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Abstract

Recent advances in deep learning have unfortunately advanced the quality of Deepfakes – en-

tirely synthetic multimedia that provide a pernicious means of committing a wide variety of

fraudulent activities such as identity theft and spreading misinformation. Deepfake – a port-

manteau of “deep learning” and “fake” – is a term that refers to fake media content that is

generated or manipulated using deep learning and machine learning algorithms, with the intent

to deceive the observer into accepting it as a representation of reality. Amidst growing obser-

vation of its misuse and capacity to dilute authentic information, it is of utmost importance

that we work towards developing automated systems that can reliably detect deepfakes, so

that they can be taken out of circulation before any damage is done.

The term Deepfake includes the syndissertation of fake data in all four digital modalities:

audio, video, images and text. Deepfakes involving audio, specifically human speech, can

be particularly dangerous because of the extensive biometric usage of speech in the world

today. Speech systems, especially speaker identification and verification systems, are used

to enhance the security of online and telephone-based access control to banking and many

other portals. These systems can be attacked using spoofing audios. The related techniques

may include audio replay, synthetic speech generation, voice conversion, etc. Many of these

techniques can be viewed as variants of voice disguise, meant to conceal the speaker’s identity by

impersonating the target or appearing to be a di↵erent person. Such disguise-based techniques

are often also encountered in voice-based crimes such as vishing, attempts to break into voice

authentication systems, fraudulent calls, etc. Voice disguise in itself poses a great threat to

automated voice biometric systems, and creates a di�cult challenge to forensic speech analysis.

Deepfakes deteriorate these problems by enhancing the e↵ectiveness of voice disguise. With the

advancement of deep learning techniques, especially the generative models such as generative

adversarial networks and WaveNet models, the quality of synthetic speech is steadily becoming

closer to a natural speech.
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The objective of this dissertation is to develop robust deepfake-speech detection algorithms

that can capture the fundamental di↵erences between fake and genuine speech, i.e., between

machine-generated and human-generated speech. The algorithms developed must be trainable

with limited training data and be adaptable to the latest generation techniques as they are

introduced. To achieve this goal, we divide our research into two main tasks, each geared

towards answering two fundamental questions as follows:

1. Section I: What are the aspects of human speech that deepfake generation techniques

cannot reproduce?

• Part 1: Unique to humans: What are the characteristics of human speech that

are most indicative of the underlying bio-mechanical process of speech production in

humans?

• Part 2: Unique to machines: What are the characteristics of machine-generated

speech that are most indicative of the underlying algorithmic (computational) process of

speech generation?

2. Section II: What kinds and categories of models and features are likely to be most

adaptable to di↵erent deepfake generation mechanisms?

• Part 3: Robustness of detectors: How can we find and use the features that are

specific to the human speech production process and least reproducible by machines to

build robust deepfake detection techniques?

• Part 4: Adaptability of detectors: How can we develop deepfake detection tech-

niques that can be rapidly adapted to new attacks?

Accordingly, this dissertation has two sections and four parts as mentioned above. The

first part (Chapter 2) aims at addressing human-generated speech and tries to identify its

unique characteristics from a voice-production perspective. The goal is to understand the

human voice production so that later we could identify the most human-centric features that
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are not included in the deepfake generative processes. The second part (Chapter 3) discusses

machine speech generation mechanisms so that we could later find signatures that are unique

to machine-generated speech. For this, we study the mechanisms of both state-of-the-art voice

conversion/transformation, and voice synthesis (text-to-speech) systems.

The results of the two sets of studies are finally combined to identify the aspects of machine-

generated speech that are simply not consistent with the counterparts expected in human

speech. Then, they are used in developing features and models for deepfake detection – a topic

addressed by the last parts of this dissertation.

The third and fourth parts are in the Chapter 4 of this dissertation, which deals with

developing features and models based on the observation from the first and second parts of

this dissertation. Several features have been proposed to improve the robustness of detectors

for deepfake detection and their adaptability to newer unseen attacks have also been studied

and discussed. In Chapter 5, we summarize the findings and contributions of this dissertation

and discuss the future directions of audio deepfake detection.
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Chapter 1

Introduction

The term “Deepfake” is a portmanteau of the words “deep learning” and “fake”. Deep-

fakes represent fake audio,video,image or textual media content that is generated or

manipulated using deep learning and machine learning algorithms, with the intent

to deceive. With the recent advances in deep learning, the quality of deepfakes has

significantly improved, making them an even more pernicious means of committing

a wide variety of fraudulent activities, such as identity theft and spreading misinfor-

mation. For example, in 2019 a UK company’s CEO was scammed over the phone to

transfer 220,000€ into a bank account. This fraudulent call used deepfake audio that

was generated to successfully impersonate the voice of the parent company’s CEO.

There have been multiple such cases that impress upon us the gravity of the threat

that deepfakes pose to society. Furthermore, deepfakes are identified as a particularly

potent threat their generation requires minimal manual effort. Thus an attacker with

sufficient computational resources can generate fake data on a massive scale relatively

easily. With the threat from deepfakes, the general public’s trust in media content

is being increasingly diminished and destroyed. Therefore, it is of utmost impor-

tance that we work towards developing automated systems that can reliably detect

deepfakes, so that they can be taken out of circulation before any damage is done.

1



Deepfakes involving speech, as in the example above, can be particularly dangerous

because of the extensive biometric usage of speech. Even before deepfakes came

to the fore, attackers had been using a wide variety of techniques to spoof speech

systems. These techniques included various forms of voice disguise and emulation

of statistical properties of speech [4, 5]. Synthesized speech was being used to fool

voice authentication systems, and forged audio recordings were being used to defame

public figures [6, 7].

1.1 Voice disguise and deepfake speech

Speech systems can be spoofed in many ways, depending on how they work. The

techniques used may include audio replay, synthetic speech generation, voice con-

version, etc. Many of them can be viewed as voice disguise meant to conceal the

speaker’s identity by impersonating another person or appearing to be a different

person. Such disguise-based techniques are often encountered in voice-based crimes

such as vishing, attempts to break into voice authentication systems, fraudulent calls

etc. Voice disguise poses a difficult challenge to forensic speech analysis.

Voice disguise is defined in [8] as “any alteration, distortion and deviation from

the normal voice, irrespective of the cause”. In other words voice disguise can be

construed as the deliberate distortion of voice by the speaker to change its per-

ceived identity. Voice disguise can be categorized along two dimensions: intention

and method. Intention may be either “deliberate” or “non-deliberate”. The method

used may be “electronic” or “non-electronic” based on whether or not electronic (or

digital) techniques have been used to alter ther voice. Electronic methods are often

intentional, and may involve the use of scrambling devices to alter the voice; however

they may also be non-deliberate and distortions and alterations may be introduced

by the limitations of the equipment used to produce, record or transmit voice, e.g.,
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bandwidth limitations of telephones, or linear/non-linear or frequency characteristics

of recording equipment.

The influence of voice disguise on the performance automatic speech recognition

and speaker verification systems has been widely studied [5, 9]. In [5], voice disguise

and automatic speech recognition (ASR) are studied and discussed. A disguise voice

dataset was created by recording 10 types of deliberately non-electronically disguised

voice speech of twenty male student speakers. The 9 disguised-voice methods have

great effect on the performance of the speaker verification system while the foreign

accent affects the ASR the least and whispering and masking of the mouth affects

ASR the most. [9] discussed the voice disguise in ASR thoroughly as a review paper.

Apart from some conventional electronic voice disguise such as electronic scrambling

devices, voice conversion and text-to-speech synthesis have been specifically discussed

as a recently common way in deliberate-electronic voice disguise. In the context of

this thesis we focus on disguise through digital electronic means, such as conversion

or wholesale synthesis, both of which can be achieved through deepfake systems.

Voice 
disguise

Spoofed 
audios

Audio 
deepfake

Figure 1-1: A depiction of the relationships between voice disguise, audio deepfake
and spoofed audio. In recent times, audio deepfakes are increasingly among the most
damaging and costly techniques being applied in the voice disguise and spoofed audio
domains.
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1.2 Threats from deepfake speech

With the advancement of deep learning techniques, especially generative models such

as generative adversarial networks and wavenet models [10], the quality of synthetic

speech is getting much closer to natural speech [11]. The threats from such skilled

synthesis arise from all speech technologies, including speech recognition and down-

stream speech-based services, but, in today’s technological setting, perhaps the great-

est threat is to speech biometric systems, in particular automatic speaker verification

(ASV) systems. This is the focus of our work.

1.2.1 Spoofing threats to automatic speaker verification sys-

tems

Automatic speaker verification (ASV) systems utilize the biometric information in

human speech to verify the identity of a speaker by matching it with the information

present in a database (which is also derived from speech samples). As an increasingly

popular and common biometric authentication mechanism used as “gateways” to var-

ious services, they are particularly attractive as a target for “spoofing” attacks that

attempt to induce the ASV system to return wrong results, allowing an impostor to

bypass the system and gain access.

There are many spoofing methods in use by attackers nowadays, including direct

human impersonation of the target, audio replay, machine assisted-speech generation

such as voice conversion (VC), customized and manipulated text-to-speech synthesis

(TTS) system outputs, etc. Among these spoofing methods, perhaps the greatest

threat comes from synthetic speech produce by modern deep learning systems. With

the advancement of deep learning techniques, especially with advancements in gen-

erative models such as generative adversarial networks and wavenet models [10], the

quality of synthetic speech is getting much closer to natural speech [11]. The tech-
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nology too is easily available to anyone, with open-source tools available on the web,

making this possibly the fastest-growing and most dangerous threat to ASV systems.

The ASVspoof challenge series [12] have raised efforts in fake speech spoofing

attack countermeasures on ASV systems. The key challenge here is to explicitly or

implicitly detect if a speech sample (provided for ASV) is spoofed. Previous studies on

anti-spoofing attacks on ASV systems and synthetic speech detection have evaluated

different features [13] and deep learning models [14] for detection performance. How-

ever, with the fast evolution of deepfake techniques, developing a detection system

that is not constrained by the training data and can accurately detect new spoofed

data generated from different or unseen deepfake algorithms is still a challenge.

This addresses the challenge of distinguishing between fake/synthesized and human-

generated speech. We start from the hypothesis that human- and machine-generated

speech have many differences in many aspects. It is important to establish these

differences and use them for the robust detection of deepfake speech.

As a first step, in the next section, we compare the threats from impersonation

attacks with synthetic speech attacks and establish that deep synthesized fakes are

in fact the most dangerous attacks for ASV systems as published in [15].

Prior work

A number of approaches of varying success have been proposed in the literature to

detect fake speech to increase the security of ASV systems against spoofing attacks.

For example, the long-running ASVspoof challenge [16, 17, 12] has raised wide efforts

in fake speech spoofing attack countermeasures on ASV systems. The main focus of

the challenge, however, has been to rank spoof detection countermeasures, and not

to carry out an in-depth evaluation of the ASV systems’ performance under attacks.

Another significant problem with the spoof detection study is that, with the rapid

evolution of deepfake generation methodologies, the sheer variety of attacks that an
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AVS system may be subject to is also rapidly increasing. Detection models trained

on a specific provided dataset synthesized using a limited set of methods are unlikely

to generalize to newer types of fake/generated audio. In ASVspoof2019, for example,

detection algorithms [14, 18, 19, 20] that work very well on training datasets are

often found to perform much worse on evaluation sets that have been produced using

attack techniques not present in the training data. The detection performance on the

evaluation sets could be an indicator of the generalization capacity of those proposed

algorithms as one purpose of the challenge.

To include the latest deep-learning speech synthesizers, [21] provides a synthetic

speech dataset called Fake or Real (FoR), improving variety of the deepfake speech

data for this purpose. We have, in fact, also used it effectively in the context of this

work.

1.2.2 Comparing human- and machine-generated speech in

spoofing attacks

In this section, we compare the threats from impersonation attacks with synthetic

speech and establish that deep synthesized fakes are in fact the most dangerous attacks

for ASV systems.

Datasets

For our experiments we use four datasets: the logical access (LA) of ASVspoof 2019

dataset [12], the VoxCeleb dataset [22], the FoR dataset [21] and our own collected

impersonation dataset (CID).

The CID dataset is collected from the performances of expert impersonators on

YouTube, and segmented carefully to only keep the speech segments corresponding

to target speakers. All impersonators in the CID dataset are professionals mimicking

political figures for amusement, collected from TV shows and talk shows on YouTube.
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The dataset comprises 1091 utterances of genuine speech from both the impersonators

and the political figures and 981 utterances of impersonated speech. The data are

further segregated into paired sets, each pair containing an impersonator’s real speech

and target/mimicked speech, or the target’s real speech and the speech produced for

the same target by an impersonator. These are indicated in Table 1.1, in which pairs

that originate from the same speaker are called positive pairs, and pairs from different

speakers are called negative pairs.

As shown in Table 1.1, we have two sets of positive pairs and four sets of negative

pairs. There are 19086 positive pairs of same target speaker’s real utterances (R),

14844 negative pairs of different target speaker’s real utterances (RI), 3382 positive

pairs of same impersonator’s impersonations for different target (IAB), 37554 negative

pairs of target and impersonation pair (TI), 1988 negative pairs of different imper-

sonator’s real utterances (IRAB) and 28080 negative pairs of target/impersonator’s

real utterance pair (IRT).

For synthetic data, ASVspoof2019 dataset contains logical access data and phys-

ical access data. In this study, we only use the logical access data which contains

machine-generated speech using multiple text-to-speech synthesis and voice conver-

sion methods. The logical data has 2580 bonafide utterances and 22800 synthetic

utterances from 20 speakers in the training set; 2548 bonafide utterances from 20

speakers and 22296 spoof utterances from 10 speakers in the development set [12].

The evaluation set contains 7355 bonafide utterances from 67 speakers and 63882

spoof utterances from 48 speakers. The spoof audio are generated using unseen

spoofing algorithms intentionally, aiming to give insights of the generalization perfor-

mance of the proposed countermeasure models. In order for a general ASV system

to evaluate this dataset, we generate 4914 bonafide positive pairs and 4914 negative

pairs for each attack (A07-A19) from the original evaluation set. We also generate

15970 positive pairs and 15970 negative pairs to evaluate the overall attacking ability
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over all attacks.

To best evaluate the threats of different attacks, we train ASV systems under

unconstrained recording and speaking conditions (essentially data-in-the-wild). For

this, we use the VoxCeleb dataset, which is a large-scale public dataset containing

millions of utterances collected from unconstrained speech samples [22]. It has many

speakers and millions of utterances under different recording conditions. This can be

effectively used to evaluate the potential of any given ASV methodology to generalize

to unseen speakers and unconstrained conditions [22, 23].

Analyzing performance under attacks on black-box and white-box ASV

systems

The ASV model we use is proposed by Chung et al. (2020) [23], which applies the

Thin ResNet-34 [22] as backbone, and Self-attentive Pooling(SAP)[24] as aggrega-

tion strategy. This model, when trained with short-time Fourier transform (STFT)

spectrograms of Voxceleb recordings generalizes extremely well to unconstrained con-

ditions as shown by the low EER of real utterance pairs, mentioned earlier in this

section.

The black-box ASV system is pretrained with the VoxCeleb dataset. STFT,

MFCC, aperiodic parameters (AP) and spectral envelope (SP) are used as input

features to this model. The original input audio comprise segments of two seconds

duration. We use the same STFT feature as in [23, 22]. MFCC features are com-

puted from 16kHz sampled signals. They comprise 13 cepstral coefficients, to which

first and second-order derivatives respectively are concatenated, making the feature

dimensionality 39. (AP and SP are not the focus of this section and will be further

discussed in Section.4.1.1 and Section.4.1.3)

The white-box model is trained with the ASVspoof 2019 data, as a multi-

class classifier for speaker identification. We make small modifications to the initial
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Table 1.1: EERs of impersonation attacks to the ASV under black-box scenario

ASV EER%
Impersonation Data R1+RI2 IAB3+RI R+TI4 IAB+TI R+IRAB5 IAB+IRAB R+IRT6 IAB+IRT

blackbox

VoxCeleb2(STFT)
VoxCeleb1(STFT)
VoxCeleb1(MFCC)

VoxCeleb1(AP)
VoxCeleb1(SP)

1.71
4.16
17.21
39.75
53.58

13.30
16.41
22.09
41.27
49.42

11.42
14.95
22.01
44.89
54.36

43.52
42.02
48.77
45.46
50.36

4.86
4.74
9.22
45.58
55.04

17.76
15.90
26.80
46.06
51.11

5.21
5.06
8.86
41.65
53.76

19.45
15.64
20.11
42.94
49.43

1 R: Same target speaker’s real utterance pair (+, #19086) 2 RI: Different target speaker’s real utterance pair (�, #14844)
3 IAB: Same impersonator, impersonations for different target pair (+, #3382)
4 TI: Target and impersonation pair (�, #37554) 5 IRAB: Different impersonator’s real utterance pair (�, #1988)
6 IRT: Target and impersonator’s real utterance pair (�, #28080)
7 The model pre-trained with VoxCeleb2 dev set using Spectrogram feature

ASVspoof2019 training set by assigning each spoofed utterance an identity which

uniquely incorporates both speaker and attack. There are 20 speakers and 6 types

of attack in the ASVspoof2019 LA training set, meaning that there are 120 “spoofed

identities”. Thus our modified training set contains 140 identities. We call these

ASVspoof training identities (ASVTIs).

Impersonation attacks

Our black-box evaluations on impersonation attacks use the CID dataset. We run

several experiments to evaluate the dataset’s attacking potential. The results are

shown in Table 1.1. The model that is pretrained on VoxCeleb2 is able to verify open-

set speakers best and gives 1.71% EER for target speakers’ real utterances (positive

and negative pairs R + RI); this pretrained model can be seen as a black box ASV

under open-set evaluation.

From our tests, we observe that combining the impersonation/target pairs (TI)

with the positive pairs from real speakers (R) improves the speaker verification EER

to 11.42%, which indicates that professional impersonation can fool the ASV system

to a certain extent, although it is still ineffective in most attacks. The group with

real speaker positive pairs (R) and negative pairs (IRAB) built from the real voices of
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different impersonators has a low EER of 4.86%, showing that the pre-trained ASV

system is indeed generalized to verify unseen target speakers and cross-impersonator

pairs.

The IAB is the same impersonator mimicking different targets. IAB + RI has

an EER of 13.3%, showing that even if the same speaker tries to impersonate dif-

ferent targets, their utterances are mostly considered as the same speaker, although

still having some capacity to fool the ASV system. Note that this EER value gets

significantly larger to 22.09% with less generalized models, such as the VoxCeleb1 pre-

trained model. This indicates that impersonation from professional impersonators is

still threatening to some ASV systems. The IAB + IRAB set has comparable EERs

as the IAB + RI, showing that the IRAB pairs are valid, also indicating the true

differences between the impersonator’s real voices. Moreover, the IAB + TI gives

an EER of 43.52%. This high EER comes from the formation of this evaluation set.

Different from other sets, both the negative pairs and positive pairs can be seen as

the spoofing attacks because the professional impersonator could impersonate differ-

ent targets to a certain extent, which makes the “positive” pairs negative in nature.

Therefore, both the positive pairs of IAB and the negative pairs of TI are the hardest

cases, also shown by the EERs of their combination with the R and RI.

The R + IRT corresponds to positive pairs for the real voice utterances of the same

targets and negative pairs of impersonator’s real voice with the targets’ real voice.

The 5.21% EER shows that the impersonator’s real voices are indeed not similar to

the targets’ voices.

The overall results show that while mimicry from amateur impersonators is re-

ported to not succeed in fooling ASV systems in previous research [25, 26], mimicries

rendered by professional impersonators still poses threats to a certain extent.
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(a) (b)

(c) (d)

Figure 1-2: Feature space for D-vectors of speaker verification. (a) 20 bonafide speak-
ers in training set; (b) 20 bonafide and spoof speakers in training set; (c) 10 bonafide
speakers in development set; (d) 10 bonafide and spoof speakers in development set.
The embedding features from the bottleneck layer of the white-box ASV model are
mapped on a sphere. Spoofed utterances introduce ambiguity to the feature space.
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Table 1.2: EERs of evaluation set for ASVspoof 2019 LA under black-box and white-
box scenarios

ASV EER%

Attack A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 ALL3

blackbox

VoxCeleb2(STFT)
VoxCeleb1(STFT)
VoxCeleb1(MFCC)

VoxCeleb1(AP)
VoxCeleb1(SP)

Todisco et al. (2019), [12]

34.03
27.93
45.12
39.89
51.47
59.68

23.20
25.30
28.89
24.92
50.73
40.39

5.70
11.01
16.02
31.63
53.51
8.38

48.51
47.77
45.01
38.66
51.46
57.73

37.37
37.36
48.88
21.93
53.97
59.64

43.42
44.77
45.09
43.05
49.52
46.18

23.67
30.93
38.13
30.99
54.51
46.78

40.45
43.33
35.06
28.25
49.92
64.01

43.14
40.91
43.01
42.21
51.39
58.85

50.51
43.36
46.04
45.55
50.66
64.52

4.99
7.65
11.07
31.56
52.71
3.92

7.10
10.83
25.64
31.92
49.18
7.35

11.26
13.97
25.02
39.27
54.97
14.58

21.42
22.03
25.66
35.55
50.60

-

whitebox

ASVSpoof(STFT)1

ASVSpoof(MFCC)
ASVSpoof(AP)
ASVSpoof(SP)

VoxCeleb2+ASVSpoof(STFT)
VoxCeleb1+ASVSpoof(STFT)
VoxCeleb1+ASVSpoof(MFCC)

VoxCeleb1+ASVSpoof(AP)
VoxCeleb1+ASVSpoof(SP)

2.33
7.12
38.93
50.97
1.16
1.21
4.99
22.04
50.24

2.65
5.08
32.46
49.94
2.31
2.63
4.51
17.77
44.30

3.75
8.12
32.59
40.07
0.77
1.75
1.99
28.13
40.51

47.56
39.76
42.37
49.75
43.42
45.85
37.28
33.68
49.21

40.89
28.99
38.29
49.25
27.62
17.40
19.02
37.78
48.82

47.59
49.01
43.28
52.04
41.23
45.69
45.08
37.20
50.45

37.01
33.81
37.02
52.30
15.46
20.84
33.18
19.72
48.74

29.09
19.04
33.96
51.03
34.48
25.85
15.92
6.50
48.62

35.48
41.39
41.12
51.74
36.26
25.41
33.65
33.16
49.43

4.09
9.08
49.06
51.99
6.63
4.66
6.01
44.43
50.86

12.07
18.00
40.05
41.49
1.26
2.24
11.30
33.25
33.63

28.61
16.47
34.57
46.16
5.75
8.24
11.44
32.33
42.10

1.88
2.09
44.53
45.78
0.68
0.73
2.98
41.01
38.06

22.24
15.99
39.25
42.08
11.99
13.35
14.94
32.45
36.79

1 The model trained directly with ASVTIs4 using Spectrogram feature 2 The model pre-trained with VoxCeleb1 dev set using Spectrogram(blackbox) and
subsequently trained with ASVTIs 3 Evaluation on general pairs as described in 1.2.2, indicating overall EER 4 As defined in 1.2.2

Synthetic speech attacks

To further understand the attacks of synthetic speech generated from different meth-

ods, we perform extensive ASV evaluations on the ASVspoof evaluation set under

the black-box and white-box conditions. The evaluation set contains attack methods

from A07 to A19 which are different voice conversion or speech synthesis techniques

[27].

Comparing human-generated attacks and machine-generated attacks, as in the

black-box scenarios for both cases, we found that the general attack strength of the

machine-generated speech is stronger than the human-generated attacks, as shown in

Table.1.1 and Table.4.5. For the blackbox of VoxCeleb2 trained using STFT, most

of the synthetic attacks have an EER of over 20%, much higher than the EER of

impersonation attacks (IAB).

As shown in Table 4.5, A09/A17/A18/A19 are relatively weaker attacks showing

lower ASV EER% than STFT/MFCC-based black-boxes, which is consistent with the

results given by [12]. These attacks are generated through waveform generators such

as waveform filtering and spectral filtering, which may be simpler methods compared

to hard cases using neural vocoders. Most of attacks tend to be more dangerous for
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MFCC-based black-boxes than STFT-based black-boxes, as STFT usually captures

more nuances information compared to MFCC. Also for STFT and MFCC, EERs

for most attacks are lower under the white-box scenario, compared to attacks on

black-boxes with the same dataset and feature settings. However, it does not result

in much improvement of EER for A10, A12, and A15, which are generated by neural

waveform models, indicating increased threat from deepfakes.

In conclusion, the feature robustness ranks as ‘STFT > MFCC’ with finetuning

under white-box scenario. This conclusion is consistent with our hypothesis that

features that capture information about prosodic nuances are more robust under

attacks for ASV systems. In Figure 1-2, we draw the embedding features from the

bottleneck layer of the white-box ASV model on a sphere. When spoofed utterances

are introduced, it is not easy to discriminate the embeddings anymore, which indicates

their threats to the ASV system.

Conclusions

The threats shown above from the deepfakes indicates the urgent needs for fake speech

detection. As shown in the above study, we have established that spoofing attacks

carried out using deep-fake speech are more likely to be effective than those using

other synthetic methods or human impersonation, even if the speech is produced by

professional impersonators. We need to have more robust detection of spoofed speech,

which could result in rendering ASV systems more robust to attacks generated using

unseen methods.

1.3 Objectives of the thesis

We are going to develop robust deepfake-speech detection algorithms that can capture

the fundamental differences between fake and genuine speech, i.e., between machine-
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Figure 1-3: Audio deepfake detection based on differences in human- and machine-
generated speech

generated and human-generated speech. We aim to develop features that could cap-

ture these differences. The algorithms developed must be trainable with limited

training data and be adaptable to the latest generation techniques as they are intro-

duced. To achieve so, we will start from looking at the human speech production and

the deepfake generation techniques as in the following chapter.
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Chapter 2

Human speech

In this chapter, we briefly discuss the bio-mechanical process of speech production in

humans, and their relevance to deep-fake detection.

2.1 The human voice production mechanism

Figure 2-1: Parts of the vocal tract [1]
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Voice production is the result of a complex interaction of excitation, articulation

and resonance. The vocal tract begins from the vocal cords and ends at the lips,

and includes the pharynx and the oral cavity. Most speech production occurs during

exhalation: the lung pumps out air, which pushes past the vocal cords and excites

the vocal tract resonators such as the throat, mouth cavity and nasal passages. In

voiced speech the vocal cords vibrate, resulting in periodic pulses of air, giving voiced

sounds their characteristic fundamental tones. These are amplified and modified by

the vocal tract resonators to create a person’s recognizable voice. For unvoiced sounds

the vocal cords remain open, and the exhaled air creates turbulences that excite the

resonators. In all cases, the tongue, soft palate and lips further modify the sounds to

produce recognizable words in the person’s characteristic voice.

In more detail, the speech production mechanism for voiced sounds such as vowels

in particular works as follows:

1. Air enters the lungs via normal breathing.

2. As air is expelled from the lungs via the trachea, the tensed vocal cords within the

larynx are made to vibrate by the variations of air pressure in the glottal opening.

3. The glottal orifice opens and closes, modulating the air flow into quasi-periodic

pulses.

4. These pulses are frequency-shaped by the throat/mouth/nasal cavity. The posi-

tions of the various articulators (jaw, tongue, velum, lips, and mouth) determine

the produced sound.
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2.2 Characteristics of human-generated speech

2.2.1 Non-speech signatures in natural human voice

In human-generated speech, the signals carry information about the speaker. Both

voiced and unvoiced speech have already been widely used to analyze the informa-

tion carried in speech [28]. Meaningful features can be extracted from it, such as

pitch, formants, jitter, shimmer, energy, loudness, zero-crossing rate, spectral entropy,

etc. Furthermore, with large prosody/emotion-labeled datasets and state-of-the-art

machine learning models, “deep” features associated with less explicit attributes of

the speech can also be extracted through well-architected machine learning models

[29, 30].

However, there is one aspect of voice that has not garnered sufficient attention –

the non-speech parts of the signal. This includes the breath sounds, background noise,

filled pauses etc. While these are sometimes considered in utterance-level machine-

speech generation [31, 32], particularly filled pauses in spontaneous speech which are

synthesized with rigorous patterns [33, 34, 35], their utility as biometric identifiers is

generally ignored.

2.2.2 Breath sounds and their potential use

As discussed above for the speech production mechanism, speech is largely produced

during exhalation. In order to replenish air in the lungs, speakers must periodically

inhale. When inhalation occurs in the midst of continuous speech, it is generally

through the mouth. Intra-speech breathing behavior has been the subject of much

study, including the patterns, cadence, and variations in energy levels. However, an

often ignored characteristic is the sound produced during the inhalation phase of this

cycle. Intra-speech inhalation is rapid and energetic, performed with open mouth and

glottis, effectively exposing the entire vocal tract to enable maximum intake of air.
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This results in vocal tract resonances evoked by turbulence that are characteristic of

the speaker’s speech-producing apparatus. Consequently, the sounds of inhalation are

expected to carry information about the speaker’s identity. Moreover, unlike other

spoken sounds which are subject to active control, inhalation sounds are generally

more natural and less affected by voluntary influences.

In [36], we demonstrated that breath sounds are indeed bio-signatures that can

be used to identify speakers. In this paper, we used Sphinx-3, a state-of-art Hidden

Markov Model (HMM) based automatic speech recognition (ASR) system to first

obtain accurate phoneme segmentations for all the speech included in the LDC Hub-4

1997 Broadcast news database [37]. The database comprises single-channel recordings

of read speech from multiple news anchors and people interviewed within the news

episodes. The recordings are sampled at 16000 Hz. The ASR system was trained on

this database, and the acoustic models obtained were used to obtain highly accurate

phoneme segmentations. Breath was modeled as a phoneme during the training

process, and thus the process of phoneme segmentation directly yielded the breath

sounds that we needed for our experiments.

The complete set of breath sounds extracted from the Hub-4 database included

more than 3000 combinations of speaker, channel (broadband and telephone), fidelity

(high, low, medium) and type of speech (read and conversational), of which we only

chose breath sounds that corresponded to high fidelity clean read speech signals for

our experiments. Since the goal of this paper is confined to demonstrating that breath

can indeed be used to identify speakers, we did not attempt to explore of performance

in different speech styles, channel types, noise conditions, etc.

We used two feature formulations, i-vectors, and a set of novel CNN-RNN based

features derived from constant-Q representations of the speech signal. Experiments

with both i-vectors and constant-Q spectrograms show that breath sounds can be

successfully used to identify speakers. In fact, for the clean speech signals that we
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used in our experiments, the accuracies are surprisingly good. Note that since our

primary objective in this paper is to demonstrate that the sound of the human breath

can indeed be used for speaker identification, this choice of features was judiciously

made to fulfill our goal of providing proof-of-concept.

The CNN-LSTM neural network based framework proposed in our paper uses

constant-Q representations to effectively normalize the shifts in the resonance patterns

of breath within the same speaker and to emphasize the distinction between speakers.

The CNN-LSTM based approach automatically learns shift-invariant and temporal

features, and combines feature extraction, speaker modeling and decision making

into a single pipeline. This framework is also distribution-assumption free and works

effectively for short recordings. Results show that it works better than the i-vector

based classifier and achieves high accuracy in the speaker identification through breath

sounds. At the same time, both features have the area under the curve (AUC)

value of more than 0.94 of their respective receiver operating curves (ROC). More

experimental details could be found in [36].

From the experiments, we showed that these sounds by themselves can yield re-

markably accurate speaker recognition with appropriate feature representations and

classification frameworks. This is interesting since breath is a factor that has not been

well-modeled in deepfake speech generation [32] and could be leveraged for detection

purposes.
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Chapter 3

Machine-generated speech: methods

of generating deepfakes

In this chapter, we will discuss generation methods for deepfake speech and insights

to improve the detection of audio deepfake. The goal is to understand the generation

process so that we could gain insights about the characteristics of machine-generated

speech that are most indicative of the underlying algorithmic process of speech gen-

eration.

Deepfake speech generation methods have become increasingly sophisticated with

advances in techniques in big data, machine learning, deep learning, and graphic

processing units (GPUs) in recent years. In principle, there are two representative

types of deepfake-speech generation methods: voice conversion and speech synthesis.

In voice conversion (or voice transformation) a speech recording from one speaker is

qualitatively converted to sound like another while preserving linguistic information.

On the other hand, speech synthesis is the artificial production of human speech

by rendering text or symbolic linguistic representations like phonetic transcriptions

into speech. Both approaches are widely used to generate deepfake audio that could

deceive listeners.
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To create near-authentic deepfake audio, the voice characteristics and speaking

style of the target speaker need to be considered in the generation. For example, the

emotion, pitch, speaking rate, pause, emphasis, etc., are taken into accounts in many

related studies [38].

The progress of deep learning techniques has resulted in advances in both voice

conversion techniques and speech synthesis. Understanding these techniques is an

essential step to develop well-adapted detection methods of deepfake speech. In order

to understand how voice conversion could achieve quality that could be consdered a

deep-fake threat, we studied the voice impersonation, which goes beyond mere voice

conversion. Unlike voice conversion, which only captures immediate frequency char-

acteristics of the target speaker, impersonation also attempts to mimic other aspects

such as pronunciation and prosody in order to achieve a higher level of deception. In

the text-to-speech synthesis, the most advanced works focus on pushing the bound-

ary of synthesized speech quality both in terms of the voice characteristics of the

target speaker, and their prosody and style. Prosody, here, refers to the elements of

speech beyond the individual phonetic segments, encompassing properties of syllables

and larger units of speech, such as linguistic elements, and intonation including tone,

stress and rhythm.

In the field of deep generated/changed speech, there is surging research on topics

such as controllable TTS, one-shot voice conversion, and so on [39]. However, based

on investigations into approaches that are very commonly used in deepfake audio

generation, we found several places that could be potential weakness that could be

exploited for the robust detection of deepfakes.

Breath sounds are hardly considered in speech conversion or synthesis since cur-

rently, related research mainly focuses on production of short sentences (that are too

short to require intra-sentence inhalations or exhalations), rather than long or ex-

tended passages. Besides breath sounds, other subtle transitions between utterances
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are also not considered, for instance the termination of a sentence is often represented

by complete silence or random noise that may not be consistent with the speech or

background noise. Furthermore, depending on the algorithms and models that are

used to generate or convert speech, there may be some deep-fake signature artifacts

or distortions in feature space that could be detectable by machines but are not dis-

tinguishable for human listeners. In understanding the generation process of deepfake

speech, we can use the insights to develop better models for the detection of deepfake

speech, as in Section 4.2.

3.1 Voice transformation

Deepfake audio aims at deceptive fake audio that has high quality and near-authentic

imitation of real audio. Voice transformation aims to transform the source speaker’s

audio to the target speaker’s voice while keeping all the linguistic information. With

deeplearning techniques getting increasingly powerful, deepfake audio from voice

transformation using deep learning techniques have become one of the primary means

of creating deceptive fake audio recordings.

Traditionally, for voice transformation, individual frames of the source speaker’s

speech are warped to match the pitch and other tones of the target’s speaker’s voice.

However, this creates unnatural effects and inconsistent prosody in the conversion

results. Deepfake audio, on the other hand, results in high quality impersonation of

the target’s speaker.

Deepfake voice impersonation is not the same as voice transformation, although

the latter is an essential element of it. In voice impersonation, the resultant voice must

convincingly convey the impression of having been naturally produced by the target

speaker, mimicking not only the pitch and other perceivable signal qualities, but also

the style of the target speaker. In this chapter, we propose a novel neural-network
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based speech quality- and style-mimicry framework for the synthesis of imperson-

ated voices. The framework is built upon a fast and accurate generative adversarial

network model. Given spectrographic representations of source and target speakers’

voices, the model learns to mimic the target speaker’s voice quality and style, re-

gardless of the linguistic content of either’s voice, generating a synthetic spectrogram

from which the time-domain signal is reconstructed using the Griffin-Lim method. In

effect, this model reframes the well-known problem of style-transfer for images as the

problem of style-transfer for speech signals, while intrinsically addressing the problem

of durational variability of speech sounds. Experiments demonstrate that the model

can generate extremely convincing samples of impersonated speech. It is even able

to impersonate voices across different genders effectively. Results are qualitatively

evaluated using standard procedures for evaluating synthesized voices.

Prior research that is of greatest relevance in this context relates to voice trans-

formation, which deals with the specific problem of converting a source voice into a

target one. Voice transformation has had a long history, and at the surface addresses

some of the issues we mention. Conventionally, voice transformation modifies the in-

stantaneous characteristics of a source signal, such as pitch [3] and spectral envelope.

The strategies used range from simple codebook-based conversion [4] and minimum-

mean-squared error linear estimators [5] to sophisticated neural network models [6].

While these methods are all frequently quite effective at transforming instantaneous

characteristics of the signal, and can even map some prosodic cues, they are generally

insufficient to capture unmeasurable, unquantifiable style in the more general sense

of the word. When trained, they are heavily reliant on the availability of parallel

recordings of the source and target speaker saying the same utterances, providing ex-

act examples of what is considered ideal conversion. In most cases, in order to learn

the voice conversion effectively, these recordings must also be perfectly time aligned,

a requirement that is generally satisfied by time-warping the recordings to align them
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to one another. Realization of the hard targets required to learn the conversion is

not only unrealistic, the alignment required may also be fundamentally inappropriate

when the objective is not to learn to perform wholesale conversion of voice, but only

to transform style.

In this context, recent advances in the science of learning generative models pro-

vide us new directions. Rather than attempting to learn a mapping between parallel

signals, the new models attempt to discriminate instead between data that do have

the desired (identifiable but possibly unquantifiable) stylistic feature(s), and those

that do not. Generators that attempt to produce data with any specific character-

istic(s) must now learn to do so such that they “fool” the discriminator. Since the

features are unquantifiable, the discriminator itself must, in fact also be learned. Both

the generators and the discriminators are modeled by deep neural networks, which

are known to be able to model any transformation with appropriate design and suffi-

cient training data. Since the primary driver of the learning process is discrimination,

parallel data such as those needed for conventional voice-conversion methods are not

required.

These Generative Adversarial Networks, or GANs have been very successfully ap-

plied to a variety of problems in image generation [40], learning feature representations

[41] and style transfer [42, 43, 44, 45, 46], wherein the algorithms involved result in

fast and vivid generation of images of different artistic styles ranging from simple

photographs to painting styles of selected artists. In our work, we harness the power

of these models for the problem of style transfer in speech.

At the outset, we note that speech signals have several problems that are not

inherent to images. Unlike images, speech sounds are not of fixed size (i.e., not fixed

in duration), and lose much of their stylistic characteristics when they are scaled down

to be so. Generation of time-series data such as speech is also a more challenging

problem compared to images. Naive implementations of the process may result in
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generation of data that have lost linguistic, stylistic or even intelligible content. In

this work, we propose multiple GAN models for the problem of voice transformation.

Our models, and their corresponding learning algorithms, are designed to consider

the specific challenges inherent in speech. Specifically, we show how, by appropriate

choice of model structure and learning algorithm, and by introducing the appropriate

discriminators in the GAN framework, specific characteristics of the voice might be

retained without modifying others or losing linguistic content, in order to emulate

different aspects of impersonation or voice mimicry.

In Section 3.1.1 we briefly outline the concept of GANs. In Section 3.1.2 we

describe our designs of GANs for voice modifications. In Section 3.1.2 we present

experimental evaluations of the proposed models and conclude with discussions in

Section 3.1.2.

3.1.1 Generative Adversarial Networks (GANs)

In spite of their rather short history, GANs [40] are already quite well-known. We

briefly summarize their key features here, in order to set the background for the rest

of the chapter.

The basic GAN model

The Generative Adversarial Network is a generative model which, at its foundation, is

a generative model for a data variable. The model is intended to generate samples that

closely match draws from the actual distribution of the data. These models differ from

conventional generative models in a fundamental way in the manner in which they are

learned. Conventional generative models are trained through likelihood maximization

criteria, such that some (empirical estimate of the) divergence measure between the

synthetic distribution encoded by the generative models, and the true distribution

of the data, is minimized. In contrast, GANs are trained discriminatively, such that
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samples generated from the model cannot be distinguished from actual draws from

the true distribution of the data.

Consider any random variable x with a probability distribution Px that is un-

known, but from which samples may be drawn. For instance, x may represent images

of a particular class, samples of which may be readily available, but their actual dis-

tribution may be unknown. The GAN attempts to generate samples of x that are

indistinguishable from actual samples drawn from the true distribution. The original

GAN model [40] comprises a generator G(z) and discriminator D(x). The generator

G takes as input a random variable z drawn from some standard probability distribu-

tion function Pz, e.g., a standard Normal distribution, and produces an output vector

xz.

The discriminator D(·) attempts to discriminate between samples x ⇠ Px that are

drawn from Px, the true (but unknown) distribution we aim to model, and samples

produced by the Generator G. Let T represent the event that a vector x was drawn

from Px. The discriminator attempts to compute the a posteriori probability of T ,

i.e., D(x) = P (T |x).

To train GAN, we attempt to learn G such that D(xz), the score output by the

discriminator in response to productions by G is maximized (i.e., G “fools” the dis-

criminator). At the same time we attempt to learn D such that D(xz) is minimized,

while also maximizing D(x) for any x ⇠ Px. All of these objectives can be concur-

rently achieved through the following optimization:

min
G

max
D

Ex⇠Px [logD(x)] + Ez⇠Pz [log(1�D(xz))]

The GAN training framework is illustrated in Figure 3-1.
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Figure 3-1: The original GAN model

GAB
XA XAB

DB

XB

Figure 3-2: Style transfer by GAN

GANs for style transfer

The basic GAN has been extended in a number of ways in the literature [42, 43, 44,

45, 46], particularly in the context of style transfer among images, e.g., as in Figure

3-2. The common underlying denominator in all of these models is that an input

data instance (usually an image) xA drawn from a distribution PA is transformed to

an instance xAB by a generator (more aptly called a “transformer”), GAB. The aim

of the transformer is to convert xA into the style of the variable xB which natively

occurs with the distribution PB.

The discriminator DB attempts to distinguish between genuine draws of xB from

PB and instances xAB obtained by transforming draws of xA from PA. The actual
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optimization is achieved as follows. We define

LG = ExA⇠PA [log(1�DB(xAB))]

LD = �ExB⇠PB [logDB(xB)]� ExA⇠PA [log(1�DB(xAB)] (3.1)

To train the GAN, its two components are alternately updated by minimizing the

two losses in Equation 3.1. The generator G is updated by minimizing the “generator

loss” LG, while the discriminator is updated to minimize the “discriminator loss” LD.

Our work is however more directly based on the “DiscoGAN” model [42], shown

in Figure 3-3. The DiscoGAN is a symmetric model which attempts to transform two

categories of data, A and B, into each other. The DiscoGAN includes two generators

(more aptly called “transformers”) GAB and GBA. GAB attempts to transform any

draw xA from the distribution PA of A into xAB = GAB(xA), such that xAB is in-

distinguishable from draws xB from the distribution PB of B. GBA does the reverse.

Figure 3-3: The DiscoGAN model

The DiscoGAN model also includes two discriminators, DA and DB. DA attempts
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to discriminate between actual draws from PA and draws from PB that have been

transformed by GBA, and DB performs the analogous operations for draws from PB.

The generators and discriminators must all be jointly trained.

The training process for the DiscoGAN is similar to that for the model in Figure

3-2, with one significant modification: in addition to the losses that emphasize the

competition between the generators and the discriminators, we now include the re-

quirement that GAB and GBA must be inverses of each other to the extent possible,

i.e., for any xA from A, xABA = GBA(GAB(xA)) must be close to the original xA, and

similarly for any xB from B, xBAB = GAB(GBA(xB)) must be close to the original

xB. This requirement is encoded through two reconstruction losses LCONSTA and

LCONSTB where

LCONSTA = d(GBA(GAB(xA)), xA) (3.2)

and LCONSTB is symmetrically defined. The generator loss for GAB is defined as:

LGANAB = LCONSTA + LGB (3.3)

where LGB is defined as in Equation 3.1. We define the generator loss for GAB in

a symmetric manner. The overall generator loss is LG = LGANAB + LGANBA . The

discriminator loss LD is defined as LD = LDA + LDB , LDA and LDB are defined as in

Equation 3.1. Finally, in the implementation of DiscoGAN [42], a feature loss is also

added to compare the feature similarity between the generated data and the real data.

As before, the generators and discriminators are trained by alternate minimization of

the generator and discriminator losses.

3.1.2 GANs for voice mimicry

The DiscoGAN was originally designed to transform style in images. In order to apply

the model to speech, we first convert it to an invertible, picture-like representation,
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namely a spectrogram. We operate primarily on the magnitude spectrogram, retaining

the phase of input signals to be transformed, to recreate the transformed signals from

the transformed magnitude spectrogram.

In order to apply this to voice transformation, we must make several key mod-

ifications to the DiscoGAN model. Firstly, the original DiscoGAN was designed to

operate on images of fixed size. For it to work with inherently variable-sized speech

signals, this constraint must be relaxed in its new design. Secondly, it is important to

ensure that the linguistic information in the speech signal is not lost, even through the

signal itself is modified. Sufficient constraints must be added to the model for this.

Finally, since our objective is to modify specific aspects of the speech, e.g., style, we

must add extra components to our model to achieve this. We call our model, which

incorporates all these modifications, the VoiceGAN.

Retaining Linguistic Information. Linguistic information is encoded largely in the

details of the spectral envelope. To ensure that this is retained, we modify our

reconstruction loss as:

LCONSTA = ↵d(xABA, xA) + �d(xAB, xA) (3.4)

Here, the term d(xAB, xA) attempts to retain the structure of xA even after it has

been converted to xAB. Careful choice of ↵ and � ensures both, accurate reconversion

and retention of linguistic information, after conversion to xAB.

Variable-length Input Generator and Discriminator

To account for the fact that unlike images, speech signals are of variable length

that cannot be scaled up or down, we must make modifications to the generators

and discriminators. The modified structures are shown in Figure 3-4. Figure 3-4

(a) shows the structure of the original generator in DiscoGAN. Based on its fully
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(a) Generator GAB (in box) (b) Discriminator DA (in box)

Figure 3-4: Visualization of Generator GA and Discriminator DA. Architectures of
other counterparts are similar in structure. The number of convolutional layers is
larger in the actual implementation.

convolutional structure, it can handle variable length inputs. Figure 3-4 (b), we

shows the architectural details for our proposed discriminator in VoiceGAN. In this,

an adaptive pooling layer is added after the CNN layers, and before the fully connected

layer. It includes channel-wise pooling in which each channel’s feature map is pooled

into a single element. This converts any variable-sized feature map into a vector of a

fixed number of dimensions, with as many components as the number of channels.

Style Embedding Model (DS). In addition to the discriminator that distinguishes

between the generated data and real data, we add a second type of discriminator

to our model to further extract the target style information from input data and to

make sure that the generated data still has this style information embedded in it. To

achieve this, we include a discriminator DS that is similar in architecture to that in

Figure 3-5.

The discriminator DS determines if the original and transformed signals match

the desired style. To do so, we introduce the following style loss:

LDSTY LE�A = d(DS(xA), labelA) + d(DS(xAB), labelB)

+ d(DS(xABA), labelA)
(3.5)
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Figure 3-5: The proposed VoiceGAN Model

LDSTY LE = LDSTY LE�A + LDSTY LE�B (3.6)

Note that the style loss could include multiple discriminators for multiple aspects of

style.

Total Loss Our final training objectives to be minimized for the generator and

discriminator are represented by LG and LD respectively as follows:

LG = LGANAB + LGANBA

= LGB + LCONSTA + LGA + LCONSTB

(3.7)

LD = LDA + LDB + LDSTY LE (3.8)

Experiments and Results

We use the TIDIGITS [47] dataset. This dataset comprises a total of 326 speakers:

111 men, 114 women, 50 boys and 51 girls. Each speaker reads 77 digit sentences.

The sampling rate of the audio is 16000 Hz. We chose to use this database due to
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its relatively simple linguistic content. For the purpose of demonstration, we choose

an unquantifiable, but identifiable characteristic: gender. Our goal then is to show

that these data can be used to learn to convert the gender of a speaker’s voice. In

the discussion below, therefore, “style” refers to gender. We note that any other

characteristic may have been similarly chosen.

Model implementation

The model architecture is that of the VoiceGAN described above. The generator

network in the model comprises a 6-layer CNN encoder and a 6-layer transposed

CNN decoder. The discriminator network comprises a 7-layer CNN with adaptive

pooling. We employ batch normalization [48] and leaky ReLU activations [49] in

both the networks. The number of filters in each layer is an increasing power of

2 (32, 64, 128). When training the networks, a smoothness constraint, comprising

the cumulative first order difference between adjacent columns in the spectrogram, is

added to the loss to enhance the temporal continuity of the generated spectrogram.

Results are available at [50].

Figure 3-6: Visualization of the spectrograms through the voice transformation. The
contexts of these utterances are a speaker saying “3 1 oh 5” (first row) and “5 1 4 2”
(second row). For each spectrogram, frequencies on the y-axis range from 0-4 kHz.
You could observe the fine nuances in the spectrograms are consistent for the same
gender across the transformations.
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Table 3.1: NIST STNR test

Data (use GL-method) A (dB) B (dB)

Original signal 55.60±4.97 52.91±3.58
XA and XB 54.97±6.28 52.15±3.70
XAB and XBA 49.64±1.80 49.92±4.36
XABA and XBAB 53.58±2.69 50.05±2.12

Quality evaluation of generated results

We use an independently-trained CNN-based classifier to predict the style of our

generated data. The classifier was trained on 800 utterances from speakers of both

genders. The results show that 100% of the generated data are classified as the

target speaker’s style, which indicates that our VoiceGAN network achieves good

style transfer performance.

To evaluate the quality of our generated speech signal [51], we also conduct a

signal-to-noise (SNR) ratio test using the standard NIST STNR method and the

WADA SNR method [52]. The results are shown in Table 2. For each data class, we

randomly select 40 samples from our test dataset (20 for each speaker) and compute

the mean and variance of the generated results. The WADA test results are all

around 100 dB since our generated noise is not well-modeled by Gaussian noise. The

STNR test results show that our generated data is of good quality. For evaluation,

the time-domain signal is reconstructed from the generated spectrogram using the

Griffin-Lim method, which is based on an iterative procedure that minimizes the mean

square error between the modified magnitude spectrogram and the actual signal’s

spectrogram. Details of this method are explained in [53]. We find that the Griffin-

Lim method does not reduce the voice quality to any significant degree.

Conclusions

The VoiceGAN model is observably able to transfer style from one speaker to another.

As proposed however, this model remains vanilla and many extensions are possible.
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The method can be easily extended to other stylistic features that may be identified.

In principle, while longer-term prosodic-level style features may also be transferred,

simple binary discriminators may no longer be useful for such characteristics. More

continuous-valued discrimination may be required. We have not verified if multiple

style aspects may be concurrently modified. These remain areas of ongoing research.

In preliminary experiments we have verified that even linguistic content may be mod-

ified if we so choose; however doing so in a measurable and controlled manner is a

challenge that remains to be addressed. Future works in voice conversion related

to our proposed the VoiceGAN model [54] have continued to incorporate the most

relevant innovations in the area of adversarial modeling [55, 56, 57].

3.2 Speech synthesis

Another approach to generate deepfake speech is to synthesize the target utterance

from the text or other language features such as symbolic linguistic representations.

To obtain the target speaker’s identity, the synthesized speech should have the voice

characteristics and spoken styles of the target.

For speech synthesis, especially text-to-speech (TTS) synthesis, the TTS models

are usually pretrained with a large dataset with a fixed set of speakers. The learned

parameters are the ones adapted to the speakers inside the training data so that

during the inference phase, the synthesized utterance has the training speaker’s voice.

In this setting, it is not easy to deepfake the target’s speaker’s voice without a large

dataset of their voice recordings. A number of approaches and methods have hence

been proposed to reduce data requirements for imitating a target speaker’s voice and

speaking styles [58, 39, 59, 58, 60, 61].

To have a better understanding of deep-fake synthesis through text-to-speech mod-

els, we have done two works that are the state-of-the-art of TTS with prosody and
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styles at the time of this writing.

The first one is for prosody transfer and the second one is for specific-style-matched

synthesis. Both of them can be used to generate deepfake speech that capture the

styles/emotions of the target. Through the investigation of these two works, we

obtains insights for better detection of deep-fake speech.

3.2.1 Prosody transfer

High-quality text-to-speech (TTS) synthesis has remained a challenging research topic

for years. Pushing the edge of the general naturalness of the synthesized utterance,

several state-of-the-art models such as Tacotron and DeepVoice3 achieve excellent

results in improving the quality of synthesized speech. To aim at more realistic speech

synthesis, prosody-flexible TTS, also called expressive TTS has recently become a

topic of significant research. For example, Google has proposed an expressive TTS

framework to successfully learn a reference utterance’s prosody and transfer it to a new

utterance synthesized by the system. In this session, we propose a prosody transfer

text-to-speech synthesis model. Our work is implemented based on the end-to-end

CNN block-based model of Baidu’s DeepVoice3 (DV3). Different from former models,

in our work, we use a joint-attention learning process of the reference prosody and

text. This comparatively simpler model can learn the reference input’s prosody along

with the text input. A token table and weights are also learned with the reference

input to factorize the possible styles in an unsupervised manner. The results show our

model can successfully factorize the reference prosodies to represent characteristics of

different speakers and styles, under unsupervised learning from the training data.

Introduction

Text-to-speech (TTS) research aims to develop models that can produce natural-

sounding synthesized utterances, given some text as input. It has been the focus of
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most recent research to improve the “naturalness” of the produced speech.

First, we would like to define what the term “natural” means in TTS synthesis.

The naturalness of speech is usually hard to measure directly and quantitatively by

an algorithm; instead it is usually quantified through aggregated subjective opinion

of human experts using their own years of experience in speech communication. The

“naturalness” of a speech utterance can be can be construed as having the right

linguistic content, correct phonemic pronunciation, clear speech quality as well as a

good speech style or prosody.

To achieve this goal of improving naturalness in TTS synthesis, there are many

successful models that have been proposed recently, such as the Google’s Tacotron

model [62, 63] and Baidu’s DeepVoice models [64, 65, 66]. These high-performance

modern TTS systems compute outputs based on the statistics of the training data,

which usually lead to high-quality clean speech with average speaker characteristics

and prosody style.

However, this still remains a very interesting challenge for TTS synthesis: apart

from learning the average speaker characteristics and styles, a more controllable syn-

thesis model that is flexible enough to learn and produce the prosodic styles of different

speakers is in high demand. One approach to enrich the ability of the TTS system in

this respect is to extend its capabilities from single-speaker to multi-speaker synthesis.

There have been several important advances in the area of multi-speaker TTS, a few

of the most notable ones being DeepVoice2 [65] and VoiceCloning [67] as well as [68].

In multi-speaker TTS training, a speaker-encoder is included in the system. This

can take a speaker’s identity as input, and use it to associate the speaker’s training

data with features learned from specific speaker-ID embeddings, so that the network

can work on speaker-customized features. In the test phase, given a speaker ID, an

utterance with the corresponding speaker’s voice characteristics could be synthesized

using the corresponding embeddings.
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A second approach – that of expressive TTS – is more direct. Specific features that

represent certain “prosody” are learned in the training phase, and used in the synthesis

phase. The term prosody here represents the remaining variation in speech signals

after discounting for the variations due to phonetics, speaker identity, and channel

effects. It usually includes many characteristics such as pitch, stress, breaks, and

rhythm [2, 59]. Based on the state-of-the-art TTS system Tacotron, some impressive

Expressive TTS models [2, 58, 59] have been proposed, which can model the prosodies

and styles in an unsupervised manner with no explicit prosody labels in the training

dataset.

Related works

In this section, we introduce some prior research that is closely related to the subject

of this session.

Baidu’s Deep Voice 3 is a state-of-the-art, fully-convolutional, attention based TTS

system. It achieves impressive high-fidelity speech synthesis. As shown in Figure3-

7, the system is composed of an encoder, a decoder and a converter. The encoder

is a fully-convolutional network that takes textual features as input, and outputs

learned text representations that serve as input to the decoder. The decoder is also a

fully-convolutional network that converts the learned text representations (the input

from the encoder), to a low-dimensional audio representation, utilizing an attention

mechanism in an autoregressive setting. The converter is a post-processing network

that converts the output of the decoder to the final output that can be fed into a

voice vocoder. If there are multiple speakers in the recordings used for training,

the corresponding speaker embeddings will be inserted into the encoder, decoder

and converter to successfully help the entire network learn the differences among the

speakers. The basic framework used in our work is implemented based on the same

strategy as in DeepVoice3.
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Figure 3-7: A simplified flowchart of Baidu DeepVoice3 system

There are several recent approaches that successfully represent a wide range of

speaking styles and try to disentangle prosody factors from among those. One ex-

ample is [59], which is an architecture based on the Tacotron that can learn latent

representations of prosody from reference utterances. The conditioning Tacotron can

then transfer the prosody from the reference to the synthesized audio using the learned

prosody embeddings of the reference audio. This achieves high-performance prosody

transfer from the reference audio to the synthesized utterance, with the successful

transfer of finer details of prosody, as evidenced by their recent demonstration. In

their work, a reference encoder is built to extract prosody embeddings from spec-

trographic slices of the reference audio. The prosody is represented by fixed-length

embeddings, which are observed to be more robust to text and speaker perturbations.

To account for the undetermined prosody features, an improvement over this

approach is proposed in the Style Tokens (GSTs) method [2]. The GST method is built

up from the above mentioned prosody-transfer TTS network proposed by Google. In

this, the reference encoder is similar to the former prosody transfer network’s reference
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encoder – it can compress the prosody of reference inputs of variable lengths to a

fixed-length vector.

A schematic diagram of the GST approach is shown in Fig. 3-8. As shown in

this figure, the reference embedding is exacted from the reference encoder, which

is the same as the one in the former prosody transfer network. To disentangle and

factorize the finer details of prosody, a novel style token layer is proposed in the GST.

The reference embeddings can be given as input to this layer. An attention module

in the GST network treats the reference embeddings as a query vector, learning the

similarity between the reference embeddings (query) and each token in the token bank

(responses). The token banks contain a set of randomly initialized embeddings, which

are called global style tokens (GSTs). The output of the attention module is a set

of weights that represent the similarity measurement of each token to the reference

embedding. The weight matrix multiplied by the GSTs is then a weighted sum of all

tokens, and called the style embedding.

In [2], a content-based attention model is used as a mechanism to measure the

similarity between the global token and reference embeddings. In the experiments

reported in [2], it was found that using a multi-head attention [69] model can signif-

icantly improve the style transfer performance. In the two works mentioned above,

reference audio is needed during inference to render the reference prosody’s style to

the inferred audio. As an improvement over this, a Text-Predicted Global Style To-

ken (TP-GST) is proposed in [61]. The TP-GST model can learn to predict possible

styles from text alone, so it requires no explicit labels during training and no auxiliary

inputs for inference.

The model

Our prosody transfer TTS system was built up from the open-source Baidu’s DV3

system. The model is shown in Figure3-9. Building upon the DV3, we additionally
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Figure 3-8: Training phase of style tokens [2]

incorporated a reference encoder into the framework. The reference encoder learns

the extracted weights directly from the reference audio. The weights matrix is then

directly multiplied with the randomly initialized token table to give the combined

tokens as reference embeddings. In our model, there is no explicit attention module

used to learn the similarity between the reference audio’s features and the global to-

kens’ table. In contrast to Google’s GST approach, the predicted weights are directly

extracted from the reference utterance (input) and combined with the global token

table to give a reference embedding for further use.

The learned reference embedding is then forwarded to the text encoder in the

Encoder PreNet and Convolution Blocks, so that a jointly learned (key, value) pair

based on the text and reference style is fed into the attention block of the decoder.

In contrast to the content-based attention module utilized in [2], which learns a
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Figure 3-9: Our proposed reference encoder model (left zoomed in)

similarity between the reference embedding and each token, a joint-attention learning

mechanism is used to simplify the learning process in our approach. The reference

embedding is learned directly as a combination of weights that are exacted from the

reference utterance, with a bank of randomly initialized token tables, so that the

reference embedding itself becomes a combination of the token table and predicted

weights. This learned embedding is then directly concatenated with the features from

the text embedding module to learn the (key, value) pair for the attention model in

the decoder. Thus the attention block in the decoder learns the attention based on

the combination of text and reference embeddings.

In this mechanism, the prosody variation is learned in an unsupervised manner

by the network during training, and the weights from the reference are predicted in

order to combine them with the token table to give combined tokens as reference

features. Both the parameters used to predict the weights and the global token table

values are fine-tuned during back-propagation to accomplish the goal of extracting

and representing the reference utterance’s prosody characteristics.
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Experiments

There are two datasets used in the training of this network, respectively, the VCTK

dataset [70] and the Blizzard dataset [71]. VCTK dataset is a multi-speakers dataset

containing 108 native English speakers (who have corresponding text information)

with different accents and a total duration of around 44 hours. Each speaker reads out

about 400 sentences, most of which were selected from a newspaper plus the Rainbow

Passage and an elicitation paragraph intended to identify the speaker’s accent [70].

Blizzard dataset is a dataset very suitable for expressive TTS research. It contains

approximately 300 hours of recordings of audiobook data provided by The Voice

Factory, from a single female speaker. Since the professional female speaker recorded

the audiobook reading under an quiet controlled environment. The recordings are

very clean and clear. Furthermore, the emotional and prosody variations that existed

in the recordings are ideally for prosody study in expressive TTS research.

The model is implemented based on the open-source implementation [72] of Baidu’s

DeepVoice3 system. In the implementation, when using VCTK dataset, speaker-ID

is assigned to the same value to force speaker characteristics learned to the token

representations.

The reference encoder is composed of a PreNet and PostNet with similar structures

as in the Text encoder and six layers of CNN blocks. The Token table is randomly

initialized as a 10⇥100 matrix tensor with ten as the token number and one hundred

as the token dimensions.

Results and Discussion

To verify the effectiveness of our system, we first train the model using VCTK dataset

without feeding different speaker IDs into the system. Therefore, the reference token

table is expected to learn different speakers’ characteristics from the strongest ··styles‘’

represented in this VCTK dataset. During inference phase, we directly condition the

44



Figure 3-10: The same utterances inferenced using four different tokens learned
through the TTS training with VCTK dataset. The utterance is “I’ve felt the chance
that I have a number of options”. Row 1 to 4 are the synthesized results using token
1 to 4. X axis is the time frame and y axis is the frequency from 0 - 4k.

network on certain tokens as the reference embedding. Therefore, the synthesized

utterance will represent the style of that token and reflect the learning ability of the

token table.

The results showed that when we assign a specific token number during the ref-

erence, different tokens can give the voice of different speakers. This verifies the

effectiveness of our system. The spectrograms of the results are shown in Figure 3-10.

The pitch and prosody of each utterance is different, synthesized from the reference

embedding of different tokens, as shown in Figure 3-12.

With the assigned one-hot vector as token weights, we can explore a certain to-

ken’s impact on the synthesized utterance. Figure 3-11 is the linear spectrogram

visualization under audacity of the same utterance “Just recovered a fumble on en-

suing kickoff.” synthesized using different tokens. The prosodies of the synthesized

45



Figure 3-11: The same utterances inferenced using token No.1-5. The utterance is
“Just recovered a fumble on ensuing kickoff”. X-axis is time frame and y-axis is the
frequency from 0 - 4k.

utterance are different. The prosodies varies from neutral to fast-pace, from calm and

relaxing to certain emphasizing on specific words.

Figure 3-14 shows that the F0 contours of synthesized utterances follow a clear

relative trend among respective tokens, even when the text contents are totally dif-

ferent. Given the representation of reference audio, we could learn the prosody of the

reference and transfer it to the synthesized audio.

Figure 3-13 is a spectrograms visualization of the reference prosody to the synthe-

sized one. The uppermost utterance is an inference result without a specific prosody

reference, giving only text as inference input. The second row is the spectrogram

of prosody transfer synthesized result. The word “anymore” is stretched, and the

speaking pace is comparatively slow, capturing the reference utterance’s prosody.
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Figure 3-12: F0 visualization of synthesized utterance using different tokens. The ut-
terance is “Just recovered a fumble on ensuing kickoff”. Different tokens give different
prosody synthesis results, as the F0 sequence shown, for the same text content.

The audio demos can be found in this demo page [73].

Conclusions

A reference encoder is built based on the DeepVoice3 model, which can learn the refer-

ence’s prosody successfully. In this proposed model, a simple joint-attention learning

method is used to combine the reference embedding with the text embedding in the

decoder attention learning. The results show that our model can successfully factor-

ize different prosodies by learning different prosodies using style tokens. As a result,

the reference encoder can learn the reference utterance’s prosody to transfer to the

synthesized utterance during inference. In future works, a more detailed exploration

of the attention model can be studied to further improve the prosody transfer per-

formance. Furthermore, there are many promising potentials that are waiting to
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Figure 3-13: The same utterances syntheized using different prosodies. The utter-
ance is “So we never saw Dick anymore”. The uppermost one is a neutral prosody
synthesized result. The middle utterance is slow-pace and has emphasis on the word
“anymore”, the same as the bottom reference. X axis is time frame and y axis is the
frequency from 0 - 4k.

be studied, such as denoising effects of token representation and more explicit style

disentangling in training.

3.2.2 Voice synthesis with style characteristics

While modern TTS technologies have made significant advancements in audio quality,

there is still a lack of behavior naturalness compared to conversing with people. We

propose a style-embedded TTS system that generates styled responses based on the

speech query style. To achieve this, the system includes a style extraction model that

extracts a style embedding from the speech query, which is then used by the TTS to

produce a matching response. We faced two main challenges: 1) only a small portion

of the TTS training dataset has style labels, which is needed to train a multi-style TTS

that respects different style embeddings during inference. 2) The TTS system and the

style extraction model have disjoint training datasets. We need consistent style labels

across these two datasets so that the TTS can learn to respect the labels produced
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(a) Sentence A

(b) Sentence B

Figure 3-14: Visualization of F0 of two different utterances. Sentence A: “Just re-
covered a fumble on ensuing kickoff.”; sentence B: “I’ve felt the chance that I have a
number of options”. They are synthesized using three tokens A, B, and C. Indepen-
dent of the text content, the same taken can preserve similar comparative F0 trends,
respectively.
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by the style extraction model during inference. To solve these, we adopted a semi-

supervised approach that uses the style extraction model to create style labels for the

TTS dataset and applied transfer learning to learn the style embedding jointly. Our

experiment results show user preference for the styled TTS responses and demonstrate

the style-embedded TTS system’s capability of mimicking the speech query style.

Introduction

With increasing interest in interactive speech systems such as voice assistants, there

is an increased demand for human-like text-to-speech (TTS) systems. While recent

technology advancements in speech synthesis have achieved human-like audio quality

[74, 75, 69, 31], the TTS’s speaking style does not mimic the naturalness and expres-

siveness as in human conversations, because conventional speech interfaces respond

to input speech queries with default speaking style learned from the TTS training

dataset. To make the TTS more interactive, the TTS’s response should vary depend-

ing on the context and the speaking style of the input speech query. For example,

when the user is speaking fast and rushing out the door in the morning, the TTS would

match the hurried pace; and when the user is in a quiet place and is speaking softly,

the TTS would respond with a soft and quiet voice. By detecting the input speech

query’s style and generating response accordingly, TTS can provide a more natural

and customized user experience. One way to achieve this interaction is to incorporate

two key components: a style extraction model that detects the speaking style of the

input speech query and generates a style embedding, and a multi-style TTS system

that can synthesize styled speech with respect to different style embedding inputs.

The challenge lies in jointly training the style extraction model and the multi-style

TTS so that the style embeddings generated by the style extraction model can be

genuinely respected by the TTS, even though the two components are trained with

different datasets and style labels. In this paper, the TTS dataset is a commissioned
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dataset recorded with professional voice talents. Only a small part of the TTS dataset

has style labels. For the style extraction model, we make use of the external IEMO-

CAP dataset. These two datasets have different style labels. In order to achieve

consistent labels between TTS training data and unseen queries, we incorporated

both IEMOCAP dataset and a small portion of the labeled TTS dataset in the style

classifier model’s training.

We first train a multi-modal style classifier using the IEMOCAP dataset with

the model described in [76]. Taking the softmax layer of the style classifier as style

embedding, the classifier serves as a style embedding extraction model. This model

is applied to the unlabelled TTS dataset to generate the style embeddings in a semi-

supervised fashion. By using the style embedding as additional auxiliary features for

the TTS system, we could train a controllable multi-style TTS system that learns to

respect given target styles. During speech synthesis, style embedding is first extracted

from the input speech query and then fed into the TTS system to produce response

in matching styles. In summary, we developed an interactive multi-style TTS system

that could lead to natural, expressive human-machine speech interactions. The multi-

style TTS system is evaluated using comprehensive subjective experiments.

Related work

Emotion recognition

Early approaches to emotion recognition have mostly been inspired by studies in

psychology [77, 78]. Recently, deep neural networks (DNNs) have first been shown

to effectively learn high-level representations for utterance-level emotion recognition

[79]. Trigeorgis et al. (2016) further applied convolutional neural networks (CNNs) to

model context-aware emotion-relevant features, which are then combined with long

term-short memory (LSTM) networks for end-to-end emotion modeling [80]. Emo-

tion is generally expressed through multi-modal behavior, including speech, language,
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body gestures, or facial expressions. Thus, emotion recognition is often formulated as

a classification problem of utterances using these multi-modal signals. [81] proposed

a multi-modal dual recurrent encoder to simultaneously model the dynamics of both

text and audio signals within an utterance to predict emotion classes. This architec-

ture has achieved state-of-the-art performance on the IEMOCAP[82] dataset, which

is a multi-modal emotion dataset and has been widely used in the affective computing

community.

Expressive TTS

One popular topic in the recent research on TTS is expressive TTS. A number

of approaches have historically been proposed for expressive TTS, from HMM-based

synthesis using a control vector for modeling style [30, 83, 84], to the state-of-the-art

prosody transfer expressive TTS [58, 59, 60], which aimd at achieving controllable

style synthesis in TTS. However, to learn and synthesize specific styles, there are

limitations with unsupervised style factorization learning [60]. Since the disentangle-

ment of different styles is heavily influenced by randomness and the choice of hyper-

parameters [85], the learning of specific target styles is not completely controllable.

Under supervision with explicit prosody labels, the styles could be learned with

direct guidance [39, 86]. Supervised learning requires a large amount of labeled data,

resulting in difficulties for expressive TTS research and applications. Furthermore,

the data labels for styles may not overlap well with our needs. An approach to tackle

this is proposed in [76]. But, the external dataset and the synthesis dataset Blizzard

2017 [87] have differences in background noise, recording environment, speech quality,

etc. With the differences between these two datasets, the classifier trained using an

external dataset may not be well-adapted to extract representations from the synthesis

data. The final emotion synthesis accuracy is 41% on four emotions [76] evaluated

by listeners, which may be caused by the domain gap between the TTS dataset and

the external dataset.
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Datasets

TTS dataset

The TTS dataset was recorded in a voice production studio by multiple profes-

sional voice talents. The data are recorded with 24kHz sampling rate. It has balanced

phonemic and textual information. After labelling appropriately for the task, 7% of

the TTS dataset has utterance level style labels including happy, sad, neutral, angry,

fast, and soft. Details of the data are summarized in Table 3.2. These utterances are

used, as additional data, to train a multi-speaker style classifier, as described in the

following section “Semi-supervised style transfer learning”. To train the multi-style

TTS, we use 40,244 utterances from a single speaker, including around 3000 style

labelled utterances. The style embeddings for unlabelled portion are extracted using

the style extraction model, more details of which are given in the following section

“Semi-supervised style transfer learning”.

IEMOCAP dataset

To compensate for the limited amount of labeled data in our TTS dataset, we

chose IEMOCAP [82], which is widely used for emotion recognition, to complement

our training data. In this dataset, both video and audio were recorded from ten

actors in dyadic sessions under scripted and spontaneous communication scenarios.

The dataset contains 12.5 hours of recordings with a sampling rate of 22kHz. Each

utterance contains one emotion label, such as neutral, happy, sad, anger, surprise,

etc. To be consistent with former research [76, 81] and also be suitable for our own

interaction goal, we select the following emotions in our study: neutral, happy, sad,

and angry. Similar to the approach in [81], we merge utterances with excited emotion

with those of happy emotion.
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Table 3.2: Training data style label statistics

Dataset Split Fast Soft Neutral Happy Angry Sad

TTS Dataset

Train
Dev
Test
All

1145
105
124
1374

1814
161
220
2195

4481
439
506
5426

885
79
93

1057

140
13
17
170

35
3
2
40

IEMOCAP

Train
Dev
Test
All

–
–
–
–

–
–
–
–

1390
100
218
1708

1307
90
239
1636

865
61
177
1103

883
62
139
1084
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Figure 3-15: Multimodal style extraction model

Framework and Models

Semi-supervised style transfer learning

For speech style classification, we used the multimodal dual recurrent encoder

(MDRE) model adapted from [81]. As shown in Figure 3-15, the model is composed of

two separate recurrent encoders for audio and text modeling, respectively. The audio

model uses 39-dimensional Mel-frequency Cepstral Coefficients (MFCC) features and

utterance-level prosody feature extracted using openSMILE [88] as inputs, and the

text model uses 300-dimensional embeddings to represent each word token. The

MFCC, prosody, and text features are the same as those described in [81]. The audio
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Figure 3-16: Style embedded TTS framework. The style extraction model generates
the style embedding based on the user speech query, which is used to condition the
TTS synthesis.

encoder output is concatenated with the text encoder output, then fed into a fully-

connected layer to produce the final classification. We changed the loss function from

sigmoid cross-entropy to softmax cross-entropy as it produced significantly better

results for our training task. We use the softmax layer output as embedding features,

which can be interpreted as a weighted representation of different speaking styles.

The softmax feature as embedding is shown in Figure 3-15.

The style classifier is used to generate style embedding from the speech query

during inference, as well as to extract style embedding for the TTS training dataset.

At first, we trained the style classifier using the IEMOCAP dataset and applied it to

generate style features on the TTS dataset. However, the classifier gives inaccurate

predictions on the TTS dataset due to domain mismatch between the TTS dataset

and the IEMOCAP dataset. Therefore, we labeled a small part of our TTS dataset

and fine-tuned the style classifier using these labels.
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Multi-style TTS system

Figure 3-16 shows the architecture of the expressive TTS system. It consists of

a style embedding extraction component that generates the style embedding from

speech query and a multi-style TTS, which uses the style embedding to synthesize

its response in matching style. As shown in Figure 3-16, our TTS pipeline is a multi-

model framework that consists of a linguistic frontend, a prosody model, an acoustic

model, and a conditional neural vocoder. Specifically, the input text is first converted

to linguistic features. Then, the linguistic features, along with any conditional features

such as style embedding, speaker IDs are used to produce the prosodic features such as

duration and F0. The prosody model consists of a single layer LSTM model with 256

hidden units with content-based global attention [89], whose context vector contains

linguistic features of the entire utterance. It is important to build a separate prosody

model in the pipeline because it allows easier control for the speech style during

synthesis time. Then, linguistic features combined with prosodic features are used to

generate the 13-dim MFCC spectral acoustic features. The acoustic models consist of

a two layer uni-directional LSTM with 256 hidden units per layer. At the last stage,

a conditional neural vocoder using the WaveRNN [90], takes in the 13-dim MFCC

along with the F0 feature to synthesize a 24kHz audio waveform. Our WaveRNN

model consists of a single layer gated recurrent unit (GRU) with 1024 hidden units.

The speaking style of the synthesized speech is controlled by the conditional style

embedding feature, which can be pre-defined or extracted using the style extraction

model from the input query, as in Figure 3-16.

Experiments and results

The style classification model is adapted from [81] and is shown in Figure 3-15. Specif-

ically, we set the batch normalization layer with 0.9 momentum to help cross-domain

adaptation. To compensate for the imbalance among style labels, we weighted the
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Table 3.3: Style classification on TTS data. AdaBN helps the domain adaption
between IEMOCAP dataset and TTS dataset, improving the weighted accuracy of
six style classes.

Dataset Trick Neutral Fast Soft Happy Angry Sad Accuracy
Weighted Unweighted

Train BN
AdaBN

0.984
0.953

0.871
0.847

0.964
0.918

0.892
0.903

0.176
0.353

0.0
0.0

0.779
0.915

0.973
0.957

Dev BN
AdaBN

0.979
0.927

0.819
0.8

0.994
0.963

0.81
0.873

0.385
0.538

0.0
0.333

0.686
0.766

0.931
0.904

Test BN
AdaBN

0.984
0.953

0.871
0.847

0.964
0.918

0.892
0.903

0.176
0.353

0.0
0.0

0.683
0.715

0.940
0.914

by-class loss function and the per-class accuracy with an inverse of style label prior

and capped the neutral label prior to 0.25. Besides, AdaBN [91] is implemented in

this model to boost domain adaptation performance between the TTS and multi-style

datasets.

The multi-style TTS system is trained using the commissioned TTS dataset with

style embedding features as conditional input features. The style embedding labels

were generated by passing each utterance through the style classification model, as

described in above. In the synthesis phase, the style embedding features could be

automatically extracted from the input query or manually assigned as a combination

of different styles.

In the style classification task, we first tested the style classifier model performance

on the IEMOCAP train/test split. It achieves an overall accuracy of 72.7%, which is

similar to the reported state-of-the-art [81]. To improve the embedding quality on the

TTS dataset, the IEMOCAP dataset and the labeled subset of the TTS dataset were

combined during training. The results show that the style classifier achieves 91.4%

overall accuracy and 71.5% weighted accuracy on the TTS labeled dataset. With a

lack of labeled data in anger and sadness in the TTS dataset, the prediction accuracy

of these two classes is not high. The style classification accuracy decreased slightly
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on the IEMOCAP dataset after joint training, likely due to the mismatch between

the TTS and IEMOCAP datasets.

We performed normalization on the input features. The normalization is per-

formed corpus-wise to compensate for the domain difference between our TTS dataset

and the IEMOCAP dataset. Table 3.5 shows that normalizing both MFCC and

prosody provides the best classification accuracy on the TTS dataset’s validation

set. Therefore, in the final model, we normalized both MFCC features and prosody

features. The final classification accuracy for the TTS dataset is in Table 3.3.

Table 3.4: TTS data F0 statistics. The Happy style has higher mean F0 than other
styles. The F0 variations of Angry, Happy and Sad are larger than Neutral, Fast and
Soft styles.

Style Angry Happy Sad Neutral Fast Soft

F0 195.5±30.8 214.8±37.3 197.3±30.8 183.7±10.3 181.9±12.8 180.5±14.7

Multi-style TTS with conditional style embedding

To evaluate our multi-style TTS’s performance, we collected subjective evaluation

responses from 22 listeners. As reported in [76, 92, 93], the human perception on the

emotions of natural speech is only around 50%, showing the ambiguity of emotion

perception. Hence, instead of evaluating the subjective style accuracy on the multi-

style synthesis results, we conducted the ABX test and preference test. Synthesis

samples of our system are available at [94].

ABX test

The ABX test is designed to evaluate whether two styles generated with the same

style embedding are perceived to be closer in speaking style when compared to a

sample with a different style embedding. Since the style embedding can be used as

a probability distribution over the 6 styles, to synthesize audio in a certain style, we
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Table 3.5: Feature selection: Normalizing MFCC and prosody vector can improve
the performance of style classifier.

Features Accuracy
Weighted Unweighted

Unnormalized 0.726 0.875

Normalized MFCC 0.673 0.840

Normalized prosody 0.494 0.62

Normalized both 0.766 0.904

construct the style embedding vector to have a value of 0.95 for the selected style

and 0.01 for the other five styles. We designed the ABX test as follows. Given two

different styles, we randomly choose an example in each style. We denote these two

examples as A and B. We then randomly choose a different sample X from one of

these two styles as reference. We then ask the listener to listen to samples A, B,

and X, and then select which of A or B is perceived to be of the same style as the

reference X.

We created 15 test sets in total, each of which corresponds to a pair of styles A

and B, and a reference X. 22 listeners participated in the test, which gives a total

of 330 ABX test comparison scores. We achieved an overall accuracy of 82.42% (i.e.,

total number of matching pairs divided by the total number of ABX tests), indicating

that the multi-style TTS is able to generate samples with perceivably distinguishable

styles.

Preference test

The preference test is designed to compare TTS responses generated by a de-

fault TTS without multi-style capability and the multi-style TTS when the style

embedding is explicitly provided. Specifically, we ask the listeners to choose between

TTS responses synthesized with the same text but different models: baseline TTS
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Table 3.6: Subjective preferences: The proposed TTS model’s results are preferred
over the baseline TTS model’s.

Baseline TTS Multi-style TTS
Neutral Style Other Styles

Preference (%) 28.0 54.2 17.8

model (i.e., TTS without style embedding) or the multi-style TTS model. For the

multi-style TTS responses, we provide either the neutral style or, when appropriate,

a hand-crafted style embedding (i.e., other style) assigned as a soft label whose style

weights are determined based on the content of the utterance.

Results in Table 3.6 show that the multi-style TTS is preferred over the baseline

TTS 72% of the time, indicating strong user-preference when an appropriately styled

TTS response is provided. It is interesting to note that the neutral style from the

multi-style TTS is preferred by the listeners most of the time. This is largely due to

the content of the test utterances, which is best spoken with a peaceful and relaxing

neutral style. This result is consistent with the findings in [76], which states that

listeners prefer appropriate variation over random variation.

Mimicking real life input query with styled TTS response

We conducted experiments to evaluate the generalization capacity of the close-loop

style extraction and multi-style TTS system. We recorded speech queries from mul-

tiple speakers who have never been seen in the training of our framework. These

speakers read the queries freely in a quiet conference room. We then generated TTS

responses for each query by conditioning on its style embedding. Our results show

that over 40% of test pairs are evaluated as good matches by listeners. We noticed

that when the speaking style of the input query is strong, the TTS response can match

the input style to a certain extent (samples are at [94]). This can potentially be im-

proved with more coherent style labels between the style extraction model training
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data and the TTS dataset.

Discussions

In our proposed system, the soft style embedding is a weighted representation of

different styles such that increasing the weight of a certain style emphasizes that

style’s effect on the synthesis outputs, shown in [94]. This demonstrates the multi-

style TTS’s capability of synthesizing styled-speech with respect to the soft style

embedding. We noticed utterance-mean F0 differs for different styles in the synthesis

results, representing the style difference. For example, the inference result of the

Happy style has a significantly higher F0 mean than the other styles. This is consistent

with the statistics of F0 for different predicted classes in TTS training data, as shown

in Table 3.4.

In conclusion, we attempted to develop a style-embedded TTS that is more con-

textual and interactive. As shown in Section 3.2.2, with perfect style embedding,

the system generated preferred TTS responses compared to a single style TTS. With

automatically extracted style embeddings from real speech queries, the system demon-

strated moderate capability in mimicking the speaking style of the input speech query.

The overall quality can be improved with a more balanced multi-style TTS dataset

and more coherent style labels between the style extraction model training data and

the TTS dataset.

3.3 Key insights

As in the above TTS studies [95, 29], we also noticed that the multi-style TTS yielded

poorer synthesis for the Happy style, which has a significantly higher F0 mean than

the other styles. This could be due to the reason that the model focused on the most

distinguishable feature, such as F0 mean, and failed to learn the nuances of the F0

61



contour. To mitigate this problem, the F0 mean and the F0 contour can be modeled

separately. In addition, the sad and angry-styled audio quality was comparatively

worse than other styles, which could be due to the lack of anger and sadness samples

in the TTS dataset. In the future, the performance of the multi-style TTS system

can be further improved with a training dataset that contains more balanced style

labels.

Overall, for voice conversion (VC), the state-of-the-art VC is pushing edges on

the any-to-any voice conversion using multi-speaker datasets and one-shot voice con-

version that could generalize the voice conversion to unseen speakers. However, the

utterances are usually short as two to four seconds, and there are noise, phoneme loss,

as well as qualify decreasing in the converted voice according to the intrinsic disad-

vantages of voice conversion pipelines. You could hear some state-of-the-art samples

from some recent papers’ demo pages [96, 97]. Expression and style learning of the

voice conversion is still a problem that needs future research to improve.

For text-to-speech, the models are usually trained using a large and high-quality

dataset that leads to eventually better-generated speech quality compared to voice

conversion. Multi-speakers TTS, prosody and styles embedded TTS are hot topics in

the current research, and the quality of the expressiveness of generated utterances is

improving. However, the shortcomings are that the TTS inference qualify is usually

constrained by the training datasets. These datasets are usually high-quality reading

datasets but may lack the style of real-life conversations. Therefore, the rare words or

prosodies that are not well-covered by the training data will be challenging to capture

in the TTS models.

Furthermore, we noticed that many natural aspects of human speech are not

included in the current speech generation. For example, the filled pause is com-

monly existed in spontaneous speech, such as ‘UM’, ‘UH’. These filled pauses have

not been considered systematically in the current speech generation to have it con-
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vincingly rendered in generated speech. Secondly, the unfilled pause, usually with

background noise in real-life recordings, is usually replaced by pure silence in the

speech generation, which is detectable and not natural. Thirdly, the breath sounds

are not well-considered in the generated speech. In natural human speech, the inhala-

tion/exhalation sound should be consistent. Other critical spontaneous speech phe-

nomena such as repairs, repetitions, lengthenings, and discourse markers (e.g., “like”

and “you know”) are also not well considered in the current mainstream TTS/VC re-

search. Lastly, the natural prosodies (style, emotion, expressiveness, etc.) are still the

cutting edge spots under development in machine learning based speech generation.

Their quality in the synthesized/transformed speech still needs improvements.

We will further look at the voice transformation and text-to-speech artifacts in

Chapter 4. With these shortcomings, we could develop features that capture the

artifacts in the generated speech for better audio deepfake detection.
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Chapter 4

Deepfake detection for practical

systems

In this chapter, we will discuss the three approaches we take for robust deepfake

detection. We start from features that capture signatures of human-generated speech,

and then discuss the proposed features that capture signatures of machine-generated

speech. Lastly, we will discuss the data-driven approach for deepfake detection and

the issue of generalization.

4.1 Features that capture signatures of human-generated

speech

The threats discussed earlier from the deepfakes indicate the urgent need for fake

speech detection to assist the anti-spoofing capacity of ASV systems. To do so, our

final goal is to find robust features for detecting fake speech, especially deepfakes. To

re-iterate, our hypothesis is that features that capture the fine-level nuances of human

speech from a speech-production perspective are likely to be able to effectively help

distinguish between real and fake speech. In addition, they are also likely to improve
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the performance of countermeasures that are used for thwarting ASV spoofing attacks

carried out through synthetic speech.

4.1.1 Human voice-production-based features

In this section, the hypothesis is that machines cannot emulate many of the fine-level

intricacies of the human speech production mechanism. We show that fundamental

frequency sequence-related entropy, spectral envelope, and aperiodic parameters are

promising candidates for robust detection of deepfaked speech generated by unknown

methods.

Specifically, the hypothesis is that machine-generated speech is too consistent in

many respects, and machines are unable to emulate the finer level variations found

in naturally produced speech signals. In other words, because of the complexity

of the human speech production mechanism, human speech has a greater degree of

inconsistency than machine-generated speech. We devise experiments to investigate

a select set of features that we believe capture some intricacies of human-generated

speech in a manner that machines cannot.

In the production of speech, there are several sources that are either aperiodic or

periodic that generate acoustic energy in the vocal tract. The aperiodic sources are

aspiration generated at the glottis, friction generated in the vocal tract, and transient

bursts from the rapid release of complete constrictions. The periodic source is the

vibration of the vocal folds that creates periodic energy at the glottis. Identifying

and quantifying these various sources has several applications in speech coding, speech

recognition, and speaker recognition [98].

Synthetic utterances generated by deep generative systems lack specific aspects

of naturalness. One notable example is that of prosody. While we do have high

quality and plain prosody TTS datasets, these are far from perfect. This is likely to

make prosody a promising candidate for our work. Prosody is partially represented
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through variations in the fundamental frequency (F0) of the speech signal. In ad-

dition, features that capture prosody variations are the F0 sequence, spectral

envelope, and spectral aperiodicity. We evaluate all of these in our work. Our hy-

pothesis is that features that capture the fine-level nuances of human speech from a

speech-production perspective are likely to be able to help distinguish between real

and fake speech effectively. Besides, they are also likely to improve the performance

of countermeasures that are used for thwarting ASV spoofing attacks carried out

through synthetic speech. For example, as shown in Fig. 4-1, the spectral envelope

information of fake speech lacks natural transition and nuances, consistent with our

hypothesis that the synthetic utterances may lack some aspects of naturalness.

In the vocal production process of a human, the fundamental frequency we refer

to is the natural frequency of the vibration of the vocal cords. A specific nuance we

can leverage is (known from prior literature) that the larynx can be approximated

a nonlinear dynamic system, and the vocal folds can be approximated to coupled

oscillators that are theoretically capable of an infinite number of different vibration

patterns. However, these are persistently in a perturbed state. In vocal acoustics,

perturbation typically refers to a deviation from an expected regularity in vocal-fold

vibration. No biological system can produce truly periodic oscillations, and some

instantaneous fluctuation can always be expected [99]. Features that capture

such instant-to-instant perturbations are the well-studied jitter and shimmer

measurements, which gauge the cycle-to-cycle variations in frequency and amplitude

of the speech signal, respectively. It is expected that the information captured by

jitter and shimmer may be differently “enacted” in machine-synthesized speech (if at

all). We thus choose also to evaluate these features in our work.
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Figure 4-1: Spectral envelopes of real speech and fake speech. The same text utterance
(“Very early in my life, I separated from my mother.” )’s spectral envelope (log scale)
of real speech contains natural transition and nuances while the fake speech does not.
The short pause is unnaturally sharp in fake speech.

4.1.2 Analyzing the robustness of voice-production-based fea-

tures

We are now in a position to analyze the robustness of speech production motivated fea-

tures for detecting fake speech and improving the robustness of ASV systems against

synthetic speech-based attacks. In fact an ASV countermeasure model that evaluates

verification performance (based on t-DCF [100] and EER measurement) automati-

cally consolidates and verifies both goals. For reasons explained earlier, we choose to

use jitter, shimmer, and other features that capture F0 variations.

For experiments with jitter and shimmer, we only use the utterance-wise average

jitter and shimmer values (extracted using the Praat [101, 102] python implementa-

tion [103]), which may not be the best way to use such transient information from

speech signals. Nevertheless, we build a three-layer MLP as a countermeasure model

that uses these features. In our implementation, we set the F0 range to be within

75-500 Hz. The results show a 31% EER on the development set, showing that even

simple aggregates of these features (the average across an utterance in this case)
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Table 4.1: ASV countermeasure-based evaluation

Countermeasure EER% t-DCF
Features DEV EVAL DEV EVAL

Aperiodic parameters (AP)
Spectral envelope (SP)

MFCC
Spectrogram

AP+SP
AP+SP+MFCC

AP+SP+Spectrogram

21.19
10.55
7.14
0.48
9.41
5.14
0.62

20.65
9.31
11.64
9.39
8.91
8.48
6.67

0.4374
0.3520
0.1942
0.0132
0.2872
0.1560
0.0201

0.4445
0.2453
0.2663
0.1954
0.2462
0.2169
0.1604

already make a positive difference to performance.

For experiments with aperiodic and spectral envelope signal features, we verify

the spoofing countermeasures in performance improvements. We use the detection

model that is modified from the residual net architectures proposed in [14]. To

compare features, we do not focus on fine-tuning parameters and use five residual

blocks compared to the 9-11 blocks in [14] for all input features. We set the kernel to

be of different sizes to accommodate the dimensionality requirements of the spectral

envelope and aperiodic information extracted using WORLD [104]. In our evaluation

of these features, from Table 4.1, the EERs are similar for the dev and eval set using

these features alone. We can also see that the fusion of aperiodic information and

spectral envelope with mfcc or spectrogram can improve the detection performance as

evaluated by EER and the joint performance with ASV evaluated by the t-DCF [100,

12] and decrease the gap between the EERs of the evaluation set and development

set.

In the case of spectral entropy of F0 sequence, our hypothesis is that the F0

sequence of synthetic speech may lack the characteristic shift and variation of natural

speech. We use the Shannon entropy of the power spectral density of the F0 sequence

to capture this. The equations for the computation of this spectral density are as
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(a) ASV dataset

(b) FoR dataset

Figure 4-2: Spectral entropy distributions. Blue is for fake speech and organge is for
real speech

equation 4.1, equation 4.2 and equation 4.3, which first calculate the power spectral

density (PSD) of the signal’s spectrum X(wi), then normalize the PSD as probability

density function, and finally compute the power spectral entropy.

P (wi) =
1

N
|X(wi)|2 (4.1)

Pi =
P (wi)P
i
P (wi)

(4.2)

PSE = �
nX

pi ln pi (4.3)

The F0 sequence is extracted using WORLD [104], and is trimmed to remove
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the zero values at the beginning and end of the sequence. We plot the spectral

entropy distributions for the ASVspoof 2019 logical data’s train/dev/eval set and find

consistent patterns in them. To evaluate the stability/significance of the patterns, we

also compute the distribution from the FoR dataset, as shown in Fig. 4-2. Results

show that the spectral entropy of F0 sequence is a surprisingly good indicator that

captures statistical differences between synthetic speech and natural speech across

datasets.

To further understand the anti-spoofing properties of the aperiodic signal and

spectral envelope signals, we evaluated their performance through direct usage in

the ASV model. As shown in Table 1.1 and Table 4.5, AP/SP-based black-boxes

and white-boxes show much larger ASV EER% than STFT/MFCC based features

under most attacks. This is even more obvious in SP-based boxes. The potential

reason is that both AP and SP are features corresponding to identity-independent

attributes like content-dependent attributes. SP is also mostly disentangled from

speaker identities. These results are expected since the AP and SP signals are chosen

to capture the nuances of differences between natural speech and fake speech, while

ASV systems require features that distinguish the speakers’ voice characteristics at

a finer level. Still, one interesting phenomenon we noticed is that AP/SP features,

especially AP, seem to be good as supplementary information that contribute to lower

EER% for attacks, which STFT/MFCC are not good at.

4.1.3 Key insights

From the above study, we have established that features that capture the fine-level

inconsistencies and nuances of the speech production process could consistently ex-

hibit differences between synthetic speech and genuine speech. This is consistent

with our hypothesis that they could capture the signature information to distinguish

human-generated speech and machine-generated speech. The leverage of these hu-
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man voice-production related feature could result in more robust detection of spoofed

speech, and result in rendering ASV systems more robust to attacks generated using

unseen methods.

4.2 Features that capture signatures of machine-generated

speech

In this section, we will discuss the artifacts that are introduced by the generation

methods of audio deepfakes. These artifacts can be used to develop audio deepfake

detection methods.

There are two major approaches as discussed in previous sections for the gener-

ation of deepfake speech: text-to-speech and voice conversion. We will discuss them

in the following subsections.

4.2.1 Artifacts in machine-generated speech

In the text-to-speech method, text is first processed to linguistic features, and then

from linguistic features to acoustic features and finally from acoustic features to a

waveform. During the process, there are many artifacts created [3]. Firstly, in the

text to linguistic features step, there are inaccuracies in pronunciation prediction

(e.g., G2P), inaccuracies in text normalization as well as inaccuracies in prosodic

feature prediction (e.g., tone, pausing). Secondly, in the regression step of linguistic

features to acoustic features, there are smoothing effects due to the statistical aver-

aging and inaccuracies in statistical modeling for voicing prediction, pitch prediction

etc. Lastly, during the waveform generation step, the predicted acoustic features will

have artifacts from the prediction model such as the checkerboard effects of the de-

convolutional neural networks [105]. Also the phase information is usually lost, and

the remodeling of phase often creates discontinuities.
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Figure 4-3: Artifacts in the text-to-speech [3]

Figure 4-4: Artifacts in the voice conversion [3]

In voice conversion, the source utterance is transformed to the target utterance.

There are artifacts from the pitch estimation, the smoothing effects of the learning

model, as well as the distortions introduced by the vocoders. Phase discontinuity also

exists.
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4.2.2 Generalized spoofing detection inspired from audio gen-

eration artifacts

State-of-the-art methods for audio generation suffer from fingerprint artifacts and

repeated inconsistencies across temporal and spectral domains. Such artifacts could

be well captured by the frequency domain analysis over the spectrogram. Thus, we

propose a novel use of long-range spectro-temporal modulation feature – 2D DCT

over log-Mel spectrogram for audio deepfake detection. We show that this feature

works better than log-Mel spectrogram, CQCC and MFCC as a suitable candidate to

capture such artifacts. We employ spectrum augmentation and feature normalization

to decrease overfitting to bridge the gap between training and test datasets with this

novel feature. We developed a CNN-based baseline that achieved a 0.0849 t-DCF

and outperformed the previously top single systems reported in the ASVspoof 2019

challenge. Finally, by combining our baseline with our proposed 2D DCT spectro-

temporal feature, we decrease the t-DCF score down by 14% to 0.0737, making it a

state-of-the-art system for spoofing detection. Furthermore, we evaluate our model

using two external datasets, showing the proposed feature’s generalization ability. We

also provide analysis and ablation studies for our proposed feature and results.

Introduction

Audio deepfakes use deep learning and machine learning algorithms to generate or

manipulate audio content with an intent to deceive. Such audio deepfakes are es-

pecially dangerous due to their innate embedding of biometrics, used in speech-

based identity verification systems. State-of-the-art audio deepfake methods rely

on voice conversion, text-to-speech synthesis, generative models, and neural vocoders

[62, 59, 95, 106, 107]. With these advances, the quality of deepfakes has significantly

improved, making them a pernicious means to commit a wide variety of fraudulent

activities – identity theft and misinformation spread by untrained bad actors. Such
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techniques even outperform professional human impersonators and threaten auto-

matic speaker verification (ASV) systems [15].

For better spoof attack detection in ASV systems, ASV spoof challenges [16, 108,

17, 12, 109] have been created. In such challenges, the logical access (LA) consists of

synthetically spoofed audio, which uses conventional signal processing and generative

techniques that [110, 111, 112] propose the use of feature selection (e.g., Constant

Q cepstral coefficients [113], MFCC, log-Mel spectrogram, etc.), to search for the

best features for spoof detection. However, these features have been developed for

generic tasks, such as automatic speech recognition (ASR) and sound-based event

detection, etc. They may not capture the fundamental differences between real and

fake speech well. Further, the choice of feature selection can be influenced by audio

datasets and is inconsistent. For better generalization, as noted in [15], unlike real

speech, machine-generated speech consists of signature artifacts that can be leveraged

for spoof detection. They propose a lightweight model with several human speech

characteristics features and achieve comparably higher accuracy.

In computer vision, generative adversarial networks (GANs) [114] are a popu-

lar choice for image generation. Such methods have associated “fingerprint” [115] and

signal-domain [116] artifacts that can be leveraged for detection and attribution stud-

ies. In speech synthesis, generative methods are used for feature learning from input

linguistic features, while neural vocoders convert generated features into waveform

outputs. Here, the audio is usually synthesized in frames or blocks of frames and has

no cross-frame temporal consistency. This can lead to temporal modulation artifacts.

Additionally, such methods are typically trained with element-wise mean-square-error

losses in the Mel-Spectrogram domain [106, 117] and do not account for cross-frame

consistency. Furthermore, speech is mainly encoded in the frequency ranges 0-4 kHz

of auditory perception (based on the learning principles). There are associated ar-

tifacts with the generated outputs [118], especially at high frequencies [119]. The
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Figure 4-5: Checkboard effects in feature generation. These spectrograms are gener-
ated from our work of VoiceGAN [106]. The red boxes highlight the pattern differ-
ences.

Figure 4-5 shows an example of the feature artifacts in the generated features. These

checkerboard effects may be preserved if the vocoders are signal processing based

methods, such as Griffin-Lim method [53].

Based on these observations for feature artifacts, we propose using long-range

frequency analysis on log-Mel Spectrogram (in feature domain) for spoof detection.

Since 2D-DCT features capture repeated patterns/artifacts by analyzing the joint

spectro-temporal modulation frequencies, we introduce the novel use of global 2D-

DCT on log-Mel Spectrograms, a long-range spectro-temporal feature, to capture

audio deepfake artifacts. The spoof detection convolutional neural network (CNN)

classifier that operates on log-Mel Spectrum consists of the features with limited

receptive fields and focuses on finding local short/medium time patterns/correlations

in the input audio. The proposed global 2D-DCT feature essentially forces the CNN

classifier to learn from the input audio’s long-term/global modulation patterns. These
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2D-DCT features correspond to the long-term spectro-temporal modulations rather

than localized ones. Therefore, we call this proposed feature global modulation (Global

M) feature. We show that the proposed feature detects deepfakes at a higher accuracy

compared with the standard log-Mel features and could compensate our strongest

baseline model to improve the overall detection performance further.

To summarize, in this section, we compare the proposed global modulation fea-

tures with traditional features such as MFCC, log-Mel, and CQCC and present the

following novel contributions:

1. We propose a novel long-range spectro-temporal feature – global modulation

feature, for audio deepfake detection.

2. We further implement SpecAugment [120] and feature normalization to reduce

over-fitting and bridge the gap between training and test dataset from unseen

attacks.

3. The resulting baseline system achieves the best tandem detection cost function

(t-DCF) scores as single systems according to [12]. Furthermore, our proposed

feature can compensate for this strong baseline to bring the t-DCF and the

equal error rate (EER) down and achieve state-of-the-art performance on the

ASVspoof challenge 2019 logical access (LA).

Finally, the proposed global modulation feature also achieves a higher accuracy on

general tasks, such as speaker verification, shown in Section 4.3.

Related works

Audio deepfake detection

The ASVspoof challenges [16, 17, 109] have raised efforts in fake speech spoofing

attack countermeasures on ASV systems. Previous studies on anti-spoofing attacks

on ASV systems and synthetic speech detection evaluate various features [112, 13] and
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deep learning models [14] for detection performance. However, with the fast evolution

of deepfake techniques, developing a detection system that is not constrained by the

training data and can accurately detect new spoofed data generated from different or

unseen deepfake algorithms is still challenging.

In the ASVspoof challenge 2019 dataset, the logical access (LA) component con-

tains fake audio generated by multiple methods as in Table 4.6. As reported in [12],

the best single system for LA data achieves a t-DCF metric [12] score of about 0.13

and an EER score of 5%. The top-3 primary system (a weighted voting of multiple

systems) achieves a t-DCF score of less than 0.1 and an EER lower than 3%.

There are also datasets for audio deepfake detection like the FoR dataset [121]

and the RTVCspoof dataset created using neural generation models as in [122]. In

our work, we also use these external datasets effectively as unseen test attacks to our

proposed detection system.

Modulation features

Modulation features capture the longer time patterns in the signal, which are

often ignored in MSE-based generation [123, 117]. Motivated by generation artifacts,

the proposed feature is a also global modulation feature that analyzes long-range

spectro-temporal modulation.

In [124], the importance of the spectral and temporal modulation in the auditory

spectrogram is discussed. Here, filter banks select different spectro-temporal modula-

tion parameters ranging from slow to fast rates temporally and from narrow to broad

scales spectrally. The spectro-temporal receptive fields (STRFs) of these filters are

related to human perception. We also note that, from a physiological point of view,

neurons in the primary auditory cortex of mammals are explicitly tuned to spectro-

temporal patterns, e.g., spectro-temporal features, [125]. Suthokumar et al. (2018)

[126] analyze temporal modulation by performing FFT analysis in each sub-band,

and show the effectiveness of temporal dynamics for detection of replay spoofing.

78



However, in previous studies, the 2D-DCT was only used to calculate local

spectro-temporal modulation, such as for robust automatic speech recognition (ASR)

[127]. Medium range modulation features were discussed in [128, 129] and long-range

modulation was proposed in [130] – but both only for the temporal domain. Our

global modulation feature combines spectral (as MFCC) and temporal modulation

information for better long-range feature modeling. To the best of our knowledge,

such long-range feature modeling has not been carried out in previous studies in

speech.

Experiments

Baseline model

The baseline we use is a CNN-based model, similar to the baseline CNN model

in [123]. As shown in Figure 4-6, the baseline model first consists of an initial convo-

lutional layer followed by three residual blocks. Next, the output is passed through

bidirectional Gated Recurrent Units (GRUs) and a self-attentive pooling layer. After

temporal modeling and the self-attentive pooling, the feature vector is passed through

a one-hidden-layer multi-layer perceptron (MLP) with two dimensions for the output.

Finally, softmax is applied to obtain the prediction probability of genuine speech.

Proposed feature

The proposed feature is a simple and effective spectro-temporal feature: the 2D-

DCT on log-Mel spectrograms. This is actually similar to the computation of Mel-

frequency cepstral coefficients (MFCC) with the difference that we are applying a

2-dimensional (2D) discrete cosine transform (DCT) globally on both the temporal

dimension and frequency dimension of the log-Mel spectrogram. The detailed com-

putation steps are described as following:

a) Employ the fast Fourier transform (FFT) to compute the spectrum X(w) of
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Figure 4-6: Block diagram of the baseline system (left) and the zoomed-in view of
one residual block (right)

x(n).

b) Compute power spectrum |X(w)|2 and obtain the Mel-spectrum M by applying

a Mel-frequency filter bank.

c) Apply multi-dimensional discrete cosine transform (DCT) to log-Mel to obtain

dctnM .

d) Apply l1-normalization or standardization normalization on the obtained dctnM .

Figure 4-7 shows the proposed 2D-DCT features for different spoofing types. The

2D-DCT features are shown in log-scale. From the visualization, we can see the

proposed features exhibits differences in their patterns across different spoofing types.

A17 and A19 use signal processing methods to generate fake audio, and the proposed

features of these two are similar to bonafide audio. In contrast, other methods result

in more complex changes compared to the bonafide (real audio) type.
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Figure 4-7: Visualization of the proposed features averaged within different spoof-
ing types. Vertical axis is from mel-filters domain as spectro-modulation axis, and
horizontal axis is from time frames as temporal-modulation axis. The proposed fea-
tures exhibits differences in their patterns across different spoofing types (Best viewed
zoomed in).

Implementation details

For experiments with conventional and proposed features, we verify spoofing coun-

termeasures in terms of performance improvements. We use a detection model that

is modified from the residual net architectures proposed in [14]. To evaluate the pro-

posed features, we use a model similar to our baseline model without the attention

layer since the temporal information is already condensed into the global DCT do-

main. The audio sequences are cut or padded to 4 seconds, as the temporal duration.

The sampling rate is 16k, the FFT size is 1024, the window size is 512 and the hop

size is 256, and the mel-filter number is 128. The details of the model implementa-

tion are in section 3.2 of [15]. Furthermore, we found the spectrum augmentation on

the input features, and the normalization of the 2D-DCT features could improve the

performance significantly, as shown in Table 4.2. We implemented the SpecAugment
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Table 4.2: SpecAugment (SA) and normalization approaches
Features t-DCF EER (%)

log-Mel (Baseline1) 0.0902 6.551
log-Mel w/ SA (Baseline2) 0.0849 5.139

2D-DCT of log-Mel (Global M) 0.2851 12.40
Normalized Global M 0.1358 6.852
Normalized Global M w/ SA (Ours) 0.1387 6.325

T32 (Best single system [12]) 0.1239 4.92

Table 4.3: Single system comparisons as ASV countermeasures

Countermeasure EER% t-DCF
Features DEV EVAL DEV EVAL

Aperiodic parameters (AP)
Spectral envelope (SP)

MFCC
CQCC

log-Mel spectrogram
Normalized Global M

Normalized Global M w/ SA

21.19
10.55
7.14
1.37
0.48
0.23
0.17

20.65
9.31
11.64
10.89
9.39
6.85
6.32

0.4374
0.3520
0.1942
0.0407
0.0132
0.0067
0.0043

0.4445
0.2453
0.2663
0.2746
0.1954
0.1358
0.1387

(SA) [120] approach on log-Mel spectrograms with torchaudio. The random mask-

ing on the frequency channels and time steps of the spectrogram helps preventing

overfitting and increases the model’s performance [120]. For the SA on the proposed

global modulation feature, a random zeroing-out is implemented to generate blank

areas along both dimensions. This augmentation is only applied to the training data

on the fly during training. Normalization of the 2D-DCT is performed using two

approaches for comparison. The two normalization approaches, l1-norm normaliza-

tion and the mean/variance standardization, implemented using sklearn toolbox in

Python, achieve similar results. In contrast, the normalization does not help much

for the other traditional features since the values are already in reasonable ranges and

the l1-norm will break the spectral and temporal dynamics across the frames.
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Results

Single systems and weighted voting scores

We evaluated the single system model taking in one type of feature and compared

the proposed global modulation feature with the previously proposed “aperiodic sig-

nal” feature (AP), spectral envelope (SP) [15], and other conventional features such as

MFCC, CQCC, and log-Mel spectrogram. To have a fair comparison, the model is the

same ResNet model as in Section 3.2 of [15] with the last layer’s dimension changed

to facilitate the feature size difference. From the results in Table 4.3, we can see the

proposed feature is significantly better in both the EER and the t-DCF scores than

the other features. We further evaluate the joint performance of our proposed feature

with the strong baseline models. We use different voting mechanisms for the joint

scores between the Global Modulation feature and the baseline models as follows:

For the prediction probability outputs of both systems, we weighted the prediction

score using a ratio of 0.1 to 0.9. We use a max metric to keep the most confident

voting among the two systems, which gives us the best performance. In contrast, the

min-metric keeps the lower confidence prediction of the two joint systems. From the

results in Table 4.4, we can see the joint scores improve the overall countermeasure

performance.

Audio type analysis

To evaluate the detection performance on different spoofed-audio types, we do a

comprehensive analysis of the t-DCF and EER scores for all spoofed-audio types in

the LA evaluation set, as shown in Table 4.6. The A17 type, generated by waveform

filtering manipulation of real audio, is visualized in Figure 4-7. It has a very simi-

lar modulation pattern to the bonafide audio and is the hardest type according to

[109]. Our baselines and the proposed feature achieve top performance, compared to

the EERs of single systems reported in [109]. Our joint system achieves one of the
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Table 4.4: Weighted voting scores with different voting mechanisms

Global Modulation + Baseline1 Global Modulation + Baseline2
Ratios t-DCF EER t-DCF EER

min
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

max

0.1306
0.1397
0.1207
0.1063
0.0984
0.0923
0.0883
0.0867
0.0865
0.0870
0.0875
0.0902
0.0737

7.098
6.325
5.92
5.89
5.90
5.98
6.07
6.17
6.27
6.35
6.45
6.55
4.03

0.1230
0.1387
0.1253
0.1141
0.1057
0.0994
0.0930
0.0890
0.1057
0.1142
0.1253
0.0849
0.0864

6.636
6.325
5.778
5.780
5.631
5.520
5.542
5.301
5.563
5.778
5.929
5.139
4.216

Table 4.5: EERs of evaluation set for ASVspoof 2019 LA for speaker verification

ASV EER%
Spoofing ID A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 ALL

STFT
MFCC

AP
SP

Global M

2.33
7.12
38.93
50.97
1.45

2.65
5.08
32.46
49.94
8.01

3.75
8.12
32.59
40.07
8.35

47.56
39.76
42.37
49.75
31.97

40.89
28.99
38.29
49.25
32.85

47.59
49.01
43.28
52.04
38.92

37.01
33.81
37.02
52.30
20.64

29.09
19.04
33.96
51.03
14.10

35.48
41.39
41.12
51.74
28.22

4.09
9.08
49.06
51.99
2.91

12.07
18.00
40.05
41.49
23.93

28.61
16.47
34.57
46.16
27.79

1.88
2.09
44.53
45.78
1.11

22.24
15.99
39.25
42.08
18.69

best three performances compared to all the other systems that use an ensemble of

classifiers [12].

Speaker verification using the proposed features

To evaluate our proposed feature’s effectiveness, we evaluate the feature under

the automatic speaker verification scenario, as in [15]. The ASV model is trained

with the ASVspoof 2019 data LA training set. We assign each spoofed utterance

an identity that uniquely incorporates both speaker and attack. The 20 speakers

and 6 types of attack in the ASVspoof2019 LA training set are combined into 120

“spoofed identities”. With the bonafide audio, we have positive pairs, and negative

pairs generated randomly in a balanced 1:1 ratio. The results are shown in Table

84



Table 4.6: Breakdown analysis of the performance on different spoofing audio types
Info Baseline1 Baseline2 Proposed feature Joint w/ Baseline1 Joint w/ Baseline2

ID System Details t-DCF EER t-DCF EER t-DCF EER t-DCF EER t-DCF EER

A07
A08
A09
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

TTS
TTS
TTS
TTS
TTS
TTS

TTS-VC
TTS-VC
TTS-VC

TTS
VC
VC
VC

Vocoder+GAN
Neural waveform

Vocoder
Neural waveform

Griffin lim
Neural waveform

WC + waveform filtering
Vocoder

Neural waveform
Waveform concatenation (WC)

Waveform filtering
Vocoder

Spectral filtering

0.0000
0.0463
0.0015
0.0084
0.0102
0.0041
0.0029
0.0079
0.0186
0.0007
0.9760
0.0061
0.0040

0.0000
1.4901
0.0577
0.3022
0.3667
0.1222
0.0985
0.2445
0.5942
0.0407
44.486
0.2037
0.1222

0.0000
0.0163
0.0003
0.0058
0.0072
0.0020
0.0003
0.0037
0.0061
0.0005
0.7670
0.0098
0.0051

0.0000
0.5297
0.0170
0.2445
0.2852
0.0645
0.0170
0.1222
0.1799
0.0169
26.538
0.3259
0.1630

0.0054
0.0521
0.0093
0.0417
0.0407
0.0635
0.0650
0.0270
0.0248
0.0062
0.9017
0.1985
0.0151

0.1799
1.9727
0.2852
1.3208
1.3038
1.9557
2.0372
0.8149
0.7911
0.1867
36.286
6.1286
0.5297

0.0014
0.0147
0.0028
0.0080
0.0083
0.0090
0.0113
0.0069
0.0069
0.0010
0.8004
0.0201
0.0050

0.0407
0.5297
0.0815
0.2852
0.2682
0.2852
0.3429
0.2274
0.2275
0.0407
28.324
0.6111
0.1799

0.0020
0.0254
0.0035
0.0164
0.0152
0.0193
0.0218
0.0095
0.0097
0.0016
0.6218
0.0602
0.0058

0.0645
0.7911
0.1392
0.5059
0.4720
0.6111
0.6689
0.3022
0.3259
0.0578
28.405
1.7927
0.2037

4.5. The proposed feature is compared with results from other features given in [15].

Unlike AP and SP, the proposed 2D modulation feature is not only more powerful in

a detection model but also effective in the audio type and speaker verification tasks.

This clearly shows the potential of this proposed feature for several applications.

Discussions

As the above results show, our proposed global modulation feature has a strong

performance compared to other conventional features. We also test our best model’s

detection accuracy on the other external datasets FoR [121] and RTVCspoof collected

in [122]. For each dataset, 200 fake and 200 real samples are selected randomly from

their test sets. Our Global modulation feature model could also predict the class of

the randomly selected test data with reasonable accuracies of 90% to 98%.

We also compared the global modulation feature on the high-frequency section

of the log-Mel spectrogram with the low-frequency section. Consistent with [119],

the high-frequency section gives higher detection performance compared to the low-

frequency section, although still not as good as using the global information alto-

gether. Finally, we compare a blocked version of the modulation feature with our

proposed global modulation feature. We did a simple 2 ⇥ 2 division on the log-Mel

spectrogram and computed the 2D-DCT features separately for each block. The re-

sulting localized modulation features give a significantly lower detection performance
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of around 20% EER. This shows the importance of using long-range frequency compu-

tation to obtain the global inconsistencies for the audio-type detection. Interestingly,

in [123], their proposed spectro-temporal receptive fields (STRFs) are a localized mod-

ulation feature. In their experiments for the ASVspoof challenge, they concluded that

“the STRFs effectively reject distractor noise, but are by themselves not sufficient for

discriminating real from synthetic speech”. Their results, in comparison, give another

evidence for the importance of computing the modulation features globally.

Also, it needs to be noted that the eval results for each feature are averaged across

the eval EERs and t-DCFs from multiple runs for the soundness of the scores. The

best eval score we have from a single running may be lower (e.g., the best baseline

we have has an EER of 4.03%). The t-DCF score is evaluated using the same metric

as in [12].

Conclusions

In this section, we propose a simple yet effective feature, the global modulation fea-

ture, inspired by the fake audio’s artifacts. We show that this proposed feature

could improve the strongest baseline we have to further increase the countermeasure

system’s detection performance for the ASV system. Furthermore, we use this pro-

posed feature to train our own ASV system and show that it also works very well for

speaker verification tasks. This shows the broader potentials of the proposed global

modulation feature.

In future works, we could adopt more data augmentation approaches, e.g., adding

noise, pre-processing with compression methods, etc. Moreover, with the future-

released evaluation plan from ASVspoof challenge 2021, we would also evaluate the

proposed feature’s robustness to channel variations and its performance with the

physical access (PA) dataset in ASVspoof Challenges [16, 108, 12, 109]. This work is

published as in [131].
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4.3 Data-driven approach for deepfake detection

The third approach is a direct data based detection. In this section, we will discuss

more direct ways for audio deepfake detection focusing on data-driven learning and

some related model improvements.

4.3.1 Advanced deep learning models and the issue of gener-

alization

In this subsection, we will discuss the purely data-driven deepfake detection approach

and some advanced deep-learning models. For data-driven deepfake detection, there

are some related works that have been proposed for audio deepfake detection, such

as [132, 133].

However, with the fast evolution of deepfake techniques, developing a detection

system that is not constrained by the training data and can accurately detect new

spoofed data generated from different or unseen deepfake algorithms is still a chal-

lenge. One key aspect of deepfake speech detection is to develop deepfake-speech

detection algorithms that could be adapted to unseen deepfake speech generation

methods. As in our paper [131], we proposed a strong baseline model that could have

good performance in bridging the gap between validation set and evaluation set. The

power of this model comes from the architecture design that use attention module

and residual blocks.

More recently, in the ASVspoof 2021 challenge workshop, there were several papers

proposing better models that could achieve higher spoofing detection performance.

In [134], Tak et al. (2021) proposed a novel model named RawGAT-ST model to

combine the spectral information with the temporal information at the model level.

The proposed model extracts features from raw audio using a one-dimensional sinc

convolutional layer and learns the relationship cues using a spectro-temporal graph
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attention network (GAT). It achieves an equal error rate of 1.06% for the ASVspoof

2019 logical access database.

There are also interesting works using architecture search to find the best model

architecture for speech deepfake and spoofing detection, such as [135]. In [136], Kang

et al. (2021) compared several activation functions and analyzed their performance

in the anti-spoofing systems. They also proposed an activation ensemble framework

and compared the performance with single activation systems. And in [137], Chen et

al. (2021) combined the Residual Neural Network architecture and different pooling

techniques, and achieved very competitive results on the final evaluation set. They

also investigated the effectiveness of the stochastic weight averaging and achieved

competitive results in LA track.

Apart from model advancements, in [138], the self-supervised method is discussed

following the PASE [139, 140] model that uses self-supervision to extract meaningful

embeddings for a specific task. Furthermore, in the ASVspoof challenge 2021, data

augmentation methods are encouraged to resolve the generalization problem. How-

ever, as in the challenge, all the proposed methods face significant performance drops

in the evaluation set compared to their performances in the progress set. This gap

suggests a high degree of overfitting on the progress set [141] and also indicates the

generalization issue is still challenging and an open issue requiring further research.

4.3.2 Inductive learning for deepfake detection

As discussed above, one of the significant problems in audio deepfake detection is the

threat from unseen samples, which may not have the same patterns or distribution

as the training data. Adapting the model to new emerging attacks is a challenging

problem. Ideally, we could continuously collect data as training data. However, it

is expensive to collect and label them. Furthermore, collecting those samples will

always be “late”, since, by requirement, the threats must already be prevalent by the
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time of collection.

In this subsection, we discuss a novel inductive learning approach to tackle this un-

seen data problem. We use inductive learning to add high confidence unseen attacks

into the training data to adapt the pre-trained model. Different from transductive

learning, which aims to label an unlabeled dataset based on the current model, induc-

tive learning aims to not only label unlabeled datasets but also “produce a classifier”

with the knowledge from unlabeled datasets. The unlabeled data could be used to

adjust the pretrained classifier to better suit the unseen domain. This gives the model

a way to employ those new data without labels.

In the ASVspoof 2021 Deepfake detection (DF) track, the data is comprised of

bona fide and spoofed utterances generated using TTS and VC algorithms. The task

is similar to the LA task (includes compressed data) but without speaker verification.

In the DF task, general audio compressions (rather than telephony) is emphasized. In

this year’s challenge, no training data is provided and the labels of test data are not

provided. We could only evaluate the performance of our system through an online

evaluation platform. Therefore, the ASVspoof 2021 test phase could be transformed

to a classical situation for inductive learning.

Since we need to use the online competition scoring system to evaluate the model

performance, as the label information of test data is not published, we will derive

labels for the test sets at first and then try to use these pseudo-labels to improve

our system’s performance. Basically, the induced pseudo-labels will be used to adapt

the previous classifier, and the adapted classifier will then make new predictions for

the entire test set, including the test samples with pseudo-labels that were previ-

ously added to the adaptation. This experiment is an interesting study to check the

adaptability of the model under unseen attacks of deepfakes.

In the experiments, we use the baseline model in [123] and pass the test data

through this baseline model. The initial evaluation performance is in Table 4.7.
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Table 4.7: EERs of evaluation set for ASVspoof 2021 DF track

DF-C1 DF-C2 DF-C3 DF-C4 DF-C5 DF-C6 DF-C7 DF-C8 DF-C9 Pooled
traditional vocoder 24.39 25.15 26.31 35.97 25.80 18.32 17.32 17.58 35.24 24.68
waveform concatenation 11.92 7.99 28.30 42.32 8.93 6.69 5.30 4.82 40.52 15.49
neural vocoder (autoregressive) 30.35 31.33 23.77 35.00 30.98 19.71 19.89 20.19 31.72 27.67
neural vocoder (non-autoregressive) 28.47 29.74 23.16 33.43 29.22 19.10 19.54 19.67 30.66 25.85
unknown 18.60 16.50 24.46 34.83 17.76 12.56 11.00 10.82 31.80 19.61
Pooled 26.64 27.41 24.99 35.09 27.66 18.62 18.32 18.45 33.32 25.41

Table 4.8: Performance of the inductive model for ASVspoof 2021 DF track

DF-C1 DF-C2 DF-C3 DF-C4 DF-C5 DF-C6 DF-C7 DF-C8 DF-C9 Pooled
traditional vocoder 26.04 27.23 26.25 34.47 27.14 18.36 17.79 17.53 34.80 25.77
waveform concatenation 12.68 10.04 30.44 44.84 10.71 7.60 5.72 5.46 40.97 16.75
neural vocoder (autoregressive) 30.99 32.12 25.51 36.67 32.32 19.45 20.76 20.36 31.90 29.20
neural vocoder (non-autoregressive) 27.68 29.34 23.50 33.70 28.75 18.10 18.88 18.80 29.25 26.47
unknown 19.46 18.41 23.12 32.54 19.55 12.61 11.47 11.34 29.96 19.94
Pooled 27.51 28.73 25.56 34.81 28.66 18.44 18.66 18.48 32.60 26.56

We then select the predicted bona-fide and spoof audio with 1% top confidence as

computed by our system and then use this section of data to retrain our baseline

system for 5 epochs. Lastly, we use this adapted model to evaluate the testing dataset

again. The predicted scores were submitted to the CodaLab system of this challenge

[141]. The final performance is as in Table 4.8.

Different from our expectations, the results show that inductive learning does not

help (EER dropped 1.15%) much in this situation. But this result is also understand-

able: with a baseline model that has converged and performs better on some families

of synthetic speech, the top-confidence-score pseudo labeling may not help the model

learn new information. The false positives will also pollute the re-learning. As a

result, the model diverges to worse performance. To improve the performance, we

could probably start from a model with better performance. Also, we could induce

pseudo labels by different fake families separately, so the model could be re-trained

in balance.
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4.3.3 Data augmentation for deepfake detection

As we can see from the above subsections, a common challenge in the data-driven

approach of audio deepfake detection, is the limitations in the data. The data size

may not be large enough or varied enough to represent the situations in the test

phase. One approach that might tackle this limitation and improve the detection

performance is data augmentation, which has been proven to be an essential aspect

for better detection.

For example, in the ASVspoof 2021 challenge, Das in [142] leveraged many data

augmentation strategies to achieve good detection performance in the newest chal-

lenge. Furthermore, in [143], Tomilov et al. (2021) worked on all three tracks, and

from the results, they found that several data augmentation methods work, especially

with emulation of frequency distortions based on FIR filters. In [144], Chen et al.

(2021) designed several data augmentation methods tailored to the ASVspoof 2021

challenge. They employed the ECAPA-TDNN [145] as the primary architecture and

also adapted the channel-robust training strategies proposed in their previous paper

[146]. These results show data augmentation in the right manner clearly helps to

tackle the generalization issue of audio deepfake detection.
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Chapter 5

Conclusions

In this chapter, we will summarize the contributions of this thesis and also discuss

some future directions that could be considered for generalized audio deepfake detec-

tion.

5.1 Summary and contributions

In this thesis, we started with a thorough experimental evaluation of the threats posed

by audio deepfake, compared to other conventional spoofing methods. We showed

the increasing threats from audio deepfake detection and its stronger attack ability

compared to human impersonation and the ‘shallow-faked’ machine-generated speech.

All these indicate the urgent need for audio deepfake speech detection, which could

help ASV systems to be more robust to attacks generated using different methods.

We aimed to develop audio deepfake detection algorithms that could capture the

fundamental differences between fake and genuine speech, i.e., between machine-

generated and human-generated speech. To do so, firstly, we traced back to the hu-

man speech production mechanism and showed that human speech has many special

characteristics embedded into the voice. Especially, breath is an important feature of

human speech, and inhalation sounds could contain biometric information about the
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speaker.

We also studied state-of-the-art machine generation mechanisms to understand

how audio deepfake are generated. We have done hands-on research on two main-

stream generation methods: voice conversion and text-to-speech synthesis, focusing

on impersonation of the target speaker’s style. We observed the unnaturalness in the

F0 pattern and the lack of modeling of spontaneous speech phenomena during the

process.

Based on the previous studies on the generation mechanisms, we hypothesized

that machine-generated speech produced by current technologies could not emulate

many of the fine-level intricacies of the human speech production mechanism. Based

on this hypothesis, we proposed features that are related to speech synthesis, which

may be good candidates for audio deepfake detection. We showed that fundamental

frequency sequence-related entropy, spectral envelope, and aperiodic parameters are

promising candidates for the robust detection of deepfaked speech generated by un-

known methods. Furthermore, features that capture instant-to-instant perturbations,

such as jitter and shimmer, could also be used for audio deepfake detection.

Next, based on our understanding of the artifacts in text-to-speech and voice con-

version, we proposed a novel long-range spectro-temporal feature – global modulation,

for audio deepfake detection. This global modulation feature is derived from long-

range 2D DCT applied to log-mel spectrograms, that combines spectral and temporal

information. It is able to capture long-range dynamics and is sensitive to repeatable

artifacts across frames and frequency ranges.

Lastly, we evaluated the data-driven approach for audio deepfake detection. Based

on the limitation of the data sources and the fast advancing methods of audio deep-

fakes, generalization is an issue that needs future research to tackle.

We explored an inductive learning approach under the ASVspoof 2021 DF track.

However, it did not improve our final model’s performance. This is because of the
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relatively big gap between training data and evaluation data. As a result, the baseline

model converges to the samples in the training set, as a result of which the induced

pseudo-labels contain many incorrect ones, especially false positive labels. In the

future, a more generalized model could be a better starting point for this inductive

learning approach.

In summary, the contributions of this thesis are:

• Firstly, we provided a thorough comparison of human speech and machine-

generated speech and discussed the differences in their attack ability on ASV

systems, to practically establish the importance of audio deepfake detection.

• Secondly, we studied the human speech production mechanisms and the machine

speech generation mechanisms and gave insights to understand the fundamental

differences between these two.

• Thirdly, we proposed several features that could capture the human speech pro-

duction characteristics and machine-generated speech artifacts, which provide

good performance in audio deepfake detection.

• Lastly, we also explored a data-driven approach and discussed the generalization

limitations of the current research setting.

Our persepctive also motives many of the later works such as [147, 148]. We hope

our contributions could inspire more future works in this direction. We also point out

new data collections in the audio deepfake detection domain and increasing focus on

this research area. We are glad to see emerging efforts in this area, such as the first

Audio Deep synthesis Detection challenge [149].
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5.2 Future directions and remaining challenges

With the emerging efforts in audio deepfake detection, there are several directions

that are in development and have great potential. In the following, we will summarize

three major directions that we believe are promising for the future research.

5.2.1 Data collection

There are still limitations with the current datasets. To have a better understanding

how detection may face challenges from the new generation of deepfakes, a more com-

prehensive dataset is needed. There are several efforts in this field, such as [21, 149].

However, new generation algorithms trained using different languages and different

speakers’ data are appearing around the world on a daily basis. To win the battle

with deepfake audio that is getting perceptually closer and closer to authentic speech,

continuous and in-time collections of trending data are important. Ideally, automatic

data-collection could be an exciting direction. Continuous data collection through

web crawling using key words, active learning based on a strong base-model, or even

manual collections and generations enforced by applications and company needs could

be critical paths to a more comprehensive dataset of audio deepfakes.

5.2.2 Filled, unfilled pause and breath

As discussed previously in the dissertation, for the current TTS and VC techniques,

utterance-level generation is the mainstream. For multiple sentences, filled or unfilled

pauses inside speech are usually replaced using silence, which is an obvious target

for detection. The breath sound is only naturally rendered inside the speech [32].

Moreover, the filled pause sounds (e.g., ‘uh’, ‘ah’, etc.), are rarely considered in the

generation of current deepfake speech [35, 33]. Algorithms that detect breath patterns

and filled pause patterns can be leveraged for deepfake speech detection in long speech.
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As an interesting finding in the ASVspoof 21 challenge [150], silence patterns in

recordings may be an indicator to discriminate spoofs from real recordings. This

is exactly one aspect of machine-generated speech since the silence has not been

specifically modeled in the generation.

5.2.3 Segmental-level audio deepfake detection

Another trend in audio deepfakes is the segmental-level audio deepfake. This means

the utterance is partially faked using a mixture of authentic speech and deepfaked

speech.

In [151], a new dataset is proposed containing the partially fake audio. As in

this paper, Yi et al. (2021) develop a dataset for half-truth audio detection (HAD).

Partially-faked audio in the HAD dataset involves only changing a few words in an

utterance. The audio of the words is generated with the very latest state-of-the-

art speech synthesis technology. In [152, 153], Zhang et al. (2021) also deployed

an initial investigation for detecting partially spoofed audio. They introduce a new

database of partially-spoofed data, named PartialSpoof and investigate and compare

the performance of countermeasures on both utterance- and segmental-level labels.

Experimental results using the utterance-level labels reveal that the reliability of

countermeasures trained to detect fully-spoofed data is found to degrade substantially

when tested with partially-spoofed data, whereas training on partially-spoofed data

performs reliably in the case of both fully- and partially-spoofed utterances. They

concluded that spotting injected spoofed segments included in an utterance is a much

more challenging task even if the latest countermeasure models are used. In ASVspoof

2021, Zhang et al. (2021) [154] followed their partialspoof work [153] and built multi-

task learning (MTL) frameworks with squeeze-and-excitation (SE) blocks [155]. With

their MTL framework, they tried to train one model for both utterance-level and

segmental-level spoof detection and showed that the multitask learning improves the
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detection performance for both tasks compared to their corresponding single training

model. From the results, they also found that as expected, segmental detection is

still more challenging than utterance-level detection.

From the above studies, we can see detecting segmental-level audio deepfake is

still challenging and in development. More studies are on their way to support the

reliable detection of partially-faked audio and to clear the threats from them using

deepfake techniques.
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