Q1. The percentage of reviewers that responded
to the anonymous survey for Q1 is 16% (753 out of 4699) in ICML and 51% (97 out of 190) in EC. While the
coverage of the pool of reviewers is small in ICML (16%), the number of responses obtained is large (753).
As shown in Table [I] the main observation is that, in both conferences, at least a third of the Q1 survey
respondents self-report deliberately searching for their assigned paper on the Internet. There is substantial
difference between ICML and EC in terms of the response rate as well as the fraction of Yes responses
received, however, the current data cannot provide explanations for these differences.

4.2 Q2 results

We discuss the results of the survey conducted for Q2 in ICML 2021 and EC 2021. First we discuss the
results of the main analysis described in Section [3:3.2} Then we discuss the results of the supporting analysis
described in Section [3.3.3
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Main analysis Table |2| depicts the results of the survey for research question Q2. We received 7594
responses and 449 responses for the survey for Q2 in ICML and EC respectively (Row . Based on our
binning rule based on time of posting described in Section [3:3.2] we see more papers in bin 1 and bin 2,
compared to bin 3. This suggests that majority of preprints were posted online within one year of the review
process (Row [2).

As shown in Table[2] for papers submitted to the respective conference and posted online before the review
process, we observe that there is a weak positive correlation between the papers’ visibility and its associated
rank. The weak positive correlation implies that the visibility increases slightly as the rank improves.

To provide some interpretation of the correlation coefficient values in Row 4l we compare the mean
visibility within and without responses obtained for papers with at least one affiliation ranked 10 or better
(Row [8| and E[) There are 10 and 23 institutions among the top-10 ranks in ICML and EC respectively. We
see that there is more than 3 percentage points decrease in mean visibility across these two sets of responses
in both ICML and EC. Figure [I] displays additional visualization that helps to interpret the strength of the
effect of the papers’ rank on visibility. The data suggests that top-ranked institutions enjoy higher visibility
than lower-ranked institutions in both venues ICML 2021 and EC 2021.

In summary, in ICML the analysis supports a small but statistically significant effect of paper ranking
on its visibility. In EC the effect size is comparable, but the effect does not reach statistical significance.
Without further data, for EC the results are only suggestive.

As an aside, we note that the mean visibility in ICML 2021 (8.36%) is much lower than that in EC
2021 (20.5%). This may be attributed to the following reason: The research community in EC is smaller
and more tight-knit, meaning that there is higher overlap in research interests within the members of the
community (reviewers). On the other hand, ICML is a large publication venue with a more diverse and
spread-out research community.

Supporting analysis We provide the results for the supporting analysis described in Section [3.3.3| in
Table 3] There were a total of 5361 and 498 papers submitted to ICML 2021 and EC 2021 respectively, out
of which 1934 and 183 were posted online before the end of the review process respectively (Row [1f and .
Thus, we see that more than a third of the papers submitted were available online. Among all the papers
submitted, we observe that there is a positive correlation (Kendall’s Tau-b) between paper’s rank and whether
it was posted online before the review process in both ICML and EC of 0.12 (p < 107°) and 0.09 (p = 0.01)
respectively (Row . This implies that the authors from higher-ranked institutions are more likely to post
their papers online before the review process. In Figure 2| we provide visualization to interpret the correlation
between ranking and uploading behaviour.

Next, to understand if there is significant difference in the quality of papers uploaded online by authors
from institutions with different ranks, we compare the final decision of the pool of papers posted online before

EC 2021 ICML 2021
1  # RESPONSES OVERALL 449 7594
2  # PAPERS IN BINS 1, 2, 3 63,82,38 968, 820, 146
3 # RESPONSES IN BINS 1, 2, 3 159, 233,57 3799, 3228, 567
4  CORRELATION BETWEEN RANK AND VISIBILITY [-1,1] 0.05 (p =0.11) 0.06 (p < 107°)
5  CORRELATION BETWEEN RANK AND VISIBILITY IN BINS 1, 2, 3 0.06,0.04,0.04 0.04,0.10,0.03
6  P-VALUE ASSOCIATED WITH CORRELATIONS IN Row 0.36,0.46,0.66 0.004, < 10~°,0.19
7 % VISIBILITY OVERALL [0 — 100] 20.5% (92 ouT OF 449) 8.36% (635 OoUT OF 7594)
8 % VISIBILITY FOR PAPERS WITH TOP 10 RANKS [0 — 100] 21.93% (59 out OF 269) 10.91% (253 ouT OF 2319)
9 % VISIBILITY FOR PAPERS BELOW TOP 10 RANKS [0 — 100] 18.33% (33 ouT OF 180) 7.24% (382 oUT OF 5275)

Table 2: Outcome of main analysis for research question Q2. A positive correlation in Row [4f and Row
implies that the visibility increases as the rank of the paper improves. Recall that for ICML, we consider the
set of responses obtained for submissions that were available as preprints on arXiv. There were 1934 such
submissions.
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Figure 1: Using responses obtained in Q2 survey, we plot the papers’ visibility against papers’ associated
rank with smoothing. On the x-axis, we order papers by their ranks (i.e., paper with the best rank gets order
1, paper with the second best rank gets order 2, and so on). The range of x-axis is given by the number of
unique ranks in the visibility analysis, which may be smaller than the total number of unique ranks associated
with the papers in the respective conferences. The x-axis range is 37 in Figure [laj and 40 in Figure [Lb]| due
to ties in rankings used. On the y-axis, smoothed visibility lies in [0, 1]. We use local linear regression for
smoothing (Cleveland and Loader] [1996). The solid line gives the smoothed visibility, and the grey region
around the line gives the 95% confidence interval.

o

15
o
15

I o I
N w S
I o I
N w S

=]

-
=]
-

Smoothed indicator for posting online

Smoothed indicator for posting online

o

o
o
o

o 10 20 30 o 20 40 60
Ranking order Ranking order
(a) ICML 2021 (b) EC 2021

Figure 2: For papers submitted to the respective conferences, we plot the indicator for paper being posted
online before the end of the review process against papers’ associated rank, with smoothing. On the x-axis,
we have the ranking order as described in Figure[l] On the y-axis, smoothed indicator for posting online lies
in [0,1]. We use locally estimated smoothing to get the smoothed indicator for posting online across ranks,
shown by the solid line, and a 95% confidence interval, shown by the grey region.
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Figure 3: For papers submitted to the respective conferences and (not) posted online before the review
process, we plot the papers’ final decision against papers’ associated rank, with smoothing. On the x-axis,
we have the ranking order as described in Figure I} On the y-axis, smoothed acceptance rate lies in [0, 1].
We use locally estimated smoothing to get the smoothed acceptance rate across ranks, shown by the lines,
and a 95% confidence interval, shown by the grey region. Note that in Figure the number of papers
corresponding to the ranks on the right of the plot is very small.

the review process and the pool of papers that was not, across ranks. Here, we use the final decision as a
proxy indicator for the quality of paper. Note that this proxy is not a perfect indicator, it could be affected
by the ranking of the paper in case of de-anonymization of the paper, as we discussed in Section [I} Now, for
the pool of papers posted online, we see that Kendall’s Tau-b correlation between papers’ rank and final
decision is 0.11 (p < 107%) in ICML and 0.03 (p = 0.58) in EC (Row . Recall that a positive correlation
implies that the acceptance rate increases as the rank improves. For the pool of papers not posted online, we
see that Kendall’s Tau-b correlation between papers’ rank and final decision, 0.16 (p < 10~°) in ICML and
0.13 (p = 0.006) in EC (Row . Further, the correlation between the rank values and the corresponding
difference (between papers posted and not posted online) in mean acceptance rates is 0.01 (p = 0.92) in
ICML and 0.12 (p = 0.18) in EC (Row [).

To interpret these values, we provide visualization of the variation of mean acceptance rate as rank varies
for the two pools of papers in Figure 3} In ICML, we see that the difference in acceptance rates between
the two pools of papers roughly remains the same as the rank changes. Meanwhile, in EC this difference in
acceptance rates does not suggest a clear trend across ranks. Now, recall the earlier discussion regarding
self-selection of papers being posted online, that authors from high-rank institutions may upload only high
quality papers, while authors from low-rank institutions may not select the papers to be uploaded online

EC 2021 ICML 2021

1  # PAPERS 498 5361
2  # PAPERS POSTED ONLINE BEFORE THE END OF REVIEW PROCESS 183 1934
3 CORRELATION BETWEEN PAPERS’ RANK AND WHETHER THEY WERE POSTED ONLINE [-1, 1] 0.09 0.12
4 CORRELATION FOR PAPERS POSTED ONLINE BETWEEN THEIR RANK AND DECISION [-1, 1] 0.03 0.11
5  CORRELATION FOR PAPERS NOT POSTED ONLINE BETWEEN THEIR RANK AND DECISION [—1, 1] 0.13 0.16
6 CORRELATION BETWEEN RANKING AND CORRESPONDING DIFFERENCE, 0.12 0.01

BETWEEN PAPERS POSTED AND NOT POSTED ONLINE, IN MEAN ACCEPTANCE RATE [—1, 1]

Table 3: Outcome of supporting analysis for research question Q2. A positive correlation in row 3, 4 and 5
implies that the value of the variable considered increases as the rank of the paper improves. For instance, in
row 3, the rate of posting online increases as the rank improves.
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based on quality. Based on the results displayed in Table [3| and Figure [3] we do not see strong evidence for
self-selection of papers being posted online by authors from high-rank institutions compared to those from
low-rank institutions.

5 Discussion

To improve peer review and scientific publishing in a principled manner, it is important to understand
the quantitative effects of the policies in place, and design policies in turn based on these quantitative
measurements.

We find that more than a third of survey respondents self-report deliberately searching for their assigned
papers online, thereby weakening the effectiveness of author anonymization in double-blind peer review.
Further, the observed value of fraction of reviewers that searched for their assigned paper online in Table
might be an underestimate due of two reasons: (i) Reviewers who deliberately broke the double-blindedness
of the review process may be more reluctant to respond to our survey for Q1. (ii) As we saw in Section
roughly 8% of reviewers in ICML 2021 had already seen their assigned paper before the review process
began (Table [2f row 5). If these reviewers were not already familiar with their assigned paper, they may have
searched for them online during the review process.

For Q2, the effect size is statistically significant in ICML, but not in EC. A possible explanation for the
difference is in the method of assigning rankings to institutions, described in Section [3.1} For ICML, the
rankings used are directly related to past representation of the institutions at ICML (Ivanov, [2020). In EC,
we used popular rankings of institutions such as QS rankings and CS rankings. In this regard, we observe
that there is no clear single objective measure for ranking institutions in a research area. This leads to many
ranking lists that may not agree with each other. Our analysis also suffers from this limitation.

Next, while we try to carefully account for confounding factors based on time of posting in our analysis
for Q2, our study remains dependent on observational data. Thus, the usual caveat of unaccounted for
confounding factors applies to our work. For instance, the topic of research may be a confounding factor in
the effect of papers’ rank on visibility: If authors from better-ranked affiliations work more on cutting-edge
topics compared to others, then their papers would be read more widely. This could potentially increase the
observed effect.

Policy implications Double-blind venues now adopt various policies for authors regarding posting or
advertising their work online before and during the review process. A notable example is a recent policy
change by the Association for Computational Linguistics in their conference review process, which includes
multiple conferences: ACL, NAACL (North American Chapter of the ACL) and EMNLP (Empirical Methods
in Natural Language Processing). ACL introduced an anonymity period for authors, starting a month before
the paper submission deadline and extending till the end of the review process. According to their policy,
within the anonymity period authors are not allowed to post or discuss their submitted work anywhere on
the Internet (or make updates to existing preprints online). In this manner, the conference aims to limit the
de-anonymization of papers from posting preprints online. A similar policy change has been instituted by
the CVPR computer vision conference. We provide some quantitative insights on this front using the data
we collected from the Q2 survey in ICML 2021 and EC 2021. There were 918 (out of 5361 submitted) and
74 (out of 498 submitted) papers posted online during the one month period right before the submission
deadline in ICML and EC respectively. These papers enjoyed a visibility of 8.11% (292 out of 3600) and
23.81% (45 out of 189) respectively. Meanwhile, there were 1016 (out of 5361) and 109 (out of 498) papers
posted online prior to the one month period right before the submission deadline in ICML and EC, and
these papers enjoyed a visibility of 8.59% (343 out of 3994) and 18.08% (47 out of 260) respectively. These
measurements may help inform subsequent policy decisions.

While our work finds dilution of anonymization in double-blind reviewing, any prohibition on posting
preprints online comes with its own downsides. For instance, consider fields such as Economics where journal
publication is the norm, which can often imply several years of lag between paper submission and publication.
Double-blind venues must grapple with the associated trade-offs, and we conclude with a couple of suggestions
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for a better trade-off. First, many conferences, including but not limited to EC 2021 and ICML 2021, do not
have clearly stated policies for reviewers regarding searching for papers online, and can clearly state as well
as communicate these policies to the reviewers. Second, venues may consider policies requiring authors to
use a different title and reword the abstract during the review process as compared to the versions available
online, which may reduce the chances of reviewers discovering the paper or at least introduce some ambiguity
if a reviewer discovers (a different version of) the paper online.

Appendix

A1l Survey details for Q2.

Target audience selection Recall that our objective in target audience selection is to find reviewers for
each paper whose research interests intersect with the paper, so that we can survey these reviewers about
having seen the corresponding papers outside of reviewing contexts. We describe the exact process for target
audience selection in EC and ICML.

In EC, the number of papers posted online before the end of the review process was small. To increase
the total number of paper-reviewer pairs where the paper was posted online and the reviewer shared similar
research interests with the paper, we created a new paper-reviewer assignment. For the new paper-reviewer
assignment, for each paper we considered at most 8 members of the reviewing committee that satisfied the
following constraints as its target audience—(1) they submitted a positive bid for the paper indicating shared
interest, (2) they are not reviewing the given paper.

In ICML, a large number of papers were posted online before the end of the review process. So, we did
not create a separate paper-reviewer assignment for surveying reviewers. Instead, in ICML, we consider a
paper’s reviewers as its target audience and queried the reviewers about having seen it, directly through the
reviewer response form.

Survey question For research question Q2, we conducted a survey to measure the visibility of papers
submitted to the conference and posted online before or during the review process. We describe the details of
the survey for EC 2021 and ICML 2021 separately. In EC 2021, we created a specialised reviewer-specific
survey form shared with all the reviewers. Each reviewer was shown the title of five papers and asked to
answer the following question for each paper:

“Have you come across this paper earlier, outside of reviewing contexts?”

In the survey form, we provided examples of reviewing contexts as “reviewing the paper in any venue, or
seeing it in the bidding phase, or finding it during a literature search regarding another paper you were
reviewing.” The question had multiple choices as enumerated in Table 4] and the reviewer could select more
than one choice. If they selected one or more options from (b), (c), (d) and (e), we set the visibility to 1,
and if they selected option (a), we set the visibility to 0. We did not use the response in our analysis, if the
reviewer did not respond or only chose option (f). In Table |4l we also provide the number of times each
choice was selected in the set of responses obtained.

In ICML 2021, we added a two-part question corresponding to the research question Q2 in the reviewer
response. Each reviewer was asked the following question for the paper they were reviewing:

“Do you believe you know the identities of the paper authors? If yes, please tell us how.”

Each reviewer responded either Yes or No to the first part of the question. For the second part of the
question, table [5] lists the set of choices provided for the question, and a reviewer could select more than one
choice. If they responded Yes to the first part, and selected one or more options from (a), (d), (e) and (f) for
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the second part, then we set the visibility to 1, otherwise to 0. In Table [5] we also provide the number of
times each choice was selected in the set of responses that indicated a visibility of 1.

A2 Analysis procedure details

In this section we provide some more details of the analysis procedure.

A2.1 Kendall’s Tau-b statistic

We describe the procedure for computing Kendall’s Tau-b statistic between two vectors. Let n denote the
length of each vector. Let us denote the two vectors as [z1, 22, ...,z,] € R™ and [y1,y2,...,ys] € R™. Let P
denote the number of concordant pairs in the two vectors, defined formally as

P= > (I(xi>ae) Ty > ye) + (2 <) T(ys < yn))-
(i ke
i<k

Following this, we let the number of discordant pairs in the two vectors be denoted by @, defined as

Q= > ([(wi>axe) Ty <we)+ (i <)Ly > yr))-
(i,k)€[n]?
i<k
Observe that the concordant and discordant pairs do not consider pairs with ties in either of the two vectors.
In our data, we have a considerable number of ties. To account for ties, we additionally compute the following
statistics. Let A, and A, denote the number of pairs in the two vectors tied in exactly one of the two vectors
as

A, = Z I(z; = xk) I (y: # yr) and A, = Z I(x; # zk) L (y: = yi) -

(i,k)€[n)? (i,k)€[n)?
i<k i<k

Finally, let A, denote the number of pairs in the two vectors tied in both vectors, as

(i,k)€E[n]?
i<k

Observe that the five statistics mentioned above give a mutually exclusive and exhaustive count of pairs of
indices, with P+ Q + A, + A, + Ay = 0.5n(n — 1). With this setup in place, we have the Kendall’s Tau-b

List of choices for question in Q2 survey Count

(a) I have NOT seen this paper before / I have only seen the paper in 359
reviewing contexts

(b) T saw it on a preprint server like arXiv or SSRN 51

(c) I saw a talk/poster announcement or attended a talk/poster on it 22

(d) T saw it on social media (e.g., Twitter) 4

(e) T have seen it previously outside of reviewing contexts 99
(but somewhere else or don’t remember where)

(f) Tm not sure 24

Table 4: Set of choices provided to reviewers in EC in Q2 survey and the number of times each choice was
selected in the responses obtained. There were 449 responses in total, out of which 92 responses indicated a
visibility of 1.
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List of choices for question in Q2 survey Count

(a) I was aware of this work before I was assigned to review it. 373

(b) I discovered the authors unintentionally while searching web for related A7
work during reviewing of this paper

(c) I guessed rather than discovered whose submission it is because I am very 98
familiar with ongoing work in this area.

(d) T first became aware of this work from a seminar announcement, Archiv 959
announcement or another institutional source

(e) I first became aware of this work from a social media or press posting by 61
the authors

(f) T first became aware of this work from a social media or press posting 59
by other researchers or groups (e.g. a ML blog or twitter stream)

Table 5: Set of choices provided to reviewers in ICML in Q2 survey question and the number of times each
choice was selected in the set of responses considered that self-reported knowing the identities of the paper
authors outside of reviewing contexts. There were a total of 635 such responses that indicated a visibility of
1. Recall that for ICML, we consider the set of responses obtained for submissions that were available as
preprints on arXiv. There were 1934 such submissions.

statistic between [z1,za,...,z,] € R™ and [y1,y2,. .., yn] € R™ denoted by 7 as

P—-qQ
VP+Q+A,)(P+Q+A,)

(5.2)

This statistic captures the correlation between the two vectors.

A2.2 Permutation test

The test statistic T in (5.1]) gives us the effect size for our test. Recall from (5.1]) that the test statistic 7" is
defined as:

_ Ni171+ Namp+ N373

T )
N1+ Ny + N3

where for each bin value b € {1,2,3}, we have N, as the number of responses obtained in that bin, and 7
represents the Kendall Tau-b correlation between visibility and rank in the responses obtained in that bin.
To analyse the statistical significance of the effect, we define some notation for our data. Let N denote the
total number of responses. For each response i € [N] we denote the visibility of the paper to the reviewer as
v; € {0,1} and the rank associated with response ¢ as «o; € Nog. Finally, we denote the bin associated with
response i as t; € {1,2,3}. With this, we have the following algorithm for permutation testing.

Algorithm 1 Permutation test for correlation between papers’ visibility and rank.

Input : Samples v;, a;,t; for i € [N], iteration count ~.

(1) Compute the test statistic 7" defined in (5.1]).

(2) For z + 1 to ~:
(i) For all b € {1,2,3}: Let V4 denote the number of responses with v; = 1 in bin b. Take all the
responses in bin b and reassign each response’s visibility to 0 or 1 uniformly at random such
that the total number of responses with a visibility of 1 remains the same as V},.
(ii) Using the new values of visibility in all bins, recompute the test statistic in . Denote the
computed test statistic as T,.

Output : P value = % T (T, —T >0).
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Chapter 6

The Novice Reviewers’ Bias against
Resubmissions in Conference Peer
Review

1 Introduction

In contrast to many other fields of science, where journals are the only established venues for research
publication, in machine learning (ML) and computer science (CS), conferences are considered to be equally
or even more attractive (Vrettas and Sanderson, |2015)). While being as selective as top journals, leading
conferences ensure much shorter turnaround time thereby facilitating timely research dissemination and
allowing authors to quickly resubmit their work to the next conference if it gets rejected. However, the explosion
in the number of submissions received by top conferences has considerably challenged the sustainability
of the conference peer-review process since the number of qualified reviewers is growing at a much slower
rate (Sculley et al., [2019; |Shah| [2022).

In an attempt to decrease the load on reviewers by discouraging resubmissions without substantial changes,
several leading ML and CS conferences have started requesting or requiring authors to declare if a previous
version of their submission was rejected at other peer-reviewed venues. For example, a top-tier conference
in natural language processing EMNLP 2019 allowed authors to decide whether they want to disclose the
past submission history and provide the summary of changes they made, making this information available
only to senior committee members. A similar opportunity was offered at a leading conference in artificial
intelligence and statistics (AISTATS 2017) with the exception that the information about past rejections was
also available to regular reviewers. Additionally, the AISTATS 2017 conference implemented an automated
review sharing with some past conferences, making these reviews visible to senior committee members after
the initial reviewing was completed.

Other conferences make it mandatory for authors to disclose the past submission history: the NeurIPS
conference — one of the most popular conferences in ML, which in 2019 received more than six thousand
submissions — in 2020 required authors of previously rejected submissions to declare the changes they made
to the current version of the paper. Another top conference in artificial intelligence (IJCAT 2020) went even
further and made full reviews from past venues available to reviewers by requiring authors to include them in
the submission file before the actual paper.

In addition to changes implemented by specific venues, the openreview platform — a growing conference
management system that hosts the leading deep-learning conference ICLR and other forums — offers a
novel approach towards managing conferences in a transparent manner by allowing organizers to make both
accepted and rejected submissions accompanied with full reviews publicly available. This option has been
used by the ICLR conference since 2017 and all reviews for papers submitted to the conference since then are
now publicly available, allowing subsequent reviewers (even at different venues) of rejected papers to consult
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them at any time.

All these steps are supposed to facilitate improving the quality of peer review as reviews from past venues
may reduce the burden on reviewers by allowing them to “quickly focus in on what previous issues were
and how they may or may not have been fixed” (Francis, [2008; |Lin et al., |2020al). While being especially
actual for the fields of ML and CS, similar discussion is also happening in other areas. For example, a survey
conducted by |Cals et al.|(2013]) among editors of general medical journals showed that despite there being a
concern that reviews from previous venues may bias subsequent reviewers, 45% of the participating editors
prefer authors to indicate whether a paper has been previously rejected (the survey does not indicate how
this information is supposed to be used in the review process). Ounly 24% of editors oppose this idea, and the
rest are indecisive.

Despite the interest of journal editors and conference program committees in reusing reviews from past
iterations of the review cycle, authors are less enthusiastic: ICFP — the ACM-sponsored conference on
functional programming — in 2020 removed the option to upload the past reviews since no authors took this
advantage in the previous edition of the conference. This skepticism suggests that authors do not believe
that revealing old reviews will increase the acceptance chances of their submission.

Authors’ concerns are in fact supported by a long line of research in psychology that establishes susceptibility
of human judgements to various biases (see | Tversky and Kahneman) [1974; Kahneman)| 2011} |Gilovich et al.,
2002, for overview), some of which are caused by additional (and sometimes irrelevant) information available
to the decision-maker (Baron and Hersheyl, [1988; |Tversky and Kahneman), [1974; [Fischhoff and Beyth, [1975;
Ross et al., [1975; (Carretta and Moreland}, [1983). Projecting this evidence on the peer-review context, we
hypothesize that the knowledge that a paper was rejected at a previous venue may negatively bias reviewers’
evaluations, leading to what in this study we call a “resubmission bias”. In other words, reviewers may judge
the paper differently depending on whether they are notified about this paper being a resubmission or not.

To highlight the potential impact of the resubmission bias, we note that the peer-review process of the
major machine learning conferences is far from being absolutely consistent and objective. Indeed, several
controlled experiments (Lawrence and Cortes|, |2014; [Price, 2014} [Pier et al., [2018) found very low degree
of agreement between reviewers evaluating the same manuscript. This implies that the outcome of the
review process heavily depends on the reviewers to whom the submission is assigned, introducing significant
randomness in the final decisions. Hence, even a strong paper that deserves acceptance has a nontrivial
chance of being rejected due to this randomness. The resubmission bias can amplify this unfairness by putting
a previously rejected paper at disadvantage in the subsequent conferences. Given that success in academia is
largely determined by the publication profile of a researcher, the resubmission bias can have far reaching
consequences not just for a particular paper, but more generally also for career trajectories of researchers due
to the widespread prevalence of the Matthew effect (“rich get richer”) in academia (Merton| 1968} [Squazzoni
and Gandelli, [2012]).

Therefore, in this chapter, we aim at testing for the presence of the resubmission bias in peer review.
Focusing on the population of novice reviewers, in conjunction with a reviewer-recruiting process of ICML
2020 (a top ML conference), we design and conduct a randomized controlled trial to test the following research
hypothesis:

Research Hypothesis: The signal about rejection from the same or similar venue in the past,
received by novice reviewers before they read the paper, induces a bias in reviewers’ evaluations.

In our hypothesis, we do not specify the direction of the effect and note that while authors are concerned
about a negative bias, the bias can hypothetically be positive. For example, a reviewer may think that
previously rejected papers have gone through another iteration of revisions and improvements and might be
better on average than papers that have not previously been peer reviewed. Therefore, in this work we also
aim to confirm the direction of the effect (if it exists).

Importantly, we caveat that in this study we target the population of novice reviewers and the findings
we report in this work must not be overgeneralized to the whole reviewer population. While the choice of
the study participants is mostly justified by the difficulty of engaging senior reviewers in the experiment,
we discuss below (Section [3)) that novice reviewers constitute a large fraction of the leading ML and CS
conferences reviewer pool.
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In this work, we do not aim to support or undermine the idea of reusing the past reviews. Instead,
the answer to our research question will inform conference organizers and journal editors about potential
side-effects of reusing reviews, and will help them to carefully select the point during the peer-review pipeline
(if at all) at which previous reviews become available to reviewers. For example, if the resubmission bias in
peer review is present, then editors or program chairs may prefer to keep the past submission history hidden
from reviewers in the initial stages of the process to ensure that the reviewers form an unbiased opinion
about the paper first. Additionally, the results of our experiment can inform the current practices of novice
reviewer training where more emphasis could be made on how to avoid the potential resubmission bias.

Past research on human decision making decisively establishes the presence of various cognitive biases
in human judgement that are relevant to our research hypothesis. For example, the famous anchoring
effect (Tversky and Kahneman| 1974) manifests in human evaluations being dependent on an (irrelevant)
piece of information received at the beginning of the decision task. We defer the discussion of the general
literature on decision making and cognition to Section [5] but underscore that these findings do not necessarily
transfer to our setting. Indeed, from the perspective of the dual-process model of cognition (Kahneman and
Frederick, 2002; |Stanovich) 1999; |Stanovich and Westl, [2008]), biases are properties of an autonomous heuristic
system (System 1) whereas the demanding and rational reviewing task invokes the analytic system (System
2) that can potentially override such biases.

2 Related literature

The work described in this chapter contributes to a long line of empirical works studying various aspects of
the academic peer-review process and in this section we discuss the most relevant papers.

Resnik and Smith| (2020)), in the chapter of their book dedicated to peer review, discuss the presence
of groupthink — a strong desire of group consensus that results in all deviating ideas being rejected — in
peer review. One potential contribution to the overall groupthink effect is susceptibility of experts to social
influence, as demonstrated by Teplitskiy et al.| (2019). In their experiment, reviewers (faculty at US medical
schools) first evaluated and rated submissions assigned to them, and then were exposed to scores presumably
given to these submissions by other anonymous reviewers. Unbeknown to participants, these scores were
randomly sampled to be either above or below their scores. The experiment demonstrated that 47% of
reviewers decided to update their scores, and in all but one case (out of approximately 185) the update was
in the direction of the external scores. This finding indicates a strong impact of social influence on experts’
evaluations. The experiment of Teplitskiy et al.| (2019) was conducted alongside a review process of grant
applications in which real awards were distributed; in this setup, reviewers are generally expected to reach a
consensus, hence, updates of review scores do not necessarily indicate a bias in reviewers’ judgements of the
proposal quality and instead can be seen as attempts to decrease the inconsistency of evaluations. In our
work, we design the experiment to remove the group deliberation component of peer review by eliminating
the discussion stage of the process, and measure the bias in reviewers’ attitude towards the submission.

Another widely documented bias (Rosenthall [1979; [Moscati et al.l [1994; |Callaham et al.l |[1998; [Emerson
et al.l 2010, and others) that manifests in peer review is the positive-outcome bias also known as the file
drawer problem. This bias results in reviewers judging soundness of the experimental works depending on
the outcome of the study: works in which the null hypothesis is rejected are rated more favourably than
otherwise equal papers that show nonsignificant results.

One difference between the social influence, file drawer problem and resubmission bias which may result in
different cognitive heuristics responsible for the effects is the stage of the review process at which the stimulus
is received by reviewers. In case of the social influence, reviewers get biased by signals they receive after the
review process and this bias can be attributed to the desire of consensus, attempt to improve the accuracy of
a review or aim to achieve some other social goals (Resnik and Smithl [2020; |Teplitskiy et al.l 2019} |Cialdini
and Goldsteinl |2004). The file drawer problem is induced by information observed during reviewing and may
be attributed to the desire of accepting “newsworthy” (i.e., positive) studies for publications (Callaham et al.|
1998; |[Lynch et al., 2007). Finally, the incarnation of the resubmission bias we study in this work completes
the picture and is related to the information reviewers receive prior to reviewing submissions.

130



Confirmatory bias — a tendency of people to emphasize evidence that support their views and ignore or
misinterpret those that do not — is another relevant effect connected to prior beliefs of reviewers. It was
identified in context of peer review by [Mahoney| (1977) who conducted an experiment in which reviewers
were exposed to different versions of the manuscript with identical experimental procedure but different
directions of the obtained results (either confirming or disproving the beliefs of reviewers). It turned out that
reviewers who received the version contradicting their theoretical perspective were significantly harsher in
their evaluations than those who received the version supporting their views. In Section [5| we draw further
connections between the resubmission and confirmatory biases.

A separate line of work (Tomkins et al.l [2017; Blank, 1991} |Okike et al. 2016| and others) studies the
presence of various biases, including gender, affiliation and fame biases in single-blind peer review (i.e., when
author identities are visible to reviewers). The work of [Tomkins et al.| (2017) is of particular interest as it
identifies strong fame and affiliation biasesﬂ in reviewers’ evaluations. As a result of this work, WSDM — a
premier conference in web-inspired research — switched to double-blind reviewing (i.e., author identities are
hidden from reviewers), demonstrating the potential impact of empirical research on peer-review practices.

Finally, our work contributes to the growing literature in computer science, both theoretical and empirical,
that aims to understand and improve the conference peer-review process. These works develop methodologies
to address various biases and other issues in peer review such as miscalibration (Roos et all 2011; |Ge
et al.l 2013} (Wang and Shah! |2019)), commensuration bias (Noothigattu et al., |2020), strategic or dishonest
behavior (Aziz et al.l [2019; |Xu et all [2019; |Stelmakh et al., [2021b} |Jecmen et al. 2020)), biases with respect
to author demographics (Tomkins et all 2017 |Stelmakh et al.; |2019; Manzoor and Shah| [2020), and methods
for better assignments of reviewers to papers (Garg et al. {2010} [Charlin and Zemel, [2013; Kobren et al., [2019;
Fiez et al., [2020; Stelmakh et al., [2021al). We envisage that the biases discussed in the current paper may be
mitigated by a combination of policy guidelines and such computational techniques.

3 Experimental setup

To test our research hypothesis of presence of the resubmission bias, we design a randomized controlled
experiment that replicates the relevant components of the peer-review pipeline of machine learning conferences
while giving us more control over the resubmission signal received by reviewers. Two main components of the
peer-review process are pools of papers and reviewers, and we now describe how these pools were constructed.

Papers We solicited m = 19 anonymized preprints in various sub-areas of machine learning. To ensure that
participants of the experiment cannot obtain a signal about a paper being a resubmission from anywhere
outside of the experimental context, we restricted the pool of papers to works that had not yet been accepted
to any conference or journal and had never been submitted to conferences hosted by the openreview platform
or any other venue that makes the list of rejected submissions publicly available. We note that in machine
learning it is common to publish preprints on arXiv (arxiv.org) and we allow papers available on arXiv to
be used in the experiment. Additionally, we allow papers that were previously presented at workshops — less
formal and prestigious venues without proceedings — because it is also common to present a preliminary
version of the work in a workshop and then submit the full version to the conference.

The final pool of papers consisted of working papers, papers under review, workshop publications and
unpublished manuscripts. The papers were 6-12 pages long excluding references and appendices (a standard
range for many ML and CS conferences) and were formatted in various popular journals’ and conferences’
templates with all explicit venue identifiers removed.

Reviewers The reviewer pool of a typical machine learning conference consists of researchers at various
seniority levels, working in areas covered by the conference. Perhaps unique to ML, a recent surge in the
number of papers submitted to leading conferences has forced organizers to expand the reviewer pool by
relaxing the qualification bar, that is, by introducing rather junior researchers to the reviewer pool: for
example, 33% of the NeurIPS 2016 reviewers (1082 out of 3233) were graduate students (Shah et al.| |2018]).
Using data on the structure of the reviewer pool of the ICML 2020 conference, we estimate that approximately

I Meta-analysis they perform also reveals a bias against female-authored submissions.
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35% of the reviewers are rather junior individuals who self-nominated and satisfied the screening requirements
of having at least two papers published in some top ML venues and being a reviewer for at least one top ML
conference in the past. Overall, we conclude that a significant fraction of ML reviewers are novices and in this
study we concentrate on the population of novice and junior reviewers. We admit that in this work we do not
approximate the general reviewer population by leaving out more experienced reviewers, but notice that at
the ICML 2020 conference each submission was assigned to at least one reviewer from the aforementioned
subset, making it a significant part of the reviewer community.

To recruit participants, we messaged mailing lists of five large large, top US universities (CMU, MIT,
UMD, UC Berkeley and Stanford) and targeted master’s and junior PhD students working in ML-related
fields. The invitation also propagated to a small number of students outside of these schools through the word
of mouth. The recruiting materials contained an invitation to participate in the ICML reviewer-selection
experiment (selection of reviewers was indeed a key goal of the experiment and we studied the resubmission
bias on top of it). Specifically, we asked participants to write a review for one paper and promised that those
who provide a high-quality review will be invited to join the ICML 2020 reviewer pool. Being a reviewer at
the flagship ML conference is a recognition of one’s expertise and we expected that this potential benefit will
motivate students to join our experiment. As a result, we received responses from n = 200 candidates, more
than 90% of whom were master’s and PhD students or recent graduates of the aforementioned universities,
and all of them were added to the pool of participants without further screening. The research hypothesis we
study in this work may be sensitive to awareness of participants; therefore, we employed deception and did
not reveal the dual goal of this work to participants, that is, subjects were unaware that in parallel with
selecting reviewers for ICML, we also want to measure the impact of the resubmission signal on the reviewers’
attitude towards papers they review.

The experimental procedure closely followed the initial stages of the standard ML conference peer-
review pipeline and was hosted using Microsoft Conference Management Toolkit (https://cmt3.research,
microsoft.com). First, we asked participants to express their interest in reviewing specific papers by entering
bids that take the following values: “Not Willing”, “In a Pinch”, “Willing” and “Eager”. Thirteen participants
did not enter any bids and were removed from the pool. The remaining participants were active in bidding
(mean number of “Willing” and “Eager” bids is 4.7) and we assigned all of them to 1 paper each, where we
tried to satisfy reviewer bids, subject to a constraint that each paper is assigned to at least 8 reviewers. As a
result, 186 participants were assigned to a paper they bid either “Willing” or “Eager” and 1 participant was
assigned to a paper they bid “In a Pinch” (this participant did not bid “Eager” or “Willing” on any paper).

Finally, we instructed participants that they should review the paper as if it was submitted to the real
ICML conference with the exception that the relevance to ICML and the formatting issues (e.g., page limit,
margins) should not be considered as criteria. To help participants in writing their reviews, we provided
reviewer guidelines adapted from NeurIPS instructions (see supplementary materials on the website of the
author of this thesis) that discuss the best practices of reviewing. We gave participants 15 days to complete
the review and then extended the deadline for 16 more days to accommodate late reviews as our original
deadline interfered with the final exams at various US universities and the US holiday period.

Unbeknown to participants, we allocated half of them to the test condition and half to the control condition
uniformly at random. Participants in the control condition did not receive the resubmission signal while
subjects in the test condition were notified that the paper they are reviewing was rejected at the NeurIPS 2019
conference. Since the goal of the experiment declared to participants was to test out a new approach towards
recruiting reviewers, the presence of the resubmission signal could have been confusing for the participants
as this information is irrelevant to the task. To ensure that the presence of the signal does not look odd to
reviewers, we incorporated it in a small author checklist placed on the first page of each submission as shown
in Figure |I| Participants in the control condition received submissions with a single-item checklist asking
about the code submission, while participants in the test condition were additionally informed that the paper
is a resubmission.
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Author checklist:

Author checklist: o Ifapplicable, will you make the code and data publicly available upon acceptance?
o Ifapplicable, will you make the code and data publicly available upon acceptance? Answer: Yes
Answer: Yes o Was this paper submitted to NeurIP$'19?

Answer: Yes, the paper was rejected from NeurIPS$
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Figure 1: Different versions of checklists shown to reviewers in the test and control conditions. The answer to
all questions were “Yes” for all papers in both conditions.

4 Analysis of the experiment

Out of 187 participants who received a paper for review, 134 handed in the reviews (response rate of 71.7%).
The remaining reviewers are excluded from subsequent analysis. Additionally, one of the participants misread
the instructions and wrote a one-line review, rejecting the paper based on a minor violation of the standard
ICML page limit. This participant was also excluded from the analysis as formatting violation was not
considered as a review criterion in the experiment. Table [I] compares populations of reviewers between the
test and control conditions using demographic information available to us.

The review form offered to participants (included in supplementary materials on the website of the author
of this thesis) was adapted from the NeurIPS 2019 form and contained 3 fields for open-ended feedback and 6
multiple choice questions in which reviewers were asked to give the overall score to the submission (10-point
Likert item), evaluate the submission on 4 criteria (Originality, Quality, Clarity and Significance, 5-point
Likert item for each criteria) and finally self-access their confidence in the scores assigned (5-point Likert
item). Options offered for multiple choice questions were ordered from the most negative to the most positive
and for the sake of analysis we associate these options to the numeric scales: 10-point scale for the overall
score and 5-point scale for the other questions (larger numbers indicate more positive evaluations)ﬂ In the
sequel of this section, we compare these values between the test and control reviewers to see whether the
resubmission signal significantly impacted the behaviour of reviewers in the test condition.

4.1 Testing procedure and effect size

In this work, we employ a modification of the permutation test (Fisher, |1935|) that accounts for the fact that
each paper is reviewed by different number of the test/control reviewers and is defined as follows. Recall
that m stands for the number of papers in the experiment, for each paper i € [m] we let R{™" (respectively
Rist) be a set of reviewers assigned to this paper in the control (respectively test) condition. Next, for any
reviewer j € R$™ we use Yij to denote a numeric evaluation given by reviewer j to paper i. Similarly, for
any test reviewer j € R we let X f denote their evaluation of paper i. With this notation, we define the

# PARTICIPANTS #WITH PRIOR REVIEW EXPERIENCE #WITH PUBLICATIONS

CONTROL 68 20 47
TEST 65 28 49

Table 1: Comparison of demographics of reviewers across the test and control conditions. All differences are
not significant at the level o = 0.1.

2We release numeric evaluations reported by reviewers and the dataset is available on the website of the author of this thesis.
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Our test statistic compares mean scores M " and M received by each paper i € [m] from the test and
control reviewers, respectively, and then averages differences of these scores across submissions. A negative
value of the test statistic implies that reviewers in the test condition are more harsh than those in the control
condition, whereas a positive value indicates that the test reviewers are more lenient.

Having defined the test statistic, we employ the permutation test to quantify the significance of its value.
To this end, we permute reviewers within each paper between the test and control conditions uniformly at
random, ensuring that the number of reviewers in each condition remains the same. We then recompute the
value of the test statistic for 10,000 permutations and compare these values with the original value of the test
statistic to obtain P-values.

In addition to reporting P-values of the test, we also provide the following measures of the effect size that
capture different aspects of the effect:

e Simple Effect Size First, we note that our test statistic measures the between-conditions shift of the
distributions of scores, that is, it represents the mean difference (in points of the corresponding Likert
item) between scores given by two groups of reviewers. Hence, the value of the test statistic 7 serves as a
natural measure of the unscaled (simple) effect size (Baguley, 2008). Note that the larger the absolute
value of the test statistic, the stronger the effect.

e Scaled Effect Size (adaptation of Cohen’s d) Following recommendations of Cohen (Cohenl 1992]),
we supplement the aforementioned simple effect size (which is expressed in the original units of analysis)
with its scaled version, making it independent of the corresponding units. While the scaling inevitably
obscures the interpretation of the resulting value, it helps to compare effect sizes between evaluations of
the overall score (measured on the 10-point Likert item) and criteria scores (measured on 5-point Likert
items). To report the scaled effect size, we use an adaptation of the Cohen’s d (Cohen, 1992):

where v is an upper bound on the variance of the terms M and M, i € [m], which is obtained by
using the boundedness of numeric evaluations Y and X. Formally, v = (k—=1)*/4, where k is the number of
points in the corresponding Likert item (10 for overall score and 5 for criteria scores). Note that we rely
on the upper bound to avoid inflation of the effect size as terms corresponding to different papers have
different variances, determined by the number of reviews written for this paper. The effect size computed
in this manner is conservative because it assumes the largest possible sample variance. Similar to the
simple effect size, the larger the absolute value of the scaled effect size, the stronger the effect.

e Relative Effect Size (stochastic superiority) To reduce the impact of the extreme numeric evaluations
on the effect size, we also consider the measure of stochastic superiority that is computed taking into
account relative rather than absolute differences (Vargha and Delaney, [2000):

A= T |Rtebt‘ < [Re| Z Z Z []I (Xij1 >}/Z_j2) +O.5~]I(Xfl :Yijzﬂ 7

746[ ] ze[m] lefR’;est ]‘2672;““

where I(-) is an indicator function that equals 1 if its argument is correct and 0 otherwise. The denominator
of this equation is the total number of (test, control) pairs of reviews written for the same paper. Each of
these pairs contributes 1 to the numerator if the test review is more positive than the control review and
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SiMPLE ES ScALED ES RELATIVE ES
P-VALUE  SIZE 95% CI S1ZE 95% CI SI1ZE 95% CI

OVERALL SCORE .036* -0.78 [-1.30,—0.24] —0.17 [-0.29,—0.05] 0.42 [0.32,0.52]
QUALITY 005%  —046 [-0.69,—0.23] —0.23 [-0.35,—0.11] 0.37 [0.27,0.46]
CLARITY 022%  —044 [-0.68,—0.19] —0.22 [-0.34,—-0.10] 0.43 [0.34,0.52]
SIGNIFICANCE 037%  —0.36 [-0.61,—-0.10] —0.18 [-0.30,—0.05] 0.43 [0.35,0.50]
ORIGINALITY .105 —-0.21 [-0.40,—0.03] —0.11 [-0.20,-0.02] 0.41 [0.32,0.50]
CONFIDENCE .902 -0.01 [-0.20, 0.177 -0.01 [-0.10, 0.09] 0.50 [0.42,0.59]

Table 2: Comparison of evaluations given by participants in the test and control conditions to papers assigned
to them for review. All P-values are two-sided and are computed by the permutation test with 10,000
permutations. Asterisk indicates significance at the level a = 0.05. Confidence intervals for effect sizes are
computed using 5,000 bootstrapped samples.

0.5 if the reviews contain the same numeric evaluation. Intuitively, this measure of the effect size equals to
the empirical probability of a randomly sampled pair of (test, control) reviews written for the same paper
having the test review more positive than the control (with ties broken uniformly at random). In contrast
to the previous measures of the effect size, the further the value of A from 0.5, the stronger the effect.

In addition to reporting the point estimates of the effect sizes, we also report bootstrapped 95% confidence
intervals computed over 5,000 iterations, where bootstrapping is performed at the level of papers. With all
the preliminaries introduced, we are now ready to present the results of our experiment.

4.2 Results

Table [2] compares evaluations given by reviewers from the test and control conditions. The results indicate that
reviewers in the test condition were significantly more strict in evaluating submissions, in average reporting
almost 1 point lower overall score on the 10-point Likert item (A = —0.78, 95% CI = [-1.30, —0.24]) than
reviewers in the control condition. The difference appears to be small but considerable and we provide
more discussion of the strength of the effect in the next section. Looking at the criteria score, we observe
the similar trend of reviewers in the test conditions being stricter. Comparing unit-independent effect
sizes (adaptation of Cohen’s d and stochastic superiority), we note that the bias manifests the most in the
evaluations of the submissions’ quality which is known to be of high importance for the overall evaluation of
the submission (Noothigattu et al.l |2020)).

Overall, the data presented in Table [2| supports our research hypothesis, suggesting that junior reviewers
are indeed susceptible to the resubmission bias. Notably, while the resubmission bias makes reviewers harsher,
it does not seem to impact the confidence of reviewers. However, we qualify that self-evaluations of the
confidence may not be a reliable measure of actual confidences, due to other biases manifesting in parallel.
Indeed, as reviewers participate in the experiment to receive the invitation to join the pool of ICML reviewers,
they may be reluctant to report too high or too low confidence as it may hypothetically hurt their chances.
This hypothesis agrees with the observed data as 122 out of 133 reviewers reported confidence level 3 or 4 on
the 5-point Likert item (recall that larger values indicate higher confidence).

As a final remark, we note that reported bootstrapped confidence intervals may be slightly more inaccurate
than one would expect for the given sample size due to specific nature of data. Indeed, 133 subjects of the
experiment were broken into two groups (test and control) and distributed across 19 papers. The bootstrapping
was performed at the level of papers, that is, for each paper we bootstrapped test and control reviewers
from the actual test and control reviewers assigned to this paper. The sample size for each paper is small
and hence the resulting intervals could capture the excessive variance or underestimate the actual variance.
Nevertheless, the combination of different measures of the effect size and the results of the permutation test
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(which is guaranteed to control the false alarm probability even under the small sample size) suggest that the
effect is present in the data.

5 Discussion

The experiment we conduct in this work identifies the presence of the resubmission bias that manifests in
junior reviewers being significantly harsher in evaluating submissions that they know were previously rejected
from similar venues. The design of our experiment ensures the absence of unobserved confounders that could
drive the result, as we obtain reviews for the same submission in both test and control conditions. In this
section, we discuss some aspects of our experiment and suggest directions for future work.

Strength of the effect The size of the impact of the resubmission bias on the overall score received by
submissions appears to be small according to the measures of the effect size we use in this work. We note,
however, that top machine learning and computer science conferences are highly competitive and even small
changes in reviewers’ scores may have significant impact on the outcome of a submission and more generally
on the researchers’ career (Thurner and Hanel, 2011; |Squazzoni and Gandelli, 2012). As a concrete example,
data from the ICML 2012 conference (Langford, [2012b)) demonstrates that papers with mean reviewer score
2.67 (on a 4-point Likert item) were 6 times more likely to be accepted than papers with mean score 2.33: the
difference between these scores is a single point decrease in a single review. While this data is observational
and does not account for potential unobserved “true quality” of submissions, it suggests that even small
effects may result in large changes in the outcomes.

Next, we note that reviewers’ evaluations are known to be subjective and have a high variance (Kerr,
et al., [1977; Mahoney, [1977; |[Ernst and Reschl, (1994; |Bakanic et al., |1987; [Lamont, 2009)). As a result, the
effect that would be perceived as “strong” in a hypothetical within-subject experiment may be much less
prominent in the between-subject design due to additional variance in evaluations due to subjectivity.

Finally, the pool of papers we have is diverse as it contains both papers that are likely to be accepted to
the top conferences and papers that are not. In absence of the ground-truth ranking of papers and due to a
limited sample size, we cannot look closer at the strength of the bias as a function of a paper quality, but past
work suggests that some biases may be especially prominent in a subset of borderline papers (Blank, [1991)).
As a direction for future work, it would be interesting to understand the extent of the resubmission bias with
a breakdown by the quality of the submission and some characteristics of reviewers (e.g., experience).

Population of participants The data obtained in this experiment unfortunately does not allow us to
decisively align the population of the experiment participants with the general population of top-tier machine
learning conference reviewers. Moreover, most of participants of the experiment would not be invited to join
the reviewer pool of the ICML 2020 conferences through the standard ways of reviewer recruiting. However,
as a result of the experiment, 52 participants whose reviews were found to be strong enough were invited to
join the ICML reviewer pool. Therefore, these participants allow us to make some indirect comparisons to
the general reviewer pool and we now present some relevant results. For a detailed analysis of performance of
reviewers recruited through our experiment in the real ICML conference, we refer the reader to the companion
paper (Stelmakh et al.l 2021c).

Figure [2a] juxtaposes the lengths of reviews written by different populations of reviewers at different
venues. If we treat the length of a review as a measure of diligence, then we can see that reviewers selected
in our experiment are not only more diligent than other participants of the experiment, but are also more
diligent than the general reviewer population at the ICML conference. Perhaps surprisingly, even if we
consider the participants of our experiment who did not get invited to review for the main conference, the
length of their reviews stochastically dominates the length of the reviews written by general ICML reviewers
with a significant margin, suggesting that they put a non-trivial effort in writing reviews.

Next, Figure compares independent evaluations of review quality between the general population
of ICML reviewers and reviewers recruited through our experiment. In the ICML review process each
paper is assigned to several reviewers and one area chair. The area chairs are in charge of overseeing the
reviewer activity, and at the end of the process, evaluate each reviewer on a 3-point Likert item: “Failed to
Meet Expectations” (score 1), “Met Expectations” (score 2) and “Exceeded Expectations” (score 3). As
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Figure 2: Comparison of participants of the experiment with the general population of ICML reviewers.

seen in Figure experimental reviewers appear to produce reviews of high quality according to the area
chair’s ratings, being on average better than general population of reviewers (Nexperimental = 111, Ngeneral =
11624, A =0.18, P < .001)f]

As a word of caution, we note that comparisons we make in this section are based on observational data
and may be influenced by confounding variables. For example, our experiment and the real conference employ
different reviewer forms that could impact the length of the reviews. Additionally, experimental reviewers
received at most 3 papers for review at ICML and only 1 paper in the experiment while general ICML
reviewers received up to 6 submissions. There were also some other subtle differences between experimental
and general reviewers in the assignment procedure of ICML that could contribute to the observed result.

Subject to the aforementioned caveats, indirect evidence presented in Figure[2suggests that the participants
of the experiment who got invited to join the ICML 2020 reviewer pool are comparable to the general population
of top ML conference reviewers in terms of the length and quality of their reviews.

However, we underscore again that the findings of this work must be interpreted with care and must not be
overgeneralized to a more senior population of reviewers. Indeed, a past study of reviewers’ behaviour (Teplit-
demonstrated that seniority and expertise of reviewers impact their behaviour and hence
serve as confounding factors. Therefore, we do not know whether the results reported in this chapter extend
to the whole reviewer pool, and an interesting direction for future work is to understand the presence of the
resubmission bias in the general population of reviewers.

Impact of this study on the reviewer-selection process Recall that we conducted this study on top
of the main experiment whose primary goal was to select participants to join the ICML reviewer pool. To
minimize the effect of this study on the main experiment, prior to the selection process we removed numeric
evaluations given by participants from the reviews, so the selection was based solely on the textual part of
reviews. We then manually analyzed reviews that fall in the study team members’ area of expertise, asked
authors to comment on the review quality, and crowdsourced expert opinions for reviews that we were unable
to evaluate ourselves. Combining feedback from these sources, we eventually invited 52 reviewers to join the
ICML reviewer pool: 20 reviewers from the test condition and 32 reviewers from the control condition. The
difference between the invitation rates appears to be insignificant at the level & = 0.05 (A = 0.16, P = 0.075).

Cognitive mechanism of the resubmission bias While in this work we do not aim to identify the
cognitive mechanism of the resubmission bias, we now briefly comment on its relationship to several relevant

3To evaluate significance, we use a permutation test treating the rating of each review as an independent random variable.
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cognitive biases known from general psychological literature.

e Anchoring (Tversky and Kahneman, [197]; |Strack and Mussweiler|, [1997; [Mussweiler and Strack, [2001)
Human judgements and evaluations are known to depend heavily on an initial piece of information
(anchor), even when the anchor is obviously irrelevant (e.g., a number generated by the wheel of fortune).
The signal about the previous outcome received by reviewers may be seen as an anchor that prevents
them from adjusting to a positive opinion about the paper; therefore, anchoring may be responsible for
the resubmission bias.

e Social proof (Aschl, [1951]; |Baron et all, 1996 |Resnik and Smith, |2020; |Cialdini and Goldstein, |2004)
When being a part of a group, individuals are known to be susceptible to social influence, often exhibiting
conformity to the opinion of the group. While in our experiment we removed the group deliberation
component of the review process and participants were acting individually, they could consider the
rejection from the previous venue as a decision made by a group of more experienced reviewers and decide
to comply, deferring to the authority.

o Confirmatory bias (Mahoneyl, |1977; |Lord et al) |1979; |Rabin and Schrag, |1999; |Garcia et all 2020)
Once having a belief about the state of the world, people tend to be selective in accepting new evidence:
evidence that supports their views gets accepted more easily while contradicting evidence may be ignored
or misinterpreted. In this paradigm, the resubmission bias can contribute to creating an initial belief that
the paper under review is of a low quality that can later be exacerbated by a biased interpretation of
strength and weaknesses of the submission.

e Hindsight bias (Fischhoff and Beyth, |1975;|Hawkins and Hastie, 1990; Roese and Vohs, |2012) and Outcome
bias (Baron and Hershey, |1988; |Allison et al., |1996; Marshall and Mowen, |1995; |Gino et al., |2008)
Hindsight bias (“I knew it all along”) is a tendency of people to overestimate the predictability of the
event after it becomes observed. Outcome bias is a slightly different effect that manifests in distortion
of human judgements of decisions. When a stochastic outcome of the decision is observed, even having
all the information available to the decision-maker at the time of the decision, people tend to judge the
quality of the decision differently depending on whether they view the outcome as good or bad. While
these effects do not directly correspond to the resubmission bias we study in this work, they suggest that
availability of outcome information can adversely impact the evaluations.

Despite all of the above biases are known to be present in human judgements, their presence in peer review is
not obvious because of the nature of the task performed by reviewers. Indeed, the reviewing task is analytical
and requires rational thinking, thereby potentially reducing the reliance on heuristics responsible for cognitive
biases (Stanovich, [1999; Kahneman and Frederickl, [2002). For example, |Gino et al.| (2008), in context of the
outcome bias, show that the outcome information biases participants less when they use rational mindset.
Given that the task conducted by participants of the experiment of |Gino et al|(2008) is much less demanding
than reviewing a paper, one could hypothesize that in peer review the cognitive heuristics may be overridden
as reviewers naturally engage in rational and analytical thinking. However, our study identifies the presence
of the resubmission bias in reviewers’ judgements, demonstrating that the resubmission bias is strong enough
to manifest even if reviewers put a non-trivial amount of cognitive effort into their work, as evidenced by the
length of the reviews and expert judgements.

On general idea of reusing reviews In this work we do not aim to justify or oppose the idea of reusing
reviews and do not say whether the resubmission bias is desirable or not. On the one hand, top-tier conferences
are overloaded with substandard-quality papers making multiple rounds of submissions without major changes
in a hope that they will get accepted at some point. Availability of past reviews could aid in identifying such
submissions and optimizing the review efforts with respect to them, thereby reserving reviewers’ effort for
stronger papers. Additionally, when authors are aware of the resubmission bias, they may evaluate their work
against higher standards and refrain from submitting works that are not yet in perfect shape to avoid the
adverse effect on subsequent resubmissions, thereby further decreasing the load on reviewers.

On the other hand, the amount of randomness in the review process observed in several experi-
ments (Lawrence and Cortes, 2014} Price| 2014; [Pier et al., 2018) and in a multitude of anecdotal evidence
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(for example, see a survey of Nobel Prize laureates in economics by |Gans and Shepherd|[1994) suggests that
even strong papers that do not require revisions can be rejected by pure chance. It is also known (Travis and
Collins| |1991; [Lamont}, [2009) that works that are novel or not mainstream, particularly those interdisciplinary
in nature, face significantly higher difficulty in gaining acceptance. All these works can be put at significant
disadvantage if reviewers are exposed to the resubmission signal as they may not have major aspects to be
improved.

While in this work we do not resolve the aforementioned dichotomy, we identify the presence of the
resubmission bias in reviewers’ decisions and measure its effect size, letting the community and conference
organizers decide on its desirability. Specifically, to perform the randomized controlled trial we choose perhaps
the simplest format of exposing the previous outcome to reviewers, omitting the content of reviews received
by submissions at past venues and withholding author statements that could explain changes (if any) made
in the manuscript after the previous rejection.

In its simplicity, our stimulus can perhaps be seen as a point on a spectrum between two ways of exposure
to the resubmission signal employed in the real world: the openreview system allows subsequent reviewers
to see that the paper was rejected and exposes any damning or hypercritical past reviews without letting
authors present their view beyond what is stated in the discussion. In contrast, some other venues allow
authors to present their case more clearly. Exploring the wider range of the aforementioned spectrum and
identifying the desirable point on it (if any) is an interesting direction for future work.

Overall, the questions of whether the resubmission bias is desirable and how to reuse the reviews from the
past venues in a fair and efficient way is an open question that requires a discussion in the community. In
this work, we provide some concrete evidence that can help conference organizers to make informed decisions
when designing the peer-review system. A promising direction for the future work is to evaluate the proposal
of reusing reviews in a holistic manner, studying the interactions between different aforementioned positive
and negative effects both theoretically and empirically.
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Chapter 7

A Large Scale Randomized Controlled
Trial on Herding in Peer-Review
Discussions

1 Introduction

In this chapter, we continue the effort on scrutinizing various parts of the review system and report the
results of a large-scale randomized experiment on the discussion stage of scientific peer review.

Discussion stage in scientific peer review In many journals (e.g., Nature and PNAS) reviewers do
not communicate with each other, and decisions are made by editors based on independent opinions of
reviewers. In contrast, many conferences (which in computer science are considered to be a final destination
for research and typically ranked higher than journals) and grant committees (e.g., NSF) implement an
additional discussion stage that takes place after reviewers submit their initial independent reviews. The
purpose of the discussion stage is to allow reviewers to exchange their opinions about the submission and
correct each other’s misconceptions. As a result of the discussion, reviewers are supposed to reach a consensus
on the submission or boil their disagreement down to concrete arguments that can later be evaluated by
chairs of the selection committee.

Given that independent opinions of reviewers often demonstrate a substantial amount of disagree-
ment (Hofer et al.l 2000} |Obrecht et al.l |2007; |[Fogelholm et al., [2011} [Pier et al.l |2017)), the discussion stage
may seem to be an appealing opportunity to reduce the load on editors and chairs by letting reviewers resolve
their disagreements themselves. However, the aforementioned studies also demonstrate that while discussion
increases the within-group agreement, the agreement between two groups of reviewers participating in parallel
discussions of the same submission does not improve (and often the agreement across groups decreases after
within-group discussions). This finding hints that reviewers within the group reach a consensus not because
they identify the “correct” decision, but due to some other artifacts of group discussion. More generally, this
observation agrees with a long line of research in psychology (Asch) [1951; [Baron et al., |1996; |[Lorenz et al.,
2011; |Janis|, [1982; |Cialdini and Goldstein, 2004)) which demonstrates that decisions stemming from a group
discussion are susceptible to various biases related to social influence.

Importantly, lack of reliability in peer-review discussions may have far-reaching consequences not just for
a particular submission, but also for career trajectories of researchers due to the widespread prevalence of the
Matthew effect (“rich get richer”) in academia (Merton) [1968; |Squazzoni and Gandelli, |2012)). Thus, in this
work, we focus on investigating a cause of lack of reliability in peer review discussions and specifically focus
on examining the presence of herding behaviour.
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Herding behaviour We consider a specific manifestation of social influence that results in “herding
behaviour” — an effect when agents are doing what others are doing rather than choosing the course of
actions based on the information available to them (Banerjee) |1992} Bikhchandani and Sharmal 2000) — in
peer-review discussions. A long line of work on human decision-making establishes the presence of various
biases related to the first piece of information received by an individual (Tversky and Kahneman| 1974;
[Strack and Mussweiler, 1997; Mussweiler and Strack, 2001). In particular, these works show that an initial
signal received by a decision-maker (even when being clearly unrelated to the underlying task) often has a
disproportionately strong influence on the final decision. Projecting this observation on the group discussion
setting, we study whether the first argument made in the discussion may exert an undue influence on the
opinions of subsequent contributors, thereby leading to herding behaviour.

Past literature on group decision making (McGuire et al [1987; Dubrovsky et al.l [1991; Weisband, 1992)
indeed suggests that the herding behaviour (titled “first advocacy” effect in these works) may be present in
group discussionsﬂ With this motivation, in this chapter we analyze the presence of the herding effect in the
discussion stage of peer review.

To formalize the research question, we note that in the current review system it is often the job of the
discussion chair (area chair in conferences, committee chair in grant proposal review) to maintain the order
in which reviewers speak up in the discussion. In the absence of a standardized approach, some chairs may
call upon the reviewer whose initial opinion is the most extreme to initiate the discussion, others may request
the most positive or most negative reviewer to start. Another option for the discussion chair is to initiate
the discussion themselves or to choose an initiator based on their seniority or expertise. In the presence of
herding, the uncertainty in the choice of the strategy may impact the outcome of a paper or a grant proposal
(which becomes dependent on the essentially arbitrary choice of the discussion initiator by the chair), thereby
increasing the undesirable arbitrariness of the process. With the above motivation, in this work we aim
at testing the presence of the herding effect in peer-review discussions, investigating the following research
question:

Research Question: Given a set of reviewers who participate in the discussion of a submission,
does the final decision for the submission causally depend on the choice of the discussion initiator
made by the discussion chair?

2 Methods

In this section, we outline the design of the experiment we conducted to investigate the research question of
this chapter.

Setting of the experiment The experiment was conducted in the peer-review process of ICML 2020 —
a flagship machine learning conference that receives thousands of paper submissions and manages a pool of

Final
decision-making

Submission 8 weeks 10 weeks 14 weeks 16 weeks

Initial reviewing Author feedback Discussion

Figure 1: Timeline of the peer-review process of typical machine learning and artificial intelligence conferences.
Upon the release of initial reviews, authors of papers have several days to write a response to reviewers,
followed by the discussion stage. Finally, program chairs aggregate the results of the review process into final
decisions. The duration of each stage varies across conferences, and this figure corresponds to the ICML 2020
review process with the duration of each stage rounded to weeks.

1We discuss these past works in more detail in Appendix
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thousands of reviewers. The ICML peer review is organized in a double-blind manner and, similar to most
other top machine learning and artificial intelligence conferences, follows the timeline outlined in Figure

Given our focus on the discussion dynamics, we describe the discussion process of ICML 2020 in more
detail. During the discussion, reviewers (typically three or four per paper) and area chairs (one per paper;
the role of area chairs is equivalent to that of associate editors in journal peer review) have access to the
author feedback and are able to asynchronously communicate with each other (but not with authors) via
a special online interface. The discussion between reviewers is anonymous (i.e., reviewers do not see each
other’s names), but area chairs know identities of reviewers and vice versa. For the papers assigned to them,
each reviewer is expected to carefully read the author rebuttal as well as the reviews written by the other
reviewers, and participate in the discussion.

Idea of the experiment To investigate a causal relationship between the choice of the discussion initiator
and the outcome of a paper, the experiment we design in this work follows an A /B testing pipeline. Specifically,
the set of papers involved in the experiment is split into two groups that receive different treatments, where
the treatments are designed such that the difference in some observable outcomes of papers across groups is
indicative of the presence of herding. For the reasons that are clarified below, we refer to the two groups of
papers as Py and P_.

The key challenge of this work is to design appropriate treatments and we begin by specifying requirements
that the treatment scheme must satisfy. First, we intuitively expect herding (if present) to move the outcome
of a discussion towards the opinion of the discussion initiator. Thus, to achieve a high detection power, we
induce the following requirement:

Requirement 1: The treatment scheme should induce a difference across two groups of papers
in terms of the initial opinion of reviewers who initiate discussions within these groups. That is,
in P4, reviewers with a positive initial opinion should initiate discussion more often while in P_,
reviewers with a negative initial opinion should be more active in initiating discussion.

Moving on to the second requirement, we note that not every treatment scheme that satisfies Requirement
1 is valid for testing our research question. Indeed, one idiosyncrasy of conference peer review (at least in the
machine learning and artificial intelligence areas) is that some reviewers may choose to ignore the discussion.
In fact, the analysis of the review process of another leading machine learning conference NeurIPS 2016 (Shah
et al 2018) revealed that only 30% of 13,674 paper-reviewer pairs had a message posted by the reviewer in
the associated discussion, showing that the set of discussion participants is generally a strict (and somewhat
small) subset of reviewers assigned to the paper. Thus, in the conference peer-review setting, any intervention
that impacts the order in which reviewers join the discussion may also impact the population of reviewers
who participate in the discussion, thereby introducing a confounding factor in our analysis. To mitigate this
issue, we introduce another requirement that must be satisfied by the treatments:

Requirement 2: The treatment scheme should not introduce any difference across two groups
of papers other than in the opinion of the discussion initiator. That is, distributions of the
participating reviewers and other characteristics of the discussion should be the same across Py
and P_.

We note that in some settings (e.g., panel discussion in grant proposal review where all reviewers are
required to participate) Requirement 2 (at least its part about the distribution of participating reviewers)
is naturally met. However, as our experiment is implemented in conference peer review, we impose this
requirement to remove associated confounding factors.

Treatment scheme Keeping Requirements 1 and 2 in mind, we now introduce the treatment scheme that
we use in the experiment. The key component of our treatment scheme is a proxy towards the opinions of
discussion participants. For this, recall that discussions begin after the initial reviews are submitted. Thus,
we use overall scores given in the initial reviews to identify reviewers with the most positive and the most
negative initial opinions about the paper. With these preliminaries, we execute the following treatments:
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e Treatment for the positive group of papers P

— Step 1 We ask a reviewer with the most positive initial opinion about the paper to initiate the discussion.

— Step 2 We then ask a reviewer with the most negative initial opinion to contribute to the discussion.
e Treatment for the negative group of papers P_

— Step 1 We ask a reviewer with the most negative initial opinion about the paper to initiate the discussion.

— Step 2 We then ask a reviewer with the most positive initial opinion to contribute to the discussion.

Both treatments consist of two steps: in the first step, a reviewer with an extreme opinion about the
paper is asked to initiate the discussion. In the second step, the reviewer whose opinion is on the another
extreme of the spectrum is asked to contribute to the discussion. Importantly, both treatments proceed to
Step 2 (after some waiting time) even if the reviewer requested to initiate the discussion in the first step fails
to fulfil the request.

Let us now discuss the design of the treatment scheme in light of the requirements we formulated earlier.
First, observe that the order in which reviewers with the most positive and the most negative initial opinions
about the paper are approached is different across treatments. Provided that a sufficiently large fraction of
reviewers comply with our requests, we should expect to see a difference in opinions of discussion initiators
across Py and P_ as stated in Requirement 1. Second, we note that Step 1 of the treatments alone may
induce a difference in the population of reviewers who participate in the discussion across P4 and P_. To
remove this confounding factor, both treatments implement Step 2 that is designed to “balance” the impact
of Step 1, thereby aiming to satisfy Requirement 2.

Overall, we designed the intervention with a goal of satisfying the aforementioned requirements. However,
a priori we cannot guarantee that these requirements are indeed satisfied in the real experiment. For example,
Requirement 2 is not satisfied if the balancing part (Step 2) of the treatments fails to equalize the populations
of participating reviewers across conditions. To further support our experimental methodology, in Section
we empirically check for satisfaction of the stated requirements.

As a final remark, we note that ideally, we would like to fully control the choice of the discussion initiator
for each paper, thereby implementing the conventional randomized controlled experiment. However, in the
conference peer-review setup, organizers have only limited ability to impact the behaviour of reviewers. Thus,
our treatment scheme follows the concept of the randomized encouragement design (West et al., |2008), in
which the treatments are not enforced, but encouraged.

Details of the experiment Let us now clarify some important aspects of the experiment.

e Sample size In 2020, ICML received more than 5,000 paper submissions out of which 4,625 papers
remained in the process (i.e., were not withdrawn) at the time when the discussion period began. While
we would like to run the experiment using all these papers, we note that some reviewers may be the
most positive or the most negative reviewers for multiple papers, being overburdened with requests to
initiate (contribute to) the discussion of these papers.

To limit the additional load on reviewers induced by our experiment, for each reviewer we limit the
number of papers the reviewer is asked to initiate the discussion or contribute to the discussion to one
each (in total, each reviewer may receive at most two requests). This condition puts the limit on the
number of papers we can use in the experiment. Consequently, to compensate for the potential decrease
of power, we focus the scope of the experiment on the borderline papers with some disagreement between
reviewers as we expect the effect (if any) to be the most prominent in these papers. As a result, we
end up with a pool P of 1,544 papers used in the experiment that we split into P;. and P_ uniformly
at random subject to the aforementioned constraint on the additional reviewer load (see criteria for
borderline papers and other details in Appendix . The experiment also involved 2,797 reviewers
who participated in the discussion of at least one paper from the experimental pool.
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Implementation of the treatment scheme To ensure that the behaviour of area chairs and reviewers
is not altered by awareness of the experiment, we implement the treatment scheme at the level of
program chairs and do not notify other committee members about the experiment. Specifically, the
requests to initiate or contribute to the discussion were sent over email on behalf of the program chairs.
To further maximize the power of our test, we first open the discussion interface without notifying the
general pool of reviewers, and implement Step 1 of both treatments, giving reviewers more time to fulfil
our request.

Statistical analysis We employ two-sided permutation test (Fisher} |1935) to test for difference across
groups P4 and P_. Specifically, the analysis is conducted at the level of papers and we compute p
values over 10,000 permutations of papers across conditions.

Data and code availability We note that the release of experimental data would compromise the
reviewers’ confidentiality. Thus, following prior works that empirically analyze the conference peer-
review process (Tomkins et al., 2017; |Shah et al.l 2018; [Lawrence and Cortes, |2014)), and complying
with the conference’s policy, we are unable to release the data and code from the experiment.

Avoiding conflict of interests Three members of the study team were involved in the ICML decision-
making process. Nihar Shah served as an area chair and Aarti Singh and Hal Daumé III were program
chairs. To avoid the conflict of interests, Nihar Shah, Aarti Singh and Hal Daumé III were not aware of
what papers were used in the experiment. Moreover, we excluded papers chaired by Nihar Shah from
the analysis.

Ethics statement Finally, we note that if the herding effect is present in ICML discussions, our
intervention may place some papers (P_) at a disadvantage, while giving an unfair advantage to other
papers (P;). We carefully considered this risk when designing the experiment and concluded that it
does not exceed the risk that is otherwise present in the review process. Indeed, currently, there is no
standardized approach towards choosing discussion initiators and it is often the job of the discussion
chair to maintain the order in which reviewers speak up in the discussion. Different discussion chairs
implement different strategies and, under the presence of herding, this variability results in randomness
in decisions. Hence, even if herding is present, the impact of our intervention would not go beyond the
unfairness that is otherwise present in the review system. This study was analyzed by Carnegie Mellon
University’s Institutional Review Board that agreed with our reasoning and approved the study.

Additionally, to avoid the Hawthorne effect, we employ deception and do not notify reviewers about the
experiment. The deception was approved by Carnegie Mellon University’s Institutional Review Board
and we debriefed all participants after the end of the review process.

More details on the experiment design and exact schedule of our intervention are given in Appendix

3 Results of the experiment

In this section, we present the results of the experiment. First, we empirically check whether our treatment
scheme satisfies requirements formulated in Section [2| In that, we begin with some general statistics on the
discussion process to check satisfaction of Requirement 2 (Section . We then discuss the efficacy of the
intervention we employed (Section and confirm that Requirement 1 is well-satisfied. Finally, we conclude
with the analysis of the research question we study in this work (Section . For brevity, for any paper,
we use R, (respectively, R_) to refer to the reviewer with the most positive (respectively, negative) initial
opinion about the paper as determined by the overall scores given in the initial reviews.

3.1 Preliminary analysis (data to check for satisfaction of Requirement 2)

We begin with providing data-based evidence which lets us verify whether our treatment scheme satisfies
Requirement 2, that is, does not introduce differences across P, and P_ in characteristics other than the
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COMPARATIVE STATISTICS ON THE DISCUSSION PROCESS

Pt P-
1. NUMBER OF PAPERS 755 789
2. MEAN INITIAL SCORE (ALL REVS) 3.52  3.52
3. STANDARD DEVIATION OF INITIAL SCORES (ALL REVS) 112 1.11
4. MEAN INITIAL SCORE (REVS IN DISCUSSION) 3.44 3.46
5. PERCENTAGE OF PAPERS WITH ACTIVE DISCUSSION 97%  9T%
6. MEAN NUMBER OF DISCUSSION PARTICIPANTS (REVS + AREA CHAIRS) 3.14 3.06
7. MEAN DISCUSSION LENGTH (# MESSAGES) 4.41 4.24
8. PERCENTAGE OF PAPERS WITH R4 ACTIVE IN DISCUSSION 79%  79%
9. PERCENTAGE OF PAPERS WITH R_ ACTIVE IN DISCUSSION 87%  84%

Table 1: Comparison of some discussion statistics between two groups of papers (P, and P_) receiving
different treatments. Except Row 4, all values are computed using all papers including those with no
discussion. Permutation test at the level 0.05 (two-sided; before multiple-testing adjustment) with 10,000
iterations does not reveal significant differences between conditions in any of the criteria.

opinion of the discussion initiator. For this, Table [1| provides some comparative statistics on the discussion
process for the papers involved in the experiment. Overall, we note that many important parameters of the
discussion are similar across the two conditions. This observation provides quantitative evidence that the
randomization of papers to conditions occurred successfully and Requirement 2 is satisfied.

Looking closer at the most relevant parameters, we first focus on Rows 2 and 4 of that compare mean
overall scores (the overall score takes integer values from 1 to 6 where larger values indicate higher quality)
given by reviewers in the initial reviews, that is, before reviewers got to see the other reviews and the author
feedback. Interestingly, mean initial scores given by reviewers who participate in the discussion (Row 4)
appear to be lower than mean scores computed over all reviewers (Row 2), suggesting that those who give
lower scores are more active in discussing papers (see also Rows 8 and 9). However, there is no significant
difference between two groups of papers (P4 and P_) in these values. Hence, the data indicates that this
trend is independent of the choice of the treatment as requested by Requirement 2.

Next, the activity of reviewers with the most positive (respectively, negative) initial opinion in the
discussion (Rows 8 and 9) is similar across the two groups of papers. This observation supports the intuition
that our treatment scheme does not introduce a difference across conditions in the distributions of reviewers
who participate in the discussion. Finally, we note that most of the papers used in the experiment had some
discussion and the length of the discussion is similar across conditions (Rows 5 and 7). With this observation,
we conclude this section and note that data reported in Table [1| supports our treatment scheme in light of
Requirement 2.

3.2 Efficacy of the intervention (data to check for satisfaction of Requirement 1)

In the previous section we confirmed that our intervention did not introduce a difference across conditions in
metrics such as intensity of discussions and the population of participating reviewers. This observation suggests
that our treatment scheme satisfied Requirement 2 and indicates the appropriateness of our intervention.
However, in order for the experiment to have sufficient power to detect the effect, the intervention needs
to satisfy Requirement 1 and introduce a difference across conditions in the order in which reviewers join
the discussion of the papers. Indeed, if all the emails we sent to reviewers were ignored (i.e., our attempt to
impact the order failed), the subsequent analysis will not detect the phenomena even when the phenomena is
present.

Table [2] reports relevant statistics and indicates a large difference between positive and negative groups of
papers, suggesting that our intervention did impact the order in which reviewers joined the discussion. Indeed,
Rows 2 and 3 show that more than half of discussions in the positive group P, were initiated by reviewers

145



DOES THE INTERVENTION AFFECT WHO INITIATES THE DISCUSSION?

Py P- A A 95% CI  p VALUE
1. MEAN INITIAL SCORE (INITIATOR) 4.03 2.76 1.27 [1.15,1.39] < .001
2. PERCENTAGE OF DISCUSSIONS INITIATED BY R+ 53% 9% 0.44 [0.39,0.48] < .001
3. PERCENTAGE OF DISCUSSIONS INITIATED BY R—  15% 59% —0.44 [-0.48,—0.39] < .001

Table 2: The impact of the intervention on who initiates the discussion. To compute values for Row 1, we use
1,140 papers for which (i) the discussion was initiated, and (ii) the discussion initiator was a reviewer (and
not the area chair). For the last two rows, we use all papers including those with no discussion. Bootstrapped
confidence intervals are constructed for the difference of the relevant quantities between conditions. All p
values for the difference between P, and P_ are two-sided and computed using the permutation test with
10,000 iterations.

with the most positive initial opinion and only 15% were initiated by reviewers with the most negative initial
opinion. Conversely, in the negative group P_, reviewers with the most negative initial opinion initiated
the discussion a lot more often than reviewers with the positive initial opinion. This asymmetry results in
a considerable difference of scores given by discussion initiators in their initial reviews (Row 1). Overall,
Table [2[ suggests that our treatment scheme satisfied Requirement 1. Coupled with a large sample size, this
observation ensures that our experiment has a strong detection power.

3.3 Main causal analysis

Having confirmed that the intervention we implemented in the experiment reasonably satisfies the necessary
requirements, we now continue to the analysis directly related to the research question we study in this work.
Specifically, as we explained in the introduction and in Section [2] if herding behaviour exists, we expect it to
manifest in the final decisions being disproportionately influenced by the opinion of the discussion initiator.
Hence, given that for the positive group of papers P, the initial opinion of the discussion initiator was on
average significantly more positive than that of initiators of discussions for the negative group of papers P_,
we expect (if herding exists) to observe a disparity in the eventual acceptance rates between conditions.

Table [3| formalizes the intuition and performs the comparison of acceptance rates across papers that
received different treatments (Row 1). Additionally, Table [3| displays the updates of the scores made by
reviewers (Rows 2-5). Based on the presented data, we make two observations:

e First, the data does not indicate a statistically significant difference between acceptance rates in the

DOES THE INTERVENTION AFFECT THE OUTCOME OF PAPERS?

P+ P_ A A 95% CI  p VALUE
1. ACCEPTANCE RATE 0.21 0.25 —0.04 [—0.08,0.01] 122
2. CHANGE IN MEAN SCORE (INITIATOR) —0.10 0.20 —-0.30 [-0.37,—0.23] < .001
3. CHANGE IN MEAN SCORE (ALL REVS) 0.01 0.01 0.00 [—0.03,0.04] .949
4. CHANGE IN MEAN SCORE (REVS IN DISCUSSION) 0.03 0.02 0.01 [—0.04,0.06] .697
5. CHANGE IN STANDARD DEVIATION OF SCORES (ALL REVS) —0.23 —0.21 —0.02 [—0.05,0.02] .296

Table 3: The impact of the intervention on the final outcome of papers. For Row 2, we use 1,140 papers
for which (i) the discussion was initiated, and (ii) the discussion initiator was a reviewer (and not the area
chair). For Row 4, we use papers with discussion. For all other rows, we use all papers including those with
no discussion. Bootstrapped confidence intervals are constructed for the difference of the relevant quantities
between conditions. All p values for the difference between P, and P_ are two-sided and computed using
the permutation test with 10,000 iterations.
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two groups of papers (P4 versus P_). Thus, despite discussion initiators had considerably different
initial opinions about papers from P, and P_, the outcomes of the discussion were distributed similarly
across conditions.

e Second, the data on the score updates suggests that in their final evaluations, reviewers tend to
converge to the mean of initial independent opinions irrespective of the treatment we applied to a paper.
Indeed, Row 2 demonstrates that the initiators of discussions update the scores towards the mean of all
initial scores. Next, Rows 3 and 4 show that a significant update made by the discussion initiators is
compensated by the update made by other reviewers, such that the overall amount of change in the
mean scores is negligible. As expected, the outlined dynamics result in a significant decrease in the
variance of scores per paper, but the effect is the same for both groups of papers (Row 5).

Overall, we find no evidence of herding in the discussion phase of ICML 2020 peer review.

4 Discussion

The experiment we conducted in the present work aims at identifying the herding behaviour in the discussions
of the ICML 2020 conference. The results presented in Section [3] show that while we managed to achieve
an imbalance in the opinion of the discussion initiators across conditions, and despite past work having
documented an undue influence of the first piece of information on the final decision (Tversky and Kahneman),
1974; |Strack and Mussweiler], [1997; Mussweiler and Strack, [2001) in various other settings and applications,
the difference in the acceptance rates is not significant and hence there is no evidence of herding in peer review.
The absence of the effect suggests that the absence of a unified approach towards discussion management
does not result in an increased arbitrariness of the resulting decisions. Thus, the question of identifying the
source of the spurious agreement between peer reviewers observed in past works (Hofer et al.| [2000; Obrecht
et al., 2007; |Fogelholm et al., 2011} |[Pier et al.,|2017)) remains open.

Finally, we urge the reader to be aware of the caveats that we listed in Appendix [AT} While we do not
believe that any of these caveats affected the outcome of this experiment in a significant way, they may be
important for the design of follow-up studies.

Appendix

We provide supplementary materials and additional discussion. In Appendix we discuss several caveats
that should be taken into account when interpreting the results of this work. In Appendix we give
additional details on the experiment, including its timeline and selection criteria for participating papers P.
Appendix provides additional analysis of the collected data (see Caveat 4 in Appendix for motivation).
Finally, in Appendix [AZ] we discuss the relationship between the present study and past works on group
discussion.

A1l Caveats regarding the design and analysis of the experiment

Given that our intervention induced the strong difference in the order in which reviewers joined the discussions
(see Table , the absence of difference in score updates (see Table [3]) allows us to conclude with a high degree
of confidence that the choice of the discussion-management strategy does not impact the way reviewers update
their scores. Of course, herding (if present) does not necessarily need to manifest in how reviewers change
their scores after the discussion. Instead, it can change some other characteristics such as what reviewers
write in the textual messages which are later analyzed by the area and program chairs who make the final
decisions. To account for these potential manifestations, we compared acceptance rates between the groups
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of papers (see Row 1 of Table [3) and observed some difference in this quantity. However, this difference does
not appear significant despite the large sample size we had in the experiment, suggesting that even if present,
the effect has at most small size. That being said, we urge the reader to be aware of the following caveats
when interpreting the results of this work.

Caveat 1. The design of the intervention. Recall that our research question defines herding as a conditional
dependence of the outcome of a paper on the choice of the discussion initiator. The test and the intervention
we designed attempt to compare the outcomes of papers when the discussion is initiated by the most positive
versus the most negative reviewers with the motivation that this difference is expected to be the largest in the
presence of herding. Strictly speaking, the absence of a difference between these choices of the initiators does
not imply the absence of the difference between any other choices of the initiators: for example, it is possible
that the outcome of a paper would be impacted differently if we asked the reviewer with a non-extreme score
to initiate the discussion.

Caveat 2. The choice of papers. As noted in Section [2] in this experiment we tried to identify a set of
borderline papers as these papers are more susceptible to the impact of the herding effect if it is present.
However, our choice of the borderline papers was based on some indirect indicators and hence we could
potentially fail to uncover the set of true borderline papers which could reduce the power of our test.

To evaluate our choice of borderline papers, we use a rough classification of submissions into clear and
borderline cases made by the area chairs. Note that this classification was performed after the discussion stage
which could resolve the uncertainty present before the discussion stage when we selected the participating
papers. Hence, the fraction of borderline papers in the area chairs’ classification is a conservative estimate of
the pre-discussion fraction of borderline papers. Nonetheless, 30% of submissions used in the experiment were
classified by the area chairs as borderline cases in contrast to 18% of those not involved in the experiment
(A =0.12,p = .002). Hence, our choice of the borderline papers was better than random and the set of the
participating papers P contained a large fraction of papers for which the decisions were not clear before the
discussion.

Caveat 3. Satisfaction of Requirement 2 The validity of the conclusions we make is based on the assumption
that our treatment scheme satisfied requirements formulated in Section [2] Note that a violation of these
requirements not only could increase the false alarm probability, but could also reduce the power of the test.
The data we analyzed in Section [3.1} and Section [3.2] strongly supports the satisfaction of Requirements 1 and
2. However, as a note of caution, we remark that there is some space for potential violations of Requirement
2. Indeed, in Table [[] we establish that the marginal values of relevant indicators of discussion activity are
similar across groups. However, this observation does not imply that the value of these indicators for each
individual paper would not change if that paper was placed in the other condition. Hence, the the outcome
of this study should be considered together with this opportunity for the violation of Requirement 2.

Caveat 4. Spurious correlations induced by reviewer identity. In peer review, each reviewer participates
in the discussion of multiple papers. Similarly, each area chair manages several papers. Hence, strictly
speaking, the outcomes of two papers that have at least one reviewer in common (are managed by the same
area chair) may not be statistically independent due to correlations introduced by the reviewer (area chair)
identities. Additionally, the limit on the additional burden on reviewers introduced by our experiment (see
last subsection of Section |2)) makes allocation of papers P into groups P4 and P_ not fully uniform random
(some pairs of papers may be required to be placed in the same group to not exceed that limit). These issues
put a strain on the testing procedure because in contrast to the vanilla A/B testing framework which assumes
that samples are independent of each other, in our case we receive correlated samples. In the domain of
empirical studies of the peer-review procedure (Shah et al., [2018; Tomkins et al.l |2017; Lawrence and Cortes,
2014) such spurious correlations are usually tolerated, because otherwise the sample size would be negligible.
Additionally, simulations performed by |[Stelmakh et al.| (2019)) demonstrate that unless reviewers are involved
in the discussion of dozens of submissions, the impact of such spurious correlations is limited.

Nevertheless, in this work we take some additional steps to minimize the impact of these spurious
correlations. To this end, we simultaneously also perform the analysis on a subset of 937 papers P* = P UP*,
where Py C P4 and P* C P_ are constructed such that each reviewer is requested to initiate the discussion
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Step 1 of the All reviewers are Step 2 of the treatments is Step 2 of the treatments

treatments is requested to participate implemented for papers is implemented for
implemented in the discussion with initiated discussions remaining papers
| | T | T .
X—2 X X+1 X+4 X+ 25
Author feedback Official opening . .
period ends of the discussion Discussion ends

Figure 2: Timeline of the experiment. Day X is the day of the official discussion opening.

or contribute to the discussion of at most one paper from P* in totalEI This additional reduction of the
sample size allows us to limit the impact of the reviewer identity on the outcome of submissions. Of course,
by doing so we do not guarantee that there is no reviewer who participates in the discussion of more than one
paper from the set P*, but we guarantee that the discussion participants who are targeted by our treatments
are unique. Appendix gives more details on how sets P* and P} were constructed and presents the
results of additional analysis on this subset of the papers. Importantly, we note that this additional analysis
leads to the same conclusions as in Section B

Caveat 5. Opinion of the discussion initiator. In this work we used the scores given by reviewers in the
initial reviews to infer the pre-discussion opinion of reviewers and assumed that reviewers begin the discussion
from advocating these opinions. However, the fact that a reviewer has some pre-discussion opinion does not
guarantee that they advocate the same position in the discussion because the latter is also influenced by
other reviewers’ reviews and the author feedback. Indeed, past research (Teplitskiy et al.l 2019) suggests
that reviewers do listen to each other and may update their initial independent opinions in light of opinions
expressed in initial reviews of other reviewers. The data we obtained in the experiment suggests that while
such updates take place, their magnitude is small enough and does not break our intervention. Indeed, Row
2 of Table [3]and Row 1 of Table [2] indicate that reviewers with extreme pre-discussion opinions remain on the
different sides of the mean pre-discussion group opinion (Row 2 of Table 1)) even according to the final scores.
Thus, we conclude that our intervention succeeded in creating a difference in opinions of discussion initiators
across groups.

Caveat 6. Alternative model of herding. In this work we assume that the herding behaviour in peer review
manifests in final decisions being moved towards the position of the reviewer who initiates the discussion.
However, the data presented in Table [3| shows that initiators of the discussion tend to slightly update their
scores towards the mean of initial scores given by all reviewers. Hence, an alternative model of the herding
behaviour is that the sentiment demonstrated by the initiating reviewer carries over to other reviewers who
could change their behaviour accordingly. For example, the positive score update of initiators with a negative
initial opinion may demonstrate a positive sentiment, which could affect opinions of other reviewers in a
positive way. Under this alternative model of herding, we would expect papers from the negative group P_
to enjoy a higher acceptance rate than their counterparts from the positive group Py. While this agrees with
the observed acceptance rates reported in Table 3| we reiterate that the difference between the acceptance
rates is not significant and the effect size is small, so our test does not provide evidence in support of this
alternative model either.

A2 Additional details on the experiment

In this section, we provide additional details on the experimental procedure: timeline of the intervention and
selection criteria for papers that were used in the experiment.

2Compare to P = P4+ UP_ which is constructed such that each reviewer is asked to initiate the discussion for at most one
paper from P and contribute to the discussion of at most one paper from P (at most two requests in total).
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Timeline of the experiment The experiment was conducted over the course of 4 weeks of the ICML
2020 discussion process. Figure [2] depicts the pipeline implemented in the experiment To further increase the
power of the experiment, we unofficially opened the discussion portal two days before the scheduled beginning
of the discussion and executed Step 1 of both treatments by sending emails to corresponding reviewers. Step
2 of the treatments was then executed in two stages: first, one day after the official opening of the discussion,
we executed Step 2 for papers with already initiated discussion. We then waited for three more days before
executing Step 2 for all the remaining papers, irrespective of whether the discussion was initiated or not.

Through the first ten days of the experiment, we sent reminders to the reviewers who have not fulfilled
our request to initiate or contribute to the discussion of the corresponding papers. In order to avoid a
disproportional impact on the discussion participants across two groups of papers, we ensured that the total
number of reminders is the same for reviewers who were asked to initiate the discussion and reviewers who
were asked to contribute to the discussion.

Construction of the sets P, and P_ We now specify how the set P = P, U P_ of participating papers
(introduced in Section [2)) was constructed from the set of all m = 4,625 papers not withdrawn from ICML
2020 by the beginning of the discussion period. For this, recall that in Section [2] we mentioned that in order
to limit the additional load on reviewers, we require that each reviewer is asked to initiate the discussion
for at most one paper from P and contribute to the discussion of at most one paper from P (at most two
requests in total). To meet this requirement, we construct the target set of papers P such that each reviewer
is the most positive reviewer for at most one paper from P and the most negative reviewer for at most one
paper from P (the most extreme reviewer for at most two papers from P). To compensate for the associated
decrease in the sample size, we design the selection procedure such that P consists of borderline papers for
which the herding effect (if present) is expected to be the most prominent. Having P constructed, we split it
into P4 and P_ uniformly at random subject to the aforementioned requirement on the additional burden
on reviewers introduced by our intervention. More formally, sets P, and P_ were constructed using the
following three-step procedure:

Step 1. First, we identify the set of borderline papers as follows. The overall scores given in the initial
reviews were in the set {1,2,...,6} so for each paper i € [m], we let \; to denote the number of reviewers
assigned to the paper (typically \; equals 3 or 4) and let (61,0s,...,0y,) € {1,2,...,6}* to denote the
collection of overall scores given to paper ¢ in initial reviewsﬂ With this notation, using acceptance statistics
of the ICML 2019 conference, we construct a set of borderline papers 7 by identifying submissions that
satisfy the following criteria:

C1 The mean overall score is such that in ICML 2019 the paper is in the borderline category:

1
X 0; € [2.7,4.5].
X3 j:1
C2 The minimum and maximum overall scores are on the different sides of the decision spectrum:
max(f1,02,...,0y,) >4 and min(6y,0s,...,0y,) < 3.

Note that for each borderline paper i € 7 we are guaranteed that there is some disagreement between
reviewers.

Step 2. Having the set of borderline papers T defined, we construct P by greedily finding a subset of T
that satisfies the requirement of each reviewer being the most positive reviewer for at most one paper from
this subset and the most negative reviewer for at most one paper from this subset.

3Here, we adopt the standard notation [v] = {1,2,...,v} for any positive integer v.
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COMPARATIVE STATISTICS ON THE DISCUSSION PROCESS

PL P
1. NUMBER OF PAPERS 460 477
2. MEAN INITIAL SCORE (ALL REVS) 3.51 3.52
3. STANDARD DEVIATION OF INITIAL SCORES (ALL REVS) 1.22 1.20
4. MEAN INITIAL SCORE (REVS IN DISCUSSION) 3.42 3.45
5. PERCENTAGE OF PAPERS WITH ACTIVE DISCUSSION 96%  98%
6. MEAN NUMBER OF DISCUSSION PARTICIPANTS (REVS + AREA CHAIRS) 3.16 3.10
7. MEAN DISCUSSION LENGTH (# MESSAGES) 4.52  4.25
8. PERCENTAGE OF PAPERS WITH R4 ACTIVE IN DISCUSSION 8%  79%
9. PERCENTAGE OF PAPERS WITH R_ ACTIVE IN DISCUSSION 87% 85%

Table 4: Comparison of some discussion statistics between two groups of papers (P} and P*) receiving
different treatments. Except Row 4, all values are computed using all papers including those with no
discussion. Permutation test at the level 0.05 (two-sided; before multiple-testing adjustment) with 10,000
iterations does not reveal significant differences between conditions in any of the criteria.

Step 3. Finally, we split P into P, and P_ uniformly at random subject to the constraint that each
reviewer is requested to initiate the discussion of at most one paper and contribute to the discussion of at
most one paper (in total, each reviewer receives at most two requests).

A3 Additional analysis

In this section, we report additional analysis that aims to alleviate confounding factors mentioned in Caveat
4 of Appendix [AT] Specifically, we replicate the analysis presented in Section [3] conditioning on a subset 937
of papers P* = P UP* (see Caveat 4 in Appendix for motivation and specification of the set P*).

Construction of the sets P} and P* Recall that P* is a subset of the original set of participating
papers P greedily selected such that each reviewer is only approached once by our treatments (that is, is
asked to initiate the discussion or contribute to the discussion of at most one paper from P* in total). Given
that there exist many such subsets of approximately the same size, we facilitate tie-breaking by additionally
requesting that for each paper i € P* the most positive and most negative reviewers disagree in the initial
reviews by at least 2 points:

max(@l,ﬂg, .. "0>\i) — min(91,92, .. .79)\7.’) Z 2.

Hence, set P* has an additional property of containing papers with high disagreement between reviewers in
the initial reviews.

Additional analysis on P* We now replicate the analysis described in Section |3} conditioning on the set
of papers P*. First, mirroring the analysis on the full set of participating papers (Table , Table {4f indicates
that various parameters of the discussion are similar across the two conditions even after we condition on
the target set of papers P*. Hence, we also conclude that data supports our treatment scheme in light of
Requirement 2 and the intervention did not result in a difference across conditions in the distributions of
reviewers who participate in the discussion.

Next, we investigate the efficacy of our intervention and proceed to Table [5] that compares relevant
statistics. Observe that the values in Table [5| are very similar to those reported in Table [2 suggesting that
the intervention continues to introduce the required difference in opinions of discussion initiators between
the groups of papers even when we zoom in on the target subset of papers P*. Thus, we conclude that
Requirement 1 remains satisfied and out test continues to posses strong power.
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Having confirmed the efficacy of the intervention, we proceed to the comparison of the outcomes of
submissions across P* and P7. The results presented in Table |§| mimic those reported in Table [3| suggesting
that conditioning on the set of papers P* does not qualitative change the findings. The most notable
distinction between Table |§| and Table [3|is that the significance of the difference in acceptance rates (Row
1) becomes closer to the threshold of 0.05 after we condition on P*, but still does not cross it. Given that
the number of submissions involved in the experiment is large, we conclude that we do not observe strong
evidence of the herding behaviour even after conditioning on the set of papers P*.

A4 Relation to past work on group discussion

Past literature suggests the presence of herding behaviour in group discussions. McGuire et al.| (1987) observe
that the first solution proposed to a group predicts the group decision better than an aggregate of initial
opinions independently expressed in a pre-discussion survey. [Dubrovsky et al.| (1991) document an impact
of the interplay between the status of discussion participants and the opinion of the group member who
proposed the first concrete solution on the final group decision. Closest to the present work, [Weisband| (1992])
further investigates the herding effect in a semi-randomized controlled trial and declares that the initiators of
discussion manage to influence the group opinion when they step in after an initial general discussion of the
problem, that is, when they have some understanding of the general opinions of other discussants, but no
concrete decisions have been proposed.

In contrast, in this experiment, we did not detect herding in the peer-review discussion. Let us now discuss
the relationship of the current experiment to these past works. First, we note that the papers of [McGuire et al.
(1987) and [Dubrovsky et al.| (1991) study the herding effect when the discussion initiators are self-selected.
The difference between the self-selected and assigned initiators appears to be significant, because the former
may be associated with other personal qualities such as assertiveness and energy. Hence, our work is not
directly comparable to these studies as we attempt to randomize the identity of the discussion initiator.

The experiment of [Weisband! (1992) employs randomization and in addition to the self-selection scenario
considers the setup in which the first person to propose the solution to the group is chosen uniformly at
random. This work finds that the randomly assigned initiator exerts much smaller influence on the group
decision than the self-selected initiator. We caveat however, that in the experiment of Weisband| (1992),
the fact that the initiator is selected at random was known to the whole group before the beginning of
the discussion. Hence, it is plausible that other group members did not perceive the initiator as a leader
and could adjust their behaviour accordingly (Weisband, [1992). In contrast, in the present experiment the
non-initiating reviewers were not aware of the intervention and hence from their point of view the assigned
initiator of the discussion possessed all the properties of the self-selected initiator (Hollander, |1978]).

Finally, there is a subtle difference between the definition of the herding effect made by |Weisband| (1992)
and the definition we use in this work. According to Weisband| (1992), the herding is present when the first

DOES THE INTERVENTION AFFECT WHO INITIATES THE DISCUSSION?

PL P A A 95% CI  p VALUE
1. MEAN INITIAL SCORE (INITIATOR) 4.09 2.69 1.40 [1.24,1.55] < .001
2. PERCENTAGE OF DISCUSSIONS INITIATED BY Ry 53% 11% 0.42 [0.36,0.47] < .001

3. PERCENTAGE OF DISCUSSIONS INITIATED BY R— 16% 60% —0.44 [-0.49,—-0.38] < .001

Table 5: The impact of the intervention on who initiates the discussion, conditioned on the subset of papers
P*. To compute values for Row 1, we use 698 papers for which (i) the discussion was initiated, and (ii)
the discussion initiator was a reviewer (and not the area chair). For the last two rows, we use all papers
including those with no discussion. Bootstrapped confidence intervals are constructed for the difference of
the relevant quantities between conditions. All p values for the difference between P} and P* are two-sided
and computed using the permutation test with 10,000 iterations.
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DOES THE INTERVENTION AFFECT THE OUTCOME OF PAPERS?

PL P A A 95% CI  p VALUE
1. ACCEPTANCE RATE 0.21 0.26 —0.05 [-0.11,0.00] .079
2. CHANGE IN MEAN SCORE (INITIATOR) —0.11 0.21 -0.32 [-0.42,-0.22] < .001
3. CHANGE IN MEAN SCORE (ALL REVS) 0.01 0.01 0.00 [—0.05,0.05] .925
4. CHANGE IN MEAN SCORE (REVS IN DISCUSSION) 0.02 0.02 0.00 [—0.06,0.07] .867
5. CHANGE IN STANDARD DEVIATION OF SCORES (ALL REVS) —0.26 —0.25 —0.01 [—0.06,0.03] .560

Table 6: The impact of the intervention on the final outcome of papers, conditioned on the subset of papers
P*. For Row 2, we use 698 papers for which (i) the discussion was initiated, and (ii) the discussion initiator
was a reviewer (and not the area chair). For Row 4, we use papers with discussion. For all other rows, we
use all papers including those with no discussion. Bootstrapped confidence intervals are constructed for the
difference of the relevant quantities between conditions. All p values for the difference between P} and P*
are two-sided and computed using the permutation test with 10,000 iterations.

solution formulated in the group discussion predicts the group final decision better than the mean of the
pre-discussion independent opinions. Note that according to this definition, the herding may be present even
if the first solution proposed to the group is independent of who is selected to formulate this opinion, that is,
even when all discussants would propose the same solution should they be selected to start the discussion. In
contrast, in our settings it is natural to define herding to be present only when the opinion of the discussion
initiator is different depending on who is selected to initiate the discussion, because the goal of the present
work is to inform the discussion chairs about the potential consequences of their discussion initiating strategy.

In addition to the aforementioned distinctions from the past work, we note that in the present experiment
reviewers are engaged in a much more analytical task as compared to the previous works in which some
toy problems were used to study the discussion dynamics. Hence, the absence of the herding behaviour in
peer review may be due to the fact that reviewers have a rational mindset which is hypothesized to reduce
a reliance on heuristics responsible for various cognitive biases (Stanovich, [1999; Kahneman and Frederick,
2002]).

Beyond testing for herding, in this chapter we also document effects predicted by past works on discussion
in peer review (Teplitskiy et al., |2019; [Hofer et al.l 2000; |Obrecht et al., [2007; |Fogelholm et al.l 2011} Pier
et al.l [2017)): reviewers tend to update their scores towards the consensus pre-discussion opinion, and the
discussion increases the agreement among reviewers. Coupled with the observation made in these past works
that an increased agreement does not necessarily result in an increased reliability of the decision, our findings
highlight an importance of additional research on the discussion dynamics in peer review.
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Incentives and Reviewing
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Chapter 8

Detecting Strategic Behaviour in Peer
Assessment

1 Introduction

Ranking a set of items submitted by a group of people (or ranking the people themselves) is a ubiquitous
task that is faced in many applications, including education, hiring, employee evaluation and promotion, and
scientific peer review. Many of these applications have a large number of submissions, which makes obtaining
an evaluation of each item by a set of independent experts prohibitively expensive or slow. Peer-assessment
techniques offer an appealing alternative: instead of relying on independent judges, they distribute the
evaluation task across the fellow applicants and then aggregate the received reviews into the final ranking of
items. This paradigm has become popular for employee evaluation (Edwards and Ewen| [1996) and grading
students’ homeworks (Topping, |1998)), and is now expanding to more novel applications of massive open
online courses (Kulkarni et al.; 2013} |Piech et al., |2013)) and hiring at scale (Kotturi et al., |2020]).

The downside of such methods, however, is that reviewers are incentivized to evaluate their counterparts
strategically to ensure a better outcome of their own item (Huang et al.| [2019; Balietti et al., 2016; Hassidim
et al., [2018). Deviations from the truthful behaviour decrease the overall quality of the resulted ranking and
undermine fairness of the process. This issue has led to a long line of work (Alon et al. |2009; |Aziz et al.,
2016} [Kurokawa et al.| 2015; Kahng et al., [2018; [Xu et al.l |2019) on designing “impartial” aggregation rules
that can eliminate the impact of the ranking returned by a reviewer on the final position of their item.

While impartial methods remove the benefits of manipulations, such robustness may come at the cost of
some accuracy loss when reviewers do not engage in strategic behaviour. This loss is caused by less efficient
data usage (Kahng et al., 2018; Xu et al.| [2019)) and reduction of efforts put by reviewers (Kotturi et al.; 2020).
Implementation of such methods also introduces some additional logistical burden on the system designers;
as a result, in many critical applications (e.g., conference peer review) the non-impartial mechanisms are
employed. An important barrier that prevents stakeholders from making an informed choice to implement
an impartial mechanism is a lack of tools to detect strategic behaviour. Indeed, to evaluate the trade off
between the loss of accuracy due to manipulations and the loss of accuracy due to impartiality, one needs to
be able to evaluate the extent of strategic behaviour in the system. With this motivation, in this chapter we
focus on detecting strategic manipulations in peer-assessment processes. E]

Specifically, in this work we consider a setting where each reviewer is asked to evaluate a subset of works
submitted by their counterparts. In a carefully designed randomized study of strategic behaviour when
evaluations take the form of ratings, |[Balietti et al.| (2016) were able to detect manipulations by comparing
the distribution of scores given by target reviewers to some truthful reference. However, other works (Huang
et all [2019; Barroga, 2014) suggest that in more practical settings reviewers may strategically decrease

1This chapter is framed slightly more generally and operates with a broader class of peer-assessment problems that includes
scientific peer review as a special case.
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some scores and increase others in attempt to mask their manipulations or intentionally promote weaker
submissions, thereby keeping the distribution of output scores unchanged and making the distribution-based
detection inapplicable. Inspired by this observation, we aim to design tools to detect manipulations when the
distributions of scores output by reviewers are fixed, that is, we assume that evaluations are collected in the
form of rankings. Ranking-based evaluation is used in practice (Hazelrigg), 2013|) and has some theoretical
properties that make it appealing for peer grading (Shah et al., 2013; |Caragiannis et al.| |2014) which provides
additional motivation for our work.

Contributions In this work we present two sets of results.

e Theoretical First, we propose a non-parametric test for detection of strategic manipulations in peer-
assessment setup with rankings. Second, we prove that our test has a reliable control over the false alarm
probability (probability of claiming existence of the effect when there is none). Conceptually, we avoid
difficulties associated to dealing with rankings as covariates by carefully accounting for the fact that each
reviewer is “connected” to their submission(s); therefore, the manipulation they employ is naturally not
an arbitrary deviation from the truthful strategy, but instead the deviation that potentially improves the
outcome of their works.

e Empirical On the empirical front, we first design and conduct an experiment that incentivizes strategic
behaviour of participants. This experiment yields a novel dataset of patterns of strategic behaviour that
we make publicly available and that can be useful for other researchers (the dataset is available on the
website of the author of this thesis). Second, we use the experimental data to evaluate the detection
power of our test on answers of real participants and in a series of semi-synthetic simulations. These
evaluations demonstrate that our testing procedure has a non-trivial detection power, while not making
strong modelling assumptions on the manipulations employed by strategic agents.

The remainder of this chapter is organized as follows. We give a brief overview of related literature in
Section 2] In Section [3] we formally present the problem setting and demonstrate an important difference
between the ranking and rating setups. Next, in Section [ we design a novel approach to testing for strategic
behaviour and prove the false alarm guarantees for our test. Section [5|is dedicated to the discussion of the
experiment that we designed and executed to collect a dataset of patterns of strategic behaviour. In Section [6]
we use this dataset to evaluate the detection ability of our test. Finally, we conclude the chapter with a
discussion in Section [1

2 Related literature

Our work falls at the intersection of crowdsourcing, statistical testing, and a recent line of computer science
research on the peer-assessment process. We now give an overview of relevant literature from these areas.

Crowdsourcing work on manipulations Despite motivation for this work comes from studies of |Balietti
et al.| (2016)) and [Huang et al.| (2019), an important difference between rankings and ratings that we
highlight in Section [3.2] makes the models considered in these works inapplicable to our setup. Several other
papers (Thurner and Hanel, 2011} |Cabota et al., [2013; [Paolucci and Grimaldol 2014) specialize on the problem
of strategic behaviour in peer review and perform simulations to explore its detrimental impact on the quality
of published works. These works are orthogonal to the present work because they do not aim to detect the
manipulations.

Another relevant paper (Perez-Diaz et al., |2018) considers a problem of strategic behaviour in context of
the relationships between electric vehicle aggregators in the electricity market. In that setup, each agent
is supposed to solve a part of a certain distributed optimization problem and self-interested agents may
be incentivized to misreport their solutions. |Perez-Diaz et al.| (2018]) offer a heuristic procedure to identify
manipulating agents, but the proposed method relies on the specific nature of the optimization problem and
does not directly extend to our setup.

Finally, a long line of work (Akoglu et al, 2013} [Kaghazgaran et al.l [2018; |Jindal and Liul 2008]) aims at
detecting fraud in online consumer reviews. In contrast to our setting, these works try to identify malicious
reviews without having a direct and known connection between the reviewers and the items being reviewed
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that is present in our setup. Instead, these works often rely on additional information (e.g., product-specific
features) which is irrelevant or unavailable in our problem.

Statistical testing In this work, we formulate the test for strategic behaviour as a test for independence of
rankings returned by reviewers from their own items. Classical statistical works (Lehmann and Romano [2005)
for independence testing are not directly applicable to this problem due to the absence of low-dimensional
representations of items. To avoid dealing with unstructured items, one could alternatively formulate the
problem as a two-sample test and obtain a control sample of rankings from non-strategic reviewers. This
approach, however, has two limitations. First, past work suggests that the test and control rankings may have
different distributions even under the absence of manipulations due to misalignment of incentives (Kotturi
et al.l [2020)). Second, existing works (Mania et al., [2018; |Gretton et al., [2012; |Jiao and Vert|, |2018; [Rastogi
et al.| [2020) on two-sample testing with rankings ignore the authorship information that is crucial in our case
as we show in the sequel (Section [3.2).

Research on peer assessment This work also falls in the line of several recent works in computer science
on the peer-evaluation process that includes both empirical (Tomkins et al., |2017; [Sajjadi et al.l [2016; Kotturi
et all 2020) and theoretical (Wang and Shahl 2019; [Stelmakh et al.| 2021a; |[Noothigattu et al., [2020; |Fiez
et al., [2020)) studies. Particularly relevant works are recent papers (Tomkins et al |2017; |Stelmakh et al.,
2019) that consider the problem of detecting biases (e.g., gender bias) in single-blind peer review. Biases
studied therein manifest in reviewers being harsher to some subset of submissions (e.g., papers authored by
females), making the methods designed in these works inapplicable to the problem we study. Indeed, in our
case there does not exist a fixed subset of works that reviewers need to put at the bottom of their rankings
to improve the outcome of their own submissions. However, these works share a conceptual approach of
detecting the effect on the aggregate level of all agents rather than in each agent individually.

As discussed earlier, research on peer review also aims to prevent or mitigate strategic behavior, where
reviewers may manipulate their reviews to help their own papers (Alon et al., 2009; |Aziz et al., [2016; Kurokawa
et al., [2015; [Kahng et al 2018; |Xu et al., [2019) or manipulate reviews to maliciously influence the outcomes
of other papers (Jecmen et al., 2020)).

3 Problem formulation

In this section we present our formulation of the manipulation-testing problem.

3.1 Preliminaries

In this chapter, we operate in the peer-assessment setup in which reviewers first conduct some work (e.g.,
homework assignments) and then judge the performance of each other. We consider a setting where reviewers
are asked to provide a total ranking of the set of works they are assigned to review.

We let R = {1,2,...,m} and W = {1,2,...,n} denote the set of reviewers and works submitted for
review, respectively. We let matrix C' € {0,1}™*" represent conflicts of interests between reviewers and
submissions, that is, (i, )" entry of C equals 1 if reviewer i is in conflict with work j and 0 otherwise. Matrix
C captures all kinds of conflicts of interest, including authorship, affiliation and others, and many of them can
be irrelevant from the manipulation standpoint (e.g., affiliation may put a reviewer at conflict with dozens of
submissions they are not even aware of). We use A € {0,1}™*" to denote a subset of “relevant” conflicts —
those that reviewers may be incentivized to manipulate for — identified by stakeholders. For the ease of
presentation, we assume that A represents the authorship conflicts, as reviewers are naturally interested in
improving the final standing of their own works, but in general it can capture any subset of conflicts. For
each reviewer i € R, non-zero entries of the corresponding row of matrix A indicate submissions that are
(co-)authored by reviewer i. We let C(i) and A(i) C C(i) denote possibly empty sets of works conflicted with
and authored by reviewer i, respectively.

Each work submitted for review is assigned to A\ non-conflicting reviewers subject to a constraint that each
reviewer gets assigned p works. For brevity, we assume that parameters n, m, u, A are such that nA = mu
so we can assign exactly p works to each reviewer. The assignment is represented by a binary matrix
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M € {0,1}™*" whose (i, )" entry equals 1 if reviewer i is assigned to work j and 0 otherwise. We call an
assignment valid if it respects the (submission, reviewer)-loads and does not assign a reviewer to a conflicting
work. Given a valid assignment M of works W to reviewers R, for each i € R, we use M (i) to denote a set of
works assigned to reviewer 4. II[M (i)] denotes a set of all |M(4)|! total rankings of these works and reviewer
i returns a ranking m; € ITI[M(7)]. The rankings from all reviewers are aggregated to obtain a final ordering

A(my, 2, ..., ) that matches each work j € W to its position Aj(mi,m2,. .., Tm), using some aggregation
rule A known to all reviewers. The grades or other rewards are then distributed according to the final ordering
A(my,ma, ..., 7m) with authors of higher-ranked works receiving better grades or rewards.

In this setting, reviewers may be incentivized to behave strategically because the ranking they output
may impact the outcome of their own works. The focus of this work is on designing tools to detect strategic
behaviour of reviewers when a non-impartial aggregation rule A (e.g., a rule that theoretically allows reviewers
to impact the final standing of their own submissions) is employed.

3.2 DMotivating example

To set the stage, we start from highlighting an important difference between rankings and ratings in the
peer-assessment setup. To this end, let us consider the experiment conducted by Balietti et al. (2016) in
which reviewers are asked to give a score to each work assigned to them for review and the final ranking is
computed based on the mean score received by each submission. It is not hard to see that in their setting,
the dominant strategy for each rational reviewer who wants to maximize the positions of their own works in
the final ranking is to give the lowest possible score to all submissions assigned to them. Observe that this
strategy is fixed, that is, it does not depend on the quality of reviewer’s work — irrespective of position of
their work in the underlying ordering, each reviewer benefits from assigning the lowest score to all submissions
they review. Similarly, [Huang et al.|(2019) in their work also operate with ratings and consider a fixed model
of manipulations in which strategic agents increase the scores of low-quality submissions and decrease the
scores of high-quality submissions, irrespective of the quality of reviewers’ works.

In contrast, when reviewers are asked to output rankings of submissions, the situation is different and
reviewers can no longer rely on fixed strategies to gain the most for their own submission. To highlight this
difference, let us consider a toy example of the problem with 5 reviewers and 5 submissions (m = n = 5),
authorship and conflict matrix given by an identity matrix (C'= A = I), and three works (reviewers) assigned
to each reviewer (work), that is, A = p = 3. In this example, we additionally assume that: (i) assignment of
reviewers to works is selected uniformly at random from the set of all valid assignments, (ii) aggregation rule
A is the Borda count, that is, the positional scoring rule with weights equal to positions in the rankingﬂ (iii)
reviewers are able to reconstruct the ground-truth ranking of submissions assigned to them without noise,
and (iv) all but one reviewers are truthful.

Under this simple formulation, we qualitatively analyze the strategies available to the strategic reviewer,
say reviewer i*. Specifically, following the rating setup, we consider the fixed deterministic strategies that do
not depend on the work created by reviewer ¢*. Such strategies are limited to permutations of the ground-truth
ranking of submissions in M (¢*). Figure |l|represents an expected gain of each strategy (measured in positions
in the aggregated ordering) as compared to the truthful strategy for positions 2—4 of the work authored by
reviewer ¢* in the ground-truth ranking. To make this figure, for each target position of the strategic reviewer
i* in the underlying total ordering, we first compute their expected position in the final ranking (expectation
is taken over the randomness in the assignment) if they use the truthful strategy. We then compute the same
expectations for each manipulating strategy and plot the differences. The main observation is that there does
not exist a fixed strategy that dominates the truthful strategy for every possible position of the reviewer’s
work. Therefore, in setup with rankings strategic reviewers need to consider how their own works compare to
the works they rank in order to improve the outcome of their submissions.

2We use the variant without tie-breaking — tied submissions share the same position in the final ordering.
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Figure 1: Comparison of fixed deterministic strategies available to a single strategic reviewer depending on
position of their work in the true underlying ranking. A positive value of the expected gain indicates that the
manipulation strategy in expectation delivers better position in the final ordering than the truthful strategy.

3.3 Problem setting

With the motivation given in Section [3.2] we are ready to present the formal hypothesis-testing problem we
consider in this work. When deciding on how to rank the works, the information available to reviewers is the
content of the works they review and the content of their own works. Observe that while a truthful reviewer
does not take into account their own submissions when ranking works of others, the aforementioned intuition
suggests that the ranking output by a strategic agent should depend on their own works. Our formulation of
the test for manipulations as an independence test captures this motivation.

Problem 1 (Testing for strategic behaviour). Given a non-impartial aggregation rule A, assignment of works
to reviewers M, rankings returned by reviewers {m;,i € R}, conflict matrix C, authorship matrix A and set
of works submitted for review W, the goal is to test the following hypotheses:

Null (Hy)

VieRst AG) £0 m L A®).
Alternative (H;)

JieRst. AG) #0 m L A®).

In words, under the null hypothesis reviewers who have their submissions under review do not take into
account their own works when evaluating works of others and hence are not engaged in manipulations that
can improve the outcome of their own submissions. In contrast, under the alternative hypothesis some
reviewers choose the ranking depending on how their own works compare to works they rank, suggesting that
they are engaged in manipulations.

Assumptions Our formulation of the testing problem makes two assumptions about the data-generation
process to ensure that association between works authored by reviewer ¢ and ranking m; may be caused only
by strategic manipulations and not by some intermediate mediator variables.

(A1) Random assignment We assume that the assignment of works to reviewers is selected uniformly at
random from the set of all assignments that respect the conflict matrix C'. This assumption ensures
that the works authored by a reviewer do not impact the set of works assigned to them for review. The
assumption of random assignment holds in many applications, including peer grading (Freeman and
Parks| [2010; Kulkarni et al., 2013)) and NSF review of proposals (Hazelrigg), 2013)).
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(A2) Independence of ranking noise We assume that under the null hypothesis of absence of strategic
behaviour, the reviewer identity is independent of the works they author, that is, the noise in reviewers’
evaluations (e.g., the noise due to subjectivity of the truthful opinion) is not correlated with their
submissions. This assumption is satisfied by various popular models for generation of rankings, including
Plackett-Luce model (Lucel |1959; Plackett], [1975) and more general location family of random utility
models (Soufiani et al., |2012]).

In the sequel, we show that Assumption Al can be relaxed to allow for assignments of any fixed topology
(Appendix and that our test can control the false alarm probability under some practical violations of
Assumption A2 (Appendix . More generally, we note that one needs to carefully analyze the assumptions
in the specific application and carefully interpret the results of the test, keeping in mind that its interpretation
depends heavily on whether the assumptions are satisfied or not.

4 Testing procedure

In this section, we introduce our testing procedure. Before we delve into details, we highlight the main
intuition that determines our approach to the testing problem. Observe that when a reviewer engages in
strategic behaviour, they tweak their ranking to ensure that their own works experience better outcome
when all rankings are aggregated by the rule A. Hence, when successful strategic behaviour is present, we
may expect to see that the ranking returned by a reviewer influences position of their own works under
aggregation rule A in a more positive way than other works not reviewed by this reviewer. Therefore, the test
we present in this work attempts to identify whether rankings returned by reviewers have a more positive
impact on the final standing of their own works than what would happen by chance.

For any reviewer i € R, let U; be a uniform distribution over rankings IT [M (7)] of works assigned to them
for review. With this notation, we formally present our test as Test [[] below. Among other arguments, our
test accepts the optional set of rankings {7},i € R}, where for each i € R, 7 is a ranking of works M ()
assigned to reviewer 4, but is constructed by an impartial agent (e.g., an outsider reviewer who does not have
their own works in submission). For the ease of exposition, let us first discuss the test in the case when the
optional set of rankings is not provided (i.e., the test has no supervision) and then we will make a case for
usefulness of this set.

In Step (1} the test statistic is computed as follows: for each reviewer i € R and for each work j € A(1)
authored by this reviewer, we compute the impact of the ranking returned by the reviewer on the final
standing of this work. To this end, we compare the position actually taken by the work (first term in the
inner difference in Equation to the expected position it would take if the reviewer would sample the
ranking of works M (i) uniformly at random (second term in the inner difference in Equation [B.1). To get the
motivation behind this choice of the test statistic, note that if a reviewer ¢ is truthful then the ranking they
return may be either better or worse for their own submissions than a random ranking, depending on how
their submissions compare to works they review. In contrast, a strategic reviewer may choose the ranking
that delivers a better final standing for their submissions, biasing the test statistic to the negative side.

Having defined the test statistic, we now understand its behaviour under the null hypothesis to quantify
when its value is too large to be observed under the absence of manipulations for a given significance level a.
To this end, we note that for a given assignment matrix M, there are many pairs of conflict and authorship
matrices (C’, A’) that (i) are equal to the actual matrices C' and A up to permutations of rows and columns
and (ii) do not violate the assignment M, that is, do not declare a conflict between any pair of reviewer i and
submission j such that submission j is assigned to reviewer ¢ in M. Next, note that under the null hypothesis
of absence of manipulations, the behaviour of reviewers would not change if matrix A was substituted by
another matrix A’, that is, a ranking returned by any reviewer ¢ would not change if that reviewer was an
author of works A’(i) instead of A(¢). Given that the structure of the alternative matrices C" and A’ is the
same as that of the actual matrices C' and A, under the null hypothesis of absence of manipulations we expect
the actual test statistic to have a similar value as compared to that under C’ and A’.

The aforementioned idea drives Steps of the test. In Step [2] we construct the set of all pairs of conflict
and authorship matrices of the fixed structure that do not violate the assignment M. We then compute the
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Test 1 Test for strategic behaviour

Input: Reviewers’ rankings {m;,7 € R}
Assignment M of works to reviewers
Conflict and authorship matrices (C, A)
Significance level «, aggregation rule A
Optional Argument: Impartial rankings {7;,i € R}

1. Compute the test statistic 7 as

=y (Aj(ng,n;,...,m,...,n;@) —Esu, [Aj(w;,ﬂ;,...,ﬁ,...,ﬂ;n)]), (8.1)

IER jEA(S)
where 7,7 € R, equals 7} if the optional argument is provided and equals 7; otherwise.

2. Compute a multiset P(M) as follows. For each pair (p,,, pn) of permutations of m and n items, respectively,
apply permutation p,, to rows of matrices C' and A and permutation p,, to columns of matrices C and A.
Include the obtained matrix A’ to P(M) if it holds that for each i € R:

A'(i) C C'(i) € W\M(3).

3. For each matrix A’ € P(M) define p(A’) to be the value of the test statistic (8.1) if we substitute A with
A’, that is, p(A’) is the value of the test statistic if the authorship relationship was represented by A’
instead of A. Let

P = {p(A), A" c P(M)} (8.2)
denote the multiset that contains all these values.

4. Reject the null if 7 is strictly smaller than the (|«|®|| + 1)*® order statistic of ®.

value of the test statistic for each of these authorship matrices in Step [3| and finally reject the null hypothesis
in Step [ if the actual value of the test statistic 7 appears to be too extreme against values computed in
Step [3] for the given significance level a.

If additional information in the form of impartial rankings is available (i.e., the test has a supervision),
then our test can detect manipulations better. The idea of supervision is based on the following intuition. In
order to manipulate successfully, strategic reviewers need to have some information about the behaviour of
others. In absence of such information, it is natural (and this idea is supported by data we obtain in the
experiment in Section [5]) to choose a manipulation targeted against the truthful reviewers, assuming that
a non-trivial fraction of agents behave honestly. The optional impartial rankings allow the test to use this
intuition: for each reviewer ¢ € R the test measures the impact of reviewer’s ranking on their submissions as
if this reviewer was the only manipulating agent, by complementing the ranking 7; with impartial rankings
{ml, . m 1,7y - ). As we show in Section |§|, availability of supervision can significantly aid the
detection power of the test.

The following theorem combines the above intuitions and ensures a reliable control over the false alarm
probability for our test (the proof is given in Appendix [A3).

Theorem 1. Suppose that Assumptions A1 and A2 specified in Section [3.3 hold. Then, under the null
hypothesis of absence of manipulations, for any significance level o € (0,1) and for any aggregation rule
A, Test (both with and without supervision) is guaranteed to reject the null with probability at most «.
Therefore, Test[] controls the false alarm probability at the level .

Remark. 1. In Section [6] we complement the statement of the theorem by demonstrating that our test has a
non-trivial detection power.
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2. In practice, the multiset P(M) may take O (m!n!) time to construct which is prohibitively expensive
even for small values of m and n. The theorem holds if instead of using the full multiset P(M), when defining
®, we only sample some k authorship matrices uniformly at random from the multiset P(M). The value of k
should be chosen large enough to ensure that (|a|®|| + 1) is greater than 1. The sampling can be performed
by generating random permutations using the shuffling algorithm of [Fisher| (1935) and rejecting samples that
lead to matrices A" ¢ P(M).

3. The impartial set of rankings {7},7 € R} need not necessarily be constructed by a separate set of
m reviewers. For example, if one has access to the (noisy) ground-truth (for example, to the ranking of
homework assignments constructed by an instructor), then for each ¢ € R the ranking 7 can be a ranking of
M (i) that agrees with the ground-truth.

Effect size In addition to controlling for the false alarm probability, our test offers a measure of the effect
size defined as A =7 [, |A(7)]] ~!. Each term in the test statistic 7 defined in captures the impact
of the ranking returned by a reviewer on the final standing of the corresponding submission and the the mean
impact is a natural measure of the effect size. Negative values of the effect size demonstrate that reviewers in
average benefit from the rankings they return as compared to rankings sampled uniformly at random.

5 Experiment to elicit strategic behaviour

In this section we describe the experiment we designed and executed to collect a dataset of patterns of
strategic behaviour that we will use in Section [f] to empirically evaluate the detection power of our test. The
experiment was offered to attendees of a graduate-level Al course at Carnegie Mellon University and N = 55
students completed the experimental procedure described in Section Exploratory analysis of the collected
data is given in Section and the dataset is available on the website of the author of this thesis.

5.1 Design of experiment

The goal of our experiment is to understand what strategies people use when manipulating their rankings of
others. A real peer grading setup (i.e., homework grading) possesses an ethical barrier against cheating and
hence many subjects of the hypothetical experiment would behave truthfully, reducing the efficiency of the
process. To overcome this issue, we use gamification and organize the experiment as follows (game interface
can be found in supplementary materials on the the website of the author of this thesis).

We design a game for m = 20 players and n = 20 hypothetical submissions. First, a one-to-one
authorship relationship A is sampled uniformly at random from the set of permutations of 20 items and
each player becomes an “author” of one of the submissions. Each submission is associated to a unique value
v € {1,2,...,20} and this value is privately communicated to the respective player; therefore, players are
associated to values and in the sequel we do not distinguish between a player’s value and their “submission”.
We then communicate values of some 1 = 4 other contestants to each player subject to the constraint that a
value of each player becomes known to A = 4 counterparts. To do so, we sample an assignment M from the
set of assignments respecting the conflict matrix C' = A uniformly at random. Note that players do not get
to see the full assignment and only observe the values of players assigned to them. The rest of the game
replicates the peer grading setup: participants are asked to rank their peers (the truthful strategy is to rank
by values in decreasing order) and the rankings are aggregated using the Borda count aggregation rule (tied
submissions share the position in the final ordering).

For the experiment, we create 5 rounds of the game, sampling a separate authorship matrix Ay and
assignment M}, for each round k € {1,2,...,5}. Each of the N = 55 subjects then participates in all 5
rounds, impersonating one (the same for all rounds) of the 20 game playersﬂ Importantly, subjects are
instructed that their goal is to manipulate their ranking to improve their final standing. Additionally, we
inform participants that in the first 4 rounds of the game their competitors are truthful bots who always rank

3We sample a separate authorship matrix for each round so participants get different values between rounds.
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players by their values. In the last round, participants are informed that they play against other subjects
who also engage in manipulations.

To help participants better understand the rules of the game and properties of the aggregation mechanism,
after each of the first four rounds, participants are given feedback on whether their strategy improves their
position in the aggregated ordering. Note that the position of the player in the final ordering depends on the
complex interplay between (i) the strategy they employ, (ii) the strategy employed by others, and (iii) the
configuration of the assignment. In the first four rounds of the game, participants have the information about
(ii), but do not get to see the third component. To make feedback independent of (iii), we average it out by
computing the mean position of the player over the randomness in the part of the assignment unobserved
by the player and give positive feedback if their strategy is in expectation better than the ranking sampled
uniformly at random. Finally, after the second round of the game, we give a hint that additionally explains
some details of the game mechanics.

The data we collect in the first four rounds of the game allows us to understand what strategies people
use when they manipulate in the setup when (most) other reviewers are truthful. In the last round, we
remove the information about the behaviour of others and collect data about manipulations in the wild (i.e.,
when players do not know other players’ strategies). Manual inspection of the collected data reveals that 53
participants attempted manipulations in each round and the remaining 2 subjects manipulated in all but one
round each, hence, we conclude that the data is collected under the alternative hypothesis of the presence of
manipulations.

5.2 Exploratory data analysis

We now continue to the exploratory analysis of collected data and begin from analyzing the manipulating
strategies employed by participants. In addition to rankings, in each round we asked participants to describe
their reasoning in a textual form and we manually analyze these descriptions to identify the strategies people
use. While these textual descriptions sometimes do not allow to unequivocally understand the general strategy
of the player due to ambiguity, we are able to identify 6 broad clusters of strategies employed by participants.
We underscore that each of these clusters may comprise several strategies that are similar in spirit but
may slightly disagree in some situations. We now introduce these clusters by describing the most popular
representative strategy that will be used in the subsequent analysis.

e Reverse This naive strategy prescribes to return the reversed ground truth ordering of players under
comparison. Note that in contrast to other strategies we explain below, the ranking returned by a player
who use this strategy is independent of their own value.

e Distance The idea behind this family of strategies is to identify the direct competitors and put them at
the bottom of the ranking, while out of reach players and those with considerably smaller values are put at
the top. The most popular incarnation of this strategy is to rank the other players in order of decreasing
distance from the player’s value: the furthest player gets the first place and the closest gets the last place.

e See-Saw This strategy follows Reverse if the value assigned to a player is in top 50% of all values (i.e.,
greater than 10) and follows the truthful strategy otherwise. None of the participants directly reported
this strategy in the experiment, but we include it in the analysis as this strategy agrees with behaviour of
several players.

e Better-to-Bottom This strategy is another simplification of the Distance strategy. Let v* be the player’s
value. Then this strategy prescribes to put submissions with values smaller than v* at the top (in order
of increasing values) and submissions with values larger than v* at the bottom (in order of decreasing
values) of the ranking. For example, if the player’s value is 10 and they are asked to rank other players
whose values are (16,12,7,2), then this strategy would return 7 =2 > 7 > 16 > 12.

e Worse-to-Bottom Submissions with values lower than v* are placed at the bottom (in order of decreasing
values) and submissions with values larger than v* are placed at the top (in order of increasing values)
of the ranking. In the earlier example with v* = 10 and values (16,12,7,2) to be ranked, this strategy
would return 7 =12 > 16 > 7 > 2.
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Figure 2: Expected gain from manipulation strategy when all but one player are truthful as a function of
position of the strategic player in in the ground-truth ranking. The expectation is taken over randomness of
the assignment procedure and values in brackets in the legend correspond to the mean gain over all positions.
Borda count aggregation rule is used. A positive value of the expected gain indicates that the manipulation
strategy in expectation delivers better position in the final ordering than the truthful strategy. Error bars are
too small to be visible.

e 2x-Distance This strategy was reported only in round 5, that is, when participants were competing
against each other, and is targeted to respond to the Distance strategy. This strategy suggests redefining
all values (including the value of the player) by the following rule:

v = min{20 — v,v — 1},
and apply the Distance strategy over the updated values.

Figure [2] juxtaposes the identified strategies by comparing them to the truthful one in case when all but
one player are truthful. For each position of the strategic reviewer i* in the ground-truth total ordering,
we compute the expected gain (measured in positions in the aggregated ordering) from using each of the 6
strategies. To this end, we first compute the expected position (expectation is taken over randomness in the
assignment) of reviewer i* if they use the truthful strategy. We then compute the same expectations for each
of the 6 manipulation strategies and plot the differences as a function of the position of the strategic player
in the true underlying ranking.

We make several observations from Figure First, strategies Distance and See-Saw benefit the
manipulating player irrespective of her/his position in the underlying ranking. In contrast, Better-to-Bottom
and 2x-Distance can both help and hurt the player depending on the position in the ground-truth ordering and
different effects average out to the positive total gain. The Reverse strategy delivers zero gain in expectation
over positions, being not better nor worse than the truthful strategy. Finally, the Worse-to-Bottom strategy
is uniformly dominated by the truthful strategy, implying that the strategic player can only hurt their
expected position by relying on this strategy.

To conclude the preliminary analysis of collected data, for each of the 5 rounds we manually allocate each
player to one of the aforementioned manipulation strategies based on the ranking and textual description
they provided. As we mentioned above, this information is sometimes not sufficient to unequivocally identify
the strategy. To overcome this ambiguity, we use fractional allocation in case several strategies match the
response and leave some players unclassified in hard cases (for example, when textual response contradicts the
actual ranking). Note that players who employed the truthful strategy are also included in the unclassified
category as the goal of the categorization is to understand the behaviour of strategic players.

Table [I] displays the resulting allocation of players to strategies informed by the data collected in the
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experiment. First, in round 1 of the game half of strategic players employed the Reverse strategy which is not
better than the truthful strategy and hence does not lead to a successful manipulation. Second, as the game
proceeds and players understand the mechanics of the game better, they converge to the Distance strategy
which in expectation delivers a positive gain irrespective of the position of the player in the underlying
ranking. Third, note that most of the players continued with the Distance strategy even in Round 5, despite
in this round they were no longer playing against truthful bots. However, a non-trivial fraction of students
managed to predict this behaviour and employed the 2x-Distance strategy to counteract the Distance
strategy. Finally, many players were clueless about what strategy to employ in round 5, contributing to the
increased number of unclassified participants.

Rounp 1 RounD 2 RouND 3 RoOUND 4 ROUND 5

REVERSE .50 .33 .05 .03 .06
DISTANCE .37 .53 .93 .96 78
SEE-SAW .09 .08 .02 .01 —
BETTER-TO-BOTTOM .02 .04 — — —
WORSE-TO-BOTTOM .02 .02 — — —
2X-DISTANCE — — — .16
UNCLASSIFIED 5 7 4 4 18

Table 1: Manually encoded characterization of strategies used by manipulating participants. In the first 4

rounds of the game participants played against truthful bots and in the last round they played against each
other.

6 Evaluation of the test

We now investigate the detection power of our test (Test . We begin from analysis of real data collected in
the previous section and execute the following procedure. For each of the 1,000 iterations, we uniformly at
random subset 20 out of the 55 participants such that together they impersonate all 20 game players. We
then apply our test (with and without supervision) to rankings output by these participants in each of the 5
rounds, setting significance level at v = 0.05 and sampling & = 100 authorship matrices in Step [3] of the test.
The impartial rankings for testing with supervision comprise ground truth rankings.

Rounp 1 RounD 2 RounNnD 3 RoOUND 4 ROUND 5

WITH SUPERVISION 0.61 0.57 0.87 1.00 0.09
WITHOUT SUPERVISION 0.17 0.02 0.16 0.01 0.08

Table 2: Detection rates of our test.

After performing all iterations, for each round we compute the mean detection rate and represent these
values in Table 2] The results suggest that our test provided with the impartial set of rankings has a strong
detection power, reliably detecting manipulations in the first 4 rounds. On the other hand, performance of
our test without supervision is modest. The reason behind the difference in performance is that our test
aims at detecting successful manipulations (i.e., those that improve the outcome of a player). In the first 4
rounds of the game, subjects were playing against truthful competitors and hence the test provided with the
additional set of impartial rankings (which is targeted at detecting responses to the truthful strategy) has a
good performance. However, the test without supervision is not able to detect such manipulations, because it
evaluates success using rankings of other participants who also engage in manipulations and the response to
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the truthful strategy is not necessarily successful in this case. As for the round 5, we will show in a moment
that poor performance of our test appears to be due to random chance (i.e., the choice of the assignment
which is hard for detection) and not due to any systematic issue.

Note that performance of our test depends not only on the strategies employed by players, but also on
the assignment M realized in a particular round. Some realizations of random assignment make successful
manipulations (and their detection) easier while under other realizations most of the players cannot improve
their position even if they use the best strategy (and therefore our test cannot detect manipulations). To
remove the impact of the specific assignments we used in the experiment, we now proceed to semi-synthetic
trials. Specifically, we use the manual allocation of participants to manipulation strategies represented in
Table [ and create artificial agents who follow these strategies, replicating proportions learned from the real
data. We then repeat our experiment with m = 20 artificial agents, simulating 1,000 assignments for each
round of the game and computing the expectation of the power of our test over randomness of the assignment.
Additionally, we enhance the set of synthetic agents with truthful agents and study how the detection power
of our test changes with the fraction of truthful agents. Figure [3| displays the expected power of our test for
proportions of strategies used by strategic agents informed by each round of the real game and for various
fractions of truthful players. Note that when all players are truthful (rightmost points of both plots), the
data is generated under the null hypothesis of absence of strategic behaviour, and the plots empirically verify
the guarantee of Theorem [1| that our test indeed caps the false alarm rate at o = 0.05.
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Figure 3: Expected power of our test for different allocations of strategic agents to strategies and different
fractions of truthful agents. The black horizontal line is a baseline power achieved by a test that rejects the
null with probability a=0.05 irrespective of the data. Error bars are too small to show.

Figure |3a] shows that our test provided with optional rankings has a non-trivial power in every round,
including the last round in which participants were playing against each other. Note that as game proceeds
and participants understand the rules better (and find ways to manipulate efficiently), the power of the test
increases. A surprising success of the test with supervision in round 5 is explained by the combination of two
factors: (i) the majority of participants resorted to the response to the truthful strategy even in round 5 and
(ii) a strategy that constitutes a response to the response to the truthful strategy is still a good response to
the truthful strategy. Hence, our test provided with impartial rankings can detect manipulations even in case
when participants play against each other.

Figure [3b] shows that the test without supervision has considerably lower (but still non-trivial) power.
We note, however, that the main feature of the test without supervision is that it can be readily applied to
purely observational data and the power can be accumulated over multiple datasets (e.g., it can be applied
to multiple iterations of a university course). An int