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Abstract

We propose a novel method for using the World Wide Web to acquire trigram estimates for statistical 1an-
guage modeling. We submit an N-gram as a phrase query to web search engines. The search enginesreturn
the number of web pages containing the phrase, from which the N-gram count is estimated. The N-gram
counts are then used to form web-based trigram probability estimates. We discuss the properties of such
estimates, and methods to interpolate them with traditional corpus based trigram estimates. We show that
the interpolated model s improve speech recognition word error rate significantly over a small test set.
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1 Introduction

A language model isacritica component for many applications, including speech recognition. Enormous
effort has been spent on building and improving language models. Broadly speaking, this effort develops
alongtwo orthogonal directions: Thefirst directionisto apply increasingly sophisticated estimation methods
to afixed training data set (corpus) to achieve better estimation. Examples include variousinterpolation and
backoff schemesfor smoothing, variable length N-grams, vocabulary clustering, decision trees, probabilistic
context free grammar, maximum entropy models, etc [1]. We can view these methods as trying to “ squeeze
out” more benefit from a fixed corpus. The second direction is to acquire more training data. However,
automatically collecting and incorporating new training data is non-trivial, and there has been relatively
little research in thisdirection. Adaptive models are examples of the second direction. For instance, a cache
language model uses recent utterances as additional training data to create better N-gram estimates. The
recent rapid development of the World Wide Web (WWW) makes it an extremely large and valuable data
source. Just-in-time language modeling [2] submits previous user utterances as queries to WWW search
engines, and uses the retrieved web pages as unigram adaptation data. In this paper, we propose a novel
method for using the WWW and its search engines to derive additional training data for N-gram language
modeling, and show significant improvements in terms of speech recognition word error rate.

The rest of the paper is organized as follows. Section 2 gives the outline of our method, and discusses
the relevant properties of the WWW and search engines. Section 3 investigates the problem of combining
atraditiona corpus with data from the web. Section 4 presents our experimental results. Finally Section 5
discusses both the potential and the limitations of our proposed method, and lists some possible extensions.

2 TheWWW astrigram training data

The basic problem in trigram language modeling is to estimate p(ws|w, w2), i.e. the probability of aword
given the two words preceding it. Thisis typically done by smoothing the maximum likelihood estimate
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with various methods, where ¢(w;wqws) and ¢(w;ws) are the counts of 7wy waws” and ” wyw,” in some
training data respectively. The main idea behind our method is to obtain the counts of ”w;wyws” and
"wywy” asthey appear on the WWW, to estimate
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and combine p,,.;, With the estimates from a traditional corpus (here and elsewhere, when ¢, (wywz) = 0,
we regard p.s (ws|wy, we) @ unavailable). Essentially, we are using the searchable web as additional
training data for trigram language modeling.

There are several questionsto be addressed. First, how to obtain the counts from the web? What isthe
quality of these web estimates? How could they be used to improve language modeling? We will examine
these questionsin the following sections, in the context of N-best list rescoring for speech recognition.

2.1 Obtaining N-gram countsfrom the WWW

To obtain the count of an N-gram ”w; ... w,” from the web, we use the ‘exact phrase search’ function
of web search engines. That is, we send "w; ... w,,” as a single quoted phrase query to a search engine.
Ideally, we would like the search engine to report the phrase count, i.e. the total number of occurrences of



the phrase in all its indexed web pages. However in practice, most search engines only report the web page
count, i.e. the number of web pages containing the phrase. Since one web page may contain one or more
occurrence of the phrase, we need to estimate the phrase count from the web page count.

Many web search engines claim they can perform exact phrase search. However, most of them seem to
use an internal stop word list to remove common words from a query phrase. An interesting test phrase is
“to be or not to be”: Some search engines return totally irrelevant web pages for this query, since most, if
not al, words are ignored. In addition, afew search engines perform stemming so the query “she say” will
return some web pages only containing “she says’ or “she said”. Furthermore, some search engines report
neither phrase counts nor web page counts. We experimented with a dozen popular search engines, and
found three that meet our criteria: AltaVista[3] advanced search mode, Lycos[4], and FAST [5] 1. They all
report web page counts.

One brute force method to get the phrase countsis to actually download all the web pages the search
engine finds. However, queries of common words typically result in tens of thousands of web pages, and
this method is clearly infeasible. Fortunately at the time of our experiment AltaVista had a simple search
mode, which reported both the phrase count and the web page count for a query. Figure 1 showsthe phrase
count vs. web page count for 1200 queries. Trigram queries (phrases consisting of three consecutive words),
bigram queries and unigram queries are plotted separately. There are horizontal branchesin the bigram and
trigram plots that don’t make sense (more web pages than total phrase counts). We regard these as outliers
due to idiosyncrasies of the search engine, and exclude them from further consideration. The three plotsare
largely log-linear. This prompted us to perform the following log-linear regression separately for trigrams,
bigrams, and unigrams:

¢ = ag * pg™!

where ¢ is the phrase count, and pg the web page count. Table 1 lists the coefficients. The three
regression functionsare also plottedin Figure 1. We assume these functions apply to other search enginesas
well. In therest of the paper, all web N-gram counts are estimated by applying the corresponding regression
function to the web page counts reported by search engines.
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Figure 1. Web phrase count vs. web page count

' Our selection is admittedly incomplete. In addition, since search engines develop and change rapidly, all our comments are
only valid during the period of this experiment.
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Unigram | 2.427 | 1.019
Bigram | 1.209 | 1.014

Trigram | 1.174 | 1.025

Table 1. Coefficients of log-linear regression for estimating Web N-gram counts from Web page counts
reported by search engines.

2.2 Thequality of web estimates

To investigate the quality of web estimates, we needed a baseline corpus for comparison. The baseline we
used isa 103 million word Broadcast News corpus.

2.2.1 Web N-gram coverage

Thefirst experiment we ran was N-gram coverage test on unseen text. That is, we wanted to see how many
N-grams in the test text are not on the web, and/or not in the baseline corpus. We were hoping to show
that the web covers many more N-grams than the baseline corpus. Note that by ‘the web’ we mean the
searchable portion of the web asindexed by the search engines we chose,

The unseen news test text consisted of 24 randomly chosen sentences from 4 web news sources (CNN,
ABC, Fox, BBC) and 6 categories (world, domestic, technology, health, entertainment, politics). All the
sentences were selected from the day’s news stories, on the day the experiment was carried out. Thiswas
to make sure that the search engines hadn’t had the time to index the web pages contai ning these sentences.
After the experiment was compl eted, we checked each sentence, and indeed none of them were found by the
search engines yet. Therefore the test text is truly unseen to both the web search engines and the baseline
corpus. (The test text is of written news style, which might be dightly different from the broadcast news
stylein the baseline corpus.)

There are 327 unigram types (i.e. unique words), 462 bigram types and 453 trigram types in the test
text. Table 2 lists the number of N-gram types not covered by the different search engines and the baseline
corpus, respectively.

Unique Types Not Covered By
AltaVista | Lycos | FAST | Corpus
Unigram 327 0 0 0 8
Bigram 462 4 5 5 68
Trigram 453 46 46 46 189

Table 2: Novel N-gram typesin 24 news sentences

Clearly, the web’s coverage, under any of the search engines, is much better than that of the baseline
corpus. Itisasoworth noting that for thistest text, any N-gram not covered by the web was al so not covered
by the baseline corpus.

In the next experiment, we focused on the trigrams in the test text to answer the question “if one ran-
domly picks atrigram from the test text, what's the chance the trigram has appeared ¢ timesin the training
data?’ Figure 2 showsthe comparison, with the training data being the baseline corpus and the web through
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Figure 2: Empirical frequency-frequency plot

the different search engines, respectively. Thisfigureisaso known as a“frequency-of-frequency” plot. Ac-
cording to thisfigure, atrigram from the test text has more than 40% chance of being absent in the baseline
corpus, and the chance goes down to about 10% on the web, regardless of the search engine. Thisisconsis-
tent with Table 2. Moreover, the trigram has a much larger chance in having a small count in the baseline
corpus than on the web. Since small counts usually mean unreliable estimates, resorting to the web could be
beneficial.

2.2.2 The effective size of the web

Recently, Fienberg et al. [6] estimated the size of the indexable web as of 1997 to be closeto 1 hillion pages.
The web grows exponentially, and as of thiswriting some search engines claim they have indexed more than
1 billion pages. We would like to estimate the effective size of the web as alanguage model training corpus.

Let’s assume that the web and the baseline corpus are homogeneous (which is patently false, since
the web has much more than news, but we will ignore this for the time being). Then the probability of a
particular N-gram appearing in the baseline corpus is the same as the probability that it appears on the web:

Peorpus (N'gram) = Pweb (N'gram)
Since the probabilities can be approximated by their respective frequencies, we have

Ceorpus (N'gram) —~ Cweb (N'gram)
lcorpus. T |web|

, from which we can estimate |web|, the size of theweb inwords. Note that it doesn’t matter if theN-gram is
aunigram, bigram or trigram, though N-grams with small counts are unreliable and should be excluded. In
our experiment, we considered all unigrams, bigrams and trigrams in the test text with c..,,,s > 10. Each
such N-gram will gave us an estimate, and we took the median of all these estimates for robustness. Table 3
gives our estimates of the size with different search engines.

Some pointsto notice:

1. The ’'effective web size' estimates we obtained are very rough at best. Moreover, they are defined
relative to the specific baseline corpus and specific test set we happened to choose. Therefore, Table 3
should not be used to rank the performance of individual search engines.
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Effective size of the web

AltaVista 108 billion words
Lycos 79 billion words
FAST 83 billionwords

Table 3: The effective size of theweb for language model training

2. Thismethod tends to underestimate the web size. We assumed homogeneity, which in actuality does
not hold. The test text comes from a news domain, and so does the baseline corpus. We used N-
grams from the test text to estimate the web size, which givesrise to a selectional bias. Intuitively,
only “news terms” are in the test text. And since the corpusis in news domain, as a whole we have
Peorpus (NEWStEYMS) > p,,., (Newsterms). Thisiswhat leadsto underestimation.

2.2.3 Normalization of the web counts

An interesting sanity check isto see whether

Cweb(w1w2) = Z Cweb(w1w2w3)
wgev

holds for any bigram "wywy”. If thisis true, the relative frequency estimation p.,.p (ws|wy, wz) would
aready be normalized, i.e.
Z Pweb(w3|wy, wa) = 1, Ywy, wy
w3 EV

Of course there are too many ” wywows” combinations to verify this directly. Instead, we randomly
chose six 7wy wsy” pairs from the baseline corpus. For each pair, we chose 2000 w3’s according to the fol-
lowing heuristic: First, we selected words from alist of all w3’s such that the trigram ” wq wows” appeared
in the baseline corpus, sorted by decreasing frequency; If fewer than 2000 words were chosen that way, we
added wordsfrom alist of al w3’s such that the bigram ” w4 ws” appeared in the baseline corpus, in decreas-
ing frequency order; If thiswas still not enough, we added w3’s according to their unigram frequencies. We
expected this heuristic to give us alist of w3’sthat covers the majority of the conditional probability mass
given history ” wywy”.

Table 4 shows web bigram count estimates obtained with FAST search, together with their respective
cumulative web trigram count estimates as described above. Ideally, the ratio should be close to, but less
than, 100%. It is evident from the table that the web counts are not perfectly normalized. The reasons are
not entirely clear to us, but the fact that the N-gram counts are estimated from page counts is an obvious
candidate. The web N-gram count estimates should therefore be used with caution.

2.24 Thevarianceand biasof web trigram estimates

As stated earlier, we are interested in estimating conditional trigram probabilities based on their relative
frequency on the web:
A _ Cweb(w1w2w3)
Puweb (W3|wy, we) = —————5
Cweb (w1w2)
It would be informative to compare p.,., (ws|w1, w2) to atraditional (corpus derived) trigram probability
estimate.



7wy cweb(W1w2) | 222000 w3’scweb(w1w2w3) ratio
about seventy 16498.3 14807.7 | 90%
and there’'s 662697.0 724870.0 | 109%
group being 20248.4 16246.5 | 80%
lewinsky after 1431.9 1631.7 | 114%
two hundred 389949.0 457656.0 | 117%
willy b. 1334.6 607.2 | 45%

Table 4: Sanity check: are web counts normalized?
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Figure 3: Ratio of web trigram estimates to corpus trigram estimates

To thisend, we created a baseline trigram language model I, M, from the 103 million word baseline cor-
pus. We used modified Kneser-Ney smoothing [7] [8] which, according to [8], is one of the best smoothing
methods available. In building L. M,, we discarded all singleton trigrams in the baseline corpus, a common
practice to reduce language model size. We denote 7, My’ s probability estimates by py.

With LM, we were able to compare pyi (ws|wy, we) With po(ws|wy, wz). We computed the ratio r:

_ ﬁweb(w3|w17 w?)
r(wh W3y, w3) —
po(ws|wy, wy)

between these two estimates. We expected - to be more spread out (having larger variance) when c¢.o, s (w1 waws)
issmall, sinceinthis case po(ws|wy, w7) tendsto be unreliable.

We computed r (w1, ws, w3) for every trigram in the test text, excluding those with ¢,,.; (wiwz) = 0.
We plot r (w1, wa, w3) VS. Ceorpus (w1 wews) in Figure 3. We found that:

1. For trigramswithlarge c.o,pus (w1 wews), r averagesto about 1. Thusthe web estimates are consistent
with L. My inthiscase.

2. As we expected, the variance of r is largest when c..,pys (w1 wows)=0, and decreases when it gets
large. Hence the ‘funnel’ shape.

3. When c.oppus (wiwews) issmall, especially 0 and 1, » isbiased upward. Thisisof course good news,
asit suggeststhat thisiswhere the web estimates tend to improve on the corpus estimates.
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4. All the search engines give similar results.

3 Combining web estimates with existing language model

In the previous section, we saw the potential of the web: it is huge, it has better trigram coverage, and its
trigram estimates are largely consistent with the corpus-based estimates. Nevertheless, to query each and
every N-gram on the web isinfeasible. This prevents us from building a full fledged language model from
the web via search engines. More over, Table 4 indicates that web estimates are not well normalized. In
addition, the content of the web is heterogeneous and usually doesn’t coincide with our domain of interest.
Based on these considerations, we decided not to try to build an entire language model from the web. Rather,
we will start from atraditional language model .M, and interpolateitsleast reliable trigram estimateswith
the appropriate estimates from the web.

Unreliable trigram estimates, especially those involving backing off to lower order N-grams, have been
shown to be correlated with increased speech recognition errors [9] [10]. By going to the much larger web
for reliable estimates, Our hope was to aleviate this problem. We used the trigram counts in the baseline
corpusas aheuristic to decide the reliability of trigram estimatesin L M. A trigram estimate po (ws|wy, ws)
is deemed unreliable, if

Ccorpus (w1w2w3) S T

where 7, the ‘reliability threshold', is a predetermined small positiveinteger, e.g. 1. Admittedly this defini-
tion of unreliable estimatesis biased.

Even with thisdefinition, there are still too many unreliabletrigram estimatesto query theweb for. Since
we were interested in N-best list rescoring, we further restricted the queries to those unreliable trigrams that
appeared in the particular N-best list being processed. Thisgreatly reducesthe number of web queriesat the
price of some further bias. Let U,,,,,, be the set of wordsthat have unreliable trigram estimates with history
7awywy” in the current N-best list, i.e.

V7 wiwe” € N-best A cyep(wiwz) > 0, (1)

Uiy, = {ws|” wywaws” € N-best A ceoppus(wiwows) < 7}

We obtain c,,cp (w1, wa, u), u € Uy, @d cypen(wiwe) Viasearch engines, and compute pep (u|wy, wz),
the web relative frequency estimates, from these web counts.

Let p*(u|wy, wy) denotethefinal interpolated estimates, which combine po (u|w1, w2) @nd pues (u|wy, ws).
We would like to have a tunable parameter so that on one extreme p* (u|wy, w2) — po(u|wy, wy), whileon
the other extreme p* (u|w1, w2) — Pues (u]w1, wz). We now present three different methods for doing this.

3.1 Exponential Modelswith Gaussian Priors

We define a set of binary functions, or ‘features’, as follows:

1 ifu=w;
0 otherwise

fw1 JW2 U (w3) = {

foral wy, wy, u € Uy, ., intheN-best list. Next, for any given w,, we, we define a conditional exponential
model p7, with these features:

pE(walwy, we) = 2

Zwiw po(ws|wr, w2) eXP(Zuerlw2 A fun pwn u(ws))
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where py isthe estimate provided by L My, A'sare parameters to be optimized, and 7, .., iSanormalization
factor. This model has exactly the same form as a conventional Maximum Entropy / Minimum Discrim-
inative Information (ME/MDI) model [11] [12]. Let A denote the set of parameters. If we maximize the
likelihood of the web counts:

ty= ]I P*E(w3|w17w2)cweb(w1w2w3)

wy,w2,Ws3

with the standard Generalized lterative Scaling algorithm (GIS) [13], we get the ME/MDI solution that
satisfies the following constraints:

pp(u|wy, wy) = Pue(u|wy, wa) (3)
— —Cweb(wl’ w2, 1) Nwl, w2, u € Uy,
Cweb (wh w?)
This corresponds to one extreme of the interpolation. But since we want to control the degree of interpola-
tion, we introduce a Gaussian prior with mean 0 and variance o2 over A:

o) =TT = expl(55)

And instead of seeking the maximum likelihood solution, we seek the maximum a posteriori (MAP) solution
that maximizes

L(A) * p(A)

This can be done by dightly modifying the GIS algorithm, as described in [14].

With this Gaussian prior, we can control the degree of interpolation by choosing the value of o2 ¢
(0,+00). o? acts as a tuning parameter: If 02 — +oo, the Gaussian prior is flat and has virtually no
restriction on the values of the A’s. Thus the \’s can reach their ME/MDI solutions, and hence p3, reaches
one extreme as in (3). On the other hand if o2 — 0, the Gaussian prior forces \’s to be close to the
mean, which is0. From (2) we know in this case p;. — po. This correspondsto the other extreme of the
interpolation. A o between 0 and +oo resultsin an intermediate p3; distribution.

For the purpose of comparison, we experimented with two other interpolation methods, which are easy
to implement but may be theoretically lesswell motivated: linear interpolation and geometric interpolation.

3.2 Linear Interpolation

In linear interpolation, we have
pr(wsfwy, we) = (4
(1 — a)po(ws|wy, we) + aPyes (w3|w, ws)
1 If w-?) 6 Uw1w2
1_Zu€Uw1w2 P} (ulwy ,we)

1_Zu€Uw1w2 po (uwi,wz)

Po(w3|w17 wz)

, otherwise

In this case, o € [0, 1] isthe tuning parameter. If o = 0, pj = po. If @ = 1, p} satisfies (3). Ana in
between resultsin an intermediate p7 .



3.3 Geometric Interpolation

In geometric interpolation, we have

per(ws|wy, wa) = (5

(1-8) Cweb(w1w2w3)+e g
Cweb(?vlw2)+|v|5
Jifws € Uw1w2

Po(w3|w17 wz)

1=5 g,y Pl 02)

1—Zuerlw2 po(ulwy w2)

Po(w3|w17 wz)

, otherwise

Note that here we have to smooth the web estimates to avoid zeros (which is not a problem in the previous
two methods). To do this, we simply add a small positive value ¢ to the web counts. This is known as
additive smoothing [8]. The value of ¢ is determined to minimize the perplexity with 5 = 1. Once ¢ is
chosenitisfixed, and wetune 5. 5 € [0, 1] isthe interpolation parameter. If 5 = 0, pf. = po. If 3 =1, p.
satisfies the smoothed web estimates. A 3 in between resultsin an intermediate p7;.

4 Experimental Result

We randomly selected 200 utterance segments from the TREC-7 Spoken Document Retrieval track data[15]
as our test set for this experiment. For each utterance we have its correct transcript and an N-best list with
N = 1000, i.e. 1000 decoding hypotheses. We performed N-best list rescoring to measure the word error
rate (WER) improvement, and computed the perplexity of the transcript. Note that the test set is relatively
smal and N = 1000 is not very deep, since we wanted to limit the number of web queries to within a
practical range.

41 Word Error Rate

If we rescore the N-best lists with .M and pick the top hypotheses, the WER is 33.45%. Thisis our
baseline WER. The oracle WER, i.e. if we were able to pick the least errorful hypothesis among the 1000
for each N-best list, is 25.26%. Of course we cannot achieve the oracle WER, but it indicates there isroom
for improvement over I M.

Since each utterance has 1000 hypothesesin the N-best list, the total number of trigramsis very large.
Table 5 liststhe number of trigram tokens (occurrences) and types (unique ones) in all the N-best lists com-
bined, together with the percentage of unreliable trigram types and tokens as determined by the reliability
threshold 7. Note that trigrams containing start-of-sentence or end-of-sentence (commonly designated by
< s >and < /s >) are excluded from the table, since they can’t be queried from the web. For each N-best
list, we queried the unreliable trigrams (and associated bigrams) in the list, from which we computed p*
with the three different interpolation methods. We then used p* to rescore the N-best list, and cal culated the
WER of the top hypothesis after rescoring.

First, we set the reliability threshold = = 0, i.e. we regard only those trigrams that never occur in the
baseline corpus as unreliable. Figure 4(a) shows the WER with exponential models and Gaussian priors.
The three curves stand for different search engines, which turn out to be very similar. The horizontal dashed
line is the baseline WER. As predicted, when the variance of the Gaussian prior 2 — 0 (the left side
of the figure), py, converges to py and the WER converges to the baseline WER. On the other hand when
0% — +oo, the estimates of the unreliable trigrams come solely from the web. Such estimates seem inferior
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trigram total reliability threshold 7
0 1 2 3 4 5
tokens | 5,311,303 | 2,002,530 | 2,310,416 | 2,496,312 | 2,650,340 | 2,772,500 | 2,889,348
37.7% 43.5% 47.0% 49.9% 52.2% 54.4%
types 57,107 36,190 39,059 40,893 42,158 43,110 43,863
63.4% 68.4% 71.6% 73.8% 75.5% 76.8%

Table 5: Number of unreliable trigramsin the N-best lists
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Figure 4: Word Error Rates of web-improved language models as function of the smoothing parameter for
severa different interpolation schemes, based on N-best rescoring
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and the model has higher WER than the baseline. Between these two extremes, WER reaches minimum
(32.53% with AltaVista) around o2 = 1.

Figure 4(b) isthe WER with linear interpolation. Again, the minimum WER 32.56% is reached between
the two extremes at o« = 0.4 by AltaVista

To use geometric interpolation, we needed to choose avauefor ¢ first. We chose ¢ = 0.01 because this
minimized the perplexity when 5 = 1. Next we vary 5 while keeping ¢ fixed, and plotted the WER of the
interpolated model in Figure 4(c). Aswith the previous interpolation methods, the WER reaches minimum
when the interpolation factor is near the middle. The minimum is 32.69% when 5 = 0.3 with FAST.

Next, we adjusted the reliability threshold = and observe its effect on WER. The interpolation method
used here is the exponential model with Gaussian prior and o = 1. We varied 7 from 0 to 5. With larger
threshold, more trigrams are regarded as unreliable, and hence more web queries had to be issued. As
shown in Figure 4(d), there is a dight but definite improvement in WER when we increase 7 from 0 to 1.
For example, The WER with 7 = 1 and AltaVistais 32.45%. Further increment results in about the same
WER, averaged over search engines. Notethat 7. My, thelanguage model we are incorporating web estimate
into, was built after excluding all singleton trigrams in the corpus. This may explain why 7 = 1 is better
since trigrams with counts O or 1 in the corpus are indeed unreliable: in I M, they must backoff to bigram
or unigram.

To analyze the source of improvement, we broke down the WER according to the trigram backoff modes
in L M,. First, we marked each word w; inthe transcript with one of several labels, usingthefollowingrules:
Let w;_» and w;_y bethe two words preceding w;. If the trigram ”w;_ow;_w;” existsin LMy, label w;
as ‘3. Otherwiseif the trigram doesn’t exist in LMy, but the bigram 7 w;_yw,;” does, label w; as’'3-2",
meaning 1. M, has to backoff to the bigram for w;. If the bigram doesn’t exist in L M|, either, label w; as
'3-2-1' since L. M, has to backoff to the unigram. In the second step, we compared the transcript with the
top hypotheses after rescoring the N-best listswith po. Each word in the transcript obtains a second label of
either “correct” or “wrong” depending on whether the word is correct in the corresponding top hypothesis.
We then collect the percentage of correct wordswithin categories‘3', ‘3-2" and *3-2-1' respectively. Inthe
third step we repeated the second step, except that the top hypotheses are now obtained by rescoring the
N-best listswith p%,, where 0% = 1, 7 = 1, and the search engineis AltaVista. We compare the percentage
of errorsin step 2 and step 3 in Table 6. Note that insertion errors are not counted in our error break down.
Not surprisingly, the *3-2-1' category has the highest error rate for both p and p3;, since the wordsin this
category are the hardest from the language model’s point of view. The ‘3-2’ category has lower error rate,
and ‘3’ has the lowest. The interpolated language model p7. improves error rate for all three categories,
compared to py. The largest improvement is in the *3-2-1" category, which suggests the web helps .M
most with the hardest cases. It is hot clear thoughwhy the *3-2' category is not improved as much.

error rate
category | words |  po 5
3 3480 | 23.3% | 22.8%
3-2 2236 | 30.7% | 30.1%
3-2-1 479 | 50.1% | 46.1%

Table 6: Error break down by 7. M, backoff mode
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4.2 Approximate Perplexity

There are 6195 words in the transcript. The baseline perplexity of the transcript with LM is 196.7. We
wanted to compute the perplexity of the transcript with different interpolated language models. We define
U, w, 1N (1) based on the transcript. However this introduces a subtle bias: the interpolated models now
depend on the transcript. In other words, we are dynamically choosing models according to the words we
will be predicting. The resulting scores are therefore not strictly interpretable as probabilities. For this
reason we consider the perplexities we get on the transcript to be approximate only. We still report these
values in this section because we believe that the distortion is not too severe, and the approximation still

provides useful insight into the true perplexity of web-improved language models. Note that, although the
same kind of bias existsin WER computation, it doesn’t diminish the validity of the WER improvement we
get there, since in classification it is not the particular probability value but the ranking that matters.

Figure 5(a—c) compares different interpolation methods when the reliability threshold 7 = 0. There are
2274 unique unreliable trigrams in the transcript. We submitted them (and the corresponding bigrams) as
gueriesto the search engines, and computed p* with the three different interpolation methods described in
the last sections respectively. From p* we computed the approximate perplexities.

Figure 5(a) showsthe approximate perplexity with the exponential model and a Gaussian prior. Likethe
WER in Figure 4(a), the approximate perplexity converges to the baseline when the Gaussian prior o2 — 0.
The approximate perplexity worsens when o2 — +oc. The best value 156.9 is achieved by FAST also
between these two extremes at 0% = 1. Again, different search engines are similar.

Figure 5(b) is the approximate perplexity with linear interpolation. It is also similar to the WER in
Figure 4(b). The minimum 156.2 is reached by FAST at o = 0.45.

Figure 5(c) shows the approximate perplexity with geometric interpolation and ¢ = 0.01. Aswith the
previous interpolation methods, the approximate perplexity converges to the baseline when 5 — 0 and is
worsewhen 3 — 1. But unlike the other methods, approximate perplexity seems to be aways worse than
the baseline, and increases monotonically with 3.

Figure 5(d) compares the effect of the reliability threshold = on the approximate perplexity. Asin
Figure 4(d), the interpolation method used is exponential model with Gaussian prior and o2 = 1. Againwe
see improvement when we increase 7 from 0 to 1. For example, FAST’s approximate perplexity goes down
to 147.5. We believed this can be explained ssimilarly to Figure 4(d).

5 Discussions

In this paper, we demonstrated that trigram estimates obtained from the web can significantly improve WER
relative to pure corpus-based estimates, even though the web estimates are noisy, and the web and the test
set are not in the same domain. We believetheimprovement largely comes from better trigram coverage due
to the sheer size of theweb, which actsasa '’ general English’ knowledge source. Interestingly, which search
engine is used doesn’t make much difference. Furthermore, which interpolation method is used doesn’t
make much difference either (at least for WER), as long as an appropriate interpol ation parameter is chosen.

Our method has certain advantages. Besides having better N-gram coverage, the content of the web is
constantly changing. Our method would enable automatic up-to-date language modeling. However, there
are also several disadvantages. The most severe one is the large number of web queries. In our experiment,
we heeded to submit an average of 340 queries to the web for each utterance. This resultsin heavy web
traffic and workload on the search engines, and very slow rescoring process. Another concern is privacy:
one may be sending fragments of potentially sensitive utterances to the web. Both problems, however, can
be partly solved by using a web-in-a-box setting, i.e. if we have a snapshot of the text content of the whole
WWW on local storage. Yet another problem is the lack of focus on domain specific language. This might
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be solved by querying specific domain hosts instead of the whole web, athough by doing so the N-gram
coverage may deteriorate.

The method proposed in this paper is only one crude way of exploiting the web as a knowledge source
for language modeling. Instead of focusing on trigrams, one could look for more complex phenomena, e.g.
semantic coherence [16] among the content words in a hypothesis. Intuitively, if a hypothesis has content
words that ‘ go with each other’, it is more likely than one whose content words seldom appear together in
a large training text set. The web + search engine approach seems well suited for this purpose. We are
currently pursing thisdirection.
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