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Abstract

Metallic alloys are important materials in engineering for their versatile

properties. With the development of computational power, molecular

simulation plays an increasingly important role to study the properties of

metallic alloys. Molecular simulation is used to calculate the properties that

are hard or expensive to be measured experimentally. Traditional molecular

simulation relies on density functional theory (DFT) or empirical potentials

to calculate the energies and forces during the simulations. DFT provides

higher accuracy, but it is more time-consuming. Empirical potentials are

much faster but they are not as accurate as DFT. Recently, machine learning

(ML) potentials have become attractive because they are potentially both

accurate and fast. When trained with sufficient data, machine learning

potentials could be as accurate as DFT. Also, because machine learned

potentials are essentially regression models, their inferences could be as fast

as empirical potentials. With the help of machine learning models,

simulations for large molecular systems can be accurately finished with a

reasonable computational cost.

In this dissertation, we combined ML methods, DFT, and Monte Carlo

(MC) simulations to study the surface segregation of the CuPdAu alloy

under vacuum conditions. We built a neural network (NN) model to

accurately approximate the DFT potential energies during the MC

simulations which were used to estimate the surface compositions of the

CuPdAu alloy with various bulk compositions. A range of factors that might

contribute to surface segregation was investigated, such as surface relaxation,

vibrational contribution, and orientation dependence. Next, we developed a

NN ensemble-based active learning method to accelerate the geometry

optimization process, which enabled us to obtain the ground-state structures
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in a faster way. We used a NN-ensemble approach to provide the uncertainty

estimation of the NN prediction during the molecular simulation, such that

we were able to replace the DFT calculation using the NN model

appropriately during the geometry optimization process. After that, the

surface segregation and aggregation phenomenon was investigated using

semi-grand canonical Monte Carlo simulation with the help of ML surrogate

models for the bulk, slab potential energies, and the pseudo-adsorption

energies. Then, we illustrated using automatic differentiation to evaluate the

degree of rate control (DRC). Automatic differentiation provided higher

accuracy and faster computation of the DRC. Lastly, we developed an

efficient method to search for similar molecular structures in a large

database. The search method was based on the approximate nearest

neighbor search and machine learning embedding.
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1 Introduction

Metallic alloys are important catalysts for various chemical reactions.1,2

For example, CuPd alloys for the NO reduction reaction,3 PtCu alloys for

the glycerol hydrogenolysis reaction,4 and AuPd alloys for the N2O

decomposition reaction.5 Catalytic properties such as activity and selectivity

highly depend on the surface properties of the metallic catalysts. However, it

is difficult to control the surface properties of the alloy catalysts during

production since surface composition usually differs from the bulk

composition due to the surface segregation phenomenon. Therefore,

investigations into surface segregation are necessary for the design of the

alloy catalysts. With the dramatic improvement of the computational

capacity, molecular simulations become much more significant to investigate

and design alloy catalysts.6–8 However, even with current computational

capacity, it is still computationally expensive to calculate the properties of a

large molecular system (e.g., thousands of atoms) using ab initio calculations

such as DFT, which limits the scale of the materials that we can simulate.

We must find a way to conduct the molecular simulations at a larger scale to

get more detailed properties under current computational constraints.

Greater computational power also comes with a requirement to retrieve data

efficiently. Nowadays, there are many scientific databases storing a huge

amount of molecular structures and properties.9–11 An efficient method to

search for and retrieve molecular structures of interest is necessary for us to

utilize these databases effectively.

In this dissertation, we investigated approaches to address these issues.

The dissertation is organized as follows. Chapter 2 introduces the machine

learning potentials which is a potential solution to the trade-off between

accuracy and speed. Different types of machine learning potentials were
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discussed. We also briefly introduced the steps to build a machine learning

potential for a specific task. The packages and software to implement the

machine learning potentials were also covered in this chapter. After that, the

surface segregation phenomenon of a ternary CuPdAu alloy is investigated in

Chapter 3. A NN model was built to approximate the potential energy

surface (PES) of the CuPdAu slabs. In this way, potential energies with the

DFT accuracy of the alloy slabs could be calculated with a low

computational cost during the Monte Carlo (MC) simulations. These

simulations provided the equilibrium surface compositions for different bulk

compositions. We also compared the simulation results with the

experimental data, which were partially consistent. Possible reasons for the

partial discrepancy were substantially investigated. In Chapter 4, we

developed an active learning framework to speed up the geometry

optimization for molecules. NN ensemble served as a measure of uncertainty

for the NN predictions. It was used as a metric to determine when the NN

predictions could be trusted and when queries for new DFT calculations were

required. By integrating the NN model into the geometry optimization

process, we were able to obtain the DFT-verified relaxed structures with

much fewer DFT calculations. This active learning framework was used in

Chapter 5 to acquire the relaxed structures for hundreds of acrolein-adsorbed

AgPd slabs with much less computational cost. These structures were

utilized to train a machine learning model to predict the pseudo-adsorption

energies of acrolein/AgPd slabs, which was combined with the surrogate

models of the bulk and slab potential energies to provide the required energy

data during the simulations. Semi-grand canonical Monte Carlo simulation

(SGCMC) was utilized to study the surface aggregation and segregation

phenomenon of the AgPd alloys with acrolein adsorbed on the surface. In
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Chapter 6, we illustrated a way to efficiently search for similar molecular

structures from a database. Machine learning embeddings were used to

describe the atomic environments, which were applied with the approximate

nearest neighbor (ANN) search methods to achieve fast searching for similar

structures. In Chapter 7, we moved forward to the topic of the degree of rate

control (DRC) of the catalysis. DRC achieves a quantitative measurement of

the kinetic contribution of each elementary step to the overall reaction rate.

We demonstrated the use of automatic differentiation (AD) to evaluate the

DRCs of a reaction system, which led to higher accuracy and faster

computational speed. Finally, we concluded this dissertation in Chapter 8 by

discussing the works we achieved and potential directions for further

research.
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2 Machine Learning Potentials

2.1 Introduction

A fundamental trade-off in computational material science is between

accuracy and computational cost. Simulations for large systems of atoms at

a degree of accuracy of ab initio methods are desired, but it is

computationally unaffordable with ab initio methods. Machine learning

(ML) methods are promising to bring ab initio accuracy to large-scale

molecular simulations at a reasonable computational cost. For example, it

may takes several weeks to finish the energy evaluation of a 1000-atom alloy

slab using DFT, but it only takes several seconds with a NN model, which

has a comparable computational efficiency to classical force fields like the

effective medium theory (EMT).12

Nowadays, ML techniques are applied in various fields of science and

engineering in manifold ways. The basic idea of ML is that a computer

program learns something from experience which can be used for future tasks

according to the definition given by Tom M. Mitchell: ”A computer program

is said to learn from experience E with respect to some class of tasks T and

performance measure P , if its performance at tasks in T , as measured by P ,

improves with the experience E”.13 Different ML methods are suitable for

different application scenarios. Based on the form of the problems,

classification or regression ML models can be adopted. ML models can also

be chosen according to the form of the data that need to be processed. For

example, the recurrent neural network is suitable for sequential data,14 and

the convolutional neural network is preferred for image data.15 The basic

demand in molecular simulation is an accurate representation of the atomic

interactions which are usually indicated by energy and forces. In other
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words, the ML task is to accurately fit a complicated function that describes

the atomic interactions of a molecular system. This complicated function is

the potential energy surface (PES) which maps from the configurations to

the energy and/or forces of an atomistic system.16 Using the definition of ML

above, the experience E is the data generated from ab initio calculations like

DFT. The task T is to predict the energy and/or forces given an atomistic

system. The performance measure P is the metric of interest, for example,

the mean absolute error (MAE). The machine learning surrogate model for

the potential energy surface is the machine learning potential.

2.2 Neural Network-based ML Potentials

Neural Network (NN) is a widely used group of regression methods to

build the ML potential. The first application of NNs to fit the PES dates

back to 1995 in the work of Doren and coworkers.17 However, wide

applications of NN for various molecular and material systems appear after

Behler and Parrinello introduced the Behler-Parrinello neural network

(BPNN) to represent high-dimensional PES in 2007,18 where they proposed

to use high-dimensional symmetry functions to describe the atomic

configurations in a generalized and size-independent way.18,19

The core concepts underlying the BPNN are the atom-centered symmetry

functions (ACSFs) and the feed-forward neural networks. Figure 2.1 shows

the overall structure of the BPNN. Cartesian coordinates (R) of the atoms

are the inputs to the BPNN. They are processed by the symmetry functions

and become high dimensional vectors (G) describing the local environments

of the atoms. These descriptors are invariant to transformation and rotation,

which is required to model the potential energy surface. After that, these high

dimensional vectors serve as the inputs of the feed-forward neural networks.
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Each element type has its own NN weights and the output of each atomic

NN is the atomic energy Ei representing the atomic contribution to the total

energy E.

Figure 2.1: Structure of the Behler-Parrinello neural network. Ri is a vector
of the Cartesian coordinates of atom i. Gi represents the vector of symmetry
function values describing the local environment of atom i. Ei is the atomic
energy contributed by atom i. E is the total energy of the N atoms.

2.2.1 Atomic Centered Symmetry Functions

Cartesian coordinates are not good to serve as the direct inputs of the

regression models like a NN to construct the surrogate potential, because the

total energy of an atomistic system does not change with translation or

rotation. The invariance to translation or rotation should be kept in the ML

potentials. Another requirement for the ML potential is that it needs to be

continuous and differentiable since the forces should be obtainable from the

derivatives of the potential energy surface. Symmetry functions are an option

that satisfy these two requirements. Before defining the explicit form of the

symmetry functions, Behler and Parrinello employed a cutoff function fc to

limit the atomic descriptors focusing more on the local environments.18,19
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The cutoff function has the form of

fc (Rij) =


0.5×

[
cos
(
πRij

Rc

)
+ 1
]

for Rij ≤ Rc

0 for Rij > Rc

(2.1)

where Rij is the distance between atom i and atom j. The function value

decays as the atomic distance Rij increases from 0 to Rc, which means the

interaction between a pair of atoms decreases as their distance increases.

This cutoff function also eliminates the interaction between two atoms with a

distance greater than Rc, which is the cutoff radius.

There are at least two types of symmetry functions to describe the atomic

configurations. Radial symmetry functions are based on the radial distance

between each pair of atoms. Angular symmetry functions consider the angular

interactions in triples of atoms. Radial and angular symmetry functions are

represented by G2
i and G4

i respectively.18,19

G2
i =

∑
j 6=i

e−η(Rij−Rs)2fc(Rij) (2.2)

G4
i = 21−ζ

∑
j,k 6=i

(1 + λcosθijk)
ζe−η(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk) (2.3)

Different parameters (η, λ, ζ, Rs) can be used to generate a set of values

to describe a local environment in the configuration, and the choice of these

parameters is dependent on different systems. In Figure 2.2, we show the

radial symmetry functions with different η.
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Figure 2.2: Radial symmetry functions with different η. The cutoff radius
used in the plot is 6.0 Å.

With the BPNN, we have a mathematical model to describe the total

energy of a configuration:

E =
∑
i

Ei =
∑
M

∑
j

fM(GM
j ;wM) (2.4)

in which fM(·) is the regressed function by the NN of element M. wM is the

weight parameters in the NN of element M.

2.2.2 Feed-forward Neural Networks

A feed-forward neural network (FFNN) is responsible to map the ACSF

vector to atomic energy in the BPNN framework. Since atoms with different

identities usually have different contributions to the total energy even with

the same surrounding environment, BPNN has separate FFNNs for the atoms

with different elements. A typical example of a FFNN is shown in Figure 2.3.
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In this example, it has two hidden layers and it takes a vector x and outputs

a scalar y. Between two consecutive layers, there is a weight matrix Wl and

a bias vector bl. Each hidden layer contains nodes of activation functions

which are nonlinear functions like ReLU, sigmoid and hyperbolic tangent. The

mathematical form of the function represented by the NN of Figure 2.3 is

ŷ = W(2)f (2)
a

(
W(1)f (1)

a

(
W(0)x + b(0)

)
+ b(1)

)
+ b(2) (2.5)

Figure 2.3: Typical example of a FFNN which takes an input vector x and
outputs a scalar y.

The training of a NN is an optimization process to minimize an objective

or loss function. The loss function usually represents the discrepancy between

the NN predictions and the target labels. The mathematical form is

W∗,b∗ = arg min
W,b

L (W,b; x, y) (2.6)

where W and b are the trainable weights and biases, x is the feature of a data

point, and y is the true label. L is the loss function that we want to minimize

during the training process. A typical example for regression tasks is the mean
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square error (MSE):

L =
∑
i

1

N
(yi − ŷi)2 =

∑
i

1

N
[yi − f (xi,W,b)]2 (2.7)

Here, N is the number of training points. f is the function represented by a

NN. Many optimization algorithms can be used to conduct the minimization,

a simple yet effective method is the gradient descent.20 Basically, gradient

descent updates the model parameters along with the directions of the negative

derivatives of the loss function with respect to the parameters. Which can be

formed as

Wt+1 = Wt − γ ∂L

∂Wt (2.8)

bt+1 = bt − γ ∂L
∂bt

(2.9)

Here, γ is the learning rate or step size that controls the update magnitude at

step t.

The performance of the NN is highly dependent on the hyperparameters.

For example, the number of hidden layers, the number of nodes at each layer,

the activation functions, as well as the parameters in the optimization methods.

Thus, choosing appropriate hyperparameters is crucial to building a reasonable

ML model. One way to select the hyperparameters is through a validation set.

The whole dataset can be divided into training, validation, and test set. The

training set is combined with optimization methods to find the optimal weights

and biases of a NN. The validation set is used to find the best hyperparameters.

Then, we evaluate the performance of a NN via the test set.
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2.2.3 Graphical Neural Networks for ML Potential

ACSF is a type of handcrafted descriptor to represent atomic

configurations. One needs to choose the parameters in the symmetry

functions before generating the features. Also, ACSF has a combinatorial

scaling with the number of elements in an atomistic system, which leads to a

super sparse high-dimensional vector when the number of elements becomes

large. Recently, several models based on the graphical neural network (GNN)

were proposed to address these issues. For example, the crystal graph

convolutional neural networks (CGCNN) proposed by Xie et al. in 2018,21

the graph neural network force field (GNNFF) proposed by Mailoa et al. in

2021,22 and the geometric message passing neural network (GemNet)

proposed by Klicpera et al. in 2021.23 One advantage of these GNN based

models is that they can automatically learn the embeddings for the atoms

during the training process without any explicit functions as the descriptors.

In addition, they have better scaling to the number of elements than ACSFs.

2.2.4 Implementation and Softwares

Wide applications of the neural network-based ML potentials require

well-established and easy-to-use packages and software. With the

development of many deep learning frameworks, such as Tensorflow and

Pytorch,24,25 we can implement a NN model without caring about

differentiation, optimization, and other detailed operations. Several

high-level NN potential packages have been released in the past few years.

For example, PiNN is a library with the implementations of a

high-performing graph convolutional neural network variant, PiNet.26

SchNetPack includes the implementations of the (weighted) ACSFs and the

deep tensor neural network SchNet.27 AMP and RuNNer also contain the
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implementations of the BPNN.28,29 With these packages, we can employ ML

potentials into our simulations even without explicitly implementing a NN.

2.3 Kernel Methods-based ML Potentials

The kernel method is another kind of basic and popular machine learning

technique.30 The basic idea under the kernel method is to learn a better

decision boundary by projecting data points into high-dimensional space, but

without ever computing the explicit coordinates in that high-dimensional

space. The operation of the data in the high-dimensional feature space is

usually supported by a nonlinear kernel function and the inner product of

pairs of data in the original feature space, which is much cheaper than

computing the inner product directly in the high-dimensional space. An

important application of the kernel method in machine learning potential is

the Gaussian approximation potential (GAP),31,32 which was developed

based on the Gaussian process regression method.33 It has a general form

of31,32,34

Ei =

Ntrain∑
j=1

αjK (di,dj) (2.10)

where Ei is the atomic energy of atom i whose local environment is described by

a descriptor di. K is a kernel function that measures the similarity between two

atomic structures. α represents the coefficients which are determined by the

reference atomic energies in the training set and the covariance matrix of the

training data. In other words, the energy prediction of an atomic environment

is a weighted average of the atomic energies in a reference dataset, and the

weights are determined by the similarities between the test atomic structure

and the reference atomic configurations.
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Several descriptors can be used to represent the atomic environments. For

example, the bispectrum of the neighbor is used as the descriptor in the original

GAP work.31 Another descriptor that is widely used for inorganic materials is

the smooth overlap of atomic positions (SOAP).35 In GAP, a common choice

for the kernel function is the squared exponential kernel34

KSE (d,d′) = exp

(
−
∑
j

(d− d′)
lj

)
(2.11)

where lj is the length scale parameter for dimension j of the descriptor.

Compared to the ML potentials based on NN, GAP not only provides

an accurate prediction but also estimates the uncertainty of the predictions.

However, GAP has a high scaling O (n3) to the number of the data points in

the reference dataset, which hinders its wide application on large datasets.
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3 Simulating segregation in a ternary Cu-Pd-

Au alloy

The main results in this chapter are adopted from our previously published

paper Ref. 36.

3.1 Introduction

Our first application of the ML potentials is to investigate the surface

segregation phenomenon in a ternary alloy CuPdAu. Here, we briefly introduce

the conventional experimental and theoretical methods to study alloy surface

segregation. Then, we demonstrate how ML potentials help to conduct more

detailed and efficient simulations on CuPdAu alloy.

Several experimental and theoretical methods have been developed to

study surface segregation. Most experimental approaches measure the

surface concentration of alloy membranes using low-energy ion scattering

spectroscopy (LEIS) and X-ray photoelectron spectroscopy (XPS).37,38 One

shortcoming is that at each measurement, only one bulk concentration is

investigated. Although high throughput methods have been used in some

surface segregation experiments, the usage is still limited.39–42

With the limitations of experimental methods and the development of the

computational capacity, the demand for the theoretical study of surface

segregation is growing constantly. Some simulation methods such as

molecular dynamics43 and Monte Carlo44 simulation have been adopted in

the study of surface segregation. For higher accuracy, density functional

theory (DFT) may also be applied to evaluate the potential energies of the

alloy configurations during the simulation process.45 In general, simulations

based on (semi)empirical methods such as embedded atom method (EAM)

14



can simulate the surface segregation on large atomic systems but typically

with lower accuracy, while simulations using DFT calculations are usually

limited to small slabs although it has higher accuracy. Furthermore, most of

these theoretical methods deal with bimetallic alloys, only a few simulations

involve ternary alloys, and those use empirical potentials46 or small slabs.47

As mentioned in Chapter 2, ML potentials34 have become a hot topic in

the atomic simulation field. They can be trained with a set of DFT potential

energies and be used to predict the potential energies of new atomistic

configurations. The appropriately trained ML potentials are much more

computationally efficient than DFT while having similar accuracy with DFT

under certain conditions.48 The effectiveness of the ML models (especially

the NN) in the construction of the potential energy surface for the alloys has

been demonstrated in systems such as PdAu alloys49 and SiLi amorphous

alloys.50 Despite many examples of NN used for bimetallic alloys, its

applications to ternary alloys are relatively rare.51 There is an example of

using a NN to study the surface properties of AuPd nanoalloy in aqueous

solvents, which involves four different elements,52 where the NN also

performed well.

In this chapter, we specifically utilized BPNN (introduced in Chapter 2)

to develop a NN potential to simulate segregation in a ternary Cu-Pd-Au

alloy across composition space. We generated a dataset including 5278 DFT

calculations to train and validate the NN. The training samples were shown

to cover the G2 fingerprint space for the CuPdAu ternary slab. The trained

NN was then used with Monte Carlo simulation on a 10× 10× 15 FCC(111)

slab to model the surface segregation of this ternary alloy. The predicted

surface concentrations were compared with the experimental results and the

discrepancy between them was substantially discussed.
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3.2 Methods

3.2.1 Density Functional Theory

The Vienna Ab initio Simulation Package (VASP)53,54 was used to

conduct the DFT calculations in which the wavefunctions were represented

by projector augmented wave (PAW) method.55,56 The

Perdew-Burke-Ernzerhof generalized gradient approximation

(GGA-PBE)57,58 was chosen as the exchange-correlation functional. The

density of k-points in the Monkhorst-Pack mesh59 was approximately 5 per

reciprocal Angstrom and the plane-wave energy cutoff was 400 eV. The

convergence error from the chosen parameters mentioned above was around 2

meV/atom.

3.2.2 Experimental Data

The compared experimental data was taken from Ref. 60, in which

composition spread alloy films (CSAFs) were used as a high-throughput

method to accelerate the experimental process. Bulk composition and

surface composition were characterized by energy-dispersive X-ray (EDX)

and low-energy He+ ion scattering (LEIS) respectively. More details of the

experimental conditions can be found in the original paper.60

3.2.3 Neural Network

The BPNN framework18 was used to predict the total potential energy of

the surface slabs, of which the configurations were represented by the

fingerprints of radial G2 symmetry functions19 with η s of 0.05, 4 and 20.

The cutoff radius was set as 6 Å to bound the range of the local environment

around every atom. This value was reported with good results in alloys
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involving Pd, Cu, and Au.49,61 The NN framework in this chapter contains

three independent NNs one for each element: Pd, Au and Cu. Each NN has

the same structure of two hidden layers with ten neurons per layer. Thus,

there were in total 221 parameters in each NN. The training and evaluation

process of the NNs on the CuPdAu surface slabs were conducted using the

atomistic machine learning package (AMP)28 in combination with the atomic

simulation environment (ASE) package.62,63

3.2.4 Training Samples across the G2 Fingerprints Space

In this work, 5278 FCC(111) slabs were generated to train, validate and

evaluate the neural network. Six lattice constants ranging from 3.637 Å (of

pure Cu) to 4.174 Å (of pure Au) and FCC(111) slabs of 1× 1× 7, 2× 1× 7,
√

3 ×
√

3 × 7,
√

7 ×
√

7 × 5 and 3 × 3 × 5 were used to generate these slabs.

In total, 5100 slabs were generated randomly as the training and validation

dataset, with a split ratio of 9:1. Furthermore, to evaluate the generalization

ability of the NN, 178 slabs of
√

12×
√

12× 5 were then randomly selected as

the test set. Compared to the number of all possible configurations, which is

more than 345 (45 is the number of atoms in the slab 3× 3× 5), the size of the

training and the validation set is small. The diversity of the training samples

in the fingerprint space is analyzed in the following discussion.

Training samples spanning the fingerprint space are required to enable the

NN to make accurate predictions on various atomic local environments in the

Monte Carlo simulation process across the composition space. For the ternary

alloy CuPdAu, the G2 fingerprints calculated by three different ηs are in a

9-dimensional space which is hard to visualize and sample. It turns out that

features indicating the same surrounding element are highly correlated. Thus,
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the training samples can be visualized and selected in a 3D space made up of

the fingerprints calculated with a certain η.

In the system of FCC(111) surface slabs of the CuPdAu, the fingerprint

space generated by a certain η and a cutoff radius of 6 Å contains several

triangular planes in the 3D space. These planes are characterized by different

lattice constants of the slab and different locations of the atoms in the slab

(surface, subsurface, and bulk). Figure 3.1 shows the G2 fingerprints

calculated with η of 0.05 for CuPdAu FCC(111) slabs with different lattice

constants and structures. According to the formula of the G2 symmetry

function, the lattice constant of the slab and the position of the atom in the

slab determine the plane of the atomic fingerprints, while the composition of

the atomic local environment determines the location of the fingerprints in

the triangular planes. Quantitative analysis of the density of the points on

the triangular planes can be found in Appendix A.

Figure 3.1: Fingerprints calculated by η = 0.05 for surface slabs with different
structures (1 × 1 × 7, 2 × 1 × 7,

√
3 ×
√

3 × 7,
√

7 ×
√

7 × 5) and lattice
constants (3.61 Å, 3.73 Å, 3.84 Å, 3.96 Å and 4.08 Å). The x, y, z axes are
the fingerprint values for different surrounding elements in the atomic local
environment bounded by the cutoff radius. In the left figure, fingerprints of
the same lattice constant are located in three planes, which represents the bulk,
subsurface and surface environments from top to bottom. In the right figure,
fingerprints in the same plane are distributed around a triangle, where the
three angles represent the local environments purely consist of three different
elements.
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The fingerprints of the bulk atoms in the training set are illustrated in

Figure 3.2 which shows that the fingerprints of the dataset almost cover the

whole triangular plane. Combined with different lattice constants that lead to

different triangular planes in the 3D space, the fingerprints of generated slabs

have covered the whole fingerprint space of the CuPdAu FCC(111) slabs.

Figure 3.2: Fingerprints of bulk atoms in the training slabs with lattice
constant of 3.64 Å. The fingerprints in the figure were calculated with the
η of 0.05.

3.2.5 Monte Carlo Simulation

The Monte Carlo (MC) simulations were conducted on the slab FCC(111)

10× 10× 15 whose lattice constant was estimated by the overall composition

with Vegard’s law.64 The potential energies of the generated configurations

were evaluated by the trained NN. In the Monte Carlo simulation, a new

configuration was accepted if the change in energy is negative. Otherwise, the
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new configuration was accepted with the Boltzmann probability

p = exp
−∆E

kBT
(3.1)

where ∆E is the change of the potential energy after an atomic swap.

3.3 Results

3.3.1 Performance of Neural Network

We first show that the neural network was well trained with the 4590

selected FCC(111) slabs. Figure 3.3 (a) illustrates the performance of the

NN on the training set and the validation set. Both training and validation

sets have a mean absolute error (MAE) of around 2 meV/atom. The residual

error distribution of the validation set is pretty similar to that of the training

set, which means that there was no apparent overfitting during the training

process. The generalization ability of the NN was assessed by its performance

on a larger
√

12×
√

12× 5 slab. In the larger unit cell of this slab, there can

be a broader range of atomic local environments which are different from the

training and validation set. The performance of the NN on the generalization

test set is shown in Figure 3.3 (b). Although there is some bias (non-zero mean

residual error) on the NN predictions, the size of the MAE is still comparable

with that of the training and validation set. The bounded error of the NN on

the generalization set supports the analysis of the fingerprints that the training

set has covered almost the whole fingerprint space. Therefore, we are confident

that the trained NN also has the ability to predict the potential energies for

larger slabs in the Monte Carlo simulation.
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Figure 3.3: Distribution of the NN residual error on the training, validation
and test set. Figure (a) shows the MAE and the residual error of the
training and the validation set which share the same distribution of the slab
configurations. Figure (b) shows the MAE and the residual error of the test
set which contains slabs with larger unit cell than the training data.
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3.3.2 Monte Carlo Simulation Results

With the trained NN, 24 bulk concentrations across the whole ternary

diagram were selected to conduct the MC simulations at a temperature of

600 K. There were a total 15,000 successful MC steps (atom swaps) on each

bulk concentration and the last 6000 steps were used to calculate the average

surface concentration. Figure 3.4 shows a representative MC process on a bulk

concentration of 20:23:47 for Pd:Cu:Au.

Figure 3.4: MC trajectory of the top layer concentration on a 10 × 10 × 15
FCC(111) slab with bulk concentrations of 20:23:47 for Pd:Cu:Au over 15000
successful steps. The colored dashed lines are the bulk concentrations while
the solid lines are the surface concentrations. The last 6000 steps were used to
calculated the average surface concentration and the standard deviation which
represented by the grey dashed lines.

The MC simulation results for 24 bulk concentrations at a temperature

of 600 K are shown in Figure 3.5. The values in the figures were calculated

by subtracting bulk concentrations from the surface concentrations for each

element. Therefore, positive values mean segregation to surface (indicating an
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excess at the surface compared to the bulk) while negative values represent

depletion from surface. In the simulation results, Pd is depleted from the

surface at most bulk concentrations except the area near the PdCu binary alloy,

where Pd segregates to the surface. For Cu, it is depleted from the surface

at all bulk concentrations, especially near the CuAu area. In contrast, Au

segregates to the surface at all bulk concentrations. The simulated segregation

tendencies are partially consistent with the reported simulation results using

a cluster expansion.65 Au is qualitatively observed to segregate to the surface

at all compositions. There is an inconsistent segregation trend for Pd and Cu

in their binary alloy compositions. Simulation predicts the segregation of Pd

to the surface whereas Pd is depleted from the surface in experiments. The

second discrepancy is that the segregation ability of Cu is underestimated in

the simulations and it is overestimated for Au.

Figure 3.5: MC simulation results for 24 bulk concentrations at 600 K. These
plots show the excess surface composition compared to the bulk composition
for Cu, Pd and Au. The first row is for the simulation results, and the second
row shows the experimental results.60

To evaluate the segregation ability of Pd, Cu and Au more quantitatively,

the segregation energies for the binary combinations were calculated

assuming each pair of two elements in equilibrium. More specifically, the

23



reaction energies for the following three reactions were evaluated based on

the simulation and experimental results:

Au@Bulk + Pd@Surf
KAu−Pd


 Pd@Bulk + Au@Surf ∆GAu−Pd = −RTlnKAu−Pd

Au@Bulk + Cu@Surf
KAu−Cu


 Cu@Bulk + Au@Surf ∆GAu−Cu = −RTlnKAu−Cu

Pd@Bulk + Cu@Surf
KPd−Cu


 Cu@Bulk + Pd@Surf ∆GPd−Cu = −RTlnKPd−Cu

These reactions are for the segregation of a certain element against

another element from left to right. Ki represents the equilibrium constant for

reaction i. For example, KA−B is defined as

c(B@Bulk)c(A@Surf)/c(A@Bulk)c(B@Surf). The reaction energy ∆GA−B

can be regarded as the relative segregation ability of A over B. A negative

value means the preferential segregation of A over B. Figure 3.6 shows the

segregation energies of Au-Cu, Au-Pd and Pd-Cu pairs. These data points

have excluded the samples with bulk composition less than 0.2 and surface

composition of 0 for the involved elements. Similar to the qualitative results

above, the segregation energy for the Au-Pd pair based on the simulation is

close to the experimental data (on parity), and a negative sign means that

Au tends to segregate to the surface compared to Pd in this ternary system.

The segregation energy for Au-Cu in the simulation is more negative than

the experimental results, which implies that the segregation tendency of Au

over Cu is overestimated in the simulations. For Pd-Cu, the simulated

segregation energy has the opposite sign compared to the experimental data,

which denotes an opposite segregation trend for these two elements. These

discrepancies between the simulations and experiments shall be discussed in

the rest of this chapter.
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Figure 3.6: Segregation energies for Au-Cu, Au-Pd, Pd-Cu pairs derived from
simulation and experimental data. Each dot corresponds to a different bulk
composition.

3.3.3 Phase Separation in Experiments

Before exploring any possible calculation factors that may be responsible

for the discrepancies, we note that the MC method that we used is limited to

simulation of one type of crystal system (FCC in our case). It has been

reported that there exists a B2 phase in the phase diagram of the CuPd,

which is not considered during the simulations in this work. This

phenomenon actually affects the segregation profile of the alloy.60 According

to the experimental observations, the segregation of Cu over Pd is inhibited

with the appearance of the B2 phase, and the affected bulk composition

ranges from 0.4 < xCu < 0.7. The Cu segregation is only reduced, however, it

does not invert, so this is not likely to be an explanation for the discrepancy

that we see in the simulations.
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3.3.4 The Role of Surface Relaxation

Another possible reason for the discrepancy between the simulation and

experiment is the effect of surface relaxation. Previous work49 reported that

relaxation energies were not important in capturing segregation trends in Pd-

Au because they largely cancel, and so we did not consider them here. It is

possible that the larger size difference between Cu, Pd, and Au could be more

relevant here.

To determine the impact of surface relaxation on these results, a 2× 2× 5

FCC(111) slab was used to compare the potential energy before and after

surface relaxation. The bottom three layers of the slab were set with the

concentration of 1:1:1 for Au:Pd:Cu, and the lattice constant was fixed

according to Vegard’s law.66 202 unique energy configurations were selected

to be evaluated. Since the potential energy difference (∆E) before and after

atoms swap matters in the Monte Carlo simulation, we investigated this

quantity in the 2 × 2 × 5 slab. Among 202 unique energy configurations, the

∆Es of 285 atom swaps in the top two layers were evaluated by NN and

DFT. The ∆E calculated by the NN without surface relaxation, by DFT

with surface relaxation, and their pairwise difference ∆∆E are shown in

Figure 3.7. While the ∆E of every atom swap ranges from 0 to 1 eV, the

difference of the ∆E calculated by NN without relaxation and DFT with

relaxation is less than 0.2 eV, and most of them are less than 0.1 eV. More

systematically, Figure 3.8 compares the ∆Es of atomic swaps that occur

between two layers and within one layer. For the atomic swaps that occur

between two layers, the ∆Es calculated by NN and DFT are always the same

sign. Thus we should observe the same segregation trend with and without

relaxation. For the atomic swaps within one layer, some inconsistencies take

place in the ∆Es near the zero point where the magnitude of the ∆Es is
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quite small. These kinds of swaps do not influence the surface concentration

directly. These results illustrate that the role of surface relaxation is limited

in the Monte Carlo simulation through the error cancellation before and after

atoms swap. This error cancellation phenomenon also appeared in the AuPd

binary alloy.49 We conclude that the neglect of relaxation on FCC(111)

surface is not a likely factor in explaining the discrepancies observed.

Figure 3.7: Potential energy difference before and after atomic swaps
calculated by NN without surface relaxation (left), DFT with surface
relaxation (middle), as well as their pairwise difference (right).

3.3.5 Vibrational Contribution to the Surface Segregation

In addition to the phase separation and the surface relaxation, another

possible reason for the discrepancy between the measured and predicted

segregation of Pd and Cu is the neglect of vibrational contributions to the

Helmholtz free energy, which was reported to be useful to get more accurate

Cu-Pd phase behavior.67 In the MC simulations above, one assumption is

that the Helmholtz free energy can be approximated by potential energy and

configurational entropy. We did not include vibrational contributions to the

change in energy. To take it into account, the Helmholtz free energy
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Figure 3.8: Parity plot of the potential energy change before and after atomic
swap calculated by NN without surface relaxation and DFT with surface
relaxation.

including the vibrational contribution was investigated on a 1× 1× 7 slab at

1000 K. All the atoms in the unit cell were free to relax and the final forces

on every atom were less than 0.02 eV/Å2. The vibrational frequencies were

calculated by a finite difference method with displacement of 0.01 Å. Table

3.1 summarizes the potential energy and Helmholtz free energy change for

segregation of Pd in Cu and Cu in Pd. We found that the vibrational energy

contributions are too small to result in a change in sign of the segregation

energies, and thus are not likely the source of the discrepancy.

Table 3.1: Potential energy and Helmholtz free energy change for segregation
of Pd in Cu and Cu in Pd.

Segregation type Cu3PdCu3 to PdCu6 Pd3CuPd3 to CuPd6

DFT Potential change(eV) -0.014 0.146
Helmholtz free energy change(eV) -0.063 0.168
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3.3.6 Orientation dependence of CuPd surface segregation mode

After investigating the roles of surface relaxation and vibrational

contributions in surface segregation of the CuPd FCC(111) surface, a

remaining reason could be the orientation dependency of segregation. The

experimental surfaces are not single-crystal FCC(111) surfaces; they are

polycrystalline. In a related study on a Cu-Pd thin film it was found the

surface was FCC(111) textured over a broad range of composition, but in the

B2 range a seemingly random distribution of surfaces were observed.39 Thus,

it is likely in this work that there may be other surfaces such as FCC(110)

and FCC(100) present, including grain boundaries between these surfaces.

It was reported that CuPd shows different segregation behavior on

different FCC surfaces such as (111), (110) and (100).68 We compare the

DFT segregation energies for CuPd FCC(110) and FCC(111) on a 3 × 3 × 6

slab in Table 3.2. The inclusion of surface relaxation did not change the sign

of the surface segregation energy for FCC(111). On FCC(111), Pd tends to

segregate on the surface while Cu tends to diffuse inward the bulk. However,

for FCC(110), surface relaxation is significant and it can change the sign of

the surface segregation energy. Without surface relaxation, the DFT

calculation shows the same segregation trend as on the FCC(111) for Cu and

Pd. When we take the surface relaxation into account, the surface

segregation trend is reversed. This calculation means that the surface

segregation of CuPd depends on the orientation of the slab, which is

consistent with the recent experimental work where the surface segregation

behavior of Cu and Pd is related to the surface environment.68

To study the details of the surface segregation behavior of CuPd on

FCC(110), we performed another set of MC simulations on this orientation.

As illustrated in Table 3.2, surface relaxation plays an significant role for
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Table 3.2: CuPd segregation energy on FCC(111) and FCC(110).

Surface Seg. Type Surf. Relax Seg. Energy (eV)
FCC(111) Cu in Pd No 0.096
FCC(111) Pd in Cu No -0.066
FCC(111) Cu in Pd Yes 0.051
FCC(111) Pd in Cu Yes -0.122
FCC(110) Cu in Pd No 0.006
FCC(110) Pd in Cu No -0.018
FCC(110) Cu in Pd Yes -0.166
FCC(110) Pd in Cu Yes 0.007

surface segregation. Thus, we need to include the surface relaxation energy

during the MC simulation. Similar to the way in which we modeled the total

potential energy using a NN, we built another NN with the same architecture

to model the surface relaxation energy using 1000 slab configurations. Only

the atoms in the top two layers have a contribution to the surface relaxation

energy during the training and prediction phase. Surface relaxation was

considered on both sides of the slab in MC simulations. The segregation

profiles for CuPd FCC(110) with and without considering the surface

relaxation are shown in Figure 3.9. We could see a qualitatively different MC

simulation result here compared to the FCC(111) result above. Here,

CuPd(110) with surface relaxation has the same segregation trend with the

experimental result, while the segregation profile without surface relaxation

included is still far away from the experimental result.

In this section, we discussed how the surface orientation affects the

segregation profile of CuPd. Due to the complicated surface environment in

reality (e.g., step, terraces, and defects), it is not currently possible to fully

simulate every detail of all the local environments on a surface. Thus, we

only performed a set of MC simulations on FCC(110) to demonstrate that

there can be orientation dependent surface segregation behavior of CuPd.

Through the comparison between FCC(111) and FCC(110), we have shown
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Figure 3.9: Segregation profile of CuPd(110) at 600 K. Blue squares show
the MC simulation results with surface relaxation. Orange triangles show
the simulation results without surface relaxation. Red points show the
experimental results.60
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that the structure of the surface has significant impact on the segregation

profile of CuPd, and this is a probable explanation for the discrepancy

between simulation and experiment initially presented in this work as the

experimental surfaces are known to be polycrystalline.

3.3.7 DFT errors in alloy formation energies

In the MC simulation results, we also saw an overestimated segregation of

Au to the surface for CuAu alloy. This might be explained by the DFT

predictions of the formation energy of the alloys. Table 3.3 summarizes some

reported formation energies of AuCu alloys,67,69–72 in which DFT-PBE

predicts much higher formation energies than experimental data. This means

it underestimated the interaction between Cu and Au, which could lead to

the overestimated surface concentration of Au as we observed in the Monte

Carlo simulations. In other words, the energy cost in losing Cu-Au bonds

from Au segregating to the surface is over-compensated by the reduction in

the surface energy of Au at the surface. This aspect of the discrepancy can

only be rectified by more accurate DFT functionals.

Table 3.3: Experimental and DFT formation energies for CuAu alloys

Alloy Experimental (meV/atom) DFT-PBE (meV/atom) Ordered
Cu3Au -74 -44 L12

CuAu -93 -56 L10

CuAu3 -39 -25 L12

3.4 Conclusions

With 5278 FCC(111) slab configurations of CuPdAu, we built a neural

network to compute FCC(111) ternary alloy slab energies and validated its

performance. The training samples were selected randomly with or without
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some constraints on their bulk concentrations. In the fingerprints space, we

showed that the training set nearly spanned the possible atomic local

environments, which enabled the NN to predict the DFT potential energy of

any larger slab encountered in the MC simulation with a MAE of around 2

meV/atom. The trained NN made it possible to conduct the MC simulation

on a 10 × 10 × 15 slab with the first principle potential energy which is

computationally unpractical using DFT directly.

Through the combination of NN and MC simulations, the surface

concentrations of the slabs with various bulk concentrations were predicted

and compared to experimental results. The segregation of Au on the surface

was simulated successfully and the simulation results are qualitatively

consistent with the experiments for the AuPd parts of the ternary alloy

space. For the CuAu part, the simulation result is qualitatively consistent to

the experimental data, but MC simulation overestimated the Au segregation

due to the low accuracy of the DFT functional (PBE). In terms of the CuPd

part, there are some discrepancies between simulated and experimentally

observed segregation behavior which we ultimately attribute to limitations in

the use of ideal FCC(111) surfaces as models for segregation in

polycrystalline films. We discussed the orientation dependent surface

segregation behavior of CuPd by comparing the simulation results on

FCC(111) and FCC(110) and we showed evidence that FCC(110) would

show Cu segregation behavior that is more consistent with the experimental

observations.
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4 Machine-learning accelerated geometry

optimization in molecular simulation

The main results of this chapter are adopted from our published work in

Ref. 73.

4.1 Introduction

In last chapter, we focused on simulations under vacuum conditions,

which simplified many calculations. However, in reaction conditions, there

are complicated interactions between the reaction molecules and the catalytic

surfaces. The surface configuration and the reaction taking place on the

surface have mutual effects on each other. The surface configurations (e.g.,

composition, atom arrangement) affect the kinetic and thermodynamic

properties of the reactions. In the meanwhile, the molecules and the

intermediates of the reactions also have impact on the surface configurations.

Adsorption energy is one of the common quantities that represent the

complex interactions between the adsorbates and the catalyst surface.

Accurate adsorption energies of certain adsorbates over various kinds of

catalytic surfaces are basic prerequisites to conduct high-throughput

screening for novel catalyst candidates.74–76 Many studies aim to build up a

reliable machine learning model to predict the adsorption energies on

different adsorption sites.77–79 In this case, a training set (a set of adsorption

configurations with their corresponding adsorption energies) covering most of

the possible configurations is necessary to obtain a reasonable model which

affects the reliability of the screening process.

The rate-limiting step to obtain the adsorption energies is often the

geometry optimization process. This process usually consists of a sequence of
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iterative single point calculations with DFT. The structure update is

completed by various optimizers like conjugate gradient descent or the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms. These algorithms

start with an initial guess, and then iteratively move the atoms to reduce the

forces to a specified tolerance. The forces are typically computed at each

step by DFT code. One path to speeding up these calculations is to use a

better initial guess. An alternative approach is to use a surrogate model that

is computationally cheap, but sufficiently accurate that many steps can be

taken with the cheap model before an expensive DFT calculation is

requested. Recently, many ML methods have been developed to accelerate

the local geometry optimization process with this idea. For example,

Peterson80 used a neural network as the surrogate model to find the

transition state, but the uncertainty is not included. Torres et al.81 and

Koistinen et al.82 used Gaussian Process Regression (GPR) to estimate the

uncertainty during the local geometry optimization. Those implementations

of GPR are solely based on the Cartesian coordinates of the atoms, which

limits the training set to the past geometries of the same configuration size

and composition during the optimization. The information of other

configurations can not be utilized. There are other applications of active

learning in geometry optimization61,83–86 or in molecular dynamics.87,88 Most

of these methods are also based on active learning with uncertainty measured

by GPR or neural network ensemble. In active learning relaxation process, a

surrogate model is trained to replace the expensive DFT calculations to

perform the energy minimization steps. At each step, the uncertainty of the

model prediction is monitored. If the uncertainty exceeds a specified

threshold, DFT calls will be requested to get accurate energy and force

35



information for the uncertain configuration. Then, this new data point is

used to update the surrogate model.

The work to date has mostly focused on the relaxation of a single

configuration, which might have limited acceleration when applied to

relaxations of many configurations. For each configuration, the surrogate

model essentially starts from scratch, and has no ability to share information

between similar configurations. In this chapter, we illustrate and evaluate an

online learning method to accelerate the local geometry optimization for

multiple configurations simultaneously. More specifically, we focus on two

aspects to accelerate the online learning process. The first point is related to

the training of the surrogate model that used to relax the target

configurations. When the training set gets large, the training of the machine

learning model also takes more time, which might result in longer relaxation

time than using DFT solely, although with fewer DFT calls. This issue is

shared among various ML models including GPR and deep learning models.

We note that using a local training dataset is sufficient to conduct the local

geometry optimization. Thus, the size of the training set used to update the

surrogate model at each step could be limited, which could significantly

reduce the training time. The second point of this chapter is to discuss the

potential methods that could be adapted to accelerate the active learning

relaxation process for large number of configurations. We illustrate three

adaptations to three different scenarios: relaxation from scratch, relaxation

from a small dataset and relaxation from a large existing dataset. The main

point under these methods is that the information of different relaxation

trajectories could be shared to accelerate the overall relaxation process.

Another objective of this chapter is to provide an overview about the
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performance of NN-based online learning on various local geometry

optimization tasks.

4.2 Methods

4.2.1 ML Surrogate Model for Potential Energy Surface

We have introduced two basic types of machine learning potentials,

Gaussian Approximation Potentials (GAP)31 and Behler Parrinello Neural

Networks (BPNN)18 in Chapter 2. In the work of this chapter, we used a

modified version of BPNN, the SingleNN, to model the potential energy

surface.89 SingleNN uses the same ACSFs as the conventional BPNN, but

uses a single neural network with multiple output nodes for different

elements, rather than a separate neural network for each element. Under the

same NN structure (same number of hidden layers and same nodes in each

layer), it contains fewer parameters than the BPNN framework. Thus, the

training and inference cost is lower. Our SingleNN structure contains two

hidden layers with 50 neurons at each layer. The activation function used is

hyperbolic tangent (tanh). These hyperparameters were chosen by cross

validation among different NN architectures on the dataset of previous work

and they are typical for machine learned potentials. The structure of this NN

looks relatively over-parameterized considering the small size of the dataset

in this work (typically the dataset contains 50 configurations). This is

because we want to utilize the benefits of an over-parameterized deep

learning model: 1) With high probability, convergence of the training process

is easy from a random initialization, and 2) an over-parameterized NN could

lead to less correlated models with high probability only using different

random initializations,90,91 such that we could build up a diverse NN

ensemble from different random initializations. Empirically, there are also
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some successful applications of large NN models on small dataset with

reasonable generalization ability.92 Since the capacity of our NN structure is

relatively large, we used early stopping to prevent overfitting. Although we

take the early stopping to prevent the overfitting, for our specific application,

we need to note that the validity of the relaxed structure from the active

learning method does not depend on whether there is an overfitting issue

during the training stage because 1) the surrogate model is only used when

uncertainty is low, 2) if the uncertainty exceeds a threshold the data is

augmented by new DFT data, and 3) the final minimum is always validated

by DFT.

The NN structure used to predict the atomic energy is shown in Figure

4.1. Mathematically, the atomic energy, total energy and forces predicted by

the SingleNN could be formulated by Equations 4.1 - 4.3.

Figure 4.1: SingleNN structure for atomic energy prediction. The use of each
variable is shown in Equations 4.1 - 4.3 and described in the text.
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Ei =
[
W(2)f (2)

a

(
W(1)f (1)

a

(
W(0)gi + b(0)

)
+ b(1)

)
+ b(2)

]
eli

(4.1)

Etot =
N∑
i

Ei (4.2)

fi = −∂Etot
∂ri

(4.3)

In these equations, Ei and fi are the energy and forces of atom i, gi is the

fingerprint vector for atom i, f
(l)
a , Wl, b(l) are the activation function, weight

matrix and bias at layer l. The subscription eli is a select operation that takes

the entry corresponding to the element of atom i, such that the atomic energies

of different elements could be learned separately. N is the number of atoms

in a configuration. Etot is the total energy of the configuration.

In the training stage, we applied the L-BFGS optimizer93 on a mean square

error (MSE) loss function to train the model:

L =
1

N

N∑
i

(Ei − Êi)2 + λ
1∑
iMi

N∑
i

Mi∑
j

(Fij − F̂ij)2 (4.4)

where Ei, Êi are true and predicted total energy for configuration i. Fij, F̂ij are

true and predicted force of jth component of configuration i. N is the number

of configurations and Mi is the number of force components in configuration

i. λ is a hyperparameter that specifies the relative importance of the energy

loss and the force loss.

To measure the uncertainties of the model predictions, we adopted the

NN ensemble method as an approximate estimation.91 We use 10 NNs in the

NN ensemble and each NN has the same structure. As mentioned in the

39



original ensemble method paper, each NN is trained on the same training set

without bootstrapping but with different random initialization. This is

because different initializations are already able to generate different NN

models using the same training set because of over-parameterization.90

The prediction uncertainty is estimated by the variance of the model

predictions in the ensemble. We used a multiple of the maximum variance in

the training set as a criterion to determine if a configuration is uncertain or

not. More specifically, Equation 4.5 quantifies this uncertainty threshold,

T = αmax
i

Var
[
Ei
tot

]
(4.5)

where α is the coefficient to control the extent to believe the prediction of the

NN ensemble. Var [Ei
tot] is the prediction variance of the NN ensemble on the

total energy of a configuration i in the training set. T is the threshold above

which a prediction is considered as uncertain. We chose the α by comparing

the performance of different values on a small dataset. For the applications

below, setting alpha between 2 to 3 works for all examples and we use 2 as the

default value. The intuition is that if the NN ensemble has a similar variance

on a test configuration as the variance in the training set, then we could expect

the test configuration is close to the region of the training dataset. Thereby,

we could expect similar error to the training error. If it is much larger than

the maximum variance in the training set, it is probable that extrapolation

is occurring, and we should be careful about the prediction. This intuition

is shared by different machine learning models like GPR and NN ensemble.

For example, Figure 4.2 shows the GPR and NN models for the Lennard

Jones potential.94 Both models have small prediction variance in the region of
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the training data. As the test data goes far away from the training set, the

prediction error and variance also increase.

Figure 4.2: Surrogate machine learning models for the Lennard Jones
potential. Left plot shows the GPR while the right plot shows the NN
ensemble. Both models have low prediction variance in the region of training
set and high variance for the data that is far from the training set.

We also compare this NN model with the GPR model in one of our

datasets. The details of the GPR formula are attached in Appendix D.

Optimization of the hyperparameters like the bandwidth and the data noise

term was conducted according to the previous literature reports.81,82 The

data noise in this application could be the DFT convergence error related to

the factors like k points and cutoff energy.

4.2.2 Relaxation with Active Learning

The framework of active learning for relaxation is shown in Figure 4.3 which

is similar to most active learning frameworks,85,95 but we process multiple

configurations simultaneously to obtain extra acceleration. The rationality

of pooling different trajectories together is that the information of similar

atomic environment across trajectories could be shared by a common atomic

NN surrogate model, which was also observed in a water NN potential.96

Another benefit of the pooling is that it could be applied in a scalable way.

Different configurations could share a common surrogate model and there is

41



no need to assign separate computing resources for training of each trajectory.

For the specific procedure, we start from N configurations to be relaxed, build

a common NN ensemble for these N configurations. At each step, we conduct

relaxation until the model becomes uncertain for each configuration. Then we

query DFT for the true energies and forces for these uncertain configurations,

which are used to update the surrogate model. During the relaxation process,

we limit the size of the training set and keep the configurations of the most

recent steps; all previous configurations are discarded in the iterative training

of the NN ensemble. This setting is used to reduce the time to train a NN when

the available data points grows as the relaxation approaches. Intuitively, this

modification is similar to L-BFGS compared to BFGS, which estimates the

inverse of the Hessian matrix at a point using the recent gradients instead of

full history.93 However, L-BFGS aims to alleviate the memory problem while

we try to reduce the training time for the surrogate model.

Before running the online learning to relax target configurations, several

cases should be considered. If no prior data related to the target configurations

is available, then the initial model is built on the DFT information of the

initial configurations. If there are some existing relaxation trajectories that

are related to the target configurations (e.g. alloys with the same elements

but different configurations), then this data is incorporated with the DFT

data of the initial configurations to set up the initial NN model. This part of

reused data also accelerates the overall process of relaxation. Finally, if much

training data is available from previous relaxations that are similar to the

initial configurations, then it is possible to conduct the relaxation in a offline

way using the NN model trained on the prior training set without initially

accessing the DFT calculation.
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Figure 4.3: Framework for relaxation with online active learning. The
overall workflow starts with the initial configurations that needs to be relaxed.
At first, the DFT energies and forces are calculated and the NN ensemble
is trained with these initial information. Then the model is utilized with
optimizers to reduce the energy of the configurations. The relaxation with
model stops when encountering with uncertain configurations or reaching the
relaxation criterion. The uncertain configurations are submitted for further
DFT calculations.

4.2.3 Application Dataset

In the following sections of this chapter, we test the proposed online

learning methods on a variety of structures including bare pure metal slabs,

bare metal alloy slabs, slabs with an adsorbate, and a nanoparticle with an

adsorbate. These structures increase in complexity, and are expected to be

increasingly expensive to do geometry optimization with. More specifically,

we take Au FCC(100), Au FCC(111), Au FCC(211), Au FCC(643), Au

FCC(111) with propylene on the surface, AuPd FCC(111), AgPd FCC(111)

with acrolein on the surface, and AuPd icosahedron with CO on edge as the

examples for these structures. For the slab, the bottom two layers are fixed

and the remaining atoms are free to be relaxed. For nanoparticles, all atoms

are free to move during the relaxation. In addition to the geometry
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relaxation of these structures, we also evaluate this method on two

climbing-image nudged elastic band (CINEB) cases:97 Pt heptamer

rearrangement over Pt FCC(111) surface and acetylene hydrogenation over

Pd FCC(111) surface. The CINEB algorithm is like a constrained geometry

optimization where forces in the direction tangent to the bands are projected

out. The basic framework to perform CINEB using NN ensemble is similar

to the CINEB based on GPR.81 In our work, the surrogate model is the NN

ensemble instead of the GPR. During the relaxation, when one of the

configurations in the CINEB is identified in the uncertain region of the NN

ensemble, we query for a DFT calculation for this configuration. This

process continues until all configurations are relaxed with certainty, then we

query the DFT information for the configuration with highest energy until

the energy and force prediction for the highest-energy configuration is certain

and the true force is lower than a specified threshold.

The DFT used in this chapter is also performed by the Vienna Ab initio

Simulation Package (VASP)53,54 with Perdew-Burke-Ernzerhof generalized

gradient approximation (GGA-PBE) as the exchange-correlation

functional.57,58 For the Pt heptamer rearrangement case, we used EMT

(implemeted in ASE63) as the calculator for energy and forces, because the

size of this system (unit cell with 343 Pt atoms) is too large for DFT. The

related dataset, relaxation trajectory, configurations in the NEB as well as

the code used to conduct the active learning geometry optimization are

available in GitHub,98 in which the code to calculate the fingerprints is

modified based on the functions of SimpleNN.99
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4.3 Results

4.3.1 Active learning for geometry optimization of single

configuration

Usually, geometry optimization is performed for each configuration

separately. For example, one may be interested in the relaxed geometry of an

occupied adsorption site. Then, the geometry optimization would be

conducted on an initial guess of the configuration. Active learning could be

integrated into the optimization trajectory to accelerate the process by using

a surrogate model with uncertainty. With the example of Au slabs with and

without an adsorbate, we evaluated the performance of active learning on

single configuration relaxation, and compare it with the quasi-Newton

optimizer built in VASP (RMM-DIIS).100 As shown in Figure 4.4, the

acceleration for the bare slabs is not as significant as it is for the slab with

propylene on the top. The more complex surface FCC(643) gains more

acceleration than simpler surfaces FCC(100), FCC(111), and FCC(211). The

results suggest that the surrogate model requires a minimum number of steps

or configurations to build up a sufficient approximated potential energy

surface, and then to show acceleration. These results show that with active

learning the number of DFT calls may be reduced by a factor of two to four

for geometry optimizations that require 20 or more relaxation steps.

4.3.2 Further acceleration by information sharing among

configurations and utilizing prior data

There are multiple ways to use machine learning to accelerate geometry

optimization. First one may build a surrogate machine learned model from

the relaxation trajectory of a single configuration as it develops, using the
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Figure 4.4: Comparison of the number of DFT calls between active learning
with NN ensemble and quasi-Newton built in VASP when each configuration
is relaxed independently.

surrogate model when it is sufficiently accurate. Alternatively, one can relax

many (related) configurations in parallel and train a single surrogate machine

learning model on the collection of developing trajectories (the multiple

method). Finally, if one has access to relaxation trajectories from several

previously relaxed configurations, one can pretrain a surrogate machine

learning model and then use it (the warm up method).

We compare the performance of active learning with these different

strategies: single configuration, multiple configurations and multiple

configurations with warm up (pre-training) on the example of an adsorbed

acrolein molecule on the AgPd FCC(111) system. This system is more

complex than the examples in previous section with less symmetry and it is

expected to take more relaxation steps to find a minimum energy geometry.

Here we use the same query strategy for new DFT single point calculations,

but with different settings for the initialization. For the single configuration
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active learning, the method only focuses on relaxing one configuration at

each time. The surrogate model starts with the DFT information of the

target configuration. At each relaxation step, it relaxes this configuration

and queries DFT calculation for one uncertain configuration. For the

multiple configurations setting, the DFT energies and forces of all target

initial configurations are used to initialize a single NN model. Then all

configurations are optimized until each configuration is fully relaxed or goes

into uncertain region of the surrogate model. In terms of the warm up

setting, it requires some prior DFT data related to the target configurations

that need to be relaxed, such that the surrogate model could be pre-trained

with this prior DFT information which serves as the prior beliefs for the

potential energy surface.

The performance of above three methods on 13 different acrolein/AgPd

configurations are shown in Figure 4.5. With standard DFT/quasi-Newton

(DFT/QN) geometry optimization, it takes about 193 DFT steps on average

to relax the geometries. All three methods in our work and the GPR model

show acceleration, while the NN methods present better performance over

the GPR model. The hyperparameters of the GPR model are referenced

from previous literature reports.81,82 We note that the hyperparameters from

the reported literatures might not be the optimal for our system, but even

still we observe acceleration of about four times fewer steps with the GPR,

11 times fewer steps for the single configuration, and 13 times fewer steps for

the multiple configurations. The pretrained warm-up shows the largest

acceleration indicating that the surrogate model is more accurate and has

performed better. Clearly, the information sharing through the surrogate

model accelerates the active learning relaxation process. The large reduction

in the number of DFT calls required directly translates to saved time and
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computing resources. In the limit of a fully trained machine learned

potential, one can expect no additional DFT calculations are required for a

new relaxation, but in our experience and in the literature it takes thousands

of DFT calculations to obtain that.

Figure 4.5: Number of DFT calls for three different active learning settings
for the relaxation of acrolein/AgPd(111). The blue line represents the single
configuration mode, the orange line is for the multiple configurations mode
and the green line denotes the multiple configurations with warm up. The red
line serves as a baseline which is the performance of GPR model implemented
according to previous literatures.81,82 For comparison, with no ML it takes
about 193 DFT calls to converge.

A related scenario is when we have prior data about the target

configurations that we want to relax. For example, if we have the active

learning relaxation trajectories for many configurations of acrolein/AgPd and

we want to relax the remaining configurations. In this case we can utilize the

existing data to build up a model to approximate the PES of the acrolein

and AgPd, and then conduct the relaxation process offline since it is possible

that the information required to relax the remaining configurations has been

included in the existing trajectories. We show the offline relaxation
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performance in Figure 4.6, in which 243 acrolein/AgPd relaxation

trajectories are used to train a NN model. Then, another 13 configurations

are relaxed using this model. Without accessing any DFT calls, the NN

could reduce the maximum force of the configurations from 0.7 eV/Å to

below 0.1 eV/Å, which could serve as a preprocessing step if lower forces are

required. The NN ensembles provide uncertainty estimates, which would be

useful for determining if the pretrained models are sufficiently accurate for

new configurations that are not similar to the training set.

Figure 4.6: Offline relaxation on 13 acrolein/AgPd configurations using NN
trained on 243 existing relaxation trajectories. Blue points show the maximum
DFT forces for the initial configurations. Orange scatters are the maximum
DFT forces for the NN relaxed configurations while purple dots are the NN
maximum forces.

In summary, this section shows that machine learning surrogate models can

be trained on the fly or in advance in a variety of ways to accelerate geometry

optimization. The biggest on the fly acceleration occurs when multiple similar

configurations are relaxed in parallel with shared training data in a single

surrogate model. Further acceleration can be obtained if training data already
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exists to pre-train the surrogate model on. In the next section we show the

acceleration is observed for many different atomistic systems, and the degree

of acceleration is system dependent.

4.3.3 Performance of the active learning on more complex systems

and nudged elastic band calculations

To explore the ability of active learning with multiple configurations to

accelerate geometry optimization, we evaluate this method on three different

chemical structures: bare AuPd FCC(111) slab, CO on an AuPd icosahedron

nanoparticle and acrolein on AgPd FCC(111) surfaces shown in the

illustration example. We measured the required DFT calls to fully relax the

configurations and compared it with the built-in VASP quasi-Newton

optimizer RMM-DIIS. We relaxed the configurations until the maximum

force on the atoms is less than 0.05 eV/Å. The results are shown in Figure

4.7. Active learning accelerates the relaxation process to different extents

across these three systems. For the simpler case like the AuPd bare slab, the

acceleration ratio is about 50% compared to the original VASP optimizer.

For more complicated (i.e. lower symmetry and more atomic degrees of

freedom) systems, the acceleration is more significant, reducing the number

of DFT calls by more than 90%. This result shows that active learning is

suitable for relaxing more complicated structures. Once the NN has a

reasonable representation of the PES of target configurations by calling the

first several DFT calculations, this surrogate model could be used to

fine-tune the structure as a replacement of DFT calls.

In addition to local geometry optimization presented in aforementioned

cases, we also evaluated the NN ensemble-based active learning method in

two climbing image NEB (CINEB) examples: Pt heptamer rearrangement
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Figure 4.7: Comparison of active learning (AL) and VASP quasi-Newton
(QN) method on relaxing three different structures: bare AuPd slab, CO on
AuPd icosahedron and acrolein on AgPd slab.

over Pt FCC(111) surface and acetylene hydrogenation over Pd FCC(111)

surface. We used an effective medium theory (EMT) calculator for the

heptamer and DFT for the hydrogenation reaction.12 We used EMT for

heptamer because of the large size of the Pt slab. This example also shows

that the NN ensemble method is not limited to DFT. We note that EMT is a

theory with relatively lower complexity than DFT, thus, besides the EMT

example, we also included a DFT example on acetylene hydrogenation.

These two examples show the NN ensemble could be applied on both two

theories with different complexities. The reaction curves generated by the

NN ensemble with active learning and the corresponding VASP or EMT

calculator are shown in Figure 4.8. With the same initial and final state, the

NN ensemble found practically the same transition state as VASP or EMT

for these two system. The corresponding activation energies have 6 meV and
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4 meV error compared to the one from EMT or DFT which is within

convergence tolerance. The required DFT or EMT calls are much fewer than

those without active learning as shown in Table 4.1. In the case of acetylene

hydrogenation, there are some mismatched energies between NN and VASP

for the intermediate configurations except the transition state. This is caused

by the intrinsic setting of the low scaling CINEB method based on active

learning.81 Only DFT data for the configuration with the highest energy is

evaluated for the convergence criterion. This problem could be alleviated by

modifying the convergence criterion to include the energy and forces of other

images in the elastic band, such that all images in the band are fully relaxed

instead of only considering the highest-energy configuration.82 However, for

the purpose of CINEB, the NN ensemble with active learning could

accelerate the process to find the transition state by finding the configuration

with the highest energy.

Figure 4.8: Climbing NEB curves generated by NN ensemble and (a) EMT
for Pt heptamer rearrangement (b) DFT for acetylene hydrogenation over Pd
FCC(111) surface.

Table 4.1: EMT or DFT calls queried by NN ensemble with active learning,
EMT with MDMin and VASP with built-in quasi-Newton optimizer for Pt
heptamer rearrangement and acetylene hydrogenation.

Pt heptamer rearrangement Acetylene Hydrogenation
(EMT) (VASP)

Calculator 596 calls 1109 calls
NN ensemble with AL 9 calls 30 calls
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4.3.4 Limiting the training data to recent configurations for

training efficiency

With the active learning approach we add training data as the geometry

optimizations proceed. This also adds (re)-training time which grows as the

size of the training set. In the first few steps from scratch, this is not a problem

since the training process could be completed quickly because of the small size

of the training set. The time cost for training is negligible compared to the

DFT calculations. However, when the size of the training set grows large

along with the relaxation steps, the required time to train a model with high

accuracy also scales up. Figure 4.9 illustrates the training time for NN over

the active learning iterations. The initial training set consists of 13 different

acrolein/AgPd configurations. At each iteration, uncertain configurations are

added into the training set and the surrogate model is updated. The training

time scales linearly with the size of the training set, which could be time-

consuming when the iterations increase.

It is not always necessary to use all of the training data however. We

found that the correlation (or similarity) between two configurations in the

relaxation trajectories decreases as the number of steps between them

increases. The correlation between two configurations can be illustrated by

averaging the Pearson correlations between corresponding atomic fingerprints

in two configurations. There is usually reasonable similarity between the

initial and final states (assuming a reasonable initial guess is used), so to

highlight the change in similarity we subtracted the final state correlation

from each configuration because the relaxation is local. The descending

correlation shown in Figure 4.10 for a relaxation trajectory suggests we may

only need to focus on utilizing the configurations in the most recent steps to

perform local geometry relaxation.
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Figure 4.9: Time spent on the training process using a single NN with 2 layers
and 50 neurons at each layer over iterations. The blue line shows the time for
the model trained on all queried configurations while the orange line shows
the time for training on the training set with fixed size. The experiment is
repeated 10 times and the shaded area is the standard deviation for the 10
experiments. Time measured on 4 CPU cores.
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Figure 4.10: Scaled Pearson correlation coefficient between the intermediate
configurations and the final relaxed configuration. The Pearson correlation is
scaled by the base correlation between the initial configuration and the final
configuration.

As a result of Figure 4.10, it appears in this system at least that after

about five steps, the new steps are decreasingly correlated with the initial

steps. Therefore, if we only focus on recent steps (e.g. the five most recent

steps) and only use these configurations to update the surrogate model, the

training time could be controlled as almost constant as the active learning

proceeds (see Figure 4.9). We note in this case that the training time is still

small compared to the time required for a single DFT calculation which is

about 1.5 hours for the Acrolein/AgPd unit cell with the VASP settings in

this work. When the total training set continues to grow or there are fewer

computational resources available for training, the local training set could be

more preferable. We note that there are cheaper probabilistic models like

GPR that could be used for small dataset. But given the growing size of the
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available data and the wide applications of deep learning models, a cheaper

way to access the uncertainty estimation for deep learning models is valuable.

4.4 Conclusion

Active learning has demonstrated promising performance to accelerate

structure optimization in various applications. In this chapter, we illustrate

that active learning with multiple configurations could achieve further

acceleration compared to active learning with a single configuration by

sharing the information across different configurations using a common NN

ensemble. On the basis of that, we also provide three active learning modes

for three scenarios with different amounts of prior data. By integrating the

prior data into the active learning framework, more calls to expensive energy

and force calculators are saved. To explore the generalization ability of this

method, we compared the number of required underlying energetic

calculations between the active learning, built-in VASP quasi-Newton

optimizer and MDMin in ASE in various local geometry optimization tasks.

The results show that active learning reduces the amount of DFT or EMT

calls by 50% - 90% based on different systems. From bare slabs to surfaces

with adsorbates, the acceleration becomes more significant. In addition to

the surface relaxation, we also applied this method on the climbing NEB for

Pt heptamer rearrangement and acetylene hydrogenation. In these examples,

the acceleration is even more apparent (˜98%) while keeping almost the same

transition state with the underlying ground truth energy and force

calculators. In conclusion, the work in this chapter shows the potential of

this NN ensemble-based active learning method in various computational

surface science and catalysis tasks.
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5 Simulating Surface Segregation and

Aggregation of AgPd Alloy in the Presence

of Acrolein

The main results of this chapter have been published in Ref. 101, which is

a product of the collaboration with Mingjie Liu in our group.

5.1 Introduction

In Chapter 3 and Chapter 4, we demonstrate the use of ML potential to

accelerate the Monte Carlo simulation as well as the geometry optimization.

In this chapter, we aim to combine these two applications together to explore

the surface segregation and aggregation phenomenon of an alloy surface in

the presence of acrolein molecules. Specifically, we target to investigate the

relationship between the bulk composition of the AgPd alloy and its surface

configurations under the acrolein atmosphere. Here, we start with the

motivation to study the segregation behavior of AgPd in the presence of

acrolein molecules.

Acrolein is the simplest α, β-unsaturated aldehyde, and it has been

widely used as a model species to study the selective hydrogenation of the

α, β-unsaturated aldehydes over metallic catalysts.102–105 The selective

hydrogenation that converts an α, β-unsaturated aldehyde into an

α, β-unsaturated alcohol is an important but difficult reaction step to

produce lots of fine chemicals, for example, perfumes and pharmaceuticals.106

It is difficult because the C=C bond is thermodynamically preferred to be

hydrogenated rather than the C=O bond. Catalysts can be used to improve

the selectivity towards the C=O bond hydrogenation of this reaction. For
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example, it was experimentally reported that metallic catalysts based on Ag

or Au were able to convert acrolein to propenol with high selectivity.103,107,108

However, the improvement of the selectivity came with a decrease in the

reaction rate. Thus, several metallic catalysts based on Pd, Pt, and Ru were

studied and their potential to improve the reaction rate was reported.104,109

But these catalysts tend to hydrogenate the acrolein into propanal, allyl

alcohol, and propanol with no satisfying selectivity.

To address the issue that high selectivity and reaction rate are hard to

be satisfied at the same time, researchers put their focus on single-atom alloy

(SAA) catalysts,2 which shows the potential to break the constraint between

two ends of the selectivity and reaction rate. The application of the SAA

catalysts has been studied in many previous works. For example, Aich et al.

reported a doubled reaction rate of the hydrogenation of the acrolein which

was catalyzed by the 0.01% Pd /8% Ag alloy nanoparticles supported on SiO2,

compared to the reaction with pure Ag on SiO2 as the catalyst. Also, the

selectivity of this reaction was still kept at 31% compared to 37% using pure

Ag.102 In addition, a drop of the selectivity from 19% to 9% was reported by

Muir et al. when they alloyed 0.2% of Pd into Ag.110 These previous works

show different reaction results using the AgPd as the catalysts for the acrolein

hydrogenation reaction. Different experimental conditions such as the alloy

composition, temperature, pressure, and supports have a significant impact

on the experimental results. Thus, theoretical investigation on the reaction

mechanism and the behavior of the catalysts during reaction will be much

beneficial to the design of better catalysts.

Many efforts have been made to investigate the detailed adsorption

properties of acrolein on different metallic surfaces.111–114 However, most of

the computational work focused on the acrolein configuration given a fixed
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surface configuration. For example, the acrolein adsorption mode on a pure

metallic surface. A few works also tried to investigate the adsorption of

acrolein over the single-atom AgPd alloy102 using DFT, but their

computations were only limited to a small surface unit cell with only one

dopant atom on the host metals. This constraint saved a lot of

computational complexity by eliminating an enormous number of unique

alloy configurations. However, the interaction between the adsorbate and the

metallic surface atoms is mutual. Simulations are required to thoroughly

study the effect of this interaction on both the adsorption properties as well

as the metallic surface configurations. These kinds of simulations were

previously limited by the computational power because the surface relaxation

with adsorbates itself is time-consuming. This computational complexity

grows dramatically with the large space of the surface configurations. Using

the active learning framework introduced in Chapter 4, we are able to obtain

the relaxed adsorption structures for multiple configurations with an

affordable computational cost. Combining the adsorption data and the ML

potentials, the MC simulations with DFT accuracy are feasible for the AgPd

alloys in the presence of the acrolein.

In the following sections of this chapter, we introduce the ML-SGCMC

workflow that studies the surface configuration of AgPd FCC(111) surfaces

with different bulk compositions and under the presence of the acrolein. This

workflow is shown in Figure 5.1. Two main parts of the workflow are the ML

models and the semi-grand canonical Monte Carlo (SGCMC) simulations.

Three ML models are used as the surrogate models for the bulk potential

energies, slab potential energies, and adsorption energies. The bulk potential

energies and the SGCMC simulations are combined to obtain the ∆ chemical

potentials for different AgPd bulk compositions. Added by the slab potential
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energies and the adsorption energies, we are able to access the change of the

total potential energy of the whole configuration (acrolein/AgPd) during the

simulations. Consequently, simulating the surface segregation and

aggregation including the effect of the acrolein adsorption becomes feasible

using this workflow. In our work, we firstly show the DFT calculations on a

small unit cell to study the effect of acrolein on the segregation behavior of

the AgPd alloy. We then expand our scope by considering the AgPd slab

with a larger scale and more configurations under the help of the

ML-SGCMC workflow.

Figure 5.1: ML-SGCMC workflow used to simulate the surface surface
segregation and aggregation phenomenon of AgPd in the presence of the
acrolein. Three ML models serve as the surrogate models for the bulk
potential, slab potential and the adsorption energies. SGCMC simulations
are powered by these three ML models to study the ∆ chemical potentials for
different bulk compositions, as well as the surface segregation and aggregation
phenomenon.
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5.2 Methods

5.2.1 DFT Calculations for Potential Energies and Adsorption

Energies

ML surrogate models were trained on DFT potential energies and

adsorption energies. VASP was again used to calculate the energetic data for

the bulk and the slab unit cells, as well as the adsorption

configurations.53,54,115,116 The exchange-correlation functional used in our

calculations was Perdew-Burke Ernzerhof (PBE).57,58 The planewave cutoff

energy was set as 450 eV. The density of k-points in the Monkhorst-Pack

mesh59 was approximately 3375 k-points per reciprocal atom. The

convergence of the chosen parameters was around 0.01 eV. The geometry

optimization of the adsorption configurations was accelerated by the active

learning framework illustrated in Chapter 4. The corresponding convergence

criterion was set as 0.03 eV/Å for the forces.

5.2.2 DFT investigation on the Pd Segregation with Acrolein

We firstly used pure DFT calculations to explore the effect of acrolein on

the segregation behavior of the dilute Pd atoms hosted by Ag atoms. The

segregation behavior is mainly controlled by segregation energy. Equation 5.1

shows the form of the segregation energy of n Pd atoms on the Ag FCC(111)

surface.

∆EPdn
seg = (EPdnAg

slab + nEAg
bulk)− (EAg

slab + nEAgPd
bulk ), (5.1)

Here, ∆EPdn
seg is the total segregation energy contributed by n Pd atoms,

which corresponds to the energy change of n Pd atoms relocated from the bulk

environment to the surface. EPdnAg
slab is the potential energy of a AgPd slab with
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n Pd atoms located on the surface, EAg
bulk and EAg

slab is the potential energy of

pure Ag bulk and slab respectively. Lastly, EAgPd
bulk is the potential energy of a

AgPd bulk unit cell with only one Pd atom. Limited by computational cost,

the slab unit cell was set as 3×3×4, and the bulk unit cell was set as 3×3×3

in our calculations. The lattice constant of these unit cells was set as the one

of pure Ag which is 4.163 Å. This is because our calculations here assume a

dilute limit of Pd composition, which should have little influence on the lattice

constant of the alloy unit cells.

The adsorption of acrolein affects the segregation behavior of AgPd via the

change of the adsorption energies on different AgPd surface configurations or

adsorption sites. The formula to calculate the adsorption energy is

∆E
acrolein/PdnAg
ads = Eacrolein/PdnAg − EPdnAg − Eacrolein, (5.2)

Here, ∆E
acrolein/PdnAg
ads is the adsorption energy of acrolein on AgPd with n

Pd atoms on the surface. Eacrolein/PdnAg, EPdnAg, and Eacrolein are the potential

energies of the AgPd slab with and without acrolein on the top respectively.

Eacrolein is the potential energy of acrolein in the gas phase.

The overall segregation energy considering the effect of the acrolein

adsorption can be calculated by combining the raw segregation energy and

the adsorption energy, which is represented in Equation 5.3.

∆Eacrolein/PdnAg
seg = ∆EPdn

seg + ∆E
acrolein/PdnAg
ads −∆E

acrolein/Ag
ads (5.3)

Here, ∆E
acrolein/PdnAg
seg represents the segregation energy for n Pd atoms

including the adsorption of acrolein. The segregation of Pd with acrolein is

favorable if this quantity is negative. This equation corresponds to the case

62



that the initial state is a pure Ag slab with acrolein on the top plus n Ag bulk

unit cells each with a single Pd atom. The final state is a AgPd slab with n

Pd atoms on the surface plus n pure Ag bulk unit cells. When we relax the

slabs, only the top two layers with or without acrolein are free to be relaxed.

5.2.3 ML surrogate models for Potential and Adsorption Energies

ML surrogate models were developed to provide fast and cheap

estimation of the potential energies which were required during the Monte

Carlo simulations. We used three ML models for AgPd bulk potential

energies, slab potential energies and acrolein adsorption energies separately.

Similar to the ML model used in Chapter 4, we chose the SingleNN as the

surrogate models for the bulk and slab potential energies.89 We still used the

ACSFs to encode atomic environment into numerical vectors as the input

features to NNs.18,19 The cutoff radius used to calculate the symmetry

functions was set as 6.5 Å. Both of the radial and angular ACSFs were used

in our models. The parameters to calculate the ACSFs are attached in

Appendix B. The SingleNN used in this work has two hidden layers, each

with 30 nodes. We adopted hyperbolic tangent (tanh) as the nonlinear

activation function for the SingleNN.

The training data for bulk potential energies were bulk unit cells of FCC

2 × 3 × 3 and FCC 3 × 3 × 3. Bulk unit cells with different configurations

were generated to include rich atomic environments. Specifically, the unit

cell of FCC 2 × 3 × 3 was fully enumerated to provide atomic environments

with Pd composition ranging from 0% to 100%. These configurations set the

boundaries of the region in the feature space that the SingleNN might be used.

In addition to this small unit cell, we also included a bulk unit cell 3× 3× 3

to provide atomic environments with higher resolution of Pd compositions.
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Since we focused more on the dilute limit of Pd composition, thus, we only

sampled configurations with Pd concentrations of 0% to 22%. During the

enumeration, we eliminated symmetrically equivalent bulk configurations via

unique effective medium theory (EMT)12 energies. We used 5 different lattice

constants ranging from 3.956 Å (pure Pd) to 4.163 Å (pure Ag) to generate

the FCC 2 × 3 × 3 bulk unit cells. For the 3 × 3 × 3 unit cells, we included

3 different lattice constants from 4.060 Å (50%/50% PdAg) to 4.163 Å (pure

Ag). Overall, the bulk training dataset had 123 configurations of FCC 2×3×3

and 690 configurations of FCC 3× 3× 3.

In terms of the training data for slab potential energies, we generated

FCC slab configurations on a unit cell of 3× 3× 4. We only enumerated the

configurations of the top two layers of atoms while keeping the bottom two

layers with pure Ag atoms because we only focused on the Pd dilute limit.

Symmetrically equivalent configurations were still eliminated using unique

EMT energies. These configurations were further subsampled by an energy

interval of 0.01 eV. Consequently, there were 203 configurations in our slab

training set.

In MC simulations, the most direct energy data we need is the total

potential energy of the whole system which is the AgPd slab with acrolein

adsorbed on the surface. Using the SingleNN model for the bulk and slab

energies, we are able to conduct SGCMC on a bare slab. But if we want to

conduct SGCMC on a AgPd slab with acrolein, we still need to calculate

surface relaxation energies and adsorption energies. Here, we used another

quantity, pseudo-adsorption energy, to avoid the explicit calculation of the

surface relaxation energy. This quantity is defined as

E∗ads = Eads + Eslab,relax + Eacrolein = Eacrolein+slab − Eslab (5.4)
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where E∗ads is the pseudo-adsorption energy, it also accounts for the effect of

the surface relaxation. Eads is the true adsorption energy, Eslab,relax is the

surface relaxation energy, and Eacrolein is the potential energy of acrolein in

gas phase. Eacrolein+slab is the total energy of acrolein on the top of the slab,

which is the most direct quantity used in MC simulation. Finally, Eslab is the

energy of a clean slab without surface relaxation. Once we have a surrogate

model for pseudo-adsorption energies, we can combine it with the slab energy

model to obtain the total energy of acrolein on a slab. These models provide

sufficient data to run SGCMC simulations.

The DFT training data for pseudo-adsorption energies was generated

from a FCC(111) slab of 3× 3× 4 with acrolein adsorbed on the surface. We

considered three different adsorption sites on the top layer: ontop site, bridge

site, and hollow site. Also, EMT was used to generate configurations with

unique potential energy in our dataset. Consequently, there were 540

configurations in the training set. The initial state for each configuration was

an acrolein placed 2.0 Å above each adsorption site, then we used the active

learning method to get the relaxed geometry. We note that the adsorption

energy for each adsorption site is not unique. This value could be affected by

many factors, such as the initial state and the optimization method. It is

computationally intractable to calculate the exact distribution of this value.

Therefore, we used one value calculated from one initial state and one

optimization process to approximate the adsorption energy for each

adsorption site.

Numerical representations for the adsorption sites are required to build a

surrogate ML model. We still chose the ACSFs18,19 as the descriptor.

However, an adsorption site usually contains multiple atoms, which makes it

hard to generate a fixed-length vector to represent an adsorption site. Thus,
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we placed a pseudo atom above each adsorption site and then calculate the

ACSF fingerprint for this pseudo atom. This method was inspired by the

work related to deep learning representations for fast heterogeneous catalyst

screening.117 Since ACSF encodes the surrounding environment around a

center atom into a numerical vector, in this way, the adsorption site could be

represented by the ACSF fingerprint of the pseudo atom. After that, we

adopted k-nearest neighbors method with k equals to 1 to predict the pseudo

adsorption energies.118 Basically, for an adsorption configuration, we

calculate its ACSF fingerprint, then we searched for the most similar

adsorption site in our reference dataset using the Euclidean distance of the

fingerprints. The predicted pseudo-adsorption energy is the one of the

nearest adsorption site. We note some adsorption configurations share the

same ACSF fingerprint in the 540 training configurations. Potential causes

are the accuracy of the EMT and the cutoff radius used to calculate the

ACSF fingerprints. If multiple adsorption sites occur to be the nearest

neighbors for a query adsorption site, we use the lowest pseudo-adsorption

energy as the prediction since it is energetically more favorable.

5.2.4 Semi-grand Canonical Monte Carlo Simulation

In this section, we introduce the details of the SGCMC simulations via ML

potentials. In simulations, the total number of atoms in the system was fixed

while the identity of each atom was allowed to change. These simulations were

conducted on a slab with 4 layers. Two bottom layers were pure Ag atoms

since we focused on the Pd dilute limit. During the simulations, when the slab

atoms were exchanged with the atoms in a bulk AgPd reservoir, we need the

∆ chemical potential (∆µAg−Pd) to calculate the corresponding energy cost for
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that exchange. In our setting, ∆µAg−Pd is the energy cost to flip the identity

of an bulk atom from Ag to Pd. The simulation temperate was set as 373 K.

A separate SGCMC simulations were performed to get the relationship

between the bulk compositions and the ∆µAg−Pd. A bulk unit cell of 10×10×10

was used to run these simulations. The lattice constant of this bulk unit cell

was 4.163 Å which was the value of pure Ag. In simulations for each value of

∆µAg−Pd, we initialized the bulk unit cell with a random AgPd configuration.

Then at each step, a random atom was selected to flip its element type (from Ag

to Pd or from Pd to Ag). The acceptance ratio of this change was determined

by Equation 5.5. ∆Ebulk was calculated by the bulk surrogate model mentioned

above. The sign before ∆µAg−Pd depends on the change of the atom identity.

If the atom is changed from Ag to Pd, the sign is negative. Otherwise, we take

a positive sign. The average of the bulk compositions at the final equilibrium

steps is the corresponding bulk composition for the specified ∆µAg−Pd.

Q = min(1, exp(−∆Ebulk ±∆µAg−Pd
kBT

)) (5.5)

After obtaining the ∆µAg−Pd for each bulk composition, we were able to

perform the SGCMC simulations to study the surface segregation and

aggregation behaviors on a AgPd slab. Both vacuum conditions and acrolein

adsorptions were considered. For the simulations on bare slab, we used a

FCC slab of 12× 12× 4. The lattice constant was also set to be the value of

pure Ag (4.163 Å). Atoms in the top two layers were initialized randomly

while the bottom two layers were fixed as pure Ag atoms. At each simulation

step, we tried to change the element type of a random atom in the top two

layers. The corresponding energy cost was calculated by the surrogate model

for slab potential energies and the ∆µAg−Pd. The mathematical form of the

accept ratio for this exchange is shown in Equation 5.6. Just like what we
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did for the simulations in bulk, the sign before ∆µAg−Pd depends on the

change of the atomic identity. If the atom is changed from Ag to Pd, a

negative sign is used. Otherwise, a positive sign is used.

Q = min(1, exp(−∆Eslab ±∆µAg−Pd
kBT

)) (5.6)

Lastly, we move forward to the simulations for AgPd slab with acrolein

on the surface. A larger slab of 30 × 30 × 4 was used to support the

adsorption of more acrolein molecules. We still focused on the Pd dilute

limit, so the lattice constant for this slab was 4.163 Å, and the bottom two

layers were filled with Ag atoms. We also limited the distances among

acrolein molecules to be at least 6.5 Å (around a coverage of 1/9 monolayer),

which eliminated the interactions among acrolein molecules. This is because

our DFT training data was not sufficient to study the interactions among the

adsorbed acrolein molecules. A larger slab is required for DFT calculation if

the interactions among acrolein molecules are desired, which is

computationally expensive. Similar to the simulations for the bare slab, here,

we still started each simulation from a random configuration for the top two

layers. Then we identified each adsorption site (ontop, bridge, and hollow)

and placed acrolein molecules in an order of ascending pseudo-adsorption

energy (starting from most negative). Note that after an adsorption site was

occupied, all other sites within the radius 6.5 Å were not valid for another

occupation. At each MC step, we randomly chose an atom in the top two

layers and tried to change its element type. The effect of the acrolein

adsorption was considered when calculating the energy change for a MC

step. If the selected atom was located at the first layer, we reassigned the

acrolein for the adsorption sites within 6.5 Å away from the selected atom.

The energy change was the sum of the change in slab energy and the change
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in the pseudo-adsorption energies. Both energy changes could be calculated

by corresponding surrogate ML models. The explicit form of the acceptance

probability is shown in Equation 5.7. If the selected atom was located in the

second layer, we did not reassign the acrolein molecules, since an atom

change in the second layer would not break or form an adsorption site in the

first layer.

Q = min(1, exp(−∆Eslab + ∆E∗ads ±∆µAg−Pd
kBT

)) (5.7)

5.3 Results

5.3.1 DFT Calculation for the Pd Segregation with Acrolein

First, we try to understand the impact of acrolein on the surface

segregation behavior of AgPd using DFT calculations. We calculated Pd

segregation energies and acrolein adsorption energies on 16 different AgPd

FCC slab configurations (see Appendix C). We considered slabs with

different numbers of Pd atoms on the first layer (from 0 to 4). The DFT

calculation results are shown in Figure 5.2. The general trend is that as the

number of Pd atoms increases in the first layer, the corresponding

segregation energy under a vacuum condition also increases, while the

adsorption energy becomes more negative. It means that the attractive

interaction between the Pd atoms and the acrolein has the potential to

induce the Pd to segregate to the top layer by overcoming the segregation

energy. The requirement is that the total energy reduction because of the

adsorption is able to compensate for the energy increase caused by Pd

segregation. According to the DFT calculations, only one configuration

(configuration 5) with a single Pd atom in the top layer satisfies this

requirement, which means that a single Pd atom on a Ag slab is energetically
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favorable under the acrolein atmosphere. There are likely other

configurations that are energetically favorable, but it is too computationally

expensive to do an exhaustive search using DFT.

Figure 5.2: Pd segregation energies under vacuum (Pd ∆Eseg), acrolein
adsorption energies (Acrolein ∆Eads), and Pd segregation energies with
acrolein (∆Eseg + ∆∆Eads) of different AgPd configurations. ∆∆Eads means
the difference of the acrolein adsorption energy on an adsorption site and on
pure Ag.

5.3.2 Performance of the ML Surrogate Models

Before we get into the simulation results, we check the performance of the

ML surrogate models, which is significant to the reliability of the simulation

results.

SingleNN was used as the surrogate model for the bulk and slab potential

energies. Each dataset was randomly divided into training, validation, and

test sets with a ratio of 8:1:1. For the bulk surrogate model, which was used

to obtain the relationship between the bulk composition and the ∆µAg−Pd,

its model performance is shown in Figure 5.3. The root mean square error

(RMSE) is about 1.6 meV/atom on the test set. The residual error is
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distributed evenly across the data space. The prediction difference of the

SingleNN models trained from training sets split from different random seeds

is shown in the right plot of Figure 5.3. The value of the prediction difference

is similar to the test error, which indicates that we can run multiple

simulations using the models trained from different datasets to estimate the

effect of model error on the simulation results.

Figure 5.3: Parity plots for the surrogate model (SingleNN) of AgPd
bulk potential energies. Left figure shows the performance on the training,
validation, and test set. Right figure shows the prediction difference of
the SingleNN models trained from different training setss (split by differnet
random seeds).

Similarly, the performance of the SingleNN model for the slab potential

energies is shown in Figure 5.4. The RMSE on the test set is about 0.5

meV/atom. The prediction difference caused by random dataset split is also

similar to the test error.

Different from the SingleNN model used for the bulk and slab potential

energies, we used k-nearest neighbor method with k equals 1 as the surrogate

model for pseudo-adsorption energies. For each data point, we find its closest

point in our reference dataset, then we use that label as the prediction. The

accuracy of this model was analyzed by leave-one-out cross validation. For
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Figure 5.4: Parity plots for the surrogate model (SingleNN) of the AgPd
slab potential energies. Left figure shows the performance on the training,
validation, and test set. Right figure shows the prediction difference of the
SingleNN models trained from different training set (split by differnet random
seeds).

each data point in the dataset (287 configurations in total), we search for its

nearest neighbor in the remaining 286 configurations. The model performance

is shown in Figure 5.5. Figure 5.5 (a) shows the parity plot between the DFT

energy and the model prediction energy. The overall RMSE is about 0.1 eV.

However, different adsorption sites show different levels of RMSE. Ontop site

has the smallest error of 0.038 eV. Bridge site and hollow site have relatively

larger errors which are 0.121 eV and 0.093 eV respectively. Figure 5.5 (b) is

a histogram plot of the error distribution. Most of the errors are less than

0.05 eV. We also found that the magnitude of the error depended on the

configurations of the test and the label data points. If they have a different

number of Pd atoms in the sublayer, the error is relatively large (as shown

in Figure 5.5 (c)). Otherwise, the error is relatively small (Figure 5.5 (d)).

We note that the actual RMSE of the pseudo-adsorption energy during the

simulations will be smaller than 0.01 eV. Because in our dataset, the unit

cell is limited to 3 × 3 × 4, and the atoms in the unit cell are repeated in
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two horizontal directions. One more Pd atom in the sublayer of a 3 × 3 × 4

unit cell actually has a double effect on the adsorption site in the top layer.

However, during the simulations, new configurations will only have the effect

of one more or less Pd atom in the sublayer because of the much larger size

of the unit cell. Therefore, the actual RMSE in the simulations will be about

0.05 eV.

Figure 5.5: (a) Parity plot for the pseudo-adsorption energy surrogate model.
Dashed lines indicate an error of 0.05 eV. (b) Histogram of the prediction
error. (c) Typical configuration with large prediction error. Configuration
with red pseudo atom is the test configuration while the grey pseudo atom
indicates the label configuration. They have different number of Pd atoms in
the sublayer. (d) Typical configuration with small prediction error. Red and
grey pseudo atom indicate the test and label configuration respectively. They
have the same number of Pd atoms in the sublayer.

5.3.3 Semi-grand Canonical Monte Carlo Simulation Results

We used SGCMC simulations to study the AgPd bulk chemical potential,

the surface segregation and aggregation of the AgPd slabs under vacuum and

acrolein conditions. In the following parts, we show and discuss the simulation

results on these three tasks.
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First, we studied the relationship between the AgPd bulk composition and

∆µAg−Pd. We performed simulations on a bulk unit cell of 10× 10× 10 with

∆µAg−Pd ranging from -2.9 eV to -2.35 eV. The simulation temperature was

373 K. For each round of simulations, we conducted 100000 MC steps such

that each atom was expected to be involved in 100 MC steps and the bulk

composition was expected to reach an equilibrium state. Then we took the

average of the compositions at the last 50% steps as the bulk composition

value for the given ∆µAg−Pd value. Bulk SingleNN models trained from 5

different training sets were used to evaluate the simulation variance. The

relationship between ∆µAg−Pd and the bulk composition is shown in Figure

5.6. ∆µAg−Pd and the bulk composition has a linear relationship when the

Pd bulk composition is below 10%. The slop suddenly becomes steeper after

10% of the Pd composition. The standard deviation of the simulation results

using different models is small when the Pd concentration is below 20%, which

means the effect of the bulk surrogate model error on the simulation results is

also small in this range. We also investigated the effect of the lattice constant

on the simulation results. Figure 5.6 also shows that the lattice constant

essentially has no apparent effect on the simulations with Pd concentrations

below 10%.

With a function mapping from Pd bulk composition to ∆µAg−Pd, we

simulated the segregation of Pd under the vacuum condition using the

SingleNN model for slab potential energies. Pd bulk concentrations between

5% to 30% were simulated, which corresponded to -2.70 eV to -2.35 eV for

∆µAg−Pd. Similar to the bulk simulations, each atom was expected to be

changed by 100 times, which resulted in 28,800 total MC steps for each

simulation. The last 50% of configurations were used to calculate the

equilibrium states for the Pd concentrations in the first and second layers.
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Figure 5.6: Relationship between the AgPd bulk composition and ∆µAg−Pd.
Blue points show the results of the simulations without changing the lattice
constant with the bulk compositions. Orange points show the simulations with
changing the lattice constant according to the Vegard’s law.66 The error bars
show the standard deviation of the simulations using 5 bulk SingleNN models
trained from the datasets with different split.
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Corresponding results are shown in Figure 5.7. The first layer is completely

dominated by Ag atoms across the considered bulk compositions. The Pd

atoms only appear in the first layer when the Pd bulk composition increases

over 20%. It means that Pd atoms are not favored to segregate to the top

layer under the vacuum condition. This observation is consistent with

previous reports about the segregation behavior of AgPd.119–121 Another

observation is the enrichment of the Pd atoms in the second layer. The

concentration of Pd in the second layer is always greater than the value of

the bulk concentration. Similar phenomenon can also be found in AuPd

alloys.49

Figure 5.7: SGCMC simulation results for the AgPd slab under vacuum
condition. Pd concentrations in the first and second layer are colored as blue
and orange. Error bars represent the standard deviations of simulations using
5 different SingleNN model trained from different dataset split.

Furthermore, the segregation and aggregation behaviors of the AgPd slab

with acrolein on the surface were studied using the SGCMC simulations at

76



373 K. We simulated 9 bulk concentrations ranging from 5% to 10%. Their

∆µAg−Pd values were from -2.74 eV to -2.58 eV with an incremental step of

0.02 eV. There were 500,000 total MC steps in each simulation and each atom

was expected to change its element type by 278 times. More MC steps were

used here because we wanted to investigate the details of the adsorption site

(ontop, bridge and hollow) distribution, which requires sufficient MC steps on

the atoms in the first layer. The last 50% of the accepted configurations were

used to calculate the equilibrium quantities (Pd compositions, ratio of each

adsorption site, etc.). Different SingleNN models were also used to estimate

the effect of the model error on the simulation results. Since the surrogate

model had an error of 0.05 eV during the simulations, we trained additional

four models on the training set whose labels were added by Gaussian noise

with a standard deviation of 0.05 eV. Additional SGCMC simulations were

performed using these models and the standard deviation of the simulation

results were calculated.

The segregation and site distribution results are shown in Figure 5.8 and

Figure 5.9 respectively. When the Pd bulk composition is between 5% to

6.5%, the Pd surface composition is about 11%. It means with the help of

acrolein, Pd tends to segregate to the surface, which is in contrast to the

simulation result under the vacuum condition (Ag segregates to the surface).

Also, the surface concentration is kept at 11% which means the adsorption sites

are dominated by the ontop site. It is also presented in the site distribution

plot. This plateau is because there is a gap between the energy bars for the

configurations with one and two Pd atoms on the surface. Accumulation of

the Pd bulk composition is needed to break this energetic gap. The bridge site

starts to increase when the Pd bulk composition is greater than 6.5%. The

hollow site appears after the Pd bulk composition reaches 8.3%. For the Pd
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concentration in the second layer, it has a steady increase along with the Pd

bulk composition, which is similar to the results under the vacuum condition.

We can also see that the second-layer Pd composition is more sensitive to the

model error, it has a larger standard deviation in these simulations. However,

it has a small influence on the Pd concentration in the first layer. In addition,

the main trend of the site distribution is not affected by the small model error.

Thus, the main conclusions for the Pd segregation and aggregation still hold

even if the adsorption energy surrogate model has an error of 0.05 eV.

Figure 5.8: AgPd segregation results in the presence of acrolein on the surface.
Error bars represent the standard deviation of the simulations performed with
different SingleNN models.

5.4 Conclusion

In this chapter, we illustrated the ML-SGCMC framework that combined

ML potentials with SGCMC to make simulations on large unit cells achievable.

The segregation and aggregation behaviors of the AgPd alloy were investigated
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Figure 5.9: Pd adsorption site distribution in the presence of acrolein.
Error bars represent the standard deviation of the simulations performed with
different SingleNN models.

at the Pd-dilute bulk compositions. In both pure DFT calculations and ML-

SGCMC simulations, Pd atoms did not segregate to the surface under the

vacuum condition. However, the attractive interaction between acrolein and

Pd was able to induce Pd atoms to the surface. When the Pd bulk composition

was below 6.9%, the Pd atoms were present on the surface in a single-atom

form. After that, the ratio of the bridge site and the hollow site increased

with the Pd bulk composition. The effect of the ML surrogate model error on

the simulation results was also investigated in this chapter. As shown in the

results section, for Pd-dilute bulk compositions (under 10%), the model error

had little impact on the segregation and aggregation behaviors of the AgPd

alloy in our simulations.

Several assumptions were made to make the calculations and simulations

tractable. For example, there was no interaction among the acrolein
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molecules on the surface. To include this effect, more DFT calculations for

the slabs containing more than one acrolein molecule are required, which is

computationally unaffordable. In addition, the actual reaction conditions are

much more complicated. There are more adsorbates on the surface, such as

hydrogen, allyl alcohol, and other intermediates. Simulations including these

complex factors are still challenging. Besides solving these assumptions,

improving the accuracy of the adsorption energy model would also be

beneficial to the reliability of the simulations. Overall, in this chapter, we

present a basic framework to accelerate the SGCMC simulations with

adsorbates using ML potentials, although there are still many aspects to be

improved.
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6 Searching Similar Molecular Structures

with Neural Network Embeddings

6.1 Introduction

The applications of ML are not limited to regression tasks, many other

fields also benefit from the development of the ML technique. In this chapter,

we demonstrate a search framework for related molecular structures in large

databases powered by ML representations. The main results in this chapter

are from a collaboration with Mingjie Liu in our group. Here, we start by

introducing the motivations of our work.

Data is the central part of almost all machine learning applications. With

the increasing capacity to generate and store more data, efficient methods to

retrieve target data of interest become much more in-demand. In the

chemistry field, the sizes of the datasets grew dramatically in past years. For

example, Materials Project has more than 140 thousand inorganic

compounds, 530 thousand nanoporous materials, and their properties.11

PubChem includes more than 100 million compounds.122 Open Catalyst 2020

(OC20) provides the DFT calculations of more than 130 million adsorption

structures.9 Given the huge sizes of existing datasets and potentially larger

datasets in the future, we need fast methods to explore and search in these

datasets.

Usually, researchers may want to search for molecules or materials with

similar properties in applications like discovering new drugs or cheaper

materials.123–125 Many similarity search methods have been developed for

this purpose.126,127 In general, a similarity search approach consists of three

essential components: molecular representation method, quantitative metric

to measure the similarity, and a search algorithm. The search process usually
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starts with one or more query molecules (e.g., configurations known for their

reaction activities). Then the representation method converts them into

numerical representations which could be used to calculate the pair-wise

similarities. After that, the search algorithm retrieves molecular candidates

on the basis of the similarity measurement. The retrieved molecules are

ranked by their similarities to the query molecule(s) in descending order.

Significant efforts have been spent on designing fingerprints to represent

molecules. For example, SMIfp (SMILES fingerprint) converts a molecule

into a 34-dimension scalar fingerprint.128 Each element of the fingerprint

counts the occurrences of 34 symbols in SMILES, where SMILES (Simplified

Molecular Input Line Entry System) is a chemical language and information

system used to represent different atoms and bonds with ASCII

characters.129,130 The substructure-based fingerprint is also a popular choice

to represent molecules. Each item of the fingerprint encodes whether or not a

substructure is present in a molecule. Typical examples include the

Molecular ACCess System (MACCS) and the Barnard Chemical Information

Ltd. (BCI) fingerprint.131,132 MACCS uses 166 structural fragments as the

keys while BCI contains 1052 substructures. These fingerprints rely on a

pre-built library of substructures as the keys, which limits their applications

only for relaxed molecules. For structures like complex adsorbates on

surfaces or unrelaxed geometries, representation methods with higher

resolution by focusing on geometrical details are preferred.

In the past decade, the development of deep learning methods has

changed the way to represent data like text and images. Deep learning

models like convolutional neural network (CNN) and recurrent neural

network (RNN) have been widely applied in computer vision and language

processing tasks.14,133–135 For most of the deep learning models, the last layer
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of the deep neural network represents the input data as a numerical vector

which contains rich information about the data. This vector representation is

also called embedding. Since the output usually linearly depends on the

embedding, we can also regard the embedding as a nonlinear dimensional

transform of the input into a space where the output is linear. The promising

performance of the deep learning models in various tasks implies the

embedding must represent the data in a reasonable way. Therefore, these

neural network embeddings have been applied in many information retrieval

systems involving image and text.136–138 For molecular data, several graph

neural network (GNN) models have been proposed to learn the embeddings

to represent the atomic configurations, such as the CGCNN and the

GemNet.21,23 The atomic embeddings contain information like the element

type of the central atom, position, and elemental information of the

neighboring atoms. When applied in specific tasks (e.g., energy and force

prediction), it is reasonable to think that neural networks could be trained to

generate atomic embeddings in a space where the specific property (e.g.,

atomic energy) is linearly related to the embedding vectors. Therefore, the

distance between the embeddings in this space could serve as a similarity

measure of a specific property.

In this work, we demonstrate a method based on neural network

embeddings to search for similar molecular structures. This method can be

applied to any atomistic system including organic molecules, bulk materials,

and adsorption systems. When combined with approximate nearest neighbor

search methods,139 neural network embeddings can be used to retrieve

similar atomic structures efficiently in large databases. We also show that

the similarity is related to the specific property which is used to train the
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neural network models. Therefore, this method has the potential to search

for similar molecular structures in a property-oriented way.

6.2 Methods

6.2.1 Searching Similar Molecules via Neural Network Embeddings

In this section, we introduce the overall framework to search for similar

molecules in a database using neural network embeddings. This framework is

shown in Figure 6.1. The whole workflow can be divided into two stages:

preparation and query. In the preparation stage, we use a database of

molecules to train a neural network model. Then we use the trained model

to calculate the embeddings of the atoms in the database. These atom

embeddings are processed into a specific data structure (e.g.,

space-partitioning tree) for future searching by an approximate nearest

neighbor (ANN) search algorithm. In the query stage, given a query

molecule, we use the same trained neural network model to get the

embeddings for the atoms in the molecule. Then we retrieve neighboring

atom embeddings using an ANN search method and return the

corresponding molecules as the results for the query event. If the query

wants to find similar atomic environments, then the atoms corresponding to

the embeddings are directly returned. More details of each step will be

discussed in the following sections.

6.2.2 GemNet to Generate Atom Embeddings

In this work, we used GemNet,23 a type of graph neural network, to

generate atomic embeddings as the real-value fingerprints. GemNet uses

embedding layers and message passing to encode the information like

element type, radial distances of atom pairs, angles of atom triplets, and
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Figure 6.1: Framework for similar molecules search using neural network
embeddings and ANN search methods. The red frame encloses the query
stage and the blue frame denotes the preparation stage.

dihedral angles of atom quadruplets into a real-value vector (atom

embedding) to describe an atom and its surrounding environment.23 The

message passing in GemNet can be described by Equation 6.1.23

m̃ca =
∑

b∈N int
a \{c}, d∈N emb

b \{a,c}

(
(WSBF1eSBF (xca, φcab, θcabd))

T W

((WCBF2WCBF1eCBF (xba, φabd))� (WRBF2WRBF1eRBF (xdb))�mdb)
) (6.1)

where a, b, c, d are four atoms in a quadruplet whose relative geometric

information is encoded. mdb denotes the directional embedding between

atom d and b. m̃ca means the updated directional embedding between atom

c and a. W represents a weight matrix, W denotes a weight tensor. � is an

element-wise multiplication operator. e means a basis function whose type is

annotated by different subscripts. RBF means radial basis function for the

distance information of atom pairs. CBF means cosine basis function for the

angular information of atom triplets. SBF denotes spherical basis function

for the dihedral angular information of atom quadruplets. For the
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mathematical definitions of these basis functions, please refer to the GemNet

paper.23

The atom embedding hi is initialized randomly based on the atom type.

Then, nonlinear layers are applied on both atom embeddings (hi) and

directional embeddings (mij) to update them in an interdependent way.

Finally, the atom embeddings undergo a linear transformation to output

target atomic properties like atomic energy. In our work, the GemNet model

(directional embeddings, atom embeddings, weight matrices) is trained with

potential energy data. In other words, the atom embeddings are used to

predict atomic contribution to the total potential energy. Therefore, atom

embeddings that are closed in this embedding space are expected to be

energetically similar or relevant. The dimension of the atom embeddings is

128 in our work. Other hyperparameters can be found in Table E.1. We note

that the implementation of the GemNet model was adopted from the GitHub

repository of the OC20 Project.9

6.2.3 Approximate Nearest Neighbor (ANN) Search

Atomic embeddings are vectors of real values. Typical distance metrics

for real vectors include Euclidean distance, inner product, and cosine

similarity. A straightforward way to find k nearest neighbors for a query

vector in a vector database is to calculate the distance between every

candidate vector and the query vector. In the meanwhile, maintain a priority

queue with a size of k. However, it has a time complexity of O(nd + n log k),

where n is the number of candidates in the dataset and d is the dimension of

the vectors. This computational complexity makes searching slow for large

databases and high-dimensional embeddings. Exhaust searching for the exact

k closest results is usually time- and resource-consuming for large databases.
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Therefore, many ANN search methods and libraries have been developed to

find the approximate results with much less time and resources.139 The ANN

search methods can be classified as hashing-based, quantization-based,

tree-based, or graph-based methods according to the techniques used to

accelerate the search process.140 Typical examples include locality-sensitive

hashing, SPTAG, and ScaNN.141–143 In our work, we used the Faiss library to

implement the ANN search part.144 Faiss is a library containing

implementations for several ANN search algorithms. Its IndexIVFPQ mode

is used in our work. The bases of IndexIVFPQ are inverted file system and

product quantization.145,146 The inverted file system is built by applying

k-means clustering on a database of vectors to form a set of centroids. These

centroids allow rapid access to a small fraction of near vectors for a query

vector, which avoids exhaust comparison against each vector in a database.

Then, the search efficiency is further enhanced by using product quantization

on the residual query vector (subtract the corresponding centroid from the

query vector). The essential idea of product quantization is dividing a vector

into small subvectors, applying k-means clustering on these subvectors, and

using the corresponding centroids of subvectors to represent the original

vector. Recording the centroid index uses less memory compared to saving

the whole real vector. The parameters of the Faiss IndexIVFPQ method

used in our work are attached in Table E.2. Faiss supports similarity metrics

like L2 distance and inner product. L2 distance was used in our work.

In this work, the similarity search is operated on two aspects, at the

atomic level and the molecular level. At the atomic level, we can directly use

ANN search on the atom embeddings. However, for the nearest molecules

search, we need to convert the similarity of atom embeddings into the

similarity of the molecules. For each atom in a molecule, we search for q
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approximate nearest atom embeddings in a database. These atom

embeddings are considered matched for the query atom. The corresponding

molecules containing these matched atoms are added to a candidate set.

After looping over all atoms in the query molecule, we rank the molecules in

the candidate set according to the number of matched atoms in descending

order (sum of Euclidean distances between the matched atom embeddings is

used to break ties). Top k molecules are the k approximate nearest

neighbors. Large q prefers the candidates that are globally similar to the

query molecule while small q favors the molecules containing local

environments with high similarity to the query molecule. We used q around

10 times k in our work.

6.2.4 Datasets

We demonstrate the ANN search on three datasets across organic

molecules, bulk materials and surfaces. For the organic molecules, we applied

our search method on the QM9 dataset.147,148 QM9 contains properties of

134k small organic molecules with elements of C, H, O, N, and F. In terms of

the bulk materials, we adopted the Materials Project dataset which includes

more than 126k bulk crystals.11 QM9 and Materials Project databases were

obtained from the SchNetPack package.27 For the surface systems, we used

the IS2RS subset from the newly released OC20 dataset,9 which contains

about 460k relaxed adsorption configurations. For each of the above dataset,

we train a GemNet model on their potential energy data to learn the atom

embeddings. After that, the atom embeddings were used in the search tasks.
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6.3 Results

In this section, we demonstrate the GemNet embedding-based ANN search

results for different molecular systems: small organic molecules, metallic bulk

materials, and metallic surfaces with adsorbates.

6.3.1 ANN Search for Organic Molecules

The first case of ANN search is for small organic molecules, which was

performed in the QM9 dataset. The whole dataset was split into the training

and validation sets randomly with a ratio of 8:2. A GemNet model was built on

the training set. The energy mean absolute error (MAE) on the training and

validation sets was 4.57 eV and 4.97 eV separately. We then used this model

to obtain the embeddings for atoms in the QM9 dataset and search for similar

molecules in this database. We chose several molecules and functional groups

as the queries to search for similar (sub)structures. The examples include

molecules of benzene and toluene, as well as groups of hydroxyl, amino, and

imino. Here, we only discuss the results for benzene and a joint search of amino

and hydroxyl groups. Results for other examples can be found in Appendix F.

For benzene, we used the GemNet embedding of each atom as the query vector

to search for similar atomic environments. Then sort the candidate molecules

based on their number of matched atoms and the sum of the L2 distances as

mentioned in section 6.2.3. The searched molecules are shown in Figure 6.2.

The top left molecule is the query benzene while the Figure 6.2 b to Figure 6.2

f are the nearest 5 molecules. They all contain a 6-atom ring structure with

some small difference against the query benzene. Basically, the 6 atoms in the

ring are all carbon. Except in Figure 6.2 c and Figure 6.2 f, one carbon atom

is replaced by a nitrogen atom. There are also some extra groups on the rings
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like hydroxyl and amino groups. But generally, these searched molecules are

similar to benzene in terms of elemental and geometrical features.

Figure 6.2: Retrieved similar molecules (top 5) for benzene. Figure a is
benzene used as the query molecule. Figures b to f show the nearest molecules
in the QM9 dataset.

We also compare the results to the search based on the Morgan

fingerprint with the Tanimoto coefficient. Morgan fingerprints are a way to

represent a molecule using a 2048-bit vector by building atom identifiers

based on atomic environments like atom types, connected bonds, and

neighboring atoms.149,150 The Tanimoto coefficient is a common metric used

to measure the similarity between two bit vectors by taking the ratio of

intersection over union.151 The search results of the Morgan fingerprints and

the Tanimoto coefficient are shown in Figure 6.3. The main difference from

the GemNet result is in Figure 6.3 b and Figure 6.3 c, where larger rings are

retrieved in the search results. These two molecules are less similar to

benzene from the aspect of atom numbers and bond angles in the ring

structure. According to the top 5 nearest molecules, GemNet embedding

retrieves more similar molecules than Morgan fingerprint.
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Figure 6.3: Searched similar molecules (top 5) using Morgan fingerprint with
Tanimoto coefficient as a distance measure.

In addition to the qualitative evaluation of the similarity by visual

comparison over the elemental and geometrical features, we also analyze the

similarity among the molecules by investigating their relevance in the

energetic embedding space. We built Gaussian process regression (GPR)

models using the searched molecules as the training set. We used the

FLARE package as the implementation of the GPR models.85 The

hyperparameters for the GPR model are attached in Table E.3. During the

training process, we iteratively added the search molecules one by one into

the training set and updated the GP model, then we used the GPR model to

predict the energy of benzene and compared the prediction with the true

label. The results of the GPR models are shown in Figure 6.4. We not only

included the results from the training set searched using GemNet

embeddings and Morgan fingerprints, but we also used a set of random

molecules from the QM9 dataset as the baseline. In Figure 6.4, we can see

that as we add more configurations into the training set, the prediction error
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and standard deviation are generally decrease. However, using molecules

searched in different ways, the GPR models have different performances.

GPR model trained on the molecules retrieved by GemNet embeddings has

the smallest prediction error (0.04 eV) and standard deviation (0.02 eV).

The GPR model from Morgan fingerprints has a larger error (3.64 eV) and

standard deviation (17.14 eV). The GPR model from the random molecules

has the largest error and prediction uncertainty, which is 5.76 eV and 43.44

eV respectively. These results imply that GemNet embedding has a

representation of the atomic environments that is more relevant to the

energetic property of the molecules. This is not surprising since the GemNet

model was trained on the energy data of the molecules and the atomic

energy prediction is a linear regression on the atom embeddings.

Figure 6.4: Prediction performance of GPR models trained on molecules
searched using GemNet embeddings and Morgan fingerprints, as well as a
set of molecules randomly sampled from the QM9 dataset. Left figure shows
the prediction error while the right figure shows the standard deviation (std)
of the GPR prediction. Number of added configuration means the numebr
of molecules added into the training set to build the GP regression model.
The annotations in the figures are the mininum prediction error and standard
deviation for the models trained on different number of configurations.

Besides the search for a whole molecule, we can also use the GemNet

embeddings to search for substructures. Here, we demonstrate an example of

searching for a molecule containing similar substructures to the hydroxyl
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group of the butanol and the amino group of the glycine. The search

procedure is similar to the method for benzene but has an additional step to

join the search results from hydroxyl and amino groups, which is similar to

an ”and” operator on two sets. Figure 6.5 shows the query substructures and

the searched molecule. The atoms in the query and matched substructures

are marked as crossed. Both hydroxyl and amino groups are retrieved in the

resulting molecule. In addition, the retrieved hydroxyl and amino groups are

somehow similar to the queries. For the hydroxyl groups, they are both at

the end of a three-carbon chain for the query and searched molecules. For

the amino groups, they are at the end of a two-carbon chain and there is a

-OH group at the other end.

Figure 6.5: Joint search result for hydroxyl and amino groups. The query
substructures are marked as crossed at the left of the arrow. The retrieved
molecule is at the right side with matched atoms also marked as crossed.

6.3.2 ANN Search for Bulk Local Environments

In addition to the organic molecules, we also applied the ANN search

method on metallic bulk systems with the Materials Project dataset.11

Similar to the QM9 case, the whole Materials Project database was split into

the training and validation sets randomly with a ratio of 8:2. A GemNet

model was trained on the training set. The energy MAE on the training and

validation set was 0.62 eV and 1.42 eV respectively. There is an apparent gap

between the accuracy of the GemNet model on the training and validation
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set. We attribute this gap to the configuration extrapolation in the validation

set. At the point we stop the training, there was no increase of the MAE on

the validation set along with the training steps, which implied the model was

not located in the overfitting region. We then used the trained model to

search for similar molecules in the Materials Project training dataset.

With an example below, we show that the neural network embedding-based

ANN search method is able to find similar bulk environments in this database.

The query example is an oxygen atom in a Al2Cu3O6 bulk cell. The query

and searched atoms are shown in Figure 6.6. The distances of the searched

atoms to the query atom and their ranks are shown in Table 6.1. The query

oxygen atom is the atom 9 in Figure 6.6 a, which is closely neighboring to a

copper atom (atom 3). There is also an aluminum atom (atom 0) near the

query oxygen atom. These three atoms form an angle around 135◦ with the

aluminum and copper atoms at two ends and the oxygen atom at the vertex.

There is also another oxygen atom (atom 5) at the opposite position to the

query oxygen atom across the copper atom. These geometrical features also

appear in the searched atoms in Figure 6.6 b (atoms 10, 13, 15, 17) and Figure

6.6 c (atoms 6, 8). Periodic conditions should be considered when examing

the geometrical similarity for atom 10 and atom 13 in Figure 6.6 b. In Figure

6.6 d, atom 17 is also the searched atom and it is ranked as 7th in all atomic

environments although its neighboring environment looks not so similar to the

query atom. This is because there are no more similar atoms like the previous

ones in the remaining pool. As shown in Table 6.1, the Euclidean distance of

the atom embeddings for the searched atoms in Figure 6.6 b and Figure 6.6 c

to the query oxygen atom ranges between 0.06 - 0.11. This distance jumps to

0.17 for atom 17 in Figure 6.6 d. The distance of the atom embeddings also

implies that atom 17 of Figure 6.6 d is not so similar to the query oxygen atom
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from the view of the GemNet model. It is also worth noting that during the

searching process, we did not explicitly restrict the searching pool to be oxygen

atoms. This atomic identity feature was already encoded into the GemNet

atomic embeddings, and this is why the retrieved atoms are all oxygen atoms

in Figure 6.6 although with different local environments. For more examples,

please refer to Appendix F.

Figure 6.6: Top 7 nearest atoms to the query oxygen atom in the Materials
Project dataset. Atom 9 in figure a is the query atom. Atom 10, 13, 15, and
17 in figure b, atom 6, 8 in figure c, and atom 17 in figure d are the searched
atoms.

Table 6.1: Euclidean distances between the GemNet embeddings of the
searched atoms (excluding the query atom itself) and the query atom.
Configuration ID b, c and d correspond to the configurations b, c and d shown
in Figure 6.6.

Rank Configuration ID Atom ID Distance
1 b 13 0.06
2 c 6 0.07
3 c 8 0.07
4 b 17 0.08
5 b 15 0.09
6 b 10 0.11
7 d 17 0.17

6.3.3 ANN Search for Surfaces

In this section, we move on to a more complicated system, metallic surfaces

with adsorbates. Relaxed configurations in the OC20 dataset were used in
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this case. There are more than 460k configurations in the training set and

about 24k configurations in the validation set. A GemNet model was trained

on the training set with the energy MAEs of 0.82 eV and 0.92 eV on the

training and validation sets respectively. Atom embeddings were generated

by this GemNet model to be searched during the query events. We illustrate

the application of the GemNet embeddings to search for similar adsorption

configurations via two examples. The first example is an oxygen atom adsorbed

on a tilted hollow site consisting of two Pd atoms and one Ag atom. The local

configurations are shown in Figure 6.7 a. During the searching, we did not

explicitly provide information like element types of the central and surrounding

atoms. Only the GemNet embeddings were used to measure the similarities.

According to the search result in Figure 6.7, this elemental information as well

as the geometrical pattern of the adsorption site have already been encoded

into the GemNet embeddings. On the one hand, the retrieved atoms are all

oxygen atoms. On the other hand, the adsorption sites are all hollow sites

with two Pd atoms. In addition to these apparent features, we also present

the similarity between the query atom and the searched atoms via the density

of states projected to these atoms (ADOS). The ADOS data was calculated

by the Vienna Ab initio Simulation Package (VASP).53 The ADOS data is

shown in Figure 6.8. For the searched atoms, their ADOS curves almost

overlap with the query oxygen atom. Their cosine similarities are all above

0.6. As a comparison, we show the ADOS data of four randomly selected

oxygen atoms (see detailed configurations in Figure F.6) in the OC20 dataset

in Figure 6.9. These random atoms have different ADOS from the query atom

and their cosine similarities are generally smaller than the searched ones. This

example shows that the GemNet embeddings are able to search for elementally

and geometrically similar local environments for a single atom adsorbed on
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metallic surfaces. These similarities also lead to the similarity in the density of

states (DOS). This example also implies a potential application of searching for

similar local structures using the projected DOS with vector search methods.

Since similar DOS suggests similar elemental and geometrical environments,

as well as potentially similar chemical properties. Storing DOS data when

building a database with some extra recourses would be beneficial to this kind

of application in the future.

Figure 6.7: Local configurations of the query and searched atoms (marked as
crossed). Configuration a is the query oxygen and configurations b to d are
the retrieved atoms.

Next, we demonstrate that our method not only works for simple atoms

like oxygen, but also for larger adsorbates like acetylene. In the OC20 dataset,

we search for similar atoms with embeddings similar to that of the two carbon

atoms in the query acetylene. We did not include the searching for similar atom

97



Figure 6.8: Density of states projected onto the p-orbital of the query and
searched oxygen atoms. Figures a to d correspond the configurations a to d
in Figure 6.7. The blue curve is the original DOS energy and density data.
The orange line is the linearly interpreted data from the original DOS data
to make the energy stamps to be the same across the configurations. Cosine
similarity was calculated using the interpreted data.
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Figure 6.9: Density of states projected onto the p-orbital of four randomly
selected oxygen atoms. The blue curve is the original DOS energy and density
data. The orange line is the linearly interpreted data from the original DOS
data to make the energy stamps to be the same across the configurations.
Cosine similarity was calculated using the interpreted data.

embeddings to the hydrogen atoms since the carbon atom is the main feature

of acetylene. Ignoring hydrogen atoms is also adopted in other molecular

fingerprints like the SMILES.129 The query and searched configurations are

shown in Figure 6.10. The query object is an acetylene molecule adsorbed on a

hollow site formed by three Cu atoms. The retrieved adsorption configurations

are similar to the query one. The first point is that the searched adsorbates

are all acetylene without explicitly setting the search pool to be acetylene

molecules. The second point is that the adsorption sites of the top two results

(Figure 6.10 b and c) are hollow sites with three Cu atoms which are the same

as the query one. This is not so clear in Figure 6.10 b, but Figure F.7 b shows

more details of the local structure. Similar to the oxygen case, we also compare

the ADOS of the query and searched configurations. Figure 6.11 shows the

ADOS of a selected carbon atom of acetylene molecule in these systems. We
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can see the ADOS of the searched configurations are similar to the query one,

and their cosine similarities are all above 0.65 which is much higher than that

of four randomly selected configurations shown in Figure 6.12. The similarities

in terms of the adsorbates, adsorption sites, and DOS between the query and

searched configurations suggest that our method also works well for adsorption

systems with large adsorbates.

Figure 6.10: Configurations of the query (config. a) and top 3 retrieved
acetylene adsorption configurations (config. b to d). The query and matched
carbon atoms are marked as crossed.

6.4 Conclusion

In this chapter, we went through the applications of the neural network

embedding-based approximate nearest neighbor search framework to search

for similar molecular (sub)structures in large databases. We discussed two

components of this framework: the neural network embedding and the

approximate nearest neighbor search. The former enables us to represent
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Figure 6.11: Density of states projected onto the p-orbital of the selected query
and searched carbon atoms. Figures a to d correspond the configurations a to
d in Figure 6.10. The blue curve is the original DOS energy and density data.
The orange line is the linearly interpreted data from the original DOS data
to make the energy stamps to be the same across the configurations. Cosine
similarity was calculated using the interpreted data.
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Figure 6.12: Density of states projected onto the p-orbital of the carbon atoms
in four randomly selected acetylene adsorption configurations. The blue curve
is the original DOS energy and density data. The orange line is the linearly
interpreted data from the original DOS data to make the energy stamps to be
the same across the configurations. Cosine similarity was calculated using the
interpreted data.
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local atomic configurations precisely. The latter provides us with a fast and

cheap way to search for neighboring real vectors in a large database. In our

work, we used GemNet and Faiss as the neural network model and the ANN

search implementation. However, the usage of this framework is not limited

to these two examples. Any molecular descriptors and other deep learning

models can be used to generate the representing vectors for atoms or

molecules. But factors like scaling, expressiveness, and computational cost

need to be considered when we make a choice. Also, any vector search

methods can be used as the search engine. A cheap, fast, and user-friendly

package would be favorable. Then, with examples across organic molecules,

metallic bulks, and metallic surfaces with adsorbates, we illustrated the

ability of this framework to find similar configurations in different databases.

We presented the similarities from different aspects: elemental types,

geometrical features, energetic relevance, and the density of states. These

examples also reflect the generalizability of this framework for different types

of molecular systems.
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7 Evaluation of the Degree of Rate Control

via Automatic Differentiation

The results in this chapter are adopted from our published work in Ref.

152.

7.1 Introduction

In the chapters above, we discuss the applications of ML potentials to

accelerate molecular simulations and the search for similar atomistic

structures. However, reactions in the real world are usually too complicated

to include every detail in simulations. Therefore, focusing on some significant

steps of the reactions could save lots of computational costs while keeping

the main features of the reactions. For example, we can allocate more

computational resources to the rate-determining steps in a complex reaction

system to make sure these important steps are calculated as accurately as

possible. Among various tools, the degree of rate control (DRC) is a versatile

concept proposed by Campbell to measure the kinetic contribution of each

reaction step to a target reaction rate.153,154 There are many applications of

this concept in the research areas of catalysis and microkinetic

modeling.155–159 These applications include the investigation of the

relationship between the reaction conditions and the rate-determining

steps,155 using the degree of rate control to screen catalysts,157 exploring the

mechanism of reactions,155,156 and so forth. In this chapter, we move forward

with the topic that how to evaluate the DRC accurately and efficiently.

We firstly present the mathematical forms of the DRC. The kinetic DRC

is defined as the derivative of the natural log of the rate with respect to the
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standard-state free energy of the transition state or the forward kinetic rate

constant given the corresponding equilibrium constant is fixed:

XRC,i =
ki
r

(
∂r

∂ki

)
kj 6=i,Ki

=

(
∂ ln r

∂ ln ki

)
kj 6=i,Ki

=

 ∂ ln r

∂
(
−∆G0,TS

i

RT

)

kj 6=i,Ki

(7.1)

where r is the net rate of the production of interest, ki is the forward

kinetic constant of step i and Ki is the equilibrium constant of step i. The

thermodynamic version of the DRC extends the application of this concept

to the standard-state free energy of the intermediate species in the reaction

system, which is mathematically defined as

XTRC,n =

(
∂ ln r

∂−G
0
n

RT

)
G0

m 6=n,G
0,TS
i

(7.2)

where G0
m is the standard-state free energy of species m, G0,TS

i is the

transition-state energy of step i. Several variants of the DRC have been

proposed to fulfill different purposes, including the DRC for selectivity,160 for

transient kinetics,154,161,162 and for uncertain parameters.163

From a practical perspective, a simple and common way to assess the

DRC is using finite difference (FD) approximations for the derivatives.161,162,164

These are fairly straightforward to implement and only require a few more

lines of code in addition to the original simulation code. Mathematically, the

centered difference approximation is formulated to approximate the derivatives

in

XRC,i =
ki
r

(
∂r

∂ki

)
kj 6=i,Ki

≈ ki
r

δr

δki
(7.3)
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where δki is the perturbation applied on ki and δr is the change of the

net reaction rate resulted from the perturbation of ki. Although the finite

difference approximation is a popular choice because of its ease of

understanding and implementation, one must be careful to choose the

magnitude of the perturbation. The change of the kinetic constant should be

small enough such that the response of the net reaction is linear, but not so

small that goes beyond the precision limitation of the computer.161

Formally, there is a trade-off between the truncation error and the rounding

error in this approach. The scale of the truncation error is O(δ) for the first-

order derivative, which prefers small δ. However, when the δ is smaller than

the precision limitation, then the value is no longer reliable. In real practice,

the process of finding the suitable step size takes much time. Since for each try,

we need to run the finite difference once. In addition, FD requires O(p) rounds

of function calls or forward simulations to get the derivatives of p parameters,

which is time-consuming for large size of parameters. For example, Bjarne et

al. took 300 CPU-hours to conduct the sensitivity analysis when investigating

the mechanism of CO2 hydrogenation on Ni(111) using the finite difference

method.164

To avoid these issues, sensitivity analysis methods like the direct

sensitivity analysis and the adjoint sensitivity analysis165 are usually adopted

by common differential equation solvers166–168 to provide the derivative of the

numerical solution to the parameters of differential equations. The direct

sensitivity analysis converts the solution sensitivity with respect to the

parameters of differential equations into n extra (number of parameters)

differential equations, which are solved simultaneously with the original

differential equations. The adjoint sensitivity analysis requires the definition

of some scalar functional of the numerical solution and the parameters. Then
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the sensitivities are given by an integration. For the mathematical details,

one could refer to the introduction of these two methods in the chemical

kinetic systems by Sandu.169

To be applied in the calculation of the DRC, the partial derivatives of the

reaction rate to the concentrations and the kinetic parameters still need to

be solved, since the sensitivity analysis methods only provide the derivatives

of the numerical solution (commonly the concentration or coverages in the

chemical kinetic systems) to the parameters. One of the tools to integrate

these derivatives is automatic differentiation (AD),170,171 which automatically

evaluates the derivatives of a function that is built on a set of atomic

operations and functions (e.g., addition, multiplication, exp, log, etc.). The

derivatives are generated by chain rule based on the derivatives of these

elementary operations. For the DRC case, the numerical integration and post

functions from the kinetic constants to the reaction rate could be regarded as

a sequence of the atomic operations and functions. Thus, the derivatives of

the reaction rate to the kinetic constants could be evaluated by the chain

rule applied on this sequence of basic operations.

In this chapter, we adopt AD in the evaluation of the DRC, which we

show provides more accurate and faster evaluation than FD. In section 7.2.1,

we introduce the working mechanism of the AD to obtain the derivatives of a

function automatically. In section 7.3, we illustrate three case studies to

check the correctness of the AD and to show its advantages over FD.

Specifically, we take the hypothetical reaction scheme from Foley’s

non-steady DRC work as a simple case.162 For a slightly more complicated

example, we use the water-gas shift reaction adapted from Motagamwala’s

maximum rate work.172 Next, we show the application of AD to calculate the

DRC of a more complex mechanism, the propylene partial oxidation on
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Cu(100),173 which involves 17 elementary steps. Finally, we demonstrate how

to use AD in the utilization of the distributed evaluation of local sensitivity

analysis (DELSA)174 to deal with the uncertain range of the kinetic

parameters, which is a hybrid local-global sensitivity analysis method to

identify the important parameters and the importance distribution over an

uncertain range.

7.2 Methods

7.2.1 Automatic Differentiation

Automatic differentiation has two modes to calculate the derivatives: the

forward mode and the reverse mode.170,171 In the forward mode, the

computational graph starts with the input variables, and grows along the

elementary operations and functions applied on the input variables. During

the forward expansion, the function evaluations and derivative calculations

take place simultaneously. In the reverse mode, there are two rounds of

evaluations. The first one is the forward evaluation of the function values

starts from the input variables. The second round is the back-propagation of

the derivatives from the function output to the input.

We use the example y = ln (3x1 − 2x2) + x1x2 with (x1, x2) = (1, 1) as a

prototype to illustrate the workflow of the AD. The computational graph is

shown in Figure 7.1. The details of the forward AD and the reverse mode

are shown in Table 7.1 and Table 7.2. The comparison between the forward

and the reverse mode is clear in Table 7.1 and Table 7.2. In the forward

mode, all derivatives of the intermediate and the final results with respect

to a specified input variable (x1 in this case) are calculated in one forward

propagation. However, in the reverse mode, the derivative of a specified scalar

output with respect to all the intermediate and input variables are obtained
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in one backward propagation. Thus, the forward mode is suitable for the

functions with fewer input dimensions, while the reverse mode is more efficient

for the functions with fewer output dimensions.

Figure 7.1: Computational graph for the example y = ln (3x1 − 2x2) +
x1x2. Each blue node contains the corresponding variable and the operation
that applied on its parent node(s). For instance, w3 is the result of the
multiplication between a constant 3 and another node variable w1.

Similar to the example above, AD could also be applied on the numerical

integration of the ODE systems. Consider the initial-value problem

θ̇ = f(θ,k,K, t), θ(k,K, t = 0) = θ0 (7.4)

where θ is the state vector, f is the state derivative vector, k and K are

the parameters of this ODE system, and θ0 is the initial state vector. For

the sake of simplicity, we assume the explicit forward Euler method is used to

solve this ODE. Thus, the update equation is

θn+1 = θn + hf(θn,k,K, tn) (7.5)
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Table 7.1: Forward AD for the example y = ln (3x1 − 2x2) + x1x2. Left side
shows the forward function evaluations. Right side shows the derivative of ∂y

∂x1
.

Head dot means ∂
∂x1

Function evaluation Derivative calculation (from top to bottom)
w1 = x1 = 1 ẇ1 = ẋ1 = 1
w2 = x2 = 1 ẇ2 = ẋ2 = 0
w3 = 3w1 = 3 ẇ3 = 3ẇ1 = 3
w4 = 2w2 = 2 ẇ4 = 2ẇ2 = 0
w5 = w3 − w4 = 1 ẇ5 = ẇ3 − ẇ4 = 3
w6 = lnw5 = 0 ẇ6 = 1

w5
ẇ5 = 3

w7 = w1w2 = 1 ẇ7 = w1ẇ2 + ẇ1w2 = 1
w8 = w6 + w7 = 1 ẇ8 = ẇ6 + ẇ7 = 4
y = w8 = 1 ẏ = ẇ8 = 4

Table 7.2: Reverse AD for the example y = ln (3x1 − 2x2) + x1x2. Left side
shows the forward function evaluations. Right side shows the back-propagation
of the derivative of ∂y

∂x1
.

Function evaluation Derivative calculation (from bottom to top)

w1 = x1 = 1 ∂y
∂x1

= ∂y
∂w1

∂w1

∂x1
= 4

w2 = x2 = 1 ∂y
∂x2

= ∂y
∂w2

∂w2

∂x2
= −1

w3 = 3w1 = 3 ∂y
∂w1

= ∂y
∂w1

+ ∂y
∂w3

∂w3

∂w1
= 4

w4 = 2w2 = 2 ∂y
∂w2

= ∂y
∂w2

+ ∂y
∂w4

∂w4

∂w2
= −1

w5 = w3 − w4 = 1 ∂y
∂w3

= ∂y
∂w5

∂w5

∂w3
= 1

∂y
∂w4

= ∂y
∂w5

∂w5

∂w4
= −1

w6 = lnw5 = 0 ∂y
∂w5

= ∂y
∂w6

∂w6

∂w5
= 1

w7 = w1w2 = 1 ∂y
∂w1

= ∂y
∂w7

∂w7

∂w1
= 1

∂y
∂w2

= ∂y
∂w7

∂w7

∂w2
= 1

w8 = w6 + w7 = 1 ∂y
∂w6

= ∂y
∂w8

∂w8

∂w6
= 1

∂y
∂w7

= ∂y
∂w8

∂w8

∂w7
= 1

y = w8 = 1 ∂y
∂w8

= ∂y
∂y

∂y
∂w8

= 1
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where h is the step size. Therefore, to get the derivative of θn+1 with

respect to k, we have

dθn+1

dk
=
dθn
dk

+ h
df(θn,k,K, tn)

dk
(7.6)

In the forward AD, the derivative of the terms at the RHS of Eq 7.6 with

respect to k is propagated to the LHS. The computational complexity to get

the derivatives are in O(np) where n is the number of time steps and p is

the number of parameters.175 In the reverse AD, the derivative of θn+1 with

respect to the LHS is back propagated to the variables in the RHS. For this

mode, the computational complexity is O(n+ p).175 Although reverse AD has

lower scale of computational cost, its advantage only appears in using adjoint

method to calculate the derivatives for large ODE systems. This is because

the current tape-based implementation of reverse-mode AD is optimized for

the usage in deep learning models with intensive matrix multiplications, which

is not optimally suitable for differential equations that tend to be defined by

nonlinear functions with scalar operations.175

In both modes, the derivatives of the ODE solution with respect to the

parameters could be obtained automatically. Even if there are post

operations applied on the ODE solution (e.g., conversion from the

concentrations to reaction rates), the derivatives of the final results to the

parameters can be calculated in an end-to-end way as long as these

operations are in the same computational graph. We note that some ODE

solvers may have the step size (h) that is dependent on the parameters, in

this case, the derivative of the step size with respect to the parameters are

enforced to be zero during the implementation.176

In the past decade, various AD packages have been developed for

applications in machine learning.171 Typical examples include Pytorch25 and
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Jax177 in Python, and ForwardDiff178 in Julia. To integrate the AD into the

solution of an ODE system, the ODE solver should be compatible to these

AD packages and the operations and functions in the ODE solver should be

included in the computational graph of the AD packages. There are several

modules satisfying these requirements such as the torchdiffeq179 for Pytorch,

the DifferentialEquations180 for ForwardDiff and, the PyBaMM181 for Jax.

In the work of this chapter, we use the ForwardDiff and

DifferentialEquations in the Julia language since they provides various

differentiable ODE solvers that could handle various non-stiff and stiff

problems.

7.2.2 Distributed Evaluation of Local Sensitivity Analysis

Distributed evaluation of local sensitivity analysis (DELSA)174 is a

hybrid local-global sensitivity analysis method to measure the distribution of

parameter sensitivity across the parameter space with low computational

cost. Basically, it is an extension to local sensitivity analysis that takes the

uncertainty of the parameters into account. The importance of a parameter

over the parameter space is measured by a local sensitivity statistic like the

median or the mean of a set of samples drawn from the parameter space.

Local sensitivity analysis is then conducted on each parameter sample. This

makes DELSA much cheaper to get the detailed distribution of the

importance over the parameter space than the Sobol’s indices which is a

popular global sensitivity analysis method based on the variance

decomposition.182,183 Mathematically, the first-order sensitivity measure for

jth parameter at sample i is defined as

Sij =

∣∣∣ ∂yi∂θij

∣∣∣2 s2
j

V (yi)
(7.7)
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where Sij is the sensitivity measure for the parameter θij at sample i, yi

is the model output or an element of the model output of sample i, sj is the

prior variance of θj, and V (yi) is the total variance of the model output yi,

which can be evaluated using the first-order-second-moment method:184

V (yi) =

(
∂yi
∂θ

)T (
XTωX

)(∂yi
∂θ

)
(7.8)

where X is a matrix of (nobs + nprior) rows and nparam columns. nobs,

nprior, nparam are the number of observations, the number of prior information

equations and the number of parameters respectively. In the application of

DELSA, there is no observation and the prior information is the variance of

each parameter. Therefore, nobs = 0 and nprior = nparam, and each row of

X has zeros except for one which indicates the parameter associated with the

prior information. ω is a diagonal matrix contains the reciprocal of the prior

variance of each parameter. More details of the structure of X and ω could

refer to the related works.174,184,185

Intuitively, the sensitivity measure Sij captures the contribution of θij to

the total uncertainty of the output yi. The parameters with more contribution

to the uncertainty are considered more important. This sensitivity measure

gives similar importance evaluation to the Sobol’s method182 for the uncertain

parameters in the previous reports.174,186 In addition, DELSA could be easily

integrated to the original local sensitivity implementation which is the DRC

with automatic differentiation in our work.

7.3 Results

We first show that AD can reproduce the DRC results of previous

reports162,172 in the first two simple cases. Then, we compare the
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performance of the FD and the AD on another more complicated reaction

mechanism of propylene oxidation.173 Lastly, we show the application of AD

to deal with uncertain parameters by manually introducing an uncertain

range for the kinetic constants in the propylene oxidation case. We note that

the transient DRC below corresponds to the case that we perturb the

parameters at zero time, and then check how the response variable is

changed at time t. The reason for this interpretation is that when one

derives the analytical transient solution, e.g. f(k, t) then the derivative

∂f/∂k ≈ [f(k + δk, t)− f(k, t)]/δk where f(k + δk, t) represents the solution

accumulated from t = 0 to t with k = k + δk. We show that AD in this case

is fully consistent with that interpretation. There is another definition of the

transient DRC proposed in Campbell’s works.161,187 Under this definition,

people need to simulate the reactions using the original parameters from

t = 0 to t, then perturb the kinetic parameters and simulate the reactions

forward with a tiny time step δt to reach to a new quasi-steady state to get

the DRC at t. This definition corresponds to the interpretation that how the

perturbation of the kinetic parameters at t affect the reaction rate at near

future which can be approximately viewed at time t. These two definitions

can be used for different purposes. In the cases below, we use the former

definition to illustrate the application of the AD in DRC calculation.

7.3.1 Case I: Hypothetical Two-Step Reaction

In this case, we investigate the transient DRC for a hypothetical reaction.

We first consider the hypothetical reaction mechanism in Table 7.3 and the

derivation of analytical solutions for the rate and DRC.162

which leads to the following differential equations (Eqs 7.9 - 7.10):
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Table 7.3: Hypothetical Two-Step Catalytic Reaction (case I).162

Step id Elementary Step ki k−i
1 A+ ∗� A∗ 10−5 0
2 A ∗+B → C + ∗ 1 NA

1

L

θA∗(t)

dt
= k1aA(t)θ∗(t)− k−1θA∗(t)− k2aB(t)θA∗(t) (7.9)

1

L

θ∗(t)

dt
= −k1aA(t)θ∗(t) + k−1θA∗(t) + k2aB(t)θA∗(t) (7.10)

where θis are the coverages, ais are the thermodynamic activities and L

is the number of active sites. The net reaction rate is defined as the rate to

produce C per active site:

rC(t)

L
= k2aB(t)θA∗(t) (7.11)

The analytical solution for rC(t)/L is

rC(t)

L
=

k1aAk2aB
k1aA + k−1 + k2aB

(
1− e−(k1aA+k−1+k2aB)t

)
+k2aBθA∗,0e

−(k1aA+k−1+k2aB)t

(7.12)

where θA∗,0 is the coverage of A∗ at t = 0.

According to the parameters in the original paper,162 aA = 1, aB(t <

0) = 1 and aB(t ≥ 0) = 3. Since k−1 is set as 0 and k1 � k2, thus

rC(t)

L
= (k1aA)

(
1− e−(k2aB)t

)
+ k2aBθA∗,0e

−(k2aB)t (7.13)

which has the corresponding DRC as:
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XRC,1 =
k1L

rC(t)
aA
(
1− e−(k2aB)t

)
(7.14)

XRC,2 =
k2L

rC(t)

[
k1aAaBte

−(k2aB)t + aBθA∗,0e
−(k2aB)t − k2a

2
BθA∗,0te

−(k2aB)t
]

(7.15)

We note that this transient DRC is based on the definition of Eq 7.1, which

is different from the modified version proposed by Bhan.162 Upon Eq 7.14 -

7.15, notice that at t = 0+, XRC,1 is 0 and XRC,2 is 1. As t → ∞, XRC,1

grows to 1 and XRC,2 decreases to 0. The solutions from the analytical form

and the AD are shown in Figure 7.2, in which the solution of the AD matches

the analytical solution over the whole time range. The DRC in the Figure

7.2 does not obey the sum of kinetic DRC equaling one for all time (only

at steady state) because the rate during the transient process also depends

on both the time and the kinetic constants. This issue is discussed in more

details in the non-steady DRC paper 162. The main message conveyed by this

simple example is that the AD is practically equivalent to having the analytical

derivatives to evaluate the transient DRC defined by Eq 7.1, but without the

need to analytically derive the expressions or to approximate them with finite

differences.

7.3.2 Case II: Redox Mechanism for Water-gas Shift

Case I was a hypothetical example and it only contained two steps with

manually set kinetic parameters, which is relatively simple. In case II, we

consider the DRC for a more complicated reaction mechanism for the water-gas

shift reaction172 which is listed in Table 7.4. The pressures for the gas-phase

species PCO, PH2O, PH2 , PCO2 are 0.07 atm, 0.21 atm, 0.38 atm, and 0.085
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Figure 7.2: Degree of rate control for the hypothetical reaction of case 1
evaluated by analytic solution and automatic differentiation.

atm, respectively. The target net rate is of the production of the hydrogen,

which could be expressed as (Eq 7.16):

rH2 = k7θ
2
H∗ − k−7

PH2

P
θ2
∗ (7.16)

For this reaction system, the DRC evaluated by the AD are shown in Figure

7.3. Among the seven steps of this reaction mechanism, only two steps are

identified as important to the net rate. Step 4 (dissociation of OH∗) has a

DRC of 0.88 while step 5 (formation of CO2∗) has a DRC of 0.12. The other

5 steps have little influence on the net rate of the whole reaction system. This

result is consistent with the calculations of the original paper172 and illustrates

the reliability of the AD to evaluation the DRC of a moderately complicated

reaction system.
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Table 7.4: Redox mechanism for water-gas shift (case II).172

Step id Elementary Step Keq,i ki
1 CO + ∗� CO∗ 2.15× 102 1.33× 108

2 H2O + ∗� H2O∗ 5.93× 10−5 2.01× 1011

3 H2O ∗+∗� H ∗+OH∗ 6.28× 10−2 2.64× 106

4 OH ∗+∗� H ∗+O∗ 1.18× 10−5 5.24× 101

5 CO ∗+O∗� CO2 ∗+∗ 1.03× 103 2.05× 105

6 CO2∗� CO2 + ∗ 1.92× 105 1.48× 1012

7 2H∗� H2 + 2∗ 4.50× 101 5.32× 102

Figure 7.3: Degree of rate control for the water-gas shift reaction (case II).172
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7.3.3 Case III: Propylene Partial Oxidation

Our third case is the transient DRC for the propylene partial oxidation173

which could be an environmentally friendly route to produce propylene oxide.

It has 17 elementary steps and the kinetic constants for each step are shown

in Table 7.5. The partial pressures for the gas-phase species PC3H6 and PO2

are 0.1 bar and 0.05 bar respectively. The reaction simulation temperature is

500 K. The net rate of interest is the desorption of propylene oxide, which is

the sum of the step 13 and 14 (Eq 7.17):

rPO = k13θPO1∗ − k−13
PPO
P

θv∗ + k14θPO2∗ − k−14
PPO
P

θv∗ (7.17)

The DRC results for this case are shown in Figure 7.4, where the adsorption

of propylene as the III type and the desorption of PO2∗ have the major positive

contribution to the generation of PO(g). These positive DRCs are reasonable

since the adsorption of propylene provides the material to produce PO(g)

and the desorption of PO2∗ directly generates PO(g). On the other side,

the desorption of O2∗ hinders the production of PO(g) since this step results

in more v∗ produced and more O∗ and O1∗ consumed, which benefits the

negative direction of step 13 and 14.

We then compare the DRC calculation results using FD and AD in this

case. The temperature is set as 350 K in this comparison. We evaluate the

transient DRC defined by Eq 7.1 using the FD and the AD methods

separately. The transient DRC for step 3, 4, 14, and 17 are shown in Figure

7.5. Different perturbation magnitudes (10−4, 10−11, 10−14) are used in the

FD method. There is an optimal choice of the perturbation size to reduce

the truncation error and the rounding error. A large perturbation size suffers

from the truncation error resulting from the nonlinearity of the target
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Table 7.5: Elementary steps (step 1 to step 17 from top to bottom) for the
propylene partial oxidation (case III).173 Ea and E−ra are the activation energies
for the forward and reverse directions. A and A−r are the pre-exponential
factor of the forward and reverse reactions. v represents the oxygen vacancy.

Elementary Step Ea(eV ) A E−ra (eV ) A−r

C3H6(g) + ∗� C3H6(I)∗ 0.00 1.87× 108 0.42 1.00× 1013

C3H6(g) + ∗� C3H6(II)∗ 0.00 1.87× 108 0.57 1.00× 1013

C3H6(g) + ∗� C3H6(III)∗ 0.00 1.87× 108 0.58 1.00× 1013

C3H6(I) ∗+O∗� C3H5 ∗+OH∗ 0.36 8.03× 1012 1.40 8.93× 1012

C3H6(II) ∗+O∗� OMP1∗ 0.59 1.17× 1013 1.10 1.78× 1013

C3H6(III) +O∗� OMP2∗ 0.31 1.28× 1013 0.95 1.92× 1013

C3H5 ∗+O∗� C3H4O ∗+H2O∗ 0.30 1.14× 1013 1.19 7.14× 1012

C3H5O ∗+OH∗� C3H4O ∗+H2O∗ 0.54 1.09× 1013 1.72 1.54× 1013

OMP1∗� PO1 ∗+∗ 0.62 4.10× 1013 0.83 1.53× 1013

OMP2∗� PO2 ∗+∗ 0.77 3.24× 1013 0.89 1.31× 1013

H2O∗� H2O(g) + v∗ 0.76 1.00× 1013 0.00 2.85× 108

C3H4O∗� C3H4O(g) + v∗ 0.10 1.00× 1013 0.00 1.62× 108

PO1∗� PO(g) + v∗ 0.90 1.00× 1013 0.00 1.59× 108

PO2∗� PO(g) + v∗ 0.96 1.00× 1013 0.00 1.59× 108

O2 ∗+v∗� O ∗+O1∗ 0.00 1.00× 1013 1.43 1.00× 1013

2O1∗� O2 ∗+∗ 0.00 1.00× 1013 1.18 1.00× 1013

O2∗� O2(g) + ∗ 1.36 1.00× 1013 0.00 2.14× 108

Figure 7.4: Degree of rate control for the propylene partial oxidation reaction
(case III).173

120



function, which is the transient part from t = 0 to t = 5. Too small of a

perturbation makes the solution affected by the rounding error due to the

limited precision for floating numbers. We also calculate the percentage

difference for the FD method compared to the solution of the AD method in

Table 7.6. In this case, 10−11 is the best perturbation size among these

candidates, whose result is the most aligned with the solution of the AD

method. Case III illustrates that although with finite difference it is possible

to get a reliable transient DRC for a complicated system, it highly depends

on the choice of the perturbation size. This issue does not hold for the

automatic differentiation since there is no truncation error during the

derivative evaluation process of the AD.

Figure 7.5: Transient degree of rate control evaluated by the finite difference
and automatic differentiation for the propylene partial oxidation reactions 3,
4, 14 and 17 (case III).173 Different perturbation sizes are used in the FD
method as indicated in the legend.
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Table 7.6: Average percentage difference betweent the solutions of the FD
with different perturbations and the AD method over the time axis.

Step id Perturb e−4 Perturb e−11 Perturb e−14

3 1% 0% 11%
4 7% 1% 845%

14 0% 0% 3%
17 4% 0% 55%

7.3.4 Degree of Rate Control for Uncertain Parameters

It is common to consider an uncertain space of the kinetic parameters

instead of the exact values in the real-world catalyst applications. To

illustrate the usage of the DELSA174 to measure the importance of the

parameters over a space, we hypothetically add an uncertainty range to the

forward kinetic constant of each elementary step of the case III, which

corresponds to an uncertain range of [-0.03 eV, 0.03 eV] on the forward

activation energy. We assume the log of the kinetic parameters are uniformly

distributed in the candidate space. The samples (200 in our example) are

drawn using the quasi-random Sobol sequence188 which more evenly samples

the space than a uniform distribution would. According to the definition of

the DELSA importance measure (Eq 7.7), the importance of a kinetic

parameter kij to the net rate of sample i could be measured by:

Skij =

∣∣∣ ∂ ln ri
∂ ln kij

∣∣∣2
kim 6=ij ,Kj

s2
j

V (ln ri)
(7.18)

where sj is the variance of the uniform distribution of kj. Among the 17

parameters, only 3 parameters are found to be important (with the average

DELSA importance measure > 0.1) over the potential space. Their

distributions are shown in Figure 7.6. For this reaction example, DELSA

identifies the same important steps as the DRC results (step 3, 14, 17).

122



However, DELSA provides more details of the distribution of the importance

across the parameter space. For example, the histogram of step 14 has two

peaks near 0 and 1, which means that for about half of the samples, step 14

has no effect on the net rate (with 0 importance measure), but for the other

half of the samples, step 14 is the most important parameter (with 1

importance measure). High-quality distributions rely on more samples in the

potential space, which could be expensive for finite differences and difficult to

ensure the results are accurate (e.g., rounding and truncating error). Using

the automatic differentiation, DELSA could be performed with higher

accuracy and lower computational costs.

Figure 7.6: DELSA results for 3 important steps (3, 14 and 17) in the
propylene oxidation reaction.173

7.4 Conclusion

The degree of rate control is a versatile concept in heterogeneous

catalysis. We discussed the application of automatic differentiation (AD) in

the calculation of the derivatives needed to evaluate the DRC. We also

compared the AD method to the commonly used finite difference (FD)

method. Compared to FD, AD provides a faster and more accurate solution.

There is no need to choose the optimal perturbation size in AD which is a

critical step in FD to obtain a reliable result. In three cases with various
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complexity, we demonstrated the correctness of the AD method. In addition,

we illustrated that AD could be used to perform the DELSA method, which

is a hybrid local-global sensitivity analysis method to measure the

importance of parameters over an uncertain space. With AD, DELSA could

be conducted accurately and efficiently.
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8 Conclusions

This dissertation aims to present how machine learning and automatic

differentiation can be used to accelerate the simulation and computation of

important molecular and catalytic properties. Here, I would like to revisit

the challenges that have been addressed in the previous chapters and make

an outlook on the future directions along with these works to finalize this

dissertation.

8.1 Machine Learning for Prediction, Exploration and

Searching

A major advantage of the machine learning potential is the much faster

inference of the potential energy surface than DFT with comparable accuracy.

This feature enabled us to run large-scale MC simulations with an affordable

time cost, which requires tens of thousands of inferences on the potential

energies of large atomistic systems of more than 1000 atoms. We applied

neural networks and the MC simulations to investigate the surface segregation

behavior of a ternary CuPdAu alloy on a large slab. The large size of the slabs

provided more details of the surface segregation by considering enriched local

environments which were usually hard to be included via small unit cells with

periodic conditions. With an extra machine learning model for the surface

relaxation energies, the effect of the surface relaxation was integrated into

our simulations, which made the simulation assumptions closer to the real

experimental conditions.

Simulations under reaction conditions are more appealing to

computational catalysis researchers. However, many more factors need to be

considered during the simulations under reaction conditions. For example,
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the sampling space of the configurations with adsorbates on the surfaces, and

the energetic model including the interactions between the adsorbates and

the surfaces. We simulated the surface segregation and aggregation

phenomenon on a AgPd slab with acrolein molecules. Some assumptions like

sparse distribution of the adsorption sites and only one adsorbed species on

the surface were made to limit the sampling space during simulations. For

the interaction between the adsorbates and the surfaces, we used an

additional ML model to predict the adsorption energies.

Obtaining the adsorption energies over different adsorption sites is not

cheap. It requires a process to find the relaxed geometrical structures from

initial guesses, which consists of iterative calculations of the forces for the

structures along with the optimization path. We utilized neural networks as

a surrogate model to accelerate the optimization process where an ensemble

method was adopted to guide the exploration of the potential energy space

from the initial structure to the relaxed structure. As a measure of the

uncertainty of predictions, the neural network ensemble is useful to point out

the information-rich samples in unknown space.

Parallel to the development of the machine learning potential, more and

more molecular data is being generated every day. Searching for relevant

information in the constantly growing databases could be a common event

for various purposes. In Chapter 6, we demonstrated that the deep learning

models could be leveraged to effectively retrieve molecular data from large

databases. For example, searching for similar molecules or substructures to a

query molecular structure. We presented the similarity search from different

aspects, such as the geometrical features, energetic relevance, and even the

density of states. A potential application of this method is to search for cheap

materials with similar catalytic properties.
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8.2 Automatic Differentiation for Fast and Accurate

Derivatives

Automatic differentiation is one of the foundations of the recent

development of deep learning models. In addition, many scientific and

engineering areas could also see benefits from the development of the AD

tools. We presented an example of using AD to evaluate the DRCs in

complex reaction networks, which was usually performed using numerical

methods like the finite difference. Unlike the finite difference, there is no

need to choose the perturbation size using AD to evaluate the derivatives,

which not only avoids the truncation error but also improves the speed of the

whole evaluation process.

8.3 Potential Directions for Future Works

There are still lots of directions that need to be investigated. For the

simulations under reaction conditions, we made several assumptions to

reduce the sampling space. More effort is needed to enrich the modeling by

considering more intermediate species on the surface, taking interactions

among the adsorbates into account, and pushing the simulation

concentrations beyond the dilute limits. In addition, our previous MC

simulations were limited to systems with a few elements due to the scaling

issue of the original ACSF descriptors.18,19 This issue could be alleviated

using recent GNN models and systems with more elements are able to be

simulated.21,23 Increasing scale of the models is one of the main trends to

deal with more training data. Ensemble-based uncertainty estimation in the

active learning framework becomes more expensive to models with many

more parameters. Reliable and cheap uncertainty estimation methods or
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query strategies would be favorable to explore the chemical space actively

and efficiently.

Furthermore, it would be exciting to see a working framework that

combines the DRC evaluation, property prediction, and surface simulation to

discover promising catalysts. DRC evaluation helps to find the rate-limiting

steps of a reaction system. It also provides a direction to improve the target

reaction rate like increasing or decreasing the activation energy of the

rate-limiting steps. Then, a predicting model could be used to search for

potential active sites with satisfying energy barriers. Finally, segregation and

aggregation simulations are useful to find out the bulk compositions that are

more likely to produce these desired active sites under the reaction

conditions. Of course, each of these steps is not trivial. But with the

development of machine learning models, uncertainty quantification methods,

simulation algorithms, and computing resources, an automated and

high-precision materials discovery system might become a reality.
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A Density of the Training Data Sampling

To quantitatively measure the density of the training data sampling in
Chapter 3, we also calculated the maximum and average distances between the
fingerprints of the sampled points on the triangular plane in the 3D fingerprint
space. Take the subsurface atoms in the slabs with lattice constant of 4.08
(shown in Figure 3.1) as the example, the corresponding equilateral triangle
has side length of about 12.8 units, the distribution of the distances of points
to their nearest neighbors is shown in Figure A.1. The maximum distance is
0.26 unit while the average distance is about 0.04 unit, which is quite small
compared to the side length of 12.8 units.

Figure A.1: Distribution of the distances to the nearest neighbors for the
points in the fingerprint space.

B ACSF Parameters

In this section, we attach the parameters for the ACSFs used in Chapter
3 and Chapter 5.

Table B.1: The ACSF parameters for Chapter 3.

Type η Rs

(
Å
)

Rc

(
Å
)

G2 0.05 0.0 6.0
G2 4.0 0.0 6.0
G2 20.0 0.0 6.0
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Table B.2: The ACSF parameters for Chapter 5.

Type η Rs

(
Å
)

γ ζ Rc

(
Å
)

G2 0.05 0.0 - - 6.5
G2 4.0 0.0 - - 6.5
G2 20.0 0.0 - - 6.5
G4 0.05 - 1.0 1.0 6.5
G4 0.05 - -1.0 1.0 6.5
G2 0.05 - 1.0 4.0 6.5
G2 0.05 - -1.0 4.0 6.5

C AgPd Slab Configurations with Acrolein for

DFT Calculation

Here, we show the 16 relaxed AgPd configurations with acrolein calculated
by DFT mentioned in section Section 5.3.1.

Figure C.1: Relaxed AgPd configurations with acrolein

D Gaussian Process Regression

In this section, we show the details of the Gaussian process regression used
in Section 4.2.1. We adapt the Gaussian Process Regression (GPR) method
from previous literature81,82 as one of the comparisons in this work. The GPR
model uses the positions of the atoms as the feature X = [x1, ...,xN ], and the
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model is trained on the corresponding energies (e) and the first order derivative
which is the negative forces in this application. Thus, y = [e,−f1, ...,−fN ]

Therefore, the prediction function could be sampled from the Gaussian
Process defined by a prior mean and a kernel function:

f(x) ∼ GP (µ, k (x,x′)) (D.1)

where µ is the prior for the energies and forces and it is set as zero in our
work. Given a training set D, the predicted mean and variance are

E [f(x|D)] = k(x)
[
K(x+ σ2

nI)
]−1

y (D.2)

and
V [f(x|D)] = k(x,x)− k(x)T

[
K(x+ σ2

nI)
]−1

k(x) (D.3)

where σn is the noise of the data.
The kernel function could be partitioned into:

K(x) =

(
Kee(x,x) Kef (x,x)
Kef (x,x) Kff (x,x)

)
(D.4)

The squared exponential kernel is used in our implementation. Thus, the
formula for these kernel function are:

kee(x,x
′) = σ2

f exp

(
−1

2

D∑
d=1

(xd − x′d)2

l2d

)
(D.5)

kfe(x,x
′) = −

σ2
f (xd − x′d)

l2d
exp

(
−1

2

D∑
j=1

(xj − x′j)2

l2j

)
(D.6)

kff (x,x
′) =

−σ2
f

l2d1

(
δd1d2 −

(xd1 − x′d1)(xd2 − x′d2)

l2d1

)
exp

(
−1

2

D∑
j=1

(xj − x′j)2

l2j

)
(D.7)

where σf is fixed as 1.0, and the bandwidth l is optimized isotropically.

E Hyperparamters for GemNet model, Faiss

searching and Flare GP model

Here, we attach the hyperparamters of the GemNet model and FAISS
searching used in Chapter 6.
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Table E.1: Hyperparameters for the GemNet model used in Chapter 6.
More details about the hyperparameters can be found in the OC20 GitHub
repository.

Hyperparameter Value Hyperparameter Value
num spherical 7 num radial 128

num blocks 3 emb size atom 128
emb size edge 128 emb size trip 64
emb size rbf 16 emb size cbf 16

emb size bil trip 64 num before skip 1
num after skip 2 num concat 1

num atom 3 cutoff 6.0
max neighbors 50 rbf gaussian

envelope polynomial cbf spherical harmonics
extensive true oft graph false

output init heOrthogonal activation silu
regress forces true direct forces true

Table E.2: Hyperparameters for the Faiss IndexIVFPQ method. More details
about the hyperparameters can be found in Faiss wiki.

Hyperparameter Value
Coarse Quantizer IndexFlatL2

d (dimension) 128
nlists (number of centroids in coarse quantizer) 7000

m (number of subvectors for division) 128
nbits (encoding size for a subvector) 8

Table E.3: Hyperparameters for the Flare GPR model.

Hyperparameter Value
cutoff radius 3.7
descriptors two body and three body

kernel square kernel
length scale 0.5
energy noise 0.005
force noise 0.005
stress noise 0.1
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F Supplementary Examples for ANN Search

F.1 ANN Search Examples for Molecular Substructures

Here we attach other examples for the neural network embedding-based
similar molecules search. The color-element relation in the following figures
is: red for O, blue for N, white for H, and grey for C.

Figure F.1: Similar molecules (b to f) retrieved from querying toluene molecule
(a).

F.2 ANN Search Example for Similar Bulk
Environment

Here, we present another example using GemNet embedding and ANN to
search for similar bulk environment in the Materials Project database. The
query and searched atoms are shown in Figure F.5. The query palladium atom
(atom 2 in Figure F.5 a) and two other palladium atoms (atom 3 and 4) form a
hollow site and there is a zinc atom (atom 0) on this hollow site. The searched
palladium atoms are all similar to the query palladium atom in terms of the
atom arrangement and element type.
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Figure F.2: Similar -N(H)- substructure (b to f) retrieved from querying
-N(H)- substructure (a).

Figure F.3: Similar -NH2 substructure (b to f) retrieved from querying -NH2

substructure (a).
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Figure F.4: Similar -OH substructure (b to f) retrieved from querying -OH
substructure (a).

Figure F.5: Top 10 nearest atoms to a palladium query atom in the Materials
Project dataset. Atom 2 in figure a is the query atom. Atom 2 to 7 in figure
b, atom 1, 2 in figure c, and atom 1, 3 in figure d are the searched atoms.
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F.3 Supporting Configurations for the OC20 Case

Here, we attached supporting configurations for the examples shown in
Section 6.3.3, like the randomly selected configurations, zoomed-in local
configurations for the query and searched acetylene adsorption system.

Figure F.6: Four randomly selected oxygen atoms in the OC20 dataset.
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Figure F.7: Zoomed-in local configurations for the acetylene search example.

Figure F.8: Four randomly selected acetylene adsorption systems in the OC20
dataset.
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