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Abstract

Deep Neural Networks such as Recurrent Neural Networks and Transformer models are widely adopted for

their superior performance in many natural language processing (NLP) applications, but they remain largely

black-box which can lead to unwanted bias and unrobust behaviors. To discover, diagnose and evaluate

these issues, it is essential to make NLP systems accountable, reliable and most importantly, explainable.

Explainability tools and methods can be leveraged by NLP practitioners to better understand how model

make certain predictions, if the models are conceptually sound, and if the predictions are justified.

In this dissertation, we propose new explainability frameworks for NLP models, and show how those

frameworks can be used to understand and evaluate NLP models beyond their accuracy metrics. Inspired by

prior explainability approaches, our methods are designed to be distinctively suitable for textual data and

NLP model architectures.

Our proposed methods can help understand exactly how a linguistic concept is represented in a model by

answering two conceptual soundness questions: (1) how does important linguistic information flow from input

words to output predictions? (2) how is the relative order of words/phrases encoded? We experiment with both

recurrent and Transformer architectures across a variety of NLP tasks and show how our methods precisely

and faithfully explain and evaluate the inner workings and order-sensitivity of NLP models. Furthermore, we

exemplify generated explanations in key NLP tasks depicting how various linguistic concepts are represented,

whether those representations are compatible with the underlying grammatical and linguistic rules, and how

deviation from those rules manifests into model weaknesses and conceptual unsoundness.
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Chapter 1

Introduction

Motivation. Natural language processing (NLP) has been greatly spurred by deep learning models, from

Recurrent Neural Network (RNN) models such as LSTM [Hochreiter and Schmidhuber, 1997], to more

recent advancement of transformer-based models [Vaswani et al., 2017], such as BERT [Devlin et al., 2019]

and GPT [Brown et al., 2020]. Recurrent networks, in contrast with other architectures such as convolutional

neural networks, are designed to model structures of language for its capability to capture syntactic relations

within language contexts, as well as to accommodate text inputs with variable lengths. Transformer models,

proven to be superior than RNNs in many NLP tasks, have completely transformed the NLP landscape in

recent years through their gigantic amount of training data and huge, parallelized architectures that learn

contextualized representations.

Both RNNs and transformers, however, are largely inscrutable due to their complicated architectures and

large number of parameters [Bender et al., 2021]. Despite theoretical intuitions that deep models create more

complicated representations in higher dimensions, the exact inner workings among these representations

remain a key roadblock to both models’ explainability and transparency, the lack of which hinders these

highly performing models to be applied in the real world.

Besides, deep NLP models have also proven to be conceptually unsound [Parkinson, 2011], i.e., they

fail to learn the correct linguistic concepts. Despite their success in benchmark datasets in various NLP

applications [Wang et al., 2018], they often perform poorly on challenge datasets that are specifically designed

to stress test NLP models on the same applications [Marvin and Linzen, 2018, McCoy et al., 2019, Ribeiro

1



et al., 2020]. However, neither is the creation of those datasets guided by explanations, nor are the models’

poor performances on them thoroughly understood, making it difficult to systematically and deductively

improve the models or generate new challenge sets.

With the rise in explainability research in recent years, model agnostic attribution methods such as

Shapley values [Shapley et al., 1953] or Integrated Gradients [Sundararajan et al., 2017] have been proposed

to explain the behavior of deep models. Most of these approaches, however, focus on applications with

tabular or image data, while few have been, or in fact, are capable of, effectively explaining textual data and

NLP models, for the following reasons:

• Most compute input-level feature importance which are often insufficient in excavating the inner

workings of NLP models;

• Many NLP model architectures contain structurally interpretable components such as LSTM gates and

attention weights, which are often misconstrued to be inherently explainable;

• Understanding NLP models require understanding the role of word orders which current methods do

not take into account.

Contributions. Addressing these limitations, this thesis shows that internal explanations of information

flow and analysis of order sensitivity are essential for thoroughly understanding and evaluating NLP models.

Inspired by existing frameworks of gradient-based or game-theoretic explanation methods, we propose new

methods for evaluating NLP models for better explainability, transparency and conceptual soundness, while

ensuring the generated explanations are efficient, accurate and faithful. We also demonstrate how each method

diagnoses the root causes of conceptual unsoundness in NLP applications: on a higher level, deep models

often fail to encode the correct concepts of the English language, instead they impose their information flow

mechanism and order-insensitivity which are potentially conceptually unsound. In this thesis, we focus on

surfacing and measuring these aspects of conceptual unsoundness leveraging explanations, and leave training

robust and conceptually sound models to future work.

In Chapter 2 & 3, we present a model-independent internal explanation method, influence patterns,

tailored to explain both RNN (influence paths) and transformer models. Influence patterns, through an

underlying searching algorithm, efficiently abstract traditional gradient-based input attributions to those of

2



specific interpretable components of the computation graph that propagate targeted linguistic signals. We

demonstrate that this method effectively abstracts models with respect to certain linguistic concepts.

In Chapter 4, we propose a new method to explain the word orders of sequential data: Order-sensitive

Shapley Values (OSV). We conduct an extensive empirical evaluation to validate the method and surface how

well various deep NLP models learn word order.

Related Work. Game-theoretic values [Shapley et al., 1953] and gradient-based approaches [Sundararajan

et al., 2017] are widely adopted to explain general data-driven systems [Datta et al., 2016, Lundberg and Lee,

2017, Covert et al., 2020], or applied specifically to text classification models [Chen and Jordan, 2020, Zhang

et al., 2021, Chen et al., 2018]. However, the explanation power of these methods is limited to computing

feature influences in the input-embedding space or treating text data as tabular data. In this thesis, we extend

beyond these approaches by characterizing the internal information flow and order sensitivity of NLP models.

A line of related works analyze internal activations such as layer embeddings or self-attention weights

[Clark et al., 2019, Vig and Belinkov, 2019, Lin et al., 2019, Ethayarajh and Jurafsky, 2021], which are

found to correlate with various linguistic concepts. However, these forward methods for explaining NLP

models have been controversial as they equate structural explainability with genuine functional explainability

[Serrano and Smith, 2019, Kovaleva et al., 2019, Michel et al., 2019, Voita et al., 2019]. Our proposed

methods, on the other hand, are based on axiomatic approaches complemented with rigorous evaluation and

comparisons for faithfulness and accuracy.

To allow for broader and non-local testing of model robustness, challenge datasets [Linzen et al., 2016,

Belinkov et al., 2017, Ribeiro et al., 2020, Wu et al., 2021, McCoy et al., 2019] are constructed to stress test

NLP models, either on benchmarked applications or specific grammatical rules. These tests are becoming

more crucial in designing and evaluating the conceptual soundness and robustness of NLP models beyond

benchmark performances. In this thesis, we show that generated explanations can verify or extend these

analysis into more credible insights on how and why NLP models fail to generalize to these datasets.
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1.1 Influence Paths & Influence Patterns

Given any model represented by a computation graph, influence path defines influence for a single chain

of internal components, while influence patterns a subgraph of the entire model. Both methods localize

influential components within a model capturing (or hindering) a linguistic concept.

1.1.1 Influence Paths for Explaining SVA of LSTM models

In Chapter 2, we focus our analysis on subject-verb number agreement (SVA), a task widely studied to

analyze and evaluate NLP language models for their capabilities of encoding linguistic rules. Previous

work either study this phenomena through the lens of causal testing [Linzen et al., 2016] by evaluating

models on sentences generated from a template, or quantifying the importance model components through

ablation [Lakretz et al., 2019]. Building on the datasets and insights from prior works, influence paths [Lu

et al., 2020b] enables deeper understanding of RNN models’ representation of SVA concept by quantifying

the effect of model inputs on model outputs that traverse a particular path through a model. Our approach

refines the distributional influence framework of Leino et al. [2018] which instruments a neural model

with input a distribution of interest, or DoI (e.g. datasets meant to exercise a concept such as subject-verb

agreement (SVA) [Linzen et al., 2016]) and an output quantity of interest, or QoI (e.g. a measure of SVA) in

order to compute a gradient-based measure of input influence. Specifically, we decompose the total influence

to path-specific quantities localizing the implementation of the given concept to paths through a model.

We demonstrate that for LSTM models, a single path is responsible for most of the input-output effect

defining SVA, despite a variety of surrounding and intervening contexts. We show that attractors (intervening

nouns of opposite number to the subject) do not diminish the contribution of the primary subject-verb path,

but rather contribute their own influence of the opposite direction along the equivalent primary attractor-verb

path, which leads to incorrect number prediction if an attractor’s contribution overcomes the subject’s. We

corroborate and elaborate on existing results localizing subject number to the same two neurons which, in our

results, lie on the primary path. We further extend and generalize prior compression/ablation results with a

new path-focused compression test which verifies our localization conclusions.
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1.1.2 Influence Patterns for Explaining Contextualization of BERT

In Chapter 3, we expand influence paths with a more generalized explanation device: influence patterns.

Instead of a single path, we generalize the abstraction to a set of nodes within the model. In addition, we

propose guided path refinement (GPR), a linear-time greedy algorithm to search for a pattern in a model with

the largest influence. We empirically show that GPR identifies succinct model abstractions where linguistic

concepts in BERT such as SVA are captured. We discover that significant portion of information flows in

BERT travel through skip connections instead of attention heads, indicating that attention weights [Abnar and

Zuidema, 2020] alone are not sufficient to characterize information flow. By visualizing the extracted patterns

locally, we show how information flow of words interact inside the model and BERT may use grammatically

incorrect cues to make predictions. Globally, we also discover that the consistency of influence patterns

across instances of a task reflects BERT’s performance for that task. Through ablation experiments, we find

that influence patterns account for information flows much more accurately than prior attention-based and

layer-based explanation methods [Abnar and Zuidema, 2020, Leino et al., 2018, Dhamdhere et al., 2018],

respectively.

1.2 Order-sensitive Shapley Values

Previous works discover that NLP models are not sensitive to word orders in the same way as humans [Pham

et al., 2021, Sinha et al., 2021a, Clouatre et al., 2021, Alleman et al., 2021, Sinha et al., 2021b]: their

performance are often undeterred for completely reshuffled inputs. To understand the root causes of such

order-insensitivity, prior approaches such as Shapley values are inadequate as they treat sequential data as

tabular data without attributing to the order of features in a sequence.

In Chapter 4, we introduce a new explanation method for sequential data: Order-sensitive Shapley Values

(OSV), along with a mechanism for separating order features and two modes of intervening on sequence

orders, absolute position and relative order. We conduct an extensive empirical evaluation to validate the

method and surface how well various deep NLP models learn word order. Using synthetic data, we first show

that OSV is more faithful in explaining model behavior than gradient-based methods. Second, applying to

the HANS dataset [McCoy et al., 2019], we discover that the BERT-based NLI model uses only the word
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occurrences without word orders. Although simple data augmentation improves accuracy on HANS, OSV

shows that the augmented model does not fundamentally improve the model’s learning of order. Third, we

discover that not all sentiment analysis models learn negation properly: some fail to capture the correct

syntax of the negation construct. Finally, we show that pretrained language models such as BERT may rely

on the absolute positions of subject words to learn long-range Subject-Verb Agreement. With each NLP task,

we also demonstrate how the order insensitivity uncovered by OSV in various models can be leveraged to

generate adversarial examples.

1.3 Chapter Contributions

The first two chapters of this dissertation appear in the proceedings of ACL [Lu et al., 2020a] and NeurIPS

[Lu et al., 2021], and the final chapter of this thesis is in submission at the time of writing.
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Chapter 2

Influence Paths for Explaining RNN Models

2.1 Introduction

Traditional rule-based NLP techniques can capture syntactic structures, while statistical NLP techniques, such

as n-gram models, can heuristically integrate semantics of a natural language. Modern RNN-based models

such as Long Short-Term Memory (LSTM) models are tasked with incorporating both semantic features from

the statistical associations in their training corpus, and structural features generalized from the same.

Despite evidence that LSTMs can capture syntactic rules in artificial languages [Gers and Schmidhuber,

2001], it is unclear whether they are as capable in natural languages [Linzen et al., 2016, Lakretz et al.,

2019] in the context of rules such as subject-verb number agreement, especially when not supervised for the

particular feature. The incongruence derives from this central question: does an LSTM language model’s

apparent performance in subject-verb number agreement derive from statistical heuristics (like n-gram

models) or from generalized knowledge (like rule-based models)?

Recent work has begun addressing this question [Linzen et al., 2016] in the context of language models:

models tasked with modeling the likelihood of the next word following a sequence of words as expected in a

natural language (see Figure 2.1, bottom). Subject-verb number agreement dictates that the verb associated

with a given subject should match its number (e.g., in Figure 2.1, the verb “run” should match with the

subject “boys”). Giulianelli et al. [2018] showed that the subject grammatical number is associated with

various gates in an LSTM, and Lakretz et al. [2019] showed that ablation (disabling activation) of an LSTM
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s4(run) - s4(runs)

grammatical number
Uni f (baseline, boys)

Figure 2.1: Subject-verb agreement task for a 2-layer LSTM language model, and primary paths across
various LSTM gates implementing subject-verb number agreement. A language model assigns score s to each
word. Agreement is the score of the correctly numbered verb minus that of the incorrectly numbered verb.

model at certain locations can reduce its accuracy at scoring verbs of the correct grammatical number.

Influence offers an alternate means of exploring properties like number agreement. We say an input is

influential on an outcome when changing just the input and nothing else induces a change on the outcome. In

English grammar, the number of a subject is influential on the number of its verb, in that changing the number

of that subject while keeping all other elements of a sentence fixed would necessitate a change in the number

of the verb. Algorithmic transparency literature offers formal definitions for empirically quantifying notions

of influence for systems in general [Datta et al., 2016] and for deep neural networks specifically [Leino et al.,

2018, Sundararajan et al., 2017].

The mere fact that subject number is influential on verb number as output by an LSTM model is sufficient

to conclude that it incorporates the agreement concept in some way but does not indicate whether it operates

as a statistical heuristic or as a generalized rule. We address this question with influence paths, which

decompose influence into a set of paths across the gates and neurons of an LSTM model. The approach has

several elements:

1. Define an input parameter to vary the concept-specific quantity under study (e.g., the grammatical

number of a particular noun, bottom-left node in Figure 2.1) and a concept-specific output feature to

measure the parameter’s effect on (e.g, number agreement with the parameterized noun, bottom-right
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node in Figure 2.1).

2. Apply a gradient-based influence method to quantify the influence of the concept parameter on

the concept output feature; as per the chain rule, decompose the influence into model-path-specific

quantities.

3. Inspect and characterize the distribution of influence across the model paths.

The paths demonstrate where relevant state information necessitated by the concept is kept, how it gets there,

how it ends up being used to affect the model’s output, and how and where related concepts interfere.

Our approach is state-agnostic in that it does not require a priori an assumption about how or if the concept

will be implemented by the LSTM. This differs from works on diagnostic classifiers where a representation

of the concept is assumed to exist in the network’s latent space. The approach is also time-aware in that

paths travel through cells/gates/neurons at different stages of an RNN evaluation. This differs from previous

ablation-based techniques, which localize the number by clearing neurons at some position in an RNN for all

time steps.

Our contributions are as follows:

• We introduce influence paths, a causal account of the use of concepts of interest as carried by paths

across gates and neurons of an RNN.

• We demonstrate, using influence paths, that in a multi-layer LSTM language model, the concept of

subject-verb number agreement is concentrated primarily on a single path (the red path in Figure 2.1),

despite a variety of surrounding and intervening contexts.

• We show that attractors (intervening nouns of opposite number to the subject) do not diminish the

contribution of the primary subject-verb path, but rather contribute their own influence of the opposite

direction along the equivalent primary attractor-verb path (the blue path in the figure). This can lead to

incorrect number prediction if an attractor’s contribution overcomes the subject’s.

• We corroborate and elaborate on existing results localizing subject number to the same two neurons

which, in our results, lie on the primary path. We further extend and generalize prior compression/ablation

results with a new path-focused compression test which verifies our localization conclusions.
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Our results point to generalized knowledge as the answer to the central question. The number agreement

concept is heavily centralized to the primary path despite the varieties of contexts. Further, the primary path’s

contribution is undiminished even amongst interfering contexts; number errors are not attributable to lack of

the general number concept but rather to sufficiently influential contexts pushing the result in the opposite

direction.

2.2 Background

LSTMs Long short-term memory networks (LSTMs) [Hochreiter and Schmidhuber, 1997] have proven to

be effective for modeling sequences, such as language models, and empirically, this architecture has been

found to be optimal compared to other second-order RNNs [Greff et al., 2017]. An LSTM cell can be defined

as follows:

ft = σ
(
W f xt + U f ht−1 + b f

)
it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

c̃t = tanh (Wc̃xt + Uc̃ht−1 + bc̃)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh (ct)

LSTMs utilize several types of gates and internal states including forget gates ( f ), input gates (i), output

gates (o), cell states (c), candidate cell state (c̃), and hidden states (h). ⊙ is element wise multiplication and

σ is the sigmoid function. W, U and b are learnable parameters associated with each gate. At each time step,

a cell state ct and a hidden state ht is computed recursively from the sigmoid gates and cell state/ hidden state

of the previous time step. The network can be adapted to have multiple layers where the inputs xt in higher

layers are replaced with the hidden states ht from the previous layer. Each gate is designed to carry out a

certain function, or to fix a certain drawback of the vanilla RNN architecture. For example, the forget gate is

supposed to determine how much information from the previous cell state to retain or “forget”, helping to fix

the vanishing gradient problem [Hochreiter, 1998].
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Subject-Verb Number Agreement in Language Models The subject-verb number agreement (SVA) task,

as described by Linzen et al. [2016], is an evaluation of a language model’s ability to properly match the

verb’s grammatical number with its subject. This evaluation is performed on sentences specifically designed

for the exercise, with zero or more words between the subject and the main verb, termed the context. The task

for sentences with non-empty contexts will be referred to as long-term number agreement.

“Human-level” performance for this task can be achieved with a 2-layer LSTM language model [Gulordava

et al., 2018], indicating that the language model incorporates grammatical number despite being trained only

for the more general word prediction task. Attempts to explain or localize the number concept within the

model include [Lakretz et al., 2019], where ablation of neurons is applied to locate specific neurons where

such information is stored; and Giulianelli et al. [2018], Hupkes et al. [2018], where diagnostic classifiers are

trained on gate activations to predict the number of the subject to see which gates or timesteps the number

concept exhibits itself. These works also look at the special cases involving attractors—intervening nouns

with grammatical number opposite to that of the subject (deemed instead helpful nouns if their number agrees

with the subject)—such as the word “tree” in Figure 2.1. Both frameworks provide explanations as to why

attractors lower the performance of SVA tasks. However, they tend to focus on the activation patterns of gates

or neurons without justifying their casual relationships with the concept of grammatical number, and do not

explicitly identify the exact temporal trajectory of how the number of the subject influences the number of

the verb.

Other relevant studies that look inside RNN models to locate specific linguistic concepts include

visualization techniques such as Karpathy et al. [2015], and explanations for supervised tasks involving

LSTMs such as sentiment analysis [Murdoch et al., 2018].

Attribution Methods Attribution methods quantitatively measure the contribution of each of a function’s

individual inputs to its output. Gradient-based attribution methods compute the gradient of a model with

respect to its inputs to describe how important each input is towards the output predictions. These methods

have been applied to assist in explaining deep neural networks, predominantly in the image domain [Leino

et al., 2018, Sundararajan et al., 2017, Bach et al., 2015, Simonyan et al., 2013]. Some such methods are also

axiomatically justified to provide a causal link between inputs (or intermediate neurons) and the output.

As a starting point in this work, we consider Integrated Gradients (IG) [Sundararajan et al., 2017]. Given
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a baseline, x0, the attribution for each input at point, x, is the path integral taken from the baseline to x of

the gradients of the model’s output with respect to its inputs. The baseline establishes a neutral point from

which to make a counterfactual comparison; the attribution of a feature can be interpreted as the share of the

model’s output that is due to that feature deviating from its baseline value. By integrating the gradients along

the linear interpolation from the baseline to x, IG ensures that the attribution given to each feature is sensitive

to effects exhibited by the gradient at any point between the baseline and instance x.

Leino et al. [2018] generalize IG to better focus attribution on concepts other than just model outputs,

by use of a quantity of interest (QoI) and a distribution of interest (DoI). Their measure, Distributional

Influence, is given by Definition 1. The QoI is a function of the model’s output expressing a particular output

behavior of the model to calculate influence for; in IG, this is fixed as the model’s output. The DoI specifies a

distribution over which the influence should faithfully summarize the model’s behavior; the influences are

found by taking an expected value over DoI.

Definition 1 (Distributional Influence). With quantity of interest, q, and distribution of interest, D, the

influence, χ, of the inputs on the quantity of interest is:

χ(q, D) = E
x⃗∼D

[
∂q
∂x

(x⃗)
]

The directed path integral used by IG can be implemented by setting the DoI to a uniform distribution over

the line from the baseline to x⃗: D = Uniform
(

x⃗0 x⃗
)

, for baseline, x⃗0, and then multiplying χ by x⃗− x⃗0.

Conceptually, by multiplying by x⃗− x⃗0, we are measuring the attribution, i.e., the contribution to the QoI, of

x⃗− x⃗0 by weighting its features by their influence. We use the framework of Leino et al. in this way to define

our measure of attribution for SVA tasks in Section 2.3.

Distributional Influence can be approximated by sampling according to the DoI. In particular, when using

D = Uniform
(

x⃗0 x⃗
)

as noted above, Definition 1 can be computationally approximated with a sum of n

intervals as in IG:

χ ≈
n

∑
i=1

∂q
∂x

(
i
n

x⃗ +

(
1− i

n

)
x⃗0

)
IG is an extension of Aumann Shapley values in the deep neural networks, which satisfies a lot of natural

axioms: efficiency, dummy, path-symmetry, etc. [Sundararajan and Najmi, 2020]. Choices of DoIs, besides
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the one used in IG, include Gaussian distributions with mean x [Smilkov et al., 2017] and Uniform distribution

around x [Wang et al., 2020b].

Other related works include Fiacco et al. [2019], which employs the concept of neuron paths based on cofiring

of neurons instead of influence, also on different NLP tasks from ours.

2.3 Methods

Our method for computing influence paths begins with modeling a relevant concept, such as grammatical

number, in the influence framework of Leino et al. (Definition 1) by defining a quantity of interest that

corresponds to the grammatical number of the verb, and defining a component of the input embedding that

isolates the subject’s grammatical number (Section 2.3.1). We then decompose the influence measure along

the relevant structures of LSTM (gates or neurons) as per standard calculus identities to obtain a definition

for influence paths (Section 2.3.2).

2.3.1 Measuring Number Agreement

For the SVA task, we view the initial fragment containing the subject as the input, and the word distribution

at the position of its corresponding verb as the output.

Formally, each instance in this task is a sequence of d-dimensional word embedding vectors, [w]
def
= ⟨w⃗i⟩i,

containing the subject and the corresponding verb, potentially with intervening words in between. We assume

the subject is at position t and the verb at position t + n. The output score of a word, w, at position i will be

written si(w). If w has a grammatical number, we write w+ and w− to designate w with its original number

and the equivalent word with the opposite number, respectively.

Quantity of Interest We instrument the output score with a QoI measuring the agreement of the output’s

grammatical number to that of the subject:

Definition 2 (Number Agreement Measure). Given a sentence, [w], with verb, w, whose correct form (w.r.t.

grammatical number) is w+, the quantity of interest, q, measures the correctness of the grammatical number

of the verb:

q ([w])
def
= st+n

(
w+

)
− st+n

(
w−

)
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In plain English, q captures the weight that the model assigns to the correct form of w as opposed to the

weight it places on the incorrect form. Note that the number agreement concept could have reasonably been

measured using a different quantity of interest. E.g., considering the scores of all vocabulary words of the

correct number and incorrect number in the positive and negative terms, respectively, is an another alternative.

However, based on our preliminary experiments, we found this alternative does not result in meaningful

changes to the reported results in the further sections.

Distribution of Interest We also define a component of the embedding of the subject that captures its

grammatical number, and a distribution over the inputs that allows us to sensitively measure the influence of

this concept on our chosen quantity of interest. Let w⃗0 be the word embedding midway between its numbered

variants, i.e., w⃗++w⃗−
2 . Though this vector will typically not correspond to any English word, we interpret it

as a number-neutral version of w⃗. Various works show that linear arithmetic on word embeddings of this

sort preserves meaningful word semantics as demonstrated in analogy parallelograms [Mikolov et al., 2013].

Finally, given a sentence, [w], let [w]0t be the sentence [w], except with the word embedding w⃗t replaced with

its neutral form w⃗0
t . We see that [w]− [w]0t captures the part of the input corresponding to the grammatical

number of the subject, w⃗t.

Definition 3 (Grammatical Number Distribution). Given a singular (or plural) noun, wt, in a sentence,

[w], the distribution density of sentences, D[w], exercising the noun’s singularity (or plurality) linearly

interpolates between the neutral sentence, [w]0t , and the given sentence, [w]:

D[w]
def
= Uniform

(
[w]0t [w]

)
If w⃗t is singular, our counterfactual sentences span [w] with number-neutral w⃗0

t all the way to its singular

form w⃗t = w⃗+
t . We thus call this distribution a singularity distribution. Were wt plural instead, we would

refer to the distribution as a plurality distribution. Using this distribution of sentences as our DoI thus allows

us to measure the influence of [w]− [w]0t (the grammatical number of a noun at position t) on our quantity of

interest sensitively (in the sense that Sundararajan et al. define their axiom of sensitivity for IG [Sundararajan

et al., 2017]).

Subject-Verb Number Agreement Putting things together, we define our attribution measure.
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Definition 4 (Subject-Verb Number Agreement Attribution). The measure of attribution, α, of a noun’s

grammatical number on the subject-verb number agreement is defined in terms of the DoI, D[w], and QoI, q,

as in Definitions 3 and 2, respectively.

α ([w]) = ([w]− [w]0t ) χ(q, D[w])

Essentially, the attribution measure weights the features of the subject’s grammatical number by their

Distributional Influence, χ. Because D[w] is a uniform distribution over the line segment between [w]

and [w]0t , as with IG, the attribution can be interpreted as each feature’s net contribution to the change in

the QoI, q([w])− q([w]0t ), as ∑i χ([w])i = q([w])− q([w]0t ) (i.e., Definition 4 satisfies the axiom term

completeness [Sundararajan et al., 2017]).

In Figure 2.1, for instance, this definition measures the attribution from the plurality of the subject

(“boys”), towards the model’s prediction of the correctly numbered verb (“run”) versus the incorrectly

numbered verb (“runs”). Later in this paper we will also investigate the attribution of intervening nouns

on this same quantity. We expect the input attribution to be positive for all subjects and helpful nouns, and

negative for attractors, which can be verified by the P+columns of Table 2.1 (the details of this experiment

are introduced in Section 2.4).

2.3.2 Influence Paths

Input attribution as defined by IG [Sundararajan et al., 2017] provides a way of explaining a model by

highlighting the input dimensions with large attribution towards the output. Distributional Influence [Leino

et al., 2018] with a carefully chosen QoI and DoI (Definition 4) further focuses the influence on a concept

at hand, grammatical number agreement. Neither, however, demonstrate how these measures are conveyed

by the inner workings of a model. In this section we define a decomposition of the influence into paths of a

model, thereby assigning attribution not just to inputs, but also to the internal structures of a given model.

We first define arbitrary deep learning models as computational graphs, as in Definition 5. We then use

this graph abstraction to define a notion of influence for a path through the graph. We posit that any natural

path decomposition should satisfy the following conservation property: the sum of the influence of each path

from the input to the output should equal the influence of the input on the QoI. We then observe that the chain

rule from calculus offers one such natural decomposition, yielding Definition 6.
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Definition 5 (Model). A model is an acyclic graph with a set of nodes, edges, and activation functions

associated with each node. The output of a node, n, on input x is n(x) def
= fn (n1(x), · · · , nm(x)) where

n1, · · · , nm are n’s predecessors and fn is its activation function. If n does not have predecessors (it is an

input), its activation is fn(x). We assume that the domains and ranges of all activation functions are real

vectors of arbitrary dimension.

We will write n1 → n2 to denote an edge (i.e., n1 is a direct predecessor of n2), and n1a∗n2 to denote the

set of all paths from n1 to n2. The partial derivative of the activation of n2 with respect to the activation of

n1 will be written ∂n2
∂n1

.

This view of a computation model is an extension of network decompositions from attribution methods

using the natural concept of “layers” or “slices” [Dhamdhere et al., 2018, Leino et al., 2018, Bach et al.,

2015]. This decomposition can be tailored to the level of granularity we wish to expose. Moreover, in RNN

models where no single and consistent “natural layer” can be found due to the variable-length inputs, a more

general graph view provides the necessary versatility.

Definition 6 (Path Influence). Expanding Definition 4 using the chain rule, the influence of input node, s, on

target node, t, in a model, G, is:

χs = E
x∼D(x)

[
∂t
∂s
(x)

]
= E

x∼D(x)

[
∑

p∈(s→∗t)
∏

(n1→n2)∈p

∂n2

∂n1
(x)

]

Note that the same LSTM can be modeled with different graphs to achieve a desired level of abstraction. We

will use two particular levels of granularity: a coarse gate-level abstraction where nodes are LSTM gates,

and a fine neuron-level abstraction where nodes are the vector elements of those gates. Though the choice of

abstraction granularity has no effect on the represented model semantics, it has implications on graph paths

and the scale of their individual contributions in a model.

Gate-level and Neuron-level Paths We define the set of gate-level nodes to include:{
f l
t , il

t, ol
t, cl

t, c̃l
t, hl

t : t < T, l < L
}
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Figure 2.2: Influence path diagram in a SVA task for the 2-layer LSTM model. The red path shows the path
with the greatest attribution (the primary path) from the subject; The blue path shows the primary path from
the intervening noun (Attractor).

where T is the number of time steps (words) and L is number of LSTM layers. The node set also includes

an attribution-specific input node ([w] − [w]0t ) and an output node (the QoI). An example of this is

illustrated in Figure 2.2. We exclude intermediate calculations (the solid nodes of Figure 2.2, such as

ft ⊙ ct−1) as their inclusion does not change the set of paths in a graph. We can also break down each

vector node into scalar components and further decompose the gate-level model into a neuron-level one:

{ f l
ti, il

ti, ol
ti, cl

ti, c̃l
ti, hl

ti : t < T, i < H, l < L}, where H is the size of each gate vector. This

decomposition results in an exponentially large number of paths. However, since many functions between

gates in an LSTM are element-wise operations, neuron-level connections between many neighboring gates

are sparse.

Path Refinement While the neuron-level path decomposition can theoretically be performed on the whole

network, in practice we choose to specify a gate-level path first, then further decompose that path into

neuron-level paths. We also collapse selected vector nodes, allowing us to further localize a concept on a

neuron level while avoiding an explosion in the number of paths. The effect of this pipeline will be empirically

justified in Section 2.4.
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2.4 Evaluation

In this section we apply influence path decomposition to the SVA task. We investigate major gate-level paths

and their influence concentrations in Section 2.4.2. We further show the relations between these paths and the

paths carrying grammatical number from intervening nouns (i.e. attractors & helpful nouns) in Section 2.4.3.

In both we also investigate high-attribution neurons along primary paths allowing us to compare our results

to prior work.

2.4.1 Dataset and Model

We study the exact combination of language model and SVA datasets used in the closely related prior work of

Lakretz et al. [2019]. The pre-trained language model of Gulordava et al. and Lakretz et al. is a 2-layer LSTM

trained from Wikipedia articles. The number agreement datasets of Lakretz et al. are several synthetically

generated datasets varying in syntactic structures and in the number of nouns between the subject and verb.

For example, nounPP refers to sentences containing a noun subject followed by a prepositional phrase

such as in Figure 2.1. Each SVA task has subject number (and intervening noun number if present) realizations

along singular (S) and plural (P) forms. In listings we denote subject number (S or P) first and additional

noun (if any) number second. Details including the accuracy of the model on the SVA tasks are summarized

by Lakretz et al. [2019]. Our evaluation replicates part of Table 2 in said work.

2.4.2 Decomposing Number Agreement

We begin with the attribution of subject number on its corresponding verb, as decomposed per Definition 6.

Among all SVA tasks, the gate-level path carrying the most attribution is one following the same pattern with

differences only in the size of contexts. With indices t and t + n referring to the subject and verb respectively,

this path, which we term the primary path of subject-verb number agreement, is as follows:

xt(DoI) · c̃0 · c0 · h0 · c̃1 ·
(

c1
)∗
· h1 ·QoI

The primary path is represented by the red path in Figure 2.2. The influence first passes through the temporary

cell state c̃0, the only non-sigmoid cell states capable of storing more information than sigmoid gates, since

i, f , o ∈ (0, 1) while the tanh gate c̃ ∈ (−1, 1). Then the path passes through c0, h0, and similarly to c1
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through c̃1 , jumping from the first to the second layer. The path then stays at c1, through the direct connections

between cell states of neighbouring time steps, as though it is “stored” there without any interference from

subsequent words. As a result, this path is intuitively the most efficient and simplistic way for the model to

encode and store a “number bit.”

The extent to which this path can be viewed as primary is measured by two metrics. The results across a

subset of syntactic structures and number conditions mirroring those in Lakretz et al. [2019] are shown in

Table 2.1. We include 3 representative variations of the task. The metrics are:

1. t-value: probability that a given path has greater attribution than a uniformly sampled path on a

uniformly sampled sentence.

2. Positive/Negative Share (±Share): expected (over sentences) fraction of total positive (or negative)

attribution assigned to the given positive (or negative) path.

Per Table 2.1 (From Subject, Primary Path), we make our first main observation:

Observation 1. The same one primary path consistently carries the largest amount positive attribution

across all contexts as compared to all other paths.

Even in the case of its smallest share (nounPPAdv), the 3% share is large when taking into account more

than 40,000 paths in total. Sentences with singular subjects (top part of Table 2.1) have a slightly stronger

concentration of attribution in the primary path than plural subjects (bottom part of Table 2.1), possibly due to

English plural (infinitive) verb forms occurring more frequently than singular forms, thus less concentration

of attribution is needed due to the “default signal” in place.

Primary Neurons We further decompose the primary path into influence passing through each neuron.

Since only connections between second layer cell states are sparse, we only decompose the segment of the

primary path from c1
t to c1

t+n, resulting in a total of 650 (the number of hidden units) neuron-level paths. (We

leave the non-sparse decompositions for future work). The path for neuron i, for example, is represented as:

xt(DoI) · c̃0 · c0 · h0 · c̃1 ·
(

c1
i

)∗
· h1 ·QoI

To compare the attribution of an individual neuron with all other neurons, we employ a similar aforementioned

t-value, where each neuron-level path is compared against other neuron-level paths.
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Task C
From Subject From Intervening Noun

P+ |P| Primary Path Primary Neuron P+ |P| Primary Path Primary Neuron
+Share t t125 t337 ± Share t t125 t337

Simple S 1.0 16 0.47 1.0 0.99 1.0 - - - - - -
nounPP SS 1.0 6946 0.1 1.0 1.0 1.0 0.82 16 0.31(+) 0.9 0.78 0.98
nounPP SP 1.0 6946 0.1 1.0 1.0 1.0 0.23 16 0.24(-) 0.23 0.06 0.15
nounPPAdv SS 1.0 41561 0.07 1.0 1.0 1.0 0.92 152 0.09(+) 0.96 0.85 1.0
nounPPAdv SP 1.0 41561 0.07 1.0 1.0 1.0 0.32 152 0.09(-) 0.14 0.13 0.01

Simple P 1.0 16 0.33 0.93 0.97 0.99 - - - - - -
nounPP PS 1.0 6946 0.05 0.91 0.99 1.0 0.06 16 0.28(-) 0.21 0.22 0.12
nounPP PP 1.0 6946 0.05 0.92 0.99 1.0 0.95 16 0.31(+) 0.9 0.97 0.79
nounPPAdv PS 1.0 41561 0.03 0.93 0.99 1.0 0.32 152 0.04(-) 0.28 0.41 0.16
nounPPAdv PP 1.0 41561 0.03 0.92 0.99 1.0 0.83 152 0.07(+) 0.92 0.99 0.84

Table 2.1: Statistics for attribution of primary paths and neurons from the subject/intervening noun: P+ is the
percentage of sentences with positive input attribution. Task and C columns refer to sentence structures in
Lakretz et al. [2019]. |P| is the total number of paths; t and ±Share are t-values and positive/negative share,
respectively. For calculating t125 and t337 of primary neurons (125 and 337), we exclude these two neurons to
avoid comparing them with each other.

The results of the neuron-level analysis are shown in Table 2.1 (From Subject, Primary Neuron). Out of

the 650 neuron-level paths in the gate-level primary path, we discover two neurons with consistently the most

attribution (neurons 125 and 337 of the second layer). This indicates the number concept is concentrated in

only two neurons.

Comparison with Lakretz et al. [2019] Uncoincidentally, both neurons match the units found through

ablation by Lakretz et al., who use the same model and dataset (neurons 988 and 776 are neurons 125 and

337 of the second layer). This accordance to some extent verifies that the neurons found through influence

paths are functionally important. However, the t-values shown in Table 2.1 show that both neuron 125 and

337 are influential regardless of the subject number, whereas Lakretz et al. assign a subject number for each

of these two neurons due to their disparate effect in lowering accuracy in ablation experiments. One possible

reason is that the ablation mechanism used in Lakretz et al. [2019] assumes that a “neutral number state” can

be represented by zero-activations for all gates, while in reality the network may encode the neutral state

differently for different gates.

Another major distinction of our analysis from Lakretz et al. [2019] regards simple cases with no word

between subjects and verbs. Unlike Lakretz et al., who claim that the two identified neurons are “long-term

neurons”, we discover that these two neurons are also the only neurons important for short-term number
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agreement. This localization cannot be achieved by diagnostic classifiers used by Lakretz et al., indicating

that the signal can be better uncovered using influence-based paths rather than association-based methods

such as ablation.

2.4.3 Decomposing from Intervening Nouns

Next we focus on SVA tasks with intervening nouns and make the following observation:

Observation 2. The primary subject-verb path still accounts for the largest positive attribution in contexts

with either attractors or helpful nouns.

A slightly worse SVA task performance [Lakretz et al., 2019] in cases of attractors (SP, PS) indicates that

they interfere with prediction of the correct verb. In contrast, we also observe that helpful nouns (SS, PP)

contribute positively to the correct verb number (although they should not from a grammar perspective).

Primary Path from the Intervening Noun We adapt our number agreement concept (Definition 2) by

focusing the DoI on the intervening noun, thereby allowing us to decompose its influence on the verb number

not grammatically associated with it. In Table 2.1 (From Intervening Noun) we discover a similar primary

path from the intervening noun:

Observation 3. Attribution towards verb number from intervening nouns follows the same primary path as

the subject but is of lower magnitude and reflects either positive or negative attribution in cases of helpful

nouns or attractors, respectively.

This disparity in magnitude is expected since the language model possibly identifies the subject as the head

noun through the prepositions such as “behind” in Figure 2.1, while still needing to track the number of

the intervening noun in possible clausal structures. Such need is comparably weaker compared to tracking

numbers of subjects, possibly because in English, intervening clauses are rarer than intervening non-clauses.

Similar arguments can be made for neuron-level paths.
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Task C
Compression Scheme
Csi Cs Ci Csi Cs Ci C

nounPP SS .66 .77 .95 .93 .71 .77 .95
nounPP SP .64 .36 .94 .64 .75 .40 .74
nounPP PS .34 .24 .92 .40 .69 .18 .80
nounPP PP .39 .66 .91 .76 .68 .58 .97

nounPP mean .51 .51 .93 .68 .70 .48 .87

nounPPAdv SS .70 .86 .98 .73 .56 .43 1.0
nounPPAdv SP .70 .43 .99 .50 .60 .27 .88
nounPPAdv PS .38 .22 .98 .76 .79 .56 .96
nounPPAdv PP .39 .67 .98 .84 .83 .76 1.0

nounPPAdv mean .54 .55 .99 .71 .69 .50 .96

Table 2.2: Model compression accuracy under various compression schemes. C is the uncompressed model.

2.4.4 Model Compression

Though the primary paths are the highest contributors to SVA tasks, it is possible that collections of associated

non-primary paths account for more of the verb number concept. We gauge the extent to which the primary

paths alone are responsible for the concept with compression/ablation experiments. We show that the

computations relevant to a specific path alone are sufficient in maintaining performance for the SVA task. We

compress the model by specifying node sets to preserve, and intervene on the activations of all other nodes

by setting their activations to constant expected values (average over all samples). We choose the expected

values instead of full ablation (setting them to zero), as ablation would nullify the function of Sigmoid gates.

For example, to compress the model down to the red path in Figure 2.2, we only calculate the activation for

gates c̃0
t and c̃1

t for each sample, while setting the activation of all other c̃, f , o, i to their average values over

all samples. In Table 2.2, we list variations of the compression schemes based on the following preserved

node sets:

C def
=

{
f l
t , il

t, ol
t, c̃l

t : tsub < t < tverb, l ∈ {0, 1}
}

Cs
def
=

{
c̃0

tsub
, c̃1

tsub

}
Ci

def
=

{
c̃0

tint
, c̃1

tint

}
Csi

def
= Cs ∪ Ci

For example, column Csi in Table 2.2 shows the accuracy when the compressed model only retains the

primary path from both the subject and the intervening noun while the computations of all other paths are set
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to their expected values; while in Csi, all paths but the paths in Csi are kept.

We observe that the best compressed model is Ci, where the primary path from the intervening noun is

left out; it performs even better than the original model; the increase comes from the cases with attractors (PS,

SP). This indicates that eliminating the primary path from the attractor improves the model. The next best

models apart from C are Cs and Csi, where primary paths are kept. Compressed models without the primary

subject-verb path (Csi, Cs, Ci) have performances close to random guessing.

Observation 4. Accuracy under path-based model compression tests corroborate that primary paths account

for most of the subject number agreement concept of the LSTM.

By comparing the SP and PS rows of Csi, Cs, Cs, and Ci, we observe the effect of attractors in misguiding

the model into giving wrong predictions. Similarly, we see that helpful nouns (SS, PP) help guide the models

to make more accurate predictions, though this is not grammatically justified.

2.5 Conclusions

The combination of finely-tuned attribution and gradient decomposition lets us investigate the handling of the

grammatical number agreement concept attributed to paths across LSTM components. The concentration of

attribution to a primary path and two primary cell state neurons and its persistence in a variety of short-term

and long-term contexts, even with confounding attractors, demonstrates that the concept’s handling is, to a

large degree, general and localized. Though the heuristic decisioning aspect of an LSTM is present in the

large quantities of paths with non-zero influence, their overall contribution to the concept is insignificant as

compared to the primary path. Node-based compression results further corroborate these conclusions.

We note, however, that our results are based on datasets exercising the agreement concept in contexts of a

limited size. We speculate that the primary path’s attribution diminishes with the length of the context, which

would suggest that at some context size, the handling of number will devolve to be mostly heuristic-like with

no significant primary paths. Though our present datasets do not pose computational problems, the number

of paths, at both the neuron and the gate level, is exponential with respect to context size. In the next Chapter,

we explore new approaches for finding similar model abstractions in larger Transformer architectures with

much better algorithmic scalability.
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We also note that our method can be expanded to explore number agreement in more complicated

sentences with clausal structures, or other syntactic/semantic signals such as coreference or gender agreement.
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Chapter 3

Influence Patterns for Explaining

Transformer Models

3.1 Introduction

Previous works show that transformer models such as BERT [Devlin et al., 2019] encode various linguistic

concepts [Lin et al., 2019, Tenney et al., 2019a, Goldberg, 2019], some of which can be associated with

internal components of each layer, such as internal embeddings or attention weights [Lin et al., 2019, Tenney

et al., 2019a, Hewitt and Manning, 2019, Reif et al., 2019]. However, exactly how information flows through

a transformer from input tokens to the output predictions remains an open question. Recent attempts to

answer this question include using attention-based methods, where attention weights are used as indicators

of flow of information [Clark et al., 2019, Abnar and Zuidema, 2020, Wu et al., 2020], or layer-based

approaches [Hewitt and Manning, 2019, Hewitt and Liang, 2019, Reif et al., 2019], which identify important

network units in each layer. In this chapter, we examine the information flow question through the lens of

gradient-based attribution methods. In the previous chapter, we introduce influence paths which decompose

the attribution to path-specific quantities localizing the implementation of the given concept to paths through

a model. We also discover that a single path is responsible for most of the input-output effect defining SVA.

Directly applying individual paths to transformer-based models like BERT, however, results in an intractable

number of paths to enumerate due to the huge number of computation edges in BERT.
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In this chapter, we introduce influence patterns, abstractions of sets of gradient-based paths through

a transformer’s entire computational graph. We also introduce a greedy search procedure for efficiently

and effectively finding patterns representative of concept-critical information flow. Figure 3.1 provides an

example of an influence pattern in BERT. We conduct an extensive empirical study of influence patterns for

several NLP tasks: Subject-Verb Agreement (SVA), Reflexive Anaphora (RA), and Sentiment Analysis (SA).

Our findings are summarized below.

• A significant portion of information flows in BERT go through skip connections and not attention heads,

indicating that attention weights [Abnar and Zuidema, 2020] alone are not sufficient to characterize

information flow. In our experiment, we show that on average, important information flow through

skip connections approximately three times more often than attentions.

• By visualizing the extracted patterns, we show how information flow of words interact inside the model

and BERT may use grammatically incorrect cues to make predictions.

• The consistency of influence patterns across instances of a task reflects BERT’s performance for that

task.

• Through ablation experiments, we find that influence patterns account for information flows in BERT

on average 74% and 25% more accurately than prior attention-based and layer-based explanation

methods [Abnar and Zuidema, 2020, Leino et al., 2018, Dhamdhere et al., 2018], respectively.

3.2 Background

We begin this section by introducing notations and architecture of transformer models in Section. 3.2.1. We

then introduce two ways of describing the computational graph of Transformer models in Section. 3.2.2.

3.2.1 Transformer Models

Throughout the paper we use x to denote a vector and |S| to denote the cardinality of a set S or number of

nodes in a graph S. We begin with the basics of the Transformer encoder architecture [Vaswani et al., 2017]

such as BERT [Devlin et al., 2019] (presented in Fig. 3.1). Let L be the number of layers in a transformer

26



...
...

...
...

...
...

...

x0
"the" h0

0

h0
2

h1
0 h2

0 h3
0

h1
2 h2

2

h3
3

y0 h1
0

x1
"funny" h0

1

h0
2

h1
1 h2

1 h3
1

h1
2 h2

2

h3
3

y1 h1
1

x2
"boy" h0

2h0
2 h1

2 h2
2 h3

2h1
2 h2

2

h3
3

y2 h1
2

x3
"[MASK]" h0

3

h0
2

h1
3 h2

3 h3
3

h1
2 h2

2

h3
3

y3 QoI(y3) h1
3

...
...

...
...

...
...

...

h2
2

a1,1
2

h1
2 h2

2

a1,2
2

h1
2 h2

2
a1,3

2h1
2 h2

2...

h1
2 h2

2

a1,A
2

h1
2 h2

2s1
2

Figure 3.1: BERT architecture (left) and details of a transformer layer (right) for an instance of the SVA task,
which evaluates whether the model chooses the correct verb form is over are for [MASK] to agree with
the subject. An example of a pattern is highlighted with red nodes.

encoder, H the hidden dimension of embeddings at each layer, and A the number of attention heads. The

list of input word embeddings is x def
= [x1, x2, ..., xN ], xi ∈ Rd. We denote the output of the l-th layer as hl

1:N .

First layer inputs are h0
1:N

def
= x1:N .We use al,i

j to denote the j-th attention head from the i-th embedding at

l-th layer and sl
j to denote the skip connection that is “copied” from the input embedding from the previous

layer then combined with the attention output. The output logits are denoted by y.

3.2.2 Computation Graph of Transformer models

A deep network can be viewed as a computational graph G def
= (V ,F , E), a set of nodes, activation functions,

and edges, respectively. In this paper, we assume the graph is directed, acyclic, and does not contain more than

one edge per adjacent pair of nodes. A path p in G is a sequence of graph-adjacent nodes [p1, p2, · · · , pt]; pt

is the output node. Thus, the Jacobian passing through a path p evaluated at input x is ∏−1
i=1 ∂pi(x)/∂pi−1(x)

as per chain rule. We further denote the Jacobian of the output of node ni w.r.t the output of connected (not

necessarily directly) predecessor node nj evaluated at x as ∂nj(x)/∂ni(x).

For computational and interpretability reasons, an ideal graph would contain as few nodes and edges as

possible while exposing the structures of interest. For transformer models we propose two graphs: embedding-

level graph Ge corresponding to the nodes and edges shown in Figure 3.1 (left) to explain how the influence

of input embeddings flow from one layer of internal representations to another and to the eventual prediction;

and attention-level graph Ga ⊃ Ge that additionally includes attention head nodes and skip connection nodes

as in Figure 3.1 (right), a finer decomposition to demonstrate how influence from the input embedding flows
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through the attention block (or skip connections) within each layer.

3.3 Tracing Influence Flow with Patterns

To explain how different concepts in the input flow to final predictions in BERT, it is important to show how

the information from each input word flows through each intermediate layer and finally reaches the output

embedding of interest, e.g. [MASK] for pretraining or [CLS] for fine-tuned models. Prior approaches have

use the attention weights to build directed graphs from one embedding to another [Abnar and Zuidema, 2020,

Wu et al., 2020]. These approaches use heuristics to treat high attention weights as indicators of important

information flow between layers. However, as more work starts to highlight the axiomatic justifications of

gradient-based methods over attentions weights as an explanation approach [Treviso and Martins, 2020],

we therefore explore an orthogonal direction in applying distributional influence in BERT to trace the

information flow. We use the similar definition of distribution influence introduced in Section. 2.2 of the

previous chapter. Specifically, in a MLM setting such as Figure 3.1, we can define the quantity of interest

q( f (x)) = f (x)IS − f (x)ARE where f (x)∗ is the logit output of class ∗ at the position of [MASK].

Tracing Influence by Patterns By viewing BERT as a computation graph (Ge or Ga in 3.2.1), we restate

the problem: given a source node s and a target node t, we seek a significant pattern of nodes from s to t

that shows how the influence from s traverses from node to node and finally reaches t. An exhaust way to

rank all paths by the amount of influence flowing from s to t is possible in smaller networks, as is introduced

in Section. 2.3 of the previous chapter. However, the similar approach lacks scalability to large models like

BERT. Therefore, we propose a way to greedily narrow down the searching space from all possible paths

to specific patterns. That is, our approach is two-fold: 1) we employ abstractions of sets of paths as the

localization and influence quantification instrument; 2) we discover influential patterns with a greedy search

procedure that refines abstract patterns into more concrete ones, keeping the influence high. We begin with

the formal definition of a pattern.

Definition 7 (Pattern). A pattern π is a sequence of nodes [π1, π2, · · · , π−1] such that for any pair of nodes

πi, πi+1 adjacent in the sequence (not necessarily adjacent in the graph), there exists a path from πi and

πi+1.
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Figure 3.2: A visual illustration of Guided Pattern Refinement (GPR) in a toy example. We start with a
pattern π = [s, t] containing only the source and the target node. At each step we define a guided set E0 and
E1, respectively and find the node in the guided set that maximize the pattern influence (Def. 8). GPR finally
returns a pattern π = [s, a3, b1, t] that abstracts a single path.

A pattern π abstracts a set of paths, written γ(π) that follow the given sequence of nodes but are free

to traverse the graph between those nodes in any way. Interpreting paths and patterns as sets, we define

γ(π)
def
= {p ⊆ P : π ⊆ p} where P is the set of all paths from π1 to π−1. If every sequence-adjacent pair

of nodes is directly connected then the pattern abstracts a single path. To quantify the amount of information

that flows from the input node to the target node over a particular pattern, we propose Pattern Influence,

motivated by distributional influence.

Definition 8 (Pattern influence). Given a computation graph and a user-defined distribution D, the influence

of an influence pattern π, written I(x, π) is the total influence of all the paths abstracted by the pattern:

I(x, π)
def
= ∑p∈γ(π) Ez∼D(x) ∏−1

i=1
∂pi(z)

∂pi−1(z)
.

Proposition 1 (Chain Rule). I(x, π) = Ez∼D(x) ∏−1
i=1

∂πi(z)
∂πi−1(z)

for any distribution D(x).

Prop. 1 (proof in Appendix 6.1) simplifies the evaluation of the pattern influence by specifying the exact

set of internal nodes through which influence flows in a computational graph. We hereby introduce a greedy

way of finding the most influential pattern in both Ge and Ga.

Guided Pattern Refinement(GPR) Starting with source and target nodes s and t along with a initialized

pattern π0 = {s, t} representing all paths between s and t, we construct π1 by adding one1 sequence-adjacent

node e0 (there is a direct path between s and e0) from a guiding set E0 that maximizes the influence of the

1The algorithm can be easily adapted to include more nodes per layer. However, we found one node per layer retain a reasonable
proportion of influence for the tasks evaluated in this paper (See Sec.3.5.4).
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Algorithm 1: Guided Pattern Refinement in the Embedding-level Graph (GPR-e)
Result: Significant Path πe

initialization;
x ∼ Input Tokens, f ← BERT ;
Ge ← GetEmbeddingGraph( f ), L← GetNumberOfLayers( f );
N ← GetNumberOfTokens(f), m← GetIndex([MASK]), ;
nq ← GetQoINode(m,Ge), nw ← GetClfNode(Ge);
πe ← OrderedSet(), C ← {} ;
j← GetStartingIndex(); // The word we start the search with
n0

j ← GetNode(Gw, h0
j ) ; // Find the corresponding node

πe ← Append(πe, n0
j );

for l ∈ {1, ..., L− 2} do
C ← {};
for i ∈ {0, ..., N − 1} do

nl
i ← GetNode(Gw, hl

i) ;
πt ← Append(π, nl

i);
C ← C ∪ {πt} ;

end
πe ← arg maxπ′∈C I(x|π′, π′−1 →P nq)

end
nL

m ← GetNode(Gw, hL−1
m );

πe ← Append(πe, nL
m);

πe ← Append(πe, nw);
πe ← Append(πe, nq);

resulting pattern such that:

e0 = arg max
e∈E0
{I(x, [s, e, t]), π1 =

[
s, e0, t

]
, (3.1)

This procedure is iterated until we exhaust the last guiding set. We show an example of GPR in a toy graph

in Fig. 3.2. For an embedding-level graph Ge, each guiding set El includes all embeddings hl
1:N at layer l.

For the attention-level graph Ga, we refine on the embedding-level pattern πe by only expanding πe from

addition nodes in Ga compared with Ge: we perform GPR iterations between πe
l , πe

l+1 ∈ πe with the guiding

set El
a which includes A attention heads al and the skip node sl(Fig. 3.1 Right), until we reach the same

last node in πe. The returned attention-level pattern πa thus abstracts a single path from the source to the

target in Ga. As the attention-level analysis refines the embedding-level analysis, the produced attention-level

pattern πa abstracts a strict subset of the paths of the attention-level graph that the embedding-level pattern

πe abstracts. That is, πe ⊂ πa while γ(πa) ⊂ γ(πe). The detailed algorithm for computing πe and πa is

30



Algorithm 2: Guided Pattern Refinement in the Attention-level Graph (GPR-a)
Result: Significant Path πa

initialization;
x ∼ Input Tokens, f ← BERT ;
Ge ← GetEmbeddingGraph( f ), Ga ← GetAttentionGraph( f );
m← GetIndex([MASK]);
nq ← GetQoINode(m,Ge);
L← GetNumberOfLayers( f ), N ← GetNumberOfTokens(f) ;
πe ← GPR-e(x,Ge); // Find embedding-level path first
C ← {};
for i ∈ {0, ..., |πe| − 2} do

if ExistAttentionBlock(πe
i , πe

i+1); // Check if this is a Transformer Layer

then
Ai ← GetHeadsBetween(Ga, πe

i , πe
i+1); // Get all attention heads and

the skip connetion node
πe

head ← Slice(πe
0, πe

i ); // Take a slice between two nodes

(a∗i , c∗i )← arg max(ai ,ci)∈Ai
I(x|πe

head ∪ {ai, ci}, ci →P nq);
C ← C ∪ {(a∗i , c∗i )};

else
continue;

end
end
πa ← InsertNode(πe, C); // Insert attention nodes into the
embedding-level path at the corresponding place

included in Algorithm 1 and 2, respectively. Although GPR is not guaranteed to be optimal, we included a

detailed analysis of its optimality in Appendix 6.2.1.

3.4 Baseline Patterns

In this section, we introduce baseline patterns for comparison. We include those generated by attention

weights [Abnar and Zuidema, 2020, Wu et al., 2020], and layer-based gradient approaches [Leino et al., 2018,

Dhamdhere et al., 2018]. Both groups of approaches compute either input influences or influences to internal

neurons without an explicit way to quantify an end-to-end influential pattern. However, we define natural

augmentations of each baseline to compute the pattern capturing the most influence, layer by layer, while

aligning the total number of extracted nodes with that of an influence pattern.
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3.4.1 Baseline: Attention-based patterns

We introduce the implementation details of attention-based patterns, inspired by Abnar and Zuidema [2020]

and Wu et al. [2020]. Consider a BERT model with L layers, between adjacent layers l and l + 1, the attention

matrix is denoted by Ml ∈ RA×N×N where A is the number of attention heads and K is the number of

embeddings. Each element of Ml [a, i, j] is the attentions scores between the i-th embedding at layer l and the

j-th embedding at layer l + 1 of the a-th head such that ∑i Ml [a, i, j] = 1. We average the attentions scores

over all heads to lower the dimension of M: M̃l
def
= 1

A ∑a Ml [a]. We define the baseline attention path as one

where the product of each edge in this path is the maximum possible score among all paths from a given

source to the target.

Definition 9 (Attention-based Pattern). Given a set of attention matrices M̃0, M̃1, ..., M̃L−1, a source

embedding x and the quantity of interest node q, an attention-based pattern Πattn is defined as

Πattn
def
= {x, h1

∗, h2
∗, ..., hL−2

∗ , q}

where

h1
∗, h2
∗, ..., hL−2

∗ = arg max
j1,j2,...,jL−2

P(h1
j1 , h2

j2 , ..., hL−2
jL−2

)

P = M̃0[s, j1]M̃L−1[jL−2, t]
L−2

∏
l=1

M̃0[jl , jl+1]

Abnar and Zuidema [2020] considers an alternative choice M̂l
def
= 0.5I + 0.5M̃l to account for the skip

connection in the attention block where I is an identity matrix to represent the identity transformation in the

skip connection, which we use for GPR in Sec. 3.5, we use M̂l to replace M̃l when returning the attention-

based pattern. Dynamic programming can be applied to find the maximum of the product of attentions scores

and back-trace the optimal nodes at each layer to return h1
∗, h2
∗, ..., hL−2

∗ .

3.4.2 Baseline: Conductance and Internal Influence

We find patterns consisting of nodes that maximizes condutance [Dhamdhere et al., 2018] and internal

influence [Leino et al., 2018] to build baseline methods Πcond and Πinf, respectively. These two measurements

are defined follows:
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Definition 10 (Conductance [Dhamdhere et al., 2018]). Given a model f : Rd → Rn, an input x, a baseline

input xb and a QoI q, the conductance on the output h of a hidden neuron is defined as

cq(x, xb, h) = (x− xb) ◦∑
i

1i ◦Ez∼U [
∂q( f (z))

∂h(z)
∂h(z)

∂zi
] (3.2)

where 1i is a vector of the same shape with x but all elements are 0 except the i-th element is filled with 1.

U := Uniform(xbx).

Definition 11 (Internal Influence [Leino et al., 2018]). Given a model f : Rd → Rn, an input x, a QoI q and

a distribution of interest D, the internal influence on the output h of a hidden neuron is defined as

χq(x, h) = Ez∼D[
∂q( f (z))

∂h(z)
] (3.3)

To build a pattern using the layer-based methods, we select the most influential node in each layer and

concatenate them to form the most influential pattern Πcond and Πinf, respectively.

3.5 Evaluation

Experiments in this section demonstrate our method as a tool for interpreting end-to-end information flow in

BERT. Specific visualizations exemplify these interpretations including the importance of skip connections

and BERT’s encoding of grammatical concepts are included in Section. 3.5.2. Section. 3.5.3 explores the

consistency of patterns across instances and template positions and how they relate to task performances and

influence magnitudes in. Sec 3.5.4 demonstrates two advantages of patterns in explaining the information

flow of BERT over baselines: 1) abstracted patterns, with much fewer nodes compared to the whole model,

carry sufficient information for the prediction. That is, without the information outside the refined pattern,

the model shows no significant performance drop; 2) At the same time, patterns are sparse but concentrated

in BERT’s components. The code for the experiments conducted in this section, including the core GPR

algorithm, is publicly available at https://github.com/caleblu/influence-patterns.

3.5.1 Setup

Tasks. We consider two groups of NLP tasks: (1) subject-word agreement (SVA) and reflexive anaphora

(RA). We explore different forms of sentence stimuli (subtask) within each task: object relative clause
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(Obj.), subject relative clause (Subj.), within sentence complement (WSC), and across prepositional phrase

(APP) in SVA [Marvin and Linzen, 2018]; number agreement (NA) and gender agreement (GA) in RA [Lin

et al., 2019]. Both datasets are evaluated using masked language model (MLM) as is used in Goldberg

[2019]. We sample 1000 sentences from each subtask evenly distributed across different sentence types (e.g.

singular/plural subject & singular/plural intervening noun) with a fixed sentence structure; (2) sentiment

analysis(SA): we use 220 short examples (sentence length≤ 17) from the evaluation set of the 2-class GLUE

SST-2 sentiment analysis dataset [Wang et al., 2018]. For linguistics tasks, example sentences and accuracy

can be found in Table 3.1. First five of the linguistic tasks are sampled from Marvin and Linzen [2018], the

last task is sampled from dataset in Lin et al. [2019], all datasets are constructed as an MLM task according

to Goldberg [2019]). In order to compute quantitative results, we sample sentences with a fixed length from

each subtask.

Models. For linguistic tasks, We evaluate our methods with a pretrained BERT(L = 6, A = 8) [Turc et al.,

2019], referred hereby as BERTSMALL. In Table 3.1, we include the accuracy of a larger BERT model

(BERTBASE) which are comparable in performance with the smaller BERTSMALL. For SST-2 we fine-tuned

on the pretrained BERTBASE [Devlin et al., 2019] with L = 12, A = 12. The models are comparable in sizes

compared to the transformer models used in Abnar and Zuidema [2020].

Implementation of GPR. Let the target node for SVA and RA tasks be the output of the QoI score

q(y) def
= ycorrect − ywrong (similar to the QoI used in Def. 2 of Chapter 2). For instance, yIS − yARE for

the sentence she [MASK] happy. Similarly, we use ypositive − ynegative for sentiment analysis. We

choose an uniform distribution over a linear path from xb to x as the distribution D in Def. 8 where the xb is

chosen as the the input embedding of [MASK] because it can viewed a word with no information, similar to

the QoI used in Def. 3 of Chapter 22. For a given input token xi, we apply GPR differently depending on

the sign of distributional influence g(x; q,D): if g(x; q,D) ≥ 0, we maximize the pattern influence towards

q(y) at each iteration of the GPR otherwise we maximize pattern influence towards −q(y). We use πi as

the extracted patterns for individual input word i. When explaining the whole input sentence, we collect

all refined patterns for each word and use Π =
⋃

i πi. Further, we denote Π+ as the set of patterns for

2Two reasons for using a fixed baseline of [MASK] as opposed to the midpoint in the previous chapter is that (1) we also trace
the influence of other non-noun words so we choose one consistent baseline for all words. (2) The vocabulary of LSTM models does
not contain a neutral word like [MASK].
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Task Type Example
BERT
Small

BERT
Base

SVA

Object
Relative
Clause

SS
the author that the guard likes

[MASK(is/are)] young

1 1
SP 0.92 0.96
PS 0.9 0.98
PP 1 1

Subject
Relative
Clause

SS
the author that likes the guard

[MASK(is/are)] young

1 1
SP 1 0.96
PS 1 0.98
PP 1 1

Within
Sentence
Complement

SS
the mechanic said the author

[MASK(is/are)] young

1 1
SP 1 1
PS 1 1
PP 1 1

Across
Prepositional
Phrase

SS
the author next to the guard

[MASK(is/are)] young

1 0.99
SP 1 0.98
PS 0.98 0.98
PP 1 1

Reflexive
Anaphora

Number
Agreement

SS
the author that the guard likes hurt

[MASK(himself/themselves)]

0.66 0.6
SP 0.66 0.74
PS 0.83 0.83
PP 1 0.96

Gender
Agreement

MM
some wizard who can dress our man
can clean [MASK(himself/herself)]

0.78 1
MF 0.32 0.96
FF 1 0.9
FM 0.8 0.66

Table 3.1: Example of each agreement task and their performance on two BERT models.

all positively influential words. Both terms may be further decorated by a or e to denote attention-level or

embedding-level results. All experiments are done with a Titan V on a machine with 64 GB of RAM and

implemented with tensorflow [Abadi et al., 2015]. On average GPR for attention-level and embedding-level

take around half a minute to run for each instance in SVA and RA, and around 1 min for SA, with 50 batched

samples to approximate influence. The whole quantitative experiment in Section. 3.5.4 across all tasks takes

around 1 days cumulatively.

3.5.2 Visualizing Influence Patterns

This section does not serve as an evaluation but an exploration of insightful results and succinct conclusions

an human user can learn from our proposed technique. We visualize the information flow identified by
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Figure 3.3: (a)(b) Patterns for two instances of SVA-Obj.(c)Baseline pattern Πattn. For each plot:
Left: bar plots of the distributional influence g(xi)(yellow), I(xi, πe

i ) (purple) and I(xi, πa
i ) (blue) (or

I(xi, πbaseline,i)) for each word at position i. Right: Extracted patterns Π from selective words. Square nodes
and circle nodes denote input and internal embeddings, respectively. In (a) and (b), influence flowing through
skip connections is represented by dashed lines and attention heads in solid lines; the edges are are marked
with the corresponding attention head number (ranging from 1 to A) in Πa . Line colors represent the sign of
influence (red as negative and green as positive).

patterns found by GPR, and compare with those generated by the baseline method Πattn.

We first focus on instances of the subtask SVA across object relative clauses (SVA-obj), which are

generated from the template: the SUBJECT that the ATTRACTOR VERB [MASK](is/are)

ADJ.. We observe in Figure 3.3 that the subject words exert positive input influences on the correct choice

of the verb, and the intervening noun (attractor) exerts negative influence, which is true for both I(xi, πe
i )
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Figure 3.4: (a) Patterns on three clausal verbs from SP, SVA-obj.(b) Patterns for two instances in the SA task.
Legend follows Figure 3.3.

and I(xi, πa
i ) (blue and purple bars in Figure 3.3(a) and 3.3(b)). While Πattn(Fig. 3.3(c)) can not distinguish

between positively influential words and negative ones. Our other main findings are discussed as follows.

Finding I: Skip Connection Matters. Horizontal dashed lines in Figure 3.3 indicate that influence can flow

through layers at the same word position via skip connections, which is not isolated as separate nodes Πattn

(shown in Fig. 3.3(c)). Fig. 3.3(a) and 3.3(b) also show that the influence from subject words farmer[s]

travels through skip connections across layers before it transfers into the attention head 5 in the last layer,

indicating the “number information” from the subject embedding flows directly to the output. Interestingly,

this also explains why attentions can be pruned effectively without compromising the performance [Kovaleva

et al., 2019, Michel et al., 2019, Voita et al., 2019] as important information may not flow through attentions

at all. Namely, they are simply “copied” to the next layer through the skip connection. In fact, attention heads

are traversed far less often than skip connections, which account for 75.4% of nodes in Πa across all tasks

evaluated.

Finding II: that as an Attractor. Fig. 3.3(a) and 3.3(b) shows that the singular subject is less influential

than the plural subject, especially when compared to the large negative influence from the attractor. Besides,

the word that behaves like a singular pronoun in the singular subject case (Figure 3.3(b)), flowing through

the same pattern as the subject (skip connections + attention head 5), whereas that is more like a grammatical

marker (relativizer) in the plural subject case (Figure 3.3(a)): the pattern from that converge to the subject

in the second to last layer via a different attention head 1. An explanation to the observed difference is that

that can either be used as a singular pronoun in English, or a marker that encodes the syntactic boundary
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of the clause to help identify the subject and ignore the attractor. This finding reveals that although the

latter one is always the correct usage for that across all instances, BERT may resort to the “easier”(while

ungrammatical) encoding of that as a pronoun when the number happens to be singular.

Finding III: love, hate and like Figure 3.4(a) shows the pattern across three instances containing

different clausal verbs by replacing love in Figure 3.3(b) with like or hate. We observe that hate and

love are more influential, with a distinct and more concentrated pattern compared to that of the word like,

while one comparable to that of the subject or noun attractor. Therefore, hate and love are treated more

like singular nouns than like, contributing positively to the correct prediction of the verb’s number (but for

the wrong grammatical reason). This discrepancy also corroborates different accuracy for instances in the

three subsets: hate: .99; love: 1.0; like: .82. In fact, the number of misclassifications containing like

accounts for more than 33% of all misclassifications in SVA-Obj(SP).

Finding IV: Interactions with not. Two instances of sentiment analysis which BERT classifies correctly

(negative for not good. and positive for not bad.) in Fig. 3.4(b) shows that: 1) in not good., not

and good does not interact internally and not carries much more positive influence than good towards

the correct class (negative sentiment); 2) in not bad., on the contrary, not contributes negatively to the

correctly class (positive sentiment) and bad interacts with the not in an internal layer and exhibit a large

positive influence. This disparity shows the model may treat not as a word with negative sentiment by

default, and only when the subsequent adjective is negative, can it be used as a negation marker to encode the

correct sentiment. Similar polarity of negation cues are also observed in prior works [Chen and Jordan, 2020,

Zhu et al., 2014, Barnes et al., 2021], while influence pattern provides a more precise analytical approach to

surface it.

The asymmetries and oddities of patterns of Finding II to IV show how BERT may use ungrammatical and

conceptually unsound correlations for its predictions (We include more examples of patterns in Appendix 6.3).

However, one may ask, what are the negative implications of these results? If a model is able to learn the

correct correlations for a certain concept as demonstrated by the performances of these tasks, why does it

matter that the model learns a different rule from humans? Our answers to these hypothetical questions is

two-fold: first, a conceptual sound model should always follow the grammatical rules as they are the root

causes for constructing a sentence in a certain way rather than the other; second, although we do not include
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[SEP]
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Figure 3.5: Relationship between Task Performance, Influence Magnitude and Pattern Entropy

counterfactuals evaluation or adversarial examples in this work, we speculate that there exist scenarios where

failing to learn a consistent grammatical rule can cause models to fail on instances outside the training

distribution. We have demonstrated similar findings in the next Chapter (Section. 4.6), through the creation

of adversarial examples leveraging explanations.

3.5.3 Consistency of Patterns Across Instances

The prior section offered examples building connections between information flow and patterns. Since

patterns are computed for each word of each instance individually, a global analysis of consistency/variation

of patterns across instances can help us make deeper insights and make more general conjectures. We quantify

this variation with pattern entropy on the linguistic tasks (SVA & RA) with fixed templates, where for each

instance, each template position are chosen from a group of words. Interpreting the collection of instances, or

template positions, in a task as a distribution, pattern entropy is the entropy of the binary probability that

a node is part of a pattern, averaged over all nodes (minimally this is 0 if all patterns incorporate the exact

same set of nodes). With a node n in graph G, a set of K instances, πk as the pattern of instance k by abuse

of notation and H as the entropy function: pattern entropy of a pattern π is defined as:

Ĥ(π, G) =
∑n∈G H(pn(π))

|G| ; pn(π) =
∑k 1(n ∈ πk)

K

Figure 3.5(a) shows an inverse linear relation between influence magnitude and the pattern entropy of

each template position(πi) in SVA-Obj. For example, the subject position has on average high influence
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magnitude and low pattern entropy, while grammatically unimportant template positions such as [CLS] and

the period token has relatively low influence and high entropy. Note that this fit is not perfect: attractors,

for example, have high influence magnitude but also high entropy’s due to their disparate behaviors among

instances shown in Sec 3.5.2.

Figure 3.5(b) demonstrates a more global inverse relation between the pattern entropy of Π+ and task-

specific performance(average QoI) for 6 linguistic subtasks studied. This indicates that the more consistent a

pattern is for a concept, i.e, the more consistent how a model locates the positively influential signals, the

better the model is at capturing that concept. In both figures, the baseline attention-based patterns (Πattn)

does not indicate this relation. Specially, the patterns computed with attention flows have consistently low

entropy across tasks, indicating they generate similar explanations regardless of how well a task is learned.

Together with Finding II to IV in Sec. 3.5.2, it demonstrates that patterns may offer alternative insights in

formalizing and answering high-level questions such as to what extent does BERT generalize to correct and

consistent grammatical rules or use spurious correlations which varies across instances [McCoy et al., 2019,

2020, Ribeiro et al., 2020]. This observation also relates to recent studies linking explainability to model

robustness: robust models tend to be explainable [Datta et al., 2021], since the more robust a model is, the

less likely it relies on some highly inconsistent and spurious correlations that we do not understand.

3.5.4 Evaluating Influence Patterns

This section serves as a formal evaluation of our proposed methods against existing baselines in tracing

information flows. Except the attention baseline Πattn, Πinf and Πcond defined in Sec. 3.5.2, we also include

the baseline, Πrand, which describes patterns with randomly sampled nodes.

We compare various aspects of extracted patterns against the following baselines, including: (1) ablation

experiments showing how influence patterns account for model performance; (2) the sparsity of the patterns

in the computational graph. Finally, we also discuss the relation between patterns and attention-weights.

Ablation. We extend the commonly-used ablation study for evaluating explanation methods [DeYoung et al.,

2020, Dabkowski and Gal, 2017, Ancona et al., 2018, Leino et al., 2018, Lu et al., 2020b] from input features

to internal patterns as a sanity check of our method. That is, we ablate BERT down to a simpler model: we

only retain the nodes from Πe
+ (or Πa

+) while replacing other nodes by zeros. The retained and replaced
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Patterns
SVA RA

SA
Obj. Subj. WSC APP NA GA

Πe
+(ours) .96 .99 1.0 .96 .98 .99 .97
Πe

rand .55±.017 .60±.014 .55±.016 .55±.016 .55±.015 .56±.014 .52±.030
Πe

attn .61 .55 .49 .63 .56 .65 .47
Πe

cond .93 .91 .88 .90 .71 .95 .94
Πe

inf .66 .71 .50 .56 .68 .50 .49
Πa

+(ours) .70 .62 .56 .65 .78 .89 .86
Πa

rand .50±.010 .50±.008 .50±.009 .50±.011 .50±.011 .50±.008 .49±.022
Πa

repl_skip .50 .58 .54 .52 .55 .50 .48
original .96 1.0 1.0 1.0 .83 .73 .92

Table 3.2: Ablated accuracies of Π+ and baseline patterns, with ∗ ∈ {e, a}, denoting embedding & attention-
level metrics.

Metrics
SVA RA

SA
Obj. Subj. WSC APP NA GA

conc.(Πe
+) .33 .30 .27 .33 .31 .22 .07

conc.(Πe
−) .29 .30 .38 .31 .31 .23 .05

share(Πe
+) .06 .09 .03 .06 .04 .02 .01

conc.(Πa
+) .21 .18 .16 .18 .18 .14 .01

conc.(Πa
−) .17 .16 .25 .15 .17 .15 .01

share(Πa
+)

1.8 1.7 1.6 1.5 1.3 1.3 3e-2
(·10−6)

Alignment Rate .58 .57 .57 .59 .46 .53 .34

Table 3.3: Sparsity metrics; conc.(Π∗±): positive/negative concentration; share(Π∗): path share of pattern
Π∗. , with ∗ ∈ {e, a}, denoting embedding & attention-level metrics.

nodes together are forward passed to the next layer with the original model parameters until a new set of

nodes are retained or replaced. Ablated Accuracy denotes the accuracy of the ablated model. We show the

results for our methods Π∗+ and other baseline patterns Table 3.2. We run Πrand 50 times per task and average

the ablated accuracy, finding with no significant variation.

Each baseline retains the same number of nodes as the corresponding Π+. Although this process seems

to be highly invasive, the model ablated with Π∗+ achieved the highest ablated accuracy uniformly over all

tasks. All baseline patterns except Πe
cond produce random guesses. The relatively higher ablated accuracy of

Πcond is expected: pattern influence (Def. 8) using our settings of D and QoI, with exactly one internal node,

reduces to conductance [Dhamdhere et al., 2018], therefore picking most influential node per layer using

conductance is likely to achieve similar patterns. However, this gap in ablated accuracy between Πcond with

Πe
+, albeit small, shows the utility of the GPR algorithm over a comparable layer-based approach. For the
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attention-level graph Πa, we also add a counterfactual pattern Πa
repl_skip where we replace each skip node

in Πa
+ with its all A corresponding attention heads. However, with much fewer nodes ablated, Πa

repl_skip

still produces random ablated accuracies. This corroborates Finding I in Sec. 3.5.2 that the skip connections

relaying important information directly which attention block cannot replace. In summary, patterns refined

by GPR account for the model’s information flow more sufficiently compared to all baselines.

Sparsity of Patterns. A good explanation should not only account for the model performance, but also

be sparse relative to the entire model semantics so as to be interpretable to humans. In this section, we

quantify the sparsity of extracted patterns using two metrics: path share and concentration. With on average

more than 10 words per sentence, the embedding and attention-level graphs contain at least 106 and 1011

individual paths, respectively. The totality of these paths represent the entire semantics of the BERT model.

Path share(i.e. share(Π∗+)
def
= |γ∗(Π∗+)|/|P∗|), is defined as the number of paths in a pattern over the

total number of paths in the entire computational graph. concentration, on the other hand, is defined as the

proportion of negative/positive pattern influence over the total positive/negative influence. It represents the

average ratio between the blue/purple bars and the orange bars in Figure 3.3.

Table 3.3 shows that the abstracted patterns contain only a small share of paths while accounting for

a large portion of both positive and negative influence. In linguistic tasks, the embedding level abstracted

pattern has a concentration around 0.3 (conc.(Πe
±)), indicating that the input concept flows through single

internal embeddings in each layer, instead of distributed to many words. Zooming in on the attention-level

graph, a relative high concentration conc.(Πa
+), suggests that between the internal embeddings of adjacent

layers, influence is also more concentrated to either one attention head or the skip connection. We speculate

the much lower conc.(Π+) in SA is due to (1) the much larger model for the SA task with more layers and

attention heads (2) sentiment information may be more diverse and complex than the information needed to

encode syntax agreements, therefore input information may flow in a more distributed way. However, despite

low concentration of pattern influence, the extracted patterns for SA are still effective in capturing the model

performance as shown in Table 3.2.

Attention heads in Πa vs. Attention weight value. Another observation is that the attention head nodes

in Πa found by GPR aligns, to greater extent than random (1/|A|), with the head of the largest attention

weight along the corresponding embedding-level edge, as shown by alignment rate in Table 3.3. This partial
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alignment is expected since the Jacobian between two nodes correlates with the coefficients (weights) in

the linear attention mechanism(product rule), while the opposite is also expected since (1) attention weights

themselves are not fixed model parameters thus part of the gradient flow, (2) model components other than

attention blocks come between two adjacent layers (e,g. dense layer & skip connections). In other words,

attention weights are correlated, but not equivalent to gradient-based methods as explanations.

3.6 Related Work

Previous work has shown the encoding of syntactic dependencies such as SVA in RNN Language models

[Linzen et al., 2016, Hupkes et al., 2018, Lakretz et al., 2019, Jumelet et al., 2019]. More extensive work

has since been done on transformer-based architectures such as BERT. Probing classifiers has shown BERT

encodes many types of linguistic knowledge [Elazar et al., 2021, Hewitt and Liang, 2019, Tenney et al.,

2019a,b, Jawahar et al., 2019, Klafka and Ettinger, 2020, Liu et al., 2019a, Lin et al., 2019, Reif et al., 2019,

Hewitt and Manning, 2019]. Goldberg [2019] discovers that SVA and RA in complex clausal structures is

better represented in BERT compared to an RNN model.

A line of related works analyze self-attention weights of BERT [Clark et al., 2019, Vig and Belinkov,

2019, Lin et al., 2019, Ethayarajh and Jurafsky, 2021], where attention heads are found to have direct

correspondences with specific dependency relations. Abnar and Zuidema [2020] and Wu et al. [2020], with

which we compare extensively in this paper, propose using attentions to quantify information flows in BERT.

Attention weights as interpretation devices, however, have been controversial [Serrano and Smith, 2019] and

empirical analysis has shown that attention can be perturbed or pruned while retaining performance [Kovaleva

et al., 2019, Michel et al., 2019, Voita et al., 2019]. Our work demonstrates that attention mechanisms are

only part of the computation graph, with each attention block complemented by other model components

such as dense layer and skip connections; axiomatically justified influence patterns, however, can attribute

to the whole computation graph. The strong influence passing through skip connections also corroborates

the findings of Brunner et al. [2020] which finds input tokens mostly retain their identity. Besides pruning

attentions, other works [Prasanna et al., 2020, Sanh et al., 2019, Jiao et al., 2019] also show that BERT

is overparametrized and can be greatly compressed. Our work to some extent corroborates that point by

pointing to the sparse gradient flow, while employing ablation studies only to verify the sufficiency of the
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extracted patterns.

A closely related and concurrent work [Dong et al., 2021] also shows the importance of skip connections

and dense (MLP) layers by decomposing and analyzing forward-pass computations in self-attention modules.

Our work, in comparison, introduces a gradient-based method that can be generalized to any model as long

as they are differentiable. We also focus on how influential patterns can help us understand information flow

of specific NLP tasks.

3.7 Conclusion

We demonstrated influence patterns for explaining information flow in BERT. We highlighted the importance

of skip connections and BERT’s potentially mishandling of various concepts through visualized patterns.

We inspected the relation between consistency of patterns across instances with model performance and

quantitatively validated pattern’s sufficiency in capturing model performance.
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Chapter 4

Order-sensitive Shapley Values for

Evaluating Conceptual Soundness of NLP

Models

4.1 Introduction

Recent works discover that NLP models are not sensitive to word orders in the same way as humans [Pham

et al., 2021, Sinha et al., 2021a, Clouatre et al., 2021, Alleman et al., 2021, Sinha et al., 2021b]: although

randomly shuffled sentences are often incomprehensible to humans, they result in very small performance

drop for the state-of-the-art Transformer models such as BERT [Devlin et al., 2019], for both syntactic and

semantic classification tasks. The underlying hypothesis behind such insensitivity is that the occurrences or

co-occurrences of words are often sufficient for learning the tasks [Malkin et al., 2021]. However, relying

on such heuristics without word order is not conceptually sound [Parkinson, 2011], i.e. the models fail

to learn the correct linguistic concepts. One aspect of conceptual soundness, which is the focus of this

paper, is order-sensitivity. A model may ignore order-sensitive concepts and thus become susceptible to

adversarial examples. One notable example is HANS [McCoy et al., 2019], which discovers that Natural

Language Inference (NLI) models wrongly predict entailment between hypothesis and premise sentences

with overlapping words but different ordering, such as The doctors visited the lawyers entailing The lawyers
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Sentence: Dogs chase cats.   ❓    Cats chase dogs.
Explanations:
    Occurrence features: 
                         Dogs chase cats.  ❓    Cats chase dogs.
                   Order features:
                         Dogs chase cats.  ❓    Cats chase dogs.

Pred:
Entailment❌

Sentence: The cat that is behind the trees <mask❓> cute.
                   # The cat that is behind the trees <mask❓> cute.
Explanations:
    Order features(absolute): The cat …          
    Order features(relative):  The cat …

Pred:is ✅
Pred:are❌

Figure 4.1: Two examples of Order-sensitive explanations. Two colors represent opposite signs of attributions
while darker shade represents larger magnitude. Top: In an NLI model, attributions to the entailment class are
small and negative for order features (light pink) but large and positive for occurrence features (dark green),
resulting the wrong prediction of entailment between inverted sentences; Bottom: To learn subject verb
agreement: a language model relies on absolute positions of the subject word (larger attribution to absolute
order features than relative ones), resulting in an error when the subject’s position is shifted by prepending
the token #.

visited the doctors. To systemically understand how and to what extent the models capture order information,

a method specially designed to explain sequence orders is needed.

Game theoretic approaches such as Shapley values [Shapley et al., 1953] are widely adopted to explain the

predictions of deep models by assigning influences to features [Strumbelj and Kononenko, 2010, Datta et al.,

2016, Lundberg and Lee, 2017, Sundararajan and Najmi, 2020, Covert et al., 2020]. Prior work applying

Shapley values to textual data or other sequential data, however, treat sequential data as tabular data without

attributing to the order of features in a sequence.

In this work, we propose a new model-agnostic explanation framework, Order-sensitive Shapley

Values (OSV), for attributing to the order of features along with occurrence of features in a sequence.

We propose a mechanism for separating these two groups of features and two modes of intervening on

sequence orders, absolute position and relative order. Most importantly, we show that OSV as an explanation

device can help answer the questions of conceptual soundness of NLP models: does the model learn the

correct order-sensitive syntax, or is the model exploiting mere occurrences of words that are possibly

spurious correlations? We conduct an extensive empirical study applying OSV to synthetic datasets

and several NLP tasks: Natural Language Inference (NLI), Sentiment Analysis (SA) and Subject Verb
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Agreement (SVA). For each task, we demonstrate how OSV is the appropriate explanation device to precisely

diagnose the root cause of spurious correlations by constructing adversarial examples based on the generated

explanations. Two examples of OSV applied to NLI and SVA are shown in Figure 4.1. Our contributions and

findings are summarized below:

• We propose Order-sensitive Shapley Values (OSV) by expanding the standard feature set to include

order features (Section. 4.3.1). Using synthetic data, we show that OSV is more faithful in explaining

model’s behavior than gradient-based methods (Section. 4.5);

• Applying OSV to the HANS dataset [McCoy et al., 2019], we discover that BERT uses only word

occurrences without word orders. Data augmentation [Min et al., 2020] improves accuracy on HANS,

but OSV shows that the augmented model does not fundamentally improve the model’s learning of

order features (Section. 4.6.1);

• We discover that sentiment analysis models, such as BERT, do not learn negation properly: they fail to

capture the correct syntax of negators preceding adjectives. Interestingly, RoBERTa [Liu et al., 2019b]

and StructBERT [Wang et al., 2019] produce more conceptually sound explanations than BERT [Devlin

et al., 2019] (Section. 4.6.2);

• We show that pretrained language models such as BERT rely on the absolute positions of subject words

for capturing long-range Subject-Verb Agreement (Section. 4.6.3).

• In each NLP task, we show how insights drawn from OSV can be exploited to generate adversarial

examples.

4.2 Background

4.2.1 Shapley value as an attribution method

A large group of explanation methods, summarized by Covert et al. [2021], quantify the impact of individual

features (or groups of features) by measuring how removing those features change the outcome of model

predictions. In this paper, we focus on one axiomatic method inspired by coalition game theory, Shapley
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values [Shapley et al., 1953]. Given a set of n players represented by integers N = {0, 1, . . . , n− 1} and a

value function v : 2n 7→ R, the Shapley value of player i is:

ϕv(i) = ∑
S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(
v(S ∪ {i})− v(S)

)
(4.1)

In the machine learning setting, to apply Shapley values for a classification model f with input

features x = {x0, x1, . . . , xn−1}, x are treated as individual players and a function f y(x) : X 7→ R

related to the model output f (x) is treated as the value function. For example, f y(x) can be the output

probability of the predicted class for local explanations [Lundberg and Lee, 2017], a loss function for global

explanations [Covert et al., 2020], or any user-defined function of the output logits [Datta et al., 2016].

Intervention on removed features A distribution g(xS|xS) for intervening on removed features (S = N\S)

is required to compute f y(x) for feature subset xS, The choice of g, however, has been a subject of debate

in recent studies [Chen et al., 2020, Kumar et al., 2020, Catav et al., 2021, Frye et al., 2020, Hase et al.,

2021]. Chen et al. [2020] in particular describes a choice between either conditional or interventional

expectation for g: the former respects the joint distributions of features to explain the data, while the

latter breaks the correlation among features to explain the model. In this paper, we adopt the latter:

specifically, we inspect model’s response to reordered sequences of words that may deviate from the

underlying data distribution, allowing for a thorough understanding of the model’s mechanism of encoding

orders in sequences.

4.3 Method

In this section, we present the extension of Shapley Values (SV) into Order-sensitive Shapley Values (OSV)

by expanding the feature set with order features. Next, we explore the connections between the two and

propose two mechanisms of intervention on order features, attributing to the absolute or relative positions of

elements in a sequence, respectively. Finally, we bridge the axiomatic properties of Shapley Values in the

context of OSV .
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4.3.1 Set Representation of a Sequence

We start by defining a sequence as a set of features. A finite ordered sequence [w] can be represented by a

union of two sets w = x ∪ z where the occurrence feature set x = {x0, x1, . . . , xn−1} and the integer order

feature set z = {z0, z1, . . . , zn−1} = N, with a bijective mapping h : z 7→ x, h(zi) = xi, ∀i ∈ N. The

sequence is simply:

[w]zi = xi, ∀i ∈ N

We use w, x and z to represent sets with ordered assignment of values for elements in otherwise orderless sets

w, x and z: w = (x0, x1, . . . , xn−1, z0, z1, . . . , zn−1) and similarly for x and z. [w] can also be represented

from w by enumerating elements of x indexed by the corresponding elements in z: [w] = πz(x). In the

opposite direction of the mapping, since many combinations of x and z represent the same sequence [w], we

assume by default z = (0, 1, . . . , n− 1) = N when mapping w to w. We use w, w and [w] interchangeably

when referring to the same sequence.

4.3.2 Order-sensitive Shapley Value for Sequential Inputs

A sequence [w] of length n can be treated as a game with 2n players with the feature set w. Attributions to w

measure how important it is for a feature to be present, while attributions to z measure how important it is for

a feature to be in the correct position, they are computed together by plugging in Equation. 4.1:

Definition 12 (Order-sensitive Shapley Value).

ϕz
f y(wi) = ∑

S⊆N′\i

|S|!(2n− |S| − 1)!
(2n)!

m(S) (4.2)

with m(S) = f y(wS∪i)− f y(wS)

f y(wS) = E[ f y(w)|wS]

= EwS|wS
[ f y(wS)]

≈ EzSz |zSz
ExSx |xSx∪zSz

[ f y(x∪ zSz)] (4.3)

≈ Ez∼q(·|zSz )
Ex∼g(·|xSx∪z)[ f y(πz(x))] (4.4)
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where: N′ = {0, 1, . . . , 2n− 1}

Sx = {i|wi ∈ x ∧ i ∈ S}, Sx = N\Sx

Sz = {i− n|wi ∈ z ∧ i ∈ S}, Sz = N\Sz

S ∪ i abbreviates S ∪ {i}. Choices of g is discussed in Section. 4.2.1 and choices of q is to be discussed

in Section. 4.3.3. In Equation. 4.3, we assume features in z are independent from those in x, in other words,

how occurrence features can be ordered into a sequence does not depend on the value of the occurrence

features themselves. In Equation. 4.4, we assume that the intervention of occurrence features is only done

in the context of the original sequence. With these two assumptions, we align OSV with SV through the

following remarks:

Remark 1. when q(·) = N, ϕz reduces to the (order-insensitive) Shapley values ϕ as follows:

ϕz
f y(xi) = ϕ f y(xi), ∀xi ∈ x

ϕz
f y(zi) = 0, ∀zi ∈ z

Proof:

An alternative definition [Datta et al., 2016] for ϕz
f y(i) is:

∀xi ∈ x, ϕz
f y(xi) =

1
(2n)! ∑

σ⊆Π(N′)
mi(σ)

=
1

(2n)!
· (2n)!

n! ∑
σ⊆Π(N)

mi(σ)

=
1
n! ∑

σ⊆Π(N)

mi(S)

= ϕ f y(xi)

where : mi(σ) = m (Pi(σ))

Pi(σ) = {j | σj < σi}

Pi is the set of i’s predecessors in σ. ∀zi ∈ z, according to the dummy axiom, since z is omnipresent,

f y(S ∪ i) = f y(S), so ϕz
f y(zi) = 0, ∀zi ∈ z. Remark 1 states that if we assume the omnipresence of

order features, OSV for order features are all zero and OSV for occurrence features reduce to corresponding

order-insensitive Shapley values (SV).
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Remark 2. If X is the set of intervened sequences used for computing SV, and Z for computing the

corresponding OSV, then Z ⊆ {z|z ∈ Π(x), ∀x ∈ X}. where Π is a function mapping to all permutations

of elements in X: Π(w) = {πz(w) : ∀z}.

Remark 2 stipulates that the space of intervened sequences evaluated for ϕz is encompassed by permutating

those evaluated for the corresponding ϕ. The intervention on order features is therefore orthogonal to the

choice of g, enabling the potential expansion of order features to other framework besides Shapley values,

such as Banzhaf values [Banzhaf III, 1964] or LIME [Ribeiro et al., 2016].

Remark 3. A model f y is completely order-sensitive if f y(wS) = y∅, ∀Sz ̸= N:

ϕz
f y(xi) = ∑

Sx⊆N\i

(|Sx|+ n)!(n− |Sx| − 1)!
(2n)!

m(Sx) (4.5)

= ∑
Sx⊆N\i

p(Sx)
|Sx|!(n− |Sx| − 1)!

n!
m(Sx) (4.6)

where: p(Sx) =
(2n− |Sx| − 1)!n!
(n− |Sx| − 1)!(2n)!

∀zi, ϕz
f y(zi) = ∑

Sx⊆N

|Sx + n|!(n− |Sx| − 1)!
(2n)!

[ f y(xSx)− y∅)]

Remark 3 describes a hypothetical, completely order-sensitive model f y undefined on all reordered

sequences (those that miss any feature from z), thus output a constant (y∅)). For example, the joint

distribution of words in a sentence for most natural languages is so sparse that almost all reordered sentences

are out of distribution. Equation. 4.6 shows the relation between the attribution to ϕz and the corresponding

ϕ: each term in the sum of Equation. 4.1 is reweighted by p(Sx). Attributions to order features (ϕ(z)) are all

equal since missing any order feature results in y∅. For longer sequences, p(Sx) becomes extremely small,

making ϕ(x) negligible compared to ϕ(z). In other words, under a completely order-sensitive model f y, OSV

should be dominated by order features. However, in the real world, neither a human nor an NLP model is

completely order-sensitive. Some tasks inherently tolerate reordered sentences than others: For a sentiment

analysis model, for instance, even though film the good very is is technically not a valid sentence thus no

sentiment shall be assigned, most models (and human) would still justifiably label it with positive sentiment,

while more syntactic tasks such as language modeling should be far more order-sensitive, where model’s

response to incoherent sentences should be more neutral therefore ϕ(z) should be larger. This hypothesis is

confirmed by various NLP tasks evaluated in Section. 4.6.
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4.3.3 Intervention on order features

Assuming the independence of order features from occurrence features, the only missing piece left is to

choose an appropriate q for sampling z ∼ q(·|zSz). A key premise is that any q should guarantee a valid

sequence, i.e, q(·|zSz) = N. We propose the following two q, evaluating two distinctive notions of ordering:

absolute position and relative order.

Definition 13 (Absolute-position order intervention).

qa(·|zSz) = Unif(Π(zSz
); zSz)

For example, for a sequence [w] = (a, b, c, d) and Sx = {0, 1, 2, 3}, Sz = {0, 1}, then qa(·|zSz) =

Unif{(a, b, c, d), (a, b, d, c)}.

Definition 14 (Relative-order order intervention).

qr(·|zSz) = Unif(Π(zr(Sz)
); zr(Sz))

where r(·) does a random non-wrapping shifting of the feature positions for unintervened features.

With the setting of the previous example, qr(·|zSz) = Unif{((a, b, c, d), (c, a, b, d), (c, d, a, b), (a, b, d, c),

(d, a, b, c), (d, c, a, b)}.

We denote OSV computed with qa and qr as ϕa and ϕr, respectively. It is apparent from Def.13 and 14

that Supp(qa) ⊆ Supp(qr). With ϕa, we consider an order feature as important if deviating from its absolute

position cause a large change in f y(x). With ϕr, on the other hand, an order feature is only considered as

important if breaking its relative ordering with other features affects f y(x). For natural language or other

variable-length data, ϕr can help assess if the model captures the order of n-gram features. Similar notions

of shuffling n-gram features have been explored in Sinha et al. [2021a] and Alleman et al. [2021], while

qr summarize all n-gram coalitions and attribute them to individual order features. qa, on the other hand,

follows a stricter and more general notion of order where the position of unintervened order features will not

change. qa may also work well with sequential data with a meaningful starting position such as time-series

data. The difference between qa and qr also functions as a diagnostic tool to see if a model relies on the

absolute position of features when it should not: Section. 4.6.3 explore an NLP example on SVA.
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4.3.4 Axioms of Shapley Values

Note that all axioms of Shapley values [Shapley et al., 1953, Datta et al., 2016] extend to OSV , in this section,

we provide some intuitions on how the feature set expanded with order features can be interpreted in the

context of each axiom. The axiomatic properties of Shapley values are first introduced in Shapley et al.

[1953] and extensively discussed in the context of machine learning in Lundberg and Lee [2017] and Datta

et al. [2016]. Shapley values defined in Equation. 4.1 is the only value satisfying all following axioms. The

names in parenthesis for each axiom are alternative names used in literature.

Symmetry Axiom i, j ∈ N are symmetric if v(S ∪ i) = v(S ∪ j) for all S ⊆ N\i, j. A value ϕ satisfies

symmetry if ϕ(i) = ϕ(j) whenever i and j are symmetric.

Extending to order features, if two order features are symmetric, meaning that their positions are always

interchangeable, then their attributions should equal each other. Though theoretically possible, order features

are unlikely to be symmetric with occurrence features.

Dummy Axiom (Null Effects/Missingness) A player is a dummy or null player if v(S ∪ i) = v(S) for all

S ⊆ N. A value ϕ satisfies the dummy axiom if ϕ(i) = 0 whenever i is a dummy or null player.

An order feature is a dummy: (1) if the model doesn’t care where it is in a model, such as a Bag-of-Words

model; (2) if the order feature is omnipresent as in Remark 1.

Completeness Axiom (Efficiency or Local Accuracy) A value ϕ satisfies completeness if ∑N
i ϕ(i) =

v(N). This axiom is important as it makes Shapley value an attribution value in that it attributes and allocates

the output of the function to individual inputs. With the augmented feature set, the total output is allocated to

both the order features and occurrence features.

Monoticity Axiom (Consistency) A value ϕ satisfies monoticity if m(S, v1) ≥ m(S, v2) for all S implies

that ϕv1(i) ≥ ϕv2(i). The theorem of monoticity states that if one features’ contribution is greater for one

model than another model regardless of all other inputs, that input’s attribution should also be higher. It can

be extended directly to order features.
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Table 4.1: Tasks and performance of LSTM models. Acc.: mean test accuracy for each model over 5 random
seeds, Acc-1: mean test accuracy for [W1].

Ind. Condition for y=1 Acc. Acc-1.

1 Sequence beginning with duplicate 1.00± 0.00 1.00± 0.00
2 Adjacent duplicate in the sequence 1.00± 0.00 1.00± 0.00
3 Any duplicate in the sequence 0.99± 0.00 1.00± 0.00

4.4 Approximating Shapley values

One disadvantage of Shapley value is that it is often computationally intractable, which could be exacerbated

by the doubling of feature size for OSV . However, many approaches have since been proposed to address

this issue such as SampleShapley [Strumbelj and Kononenko, 2010, Datta et al., 2016], SHAP [Lundberg

and Lee, 2017], and DASP [Ancona et al., 2019], all of which are extendable to OSV . In Section. 4.6 and

Section. 4.5, we use OSV as global explanations [Covert et al., 2020] for faster approximation, especially

when we are only interested in overall feature importance.

To make sure that the global explanations truly represent the global contribution of each feature towards

the prediction, we use a convergence factor of t = 0.005 for all global explanations, meaning the variance

of the Shapley value is less than 0.5% of the difference between the maximum and minimum ϕ(i) for all

i (a looser t = 0.01 is sufficient for convergence according to Covert et al. [2020]). For each S, we use a

sample size of 4 for q and a sample size of 5 for g when g samples from templates (total of 20 intervened

sentences per instance per S). We find this setting generates stable explanations for the synthetic data (low

variance in Table 4.3). Moreover, since the stopping condition is based on t and the algorithm for computing

global explanations may iterate through the whole data multiple times to reach that convergence, the actual

sample size of q and g in principle should not matter with a fixed t. We include an comparative analysis of

the computational efficiency between OSV and baseline gradient-based methods in Section. 4.5.

4.5 Synthetic Data Experiment

Since it is often difficult to evaluate the faithfulness [Jacovi and Goldberg, 2020] of an explanation method [Ju

et al., 2021, Zhou et al., 2021], we first experiment with synthetic data where ground truth explanations
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Ind. Condition for y=1 Acc. Acc-1.

1 Begins with duplicate 1.00± .00 1.00± .00
2 Adjacent duplicate 0.98± .00 0.99± .01
3 Any duplicate 1.00± .00 1.00± .00

Table 4.2: Tasks Description and Model performances for Synthetic Data Experiments for transformer models.
Acc. are test accuracies for each model over 5 random seeds, Acc-1 are accuracies for [W1].

are available. Our data and models are inspired by a similar experiment by Lovering et al. [2020]. We will

publicly release the code for this section and Section. 4.6 once the paper is published.

Models and Data We experiment with two model architectures: (1) an RNN with 4-layer LSTM [Hochreiter

and Schmidhuber, 1997] and an MLP with 1 hidden layer and ReLU activation. The embedding dimension E

and hidden size H of LSTM are both 512. (2) a Transformer encoder model [Vaswani et al., 2017] with 2

self-attention layers, 8 attention heads and same E, H and MLP layer as the RNN model. We train 5 randomly

seeded models for three k-length binary sequence classification tasks, with a symbolic vocabulary V of size

200 containing integer symbols (0 · · · |V| − 1) and k = 8. The datasets each contain 400k sequences with a

99/1 split between training and testing. The description of the tasks and performance of the LSTM models

are included in Table 4.1 and those of the Transformer models in Table 4.2. All models have a test accuracy

of at least 98%, ensuring that the models truly generalize to the tasks.

For each model, we compute global Shapley explanations [Covert et al., 2020], both order-insensitive(ϕ)

and order-sensitive(ϕa, ϕr), with a uniform discrete distribution over all symbols for g. We use 5 random

seeds for each explanation to control for the randomness from g and q (total of 25 random seeds per task).

We compute ϕ, ϕa and ϕr on 1000 1-labeled sequences of the test-set of Task 1, [W1]. [W1] satisfies the

condition of “sequence beginning with a duplicate”(ex. [11234567]). We choose f y(x) as the difference

between the predicted probability of the correct class (y = 1) and that of the incorrect class (y = 0), as

used in previous chapters. Similar f y(x) is used in the rest of this chapter. Since the condition of Task 1 is

sufficient for that of Task 2 and Task 3, Model 2 and Model 3 can also accurately classify [W1], as shown by

Acc-1 of Table 4.1.
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((a)) Model 1: Begins with duplicate

((b)) Model 2: Adjacent duplicate

((c)) Model 3: Any duplicate

Figure 4.2: Explanations(ϕa, ϕr and ϕ) of [W1] by three LSTM models solving tasks in Table 4.1. Positive
explanations are green and Negative explanations are pink. Darker shade represents larger magnitude.

Result Figure 4.2 shows explanations of [W1], for three models, respectively. Applying SV which only

attributes to occurrence features x, we obtain identical explanations across three models: x0 and x1 are

equally influential while other features have zero attribution. OSV , on the other hand, faithfully recovers the

importance of sequence order by also attributing to index features z0 and z1 for Model 1 and 2, but not for

Model 3.

Varying q, we observe that qr for Model 1 does not attribute exclusively to z0 and z1 as qa does: z0 and

z1 does not function as a 2-gram feature, as they are only influential in their respective absolute positions.

Instead, the attributions distribute evenly to all order features, as intervening on any order feature almost

always cause [w]0 and [w]1 to change positions. On the other hand, ϕr and ϕa are similar for Model 2, as

[w]0 and [w]1 can be treated as a 2-gram feature, which is influential as long as their relative position is

retained. The results for Transformer models are highly similar to Table 4.1 and Figure 4.2, which is depicted

in Figure 4.3.
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((a)) Model 1: Begins with duplicate

((b)) Model 2: Adjacent duplicate

((c)) Model 3: Any duplicate

Figure 4.3: Explanations(ϕa, ϕr and ϕ) of [W1] by three Transformer models solving tasks in Table 4.2

LSTM Transformer
pa p pa p

ϕa 0.97±0.02 0.99 ±0.01 0.96±0.03 0.99±0.01
ϕr 0.90±0.08 0.99±0.00 0.89±0.08 0.99±0.00
ϕ 0.76±0.16 0.99±0.01 0.76±0.16 0.99±0.01
ϕsaliency - - 0.40±0.54 0.35±0.61
ϕ0

IG - - 0.05±0.36 0.55±0.55
ϕ

p
IG - - 0.12±0.27 0.52±0.61

Table 4.3: Correlations with the ground truth for various explanation methods.

Comparison with baselines Since our paper is the first to define attributions for order features, there are

no model-agnostic baseline methods to directly compare with OSV . However, Transformer models separately

encode orders with positional embeddings and occurrences of words with word/token embeddings [Vaswani

et al., 2017], analogous to order features and occurrence features. As a result, we compare OSV with

three baselines across two gradient-based methods, Saliency map [Simonyan et al., 2013] and Integrated

Gradients (IG) [Sundararajan et al., 2017] by attributing to two embeddings separately. For IG, we use the

zero baseline for the word embeddings and experiment with two baselines for position embeddings: (1) zero
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embeddings (ϕ0
IG); (2) a dynamic baseline (ϕp

IG) which randomly permutes the position ids used to create

position embeddings (equivalent to shuffling a sequence), and iterate through all permutations or until it

converges. For IG, we use 1000 as the number of steps for approximation(the authors of IG recommends 20

to 1000 steps).

To compare the explanations with the ground truth (Ex. [1, 1, 0, 0, 0, 0, 0, 0] for both ϕa(x) and ϕa(z) for

Model 1), we compute two Pearson correlations (1) pa between ϕ, ϕr, ϕa and the ground truth(16 features).

We set the missing ϕ(z) values of ϕ to be zero. (2) p between ϕs and the ground truth, for the occurrence

features(ϕ(x)) alone(8 features). As shown in Table 4.3, explanations using OSV are more accurate to recover

the order-sensitive ground truth (pa) for both LSTM and Transformer models, while retaining the same

accuracy for occurrence features (p). Neither ϕ0
IG and ϕ

p
IG recovers attributions to both features or even to

the occurrence features.

There are three potential reasons for the poor faithfulness of gradient-based methods, especially IG,

for attributing to position embeddings: (1) Intervention using gradients such as ϕsaliency is not a faithful

intervention for “removing order features”; (2) Despite axiomatic properties of IG, a fixed baseline for

positional embeddings result in invalid sequences while the dynamically permutated baseline does not easily

converge; (3) Both IG baselines intervene continuously on the sparse positional embeddings space, resulting

in potentially invalid sequence representations. Most importantly, not all models explicitly encode order

features as positional embeddings, making IG fundamentally inapplicable for non-Transformer models such

as RNN. In comparison, OSV is model agnostic.

Computational Efficiency Table 4.4 shows the average number of evaluations (number of intervened

instances) per instance for computing global explanations shown in Figure 4.2 and 4.3. For sequences of

length 8, ϕz needs less than 8 times more evaluation for convergence, which is comparably much slower

than SV . However, considering SV disregards order features altogether, while IG with positional embeddings

requires at least 1000 evaluations per instance and still fail to recover the true attributions to order features,

OSV offers a reasonable middle ground. In this paper, we look at applications with shorter input length

(around 10 to 20 words per input), and all experiments finish with a reasonable amount of time even with the

tight convergence setting. For example, on average, each template in Section. 4.6.1 takes around 5 min.
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LSTM Transformer

ϕa 2425 2299
ϕr 2485 2445
ϕ 330 331

Table 4.4: Average (across 25 seeds) number of evaluations per instance for synthetic experiments

4.6 Natural Language Experiment

In this section we apply OSV to a variety of natural language tasks. Specially, we show how OSV offers

richer and deeper insights in explaining models’ behavior compared to prior methods such as SV , and how

order-insensitivity shown by OSV precisely uncovers model’s weakness to potential adversarial manipulations.

4.6.1 Hans

Models and Data HANS Challenge set [McCoy et al., 2019] is constructed to test the syntactic understanding

of NLI models against spurious heuristics of overlapping words between the premise and the hypothesis

sentences. For example, the sentence The doctors visited the lawyers should not entail The lawyers visited the

doctors even though they contain the same words. While BERT fine-tuned on the MNLI corpus [Williams

et al., 2018] achieves high accuracy on its test set, its accuracy on the non-entailment subset of HANS is less

than 20%. To understand the role of word order play in a task such as NLI, we apply OSV to the original

BERT model fine-tuned on MNLI, Mori and two models designed to be robust against HANS dataset:

• Maug using data augmentation. Min et al. [2020] augments the training dataset of MNLI with instances

in the form of “ A ̸→ inverted A”, such as This small collection contains 16 El Grecos ̸→ 16 El Grecos

contain this small collection, where A are the hypothesis sentences of the original MNLI corpus. Maug

scores 67% on HANS.

• M f or using BoW Forgettables. Yaghoobzadeh et al. [2021] retrains BERT on instances unlearnable

by a simple Bag-of-Words model. It enables the model to focus on “forgettable examples” which

interestingly contains instances with the same heuristics as those targeted by HANS. M f or scores 72%

on HANS.
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∑i ϕ(xi) ∑i ϕ(zi) Acc-HANS Acc-HANS*

Mori 1.01 -0.60 0.58 1.00
Maug 0.36(↓0.65) -0.58(↑0.02) 0.67 0.64
M f or 0.37(↓0.64) -0.69(↓0.09) 0.72 0.94

Table 4.5: Global Statistics across all templates and accuracy on HANS & HANS*

Both models have exactly the same architecture (BERT-Base [Devlin et al., 2019]) as Mori, and neither

makes use of secondary datasets including HANS itself, making their explanations more comparable. For the

original model, we use models available from the Huggingface [Wolf et al., 2019] repository and fine-tuned

each model with 3 epochs using the default parameters of HuggingFace Trainer class. We use the official

implementation of Maug
1 and M f or

2. We do not make extensive efforts to tune the hyperparameters since the

goal of this paper is not to use the best models but to show the utility of an explanation device. Similar to

Section. 4.5, we compute global explanations for all sentences of a same template, for all templates used to

construct HANS, and intervene with a discrete uniform distribution of words at each template position.

Results Figure 4.4 shows explanations and accuracy for instances with template The [Noun A] [Verb] the

[Noun B] ?−→ The [Noun B] [Verb] the [Noun A], for three studied models, respectively. In the original model,

we observe that the overlapping nouns exert large positive attributions (ϕ(x)), driving the model towards the

wrong direction of predicting entailment. Meanwhile, the small negative attributions from the order features

(ϕ(z)) are insufficient to counteract ϕ(x). In Maug which scores 100% on this template, we observe that ϕ(x)

shifts to negative, while ϕ(z) remains the same: the model pays no more attention to word orders compared to

Mori, other than simply reducing the correlations between overlapping words and entailment by shifting the

decision boundary. In contrast, M f or produces more conceptually sound explanations: ϕ(z) almost doubles,

while ϕ(x) is still positive, albeit smaller in magnitude. However, SV shows no such distinctions: both

Maug and M f or produces identical explanations, which may be misconstrued as both models successfully

overcoming the spurious correlations.

We demonstrate more general quantitative result in Table 4.5, by computing the sum of ϕ(x) and ϕ(z)

averaged across all non-entailment-labeled templates: while both M f or and Maug suppress the effect of the

1https://github.com/Aatlantise/syntactic-augmentation-nli
2https://github.com/sordonia/hans-forgetting
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Figure 4.4: Global explanations for instances with a template of HANS where nouns are swapped between
the premise and the hypothesis, and the ground truth is non-entailment. Features suffixed by (x) and (z)
are occurrence features and order features, respectively. Words in brackets ([]) are one example filling in
variable template positions. Attributions are computed for f y(x) = pentailment − pnon−entailment, so positive
attribution values indicate the features drive the model towards entailment while negative values indicates the
features drive the model towards non-entailment. For easier visualization, attributions of the are combined
with that of the following nouns.

overlapping words, M f or sees a sizable (15%) decrease of ϕ(z) in contrast to Maug, which even increases a

little. More result are included in Appendix 7.1.

In contrast to standard SV explanations, OSV shows that the more conceptually sound model

M f or recognizes the difference in word orders between the premise and hypothesis as an indicator of

non-entailment, while shifting of decision boundary without the true learning of order in Maug may

lead to overfitting [Lu et al., 2020c, Jha et al., 2020] and catastrophic forgetting [Kirkpatrick et al.,

2017]. To test this hypothesis, we create a simple “adversarial” dataset, HANS*, by replacing the hypothesis
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Dataset DistilBERT BERT RoBERTa StructBERT

REG 1.0 1.0 1.0 1.0
NEG 0.99 1.0 1.0 1.0
REG*(+) 0.85 0.85 1.0 1.0
REG*(-) 0.96 0.91 0.99 1.0
REG*,(+) 0.96 0.99 1.0 1.0
REG*,(-) 1.0 1.0 1.0 1.0
REG*B(+) 0.99 1.0 1.0 1.0
REG*B(-) 1.0 1.0 1.0 1.0

Table 4.6: Model performances of sentiment analysis for various datasets.
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Figure 4.5: Explanations for two example sentences with negation across four models with f y(x) =
ppositive − pnegative. ϕa(x) and ϕa(z) are attributions to occurrence and order features, respectively.

in HANS with the same sentences as the premise, effectively creating instances such as The doctors visited

the lawyers. ?−→ The doctors visited the lawyers., for which the ground truth is always entailment. According

to Table 4.5, Mori scores 100% and M f or maintains a high accuracy of 94% on HANS*, while Maug scores

only 64%, corroborating the overfitting hypothesis.
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4.6.2 Negation in Sentiment Analysis

Previous works find that word order hardly matters to Transformer-based sentiment analysis models. Mostly

notably, Pham et al. [2021] discovers that “more than 60% of instances can be correctly predicted by the top-1

salient word.” As a result, we focus on one syntactical relation that is both order-sensitive and essential for

classifying sentiment: negation. In particular, we look at the construct of negation cues (ex. no, not, never)

preceding an argument word/phrase (not good or not a good movie). Order is important in these constructs:

for instance, not should only reverse the sentiment when directly preceding an argument.

Models and Data We evaluate four models, DistilBERT [Sanh et al., 2019], BERT-Base [Devlin et al.,

2019], RoBERTa [Liu et al., 2019b], and StructBERT [Wang et al., 2019]. For StructBERT [Wang et al.,

2019] and M f orof Section. 4.6.1, we use the implementation from the official repository3. All other models

are trained on 2-class GLUE SST-2 sentiment analysis dataset [Wang et al., 2018] using the Huggingface

API [Wolf et al., 2019]. Due to the lack of instances in SST-2 with the targeted negation construct, we

construct a simple synthetic dataset to surgically evaluate the model’s learning of negation. A total of 3072

sentences such as those in Figure 4.5 are generated from the template [Det(The)] [Noun(movie)] [Verb(is)]

[NEG/REG] [Adjective(good)][(Punc).] where [REG/NEG] is evenly distributed between negation cues

(ex.not) and regular adverbs (ex.very) or blank. The adjectives are evenly distributed between common

positive and negative sentiment adjectives(See Appendix 7.2 for more details). All models perform really

well on both the regular (REG) and negated (NEG) half of the dataset, as shown by the first two rows of

Table 4.6.

Results Figure 4.5 shows local OSV(ϕa) with marginal intervention with a single token [MASK], for all

four models on two example instances. We observe an interesting distinction between the two: High ϕ(z)

compared to ϕ(x) on not and bad across all models in Figure 4.5(c) indicates that it is essential for not to

precede bad to correctly reverse the sentiment. However ϕ(z) on not good (Figure 4.5(a)), is comparably

smaller in magnitude for all models, particularly for DistilBERT and BERT, where the attributions to order

features are negligible. This discrepancy is mostly likely caused by the inherent polarity of the word not,

hence models do not have to encode order for negating positive adjectives while order is essential for negating

3https://github.com/alibaba/AliceMind
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SVA-Obj SVA-Subj
∆ϕz

su Acc.* Acc. ∆ϕz
su Acc.* Acc.

DistilBERT .04 .86(↓.05) .91 .12 .79(↓.14) .92
BERT-B -.03 .93(↓.00) .93 .11 .94(↓.04) .99
BERT-L -.05 .81(↓.00) .81 .09 .92(↓.04) .96

RoBERTa -.04 .71(↓.00) .71 .09 .64(↓.08) .72

Table 4.7: Absolute-relative order discrepancy and Model performances for SVA.

negative adjectives. Similar polarity of negation cues has been discovered in Section. 3.5.2 of Chapter 3. One

possible reason for the model-wise difference is that RoBERTa and StructBERT benefit from their improved

training procedures over BERT/DistilBERT. StructBERT, for example, is specially designed to be sensitive to

word orders during pretraining.

To demonstrate the potential weakness of such order insensitivity of BERT and DistilBERT, we construct

an adversarial dataset (REG*) by appending one of five neutral phrases containing negation words(not as

expected, not like the other, not gonna lie, never gonna lie, never as expected), to the end of sentences of

REG, effectively creating sentences such as The movie is good not gonna lie, which happens to contain

the flipped negation construct(good not) and not in this context should not convey any sentiment. This

dataset of size 7680 is evenly distributed between negative and positive sentiments. The result is shown in

Table 4.6. Mirroring the difference in order-sensitivity shown by ϕ(z), DistilBERT and BERT both suffer

a 15% decrease for sentences with positive sentiments (REG*(+)) while the accuracy is either unchanged

for RoBERTa and StructBERT, or decreases slightly for sentences with negative sentiments (REG*(-)) for

all models. To further ensure the drop is not merely caused by the inherent negative sentiment of the word

not (apart from the same ϕ(x) for not in Figure 4.5(a)), we test two alternative datasets: (1) REG*, inserts

a comma between the appended phrase and the original sentences, ex.: The movie is good, not gonna lie.

(2) REG*B appends the phrases to the beginning of the sentences instead. Interestingly, all four models are

robust to both alternatives. This distinction implies that the models are capable of disregarding the added

phrases if negation cues are not directly proximate to the adjective. OSV, unlike SV, effectively surfaces

local order-insensitivity in the negation construct, which is validated by BERT & DistilBERT’s failure

on REG*(+).
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((a)) SVA: across Object Relative Clause

((b)) SVA: across Subject Relative Clauses

Figure 4.6: Global explanations for two SVA tasks for DistilBERT. Words in brackets ([]) are one example
filling in variable template positions. Features suffixed by (z) are order features. f y(x) = pcorrect_verb −
pincorrect_verb. Positive attributions are in green and negative in pink. Darker shade represents larger attribution
magnitude.

4.6.3 Subject-Verb Agreement(SVA)

While fine-tuned classification models may not learn word order because they don’t have to, a pretrained

language model should, in theory, be more sensitive to order, especially when evaluated on syntactic tasks

such as Subject-Verb Agreement. The task of SVA evaluates whether a language model prefers the correct

verb form to match with the subject. For example, a pretrained masked language model should assign higher

probability to is over are for the sentence The cat <mask> cute.

How language models learn SVA is widely studied in prior works [Linzen et al., 2016, Lu et al., 2020b,

Wei et al., 2021]. In this section, we focus on two complicated long-range formulations of SVA where

Transformers excel over simple RNN models [Goldberg, 2019]: SVA across subject relative clauses (SVA-

subj) and SVA across object relative clauses (SVA-obj). For example, test instances for SVA-obj are generated

from the template: the [Subject] that the [Attractor] [Verb] <mask?(is/are)> [Adjective].(ex.Figure 4.6(a)).

A language model needs to correctly parse the sentence to identify the true subject. In particular, when

Attractor is of an opposite number to the Subject, a model that fails to parse the sentence will be distracted

by the more proximate attractor. Prior works find that Transformer models succeed in long-range SVA and

overcome such distraction because they learn composite syntactic structures [Jawahar et al., 2019, Hewitt and

Manning, 2019].

Models and Data We use dataset from Marvin and Linzen [2018] and the cloze-style set up used in Goldberg

[2019]. Specifically, we look at sentences with oppositely numbered attractors. We evaluate four pretrained
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langauge models: DistilBERT [Sanh et al., 2019], BERT-Base & BERT-Large [Devlin et al., 2019], and

RoBERTa [Liu et al., 2019b]. All MLM models are directly sourced from the Huggingface API [Wolf et al.,

2019]. The accuracy of each task is found in Table 4.7, where all models perform quite well except for

RoBERTa, which still scores more than 70%.

Result Figure 4.6 show the global explanations for SVA-Obj and SVA-Subj with f y(x) = pcorrect_verb −

pincorrect_verb and the same g as Section. 4.6.1. We observe that the subject word exerts positive attribution on

the correct choice of the verb, and the intervening noun (attractor) exerts negative attribution. In contrast to

fine-tuned classification models such as NLI and SST, attributions to order features are high: they are indeed

more important for syntactical tasks. Zooming in on the explanations, we obtain two other findings:

First, we observe that the relativizer word that is important as an order feature, but not as an occurrence

feature. In other words, in order to predict the correct verb form, that itself may not contain the number

signal, nevertheless it is regarded by the language model as an essential syntactic boundary.

Second, there is a big difference (∆ϕz
su) between ϕa and ϕr for the subject word in SVA-Subj., but not for

SVA-Obj., i.e, the model seems to rely on absolute position of the subject word in SVA-Obj. much more than

the relative position of the subject word. ϕa of the attractor is also much more negative than ϕr, indicating the

model is distracted by the proximity of the attractor words (along with their occurrences). These distinctions

point to a hypothesis that even though they contain exactly the same words, the model parses SVA-Obj. better

than SVA-Subj., most likely due to the proximity of the attractor with <mask> in SVA-Subj. The higher

accuracies of SVA-Obj. may be attributed to the models’ reliance on the absolute position of the subject

words in the beginning of sentences, surfaced by the two modes of intervention on order features(qa

& qr in Section. 4.3.3). Without attributing to order features, however, SV cannot uncover this subtle

discrepancy.

To test this hypothesis, we create a simple adversarial set by prepending each of 23 punctuation and

symbols4 such as “.” or <unk> to the beginning of sentences and see if such shifting of the subject from

its absolute position impact the predictions. In Table 4.7, Acc* shows all models suffer more from this

adversarial perturbation for SVA-Subj than SVA-Obj, mirroring the distinction from ∆ϕz
su. This indicates that

the models’ learning of long-range SVA is not always conceptually sound, as is in the case of SVA-Subj..

4!"#&’*+,−./:<=>?@^_|~;<unk>
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4.7 Related Work and Discussion

Recent works [Pham et al., 2021, Sinha et al., 2021a, Clouatre et al., 2021, Alleman et al., 2021, Sinha et al.,

2021b, Gupta et al., 2021] show NLP models’ insensitivity to word orders. Our work corroborates such

insensitivity by showing often insignificant attributions to order features in classification models. Meanwhile,

a systematic explanation device such as OSV offers more precise and measurable attributiosn to the importance

of order.

Shapley Values [Shapley et al., 1953] is widely adopted as an model-agnostic explanation method [Strumbelj

and Kononenko, 2010, Datta et al., 2016, Lundberg and Lee, 2017, Sundararajan and Najmi, 2020, Covert

et al., 2020] and also applied to explain text classification models [Chen and Jordan, 2020, Zhang et al.,

2021, Chen et al., 2018]. However, the explanation power of these methods is limited by treating text data as

tabular data. OSV , as demonstrated by numerous examples, allows us inspect the effect of “word occurrences”

along side the effect of “word orders”. As order sensitivity is an essential metric of conceptual soundness,

explanations incorporating order are more faithful in reflecting the true behavior of models.

We believe that explanations should not only function as a verification for plausibility [Jacovi and

Goldberg, 2020], but also as a tool for diagnosing conceptual soundness. Instead of confirming the human

understanding or the correct linguistic rules, explanations are equally, if not more, insightful when

deviating from them. One popular approach to surface such deviation is adversarial examples [Zhang

et al., 2020], and many algorithms for finding them in NLP tasks [Cheng et al., 2020, Ebrahimi et al., 2018,

Wallace et al., 2019] use gradient-based attributions such as saliency maps to guide adversarial perturbations.

However, the use of orderless explanations is limited to local perturbations, such as swapping words into

their synonyms. To allow for broader and non-local testing of model robustness, challenge datasets [Belinkov

et al., 2017, Ribeiro et al., 2020, Wu et al., 2021, McCoy et al., 2019, Naik et al., 2018] are constructed to

stress test NLP models. These tests are becoming more crucial in designing and evaluating the conceptual

soundness and robustness of NLP models beyond benchmark performances. However, rarely is the creation of

those datasets guided by explanations methods, making it difficult to systematically and deductively discover

non-local adversarial examples. In this paper, we show an initial attempt to bridge the gap between the two:

we show that OSV not only informs on which, but how adversarial perturbations break models, enabling

a deeper understanding of model weaknesses than orderless explanations. More broadly, the findings in
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Section. 4.6 echos Lovering et al. [2020] and Mangalam and Prabhu [2019], which discover that models learn

“easier features”(e.g. occurrence features in HANS, not in SA and absolute order features in SVA) before

learning “harder features” that may actually be the conceptually sound ones.

4.8 Conclusion

We propose OSV for explaining word orders of NLP models. We show how OSV is an essential extension of

Shapley values and introduce two mechanisms for intervening on word orders. We highlight how OSV can

precisely pinpoint if, where and how a model uses word order. Using adversarial examples guided by OSV ,

we demonstrate how order insensitivity, harmless as it seems, result in conceptually unsound models.

68



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we use explanations to understand and evaluate NLP models and applications. Our approaches

explore two essential directions: how information flows from input to output in sequence models, and

how word orders influence the predictions of textual data. We explore both discrete Shapley values and

gradient-based explainability frameworks and propose essential extensions within frameworks for explaining

NLP data and model architectures. We make sure our explanations are faithful to the models true behavior,

efficient in computation, and interpretable and succinct in its presentation to potential end users.

These explanations serve to enhance deeper understanding of NLP models and surface conceptual

unsoundness issues in capturing grammatical, syntactic or semantic concepts. For example, we discover that

neither RNN nor Transformer models learn the full scope of syntactic structures necessary for long-range

agreement tasks, or the order-sensitive features to overcome the spurious correlations in HANS, a challenge

set for natural language inference.

Our generated explanations and insights pave way for future research effort to address these weaknesses

or to uncover more, to apply and expand the proposed frameworks for future applications, and to inspire the

building of reliable, transparent and robust models.
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5.2 Future Work

In this section, we discuss three directions for future work. First, we can create more faithful and interpretable

explanations for more complicated NLP concepts and applications; Second, we can use explanations to

inform and guide model improvements for NLP applications; third, we can leverage explainability research

in NLP to make real and tangible social impacts and to address outstanding ethical issues.

5.2.1 More Faithful Explanations for NLP

Distributed representations The generated explanations in Chapter 2 and 3 described highly concentrated

and sparse abstractions such as a singular path with two neurons for capturing SVA in RNN models. However,

we speculate that some concepts may require distributed, compositive or interactive representations. Although

our methods can be potentially extended to account for the trade off between sparsity and faithfulness such

as including more nodes per layer in the GPR algorithm (Section. 3.3), more sophisticated abstraction and

interpretation mechanisms may be required to explain more complicated linguistic concepts.

Intrinstic interpretability In contrast to post-hoc analysis, recent works have began to explore mechanistic

interpretability which aims to reverse engineer the detailed computations of each model component, especially

attention modules [Chiang and Cholak, 2022, Weiss et al., 2021, Kim et al., 2021, Elhage et al., 2021].

In addition, representational capacities of LSTM and attention modules are studied in the context of

approximating finite state machines [Ross et al., 2021] or learning formal languages [Bhattamishra et al.,

2020]. In both categories of intrinsic approaches, explainability comes a priori: if one proactively understands

how and to what extent a given model architecture and parameters operate even before plugging in the training

data, then the model is intrinsically interpretable.

Exciting and promising as this research direction is, intrinsic approaches have yet completely incorporated

the training dynamics of natural language models, especially for pretrained transformer models which are

often trained on large text corpus. Thus a complementary post-hoc analysis may still be necessary to analyze

real-world models until we completely decipher the whole training pipeline from static model architectures

to learning dynamics.

Similar argument can be made for explainability methods that explains the data rather than the model,
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including tracing influence back to the training data [Yeh et al., 2018, Koh and Liang, 2017, Guo et al.,

2021], or explanation through counterfactual examples [Ross et al., 2021, Wu et al., 2021, Jacovi et al., 2021].

However, it is often equally important to directly surface and address the conceptual soundness issues hidden

in the training data such as spurious correlations [Lovering et al., 2020] or distribution shift [Michel, 2021].

5.2.2 From explanations to model improvement

Sparse or distilled models As transformer models evolve in size to the scale of trillions of parameters [Fedus

et al., 2021], so does environmental cost of training, maintaining and deploying them. In Chapter 2 and 3,

we discovered that many linguistic concepts are sparsely encoded in both RNN and Transformer models,

which brings up the question, can we construct equivalent but much smaller models without compromising

utility? Recent work on compressing Transformer models employ optimization techniques such as model

distillation [Hinton et al., Tsai et al., 2019, Prasanna et al., 2020, Sanh et al., 2019, Jiao et al., 2019] or sparse

attention modules [Zaheer et al., 2020, Wang et al., 2020a, Tay et al., 2020, Child et al., 2019]. However,

how to use model abstractions generated from explanations to inform on more systematic training of smaller

models in the first place remains an exciting direction for future work.

Training robust NLP models A natural next step from this thesis is to tackle the various model weaknesses

and conceptual unsoundness uncovered by our explanations. The analysis in Section. 4.6.2 of Chapter 4 on

StructBERT [Wang et al., 2019], for instance, surfaced how explanations justify certain modeling choices:

training with order-sensitivity in StructBERT indeed facilitates order sensitivity for downstream applications.

However, what remains to be an essential path forward for further work is to make more tangible connections

between explainability and robustness in NLP. Such connections have already been explored in image

data [Datta et al., 2021, Wang et al., 2020b], where robust models are found to generate more interpretable

explanations. However, due to discrete input space and more nuanced, non-local definitions of robustness

(HANS example in Section. 4.6.1 of Chapter 4), similar connections have yet to be established in a meaningful

way.
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5.3 Social Impacts of NLP

In this paper, we focus on conceptual unsoundness issues in low-stake settings. However, as NLP is applied

for real-world applications such as hiring decisions [Raghavan et al., 2020], there is a stronger call for

NLP models to become accountable, explainable and fair. Most importantly, many ethical concerns such as

gender or racial bias [Lu et al., 2020c, Blodgett et al., 2020, Font and Costa-jussà, 2019, Zhao et al., 2019,

Manzini et al., 2019, May et al., 2019] and privacy [Carlini et al., 2021] have been brought to attention,

often uncorrelated with their benchmark performances. Going forward, how explainability methods can help

uncover and address these issues in real-world high-stake decision-systems, and how explanations can be

presented efficiently and effectively to end users should be valued equally to generating faithful and accurate

explanations themselves.
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Chapter 6

Appendices for Influence Patterns for

Explaining Transformer Models

6.1 Proof of Proposition 1

Proposition 1 (Chain Rule) I(x, π) = Ez∼D(x) ∏−1
i=1

∂πi(z)
∂πi−1(z)

for any distribution D(x).

We first show that for a pattern π = [π1, π1, ..., πk, ..., πn] the following equation holds:

∂πn

∂π1
=

∂πn

∂πk

∂πk

∂π1
(6.1)

Proof: Let γ(π1 → πn) be a set of paths that the pattern π abstracts. Therefore, we have

∂πn

∂π1
= ∑

p∈γ(π1→πn)

−1

∏
i=1

∂pi

∂pi−1
(6.2)

Similarly, we have

∂πk

∂π1
= ∑

p∈γ(π1→πk)

−1

∏
i=1

∂pi

∂pi−1
,

∂πn

∂πk
= ∑

p∈γ(πk→πn)

−1

∏
i=1

∂pi

∂pi−1
(6.3)

Suppose |γ(π1 → πk)| = N1, |γ(πk → πn)| = N2 and we denote ∏−1
i=1

∂p(j)
i

∂pi−1
as path gradient flowing

from the path j. Therefore,
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∂πn

∂π1
= ∑

p∈γ(π1→πn)

−1

∏
i=1

∂pi

∂pi−1
(6.4)

=
−1

∏
i=k

∂p(1)i
∂pi−1

·
k

∏
i=1

∂p(1)i
∂pi−1

+
−1

∏
i=k

∂p(1)i
∂pi−1

·
k

∏
i=1

∂p(2)i
∂pi−1

+ ... +
−1

∏
i=k

∂p(1)i
∂pi−1

·
k

∏
i=1

∂p(N1)
i

∂pi−1
(6.5)

+
−1

∏
i=k

∂p(2)i
∂pi−1

·
k

∏
i=1

∂p(1)i
∂pi−1

+
−1

∏
i=k

∂p(2)i
∂pi−1

·
k

∏
i=1

∂p(2)i
∂pi−1

+ ... +
−1

∏
i=k

∂p(2)i
∂pi−1

·
k

∏
i=1

∂p(N1)
i

∂pi−1
(6.6)

+ ... (6.7)

+
−1

∏
i=k

∂p(N2)
i

∂pi−1
·

k

∏
i=1

∂p(1)i
∂pi−1

+
−1

∏
i=k

∂p(N2)
i

∂pi−1
·

k

∏
i=1

∂p(2)i
∂pi−1

+ ... +
−1

∏
i=k

∂p(N2)
i

∂pi−1
·

k

∏
i=1

∂p(N1)
i

∂pi−1
(6.8)

=
N2

∑
j
(
−1

∏
i=k

∂p(j)
i

∂pi−1
·

N1

∑
m

k

∏
i=1

∂p(m)
i

∂pi−1
) (6.9)

=
N2

∑
j
(
−1

∏
i=k

∂p(j)
i

∂pi−1
) ·

N1

∑
m
(

k

∏
i=1

∂p(m)
i

∂pi−1
) (6.10)

= ∑
p∈γ(π1→πk)

−1

∏
i=1

∂pi

∂pi−1
· ∑

p∈γ(πk→πn)

−1

∏
i=1

∂pi

∂pi−1
(6.11)

=
∂πn

∂πk

∂πk

∂π1
(6.12)

Now we prove Proposition 1.

I(x, π) = ∑
p∈γ(π)

Ez∼D(x)

−1

∏
i=1

∂pi(z)
∂pi−1(z)

(6.13)

= Ez∼D(x) ∑
p∈γ(π)

−1

∏
i=1

∂pi(z)
∂pi−1(z)

(6.14)

= Ez∼D(x)

−1

∏
i=1

∂πi(z)
∂πi−1(z)

(6.15)

6.2 Guided Pattern Refinement

6.2.1 Optimality of GPR

The definition of pattern influence does not allow for polynomial-time searching algorithms such as dynamic

programming. (Such an algorithm is possible for simple gradients/saliency maps but not for integrated

gradients due to the expectation sum over the multiplication of Jacobians along all edges). As for the
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optimality of the polynomial-time greedy algorithm, we hereby include a statistical analysis by randomly

sampling 1000 alternative patterns for 100 word patterns in the SVA-obj task and sentiment analysis task

(SST2). We also performed a t-test with the null hypothesis of a random pattern larger or equal than the

pattern computed using GPR. The pattern influence of those random paths shows that the patterns extracted

GPR are (1) more influential than 999.96 and 1000 (all) random patterns, averaged across all 100 word

patterns evaluated for embedding-level attention-level patterns, respectively for SVA-obj; the same holds for

sentiment analysis (1000 and 1000); (2) The extracted pattern influences are statistically significant assuming

all randomly sampled patterns’ influences follow a normal distribution, with p = 2e−10 for and p = 0 for

embedding-level and attention-level patterns, respectively for SVA-obj; the same holds for sentiment analysis

(p = 0 for and p = 0). In other words, the pattern influence values are far more significant than a random

pattern, also confirmed by the high concentration values shown in Section. 3.5.4.

6.3 More Visualizations of Patterns

6.3.1 Example Visualizations

Figure 6.1, 6.2, 6.3 shows similar attractor examples from Figure 3.3(a) and 3.3(b), in three other evaluated

subtask: SVA-Subj, SVA-APP, RA-NA. We observe similar discrepancies between SP and PS within each

subtask, with that, and across and that functioning as attractors, respectively. Figure 6.4 through 6.8

show example patterns of actual sentences in the SST-2 dataset.
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[SEP]
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((b)) SVA-Subj, SP case

Figure 6.1: Examples of SVA-Subj
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[SEP]
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((b)) SVA-APP, SP case

Figure 6.2: Examples of SVA-APP

[CLS]
the

customers
that
the

skater
loves

injured
[MASK]

.
[SEP]

3

5

4

7

4

5

5

2

5

−1 0 1

pos, skip
pos, attn
neg, skip
neg, attn

((a)) RA-NA, PS case

[CLS]
the

customer
that
the

skaters
love

injured
[MASK]

.
[SEP]

5
3

5

8

−2 −1 0 1

pos, skip
pos, attn
neg, skip
neg, attn

((b)) RA-NA, SP case

Figure 6.3: Examples of RA-NA

6.3.2 Aggregated Visualizations

In this section, we show the aggregated visualization (Fig. 6.9 and 6.10 ) across all examples of each case in

two subtasks (SVA-Obj & NA-GA) by superimposing the patterns of individual instances (e.g. Figure 3.3(a)

and 3.3(b)), while adjusting the line width to be proportional to the frequency of flow across all examples.

The words within parenthesis represent one instance of the word in that position. The aggregated graphs

verify (1) generality of patterns across examples in each case (including SS and PP). (2) a more intuitive

visualization of the pattern entropy in these two tasks, with RA-NA showing “messier” aggregated patterns,

or larger entropy.
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[SEP]
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Figure 6.4: Example pattern of a positive sentence in SA
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[SEP]
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Figure 6.5: Example pattern of a positive sentence in SA
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[SEP]
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Figure 6.6: Example pattern of a negative sentence in SA
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[SEP]
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Figure 6.7: Example pattern of a positive sentence in SA
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[SEP]
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Figure 6.8: Example pattern of a negative sentence in SA
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[SEP]
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[SEP]
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[SEP]
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noun(PP)

Figure 6.9: SVA-Obj. Aggregated
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[SEP]
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[SEP]
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[SEP]
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Figure 6.10: RA: GA, Aggregated
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Chapter 7

Appendices for Order-sensitive Shapley

Values for Evaluating Conceptual Soundness

of NLP Models

7.1 Additional Results for HANS (Section. 4.6.1)

We compute the global explanations for all templates in [McCoy et al., 2019], where half of the templates is

labeled as entailment. For those templates, word overlapping heuristics is actually the correct heuristic for

predicting entailment. Table 7.1 shows the same stats as Table 4.5, but for entailment-labeled templates. As

we can see, M f or is actually less order-sensitive than Maug. Ideally, a conceptually sound model should learn

both word overlaps and word orders; nevertheless this discrepancy can also be explained by overfitting and

mere shifting of decision boundary: Maug only learn that word overlap at the corresponding positions does

not equate to entailment, making the model more order-sensitive for entailment-labeled sentences. While

M f or also rely on word-overlapping features much more than order, but possibly in the same way as Mori.
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∑i ϕ(xi) ∑i ϕ(zi)

Mori 1.26 -0.37
Maug 0.85(↓0.41) -0.09(↑0.28)
M f or 0.89(↓0.37) -0.22(↑0.15)

Table 7.1: Global Statistics across entailment-labeled templates

7.2 Additional Details for SA (Section. 4.6.2)

7.2.1 Templates for NEG/REG

[Det(The)] [Noun(movie)] [Verb(is)] [NEG/REG] [Adjective(good)][(Punc).]

• Det: ’the’, ’that’, ’this’, ’a’

• Noun: ’film’, ’movie’, ’work’, ’picture’

• Verb: ’is’, ’was’

• NEG: ’not’, ’never’, ’not that’, ’never that’

• REG: ”(blank), ’very’, ’pretty’, ’quite’

• Adjective: (+): ’good’, ’amazing’, ’great’

• Adjective: (-): ’boring’, ’bad’, ’disappointing’

• Punctuations: ’.’, ’!’

7.2.2 Aggregated Results for Figure 4.5

We compute the aggregated global explanations for all instances of NEG(+) and NEG(-), illustrated in

Figure 7.1, to make sure the trend shown in Figure 4.5 represent the general trend. In Figure 7.2, we show

local explanations for a sentence in REG with no special construct like negation, and as expected, word

orders do not matter at all.
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Figure 7.1: Global explanations for NEG(+) and NEG(-), annotations follow Figure 4.5
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Figure 7.2: Local explanations for two examples in REG
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